
PERKIN· ELMER

08/32 FA8TCHEK
Referenlce Manual

48·064 FOO ROO

The information in this document is subject to change without notice and should not be
construed as a commitment by the Perkin-Elmer Corporation. The Perkin-Elmer Corpo
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliabilitY of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

@ 1982 by The Perkin-Elmer Corporation

Printed In the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 OS/32 FASTCHEK OVERVIEW

1.3

1.5

INTRODUCTION

GENERAL DESCRIPTION

GENERAL FEATURES

REQUIREMENTS

FILE TYPES

2 GETTING STAFTED

2.1

2.2
2.2.1
2.2.2

2.3
2.3.1
2.3.2
2.3.3

WHEN TO RUN FASTCHEK

LOADING FAsTCHEK
Loading FASTCHEK from the System Console
Loading FASTCHEK from an MTM Terminal

STARTING FASTCHEK
Starting FASTCHEK in Interactive Mode
Starting FASTCHEK in Batch Mode
Starting FASTCHEK in Immediate Mode

STOPPING FASTCHEK
SEND STOP
SBND PJ\USE

3 COMMAND ENTRY

3.1

3.2
3.2.1
3.2.2
3.2.3

INTlRODUCTION

BATCH AND IMMEDIATE MODE COMMAND ENTRY
INI~rIALIZE
CHECK
REN,!\ME

48-064 F01 ROO

v

1-1

1-3

1-4

1-5

1-5

2-1

2-2
2-2
2-3

2-4
2-4
2-5
2-7

2-8
2-8
2-8

3-1

3-1
3-5
3-7
3-8

i

CHAPTERS (Continued)

3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11
3.2.12
3.2.13
3.2.14
3.2.15
3.2.16

3.3
3.3.1
3.3.2
3.3.3

READCHECK
NOREADCHECK
FILL
CLOSE
CLOSEONLY
EXTENDALLOWED
KEEPSPOOL
REPORTONLY
WRITERECOVERY and NOWRITERECOVERY
BLOCKS and DIRECTORY
VOLUME
LIST
END

INTERACTIVE COMMAND ENTRY
Dialogue for the Initialize function
Dialogue for the Check function
Dialogue for the Rename function

4 FASTCHEK OPERATION

4.1 DESCRIPTION OF OPERATION
4.1.1 Initialize Function
4.1.1.1 Initialize/Fill Operation
4.1.1.2 Initialize/Readcheck Operation
4.1.1.3 Initalize/Noreadcheck Operation
4.1.2 Check Function
4.1.2.1 Check/Readcheck Operation
4.1.2.2 Check/Noreadcheck Operation
4.1.2.3 Check/Close Operation
4.1.2.4 Check/Closeonly Operation
4.1.2.5 Reportonly Operation
4.1.3 Rename Function

4.2 TIMING INFORMATION

4.3 TUNING INFORMATION

4.4 PACK ADMINISTRATION FILE

5 ERROR HANDLING AND MESSAGES

COMMAND ERROR HANDLING

5.2 LIST OVTPUT AND ERROR HANDLING

5.3 MESSAGE SUMMARY

ii

3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-18
3-20
3-23
3-24
3-26

3-27
3-29
3-31
3-33

4-1
4-1
4-3
4-3
4-5
4-5
4-7
4-7
4-13
4-14
4-14
4-15

4-16

4-18

4-19

5-1

5-3

5-3

48-064 F01 ROO

6 INTERNAL FAILURE

6.1 DESCRIPTION

APPENDIXES

A
8

C

FASTCHEK COMMAND SUMMARY
END OF TASK CODES

DEVICE CHARACTEFISTICS

D PACK ADMINISTRATION FILE FORMAT

E

F

D .1
D.2
D.3
D.4
D.4.1
D.4.2
D. 4·.3
D.4.4
D.4.5
D.4.6
D.4.7
D.4.8
D.4.9

INTRODtTCTION
CONTROL RECORD
DEFECTIVE SECTOR RECORD
HISTORY RECORDS
Initialization History Record
Name History Records
Surface Check History Records
Close Fistory Record
File Integrity Check History Record
Full Backup History Record
Incremental Backup History Records
Selective Backup History Records
Restore History Records

LINK PROCEDURE

LOGICAL UNIT USAGE

G COMPARISON WITH OS/32 DISCHECK AND OS/32 DISCI NIT

H

INTRODUCTION
CHECK FUNCTION
INITIALIZE FUNCTION
RENAME FUNCTION

JOURNAL FEATURE

I COMPATIBILITY WITH OTHER PRODUCTS

1.1 16-BIT SYSTEMS
1.2 OS/32 DISCINIT
1.3 OS/32 DISCHECK
1.4 NON-STANDARD DISC DEVICES

INDEX

48-064 F01 ROO

6-1

A-1
B-1

C-1

D-1
D-1
D-2
D-2
D-3
D-4
D-4
D-5
D-5
D-5
D-6
D-7
D-7

E-1

F-1

G-1
G-1
G-2
G-2

H-1

1-1
1-1
1-1
1-1

Ind-1

iii

PREFACE

This manual describes the functions and features of the
OS/32 FASTCHEK program, Part Number 03-344. OS/32 FASTCHEK is
used to check the integrity of disc packs, and to initialize and
rename packs in a fast, efficient and convenient manner.

[§~~ f.~.~gYi§1!g~
Users of OS/32 FASTCHEK should be familiar with the operation of
OS/32.

~YnQQ§i~ 2f ~hs£!~~~
Chapter 1 provides a
capabilities. Chapter
load and start it.

general overview of the program's
2 describes when to run FASTCHEK, how to

Chapter 3 describes command entry, and Chapter 4 contains a
description of the operation of FASTCHEK and also contains tuning
information.

Chapter 5 discusses error handling and documents all the messages
which can be generated. Internal failure conditions are
discussed in Chapter 6.

Appendixes provide: a command summary; End of Task codes; device
characteristics; format of the Pack Administration file; Link
procedure; logical unit usage; a comparison with OS/32 DISCHECK
and OS/32 DISCINIT; notes on the journal feature; notes on the
compatibility with other products.

~Y§i~m]~gyi~~mgni§
OS/32 FASTCHEK executes as a segmented user task
R06.2, or higher. R06.2 supports two new
non buffered indexed and extendable contiguous files.

under OS/32
file tYPeS:

OS/32 FASTCHEK functionally replaces the OS/32 DISCHECK and OS/32
DISCINIT programs. Current users of these products will find a
comparison of FASTCHEK with DISCHECK and DISCI NIT commands in
Appendix G.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-064 F01 ROO v

CHAPTER 1
05/32 EA5TCHEK OVERVIEW

1.1 INTRODUCTION

In order to reliably store and retrieve information on a disc
system certain procedures are necessary. These can be divided
into two classes, those necessary to prepare the disc pack for
use by the system, and those necessary to check the integrity of
the pack and its contents.

Preparing a disc pack for use by the system involves two steps,
'formatting' and 'initializing'u The first of these is required
so that the disc contrcller hardware can directly address each
sector on the pack, and the second so that the operating system
can allocate, write, and read data files on the pack. Thus
'formatting' is a hardware requirement, whereas 'initializing' is
a software requirement.

When a pack is received from a manuf~cturer it is essentially
'blank' and has no information recorded on it and is referred to
as unformatted. A hardware diagnostic/test program is then used
to write sector headers on the pack and to check the surface of
the pack. This process is termed ~formatting' and is often
performed by an engineer.

The pack must then be 'initialized~ by writing certain control
information on the pack. One of the functions of FA5TCHEK is to
perform this initialization. The control information consists of
the Volume Descriptor, the Directory and the Bit Map. The Volume
Descriptor contains the name of the pack (the Volume Name), the
addresses of the Bit Map and Directory, and certain other control
information. It is always ~laced in the first sector on the pack
(sector 0) so that the operating system can locate it. The
Directory contains an entry for each data file currently on the
pack. Each entry holds the name of the file, information on its
type, its location on the pack, its status, and certain other
control data. The Directcry consists of a number of blocks
linked together. As part of the initialization process, the
directory can be 'pre-allocated' so as to optimise reading of the
directory by the operating system. The Bit Map is used by the
operating system to control the allocation of space on the pack.
It contains one bit per sector on the pack with each bit being
set to zero if the associated sector is free, and to one if the
sector is either in use or defective.

During the intialization process, a check can be made to see if
any of the sectors on the pack are defective. This operation is
known as a 'surface check' or 'read check'. A sector is said to

48-064 FOO ROO 1-1

be defective if it either has been previously flagged as
defective by the format program or cannot be sucessfully read by
FASTCHEK. All defective sectors are flagged as being 'in use' in
the Bit Map so as to prevent their use by the operating system.

Once the pack has been initialized it can be 'marked on' and made
available for use.

If a software or hardware failure occurs, the integrity of the
data on the pack must be assumed to be in doubt and FASTCHEK must
be run before the pack can be returned to normal use. This
operation is necessary for a number o~ reasons.

Firstly, it should be apparent that a hardware failure may result
in erroneous data being written on the pack or may cause valid
data to be written to the wIong place on the pack. Secondly,
since the operating system buffers certain data in memory (to
avoid the inefficiency of rewriting it to the pack whenever it is
updated), it is highly prcbable that, following a system failure,
the pack may contain inconsistent datq. The data buffered in
memory is always flushed when the pack is marked off. Thus, as
a check that a pack being marked on h~s previously been marked
off, the operating system maintains a control bit in the Volume
Descriptor which is set whenever the pack is marked on as
unprotected and reset when it is marked off. If this bit is
found to b~ set when an attempt is made to mark the pack on as
unprotected, it is taken as an indication that the integrity of
the data on the pack is in doubt and the pack will not be marked
on. FASTCHEK is used to perform the required checking and then,
if the operation is successful, reset the bit so that the pack
can be marked on for normal use. Specifically, FASTCHEK closes
any files that were open (i.e. being accessed) at the time of
the failure and warns of a possible data loss if the file was
being written to. FASTCHEK also checks (where necessary) all the
data linkage structures and when possible, repairs any that have
been corrupted. Checks aIe also made for allocation conflicts.
That is cases where, according to the existing control
information, two or more files share the same sectors.

It is important to realise that when a system failure occurs and
FASTCHEK is used to check and restore the integrity of the pack,
FASTCHEK does nothing to fix the underlying cause of the failure,
it simply attempts to restore the integrity of the pack. Thus
for example, if the operating system detects a hardware error
while accessing the Bit Map, it will request that the pack be
marked off and checked. Running FASTCHEK in this case may
restore the integrity of the pack (probably by relocating and
rebuilding the Bit Map) but obviously cannot correct the original
hardware fault.

1-2 48-064 FDa ROO

1.2 GENERAL DESCRIPTION

FASTCHEK can be used to
initialize a formatted
integrity of a pack.

perform three different functions,
disc pack, rename a pack, and check the

The initialisation function can be performed in three different
modes:

- with surface check
- with prefill and surface check
- without surface check

In FASTCHEK's terminology these modes are known as READCHECK,
FILL, and NOREADCHECK res~ectively.

If the pack has just been formatted then one of the first two
modes (READCHECK or FILL) must be used in order to check for and
record the defective sectors. It should be noted that the
prefill mode can be used either to prefill the pack with a
recognizable 'never yet used' signature or (more usefully) to
ensure that any previous data is over~ritten thus performing a
'security erase' operation.

If the pack has been previously initialized then the NOREADCHECK
mode can be used to save time. 'rhe surface check can be safely
omitted since FASTCHEK records the defective sector information
on the pack (in a file called the Pack Administration File)
whenever a surface check is performed. If this file cannot be
found on the pack then FASTCHEK autom~tically performs a surface
check. Thus initialising a pack without a surface check is a
fast and secure method for clearing all data files from the pack.

The rename function is used to change the name of a pack. The
pack must have been previously initialized.

The check function is used to check the integrity of the pack
after a system failure. The integrity of the pack is assured
provided that all defective sectors are known, the directory
contains valid information, the bit map accurately refects all
unused sectors, all data files can be accessed, and no files
share common sectors. Thus the integrity check can be divided
into three phases, a basic check of the volume descriptor and the
directory, a check of the file accessing paths and the file
allocation, and a surface check of the pack. It will be apparent
that whereas the directory check only takes a short time, a file
check requires more time and a surface check even longer.

The integrity checking hierarchy is thus as follows:

- surface check then directory and file check
- directory and file check
- directory check

Since it is obviously time wasting to perform more checking than
is actually required FASTCHEK allows the user to specify a given

48-064 FOO ROO 1-3

level of checking but will automatically perform more if found
necessary. Thus the check function can be performed in four
modes as follows:

- surface check then directory and file check
directory and file check without prior surface check but
surface check if found necessary

- directory check withcut file check but file check (and
surface check) if necesary

- directory check only.

In FASTCHEK's terminology these modes are known as READCHECK,
NOREADCHECK, CLOSE, and CIOSEONLY respectively.

Hence in normal circumstances it is most efficient to use the
third mode, CLOSE, and rely on FASTCH£K to perform more extensive
checking only if it is required. The fourth mode, CLOSEONLY, is
used only in special ap~lications where the user w~shes to
restore the integrity of the pack in a very short time if this is
possible, but if it is not (because a file or surface check is
required), he will use an alternate recovery stategy by, for
example, switching to another system.

1.3 GENERAL FEATURES

FASTCHEK supports all disc devices currently supported by the
operating system. It uses a highly efficient surface checking
algorithm and an optimised file allocation checking technique.
A full check of a 256 MB disc requires only approximately 7
minutes and only some two minutes if no surface check is required
(provided sufficent memory is available). Smaller discs require
correspondingly smaller times.

FASTCHEK is simple to use due to the provision of extensive
defaulting of parameters and the automatic fallback to more
extensive checking modes when required.

Commands can be entered either interactively (in response to a
series of prompts), from a command file, or as start options.
The interactive method is most convenient for inexperienced or
occasional users.

FASTCHEK also provides the following options:
- an EXTENDALLOWED option to recover as much data as possible

when performing the check function
- a WRITERECOVERY option to recover sectors which appear

defective because of an erroneous Cyclic Redundancy Check
.- a REPORTONLY option to prevent any updating during the check

operation and only report on the integrity of the pack
- a KEEPSPOOL option to retain all spool files during a check

operation

1-4 48-064 FOO ROO

FASTCHEK creates and maintains a Pack Administration File named
PACKINFO.DIR/O. This file contains a list of defective sectors
on the pack and a record of the administrative history of the
pack (i.e. when it was last checked, renamed, etc).

1.4 RBQUIREMENTS

FASTCHEK requires a minimum of 40KB of user memory (32KB Pure,
8KB Impure) but will execute faster if more is available.

1.5 FILE TYPES

This revision of FASTCHEK introduces two new file types:

• Nonbuffered indexed (NB) files

• Extendable contiguous (Ee) files

Both new file types are supported on all devices supported by
OS/32 disc drivers. The attributes supported for both file types
are: read, write, test and set, binary, wait, random, formatted,
ASCII, unconditional proceed, image, rewind, backspace record,
write filemark, forward space file, and backspace filemark. For
details of these file types, see the OS/32 Application Level
Programmer Reference Manual.

48-064 F01 ROO 1-5

2.1 WHEN TO RUN FASTCHEK

FASTCHEK IDY~~ be run:

CHAPTER 2
GETTINr, STAR~ED

- to initialize a newly fcrmatted p~ck before attempting to use
it

- to check the integrity of a pack after a system failure which
occurred while the pack was marked on as unprotected

- to check the integrity of a par.k on which the operating
system has detected an error or logical inconsistency and has
thus out~ut one of the fcllowing messages:

BIT MAP ERReR eN voln: MARK OFF AND CHECK

I/O ERROR ON voln: MARK OFF AND CHECK

- to check the integrity of a pack which, when marked on,
results in one of the fcllowing messages:

NOFF- ERR - AJDTEt If),..: V~ IWtA sf IV" -I- I> e lfIIafieed oN ,tA)t!Jrd fir
PRI-DIB READ ERR r" ((1.A.#4J fCo fft:h.e"fc....-wheN S¥Sf.~ 1""s

d" w IV w} -H, 6i t": v e S Md"lc eel "AI ..
FASTCHEK should be run:

- to check the integrity of a pack which, when marked on,
results in one of the following messages:

SEC-DIR READ ERR
SEC-DIR WRIT ERR

- to check the integrity of a pack when a task detects one of
the following errors while accessing a file on the pack:

Unrecoverable error (status code X'84')
End of M~dium error (status code X'90') when reading

from an Indexed file

FASTCHEK can be used:

- to rename (i.e. change the name of) a pack

- to clear all existing files from a pack

48-064 FOO ROO 2-1

Users who do not have the
manual can safely run
commands:

time or
FASTCHEK

START ,INIT=disc:,VOL=name

inclination
using the

to study
following

to initialize the pack on drive "disc:" and
set its volume name to "name"

START ,CHECK=disc:

this
START

to check the integrity of the pack on drive "disc:"

START ,RENAME=disc:,VOL=name

to rename the pack on drive "disc:" to "name"

However, it is strongly recommended that this manual be read so
that the user understands the full range of options available.

NOTE

If the disc drive or controller hardware is suspected to be
faulty, do not run FASTCHEK to check the integrity of the pack
unless the REPORTONLY oPtion is used. FASTCHEK might delete
valid data from the pack because of errors due to faulty
hardware.

2.2 LOADING FASTCHEK

2.2.1 Loading FASTCHEK from the System Console

This command loads FASTCHEK from the system console.

Format:

LOAD taskid, fd , segsize increment

Parameters:

taskid

2-2

is a 1- to
specifYing
loaded into
storage.

8-character alphanumeric string
the name of the task after it is

a foreground segment in main

48-064 F01 ROO

fd

segsize
increment

is the file descriptor of the device or file
containing the task image load module of
FASTCHEK. If this parameter is omitted, the
default is "taskid.TSK".

is a decimal number in kb specifying the
additional main memory workspace to be added
to the module's impure segment. This value,
if given, overrides the "WORK=n" option which
may havE been specified when the task was
linked.

NOTE

FASTCHEK will generally execute faster if it
is allocated more memory. For information on
the choice of optimum segment size increment
see Chapter 4.

2.2.2 Loading FASTCHEK from an MTM Terminal

This command loads FASTCHEK from an MTM terminal. (Note that
because packs can only be marked on and off from the system
console, FASTCHEK is not nermally run from an MTM terminal
although there is no operational re~son why it cannot be.)

Format:

LOAD fd ,segsize increment

Parameters:

fd

segsize
increment

48-064 FOO ROO

is the file descri~tor of the device or file
which contains the task image load module of
FASTCHEK.

is a decimal number in kb specifying the
additional main memory workspace to be added
to the module's impure segment. This value,
if given, overrides the "WORK=n" option which
may have been specified when the task was
linked.

NOTE

FASTCHEK will generally execute faster if it
is allccated more memory. For information on
the choice of optimum segment size increment
see Chapter 4.

2-3

2.3 STARTING FASTCHEK

After FASTCHEK has been loaded, the START command may be used to
beqin execution of the program. The disk must be marked off, and
Fastchek must be made the current task. The format of the START
command is identical in both the OS/32 System Console and MTM
environments.

The START command which should be used for FASTCHEK, has the
general format:

START (,param1 [,param2 [••• [,paramn) •••]]]

D~pending on the parameters used in the START command, FASTCHEK
will commence operation in one of three possible command entry
modes: interactive, batch or immediate.

Note once FASTCHEK has validated all commands and is about to
commence the requested operation, then, if the commands have been
entered other than via the system console, the following message
is logged to the console:

OS/32 FASTCHEK Rnn-nn <function) disc: STARTING

where <function) is one of INITIALIZE, CHECK, or RENAME.

2.3.1 Starting FAST~HEK in Interactive Mode

This command is used to start FASTCHEK in Interactive Mode so
that the FASTcHEK commands can be entered in a conversational
manner.

Format:

~I T\ R T [~ 0 M MAN D [=] [ide v:] [,1 IS T [=] [f d)]

Parameters:

COMMAND=

2-4

idev: specifies the input device from which
commands are to be entered and must be an
interactive device. If this parameter is
omitted or idev: is omitted, the default is
the command entry device CON:. Note that
throughout this manual all references to the
device name CON: in fact refer to the name of
the system console if this is other than CON:.

48-064 F01 ROO

LIS11 =

Functional Details:

fd specifies the output device or file to
which all listing information is to be output.
If this ~arameter is omitted or fd is omitted,
the list device may be specified during the
interactive command input phase.

When started in interactive mode, FASTCHEK carries on a question
(i.e. a prompt) and answer dialogue with the user. Interactive
mode is most suited to inex~erienced ~nd/or infrequent users of
FASTCHEK. A detailed explanation of the interactive mode
prompts, and their possible answers, may be found in Chapter 3 of
this manual.

After FASTCHEK is started, this message is displayed:

OS/32 FASTCHEK Rnn-nn

where nn-nn gives the revision and update level of FASTCHEK. The
first prompt message for the dialogue is then displayed.

Examples:

START

(implies that the system console or MTM terminal
is to be used as the command device)

5T ,LI=PR:, C=CRT1:

ST ,lIST FASTCHEK.LST

2.3.2 Starting FASTCHEK in Eatch Mode

This command is used to start FASTCHEK in Batch Mode so that the
FASTCHEK commands are read from a file or device. These commands
are fully described in Chapter 3.

Format:

21 ART , ~ 0 M MAN D [=] f d 1 [, 1 I S T [=] [f d 2]]

48-064 Faa ROO 2-5

Parameters:

COMMAND=

LIST=

fd1 s~ecifies the input file or
non-interactive device from which commands are
to be read.

fd2 s~ecifies the output device or file to
which all listing information is to be output.
If this paramete~ is omitted or fd2 is
omitted, the list device may be specified
(using the LIST command) by one of the
commands read from the batch file. If this
parameter is omitted from both the START
command and the Batch command file then PR:
is used as the default list device. If the
assignment to PR: fails then CON: is used as
the secondary defa~lt.

Functional Details:

When started in batch mode, FASTCHEK reads commmands from the
specified command file or device. These commands are documented
in Chapter 3.

After FASTCHEK is started, this message is displayed:

05/32 FASTCHEK Rnn-nn

where nn-nn gives the revision and update level of FASTCHEK.
Commands are then read from the batch file or device.

Examples:

START ,COMMAND=SCRT:FASTCHEK.CMD

ST ,LI=PR:, C=CR:

(where CR: is a card reader)

2-6 48-064 FOO ROO

2.3.3 Starting FASTCHEK in Immediate Mode

This command starts FASTCHEK in Immediate Mode. This mode is
identical to batch mode (in that the commands to FASTCHEK are
identical), except that nc command de~ice is specified. All the
commands required by FASTCHEK must be passed to FASTCHEK as
arguments of the START command.

Format:

~IART ,cmd1, cmd2 [, cmd3 [, cmd 4 •••••]]

Parameters:

cmd1, cmd2, etc are the FASTCHECK commands.
discussed in Chapter 3.

Functional Details:

These aLe

In Immediate Mode aLL commands to FASTCHEK must be passed via the
START command. It is not ~ossible to pass some commands to
FASTCHEK via the START command and the remainder from a command
file. Thus for example, the following START command will be
rejected:

START ,CHECK DSC2:,COMMAND=SCRT:FASTCHEK.CMD

Immediate mode is best used when the number of commands to
FASTCHEK can be fitted into the START command. If the reQuired
commands cannot be fitted into the ST~RT command then batch mode
must be used.

After FASTCHEK is started, this message is displayed:

CS/32 FASTCHEK Rnn-nn

where nn-nn gives the revisicn and update level of FASTCHEK. The
commands passed in the START command are then processed.

Examples:

START ,INIT DSC1:,VOL=SCRT,READCHECK,WRITEREC

ST ,CHECK=DSC4:,LIST FRIN:

ST ,RENAME DSC2:,V=GA04

48-064 FOO ROO 2-7

2.4 STOPPING FASTCHEK

Once FASTCHEK has processed all its initial commands, it
commences operation. If the user desires to halt FASTCHEK after
it has begun execution, he may use the SEND command of 05/32 to
direct a message to FASTCHEK. The two messages which FASTCHEK
will recognize are STOP and PAUSE.

Note that if FASTCHEK is being executed outside the MTM
environment then it must be selected as the current task by the
OS/32 TASK command before the SEND command is entered.

2.4.1 SEND STOP

This command instructs FASTCHEK to terminate in an orderly
manner. Note that if some operation has been started then the
SEND STOP command will not leave the pack in its original state.
Thus if an Initialize operation is mistakenly started on the
wrong pack, then using SEND STOP will not prevent the destruction
of the data on the pack.

Format:

Functional Details:

This command, when received by FASTCHEK instructs the program to
make an "orderly" shutdown. To effect its shutdown, FASTCHEK
will wait for any outstanding I/O operations to complete, close
any open logical units, and delete any workfiles currently being
used.

Regardless of the initial command mode (i.e., interactive, batch
or immediate), reception of the SEND STOP command will cause
FASTCHEK to terminate.

Note that
cancelling
shutdown.

the use of this
FASTCHEK because

2.4.2 SEND PAUSE

command is
it results

preferred to
in a more

simply
orderly

This command is used to instruct FASTCHEK to pause so that the
operator can perform some required action.

2-8 48-064 F01 ROO

Format:

SIND £AUSE

Functional Details:

When this command is received by FASTCHEK, the program will
pause. FASTCHEK can then be continued by using the OS/32
CONTINUE command.

The SEND PAUSE facility is normally used in conjunction with the
Journal feature (see Appendix H).

48-064 FOO ROO 2-9

3.1 INTRODUCTION

CHAPTER 3
COMMAND ENTRY

Certain commands must be given to FASTCHEK to specify the
function to be performed, the mode of that function, and any
required options. As discussed in Chapter 2, these commands can
be entered either interactively in response to a series of
prompts, or from a file or input device, or as part of the
Operating System START command.

In this chapter each command is described. Section 3.2 discusses
the commands used in the tatch and immediate modes of command
entry, and section 3.3 describes the prompts and responses for
interactive mode,

3.2 BATCH AND IMMEDIATE MCDE COMMAND ENTRY

These two methods of command entry are provided for experienced
users who are familiar with the command syntax. Batch mode entry
is used either when the number of options to be selected is too
great to be entered as part of the Operating System START
command, or when it is convenient to set UP a fixed command file
which will be used repeatedly.

When commands are entered as arguments to the Operating System
START command each command is separated by a comma. (Note
however that some commands may have multiple parameters separated
by commas but these are enclosed in parentheses.) When commands
are entered from a batch file each line (or ~ore correctly
record) read from the file can contain multiple commands and
these can be separated either by commas or semi-colons.

Null commands are allowed and are ignored. That is a START
command of the form

ST ,arg1,arg2""arg6

is valid. Similarly a line read from the batch file can validly
have the format

cmd1,cmd2;;;cmd3"cmd4;,cmd5

48-064 FOa ROO 3-1

In general blanks are ignored. That is a command may be preceded
or followed by blanks and the following are all equivalent:

cmd1,cmd2,cmd3

cmd1 , cmd2 ; cmd3

cmd1, cmd2, cmd3

In addition many of the commands have the form

KEYWORD = value

In these cases any blanks preceding or following the equal sign
are ignored and the equal sign is not necessary if at least one
blank se~arates the keyword from the value. Thus the following
formats are all valid and equivalent:

KEYWORD value

KEYWORt=value

KEYWORD =value

KEYWORD = value

KEYWORD= value

In addition, where the value itself has some default setting, the
following formats are all valid and equivalent:

KEYWORD

KEYWCRD=

KEYWORD =

KEYWORD=default

Comments can be entered by preceding the comment by an asterisk.
The comment is taken to extend to th~ end of command line. Thus
for exam~le in the line

cmd1,cmd2,* SET OPTIONS 1, 2 AS REQUIRED

all characters to the right of the asterisk are taken to be a
comment even though the comment may contain commas or
semi-colons. This means that on a given line no command will be
recognized if it follows a comment since it will be taken to be
part of the comment.

A line read from a batch file may be terminated by a carriage
return character.

3-2 48-064 Faa ROO

The batch file is read until one of the following conditions is
encountered:

- End of File status (X'88') is returned
- End of Medium status (X'90') is returned
- the command 'END' is recognized

(Note that any commands following the END command on the line
containing it will not te processed.)

- an erroneous command is detected

The individual commands are described in the following sections.
Note that they are ordered logically rather than alphabetically.

The commands can be divided into three classes: those which
specify the function to be ~erformed; those which set the mode of
the function; and those which set options and values. Only
certain combinations of commands are allowed - for example it is
not valid to specify more than one function or mode. When all
commands have been entered and individually validated a
consistency check is performed before initiating the requested
operation.

48-064 FOO ROO 3-3

The following table shows which commands are allowed for each
possible function and mode. An "M" indicates that the command is
mandatory, an "0" that it is optional, and a blank that it is
invalid.

===

COMMANDS

INITIALIZE

CHECK

RENAME

READCHECK

INIT INIT
READ NORD
CHECK CHECK
----- ---------- -----

M

M

NOREADCHECK M

INIT
FILL

=====

FILL M

CLOSE

CLOSEONLY

EXTENDALLOWED

KEEPSPOOL

REPORTONLY

WRITERECOVERY o o

NOTtlRITERECOVERY o o

BLOCKS o o o

DIRECTORY o o o

VOLUME M M M

CHECK CHECK CHECK CHECK RE
READ NORD CLOSE CLOSE NAME
CHECK CHECK ONLY
----- ----- ---------- ----- ----- ===== ----------

M M M M

M

M

M
-----1-----

I
-----1-----

1 M

M

o o o

o o o

o o o o

o o o

o o o

M
===

Note also that the commands WRITERECOVERY and NOWRITERECOVERY are
mutuallY exclusive as are BLOCKS and DIRECTORY.

Note that any error messages generated while the commands are
being processed are logged to the system console (or MTM
terminal) and not to the list device. These messages are fully
documented in Chapter 5 but in general consist of a plain
language message followed by the erroneous command line with an
indication of the error position.

3-4 48-064 F01 ROO

INITIALIZE

3.2.1 INITIALIZE

The INITIALIZE command is used to select the Initialize function
and also to specify the disc device containing the pack to be
initialized.

Format:

INIIIALIZE [=] devn:

or

INIIIALISE [=] devn:

Parameters:

devn:

Functional Details:

is the device name of the disc
containing the pack to be initialized.

drive

The pack on the specified drive will be initialized in the
selected mode (FILL, READCHECK, or NOREADCHECK). Note that if no
mode is specified then NOREADCHECK is used as the default. The
Volume Descri~tor, Bit Ma~, and Directory will be initialized and
written. The Pack Admisistration file will be created in the
FILL or READCHECK modes and will be updated in the NOREADCHECK
mode. Automatic mode switching from NOREADCHECK to READCHECK
will occur if the Pack Administration file does not exist or is
invalid. For further details see Cha~ter 4.

The specified device must be currently ready,
protected, and marked off.

NOTE

not write

It should be noted that if a pack is to be initialized in order
to clear all currently existing files from the pack, it is most
efficient to use the NOREADCHECK mode. This mode is also
preferred because it preserves the Pack Administration file.
Moreover,· if the user wishes to both initialize a pack and also
to perform a surface check, and the pack currently contains a
Pack Administration file, then this is best done by first
initialising the pack in NOREADCHECK mode and then checking it in
READCHECK mode since this will preserve the Pack Administration
file.

48-064 FOa ROO 3-5

INITIALIZE

Examples:

INIT DSC1:

INITIALIZE FLP3:

INIT=D5FX:

3-6 48-064 FOO ROO

CHECK

3.2.2 CHECK

The CHECK command is used tc select the Check function and also
to specify the disc device containing the pack to be checked.

Format:

~HECK [=] devn:

Parameters:

rlevn: is the device name of the disc drive
containing the pack to be checked.

Functional Details:

An integrity check will be performed on the the pack mounted on
the specified drive. The extent of the checking performed is
determined by the mode selected (READCHECK, NOREADCHECK, CLOSE,
or CLOSEONLY). Note that if no mode is specified then the
default is CLOSE. The Volume Descriptor and Directory are always
checked. NOREADCHECK forces a check of the file allocation and
aCCESS paths and READCHECK causes a surface check to be performed
as well as the file check. ModB switching from CLOSE to
NOREADCHECK to READCHECK will occur automatically if found
necessary but no mode switch will occur if CLOSEONLY is selected.

Further operational details can be found in Chapter 4.

The specified device must be currently ready and marked off. The
drive must not be write protected unless the REPORTONLY option is
used in which case it may be write protected if desired.

Examples:

CH DSC1:

CHECK FLP3:

CHE=D5FX:

48-064 FOO ROO 3-7

RENAME

3.2.3 RENAME

The RENAME command is used to select the Rename function and also
to specify the disc device containing the pack to be renamed.

Format:

RENAME [=1 devn:

Parameters:

devn:

Functional Details:

is the device name of the disc
containing the pack to be renamed.

drive

The pack on the specified drive will De renamed by changing the
volume name in the Volume Descriptor to the specified name. Note
that the Volume Descri~tor is checked to be valid (see section
4.1.3) before effecting the rename. Note also that a warning
message is output if an attempt is made to rename a pack to its
current name.

The specified device must be currently ready,
protected, and marked off.

Examples:

BEN r::SC1:

RENAME FLP3:

RENA=D5FX:

3-8

not write

48-064 FOO ROO

READCHECK

3.2.4 READCHECK

The READCHECK command selects the mode in which either an
Initialize or Check function is to be performed and specifies
that a surface check of the pack is to be performed.

Format:

Parameters:

None.

Functional Details:

In an Initialize/Readcheck operation a surface check is performed
and then the Bit ~ap is allocated and initialized, the Directory
is allocated and initialized, and the Volume Descriptor is
written.

Similarly, in a Check/Readcheck operation, a surface check is
performed before checking the Directory and the file allocation
and access paths.

During the surface check an attempt is made to read every sector
on the pack. If a given sector cannot be read it is taken to be
defective and marked as allocated in the Bit Map. (See section
3.2.12 for the effect of the WRITERECOVERY option.)

If the pack is being initialized then the Pack Administration
file, PACKINFO.DIR will be created and initialized and used to
record the defective sector addresses.

If the pack is being checked and a valid Pack Administration file
is present on the pack then the defective sector address data in
this file is updated.

Examples:

READCHECK

REA

READCH

48-064 FOO ROO 3-9

3.2.5 NOREADCHECK

The NOREADCHECK command selects
Initialize or Check function
that no surface check is to be
required.

Format:

NQREADCHECK

Parameters:

None.

Functional Details:

NOREADCHECK

the mode in which either an
is to be performed and specifies
performed unless found to be

In an Initialize/Noreadcheck operation no surface check of the
pack is performed provided that a valid Pack Administration file
currently exists on the pack, otherwise the mode automatically
switches to READCHECK and a surface check will be done.

In a Check/Noreadcheck operation a full Directory and file
integrity check is performed but no surface check is done
provided that a valid Pack Administration file exists on the
pack, otherwise the mode automatically switches to READCHECK and
a surface check will be performed.

Examples:

NOREADCHECK

NOREA

NOREADCH

3-10 48-064 FOO ROO

FILL

3.2.6 FILL

The FILL command selects the mode in which an Initialize function
is to be performed. In an Initialize/Fill operation the
specified data pattern is written to every sector on the pack
before carrying out a surface check and then initialising the
pack.

Format:

rILL [=1 [xxxxxxxx]

Parameters:

xxxxxxxx

Functional Details:

is a string of up to 8 hexadecimal digits to
be used as the fill data pattern for each
fullword in every sector on the pack. If less
than 8 digits are specified then leading
zeroes are assumed. If no data pattern is
entered then a fill pattern of 00000000 is
used.

In an Initialize/Fill operation the pack is first filled with the
specified data pattern. The operation then proceeds as for
Initialize/Readcheck~ that is, a surface check is performed, the
Pack Administration file is created and used to record the
defective sector addresses, the Bit Map is allocated and
initialized, the Directory is allocated and initialized, and the
Volume Descrittor is written.

Examples:

FILL (data pattern set to 00000000)

FIL = BDBDBDBD

F = 5555 (data pattern set to 00005555)

48-064 FOO ROO 3-11

CLOSE

3.2.7 CLOSE

The CLOSE command selects the mode in which the Check function is
to be performed. In a Check/Close operation the integrity of the
Directory is checked and any open files which can be safely
closed are closed.

Note that if no mode is specified for a Check operation then
Check/Close is selected.

Format:

~1QSE

Parameters:

None.

Functional Details:

In a Check/Close operation an integrity check of the Directory is
performed. Any Contiguous file found to be open is closed and
any Indexed file open only for read is closed. If any Indexed
file is found to be open for write or the integrity check of the
Directory fails then the NOREADCHECK mode is automatically
selected and a Check/Noreadcheck operation is performed.

The CLOSE mode is the preferred mode for the Check operation
since only the minimum required checking is performed. If
however, the user knows that the pack contains Indexed files open
for write, and thus that a mode switcb to NOREADCHECK will occur,
it is slightly more efficient to initiate the operation in
NOREADCHECK mode.

Examples:

CLOSE

CLO

3-12 48-064 FDa ROO

CLOSEONLY

3.2.8 CLOSEONLY

The CLOSEONLY command selects the mode in which the Check
function is to be performed. In a Check/Closeonly operation the
integrity of the Directory is checked and any open files which
can be safely closed are closed.

Note that in contrast with CLOSE mode, no mode switch will occur
if any files cannot be closed or the integrity check fails.

Format:

~1Q~~QNLY

Parameters:

None.

Functional Details:

In a Check/Closeonly o~eration an integrity check of the
Directory is performed. Any Contiguous file found to be open is
closed and any Indexed file open only for read is closed.

If any Indexed file is found to be open for write or the
integrity check of the tirectory fails then the operation is
terminated leaving the pack in a state in which it cannot be
Marked On as unprotected. In this case a Check/Noreadcheck or
Check/Readcheck operation must be performed before the pack can
be returned to normal use. Note that if Temporary files are
found, these will be deleted (irrespective of file type).
However, the space allocated to these files is not released, and
a warning message to this effect will be output if any Temporary
files are deleted. This space may be reclaimed at a later time
by using a Check/Noreadcheck operation.

The CLCSEONLY mode should only be used in cases where it is
imperative that the integrity of the pack be determined (and if
possible restored) in a very short time. Since, if further
checking is required, the user cannot afford the necessary time
but must perform some alternate recovery action, for example, by
switching to another system.

Examples:

CLOSEONLY

CLCSEO

48-064 Faa ROO 3-13

EXTENDALLOWED

3.2.9 EXTENDALLOWED

The EXTENDALLOWED command sets the option which allows Indexed
files open for write to be extended as far as possible beyond
their last known checkpoint when a Check/Read check or
Check/Noreadcheck operation is being performed.

Format:

~XIENDALLOWED

Parameters:

None.

Functional Details:

If an indexed, nonbuffered indexed, or extendable contiguous file
open for write is found during a Check/Read check or
Check/Noreadcheck operation, it will be closed. If the
EXTENDALLOWED option has been set and the file is found to extend
beyond the last checkpoint (i.e., the file has been written to
since it was previouSly closed or checkpointed), then, instead of
being closed at the last checkpoint, it will be closed and
checkpointed to include as many extra records as can safely be
recovered. This means that the file is extended up to and
including the last record completely contained by the second last
nonzero data block pointer in the last checkpointed index block.
In practice, this means that no extension is possible for a file
which has never been checkpointed or closed.

The EXTENDALLOWED oPtion is only valid if a Check function is to
be performed. The option can be set for the READCHECK,
NOREADCHECK, and CLOSE modes, but not for the CLOSEONLY mode.
Note that specifying EXTENDALLOWED for a Check/Close operation
has no effect unless a mode switch to NOREADCHECK or READCHECK
occurs. Then any indexed files open for write will be extended.

Examples:

EXT

EXTENDALLOWED

EXTEND

3-14 48-064 F01 ROO

KEEPSPOOL

3.2.10 KEEPSPOOL

The KEEPSPOOL command sets the option which allows aged Spool
files to be retained and not deleted when a Check opeiation is
being performed.

Format:

KEEPSPOOL

Parameters:

None.

Functional Details:

When a Check operation is being performed, any spool file whose
Date Last Written is such that the file is older than 24 hours is
normally deleted. The KEEPSPOOL option specifies that all
(closed) spool files are to be retained irrespective of age.

The KEEPSPOOL option is only valid if a Check function is to be
performed. The option can be set for the READCHECK, NOREADCHECK,
and CLOSE modes, but not for the CLOSECNLY mode. Note that
specifying KEEPSPOOL for a Check/Close operation has no effect
unless a mode switch to NOREADCHECK or READCHECK occurs since
aged spool files are not deleted in CLOSE mode.

Examples:

K

KEEPSPOOL

KEEP

48-064 FOO ROO 3-15

REPORTONLY

3.2.11 REPORTONLY

The REPORTONLY command sets the option which prevents any writing
to a pack on which a Check function is being performed. That is,
the integrity of the pack is checked and all problems are
reported but no attempt is made to correct them.

Format:

R~EORTONLY

Parameters:

None.

Functional Detailsl

If the REPORTONLY option is specified for a Check function (in
any mode) the processing normally carried out is performed except
that the pack is never written to. Thus any corrective action
which would normally be taken is not performed, but a full report
of any problems is given.

The REPORTONLY option is intended for a user who wishes (and has
the necessary skill) to attempt to correct a problem by himself
(a~d thus possibly recover some data which would otherwise be
lost). As an aid to this type of user, FASTCHEK generates more
extensive diagnostic information (than produced when REPORTONLY
is not specified) when a problem is found (see section 4.1.2.5).

The REPORTONLY option should also be used if a hardware failure
is suspected in order to prevent files from being deleted purely
because of errors associated with the hardware failure.

Since the pack is never written to if REPORTONLY is in effect,
FASTCHEK can be run with the disc drive write protected.

It should be noted that, if NOREADCHECK or READCHECK mode is
specified, the REPORTONLY oPtion requires that a duplicate copy
of the Bit Map be constructed (because the one on the pack cannot
be updated). The copy can be built either in memory or on a
temporary file. Thus the REPORTONLY option can only be used if
elther sufficient memory or a temporary file of the required size
is available. (See also section 4.1.2.5).

If the REPORTONLY option is used in order to cheek which files
will be deleted (when the program is run without REPORTONLY
specified), then it is critical that the same segment size
increment is used when loading the program. This is because the

3-16 48-064 F01 ROO

REPORTONLY

order of performing certain operations may change as a function
of the available memory.

Examples:

REP

REPORTONLY

REPORT

48-064 Faa ROO 3-17

WRITERECOVERY

3.2.12 WRITERECOVERY and NOWRITERECOVERY

The WRITERECOVERY and NOWRITERECOVERY commands control the option
setting that allows the attempted recovery of sectors (by
rewriting them) which, during the surface check, are found to
have a Cyclic Redundancy Check (CRC) error.

Note that NOWRITERECOVERY must be eXPlicitly specified if this
oPtion is not required since WRITERECOVERY is the default.

Format:

HRITERECOVERY

[OWRITERECOVERY

Parameters:

None.

Functional Details:

If the NOWRITERECOVERY command is entered then any sectors found
to have a CRC error during the surface check operation will be
counted as defective. If WRITERECOVERY is specified (or
defaulted) then these sectors are written and then read again.
If the read error persists, the sector is counted as defective,
otherw~se it is assumed to be good. Note that the data rewritten
to the sector is the same as that initially read from it. This
allows the data content of the sector to be preserved, if at all
possible.

It should be noted that most CRC errors are caused by a fault
(e.g., power failure) occurring while data ia actually being
written to the sector.

The WRITERECOVERY option may only be specified for a Check
function in any ~ode other than CLOSEONLY, or an Initialize
function in any mode other than FILL. It should be noted that if
the mode is other than READCHECK, setting the WRITERECOVERY
option will have no effect unless a mode switch to READCHECK
occurs. In addition, the WRITERECOVERY option is not allowed if
Initialize/Fill is specified because the prefill action corrects
any CRC errors which would be recoverable using the WRITERECOVERY
option.

3-18 48-064 F01 ROO

Examples:

WR

WRITERECOVERY

WRITEREC

NOWR

NOWRIT

NOWRITERECOVERY

48-064 FOO ROO

WRITER ECOVERY

BLOCKS and DIRECTORY

3.2.13 BLOCKS and DIRECTORY

The BLOCKS and DIRECTORY commands are used to set the size and
position of the Directory allocated during the Initialize
operation. The two commands are equivalent except that they set
the Directory size in terms of blocks and files respectively.
Only one of the two may be used and i~ neither is entered default
values are used.

Format:

I1LOCKS [=] [bbb] [/ [ccc]]

~I.B E C TOR Y [=] [f f f] [/ [c c c)]

Parameters:

bbb

ccc

fff

Functional Details:

gives the required size of the
te r m s 0 f the dec i mal n um b e r
blocks.

Directory in
of directory

gives the decimal number of the cylinder on
which the Directory is to start (counting the
first cylinder as zero).

gives the required size of the Directory in
terms of the decimal number of files it can
contain.

Each dir.ectory block occupies 1 sector and can contain up to 5
file entries. Thus the commands

BLOCKS = 100/1 and DIRECTORY = 500/1

are equivalent. If the size of the Directory is not specified
then a default value appropriate to the type of pack being
initialized is used. Selected exam~les are given in the table
below. A full list is given in Appendix C.

Disc Type Default Blocks Default Files

256 MB 320 1600
67 MB 128 640

5 MB 24 120
Floppy 1 5

3-20 48-064 FOO ROO

BLOCKS and DIRECTORY

If the starting cylinder number is not specified or is specified
as zero, the Directory is located starting on cylinder 1 (i.e.,
the second cylinder). Cylinder :lero is already partly allocated
for the volume descriptor sector.

If the area required by the Directory is found to contain
defective sectors, the Directory is relocated to the next
available error free area (of the required size) that starts on
a track boundary.

When the Directory is allocated, the successive directorY blocks
are not on successive sectors but are on each Nth sector where
the value varies depending on the type of disc. Selected
examples are given in the table below (see also Appendix C).

Disc Type Block Sequencing

256 MB every 32nd sector
67 MB every 32nd sector

5 MB every 6th sector
Floppy every 2nd sector

Thus, on a 256 ME pack, (which has 64 sectors per
successive blocks are allocated on sectors 0, 32, 1, 33,
••••• 29, 61, 30, 62, 31, 63 and then on the same sectors
next track. This allocation technique optimizes the
required by the Operating System to scan the Directory.

track)
2, 34,
on the

time

It should be noted that since during initialization, the Pack
Administration file is always created if it did not previously
exist, the minimum Directory size is one block. If zero blocks
are requested, one will be allocated.

It is important to realize that although it is valid to request
the allocation of a Directory which is smaller than is required
for the number of files which will be allocated on the pack
(since the Operating System will automatically extend the
Directory), the Check function of FASTCHEK will execute
considerably faster if the Directory is initialized to be large
enough to hold all files to be placed on the pack.

It will be apparent that, for a given type of pack, there is a
'reasonable' upper limit to the Directory size. The maximum
allowed size for the Directory is taken to be one eighth (1/8) of
the total pack size. This represents over 500,000 files on a
256 MB pack.

48-064 F01 ROO 3-21

Examples:

3-22

B = 300/100
DIR = 1500/100

BLOCK
DIRECTORY

BLOC = /
DIRECT = I

BLOCKS 100
DIRECTORY 500

BL /20
DIR /20

BLO = a
DIRECT = 0

BLOCKS and DIRECTORY

(implies default values)

(implies default values)

(implies default start cylinder)

(implies default number of blocks)

(minumu~ Directory allocation)

48-064 FOO ROO

VOLUME

3.2.14 VOLUME

The VOLUME command specifies the volume name of the pack and is
mandatory for the Initialize or Rename function (and invalid for
the Check function).

Format:

YOLUME [=] voln

Parameters:

vaIn is the volume name.

Functional Details:

The specified volume name can be any valid volume name. That is,
it cannot be longer than 4 characters, cannot contain any
imbedded blanks, the first character must be alphabetic, and the
remaining characters, either numeric or alphabetic. Note that
lower case letters are allowed but will be translated to upper
case.

It should be noted that it is unwise to use a volume name which
is the same as one of the device nameS in the system (i.e.,
naming a pack DSC1 if one of the disc drives is called DSC1:)
since the Operating System will not allow this pack to be Marked
On. It is also unwise to use names which are the same as the
keywords used in the DisplaY Devices command (e.g., OFF) since
this can lead to confusion.

Examples:

V SCRT

VOL = work

VOLUME=OS32

48-064 F01 ROO 3-23

LIST

3.2.15 LIST

The LIST command is used to specify the file or device to which
messages are output. If this command is omitted then PR: is
used as the default list device unless it cannot be assigned in
which case CON: (or rather the device name of the system
console) is assigned as the list device.

Format:

1IST [=1 fd

Parameters:

fd

Functional Details:

is the file descriptor of the file or device
to be used as the list device.

The LIST command may be entered either as part of the Operating
System START command or (if batch command entry is used) as one
of the commands read from the batch file. However if batch
command entry is used then the LIST command cannot be specified
in both the START command and as one of the batch commands.

If the file descriptor specifies a fi~e and FASTCHEK is being
executed in the MTM environment then the extension can be entered
as either P, G, or S (or omitted in which case P is assumed). If
FASTCHEK is be~ng executed outside the MTM environment then the
account number can be entered as a number (between 0 and 255
inclusive) or omitted (indicating account 0). If P, G, or S is
used then this will be taken to mean account o.

If a file is specified as the list device then it must currently
exist. Output to this file will be appended after any existing
data.

Note that nothing is output to the list device until all commands
have been processed and validated. Thus if for example errors
occurred while reading commands from a batch file, then the
resulting error messages would not be output to the list device
but to the system console (or MTM terminal).

3-24 48-064 FOO ROO

Examples:

L PR:

LIST = D300:FBACK.LST/123

LIS FBACK.LST/P

48-064 FOO ROO

LIST

3-25

END

3.2.16 END

The END command is used to indicate the end of the commands being
read from the batch command file or device.

Format:

Parameters:

None.

Functional Details:

When this command is recognized no attempt is made to decode any
remaining commands in the current command line and no further
records are read from the batch comm~nd file or device. The
program then ~erforms a consistency check on the commands entered
and if no errors are found, commences the execution of the
requested function.

Note that the END command is not valid if entered as part of the
START command.

Examples:

END

EN

3-26 48-064 FOO ROO

3.3 INTERACTIVE COMMAND ENTBY

This method of command entry is provided for inexperienced and
occasional users who are not familiar with the various command
keywords and ~arameters.

The Interactive Command Entry mode is invoked when the program is
started with an interactive device (i.e. a terminal) as the
command device. That is, the ST~RT command has one of the
following formats:

START ,COMMAND=idev: [,IIST=fd]

START [,LIST=fd]

where idev: is the device name of an interactive device and the
seccnd format results in CON: being used as the interactive
command device.

When started in this mode FASTCHEK outputs a series of prompts
requesting various parameters, values, or Yes/No responses. If
the response to a given prompt is not valid an error message is
outrut and then the prom~t is re-displayed so that a valid
res~onse can be entered.

After all the questions have been answered a message is output
giving the selected function, its mode, and any options. The
user is then asked to comfirm that this data is satisfactory. A
negative response causes the complete dialogue to begin again.

The majority of the prompts will accept a carriage return as
indicating that a default value is to be used. In these cases
the default response is indicated in the prompt message by a
number sign character (#). For example

Mode (#NOReadcheck, REAdcheck, or Fill=xxxxxxxx) ?

where NOREADCHECK is the default mode.
value can be explicitly selected if
res~onse "NOREADCHECK" is valid in the
"#NCREADCHECK" or "#" are net.

Note that the
desired, that
above case.

default
is, t.he

However,

The prompt also shows the minimum abbreviations of the allowed
keyword responses in uPper case with the remainder of the keyword
in lower case (provided that the terminal being used supports
lower case).

The dialogue is conducted in
(non-defaultable) parameters are
have been input the user can
parameters by using the response

l~Q

In this case the
operation commences

48-064 FOa ROO

dialogue is
immediately

such an order that mandatory
requested first. Once these
elect to default the remaining

terminated and
th us bypa ssing

the requested
the remaining

3-27

qUestions and also the confirmation step. Note that the IGO
response is not allowed until all the mandatory parameters have
been obtained but once this has been done the !GO response can be
given to any prompt thus defaulting the remainder.

If the user wishes to change his respcnse to a previous prompt he
can cause the complete dialogue to be restarted by entering the
response

lliESTART

to any prompt.

Two other special responses are recognized and can be input for
any prompt. These are

lE~USE

and

The !PAUSE response causes the program to be paused. When it .is
continued the current prompt message is redisplayed. The !STOP
response causes the program to be terminated in an orderly
fashion with end of task code 250.

The following sections give the prompt messages used and the
allowable responses. The first prompt requests the function to
be performed. Since the dialogue varies depending on the
selected function, separate sections are used to describe the
conversation for each possible function.

Note that in these sections the functional details of each
response are not documented since they have been given in
sections 3.2.1 through 3.2.15 and these should be consulted if
any clarification is required.

3-28 48-064 FOO ROO

Dialogue for Initialize

3.3.1 Dialogue for the Initialize function

The first prompt is

Function (INITialize, CHeck, or REName) Devn: ?

to which the response must be

IHllIALIZE [=] devn:
or

I!IIIALISE [=] devn:

to select the Initialize function and devn: which is the device
name of the drive containing thp pack to be initialized.

If the Initialize function is requested, the dialogue continues
with the prompt

Volume Name ?

to which the response must have the form

voln

where voln is a valid volume name.

The next prompt requests the mode in which the Initialization is
to be performed. It is as follows:

Mode (#NOReadcheck, REAdcheck or Fill=xxxxxxxx) ?

If the default mode of NOREADCHECK is not to be used, then the
response must be one of the following:

1!OREADCHECK

!L~ADCHECK

rILL [=] [xxxxxxxx]

where xxxxxxxx is a hexadecimal number of UP to 8 digits. Note
that default responses can be made to both the above and all
remaining prompts. Thus, the special response !GO can be used to
terminate the dialogue and commence execution.

The Directory allocation information is then requested using the
prompt

Directory (#nnn Files I Cylinder #m) ?

where nnn and m indicate the default allocation for the type of
disc previously specified. If the default values are not to be
used then the response should have the form

(fff] [f [cee]]

48-064 F01 ROO 3-29

Dialogue for Initialize

where fff is the decimal number of files which the Directory is
to contain and ccc is the decimal cylinder number on which the
Directory is to start.

If the NOREADCHECK or REA~CHECK mode was requested earlier then
the prompt

Attempt Write Recovery (#1es or No) ?

is output. A default (null) or XES response will enable the
WRITERECOVERY option. A MO response viII disable it.

If the List device was not specified in the START command the
following prompt is displayed:

List Device (#PR:, m=idev: or FD) ?

where idev: is the device name of the interactive terminal being
used. The 1efault (null) response will select PR: as the list
device. A response of Hi" will select the terminal being used as
the list device. Alternatively any required file or device can
be selected by entering its file descriptor. Note that if a file
is specified it must currently exist and that the listing
information will be appended to any existing data in the file.

At this point all required data has been entered and a message of
the following form is out~ut:

{Fill with xx~xxxxx }
{ }

Initialize devn: Mode ={Readcheck [with Writerecovery] }
{ }
{Noreadcheck [with Writerecovery]}

Volume voln Directory for nnn Files at Cylinder m Requested

and this is followed by the ~rompt

OK to Run (Yes or No) ?

If the response is !O then the complete dialogue is restarted.
If the response is IES (or IGO) then execution commences. Note
that no default response is allowed to this prompt.

3-30 48-064 FOO ROO

Dialogue for Check

3.3.2 Dialogue for the Check function

The first prompt is

Function (INITialize, CHeck, or REN~me) Devn: ?

to which the response must be

~HECK [=1 devn:

to select the Check function and devn: is the device name of the
drive containing the pack to be checked.

If the Check function is requested the dialogue continues vith
the prom~t

Mode (#CLOse, CLOSEOnly, NOReadcheck or REAdcheck) ?

If the default mode of CLOSE is not to be used then the response
must be one of the following:

~1QSE

~1Q~IQNLY

MQBEADCHECK

READCHECK

Note that default responses can be made to both the above and all
remaining prompts. Thus the special response !GO can be used to
terminate the dialogue and commence execution.

If the requested mode was ether than CLOSEONLY then the required
settings of the EXTENDALICWED, WR~TERECOVERY, and KEEPSPOOL
options are solicited using the following prompts:

Extend Indexed Files (#No or Yes) ?

Attempt Write Recovery (#Yes or No) ?

Keep Aged Spool Files (#Nc or Yes) ?

In all cases a XES response will enable the option and a 10
response will disable it. Default (null) responses will disable
EXTENDALLOWEt and KEEPSPOCL but enable WRITERECOVERY.

Then, irrespective of the selected mode, the prompt

Report Only (#No or Yes) ?

is output. A default (null) or HO response will disable this
option whereas a XES respense will enable the REPORTONLY option
thus preventing any modification of the current state of the
pack.

48-064 FOO ROO 3-31

Dialogue for Check

If the List device was not specified in the START command the
following prompt is displayed:

List Dev~ce (#PR:, i=idev: or FD) ?

where idev: is the device name of the interactive terminal being
used. The default (null) response will select PR: as the list
device. A response of "in will select the terminal being used as
the list device. Alternatively any required file or device can
be selected by entering its file descriptor. Note that if a file
is specified it must currently exist and that the listing
information will be appended to any existing data in the file.

At this point all required data has been entered and a message of
the following form is out~ut:

Check devn:

{Close }
{ }

Mode ={C1oseonly }
{ }
{Noreadcheck}
{ }
{Readcheck }

with [Writerecovery] [Extendallowed1 [Keepspool] [Reporton1y]

and this is followed by the ~rompt

OK to Run (Yes or No) ?

If the response is NO then the complete dialogue is restarted.
If the response is XES (or IGO) then execution commences. Note
that no default res~onse is allowed to this prompt.

3-32 48-064 FDa ROO

Dialogue for Rename

3.3.3 Dialogue for the Rename function

The first prompt is

Function (INITialize, CHeck, or REN~me) Devn: ?

to which the response must be

liEMAME [=] devn:

to select the Rename function and devn: is the device name of
the drive containing the pack to be renamed.

If the Rename function is requested the dialogue continues with
the prompt

Volume Name ?

to which the response must have the form

voln

where voln is a valid volume name.

If the List device was not specified in the START command the
following prompt is displayed:

List Device (#PR:, i=idev: or FD) ?

where idev: is the device name of the interactive terminal being
used. The default (null) response will select PR: as the list
device. (Note that the IGO response to this prompt will also
select PB: as the list device.) A response of "@" will select
the terminal being used as the list device. Alternatively any
required file or device can be selected by entering its file
descri~tcr. Note that if a file is specified it must currently
exist and that the listing information will be appended to any
existing data in the file.

If the IGO response was not made to the above prompt a message of
the following form is output:

Rename devn: as voln

and this is followed by the prompt

OK to Run (Yes or No) ?

If the response is liO then the complete dialogue is restarted.
If the response is XES (or !GO) then execution commences. Note
that no default response is allowed to this prompt.

48-064 FOO ROO 3-33

CHAPTER 4
FASTCHEK OPERA~ION

4.1 tESCRIPTICN OF OPERATION

This section describes the operation of FASTCHEK. For the sake
of simplicity each function (Initialize, Check, and Rename) is
treated separately. Note that the Pack Administration file is
discussed in detail in section 404.

U.1.1 Initialize Function

Certain actions are commen to all (Fill,
Noreadcheck) modes of Initialization.

Readcheck, and

The first operation performed during an Initialization
(irrespective of the mode) is a validity check of the Volume
Descriptor. This check involves reading the Volume Descriptor;
and then rewriting it with a volume name of "NULL", the Bit Map
and Directory pointers set to zero, and the Volume On-line
Attributes bit set. The sector is then re-read and the data read
compared with that which was written. (Note that initially
setting UP the Volume Descriptor in this way ensures that the
pack cannot be marked on if the Initialize function terminates
abnormally, since a "DUPL-ERR" error will occur because the name
of the pack conflicts with that of th~ Null device.) If an error
occurs while writing or re-reading the Volume Descriptor the
standard I/O error message (see Chapter 5) is output followed by

WHILE ACCESSING VOLUME tESCRIPTOR

and then the program terminates with end of task code 10. If the
data read back does not match that written the program will
terminate with end of task code 31 after printing the message

VOLUME DESCRIPTOR DATA VALIDATION ERROR
IN FULIWCRD AT xx EXPECTED yyyyyyyy FOUND zzzzzzzz

Any defective sectors are then located (either by a surface check
or from the information in the Pack Administration file) and
space for the Pack Administration file is either allocated (in
the Fill and Readcheck modes) or determined (in Noreadcheck
mode).

The Directory is then allocated. Initially an attempt is made to
allocate a directory starting on the first track of the requested
cylinder. If this is not possible because the required area

48-064 FOO ROO 4-1

con tains defecti ve sector s, then the starting addre ss is
incremented by one track at a time and further attempts are made.
If the directory cannot be allocated the program terminates with
end of task code 20 after printing the message

INSUFFICIENT ERROR-FREE SPACE FOR DIRECTORY

Note that no attempt is made to reposition the Directory at a
location before the start cylinder specified by the user. Thus
if the Directcry cannot be allocated, the user should rerun the
program specifying either a smallex start cylinder number or a
smaller directory.

Once the Directory has been allocated it is initialized.
Map is then allocated in the first error free area
required size immediately following the Directory.
cannot be done the program terminates with end of task
after printing the message

INSUFFICIENT SPACE FOR BIT MAP

The Bit
of the
If this

code 21

Note that if this occurs and a relatively high start cylinder
number was specified for the Directory, then the user should
rerun the program specifying either a smaller starting cylinder
number or a smaller directory.

In general, if the program is unable to allocate either the Bit
Map or the Directory, and the user h~s specified a low start
cylinder number for the Directory, a hardware failure is
indicated because there will be a large number of defective
sectors.

Once the Bit Map has been allocated it is initialized to reflect
the allocation of the Directory, the Volume Descriptor, the Pack
Administration file, the Bit Map itself, and any defective
sectors. The Bit Map initialization is done by first clearing
the complete Bit Map and then setting the required bits. Note
that a check is made to ensure that the Bit Map can be read and
actually contains all zeros. If a defective sector is detected
then a mode switch to Readcheck will occur. However, if the data
is successfully read but is not all zeros the program terminates
with end of task code 30 after printing the message

DATA VALIDATION ERROR IN EIT MAP AT SECTOR xxxxxx
IN FULLWORD xx EXPECTING 00000000 FOUND zzzzzzzz

If this occurs a hardware failure is indicated.

A similar check is made while initializing the Directory. The
actions are as for the Bit Map check except that the message

DATA VALIDATION ERROR IN rIRECTORY AT SECTOR xxxxxx
IN FULLWORD yy EXPECTING 00000000 FOUND zzzzzzzz

is r:rinted.

4-2 48-064 FOO ROO

The final step in the initialization is to write the Volume
Descriptor containing the specified volume name and the addresses
of the Directory and Bit Map. A copy of the Volume DescriPtor is
also written in the last sector of the pack. This might be
useful when attempting to recover a pack whose Volume Descriptor
was overwritten.

The message

PACK INITIALIZED - PREALLOCATED DIRECTORY AT xxxxxx,
BIT MAP AT yyyyyy

is then output to show that the Initialize operation is complete
and to give the locations of the start of the Dircetory and Bit
Map.

4.1.1.1 Initialize/Fill Operation

If the Fill mode is specified, then once the initial check of the
Volume Descriptor has been performed, all other sectors on the
pack are filled with the specified data pattern. This operation
is optimized by using the largest possible buffer up to a maximum
of one cylinder and ensuring that no write crosses a cylinder
boundary.

If a defective sector is encountered during the Fill operation,
it will be included in the defective sector list even if it is
not found during the surface check. (It is possible to have a
sector that can be read but not written, in particular on an MSM
type disc, because the read retry logic is more extensive.)

When the Fill phase is complete, a surface check is performed.
This is described in the next section.

4.1.1.2 Initialize/Peadcheck Operation

If the Readcheck mode is specified, then once the initial check
of the Volume DescriPtor has been performed, a surface check is
made on the remainder of the pack. This operation is optimized
by using the largest possible buffer up to a maximum of one
cylinder and ensuring that no read crosses a cylinder boundary.
Note that if the pack being checked is a 2.5 MB or 5 MB fixed or
removable pack, <i.e., device codes 48 through 51 decimal)
because of the characteristics of the controller used for these
types of discs, it is necessary to read all sectors individually
in order to locate all defective sectors. A leapfrog algorithm
is used to optimiZe this process. Note that the same technique
is required and is used for the Fill operation.

Users who wish to monitor the progress of the surface check
operation can do so by eXamining register. A, which will contain
the current sector address.

48-064 F01 ROO 4-3

If an error occurs while reading a sector and the WRITERECOVERY
option is set then the sector is written to in an attempt to
correct a possible Cyclic Redundancy Check error. The sector is
then re-r&ad.

All sectors found to be defective are recorded in a defective
sector list in memory. If a large number of defectives are found
this list will be expanded at the expense of the read buffer. If
so many defectives are found that no read buffer remains, the
program will terminate with end of task code 22 after printing
the message

DEFECTIVE SECTOR LIST OVERFLOW AFTER nnnnnn FOUND

Note that the defective sector addresses are printed as they are
found and thus in the above case all those found will be
displayed. The defective sector addresses are displayed using
the message format

DEFECTIVE SECTOR AT xxxxxx (CHS=ccc/hh/ss) <text>

where xxxxxx is the hexadecimal seeton address, ccc/hh/ss gives
the equivalent hexadecimal cylinder, head and sector numbers, and
<text> will be one of the fallo~ing explanatory messages

RECOVERED

STATUS zzzz READING

STATUS zzzz WRITING

where the first indicates that the sector was recovered through
the WRITERECOVERY option, and the others that the defective
sector was detected either during a read or write operation.

If the program terminates tecause the defective sector list
overflowed (or the program termin~tes normally but with an
exceptionally large number af defective sectors), then there is
almost certainly an underlying hardware fault. Alternatively,
the pack may have been formatted on a drive differently aligned
to that being currently used.

When the surface check is complete the number of defective
sectors found is logged. Then, if a valid Pack Administration
file previously existed cn the pack, the newly found defective
sectors are compared with those ~reviously recorded. Any
discre~ancies are logged using messages of the form

CURRENT/PREVIOUS DEFECTIVE SECTOR DISCREPANCIES
xxxxxx (CHS=ccc/hh/ss) NOW GOOD
xxxxxx (CHS=ccc/hh/ss) NOW DEFECTIVE

4-4 48-064 FOO ROO

A large number of discrepancies should be taken as an indication
of hardware failure. If there are no discrepancies the message

**** NCNE ****

is displayed after the heading.

The Pack Administration file is then created (since the required
size is known from the number of defectives) and used to record
the defective sector addresses.

Initialization then continues as discussed earlier in section
4.1.1.

4.1.1.3 Inita1ize/Noreadcheck Operation

If the Noreadcheck mode is specified, then once the initial check
of the Volume Descriptor has been performed, a validity check of
the Pack Administration file is made. This check is discussed in
section 4.4.

If the Pack Administration file is found to be valid then the
defective sector addresses are read from the file. The defective
sector data is then reported as follows

nnnn DEFECTIVE SECTORS BECCRDED
xxxxxx (CHS=ccc/hh/ss)
xxxxxx (CHS=ccc/hh/ss)

The Initialization then proceeds as discussed in section 4.1.1.
If the Pack Administraticn file does not exist or is invalid, an
automatic switch to Readcheck mode occurs and the operation
proceeds as discussed in section 4.1.1.2.

4.1.2 Check Function

All modes (Closeonly, Close, Noreadcheck, and Readcheck) of the
Check function start with a validity check of the Volume
Descriptor. This involves reading the Volume Descriptor,
rewriting it with the Volume Attributes On-line bit set, and then
reading it back and comparing the d~ta read and written. If an
error occurs on any of these operations, the standard I/O error
message (see Chapter 5) is output followed by the message

WHILE ACCESSING VOLUME DESCRIPTOR

and the program then terminates with end of task code 10. If the
data read back does not match that written the program will
terminate with end of task code ~~1 after printing the message

VOLUME DESCRIPTOR DATA VALIDATION ERROR
IN FULLWCRD xx EXPECTEt yyyyyyyy FOUND zzzzzzzz

48-064 FOa ROO 4-5

The contents of the Volume tescriptor are then checked and if
found to be invalid the program ~i1l terminate with end of task
code 8 after printing

VOLUME DESCRIPTOR ERROR

followed by one of the messages below

INVALID VOLUME NAME vvoollnn

INVALIt DIRECTORY POINTER xxxxxxxx

INVALID BIT MAP POINTER xxxxxxxx

BIT MAP (AT xxxxxx TO xxxxxx) CVERL~PS DIRECTORY (AT xxxxxx)

where vvoollnn is the hexadecimal representation of the volume
name and xxxxxx are hexadecimal ~ddresses. Note that the
Directory and Bit Map pointers are invalid if they are greater
than the maximum sector address on the pack. In addition, the
Bit Map pointer cannot be zero.

The validity of the Pack Administration file is then checked (see
section 4.4). If the file is invalid or does not exist, then if
the initially selected mode is Noreadcheck or the program later
switches from Close to Noreadcheck, then Readcheck mode will be
automatically selected since the defective sector information
cannot be read from the file but must be obtained from a surface
check.

After these initial checks are made, the Check function proceeds
as discussed in the sections below.. When the operation is
complete the program will terminate with end of task code 0 if
the pack can then be marked on as unprotected and used normally
and in this case the ~essage

CHECK COMPLETE - VOLUME veIn READY TO BE MARKED ON

is logged. Note that in this case, if the last sector on the
pack is not in use, then a duplicate copy of the Volume
Descriptor is written to this sector. This may be used when
attempting to recover a pack whose Volume Descriptor has been
overwritten.

If Closeonly mode was used and further checkinq is required then
the program will terminate with end of task code 1 after printing
the message

**** CHECK/NOREADCHECK RECUIPED ***~

and in this case the Volume Attributes On-line hit will be left
set so that the pack can only be m~rked on as protected and it
will be necessary to run a Check/Nore~dcheck or Check/Readcheck
operation before the pack can be retu~ned to normal use.

4-6 48-064 FOO ROO

If the Reportonly option was set and the program would otherwise
terminate with end of task code 0, then it will terminate with
end of task code 1 after printing the message

**** OPTION REPORTONLY SET ****
**** ACTION MESSAGES ARE ADVISORY ONLY ****

4.1.2.1 Check/Readcheck Operation

Once the initial checking described in section 4.1.2 has been
carried out, a surface check is performed in the same manner as
described in section 4.1.1.2.

The operation then proceeds as described in the following section
except that if an unexpected defective sector is encountered, the
program will terminate (with end of task code 10 after printing
the appropriate lID error message) instead of switching to the
Readcheck mode (since the program is already in this mode).

4.1.2.2 Check/Noreadcheck Operation

If no valid Pack Administration file eXists, the mode
automatically switches to Readcheck and the actions described in
section 4.1.2.1 are performed. If the Pack Administration file
is valid, the defective sector data read from it is reported as
discussed in section 4.1.1.3.

The Bit Map is then cleared and checked as described in section
4.4.1 and the bits corresponding to the Volume Descriptor and the
Bit Map itself are set. If a defective sector was found within
the area occupied by the Bit Map, the message

BIT MAP CONTAINS DEFECTIVE SECTOR AT xxxxxx

is printed. If a new Bit MaP can be built either in memory or on
a Temporary file, this will be done. Otherwise, the program
terminates with end of task code 5 after printing the message

INSUFFICIENT WORKSPACE FOR DUPLICATE BIT MAP

If this happens, the user has the option of rerunning the program
with either sufficient memory to build an in memory Bit Map (see
Appendix C) or sufficient contiguous file space available on the
Temporary Volume. Alternatively, the pack can be backed up,
re-initialized and then restored.

If workspace exists for the duplicate Bit Map when the file
allocation check is complete, the new Bit Map will be scanned for
a free area of the required size and the Bit Map will be copied
into this area. If the required space cannot be found, the
program will terminate with end of task code 21 after printing
the message

48-064 F01 ROO 4-7

INSUFFICIENT SPACE FOR BIT MAP

At this point, the user must backup the pack, re-initialize it,
and then restore it.

The Directory entries are then checked. The Directory blocks are
read on a track basis (thus obtaining multiple blocks per read)
until the end of the preallocated portion of the Directory is
detected, at which point the blocks are individually read. If an
error occurs while reading a directory block (i.e., the Directory
contains a defective sector) then the DirectorY is truncated at
the previous block and the standard I/O error message (see
Chapter 5) is printed followed by

WHILE ACCESSING DIRECTORY
DIRECTORY TRUNCATED TO nnnn BLOCKS AT SECTOR xxx xxx

~here nnnnn is the decimal number of what is now the last block,
and xxxxxx is its hexadecimal sector address. If this occurs,
all files which were contained in the truncated portion of the
Directory will be lost.

Each block is checked as follo~s: first, the five entries in the
block are checked to ensure that each active entry is correct.
That is, the file name is valid, the file type is valid (i.e.,
the file is either an indexed, nonbuffered indexed, contiguous or
extendable contiguous file). Then if it is a contiguous file,
the first and last sector addresses are valid; and if an Indexed
file, the index and data block sizes are nonzero, and the first
and last index block addresses are valid. Failure of these
checks will result in the following messages:

INVALID FILE NAME ffffffffffffffff.eeeeee/act

filename. ext/act - INVALID FILE TYPE x

filename.ext/act - INVALID FIRST SECTOR ADDRESS xxxxxxxx

filename. ext/act - INVALID LAST SECTOR ADDRESS xxxxxxxx

filename. ext/act - LAST SECTOR ADDRESS xxxxxx LESS THAN
FIRST xxxxxx

filename. ext/act - INVALID INDEX BLOCK SI~E OF ZERO

filename. ext/act - INVALID DATA BLOCK SIZE OF ZERO

filename. ext/act - INVALID FIRST INDEX BLOCK ADDRESS xxxxxxxx

filename. ext/act - INVALID LAST INDEX BLOCK ADDRESS xxxxxxxx

filename. ext/act - FIRST INDEX BLOCK ADDRESS xxxxxxxx
EQUALS LAST - SHOULD NOT

filename. ext/act - FIRST INDEX BLOCK ADDRESS xxxxxxxx NOT
EQUAL TO LAST xxxxxxxx

4-8 48-064 F01 ROO

filename.ext/act - INVALID NUMBER OF LOGICAL RECORDS xxxxxxxx

filename. ext/act - INVALID RECORD LENGTH nnnn OR NUMBER
OF RECORDS nnnnnnn

The message

FILE filename.ext/act DELETED

vill then be printed. Note that when an invalid filename is
encountered the hexadecimal equivalent of the name is given by

ffffffffffffffff.eeeeee/act

and in the file deleted message, unprintable characters are
replaced by # characters.

Once this check of the five entries has been made, the Forward
Pointer to the next directorY block is checked. If it is invalid
or points to an alreadY allocated sector, one of the following
messages will be printed:

DIREC'rORY BLOCK AT xxxxxx HAS INVALID FORWARD POINTER xxxxxxxx

DIRECTORY SECTOR AT xxxxxx CHAINS TO ALLOCATED SECTOR xxxxxx

and the Directory is then truncated. If the current directory
block was preallocated, the Directory is truncated at this block,
otherwise it is truncated at the last non-preallocated block
containing active entries. In either case the message

DIRECTORY TRUNCATED TO nnnn BLOCKS AT SECTOR xxxxxx

is printed. When the Check operation is completed, the Directory
will be truncated, if necessary, to remove any trailing empty
directory blocks from the non-preallocated portion of the
Directory. This message is not displayed unless the REPORTONLY
option is selected.

The allocation and state of each of the files in the block is
then checked.

Contiguous files are processed as follows: the area occupied by
the file (indicated by the first and last sector addresses) is
checked to be used and, if so, is flagged as used in the Bit Map.
If an allocation conflict is detected, one of the following
messages will be printed:

filename. ext/act - ALLOCATION CONFLICT AT SECTOR xxxxxx

filename. ext/act CONTAINS DEFECTIVE SECTOR AT xxxxxx

filename. ext/act CONTAINS RECOVERED DEFECTIVE SECTOR AT xxxxxx
IN SECTOR nnnnnn OF FILE

The first two messages are followed by

48-064 F01 ROO 4-9

FILE filename. ext/act DELETED

and the third by

FILE filename. ext/act MAY CONTAIN ERRONEOUS DATA

If the file is open for write, it will be closed and the message

filename. ext/act OPEN FOR WRITE (COUNT xxxx)
FILE filename. ext/act CLOSED - POSSIBLE LOST DATA

is printed. If the file is open for read, it will be closed but
no message will be generated. Finally, the current sector
address within the directory entry is checked to be less than or
equal to the size of the file. If not, it is reset to zero, and
the message

filename. ext/act - INVALID CURRENT SECTOR ADDRESS xxxxxxx RESET

is printed.

Nonbuffered indexed, extendable contiguous, and indexed files are
processed as follows: if the file is open for write, it will be
closed and the message

filename. ext/act OPEN FOR WRITE (COUNT xxxx)

is printed. After the file allocation is validated (as discussed
below), this message will be followed by

FILE filename. ext/act CLOSED - POSSIBLE LOST DATA

Note that if the file is found to extend beyond its last
checkpointed extent, the message

filename. ext/act TRUNCATED TO CHECKPOINT AT RECORD nnnn

or

filename. ext/act EXTENDED FROM nnnn TO nnnn RECORDS

will be printed depending on whether the EXTENDALLOWED option has
been set or not. Note that the file can be validlY truncated to
record 0 since this implies that a Directory entry still exists
for the file, but that it contains no data.

If the file was open for read, its read count will be reset but
no message will be generated.

4-10 48-064 F01 ROO

The validity of the file allocation is checked by reading forward
through the index blocks, checking their linkages, checking the
data block pointers, and chec]ting for allocation conflicts for
all index and data blocks. Failure of these checks will result
in one of the following messages:

filename. ext/act - INVALID NEXT INDEX BLOCK ADDRESS xxxxxxxx

filename.ext/act - INVALID PREVIOUS INDEX BLOCK ADDRESS xxxxxxx

filename.ext/act - INVALID DATA BLOCK ADDRESS xxxxxxxx

48-064 F01 ROO 4-10a

fi1ename.ext/act - NEXT INDEX BLOCK ADDRESS xxxxxxxx SHOULD
BE ZERO

fi1ename.ext/act - LAST INDEX BLOCK ADDRESS xxxxxxxx
SHOULD EQUAL xxxxxxxx

filename.ext/act - ALLOCATION CONFLICT AT SECTOR xxxxxx

filename. ext/act CONTAINS tEFECTIVE SECTOR AT xxxxxx

If any of the above errors occur, the action taken depends on the
current state of the file and the position of the error within
the file. If the file was not open for write then any of the
above errors result in the file being deleted. If the file was
open for write and the error is detected within the previously
checkpointed extent of the file (i.e. within the Index and Data
blocks containing the current num~er of logical records as
indicated by the Directory entry) then the file is deleted. If
the file was open for write and the EXTENDALLOWED option is set
then if the error is in the extended portion of the file, the
file is not extended but truncated at the last checkpoint. Thus
if the file is deleted the error message will be followed by

FILE fi1ename.ext/act DELETED

but if it is truncated the error mess~ge will be followed by

FILE filename. ext/act TRUNCATED TO CHECKPOINT AT RECORD nnnnn

If one of the sectors occupied by the file is a recovered
defective sector then the message

filename.ext/act CONTAINS RECOVERED DEFECTIVE SECTOR AT xxxxxx

If this sector is within the previously checkpointed extent of
the file then the file is deleted if the sector lies within an
Index block, otherwise (if the sector is part of a Data block)
then the file is not deleted and the message

tATA POSSIBLY CORRUPTED BEGINNING AT RECORD nnnn

is ~rinted.

If the file was not open for write then the unused data block
addresses in the last index block are checked to be zero. If one
is found to be nonzero then the message

filename.ext/act - INVALID DATA BLOCK ADDRESS xxxxxxxx
- SHOULD BE ZERO

is printed. Note however, that the file will not be deleted
since this is not considered to be a fatal error. The data block
address will be set to zero and all following data block pointers
will be forced to zero. This cleanup operation is also performed
for any files which are truncated or extended.

48-064 FOO ROO 4-11

In the above discussion, no explicit reference has been made to
either Spool or Temporary files. These are treated in a slightly
different fashion from standard data files.

Temporary files are always deleted. No messages are output as
the individual files are deleted, but at the end of the Check
operation the message

nnnn TEMPORARY FILES DELETED

is outPut giving the total number deleted.

Spool files are treated as follows: first, the file type must be
indexed. If not, the message

filename. ext/act - INVALID SPOOL FILE TYPE x
FILE filename. ext/act DELETED

is output. If the file is closed, then it is deleted if it is
more than 24 hours old (as determined by its Date Last Written)
unless the KEEPSPOOL option is set. If the file is open for
write, it is treated as a standard user data file. Once the f1le
has been properly closed (or was not open for write), it is
deleted if it currently contains no data. When all checking is
complete, the following summary messages are output Lf the
associated counts are nonzero.

nnnn AGED SPOOL FILES DELETED

nnnn EMPTY SPOOL FILES DELETED

nnnn SPOOL FILES PRESENT

If the last message is printed, the USer should, once the pack
has been marked on and the Spooler is active, check the Spool
Queue to ensure that the remaining files are, in fact, on the
Queue. If not, add them to the Queue.

When the checking of Directory blocks and files is complete, the
Volume DescriPtor is rewritten with the Volume Attributes Online
bit reset.

Two final points should be noted. First, if during the
Check/Noreadcheck operation, a defective sector is encountered
within the Bit Map, Directory, or the file index blocKs, then an
automatic mode switch to Readcheck will occur. This will be
indicated by the standard I/O error message followed by

**** SWITCHING TO READCHECK MODE ****

A surface check will then be performed before recommencing the
checking discussed above.

Second, the allocation and linkage checking of indexed,
non buffered indexed and extendable contiguous files is done in
parallel for a number of files. As stated earlier, the
preallocated Directory is read in, one track at a time. Once all

4-12 48-064 F01 ROO

the entries in the blocks in that track are checked, all the
indexed and nonbuffered type files found are checked together by
using a tree based sweeping algorithm. This technique optimizes
the checking of indexed, nonbuffered indexed, and extendable
contiguous files but can only be used for the preallocated
portion of the Directory. When initializing a pack, request a
Directory big enough to contain all files to be allocated on the
pack. Note that because the file is not completely checked until
all its index blocks have been checked, it is normal to have
messages relating to the one file interspersed with messages
relating to other files. For example, the "OPEN FOR WRITE"
message is commonly separated from the " •• CLOSED - POSSIBLE LOST
DATA" message.

4.1.2.3 Check/Close Operation

Once the initial check of the Volume Descriptor (discussed in
section 4.1.2) has been made, the Directory is checked in the
same manner discussed in section 4.1.2.2. Each Directory entry
is validated but no allocation checks are made. If any files are
found to be open for read, their read counts will be reset, but
no message is generated.

If any contiguous file is found 1:0 be open for write, it will be
closed and the following messages printed:

filename. ext/act OPEN FOR WRITE (COUNT xxxx)
FILE filename. ext/act CLOSED - POSSIBLE LOST DATA

If any indexed, nonbuffered indexed, or extendable contiguous
file is found to be open for write, the message

filename. ext/act OPEN FOR WRITE (COUNT xxxx)

followed by

**** SWITCHING TO NOREADCHECK MODE ****

indicating that a mode switch is Qccuring. Note that the mode
switch occurs when the first indexed, nonbuffered indexed, or
extendable contiguous file open for write is found. In addition,
a mode switch will occur if any of the Directory blocks or
entries are found to be invalid or a Temporary file is
encountered.

If no errors are found, and there are no files open for write
(except possibly contiguous files), and no Temporary files are
encountered, the Volume Descriptor is rewritten with the the
Volume Attributes Online bit reset, and the program terminates
with end of task code o.

48-064 F01 ROO 4-13

4.1.2.4 Check/C1oseon1y Operation

This operation is exactly the same as the Check/Close Operation
except that, if any errors or indexed, nonbuffered indexed, or
extendable contiguous files open for write are detected, no mode
switch occurs and the program terminates immediately with end of
task code 1. If this happens, the Volume Attributes Online bit
in the Volume Descriptor will be left set, and it will be
necessary to run a full check before the pack can be returned to
normal use.

Note however, that if any Temporary files are encountered, these
will be deleted. Since this action leaves space allocated in the
Bit Map which is in fact free, the message

WARNING: SPACE NOT RELEASED IN BIT MAP

is printed just before the program t~rminates with end of task
code o. In this case, the pack can safely be Marked On and used
normally. However, at some future time, a Check/Noreadcheck
operation should be run to release the unused space.

4.1.2.5 Reporton1y Operation

If tha REPORTONLY oPtion is set for a Check operation, the pack
is never written to and any messages generated will, in general,
contain extra diagnostic information.

Since the pack cannot be written to, the write/read-back/compare
checks cannot be made on the Volume Descriptor and the Bit Map.
In addition, a duplicate copy of the Bit Map must be constructed
either in memory or in a Contiguous Temporary file. In both
cases, an area equal to the size of the Bit Map is required (see
Appendix C). If the required workspace cannot be obtained, the
program will terminate with end of task code 5 after printing the
messaqe

INSUFFICIENT WORKSPACE FOR DUPLICATE BIT MAP

When all checking is complete, this duplicate bit map is compared
with that currently existing on the pack. If there are any
differences, the message

CURRENT BIT MAP DIFFERS FROM EXPECTED

is printed. If the Journal feature (see Appendix H) is currently
enabled, then the differences are reported as follows:

nnnn BIT(S) STARTING AT xxxxxx SET - EXPECTED RESET
nnnn BIT(S) STARTING AT xxxxxx RESET - EXPECTED SET

Note that if the pack being checked was previously marked off,
any differences <and any reported errors oth~r than defective
sectors) indicate a possible failure in the operating system.

4-14 48-064 F01 ROO

As indicated above, most of the errors reported will include
additional information. For example, where an error is detected
in a Directory entry, the location of the entry is reported by

IN DIRECTORY BLOCK AT xxxxxx OFFSET yy

48-064 F01 ROO 4-14a

where xxxxxx is the sector address of the block in hexadecimal,
and yy is the offset in hexadecimal of the entry within the
block.

Similarly, errors within the index blocks of an indexed,
nonbuffered indexed, or extendable contiguous file are located by
the message

IN INDEX BLOCK nnnn AT xxxxxx

where nnnn is the block number (base 1)
hexadecimal sector address. Errors in
located by the message

IN DATA BLOCK nnnn AT xxxxxx OFFSET yy
IN INDEX BLOCK mmmm AT zzzzzz

and
the

xxx xxx 1s the
data blocks are

Errors in the data block pointers are located by the message

IN INDEX BLOCK nnnn AT xxxxxx OFFSET yy

In addition, certain actions not normally reported, will be.
Thus, files found open for read are reported as

filename. ext/act OPEN FOR READ (COUNT xxxx)
IN DIRECTORY BLOCK AT xxx xxx OFFSET yy
FILE filename.ext/act READ COUNT RESET

Similarly, the deletion of Temporary and Spool files is reported
by

TEMPORARY FILE filename.ext/act DELETED

AGED SPOOL FILE filename. ext/act DELETED

EMPTY SPOOL FILE filename.ext/act DELETED

Remember that any action message (such as "FILE ••• DELETED") is
advisory only in REPORTONLY mode, and the user is reminded of
this by the note

**** OPTION REPORTONLY SET ****
**** ACTION MESSAGES ARE ADVISORY ONLY ****

printed both at the head and the tail of the listing.

When the program finishes, it terminates with end of task code 1.

4.1.3 Rename Function

The Volume Descriptor is first read and then checked as discussed
in section 4.1.2. That is, the current volume name is checked to
be valid, and the Directory and Bit Map pointers are checked. In

48-054 F01 ROO 4-15

addition the Volume Attrihutes On-line bit is checked to be reset
and if not the message

VOLUME ATTRIBUTES ON-LINE BIT SET - CHECK REQUIRED

is printed and the program then terminates with end of task code
1 •

The Volume Descriptor is then rewritten with the new volume name.
If this is the same as the ~revious name then the message

WARNING: VOLUME NAME IS AlREADY voln

is printed.

The program then terminates with end of task code 0 after
printing the message

PACK ON devn: RENAMED FROM nold TO voln

where nold is the old volume name and voln the new.

4.2 TIMING INFORMATION

Note: all timings given in this section assume that there is no
other concurrent activity.

The time required to execute a given function depends on the
function itself, the selected mode, the type of disc, the
contents of the pack, and the amount of memory available.

Rename operations require very little time and will always
execute in under 10 seconds.

Initialize operations are relatively fast if no surface check is
required. However, if a surface check is perform9d, the
execution time will depend on both the available memory (as this
determines the buffer size) and the type of pack. The time
required is given by the formula

T = R * C * (H + N)

where T
R
C
H
N

is the total time in seconds
is rotation time of the disc in seconds
is the number of cylinders on the pack
is the number of heads on the disc
is the number of reads required to process one cylinder
and is given by INT«S+B-1)/B) where S is the cylinder
size and B the buffer size except for the 2.5 and 5 MB
fixed and removable paCKS where (because of the
different algorithm used) N has the fixed values 5 and
7 respectively.

The values of the device dependent parameters in the above
expressions can be found in Appendix C. The times for various

4-16 48-064 FOO ROO

types of disc and various buffer sizes are given in the following
table. (Figures are given for Bit Map plus track and a half
sized buffers because this size is the optimum for
Check/Noreadcheck operations.)

Disc Type

256 MB
256 MB
255 MB
256 MB

67 MB
67 MB
67 MB

5 MB

FLOPPY

Buffer
Size (KB)

304
147

32
16

80
57
16

Equivalent
To

Surface Check
Time (sec)

cylinder
Bit Map + 1.5 trks

2 tracks
track

cylinder
Bit Map + 1.5 trks

track

274
302
398
521

82
96

137

independent of buffer size 92

4 cylinder 26

In the above table, the maximum buffer size given for each disc
type is the optimum for that disc. That is, further increasing
the buffer size will not decrease the required time. Note also
that the time is independent of buffer size for 2.5 and 5 MB
discs because of the different algorithm used which requires only
a 1-sector buffer. It should be apparent both from the table and
from the formula, that significant reductions can be made in the
buffer size without greatly affecting the performance. In
Particular, if a track sized buffer is used instead of (the
optimum) cylinder buffer, then the required time will always be
less than double the minimum possible. Thus, for a 256 MB disc,
the buffer size can be reduced from 304 to 16 KB (i.e., by 9470)
with less than a doubling of the required time.

The time required for a Fill operation is equal to that required
for a surface check. That is~ an Initialize/Fill will require
twice the time given in the table.

The time required for a Check operation depends critically on the
specified mode (or the mode used if a mode switch occurs). A
full Check will require a Directory check, a File check, and a
surface check. The Directory check is essentially very fast, and
a Check/Closeonly or a check/Close in which no mode switch occurs
will process in excess of 2000 files per second in the
preallocated portion of the Directory, and approximately 150
files per second in the non-preallocated portion. These figures
assume that sufficient memory is available to hold one complete
track of the preallocated portion of the Directory. (Note that
these figures apply to the 256 and 67 MB discs; for the 5 MB
discs the figures are approximately 1000 and 75, respectively;
and 100 and 5, respectively, for a Floppy.)

The File check requires more time than a Directory check and is
oPtimized by specifying sufficient memory to hold the entire Bit
Map in core together with a track sized buffer for the Directory

48-064 F01 ROO 4-17

and a half track buffer for the Index file check tree. Assuming
that the average Contiguous file is 75 KB in size, and the
average Indexed file contains 1.5 index blocks (equivalent to a
source file of about 1500 records) then on 256 and 67 ME discs,
the File checking logic will process approximately 100 Contiguous
files per second and 20 Indexed fil~s per second within the
pre-allocated part of the Directory. In the non pre-allocated
portion, these figures drop to approximately 80 and 15
respectively. These figures assume that sufficient memory is
available to hold the entire Bit Map in memory. If only one
quarter of the Bit Map can be held in memory at one time, there
will be approximately a 10% degradation in the the above figures.
Timings for the other types of discs can be estimated by reducing
these figures by the ~erformance ratios evident from the
Directory check estimates.

4.3 TUNING INFORMATION

If only a single disc has to be processed, then optimum
performance is achieved by using the maximum available amount of
memory (up to the limit useable by the program). The following
table gives the segment size increments required for optimum
Performance for each function/mode for selected types of discs.
The figures given are calculated by using a cylinder sized buffer
for surface check operations, a Bit Map plus a track and a half
sized buffer for file check cperation~, and a track buffer for
Directory check operations.

==~==
I IINIT IINIT IINIT ICHECKfCHECKICHECKICHECKI RE- I
I DISC TYPE IREAD INORD IFILL tREAD INORD ICLOSEICLOSEINAME 1
I ICHECKICHECKI ICHECKICHECKI IONLY I I
1=-==============1=====1=====1=====1=====1=====1=====1=====1=====1
1 256 MB I 304 I 139 1 304 1 304 I 147 f 16 I 16 1 0 1
I -. - - - - - - - - - - - - - - I - - - - - 1 - - - - - I - - - - - I - - - - - I - - - - ... I - - - - - 1- - - - - I - - - - - I
I 67 M B I 8 a I 49 I 80 I 80 I 57 I 16 1 1 6, 0 I
1---------------1-----1-----1-----1-----1-----1-----1-----1-----1
15M B 1 12 I 3 I 12 I 1.2 I 12 I 6 I 6 I 0 I
1---------------1-----1-----1-----1-----1-----1-----1-----1-----1
I FLOPPY I 4, 4 I 4 I 4 I 5 f 4 I 4 I 0 I
-~---

Note that FASTCHEK is supplied with a default segment size
increment of 16 KB.

It should be noted that (as discussed in section 4.2) the
performance penalty of using less than the optimum segment size
increment is not severe. Thus in multiple discs have to be
processed, then it 1s advantageous to run multiple copies of
FASTCHEK in parallel especially if the discs are on independent
channels. In particular, 1f there are a large number of discs to
be checked after a system failure, multiple copies of FASTCHEK
should be used to simultaneously check discs on independent
channels, and then the second (and any subsequent) discs on each

4-18 48-064 Faa ROO

channel shou11 be checked in further parallel runs. Note that
since FASTCHEK is a segmented task, multiple copies will share
one copy of the code (i.e. pur~ segment). The fixed and
removable packs in a 10 MB disc system should not be processed in
parallel since these share a common head arm.

It is important to realise that when a pack is Initialized,
specifying a pre-allocated Directory of sufficient size to
contain all files to be allccated is critical in achieving high
performance during Check functions. It should also be noted that
because the Directory check phase is extremely fast, there is
almost no penalty in specifying Close mode for a Check function,
since if there are no Indexed files apen for write the operation
will complete almost immediately, but very little time is lost if
a mode switch to NOREADCHECK is required.

4.4 PACK ADMINISTRATION FILE

The Pack Administration file, PACKINFO.DIR/O, contains both a
list of the defective sEctors on the pack and a record of the
administrative history of the pack. Its primary function is to
provide the defective sector information so that when a pack is
Initialized or Checked and the Bit Map has to be rebuilt, this
can be done without performing a surface check to find the
defective sectcrs.

The file is a Contiguous file of some 9 sectors for hard discs
(and only one sector on Floppy discs since no administration
history is maintained on these discs). The file is protected
against deletion and update by normal application tasks by
maintaining the Directory entry with a ~rite Count of -1. The
file is organised as a set of 64 byte records packed 4 to a
sector. The first record is a control record containing global
information and pointers to the data records which are either
history records or Defective sector records.

The history records record the following events:
- pack initialization and mode of initialization
- pack name set by rename or initializing (last four times)
- surface check performed (last four times)
- Check/Close or Check/Clcseonly performed
- File integrity check performed

Note that additional types of history records are supported by
other utilities.

The Pack Administration file is created when FASTCHEK is used to
Initialize a pack in the FILL or READCHECK mode. It will also be
created if the NOREADCHECK mode is specified since a mode switch
to FEADCHECK will occur if the file does not exist. Hence the
administration history records only this and subsequent events.
Thus packs should be Initialized in NOREADCHECK mode so as to
preserve any prior history.

48-064 FOO ROO 4-19

Since the file is created at Initialization time, it is always
the first file in the Directory and always occupies the first
error free area of the required size (which will, in general,
directly follow the Volume Descriptor).

All Check and Rename operations performed by FASTCHEK will be
recorded in the Pack Administration file provided that it exists.
The existence and validity checking are performed as follows:
First, an existence check is made by checking whether
PACKI~FO.DIR exists as the first entry in the Directory and is a
Contiguous file. If not, the program assumes that no Pack
Administration file exists on the pack, and the message

WARNING: PACK ADMINISTRATION FILE PACKINFO.DIR NOT FOUND

is printed.

The validity of the file is then checked by first checking that
the data pointers in the control record are in non decreasing
order and that the last data pointer is eQual to (filesize*4-1).
The validity of the contents of the Defective Sector record(s)
are then checked as follows: the addresses of the defective
sectors are checked to be in ascending order and to be greater
than zero and less than or equal to the maximum sector address
for the given type of pack. The first address found to be zero
is assumed to flag the end of the list, and subsequent addresses
are checked to be zero. If the Defective Sector record(s) are
full, then the number of defective sectors as held in the Control
record and the latest Surface Check History record are checked to
be equal and greater than or equal to the number in the Defective
Sector record(s). If the Defective Sector record(s) are not
full, these three values must be equal. If any of these checks
fail, a warning message is output as follows:

WARNING: PACK ADMINISTRATION FILE PACKINFO.DIR CORRUPTED

The message

WARNING: PACK ADMINISTRATION FILE PACKINFO.DIR OVERFLOWED

will be output if the Defective sector records are full and the
number of addresses recorded is less than the count of defective
sectors held in the Control record.

If an Unrecoverable I/O error (status X'84') occurs while the
file is being accessed, the message

WARNING: PACK ADMINISTRATION FILE PACKINFO.DIR UNUSABLE

is output.

If the file exists and is valid, the current system date/time is
checked to be later than the 'last updated date/time' held in the
Control record. If this check fails, the utility pauses after
issuing the message

4-20 48-064 F01 ROO

PACK ADMINISTRATION FILE I~ST UPDATED ON mm/id/yy hh:mm:ss
ADJUST SYSTEM DATE/TIME IF REQUIRED, THEN CONTINUE

On being continued, the ~rogram wil~ use the current system
date/time (thus allowing the operator the correct the date/time
if it is incorrectly set).

If the user desires to examine the Pack Administration
can be dumped using the tISPLAY command of OS/32 COPY.
can then be interpreted using the record layouts
Appendix D.

48-064 FOa ROO

file, it
The dump

given in

4-21

CHAPTER 5
ERROR HANDLING AND MESSAGES

5.1 'COMMAND ERROR HANDLING

The action taken when a command error is detected depends on the
mode of command entry being used.

If either the immediate or batch command entry mode is being
used, the erroneous command line is displaYed on the system
console (or MTM terminal) together with an error message and an
indication of where in the line the error occurred. For example,
if the START command

ST ,CHECK=DSC1:,BOADCHECK

is used~ it will result in the following messages

Unrecognizable Keyword
CHECK=DSC1:,POADCHECK

and the program will then terminate with end of task code 2.

Similarly, if the program is started specifying a file as the
command device and that file contains the following commands

CHECK DSC1:
READCHECK
WRITEREC; EXTEND; KEEPSPADE
END

then the following messages will be displayed

Unrecognizable Keyword
WRITEREC; EXTEND; KEEPSPADE

and the program will terminate with end of task code 3.

If the interactive command entrY mode is used, an error in
response to a prompt will cause an error message to be displayed
on the interactive terminal followed by the erroneous response
and an indication of the position of the error. For example, if
in response to the prompt

Mode <#NOReadcheck, REAdcheck, or Fil1=xxxxxxxx) ?

48-064 F01 ROO 5-1

the user replies with

REEDCHECK

then the messages

Unrecognisable Keyword
REEDCHECK

Mode (#NOReadcheck, REAdcheck, or Fill=xxxxxxxx) ?

will be displayed and the user should enter the correct response.

If batch or immediate command entry is used, then once all the
individual commands have been ch~cked, a final consistency check
of the commands is made. If this fails then the first detected
error will be reported on the system console (or MTM terminal)
and the program will terminate with end of task code 4. For
example, if the followino START command is used

ST ,CLOSE,LI=PR2:,EXTEND

this will result in the following message

Function (Check/Initialize/Rename) not Specified

Two other types of errors can occur durino the command processino
phase. First, the program may be unable assign the specified
command device, and second, an I/O error may occur on the command
device.

If the command device specified in the START command cannot be
assigned, the message

ASSIGN ERROR xxlu FOR voln:filename.ext/act
<error description>

is displayed on the system console (or 8TH terminal) and the
program then terminates with end of task code 2.

If an I/O error occurs on the command device, the message

1/0 ERROR OB LU nn voln:filename.ext/act FUNC=xx
STATUS=xxxx <error description>

is displayed on the system console (or MTM terminal). If the
interactive command entry mode is being used, the program will
pause, and on being continued will retry the errored I/O. If
batch command entrY is being used, the program will terminate
with end of task code 3.

5-2 48-064 F01 ROO

5.2 LIST OUTPUT AND ERROR HANDLING

No output to the list device occurs until all commands have been
processed and validated. In addition, if a file is specified as
the list device, all output will be appended after any existing
data in the file.

If the specified list device is a printer (i.e. has device code
X'7x'), then the program will output the heading

PERKIN-ELMER OS/32 FASTCHEK Rnn-nn mm/dd/yy
hh:mm:ss PAGE nnn

in one line at the top of each page. Note that a maximum of 55
lines of data is output to each page.

If the list device is not a printer and is not the same device as
the command device, then no pagination is performed and the
heading

PERKIN-ELMER OS/32 FASTCHEK Rnn-nn mm/dd/yy hh:mm:ss

is only output once.

If the list device is assigned to the same interactive device as
the command device, then no pagination is performed and no
heading is output.

After the heading is printed, a message is output giving the
operation to be performed and any options. These messages are
identical to the confimatory messages used in the interactive
command entry mode and are shown in sections 3.2.1, 3.2.2, and
3.2.3.

If an I/O error occurs on the list device, the message

I/O ERROR ON LU nn voln:filename.ext/act FUNC=xx
STATUS=xxxx <error descrittion)

is displayed on the system console (or MTM terminal), or on the
interactive command device (if this is not the same as the list
device). The program then pauses, and on being continued,
retries the errored I/O.

5.3 MESSAGE SUMMARY

This section documents all messages generated by the program.
The messages are given in alphabetical order. Note that no
explicit operator action is required unless specifically stated.

For the sake of clarity, the messages are shown in upper case
with any parameters shown in lower case although the actual
messages are displayed in upper and lower case. Thus for
example, the message displayed as

48-064 FOO ROO 5-3

33 Temporary files deleted

is documented as

nnnn TEMPORARY FILES DELETED

In addition, in order to avcid repetitious definitions, certain
conventions are used in specifying the parameters. These are as
follows:

- ~arameters shown as xxxx, yyyy, or zzzz represent hexadecimal
values

- parameters shown as 1111, mmmm, or nnnn represent decimal
values

- the parameter "voln:filename.ext/act" or "filename.ext/act"
represents the name of a file.

The messages are documented in alphabetical order 1n the
following pages. Note that any message starting with a filename
or a value is ordered by the first word of the message.

Note also that on the actual listing the action messages are
prefixed by an asterisk. In contr~st, the diagnostic messages
which describe the problem are indented. Thus a typical listing
will have the following appearance:

SYSTEM.DIR/OOO Open fer Write (Count FFFF)
* File SYSTEM.DIR/OOO Closed - Possible Lost Data

MTMATF./255 Open for Write (Count FFFF)
* File MTMATF./255 Extended from 0 to 190 Records

MTMACCT./255 Open for Write (Count 0001)
BATCH.QUE/OOO Open for Write (Count FFFF)
SPL.QUE/OOO Open for Write (Count FFFF)

* File MTMACCT./255 Closed - Possible Lost Data
* File BATCH.QUE/OOO Closed - Possible Lost Data
* File SPL.QUE/OOO Closed - Possible Lost Data

IGO NOT ALLOWED YET

Meaning:

The special !GO response has been entered during the
interactive command entry but is not yet valid because
all the mandatory data has not been entered.

5-4 48-064 FOa ROO

**** ABNORMAL TERMINATION - CODE nnn ****

where nnn is the end of task code.

Meaning:

This message is appended to the end of the listing
(provided that the list and command devices are not the
same) when the program terminates with an end of task
code greater than 1.

**** CHECK/NOREADCHECK IS REQUIRED ****

Meaning:

This message is output when a Check/C1oseon1y operation
terminates because an Indexed, Nonbuffered Indexed, or
Extendable Contiguous file is found which is open for
write, or some other error condition (indicated in the
previous message) is detected which requires a
Check/Noreadcheck operation to restore the integrity of
the pack.

**** OPTION REPORTONLY SET ****
**** ACTION MESSAGES ARE ADVISORY ONLY ****

Meaning:

This message is output at the head and tail of the
listing when the REPORTONLY oPtion is set for a Check
operation to remind the user that any indicated actions
(e.g., FILE ••• DELETED) are advisory only.

48-064 F01 ROO 5-5

**** SWITCHING TO <new~ode> MCDE ****

where <new mode> gives the new modB of operation and will be
either NOREADCHECK or READCHECK.

Meaning:

An error (indicated by the previous message) has forced
a switch to a more extensive checking mode.

**** VOLUME ATTRIBUTES ON-LINE BIT SET - CHECK REQUIRED ****

Meaning:

A Rename function was attempted on a pack whose Volume
~escriptor indicated that the pack had not previously
been ~roperly marked off. The pack must be checked by
FASTCHEK before it can be renamed.

Program Action:

The program terminates with end of task code 1.

AGED SPOOL FILE filename. ext/act DELETED

5-6

where filename. ext/act is the name of the file.

Meaning:

The aged Spool file was deleted. This message is only
output if the REPORTONLY option is set.

48-064 FOa ROO

nnnn AGED SPOOL FILES DELETED

where nnnn is the number of files deleted.

Meaning:

The indicated numher of Spool files older than 24 hours
have been deleted.

filename. ext/act - ALLOCATICN CONFLICT AT SECTOR xxxxxx

where xxxxxx is the sector address.

Meaning:

The file occupies a sector which is already in use by
either the Bit Ma~, the Directory, or another data file.

48-064 FOO ROO 5-7

ASSIGN ERROR xxII FOR voln:filename.e~t/act
<error description)

5-8

where xx is the SVC 7 error code

11 is the logical unit number

voln:fi1ename.ext/act is the file descriptor of the
device being assigned.

<error description) will be one of the following:

Meaning:

Error Code

1
2
3
4
6
7
8
9

B
C
D

8Q-FF
E-7F

Description

ILLEGAL FUNCTION
ILLEGAL LU
VOLUME/DEVICE NOT PRESENT
FILE DOES NOT EXIST
PROTECTED BY KEYS
PRIVILEGE CANNOT BE GRANTED
INSUFFICIENT SYSTEM SPACE
LU ALREADY ASSIGNED OR

DEVICE OFFLINE
INVALID FILE NAME
TRAP GENERATING DEVICE
~CCOUNT VIOLATION
1/-0 ERROR
UNKNOWN ERROR

The specified device cannot be assigned for the indicated
reason.

Program Action:

If the command device is being assigned, the program will
terminate with end cf task code 2. If the device is
either the list or disc dev~ce, then if the interactive
command entry mode is being used, the appropriate prompt
will be reissued; otherwise tne program will terminate.

48-064 FOO ROO

BIT MAP RELOCATED TO xxxxxx THROUGH 1J1111

where xxxxxx is the start address of the Bit Map

111111 is the End address of the Bit Map.

Meaning:

The Bit Map has been relocated to the indicated sector
addresses. This message only occurs if the original Bit
Map was found to contain a defective sector and had to be
relocated.

BIT MAP CONTAINS tEFECTIVE SECTOR AT xxxxxx
IN SECTOR nnnn OF BIT MAP

where xxxxxx is the sector address

nnnn is the number of the sector (base 0) within the
Bit Map.

Meaning:

The surface check performed during a Check/Readcheck
operation has located a defective sector within the area
of the Bit Map. See also section 4.1.2.2.

48-064 Faa ROO 5-9

BIT MAP CONTAINS RECOVERED tEFECTIVE SECTOR AT xxxxxx
IN SECTOR nnnn OF BIT MAP

where xxxxxx is the ~ector address

nnnn is the number of the sector (base 0> within the
Bit Map.

Meaning:

The surface check ~erformed during a Check/Readcheck
operation has located a defective sector which was
recovered within the area of the Bit Map. This is only
an informatory message since Bit Map is about to be
completely rebuilt.

{CLOSE }
{ }

CHECK devn: MODE={CLOSEONLY }
{ }

5-10

{NOREADCHECK}
{ }
{READCHECK }

[EXTENDALLOWED] [WRITERECOVERY] [KEEPSPOOL] [REPORTONLY]

where devn: is the device mnemonic of the disc device

Meaning:

This message is output when all commands have been
validated to indicate the function about to be performed.

48-064 FOO ROO

CHECK COMPLETE - VOLUME vo1n READY TO BE MARKED ON

where vo1n is the name of the pack being checked.

Meaning:

This message is output when a Check/Close,
Check/Noreadcheck, or Check/Readcheck operation (without
the REPORTONLY option set) terminates sucessfu11y. The
pack is then ready for normal use.

filename. ext/act CONTAINS DEFECTIVE SECTOR AT xxxxxx

where xxxxxx is the sector address.

Meaning:

The file contains a sector found to be defective.

fi1en~me.ext/act CONTAINS RECOVERED DEFECTIVE SECTOR AT xxxxxx

where xxxxxx is the sector address.

Meaning:

The file contains a sector found to be defective but
which was recovered.

48-064 FOO ROO 5-11

CURRENT BIT MAP DIFFERS FROM EXPECTED
nnn BITS STARTING AT xxxxxx <mess~ge>

where xxxxxx gives the eQuival~nt sector address at which
a string of nnn bits all differ in the same
sense.

<message) is either "SET - EXPECTED RESET"
or "RESET - EXPECTED SET"

Meaning:

The new Bit Map built during a Check operation with the
REPORTONLY option set is not the same as that currently
on the pack. See also section 4.1.2.5.

CURRENT/PREVIOUS DEFECTIVE SECTOR DISCREPANCIES

5-12

xxx xxx (CHS=ccc/hh/ss) NOW {GOOD }
{tEFECTIVE}

where xxxxxx is the sector address

ccc is the hexadecimal cylinder number

hh is the hexadecimal head number

ss is the hexadecimal sector number.

Meaning:

The surface check performed during a Check/Readcheck
operation has located different defective sectors to
those recorded in the Pack Administration file. The
second message is repeated for each discrepancy. If
there are no discrepancies then this second line is
replaced by "**** NCNE ****".

48-064 FOa ROO

DATA POSSIBLY CORRUPTED BEGINNING AT RECORD nnnn

where nnnn is the record number base O.

Meaning:

As indicated by the previous message, an Indexed,
Nonbuffered Indexed, or Extendable Contiguous file has
been found to contain a recovered defective sector. This
message gives the number of the first record that might
contain corrupted data.

DATA VALIDATION ERFOR IN BIT MAP AT SECTOR xxxxxx

where xxxxxx is the address of the Bit Map sector in which
the error occurred.

Meaning:

A hardware failure is indicated.

Program Action:

The program will terminate with end of task code 30.

48-064 F01 ROO 5-13

DEFECTIVE SECTOR AT xxxxxx (CHS=ccc/hh/ss) (message)

where xxxxxx is the sector address

ccc is the hexadecimal cylinder number

hh is the hexadecimal head number

ss is the heaxdecimal sector number

<messaQe) will be one of:

Meaning:

PECOVERED - indicating that the sector was
recovered throuQh the WRITERECOVERY option,

STATUS yyyy BEAtING
indicating that status yyyy was returned by
a read operation

STATUS yyyy WRITING
indicatinQ that status yyyy was r9turned by
a write operation.

A defective sector has been found at the indicated
address. The word RECOVERED, if present, indicates that
the sector has been recovered through the WRITERECOVERY
option.

nnnr. DEFECTIVE SECTORS FOUNt

5-14

where nnnn is the total number of defective sectors.

Meaning:

The surface check operation has located the indicated
number of defective sectors on the pack.

48-064 FOa ROO

nnnn DE~ECTIVE SECTORS RECORDED
xxxxxx (CHS=ccc/hh/ss)

wher.e nnnn is the number of defective sectors
in the Fack J~ dmin.istra tion file

xxxxxx is the sec tOI: add r;ess

ccc is the h exad€~cima 1 cylinder number

hh is the hexadE~cimal head number

ss is the hexadE!cima~ sector number.

Meaning:

recorded

The pack being checked or initialised has, according to
the information read from the Pack Administration file,
the indicated defective sectors. The second message is
repeated for each defective sector. If the pack has no
defective sectors then only the first line is displayed
and the count is shown as zero. Note that these messages
are displayed only if NOREADCHECK mode is specified. In
READCHECK mode, the recorded defective sector data is not
explicitly displayed since it can be inferred from the
comparison of the current and previous defective sectors.

nnnn DEFECTIVE SECTCRS RECOVERED

where nnnn

Meaning:

is the total number of defective sectors
recovered by the WRITERECOVERY option.

The surface check operation has recovered the indicated
number of defective sectors on the pack.

48-064 Faa ROO 5-15

DEFECTIVE SECTOR LIST OVERFLOW AFTER nnnnnn FOUND

where nnnnnn is the number of defective sectors found.

Meaning:

The in memory defective sectox list has overflowed after
the indicated number has been found. See also sector
4.1.1.2.

Program Action:

The program will terminate with end of task code 22.

DEVICE devn: IS A DISC - INVALID AS COMMAND OR LIST DEVICE

where devn:

Meaning:

is the device name specified as the command
or list device.

The device show~ was specified (as indicated in the
following message) as the command or list device and it
is a disc. This is not valid.

DEVICE devn: IS NOT A DISC

5-16

where devn:

Meaning:

is the device specified to be
Initialized, or Renamed.

Checked,

The indicated devicE is not a disc.

48-064 FOO ROO

DIRECTORY AS SPECIFIED (nnn FILES / CYLINDER mmm) OVERFLOWS
PACK

where nnn

mmm

Meaning:

is the requested size of the Directory in
terms of the number of files

is the requested start cylinder for the
Directory.

The tirectory as requested will not fit on the pack.

DIRECTORY TRUNCATED TO nnnn BLOCKS AT SECTOR xxxxxx

where nnnn

xxxxxx

Meaning:

is the number of remaining directory blocks
(base 1)

is the sector address of the block

The Directory has been truncated at the indicated point
and this is now the last Birectory block.

48-064 FOa ROO 5-17

DIRECTCRY BLOCK AT xxxxxx CHAINS TC ALLOCATED SECTOR YYYY1Y

where xxxxxx is the sector address of the Directory block

YYYYYY is the address of the next Directory block

Meaning:

The forward pointer in the Directory block (which gives
the address of the next Directory block) contains a
sector address which is alloc~ted either to the Bit Map,
a previous Directcry block, or a data file.

Program Action:

The Directory will
message following.

be truncated as indicated
See also section 4.1.2.2.

by the

DIRECTORY BLnCK AT xxxxxx CHAINS TO DEFECTIVE SECTOR YYYYY1

5-18

where xxxxxx is the sector address of the Directory block

Y1YYYY is the address of the next Directory block

Meaning:

The forward pointer in the Directory block (wh~ch gives
the address of the next Directory block) contains a
sector address which is known to be a defective sector.

Program Action:

The Directory will
message following.

be truncated as indicated
See also section 4.1.2.2.

by the

48-064 FOO ROO

DIRECTCRY BLeCK AT xxxxxx HAS INVALID FORWARD POINTER yyyyyyyy

where xxxxxx is the sector address of the Directory block

yyyyyyyy is the address of the next Directory block

Meaning:

The forward pointer in the Directory block (which
contains the address of tne next Directory block) is
greater than the maximum sector address on the pack.

Program Action:

The Directory will
message following.

be truncated as indicated
See also section 4.1.2.2.

EMPTY SPOOL FILE filename.ext/act DELETED

where filename.ext/act is the name of the file.

Meaning:

by the

The empty Spool file was deleted. This message is only
output if the REPCRTONLY option is set.

nnnn EMPTY SPOOL FILES DELETED

where nnnn is the number of files deleted.

Meaning:

The indicated numbe~ of empty Spool files have been
deleted.

48-064 FOO ROO 5-19

FILE filename. ext/act EXTENDED FROM nnnn TO mmmm RECORDS

where nnnn

mmmm

Meaning:

is the number of previously checkpolnted
records.

is the number of records now in the file-

An Indexed, Nonbuffered Indexed, or Extendable Contiouous
file open for write was found to extend beyond its
previously checkpointed extent and was extended (through
the EXTFNDALLOWED option) to the point indicated.

FILE f~lename.ext/act CLOSED - POSSIBLE LOST DATA

where filename. ext/act is the name of the file.

Meaning:

The file was open for write and has been closed. Note
that the words "Possible Lost Data" will be omitted if
the file, in fact, contains no data.

FILE filename. ext/act DELETED

5-20

where filename. ext/act is the name of the file.

Meaning:

The file has been deleted for the reason given in the
previous message.

48-064 F01 ROO

FILE filename. ext/act MAY CONTAIN ERRONEOUS DATA

where filename. ext/act is the name of the file.

Meaning:

The file may contain erroneous data because (as indicated
by the previous message) the file contained a recovered
defective sector.

FILE filename.ext/act READ COUNT RESET

where filename. ext/act is the name of the file.

Meaning:

The file was open for read and has been closed. This
message is only output if the REPORTONLY option is set.

nnnn FILES CLOSED

where nnnn is the number of files closed.

Meaning:

The indicated number of files was closed during the Check
operation.

48-064 FOO ROO 5-21

nnnn FILES DELETED

where nnnn is the number of files deleted.

Meaning:

The indicated number of files was deleted during the
Check operation. Note that this does not include the
count of Temporary and aged Spool files deleted which is
given separately.

nnnn FILES EXTENDED

where nnnn is the number of files extended.

Meaning:

The indicated number of Indexed, Nonbuffered Indexed, and
Extendable Contiguous files open for write has been
extended beyond their previously checkpointed extent.

nnnn FILES TRUNCATED

5-22

where nnnn is the number of files truncated.

Meaning:

The indicated number of Indexed, Nonbuffered Indexed, and
Extendable Contiguous files open for write were truncated
to their previous checkpoint.

48-064 F01 ROO

filename. ext/act - FIFST INDEX BLOCK ADDRESS xxxxxxxx
EQUALS LAST - SHOULD NOT

where xxxxxxxx is the address of the first index block.

Meaning:

The first and last index block addresses of an Indexed,
Nonhuffered Indexed, or Extendable Contiguous file are
equal, but they should not be because the file contains
more data than can be mapped by one index block.

filename. ext/act - FIRST INDEX BLOCK ADDRESS xxxxxxxx NOT
EQUAL TO LAST yyyyyyyy

where xxxxxxxx 'is the first index block address

yyyyyyyy is the last index block address.

Meaning:

The first and last index block addresses of an Indexed,
Nonbuffered Indexed, or Extendable ContiQuous file are
not equal but they should be because the number of data
records in the file can be mapped by only one index
block.

FUNCTION (CHECK/INITIALIZE/RENAME) NOT SPECIFIED

Meaning:

This message is generated during the command consistency
check and indicates that no function was specified.

48-064 F01 ROO 5-23

IN ~IR&CTORY BLOCK AT xxxxxx OFFSET YY

where xxxxxx is the sector address of the Directory block

yy is the offset of the entry within the block.

Meaning':

If the REPORTONLY option is set, and an error is detected
in a Directory entry, this messag'e will follow the error
messag'e to g'ive the location of the invalid Directory
entry.

IN FULL WORD AT xx EXPECTED yyyyyyyy FOUND zzzzzzzz

where xx is the address offset within the sector

yYIYYYYY is the expected value of the fullword

zzzzzzzz is the value actually found.

Meaning:

This message is output after the data validation error
messag'e in order to locate the error.

IN INDEX BLOCK nnnnnn AT xxxxxx

5-24

where nnnnnn is the index block number (base 1)

xxxxxx is the sector address of the index block

Meaning:

If the REPORTONLY option is set, then when an error is
detected in an Indexed, Nonbuffered Indexed, or
Extendable Contiguous file, this message will follow the
error messaQe to give the location of the associated
index block.

48-064 F01 ROO

IN INDEX BLOCK nnnnnn AT xxxxxx OFFSET yy

where nnnnnn is the index block number (base 1)

xxxxxx is the sector address of the index block

yy is the hexadecimal offset within the block.

Meaning:

If the REPORTONLY o~tion is set then, when an error is
detected in an index block, this message will follow the
error message so as to give the location of the invalid
index block.

{FILL WITH xxxxxxxx }
{ }

INITIALIZE devn: MODE={READCHECK [WITH WRITERECOVERY] }
{ }
{NCREADCHECK [WITH WRITERECOVERY]}

VOLUME vaIn DIRECTORY FOR nnnn FILES AT CYLINDER mmm
REQUESTED

where devn:

voln

nnnn

mmm

Meaning:

is the device mnemonic
xxxxxxxx is the data
operaticn

of the disc device
pattern for the Fill

is the new volume name for the pack

gives the capacity of the Directory to be
allocated

is the start
Directory.

cylinder number of the

This message is output when all commands have been
validated to indicate the function about to be performed.

48-064 FOO ROO 5-25

IN SECTOR nnnn OF FILE

where .. ~nnn is the sector number within the file.

Meaning:

If the REPORTONLY option is set and an allocation
conflict or defective sector is found in a Contiguous
file, this message will follow the error message to give
the location within the file.

INSUFFICIENT ERROR-FREE SPACE FOR DIRECTORY

Meaning:

Insufficient error free Contiguous space is available to
allocate the Directory. See also section 4.1.1.

Program Action:

The program will terminate with end of task code 20.

INSUFFICIENT SPACE FOR BIT MAP

5-26

Meaning:

Insufficient free
allocate the Bit
4.1.2.2.

Program Action:

Contiguous
Map. See

space is available to
also' sections 4.1.1 and

The program will terminate with end of task code 21.

48-064 F01 ROO

INSUFFICIENT WORKSPACE FOR tUPLICATE BIT MAP

Meaning:

Insufficient works~ace, either in memory or
Contiguous Temporary file, is available to
duplicate copy of the Bit Map. See also section

Progra m Ac tion:

on a
build a
4.1.2.2.

The program will terminate with end of task code 5.

INTERNAL FAILURE rrnn AT xxxxxx STACK PTR ssssssss
YYYYYYYY zzzzzzzz
YYYYYYll 22ZZZZZZ

where rr is the major internal failure code

nn is the minor internal failure code

xxxxxx is the address at which the failure occured

ssssssss is the current value of the workspace stack
pointer

lYYllll1 and ZZZ2ZZZZ give the walkback information.

Meaning:

An internal failure has occurred (see Chapter 6).

Program Action:

The program will pause, and then on being continued, will
terminate with end cf task code 251.

Required Operator Action:

See Chapter 6.

48-064 FOO ROO 5-27

1/0 ERROR ON LU nn voln:filename.ext/~ct FUNC=xx RAND=yyyyyyyy
STATUS=zzzz <error description)

5-28

where nn is the logical unit number

voln:filename.ext/act is the file descriptor of the
device assigned to the logical unit

xx is the SVC 1 function code

yyyyyy!! is the SVC 1 random address (in hexadecimal)

zzzz is the SVC 1 status code

<error description) will be one of the following:

Meaning:

Status Code

COxx
AOXX
90XX
88XX
84XX
8281
8282
8283
8291
82XX
8100
80XX

Description

ILLEGAL FUNCTION
DEVICE UNAVAILABLE
END OF MEDIUM
END OF FILE
UNRECOVERABLE ERROR
1/0 HALTED
TIMED OUT
tEVICE WRITE PROTECTED
REQUEST PURGED
PARITY OR RECOVERABLE ERROR
ILLEGAL OR UNASSIGNED LU
UNKNOWN ERROR

An I/O error occurred on the specified logical
performing the specified function. Note that
"RAND=yyy!y!yy" is suppressed if random access was
being used in the function with the error.

unit
the
not

Program Action:

If the error occurred on the
then the actions discussed
respectively take place.

command or list
in sections 5.1

devices,
and 5.2

If the error occurs on the disc device, then the action
taken depends on type of error and the current phase of
the program. If an Unrecover~ble Error (code X'84xx')
occurs, then a mode switch will occur if allowed (see
Chapter 4). In all other cases the program will
terminate with end of task code 10. Note that during the
surface check phase, 1/0 errors may occur (because of
defective sectors) but these ~ill not result in the above
message being logged.

48-064 FOO ROO

Required Operator Action:

If the program pauses, remedy the fault, and continue the
program.

filename. ext/act - INVALIt CURRENT SECTOR ADDRESS xxxxxxxx RESET

where xxxxxxxx is the current sector address of the file.

Meaning:

A Contiguous file was found whose Directory entry
contained a current sector address greater than the
number of sectors in the file. The current sector
address was reset to zero~

filename.ext/act - INVALIC rATA BLOCK ADDRESS xxxxxxxx

where xxxxxxxx is the address of the data block.

Meaning:

The current index block contains a data block address
which is invalid because it is either greater than the
maximum sector address for the pack or is zero when not
expected to be so.

48-064 FOO ROO 5-29

filename. ext/act - INVALID DATA BLOCK ADDRESS xxxxxxxx
- SHOULD BE Z'ERO

where xxxxxxxx is the address of the data block.

Meaning:

The data block address should be zero because it is not
in use because it follows the last active data block in
the file. Therefore, all trailing data block addresses
in the last index block of the file should be zero. This
is an advisory message only and is not a reason to delete
the file.

filename.ext/act - INVALID DATA BLOCK SIZE OF ZERO

Meaning:

The data block size of an Indexed, Nonbuffered Indexed,
or Extendable Contiguous file is invalid because it is
zero.

INVALID DEVICE NAME

Meaning:

The device name (as indicated in the message following)
is invalid. That is, the program is expecting a device
name (rather than a file descriptor) and the one
specified is not valid.

INVALID FILE DESCRIPTOR

5-30

Meaning:

The file descriPtor (as indicated in
following) is invalid.

the message

48-064 F01 ROO

INVALID FILENAME ffffffffffffffff.eeeeee/act

where ffffffffffffffff.eeeeee/act is the hexadecimal
representation of the filename.

Meaning:

The filename found in the Directory entry does not
conform to the allowed format. The file will be deleted
as indicated by the FILE ••• DELETED message. In this
message, any nonprintable characters will be replaced by
characters.

filename. ext/act - INVALID FILE TYPE x

where x is the hexadecimal file type code.

Meaning:

The file type code is not 0, 1, 2, or 3
Contiguous, Extendable Contiguous,
Nonbuffered Indexed, respectively).

(indicatinq
Indexed, or

filename. ext/act - INVALID FIRST INDEX BLOCK ADDRESS xxxxxxxx

where xxxxxxxx is the address of the first index block of
the file.

Meaning:

The address of the first index block of an Indexed,
Nonbuffered Indexed, or Extendable Contiguous file is
invalid because it is greater than the maximum sector
address on the pack, or it is zero, but the file contains
data.

48-064 F01 ROO 5-31

filename. ext/act - INVALID FIRST SECTOR ADDRESS xxxxxxxx

where AXXXXXXX is the starting sector address of the file.

Meaning:

The starting sector address of a Contiguous file is
invalid because it is either zero or greater than the
maximum sector address on the pack.

filename. ext/act - INVALID INDEX BLOCK SIZE OF ZERO

Meaning:

The index block size of an Indexed file is invalid
because it is zero.

filename. ext/act - INVALID LAST INDEX BLOCK ADDRESS xxxxxxxx

5-32

where xxxxxxxx is the address of the last index block of the
file as given in the file's Directory entry.

Meaning:

The address of the last index block of an Indexed,
Nonbuffered Indexed, or Extendable Contiguous file is
invalid because it is greater than the maximum sector
address on the pack, or it is zero, but the file contains
data.

48-064 F01 ROO

filename. ext/act - INVALID LAST SECTOR ADDRESS xxxxxxxx

where xxxxxxxx is the ending sector address of the file.

Meaning:

The ending sector address of a Contiguous file is invalid
because it is either zero or greater than the maximum
sector address on the pack.

filename. ext/act - INVALID NEXT INDEX BLOCK ADDRESS xxxxxxxx

where xxxxxxxx is the address of the next index block of the
file as given by the forward pointer in the
current index block.

Meaning:

The address of the next index block of an Indexed,
Nonbuffered Indexed, or Extendable Contiguous file is
invalid because it is greater than the maximum sector
address on the pack.

filename. ext/act - INVALID NUMBEH OF LOGICAL RECORDS xxxxxxxx

where xxxxxxxx is the number of records in the file as given
by the Directory entry.

Meaning:

The number of logical records is invalid because it is
greater than hexadecimal 7FFFFFFF.

~8-06~ F01 ROO 5-33

filename. ext/act - INVALID PREVIOUS INDEX BLOCK ADDRESS xxxxxxxx

where xxxxxxxx is the address of the previous index block of
the file as given by the backward pointer in
the current index block.

Meaning:

The address of the previous index block of an Indexed,
Nonbuffered Indexed, or Extendable Contuguous file is
invalid because it is not equal to the actual address of
the previous index block.

filename. ext/act - INVALID RECORD LENGTH nnn OR NUMBER OF

where nnn

mmmmm

Meaning:

RECORDS mmmmmm

is the record length of the file

is the number of logical records in the file
as indicated by the Directory entry.

One or both of the logical record length and the number
of logical records is invalid because their product
exceeds FFFFFFFF hexadecimal.

INVALID SEND MESSAGF IGNORED

Meaning:

A message sent to the task cannot be recognized.

Program Action:

The message will be ignored.

5-34 48-064 F01 ROO

filename. ext/act - INVALID SPOOL FILE TYPE x

where x is the hexadecimal file type code.

Meaning:

A Spool file was found whose type code was not 2
(indicating Indexed).

KEYWORD CONFLICTS WITH PREVIOUS ENTRY

Meaning:

The keyword (indicated in the following message)
conflicts with cne previously entered. That is, the
commands being entered are not consistent.

filename. ext/act - LAST INDEX BLOCK ADDRESS xxxxxx

where xxxxxx

yyyyyy

Meaning:

SHOULD EQUAL yyyyyy

is the address of the last index block in
file as obtained £rom the Directory entry

is the address of the last index block in the
fila as found by following down the chain of
index blocks.

The address of the last index block
tirectory entry does not match
following down the file.

as recorded in
that calculated

the
by

48-064 FOa ROO 5-35

filename. ext/act - LAST SECTOR ADDRESS xxxxxx LESS THAN
FIRST yyyyyy

where xxxxxx is the ending sector address of the file

yyyyyy is the starting sector address of the file.

Meaning:

The ending sector address of a Contiguous file is invalid
because it is less than the starting sector address of
the file.

LIST DEVICE ASSIGNED TO devn:

where devn:

Meaning:

is the name of the System Console (or KTM
Terminal).

No list device WaS specified and an attempt was made to
assign to the device PR:. However, this failed, and the
list device was assigned to the console.

fi1ename.ext/act - NEXT INDEX BLOCK ADDRESS xxxxxxxx

5-36

SHOULD BE ZERO

where xxxxxxxx is the address of the next index block of the
file as given by the forward pointer in the
current index block.

Meaning:

The current index block should be the last in the file.
Thus, its forward pointer should be zero, but has the
value indicated.

48-064 F01 ROO

NO DEFAULT ALLOWED

Meaning:

A default (null) response was given to an interactive
mode prompt to which no default is allowed.

filename.ext/act OPEN FOR READ (COUNT xxxx)

where xxxx is the read count for the file.

Meaning:

The file is open for read. It will be closed as
indicated by the next message. Note that this message is
output only if the REPORTONLY oPtion is set.

filename.ext/act OPEN FOR WRITE (COUNT xxxx)

where xxxx is the write count for the file.

Meaning:

The file is open for write. It may be closed or deleted
as indicated by the next message.

48-064 FOO ROO 5-37

OPERATING SYS1EM IS Rnn-nn - Rmm-mm REQUIRED

where nn-nn

mm-mm

Meaning:

gives the revision and update level of the
operating system

gives the revision and update level of the
required operating system.

The version of FASTCHEK being used is not compatible with
the c~~rating SystEW< being used.

Program Action:

The program will terminate with end of tasK code 2.

OS/32 FASTCHEK Rnn-nn <function> devn': STARTING

~-38

where nn-nn gives the revision and update level of the
program

<function> will te either INITIALIZE, CHECK, or RENAME

devn: is the device name of the disc

Meaning:

This message is logged on the system console (if it is
not being used as the interactive command device) after
all commands have been validated and indicates that the
specified function is starting.

48-064 FOa ROO

PACK ADMINISTRATION FILE LAST UPDATED ON mm/dd/yy hh:mm:ss
ADJUST SYSTEM DATE/TIME IF REQUIRED, ITHEN CONTINUE

mm/dd/yy hh:mm:ss is thE' date/time on which the Pack

Meaning:

Administ~ation fdle was last updated. Note
that the date is given in the form dd/mm/yy
if the operating system is sysgened with
European date format.

The current system date/time is
date/time at which the Pack
(PACKINFO.DIR) was last u~dated.

earlier than the
Administration file

Program Action:

The program will ~ause to allow the operator to correct
the system date/time if required.

Required Operator Action:

Continue the program after updating the system date/time
if necessary.

PACK INITIALISED - PREALLOCATED DIRECTORY AT xxxxxx

where xxxxxx

yyyyyy

Meaning:

BIT MAP AT yYYYY1

is the sector address of the first Directory
Block

is the address of the sector at which the Bit
Map starts.

This message is out~ut when the pack has been sucessfully
initialised and giVES the location of the Directory and
Bit Map.

48-064 FOO ROO 5-39

PACK eN devn: RENAMED FROM vold TO voln

where devn: is the device name of the disc drive

vold is the ~~evious volume name

voln is the new volume name.

Meaning:

The Rename operation has been successfully completed and
the ~ack on the indicated drive has been renamed to the
name shown. The task will then terminate with end of
task code o.

PARAMETER TOO LARGE

Meaning:

The parameter (indicated in the messgae following) is too
large. But the START command also contained other used
commands.

PERKIN-ELMER OS/32 FASTCHEK Rnn-nn

5-'4C

where nn-nn

Meaning:

gives the revision and update level of the
program

This message is logged on the system console (or MTM
terminal) immediately the program starts and before any
attempt is made tc ~rocess any start commands.

48-064 FOO ROO

POSSIBLE Leop IN DIRECTORY CHAIN

Meaning:

The number of Directory blocks encountered during a
Check/Closeonly or Check/Close operation has exceeded one
eighth of the number of sectors on the pack. If the
current mode is CLOSE a mode switch to NOREADCHECK will
occur, otherwise the program will terminate with end of
task code 1.

RENAME devn: AS voln

where devn:

voln

Meaning:

is the device mnemonic of the disc device

is the volume name to which the pack is to be
renamed.

This message is output once all commands have been
validated to indicate the function about to'be performed.

nnnn SPOOL FILES PRESENT

where nnnn is the number of files remaining.

Meaning:

The indicated number of Spool files remain on the pack.

48-064 FOO ROO 5-41

TEMPORARY FILE filename.ext/act DELETED

where filename. ext/act is the name of the file.

Meaning:

The Temporary file was deleted. This message is only
output if the REPORTONLY option is set.

TEMPORARY FILE ENCOUNTERED

Meaning:

A Temporary file was encountered during a Check/Close
operation forcing a switch to NOREADCHECK mode <indicated
by the following message).

nnnn TE~PORARY FILES DELETED

where nnnn is the number of files deleted.

Meaning:

The indicated number of Temporary files were deleted.

filename. ext/act TRUNCATED TO CHECKPOINT AT RECORD nnnn

5-42

where nnnn

Meaning:

is the number of records remaining in the
file.

An Indexed, Nonhuffered Indexed, or Extendable Contiguous
file open for write was found to extend beyond its
previously checkpointed extent and was truncated back to
its previous checkpoint.

48-064 F01 ROO

UNEXPECTED CHARACTER

Meaning:

The character (indicated in the message following) was
detected when a delimiter was expected.

UNEXPECTED TASK QUEUE ENTRY xxxxxxxx IGNORED

where xxxxxxxx is the unexpected task queue entry fullword.

Meaning:

The task queue entry is not one of those expected.

Program Action:

The task queue entry will be ignored.

UNEXPECTED TRAILING CHARACTER

Meaning:

A keyword or a parameter following a keyword (indicated
in the message following) was recognized but was followed
by an unexpected character.

UNEXPECTED TRAILING CHARACTER(S) IGNORED

Meaning:

The indicated trailing characters (following a semicolon
separator) were net expected ~nd have been ignored. This
message can only occur when commands are being entered
interactively.

48-064 FOO ROO 5-43

UNRECOGNISABLE KEYWORD

Meaning:

A keyword (indicated in the message following) cannot be
recognized.

VOLUME DESCRIPTOR DATA VALItATION ERROR

5-4ll

Meaning:

The data read back from the
match the data previously
failure is indicated.

Program Action:

Volume Descriptor did not
written to it. A hardware

The program will terminate with end of task code 31.

48-064 FOa ROO

VOLUME DESCRIPTOR ERROR
<message)

where <message) will be one of the following:

Meaning:

INVALID VOLUME NAME vvoollnn

INVALID DIRECTORY POINTER pppppppp

INVALID BIT MAP POINTER pppppppp

BIT MAP (AT xxxxxx TO yyyyyy) OVERLAPS
DIRECTORY (AT zzzzzz)

where vvoollnn is the hexadecimal representation
of the volume name.

pppppppp is the hexadecimal start sector
number of the Directory or Bit
Map.

xxxxxx

zzzzzz

and yyyyyy give the start and end
addresses of the Bit Map.

gives the start address of the
Directory.

The Volume Descriptor is invalid for the reason given in
the explanatory message. Note that the Directory and Bit
Map pointers are invalid if they are greater than the
maximum possible address on the pack. The Bit Map
pointer is also invalid if zero.

Program Action:

The program terminates with end of task code 8.

48-064 F01 ROO 5-45

VOLUME NAME INVALID

Meaning:

The specified volume name (indicated in the message
following) was not valid.

VOLUME NAME IS voln

where voln is the volume name of the pack.

Meaning:

This message is output at the beginning of a Check
operation after the Volume Descriptor was checked to
indicate the name of the pack being checked.

VOLUME NAME NOT SPECIFIED

5-46

Meaning:

This message is generated during the command consistency
check and indicates that no vclume name was specified for
a Rename or Initialize function.

48-064 FOa ROO

WARNING: DIRECTORY CONTAINS RECOVERED DEFECTIVE SECTOR
AT xxxxxx

where xxxxxx is the address of the recovered defective
sector.

Meaning:

The Directory contains at the indicated address, a sector
which was found to be defective and then recovered
(through the WRITERECOVERY option). This message is a
warning to the user that the Directory Block may have
been corrupted. However, since all entries in the Block
will be completely checked, there is no need to truncate
the Directory.

WARNING: PACK ADMINISTRATION FILE (FACKINFO.DIR) CORRUPTED

Meaning:

The Pack Information file does not contain vaild data
(see section 4.4).

Program Action:

See sect.ion 4.1.

WARNING: PACK ADMINISTRATION FILE (PACKINFO.DIR) NOT FOUND

Meaning:

The Pack Administration file does not exist as the file
in the Directory.

Program Action:

See section 4.1.

48-064 FOO ROO 5-47

WARNING: PACK ADMINISTRATION FILE (PACKINFO.DIR) NOT UPDATED

Meaning:

An I/O error occurred while tne PacK Administration file
was being updated (as indicated by the previous message)
and as a result the file has not been updated.

WARNING: PACK ADMINISTRATION FILE (FACKINFO.DIR) OVERFLOWED

Meaning:

More defective sectors exist than could be recorded into
the Pack Administration file, that is, the Defective
sector records are full.

Program Action:

See section 4.1.

WARNING: PACK ADMINISTRATION FILE (PACKINFO.DIR) UNUSABLE

5-48

Meaning:

This messag~ follows the I/O Error message when an
Unrecoverable 1/0 error occurs while accessing the Pack
Information file while checking it.

Program Action:

See section 4.1.

48-064 FOO ROO

WARNING: SPACE NOT RELEASED IN BIT MAF

Meaning:

A Check/Closeonly o~eration h~s been run and Temporary
files were deleted but their allocated space was not
released in the Bit Map. A Check/Noreadcheck operation
will have to be run at some convenient time to release
this space.

WARNING: VOLUME NAME IS ALREADY voln

where voln is the current name of the pack.

Meaning:

The volume name specified for a Rename function is the
same as the current name of the pack.

WHILE ACCESSING BIT MAP

Meaning:

This message is out~ut after the I/O Error Message when
the 1/0 error occurred while qccessing the Bit Map.

Program Action:

If I/O error is due to a defective sector a mode switch
to READCHECK will occur i~ allowed in the current
function/mode. Otherwise the program will terminate with
end of task code 10.

48-064 FOO ROO 5-49

WHILE ACCESSING DIRECTORY

Meaning:

This message is out~ut after the 1/0 Error Message when
the I/O error occurred while ~ccessing the Directory.

Program Action:

If I/O error is due to a defective sector a mode switch
to READCHECK will occur if allowed in the current
function/mode. Otherwise the program will terminate with
end of task code 10.

WHILE ACCESSING PACK ADMINISTRATION F]LE

Meaning:

This message is out~ut after the 1/0 Error Message when
the 1/0 error occurred while accessing the Pack
Administration file. It will be followed by the warning
message that the file is unusqble.

Program Action:

See section 4.1.

WHILE ACCESSING VOLITME DESCRIPTOR

5-50

Meaning:

This message is output after the I/O Error Message when
the liD error occurred while accessing the Volume
Descriptor.

Program Action:

The ~rogram will terminate with end of task code 10.

48-064 FOa ROO

6.1 DESCRIPTION

CHAPTER 6
INTERNAL FAILURE

In certain conditions FASTCHEK maY detect some error or internal
inconsistency from which it cannot recover. When this happens
FASTCHEK will pause after printing the following message on the
system console (or MTM terminal):

INTFRNAL FAILURE rrnn AT xxxxxxx STACK PTR ssssssss
yyyyyyyy zzzzzzzz
yyyyyyyy zzzzzzzz

where rr is the major internal failure code and identifies
the area of failure

nn is the minor internal failure code and identifies
the specific failure

xxxxxxxx is the address at which the failure occurred

ssssssss is the current value of the workspace stack
pointer

yyyyyyyy and zzzzzzzz give the walkback information.

If FASTCHEK is then continued, it will terminate with end of task
code 251. The task pauses rather than terminating directly so as
to enable the user to dump any task related information, for
example by using the Display Registers or Examine commands.

If an Internal Failure should occur, the user is requested to
contact the nearest Perkin-Elmer support office. The following
information will assist the diagnosis of the fault:

- a copy of the system console log covering the period in which
the failure occurred

- a copy of any listing output produced

- a memory map of the system

- a dump of the impure segment of the task
(This is most simply produced by using the EXAMINE command to
dump the required area. Alternatively a Panic Dump of all
memory can be made.)

48-064 F01 ROO 6-1

Interal Failure conditions are, by their nature, not due to any
operator error and it is hiqhly likely that rerunning the task
with the same parameters will result in the same failure.

6-2 48-064 FOa ROO

APPENDIX A
FASTCHEK COMMAND SUMMARY

~LCCKS [=) [bbb) [/(ccc))

~H.ECK (=) devn:

~1QSE

~LQ~IQNLY

~OMMAND [=] fd

.QIBECTCRY [fff] [/[ccc])

EKIENDALLOWED

fILL [=1 [xxxxxxxx]

lliIIIALISE [=] devn:

INITIALIZE [=J devn:

KEEPSPOOL

LIST [=] fd

E.Q,BEADCHECK

HQHRITERECOVERY

E.E.8DCHECK

.E~l!AME [=1 devn:

EE!:ORTONLY

YOLUME [=] voln

HEITERECOVERY

48-064 FOO ROO A-1

APPENDIX B
END OF TASK CODES

The End of Task codes used ty FASTCHEK are given below.

EaT Code Meaning

o Normal completion - pack can now be marked on and
used normally.

1 Pack requires further checking - will occur if:
- a Check/Closeonly operation cannot close all open

files
- the REPOR!ONLY option is used
- a Rename operation detects that the pack has not

been marked off.

2 Error in Start arguments or incompatible Operating
System Revision Level.

3 Error in command read from Batch command file.

4 Inconsistency in specified commands.

5 Insufficient merrcry or works~ace.

8 Invalid Volume [escriptor~

10 Fatal 1/0 error cn disc.

20 Insufficient space for Directory.

21 Insufficient space for Bit Map.

22 Defective sector 'list overflow.

30 Data validation error in Bit Map or Directory.

31 tata validation error in Volume Descriptor.

250 STOP message received or ISTOP response to
interactive command mode prompt.

251 Internal Failure.

48-064 FOa ROO B-1

APPENDIX C
DEVICE CHARACTERISTICS

The following tables give pertinent characteristics for the
various types of discs. Note that the table on page C-3 contains
discs, which although usable under the current Operating System
release, are no longer current products.

======:========================:=================:====================

DISC TYPE

Nominal Capacity

Device Code (Hex)
(Decimal)

Rotation Time (sec)

Number of Cylinders

Number of Heads
(i.e. trackslcyl)

Cylinder size (KB)
(sectors)

Track. size (KB)
(sectors)

Bit Map size (KB)
(sectors)

5 MB 15MB
FIXEDI REMOV

------1------
5 liB 15MB

32 33
50 51

1/40 1/40

408 408

2 2

12 12
48 48

6 6
24 24

2.50
10

2.50
10

MSM80
REMOV

67 MB

35
53

1/60

823

5

80
320

16
64

32.35
129

KSM300
REMOV FLOPPY

MSM80F
+ HPT

MSM330
FIXED

256 ~B 250 KB 68.5MB 268 KB

36
54

1/60

823

19

304
1216

16
64

122.25
489

37
55

1/60

77

1

38
56

1/60

842.2

5

3.25 80
13 320

------1------
3.25 16

13 64

2C
44

1/160

1024

16

256
1024

16
64

0.25
1

33.00 122.25
132 489

Total size (KB)
(sectors)

4896
19584

4896 65840 250192 250.25
19584 263360 1000768 1001

67376 262144
269504 1048576

Default Directory
size (files) 120 120

(blocks) 24 24

Directory Alloc'n
Interleaving Factor 6 6

640
128

32

1600
320

32

5
1

1

640 1600
128 I 320

------1-------
~ ,

32 'J 32 I
=======:========================::===========================:=c=======

l~ 8-06 4 FO 1 ROO C-1

===
HPT ofl MSM80 MCCD32 MCCD32

DISC TYPE MSM80FI FIXED REMOV FIXED

Nominal Capacity 1.5 MB 67 MB 13.5MB 13.5MB

Device Code (Hex) 39 3A 3B 3C
(Decimal) 57 58 59 60

Rotation Time (sec) 1/60 1/60 1/60 1/60

Number of Cylinders 19.2 820 823 821

Number of Heads
(i.e. trackslcyl) 5 5 1 1

Cylinder size (KB) 80 80 16 16
(sectors) 320 320 64 64

Track size (KB) 16 16 16 16
(sectors) 64 64 64 64

Bit Map size (KB) 0.75 32.25 6.5 6.5
(sectors) 3 129 26 26

Total size (KB) 1536 65600 13168 13136
(sectors) 6144 262400 52672 52544

Default Directory
size (files) 20 640 320 320

(blocks) 4 128 64 64

Directory Al1oc'n
Interleaving Factor 32 32 32 32

MCCD641MCCD96
FIXEDI FIXED

------1------
40 MBI 67 MB

------1------
3D I 3 F.
61 I 62

------1------
1/60 I 1/60

------1------
821 1 821

------1------
I

3 1 5
------1------

48 1 80
192, 320

------1-------
16 1 16
64 I 64

------1------
19.251 32.25

77 I 129
------1------

394081 65680
1576321262720
------1------1

I I
320 I 640 I

64 I 128 I
------1------1

, I
32' 32 I

===

C-2 48-064 F01 ROO

===============================~========
12.5 MB 2.5 MBI 40 MB

I DISC TYPE I FIXED REMOVI REMOV
1-------------------1------ ------1------
INominal CaPacity 12.5 MB 2.5 MBI 40 MB
1-------------------1------ ------1------
IDevice Code (Hex) I 30 31 I 34
1 (Decimal)1 48 49 I 52
1-------------------1------ ------1------
IRotation Time (sec)1 1/25 1/25 1 1/40
1-------------------1------ ------1------
1 Number of Cylinders I 203 203 I 406
------~------------ ------ ------ -~----

Number of Heads
(i.e. ·tracks I cyl) 2 2 20
------------------- ------ -----.- ------
Cylinder size (KB) 12 I 12 100

(sectors) 48 48 400
------------------- ------ --~--.- ------
Track size (KE) 6 6 5

(sectors) 24 24· 20
-------~---~------- ------ -----.- ------
Bit Map size (KB) 1.25 1.25 20.00

(sectors) 5 !:I 80
------------------- ------ -----.- ------
Total size (KB) 2436 2436 40600

(sectors) 9744 974,4 162400
------------------- ------ -----.- ------
Defa ul·t Directory

size (files) 60 60 400
(blocks) 12 1 "I .to. 80

------------------- ------ -----.- ------
Directory Alloc'n
Interleaving Factor 4 4, 5
==

48-064 F01 ROO C-3

APPENDIX D
PACK ADMINISTRATION FILE FORMAT

D.1 INTRODUCTION

This Appendix describes the format of each type of record in the
Pack Administ~ation file, PACKINFC.DIB/O. Note that this file is
a contiguous file in which each sector contains four 64-byte
records.

D.2 Cont~ol Record

The Control record is the first record in the file and thus
occupies bytes a through 63 of sector o. It contains a time
stamp which contains the date/time at which the file was last
updated and a number of data record pointers.

The time stamp is used by the utilitiss which update P~CKINFO.DIR
to perform a partial validity check on the current system
date/time so as to ensure that the time stamps on the history
records are correct. The data record pointers (of which there is
one for each type of data record) each consist of a halfword
which contains the ending record numb~r of the data record(s) of
the given type.

The layout of the control record is as follows:

Byte

0-1
2-7

8-9

10-11
12-13
14-15
16-17
18-19

20-21

22-23

24-25
26-27

48-064 FOa ROO

Contents/Meaning

Record type indicator (always set to GP)
Date/Time last updated in form yymmddhhmmss, where
each field (e.g. dd=day) occupies 1 byte
Halfword count of number of defective sectors on
pack
reserved for future soft defective sector counts
reserved for future soft defective sector counts
reserved for future soft defective sector counts
dummy "zercth" data pointer (always 0)
data pointer for Initialisation (type=IN) history
record
data pointer for Check/Close (type=CL) history
record
data pointer for File Integrity Check (type=CF)
history record
data pointer for Name (type=NA) history records
data pointer for Surface Check (type=SC) history
records

D-1

28-29

30-31

32-33
34-3~

36-61

62-63

data pointer for Incremental Backup (type=BI)
history records
data pointer for Selective Backup (type=BS)
history records
data pointer for Restore (type=RS) history records
data pointer for Full Backup (type=BF) history
records
reserved for future use by data pointers (up to
13)
data pointer for defective sector list records

Note that because the data ~cinters contain the ending record
number of each set of data records, the data pointers for unused
tYPES of data records always contain the same value of the
previous data record pointer. In addition, since on a floppy
disc, there are no history records, all the data pointers except
that for the defective sector records contain zero.

D.3 DEFECTIVE SECTOR RECORD

Each Defective Sector Record contains up to 16 fullword defective
sector addresses. Note that since sector 0 on the pack can never
be defective, a defective sector address of zero in the Defective
Sector records acts as a null entry.

The Defective Sector records are allocated by FASTCHEK when the
pack is initialized using the INITIALIZE/FILL or
INITIALIZE/READCHECK operaticns. On hard discs, FASTCHEK creates
PACKINFC.DIR with sufficient Defective Sector records to allow a
minimum expansion factor of 128 defective sector addresses. That
is, if during the surface check made durinQ pack initialisation,
N defective sectors are found, then (N+128-1)/16+1 Defective
Sector records are allocated in PACKINFO.DIR. Note that in the
case of a flo~py disc, three Defective Sector records are always
allocated, and thus on a floppy disc the maximum number of
defective sectors recorded ty PACKINFC.DIR is 48.

The Defective Sector records are written whenever a surface check
ope~ation is performed. Thus, if FASTCHEK is used to perform a
CHECK/READCHECK operation, the Defective Sector records will be
effectively cleared and rewritten containing the addresses of the
defective sectors found during the su~face check.

The Defective Sector add~esses are always held in ascending
address order.

D.4 HISTORY RECORDS

The history records record the administrative history of the pack
and each record has a fixed format fo~ the first 38 bytes of the
record. Bytes 0 and 1 indicate the ~ecord type, bytes 2 through
37 contain an extended time stamp which includes the da.te and
time of the activity, the device mnemonic of the disc drive, the

D-:l 48-064 FOO ROO

O/S licence number, the O/S version ID, and the revision and
update number of the utility which made the entry.

Currently the types of history records are as follows:

Type
Code

IN
NA
SC
CL
CF
BF
BT

BS
RS

Meaning

pack initialized
pack name set
surface check performed
Check/Close performed
File integrity check performed
full pack backup performed
incremental pack backup performed (i.e-. using SINCE
or BEFORE option but with no other file selection)
selective pack backup performed
pack restore performed

Note that whereas only one IN, eL, CF and BF record is ever
present in the file, up to 4 NA, SC, BI, BS and RS type records
are held. Note also that all Backup and Restore operations refer
to those performed by OS/32 FASTBACK.

The layout of the extended date/time stamp is as follows:

Byte

2-7

g-11

12-27
28-35

36-37

Contents/Meaning

Date/Time at which entry made in form yymmddhhmmss
where each field (e.g., dd=day) occupies 1 byte
Device mnemonic of disc drive on which pack was
mounted at the time at which the entry was made
Licence number of O/S
Version of O/S (as specified to OS/32 CUP or OS/32
SYSGEN)
Revision and update level of utility which made
the entry in form rruu, with rr and uu occupying
1 byte each

D.4.1 Initialization HistorY Record

The Initialization History Record records the last time the pack
was initialized by FASTCHEK. The record contains the extended
date/time stamp (see section D .• 4), the preallocated directorY
parameters (number of blocks and starting cylinder), and the
initialization mode (i.e. FILL, WRITERECOVERY, or neither).

The record layout is as follows:

Byte

0-1
2-37
38-39

48-064 F01 ROO

Contents/Meaning

Record type indicator (always set to IN)
Fxtended date/time stamp
Number of blocks in preallocated directory

D-3

40-41

42-43

44-47
48-51
52-63

Requested starting cylinder of preallocated
di~ectory

Two characte~ indicator of initialisation type
set to "FI" if FILL specified, "WR" if

WRITERECOVERY specified, otherwise spaces
FILL fullword if FILL specified, else zero
Directory sta~t sector address
not used - always zero

D.4.2 Name History Records

The Name History Records record the most recent and up to three
immediately previous pack naming operations since PACKINFO.DIR
was created. The pack name is set (and thus the history is
updated) whenever FASTCHEK is used to perform an INITIALIZE or
RENAME operation.

Each Name History record contains the extended date/time stamp
(see section D.4) and the volume name of the pack as set by the
naming operation. Note that unused Name History Records always
contain binary zeros.

I

The record layout is as follows:

Byte Contents/Meaning

0-1
2-37
38-47
48-51
52-63

Record type indicator (always set to NA)
Extended date/time stamp
not used - always ze~o
Volume Name
not used - always zero

0.4.3 Sur£ace Check Histo~y Records

The Surface Check History Records reccrd the most recent and up
to three immediately p~evious surface check operations since
PACKINFO.DIR Was created. A surface check is performed (and thus
the history is updated) whenever FASTCHEK is used to perform an
INITIALIZE/FILL, INITIALIZE/READCHECK or CHECK/READCHECK
operation.

Each Surface Check History record contains the extended date/time
staIDp' (see section D.4) and a count of the number of defective
sectors on the pack. Note that unused Surface Check History
Records always contain binary zeros.

The record layout is as fellows:

Byte

0-1
2-37
38-51
52-53

D-4

Contents/Meaning

Record type indicator talways set to SC)
Extended date/time stamp
not used - always ze~o
number of defective sectors

48-064 FOO ROO

54-55
56-57
58-59
60-63

reserved for future use
reserved for future use
reserved for future use
not used - always zero

D.4.4 Close History Record

The Close History Record records the last time FASTCHEK was used
to perform a CHECK/CLOSE operation on the pack. The record
contains the extended date/time stamp (see section 0.4) and the
Close mode (i.e., CLOSE or ClOSEONlY).

The record layout is as follows:

Byte

0-1
2-37
38-59
60

61-63

Contents/Meaning

Record type indicator (alwaYS set to Cl)
Extended date/time stamp
not used - always zero
One character indicator of Close mode
- set to "0" if CLOSE ONLY mode used, else space
not used - always zero

D.4.5 File Integrity Check HistorY Record

The File Integrity Check History Record records the last time
FASTCHEK was used to perform a CHECK/NOREADCHECK or
CHECK/READCHECK operation on the pack. The record contains the
extended date/time stamp (see section D.4) and the mode (i.e.,
NOREADCHECK or READCHECK).

The record layout is as follows:

Byte

0-1
2-37
38-59
60

61-63

Contents/Meaning

Fecord type indicator (alWaYS set to CF)
Fxtended date/time stamp
not used - always zero
One character indicator of mode
- set to "N" if NOREAOCHECK or "R" if REAOCHECK
not used - always zero

0.4.6 Full Backup History Record

NOTE: THIS TYPE OF HISTORY RECORD IS NOT SUPPORTED BY REVISION
o OF OS/32 FASTBACK.

The above note is necessary because FASTBACK and FASTCHEK use the
same PACKINFO.DIR file. Some records are implemented and updated
by FASTCHEK and some by FASTBACK.

48-064 F01 ROO D-5

The Full Backup History Record records the last time OS/32
F~STBACK was used to perform a full backup of the pack. The
record contains the extended date/time stamp (see section D.4),
the device name of the maq tape drive on which the backup was
written and the Tape Serial Number written on the tape.

The record layout is as follows:

Hyte

0-1
2-37
38-53
~4-57

58-63

Contents/Meaninq

Record type indicator (always set to BF)
Extended date/time stamp
not used - always spaceS
Device Mnemonic of tape drive on which backup was
written
Tape Serial Number (6 character ASCII)

To reduce the possibility of errors in a data transfer to
magnetic tape, the recommended blocking factors are:

TAPE
RECORDING

DENSITY

BOO
1600
6250

BPI
BPI
BPI

BLOCKING
FACTOR

12.SK
25.0K

100.0K

Using larqer blockino factors than those recommended gains little
additional storage space and results in an insionificant
reduction in processinq time. However, it does increase the
probability of data transfer errors resulting in verify errors.

0.4.7 Incremental Backup History Records

NOTE: THIS TYPE OF HISTORY RECORD IS NOT SUPPORTED BY REVISION
o OF OS/32 FASTBACK.

The Incremental Backup History Record records the most recent and
up to three immediatelY previous times since PACKINFO.DIR was
created that OS/32 FASTBACK was used to perform a incremental
backup of the pack. That is, a backup in which the SINCE or
dEFORE option was used but no other file selection was specified.
The record contains the extended date/time stamp (see section
0.4), the device name of the mag tape drive on which the backup
was written, the Since/Before date/time, and the Tape Serial
Number written on the tape.

D-6 48-064 F01 ROO

The record layout is as follows:

Byte

0-1
2-37
38

39-44
45-46
47-52
53
54-57

58-63

Contents/Meaning

Record type indicator (always set to BI)
Extended date/time stamp
Since/Before option indicator
- set to ")" if Since was specified or "(" if
Before was specified
Date limit in character format as yymmdd
space characters
Time limit in character format as hhmmss
space character
Device Mnemonic of tape drive on which backup was
written
Tape Serial Number (6 character ASCII)

D.4.8 Selective Backup History Records

NOTE: THIS TYPE OF HISTORY RECORD IS NOT SUPPORTED BY REVISION
o OF OS/32 FASTBACK.

The Selective Backup History Record records the most recent and
up to three immediately previous times since PACKINFO.DIR w~s

created that OS/32 FASTBACK was used to perform a selective
backup of the pack. The record contains the extended date/time
stamp (see section D.4), the device name of the mag tape drive on
which the backup was written, the file descriptor of the select
file, and the Tape Serial Number written on the tape.

48-064 F01 ROO D-7

The record layout is as follows:

Byte

0-1
2-37
38-53

54-57

58-63

Contents/Meaning

Record type indicator (always set to BS)
Extended date/time stamp
File Descriptor of Select File (in packed format)
or if the Immediate Select facility was used, up
to 16 characters of the select entry starting with
the character "(" and containing the closing H)"
if the select entry is less than 15 characters
Device Mnemonic of tape drive on which backup was
written
Tape Serial Number (6 character ASCII)

0.4.9 Restore History Records

The Restore History Record records the most recent and up to
three immediately previous times since PACKINFO.DIR was created
that OS/32 FASTBACK was used to restore files onto the pack from
a backup tape. The record contains the extended date/time stamp
(see section D.4), the file descriPtor of the select file, the
volume name of the pack which was backed up to produce the backup
tape, and the Tape Serial Number written on the tape.

The record layout is as follows:

Byte

0-1
2-37
38-53

54-57

58-63

0-8

Contents/Meaning

Record type indicator (always set to RS)
Extended date/time stamp
File Selection parameter - set to
a) spaces if no file selection is specified; or if
Select Criteria was read from a Device, e.g.,
FOX2: or CON:. Thi~ is because the 16-bYte
"Selection" field of the Restore History Record is
too short to hold full file descriptors, and
therefore, volume and device names are omitted
from this field.
b) the File Descriptor of the Select File (in
packed format); or
c) if the Immediate Select facility was used, up
to 16 characters of the select entry starting with
the character "(" and containing the closing H)"
if the select entry is less than 15 characters; or
d) if the Since/Before OPtion was used (and no
other file was selected) the Date/Time limit in
the format described in section D.4.7
Volume Name of pack backed up to produce backup
tape
Tape Serial Number (6 character ASCII)

48-064 F01 ROO

APPENDIX E
lINK PHOCEtUtRE

FASTCHEK is supplied both in task im~ge and object form. If the
user wishes to establish FASTCHEK then OS/32 Link must be used
and the required Link commands are given below.

ESTABLISH TASK
DCMD
MAP
INCLUDE FASTCHEK.CBJ
BUILt FASTCHEK.TSK
END

Note that the required options are set using Link commands
imbedded in the FASTCHEK object file ~nd are set as follows.

ABS=O
SYSSFACE=FFFFF
WORK=(4000,BOOOO)
SEGMENTED
rISC
ACP
NROLL
LU=9
IOBLOCKS=1
UT
NFJ~O.I\T

NDFLOAT

Link will give a warning message because the Absolute space is
less than 100, and on completion, will terminate with end of task
code 2.

48-064 FOO ROO E-1

APPENDIX F
LOGICAL UNIT USAGE

The logical unit assignments used by FASTCHEK are given in the
following table.

Logical
Unit

o

1

3

4

5

Access
Privilege

swo

ERW

swo

ERW

SRW

48-064 FOO ROO

Usage

Journal listing output

Disc to be Initialized, Checked or Renamed
(note that access p~ivilege ERa is used if
the REPORTONLY option is selected>

List devicle

Temporary file for Bit Map
(only used if duplicate Bit Map is required
and cannot be built in memory)

Command de"ice
(note that access privilege SRO is used if
the command device is not interactive)

F-1

APPENDIX G
COMPARISON WITH OS/32 DISCHECK AND OS/32 DISCINIT

G.1 INTRODUCTION

05/32 FASTCHEK is a functional replacement for both
OS/32 DISCHECK and OS/32 DISCINI~~. More specifically, the Check
function of FASTCHEK replaces DISCHECK and the Initialize and
Rename functions replace DISCINIT.

G.2 CHECK FUNCTION

The following table gives the equivalent FASTCHEK command for
each of the DISCHECK START parameters. Note that because of
FASTCHEK's automatic mode switching feature, the NOREADCHECK
modes are not strictly equivalent.

DISCHECK Parameter FASTCHEK Command
----------------------- -- ---------------------------

dev: CHECK [=] devn:

list fd LIST [=1 fd

READCHECK READCHECK

NOREADCHECK NOREADCHECK

CLOSE CLOSEONLY

Thus, the following Start commands are equivalent.

DISCHECK:
or

FASTCHEK:

DISCHECK:
FASTCHEK:

or
or

DISCHECK:
FASTCHEK:

ST ,DSC1:,PR:,READCHECK
ST ,DSC1:,PR:
ST ,CHECK=DSC1:,LIST=PR:,READCHECK

ST ,DSC1:,PR:,NOREADCHECK
ST ,CHECK=DSC1:,LIST=PR:,NOREADCHECK
ST ,CHECK=DSC1:,LIST=PR:,CLOSE
ST ,CHECK=DSC1:,LIST=PR:

ST ,DSC1:,PR:,CLOSE
ST ,CHFCK=DSC1:,LIST=PR:,CLOSEONLY

48-064 F01 ROO G-1

G.3 INI~IALIZE FUNCTION

The following table gives the equivalent FASTCHEK command for
each of the DISCI NIT Start parameters when used to' Initialize a
pack.

DISCINIT Parameter FASTCHEK Command
======================= =======;===================

DISC=dev: INITIALIZE [=] devn:

CLEAR implied by INITIALIZB

VOLUME=voln VOLUME [=1 voln

BLOCKS=n[/m] BLOCKS [=1 [n) [[11m]

FILL=bYte FILL [=1 [xxxxxxxx1

Thus, the following Start commands are equivalent.

DISCINIT: ST ,DISC=DSC1:,CLEAR,VOLUHE=SYS,BLOCKS=100/1,
FILL=BD

ST ,INITIALIZE=DSC1:,LIST=CON:,VOLUKE=SYS,
BLOCKS=100/1,FILL=BDBDBDBD

F~STCHEK:

DISCINIT: ST ,DISC=DSC1:,CLEAR,VOLUME=SYS
FASTCHEK: ST ,INITIALIZE=DSC1:,LIST=CON:,VOLUME=SYS,

BLOCKS=O

G.4 RENAME FUNCTION

The following table gives the equivalent FASTCHEK command for
each of the DISCINIT Start parameters when used to Rename a pack.

I DISCINIT Parameter I FASTCHEK Command I
1=======================1===========================1
I I 1
I DISC=dev: I REN AME [=] devn: I
I I I
1 VOLUME=voln I VOLUME [=] voin I
I I I
-------------------~---------~-~--------~---------

Thus, the following Start commands are equivalent.

DISCINIT: ST ,DISC=DSC1:,VOLUME=SYS
FASTCHEK: ST ,RENAME=DSC1:,LIST=CON:,VOLUME=SYS

G-2 48-064 F01 ROO

APPENDIX H
JOURNAL FEATURE

FASTCHEK has a Journal facility, which when invoked, causes
diagnostic information to be output to the device or file
assigned to logical unit o. This diagnostic information is
designed to assist the analyst who is diagnosing and maintaining
FASTCHEK itself, the operating system, or the hardware.

The Journal feature is invoked by assigning logical unit o. This
can be done either before starting FASTBACK or after pausing the
program by using the SEND PAUSE facility. (Note that if FASTCHEK
is paused using the operating system or MTM PAUSE command, then
the Journal feature will not be activated because FASTCHEK only
checks the assignment of logical unit zero when it is started or
is continued after receiving a PAUSE message.)

The Journal feature can be turned off by using SEND PAUSE to
pause the program and then closing logical unit O.

The Journal output is self-explanatory and is not documented
here. Note that it is best to assign logical unit 0 to the
device or file used as the list device.

The Journal feature should not be invoked for the everyday use of
FASTCHEK since it will result in the output of verY large amounts
of data which are of no use to the normal user.

All Journal output is prefixed by an exclamation ("!") character
and, thus, is easily distinguished from the normal list output.
The Journal output is also fixed format. That is, the variable
data is always output in fixed size fields. These two features
aid in processing the output by the Editor or some other program.

48-064 F01 ROO H-1

APPENDIX I
COMPATABILITY WITH eTHER PRODUCTS

1.1 16-BIT SYSTEMS

FASTCHEK can be used to InitializB packs for use by the OS/16
Operating System and also to Check and Rename packs used by this
operating system. However, any pack processed by FASTCHEK must
be marked on with the "NEW" when retu~ned to the 16-bit system.

In addition (in common with CS/32 DISCHECK), FASTCHEK does not
support files with account numbers greater than 255. Thus if
FASTCHEK is used to check a pack containing files allocated under
OS/16 with account numbers over 255, then these files will be
deleted because they appear to have illegal file names.

1.2 OS/32 DISCINIT

FASTCHEK can be used to Check or
OS/32 DISCINIT. Note however,
record the Defective Sector
Administration file, any Check
CLOSEONLY mode) will be performed

1.3 OS/32 DISCHECK

Rename packs initialized by
that since DISCINIT does not
information in the Pack

function (other than in the
in READCHECK mode.

DISCHECK can be used to check a pack which was previously
initialized by FASTCHEK. However, the Pack Administration file,
PACK1NFO.DIR, will always appear to be open for write since
FASTCHEK maintains this file with a write count of -1 (to protect
it against deletion and update). DISCHECK will thus always
"unprotect" this file by resetting its write count. However,
whenever FASTCHEK is used to check a pack, it will set the write
count for PACKINFO.D1R back to -1 (provided that the file is
va1id)o

Note that FASTCHEK should always be used in preference to
DISCHECK because of FASTCHEK's better performance.

1.4 NON-STANCARD DISC DEVICES

FASTCHEK can be used to maintain discs supported by user
or non-standard drivers trovided that the drivers
following conventions:

48-064 FOO ROO

written
obey the

1-1

I-2

- the tevice Control Block (DeB) is set up using the standard
PDCB and nDCB structures

- the device attributes and flags are as for standard disc
devices

- the device code used does not conflict with the standard
disc device codes - in particulqr, the device codes given
in Appendix C cannot be reused

the driver supports the standard SVC 1 function codes in
the same manner as the standard disc drivers

- the driver uses the standard device independent status
codes note also that a status of X'8283' returned for a
write function is taken to indicate that the drive is
hardware write protected

48-064 FOO ROO

Bit map

BLOCKS command

CHECK command

Check function,
dialogue for

Command entry,

IB

c

batch and immediate
Interactive

CLOSE command

CLOSEONLY command

CONTINUE command
Cyclic redundancy check
Cylinder,

starting number

D

Default list device
DIBECTOBY command

Disc pack,
check
integrity of
to rename

END command

Error

E

command handling
messages

handling
list output

EXAKINE command
Extendable contiguous files

EXTEND ALLOWED command

FASTCHEK,
formatting

F G H

general description
initializing

48-064 F01 ROO

1-1
4-18
3-4
3-21

3-4
3-7

3-31

3-1
3-27
3-4
3-12
3-4
3-13
2-8
4-4

3-22

2-6
3-4
3-20

1-3
1-3
1-3

3-3
3-26

5-1
5-1
5-3
5-2
5-2
6-1
1-5
3-14
4-8
5-5
3-4
3-14

1-1
1-2
1-1

INDEX

overview
general features
getting started
loading
startinq
stoppinq
operation of
internal failure
requirements
when to run

FASTCHEK commands,
BLOCKS

CHECK

CLOSE

CLOSEONLY

DIBECTOBY

EXTENDALLOWED

FILL

INITIALIZE

KEEPS POOL

NOWRITERECOVEBY

NOREADCHECK

READCHECK

BENAKE

REPORTONLY

VOLUKE

WBITEBECOVEBY

File types,
extendable contiquous
nonbuffered indexed

FILL command

Fixed command file
Functions,

Check

Initialize

Bename

1-1
1-4
2-1
2-2
2-4
2-8
4-1
6-1
1-5
2-1

3-4
3-20
3-4
3-7
3-4
3-12
3-4
3-13
3-5
3-20
3-4
3-14
3-4
3-11
3-4
3-5
3-4
3-15
3-4
3-18
3-4
3-10
3-4
3-9
3-4
3-8
3-4
3-16
4-9
3-5
3-23
3-5
3-18

1-5
1-5
3-4
3-11
3-1

3-31
4-5
3-29
4-1
3-33
4-15

Ind-1

I J

INITIALIZE command

Initialize function,
dialogue for

Integrity checkino hierarchy
Inter.ctlve ~ommand entry,

dialoQues for
Internal failure

K

KEEPSPOOL command

L

LIST comm.nd

Loading FASTCHEK
from th~ "TM tprminal
from the systero con.ole

Memory,
Impure
Pur~

Modes,
FILL
READCHECK
CLOf,E
CLOSEONL!
NOREADCHECK

!

M

NonQuffered indexed f11es

NO~RITERECOVERY com. and

o
Operation,

checlt/readcheck
initialize/fill
initialize/noreadch.ck
initialize/read~heck
check/noreadcheck
check/close
check/closeonly
reportonly

Options,
EXTENDED
KEEPSPOOL
REPORTONLY
WRITERECOVERY

Ind-2

3 ... "
3"'!

'-29
1 ...]

3 .. 29
6-1
6-2

1-5
3-114
4-8
5-5
3-"
3-18

4-7
4-3
4-5
4-3
4-7
4 ... 13
4-13
4-14

1-4
1-4
1-4
1-4

I
j
r
I
I
I
I,
t
I
I
J
I
I
I
1
I
I
I
1
I
I
I
I
I
I

PO
Pack administration flle

B

Bead check
READCHECK command

IENA!Ecommand

Renall9 function,
dialo~ue for

REPOITOftL! command

s
SEMD PAUSE command
SEND STOP command
START comllland.

Startlnq FASTCHEK,
1ft batch 'Iode
in interactive ~ode
1n immediate mode

Stopping FASTCHEK
Surfa.ce check
System command,

CONTINUE
END

LIST

SEND PAUSE
S~ND STOP
START

EXA!!INE

T U

Tape recordlnQ density
Timing information
Tuning information

v
VOLU~E command

w X y Z

WRITERECOVERY command

1-5
3-5
4-1
4-5
4-19

1-1
3-4
3-9
3-4
3-8

3-33
3-4
3-16

2-8
2-8
2-4
3-1
3-27

2-4
2-4
2-7
2-8
1-1

2-9
3-3
3-26
2-6
3-24
2-7
2-8
2-4
3-1
3-28
6-1

D-6
4-16
4-18

3-4
3-23

3-4
3-18

48-064 F01 ROO

PUBUCATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an integral source of information for improving future revisions.
Please use this postage paid form to send us comments. corrections.
suggestions. ect.

1. Publication number __ . ________________________________ ~ _________ _

2. Title of publlcation _________ . ___ . ____ .. ___ .. ~ ___ ~ __________________ _

3. Describe. providing page numbers. any technical errors you
found. Attach additional sheet if neccessary.

4. Was the publication easy to unden)tand? If not. why?

5. Were illustrations adequate? ___ _. ______________ . _______________ _

6. What additions or deletions would you suggest? ______________ ___ _

7. Other comments: __ _

--.-...oIIIr;-------....... --. ..--------.-----.-------------------------_ _--
From ____________________________ Date

Position/Title __ ---________________ . __

Company ______________ . __________ _

Address

6417

STAPLE STAPLE

FOLD FOLD

----------------------------~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

ATTN:

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER
Data Systems Group
106 Apple Street
Tinton Falls, NJ 07724

TECHNICAL SYSTEMS PUBLICATIONS DEPT.

NO POSTAGE
NECESSARY
IFMAILED

IN THE
UNITED STATES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ---------------------------1

FOLD FOLD

STAPLE STAPLE

I €

