COMPUCOLOR TEXT EDITOR

The text editor is a RAM program designed to facilitate the
"generation and correction of source programs and other text files. The
program is supplied on disk and occupies approximately 4.2K bytes of the
user RAM space when loaded. The remainder of the RAM is used by the
editor as a buffer in which editing or file creation takes place. Because
of the capabilities of FCS, file sizes are limited only by the disk space
available and not by the buffer size. The buffer size only limits the
amount of the file which is available for editing at any given time.

The program operates by reading the file into the buffer where it can
be edited and then outputting the corrected text to a new file. This is
done using the APPEND and WRITE commands. APPEND reads data from the
input file onto the end of the data in the buffer and WRITE writes the
data from the front of the buffer onto the output file. APPEND and WRITE
read and write a number of lines from 1 to 255. ’

When using the APPEND and WRITE commands, all text enters and leaves
the buffer sequentially. The flow of text is always from the old file to
the new file via the buffers. Text residing in the buffer can be edited
in any order using the various commands available. However, once it is
written from the buffer it cannot be edited again on this pass.

How to Load The Editor

Place the Editor disk in the computer, enter FCS by‘typing ESC D, and
type 'RUN EDT', as shown below:

FCS>RUN EDT

The computer will respond with a '>'. Once loaded, ‘the EDT disk is no
longer required and may be removed if desired. At this point, either of
the following commands may be entered:

>CRE<file specifier> For example: >CRE TEST
or
>EDIT <file specifier> TO <file specifier>

The first command is used in order to CREate a new file, and the second is
used to EDIT an existing file. In the event that the edited file will be
on the same disk with the same name then the "TO"™ and second file
specifier may be omitted. If a file type is not specified, then SRC
(source) is assumed. Unless otherwise specified, the editor will edit the
latest version. e -

The user must notAéhange the disk, or delete any file on the disk
during the use of the editor. This restriction is necessary since the

editor keeps pointers to disk location for use of the APPEND and WRITE
commands.

-1-

Upon entry with either the CREATE or EDIT command, the editor will
print:

COMPUCOLOR II FILE EDITOR V7.78
EDT>

and await commands.

COMMANDS _ <j (
Editor commands are entered by their first letter only. Thqiéééég;
es

key is used as string delimiter (defines the end of a string) and

as "$" on the screen. Normal escape sequences have no effect while in the
Editor. Command lines are terminated by a carriage return. Until a
command line is terminated, it may be cancelled or edited.

Two differect color prompts '>' are used by the editor. A yellow

prompt indicates that the editor is in the command mode and a purple
prompt indicates that the editor is in the insertion mode. This is done
so that commands will not accidentally be entered into the text.
’ A parameter in the range 0-255 may be applied to some of the commands
(larger numbers will be interpreted as the low order 8 bits of their
value.) A negative sign may be used in some cases to indicate a reverse
direction. The parameter will always preceed the command upon which it
operates. .

Multiple commands can be entered on a single line and then executed.
The editor executes this stream one character at a time. Commands may
also be executed repetitiously by using a repeat factor followed by the
command enclosed in brackets ('[', ']') (see examples). This is called a
command loop. Command loops may be, nested inside another loop -~ up to 16
levels deep. If a closing bracket is omitted, the loop will not repeat.
If an extra closing bracket is entered for which there is no corresponding
open bracket, execution will terminate with an 'ILLEGAL COMMAND!' message
and await a new command line. A negative sign in front of a repeat factor
is ignored.

An error or the exection of an escape will always break out of any
loop and cause the rest of the line to be ignored.

Input Editing

; Input to the Editor is buffered until a 'return' is entered. Until
the line is entered, either the backspace or delete key will remove the
last character in the line. Erase line (control K) will clear the line,
and erase page will clear the screen without altering the line contents.

Color Codes and foreground/background selection codes are accepted as
normal characters and placed in the buffer, as are A7 ON (control N), TAB
(control I), BLINK/AT OFF (control 0).

For the convenience of users with cursor control clusters cursor up
may be used as escape, cursor right as tab, home as carriage return,
cursor down as line feed and cursor left as delete.

The use of carriage return and line feed keys differs. Carriage
return inserts a carriage return/line feed sequence and terminates the

-2~

line. VLinefeed also inserts a carriage return linefeed but does not
terminate the line. In this way carriage return/linefeed sequences may be
included in string parameters to be inserted or searched for. When used
after an 'I' command the results would be identical.

The line is automatically terminated when the limit of 82 characters
is reached. No carriage return/linefeed sequence is inserted in the
buffer.,

The user can exit the editor by either a CPU reset or the 'X!
command. It can be re-entered by typing 'ESCAPE A'.

Before continuing, the user should be familiar with the use of two
terms described below:

LINE -- a line is a string of text terminated by a carriage return
line feed (CRLF). The CRLF ocuupies two character
positions, but is not visible on the screen. These two
characters must be considered when repositioning the pointer
or the pointer may be positioned differently than expected.
A line is limited to 82 characters and will be automatically
terminated when the limit is reached.

POINTER--The pointer represents the location in the buffer at which
an edit is to take place, Several commands are available
which enable the user to position the pointer at any
location in the buffered text.

The following is an alphabetic list of the commands recognized by the
editor. In these examples the charater '$' is always the escape
character. The '$' key will not produce the desired result.

APPEND

Reads the specified number of lines from the input file and appends them
to the end of the buffer, If the buffer approaches within 256 bytes of
being full, append termiates with BUFFER FULL!'; thus leaving some room
for insertion. A negative number is treated as positive and 'OA' has no
effect. If the end of the input file has been read or there never was an
input file (as in a CREATE command) append has no effect. Append always
leaves the pointer at the end of the buffer.

EXAMPLE: '255AB255T(return)' reads in 255 lines, backs the pointer to
‘the beginning of the buffer and prints 255 lines.

BEGIN

Moves the pointer to the beginning of the buffer., All data (if any) is
placed in front of the pointer and subsequent 'T' commands will print
beginning with the first line in the buffer. All parameters are ignored.
No errors are possible.

Example: See above.

CHARACTER

Moves the pointer the number of characters specified down in the buffer or
up if the parameter is negative. '0C' and '-0C' have no effect. Carriage
return/linefeed sequences (end of line) count as two characters and must
be considered when using 'C' to move the pointer from one line to another,

Example: If the commands 'B255T(return)' reveals this in the buffer:

EDT>B255T(return)
TEST LINE 1

TEST LINE 2

TEST LINE 3

EDT>

the subsequent commands '15CT(return) and '-3CT(return)' have the
following effect:

EDT>16CT(return)
T LINE 2

EDT> -3CT(return)
TEST LINE 2

EDT>

DELETE

Deletes the specified number of characters starting at the pointer down
into the buffer or up if the parameter is negative. '0OD' or '-0D' has no
effect. See CHARACTER concerning end of line sequences. Negative
deletions do not delete the character at the pointer as do forward
deletions. Rather they delete beginning with the character just before
the pointer. :

Example: With the buffer contents as described in the CHARACTER example,
the commands '15C3DB255T(return)' would have the following effect:

EDT> 13C5DB255T(return)
TEST LINE 1

LINE 2

- TEST LINE 3

EDT>

EXIT

Writes all data in the buffer to the ouput file, copies the remainder of
the input file (if one exists) to the output file and sets up a directory
entry for the output file. APPEND, WRITE and EXIT commands are all
subject to FCS system errors. When the Editor receives an error from FCS,
it returns with the message 'SYSTEM FILE ERROR!' in order to allow the
user to correct the problem. To avoid this situation the user should
observe the following rules:

Do not disturb the file device (disk drive unit) while editing excepting
the input device after all data has been read from the file.

Do not use FCS commands and return to the Editor.

Make sure that there is enough space for the output file before you enter

the Editor. You can not delete files to make room after the Editor has
started.

If these rules are followed there should be no errors except those
actually generated by the disk drive unit.

FIND

Searches the buffer for the specified string from the pointer forward
until a match or the end of the buffer is found. If a match is found the
pointer is moved to the first character following it, else the message
'SEARCH STRING NOT FOUND!' is displayed and the pointer is not moved. All
parameters are ignored. The search string is the set of characters after
the 'F' command through but not including the string delimiter ESCAPE '$r.

Example: Assume the following is the buffer:

EDT>B255T(return)

THIS IS A TEST OF THE FIND COMMAND.
EDT>

Then the commands 'FTEST$T(return)' and 'FTEXT$T(return)' have the
following effect:

EDT>FTEST$T(return)

OF THE FIND COMMAND
EDT>FTEXT$T(return)
SEARCH STRING NOT FOUND!
EDT>

The second command's result is an error because the string 'TEXT' was not

after the pointer. A subsequent 'T' command would reveal that the pointer
is unchanged.

EDT>T(return)

OF THE FIND COMMAND
EDT>

INSERT

Inserts the specified string in the buffer after the pointer. The pointer
will not move and will be at the same character it was before the command.
Characters following the pointer are not changed. If the buffer becomes
full the message 'BUFFER FULL!' will be displayed. Some part of the
inserted string may have actually been inserted. Insertion mode does not

5=

terminate until an escape '$' is entered. If a carriage return is entered
the current line will be processed and a new line started. When the
prompt is printed the user will still be in the insertion mode. When in
insertion mode the prompt will print out in purple rather than yellow so
that commands will not accidentally be entered into the text.

Example: Assuming the buffer contents as for the FIND example, the command
'BFTEST$I OF THE INSERT AND$B255T(return)' will result in:

EDT>BFTEXT$I OF THE INSERT AND$B255T(return)

THIS TEXT IS A TEST OF THE INSERT AND OF THE FIND COMMAND
EDT>

KILLS

Kills (deletes) the specified number of lines from the pointer forward or
from just before the pointer backward if the parameter is negative. 'OK!
deletes from the pointer to the beginning of current line, A line is
defined as a set of characters terminated by a linefeed. If the pointer
is in the middle of a line, 'K' will delete only that part of the line
from the pointer forward. A 'K' command will delete what a 'T' with the
same parameter would display.

Example: Assume the buffer contents to be:

EDT>B255T(return)
LINE 1
LINE 2
LINE 3
LINE 4
LINE 5
EDT>

The command '2L2KB255T(return)' will jump forward two lines, delete two
lines, then return to the beginning of the buffer and print it.

EDT>2L2KB255T(return
LINE 1 ‘
LINE 2

LINE 5

EDT>

Now, the command '1L3CTKB255T(return)' will produce:

EDT>1L3CTKB255T(return)
E 2

LINE 1

LINLINE 5

EDT>

Note that the 'E 2' has been deleted and that the printout from the two
'T' commands has been concatenated. Notice also that the KILL removes the
CRLF from LINE 2, which resulted in LINE 5 being added to it.

6=

LINES

Moves the pointer forward or backward the specified number of lines. The
command 'OL'moves the pointer back to the beginning of the current line.

Example: Assuming that the buffer contains:

EDT>B255T(return)
LINE 1

LINE 2

LINE 3

EDT>

The command '1L3CT(return)' will move the pointer to the fourth character

of second line and the command 'OLT(return)! will move it back to the
beginning of that line.

EDT>1L3CT(return)
E 2
EDT>OLT(return)
LINE 2

EDT>

SUBSTITUTE

Searches for a specified string from the pointer foreward unitl the first
occurrence of the string. The string is then replaced by a second
specified string. Exactly equivalent to a 'find' string, negative delete
for the length of the first string and an insert of the second string.
All parameters are ignored. If the insertion string is null the frist
string will be found and deleted only.

Example: Assume the buffer contains:

EDT>B255T(return)

THIS IS A TEST LINE Q6%4%44Q FOR HTE SUBSTITUTE COMMAND
EDT>

The command 'SQ6%4%44Q$$' will delete the garbage from the line and the
command 'SHTE$STHE$(return)' will correct the spelling error. In the
first case a null string is substituted for the garbage.

EDT>SQ6%4%44Q$$(return)
EDT>SHTETHEB255T (return)

THIS IS A TEST LINE FOR THE SUBSTITIUTE COMMAND.
EDT>

TYPE

Types the specified number of lines beginning at the pointer going forward
or backward if negative. 'OT' types from the beginning of the current
line to the pointer.

Example: See above examples. Assume that the buffer is the result of the
above (as for SUBSTITUTE)

EDT>FLINE$OT(return)
THIS IS A TEST LINE
EDT>

Note that the find places the pointer just after the search string.

WRITE

Writes out the specified number of lines to the output file, starting from
the beginning of the buffer. All data written is deleted from the buffer.
Once data is written it cannot be returned to the buffer. A negative sign
is ignored. 'OW' has no effect. See possible errors under EXIT.

Example: The command '255A255W' will read 255 lines from the input file
and transfer them to the output file, This is a much faster way to copy
the remnant of the input file than the 'E' command which copies one byte
at a time. The copy function of exit is limited to prevent accidental
loss of data.

Temporary exit from the Editor to FCS., A subsequrnt escape '“' sequence
will return to the Editor if buffer and pointers are not altered. See
cautions in EXIT.

ZETA

Move the pointer to the end of the data in the buffer. All parameters are
ignored.

Example: The following illustrates the use of the 'Z' command:

EDT>B255T(return)
FIRST LINE
MIDDLE LINE

EDT>ZILAST LINE
EDT>$B255T(return)
FIRST LINE

MIDDLE LINE

LAST LINE

-8-

OTHER EXAMPLES
EDT>LT move pointer one line and display line
EDT>-LT move pointer back one line and display line

EDT>B255[STRS-80$COMPUCOLOR$] move the pointer to the beginning of
the buffer. Removes "TRS-80" from the text and replace it with
"COMPUCOLOR". Do this 25 times. If a string is replaced more times
than it exists, "SEARCH STRING NOT FOUND!"™ will be displayed when the
search reaches the end of the buffer.

EDT>3[255A255W] read in 255 lines and then write 255 lines to output
file. Do this 3 times.

