
PROMPT 48™
MICROCOMPUTER,
USER'S MANUAL

Manual Order Number: 9800402C

~---------------------------~~

....

L...--------
1
~mJlk~ ® ·

PROMPT 48™
MICROCOMPUTER
USER'S MANUAL

Manual Order Number: 9800402C

Copyright © 1976. 1977. 1978 Intel Corporation
I Intel Corporation. 3065 Bowers Avenue. Santa Clara. California 95051 I

ii

The infonnation in this manual is subject to change without notice. Intel Corporation makes no warranty of any
kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this manual.
Intel Corporation makes no commitment to update nor to keep current the infonnation contained in this manual.

No part of this manual may be copied or reproduced in any form or by any means without the prior written
consent of Intel Corporation. The following are trademarks of Intel Corporation and may be used only to
describe Intel products:

ICE
I!'<SITE
INTEL
INTELLEC

iSBC

LIBRARY MANAGER
MCS
MEGA CHASSIS
MICRO MAP
MULTIBUS

PROMPT
RMX
UPI
/LSCOPE

PRINTED IN U.S.A./A132/1079/4K CP J

I
I

•

,)

n PREFACE

This User's Manual contains the infonnation you will need to use your PROMPT 48.
The infonnation presented herein is adequate to support nonnal user needs. Additional
infonnation is available in the following documents.

MCS-48 Microcomputer User's Manual, Order No. 9800270

MSC-48 Assembly Language Manual, Order No. 9800255

PROMPT 48 Reference Cardlet, Order No. 9800404

iii

CHAPTER 1
INTRODUCTION PAGE
How To Use This Book. .. 1-1

Voltage Selection .. 1-1
Handling The Processor .. 1-1
Inserting Processor In Execution Socket. 1-1

The Purpose of PROMPT 48 .. 1-2
Getting Started 1-2

CHAPTER 2
THE NUMBER SYSTEM AND ITS
SYMBOLS
Why Computers Need Symbols 2-1
Number Systems 2-1
Binary Numbers 2-1

Converting Decimal Numbers to Binary Numbers 2-2
Converting Binary Numbers to Decimal Numbers 2-2

Binary Arithmetic 2-2
Binary Addition 2-3
Binary Subtraction : 2-3
Binary Multiplication 2-5
Binary Division. .. 2-5

Hexadecimal Numbers 2-6
Electrical Representation of Binary Digits 2-8
Positive True Logic 2-8
The Inverse State 2-9

CHAPTER 3
HOW THE INTEL MCS-48 CHIP­
COMPUTERS WORK
Historical Perspective 3-1

The Harvard Architecture. .. 3-1
Princeton Heard From 3-1

The MCS-48 Architecture 3-2
Bits, Bytes, and Where You Can Put Them 3-2
Accumulator 3-2
Register Memory , Working Registers,

and RAM Pointers 3-2
Program Memory and Program Counter 3-3
Rags and Stacks 3-4
Timer/Event Counter 3-7
Input/Output Ports 3-10
External Memory and Ports 3-11
Extemal Program Memory 3-11
External Data Memory 3-12
External Ports 3-13
Data Paths 3-13

MCS-48 Instruction Set 3-15
Accumulator Instructions 3-15
Register Accumulator Instructions 3-15
Input/Output Instructions 3-15
Control Instructions 3-20

Conclusion 3-20

iv

CONTENTS

CHAPTER 4
HOW THE PROMPT 48 WORKS PAGE
Introduction. .. 4-1
Hardware Description .. 4- 1

Memory 4-3
Program Memory 4-3
Data Memory 4-4
Input/Output 4-4
Monitor Firmware Description. 4-4
Bus Expansion 4-5
Restrictions " 4-6

CHAPTER 5
PANEL OPERATIONS
Panel Description " 5-1

Command Function Group. .. 5-1
Reset/Interrupt Group 5-2
I/O Ports and Bus Connector (1) " 5-3
Execution Socket : 5-3
Programming Socket 5-3

Command Description Formats 5-4
Command Input Options 5-5
Command Prompts 5-5
Access Mode Control 5-5
Port 2 and Port 2 Mapping 5 -7
Examine/Modify Commands 5-9
Go Commands and Breakpoints 5-1l
Search Memory Commands5-12
Move Memory Commands 5-15
Clear Memory Commands 5-17
Dump Memory Command 5-17
Enter Into Memory Commands 5-18
Hexadecimal Arithmetic Command 5-19
EPROM Programming, Fetch, Compare Commands .. 5-19

CHAPTER 6
HOW TO USE PROMPT 48
Setting Up a System 6-1

Education 6-1
Functional Definition 6-1
Hardware Configuration 6-2
Code Generation 6-2

Programming Techniques " 6-3
Program Design 6-3
Hand Assembly. .. 6-5
Program Test and Debugging 6-6
Program Memory Paging .. 6-7
Assembling JMP and CALL Instructions 6-7
Care and Feeding of EPROMS 6-7
Prompt 48 Considerations 6-8

Hardware Considerations , 6-8
Data Memory Considerations 6-10
Using and Expanding PROMPT 48 I/O Ports 6-10

PAGE

P2 Map, LSN of P2, Access Code Considerations ... 6-11
Using the Serial I/O Port 6-13
Interfacing to a Teletypewriter 6-14

Questions Most Often Asked 6-18
Use of INS A, BUS 6-18
RAM and I/O Selection 6-19
TTY and CRT Peripherals Are Used Only For

Dumping and Reading Paper Tape 6-20
Speed Degradation Occurs When

"GO WITH BREAKPOINTS" 6-20
When Using PROMPT 48 System Calls, Do Not

"GO WITH SGL. STEP" or "GO WITH
BREAKPOINT" 6-20

APPENDIX A
A FAMILIARIZATION EXERCISE

APPENDIX B
PROMPT 48 SYSTEM CALLS

CONTENTS (Continued)

APPENDIX C
PROGRAMMING EXAMPLE: STOPWATCH

APPENDIX D
HEX OBJECT FILE FORMAT

APPENDIX E
COMMAND/FUNCTION SUMMARY

APPENDIX F
MICROMAP

APPENDIX G
INSTRUCTION SET SUMMARY

APPENDIX H
NUMBER CONVERSION TABLES

APPENDIX I
ACCESS CODEILSN P2 MAP SUMMARY

APPENDIX J
EXPANDED ACCESS CODES WITH 6MHZ
OPTION

v

I
TABLE TITLE PAGE

4-1 Pin List for I/O Ports and Bus Connector 4-5
5-1 Summary Table of Access Mode Codes 5-6
5-2 Access Code/P2 Map Summary 5-6
5-3 Access Code/LSN P2 Map Summary 5-7
5-4 Port 2 Map Command Data Bits Vs.

Port 2 Pin Numbers 5-8
5-5 Hexadecimal/Binary Conversion 5-8

FIGURE TITLE PAGE

3-1
3-2
4-1
5-1
6-1
6-2

6-3
6-4

vi

Stack Push 3-8
Stack Pop 3-9
Functional Block Diagram 4-2
Prompt 48 Panel Layout 5-1
Stopwatch Program Structure 6-4
Design for "von Neumann" Expansion

Memory 6-9
PROMPT 48 Port 2 Bus Structure 6-12
Relay Circuit (Alternate) 6-15

TABLES

TABLE TITLE PAGE

5-6 Special Purpose Register Memory
Summary 5-10

5-7 Command List Summary 5-22
6-1 Pin List for I/O Ports and Bus Connector 6-10
6-2 Connector 12 Pin Connections 6-13
6-3 Serial I/O Port Strapping Options 6-14
6-4 Baud Rate Selection 6-14

ILLUSTRATIONS

FIGURE TITLE PAGE

6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12

Distributor Trip Magnet 6-15
Mode Switch 6-15
Terminal Block 6-15
Current Source Resistor 6-16
Teletypewriter Layout 6-16
PROMPT/TTY Wiring Diagram 6-17
Strobed Data Input 6-18
Data Path Within PROMPT 48

Using INS A, BUS 6-19

CHAPTER 1
INTRODUCTION

1-1. How To Use This Book

The cost of computers is now low enough that your software design and debug time is likely
to be a critical consideration. No doubt your decision to use good tools like Prompt 48 was
based on this kind of logical thinking. Since your time is valuable, this book is organized as
a reference work, not as a mystery story. Every page has headings that identify the topics on
that page. Look up what you want to know, in whatever order you need the information. If
Prompt 48 is new to you, you probably will want to go through the familiarization exercise
in Appendix A. Before operating Prompt 48 for the first time, please check the caution items
that follow.

1-2. Voltage Selection

Is the voltage selection switch on the back of Prompt 48 set for your local mains (line)
voltage? If not, open the Prompt box, remove the switch locking plate, and set the switch
properly, then reassemble the unit. If you change the switch setting, the fuse likely must be
changed to correspond. Ratings are:

105-125 V - 2 A
208-250 V-I A

Now you may plug Prompt 48 in and turn it on.

1-3. Handling The Processor

THE CHIP COMPUTER IS FRAGILEl Dropping, twisting, or uneven pressure may break
it. Leave it in its protective package until ready to use it. Never press down upon the quartz
window area of the processor, or exert twisting or bending forces on any device. Never
subject any MOS device to the discharge of static electricity; touch the chassis of Prompt 48
before inserting a device in the socket on its panel.

1-4. Inserting Processor In Execution Socket

Never insert a processor in the PROGRAMMING SOCKET unless a second
processor is properly locked in the EXECUTION SOCKET.

Release the locking lever. Gently seat the processor in the Execution Socket,
notched end away from you. Move the locking lever down flush with the panel.

1-1

Introduction Prompt 48

Step

1.

2.
3.

1-2

1-5. The Purpose of Prompt 48

The difference between a computer and other calculating or controlling devices is the
general-purpose nature of their programmability. The 8048 is a true general-purpose digital
computer. Its purpose is undetermined until you design software for it, commit that software
design to a mask, and maunfacture the chip.

Prompt 48 is a tool to aid you in learning MCS-48 programming and in writing, debugging,
and testing the programs you write. There is enough information here to get you started,
whether or not you have ever written a program before.

Prompt 48 is a machine-language computer; making it support assembly-language pro­
gramming would have considerably raised its cost. Even so, it is general purpose, and
can be used to perform a variety of tasks, among which are the control of TTL­
compatible devices and the programming of PROMs. It can function as an Intellec
Microcomputer Development System peripheral in the latter respect. Once a program
has been deposited in an 8748 computer, that device can be installed in the
EXECUTION SOCKET on the panel of Prompt 48. The pins of either executory
processor-8748 or 8035--<.:an be directly interfaced to your prototype via the I/O
PORTS AND BUS CONNECTOR and a cable set provided with Prompt.

All of Prompt 48' s circuitry is located on a single board just beneath the panel. Aside from
the power supply, the remainder of the Prompt 48' s cabinet is empty. A slot at the back of
the cabinet provides access for interconnections.

1-6. Getting Started

Entering a program into Prompt 48' s random -access memory (RAM) is easy. The example
that follows can be loaded and run without any more instructions than are given here in this
paragraph. (The MCS-48 Assembly Language Manual has some other sample programs of
a tutorial nature.) Do the following, step by step, and you will be running a program in a
matter of minutes.

a. Connect power to Prompt 48.

b. Install the 8035 computer in the EXECUTION SOCKET. (Observe the precautions in
paragraph 1-3.)

c. Turn power ON. The display should respond with ACCESS = O. If not, press
[SYS RST].

d. Enter the program by pressing each COMMANDS or HEX DATA/FUNCTIONS
key in the order listed on the next page. Each [] represents one keystroke. At the end
of each step (which may be several keystrokes), the results shown in the column at
right should appear on the display. If you make a mistake and the wrong data appears,
you can correct it by keying the field over again before touching the NEXT [,] key. If
you realize a mistake after incrementing to the next address, you can go back and cor­
rect it by pressing the [] CLEAR ENTRY/PREVIOUS key and then keying the
step over again.

Result Instruction
Action Function Address Data Mnemonic Comment

[] EXAMINE/MODIFY E ;SELECT FUNCTION
[] PROGRAM MEMORY EP ;SELECT PROGRAM MEMORY

[0] EP a ;ADDRESS a
[,] [1] [7] EP 0 17 INCA ;INCREMENT ACCUMULATOR

[,] [0] [4J EP 04 JMP ;JUMP TO LOCATION
[,] [0] EP 2 00 ;00

CHAPTER 2
THE NUMBER SYSTEM AND ITS SYMBOLS

2-1. Why Computers Need Symbols

Digital computers perform functions accurately and at high speed by manipulating symbols
(characters) according to a set of instructions. Computer operation consists of the execution
of sequences of symbolically coded instructions and data. Within the machine, both data
and instructions are usually descriQed in binary-number codes.

To understand the computer, you will need to understand how numbers are represented. Our
starting point is the study of the simplest of numbering systems-the binary number system.
But first, some definitions.

2-2. Number Systems

A number system is a set of symbols that may be operated upon by arithmetic rules. The
individual symbols are called digits, and each digit is assigned its own name. The decimal
system, as the name suggests, has ten digits: 0, I, 2, 3,4, 5, 6, 7, 8, 9. A number system
also has a set of rules that define how to arrange the digits to form numbers. A number is,
therefore, a sequence of digits interpreted according to a particular set of rules.

Positional notation allows numbers to be written that express all quantities, no matter how
large or how small. The real value of a digit depends on its position in the number. The digits
of the number 5555 are identical, yet each has a different value. To write 5555 is a compact
way of writing five thousand + five hundred + fifty + five or, expressed in powers of 10,
5 X 103 + 5 X 102 + 5 X 101 + 5 x 100 . The number 10 is the base, or radix, of the
decimal system. After learning a few simple rules (and memorizing or referring to some
unfamiliar addition and multiplication tables), it is easy to perform calculations in any
non-decimal system. This chapter is concerned with the binary number system, whose radix
is 2, and the hexadecimal system, whose radix is 16.

2-3. Binary Numbers

Binary numbers are written using radix 2. That is, each column represents a power of 2, just
as in decimal, each column rep'resents a power of 10. The binary number 101101 can be
written 1011012. Its value is expressed in the equation:

1011012 = 1 X 25 + 0 X 24 + 1 X 23 + 1 X 22 + 0 X 21 + 1 X 2
= 1 X 32 + 0 X 16 + 1 X 8 + 1 X 4 + 0 X 2 + 1 X 1
=4510

2-1

The Number System and Its Symbols

2-2

The following table lists eleven binary numbers and their decimal equivalents.

Binary , , Decimal

242322212°

0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 2
0 0 0 1 1 3
0 0 1 0 0 4
0 0 1 0 1 5
0 0 1 1 0 6
0 0 1 1 1 7
0 1 0 0 0 8
0 1 0 0 1 9
0 1 0 1 0 10

Computer people have become accustomed to referring to digits in the binary system as bits,
which is a contraction of binary digits.

2-4. Converting Decimal Numbers to Binary Numbers

A simple method, suitable for converting large numbers, consists of repeatedly dividing the
decimal number by 2. The remainder at any step of the division can only be 0 or 1. These
remainders are the bits of binary equivalent. To illustrate, convert 3710 to its binary
equivalent.

37
+ 2 = 18 remainder 1 = 20 (least significant digit)
+ 2 = 9 remainder 0 = 21
+ 2 = 4 remainder 1 = 22
+ 2 = 2 remainder 0 = 23

+ 2 = 1 remainder 0 = 24
+ 2 = 0 remainder 1 = 25

Binary equivalent =

2-5. Converting Binary Numbers to Decimal Numbers

The obvious method for binary to decimal conversion is to select the one bits in the binary
number and convert each one to decimal and then add the results together.

3710 = 1 0 0 1 0 1 .
= 1 X 25 + 1 X 22 + 1 X 20

= 32 + 4 + 1
= 3710

2·6. Binary Arithmetic

Binary arithmetic operations are much simpler to perform than decimal number system
operations. So much simpler that the advantage of using fewer digits to express a given
value in the higher radix is more than offset. The .rules of arithmetic are identical in both
systems.

Prompt 48

Prompt 48 The Number System and Its Symbols

2-7. Binary Addition

All of the possible combinations that can occur when two bits are added are shown in the
following addition table:

o 0 1 1
+0 +1 +0 +1

o 1 0 with a carry of 1

A carry 1 bit is produced from the addition of 1 and 1. Binary carries are treated in the same
way as decimal carries; they are carried over to the left. In decimal, 1 + 1 = 210, but since
1 is the largest bit, 2 must be written as 102 . Example:

Decimal

15
+ 7

22

2-8. Binary Subtraction

Binary

1111
+ 111

10110

As in the binary addition table the binary subtraction table contains only four entries:

o 1 1 0
-0 -0 -1 -1

o 0 0 with a borrow of 1

A borrow must be made in order to subtract a larger bit from a smaller bit, just as in a
decimal subtraction. Since there are only two bits, this only happens when 1 is subtracted
from O. In this case a 1 is borrowed from the next column to the left. All binary subtraction is
performed according to the subtraction table. Example:

Decimal Binary

15 minuend 1111
- 7 subtrahend - 111 ---

8 1000

Decimal Binary

15 1111
- 6 - 110

9 1001

The arithmetic used in most computers performs subtraction in a different way than we are
accustomed to using for decimal arithmetic. The method used is called the complement
method. Its advantage lies in simpler physical circuitry to obtain the same result.

2-3

Prompt 48

2-4

The Number System and Its Symbols

Here is how the complement method would work in the familiar decimal system. First, form
the ten's complement (in binary we would form the two's complement). To form the ten's
complement, subtract each digit from 9, forming the nine's complement, and then add one
to the number as a whole: thus the ten's complement of 012345678910 is

9999999999
-0123456789

9876543210 nine's complement
+1

9876543211 ten's complement

Then, subtracting a subtrahend from a minuend is simply adding the minuend complement.

Example: Subtract 5610 from 231 10

NORMAL COMPLEMENT

231
-056

minuend
subtrahend

231
+944 (ten's complement)

175 (1)175

Notice that the carry digit is ignored in the complement method. The subtrahend is the
smaller of the two numbers. If not, invert the problem and change the sign of the result.

So the rule for ten's complement subtraction is

Add the ten's complement of the subtrahend to the minuend, ignoring the carry digit.

You can see that in the decimal system the ten's complement system is cumbersome.

The binary number system used by computers, however, makes subtraction by comple­
menting simple. first, form the two's complement. Subtract each digit from 1, forming the
one's complement, and then add one to the number as a whole:

11111111
-00000101

111110 10 (1' s complement)
+1

11111011 (2's complement)

Then, subtracting a subtrahend from a minuend is simply adding the minuend complement:

00001010
+ 11111011 (2's complement)

00000101

As before, the carry bit is ignored.

In fact, subtraction in the MCS-48 family of computers is explicitly programmed by the
complement method. Suppose you wanted to subtract A from RO, leaving the answer in A.
You would program

CPLA

INC A

;forms 1 's complement of A.

;now 2's complement of A.

ADD A,RO ;A now contains the desired subtracted result.

There need not be a subtract (SUB) instruction.

Prompt 48 The Number System and Its Symbols

2-9. Binary Multiplication

There are two simple, easy-to-remember rules for binary multiplication:

1. The product of 1 x 1 = 1.
2. All other products = o.

o 1 0 1
xO xO x1 x1

000

The reason for the simplicity of binary multiplication is readily apparent. Any number, digit
or bit multiplied by a produces a product of O. The simple procedure of binary mUltiplication
is illustrated in the following example:

Decimal Binary

7 111 multiplicand
x 5 xlOl multiplier --

35 111
000 partial products

111 ---
100011 product

Binary multiplication involves a series of shifts and additions of the partial products. The
partial products are easily found since they are equal to the multiplicand or to O. Every 1 bit
in the multiplier gives a partial product equal to the multiplicand shifted left the correspond­
ing number of places. Every a in the multiplier produces a partial product of O. Each partial
product is shifted left one position from the preceding partial product, the Same as in
decimal arithmetic.

It is useful to remember that shift operations are used to multiply or divide binary numbers
by powers of 2 (not multiples of 2). A left shift of pne position multiplies by 2; a left shift of
two bit positions multiplies by 4. Similarly, a right shift of one position divides by two (i.e.,
multiplies by 1/2); a right shift of two positions divides by four.

2-10. Binary Division

Binary division is performed in much the same way as decimal long division. The process is
much simpler, since there are only two rules in binary division.

o
o

2-5

The Number System and Its Symbols

2-6

Division by 0 (1 +- 0, 0 +- 0) is meaningless in any numbering system. The following
examples illustrate the binary division process:

Decimal

Decimal

12

11)m 1011
11

22
22

Binary

11

11) 1001
11

011
11

111

100 hll00
100

Binary

110
100

100
100

1100

)10000100
1011

1011
1011

So, a computer does division in the reverse way as multiplication, by a series of subtractions
and right shifts to provide partial dividends as opposed to a series of additions and left shifts
to provide partial products.

2-11. Hexadecimal Numbers

The principal drawback of binary notation is the relative length of the numbers. It is tedious
to write, and so more vulnerable to error.

One shorthand method of expressing any group of four bits is the hexadecimal number
system. This is not a code, merely a means of replacing four consecutive bits by a single
character. Since any four bits may represent the numbers 0 through 15, then 16 single-digit
numbers are required to replace the 16 binary numbers. For convenience, hexadecimal
numbers are symbolically represented by a set of familiar characters, arranged in a familiar
order.

Prompt 48

Prompt 48 The Number System and Its Symbols

Binary Decimal Hexadecimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 0
1110 14 E
1111 15 F

Since data is often represented by binary numbers in some codes, hexadecimal notation can
be used to express data. Prompt 48 uses 8-bit bytes, which can be expressed in two
hexadecimal characters. The computer still reads only binary numbers; hexadecimal is the
user's shorthand, not the computer's. The smallest hexadecimal number is 0016

(000000002) and the largest is FF16 (11111111 2),

When making translations, you may find it helpful to divide each 8-bit byte into two 4-bit
nibbles. The left nibble represents the left (most significant) hexadecimal digit, and the right
nibble represents the right (least significant) hex digit. For example, 01110011 2 (11510)
might for convenience be written:

0111
7

0011
3

i.e., 7316, which looks a lot like 7310 but is larger in value.

For another example, 110110112, which translates into decimal as 21910, can be translated
into "hex" like this:

1101
D

1011
B

If thinking ofDB16 as a number somewhat larger than the number of bones in your body is
hard, you can calculate it using an equation much like the one used to find the decimal value
of binary numbers, thusly:

DB16 = 13 X 161 + 11 x 16°
= 13 X 16 + 11 X 1
= 208 + 11
= 21910

the decimal value stated previously. In hex, there are only two digits to contend with, and
each of those could be looked up in a table and thereby translated from binary in one step. As
you can see, there is no direct way to divide a binary number into decimal nibbles. That's
why Prompt 48 uses a hexadecimal display and keyboard.

2-7

The Number System and Its Symbols

2-8

Since hexadecimal notation is merely a shorthand for binary notation, hexadecimal
arithmetic-addition, subtraction, multiplication, and division-is simply binary arithme­
tic. Thus,

Binary Decimal Hexadecimal

1001 11 B
HOW +10 +A ---
100112 21 10 1516

1011 11 B
-1010 -10 -A --

I 1

Prompt 48 has a built-in hexadecimal calculator which facilitates hex addition and
subtraction.

Throughout this book, numerical values are stated in decimal numbers without subscript,
and program addresses and steps are stated in hexadecimal numbers without subscript.
Some books use suffIx H to indicate hex, D for decimal, and B for binary.

2-12. Electrical Representation of Binary Digits

So far, the bit has been discussed in terms of 1 or O. This is fine for arithmetic and logic
representation using a pencil and paper, but a computer is an electronic device, and needs
two signal states' that:

a. Can be represented by high speed circuits.

b. Can be readily distinguished.

c. Cannot be confused.

In general, computers use voltage levels to represent binary digits. The level may be present
for a relatively short time period (or pulse) or a longer time period (which still may be a pulse
or a level).

2-13. Positive True Logic

One representation of a logic level is termed positive true, and the ~ompanion voltage levels
are +5 Vdc and OVdc, such that:

+5V = 1 = HIGH = TRUE
OV =0 = LOW = FALSE

If the output of a logic element (circuit) is + 5V, that output may be referred to as logic 1, or
high, or true, depending upon the function of the logic element, i.e., whether it represents
data in some form, or a timing or controlfunction. Conversely, when the output is 0 V it may.
be referred to asa logic 0, or low, or false.

Prompt 48

Prompt 48 The Number System and Its Symbols

2-14. The Inverse State (Negative True)

Certain logic elements have two outputs, the one being the inverse of the other in tenus of
voltage levels. In certain cases a level is purposely inverted because it is easier to use its
inverse. What does this mean?

Consider a logic element that has two outputs, which are named for schematic or illustrative
purposes. Now suppose that the logic element performs a control function and that the
control function is tenued Fetch. The mnemonic for one output could be FETCH, and by
adopting the bar convention the other output would be FETCH/. How then is the Fetch
control function expressed in these tenus?

FETCH = 5V = HIGH = TRUE
FETCH/ = OV = LOW = TRUE

FETCH = OV = LOW = FALSE
FETCH/ = 5V = HIGH = FALSE

The Fetch control
is applied

The Fetch control
is not applied

Since the two signals are derived from the same logic element, they will always be opposite,
the one being the inverse of the other. However, you cannot say that if FETCH = TRUE,
then FETCH/ = FALSE. Both levels must be either true or false at the same time. The
foregoing applies to any signal or bit that has dual representation.

2-9/2-10

CHAPTER 3
HOW THE INTEL MCS-48
CHIP-COMPUTERS WORK

3-1. Historical Perspective

The Intel MCS-48 Chip-Computers are truly computers-on-a-chip, unlike earlier' 'micro­
processors." Within this single-chip microcomputer are included all the computer building
blocks which have traditionally come to be regarded as basic: Central Processing Unit,
Memory, and Input/Output.

The concepts leading to present-day computers date back as far as the 1830' s, when Charles
Babbage envisioned his" Analytical Engine." Babbage's design included all the major
components of a general-purpose digital computer. He foresaw that its "store" (memory)
should hold a thousand 50-digit numbers. Its' 'mill" (processor) would perform operations
on the information and return the results to the" store." Babbage's concept was complete
and accurate, for as in modern-day computers, it included "sequence mechanisms" which
would select the proper numbers from the "store" and instruct the "mill" to perform the
proper operation. But mechanical technology (later joined by electrical) required one
hundred years to realize a working computer according to Babbage's conception.

This was the relay-powered "Complex Computer" built by Dr. George R. Stibitz at Bell
Laboritories around 1939. Stibitz used a roomful of reliable, proven telephone relays to
perform a limited repertoire of arithmetic operations. It worked, and was very fast alongside
the manual calculation methods available to mathematicians in 1939. It was not a general­
purpose machine.

3-2. The Harvard Architecture

The great technical visionary, Howard Aiken, conceived that the technique of Stibitz could
be extended to fulfill Babbage's dream of a practical, general-purpose computer. His
conception was of an electronic machine with vacuum-tube memory banks, used to store
both numerical data and changeable programs for the processing of that data. His particular
design called for split, independent memories for" data" and "programs." He wrote the
specification for such an "Automatic Sequence-Controlled Calculator" in 1937.

Seven years later, the development and manufacturing skills of IBM Corporation
successfully completed and installed this system, Mark I, on which the Harvard
Computation Laboratory was founded. It was 51 feet (15.5 Meters) in length. Its
information was input by four paper-tape readers. Three were dedicated to data, one to
programs, whose instructions were coded in the sequence "source, destination, opera­
tion." The Mark I was very slow by modern standards: about 1/3 second was required to
execute a single ADD instruction.

3-3. Princeton Heard From

A computer named ED V AC was the result when mathematician John von Neumann and his
colleagues at Princeton constructed a machine for the U.S. Army. EDV AC could store 4K
of a mixture of 40-bit data words and program instructions in its vacuum-tube memory
matrix. The principal von Neumann introduced is that of numerical coding of programs, in
exactly the same format as data, stored side-by-side in the same memory. This was a
technique of such power and flexibility (especially so in an era when memory was costly)
that it has been adopted and used virtually universally. Intel's 8008 and 8080 series of
microprocessors are designed fundamentally around the Princeton architecture; they are
"von Neumann" machines, employing a "monomemory" addressing scheme. On the
other hand, the 4004 and 4040 are" Aiken" machines, featuring the Harvard Architecture,
employing separate program and data memories.

3-1

How the Intel MCS-48 Chip-Computers Work

3-2

3-4. The MCS-48 Architecture

3-5. Bits, Bytes, and Where You Can Put Them

The basic unit of infonnation in virtually any computer system today is the bit. A bit is a
binary (base 2) digit; that is, it can be either a 0 or aI, represented in a computer as a low or a
high voltage level. In the MCS-48 series computer systems, bits are handled in groups of
eight. Space for data is allocated in these eight-bit bytes. For easy identification, the bits in a
byte are numbered according to their position, or power of 2, from 0 through 7, or least
significant bit (LSB) to most significant bit (MSB), thus:

6 5 4 3 2 0

MSB LSB

An eight-bit byte is conventionally broken up into four-bit half bytes, called nibbles. A
nibble, containing four bits, can represent 24 = 16 different numbers, from 0000 to 1111.
For programming convenience, four-bit nibbles are usually represented as a single
hexadecimal digit (base 16), from 0 to F16. To understand the inner workings of the
computer you need to think binary, but when you are writing programs for the MCS-48
chip-computers you'll be writing hex numbers, rather than bits.

A register is a place to store binary data so it can be worked with. Most MCS-48 registers are
8-bits wide (one byte). Each MCS-48 Chip-Computer contains Register Memory, Data
Memory, and separate Program Memory, thereby reintroducing the Harvard Architecture.
The MCS-48 also retains the Princeton concept of program instructions coded in the same
numerical fonnat as data. Program memory is thus also organized as 8-bits (one byte) wide
per location.

3-6. Accumulator

The first register to be explained is the accumulator, designated A. An -accumulator is
something like the display register in an electronic calculator. The accumulator is the focal
point of a majority of the instructions the computer can execute. Most arithmetic and logical
functions are perfonned on the data within the accumulator, or between the accumulator
data and the contents of other data sources (registers and data memory). The accumulator is
also the channel through which all data is transferred to and from external devices, and can
be used to access data contained in program memory.

We will illustrate the architectural features of the MCS-48 family with a device known as
the Micro map , which will gradually increase in complexity until it becomes a quick
reference to the features and capabilities of the MCS -48. The first Micromap, emphasizing
the accumulator, appears below.

3-7. Register Memory, Working Registers, and RAM Pointers

The MCS-48 Chip-Computers contain 64 8-bit bytes of register memory, numbered
00-3FI6 . These registers are divided into two major types, working registers and data stor­
age registers. The working registers have the special capability of being directly accessible
through a wide variety of register-accumulator instructions and register-only instructions.

The working registers are divided into two banks of eight registers each, designated RO, Rl,
... ,R7, of which only one bank is directly accessible at any given time. Working Register
Bank 0 (RBO) is found in locations 0- 7 of the register memory, and working Register Bank 1

Prompt 48

Prompt 48 How the Intel MCS-48 Chip-Computers Work

PORTS

REGISTER
MEMORY

(DATA
MEMORY)

ACCUMULATOR

, I

OTHER
REGISTERS

I I I I

PROGRAM
MEMORY

(RBI) in locations 1816 -IF16. The bank currently being used is selectable under software
control (see paragraph 3-17).

Two working registers in each bank, RO and Rl, are also called RAM Pointers. Data storage
registers are only accessible through the use of the RAM Pointers. The RAM Pointers can
(in addition to the general capabilities of work registers) also function as "index" registers.
That is, they can contain the address (register number) of a byte of the register memory
whose data is to be accessed through certain instructions.

3-8. Program Memory and Program Counter

Program memory, like register memory, is a place to put information; in this case, the
instructions to be carried out by the computer. In MCS-48 computers program memory is 8
bits (one byte) wide. In the 8048 and 8748, there are 1024 (lk) bytes of program memory
on-chip, addressed as locations 000-3FF16.

The program memory is accessed by means of the program counter. The program counter is
a 12-bit register containing the address of the next instruction' to be executed by the
computer. Most instructions are executed sequentially in ascending addresses of program
memory. That is, the program counter is "incremented" after each instruction. Breaks in
the normal sequence of program execution are achieved through' 'jump" commands, which
load the program counter with an address other than that of the next instruction in program
memory. Note that a 12-bit register can address 212 = 4096 locations. The 3072 addresses
not on-chip are located in external program memory, discussed in Paragraph 3-12.

3-3

How the Intel MCS-48 Chip-Computers Work

3-4

,.~

8 2
IF

9

8
7

8
7

1

e

PORTS

REGISTER MEMORY

,.
~

R

R

R

7) REGISTER
BANK 1

1

o

R

R

R

7

REGISTER
BANK 0

ACCUMULATOR

I I I I I

OTHER
REGISTERS

PROGRAM
MEMORY

The MCS-48 Chip-Computers manage program memory in 256-byte pages. The most
significant hex digit of the program memory address is the page number; the entire
4096-byte address range of the MCS-48 would amount to sixteen pages. The two least
significant hex digits point to 256 adjacent memory locations, numbered X0016 - XFF16 ,

where X is the page number in hex. Memory paging is implied by the fact that only the 8
least significant bits increment automatically after each instruction. The two exceptions to
this rule (the only means to cross "page boundaries") are the CALL and JMP instructions,
\yhich provide an additional 3 more significant bits of address information (a total of 11
bits). A 12th and most significant bit exists in the program counter, called the Memory Bank
select, or MB bit. This bit may be manipulated by software to select either of two 2k regions
(upper or lower) of program memory through the Designated Bank Flag (DBF), which is
moved into MB on the execution of a CALL or JMP instruction (see Paragraph 3-17).

3-9. Flags and Stack

The flags in the MCS-48 are independent on-bit registers which are used as aids to various
processing tasks. Four of the flags are organized into half of the flags register which contains
the processor status word, or PSW. These four are the Carry (C), Auxiliary Carry (AC), user
Flag 0 (FO), and working register Bank Select (BS) flags. The C flag represents the carry (or
borrow) from the last addition (or subtraction). The AC flag represents the carry from bit 3
to bit 4 of the last addition, which is needed for decimal arithmetic. FO is set, reset, and
sensed by software, and is useful as a means of communicating between two parts of a
program. BS determines which working register bank is currently in use: RBO (register

Prompt 48

Prompt 48

"IV

2.
iF

19
18
17

8
7

1

•

How the Intel MCS·48 Chip.Computers Work

PORTS

REGISTER MEMORY

,.

ACCUMULATOR

, , I ,
MB

(PC II) PROGRAM COUNTER

~
0111111111
OBF

R

R

o
7j REGISTER

BANK 1

1

RI

R

R

R

7

REGISTER
BANK 0

OTHER
REGISTERS

PROGRAM MEMORY
FFF r---------,

EXTERNAL
PROGRAM
MEMORY

(OPTIONAL)

400 '--______

3FF

~~ ~~

JMP 0
001

INCA

memory locations 0-7) or RB 1 (locations 1816 - IF 16). Contained elsewhere in the MCS -48
are user Flag 1 (FI - used like FO), the Timer Flag (TF - see Paragraph 3-10), and the
Designated Bank Flag (DBF - see Paragraph 3-8).

Also stored in the flags register are the three STP bits, the stack pointer. The stack pointer is
used to manage the MCS-48 stack. A stack is a splendid way to organize activities that
cannot be done at the same time. Here is an example from day-to-day life. Suppose that you
are writing at your desk and the phone rings. You set aside the writing (intending to return to
it) to take care of the phone call. Then a second person calls. You place the first caller on
hold and answer the second caller's question. Then you return to the first caller and
ultimately to your writing.

How do you organize your responses to these multiple demands? When the first phone rings
you remember (perhaps on a mental list of things to do, or mental "stack") that you will
return to the writing. And when the second call comes you decide that the first call can be put
on hold, or stacked, for later return.

Your first call is now the most recent item on hold (on your stack). You will return to the first
caller when you have disposed of the second caller and then resume writing after both calls
are finished. Interrupted activities are pushed onto the stack to save them for later. When an
interrupting activity is finished, the interrupted activity is popped off of the stack to restore it

ON
CHIP

3-5

How the Intel MCS-48 Chip-Computers Work

f"..J

2 0
F

9

8

7

9

8

1

0

3-6

PORTS

REGISTER MEMORY

r

ACCUMULATOR

I I I I

MB
(PCl1) PROGRAM COUNTER

o 1",1" I

"" OBF o
R

R1

R

7jREGISTER
BANK 1

lAO,a

FLAGS

R 7

R1

R o

REGISTER
BANK 0

TIMER/EVENT COUNTER

F1

D

PROGRAM MEMORY
FFFr---~----~-----'

EXTERNAL
PROGRAM
MEMORY

400L-______________ ~

3FFr---------------~

OOOL-______________ ~

for completion. The MCS-48 computers have facilities which allow a program to be
interrupted, made to perform more urgent tasks, and later be returned to the original activity
through the use of a stack.

In the MCSA8 Computers, the stack is implemented by saving the contents of the program
counter (return address in the interrupted activity) and the C, AC, FO, and BS bits of the
flags register (status of the interrupted activity). The twelve bits of the program counter and
the four bits of the flags register are combined into two bytes, which are saved on the stack.
The stack is a special area of register memory, locations 816 -1716. These sixteen bytes of
register memory are divided into eight two-byte stack locations, or levels. This allows eight
levels of "nesting," or eight interrupted activities waiting on the stack.

STACKED CURRENT
ACTIVITIES ACTIVITY

1st CALL 2nd CALL)
WRITING

Prompt 48

ON
CHIP

Prompt 48 How the Intel MCS-48 Chip-Computers Work

The stack is maintained through the use of the stack pointer (STP), the three low order bits of
the flags register. These three bits can point to (address) the 23 = 8 stack locations. Note that
the STP bits do not form the actual address in register memory of the stack, but rather
indicates the next available stack entry, called the stack' 'top." When STP = 000, the stack
is on level 0, and the next available stack location is at register memory locations 8 and 9.
Similarly, when STP = 001, the stack is on levell, and the next location is in register
memory A16 and B16.

The format of a stack push is shown in Figure 3-1. The eight low order bits, bits 7 to 0, of the
program counter, are saved in the low order byte, the lower address of the stack registers.
The four flag bits are combined with the program counter bits 11-8 (including MB) to form
the upper byte of the stack entry. After the transfer, 1 is added to the stack pointer to point to
the next available stack entry, on the next level.

A stack pop is shown in figure 3 -2. The stackpointer (STP) points to the next available stack
level. First, 1 is subtracted from the stack pointer. Then the data to restore the interrupted
activity is transferred from the now available stack location to the appropriate registers.

The stack is also used to manage subroutines. A subroutine is a part of a program that is used
("called") by other parts of the program. An example would be multiplication routine,
which would calculate and "return" the answer, the product. As with interrupts, the status
and return address are saved on the stack, and can be restored to the flags and program
counter registers in order to return to the calling routine (previous activity). In most cases
though, the status of the subroutine does not interfere with the main (calling) program
(self-interrupted activity), so there is a special instruction to pop only the return address
from the stack for use with subroutines (see Paragraph 3 -17).

All this is not to say that the memory in which the stack resides is any different then the data
storage registers, for they are equally accessable through the use of the RAM pointers.
While the register memory is available for data storage on those levels of the stack which are
not needed to monitor multiple activities, this very availability should be carefully checked.
Writing a byte of unrelated data over a return address can be disastrous.

3-10. Timer/Event Counter

Each MCS-48 computer has an on-chip timer/event counter to count external signals or to
generate time delays without tying up the processor. Basically, it is an 8-bit register that
(when enabled) increments every time it gets an input, and sets a flag when full. The input
can be either an external signal, or an internally generated signal, equal to 1/480 of the clock
crystal frequency. These are the event counter and timer modes, respectively. Dividing the
clock frequency by 480 means that, for example, ifthe system clock crystal frequency was 3
MHz, the timer would increment every .16 msec. This is equal to 32 instruction cycles.
When the timer/event counter is full (all ones), the next increment resets the timer/event
counter to zero, and sets the Timer Flag (TF). This flag can then be used by the software to
decide whether it is time to perform a time- or external event-dependent action. The
timer/event counter continues incrementing on each input, regardless of the reset when full,
until stopped by software. The instructions used to control and monitor the timer/event
counter are described in Paragraph 3-16 and the MCS-48 Microcomputer User's Manual.

3-7

r- (NOT USED) I
I

~~l POINTER 9

I-:;:;-J 8 rCI~I~I~11 o I 0 I 0

7 6 5 4 3 2 o

1
I

CI~I~I~I SAVED PC

11 I 10 I 9 I 8

7
M SB

t

I

6

S~VED iROG~AM C?UNT~R
I

4 2 o
LSB

Figure 3-1. Stack Push

[~ I .1 .. '..
I I

CU~REN~ PRO~RAM fOUNlER I

11 10 9 8 7 6 5 4 3
MSB

I I
2 o

LSB

I

1 ,
....... (NOTUSED) 1 ________________ ,

r-{::- ------ -- ---- ---:
STACK

POINTER 9 C I A I FIB I SAVED PC , . , COS 11 I 10 I 9 I 8

ICI~I~I~I 1 I STP BITS I S~VED ~ROG~AM CfUNTfR I o I 0 I 1
8

I
7 6 5 4 3 2 o 7 6 5 4 3 2 o

M SB LSB

I

Figure 3-2. Stack Pop

I ~ I
-!'

I
I RESlOREP PRO,GRAM. COU7TER I

11 10 9 8 7 6 4 3 2
MSB

I I

L
o
SB

I

How the Intel MCS·48 Chip·Computers Work

,.~

2 0
F

9

8

7

9

8

1

0

3- \0

PORTS

REGISTER MEMORY

,.

ACCUMULATOR

I I I I

MB
(PCl1) PROGRAM COUNTER o II I III I I

jiJ
OBF

o
R

R

R

7jREGISTER
BANK 1

1

}Ac<D

FLAGS

R

R

R

7

1

o

REGISTER
BANK 0

TIMER/EVENT COUNTER

I I I I I I ! I I

3-11. Input/Output Ports

F1 o

FFF
PROGRAM MEMORY

EXTERNAL
PROGRAM
MEMORY

400L-______ --'

3FF...---------.

000 L-______ --'

The MCS-48 chip-computers each have 27 lines which can be used for input/output
functions. Comprising 24 of these lines are the three on-chip input/output ports, Bus (or
PO), PI, and P2.

Bus is an 8-bit bidirectional port with associated input and output strobes. Ports PI and P2
are identical, latched static ports, i.e., data written out to these ports remains until
something else is written there. They are called quasi-bidirectional because they can be
driven as inputs when they have been latched high as outputs. (That's because the output
impedance of each line is relatively high, so that a standard TTL gate can pull it down.) This
quasi-bidirectional operation is described fully in the MCS -48 Microcomputer User's
Manual.

Of the remaining three lines, TO and TI serve as external signal inputs, and are testable with
conditional jump instructions. INT/ is an input which initiates an interrupt if enabled by
software. The relevant instructions are given in the MCS -48 Assembly Language Manual,
and the hardware operation is described in detail in the MCS -48 Microcomputer User's
Manual.

Prompt 48

ON
CHIP

Prompt 48

P2

PI

BUS (PO)

,.~

2 0
F

9

8

7

9

8

1

0

How the Intel MCS-48 Chip-Computers Work

PORTS

REGISTER MEMORY

r

ACCUMULATOR

I I I I

MB
(PC11) PROGRAM COUNTER

o II I I II I I

rJ
OBF

o
R

R

R

7lREGISTER
BANK 1

1

},,,o
FLAGS

R 7

R

R o

REGISTER
BANK 0

TIMER/EVENT COUNTER

I, I I I I I I

3-12. External Memory and Ports

Fl

o

FFF
PROGRAM MEMORY

EXTERNAL
PROGRAM
MEMORY

400'--______ ---'

3FF r----------,

000L-_______1

In addition to the on-chip features of the MCS-48 computers, there are several expansion
features which require additional hardware beyond the single-chip computer. These are
external program memory, external data memory, and external I/O ports.

3-13. External Program Memory. If a given application requires more than the 1024
program memory bytes included on-chip, there is provision for expanding the program
memory with up to 3072 additional bytes of external memory, making a total program
memory of 4096 (4k) bytes possible. (For details on how to implement program memory
expansion, see the MCS -48 Microcomputer User's Manual.)

The external program memory is treated in the same manner as in the 256 byte pages (see
Paragraph 3-8). There is, however, an additional condition which must be observed when
program memory exceeds 2048 bytes. This is the Memory Bank (MB) address bit, the most
significant bit in the 12-bit program counter. (Details on how the MB bit is manipulated are
given in Paragraph 3 -17.)

ON
CHIP

3-11

How the Intel MCS-48 Chip-Computers Work

P4

PS

P2

Pl

BUS (PO)

EXTERNAL
PORTS -

PORTS

REGISTER MEMORY

ACCUMULATOR PROGRAM MEMORY
FFFr--------.....,

MB
(PC11) PROGRAM COUNTER

o II I II, I I
r',J ('

'""
2 0
F

9

8

7

9

8

1

0

3-12

OBF

o
R

R

R

7jREGISTER
BANK 1

1

}.e.o
R

R

R

7

1

o

REGISTER
BANK 0

FLAGS

TIMER/EVENT COUNTER

I I I I I I I I

Fl o
EXTERNAL
PROGRAM
MEMORY

400 L-_______ ~

3FFr------------,

OOOL-_____________ ~

3-14. External Data Memory. If the data requirements of an application exceed the
capacity of the on-chip 64 bytes of register memory, up to 256 bytes of external data
memory can be added. This external data memory is accessed through the accumulator,
using one of the RAM pointers for addressing. (Complete hardware details for data memory
expansion are given in the MCS -48 Microcomputer User's Manual. The instructions which
read and write the external data memory are discussed in Paragraph 3 -17).

Prompt 48

ON
CHIP

Prompt 48 How the Intel MCS-48 Chip-Computers Work

3-15. External Ports. The most efficient means of I/O expansion for small MCS-48
systems is the 8243 I/O Expander Device (part of Intel's compatible MCS-48 family) which
requires only 4 port lines (the lower half of Port 2) for communication with the MCS-48
Chip-Computer. The 8243 contains four 4-bit I/O ports which serve as extensions of the
on-chip I/O and are referred to in software as P4-P7. The following operations may be
performed on these ports:

1. Transfer Accumulator Data to Port

2. Transfer Port Data to Accumulator

3. AND Accumulator to Port (result in Port)

4. OR Accumulator to Port (result in Port)

All communication between the MCS-48 Chip-Computer and ports P4-P7 takes place
through the Least Significant Nibble of Port 2 (LSN P2). LSN P2 corresponds to pins
P20-P23 on the Chip-Computer. Data is transferred between the LSN of the Accumulator
and the specified port (P4-P7). A 4-bit transfer from one of these ports to the LSN of the
Accumulator sets the Most Significant Nibble (MSN) of the Accumulator to zero.

Hardware details as well as other options for port expansion are given in the MCS-48
Microcomputer User's Manual. The use of related software instructions is discussed in the
MCS-48 Assembly Language Manual.

3-16. Data Paths

We have now introduced all the architectural features on the MCS-48 chip-computers.
These features are the:

a. Accumulator,

b. Register Memory (with Working Registers, RAM Pointers, and Data Storage
Registers),

c. Program Counter and Program Memory,

d. Stack and Flags,

e. Timer/Event Counter,

f. Input/Output Ports, and

g. External Data Memory, Program Memory, and I/O Ports.

The MICRO MAP below shows the path that data can take between these processor
elements. In this and in the MICRO MAPS to follow, a single line denotes a data path on
which data can flow in either direction, and a line with an arrow on one end stands for a data
path on which data can only flow in the direction of the arrow.

Paragraph 3 -17 discusses the instructions which facilitate movement along the various
MCS-48 data paths, as well as all other instructions available to the MCS-48 programmer.

3-13

How the Intel MCS~48 Chip-Computers Work

EXTERNAL
PORTS

P4t-___ -I

P7 ~
P6

P5

P4

P2

PI

BUS(PO)

IF

19

18
17

8
7

o

FF

00

J

3-14

PORTS

REGISTER MEMORY

EXTERNAL
DATA MEMORY

~
R7

l"'~~ BANK
1

Rl

RO

}MA"
R7

REGISTER
BANK

0

Rl

RO

,

TIMER/EVENT COUNTER

Ej ·~I~~I~I_I~I~I~I~

/
ACCUMULATOR

I

PROGRAM COUNTER

01 I I 1 I I I 1 , , I

FFF

COO
BFF

800
7FF

1
400
3FF

000

FLAGS

PROGRAM MEMORY

Prompt 48

ON CHIP

7 TIMERJCNT INT
3 EXTERNAL INT
o RESET

Prompt 48 How the Intel MCS-48 Chip-Computers Work

3-17. MCS-48 Instruction Set

In this section we will describe the various classes of instructions which allow data to be
manipulated in the MCS-48 Chip-Computers. (For details of any specific instruction, we
refer you to the MCS -48 and UPI -41 Assembly Language Manual, orthe summaries in the
MCS -48 Microcomputer User's Manual.)

Roughly, the MCS -48 instructions break down into four categories:

I. Accumulator Instructions

2. Register-Accumulator Instructions

3. Input/Output Instructions

4. Control Instructions

The Micromaps which illustrate these four categories use the following terminology:

R07 represents anyone of the working registers, RO, RI, ... ,R7, in either Working
Register Bank RBO or RB 1. (Which bank depends on the status of the BS flag bit.)

ROI can be any of the four RAM pointers, RO, RI (Register Bank 0), and RO, RI
(RBI).

@ROI is the data memory location pointed to by the current register ROI; that is, the
two-hex-digit contents of RO I represents the register number in register memory, or the
address in external data memory.

PI2BUS represents Port 1, Port 2, or BUS (Port 0), the three .ports implemented
on-chip in the MCS-48 family.

P47 represents Port 4, 5, 6, or 7, the external I/O ports which can be added with very
little additional hardware.

3-1S. Accumulator Instructions

Instructions which allow the manipulation of data already in the accumulator are called
Accumulator Instructions, and are shown in the Micromap below:

3-19. Register Accumulator Instructions

Register Accumulator Instructions are those which allow the manipulation of data already in
a register of register memory, or the transfer of data between the accumulator and either
register memory, the flags register, or external data memory. Also included are instructions
which move data from program memory into the accumulator, and those instructions which
affect the various flags.

3-20. Input/Output Instructions

The Input/Output Instructions are those which transfer data between the accumulator and an
I/O Port, or which in some way affect either the port or the data transferred through it. The
Timer/Event Counter is considered as a programmable I/O device which generates an
interrupt or which sets a flag when full, and whose contents are transferrable to the
accumulator.

3-15

How the Intel MCS-48 Chip-Computers Work

EXTERNAL
PORTS
~~

P4~ ___ -I

P7

P6

PS

P4

PORTS

P2

PI

BUS{PO)

REGISTER MEMORY

r;:J r~

F

9

8
7

8
7

1

0

EXTERNAL
DATA MEMORY

FFr---------------~

oo~ __________ ~

3-16

R7J
RE;lr~ER

R1

RO

} '"''
R7

Rl

RO

REGISTER
BANK

o

TIMER/EVENT COUNTER

E1

ACCUMULATOR

I ,

ACCUMULATOR

INCA
DEC A
CLRA
CPLA
DAA
SWAP A

RLA
RLCA
RRA
RRCA

PROGRAM COUNTER

FLAGS

PROGRAM MEMORY
FFF ,..---------...,

~~~ 1----------1 

~~~ 1----------1 

D L-.l.1 -,-I ..L...JI 1-,-1 ~I 1...&....11 1....&...1

;~~ t----------1

OOOL-________________ ~

Prompt 48

ON CHIP

7 TIMERlCNT INT
3 EXTERNAL INT
o RESET

Prompt 48 How the Intel MCS-48 Chip-Computers Work

EXTERNAL
PORTS

~""-

P4 ___ --I

P7

P6

P5

P4

P2

Pl

BUS(PO)

;-;:1

F

9

8
7

8
7

1

0

PORTS

REGISTER MEMORY

EXTERNAL
DATA MEMORY

TIMER/EVENT COUNTER

E1

ACCUMULATOR FLAGS

I I I MOV A, PSW

~.~_L-~~.~~~~~. MOVPSW,A

/ I ~ ... CRC C CLR FO SEL RBO
\. \. CPL C CPL FO SEL RBl

REGISTER ACCUMULATOR INSTRUCTIONS

INC
DEC
DJNZ

MOV

XCH

Q!.B.E£!

RD7
RD7

RD7, add,

{
A'RD7
R07, A

r:L/ XCHD ADD
ADC
ANL
ORL
XRL

A, R07

A, R07
A, RD7
A, RD7
A, RD7
A, RD7

r"r-J

R

7j REGISTER
BANK

1
Rl

RO

R 7

Rl

RO

},,'"
REGISTER

BANK
o

MOVX A, (a ROl
MOVX (a RD1. A

IMMEDIATE

«' RDl

FFF

A, (I, RDl A, ~ }\
(i, R01, A R07, ~

(a RDl ~

A, (a RDf
A, (a RDl
A, (if R01
A, (a RDl
A, (il R01
A, ii, RDl
A, ",RDl

MOVP A, (a A

COO
BFF \

MOVP3 A, ((I A

800
7FF

PROGRAM COUNTER

I I I
40D
3FF

000

CLR Fl

CPL Fl

PROGRAM MEMORY

FF r-------1~

OO~ _______ ~

ON CHIP

7 TIMER/CNT INT
3 EXTERNAL INT
o RESET

3-17

How the Intel MCS-48 Chip-Computers Work

EXTERNAL
PORTS - -

P4 -----1 INPUT/OUTPUT INSTRUCTIONS

P7 ~MOVO A. P47
.... -----1 MOVO P47. A

P6 ANLO P47. A

TIMER/EVENT COUNTER

Ell, , ,
MOV A. T

?T.A

I I I
STRTT
STRT CNT
STOP TCNT

PS
ORLO P47, A r-__ A_C_C_U_M..,U~L_A_TO_R __ ...,

I P4

/
IN(S) A. P12BUS
OUTL P12BUS. A
ANL P12BUS. ~

P2 ...-___ P_O_R_T_S ___ ...,°72BUS• ~

Pl

BUS(PO)

,..~

F

9

8
7

8
7

1

0

REGISTER MEMORY

EXTERNAL
DATA MEMORY

rJ

R7J
RE;~rlER

Rl

RO

R7

Rl

RO

}"".
REGISTER

BANK
o

FFr----------------,

OO~ ______________ ~

3-18

I

PROGRAM COUNTER

FLAGS

PROGRAM MEMORY
FFF .-----------.

~~~~--------------~ 

~~~ 1-----------1 

400
3FF

000 L-______________ -'

Prompt 48

ON CHIP

7 TIMERlCNT INT
3 EXTERNAL INT
o RESET

Prompt 48

EXTERNAL
PORTS

~

P4 ___ ~

P7

P6

PS

P4

PORTS

P2

Pl

BUS(PO) L-______ -'

REGISTER MEMORY

r~ r~

F

9

8
7

8
7

1

0

EXTERNAL
OATA MEMORY

FFr--------~

OOL-______ --'

R7 I
RE;~~~ER

Rl

RO

},,'"
R7

Rl

RO

REGISTER
BANK

o

TIMER/EVENT COUNTER

ACCUMULATOR

DBFO
SELMBO
SEL MBl

PROGRAM COUNTER

01 I I I I I I I I
CONTROL INSTRUCTIONS

JMP add, EN I
JMPP (uA EN TCNTI
DJNZ R07. add, NOP

CALL add, DIS I
RET DIS TCNTI
RETR

JC JTO JFO JBO JB4 } JNC JNTO JFl JBl JBS add,
JZ JT1 JTF JB2 JB6
JNZ JNT1 JNI JB3 JB7

ENTO CLK

0
TO

How the Intel MCS-48 Chip-Computers Work

FLAGS

PROGRAM MEMORY
FFF ,-----------,

~~~ t---------..., 

800 
7FF 

400 
3FF 

000 

0 
T1 

ON CHIP 

7 TIMER/CNT INT 
3 EXTERNAL INT 
o RESET 

3-19 



How the Intel MCS-48 Chip-Computers Work 

3-20 

3-21. Control Instructions 

Control Instructions are those instructions which allow the execution of non-sequential 
instructions; that is, instructions executed in an order other than that in which they are stored 
in program memory. Included in this category are jump instructions, conditional-jump 
instructions, and subroutine call and return instructions. 

3-22. Conclusion 

Now that we have progressively demonstrated the architectural features, data paths, and 
instruction set of the MCS-48 Chip-Computers, we can present the completed Micromap, 
which appears in enlarged two-page format immediately following. Then, on the next 
following page, a complete instruction set summary for the MCS -48 family is given in table 
form. Again, we refer you to the other manuals in the PROMPT -48 documentation package 
for further instruction set details. 

Prompt 48 



EXTERNAL 
PORTS 

.- -
P4 _________ 

P7 
1-----1 . INPUT/OUTPUT INSTRUCTIONS 

P6 

P5 

P4 

I----~ MOVD A, P47 
MOVD P47, A 
ANLD P47, A 
ORLD P47, A 

PORTS 
IN(S) A, P12BUS 
OUTL P12BUS, A 
ANL P12BUS, ~ 

P21-________ 0-4 _________ ORL P12BUS, ~ 

Pl 

BUS(PO) L-______ ~ 

r~ 

F 

9 

8 

INC 
DEC 
DJNZ 

".,"" •• ,OW" ::L / 0." 

XCH 
XCHD 
ADD 
ADC 
ANL 
ORL 
XRL 

,..~ 

R 

7j REGISTER 
BANK 

1 
Rl 

R o 

~ 

R07 
R07 

R07, add, 

{ A, R07 
R07, A 

A,R07 

A, R07 
A, R07 
A, R07 
A, R07 
A,R07 

~ IMMEDIATE 

(a ROl 

A, (a ROl A, ~ } 
(a R01, A R07, ~ 

(a ROl ~ 

A, (a ROl 
A, la ROl 
A, ra ROl A, ~ 
A, (aROl A ~ 
A, (a ROl A ~ 
A, (a ROl A,~ 
A, (a ROl A, ~ 

MOVX A, «I ROl 

rv "'v 
r-__ D_A~_~_T_~_~_~A_OL_R_Y_~ ~~ _____________________________________ -,~(CIR01'A 

FF ~ r r-J flU 
7 

1 

OO'-_______ ~ 0 

R 7 

R 

R o 

REGISTER 
BANK 

o 

Prompt 48 How the Intel MCS-48 Chip-Computers Work 

TIMER/EVENT COUNTER 

Ell I I I 

MOV A, T 
MOVT, A 

/' 
ACCUMULATOR 

I I 1 
STRTT 
STRT CNT 
STOP TCNT 

FLAGS 

'--...... ...L-L--II..-.L-..L....L..~ -------.....,;;:;;,,;~;,,;:;..:;.;;~;..:..,;~;.;;:,;...------I C 1 AC 1 FO 1 BS 11 1 S21 S, 1 So 1 

ACCUMULATOR 

INC A 
DEC A 
CLR A 
CPL A 
DAA 
SWAP A 

CAC C CLR FO SEL RBO 
CPL C CPL FO SEL RBl 

CLR Fl 

CPL Fl 

PROGRAM MEMORY 
FFF r------------. 

MOVP A, (aA 

~~".,.~ 
O SELMBO 

DBF SEL MBl 

PROGRAM COUNTER 

o IL.....L...J...I -,--,I I...J...I '-'-I 1 ..L.J.' '...J-.J 

JMP add, 
JMPP (aA 
OJNZ R07. add, 

JC JTO JFO 
JNC JNTO JFl 
JZ Jl1 JTF 
JNZ JNTl JNI 

CONTROL INSTRUCTIONS 

CALL add, 
RET 
RETR 

JBO JB4} 
~:~ ~:~ add, 
JB3 JB7 

EN I 
EN TCNTI 
NOP 

ENTO CLK 

o 0 
TO T1 

DIS I 
DIS TCNTI 

~~~ 1-----------1 

~~~ t----------t 

~~~ ~--------~ 

000 L-________ ..1

ON CHIP

7 TIMERiCNT INT
3 EXTERNAL INT
o RESET

3-21/3-22

CHAPTER 4
HOW THE PROMPT 48 WORKS

4-1. Introduction

As a complete low cost microcomputer design aid, the Prompt 48 requires many more
features, both hardware and software, beyond the MCS-48 Chip-Computer itself, which the
user mounts in an external Execution Socket. Besides the 8748 or 8035 execution processor,
the Prompt box contains:

• 27 -key front panel for Data/Control input

• An eight-character, 7-segment LED display (results/status out)

• Power supply

• lk byte writable Program Memory (used in place of on-chip EPROM)

• 256 bytes of processor-external Data Memory

• An EPROM programmer, with external Programming Socket

• Bus and Port expansion capability for additional user memory or peripheral devices

• A serial port allowing for interface to an external terminal (TTY or RS-232)

• Hardware and Monitor firmware (4k bytes) to provide such services as Examine/
Modify of Registers or Memory, and real-time execution of user programs with
Single Step and Breakpoints.

The hardware features of the Prompt 48 are shown in functional block diagram form in
Figure 4-1.

A few of the full capabilities of the MCS-48 Chip-Computer are restricted in the Prompt
environment. This is due to design tradeoffs necessary to provide the full versatility of
Prompt's features and functions. It is possible to work around these restrictions, which
disappear once the development cycle is complete and the user system stands and runs
alone, provided that you are aware of them in advance. In the course of the development in
this chapter, they will be pointed out when appropriate, and summarized in Paragraph 4-9.

4-2. Hardware Description

All Prompt 48 circuitry is located on a single circuit board mounted on the inside of the front
panel. A functional block diagram of this circuitry is given in Figure 4-1.

4-1

I
~

Jl
'1
'2 HI

'ROG

8031 I
palO

1741

1'0
EA SS IT

t t
BREAK I

REENTRY
TIMING

~~
..L_

MON
INT RIT

":'"

I/O PORTS AND aus CONNECTOR

/) /'or. /).

Jl V

,ORT 2 MAP USER

~ ~ ANOOUTEX BUS LATCH
CONTROL ANOBUfFER

0

~ ~ BUS

v y BUfFER

AOORESS INHIBIT

BAUORATE

flESET

....

,. 1~
J ~

8211
USART

RS2321
CURRENT

LOAO
INTERFACE

SERIAL
PORT

{}
8212

... AOORE&$

)
LATCH

r\
nI

/U
~ ~

8261
INTERFACF

PROGRAMMING
SOCKET

tiD ~

APORESS ~

PECOOE
~
~

USfER OATA
WRITABLE MEMORY
PROGRAM ------

MONITOR
MEMORY PESERVEO

MEMORY

-<
~

I
/";. /.".

~ 7 ~

ICEYBOARO OISPLAY
INTERFACE I~TERfACE 4K

MONITOR
,ROGRAM
MEMORY

INT...-

Figure 4-1. Functional Block Diagram

~

Prompt 48

4K

3K

2K

lK

0

How the Prompt 48 Works

4-3. Memory

The memory in Prompt 48 consists of five different types:

a. lk bytes read-only Program Memory internal to the 8748 or 8048 Chip-Computer

b. 4k bytes Monitor Firmware (program Memory, read-only)

c. lk bytes writable Program Memory

d. 256 bytes User Data Memory

e. 256 bytes Monitor Data (Scratchpad) Memory

4-4. Program Memory

In the list above, the first three physical m3mories are program store memory, amounting to
a total of 6k bytes. The MCS-48 Chip-Computer has a total addressing range in Program
Memory of 4k bytes (12 address bits). The user can expand the writable Program Memory of
the Prompt (item 3 above) up to the 4k limit by configuring his own external hardware via
the Bus Connector (11) and flat ribbon cable. If this were done, the Prompt ultimately would
have to arbitrate Program Memory requests across a total range of 9k bytes, with a CPU
whose address range is only 4k. This is accomplished indirectly in Prompt through' 'access
codes." The user has at his disposal six access codes which he can enter through the
appropriate Command Function on the keyboard (see Paragraph 5-13). For systems equip­
ped with the 6MHz upgrade package, there are twelve access codes, including the six
originals; refer to appendix J. Besides the user's access codes, the Monitor can map
Program Memory in still another way. These seven access modes are summarized in the
diagram below.

MONITOR
MODE

SYSTEM
I/O

AND
SYSTEM

MONITOR
SUBROUTINES

SYSTEM
MONITOR
KERNEL

ACCESS
5

SYSTEM
I/O

AND
SYSTEM

MONITOR
CALLS

READ
ONLY

ON CHIP
EPROM

(8748)

ACCESS
4

EXPANSION
MEMORY

AND
I/O

OUTSIDE
BOX

READ
ONLY

ON CHIP
EPROM
(8748)

USER MODES

ACCESS
3

OUTL PO
(BUS)

USES
BUS AS
PORT

NO
SYSTEM

OR
EXTERNAL
MEMORY

EXPANSION

READ
ONLY

ON CHIP
EPROM
(8748)

ACCESS
2

SYSTEM
I/O
AND

SYSTEM
MONITOR

CALLS

WRITABLE
INBOX

RAM

ACCESS

EXPANSION
MEMORY

AND
I/O

OUTSIDE
BOX

WRITABLE
IN BOX

RAM

ACCESS
o

OUTLPO
(BUS)

USES
BUS AS
PORT

NO
SYSTEM

OR
EXTERNAL
MEMORY

EXPANSION

WRITABLE
IN BOX

RAM

FFF

COO
BFF

800
7FF

400
3FF

000

4-3

How the Prompt 48 Works

4-4

4-5. Data Memory

Prompt 48 has 256 bytes of internal Data Memory locations, not including the 64 on­
chip Register Memory locations, available to the user as "External Data Memory," via
the MOVX instructions.

External Data Memory can be examined and modified from the panel controls and displays,
through the resources of the Monitor; the address range is from 0 to FF16. In software,
however, this Data Memory cannot be operated upon directly, like the working registers, or
indirectly, like the remainder of on -chip Register Memory. To be operated upon, data from
External Data Memory must first be moved into the accumulator by the use of the Move
External Data Memory (MOVX A, @R01) command. This command does make use of
indirect addressing via any of the four RAM pointer registers.

Similar to the Program Memory, the Data Memory space allotment is controlled by user
selection in the user mode, and by hardware/firmware selection in Monitor mode. As a
result, the user may select via the Access Code, whether the memory space above 3FF16 is
to be expansion Data Memory or Monitor I/O functions. When neither expansion Data
Memory or I/O is selected, the user need not be concerned with any address space above
3FF16. But if it is selected, a page addressing scheme above 3FF16 must be used, with Port 2
LSNibble used to select page number.

4-6. Input/Output

All I/O pins of the Execution Socket processor (MCS-48) are accessible via the I/O Ports
and Bus Connector (11) on the front panel of the Prompt, allowing the user to take full
advantage of the Input/Output power of the MCS -48 Chip -Computer. But a great deal of I/O
capability is already resident to Prompt as delivered: the full range of Command Functions
described in Chapter 5 on Panel Operation are provided as inputs to the system by the
firmware Monitor, together with the corresponding display outputs of status and data.

There is also a serial I/O option for Prompt, allowing communication with the system via a
Teletype or RS-232C terminal. The installation of this option is described in Paragraph
6-14.

4-7. Monitor Firmware Description

The Prompt 48 System Monitor resides in 4k of non-volatile memory and is automatically
activated by a bootstrap routine on power-up or System Reset. The Monitor is responsible
for all maintenance of keyboard and display, and provides the full range of Command
Functions as described in Chapter 5, "Panel Operation. " A complete source code listing is
included in the documentation package provided with the Prompt. This listing is self­
documenting, including a rigorous structure definition of each Command Function in
Backus-Normal Form. However, to make use of the powers of the Monitor, it is unlleces­
sary to understand the listing.

Included in the Monitor firmware are a series of routines known as System Calls. These are
general utility routines such as "read the keyboard" and "display character' , which you the
user are likely to find useful. In order to prevent unnecessary "re-invention of the wheel,"
these System Calls are made available to the user, and described in Appendix B. Note that
Access Code 2 or 5 must be selected in order to access the Monitor memory where the
System Calls reside.

Prompt 48

Prompt 48 How the Prompt 48 Works

4-8. Bus Expansion

In order to allow the user to expand the standard capabilities of the Prompt, some bus
expandability has been included in the design. Bus expansion allows the addition of more
Program Memory, more Data Memory, and the use of the 8243 I/O expansion chip. With a
few exceptions, all bus lines and control signals are present on the J 1 connector on the front
panel of the Prompt (labled Bus Connector; a pin list for this connector is given in Table
4-1.) The lines not provided include EA (External Address), SS (Single Step), Xl and X2
(clock inputs), and there is a limitation on the bidirectionality of the LSNibble of Port 2. Due
to the mUltipurpose nature of the LSNibble of Port 2 and the Bus, care must be exercised
when interfacing to these ports to insure that the Access Code, P2 map, and external
circuitry do not allow the Prompt interface drivers to compete with the user's drivers. (See
Paragraph 6-14 for details.) In all cases, the user must instruct the Prompt as to the
configuration of the system, including what type of expansion is desired. Since the EA line
is not available, all user external Program Memory must reside above lk. For hardware
reasons, externally mapped Data Memory must be above lk as well, though the External
Data Memory provided by Prompt may be used from O-FF16 . (LSNibble of Port 2 is used for
mapping user-added external Data Memory.)

Table 4-1. Pin List for 1/0 Ports and Bus Connector

Signal Name Pin No. Buffer Characteristic

BUS (0) 17
(1) 21
(2) 25
(3) 29
(4) 31 3-STATE BIDIRECTIONAL
(5) 27
(6) 23

BUS (7) 19

PORT 1 (0) 18

I
(1) 20
(2) 22
(3) 24 8748 PSEUDO BIDIRECTIONAL
(4) 26 CHIP (NO BUFFER)
(5) 28
(6) 30
(7) 32

PORT 2 (0) 7

} 3-STATE MAPPED BIDIRECTIONAL
(1) 5 with 100 n IN SERIES
(2) 3
(3) 1

PORT 2 (4) 4 } (5) 6 8748 PSEUDO BIDIRECTIONAL
(6) 8 CHIP (NO BUFFER)
(7) 10

+ALE 13 TTL OUTPUT (10
+TO 14 CHIP BIDIRECTIONAL (CLOCK), 2.2K Pullup
+T1 12 CHIP INPUT, 2.2K input

-INT 49

}
1 TTL LOAD (MON. GATED)

-PSEN 15
-RD 9 TTL OUTPUT (10 LS LOADS)
-WR 11

-PO WRITE 33 TTL OUTPUT (5 LS LOADS)
-PROG 2 CHIP OUTPUT (NO BUFFER)

-RESET 16 CHIP INPUT/OUTPUT (SYS RESET OVERRIDES), 2.2K pullup
GND 45,46 Ground

47,48

4-5

How the Prompt 48 Works

4-6

4·9. Restrictions .

A few of the full capabilities of the MCS-48 Chip-Computer are restricted in the Prompt
environment. This is due to design tradeoffs necessary to provide the full versatility of
Prompt's features and functions. It is possible to work around these restrictions, which
disappear once the development cycle is complete and the user system stands and runs
alone, provided that you are aware of them in advance.

Monitor Reentry Uses Stack: When the MON INT key is pressed, the Monitor program
interrupts the user program, using one stack entry. If the user has calculated his stack needs
only for his own subroutines and interrupts, and has stored other data on the next available
stack location, that data will be "zapped" (overwritten) by the user program return address.

Unsupported Instructions: ANL BUS, A and ORL BUS, A will not work except in Access
Mode 3 and then with the GO/NO BREAK command. OUTLBUS, A can only be used in
Access Modes 0 and 3.

Monitor Reentry Cpde: The upper 16 bytes of the lower lk block of program Memory
(addresses 3F016 through 3FF16) must be reserved for the Prompt 48 Monitor reentry code.
This code is automatically placed in Program Memory by the [7] Program PROM com­
mand. (See Paragraph 5-50.) These bytes must also be reserved when using the RAM
Program Memory inside Prompt 48.

Access Code, P2 Map, LSN P2 Relationship: Care must be taken to insure that these three
things are in agreement, as described in Paragraphs 5-13, 5-15, and 6-14.

Timer Routines: The Timer Interrupt is disabled when using the G07WITH BREAK and
GO/SINGLE STEP commands. To debug timer routines, insert JTF (Jump if Timer Flag =
1) in the program loop.

Prompt 48

@

CHAPTER 5
PANEL OPERATION

5-1. Panel Description

The panel of the Prompt-48 provides the means for the user to communicate with the
computer. Commands and data are entered through keys on the panel, and status and data
are displayed through panel indicators. Figure 5 -1 shows the layout of the Prompt-48 panel.
It is divided into two functional control groups, and also has two 40-pin sockets: one a
programming socket used for programming 8748s or 8741s, and the other an execution
socket which holds the 8035, 8048 or 8748 processor which functions as the system's
controller. In addition, there is a 50-pin flat cable connector which gives access to the
executing processor's input/output ports and bus for a user prototype circuit.

5-2. Command Function Group

5-3. Display. The display device on the Prompt-48 consists of 8 seven-segment LED
digits, together with LED periods between digits. These 8 digits are used to display
hexadecimal information in three fields: Function (2 hex digits), Address (3 hex digits), and
Data (3 hex digits). The system monitor (the program which reads user information input
through the keys and displays information to be output in the LEDs) displays information

LOCKED

~
~ TE)(~OOL

40

20 21

PROGRAMMING
SOCKET

@ POWER ON

20

LOCKED

~
~TEX~Ol

EXECUTION
SOCKET

40

21

GO

BRE~~I :&GJlR~M

B~~~ I ~~~ORY

NEXT

2 50 19?"1i iii Ii i i Ii i Ii Ii i Ii Ii i i~ r:::oIl
i 0 PORTS AND 49

BUS CONNECTOR

prompt 48™

COMMAND FUNCTION GROUP

(BBBBBBBS)
I FUNCTION I AODRESS I DATA I

COMMANDS HEX DATA I FUNCTIONS

0 0 EXAMINE 0IlGI[8]~ IMODiFY

DQ SINS~~~1 REGISTER 0GJGIGJ
DD ~~ET~~ I PREVIOUS raDJGJ~
DD EXECUTE DJDGJr8 ,END

Figure 5-1. Prompt 48 Panel Layout

5-1

Panel Operation

5-2

relevant to the current command being executed in these three fields. The LEDs are also
available to user programs as output devices through the use of subroutines contained in the
system monitor.

(BBBBBBBB)
I FUNCTION I ADDRESS I DATA

5-4. Command Keys. The keys in this eight-key group are used by the user to enter
commands to the monitor program. Entering a command causes the monitor to display a 2
digit command code in the function field of the display.

COMMANDS

EXAMINE
/MODIFY

SI~1~~1 REGISTER

~~ET~~ I PREVIOUS

EXECUTE
lEND

5-5. Hex Data/Functions Keys. This group of 16 keys, each representing a hex digit, is
used to enter ·address and data parameters to the monitor program, to be used in the
execution of the various commands. Some keys are also used to specify commands in
addition to those specified through the commands keys.

HEX DATA FUNCTIONS

5-6. ResetlInterrupt Group

There are three keys on the Reset/Interrupt Group. These are the SYS RST (System Reset),
MON INT (Monitor Interrupt), and USR INT (User Interrupt) keys.

Prompt 48

Prompt 48 Panel Operation

The SYS RST (System Reset) key is used to reinitialize the system hardware, reset the
Access Mode to 0, and give control to the Prompt-48 monitor program. After actuating the
SYS RST key, the ACCESS = 0 prompt should appear in the LED display.

The MON INT (Monitor Interrupt) key is used to interrupt the current process (user
program) and turn over control to the monitor program so that its various functions are
available. The interrupted user program can be continued later, as the user program status is
saved by the Monitor program.

The USR INT (User Interrupt) key causes the Prompt-48 CPU to save its current program
address and status on the stack and begin execution at program memory location 003, if
interrupts have previously been enabled with the EN I instruction.

5-7. I/O Ports and Bus Connector (Jl)

The I/O Ports and Bus Connector (11) is provided to allow Prompt to exchange data with
your external prototype device. It allows expansion of the Prompt-48 program memory,
data memory, and I/O ports to the full capacity of the MCS -48 family. Details of hardware
expansion through the I/O Ports and Bus Connector are given in Paragraph 6-14.

2 50

19$~1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :11 :1 :1:' :1 :11 tcg:@1

5-8. Execution Socket

1 I/O PORTS AND 49
BUS CONNECTOR

The Execution Socket is a 40-pin zero insertion force socket in which resides the 8748,
8035, or 8048 chip-computer used to control the Prompt-48. The CPU chip in this socket
runs the monitor and user programs specified by the user.

20

5-9. Programming Socket

LOCKED

~

EXECUTION
SOCKET

40

21

The Programming Socket is a 40-pin zero insertion force socket which is used to program
the lk bytes of EPROM program memory in an 8748. It can also be used to program an
8741, or with an adapter (Prompt-475) to program an 8755. Another use of the Program­
ming Socket is to read or verify the contents of any of these EPROM devices.

5-3

Panel Operation

5-4

LOCKED

~
40

20 21

PROGRAMMING
SOCKET

8048's should not be used in the Programming Socket as it is designed for use
with EPROMS only.

MOS devices such as these are sensitive to transients or static electricity.
It is possible to destroy their circuits by careless handling, especially if you
are working in a carpeted area or in extremely low humidity conditions.
Keep MOS devices in their protective packages when not in use. It is a
good idea to touch the grounded frame of the computer with your hand
before you place the EPROM device in the Programming Socket. This is to
keep the pins of the device from being the first to touch and thereby absorb
any static charges on your body.

5-10. Command Description Formats

In the following sections is described the various operating features of the Prompt-48 and
how to use them. These features are accessible through the use of monitor commands. Each
command is described with a command key sequence, those keys which must be pressed to
call up the command, the state of the LED display when the command is specified, and
ranges for all the parameters required by the individual command.

The command key sequence is the sequence of keys which must be pressed starting from a
command prompt, and continuing through to the next command prompt (see Paragraph
5-12). The keys are indicated with square brackets: [NEXT] stands for the key in the lower
left comer of the Commands keys. Key indications with capital letters, such as [GO],
[PREVIOUS], or [D], stand for actual keys on the Prompt-48 panel. Key indications with
lower case letters stand for command input parameters: [data] would stand for some element
of information needed by the command, and input through the Hex Data keys.

Keys with multiple names appear in key indications using the name best fitting the context in
which they appear. For example [EXECUTE], [END], and [.] all stand for the same key,
but since this key is used in slightly different ways at different times, multiple names are
used.

Prompt 48

Prompt 48 Panel Operation

The command description sections conclude with a short example of the appropriate
command.

5-11. Command Input Options

The PROMPT Monitor is capable of accepting any of the commands from either of two
sources: the keyboard, or the serial port. Following power-up, both devices are polled. The
first one to send an input will be assigned as console until the next [SYS RST]. An input is
defined as any keystroke for the keyboard, and as a non-null character for the serial port.
The first serial character will be discarded while the keyboard first character will be
accepted. When the serial port is selected, only handshaking signals are transmitted by
PROMPT. These include a prompting character [" -"] to request each byte of data at
monitor level, a character request ["1"] to request each byte of input data, and an error flag
["e"] if any command or character is unacceptable. Otherwide, data may be requested of
the system by the standard dump command, which will output to the serial port in the usual
manner (and in HEX record format).

It is important to note that the Monitor is looking for Hexidecimal, not ASCII codes. For this
reason a Teletype keyboard, which generates ASCII coded data, is not really an effective
substitute for the Prompt panel as an input device for commands. For example, the Fetch
command is implemented by hitting an "F" on the Hex keypad of the Prompt. Inputting an
"F" on the Teletype keyboard would result in a completely different code which the
Monitor would not recognize. The usual reason for connecting a Teletype through the serial
port would be to use it as a storage device (paper tape) and a hardcopy device (DUMP
Program Memory, etc.).

5-12. CommaQ(} Prompts

The command prompts are displayed in the command function group display to indicate to
the user that the Prompt-48 monitor program is ready to accept a command. There are two
command prompts:

ACCESS = 0

The first prompt (ACCESS = 0) is given only when power is turned on or when the system is
reset by pressing the SYS RST key. The second prompt (a dash on the display) is given
subsequently to indicate the completion of a command and the system's readiness for the
next command.

5-13. Access Mode Control

The Access Mode defines the configuration of the various memory and input/output features
of the Prompt-48. The proper setting of the Access Mode is therefore critical to the
operation of the Prompt-48.

Two things are specified by the Access Mode: which program memory is to be used, and
how the Bus input/output port (port 0) is used. There is, in addition to the lk bytes of
program memory on the MCS-48 Chip-Computer, an additionallk bytes of RAM memory
in Prompt-48. This memory can be used in place of the lk bytes of on-chip program
memory for purposes of easy program development and modification. When using an 8035
in the execution socket, this is the only program memory available within Prompt-48. The
Bus I/O port can be used in three ways:

a. As a port, latched on output. Under this mode OUTL BUS,A will work. However,
ANL BUS ,# data and ORL BUS, # data are not supported by Prompt -48 (refer to Para­
graph 4-9.);

5-5

Panel Operation Prompt 48

5-6

b. As a bus, to address expansion memory and Va ports outside the Prompt-48 box; or

c. As a bus, to address the Prompt system monitor memory and Va devices rather than
any external hardware. This mode would be used if your user program wanted to talk
directly to the Prompt keyboard, displays or serial channel. A listing of the system
monitor program is included with your Prompt-48, and the use of some of its routines
is described in Appendix B: System Calls.

5·14. Access Mode Select Command. The format of the Access Mode Select Command
is as follows:

Command Key Sequence: [A] [data] [.]*

Function Display: "Ac. . 00"

Data Range: 0-5

Table 5·1. Summary Table of Access Mode Codes

Code Program Memory Bus Option

0 RAM See Paragraph 5-13a

1 RAM See Paragraph 5-13b

2 RAM See Paragraph 5-13c

3 On-chip ROM/ See Paragraph 5-13a
EPROM

4 On-chip ROM/ See Paragraph 5-13b
EPROM

5 On-chip ROM/ See Paragraph 5-13c
EPROM

*EXECUTE/END key.

Example: Set Access = O. The key sequence is [A] [0] [.]. Alternately, [SYS RST] sets
Access = 0, as well as resetting various other system parameters.

The access codes are presented in a different format in Table 5-2.

Table 5·2. Access Code/P2 Map Summary

System Expansion
Access I/O & Memory OUTL Allowed
Code Program Memory Calls & I/O Port 0 LSN P2 Map

0 RAM No No Yes output (0) only

1 RAM No Yes No input or output

2 RAM Yes No No output only

3 On-chip No No Yes input or output
ROM/EPROM

4 On-chip No Yes No input or output
ROM/EPROM

5 On-chip Yes No No output only
ROM/EPROM

Prompt 48 Panel Operation

5-15. Port 2 and Port 2 Mapping

In an MCS-48 Chip-Computer, the Least Significant Nibble (LSN) or Port 2 (P2) is used for
a variety of functions. It is at various times an Input/Output port, a Data Memory page
select, the Most Significant Nibble (MSN) of the Program Memory address, or some
combination of these. In the case of Prompt -48, the monitor must be able to use the memory
expansion capabilities, and yet at the same time allow the user to specify input/output, etc.
To accomplish this, the port must be buffered. But in order to buffer, the direction of
buffering must be specified. This is accomplished with the P2 Map.

The P2 Map is therefore nothing more than a bit-by-bit specification of the buffer direction
of the corresponding bits of P2, with 1 = Input, and 0 = Output.

As mentioned above, MCS-48 Chip-Computers use the LSN P2 to address off-chip
(expansion) Program Memory and I/O ports. The Access Code (see Paragraph 3-13)
specifies the configuration and location of the various expansion memories and ports. Thus,
in Prompt-48, the LSN P2 Map, the Access Code, and the contents of LSN P2 are all
related. Furthermore, under some Access Codes, certain LSN P2 Maps could cause
conflicts, and the Chip-Computer would not work! Be sure to carefully study the following
information and the table which summarizes it.

With Access Codes 0,2, or 5, LSN P2 Map must be output (0). In these modes LSN P2 is
used by the monitor program to select various internal memories in the Prompt-48 and must
not be affected by input devices.

Access Codes 1 or4 allow LSN P2 Map to be either input or output. In these modes, the user
program selects various external memories, I/O devices, and/or external ports which the
user may have connected to the I/O Ports and Bus Connector, J 1 . The P2 Map is bypassed in
these modes and therefore immaterial.

Access Code 3 also allows LSN P2 Map to be either input or output. Expansion memory and
I/O ports are not allowed in this mode, and both P2 and Bus (PO) are available as I/O ports
through 11.

This information is summarized in table 5-3, which also appears as Appendix I:

Table 5-3. Access CodelLSN P2 Map Summary

System Expansion
Access I/O & Memory OUTL Allowed
Code Program Memory Calls & I/O Port 0 LSN P2 Map

0 RAM No No Yes output (0) only

1 RAM No Yes No input or output

2 RAM Yes No No output only

3 On-Chip No No Yes input or output
ROM/EPROM

4 On-Chip No Yes No input or output
ROM/EPROM

5 On-Chip Yes No No output only
ROM/EPROM

5-7

Panel Operation

5-8

5-16. Port 2 Map Command. The fonnat of the Port 2 Map Command is as follows:

Command Key Sequence: [2] [data] [.]

Function Display: "P2. .MM"

Data Range: MM16 where MM are two hexadecimal digits chosen to map the eight lines
of P2 according to table 5-4.

Table 5-4. Port 2 Map Command Data Bits Vs. Port 2 Pin Numbers

MS Nibble LS Nibble

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pin P27 Pin P26 Pin P25 Pin P24 Pin P23 Pin P22 Pin P21 Pin P20

A hexadecimal/binary conversion is given in table 5-5. 0 = Output, 1 = Input.

Table 5-5. HexadecimalIBinary Conversion

Hex Binary

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

A 1 0 1 0

B 1 0 1 1

C 1 1 0 0

D 1 1 0 1

E 1 1 1 0

F 1 1 1 1

Example: Set P2 Map = 0016 (all lines of P2 mapped as outputs). The key sequence is
2.].

It should be noted that Port 2 is treated by the monitor as "register" 47 and can be examined
and/or modified through the Examine/Modify Register command (see Paragraph 5-17).

Prompt 48

Prompt 48 Panel Operation

5-17. Examine/Modify Commands

5-18. Examine/Modify PrC'gral1} Memory Command. The fonnat of the Examine/
Modify Program Memory Command is as follows:

Command Key Sequence: [EXAMINE/MODIFY] [PROGRAM MEMORY]
[address] [NEXT] [data] [NEXT] [data] ... [.]

Function Display: "EP.

Address Range: O-FFF16

Data Range: 0-FF16

The Examine/Modify Program Memory command is used to examine and/or modify one or
more Program Memory locations. An address in Program Memory is specified, and
optional data is input if desired to replace the existing data displayed in the DATA field of
the LEDs. The next greater address in Program Memory can be examined by then pressing
the [NEXT] key, or the next lesser address can be examined by pressing the [PREVIOUS]
key. Return to command prompt is accomplished by pressing the [END] key instead of
another [NEXT] or [PRE VIOUS]. The Program Memory accessed through this command is
the RAM Program Memory in Prompt-48 and expansion Program Memory the user may
have connected to 11. To read the on-chip EPROM Program Memory of an 8748 or 8741,
the EPROM contents must first be read into RAM with the Prom Fetch command (see
Paragraph 5-50).

Example: Change Program Memory locations 3A and 3B to contain 5C and E2, respec­
tively. The key sequence is [EXAMINE/MODIFY] [PROGRAM MEMORY]
[3] [A] [NEXT] [5] [C] [NEXT] [E) [2] [.). This could also be accomplished by
pressing [EXAMINE/MODIFY] [PROGRAM MEMORY] [3] [B] [NEXT] [E]
[2] [PREVIOUS] [5] [C] [.], or by individually modifying locations 3A and 3B
in separate command sequences.

5-19. Examine/Modify Register Command. The fonnat of the Examine/Modify Regis­
ter Command is as follows:

Command Key Sequence: [EXAMINE/MODIFY] [REGISTER] [address] [NEXT]
[data] [NEXT] [data] ... [.]

Function Display: "Er.

Address Range: 0-4816

Data Range: 0-FF16

This command allows the user to examine and optionally modify the 64 bytes of Register
Memory on-chip with MCS-48 Chip-Computers. As with the other Examine/Modify
commands, [PREVIOUS] may be substituted for any [NEXT] after the first to examine the
previous register contents, or [.] may be substituted to tenninate the command sequence.

There are in Prompt-48 an additional 9 bytes of special-purpose "Register" memory, in
address locations 4016-48 16, These "Register" Memory locations represent other registers
in the Chip-Computer, such as the Accumulator, etc. according to table 5-6.

5-9

Panel Operation Prompt 48

5-10

Table 5-6. Special Purpose Register Memory Summary

Register
Address Significance

40
41

42

43
44
45
46
47

48

Accumulator
Timer/Event Counter

Flags Register ·1 CY I AC I FO I BS I F1 I STP ~ ·1
Program Counter Low Byte
Program Counter High Byte
Bus (Port 0)
Port 1
Port 2

Prompt-48 Misc. Cntr I Timrl Timr lint lint I Mem I TEST I TEST I
Run Run Flag Nest Enab Bank 1 2

Ports 0 and I (' 'registers" 45 and 46) cannot be modified by the Examine/Modify Register
command. They are read only.

The bits of Prompt-48 Misc. ("register" 48) require some explanation:

COUNTER RUN must be set to" I" if your program uses the MCS-48 timer/event counter
as an event counter. This allows the monitor to suspend and restart the timer/event counter
when a break in the user program occurs.

During breaks the Prompt-48 monitor saves the state of the broken user program so that it
can be restored as execution is resumed.

TIMER RUN will be set to" I" on break if the timer is running. If you clear this bit to "0"
the timer will not be restarted when execution is resumed.

TIMER FLAG allows you manually to examine and modify the user timer flag.

NESTED FROM INTERRUPT will be set to "I" if you have broken during a routine
servicing an interrupt. This is a user state bit.

WILL ENABLE INTERRUPT represents the user's interrupt enable state if user interrupts
are enabled.

MEM BANK is the Designated Bank.Flag (refer to paragraph 3-8).

Tl and TO are the MCS-48 test inputs and are read only.

Example: Change the contents of Register Memory location 2A to be 49 16 . The key
sequence is [EXAMINE/MODIFY] [REGISTER] [2] [A] [NEXT] [4] [9] [.].

Prompt 48 Panel Operation

5-20. Go Commands and Breakpoints

5-21. Go/No Break Command. The fonnat of the Go/No Break Command is as follows:

Command Key Sequence: [GO] [NO BREAK] [address] [.]

Function Display: "Go.

Address Range: 0-FFF 16

The Go/No Break command causes the MCS -48 Chip -Comput@r in the Execution Socket to
begin program execution at the address in Program Memory given in the command
sequence. Program execution will continue until either (1) control is returned to the monitor
by pressing [MON INT], or (2) the system is reset and control given to the monitor by
pressing [SYS RST]. The CPU runs at full speed.

Example: Begin execution of a program in PROGRAM Memory which starts at IF016 . The
key sequence is [GO] [NO BREAK] [1] [F] [0] [.].

5-22. Breakpoints. A breakpoint is a location in program memory which, when reached
by the user program, causes control to be given to a monitor program. The state of the
processor is saved so that the current user program can be continued at a later time. Control
is then given to the monitor program so that the user can examine register contents, memory
contents, and so forth as an aid to program development and debugging.

The Prompt-48 monitor allows the user to specify up to eight breakpoints, numbered 0-7.
When running with breakpoints enabled (u~ing the Go/With Break command) the monitor
single-steps the user program and checks after each step to see if a breakpoint address has
been reached in Program Memory. If it has, the monitor program suspends stepping, saving
the contents of all the MCS-48 registers, and displays infonnation about which breakpoint
was reached, the contents of the Program Counter, and the contents of the Accumulator.
The monitor then allows the user access to all of the panel commands. If no other keys have
been pressed, the user program may be restarted by pressing [NEXT]. If other keys have
been pressed, one of the Go commands must be used.

These breakpoints do not affect memory contents. They may even be set in non-writable
ROM or PROM.

5-23. Examine/Modify Breakpoint Command. The fonnat of the Examine/Modify
Breakpoint Command is as follows:

Command Key Sequence: [B] [breakpoint number] [NEXT]
[breakpoint address] [NEXT]
[breakpoint address] [NEXT]

[.]

Function Display: "br.

Breakpoint Number Range: 0-7 (Appears in ADDRESS display field)

Breakpoint Address Range: 0-FFF16 (Appears in DATA display field)

The Examine/Modify Breakpoint command operates in a manner similar to the Examine/
Modify Program Memory, Data Memory, and Register commands. In this case the address
is the breakpoint number, and the data is the location in Program Memory where the

5-11

Panel Operation

5-12

breakpoint resides. As with the other Examine/Modify commands [PREVIOUSJ can be
substituted for any [NEXTJ after the first, or [ENDJ can be substituted to terminate the
command sequence.

Example: Set Breakpoints 0 and I at Program Memory loc!ltions 10616 and 3F216, respec­
tively. The key sequence is [BJ [0] [NEXTJ [IJ [OJ [6] [NEXTJ [3] [FJ [2J [.].

5-24. GoiWith Break Command. The format of the Go/With Break Command is as
follows:

Command Key Sequence: [GO] [WITH BREAK] [address] [.J

Function Display: "Gb.

Address Range: O-FFF16

The Go/With Break command single steps the MCS-48 Chip-Computer through the user
program starting at the address in Program Memory given in the command sequence.
Program single stepping will continue until either (1) [SYS RST] is pressed, (2) [MON INTJ
is pressed, or (3) a breakpoint is reached. Breakpoint information is displayed in the format,

"bN.ADR. AC",

where N = the breakpoint number, ADR = the contents of the Program Counter (the
breakpoint address), and AC = the contents of the Accumulator. The monitor then allows
the user access to all of the panel commands. If no other keys have been pressed, the user
program may be restarted by pressing [NEXT]. If other keys have been pressed, one of the
Go commands must be used.

Example: Begin execution of a program in Program Memory which starts at E016, with
breakpoints enabled. The key sequence is [GOJ [WITH BREAKJ [EJ [0] [.].

5-25. Search Memory Commands

The Search Memory commands allow the user to search Program Memory, Data Memory,
or Register Memory for a one- or two-byte data pattern, called the search target. The
commands which search for a one-byte search target are called Byte Search commands, and
those which search for a two-byte search target are called Word Search commands.

The format for each of the Search Memory commands is the same, as follows:

[search type] [memory typeJ [starting address]
[NEXT] [ending address] [NEXTJ [search target]
[NEXTJ [maskJ [EXECUTE] [NEXTJ [NEXTJ ... [.],

where [search typeJ is [4J for a Byte Search or [5] for a Word Search; [memory type] is
[PROGRAM MEMORYJ, [DATA MEMORYJ, or [REGISTERJ; [starting address] and
[ending addressJ define the area to be searched; [search target] is the object of the search;
and [maskJ is a bit pattern the same length as [search target], which causes only those bits in
[search targetJ which correspond to l' s in [mask] to be tested in the search. The sequence
[NEXTJ [maskJ is optional and may be omitted.

The [EXECUTEJ key causes the search to commence. If no occurrences of the search target
(as modified by the mask) are found in the specified memory range, the monitor returns to
command prompt status. If the (modified) search target is found, the address of the
occurrence and the data matching the (modified) search mask are displayed as follows:

"SM.ADR. DD",

Prompt 48

Prompt 48 Panel Operation

where M is the memory type, ADRis the address in hexadecimal of the occurrence, andDD
is the data matching the (modified) search target. After [EXECUTE] is pressed and data is
found, [NEXT] may be pressed to reinitiate the search with ADR + 1 as the new starting
address. All other search parameters remain constant.

5-26. Byte Search Program Memory Command. The format of the Byte Search Pro­
gram Memory Command is as follows:

Command Key Sequence: [4] [PROGRAM MEMORY] [starting address]
[NEXT] [ending address] [NEXT] [search target]
[NEXT] [mask] [EXECUTE]
[NEXT] [NEXT] ... [.]

Function Display: "SP.

Address Range: 0-FFF16

Search Target Range: O-FF16

Mask Range: O-FF16

Note: [NEXT] [mask] and [NEXT] [NEXT] ... are optional and may be omitted.

Example: Search Program Memory for the second occurrence of 6C16 or 6D16 (011011002

or 01101101 2) between the addresses 10016 and 2D016. This implies a mask of
FE16 (111111102). The key sequence is [4] [PROGRAM MEMORY] [1] [0] [0]
[NEXT] [2] [D] [0] [NEXT] [6] [C] [NEXT] [F] [E] [EXECUTE] [NEXT] [.].

5-27. Byte Search Data Memory Command. The format of the Byte Search Data
Memory Command is as follows:

Command Key Sequence: [4] [DATA MEMORY] [starting address]
[NEXT] [ending address] [NEXT] [search target]
[NEXT] [mask] [EXECUTE]
[NEXT] [NEXT] . . . [.]

Function Display: "Sd.

Address Range: O-FF16

Search Target Range: O-FF16

Mask Range: 0-FF 16

Note: [NEXT] [mask] and [NEXT] [NEXT] ... are optional and may be omitted.

Example: Search Data Memory between 00 and 4B 16 for the first occurrence of A916. The
key sequence is [4] [DATA MEMORY] [0] [NEXT] [4] [B] [NEXT] [A] [9]
[EXECUTE] [.].

5-13

Panel Operation

5-14

5-28. Byte Search Register Memory Command. The fonnat of the Byte Search Register
Memory Command is as follows:

Command Key Sequence: [4] [REGISTER] [starting address]

Function Display: "Sr.

Address Range: 0-4816

[NEXT] [ending address] [NEXT] [search target]
[NEXT] [mask] [EXECUTE]
[NEXT] [NEXT] . . . [.]

Search Target Range: 0-FF16

Mask Range: 0-FF16

Note: [NEXT] [mask] and [NEXT] [NEXT] ... are optional and may be omitted.

Example: Search Register Memory for the fIrst occurrence of 8X16, where X signifies
"don't care". This implies a mask ofF016 (111100002), The key sequence is [4]
[REGISTER] [0] [NEXT] [4] [8] [NEXT] [8] [0 or any other hex key] [NEXT]
[F] [0] [EXECUTE] [.J,

5-29. Word Search Program Memory Command. The fonnat of the Word Search
Program Memory Command is as follows:

Command Key Sequence: [5] [PROGRAM MEMORY] [starting address]
[NEXT] [ending address]

Function Display: "SP.

Address Range: 0-FFF16

[NEXT] [search target MSB]
[NEXT] [search target LSB]
[NEXT] [mask MSB] [NEXT] [mask LSB] [EXECUTE]
[NEXT] [NEXT] . . . [.]

Search Target Range: 0-FFFF16

Mask Range: 0-FFFF16

Note: [NEXT] [mask MSB] [NEXT] [mask LSB] and [NEXT] [NEXT] ... are optional
and may be omitted.

Example: Search Program Memory for the fIrst occurrence of A42916. The key sequence is
[5] [PROGRAM MEMORY] [0] [NEXT] [F] [F] [F] [NEXT] [A] [4] [NEXT]
[2] [9] [EXECUTE] [.J.

5-30. Word Search Data Memory Command. The fonnat of the Word Search Data
Memory Command is as follows:

Command Key Sequence: [5] [DATA MEMORY] [starting address]
[NEXT] [ending address]
[NEXT] [search target MSB]
[NEXT] [search target LSB]
[NEXT] [mask MSB] [NEXT] [mask LSB] [EXECUTE]
[NEXT] [NEXT] . . . [.]

Prompt 48

Pr9mpt 48 Panel Operation

Function Display: "Sd.

Address Range: 0-FF16

Search Target Range: 0-FFFFI6

Mask Range: 0-FFFF16

Note: [NEXT] [mask MSB] [NEXT] [mask LSB] and [NEXT] [NEXT] ... are optional
and may be omitted.

Example: Search Data Memory between locations 1916 and 3F 16 for the first occurrence of
3B1416. The key sequence is [5] [DATA MEMORY] [1] [9] [NEXT] [3] [F]
[NEXT] [3] [B] [NEXT] [1] [4] [EXECUTE] [.J.

5-31. Word Search Register Memory Command. The format of the Word Search
Register Memory Command is as follows:

Command Key Sequence: [5] [REGISTER] [starting address]
[NEXT] [ending address]

Function Display: "Sr.

Address Range: 0-48 16

[NEXT] [search target MSB]
[NEXT] [search target LSB]
[NEXT] [mask MSB] [NEXT] [mask LSB] [EXECUTE]
[NEXT] [NEXT] . . . [.]

Search Target Range: 0-FFFF16

Mask Range: 0-FFFFI6

Note: [NEXT] [mask MSB] [NEXT] [mask LSB] and [NEXT] [NEXT] ... are optional
and may be omitted.

Example: Search Register Memory for an occurrence of A42D16' The key sequence is [5]
[REGISTER] [0] [NEXT] [4] [8] [NEXT] [A] [4] [NEXT] [2] [D] [EXECUTE]
[.].

5-32. Move Memory Commands

The Move Memory commands allow the user to move blocks of data from one area to
another in anyone of the three memory types: Program Memory, Data Memory, or Register
Memory. Data cannot be moved from one memory type to another.

The format for each of the Move Memory commands is the same, as follows:

[9] [memory type]
[source starting address] [NEXT] [source ending address]
[NEXT] [destination starting address] [EXECUTE]

where [9] is the Move Memory command; [memory type] is [PROGRAM MEMORY],
[DATA MEMORY], or [REGISTER]; [source starting address] and [source ending ad­
dress] define the block of data to be moved; and [destination starting address] defines the
area of memory to which the data is to be moved. .

5-15

Panel Operation

5-16

The memory move is commenced by pressing [EXECUTE]. The Move Memory commands
will move any block of memory data between any two memory areas of a single memory
type.

5-33. Move Program Memory Command. The format of the Move Program Memory
Command is as follows:

Command Key Sequence: [9] [PROGRAM MEMORY]

Function Display: "uP.

Address Range: 0-FFFI6

[source starting address] [NEXT]
[source ending address] [NEXT]
[destination starting address] [EXECUTE]

Example: Move the contents of Program Memory locations O-FF16 to Program Memory
locations 27016-26FI6 . The key sequence is [9] [PROGRAM MEMORY] [0]
[NEXT] [F] [F] [NEXT] [2] [7] [0] [EXECUTE] [.J.

5-34. Move Data Memory Command. The format of the Move Data Memory Command
is as follows:

Command Key Sequence: [9] [DATA MEMORY]

Function Display: "nD.

Address Range: O-FF16

[source starting address] [NEXT]
[source ending address] [NEXT]
[destination starting address] [EXECUTE]

Example: Move the contents of Data Memory locations 6-2B 16 to Data Memory locations
AI6-2F16 (move the block "up" in memory four bytes). The key sequence is
[9] [DATA MEMORY] [6] [NEXT] [2] [B] [NEXT] [A] [EXECUTE] [.].

5-35. Move Register Memory Command. The format of the Move Register Memory
Command is as follows:

Command Key Sequence: [9] [REGISTER]

Function Display: "nr.

Address Range: 0-4816

[source starting address] [NEXT]
[source ending address] [NEXT]
[destination starting address] [EXECUTE]

Example: Move the contents of Register Memory locations 4-18 16 to Register memory
locations AI6-IEI6 . The key sequence is [9] [REGISTER] [4] [NEXT] [I] [8]
[NEXT] [A] [EXECUTE] [.].

Prompt. 48

Prompt 48 Panel Operation

5-36. Clear Memory Commands

5-37. Clear Program Memory Command. The format of the Clear Program Memory
command is as follows:

Command Key Sequence: [C] [PROGRAM MEMORY] [starting address]
[NEXT] [ending address] [.]

Function Display: "CP.

Address Range: 0-FFFI6

The Clear Program Memory command clears each memory location between and including
the starting address and the ending address to 0016,

Example: Clear Program Memory locations 0-3FFI6 . The key sequence is [C] [PRO­
GRAM MEMORY] [0] [NEXT] [3] [F] [.].

5-38. Clear Data Memory Command. The format of the Clear Data Memory Command
is as follows:

Command Key Sequence: [C] [DATA MEMORY] [starting address]
[NEXT] [ending address] [.]

Function Display: "Cd.

Address Range: 0-FF16

The Clear Data Memory command clears each memory location between and including the
starting address and the ending address to 0016,

Example: Clear Data Memory locations 2016-4FI6. The key sequence is [C] [DATA
MEMORY] [2] [0] [NEXT] [4] [F] [.].

5-39. Clear Register Memory Command. The format of the Clear Register Memory
Command is as follows:

Command Key Sequence: [C] [DATA MEMORY] [starting address]
[NEXT] [ending address] [.]

Function Display: "Cr. "

Address Range: 0-4816

The Clear Register Memory command clears each memory location between and including
the starting address and the ending address to 0016,

Example: Clear Register Memory locations 0-IF16. The key sequence is [C] [REGISTER]
[0] [NEXT1 [1] [F] [;].

5-40. Dump Memory Commands

Any data that can be accessed by the Examine/Modify Memory commands may be output
through the serial port with these commands. The user may thereby save program, register,
or data information on paper tape, or hard copy or other peripheral. The format is the
hexadecimal Object File format, described in Appendix D.

5-17

Panel Operation

5-18

If the command is received from the Prompt-48 keyboard, then the Hexadecimal Object File
will be preceded and followed by a series of null characters for tape header and trailer. If the
command is received via the serial channel, then the Hexadecimal Object File will be
immediately dumped without any null insertion.

5-41. Dump Program Memory Command. The format of the Dump Program Memory
Command is as follows:

Command Key Sequence: [D] [PROGRAM MEMORY] [starting address]
[NEXT] [ending address] [.]

Function Display: "dP.

Address Range: O-FFF16

Note: starting address must be less than or equal to ending address.

Example: Dump Program Memory locations 0-3FF16 through the serial port. The key
sequence is [D] [PROGRAM MEMORY] [0] [NEXT] [3] [F] [F] [.].

5-42. Dump Data Memory Command: The format of the Dump Data Memory Com­
mand is as follows:

Command Key Sequence: [D] [DATA MEMORY] [starting address]
[NEXT] [ending address] [.]

Function Display: "dd.

Address Range: O-FF16

Note: starting address must be less than or equal to ending address.

Example: Dump Data Memory through the serial port. The key sequence is [D] [DATA
MEMORY] [0] [NEXT] [F] [F] [.].

5-43. Dump Register Memory Command. The format of the Dump Register Memory
Command is as follows:

Command Key Sequence: [D] [REGISTER] [starting address]
[NEXT] [ending address] [.]

Function Display: "dr.

Address Range: 0-48 16

Note: starting address must be less than or equal to ending address.

Example: Dump Register Memory through the serial port. The key sequence is [D]
[REGISTER] [0] [NEXT] [4] [8] [.].

5-44. Enter Into Memory Commands

The Enter into Memory commands allow the user to load any file corresponding to the
Hexadecimal Object File Format (Appendix D) from the serial port into Program Memory,
Data Memory, or Register Memory. The parameters needed by the Enter commands are the
memory type and an offset to the starting address given in the Object File.

Prompt 48

Prompt 48 Panel Operation

5-45. Enter into Program Memory Command. The format of the Enter into Program
Memory command is as follows:

Command Key Sequence: [E] [PROGRAM MEMORY] [starting address offset]
[.]

Function Display: "rP.

5-46. Enter into Data Memory Command. The format of the Enter into Data Memory
command is as follows:

Command Key Sequence: [E] [DATA MEMORY] [starting address offset]
[.]

Function Display: "rd.

5-47. Enter into Register Memory Command. The format of the Enter into Register
Memory command is as follows:

Command Key Sequence: [E] [REGISTER] [starting address offset]
[.]

Function Display: "IT.

5-48. Hexadecimal Arithmetic Command

5-49. Hexadecimal Arithmetic Command. The format of the Hexadecimal Arithmetic
command is as follows:

Command Key Sequence: [6] [x data] [NEXT] [y data] [EXECUTE]

Function Display: "HE.

Data Range: O-FFF16

The Hexadecimal Arithmetic command performs hexadecimal addition and subtraction on
two one-to-three digit hexadecimal numbers, x and y. Upon pressing [EXECUTE] the sum
and difference are displayed in the following format:

"HE.x+y.x-y".

5-50. EPROM Programming, Fetch, Compare Commands

5-51. EPROM Programming Command. The EPROM Programming commands allow
the user to program all or part of the EPROM Program Memory on an 8748 Microcomputer
with EPROM, an 8755 EPROM Program Memory and I/O Expander, or an 8741
Microcomputer with EPROM (UPI-41 family).

There are two programming modes, one which does not insert the Prompt-48 byte reentry
code, and one which does.

5-19

Panel Operation

5-20

The mode which does insert this code is intended for 8748's which are to be used in the
Prompt-48 Execution Socket. The Prompt-48 16 byte reentry code is needed in Program
memory to allow the Monitor program to properly transfer control to the user program. It
occupies the 16 highest bytes of the lower 1024 bytes of Program Memory, locations
3F016-3FF16. This programming mode is inappropriate for 8755's present via an adapter,
and an error display will appear in the LED's to indicate that the wrong mode has been
selected.

The programming mode which does not insert the reentry code copies the RAM Program
Memory faithfully to the EPROM device in the Programming Socket. This mode will work
for 8741's, 8748's, and with the addition of a Prompt 475 adapter, 8755's.

The Prompt-48 will not attempt to program EPROM devies which have not had the
appropriate locations completely erased. If an unerased location is detected an error display
with the address and EPROM contents will appear.

5-52. Program EPROM With Reentry Code Command. The format of the Program
EPROM With Reentry Code command is as follows:

Command Key Sequence: [7] [starting address] [NEXT] [ending address]
[NEXT] [starting EPROM address] [EXECUTE]

Function Display: "Pr 8748"

Address Range: 0-3FF16

This command programs all or part of the EPROM Program Memory on an 8748 Micocom­
puter with EPROM. The 16 byte monitor reentry code is automatically substituted for any of
the 16 locations from 3F016 to 3FF16 .

Example: Program the Prompt-48 RAM Program Memory into an 8748 intended for use in
the Prompt-48 Execution Socket. First install the 8748 in the Programming
Socket. The key sequence is [7] [0] [NEXT] [3] [F] [F] [NEXT] [0] [EXE­
CUTE]. The display will blank to indicate that the EPROM is being programmed
and the command prompt returns automatically after the EPROM has been
successfully programmed.

5-53. Program EPROM Without Reentry Code Command. The format of the Program
EPROM Without Reentry Code command is as follows:

Command Key Sequence: [3] [starting address] [NEXT] [ending address]
[NEXT] [starting EPROM address] [EXECUTE]

Function Display: "Pr 8741" or "Pr 8755"*

Address Range: 0-3FF16

*with 475 adapter.

Prompt 48

Prompt 48 Panel Operation

This command programs all or part ofthe EPROM Program Memory on the 8741,8748, or
8755 (if a Prompt 475 adapter is installed). The function display "Pr 8741" appears for
the 8741 and 8748, and (if the adapter is installed) the function display "Pr 8755"
appears. With this command the RAM Program Memory is written to the EPROM device
without modification.

Example: Program the entire Prompt-48 RAM Program Memory contents into the EPROM
device on an 8741. First install the 8741 into the Prompt-48 Programming
Socket. The key sequence is [3] [0] [NEXT] [3] [F] [F] [NEXT] [0] [EXE­
CUTE]' The LED display will blank to indicate that the EPROM is being
programmed and the command prompt returns automatically after the EPROM
has been successfully programmed.

5-54. Compare EPROM Command. The format of the Compare EPROM command is
as follows:

Command Key Sequence: [8] [starting Prompt address] [NEXT]
[ending Prompt address] [NEXT]
[starting EPROM address] [EXECUTE]

Function Display: "Co. ??

Address Range: O-FFF16 (but not to exceed PROM capacity)

The Compare EPROM command compares the specified areas ofPrompt-48 RAM Program
Memory and the EPROM device installed in the Programming Socket. Before specifying
this command, an 8748, 8741, or 8755 with 475 adapter must be installed in the Program­
ming Socket. If no EPROM device or 475 adapter is present and locked, or the device is
placed in the socket backwards, upon receipt of the [C] command the display will read out
an error message.

Example: Compare the contents of an 8748 installed in the Programming Socket with the
RAM Program Memory in Prompt-48. The key sequence is [C] [0] [NEXT] [3]
[F] [F] [NEXT] [0] [EXECUTE].

5-55. Fetch EPROM Command. The format of the Fetch EPROM command is as
follows:

Command Key Sequence: [F] [starting Prompt address] [NEXT]
[ending Prompt address] [NEXT]
[starting EPROM address] [EXECUTE]

Function Display: "FP.

Address Range: O-FFF16 (but not to exceed PROM capacity)

The Fetch EPROM command moves the contents of the EPROM Program Memory of the
device installed in the Programming Socket to the RAM Program Memory in Prompt-48.
Before specifying this command, an 8748, 8741, or 8755 with 475 adapter must be installed
in the Programming Socket. If no EPROM device or475 adapter is present and locked, orif
the device is placed in the socket backwards, upon receipt of the [F] command the display
will read out an error message.

Example: Read the contents of an 8748 installed in the Programming Socket into the RAM
Program Memory in Prompt-48. The key sequence is [F] [0] [NEXT] [3] [F] [F]
[NEXT] [0] [EXECUTE].

5-21

Panel Operation Prompt 48

Table 5-7. Command List Summary

Command Prompts: "ACCESS=O" and "- . "

Command Key(s)/(Description) Function Display Section

[GO]: "G " 5-20
- [NO BREAK] "Go. " 5-21
- [WITH BREAK] "Gb. " 5-24
- [SINGLE STEP] "GS. " 5-24

[EXAMINE/MODIFY]: "E " 5-17
- [PROGRAM MEMORY] "EP. " 5-18
- [DATA MEMORY] "Ed. " 5-17
- [REGISTER] "Er . " 5-15

[2] (Port 2 Map) "P2. MM" 5-16
[3] (Program PROM - 8741 or 8748) "Pr 8741 " 5-53
[3] (Program PROM - 8755, with adapter) "Pr 8755 " 5-53
[4] (Byte Search): "S1 . " 5-25

- [PROGRAM MEMORY] "SP. " 5-26
- [DATA MEMORY] "Sd . " 5-27
- [REGISTER] "Sr. " 5-28

[5] (Word Search): "S2. " 5-25
- [PROGRAM MEMORY] "SP. " 5-28
- [DATA MEMORY] "Sd. " 5-30
- [REGISTER] "Sr. " 5-31

[6] (Hexadecimal Arithmetic) "HE. " 5-49
[7] (Program PROM - 8748) "Pr 8748 " 5-52
[8] (Compare PROM) "Co. " 5-54
[9] (Move Memory): "n " 5-32

- [PROGRAM MEMORy] "nP. " 5-33
- [DATA MEMORY] "nd. " 5-34
-. [REGISTER] "nr . " 5-35

[A] (Access Mode Select) "Ac. CC" 5-14
[B] (Examine/Modify Breakpoint) "br . " 5-23
[C] (Clear Memory): "C " 5-36

- [PROGRAM MEMORY] "CP. " 5-37
- [DATA MEMORY] "Cd. " 5-38
- [REGISTER] "Cr. " 5-39

[D] (Dump Memory): "d " 5-40
- [PROGRAM MEMORY] "dP. " 5-41
- [DATA MEMORY] "dd . " 5-42
- [REGISTER] "dr. " 5-43

[E] (Enter into Memory): "r " 5-44
- [PROGRAM MEMORY] "rP . " 5-45
- [DATA MEMORY] "rd " 5-46
- [REGISTER] "rr " 5-47

[F] (Fetch PROM) "FP " 5-55

5-22

CHAPTER 6
HOW TO USE PROMPT 48

6-1. Setting Up A System

As mentioned in the introductory chapter of this manual, your decision to use the Prompt -48
as a development system was likely based on the observation that software design and debug
time is the critical path that stands between where you are now and a completely engineered
product. The hardware aspects of system design using the MCS-48 family of components,
though not trivial, are greatly simplified by the forethought and modularization of that
family.

In this chapter we will refer to your prototype of the desired end product as the user system.
This chapter will attempt to guide you in the efficient use of the development tools of the
Prompt-48, while giving the briefest of coaching in the modem discipline of systems
engineering.

6-2. Education

The first step is to become familiar with what the microcomputer is and what it can do. For
this, unless you are already familiar with the subject, reference should be made to Chapter
Three of this manual, "How the INTEL Chip-Computers Work." An extensive documen­
tation package is included with Prompt -48, and this should also be consulted. In particular,
you should become familiar with the contents ofMCS-48 Microcomputer User's Manual
and the Prompt 48 Reference Cardlet.

If time is critical in getting started in microprocessors, designers or managers can attend one
of many INTEL-sponsored 3-day training courses which give basic instruction in the
MCS-48 as well as hands-on experience with MCS-48 development systems.

After general familiarization is complete, either through self-instruction or a training
course, the next step is to gain a better "feel" for what a microprocessor can do in your own
applications by writing several exercise programs which perform basic functions. You may
require such things as Va routines for various sorts of ports; or delays, counting functions,
look-up tables, arithmetic functions, and logical operations which can serve as a set of
building blocks for future applications programs. Several basic programming examples are
included in the Prompt-48 documentation package, such as the "Stopwatch" program
described and listed in Appendix C of this manual. The Intel User's Library is a source of
more specific applications routines.

6-3. Functional Definition

After a thorough grounding in the basics of microcomputing has been achieved, the
functions of the intended user system should be thoroughly defined and documented. So
many" correct" methods for this sort of documentation exist that it is impossible to make
dogmatic prescriptions for all situations.

A traditional protocol of design-supportive documentation is the flowchart method. This
familiar device, for which templates and other drafting aids exist, calls for a separate' 'black
box" with summary description within for each distinct' 'function" to be performed by the
computer; also, the proper sequencing and interconnection of functions, including the
possibility that certain paths may only be remote options, seldom used.

We will employ a different discipline of program design in this chapter and in Appendix C,
known as structured programming through Wamier-Orr diagrams. Rather than "graphics­
oriented" like flowcharts, this documentation is analogous to indented outlines. Examples
appear in Paragraph 6-6.

6-1

How to Use Prompt 48

6-2

6-4. Hardware Configuration

The next step involves the definition of the microcomputer hardware necessary to imple­
ment the complete user system. In general, any system wiII include CPU (Central Proces­
sor), Program Memory and Data Memory, Input/Output, and the appropriate interfaces
with the outside world. It wiII already be apparant that the MCS-48 component family
answers many system-building questions in a straightforward manner. In the first place, the
8748, if selected as Central Processor, already includes the first one thousand bytes of
Program Memory, the first 64 bytes of Register (data) Memory, and three 8-bit VO ports.
For those many applications requiring no more resources, the 8748 (or its masked ROM
equivalent, the 8048) would have only a few hardware needs beyond the chip itself: a power
supply (which could be a battery), a simple oscillator or clock, a minimal amount of
interface/support circuitry, and possibly a chassis or other packaging.

But most user applications will be more involved than this, requiring a detailed hardware
system design study and the use of other components in the MCS -48 family. Such a design
study would require the separate consideration of requirements in Input/Output, Memory
and Throughput. Input/Output and Memory wiII now be discussed, but Throughput will be
covered in the subsection which follows, "Code Generation."

Input/Output capability must be defined in terms of number of inputs, number of outputs,
bi-directional lines, latching or non-latching VO, output drive capability, and input
impedence.

In terms of Memory requirements, a separate study is necessary for Register (Data) Memory
and for Program Memory. The number of words of RAM storage required for intermediate
results and other data storage must be determined, and a decision made as to whether
off-chip expansion is needed. (An additional 256 bytes can be directly added, and up to 4K
bytes indirectly; see Paragraph 6-14 for details.) The type of system wiII dictate whether
battery backup is needed to maintain data in RAM during power failure.

Probably the most difficult parameter to define initially is the amount of Program Memory
needed to store the final user program. Although previously written exercise programs will
make this estimate more accurate, a generous amount of "breathing room" should be
allowed in program memory until coding is complete and the exact requirements are known.
The Prompt-48 allows for lk byte (one thousand bytes) of RAM memory for program
development. If more proves to be necessary, the user can configure it externally to Prompt
with the Bus Connector (11) and flat cable. (MCS-48 has an upward address limit of 4k in
Program Memory.)

The problem of "trade-offs" of hardware versus software is familiar to every experienced
system designer. For example, many special functions such as serial data communications
(TTY or RS-232) or keyboard/display interfaces may be implemented in software (pro­
grams); however, in cases where these functions place a severe load on the processor in
terms of time or Program Memory, special peripheral interface circuits such as the 8251,
Universal Synchronous or Asynchronous Receiver/Transmitter (US ART) or 8279
Keyboard/Display interface may be used.

We are only sketching the essentials of hardware system development in this section. For
full details, see Paragraph 6-14.

6-5. Code Generation

The writing of the final program code for the application can begin once the system function
and hardware have been defined and can be generated in parallel with the detailed hardware
design (PC card layout, power supply, etc.) Often the final hardware definition is not
possible, however, until some or all of the coding is complete; the memory requirements,
both for Program Memory and Data Memory, may be unpredictable. Also, it may not be
possible to predict, in certain time-critical real-time applications, whether the processor will

Prompt 48

Prompt 48 How to Use Prompt 48

have sufficient throughput. "Benchmark" programs, which are typically only the most
critical sequences in a complete applications program, are often written in completely coded
form for the purpose of more exactly predicting memory and throughput requirements.

Throughput is defined loosely as the' 'amount of computing" that a system can accomplish
in a given time interval. Although a fast processor like the MCS-48 has throughput
"overkill" for most applications, it is easy to conceive that a sufficiently challenging
real-time application would overtax its processing power. For example, in some industrial
control application, a feedback loop between" sensing" and "correcting" might need to be
repeatedly established very quickly, say within 1!100th of a second. Such a final, dedicated
applications program may be able, in addition to any general "housekeeping" or record­
keeping duties, to periodically read the current outside-world data appearing at an input
port; to perform data analysis calculations; to compute a feedback or correction factor; and
to write this to an output port - all within perhaps l/lOOth of a second.

If benchmark programs are carefully-selected and completely coded, it is possible to make
literal and accurate calculations for the time required to execute them. One simply counts
the number of bytes in the benchmark program (object code) and multiplies by the
instruction cycle time of the MCS-48. Assuming a clock frequency of 3 MHz (3 million
cycles per second), the basic instruction cycle for the fetching/executing of a program byte
would be 5.0 microseconds long. (Reference the MCS -48 Microcomputer User's Manual.)
Note that most MCS-48 instructions generate only one byte of object code, but that many
have operands requiring a second byte.

The whole process of applications software development, from program design to final
coding, is described in Paragraph 6-6.

6-6. Programming Techniques

The first part of this section is aimed primarily at beginning or intermediate assembly
language programmers. While it is not sufficient as a general introduction to assembly
language programming, it is intended to present concepts allowing efficient software
development in the MCS-48 environment. The advanced programmer may wish to spend
some time briefly examining the subsections on Program Design and Program Test and
Debugging for interest's sake.

The subsections:

Assembling JMP and CALL Instructions,
Program Memory Paging, and
Prompt-48 Considerations,

are of general interest as they discuss aspects pertaining specifically to the MCS-48 family
or Prompt 48.

The MCS-48 Assembly Language Programming Manual should be consulted as a detailed
reference for all MCS-48 CPU software.

6-7. Program Design

The first step in the design of any system, hardware or software, is to define the problem.
Only when the exact function of the application is determined can the resources necessary to
execute that function be determined.

A common phrase in programming these days is "top-down" program design. By this we
mean that the designer divides the problem into smaller separate sections to be solved
separately. The words "top-down" describe the hierarchial or pyramid-like way in which
this division is made. As an example, let's say that we are to design a program which will

6-3

How to Use Prompt 48

6-4

allow a particular MCS-48 system to function as a stopwatch; perhaps we will design it to
run on Prompt 48 itself. When we say "stopwatch," the precise instructions needed aren't
immediately obvious. The problem must be divided into simpler sub-problems. One
possible division might be into subsections called: Display Functions, Timer Control
Functions, Data Functions, User Input/Output Functions, and so forth. These subsections of
the program are then themselves divided and subdivided until the problem is reduced to a
number of vastly simpler problems, such as adding 1 to the contents of a given memory
location. The final set of simple problems is then solved one at a time, and called the
program modules.

Figure 6-1 shows a possible partial breakdown of the stopwatch problem. While the figure
shows the organizational structure of the program, it does not indicate how the modules
communicate with one another.

The communication between modules is the second major phase of program design, called
designing the modular interfaces, which are simply the ways in which modules pass control
and data back and forth. For example, in the stopwatch the User Control Functions
(Commands) module must give control to one of its submodules, whose task is to read the
keyboard for user commands. The Read Keyboard For Command submodule would
examine keys and return control to the calling module. It would also pass data back to the
calling module indicating which key, if any, was pressed. The simpler these modular
interfaces are kept the easier it is to assemble all modules into a working program. For this
reason the modular breakdown process should attempt to separate the problem into sub­
problems which depend as little as possible on each other for data.

Stopwatch

User
Control
Functions
(Commands)

Display
Functions

Timer
Control
Functions

Data
Functions

-1
-1

Start Stopwatch

Stop Stopwatch

Freeze Display at Current Time

Free (unfreeze) Display

Set Time to 0

Clear LED Display

Enable LED Refresh

Display Minutes

Display Seconds

Display Hundredths

Reset Timer

Start Timer Running

Stop Timer Running

Check Timer Status

Set Time to 00:00.00

Add 1 to TIme

Read Keyboard lor Command

Figure 6-1. Stopwatch Program Structure

Prompt 48

Prompt 48 How to Use Prompt 48

When a given task must be perfonned the same way in two or more modules, it can be made
into a subroutine. A good example of a subroutine is a multiplication routine. The
multiplication routine receives control, and the two numbers to be multipled, from the
calling routine, multiplies the two numbers together, and returns control and the product to
the calling routine. Since subroutines are called from a number of different areas in the
program, the address of the caller must be saved in order for control and data to pass back to
the calling module. This is accomplished very simply in the MCS-48 Chip-Computers and
is described in Paragraph 3-9.

The concept of executive modules is also useful. Briefly, an executive module is any
module which controls other modules as subroutines. This idea can be applied at any level in
the structure of the program, just as the idea of modules itself. In the stopwatch structure, the
User Control Functions module is executive to the other three modules on its level.

6-8. Hand Assembly

When each program module and modular interface has been specified, the individual
modules must be translated into a fonn the computer can deal with. The first step of this
translation is to write the program in assembly language according to the MCS-48 Assembly
Language Manual. If an ISIS-II or other development system is available to then assemble
the assembly language program into machine language, hand assembly need not be used;
otherwise, the hexadecimal machine code contents of Program Memory must be determined
manually.

Let's look at a simple example. Consider a single-module program which is to count. That
is, it will repeatedly add 1 to a specified memory location. The task of the program (module)
might look something like this:

1. Replace the variable COUNT with COUNT + 1.

2. Repeat step 1.

The next step is to assign the location of the data called COUNT. Let's put it in Working
Register O. Now write the instructions:

START: MOV A,#1
ADD A,RO
MOV RO,A
IMP START

;Put 1 in the Accumulator
;Add 1 to RO (COUNT)
;Replace RO with RO+ 1
;Repeat forever.

The mnemonic instructions with comments are collectively called the program source code.
The hexadecimal contents of Program Memory which the source code stands for are called
the program object code. The essence of hand assembly is the translation from source code
to object code.

In our example we must now do just that: assemble the program.

First, a starting address must be chosen; say Program Memory location O. Write the address
of each instruction at the extreme left of your program sheet:

Addr Label Ins Opnd Comment

000 START: MOV A,#l ;Put 1 in the Accumulator

6-5

How to Use Prompt 48

6-6

Then go down the instructions one at a time, assigning hexadecimal values to the Program
Memory address in the left column:

Addr Data Label Ins Opnd Comment

001 2301 START: MOV A,#1 ;Put 1 in the Accumulator
002 68 ADD A,RO ;Add 1 to RO (COUNT)
003 A8 MOV RO,A ;Replace RO with RO+ 1
004 0400 JMP START ;Repeat forever.

The hexadecimal values can be looked up in the Prompt-48 Reference Cardlet ("by
mnemonic" section), the MCS -48 Microcomputer User's Manual, orthe MCS-48 Assem­
bly Language Programming Manual.

6-9. Program Test and Debugging

When each of the program modules and their modular interfaces have been identified and
written into an assembly language program, some effort should be devoted to determining
whether or not the program works as intended. This effort is called program testing.
Removing the errors uncovered by program testing is called debugging.

Large programs are frequently far too complex to exhaustively test as a whole. One answer
to this problem is to test as thoroughly as possible each module and modular interface
individually. If this is done carefully, the programmer is almost certain to have a correctly
working program when the modules are assembled, unless there are serious flaws in the
overall program design structure. The bugs that do (almost inevitably) crop up can usually
be identified as originating in a particular module and/or modular interface, and are easily
fixed.

In order to evaluate the performance of an individual module, its communication process
with other modules must be simulated. For example, if a multiplication routine is to be
tested, the input data (the numbers to be multiplied) must be somehow provided, and the
output data (product) must be available for verification. Thus, the stand-alone routine to be
verified must be provided with an "environment": that is, it must be surrounded with
sufficient other assembly-language instructions so that it can be run in the computer with
simulated values. Such a test program would be called a "dummy routine," and the practice
of pre-verifying individual modules before the program is run as a whole is often referred to
as "echo checking, " If the module is found to be faulty, the resources of the development
system must be called on to trace its internal operation.

The basic facilities for testing modules and modular interfaces in Prompt-48 are the
Go/With Break, Go/Single Step, and Examine/Modify commands.

Breakpoints allow the user to stop program execution at pre-planned points in order to
supply input data, examine output data, check the status of various registers, and so forth.
The placement of breakpoints and use of the Go/With Break command are discussed in
Paragraph 5-20.

The Go/Single Step command allows the user to execute a routine instruction-by­
instruction, verifying the routine's operation at each step. The use of this command is
described in Paragraph 5-20.

The Examine/Modify commands are the means by which all this verification takes place.
The MCS-48 registers and Data Memory are accessible through these commands, as shown
in Paragraph 5-17.

Prompt 48

Prompt 48 How to Use Prompt 48

6-10. Program Memory Paging

In MCS-48 Chip-Computers, Program Memory is divided into from 4 to 16 256-byte
pages. There are only two ways for program execution to cross page boundaries: the use of
the JMP or CALL instructions. The address of the next instruction to be executed is kept in
the Program Counter. After most instructions, only the lower eight bits are modified to form
the next address (28 = 256). With the JMP and CALL instructions, however, an additional
three bits are included as part of the instruction. The twelfth bit of the Program Counter (BS)
is also replaced by the DBF bit with the execution of these instructions. The JMP and CALL
instructions are therefore the only instructions which can transfer control to anywhere in the
212 = 4096 bytes of Program Memory.

The DBF bit controls whether a JMP or CALL instruction passes control to a destination
above or below the 211 = 2048 byte Program Memory boundary. This is accomplished by
replacing bit 11 (the twelfth bit) of the Program Counter, BS, with DBFon aJMPora CALL
instruction. DBF is controlled with the SEL MBO and SEL MBI instructions. SEL MBO
replaces DBF with 0, and subsequent JMP or CALL instructions will have destination
address of 0-7FF16. SEL MBI replaces DBF with 1, and JMP's and CALL's will have
destinations of 80016- FFF16.

6-11. Assembling JMP and CALL Instructions

With the JMP and CALL instructions, three bits of the destination address (next Program
Counter contents) are included in the hexadecimal object code for the particular instruction
involved. These bits are Program Counter bits 10,9, and 8. They specify any 256 byte page
of Program memory in either of two Program Memory banks, 000-7FF 16 or 80016- FFF 16.
To determine which page of the given memory bank the destination lies in, take the full
address (OOO-FFF16) and subtract 80016 from any address which is 80016 or greater. The
resultant page number indicates the proper JMP or CALL instruction's object code.

The precise manner in which the JMP and CALL instructions operate is discussed in
Paragraphs 3-8 and 3-9, and the MCS-48 Microcomputer User's Manual.

6-12. Care and Feeding of EPROMS

At a certain point in program development you will make the decision that the process is
complete: that is, you will have verified that the program works as designed. Hopefully you
will already have attempted a certain number of dry runs under' 'dummy" parameters, in an
att.!mpt to force the program into some sort of fluke under extreme conditions; perhaps it
will only be a random and arbitrary selection of parameters. Now it is time to commit the
proven program to non-volatile EPROM, either the lk resident on the 8748 processor, or
possibly the 2k 8755 EPROM Program Memory and I/O Expander device.

To do this, carefully insert the chip in the Programming socket with the marked pin on the
chip next to the numeral "1" on the Prompt's panel insuring proper orientation. There are
numerous cautions to observe while doing so. In the first place, never insert a processor into
the Programming socket unless a second processor (such as the 8035 provided with your
Prompt) is properly locked in the Execution socket. Secondly, the chips are fragile!
Dropping, twisting, or uneven pressure may break them. Also, avoid putting any pressure
on the quartz window area of the processor. Finally, as MOS devices the EPROMs are
subject to damage by static electricity contacting the pins. Never place the pins near any
metallic surface except the Prompt socket itself; and even then, discharge any residual
charges by touching your hand to the Prompt chassis before inserting the chip. At all other
times, keep the chip safe in its protective foam cushion.

The final step in EPROM programming is to execute one of the instructions for this purpose
detailed in Paragraph 5-50.

6-7

How to Use Prompt 48

6-8

If for any reason it is desired to erase a programmed EPROM to allow for reprogramming , it
is only necessary to expose it to light with wavelengths of light shorter than approximately
4000 Angstroms (ultraviolet). Sunlight and certain fluorescent lamps have wavelengths in
the 3000 A- 4000 A range. If the 8748 is to be exposed to sunlight or room fluorescent
lighting for extended periods, then opaque labels should be placed over the window, to
prevent unintentional erasure.

The recommended erasure procedure is exposure to shortwave ultraviolet light which has a
wavelength of 2537 A. The integrated dose(UV intensity multiplied by exposure time) for
erasure should be a minimum of 15 W-sec/cm. The erasure time with this dosage is
approximately 15 to 20 minutes using an ultraviolet lamp with a 12,000 p,W/em2 power
rating. The 8748 should be placed within one inch from the lamp tube during exposure.
Some lamps have a filter on their tube and this filter should be removed before erasure.

6-13. Prompt 48 Considerations

A few of the full capabilities of the MCS-48 Chip-Computer are restricted in the Prompt
environment. This is due to design tradeoffs necessary to provide the full versatility of
Prompt's features and functions. It is possible to work around these restrictions, which
disappear once the development cycle is complete and the user system stands and runs
alone, provided that you are aware of them in advance. .

Monitor Reentry Uses Stack: When the MON INT key is pressed, the monitor program
interrupts the user program, using one stack entry. If the user has calculated his stack needs
only for his own subroutines and interrupts, and has stored other data on the next available
stack location, that data will be "zapped" (overwritten) by the user program return address.

Unsupported Instructions: ANL BUS,A and ORL BUS, A will not work except in Access
Mode 3 and then only with the GO/NO BREAK command. OUTL BUS ,A can only be used
in Access Modes 0 and 3.

Monitor Reentry Code: The upper 16 bytes of the lower lk block of Program Memory
(addresses 3F016 through 3FF 16) must be reserved for the Prompt 48 Monitor reentry code.
This code is automatically placed in Program Memory by the [7] Program EPROM
command. (See Paragraph 5-50.) These bytes must also be reserved when using the RAM
Program Memory inside Prompt 48.

Access Code, P2 Map. LSN P2 Relationship: Care must be taken to insure that these three
things are in agreement, as described in Paragraph 5-13, 5-15, and 6-14.

Timer Routines: The Timer Interrupt is disabled when using the GO/WITH BREAK and
GO/SINGLE STEP commands. To debug timer routines, insert JTF (Jump if Timer
Flag = 1) in the program loop.

6-14. Hardware Considerations

In expanding either Program or Data Memory, the first step is to define how the expanded
memory is to be partitioned, i.e., Program vs. Data. In your final MCS-48 design,
processor control signals will distinguish Program Memory accesses from Data memory
accesses: PSEN/ signals instruction fetches from Program Memory, and RD/ and WR!
signal accesses to Data Memory. Thus your final design will be a "Aiken" machine, with
separate Program and Data Memory (see Chapter 3).

However, during debugging you may find a "von Neumann" machine to be useful,
particularly if you are expanding Program Memory. While checking out software you need
to easily load and modify all of Program Memory, 1 k or more. Expansion Program and Data

Prompt 48

Prompt 48 How to Use Prompt 48

-POWR
+UP2-2
+UP2-3
-UPSEN
-URD

+UPO-O
+UPO-l
+UPO-2
+UPO-3
+UPO-4
+UPO-5
+UPO-6
+UPO-7

+UALE

-UWR

+UP2-0
+UP2-1

Memory may be joined into a single, all-RAM store-though Program and Data addresses
may not overlap. In hardware, you must now AND the PSEN/ and RD/ signals to form what
we'll call EXRD/ (expansion read). This signal selects the expansion RAM whenever an
instruction is fetched from expansion Program Memory or when an expansion Data
Memory location is read.

A design for such "von Neumann" expansion memory is shown in figure 6-2. Table 6-1 is a
list of the pin functions on the 1/0 Ports and Bus Connector (11) on the front panel of Prompt,
necessary for the proper configuration of ribbon cable between the user system and Prompt.

~GROUND

I~~RO:EXTERNALSOURCE

+ +5

~22 I'f
74LS139 '33

~ 2 A II~ fJ !--- 3 B 1 5

"is ~ 2~ "9

~'
3pZ-L...-

r;] 3 • Il 4 ~ 3 1
~ 5 1 6 ~ 6 1 8212 1
~ 7 2 2 8

-- 2
~ 9 3 3 10 12

~ 16 4 DI DO 15 13
4 rv 18 5 5 17 74LS10

rn 20 6 6 19 8 e- 22
7 21 19 7

L...-

1111~ 14 13
13

+5

J 11
Al0 8),10 8),10 68 610 68610 68 610 8

WE CS WE CS 15
All

6
A1

7
A2
A3

4

3

2114
A4

2
A5

1
A6
A7

17

A9 ~
1/0 1/0 A8 ~

1 2 3 4 1 2 3 4

I I 1111 14rr2111
14 13 12 11

4

4

7

5 ~ t.--.
I/O PORTS AND BUS CONNECTOR

Figure 6-2. Design for "von Neumann" Expansion Memory

I"'"-

6-9

How to .Use Prompt 48

6-10

Table 6-1. Pin List for I/O Ports and Bus Connector

Signal Name Pin No. Buffer Characteristic

BUS (0) 17
(1) 21
(2) 25
(3) 29
(4) 31 3-STATE BIDIRECTIONAL
(5) 27
(6) 23
(7) 19

PORT 1 (0) 18
(1) 20
(2) 22
(3) 24 8748 PSEUDO BIDIRECTIONAL
(4) 26 CHIP (NO BUFFER)
(5) 28
(6) 30
(7) 32

PORT 2 (0) 7
3-STATE MAPPED BIDIRECTIONAL

(1) 5 with 100 n IN SERIES
(2) 3
(3) 1

PORT 2 (4) 4
(5) 6 8748 PSEUDO BIDIRECTIONAL
(6) 8 CHIP (NO BUFFER)
(7) 10

+ALE 13 TTL OUTPUT (10
+TO 14 CHIP BIDIRECTIONAL (CLOCK), 2.2K Pullup
+T1 12 CHIP INPUT, 2.2K input

-INT 49 1 TTL LOAD (MON. GATED)
-PSEN 15

-RD 9 TTL OUTPUT (10 LS LOADS)
-WR 11

-PO WRITE 33 TTL OUTPUT (5 LS LOADS)
-PROG 2 CHIP OUTPUT (NO BUFFER)

-RESET 16 CHIP INPUT/OUTPUT (SYS RESET OVERRIDES), 2.2K pullup
GND 45,46 Ground

47,48

6-15. Data Memory Considerations

Prompt 48 has 256 internal Data Memory locations, not including the 64 on-chip Register
Memory locations, accessible to you as "External Data Memory," via the MOVX instruc­
tions. These 256 bytes of external data memory - inside the Prompt box - will be accessed
by MOVX instructions whenever LSN P2 is less than or equal to 3. That is, external data
locations 0 will be accessed by addresses 0, 10016 , 20016, or 300. Accesses to 400 and
beyond will be outside the Prompt box (except in Access = 2, 5).

For a fuller treatment of the vital P2 subject, see the appropriate subsection below.

6-16. Using and Expanding Prompt 48 1/0 Ports

All VO pins of the EXECUTION SOCKET processor are accessible via the VO PORTS
AND BUS CONNECTOR (see Table 5-1). Some lines are buffered inside the Prompt, and
therefore differ somewhat from a standalone MCS-48 device.

The connector pins designated port 1 are not buffered; they are connected directly to the
EXECUTION SOCKET computer.

Prompt 48

Prompt 48 How to Use Prompt 48

The connector pins designated port 24 through 27 are not buffered; they are connected
directly to the EXECUTION SOCKET computer. However, the pins designated port 20
through 23 (the LSN P2) are buffered. Ordinarily the P2 MAP function [2] specifies
whether the lines of port 2 are to be used as input or output. The map enables appropriate
port 2 buffers, and allows you to examine/modify port 2 ("register 47") from the Prompt
panel. The default for P2 MAP is that all lines be output. Important: Do not confuse the P2
MAP with the port itself (register 47). They are entirely different.

If LSN P2 is to be used as input, you must map it accordingly, and execute from on-chip
program memory only (lKorless), ACCESS = 3 or5. The MSNP2 can be input whenever
it is so mapped.

The Prompt does not usually allow any P20-P23 pin to be both input and output. The one
exception is using an 8243 I/O expander (and ACCESS = 1, 4). Then Prompt ignores P2
MAP and automatically switches the LSN P2 buffers between input and output, as signalled
by the PROG pin.

The connector pins designated BUS 0 through 7 (also known as port 00 through 07) are
buffered. In access codes 0 and 3 will latch. These lines will be latched outputs. No inputs
are allowed, and memory may not be expanded outside Prompt box. The MCS 48 processor
can, however, execute monitor programs or user programs from writable program memory ,
and these bus transactions do not appear on the latched PORT O. Only the OUTL PO
instruction or any instruction generating writes (WR) will alter the latched BUS (PO)
contents; ANL PO and ORL PO instructions have no effect.

If you are using BUS for input, for strobed output or for expansion memory (and memory­
mapped I/O) then you will select access 1, 2, 4 or 5. Prompt requires that LSN P2 >3 for
access outside the Prompt box, including input, strobed output expansion memory and
memory-mapped I/O.

Prompt provides a signal called -POWR which goes low whenever Prompt's port 0 latch
buffers are driving out of the box. You may use this signal to disable any of your user system
bus drivers which might be driving into the Prompt box.

6-17. P2 Map, LSN of P2, Access Code Considerations

P2, or Port 2, is one of the MCS-48 processor's three 8-bit parallel I/O ports. It acquires
special significance because it is used to output the Most Significant 4 address bits of
transactions with both Program Memory and Data Memory (the 8 Least Significant bits of
the 12-bit address are provided by the BUS port). Only the Least Significant Nibble ofP2 is
required for this purpose; thus the numerous references in this manual to LSN of P2
considerations.

The P2 Map is given by the user through a panel command (see Paragraph 5-15) to establish
the signal direction on a pin by pin basis within Port 2. (The default condition is' 'output.")
The Most Significant Nibble ofP2 may be freely mapped as "input" or "output" according
to the user's needs. But because of the Prompt 48 environment, the LSN P2 Map could
compete with Prompt's drivers under certain Access Modes. This requires explanation on a
mode-by-mode basis:

6-18. Modes 0, 2, or 5: Map LSN as Output. LSN pins are used in these modes by the
Monitor to select various internal memories of the Prompt 48 and therefore must not be
affected by input devices. Referring to Figure 6-3, we can see the data path is P2, H, J, K.1f
LSN is mapped input, data path n, A, D, G, H could foul things up.

6-11

How to Use Prompt 48

EXECUTION
CPU

6-19. Mode lor 4: Mapping is Don't Care. LSN is used by the user to select various
external memories, VO chips, and/or 8243 Port Expander chips he may have connected to
11. Being select lines, the LSN function will always be output except if using an 8243 Port
Expander. In Figure 6-3 the path is H, G, B, E, 11, The LSN mapping mechanism is actually
bypassed in these modes and is therefore immaterial. If it is mapped as output, the contents
are saved by the monitor during debug. If using an 8243, on a MO VD A, Pn command, the
path switches to 11, F, B, G, H.

6-20. Mode 3: Mapping May Be Input or Output as the User Requires. In this mode
we are running a program less than 1 k long which resides on the processor chip. With Input
mapping the path is J1, A, D, G andH. With Output mapping the path is P2, H, J, C, A, J1.
You might notice that if the Monitor takes control (due either to single-step, with-break, or
Monitor interrupt pressed) the last data on the 4-bit latch is held and the P2 Map is
temporarily switched to Output. Again, this is to prevent possible input lines from affecting
the internal memory select lines.

® 4

P2
LSN

TO INTERNAL
PROMPT 48
BUSSES USED
IN MODE 0 or 2 ~--~--I

® 0

6-12

4 BIT
LATCH

MON'ALE

@

I
/ /

/P2 MAPPED
INPUT

P2 MAP
(BIT SELECTABLE)

MODES 0, 2, 3, 5

Figure 6-3. PROMPT 48 Port 2 Bus Structure

Prompt 48

J1

Prompt 48 How to Use Prompt 48

6-21. LSN P2 Considerations. Prompt 48 is designed to automatically select the correct
program memory: addresses 0 to 3FF (1 K-1) are inside the box, either on-chip EPROM or
its writable substitute. Addresses 400 to FFF (lK or greater) are to expansion memory,
which you provide outside the box. The correct memory is automatically selected by using
the LSN P2 as an "inside/outside resource switch".

IfLSN P2 ~3 « 1K), then all accesses are to resources inside the Prompt box. If LSN P2
>3 (~ 1K), all accesses are to resources outside the Prompt box.

6-22. Using the Serial I/O Port

Prompt 48 is shipped from the factory with its default options strapped for use with the
Prompt-SPP Option, but may alternatively be strapped for 20-mA current loop Teletype­
writer terminal or for any RS232c-compatible terminal.

The Serial VO Interface communicates with an external VO device via a 26-pin double-sided
PC edge connector (12),0.1 inch centers. An external device can be connected to 12 using a
3M 3462-0001 flat cable connector or one of the following soldered connectors: TI
H312113 or AMP 1-583715-1. Table 6-2 provides a pin list for connector 12.

Expansion program memory is automatically selected by the most significant nibble of PC,
which is strobed through LSN P2 during program memory fetch (PSEN/). However,
expansion data memory (or memory-mapped VO) which is outside the Prompt box will be
selected only if LSN P2 >3. That is, if either P22 or P23 = 1.

For example, to access data memory outside the Prompt box (MOVX) you may need to
insert in your program LSN P2 >3. (If LSN P2 ~3, MOVX will access the external data
memory inside the Prompt box.)

When your MCS 48 system finally stands alone, without Prompt, the LSN P2 requirement is
obviated.

From the Prompt 48 panel you can [EXAMINE/MODIFY] [PROGRAM MEMORY] in the
range 400-FFF. Prompt's monitor will generate reads (RD) and writes (WR) to whatever
expansion devices - program memory, data memory, or memory-mapped VO - are
addressed by the 12 bits LSN P2 BUS. The [EXAMINE/MODIFY] [DATA/MEMORY]
button only accesses the 256 bytes external data memory inside the Prompt box.

Table 6-2. Connector J2 Pin Connections

Pin Pin

1 CHASSIS GND 2 +5V (if 31-32 strapped)
3 TRANSMITTED DATA 4
5 RECEIVED DATA 6 TTY RD CONTROL
7 REQ TO SEND 8
9 CLEAR TO SEND 10

11 DATASET READY 12
13 GND 14 Tx ClK/DATA TERMINAL RDY
15 DATA CARRIER RETURN 16 TTY RD CONTROL RETURN
17 18
19 20
21 22 RECEIVE ClK/TTY Rx
23 TTY Rx RETURN 24 TTY Tx RETURN
25 TTY Tx 26 GND

6-13

How to Use Prompt 48

6-14

Table 6-3. Serial I/O Port Strapping Options

Prompt-SPP TTY RS232

1-2 (J2-1 = GND) 1-2 1-2
3-4 (J2--B = RD CNTL) 3-4 4-5
6--7 (J2-14 = DSR) 6--7 6--7
9-12 (RTS = CTS) 9-12 9-12
10-11 (J2-7 = Always 10-11 10-11

CTS High
14-15 (TXC = RXC) 14-15 14-15
17-18 (J2-23/32) 17-18 16--17
19-20 (2400 BAUD) 19-20 See Table 6-4
21-27 (2400 BAUD) 21-25 See Table 6-4
31-32 (J2-2 = +5V) Disconnect Disconnect 31-32

31-32
All others Disconnected

CAUTION: Unrelated to the serial interface may be a jumper from 29-30. This must
remain untouched at all times.

Table 6-4. Baud-Rate Selection

Baud Rate Strapping Connections

4800 21-26 (19 &20 DON'T MATTER)
2400 21-27 (19 & 20 DON'T MATTER)
1200 21-28 (19 & 20 DON'T MATTER)
600 21-22 (DISCONNECT 19 & 20)
300 21-23 (DISCONNECT 19 & 20)
150 21-24 (DISCONNECT 19 & 20)
75 21-25 (DISCONNECT 19 & 20)
11 0 (TELETYPE) 21-25 AND 19-20

6-23. Interfacing to a Teletypewriter

The teletypewriter must receive the following internal modifications and external connec­
tions, for use with the Prompt 48.

6-24. Internal Modifications. Complete the following internal modifications.

a. The Current sQurce resistor value must be changed to 14501'1. This is accomplished by
moving a single wire (see Figure 6-8).

b. A full duplex hook-up must be created internally. This is accomplished by moving two
wires on a terminal strip (see Figures 6-6 and 6-10).

c. The receiver current level must be changed from 60 rnA to 20 rnA. This is accomplished
by moving a single wire (see Figures 6-7 and 6-10).

d. A relay circuit must be introduced into the paper tape reader drive circuit. The circuit
consists of a relay, resistor, a diode, a thyractor and a suitable mounting fixture. This
change requiresthe assemblyof a small' 'vector" board with the relay circuit holes in the
base plate (see Figure 6-4). The relay circuit may then be added without alteration of the
existing circuit (see Figures 6-4 and 6-6). That is, wire "A" (Figure 6-10), to be
connected to the brown wire near its connector plug. The "line" and "local" wires must
then be connected to the mode switch (see Figures 6-6 and 6-10).

Prompt 48

Prompt 48 How to Use Prompt 48

6-25. External Connections. Complete the following external modifications.

a. A two-wire receive loop must be created. This is accomplished by the connection of two
wires between the teletypewriter and the Prompt 48 in accordance with Figure 6-10 .

b. A two-wire send loop similar to the receive loop must be created.

c. A two-wire tape reader loop connecting the reader control relay to the Prompt 48 must be
created.

Figure 6-4. Relay Circuit (Alternate) Figure 6-6. Mode Switch

Figure 6-5. Distributor Trip Magnet Figure 6-7. Terminal Block

6-\5

How to Use Prompt 48

6- 16

MODE
SWITCH

MOUNT

REED
RELAY

CAPACITOR

CURRENT

SOURCE
RESISTOR

POWER

SUPPLY

TERMINAL

STRIP

Figure 6-8. Current Source Resistor

TOP VIEW

~~ ~I KEYB----,OARD

~® PRINTER UNIT

DISTRIBUTOR

TRIP MAGNET

ASSEMBLY

[;J ~OTOy

Figure 6-9. Teletypewriter Layout

TAPE

READER

TAPE

PUNCH

Prompt 48

Prompt 48 How to Use Prompt 48

UNLESS OTHERWISE SPECIFIED BLU

CUSTOMER EXTERNAL CONNECTIONS c=:
I

ITEMS WITHIN DASHED LINES REPRESENT CUSTOMER
REOUIRED MODIFICATIONS

1M IS INTERNAL MODIFICATION

EC IS EXTERNAL CONNECTION

REAR PNL
AMP (J4)

FULL DUPLEX

RECEIVE

SEND

TAPE
READER

CONTROL

8

"ALTERNATE CONTACT PROTECTION CIRCUIT

~ 14~0!! 1/2W

L IO.1200V

TERMINAL BLOCK 151411 e
9

8

6

5

4

3

2

0

VIO 20 rnA

VEL ~ 60 rnA
---------------~

BLK/GRN

WHT/BRN

RED/GRN
WHT/VEL
WHT/BLK
WHT/BLU

BRN/VEL

GRN
RED

GRY
WHT/PED
BLK
BLK

WHT
WHT

FULL DUPLEX

CONNECTOR

GE r-' I
6RS20- I I I

e

111 VAC

SP4B4 I I: 0.11 pF 470l!

~ POTTER & BRUMFIELD I I - - - - - ---,
2 I RELAV I ~-------., I

I I -- I I 8M4 II {12VDc.600HCOIL II --II I
JR· 1005 lA

NORMAL CONTACTS I I
I OPEN L____ __. I
I I
~--------------~ ______ J

MODE SWITCH
(FRONT VIEW)

Figure 6-10. Prompt/TTY Wiring Diagram

"LOCAL"

6-17

How to Use Prompt 48

6-18

6-26. Questions Most Often Asked

6-27. Use of INS A, BUS.

At the chip level, the MCS-48 BUS port was designed to work in one of the following
configurations, not in a combination of these modes.

CONFIGURATION

1) Bi-Directional

2) Uni-Directional

3) Uni-Directional

IN/OUT

both

out

in

COMMAND

MOVX

OUTL

INS

In all 3 configurations, command RD/ and WR! is produced but is not generally used on the
INS and OUTL.

PROMPT 48 supports the first and second configurations completely: bi-directional, using
access mode 1 or 4 and uni-directional output using access mode 0 or 3.

The INS command can be used by doing the following:

a. Use access mode 1 or 4

b. Set (Drive High) port 2 line 2 or 3 (explained in #8 below)

c. Strobe the data onto the bus with the RD line (Figure 6-11).

8212

PROMPT 48 (8)

~----------__ ~aDS1
RD

Vee

I ____ ---1

Figure 6-11. Strobed Data Input

(8)

USER'S EXTERNAL
SYSTEM

Prompt 48

Prompt 48 How to Use Prompt 48

Figure 6-12 shows the reason for the above steps. Access mode 1 or 4 enables a bi­
directional driver and tri-statesa latch that holds the data on an OUTL Bus,A command.
Setting P22 or P23 deselects internal PROMPT 48 memories. Data must be strobed onto the
bus or else the inputs would fight the 8216 drivers which are driving out when RD is
inactive.

6-28. RAM And 1/0 Selection

On MCS-48 systems, the MO VX command is used for data and I/O transfers with RO or R 1
as a pointer. The addressing capability is then limited to 1 page (256). This is expanded to
4K by using P20-23 , decoded to 16 page selects. Internally the PROMPT 48 requires the
first lK addresses, i.e., P22 and 23 low. There are 2 consequences ofthis:

a. To access the 256 byte user RAM that's inside the PROMPT 48, the user program must
output O's to P22 and 23. (drive low). P20 and P21 are 'don't care'.

b. To select data and I/O that has been bussed to J 1, either P22 or P23 has to be driven high
(logic 1). This deselects any internal memory.

Summarizing the above:

Internal
Prompt 48

External
Selection
(Mode 1 or4)

EXECUTION
CPU

A11
P23

0

n

A10 A9
P22 P21

0 X

1 X
0 X
1 X

A8 A7
P20 •

X

X
X
X

A6 AS A4 A3
(RD)
(R1)

TRI-STATES IN
/MODE10R4

A2 A1 AO

Jl

BUS
'\
I
I
I
I
I
I
I
\

8 BIT
LATCH 1...--_-1

I

TO ~ INTERNAL
PROMPT 48

BUSSES

1
PATH CLOSED IF

P22 AND P23 ARE LOW

C5

,-------------

I
I
I
I

8216 I
I ---_._-/

Figure 6-12. Data Path Within PROMPT 48 Using INS A, BUS

6-19

How to Use Prompt 48

6-20

6-29. TTY and CRT Peripherals Are Used Only For Dumping Or
Reading Paper Tape

The keyboard input is not a substitute for the keypad on the PROMPT 48.

6-30. Speed Degradation Occurs When "GO WITH BREAKPOINTS".

This is due basically because the operation is a replica of single-stepping. This means that
after every instruction the monitor re-takes control, saves the processor state, checks the PC
against the eight breakpoints, then restores the processor state and goes back to the User
mode. - If your program has timing loops in it, the speed of execution will be substantially
lengthened.

6-31. When Using PROMPT 48 System Calls, Do Not "GO WITH SGL.
STEP" Or "GO WITH BREAKPOINT"

The monitor is like a lot of us; it does not handle self-examination very well!

Do not try to read the program from an 8048 through the PROMPT Program­
ming Socket. It is meant for EPROMs only!

Prompt 48

APPENDIX A
A FAMILIARIZATION EXERCISE

Voltage Selection

Check the voltage selection switch visible on the PROMPT rear chassis. Ensure it is set to
your local mains (line) voltage; if not, open the PROMPT box and remove the switch,
locking plate, set to proper voltage, and reinstall. If you change the switch setting you
probably should change the fuse. Plug the unit in and tum power on (switch is on rear
chassis).

Handling The Processor

Carefully remove either processor (8748 or 8035) from the conductive foam. The proces­
sors are mechanically and.electrically fragile, and will shear through the chip and package if
dropped. Do not apply uneven pressure to the processor-for example, pushing on the lid or
even on both ends of the package can destroy your processors.

Insert In Execution Socket

Pull EXECUTION SOCKET locking arm up towards you. Insert either processor in
EXECUTION SOCKET, and lock in place by pushing locking arm flush with panel.

Reset The System

Press [SYS RST] to reset system. ACCESS = 0 should appear on display. If not, try
repeating the above steps with the other processor, and notify your Intel service center or
representative of the problem.

INTEL SERVICE HOT LINES:

From locations within California call toll free­
(800) 672-3507

From all other U . S. locations call toll free­
(800) 538-8014
TWX: 910-338-0026
TELEX: 34-6372

From Alaska, Canada or Hawaii call­
(408) 987-6218

From Europe call-
(322) 72-3565
TELEX: 846-24695

A-I

A FamiHarization Exercise

A-2

There are six access codes, numbered 0 to 5. Whenever you power uporreset the PROMPT
system, ACCESS will be set to O. We will explain how to change ACCESS codes and why
they are useful momentarily.

Your PROMPT 48 system is fundamentally different from all other computers: This is the
first time the processor has been outside the box. You can safely remove the processor(s)
from the panel sockets at any time, provided a processor is properly inserted in the
EXECUTION SOCKET whenever you insert or remove a processor from the PRO­
GRAMMING SOCKET.

Always insert the EXECUTION SOCKET processor first, and remove the PROGRAM­
MING SOCKET processor first.

The EXECUTION SOCKET processor is always executing either the monitor or your (user)
programs. When ACCESS = 0 or the prompting" -" hyphen character appears, then the
monitor is ready to accept COMMANDS or FUNCTIONS.

Let us first exercise the monitor COMMANDS. Notice that the command buttons have been
color-coded white and blue. Throughout this exercise each bracket pair [] is a button to be
pressed.

Mnemonics enclosed in braces, e.g., {SMA} or {DIR} are parameters, usually self­
explanatory, such as SMA Starting Memory Address, or DIR, Direction. You have to push
two or three hex buttons for each parameter.

Examining .and Modifying Registers

Press [EXAMINE/MODIFY] [REGISTER].

Now you may enter any number (address) of any register you wish to examine and/or
modify.

Press [0] for register O.

Now press NEXT [']-the comma button-to "open up" register location O. The contents
(random) are displayed.

Now notice you can "roll in" any data that you want in that open register. Press [0].
Suppose you want 1. Press [1]. Suppose you want 22. Press [2] [2].

The monitor allows you to roll data into any location as long as it is open. A location is open
until closed by terminating the command (press [.]EXECUTE/END) or by opening some
other location.

There is an easy way to open and close locations in succession.

A prompting hyphen character" -" should now be displayed. If not, press [.]EXECUTE/
END. Open register location 0 again-press [EXAMINE/MODIFY] [REGISTER] NEXT
[,]. The data you left in register 0 (22?) should appear.

At this point you have opened register O. To open register 1 (and close 0) simply press
NEXT [,]. To open 2 and close 1 press NEXT [,] once again. To go backwards, opening
previous locations, press [PREVIOUS]. Press [PREVIOUS] again. Register 0 should be
open now. Close it by terminating the command [.]EXECUTE/END.

Prompt 48

Prompt 48 A Familiarization Exercise

The MCS-48 has 64 registers, numbered 0 to 3F hexadecimal. All PROMPT 48 addresses
and data are entered and displayed in hexadecimal. There are some special purpose
locations, such as the accumulator, which we have assigned register numbers:

Number Location Format

40 ACCUMULATOR
41 TIMER

Icy I AC I FO I BS I F1 I s21 S1 1 So 1 42 PSW
43 PCL
44 PCH
45 PORT 0 (BUS) READ-ONLY
46 PORT 1 READ-ONLY
47 PORT 2
48 MISC Icounter I Timer I Timer I Nested I Will I Mem I T1 I TO I

Run Run Flag Fr Int En Int Bank

Note that the PSW (register 42) as EXAMINE/MODIFied from the Prompt panel includes
the Flag 1 F1 test bit. It's been added for ease of debugging. The real MCS-48 PSW as
accessed by your program does not contain Fl.

Note that ports 0 and 1 (registers 45, 46) cannot be modified by EXAMINE/MODIFY.
These can only be read.

The bits of MISC (register 48) require explanation:

COUNTER RUN-if your program uses the MCS-48 timer/event counter as an event
counter you must manually set this bit to "1". Otherwise PROMPT assumes you will use
the timer/event counter as a timer. Your program should still use STRT CNT, STRT T, and
STOP TCNT instructions as usual. The COUNTER RUN bit is the only way the PROMPT
monitor can tell whether you are using the EVENT COUNTER instead of the TIMER. It
allows the monitor to properly suspend and restart the timer/event counter when a "break"
occurs.

The transition from user program to monitor program is called a "break." During breaks the
PROMPT monitor takes pains to save the state of the broken user program so that it can be
restored if you resume execution.

For example, TIMER RUN will be set 1 on break if the timer is running. If you clear this bit
to 0 the timer will not be restarted when execution is resumed. You should not need to
change this bit.

TIMER FLAG allows you manual!y to examine and modify the timer flag.

NESTED FROM INTERRUPT will be set to 1 if you have broken during a routine servicing
a monitor interrupt. This bit is used for monitor housekeeping, and ordinarily should not be
changed.

WILL ENABLE INTERRUPT-The monitor sets this bit to 1 if it will enable interrupts
when you resume execution. You should not need to change this bit.

MEM BANK is the memory bank select bit, the high order bit address bit for fetches from
program memory.

Tl and TO are the test inputs (READ ONLY).

A-3

A Familiarization Exercise

A-4

Correcting Errors (Clear Entry)

If you ever enter wrong COMMANDS, HEX DATA or FUNCTIONS you can easily
correct it. Of course, if a location is' 'open" (as in EXAMINE/MODIFY) you merely roll in
data until you are satisfied it is correct. At these times-when a location is "open"-the
PREVIOUS button will open the previous location.

But notice the PREVIOUS button is also labeled CLEAR ENTRY. At all other times,
whenever a location is not "open", pressing CLEAR ENTRY will abort a command or
clear an error. Thus the CLEAR ENTRY/PREVIOUS button does double duty, and it does
what makes sense.

For example, press

[EXAMINE/MODIFY] [CLEAR ENTRY].

Press [EXAMINE/MODIFY] [EXAMINE/MODIFY] [CLEAR ENTRY].

Press [EXAMINE/MODIFY] [REGISTER] [CLEAR ENTRY].

Whenever the monitor detects an error, such as Ud (undefined function) it will spell' 'Err"
and is ready to accept new commands with the next keystroke.

Examining And Modifying Program Memory

Besides the 64 registers there are lK bytes of EPROM program memory on the 8748 chip.
This program memory is erasable, programmable read-only memory. It is non-volatile, and
can be programmed in seconds, but it requires several minutes to erase.

To speed your design efforts, 1 Kbyte of RAM (read-write) program memory has been
provided on the PROMPT system. This can be used in place of the on-chip EPROM
program memory. It is volatile, but can be quickly and conveniently examined and
modified.

For example, press

[EXAMINE/MODIFY] [PROGRAM MEMORY] starting at location
[0] NEXT [,].

Program memory location 0 is now "open" and any instruction can be rolled in. The code
for increment accumulator (INC A) is 17. Enter it. Press

[1] [7] NEXT [,].

Now enter the instruction "jump to 0", whose codes are 04, 00.

Press [0] [4] NEXT[,] [0] [.]END.

You have entered a simple program. To verify it, again open up program memory location 0
and step through the next locations.

Press [EXAMINE/MODIFY] [PROGRAM MEMORY] [0]

NEXT[,]
NEXT[,]
NEXT[,].

Prompt 48

Prompt 48 A Familiarization Exercise

Note you can step backwards, as with registers; Press

[PREVIOUS]
[PREVIOUS]
[PREVIOUS]

and then [.]END the command.

We will run the simple program momentarily.

Examine/Modify Data Memory

The 64 registers on each MCS-48 chip are the primary "register memory" for data. But
should more data memory be required your MCS-48 system may be expanded with
.. external" data memory.

The PROMPT system provides 256 such external data memory locations number O-FF.
You can examine and modify them by pressing

[EXAMINE/MODIFY] [DATA MEMORY]

[0] NEXT[,]

which opens location O. You can roll in data and step through the next or previous locations
as with the other EXAMINE/MODIFY commands.

MCS-48 manuals refer to such data memory as "external" because it is outside the chip
computer. But 256 bytes of this memory are inside the PROMPT box. Thus we will refer to
the external data memory inside the PROMPT box.

You can add more data memory than the 256 bytes provided in PROMPT. Simply interface
expansion memory to the I/O ports and BUS CONNECTOR, at address 1K (40016) or
greater. Then this expansion data memory is examined and modified by the [EXAMINE/
MODIFY] [PROGRAM MEMORY] keys, and appropriate addresses.

Access Codes [A]

Now we can explain the ACCESS codes, and run the program just entered in writable
(RAM) program memory.

ACCESS codes allow you to specify

a. which program memory you will use, either WRIT ABLE (RAM) in the PROMPT
box or READ ONLY (ROM/EPROM) on the CPU chip

b. how you will use Port 0 (BUS). It can be used either
1. as a port, latched on output. Under this access OUTL PORT 0 would work;
2. as a bus, to address expansion memory and I/O outside the PROMPT box; or
3. as a bus, to address the PROMPT system monitor memory and I/O devices. This

mode would be used if your user program wanted to talk directly to the PROMPT
keyboard, displays, or serial channel. A listing of the system monitor routines and
their use is in Appendix B.

The first two uses of Port 0 (as latched port or outside expansion bus) will be more common.
Of course, programs can be run from READ ONLY (on-chip) memory or from its
WRIT ABLE (RAM) replacement.

A-5

A Familiarization Exercise

A-6

The access codes are summarized:

Access Program System I/O and Expansion OUTl
Code Memory System Calls Memory and I/O Port 0

0 WRITABLE (RAM) no no yes
1 WRITABLE (RAM) no yes no
2 WRITABLE (RAM) yes no no
3 READ ONLY (ON CHIP) no no yes
4 READ ONLY (ON CHIP) no yes no
5 READ ONL Y (ON CHIP) yes no no

You can change access codes (or enter any other system commands or functions) whenever
the power-up message "ACCESS=O" or prompting hyphen "-" appears.

Here's how. Press [A] [1] [.] END. You have selected ACCESS code 1.

Press [A] [0] [.] END to return to ACCESS code O.

P2 Map [2]

Just as ACCESS CODES establish how Port 0 (BUS) will be used, the Port 2 MAP
command establishes the DIR (direction) of each Port 2 line. The bits ofDIR map each line
of Port 2: IN=l, OUT=O.

[2] {DIR} [.]

On power-up and [SYS RST] the monitor assumes all lines should be output, and therefore
clears the P2 MAP to zero.

Recall that MCS -48 processors use the least significant nibble (LSN) of Port 2 to address
off-chip (expansion) program memory and I/O ports. Thus the LSN P2 MAP, the contents
of LSN P2 and the ACCESS code are related.

If you have selected expansion memory and I/O (ACCESS = 1 or4) then the MAP for LSN
P2 is ignored because LSN P2 must be bidirectional to work with the 8243 I/O expander.
PROMPT detects when signals must flow in or out through LSN P2, and switches buffer
drivers accordingly.

At any other time that you access off-chip resources-whether writable program memory,
external data memory, or expansion I/O-the LSN P2 should be mapped output. Thus if
ACCESS = 0 or 2, the P2 MAP should be XO, where X is user-defined.

Said another way, LSN P2 can be used as input and mapped input only if ACCESS = 3 or 5
and certain cautions about its contents are observed. We recommend that you use and map
LSN P2 as input only if PO (bus) is always output, that is if your program is less than 1 K
bytes and on-chip, in EPROM. PROMPT monitor calls, PROMPT system I/O, and
accesses to data memory should not be done.

Think of LSN P2 as an inside/outside resource switch. If the LSN of Port 2 is ~ 3,
corresponding to ~ 102310, then all memory accysses are inside the PROMPT box, to

a. The on-chip program memory, or

b. its writable program memory replacement, or

c. the 256 bytes "external" data memory ("inside" the box).

Prompt 48

Prompt 48 A Familiarization Exercise

If the LSN of Port 2 is greater than 3, corresponding to > 1023 10, the accesses are to

a. Port 0 as an input/output port (ACCESS = 0, 3), or

b. program memory, data memory, or I/O devices outside the PROMPT box
(ACCESS = 1,4), or

c. system monitor program memory and memory-mapped system I/O devices inside the
PROMPT box (e.g., PROMPT serial channel) (ACCESS = 2, 5).

There are some subtle implications. For a program to access the external data memory inside
PROMPT, ensure LSN P2 ~ 3. To input on Port 0, ensure LSN P2 >3.

Remember, LSN Port 2 can be set several ways, by

a. manually [EXAMINE/MODIFY]-ing [REGISTER] 47 (Port 2);

b. executing an OUTL P2, ORL P2 or ANL P2 instruction;

c. allowing the program counter to exceed 3FF (1023 10), When PC ~ 400 then program
fetches are off-chip. The processor strobes the most significant PC nibble (e.g., 4)
through least significant P2 nibble.

Executing Programs (Go No Break)

There are three ways to run a program. See the white-color-coded COMMANDS:

[GO] [NO BREAK]
[GO] [WITH BREAK]

and [GO] [SINGLE STEP).

Let's run the simple program we entered in writable program memory.

000 INC A
001 JMP 0

First examine the accumulator. Press

[EXAMINE/MODIFY] [REGISTER] [4] [0] NEXT [,]

and remember its contents. Close the accumulator.

[.] END

Now enter [GO] [NO BREAK] [0] [.] EXECUTE.

The user program is running in real time, mindlessly incrementing the accumulator. Stop it.
Press [MON INT] to interrupt and break to the monitor.

Whenever a break occurs, the program counter address is displayed together with ac­
cumulator data.

You can always press [GO] [.] EXECUTE to resume execution at the current program
counter address. [MON INT] will break again to the monitor.

A-7

A Familiarization Exercise

A-8

Single Stepping Programs (Go Single Step)

Instead of running in real time, you can single-step a program. This is running as though
there were a break after every instruction.

Press [GO] [SINGLE STEP] [0] to prepare for single-stepping at location O. Each time you
press

NEXT [,]
NEXT [,]
NEXT [,] (etc)

one instruction is executed and a break occurs. Press [.] END.

As with the GO NO BREAK command, you may omit the starting address (0) and resume
single-stepping from the current program counter address. For example, press

[GO] [SINGLE STEP] (no start address needed)

NEXT [,]
NEXT [,]
NEXT [,] (etc.)

[.] END.

Setting Breakpoints (The [B] Function)

When you are debugging larger programs you will want selectively to set several break­
points. PROMPT allows you to set as many as eight breakpoint addresses.

Press the [B] function. Now open up breakpoint O. Press:

[0] NEXT [,].

Probably it will contain random numbers. You can step through the entire breakpoint table,
opening NEXT or PREVIOUS table entries by pressing

NEXT [,]
NEXT [,]
NEXT [,]

[PREVIOUS]
[PREVIOUS] and so on.

Press [.] END to terminate the command.

To clear all breakpoints, press

[B] [.] END.

Now examine the breakpoint table. Press

[B] [0]

NEXT [,]
NEXT [,]
NEXT [,]

and so on
[.] END

Prompt 48

Prompt 48 A Familiarization Exercise

Let us set a breakpoint at each instruction in our simple program. Suppose breakpoint 2 is set
at location 0, and breakpoint 3 is set at location 1. (Breakpoints 0, 1, 4-7 remain unused.)

Enter

[B] [2] NEXT [,] [0]
NEXT [,] [1]

[.] END.

Check the breakpoint table. Enter

[B] [0] NEXT [,]
NEXT [,]
NEXT [,]
NEXT [,]
NEXT [,]
NEXT [,]

[.] END.

Running With Breakpoints (Go With Break)

Now press [GO] [WITH BREAK] [0]
NEXT [,]
NEXT [,]
NEXT [,]
NEXT [,]
NEXT [,] and so on.

After each user instruction the monitor is run; the user program counter is compared with
entries in the breakpoint table. If the user PC is not at breakpoint, execution is resumed.

Of course this breakpoint checking after each user instruction requires many monitor
instructions. GO WITH BREAK runs programs about 2,000 times slower than real time.

You can selectively clear breakpoints. Pressing

[B] [3] [.] END

will clear breakpoint 3. Try

[GO] [WITH BREAK] NEXT [,]
NEXT [,]
NEXT [,]
NEXT [,]

[.] END

As with the other GO commands, the starting address is optional. If you omit it, execution
begins at the current program counter.

You are now familiar with all of PROMPT 48's commands, and a number of its functions.

Let us cover the remaining functions.

A-9

A Familiarization Exercise

A-lO

Clear Memory [C]

Allows you to clear either register, program, or data memory. Specify starting and ending
memory address.

For example:

[C] [REGISTER] [0] NEXT [,] [3] [F] [.] END

clears all 64 registers.

[C] [PROGRAM MEMORY] [0] NEXT [,] [3] [F] [F] [.] END

clears 1024 program memory locations.

[C] [DATA MEMORY] [0] NEXT [,] [1] [.] END

clears external data memory locations 0 and 1.

We compactly describe this function as

[REGISTER]
[C]--([PROG MEM]~{SMA} [,] {EMA} [.]

[DATA MEM]

where SMA is starting memory address, EMA is ending memory address.

Dump From Memory

Dumps register, program or data memory to paper tape in the standard Intel HEX FOR­
MAT. Assumes a teletypewriter has been interfaced to the PROMPT 48 via a PROMPT­
SER cable. See details in Appendix C. With this function you can prepare a paper tape
specifying your program memory pattern for volume ROM (8048) orders.

[REGISTER]
[D)-<[PROG MEM]j--{SMA} [,] {EMA} [.]

[DATA MEM]

Enter (Read) Into Memory [E]
Enters into register, program or data memory the contents of a paper tape punched in the
standard Intel HEX FORMAT.

[REGISTER]
[E]--i[PROG MEM]~{BIAS} [.]

[DATA MEM]

The HEX FORMA T includes both data and load addresses. A bias (ordinarily 0) is added to
the load addresses allowing you to offset where anything is entered.

Notice a little" r" appears when you press E. This stands for read. We have already used E
to stand for examine/modify.

Prompt 48

Prompt 48 A Familiarization Exercise

Byte Search Memory [4]

Searches REGISTER, PROGRAM or DATA memory for one byte of data with optional
mask.

[REGISTER]
[4]~[PROG MEM]~{SMA} [,] {EMA} [,] {DATA}-(H

[DATA MEM]T- , {MASK} [.]

For example, press [4].

"Sl" appears, indicating a search for one byte. Now press [PROGRAM MEMORY].
Notice "Sl" becomes "SP".

Let us search between program locations 0 and 3FF for the data pattern O. Enter

[0] [,] [3] [F] [F] [,] [0] [.]

The function should find the first zero at location 2. Other occurrences of zero may be
found by repeatedly pressing

NEXT [,]
NEXT [,]
NEXT [,]

until the ending memory address is passed or [.] END is pressed.

Think of the mask as a pattern of ones and zeroes. The ones select the bits of each byte which
will be compared; the zero-masked bit positions don't count.

Formally, search stops if a match is found, that is, for all bits

[DATA] V [MEM CONTENTS] is 0

If an optional mask is entered then only on the bit masked" 1" will the exclusive OR test be
applied.

Word Search Memory [5]

Searches REGISTER, PROGRAM or DATA memory for two bytes of data with optional
two-byte mask

[REGISTER] [.]
[5] --\[PROG MEM] 7-{SMA}[,]{EMA}{HDATA} [,]{LDATA} -<{HMASK} [] {LMASK[.]

[DATA MEM] ,

This function works like the one-byte search just described. HDATA is the high byte of
data, LDAT A is the low byte of data. HMASK is the high byte of mask, and LMASK is the
low byte of mask.

A-ll

A Familiarization Exercise

A-12

Hex Calculator [6]

[6] {DATA} [,] {DATA} [.]

This function simplifies hexadecimal arithmetic by providing you with a built-in three-digit
hexadecimal calculator.

For example, press

[6] [0] [,] [1] [.].

Both the hex sum 0+ 1 = 1 and difference 0-1 =FFF are displayed.

Press

[6] [B] [,] [A] [.]

Both the hex sum B+A=I5 and difference B-A=I are displayed.

Move Memory [9]

[REGISTER]
[9]--\[PROG MEM]t--{SMA} [,] {EMA} [,] {NMA} [.]

[DATA MEM]

This function moves blocks of register, program or data memory (with starting address
SMA, ending address EMA) to some new register/memory address NMA.

Finally, there are four PROMPT 48 functions that deal with the EPROM and PROGRAM­
MING SOCKET.

Fetch EPROM [F]

[F] {SMA} [,] {EMA} [,] {SEP} [.]

The FETCH EPROM function will fetch the contents of on -chip program memory from the
programming socket processor into a block of writable (RAM) program memory in the
PROMPT box.

The block of writable memory has starting and ending memory addresses SMA and EMA;
the starting EPROM address is SEP.

For example,

[F] [0] [,] [3] [F] [F] [,] [0] [.]

fetches the entire EPROM contents into writable program memory.

This function will signal an error if the programming socket processor is not properly
seated.

Compare EPROM [8]

The COMPARE EPROM function compares the contents of the on-chip program memory
of the programming socket processor with the contents of the writable (RAM) program
memory in the PROMPT box.

[8] {SMA} [,] {EMA} [,] {SEP} [.].

. Prompt 48

Prompt 48 A Familiarization Exercise

If the programming socket processor is properly seated this command will compare each
writable (RAM) program memory location in the range SMA to EMA with the correspond­
ing on-chip EPROM program memory in the range starting at SEP.

The hyphen "-" prompting character appears if there are no errors, otherwise the first
mismatched EPROM address and data are displayed.

Successive mismatches may be displayed by pressing NEXT [,].

Program EPROM For Debug [7]

This is the most commonly used function for MCSA8 EPROM programming. The PROM
to be programmed must be properly seated. The function first ensures that the top sixteen
bytes of on-chip program memory have been programmed with special monitor re-entry
instructions. These instructions are required to permit debugging, that is to allow transitions
from user to monitor programs, and back.

[7] {SMA} [,] {EMA} [,] {SEP} [.J.

Then it will program from a block of writable program memory (SMA to EMA) into the
EPROM (at SEP).

Each location is verified after programming, and any errors are displayed.

Program EPROM [3]

This function is similar to the function [7] PROGRAM EPROM FOR DEBUG just
described.

However, it does not ensure that the top sixteen bytes of program memory contain the
special monitor re-entry code. Unless an MCS-48 processor is programmed with these
instructions it cannot be debugged using the PROMPT monitor.

Interrupts

The user interrupt [USR INT] key traps the processor to location 3 if interrupt is enabled.
The [USR INT] key is ignored whenever in the monitor, e.g., during breaks as in
[GO] [SINGLE STEP] or [GO] [WITH BREAK].

The timer/counter interrupt, however, will properly function only in [GO] [NO BREAK].
The processor traps to location 7.

Immediately upon monitor entry (and just before exit) the [USR INT] key can be locked out
(or unlocked) via hardware. But the timer/counter interrupt cannot be instantaneously
turned on and off this way. Disabling the timer/counter interrupt (DIS TCNT!) takes finite
time. Timer/counter interrupts are random with respect to your program, and could easily
occur within the monitor before they have been disabled.

Consider jumping on timer flag instead of trapping via interrupt in the early stages of your
program development. The timer/counter operates as though it were "ON" only during
user program execution-not during breaks (the monitor program).

A-13/A-14

APPENDIX B
PROMPT 48 SYSTEM CALLS

There are 9 system calls in the PROMPT -48 monitor that allow the user to access the 24 keys
and 8-digit display of the PROMPT-48. Below are listed the entry points (for reference
purposes) and a brief explanation of each call.

Routine Name Function Address (Hex)

KDBIN Keyboard Status loop and Data 7EA

KBST Keyboard Status 7E4

KBIN Keyboard Data 7E7

REFS Refresh Display 7E2

BlK Blank Display 7DC

ENREF Hardware Enable of Interrupt Refreshing 7DF

DGSTG Display Hex Digits 7F3

DGOUT Update Display Buffer 7ED

HXOUT Decode and Update Display Digits 7FO

NOTE: All calls (except REFS) select MB1, which may necessitate programming SEl MBO after
the call. Access codes 2 or 5 must be selected to use these calls.

KOBIN (Address 7EA)

Function: Reads keyboard. If key is pressed when routine is entered, looping occurs until
the key is released and a new key is pressed. Then the character is returned in A and sets FO if
it is not a hex digit, i.e., one of the 8 control keys. Hex keys return exact hex value. Key
debouncing is done on this call.

Control Key Values

PREY = lOH
PROG = I1H
DATA = 12H
REG = 13H

Reg. used: A, RO, R6, R7, P2, FO

Reg. modified: A, RO, R6, R7, P2, FO

Parameters expected: None.

EXAM = 14H
GO = 15H
NEXT = 16H
EXECUTE = 17H

B-1

Prompt 48 System Calls

B-2

KBST (Address 7E4)

Function: Checks keyboard status. Returns

Reg. used: A, RO, P2

Reg. modified: A, RO, P2

Parameters expected: None.

C = 0 = no key pressed
C = 1 = key pressed.

NOTE

This also applies to control keys such as "GO" which means your program
may catch the "GO" key still depressed from the initiation of the program.
There is no key debouncing done on this call.

KBIN (Address 7E7)

Function: Same as KDBIN except this routine reads the keyboard directly and does no status
checking. Used with KBST above. Key debouncing is done on this call.

REFS (Address 7E2)

Function: Refreshes one 7 -segment character every time it is entered and sequences through
the entire display every 8 times. Displays decimal points from decimal point mask (see
below). This routine is generally interrupt-driven from loco 3., i.e.:

ORG3
JMP REFS

Reg. used: A, R24-R26, R30, R31, P2

Reg. modified: R24-R26, R30, R31, P2

Parameters expected: See figure B 1 below.

A. loco 38-3F: Display buffer. Contains digits to be displayed. (LED bit pattern
form. See DGSTG.)

B. loco 37:

C. loco 36:

Refresh count, i.e., which digit is to be refreshed. Updated every
time routine is called so initial value can be 1-8.

Decimal point mask. "1" bit in any orall bit positions causes the
decimal point to be displayed in the corresponding display position.

Prompt 48

Prompt 48 Prompt 48 System Calls

3F

3E

3D

3C

3B

3A

39

38

37

36

35

20

1F

18

17

08

07

00

-
-
-
-
-
-
-

-

-

-

-

-
-

DISPLAY -
DIGITS

BUFFER -
(IN LED CODE) -

-
-

REFRESH CRT

DECIMAL POINT MASK

. -

-
RB1

-

STACK

-

RBS

Figure B-1: Register Memory Map

BlK (Address 7DC)

Function: Blanks entire display.

Reg. used: A, RO, R7

Reg. modified: A, RO, R7

Parameters expected: None.

NOTE: Modifies loco 37 -3F.

ENREF (Address 7DF)

Function: Enables the automatic display refresh mechanism on the PROMPT -48 (ORs
refresh .timer into external interrupt system).

Reg. used: A, RO, P2

Reg. modified: A, RO, P2

Parameters expected: None.

B-3

Prompt 48 System Calls

B-4

DGSTG (Address 7F3)

Function: Converts hex digits into LED bit patterns and inserts thern in the appropriate
positions of a display buffer. Buffer is 8 bytes long (one for each display digit) and is located
at 38H-3FH. See Figure B-1. This routine suppresses leading zeros.

Reg. used: A, Rl, R2, R7, FO

Reg. modified: A, Rl, R2, R7, FO

Parameters expected:

A. R7: Number of hex digits to be converted

B. Rl: Address of the most significant byte where the most significant hex
digit is stored

C. RO: Address of the most significant digit in the display buffer that is to be
updated (i.e., 38 to 3F).

Typical sequence would be:

a. load hex buffer

b. CALL DGSTG

c. CALL ENREF (only done once)

d. EN I (only done once)

The next two routines are used as a part of the DGSTG routine but may be called separately.

DGOUT (Address 7ED)

Function: Moves character (in LED bit pattern form) into display buffer.

Reg. used: A, RO, R2

Reg. modified: A

Parameters expected:

A. RO: Location in display buffer (38-3F) in which character is to be inserted

B. R2: Character to be displayed.

HXOUT (Address 7FO)

Function: Decodes hex digit into LED bit pattern then performs DGOUT routine.

Reg. used: A, RO, R2

Reg. modified: A, R2

Parameters. expected:

A. R2 LSN: Hex digit to be displayed
MSN: Don't care

B. RO: Same as DGOUT.

Prompt 48

Prompt 48 Prompt 48 System Calls

ASI'I48 :F1:SYSCAL PAGELENGTH (52)

1515-11 8948 ASSEMBLER, Y1.2

LOC OBJ

07DC
07E
0M
07EA
07E2

131320
0mF
0036

tl000
131300 E5
130131 134139

0003 E4E2

SEQ

o
1
2

SOl~CE STATEMENT

3 ; PRCG:fIM NAME: 'SYSTEM CALLS.' EXAt1PLE FOR PROMPT 48
4
5 ; FUNCTION: PROGRAM READS THE KEl'BOftRrJ ON THE PRIl'IPT 48
6 ; AND SHIFTS THE CHARACTER INTO A HEX BUFFER. IT THEN
7 ; DISPLAYS THE HEX BUFFER ON THE 8 DIGIT LED DISPLAY.
8 ; ANY OF THE CONTROL KEYS WILL ACT AS THE rRII'IITER
9 ; CAUSING THE [lISPLAY TO BE BLANKED AND RESTARTING

19 iTHE ENTRY ~):ESS. IF MORE THAN 8 CHARACTERS ARE
11 ; ENTERED BEFORE THE DELIMITER THEY WILL BE SHIFTED
12 i INTO THE L5[l AND THE MSO WILL BE LOST.
13
14 i ENTRY POINTS FOR 1'lOtmOR CALLS.
15
16 BLK EQlJ 7DCH
17 [lGSTG EQlJ 7F3H
18 ENREF EPU 7DFH
19 K[lBIN EOO 7EAH
29 REFS EQlJ 7E2H
21
22 i BUFFER ANO MASK POINTERS
23
24 HBFPTR EQlJ 213H
25 OBFPTR E\"~J 3FH
26 DPI1F'TR EPU 36H
27
28 .; PROGRAM (:ONSTANTS
29

i BLANK DISPLAY
iDISPLAY RO_ITINE
; ENAEU REFRESH
i KEYBOARD ROJTINE
iREFRESH ROUTINE

iLSB OF HEX BUFFER
.; MSB OF [lISP BUFFER
.; DECIMAL POINT 11ASK

313 DPMASK HIU 13 .; [lEW1AL POINT fo1fISK
31 HBUFL EI)Ll 4H ; HE;': BUFFER LENGTH
32
Is .; INTERRUPT VECTOR INITIALIZATION
34
35 ORG 13
36 SEL l'lBtl
37 JI'1P MAIN
38
3:9 .; EgTERNAL INTERRUPT VECTOR
49
41
42

JMP

43 .; TI MER I NTERRIJPT
44

REFS ;REFR DONE ON INTERRUPT

8-5

Prompt 48 System Calls

(SIS-II 8048 ASSEItBlER, Vl. 2

B-6

LOC OBJ

9007
9007 E4E2

0089 1415
ooeB F40C
9000 E5
900E B836
99192399
9912 A0
OOB 18
9914 2$98
0016 A0
9917 F4DF
9919 E5
901A 95

991B F4EA
00lD E5
091E 95
091F B628

9921 1435
0023 F4DC
0025 E5
0926 9418

9928 143F
992A BF08
992C B923
002E B8lF
903e F4F3
0932 E5
ea:n 041B

SEQ

45
46
47

SOURCE STAIDIENT

ORG
JI'IP

7
REFS

48 ; INITIAlIZATION OF DISPLAY, HEX BUF AND REFR MECH.
49
50 MAIN:
51
52
53
54
55
56
57
58
59
6e
61
62

CAlL
CAll
SEL
110\1
I10Y
11011
INC
110\1
MOil
[.ALL
SEL
EN

CLRHX
BLK
I'1B0
R9 .• IOPI'IPTR
A,IIDPt1A5K
@Ra,A
R9
A,I8
@R9,A
ENREF
I'1B0
I

; HEX BlIfR CLRD
; BlANK DISP

;INIT DEC PT MASK

.; POINT TO REFR CTR
;INIT IIAl OF REFR CTR

; HROWR ENABlE OF REFR

; REFRESH STARTS

63 ; GET K~'BO CHAR AND [.HECK IF DELIMITER
64
65 MAIN1: CAlL KreIN ;GET CHAR
66 SEL MOO
67 CPL Fe
68 JF9 HEXOO ; YES-HEX DIGIT
69
79; (:LEAF.: AND START OVER IF CONTROL CHAR
71
r-<. CALL ClRHX
73 CALL BlK ; BlAr~K [llSPLA'r'
74 SEL MOO
75 JM? l'IAIN1
76
77 .; HEX DIGIT - SHIFT INTO HEX BUFFER THEN [,ISPlAY BUFFER
78
79 HEXflG: CALL
Be MOV
81 l'IOY
82 110\0'
83 CALL
84 SEL
85 .IMP
86
87
88
89 .; SUBROUTINES
ge

HEi<FL
R7,#HBIJFL*2
R1.. IIHBFPTR+:5
R9 .. II[lBFPTR
DGSTG
MBe
MAINi

.; SHIFT INTO HEX BUFFER
; NO OF DIG TO CONVERT
.; NSB OF BUFFER

91 ; SUBROUTINE FUI·H ION: CLEAR HEX BUFFER

Prompt 48

Prompt 48 Prompt 48 System Calls

ISIS-II 8848 ASSEMBLER, Yl.2

LOC OSJ

0055 B828
0037 BA04
8839 27
003A A0
003B 18
003C EA3A
003E 83

003F B9213
0041 BA04
0043 21
0844 47
004531
0046 21
0047 19
8048 EA43
13134A 83

USER Sl'MBOLS

BlK 137D(:
ENREF 07DF
MAIN '*109

SEQ SOURCE STATE!'IENT

92 ; REG USED: A, Re, R2
93 ; REG I'l00: R. R0 .• R2
94
95 CLRHX: 11011
96 PlOY
97 CLR
98 CLRHX1: 110V

R0,lIHBFPTR
R2,lIHBUFL
A
@R0 .• A

99 INC R13
100 DJNZ R2,CLRHXl
101 RET
102
103

; LOOP COUNT

.; CLEAR !'IEM LOG

1134 .; SUBROUTINE FUNCTION: SHIFT AWJM LSI-! INTO HEX BUFFER
195 .; REG USED: A, R1.. R2
106 ; REG 1'100: A .. R1.. R2
107
108 HEiR: MOV
1139 MOV
110 HEXFl1: XCH
111 SWAP
112 XCHD
113 >;'(.11
114 INC
115 DJNZ
116 RET
117
118 EN!)

H .. ltHBFPTR
R2,ltHBUFL
A..@Rl
A
A,@Ri
A,@Ri
Rl
R2,HEXFLl

; LOOP COUNT
; GET LOW DIGIT PAIR
.; SWAP NIBBLES
.; INSERT A LSN
; RESTORE BYTE

C.LRH'.x: 01335
HBFPTR 0020
MAIN1 00lB

CLF.:HXl 1303A
HBlIFL 0004
REFS 137E2

[lBFPTR 003FOOSTG 07F]:
HEXDl3 0028 HEXFL 1303F

OPI1ASK 0000 fJPMPTR 0036
HEXFLl 0043 KDBIN 87EA

ASSEMBl ~' COMPLETE, NO H:ROR(S)

B-7/B-8

APPENDIX C
PROGRAMMING EXAMPLE: STOPWATCH

Problem Definition

Assume that you wish to write a program that will allow Prompt-48 to function as a
stopwatch. As always, the first step in accomplishing this task is to define exactly what you
want the program to do. At a minimum, a stopwatch must be able to stop, clear, start, and
display the contents of a timer. The timer must have a resolution suited to the intended use of
the stopwatch. Since the purpose of this program is to illustrate programming techniques,
you can be arbitrary and give the timer a resolution of 1/100 second. Let's go further and add
two more things for the stopwatch to do: freeze the display at the current value of the timer
while allowing the timer to continue running; release the display to show the contents of the
timer. This will allow the stopwatch to function as a "lap counter."

Now that you have a slightly better idea of what the program is to do, you can take a stab at
dividing it into submodules. The first and most important submodule is the module which
decides what is to be done on the basis of keys pressed by the user. This module can be
thought of as the executive, as it is given control of the program at the start, and control
invariably returns to it after each command is executed. We will call this module the User
Control Functions (Commands) module.

The User Control Functions (Commands) module must have at least indirect access to the
LED display on the Prompt-48 panel. The module which contains the routines to take care
of the display will be called the Display Functions module.

The Data Functions module will give the User Control Functions module the means to read
the panel keyboard, clear the variable TIME, and correctly add I to the minutes, seconds,
and hundredths of seconds of TIME.

The last major submodule of the stopwatch program is the Timer Control Functions module.
This module contains the routines which start, stop, and reset for 1/100 second to overflow
that MCS-48 Timer register.

The majorsubmodules and their breakdowns into these more basic tasks are shown in Figure
C-l.

Modular Interfaces

Now that we have a general structure for the stopwatch program, we can design the modular
interfaces, or the ways in which the program modules communicate with one another.

The User Control Functions module must request data and tasks to be performed of the other
three major submodules. The easiest way, to establish the simple communications neces­
sary, is to assign one or more registers to hold instructions or data passing from one module
to another. For example, the User Control Functions module, when requesting the Data
Functions module to add I to TIME, might place a hexadecimal 02 in the Accumulator
before passing control to the Data Functions module. The Data Functions module would
then examine the Accumulator to see what was being requested of it, having been written
with the knowledge that hex 02 means "add I to TIME." Any combination of Registers,
user Flags, or Data Memory locations can be used in this way to accomplish a given
programming task.

C-l

Programming Example: Stopwatch

C-2

Stopwatch

User
Control
Functions
(Commands)

Display
Functions

Data
Functions

Timer
Control
Functions

Stop Stopwatch

Set time to 0

Start Stopwatch

Freeze Display

Free Display

{

Clear LED Display

Enable Automatic LED Refresh

Display TIME in LED's

Set TIME to 00:00:00

Add 1 to TIME

Check Keyboard Status

Read Keyboard for Command

{

Reset Timer with 1/100 sec. to Overflow

Starf Timer Running

Stop Timer Running

Figure Col: Stopwatch Program Structure

This concept can also be used in another way, called" switching. " A switch is appropriate
in the stopwatch program for the purpose of freezing the LED display at the value of TIME
when the freeze command is received from the keyboard. The Display TIME in LED's
submodule of Display Functions module needs to know whether or not the display is
"frozen." This information can be stored in a bit of a Register or Data MemOIY location, or
in a user Flag, by the module deciding to freeze or unfreeze the LED's, and later examined
by the Display TIME in LED's module to see whether a new value should be displayed. This
switch amounts to the ability to tum on or tum off the automatic update of TIME in the
LED's.

These concepts are used in the actual stopwatch program, and are commented upon in the
program listing.

Prompt 48

Prompt 48 Programming Example: Stopwatch

Display Functions

Control of the Prompt-48 panel LED's is handled through the use of various System Calls
(see Appendix B). These System Calls make it extremely easy to display whatever
numerical data we wish in the LED's.

The System Calls used for display are BLK, ENREF, and HXOUT, each of whose use is
described in Appendix B. It should be noted that the actual LED refresh is handled on
interrupt from Program Memory location 03. This interrupt is automatically generated by
the Prompt-48 hardware after the ENREF System Call is used.

Data Functions

TIME is held in three consecutive bytes of Register memory, representing minutes,
seconds, and hundredths of seconds. These values are in decimal, requiring the capability to
add in decimal arithmetic instead of hexadecimal. This is easily accomplished with the
DA A (Decimal Adjust Accumulator) instruction, as described in the MCS-48 Assembly
Language Manual. A problem still remains in that seconds can never exceed 5910 , The Add
1 to TIME module must examine the result of adding 1 to seconds in the event of a carry
from hundredths. If the seconds portion of TIME is equal to 60, it is set to 00 and 1 is added
to minutes. This is called modulo arithmetic, with seconds being maintained mod(ulo) 60.
Decimal notation is mod 10, as no single digit is ever allowed to exceed 9.

The keyboard status is checked, and the keyboard read, through the use of two System
Calls, KBST and KBIN.

Timer Control

The value loaded into the Timer should result in a 1/100 second delay to when the Timer
overflows and sets TF (Timer Flag) = 1. To determine what the proper value is, we note
that the Timer gets incremented every 32 instruction cycles, or 1/480 the clock crystal
frequency. The standard MCS -48 Chip-Computer runs at a maximum frequency of3 MHz,
so the Timer will increment 1/480 x 3 MHz = 6250 times a second, or 62.5 times every
1/100 second. The value to be loaded i~to the Timer should therefore allow the Timer to
increment 62 times before overflow occurs. This value is computed by taking the hexadeci­
mal equivalent of -6210, which is C216 . This will equal 0016 plus a carry (overflow, or
TF = 1) when it has been incremented 6210 times. For maximum accuracy, the .5 in 62.5
must also be taken into account. This is accomplished by delaying 1;2 of a Timer increment
(16 instruction cycles) between overflow of the Timer and the next load of -62.

C-3

Programming Example: Stopwatch Prompt 48

a s m 4 b : f 1 :s t p w c h

ISIS-II HCS-4b/L~I-41 NAChO ASS~~~Lhh, V2.0 ?AGE

LOC ObJ

C-4

SLUhCE SlAl~MEN'l

$print(:'lO:)
2 $pagewidtn(bO) pagelength(6b) noobject
3 ;*11*1***1***1******1******.*********._.********-**--**
4

5
6
7
b
9

10
1 1
12
13
1 4
15
16
17
1 b

19
20
21
22
23
24
25
20
27
26
29
30
31
32
33
34
35 •

Prompt-4b Programming hxample: Stopwatch

Ihis program i~ intended as an illustration of medium
complexity programming techniques for the NCS-4b
family of Chip-Computer~, to be run in ~rompt-4b.

The complete and verified program will allow the user,
if desired, to Observe the frompt-4b computer in
action almost immediately upon delivery, and will
give him or her a practice example for EPhO~ burning
as well. without needing to know anything of the
MCS-4b assembly language in which Stopwatch is
written, the user can simply enter into Program
Memory the sequence of (hexadecimal) object code
which appears in the second (ObJ) column 01 this
listing. (hefer to Appendix A, "A ~amiliarization
Exercise", for key sequences used for entering and
examination of Program Memory contents.) ~ote that
there are two jumps in the normal sequence of
addresses (found in the LLC column) in the program:
4h to 100n, and 1D5h to 200b. These jumps are
made as a programming convenience arising from the
~CS-4b Program Memory paging feature. Once the
whole object file is correctly entered, and the
correct Access ~ode is specified, the Stopwatch
will be operational. heter to the listing for·
program use and command key 'definitions.

11 hAM Program Memory is useo, use Access hode 2. If
the program is burned into an L74b, use Access Mode 5.

36 ;*****.***********.********'~**.I**~.'*.*~**.***'****.*
31 :j,eject

Prompt 48 Programming Example: Stopwatch

2

LliL litJ

5b
J~ rr'ograrr. ::-tructurc in Licrarctiical forn::
40
41 ::-top-Iatcti

4"
43 1. ~scr control tunction~ lhxecutive ~ectio~)
44 la. ~tart ~topwatch (LGli) key)
4~ 10. ::-tcp 0topwatch (LbhehKJ key)
46 le. treeze Display ~LeXAh] key)
47 ld. tree Display lLheXl] key)
4b le. ~top ~topwateh ana Clear l1h~ (Lh~D) key)
4~
~O 2. visplay tunetions (oisttn)
~1 2a. Clear Lev aisplay
~" "D. enable Automatic Lbv helresh
~3 2e. visplay llhe in L~Ds
~4

~~ 5. vata functions (detain)
~b Ja. Clear lIMe to 0:00.00
~7 3b. Add 1 to llht.
~b Jc. j,eturn hey beard ;:;tatus
~~ 30. heturn ~ey vata
60
61 4. limer heset houtine
62
OJ 4'eJect

C-5

Programming Example: Stopwatch Prompt 48

lbi~-ll ~Lb-4o/L~1-41 hACh0 A~btMbLbh, ~2.0 3

LOC (;bJ

0001
0002
0003

0001
0002
OOOj
0004

07t.4
0"/ ~ '{
071:.2

U{1L.
In ill'
OHj
07fO

uOOj
0020

CU15
0012
0014
0016
CO 17

00j6
uDOLl
00b4

C-6

64
6~
bo
07
ob
u9
"{ 0
7 1
72
"f3
74
"i 5
'{ (;

symbol declarations

disttn symbols

clrasp equ
enrfsh equ 2
oistim ec;u j

n
"(b

; oatain symools

clrtim
inc tim
keyst
Kydata
,

eq u
cq u
equ
equ

2
j

4 "I ")
bu
bl
b2

; system call addresses

uj hbst ec;u
64 Kbin equ
u5 refs equ
bb
o '{ b 1 Key u

enrei equ
agste; equ
hxout equ
,

7e4h
7e7h
(e2h

"{ d cn
"{ofh
"i f jh
"{fCh

;clear lea display command
;enable led refresh command
;display 11hh in leds command

;clear IIMt. commana
;aou 1 to Ilhb command
;keyboard status req~est
;Keyboard data request

;get keyboard status
;get Keyooard oats
;refresn led aisplay

(on interrupt)
;blanK led display
;enable retresh interrupt
;oisplay ruultiple hex oigits
;oecode and display nex oigit

; Qata register assignments
,
freeze eyu

~5 time equ
~6

j

20n
;Ireeze s~itch in rj
; '1 HI t: in r 2 G - r (:: 2

~7 ; commanO key symaol assignments
yo
':J':J

;
starts
stops
freeZE
frees
stpclr
,

E; c; u
ec;u
ec;u
eyu
ec;u

1 ::>11 ;LGL.} =
12h ;LbhtAl\j
14h ; L t A Al-, }
loh ; l h t;,. 'I j
17h ; lei. l.,.] =

start commana
= s to r; command

= freeze command
= tree COrlJmanu
stop and clear

100
1 01
102
10j
104
10~ ; ffiiscellanecus constants and adaresses
1 UU
lU'{ apJ;;Sk

lOb opot!
10:1 donce
1 10
111 iyejecL

equ
ec;~

ec;u

juh
o
luO

ilea dec. point mask aadress
;aecimal points off pattern
;debounce loop length

Prompt 48

l~l~-ll h~~-4u/Lrl-41 ~ACh~ AS~~~cLct. ~~.O

L~l, UbJ

GOUL;

UU0u CJ
Gu01 ~4GO

OOOj
U0Uj L4t.;:

1 1 ~
1 1 j
1 14
1 1 ::.
1 1 tJ
117

org 0

start 01 program

1 1 b

,.
start: sel

jr';1=>
wbO
exec

11~ interrupt vectors
1eU
1~1 orb
1i:t: Jllq:,
1~j "eJect

j

re1s

Programming Example: Stopwatch

fAG]:, 4

;starting adoress 01 program

;select I=>rogram ffieffi bank 0
;jump to executive section

jled refresh vector address
jrc1reSh leds

C-7

Programming Example: Stopwatch Prompt 48

ISIS-II hCS-4b/Url-41 hAChG ASS~MbL~h, ~2.0 PAGE

LuC LbJ

01GO
010D 05
0101 2300
0103 62
0104 54 jlJ

0106 bb03
GlOb bOOG
010A Lr 0 1
010e 5400
o 1 Of!. 11'03
G 110 34'{t,

011 <: br02
0114 347l:.

C-8

124
12:'
126
127
1'=::0
129
ljO
1 j 1
132
133
134
13:'
lj6
13 'i
ljb
139
140
14 1
142
14j
144

,

eXEcutive section:

Ihis section controls the overall program
execution. It communicates with the following
modules:

1) disftn - display functions. Clears,
enables for refresh, or displays llh~ in
leds.

2) dataln - oats functions. Clears ll~~, aods
1 to 1IM~, Lhecks keyboard status, or reads
keyboard tor command input.

3) tmrrst - ti~er reset. resets J.JCS-46
timer for l11GO sec. to overflow.

.• *~~~.~~~ •• *~~I~**I***~ •• *.k~ •• **.*.k.* ••••••• ** •••• * ,

145 start 01 executive: first, initialize timer, llhe.,
146 ana display.
1 4 '(
14 b
14~

1:'0
15 1
152
l:,j
154
155
156
15'1
150
1:' S
lbG
1 b 1

exec:

:;,eJect

org
stop
ffiOV
rI,OV
call
mov
mov
!I; 0 V
call
mov
call
folO v
call

luUh jstart at page
tcnt jstop timer
a,IIO jclear a
t,a jclear timer
tmrrst j 1/100 sec celay in timer
rO.utreeze jpoint to freeze switch
erO •• O junfreeze display
r1,Uclrtim jclear 11h~ ccmffiand
datafn jdata functions module
r7,Uaistim ;display llh~ command
oisttn jdisplay funcions module
r'l,lfenrfsh ;enaole lea refresh command
disftn ;aisplay functions mOQule

Prompt 48

L(;l. utJ

01 1 b j4tJb
01 H. b1'Oj

01 1 Ii. 5400
G 1 1 (, t.bl0

011.1:. b1'04
01<::0 ~4(jO

012'- 1'1"
01~j 031:.b
01'::> \;62J,

01 <:: 'i :.:.
u1"il .:45l:.

012A 1'1'

012b 031:.~

IJ1<=:u ~t;3:::

(; 1 <::r 65
0130 t::4:'~

16~

lbj
lu4
165
lob
107
lob
lbY
170
171
1'7'-
17:;
174
17:>
1 '(tJ
17'1
17b
17S1
lbO
1 b 1
1,,2
lbj
104
lb5
lila
107
lob
luY
1~0

1 ~ 1
19:::
1 ~ j
194
1~5
1~()

197
190
1 ~ SI

<=: 00
:::01
<::02
':03
204
<::05
dJIJ
<=: O'{

Programming Example: Stopwatch

, rAGE; 6

no~ wait for inp~t commands.

tne commanas are:
LGVJ - start stopwatch
l~h~AKj - sto~ stopwatch
[~1Ah] - lreeze display at present 11h~
lhbl1] - free display to follow 11Nt.
LEh~] - stop stopwatch and clear 11ht.

•
.*************t************************************** •

monitor loop. 1hi~ part 01 the executive waits
until dataln indicates a key is being
presseo, or the timer overflows.

•
monitr:

11 a Key is pressea, the command (il aefinea)
is processea ana tne executive returns
to the monitor loop.

If the timer overllows, one is added
to 111'1£. 'Ihe aisplay is then updated il
~h1l:.~b = 0, and the executive returns to
the monitor loop.

call
mov
call
jnc

uptim ;uPdate 'Il~t il necessary
r7,~keyst ;keyboard status re~uest
dataln ;data functions mooule
ruonitr ;loop if no key pressed

Key being pressed: input command lor processing.

ruov
call

r7,*kYdata ;keyboard data request
uatain ;data functions moaule

start stbpwatch command?

mov a,r1 ;key data in a
aaa a,l-starts ;start command?
jnz nextl ;jump if not

strt
jmp

not start:

t
endcom

;start timer
;end 01 command processing

stop stopwatch command?

dib next 1 :
~O~

If-OV

ado
jnz

a,r7 ;key aata in a
a,l-stops ;stop com~and?

:::10
::: 1 1
to1<=:

::: 1 3
£.14
,15 ~ejE:ct

next<=: ;Jum~ il not

tcnt
enacoli~

;stop timer
;e"o 01 command processing

C-9

Programming Example: Stopwatch

LLJL

() 1,; <:
0133
013::'

01::; '7
013<j
013b
013L
013J:.
U140

014,:
014j
014:,

0147
014g
014t
014L

014l!.
U 1 4 r
01:.>1

01::'j
0154
U1JU
015c
u bil
01::'L

C-lO

LbJ

r r
Ojl!.L
964<:

1b03
dli1
flO
br03
j4H,

<:4~l!.

t't'

0jt.A
';;tJ4t.

LbU::;
<-jUO
AU
<:4::>1:.

t'r

OjJ:.~

·:d.J~C

bJ
54:,li
tr01
:,4uO
bH)j
j4'(l!.

<:16
<:17
21b
<:19
;"<:0
<:21
~2c

<:<::3

<:<:4
<::"'::.
<::<::6

<:d
<:: <: 0

~c.~
",30
dl
c.j~

;"jj
<::::;4

L :)~
<:: jt;
<:: j '/

230
<::39
.<:40
241
e:4;"
<:43
<:44
<:4:;
<:46

<:: 4 'I
;,.4L
;,.49
L JU
251
L5",
253
2j4

not

next",:

not

nE;xtj:

not

next;;:

~eJect

stoJ:!

rGO v
aaa
Jnz

mov
tolOV

mov
lilO v
call
J 1Jil-'

freezE;:

{j~O v
aaa
jnz

wov
mov
mov
J Gll--

1 r e e :

mov
aua
Jnz

step
call
mov
call
a~o v
call

Prompt 48

7

1reeze command'!

a, I' 'I ;li.ey data in a
a,#-1reezs ;lreez€ com~ana~
n ext;; ; J u fll J: if not

rO,f1reeze ;point to 1reeze switch
a,fl ;"lreeze display"
trO,a ;set freeze s~itch

r7,fdistim ;dis~lay 11~l!. cow~and

uisltn ;ais~lay 1unctiohs ~oaule
enaco~ ;e~u of C08iliana processing

1 rcc CCillfJland':

a,r7 ;hey aata in a
a,i-1rees ;trce commana~
next4 ;jUG.p if not

rO,ulreeze ;~oint to freeze shitch
a.IiO
erO,a
endcom

; I, t r e e dis P 1 2. Y "
;clear freeze shitcn
; erlG 01 cowiuand processing

stop and clear comllia~d, cr unaeiined key.

a,r7 ;key oata in a
a.u-stpcIr ;stoJ: ana clear com~and~
enuco~ ;jump, unde!ined if not

tcnt ;stop tiffier
tmrrst ;sto~ and reset timer
r7.uclrtim ;cIear time command
oetain ;oata 1unctions ~oQulc
r7,ioistlm ;uisplay rl~~ command
aisitn ;oisplay functions module

Prompt 48

LUC vJ::J

01~!:. j4bb

u1t.JO 1:1'05
Glbe :,400
Clb4 I'D5!:.

GlUt! 241L

0100 1bbC

016A e47l.!

010C 5450
01bt. brO~

uno ~4 00
01 7' ~ tuOj
01 '1 4 r 0
0175 DjOO
01rt ';j67u

017~ t.FOj

01 'I b j47l::,

o 1 7J.; oj

Programming Example: Stopwatch

b

c.:.,u end 01 command processing: ,Jait tor the key,
~~7 to be released, then return to the monitor
~5b loop.
2?~
200 endCOlli: call
2bl U;OY

202 call
£:: oj j c
~('4

£::O~ jmp
2bb

~67

uptim ;update 11h~ i1 necessary
r7,#Keyst ;Keyboara status rCGuest
datain ;data functions module
enacom ;loop until key released

rr.onitr ;return to monitor loop

20t upti~ - update ll~!:. i1 necessary. Subroutine
2u~ to check the status of 11' llimer rlag), ana
e7U ada 1 to 11~J:. if 11' = 1. 0ataln luata functions)
271 module is used to ada 1 to ll~J:..

2 'I ~
e7j reg moai1ied: a, rO, r2, r7
d4
275 uptim:
2'/6
2rt
Ii: 'I 0

279 next:.:
2bO
201
ne
li:bj
204
n5
~bo

207
2bb
c.b';j

j t 1

jmp

call
moy
call
wOY

ClOY

xrl
jnz

may
call

2':10 uptxit: ret
e':Jl
29~

next5 ;sKip aheaa if 11' =

uptxit ;jump to exit it 11' = 0

tmrrst ; 1/100 sec delay tor timer
r7,'inctim ;add 1 to ll~t. comrr.and
datafn ;aata functions moaule
rO,ttreeze ;point to 1reeze s~itch
a,~rO ;1reeze s~itch in a
a,tO ;lreeze switch = O?
uptxit ;jump to exit i1 not

r7,fdistim ;aisplay llhc command
aisttn ;tiisplay tunctions module

;exit uptim

2<JJ ena 01 executive section
~ <J 4
c':i5
£::':It) :;;Q8ct

C-ll

Programming Example: Stopwatch Prompt 48

l~l~-ll hC~-4b/0fl-41 hACHO A8~tMbL~h, v~.o 9

L0C 0bJ

u17t i"t

ul'(t Lijrt
0161 ';,uOO

0103 to4JJe
010:;' !:.~

010b 24li~

010b r r
(;lb~ Ojrl:.
0101 ~t;';,Jt

01b!; Luj0
G1br bGOU
o 1 ~ 1 1 u
01,2 bOOb
01:14 r40to
Gbb .t.~

01 'J'I O~

01';1b ~4L~

C-12

21j'l

290
2':1';1
JOO
301
302
303
j04
305
jOb
30'(
jOo
30~
310
3 1 1
j12
j1j
314
31~
31 tJ

,

disttn - aisplay functions mOdule.
are executed oy this moaule:

1) clras~ - clear led dis~lay
reg modiliea: a, rO, r7

'Illree commands

2) enr1sh - enaole automatic lea re1resh
reg il,oai1ied: a, rO, r7, p2

3) distim - aisplay llhl:. in leas
reg ffiodilied: a, rO, r1, re:, r7

'Ihe command is receivea in r7.
as a suoroutine.

1ne module is called

.~ •• ~~~.*~** ••• ~** •• * •••• *~***~ •• a •••• ~ •• *.~*~.* ••••• ,

j1'{ disftn: mov
j1L

a,r7 j co[nmana in a

3 1 ~
320 clras~ ccmw&nd~

j 21
322
32j
j£::4
325
320
32'/
3<::6
j2~

330
j31
3j2
33j
334
335

337
jjb
3j9
j40
j41
342
34j

aaa
JrlZ

call
sel
J f"P

not clrdsp:

nexto: mov
aaa
Jnz

[;.ov
mov
inc
mov
call
sel
en
j (uP

.j;eject

a,~-clrasp jclrosp commana~
nexttJ jJump it not

oIl<:
LubO
aspxit

jolank leds sys call
jlix program mem Dank
jJu"jP to exit

e n r 1 s h com man d '~

a,r7 ;co~ffiand in a
a,H-enr1sh jenrtsn comma~d?
n ext " j J u III P i 1 not

rU.kapmsk jpoint to decimal point maSk
~rO,lapo11 ;decimal points otf
rO jpoint to retresh char pointer
erO"0 jleu b 1irst
enre! jeuable lea refresh sys call
mbO jlix program me~ bank
i jenaole refresh interrupts
aspxit jjump to exit

Prompt 48 Programming Example: Stopwatch

l~lS-ll ~L~-4b/UPI-41 hALh0 A~S~hbLbh, \~.O 10

LUI., GbJ

OlgA rt'
0~9b 031'1)
019!J ':IU!J:';

01';11" b;;3l:..
01Al £920
01A3 Le02
01A~ r4t'3
01A7 1:.5

01Ab b03b
G1AA b';121
01 AC l' 1
a 1b.1 47
U1A1:. AA
alAr 1'41;<0
01bl 1:.5
01 b<: to 1
o 1b3 AA
01b4 Lb
o 1b5 1"41"0
o 1.L 7 1:.5

01Lo L03A
01bA fO
01Lb ~3H
01b1) AG
01bl:.. Co
01br' b':l22
01Ll r 1
01L2 4 '(
01L3 AA
01L4 1'41:'0
Oleo l!.5
01e7 Cb
Oleo r 1
01L9 AA
OleA 1'41'0
01ee b~

01ClJ b031'
01(;1' bOFt'
01])1 bL3C
011;3 bOt"t'

344
345
340
347
34b
34"
350

not e n r f s [. :
,
nex t 'l : mov

ada
Jnz

either distim or undefined command

a,r7 jcommand in a
a,t-distim jundefined command?
dspxit jjump to exit if so

351 display minutes
3~2

353
354
355
356
3 '.J '{
350
35:;
360
361
3U2
363
364
365
36b
367
3bb
369
370
371
3 '(2

373
374
375
376
37'(
370
319
::'bO
301
302
303
304
305
job
j t·7
300
30~

3~G
3':11
3':12
3':13
394
395
39b
397
31;d

mov
mov
mov
call
sel

rO,f3eh jled aoaress of minutes
rl,ftime jminutes portion of 11hl:..
r7,f2 j2 digits to be displayea
dgstg ;convert and display
mbO jfix progra~ mem bank

display seconas

mov
mov
IT,O v
swap
mov
call
sel
mov
mov
aec
call
sel

rO,f3bh jillsd lea aestination
rl,Utime+l jseconds portion 01 lIME.
a,erl jillOVe seconas to a
a ;msd in Is nibble
r2,a jhex aisplay data - msd
hxout jaisplay seconds msd
mbO jfix program mem bank
a,erl jmove seconas to a
r2,a jhex display data - Isd
rO jlsd led destination
hxout juisplay seconds Isa
mba jlix program memory bank

display hundredths of seconds

moy rO,I/3an jseconds Isd led address
I:iOV a,t:'rO jled code in a
anI a,l17fh jaecimal point on
moy erO,a jreplace in led buffer
dec rO j rr;sd led aestination
mov rl,1ftime+2 jhundredths portion ot 11hr..
(GOY a,~rl jClunaredths in a
sl-iap a ;msd in Is nibble
mov r2,a jhex display data - msd
call hxout jdisplay hundredths msd
sel mbO j 1 ix program mem bank
aec rO ;lsd led destination
mov a.erl ;lSd hex da ta
mov r2,a jhex aisplay aa ta - Isd
call hxout jdisplay hundredths Isa
sel mbO jfix program mem bank

clear unused leds

mov rO,h3fh jleftmost led
mov
mov
mov

erO,#Olfh jclear leftmost led
rO,#3cn ;led between minutes, seconds
~rO,#Ofln jclear it

C-13

Programming Example: Stopwatch

LuC; 01.i

C-14

3~~
400
401 aisttn exit point
4lJ2
1;03
4li4 aspxit: ret
40~

40t;
407 end ot ais1tn moa~lc
400
40':1
410
411 ~eJect

Prompt 48

fAG!:. 1 1

j€xit aisttn

Prompt 48 Programming Example: Stopwatch

IbIS-II ~L~-4b/GfI-41 hACHO ASS~~bL~h, V~.O f'AGt. 12

LliC libJ

0200

O"UG n

OLU1 O;,t't'
O"U;, ~b1:'

O(::(;~ dOO
Q(::07 Lb"O
G(::Q~ bra3

020b hG
020C 1 b

0;"0l; brUt;

OLaf 1 6 11

() <:: 1 1 Lt45C

412
41:'
414
41'J
41b
417
410
419
4,,0
421
422
Lid
424
42~
42u
427
42b
Ll2~

4:'0
431
432
433
434
43~

436
437
430
43':!
440
441
442
lj43

org 200h ;new prograffi mem page
.••••••••••••••••••••••••••••••••• * •••••••••••••••• ** ,

,

datafn - data funcions module. four commands
are executea by this modul~:

1) clrtim - clear 11~~.
reg mooified: a, rO,

~ets 11~b to 00:00:00.
r7

2) inctim - increment lI~B.
reg coaifiea: a, rO, r1

Adds 1 to lIht-.

:,) keyst - KEY status. iJetermines whether
a key is being pressed.
output: c = 1 i1 a key is pressed

c = a il no key pressed
reg modi1iea: a, rO, r7. p2, c

4) kyoata - key oata. Determines which
key is being pressed.
output: r7 = key value
reg moailieti: a, rO, rb, r7, p<::, fO, c

Ihe module is called as a subroutine witn the
commana in r'7.

.•• ~ ••• ~ ••••• * •••••• * •••••••••••• * ••••• *** •• * ••• ***** ,

oatain: mov a,r,/

444 cirtim cc~mafia~
4lj5
4LttJ
44/
lj4b
44<;,
4~0

4~1

45<::
453 cl tlp:
454
455
450
45 '{

hb
4~b

r
45':i
4uO next1,,:
4b1
4b<:: :;,eJect

aao
Jnz

mov
(>iOV

iilOV

mov
inc
oJnz

jtl

j Glp

a,#-clrtim ;clrtim commano?
next':! ; jump 11 not

a,.O ;puL zero in a
ru,litirrle ;~oint to llht.
r'i , Ii '3; ;loop counter'

~rO,a ;clear one byte of lIh~

rO ;point to next byte
r1,cItlp ;loop till 1Ihb = 0

next12 ;clear timer flag, to prevent 11

; ••• from incrementing after clea

ataxit ;jump to exit

C-15

Programming Example: Stopwatch Prompt 48

ISIS-II hCS-40/D~1-41 ~AChU ASS~~bL~h, V~.O PAGt. 13

C-16

LUL 0bj

021~ rr
02 14 Ojr'~

0210 ~o3~

0210 bo22
021A to
021b Oj01
0~1j) 57
021 t. AO
0211.' t,65j...

022 1 LO
0222 1'0
U2~3 030 1
U225 ~7

0220 AO
02~7 G3AO
02d LtJ~L

0221 1000

O~21 Lb

0221:; ru
(..1221' 0301
0231 57
023~ Ii 0
0~33 44~L

463
464
465
46b
467
4bb
46~
4 r({J

4 C(1
472
4'13
4 r(4
475
476
47'1
470
4 '19
400
401
462
403
404
4b5
4u6
41:)1
40b
4c9
490
4 Y 1
492
493
494
49~
4';;ib
4 ':J 'f
4':Jb
4':J9

not cirtim: inctim commana':'

•
next~: mov

add
jnz

a,r7 ;command in a
a,#-inctim ;inctim command?
next10 ;jump if not

ada 1 to hundredths

carry

carry

mov rO,itime+2 ;point to hunaredths
ffiOV a,~rO ;move data to a
aad a,#1 ;aad 1 to hundredths data
da a ;decimal aajust
mov ~rO.a ;u~date hundredths
jnc dtaxit ;exit it no carry

into

aec
ruov
ada
da

mov
ada
Jnc

II.lOV

into

uec
mov
aaa
0&

r;,o v
jii,P

seconas

rO
a,(!r(..l
a , it 1
a
~rO.a

a ,It-bUh
ataxit

erG.1I0

minutes

rU
a.t:!'rO
a , il 1
a
trO.a
dtaxit

;~oint to seconds
;move data to a
;increment seconds
;decimal adjust
;update seconds
;moa tJO overflo .. test
;exit i1 no overflow

;60 becomes 0

;point to minutes
;move data to a
;increment minutes
;decimal aajust
;upaate minutes
;jUG1P to exit

500 ~ej€;ct

Prompt 48

LGC GbJ

Od~ tor
02::,G o 5r'I..

ado C;G4l;

0;;: 3 il 1:;l:.b4

ode l' 41:.4
U23t. t.5
O:c. 31" t.6~C

024 1 34u6
u:c.4j):'l:.3C

0245 br'O:c.
0:c. 4 'I j4 clt.
G24Cj ,:;7
024J.l h'l
O:c.4b 445C

0241." l' r
024):' li ::'1' C
U2,v ':;b:;L.

O:c.:o:c. l' 4):' C{

02')4 t5
02'):; lit.
025ll br02
O£o5(; ::'47t
0:c.')k 1'L
O£o?L Ai'

':lul
50:c.
?O::,
504
')O':l
':lull
')0 "

')OL
':lOC;
~1li

':l1 1
512
')1::'
')14
51')
~lb

517
')10

5 1 Cj

520
521
j~£:

52::'

not inctim:
,
next10: mov

aao
Jnz

JlJOV

dbnclp: call
sel
Jnc
call
oJnz

mov
call
clr
cpl
jmp

not keyst:

,24 next11: t;.ov
5:c., aao
'):c.b jnz
~:c. c('

~LU

j:c.Cj

~30

~::'1

53:c.
:,3j
5j4
:,j~

5jG

call
sel
fi,OV

r;;ov

call

mov

Programming Example: Stopwatch

1 4

II. e y s t c 0 OJ Ii! and C!

a.r'i ;command in a
a.I-Keyst ;keyst commana?
next11 ;jump 11 net

ru,Udbnce ;ocbouncc loop counter

KOSt ;get key status
mbO ;fix program mem bank
otaxit ;exit i1 no Key presseo
uptim ;u~oate 11~t. ii necessary
rL.aonclp ;lcop till debounce done

r'l,tenrisn ;reenaole re1resh of leas
aisttn ; ••• via disitn moaule
c ;ensure carry is
c ; ••• still set
dtaxit ;jump to exit

Kydata comr;,ano'!

a,r? ;com~ano in a
a,k-Kyoata ;kyaata command?
otaxit ;(unoelincd) exit if not

kbir, ;gE-t key oata
~bO ;iix program mem bank
rL,a ;save key data in rL
r7,jenr!sh ;reenaole lea re1resh
oisttn ; ••• via dis1tn module
a,rb ;get key data
r7,a ;aata in output regiEtEr

5::'1 oatain exit point
~j(,

~::'SJ
~40 otaxit: ret
:; 4 1
')42
~4j enc datain n;odule
')44
~45
:,46
547 :;'eject

;exit datatn module

C-17

Programming Example: Stopwatch Prompt 48

l~l~-ll ~C~-4o/U~1-41 hAChe ASSt~LLth, \~.O r'AGt. 15

LLC 0bJ

Oc:51 4;,:
02j!!. Uje2

0200 b2
0':::01 oj

C-lS

54t.>
54:J
550
551
:;~2

:'~j

jj4

555
5St.>
:;j7

5jtJ
5jy
500
5 t. 1
5U2
5Uj
5b4
5bj
5t.>tJ

tmrrst - timer reset module. Ihis routine aods to
the contents of the timer -02 ldecimal).
It is done this ~ay because the timer may
have been incrementing during an interrupt
routine between the detection of 1. = 1
and the actual reset.

-62 uecimal is the value closest to 1/100
second delay tor a j hhz clock 1reGuency.

A 16 instruction cycle (1/2 timer increment)
uelay shoulo De aadea at the beginning of the
routine. witn the timEr stopped, tor maximum
accuracy.

,
·*~~*~***.**~.****.*A*.~.***~~*****.*********i** ,

5t.7 twrrst: mov
5bo aaa
5b~

a,t
a,11-02

;timer data to a
;counter tor 1/100
second delay

;reset timer :>70 mov t.a
5 '(1 re t ;exit trnrrst
57c:
57j
574 end 01 twrrst mOdule
575
576
5'('(

5,(0 ~eject

Prompt 48 Programming Example: Stopwatch

LCC lJLJ ::'11.. ::., (; U j, C t. ::, 1 JI1 I:.l-.lo [, '1

GOOG ':;'1 ':I E-nu 0 jend 01 stopwatch program

U;:' I:. /". ~lLD0L::O

bLt-. un,c l.,Lhl.J;:,r- COOl l.Lh'llb OOGl CULl' OLOb l...A'llll' 1\ OLGO
l.JbhCe ()O64 l.J J:: I' l- L t' u<:jl- uu::o'lG li '/ r J l.J 1.::.1' '11\ 01 H. ul::ollh 0003
v r i\'::' h. OOju vr-ul'r 0000 J.,:.cr Al '1 01l.;, VlAAl'l OL:)C i:.hLCCI\ 0151
t:.l, hI:. I' 07J.,r t. II r. r:O L OuOL I:.J.\"C 0100 t' til:, 1:.::0 00lb rhJ:.I:.Zl:. 0003
rht.t.L,~ 0014 t,;;'l., VI 071'0 ll~ l., 111'. QGGL (,i:.l h 0/c7 I\L'::'1 0H.4
1I.1:.J:'::''1 uUOj t.10klA u0u4 Ll.d,I'ltl o 11 tJ (. t.). 1 1 elL il 1> 1:.),.110 0235
1'.1:.1.'111 UL4L ht.A11" o L 11 [.LA'!L 0132 >,c113 G14L ld:.A14 0141:.
he)..l,:> 01bC ht.A'lL 0100 I. l:.)"1 '(01~A ht},,'!'; OL13 her ::, On2
:.o'lAh'l 0000 ;:, '1 II h '1 ~ 001~ .:, '1l. r'::- \lOlL ':'lrCLh (;017 1Ii,,1 00,,0
'1 hhh'::''l OL':;JL Lt''llh Glob L 1'1 Al '1 017L

C-19/C-20

APPENDIX D
HEXADECIMAL OBJECT FILE FORMAT

Hexadecimal object code fonnat is an ASCII representation of program memory, expressed
as a series of hexadecimal digits. These are blocked into records, each of which contains the
record length, type, memory load address, and checksum, in addition to data.

Frame O. Record Mark. The ASCII representation of a colon (3A16) is used to signal the
start of a record.

Frames 1 and 2. Record length in hexadecimal. This is the count of the actual data bytes in
the record. Frame 1 contains the high-order digit of the count, and frame 2 contains the
low-order digit. A record length of zero indicates end of file.

Frames 3 to 6. Load address. The four-character starting address at which the following data
will be loaded. The high-order digit of the load address is in frame 3, and the low-order digit
is in frame 6. The first data byte is stored in the location indicated by the load address.
Successive data bytes are stored in successive memory locations.

Frames 7 and 8. Record type. A two-digit code in this field specifies the type of this record.
The high -order digit of this code is located in frame 7. Currently, all data records are type O.
End ~of -file records may be type 0 or type 1. In either case they are distinguished by a zero
record length field (see above).

Frames 9 to 9 + 2* (record length) -1. Data. Each 8-bit memory word is represented by two
frames containing ASCII characters 0-9, A-F, which represent a hexadecimal value
between 0 and FF (0 and 25510)' The high-order digit of each byte is located in the first
frame of each pair.

Frames 9+2*(record length) to 9 + 2* (record length) + 1. Checksum. The checksum is the
negative of the sum of all 8-bit bytes in the record, evaluated modulo 256. The sum of all
bytes in the record (including the checksum) should be zero.

D-l/D-2

APPENDIX E
COMMAND/FUNCTION SUMMARY

Commands

~[.]
[REGISTER] {DATA}~[,]

[EXAMINE/MODIFY]~[PROG MEM]L{SMA} [,] jl [PREVIOUS],
[DAr A MEM] / - .

MCS 48 processors have 64 bytes of register memory numbered 0-3F16. PROMPT 48
allows access to pther "register" locations via [EXAMINE/MODIFY] [REGISTER]. _ I

Number Location Format

40 ACCUMULATOR
41 TIMER

I C I AC I FO I RB 1 F11 s21 S1 1 So 1 42 PSW
43 PCl
44 PCH
45 PORT ° (BUS) READ-ONLY
46 PORT 1 READ-ONLY
47 PORT 2
48 MISC lcounter I Timer I Timer I Nested I Will I Mem I T1j TOJ

Run Run Flag Fr Int En Int Bank

PROMPT 48 provides 256 bytes of data memory numbered O-FF16'

--"""",{SMA}, 1[.]
[NO BREAK] -----~ [,]

[GO]1---+1 [WITH BREAK]
"[SINGLE STEP] >---...-{SMA} [.] -r--r- [.]

Ensure you have selected the correct access code, P2 MAP and LSN P2 contents before
running programs.

{SMA} Starting register/memory address
{DATA} Data

Functions

ACCESS [A] {O-5} [.]

Access Program
Code Memory

° WRITABLE (RAM)
1 WRITABLE (RAM)
2 WRITABLE (RAM)
3 READ ONLY (ON CHIP)
4 READ ONLY (ON CHIP)
5 READ ONLY (ON CHIP)

System I/O and
System Calls

no
no
yes
no
no
yes

Expansion OUTL
Memory and I/O Port 0

no yes
yes no
no no
no yes
yes no
no no

E-I

CommandiFunction Summary Prompt 48

E-2

[0]
{BKA}~[,]

{0-7}- [,] r I !)PREVIOUS] 7
BREAKPOINT [B]C [0] clears breakpoint number 0-7

[0] clears all breakpoints

[REGISTER]
CLEAR [C]--([PROG MEM] t-- {SMA} [,] {EMA} [0]

[DATA MEM]

[REGISTER]
DUMP [D]~[PROG MEM]T- {SMA} [,] {EMA} [0]

[DATA MEM]

[REGISTER]
ENTER [E]--([PROG MEM]~ {BIAS} [oJ

[DATA MEM]!

EPROM PROGRAM [7] {SMA} [,] {EMA} [,] {SEP} [0]
FOR DEBUG (8748)

EPROM PROGRAM NO [3] {SMA} [,] {EMA} [,] {SEP} [0]
DEBUG (8748,41,55)

EPROM COMPARE [8] {SMA} [,] {EMA} [,] {SEP} [0]

FETCH EPROM [F] {SMA} [,] {EMA} [,] {SEP} [0]

HEX CALCULATOR [6] {DATA} [,] {DATA} [0]

MAP P2 [2] {DIR} [0]

Each bit of DIR is direction, l=input, O=output.

MOVE MEMORY

SEARCH BYTE

[REGISTER]
[8]~[PROG MEM]r{SMA} [,] {EMA} [,] {DMA} [0]

[DATA MEM]

[4] ---<~t~~~~~t- {SMA} [,] {EMA} [,]- {MASK} [,] - {DATA} -(Uk<U0
SEARCH 2 BYTES

.. ___ J!:REGISTER] 'L [5]~tbl}.~~ ~~mT {SMA} [,] {EMA} [']-{HMASK} [,] {LMASK} {HDATA} [,] {LDATA}-<U>,r<fJ>j

Prompt 48 Command/Function Summary

{BIAS} Bias offset to load address

{BKA} Breakpoint address

{DATA} Data

{DIR} Direction for lines of Port 2

{DMA} Destination memory address

{EMA} Ending memory address

{HDATA} High byte of data

{HMASK} High byte of mask

{LDATA} Low byte of data

{LMASK} Low byte of mask

{MASK} Mask

{SEP} Starting EPROM address

{SMA} Starting memory address

E-3/E-4

DO

(1 -.

EXTERNAL
pORTS

PORTS

TIMERIEVENT COUNTER

ElIII,III,I
MOV A. T ~+~i ~NT

NS "'/T. A. STOP TeNT

'",U"OUTPUT 'NST'UCTIO ./

::g~g M'.: ______________ 'CCUMUCATO. MO' A. PSW

ANLP",,"'.: /" / C~LA "CA

::. ~---71 ~i~~~' I~MOVPSW'A
~ O.LP".us. - ~~:PA

LATO.INST·UCT,ONS MO" ,. ". A
• ~ACCUMU ~

Q!f!ill ~

.~~I---
INC
DEC
DJ"

/ MO' REGLSTER MEMORY /

rL :g~o

CJO"'!'A'i~~'Y 'bj'JREGISTER

BANK
o

"' , RO
o

AOO AOC
ANL
ORL
XRL

'07 '07 1'107. add,

ROY. A { "07

~
A.R07
A.R07
A.R07
A.R07
A,R07

A, (a 1'101
(a R01, A

"R01.-

A.~

1'107. -

MOVX A, (" 1'101
MOVX (0 1'101. A

O SElMBQ
OBF SEL Mal

PROGRAM COUNTER I
0 1 I,! I, II I! ,

CONTROL INSTRUCTIONS

CALLaddr . " RE1R

~~C r~o 1~! ~~~ j~ add.
JBO JEl41

fNZ JNTt JNI JB3 .187

" ,
EN TeNT •
NOP

g; ~CNTI

mr---- ,

»
3:" -'"'0
Om
::xJz
00
3:­»><
'"'0"

BY
· ADD A. RO 6B DEC RS

R1 69 R6
R2 6A R7
R3 6B
R4 6C DIS I
RS 60 DIS TCNTI
R6 6E
R7 6F oJNZ RO.addr · ADD A.@RO 60 Rl,addr
@R1 61 R2.addr · ADD A. #data 03 rn R3,addr

R4.addr · AooC A. RO 78 A5.addr
R1 79 R6.addr
R2 7A R1.addr
R3 78
R4 7C

EN I RS 70
R6 7E EN TCNTI

R7 7F ENTO CLK

· AooC A.@RO 70
@R1 71 INS A. BUS

· AODe A. #data 13 rn IN A. P1
IN A.P2

ANL A. RO 58
R1 59 INCA
R2 5A INC RO
R3 5B INCR1
R4 5C INC R2
R5 50 INC R3
R6 5E INC R4
R7 5F INC R5

ANL A.@RO 50 INC R6
ANL A.@R1 51 INC R7
ANL A. #data 53 CD INC@RO
ANL BUS. #data 9B CD INC@R1

Pl, #data 99 rn
P2. #data 9A rn

JBD addr

CALL Oaddr 14 rn JBl addr
1addr 34 rn JB2 addr

2addr 54 rn JB3 addr
3addr 74 rn JB4 addr

4addr 94 CD JB5 addr

5addr B4 rn JBG addr

6addr 04 rn JB7 addr

7addr F4 rn
JC addr

CLR A 27 JFO addr

· CLR C 97 JFl addr
CLR FO B5
CLR F1 A5 JMP Oaddr
CPLA 37 laddr · CPLC A7 2addr
CPL FO 95 3addr
CPL F1 B5 4addr

5addr · oAA 57 6addr
oECA 07 7addr
oECRO CB

R1 C9 JMPP@A
R2 CA JNC addr
R3 CB JNI addr
R4 CC JNTO addr

All mnemonics copyright © 1976, 19n, 1978 Intel Corporation

APPENDIX G
INSTRUCTION SET SUMMARY

MNEMONIC
CD JNTl addr 46 rn ORL A. RO 4B
CE JNZ addr 96 rn R1 49
CF JTF addr 16 rn R2 4A

JTO addr 36 rn R3 4B
15 JTl addr 56 rn R4 4C
35 JZ addr C6 rn RS 40

R6 4E

E8 rn MOV A • .fI'data 23 rn R7 4F

E9 rn MOV A. PSW C7 ORL BUS, #data 88 rn
EA rn MOV A. RO F8 Pl, #data 89 rn
EB rn R1 F9 P2, #data 8A rn
EC rn R2 FA ORLo P4. A BC

ED rn R3 FB PS. A 80

EE rn R4 FC P6. A 8E

EF rn RS Fo ORLo P7. A BF

R6 FE
R7 FF OUTL BUS. A 02 05

MOV A.@RO FO P1.A 39 25
75 @R1 F1 P2. A 3A

MOV A. T 42
RET 83

08 . MOV PSW. A 07 RETR 93
09 MOV RO. A AB
OA R1.A A9 RLA E7

R2. A AA . RLe A F7
17 R3. A AB RR A 77
18 R4. A AC . RRC A 67
19 R5. A AD
1A R6. A AE SEL MBO E5
1B R7. A AF SEL MB1 F5
1C SEL RBO C5
10 MOV RO • .;;odata BB rn SEL RB1 05
1E Rl, #data B9 rn
1F R2, #data SA rn STOP TCNT 65
10 R3. -#data BB rn STRT CNT 45
11 R4. #dat8 BC rn STRT T 55

A5. #data Bo CD SWAP A 47
RS, #data BE rn 12 rn
R7, #data BF CD XCH A. RO 28

32 rn R1 Z9
52 CD R2 2A
72 CD MOV@RO.A AO R3 2B
94 CD MOV@R1.A A1 R4 2C
B2 CD MOV @RO. #data BO CD R5 20
02 CD @Rl, #data rn R6 2E
F2 CD R7 2F

MOV T. A 62
F6 rn MOVD A. P4 OC 20 B6 CD P5 00

XCH A.@RO

CD P6 OE XCH A.@R1 21

P7 OE
04 rn MOVD P4. A 3C XCHo A.@RO 30
24 rn P5. A 3D @R1 31
44 rn P6. A 3E
64 rn P7. A 3F XRL A. RO 08
84 rn R1 09
A4 rn MOVPA.@A A3 R2 DA
C4 rn MOVP3 A.@A E3 R3 DB
E4 rn MOVX A.@RO 80 R4 DC

@R1 B1 R5 DO
B3 CD MOVX@RO.A 90 R6 DE
E6 rn @R1.A 91 R7 OF
B6 CD XRL A.@RO DO
26 rn NOP 00 @R1 01

. CARRY FLAG AFFECTED

G-I/G-2

HEX

0

2

3

4

5

6

7

8

9

A

B

C

0

E

F

APPENDIX H
HEXADECIMAL/BINARY

CONVERSION TABLE

BINARY

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

H-l

HexadecimallBinary Conversion Table

HEXADECIMAL COLUMNS

6 5 4 3 2 l
HEX· DEC HEX = DEC HEX = DEC HEX a DEC HEX=DEC HEX· DEC

0 0 0 0 0 0 0 0 0 0 0 0
1 1.048.576 1 65.536 1 0.096 1 256 1 16 1 1
2 2.097.152 2 131.072 2 8.192 2 512 2 32 2 2
3 3.145.721 3 196.608 3 12.281 3 768 3 48 3 3
4 4.194._ 4 262.144 4 16._ 0 1.020 4 64 4 4
5 5.242.810 5 327.680 5 20.480 5 1.280 5 80 5 5
6 6.291.456 6 393.216 6 24.576 6 1.536 6 96 6 6
7 7.340.032 7 458.752 7 28.672 7 1.792 7 112 7 7
I 1.388.608 I 524.281 I 32.768 8 2.048 I 128 8 8 , 9.437.184 9 589.824 9 36.864 9 2._ g 144 9 9
A 10.485.760 A 655.J60 A 40.960 A 2.560 A 160 A 10
B 11.534.336 B 720.896 B 45.056 B 2.816 B 176 B 11
C 12.582.912 C 786.432 C 49.152 C 3.072 C 192 C 12
D 13.631.488 D 851.968 D 53.248 D 3.J28 D 208 D 13
£ 14.680.064 E 917.504 E 57.344 E 3.584 E 224 E ,.
F 15.728.640 F 983.040 F 61.440 F 3.840 F 240 F 15

0123 4561 0123 4561 0123 4561
BYTE BYTE BYTE

POWERS OF 2

2"

256
512

1024
2048
4096
8192

16384
32768
65536

131072
262144
524288

1048576
2091152
4194 304
8388608

16717 216

H-2

"
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

2" ·,SO
z4 = 16'
z8 = 162

212 = 1&3

216 = 1&4
2:11 = illS
224 • 1&6

z28 = 167

:z32 a 1&'
:z36 - 1&9
ZOO = 16'0

2" - 16"
z48 -1612

252 =1613

z56 -16'4

z60 - 16.5

Prompt 48

ASCII CHARACTER SET (7-BIT CODE I

~
0 1 2 3 4 5 6 7

LSD 000 001 010 011 100 101 110 11 1

0 0000 NUL. DLE SP 0 to P P
1 0001 SOH DCl ! 1 A 0 • q

2 0010 STX DC2 .. 2 B R b r

3 0011 ETX DC3 * 3 C S c • • 0100 EDT DC4 S 4 D T d 1

5 0101 ENG NAK '" 5 E U • u

6 0110 ACK SYN & 6 F V f · 7 0111 BEl ETB 7 G W g w

8 1000 BS .CAN I 8 H X h · 9 1001 HT EM J 9 I Y I Y
A 1010 LF SUB · J Z I z

B 1011 VT ESC • K (k

C 1100 FF FS < L I I
D 1101 CR G5 - . M J m

E 1110 SO R5 • > N t " -
F ,,11 51 V5

.,
? 0 - 0 DEL

POWERS OF 16

16" "
1 0

16 1
256 2

.096 3
65536 4

1048576 5
16777 216 6

268435456 7
4294 967 296 8

68 719 476 736 9
1 099 511 627776 10

17 592 186044 416 11
281474976710656 12

4 503 599 627 370 496 13
12 051 594 037927 936 14

1152921504 606 846 976 15

Access
Code

0

1

2

3

4

5

APPENDIX I
ACCESS CODE/LSN P2 MAP SUMMARY

System Expansion
110 & Memory OUTL Allowed

Program Memory Calls & 110 Port 0 LSN P2 Map

RAM No No Yes output (0) only

RAM No Yes No input or output

RAM Yes No No output only

On-chip No No Yes input or output
ROMIEPROM

On-chip No Yes No input or output
ROMIEPROM

On-chip Yes No No output only
ROM/EPROM

1-1/ 1-2

APPENDIX J
EXPANDED ACCESS CODES WITH

6 MHZ OPTION

For those systems equipped with the 6 MHz upgrade option, the following twelve access
codes are operative:

OUTL Expansion Expansion System I/O
Access = Port 0 Memory I/O & Calls

0 Yes No No No
1 No Yes No No P~~- (2 Yes No No Yes

for Program Memory 3 Yes No Yes No
4 No Yes Yes No
5 Yes No Yes Yes

10 Yes No No No

OO-'"P (
11 No Yes No No
12 Yes No No Yes ROM/EPROM 13 Yes No Yes No for Program Memory 14 No Yes Yes No
15 Yes No Yes Yes

The equivalents of the original 6 access codes are:

Old Access New Access

0 0
1 4
2 2 (with OUTL, too)
3 10
4 14
5 12 (with OUTL, too)

J-l/ J-2

Access Code Considerations, P2 Map, LSN
of P2, 6-11

Access Code/LSN P2 Map
Summary, 5-7, I-I

Access Code/P2 Map Summary, 5-6
Access Codes, A-5
Access Mode Code Summary, 5-6
Access Mode Control, 5-5
Access Mode Select Command, 5-6
Accumulator, 3-2
Accumulator Instructions, 3-15
Addition, Binary, 2-3
Arithmetic, Binary, 2-2
Assembling JMP and CALL

Instructions, 6-7
Assembly, Hand, 6-5

Baud-Rate Selection, 6-14
Binary Addition, 2-3
Binary Arithmetic, 2-2
Binary Digits, Electrical

Representation of, 2-8
Binary Division, 2-5
Binary Multiplication, 2-5
Binary Numbers, 2-1
Binary Subtraction, 2-3
Bits, Bytes, and

Where You Can Put Them, 3-2
BLK System Call, B-3
Breakpoints, 5-11
Breakpoints, Running With, A-9
Breakpoints, Setting, A-8
Byte Search Data Memory Command, 5-13
Byte Search Memory, A-II
Byte Search Program Memory

Command, 5-13
Byte Search Register Memory

Command,5-14
Bus Connector and I/O Ports Pin List, 4-5
Bus Expansion, 4-5

Clear Register Memory Command, 5-17
Clear Data Memory Command, 5-17
CALL Instruction Assembly, 6-7
Care and Feeding of EPROMs, 6-7
Clear Memory Commands, 5-17, A-1O
Clear Program Memory Command, 5-17
Code Generation, 6-2
Command Description Formats, 5-4
Command Function Group, 5-1
Command Input Options, 5-5
Command Keys, 5-2
Command List Summary, 5-22, E-I
Command Prompts, 5-5
Command/Function Summary, E-I
Command, Byte Search Data

Memory, 5-13
Command, Byte Search Program

Memory, 5-13

INDEX

Command, Byte Search Register
Memory, 5-14

Command, Clear Data Memory, 5-17
Command, Clear Program Memory, 5-17
Command, Clear Register Memory, 5-17
Command, Compare EPROM, 5-21
Command, Dump Data Memory, 5-18
Command, Dump Program Memory, 5-18
Command, Dump Register Memory, 5-18
Command, Enter Into Data Memory, 5-19
Command, Enter Into Program

Memory, 5-19
Command, Enter Into Register

Memory, 5-19
Command, EPROM Programming, 5-19
Command, Examine Modify, 5-9
Command, EXamine/Modify

Breakpoint, 5-11
Command, Fetch EPROM, 5-21
Command, Go/No Break, 5-11
Command, GO/With Break, 5-11
Command, Hexadecimal Arithmetic, 5-19
Command, Move Data Memory, 5-16
Command, Move Program Memory, 5-16
Command, Move Register Memory, 5-16
Command, Program EPROM With

Reentry Code, 5-20
Command, Program EPROM Without

Reentry Code, 5-20
Command, Search Memory, 5-12
Command, Word Search Program

Memory, 5-14
Command, Word Search Register

Memory, 5-15
Compare EPROM Command, 5-21, A-12
Configuration, Hardware, 6-2
Connector J2 Pin Connections, 6-13
Control, Access Mode, 5-5
Control Instructions, 3-20
Conversion Table, Hexadecimal!

Binary, H-l
Converting Decimal Numbers To Binary

Numbers, 2-2
Counter, Program, 3-3
Counter, Timer/Event, 3-7

Data Input, Strobed, 6-18
Data Memory, 4-4
Data Memory Considerations, 6-10
Data Memory, Examining and

Modifying, A-5
Data Memory, External, 3-12
Data Paths, 3-13
Data Paths Using INS A, Bus, 6-19
Debugging and Program Test, 6-6
Description, Hardware, 4-1
Description, Monitor Firmware, 4-4
Description, Panel, 5-1

Index-l

Prompt 48

Index-2

Design for "Von Neumann" Expansion
Memory, 6-9

Design, Program, 6-3
DGOUT System Call, B-4
DGSTG System Call, B-4
Display, Command Function Group, 5-1
Division, Binary, 2-5
Dump Data Memory Command, 5-18
Dump From Memory, A-1O
Dump Memory Commands, 5-17
Dump Program Memory Command, 5-18
Dump Register Memory Command, 5-18

Electrical Representation of Binary
Digits, 2-8

ENREF System Call, B-3
Enter Into Data Memory Command, 5-19
Enter Into Memory Command, 5-18, A-1O
Enter Into Program Memory

Command,5-19
Enter Into Register Memory

Command, 5-19
EPROMs, Care and Feeding, 6-7
EPROM Programming Command, 5-19
EPROM Programming, Fetch, Compare

Commands, 5-19 .
Examine/Modify Breakpoint

Command, 5-11
Examine/Modify Register Command, 5-9
Examine/Modify Program Memory

Command, 5-9
Examine/Modify Commands, 5-9
Examining and Modifying Data

Memory, A-5
Examining and Modifying Program

Memory,A-4
Examining and Modifying Registers, A-2
Execution Programs, A-7
Execution Socket, 5-3, A-I
Expanded Access Code With 6 MHz

Option, J-I
Expanding PROMPT 48 I/O Ports, 6-10
Expansion, Bus, 4-5
External Connections, Teletypewriter, 6-15
External Data Memory, 3-12
External Memory and Ports, 3-11
External Ports, 3-13
External Program Memory, 3-11

Fetch EPROM Command, 5-21, A-12
Flags, 3-4
Firmware Description, Monitor, 4-4
Format, Hexadecimal Object File, D-I
Formats, Command Description, 5-4
Function Key, Hex Data, 5-2
Function Summary, E-l
Functional Block Diagram, 4-2
Functional Definition, 6-1

Generation, Code, 6-2
Getting Started, 1-2
GO Command and Breakpoints, 5-11
Go/No Break Command, 5-11
GO/With Break Command, 5-12

Hand Assembly, 6-5
Handling the Processor, 1-1
Hardware Configuration, 6-2
Hardware Considerations, 6-8
Hardware Descriptions, 4-1
Harrard Architecture, 3-1
Historical Perspective, 3-1
Hex Calculator, A-12
Hex Data/Function Keys, 5-2
Hexadecimal/Binary Conversion, 5-8, H-I
Hexadecimal Arithmetic Command, 5-19
Hexadecimal Numbers, 2-6
Hexadecimal Object File Format, D-I
Hot Lines, Service, A-I
How To Use This Book, I-I
HXOUT System Call, B-4

I/O Port, Serial, 6-13
110 Ports, Using and Expanding, 6-10
110 Ports and Bus Connector (11),5-3
110 Ports and Bus Connector

Pin List, 4-5, 6-10
Input/Output, 4-4
Input/Output Instructions, 3-15
Input/Output Ports, 3-10
INS A, Bus, Use of, 6-18
INS A, Bus Data Paths, 6-19
Inserting Processor In Execution

Socket, I-I
Instruction Set Summary, G-I
Instruction Set, MCS 48,3-15
Instructions, Accumulator, 3-15
Instructions, Control, 3-20
Instructions, Input/Output, 3-15
Instructions, Register Accumulator, 3-15
Intel Service Hot Lines, A-I
Interfacing To A Teletypewriter, 6-14
Internal Modifications,

Teletypewriter, 6-14
Interrupt/Reset Group Keys, 5-2
Interrupts, A-13
Inverse State (Negative True), 2-9

J2 Pin Connections, 6-13
JMP Instruction Assembly, 6-7

KBIN System Call, B-2
KBST System Call, B-2
KDBIN System Call, B-1

Logic, Negative True, 2-9
Logic, Positive True, 2-8
LSN P2 Map Summary, Access Code, 5-7

Map Command, Port 2, 5-8
Map, P2, A-6
Mapping, Port 2, 5-7
MCS 48 Architecture, 3-2
MCS 48 Instruction Set, 3-15
Memory, 4-3
Memory Move Command, 5-15
Memory Paging, Program 6-7
Memory, Byte Search, A-ll
Memory, Data, 4-4
Memory, Dump, A-1O

Memory, Enter Into, A-I0
Memory, External Data, 3-12
Memory, External Program, 3-11
Memory, Program, 3-3,4-3
Memory, Register, 3-2
Memory, Word Search, A-II
Micromap, F-l
Modes 0, 2, or 5, Map LSN as Output, 6-11
Mode lor 4 Mapping is Don't Care, 6-12
Mode 3 Mapping May Be Input or

Output, 6-12
Mode Control, Access, 5-5
Modifying Data Memory, A-5
Modifying Program Memory, A-4
Modifying Registers, A-2
Monitor Firmware Description, 4-4
Move Program Memory Command, 5-16
Move Data Memory Command, 5-16
Move Memory Commands, 5-15, A-12
Move Register Memory Command, 5-16
Multiplication, Binary, 2-5

Negative True Logic, 2-9
Number Systems, 2-1
Numbers, Binary, 2-1
Numbers, Hexadecimal, 2-6

Options, Command Input, 5-5

P2 LSN Considerations, 6-13
P2Map, A-6
P2 Map Summary, Access Code, 5-6
P2 Map, LSN of P2, Access Code

Considerations, 6-11
Paging, Program Memory, 6-7
Panel Description, 5-1
Panel Layout, PROMPT 48,5-1
Paths, Data, 3-13
Pin List for I/O Ports and Bus

Connector, 4-5, 6-10
Pointers, RAM, 3-2
Pop, Stack, 3-9
Port 2 and Port 2 Mapping, 5-7
Port 2 Bus Structure, 6-12
Port 2 Map Command, 5-8
Port 2 Map Command Data Bits V s

Port 2 Pin Numbers, 5-8
Port 2 Mapping, 6-U
Port Strapping Options, Serial I/O, 6-14
Ports, Input/Output, 3-10
Ports, External, 3-13
Positive True Logic, 2-8
Princeton Architecture, 3-1
Princeton Heard From, 3-1
Processor, Handling, 1-1, A-I
Program Counter, 3-3
Program Design, 6-3
Program EPROM, A-13
Program EPROM For Debug, A-13
Program EPROM With Reentry

Code Command, 5-20
Program EPROM Without Reentry

Code Command, 5-20
Program Execution, A-7
Program Memory, 3-3,4-3

Program Memory, External, 3-11
Program Memory Examine/Modify

Command, 5-9, A-4
Program Memory Paging, 6-7
Program Test and Debugging, 6-6
Programming Example, Stopwatch, C-l
Programming Socket, 5-3
Programming Techniques, 6-3
PROMPT 48 Considerations, 6-8
PROMPT 48 Panel Layout, 5-1
Prompt 48 Purpose, 1-2
Prompts, Command, 5-5
Purpose of Prompt 48, 1-2
Push, Stack, 3-8

Questions Most Often Asked, 6-18

RAM and I/O Selection, 6-19
RAM Pointers, 3-2
REFS System Call, B-2
Register Accumulator Instructions, 3-15
Register Memory, 3-2
Register Memory Summary,

Special Purpose, 5-10
Register, Examine/Modify Command, 5-9
Registers, Examining and Modifying, A-2
Registers, Working, 3-2
Reset the System, A-I
Reset/Interrupt Group Keys, 5-2
Restrictions, Hardware, 4-6
Running With Breakpoints, A-9

Search Memory Command, 5-12
Select Command, Access Mode, 5-6
Serial I/O Port, 6-13
Serial I/O Port Strapping Options, 6-14
Service Hot Lines, A-I
Setting Breakpoints, A-8
Setting Up a System, 6-1
Single Stepping Programs, A-8
Socket, Execution, 5-3
Socket, Programming, 5-3
Source Listing, System Calls, B-5
Special Purpose Register

Memory Summary, 5-10
Stack, 3-4
Stack Push, 3-8
Stopwatch, Programming Example, C-l
Strobed Data Input, 6-18
Stack Pop, 3-9
Symbols, Why Computers Need, 2-1
System Calls, B-1
System Calls Source Listing, B-5
System Reset, A-I
Systems, Number, 2-1
Subtraction, Binary, 2-3
Summary, Command/Function, El

Techniques, Programming, 6-3
Teletypewriter Interfacing, 6-14
Teletypewriter External Connections, 6-15
Teletypewriter Internal Modifications, 6-14
Teletypewriter Wiring Diagram, 6-17
Timer/Event Counter, 3-7

Prompt 48

Index-3

Prompt 48

Index-4

Use of INS A, Bus, 6-18
Using and Expanding Prompt 48

I/O Ports, 6-10
Using the Serial 1/0 Port, 6-13

Voltage Selection, 1-1, A-I

Why Computers Need Symbols, 2-1
Wiring Diagram, Teletypewriter, 6-17
Word Search Memory, A-II
Word Search Register Memory

Command, 3-15
Word Search Program Memory

Command, 5-14
Working Registers, 3-2

REQUEST FOR READER'S COMMENTS

Prompt 48 User's Manual
9800402C

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all
Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME ___________________ ---------__ DATE ____________ __
TITLE ___ _

COMPANYNAME/DEPARTMENT _________________________________ __
ADDRESS __ ___
CITY ___________________________________ STATE ______________ ZIPCODE ________________ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications
3065 Bowers Avenue
Santa Clara, CA 95051

IIIII NO POSTAGE

NECESSARY

IF MAILED

IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	G-01
	G-02
	H-01
	H-02
	I-01
	I-02
	J-01
	J-02
	index-01
	index-02
	index-03
	index-04
	replyA
	replyB
	xBack

