

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel in this document. Intel Corporation makes no commitment to update nor to keep current the information contained in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

ICE-30	MCS
ICE-80	MEGACHASSIS
INSITE	MICROMAP
INTEL	MULTIBUS
INTELLEC	PROMPT
LIBRARY MANAGER	UPI
	RMX

PREFACE

This manual provides general information, installation, programming information, principles of operation, and service information for the Intel System 80/10 Microcomputer using either the SBC 80/10 or the SBC 80/10A. Unless specified otherwise references to the System 80/10 are valid for both Single Board Computers. The areas where differences occur are identified individually. Additional systems information and component part details are available in the following documents:

- Intel Microcomputer Systems Data Book,
 Part No. 98-414
- Intel 8080 Microcomputer Systems User's Manual,
 Part No. 98-153
- Intel Multibus Interfacing Application Note, AP-28
- Intel 8255 Programmable Peripheral Interface Application Note, AP-15
- Intel 8251 Universal Synchronous/Asynchronous Receiver/Transmitter Application Note, AP-16

TABLE OF CONTENTS

.

٠

.

CHAPTER	TITLE	PAGE NO
1.0	INTRODUCTION	. 1-1
	1.18080A ARCHITECTURE1.2SYSTEM ORGANIZATION1.3SYSTEM MONITOR	. 1-2
2.0	SYSTEM OVERVIEW	. 2-1
3.0	SBC 80/10 AND 80/10A MODULE	. 3-1
	 3.1 FUNCTIONAL ORGANIZATION OF THE SBC 80/10 AND SBC 80/10A MODULE	
	3.2.1 THE CPU SET	. 3-4 . 3-4 . 3-13 . 3-14
	3.2.1.4 HALT SEQUENCES	. 3-15 . 3-15 . 3-16 . 3-18
	3.2.2.3 FAILSAFE TIMER	. 3-20 . 3-21
	3.2.4 READ-ONLY-MEMORY (ROM/PROM) 3.2.5 SERIAL I/O INTERFACE 3.2.5.1 INTEL 8251 OPERATIONAL SUMMARY 3.2.5.2 SERIAL I/O CONFIGURATIONS 3.2.5.3 BAUD RATE CLOCK GENERATION 3.2.5.4 SERIAL I/O INTERRUPTS	. 3-23 . 3-25 . 3-25 . 3-36 . 3-38
	3.2.6.2 PARALLEL I/O INTERFACE	. 3-40 . 3-40
	3.3 USER SELECTABLE OPTIONS	. 3-59 . 3-59 . 3-60
	3.3.2 PARALLEL I/O OPTIONS . </td <td> 3-63 3-66 3-72 3-74 3-75 </td>	 3-63 3-66 3-72 3-74 3-75
	3.3.3 GENERAL OPTIONS	. 3-82 . 3-82 . 3-82
	3.3.4 DEFAULT OPTIONS	. 3-82

3

.

TITLE

4.0	FRONT PANEL
	4.1 AC POWER SWITCH 4.1 4.2 SYSTEM RESET SWITCH 4.1
5.0	CARDCAGE AND BACKPLANE ASSEMBLY
	 5.1 FUNCTIONAL ORGANIZATION OF THE CARDCAGE AND BACKPLANE ASSEMBLY
6.0	POWER SUPPLY
	6.1 FUNCTIONAL ORGANIZATION OF THE POWER SUPPLY 6-1 6.2 THEORY OF OPERATION 6-1 6.2.1 5V, 14 A OUTPUT 6-1 6.2.1.1 VOLTAGE REGULATION 6-1 6.2.1.2 CURRENT LIMIT/FOLDBACK 6-2 6.2.1.3 OVP OPERATION 6-3
	6.2.2 +12V OPERATION
	6.2.3 -12V OPERATION
	6.2.4 -5V OPERATION
	6.2.5 POWER FAIL OPERATION
	6.3 DC POWER OUTPUTS
	6.3.1 DC OUTPUT VOLTAGE ADJUSTMENT 6.5 6.3.2 OVER-VOLTAGE-PROTECTION CIRCUIT RESET PROCEDURE 6.6
	PROCEDURE
	6.5 MODIFICATION PROCEDURE FOR 230V OPERATION
7.0	SYSTEM MONITOR
	7.1 MONITOR FUNCTIONAL SPECIFICATION

v

TITLE

A.4

A.5

SYSTEM 80/10 SCHEMATICS

В

CHAPTER

	7.2 MONITOR INTERFACE SPECIFICATIONS	3
	7.2.1 COMMAND STRUCTURE	
	7.2.1.1 DISPLAY MEMORY COMMAND, D 7-3	
	7.2.1.2 PROGRAM EXECUTE COMMAND, G 7-4	
	7.2.1.3 INSERT INSTRUCTIONS INTO MEMORY, I 7-4	
	7.2.1.4 MOVE MEMORY COMMAND, M	
	7.2.1.5 READ HEXADECIMAL FILE, R 7-6	
	7.2.1.6 SUBSTITUTE MEMORY COMMAND, S 7-6	
	7.2.1.7 WRITE HEXADECIMAL FILE, W 7-7	
	7.2.1.8 EXAMINE AND MODIFY CPU REGISTERS	
	COMMAND, X	,
	7.2.2 DEVICE DRIVERS	3
	7.2.3 USING THE I/O SYSTEM	
	7.3 MONITOR OPERATING SPECIFICATIONS	
	7.3.1 PRODUCT ACTIVATION INSTRUCTIONS	
	7.3.1.1 COLD START PROCEDURE	
	7.3.1.2 USE OF RAM STORAGE IN THE MONITOR 7-1	
	7.3.2 ERROR CONDITIONS	
	7.3.2.1 INVALID CHARACTERS	
	7.3.2.2 ADDRESS VALUE ERRORS	
	7.3.2.3 PERIPHERAL DEVICE ERRORS \ldots \ldots $.7-1$	
	7.3.3 HEXADECIMAL OBJECT FILE FORMAT FOR PAPER TAPE . 7-1	
	7.4 HARDWARE GENERATED BREAKPOINTS	
	7.4 MARDWARE GENERATED DREAKIOINID	.)
8.0	SYSTEM UTILIZATION	
		•
	8.1 SYSTEM I/O INTERFACING	
	8.1.1 ELECTRICAL CONNECTIONS	
	8.1.2 EXTERNAL SYSTEM BUS SUMMARY	
	8.1.3 RS232C CABLING	
	8.2 TELETYPEWRITER MODIFICATIONS	1
		. ±
9.0	INTERFACING TO MULTIBUS MASTER	
		-
	APPENDICES	
APPENDIX	TITLE PAGE	N
ALL BUDIA	FAGE FAGE	11
Α	SYSTEM SPECIFICATIONS	-

SBC 604 MODULAR CARDCAGE AND BACKPLANE ASSEMBLY

.

PAGE NO.

NO.

APPENDIX

á

.

÷

TITLE

С	SYSTEM AND SUB-ASSEMBLY OUTLINES
	C.1 SYSTEM 80/10 OUTLINE
D	8080 INSTRUCTION SET SUMMARY
Ε	SBC 80P MONITOR PROGRAM LISTING
F	ASCII TABLE
G	BINARY-DECIMAL-HEXADECIMAL CONVERSION TABLES
Н	TELETYPEWRITER MODE

LIST OF ILLUSTRATIONS

FIGURE

TITLE

PAGE NO.

2-1	SYSTEM 80/10 BLOCK DIAGRAM
3-1	SBC 80/10 FUNCTIONAL BLOCK DIAGRAM
3-2	THE CPU SET
3-3	TYPICAL FETCH MACHINE CYCLE
3-4	INPUT INSTRUCTION CYCLE
3-5	OUTPUT INSTRUCTION CYCLE
3-6	READY TIMING
3-7	RAM ACCESS TIMING
3-8	8251 PIN ASSIGNMENTS
3-9	TYPICAL 8251 DATA BLOCK
3-10	ASYNCHRONOUS MODE
3-11	SYNCHRONOUS MODE
3-12	COMMAND INSTRUCTION FORMAT
3-13	STATUS READ FORMAT
3-14	8255 PIN ASSIGNMENTS
3-15	MODE DEFINITION CONTROL WORD FORMAT
3-16	BIT SET/RESET CONTROL WORD FORMAT
3-17	8255 MODE O TIMING
3-18	EXAMPLES OF MODE 0 CONFIGURATION
3-19	MODE 1 INPUT CONFIGURATION
3-20	8255 MODE 1 INPUT TIMING
3-21	MODE 1 OUTPUT CONFIGURATION
3-22	MODE 1 BASIC OUTPUT TIMING

FIGURE

TITLE

•

•

٠

.

3–23 3–24 3–25 3–26	MODE 2 PORT CONFIGURATION
4-1	SYSTEM RESET SWITCH
6-1 6-2 6-3 6-4 6-5 8-1 8-2	OUTPUT POWER CONNECTIONS6-5AC LOW DETECTION CIRCUIT CONNECTIONS6-6TYPICAL POWER FAIL SEQUENCE6-8215v CONNECTION6-10100v CONNECTION6-10TERMINATION PACK SCHEMATICS6-10SBC-80/10 EDGE CONNECTORS8-3
9-1	SERIAL PRIORITY CONFIGURATION WITH SBC 80/10 AND ANOTHER MULTIBUS MASTER
A-1 A-2 A-3 A-4 A-5 A-6	MEMORY AND I/O READ TIMING (CONTINUOUS BUS CONTROL)
B-1 B-2 B-3 B-4 B-5	AC/DC POWER DISTRIBUTION DIAGRAMB-2SBC 80/10 SCHEMATICB-3SBC 80/10A SCHEMATICB-8POWER SUPPLY SCHEMATICB-13TERMINATION BACKPLANE SCHEMATICB-14
C-1 C-2 C-3 C-4	SYSTEM 80/10 OUTLINEC-1SBC 80/10 AND SBC 80/10A BOARD OUTLINEC-2MODULAR CARDCAGE OUTLINEC-4POWER SUPPLY OUTLINE DRAWING FOR V/C AAC-5
H-1 H-2 H-3 H-4 H-5 H-6 H-7 H-8	TELETYPE COMPONENT LAYOUT

LIST OF TABLES

4

÷

TITLE

PAGE NO.

3-1	SERIAL COMMUNICATION (8251) ADDRESS ASSIGNMENTS
3-2	8255 MODE DEFINITION SUMMARY
3-3	8255 BASIC OPERATION
3-4	PARALLEL I/O PORT ADDRESSES
3-5	PORT 6 I/O CONFIGURATION
3-6	20 mA CURRENT LOOP SERIAL I/O INTERFACE
3-7	RS232C INTERFACE, "DATA SET" ROLE
3-8	RS232C INTERFACE, "DATA SET" ROLE
3-9	BAUD RATE SELECTION
3-10	PORT 1 OPERATING MODES
3-11	PORT 1, MODE 0 INPUT CONFIGURATION
3-12	PORT 1, MODE 0 LATCHED OUTPUT CONFIGURATION
3-13	PORT 1, MODE 1 STROBED INPUT CONFIGURATION
3-14	PORT 1, MODE 1 LATCHED OUTPUT CONFIGURATION
3-15	PORT 1, MODE 2 BIDIRECTIONAL CONFIGURATION
3-16	PORT 2 OPERATING MODES
3-17	PORT 2, MODE 0 INPUT CONFIGURATION
3-18	PORT 2, MODE 0 LATCHED OUTPUT CONFIGURATION
3-19	PORT 2, MODE 1 STROBED INPUT CONFIGURATION
3-20	•
3-20 3-21	PORT 2, MODE 1 LATCHED OUTPUT CONFIGURATION
	PORT 4 AND 5 OPERATING MODES
3-22	PORT 3, MODE 0, 8-BIT INPUT CONFIGURATION
3-23	PORT 3, MODE 0, 8-BIT LATCHED OUTPUT CONFIGURATION 3-76
3-24	PORT 4, MODE 0, INPUT CONFIGURATION
3-25	PORT 4, MODE 0 LATCHED OUTPUT CONFIGURATION 3-77
3-26	PORT 5, MODE 0 INPUT CONFIGURATION
3-27	PORT 5, MODE 0 LATCHED OUTPUT CONFIGURATION
3-28	PORT 6 OPERATING MODES
3-29	PORT 6, MODE 0, 8-BIT INPUT CONFIGURATION
3-30	PORT 6, MODE 0, 8-BIT LATCHED OUTPUT CONFIGURATION 3-79
3-31	PORT 6, MODE 0 UPPER 4-BIT INPUT/LOWER 4-BIT LATCHED OUTPUT CONFIGURATION
	OUTPUT CONFIGURATION
3-32	PORT 6, MODE O UPPER 4-BIT LATCHED OUTPUT/LOWER 4-BIT
	INPUT CONFIGURATION
3-33	PARALLEL I/O ADDRESS AND SOCKET ASSIGNMENTS
3-34	DEFAULT OPTION OF THE SBC 80/10
3-35	PROM JUMPER CONFIGURATION
3-36	PROM ADDRESSES
6-1	OPTIONAL TRANSFORMER CONNECTIONS
8-1	PIN ASSIGNMENTS FOR CONNECTOR J1
	(PARALLEL I/O INTERFACE - GROUP 1)
8-2	PIN ASSIGNMENTS FOR CONNECTOR J2
	(PARALLEL I/O INTERFACE - GROUP 2)
8-3	PIN ASSIGNMENTS FOR CONNECTOR J3
	(SERIAL I/O INTERFACE)
8-4	PIN ASSIGNMENTS FOR CONNECTOR P2
	(AUXILIARY CONNECTOR)

TABLE

TITLE

.

•

٠

٠

8-5	PIN ASSIGNMENTS FOR CONNECTOR P1 (SYSTEM BUS)
8-6	J3/RS232C CONNECTOR PIN CORRESPONDENCE
A-1	INPUT/OUTPUT PORT MODES OF OPERATION
A-2	DC POWER REQUIREMENTS
A-3	AC CHARACTERISTICS (WITH BUS EXCHANGE)
A-4	AC CHARACTERISTICS (WITH CONTINUOUS BUS CONTROL)
A-5	DC CHARACTERISTICS
A-6	SBC BOARDS COMPATIBLE CONNECTOR HARDWARE
A-7	NOMINAL DC VOLTAGE
A-8	CURRENT LIMIT AND OVP PROTECTION
A-9	TTL "AC LOW" SIGNAL
A-10	AC INPUT
A-11	DC OUTPUT

CHAPTER 1

INTRODUCTION

The System 80/10 is a member of Intel's complete line of OEM Computer systems that take full advantage of Intel's LSI technology to provide economical computer solutions for OEM applications. The System 80/10 is a completely packaged, self-contained computer system in a compact 3.5 inch high, 19 inch wide RETMA compatible chassis. The CPU, system clock, read/write memory, non-volatile read-only-memory, parallel I/O ports and drivers, serial communications interface, system backplane, power supply, fans, and OEM front panel are all included in one slim-line chassis.

Throughout this manual references to the system 80/10 are valid for systems using either the SBC 80/10 or the SBC 80/10A. Areas where differences occur are identified as SBC 80/10 only and SBC 80/10A only.

A Single Board Computer, the SBC 80/10 or the SBC 80/10A, provides the processing power for the System 80/10. The System has expansion capacity for an additional three expansion boards inside the System chassis. Intel's powerful 8-bit n-channel MOS 8080A CPU, fabricated on a single LST chip, is the central processor for the System 80/10. The 8080A contains six general purpose registers and an accumulator. The six general purpose registers may be addressed individually or in pairs providing both single and double precision operators. The 8080A has a 16-bit program counter which allows direct addressing of up to 64K bytes of memory, and the System 80/10 can be expanded with standard expansion boards to utilize up to 53K words of the addressing space. An external stack, located within any portion of memory, may be used as a last-in first-out stack to store and retrieve the contents of the program counter, flags, accumulator and all of the six general purpose registers. A sixteen bit stack pointer controls the addressing of this external stack. This stack provides almost unlimited subroutine nesting. Sixteen line address and eight line bidirectional data busses are used to facilitate easy interface to memory and I/0.

1.1 8080A ARCHITECTURE

The powerful 8080A instruction set allows the user to write efficient programs in a minimum amount of time. The accumulator group instructions include arithmetic and logical operators with direct, register indirect,

and immediate addressing modes. Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using all addressing modes. The ability to branch to different portions of a program is provided with jump, jump conditional, and computer jumps. The ability to conditionally and unconditionally call to and return from subroutines is provided. The RESTART (or single byte call instruction) is used for interrupt operation. Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the 8080A. The ability to increment and decrement memory, the six general registers and the accumulator is provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer.

1.2 SYSTEM ORGANIZATION

The System 80/10 may contain either an SBC 80/10 or an SBC 80/10A, depending on date of manufacture. The only difference is in the type and quantity of memory available on each board.

The System 80/10 with the SBC 80/10 contains 1K 8-bits words of read/ write memory using Intel's 8111 Low Power Static RAMs. Sockets for up to 4K 8-bit words of non-volatile read-only memory may be added in 1K byte increments using Intel's 8708 Erasable and Electrically Reprogrammable ROM's (EPROMs) or Intel's 8308 Metal Masked ROMs.

The System 80/10 with the SBC 80/10A contains 1K 8-bit words of read/ write memory using Intel's 8102 Low Power Static RAMs. Sockets for up to 4K or 8K words of non-volatile read-only memory are provided on the SBC 80/10A. Up to 4K words of read-only memory may be added in 1K byte increments using Intel's 8708 erasable and electrically reprogrammable ROMs (EPROMs), Intel's 2758 Erasable and Electrically Reprogrammable ROMs (EPROMs), or Intel's 8308 Metal Mask ROMs. Optionally up to 8K words of read-only memory may be added in 2K byte increments using Intel's 2716 Erasable and Electrically Reprogrammable ROMs (EPROMs) or Intel's 8316E Metal Masked ROMs.

The System 80/10 contains 48 programmable parallel Input/Output (I/O) lines implemented using two Intel 8255 Programmable Peripheral Interface devices. The software is used to configure the I/O lines in combinations of unidirectional input/output, and bidirectional ports. Therefore, the I/O interface may be customized to meet specified peripheral requirements in order to take full advantage of the large number of possible I/O line drivers and terminators. Hence, the flexibility of the I/O interface is further enhanced by the capability of selecting the appropriate optional line drivers and terminators for each application.

A programmable serial communications interface using Intel's 8251 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) is contained on the board. The USART can be programmed by the systems software to provide virtually any serial data transmission technique presently in use (including IBM Bi-Sync). The mode of operation (i.e., synchronous or asynchronous), data format, control character format, parity and asynchronous serial transmission rate (within limitations given later) are all under program control. The 8251 provides full duplex, double buffered transmission and receive capability. Parity, overrun, and framing error detection are all incorporated in the USART. The inclusion of jumper selectable TTY, or RS232C compatible interfaces on the board in conjunction with the USART provide a direct interface to a TTY, CRT, RS232C compatible devices, and asynchronous and synchronous modems.

A single-level interrupt may originate from any one of six sources including the USART, programmable I/O interface, and two user designated interrupt request lines. When an interrupt request is recognized, a RESTART 7 instruction is generated. The processor responds by suspending program execution and executing a user defined interrupt service routine.

Inside the compact chassis you will find a complete, quad output power supply with ample capability to support most combinations of computing power, I/O and memory expansion boards. Dual cooling fans are provided to circulate the air across the computer boards and power supply. The I/O section of the System 80/10 is easily accessible from the rear of the System chassis and the power supply as well as the system bus is accessible from behind the OEM front panel.

1.3 SYSTEM MONITOR

A standard feature of the System 80/10 is a software monitor which is programmed in two Intel ROMs. The monitor provides the user with two basic capabilities: 1) it gives the user access to console input and output routines as well as paper tape input and output control software and 2) the monitor along with a TTY or CRT provides the user with a "virtual console" that has immediate access to memory and registers and has control commands to begin execution and to display or alter the contents of the memory or registers. The system monitor ROMs are installed in the first two ROM sockets of the SBC 80/10 computer, occupying locations 0 to 2,048₁₀.

The development cycle of System 80/10 based OEM products may be significantly reduced using the Intellec MDS. The resident assembler, text editor, and system monitor greatly simplify the design, development, and debug of System 80/10 based system software. A unique In-Circuit Emulator (ICE-80) Intellec MDS option provides the capability of executing and debugging OEM system software directly on the System 80/10.

Intel's high level language, PL/M, can be used to significantly decrease the time required to develop OEM system software.

CHAPTER 2

SYSTEM OVERVIEW

The System 80/10 is a fully packaged microcomputer utilizing either the SBC 80/10 or SBC 80/10A single board computers. The System can be divided into five functional blocks (see Figure 2-1). They are as follows:

- 1) SBC 80/10 or SBC 80/10A
- 2) Front Panel
- 3) Modular cardcage and backplane assembly
- 4) Power Supply
- 5) System Monitor

SBC 80/10

The SBC 80/10 is a complete computer system on a single 6.75 x 12 inch printed circuit card. The CPU, system clock, RAM, non-volatile ROM, I/O ports and drivers, serial communication interface, bus control logic and drivers all reside on the board.

Front Panel

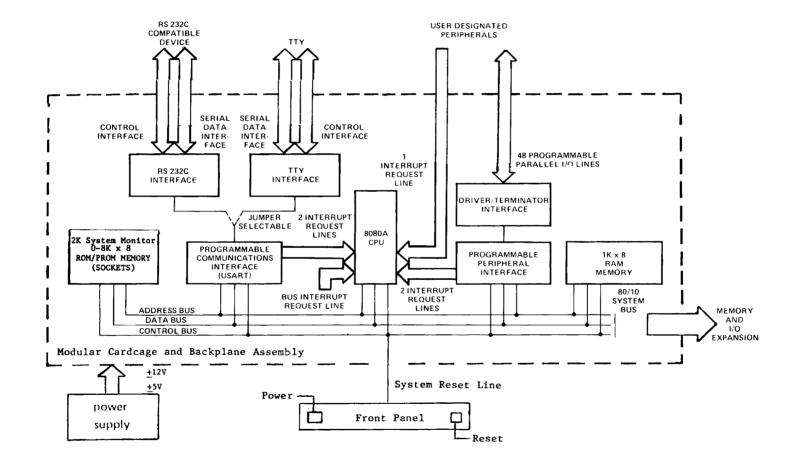
The System 80/10 Front Panel consists of the AC power ON/OFF switch and the system reset circuitry. The simplicity of the System 80/10 Front Panel allows the OEM user to add his own mylar overlay or structural foam cover to meet his own design needs.

Modular Cardcage and Backplane Assembly

The Modular Cardcage and Backplane Assembly is installed in the chassis to house the SBC 80/10 and provide an easily accessible bus in-terface. The cardcage houses the SBC 80/10 and up to three expansion boards. All SBC 80 bus signals are present on each mating connector.

Power Supply

The System 80/10 power supply provides regulated DC output power at +12, +5, -5 and -12 volt levels. The power supply is chosen to provide

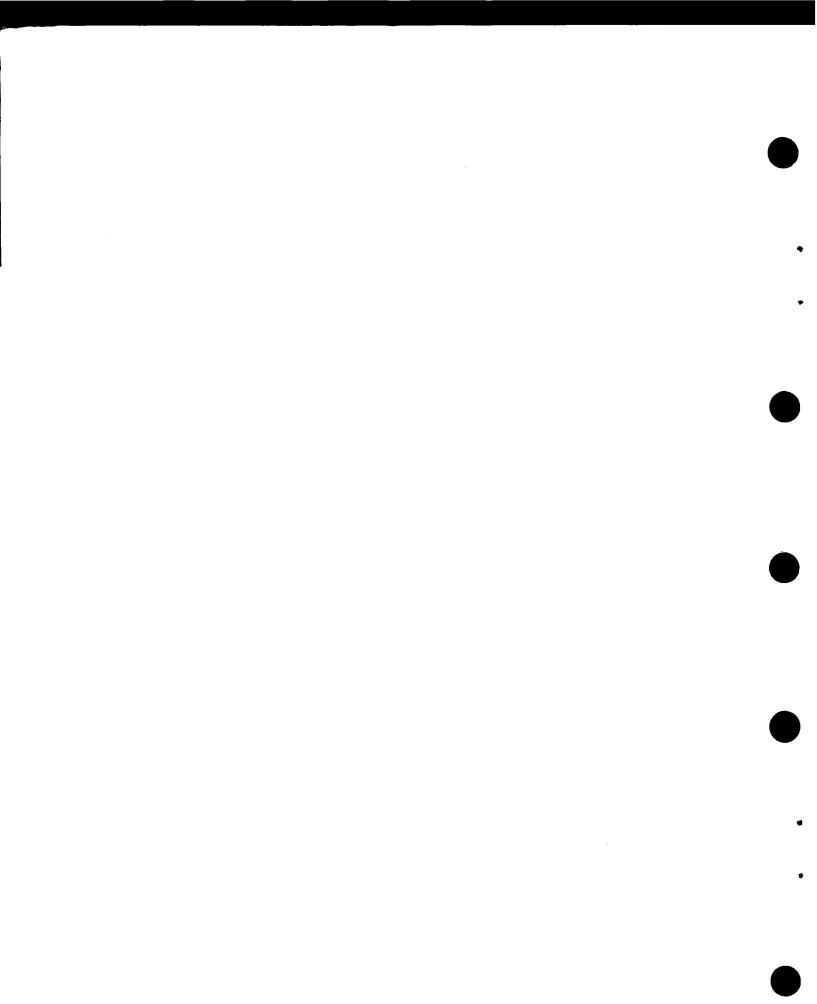

power for a fully loaded SBC 80/10 and most combinations of up to three SBC memory, I/O or combination expansion boards. The power supply also provides an "AC low" power failure output, TTL logic level, for system power-down control.

System Monitor

The System 80/10 Monitor is an Intel[®] 8080 program provided in two pre-programmed 1K ROMs. The monitor accepts and acts upon user commands to operate on the System 80/10 memory and I/O. It also provides input and output facilities in the form of I/O drivers for user console devices. The monitor provides the following facilities:

- . Display selected areas of memory and processor registers.
- . Initiate execution of user programs.
- . Modify contents of memory and processor registers.
- . Insert instruction(s) into memory.
- . Reposition blocks of data in memory.
- . Input hexadecimal file from TTY reader to memory.
- . Output hexadecimal file to TTY punch from memory.

The monitor communicates with the user through an interactive console device, normally a TTY or CRT terminal. The dialogue between the operator and monitor consists of user originated commands in the monitor's command language, and monitor responses, either in the form of a printed message or an action being performed. The monitor begins the dialogue by printing the sign-on message "SBC 80P Monitor" on the console and requesting a command by presenting a prompt character, "." (period).


ŵ.

.

FIGURE 2-1 SYSTEM 80/10 BLOCK DIAGRAM

.

.

CHAPTER 3

SBC 80/10 AND 80/10A MODULE

3.1 FUNCTIONAL ORGANIZATION OF THE SBC 80/10 AND SBC 80/10A MODULE

For descriptive purposes, the circuitry on the SBC 80/10 and 80/10A can be divided into six functional blocks:

1) CPU Set

2) System Bus Interface

3) Random Access Memory (RAM)

4) Read Only Memory (ROM/PROM) Logic

5) Serial I/O Interface

6) Parallel I/O Interface

as shown in Figure 3-1.

The <u>CPU Set</u> consists of the 8080A Control Processor, the 8224 Clock Generator and the 8238 System Controller. The CPU Set is the heart of the SBC 80/10. It performs all system processing functions and provides a stable timing reference for all other circuitry in the system. The CPU Set generates all of the address and control signals necessary to access memory and I/O ports both on the SBC 80/10 and external to the SBC 80/10. The CPU Set is capable of fetching and executing any of the 8080's seventyeight instructions. The CPU Set responds to interrupt requests originating both on and off the SBC 80/10, to HOLD requests from modules wishing to acquire control of the system bus, and to WAIT requests from memory or I/O devices having an access time which is slower than the 8080's cycle time.

The <u>System Bus Interface</u> includes an assortment of circuitry which gates interrupt requests, HOLD requests, READY (no wait inputs and the system reset input to the appropriate pins of the CPU Set. Other circuits drive the various external system control signals. The System Bus Interface also includes two 8216 bidirectional bus drivers which drive the memory data bus on the SBC 80/10. Six 8226 devices drive the external system data and address busses.

The <u>Random Access Memory (RAM)</u> provides the System 80/10 user with 1024 x 8-bits of on board read/write storage. Eight Intel 8111 Low Power Static RAM chips (256 x 4-bits each) are mounted on the SBC 80/10. The

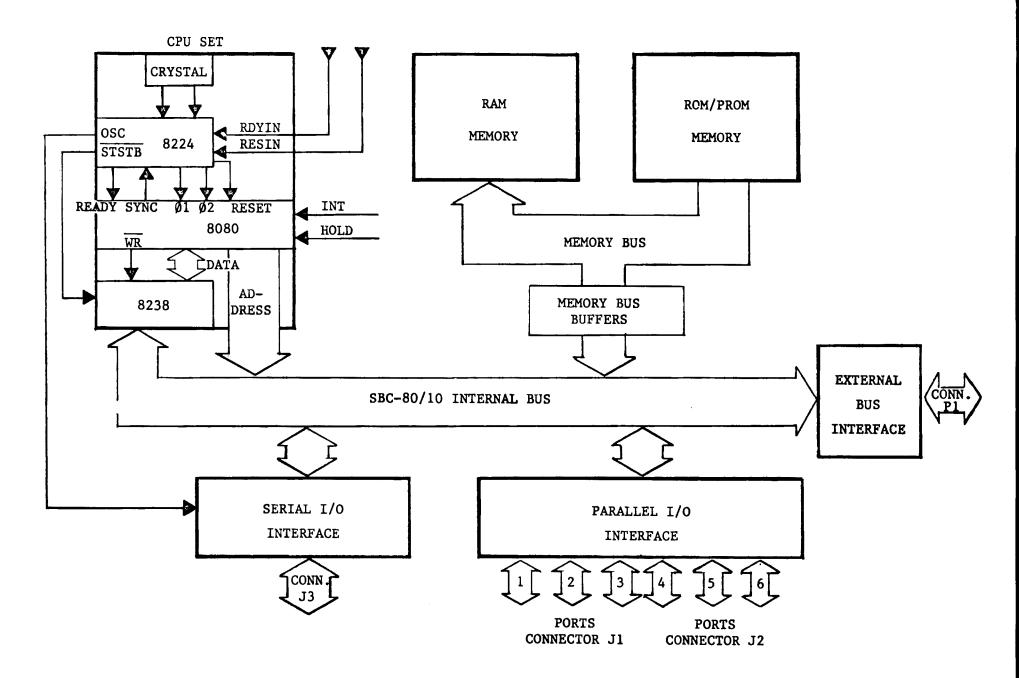


FIGURE 3-1 SBC 80/10 FUNCTIONAL BLOCK DIAGRAM

SBC 80/10A has eight Intel 8102 Low Power Static RAM chips (1024 \times 1-bit each).

The <u>Read Only Memory (ROM/PROM)</u> section provides the user with the necessary provisions for installing up to 4096 x 8-bit of ROM or PROM on the SBC 80/10 and up to 8192 x 8-bits of ROM or PROM on the SBC 80/10A. The 80/10 and 80/10A have four 24-pin sockets that can accept either Intel 8708 Erasable and Electrically Reprogrammable Read Only Memory chips or Intel 8308 Metal Masked Read Only Memory Chips. Optionally the SBC 80/10A accepts Intel 2716 Erasable and Electrically Reprogrammable ROM (EPROM) chips, Intel 2758 Erasable and Electrically Reprogrammable ROM (EPROM) chips, or Intel 2316E Metal Masked ROM chips. The total ROM/PROM memory capacity using 8708, 8308 or 2758 chips is 4K x 8-bits and 8K x 8bits using 2716 or 2316E chips.

The <u>Serial I/O Interface</u>, using Intel's 8251 USART device, provides a bidirectional serial data communications channel that can be programmed to operate with most of the current serial data transmission protocols. Synchronous or asynchronous mode, baud rate, character length, number of stop bits and the choice of even, odd or no parity are all program selectable. The user also has the option of configuring the Serial I/O Interface as an EIA RS232 interface or as a Teletype-compatible current loop interface.

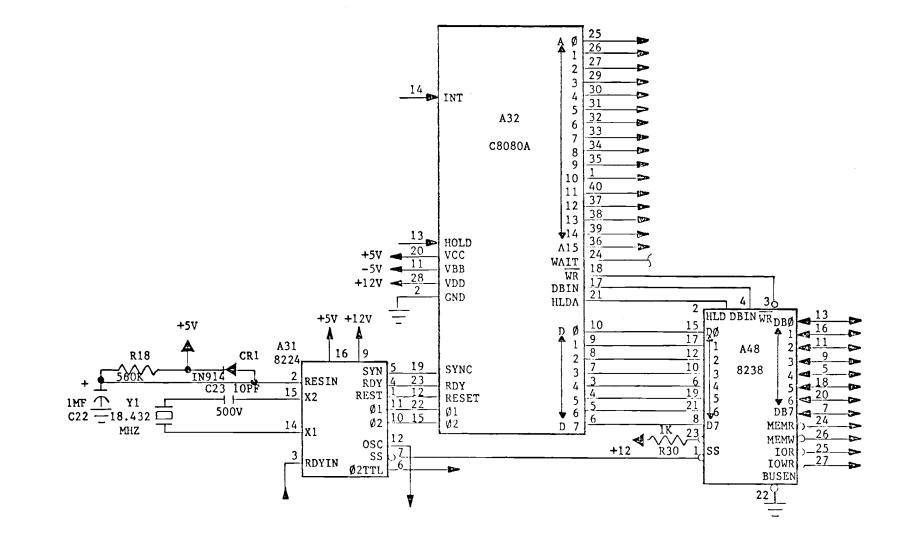
The <u>Parallel I/O Interface</u>, using two Intel[®]8255 Programmable Peripheral interface devices, provides 48 signal lines for the transfer and control of data to or from peripheral devices. Eight lines already have a bidirectional driver and termination network permanently installed. This bidirectional network allows these eight lines to be inputs, outputs, or bidirectional (selected via jumpers). The remaining 40 lines, however, are uncommitted. Sockets are provided for the installation of drivers or termination networks as required to meet the specific needs of the user system.

3.2 THEORY OF OPERATION

In the preceding chapter we introduced each of the SBC 80/10 functional blocks and defined what each block was capable of doing. In this chapter we shall go one step further and describe how each block performs its particular function(s). The text will constantly refer to the SBC 80/10 schematics, provided in Appendix B.

Note: Both active-high (positive true) and active-low (negative true) signals appear on the SBC 80/10 schematics. To eliminate any confusion when reading this chapter, the following convention will be adhered to: whenever a signal is active-low, its mnemonic is followed by a slash; for example, MRDC/ means that the level on that line will be low when the memory read command is true (active). If the signal is subsequently inverted, thus making it active-high, the slash is omitted; for example, MRDC means that the level on that line will be high when the memory read command is true.

3.2.1 THE CPU SET


- The CPU Set consists of three Intel[®] integrated circuit devices:
 - * 8080A Central Processor Unit
- * 8224 Clock Generator
- * 8238 System Controller

and an 18.432 MHz crystal that establishes the frequency of oscillation for the 8224 device via a 10pF capacitor, as shown in Figure 3-2. Together the elements in the CPU Set perform all central processing functions. The following paragraphs describe how the elements within the CPU Set interact with all other logic on the SBC 80/10. The interaction between the ICs within the CPU Set, however, is not described. Instead, the reader is referred to the Intel "8080 Microcomputer Systems User's Manual" for a detailed description of the 8080, 8224 and 8238 devices.

The CPU Set is shown on sheet 1 of the SBC 80/10 schematic (Appendix B).

3.2.1.1 INSTRUCTION TIMING

The activities of the CPU Set are cyclical. The CPU fetches an instruction, performs the operations required, fetches the next instruction, and so on. This orderly sequence of events requires precise timing. The 8224 Clock Generator, provides the primary timing reference for the CPU Set. The crystal in conjunction with a 10pF capacitor tunes an oscillator within the 8224 to precisely 18.432 MHz. The 8224 "divides" the oscillations by nine to produce two-phase timing inputs (\emptyset 1 and \emptyset 2) for the 8080. The \emptyset 1 and \emptyset 2 signals define a cycle of approximately 488 ns. duration. A TTL level phase 2 (\emptyset 2TTL) signal is also derived and made

٠

4

Figure 3-2 THE CPU SET

۲

available to external logic. In addition, the output of the oscillator is buffered and brought out on OSC so that other system timing signals can be derived from this stable, crystal controlled source (e.g., the serial I/O baud rate is derived from OSC). All processing activities of the CPU Set are referred to the period of the Øl and Ø2 clock signals.

Within the 8080 CPU Set, an <u>instruction cycle</u> is defined as the time required to fetch and execute an instruction. During the fetch, a selected instruction (one, two or three bytes) is extracted from memory and deposited in the CPU's operating registers. During the execution part, the instruction is decoded and translated into specific processing activities.

Every instruction cycle consists of one, two, three, four or five machine cycles. A <u>machine cycle</u> is required each time the CPU accesses memory or an I/O port. The fetch portion of an instruction cycle requires one machine cycle for each byte to be fetched. The duration of the execution portion of the instruction cycle depends on the kind of instruction that has been fetched. Some instructions do not require any machine cycles other than those necessary to fetch the instruction; other instructions, however, require additional machine cycles to write or read data to/from memory or I/O devices.

Each machine cycle consists of three, four or five states. A <u>state</u> is the smallest unit or processing activity and is defined as the interval between two successive positive-going transitions of the Øl clock pulse.

There are three exceptions to the defined duration of a state. They are the WAIT state, the hold (HLDA) state and the halt (HLTA) state. Because the WAIT, the HLDA, and the HLTA states depend upon external events, they are by their nature of indeterminate length. Even these exceptional states, however, must be synchronized with the pulses of the driving clock. Thus the duration of all states, including these, are integral multiples of the clock pulse.

To summarize, then, each <u>clock period</u> marks a <u>state</u>; three to five <u>states</u> summarize a machine cycle; and one to five <u>machine cycles</u> comprise an <u>instruction cycle</u>. A full instruction cycle requires anywhere from

four to seventeen states for its completion, depending on the kind of instruction involved.

There is just one consideration that determines how many machine cycles are required in any given instruction cycle: the number of times that the processor must reference a memory address or an I/O address, in order to fetch and execute the instruction. Like many processors, the 8080 is so constructed that it transmits one address per machine cycle. Thus, if the fetching and execution of an instruction requires two memory references, then the instruction cycle associated with that instruction consists of two machine cycles. If five such references are called for, then the instruction cycle contains five machine cycles.

Every instruction cycle has at least one reference to memory, during which the instruction is fetched. An instruction cycle must always have a fetch, even if the execution of instruction requires no further references to memory. The first machine cycle in every instruction cycle is therefore a FETCH. Beyond that, there are no fast rules. It depends on the kind of instruction. The input (INP) and the output (OUT), instructions each require three machine cycles: a FETCH, to obtain the instruction; a MEMORY READ, to obtain the address of the object peripheral; and an INPUT or an OUTPUT machine cycle, to complete the transfer.

Every machine cycle within an instruction cycle consists of three to five active states (referred to as T1, T2, T3, T4, and T5). The actual number of states depends upon the instruction being executed, and on the particular machine cycle within the greater instruction cycle. Figure 3-3 shows the timing relationships in a typical FETCH machine cycle. Events that occur in each state are referred to transitions of the \emptyset 1 and \emptyset 2 clock pulses.

At the beginning of each machine cycle (in state T1), the 8080 activates its SYNC output and issues status information on its data bus. The 8224 accepts SYNC and generates an active-low status strobe (STSTB/) as soon as the status data is stable on the data bus. The status information indicates the type of machine cycle in progress. The 8238 System Controller accepts the status bits from the 8080 and STSTB/ from the 8224, and uses them to generate the appropriate control signals (MEMR/, MEMW/, IOR/

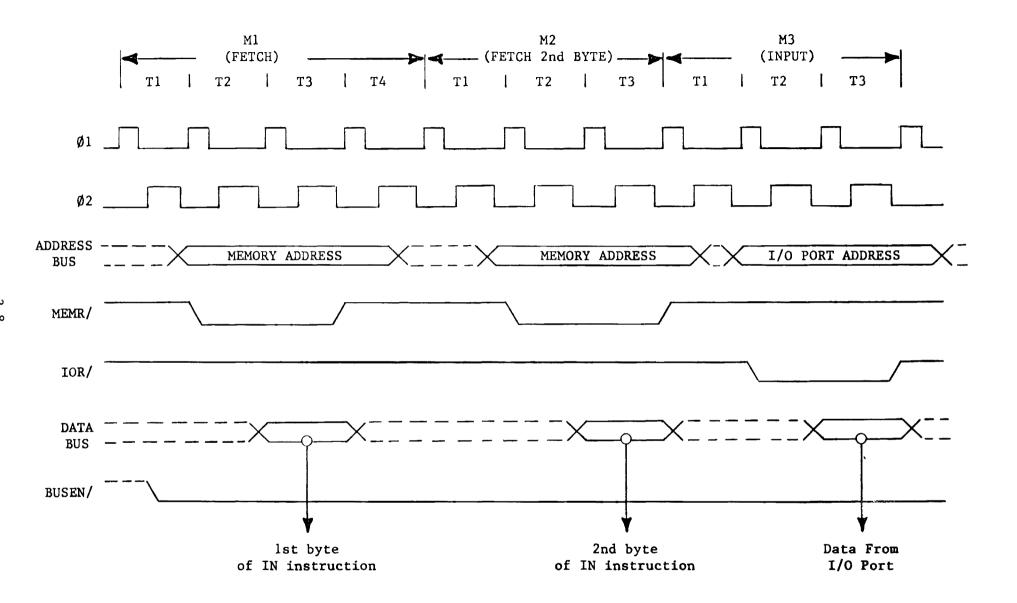


FIGURE 3-3 TYPICAL FETCH MACHINE CYCLE

and IOWR/) for the current machine cycle.

The rising edge of \emptyset 2 during Tl loads the processor's address lines (A0 - A15). These lines become stable within a brief delay of the \emptyset 2 clocking pulse, and they remain stable until the first \emptyset 2 pulse after state T3. This gives the processor ample time to read the data returned from memory.

Once the processor has sent an address to memory, there is an opportunity for the memory to request a WAIT. This it does by pulling the 8224's RDYIN line low. As long as the RDYIN line remains low, the CPU Set will idle, giving the memory time to respond to the addressed data request. The 8224 synchronizes RDYIN with internal processor timing and applies the result to the 8080's READY input. The processor responds to a wait request by entering an alternative state (TW) at the end of T2, rather than proceeding directly to the T3 state. A wait period may be of indefinite duration. The 8080 remains in the waiting condition until its READY line again goes high. The cycle may then proceed, beginning with the rising edge of the next \emptyset 1 clock. A WAIT interval will therefore consist of an integral number of TW states and will always be a multiple of the clock period.

The events that take place during the T3 state are determined by the kind of machine cycle in progress. In a FETCH machine cycle, the CPU Set interprets the data on its data bus as an instruction. During a MEMORY READ, signals on the same bus are interpreted as a data word. The CPU Set itself outputs data on this bus during a MEMORY WRITE machine cycle. And during I/O operations, the CPU Set may either transmit or receive data, depending on whether an INPUT or an OUTPUT operation is involved. Consider the following two examples.

Figure 3-4 illustrates the timing that is characteristic of an input instruction cycle. During the first machine cycle (M1), the first byte of the two-byte IN instruction is fetched from memory. The 8080 places the 16-bit memory address on the system bus near the end of state T1. The 8238 activates the memory read control signal (MEMR/) during states T2 and T3 (and any intervening wait states, if required). During the next machine cycle (M2), the second byte of the instruction is fetched. During

the third machine cycle (M3), the IN instruction is executed. The 8080 duplicates the 8-bit I/O address on address lines ADRO-7 and ADR8-F. The 8238 activates the I/O read control signal (IOR/) during states T2 and T3 of this cycle. In all cases the system bus enable input (BUSEN/) to the 8238 allows for normal operation of the data bus buffers and the read/write control signals. If BUSEN/ goes high the data bus output buffers and control signal buffers are forced into a high-impedance state.

Figure 3-5 illustrates an instruction cycle during which the CPU Set outputs data. During the first two machine cycles (M1 and M2), the CPU Set fetches the two-byte OUT instruction. During the third machine cycle (M3), the OUT instruction is executed. The 8080 duplicates the 8-bit I/O address on lines ADRO-7 and ADR8-F. The 8238 activates <u>an advanced</u> I/O write control signal (IOWR/) at the beginning of state T2 of this cycle. The nature and implications of the 8238 timing will be explained later (page 3-17). The 8238 outputs the data onto the system bus at the end of state T2. Data on the bus remains stable throughout the remainder of the machine cycle. BUSEN/ must be low to prevent the output and control buffers from being forced into the high impedance state.

Observe that a RDYIN signal is necessary for completion of an output machine cycle. Unless such an indication is present, the processor enters the TW state, following the T2 state. Data on the output lines remains stable in the interim, and the processing cycle will not proceed until the RDYIN line again goes high.

The 8080 generates a WR/ output for qualification of the advanced I/O write (IOWR/) and memory write (MEMW/) control signals from the 8238, during those machine cycles in which the CPU Set outputs data. The negative going leading edge of WR/ is referred to the rising edge of the first \emptyset l clock pulse following T2. WR/ remains low until re-triggered by the leading edge of \emptyset 2, during the state following T3. Note that any TW states intervening between T2 and T3 of the output machine cycle will necessarily extend WR/.

All processor machine cycles consist of at least three states: Tl, T2, and T3 as just described. If the CPU Set has to wait for a RDYIN response, then the machine cycle may also contain one or more TW states.

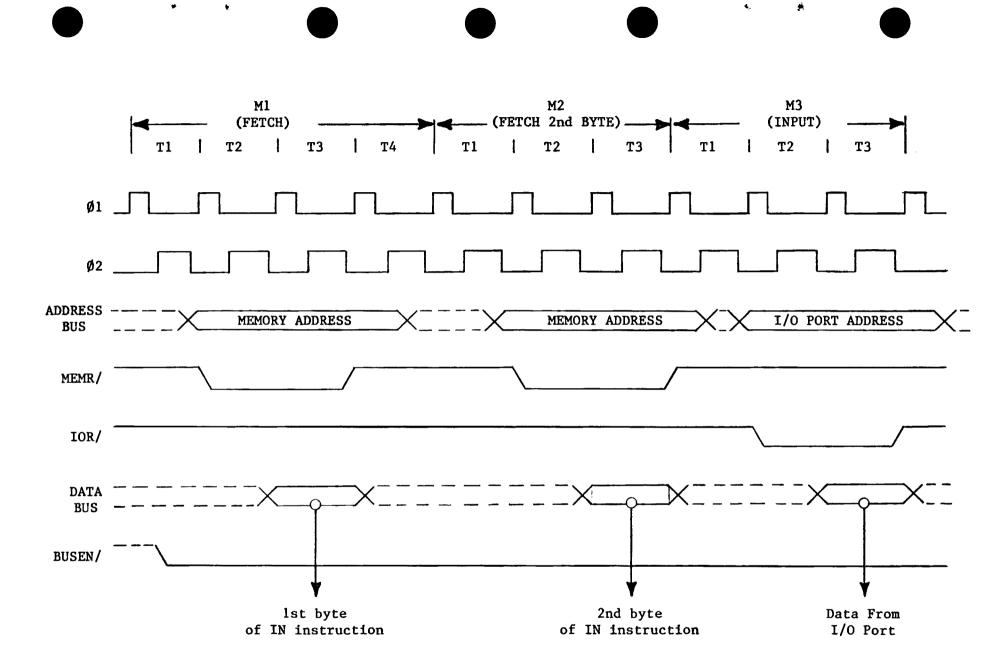


FIGURE 3-4. INPUT INSTRUCTION CYCLE

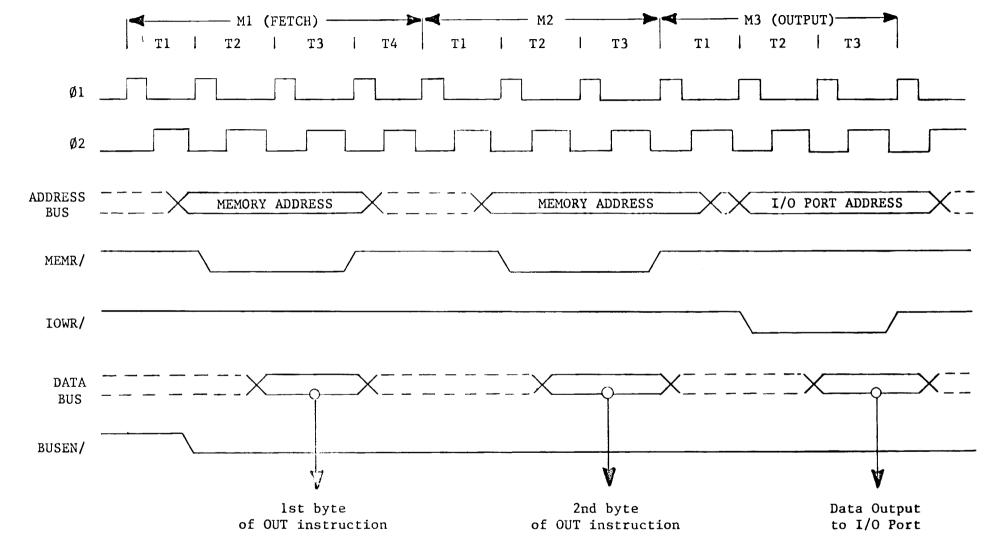


FIGURE 3-5. OUTPUT INSTRUCTION CYCLE

During the three basic states, data is transferred to or from the CPU Set.

After the T3 state, however, it becomes difficult to generalize. T4 and T5 states are available, if the execution of a particular instruction requires them. But not all machine cycles make use of these states. It depends upon the kind of instruction being executed, and on the particular machine cycle within the instruction cycle. The processor will terminate any machine cycle as soon as its processing activities are completed, rather than proceeding through the T4 and T5 states every time. Thus the 8080 may exit a machine cycle following the T3, the T4, or the T5 state and proceed directly to the T1 state of the next machine cycle.

3.2.1.2 INTERRUPT SEQUENCES

The 8080 has the built-in capacity to handle external interrupt requests. Peripheral logic can initiate an interrupt simply by driving the processor's interrupt (INT) line high. The interrupt (INT) input is asynchronous, and a request may therefore originate at any time during any instruction cycle. Internal logic re-clocks the external request, so that a proper correspondence with the driving clock is established. An interrupt request (INT) arriving during the time that the interrupt enable line (INTE) is high, acts in coincidence with the \emptyset 2 clock to set the internal interrupt latch. This event takes place during the last state of the instruction cycle in which the request occurs, thus ensuring that any instruction in progress is completed before the interrupt can be processed.

The INTERRUPT machine cycle which follows the arrival of an enabled interrupt request resembles an ordinary FETCH machine cycle in most respects. The contents of the program counter are latched onto the address lines during Tl, but the counter itself is not incremented during the INTERRUPT machine cycle, as it otherwise would be. In this way, the preinterrupt status of the program counter is preserved, so that data in the counter may be saved in the stack. This in turn permits an orderly return to the interrupted program after the interrupt request has been processed.

Because the 8238's INTA/ output (pin 23) is tied to +12 volts, the 8238 blocks incoming data and automatically inserts a Restart (RST 7) instruction onto the 8080 data bus during state T3, when the interrupt is acknowledged by the 8080. RST is a special one-byte call instruction that facilitates the processing of interrupts (the ordinary program call instruction is three bytes long). The RST 7 instruction causes the 8080 to branch program control to the instruction being stored in memory location 38_{16} .

3.2.1.3 HOLD SEQUENCES

By activating the 8080's HOLD input, an external device can cause the CPU Set to suspend its normal operations and relinquish control of the address and data busses. The CPU Set responds to a request of this kind by floating its address and data outputs, so that these exhibit a high impedance to other devices sharing the busses. At the same time, the processor acknowledges the HOLD by placing a high on its HLDA output pin. During an acknowledged HOLD, the address and data busses are under control of the peripheral which originated the request, enabling it to conduct memory transfers without processor intervention.

3.2.1.4 HALT SEQUENCES

When a halt instruction (HLT) is executed, the 8080 enters the halt state after state T2 of the next machine cycle. There are only three ways in which the 8080 can exit the halt state:

- . A high on the 8224 reset input (RESIN/) will always reset the 8080 to state Tl; reset also clears the program counter.
- . A HOLD input will cause the 8080 to enter the hold state, as previously described. When the HOLD line goes low, the 8080 re-enters the halt state on the rising edge of the next Øl clock pulse.
- An interrupt (i.e., INT goes high while INTE is enabled) will cause the 8080 to exit the halt state and enter state Tl on the rising edge of the next Øl clock pulse. NOTE: The interrupt enable (INTE) flag must be set when the halt state is entered; otherwise,

the 8080 will only be able to exit via a reset signal.

3.2.1.5 START-UP SEQUENCE

When power is applied initially to the 8080, the processor begins operating immediately. The contents of its program counter, stack pointer, and the other working registers are naturally subject to random factors and cannot be specified. For this reason, the CPU Set power-up sequence begins with a reset. An external RC network is connected to the 8224's RESIN/ input. The slow transition of the power supply rise is sensed by an internal Schmitt Trigger which converts the slow transition into a clean, fast edge on the RESIN/ line when the input level reaches a predetermined value.

An active RESIN/ input to the 8224 produces a synchronized RESET signal which restores the processor's internal program counter to zero. Program execution thus begins with memory location zero, following a reset. Systems which require the processor to wait for an explicit startup signal will store a halt instruction (HLT) in this location. A manual or an automatic INTERRUPT will be used for starting. In other systems, the processor may begin executing its stored program immediately. Note, however, that the reset has no effect on status flags, or on any of the processor's working registers (accumulator, indices, or stack pointer). The contents of these registers remain indeterminate, until initialized explicitly by the program.

In addition to generating a RESET signal, the RESIN/ input causes the 8224's status strobe (STSTB/) output to remain true (low). This allows both the 8080 and 8238 to be reset by a power-up sequence or an externally generated RESIN/ condition.

3.2.2 SYSTEM BUS INTERFACE LOGIC

The System Bus Interface logic consists of three general groups of circuitry:

1) assorted gates that accept the various bus control signals, the interrupt request lines, the ready indications and then applies

these signals to the CPU Set,

- 2) the system bus drivers, and
- 3) the Failsafe circuitry which generates an acknowledgment during interrupt sequences and during those cycles in which an acknowledgment is not returned because a non-existent device was inadvertently addressed.

Each group is described in the following paragraphs.

3.2.2.1 SYSTEM CONTROL SIGNAL LOGIC

Interrupt Requests:

Four interrupt request lines are OR'd together at A17-6 (ref. Appendix B) and applied to the 8080's INT input. Two of the interrupt request lines are from external sources: EXT INTR 1/ which enters the SBC 80/10 at connector J1 pin 49 and EXT INTR 2/ which enters the SBC 80/10 at P1-42. The other two interrupt requests originate on the SBC 80/10: INT 55/ is an interrupt request from ports 1 or 2 in the Parallel I/O Interface (see Section 3.2.6.2); and INT 51/ is an interrupt request from the 8251 USART in the Serial I/O Interface (see Section 3.2.5.4).

Hold Requests:

If the system 80/10 is operating with other modules sharing the bus, one of the modules can acquire control of the external bus by activating the 8080's HOLD/ input (connector pin P1-15). HOLD/ is inverted and applied to the 8080's HOLD pin. As described in Section 3.2.1.3, the 8080 will subsequently activate its hold acknowledge (HLDA) output. HLDA is, in turn, latched by a 74LS74 flip-flop (at A29). The Q output from the D-type latch (DHLDA) disables the 8097 circuits (A47) that drive the external read/write control outputs: MRDC/, MWTC/, IORC/ and IOWC/. DHLDA also disables the external system address and data bus drivers by asserting a high at their active-low chip select (CS/) input pins. As a result of DHLDA, all of the above-mentioned drivers enter the high-impedance state. The \overline{Q} output from the DHLDA output informs other modules of this condition via the BUSY/ output (connector pin P1-17). BUSY/ is driven by transistor Q5.

System Reset:

Connector pin P1-14 on the SBC 80/10 can be used to accept an externally generated SYSTEM RESET signal and to transfer an SBC 80/10 generated RESET signal to other modules in the system. If jumper pair 54-55 is connected, a RESET from the 8224 will be gated through the Q4 transistor to connector pin P1-14, thus resetting other modules in the system during power-up sequences. An externally generated SYSTEM RESET is accepted at P1-14, buffered, applied to the 8080's RESET input and made available to other logic on the SBC 80/10.

I/O Ready Generation

During each serial or parallel I/O cycle, a "ready" indication (IORDYIN/) is returned to the CPU Set. The three chip select lines for the 8251 and the two 8255 devices are OR'd together (at A17-8 on sheet 3 of the schematic). The resultant output is then NANDed (at A44-11) with the I/O read (IOR) or the advanced I/O write (ADV IOW) signal to produce IORDYIN/. Recall from Section 3.2.1 that the 8238 System Controller (in the CPU Set) generates the I/O write control output at the beginning of all I/O write cycles. The IOW/ signal, alone, is labeled ADV IOW/. IOW/ is also synchronized with the 8080's WR/ output to produce the system write command IOWC/. ADV IOW/ allows the ready indication to be returned early enough to avoid an unnecessary wait state (see Figure 3-6). The IOWC/ signal causes an I/O device to actually write the data, later in the I/O cycle.

Ready Inputs:

Recall from Section 3.2.1.1 that the CPU Set must see a ready indication before proceeding to internal state T3 during all machine cycles. The 74S20 section at A57 on sheet 1 of the schematic ORs the following ready indications:

- INT ACK/ or TIME OUT ACK/ from the Failsafe logic (see Section 3.2.2.3),
- 2) IORDYIN/ from the Serial and Parallel I/O Interfaces,
- 3) PROM RDYIN/ from the ROM/PROM logic (see Section 3.2.4), and
- 4) RAM RDYIN/ from the RAM section (see Section 3.2.3).

The resultant output indicates an on-board memory or I/O access and is used to disable the external data bus drivers at A53 and A54. This output from A57-8 is also OR'd (at A30-3) with the externally generated AACK/ (connector pin P1-25) and XACK/ (connector pin P1-23) inputs. The output from A30-3 is then applied to the CPU Set's RDYIN input (pin 3 on the 8224). When the SBC 80/10 CPU Set accesses an external module, the AACK/ or XACK/ input informs the CPU Set that the external device is ready. AACK/ is an advanced acknowledge that allows certain OEM modules to be accessed faster.

Figure 3-6 illustrates basic timing for the ready indications.

Bus Clock Generation:

The OSC output from the CPU Set (18.432 MHz frequency) is applied to the clock input of a 74LS74 D-type flip-flop (at A29-11 on sheet 1 of the schematic). The \overline{Q} output from this latch is tied to its own D input. Consequently, the Q output exhibits half the frequency of the OSC input. This 9.216 MHz output is buffered and made available to external modules on the common clock (CCLK/) line (via connector pin P1-31) and the bus clock (BCLK/) line (via connector pin P1-13).

3.2.2.2 SYSTEM BUS DRIVERS

The SBC 80/10 internal memory data bus (DMO-DM7) is driven by two 8216 bidirectional bus drivers, shown at A55 and A56 on sheet 3 of the schematic. All data being transferred to/from the RAM memory (see Section 3.2.3) or ROM/PROM memory (see Section 3.2.4) is routed through these two devices. The chip select (CS/) input is provided by the MEM CMD/ signal which is the result of ORing RAM RDYIN/ and PROM RDYIN/. The direction enable (DIEN) input to the 8216s is provided by the memory read (MEMR) signal.

When the SBC 80/10 communicates with an external module, the data is driven by two 8226 bidirectional data bus drivers at A53 and A54 on sheet 1 of the schematic. The direction input to the 8226s is provided by the OR of memory read (MEMR) and I/O read (IOR). The 8226 devices will be disabled during 8080 HOLD sequences. The eight data bus lines to the 8226 bus drivers enter/leave the SBC 80/10 via the P1 edge connector.

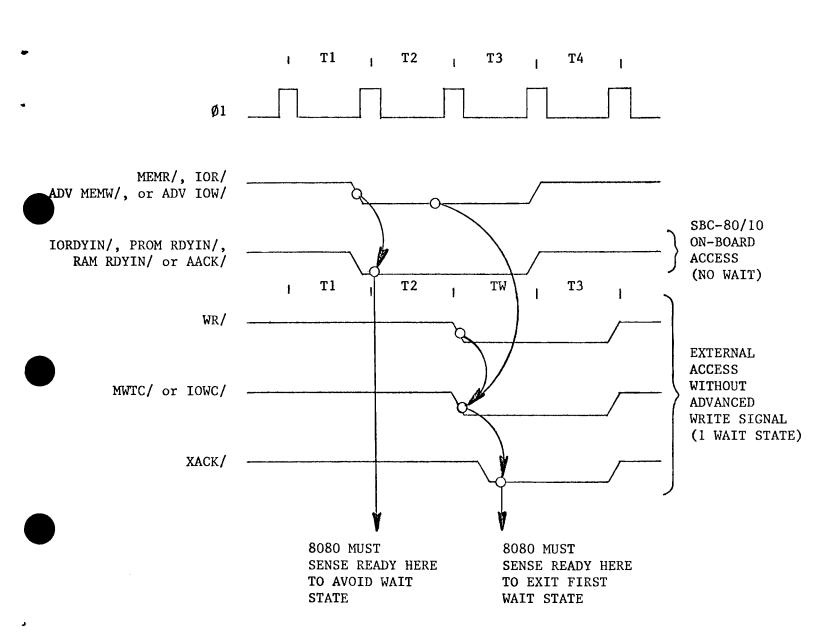


FIGURE 3-6 READY TIMING

The external 16-bit system address bus is driven by four 8226 bidirectional bus drivers. However, because the direction enable pin (EN/) on these 8226 devices is tied to ground, they can only be used to transmit addresses to external modules; they will not receive addresses from external modules. Consequently, the SBC 80/10 can access other modules, but other modules cannot access the memory or I/O controllers on the SBC 80/10. Like the data bus drivers, these 8226 devices are disabled during 8080 HOLD sequences.

3.2.2.3 FAILSAFE TIMER

When the 8080 acknowledges an interrupt request, the 8238 System Controller "forces" an RST 7 instruction onto the 8080s data bus (see Section 3.2.1.2). In order to read this RST 7 instruction, however, the 8080 must sense a ready indication. The 8080 acknowledges an interrupt by setting status bit 0 (D0) during the status output portion of each machine cycle (i.e., when STATUS STROBE is true). When this occurs, the 9602 one-shot (shown at A28 on sheet 5 of the schematic) is reset causing a low signal on its output (INTR ACK/). This output is then gated through to the RDYIN pin on the 8224 as described in Section 3.2.2.1.

The Failsafe timer also performs another function. If the CPU Set tries to access a memory or I/O device but that device, for some reason, does not return a ready indication, then the 8080 remains in a wait state until ready is received. The Failsafe timer is designed to prevent hanging the system up in this way. The 9602 one-shot is triggered by STATUS STROBE at the beginning of each machine cycle. If the one-shot is not re-triggered (i.e., if another cycle does not begin) within 9 ms., then the 9602 times out and its output (also labeled TIME OUT ACK/) is gated through to the RDYIN pin on the 8224, thus allowing the 8080 to exit the wait state. This can be very helpful during system debugging.

3.2.3 RANDOM ACCESS MEMORY

The Random Access Memory (RAM) provides the user with 1024 (1K) x 8-bits of read/write storage that requires no clocks or refresh to operate. The SBC 80/10 and SBC 80/10A utilize two different configurations, therefore each configuration is discussed separately in paragraphs 3.2.3.1 and 3.2.3.2.

3.2.3.1 SBC 80/10 RAM

The RAM logic consists of eight Intel 256 x 4-bit Static MOS RAM chips, an Intel 8205 three-to-eight decoder for chip selection and assorted gates as shown on sheet 2 of the SBC 80/20 schematic (Appendix B).

The RAM devices used on the SBC 80/10 have a maximum access time of 500 nsec. Each chip has eight address inputs (AO-A7) that select one of the 256 four-bit segments, active-low write (W/) and chip enable (CE/) inputs and an output disable (OD) input. Each chip also has four common data input/output pins (I/O1-I/O4). A high on the OD input disables output and allows the I/O pins to be used for input. During memory read accesses, the data is read out nondestructively and has the same polarity as the input data.

The least significant system address lines (ADRO-ADR7) are applied to the eight address input pins on each RAM. The most significant eight system address lines (ADR8-ADRF) feed 3205 decoder. Each of the four most significant decoder outputs are applied to the chip enable (CE/) inputs on two RAM chips. One RAM in each pair reads or writes data bits 0 to 3 (DMO-DM3) while the other RAM reads or writes data bits 4 to 7 (DM4-DM7) for each RAM access. One of the decoder outputs will be activated (low) whenever the value on the system address bus is within the range 3C00-3FFF (hexadecimal).

During memory write cycles, the advanced memory write signal (ADV MEMW/) is applied to the write input (W/) on each RAM. A high on the active-low memory read line (MEMR/) allows the selected RAM's I/O pins to be used to accept the data which is to be written into the addressed location. During memory read cycles, the level on ADV MEMW/ is high but is low on MEMR/ thus allowing the addressed data to be read out and onto the data bus.

During all RAM access cycles, the active decoder output is NANDed with ADV MEMW or MEMR (at A44-3) to produce a ready indication for the CPU Set (RAM RDYIN/). The 8238 System Controller (see Section 3.2.1) generates ADV MEMW or MEMR early enough in the memory cycle to allow RAM RDYIN/ to appear at the CPU Set in time to prevent the occurrence of any wait states. Figure 3-7 illustrates RAM access timing.

Whenever RAM is accessed, the data is transferred to/from the RAM chips on the memory data bus (DMO-DM7). Lines DMO-DM7 are interfaced to the system data bus through two Intel 8216 bidirectional bus drivers (shown at A55 and A56 on sheet 3 of the schematic) as described in Section 3.2.2.

3.2.3.2 SBC 80/10A RAM

The RAM logic consists of eight Intel 8102 1024 x 1-bit Low Power Static RAM chips, an Intel 3205 three-to-eight decoder, and assorted gates as shown on sheet 2 of the SBC 80/10A schematic (Figure B-3).

The 8102 RAM devices used on the SBC 80/10A have a maximum access time of 450 nsec. Each RAM chip has ten address inputs (ADRO-ADR9) that select one of the 1024 bits, an active low write (ADV MEM W/) and chip enable. A high on the ADV MEM W/ input allows a memory read access.

The ten least significant address lines (ADRO-ADR9) are applied to the ten address input pins on each 8102 RAM. The six most significant address lines (ADRA-ADRF) feed a 3205 decoder. The output of the 3205 decoder is applied to each Chip Enable/ (CE/) input to the eight 8102 RAM's. When the value on the system address bus is within the range 3COO-3FFF the decoder output will be activated (low).

During all RAM access cycles, the active decoder output produces a ready indication for the CPU set (RAM RDY IN/). The 8238 System Controller (see Section 3.1) generates ADV MEM W/ or MEM R/ early enough in the memory cycle to allow RAM RDY IN/ to appear at the CPU set in time to prevent the occurrence of any wait states. Figure 3-7 illustrates RAM access timing.

Whenever SBC 80/10A RAM is accessed, the data is transferred to/from the RAM chips on the memory data bus (DMO-DM7). Lines DMO-DM7 are interfaced to the system data bus through two Intel 8216 bidirectional bus driver (shown at A55 and A56 on sheet 3 of the schematic) as described in Section 3.2.2.

3.2.4 READ-ONLY-MEMORY (ROM/PROM)

The System 80/10 has provisions for installing 4096 (4K) x 8-bit words of read only memory in sockets already on the PC board. Four Intel 8708 1K x 8-bit Erasable and Electrically Reprogrammable Read Only Memory (EPROM) chips or four 8308 1K by 8-bit Metal Masked Read Only Memory (ROM) chips can be installed in the four 24-pin sockets shown on sheet 3 of the schematic (Appendix A). Optionally the SBC 80/10A has provisions for installing 4096 (4K) x 8-bits of read only memory in the sockets using four Intel 2758 1K x 8-bits Erasable and Electrically Reprogrammable Read Only Memory (EPROM) chips or installing 8192 (8K) x 8-bit words of read only memory using either Intel 2716 2K x 8-bit Erasable and Electrically Re-

programmable Read Only Memory (EPROM) chips or Intel 2316E 2K x 8-bit Metal Masked Read Only Memory (ROM) chips.

When addressing up to 4K of ROM address lines ADRO-ADR9 are applied to the address pins AO-A9 at each of the four sockets. The remaining address lines, ADRA-ADRF are decoded by the 3205 device at A42. Each of the four least significant decoder outputs are applied to the chip select (CS/) pin at one of four sockets. One chip select line will be activated whenever the value on the system address bus is between 0000 and OFFF (hexadecimal). In addition, when the four most significant address lines are low (i.e., the address is less than OFFF) during a memory read cycle, the output from the 74LS00 section at A39-3 is NANDed with MEMR to produce a ready indication (PROM/ RDYIN/) for the CPU Set. PROM RDYIN/ is thus generated in time to allow all ROM/PROM reads to occur without any wait states. PROM RDYIN/ has the same timing as RAM RDYIN/, as shown in Figure 3-7.

When using the optional 2716, or 2316E chips with the 80/10A, address lines ADRO-ADRA are applied to the address pins to each of the four sockets. The remaining address lines, ADRB-ADRF are decoded by the 3205 three-toeight decoder. Each of the four least significant decoder outputs are applied to the Chip Select (CS/) pin at one of four sockets. One chip select line will be enabled when the value on the system address bus is between 0000 and 1FFF) (hexadecimal).

In addition when the three most significant address lines are low (i.e. the address is less than 1FFF) during a memory read cycle, the output from the 74LSOO at A39-3 is NANDed with MEMR/ to produce a ready indication PROM RDY IN/ for the CPU set. PROM RDY IN/ is generated in time to allow all ROM/PROM reads to occur without any wait states. PROM RDY IN has the same timing as RAM RDY IN/, as shown in Figure 3-7.

Whenever one of the ROM/PROM devices are read, the data from the chip's output pins (01-08) is placed on the memory data bus (DMO-DM7) which is interfaced to the system bus via two Intel 8216 bidirectional bus drivers (at A55 and A56), as described in Section 3.2.2.

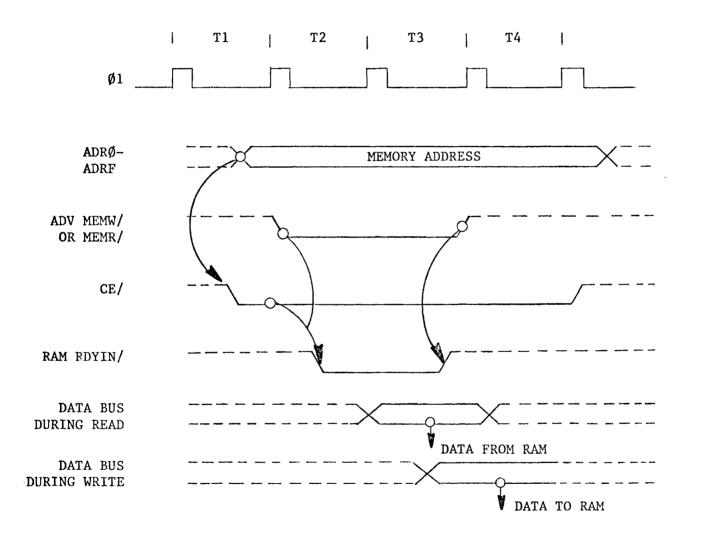


FIGURE 3-7 RAM ACCESS TIMING

3.2.5 SERIAL I/O INTERFACE

The Serial I/O Interface logic provides the System 80/10 with a serial data communications channel that can be programmed to operate with most of the current serial data transmission protocols, synchronous or asynchronous. Baud rate, character length, number of stop bits and even/odd parity are program selectable. In addition, the serial I/O Interface can be configured (through jumper connections) as an EIA RS232C interface or as a Teletype-compatible current loop interface.

The Serial I/O Interface logic consists primarily of an Intel 8251 USART device and a counting network for baud rate selection, as shown on sheet 4 of the SBC 80/10 schematic (Appendix B). Before describing the specific operation of the Serial I/O logic however, we will summarize the general operational characteristics of the 8251 USART, because it essentially defines the character of the Serial I/O Interface.

3.2.5.1 INTEL[®]8251 OPERATIONAL SUMMARY

The 8251 is a Universal Synchronous/Asynchronous Receiver/Transmitter designed specifically for the 8080 Microcomputer System. Like other I/O devices in the 8080 Microcomputer System its functional configuration is programmed by the systems software for maximum flexibility. The 8251 can support virtually any serial data technique currently in use (including IBM "Bi-Sync").

Modem Control

The 8251 has a set of control inputs and outputs that can be used to simplify the interface to almost any Modem. The modem control signals are general purpose in nature and can be used for functions other than Modem control, if necessary.

DSR (Data Set Ready)

The DSR input signal is general purpose in nature. Its condition can be tested by the CPU using a Status Read operation. The $\overline{\text{DSR}}$ input is normally used to test Modem conditions such as Data Set Ready.

DTR (Data Terminal Ready)

The DTR output signal is general purpose in nature. It can be set "low" by programming the appropriate bit in the Command Instruction word. The DTR output signal is normally used for Modem control such as Data Terminal Ready or Rate Select.

RTS (Request to Send)

The $\overline{\text{RTS}}$ output signal is general purpose in nature. It can be set "low" by programming the appropriate bit in the Command Instruction word. The $\overline{\text{RTS}}$ output signal is normally used for Modem control such as Request to Send.

CTS (Clear to Send)

A "low" on this input enables the 8251 to transmit data (serial) if the TxEN bit in the Command byte is set to a "one". This is very important to remember!

USART PIN CONFIGURATION

D, 🗖	1	~-	28	Þ₀,
₽₃□	2		27	
RxD	з		26	
GND	4		25	RxC
⊸, ⊏	5		24	DTR
D ₅ 🗖	6		23	RTS
D ₆	7	0054	22	DSR
D,C	8	8251	21	RESET
Ť×C	9		20	CLK
	10		19	
cīs 🗖	11		18	ТхЕМРТ
c/ō 🗖	12		17	
RD	13		16	
RARDY	14		15	

Pin Name	Pin Function
D ₁ D ₀	Data Bus (8 hits)
C/D	Control or Data is to be Written or Read
RD	Read Data Command
ŴR	Write Data or Control Command
cs	Chip Enable
CLK	Clock Pulse (TTL)
RESET	Reset
TxC	Transmitter Clock
T×D	Transmitter Data
R×C	Receiver Clock
RxD	Receiver Data
RXRDY	Receiver Ready (has character for 8080)
TxRDY	Transmitter Ready (ready for char. from 8080)

Pin Function
Data Set Ready
Data Terminal Ready
Sync Detect
Request to Send Data
Clear to Send Data
Transmitter Empty
+5 Volt Supply
Ground

FIGURE 3-8 8251 PIN ASSIGNMENTS

TXRDY (Transmitter Ready)

This output signals the CPU that the transmitter is ready to accept a data character. It can be used as an interrupt to the system or for polled operation when the CPU can check TXRDY using a status read operation. $\overline{\text{TXRDY}}$ is active only when $\overline{\text{CTS}}$ is enabled. $\overline{\text{TXRDY}}$ is automatically reset when a character is loaded from the CPU.

TXE (Transmitter Empty)

When the 8251 has no characters to transmit, the TxE output will go "high". It resets automatically upon receiving a character from the CPU. TXE can be used to indicate the end of a transmission mode, so that the CPU "knows" when to "turn the line around" in the half-duplexed operational mode.

In synchronous mode, a "high" on this output indicates that a character has not been loaded and the SYNC character or characters are about to be transmitted automatically as "fillers".

TXC (Transmitter Clock)

The Transmitter Clock controls the rate at which the character is to be transmitted. In the synchronous transmission mode, the frequency of $\overline{\text{TXC}}$ is equal to the actual Baud Rate (1X). In asynchronous transmission mode, the frequency of $\overline{\text{TXC}}$ is a multiple of the actual baud rate. A portion of the mode instruction selects the value of the multiplier; it can be 1X, 16X or 64X the baud rate.

For example:

If Baud Rate equals 110 Baud,

TXC equals 110 Hz (1X)

TXC equals 1.76 kHz (16X)

TXC equals 7.04 kHz (64X).

If Baud Rate equals 9600 Baud,

TXC equals 614.4 kHz (64X).

The falling edge of TXC shifts the serial data out of the 8251.

RXRDY (Receiver Ready)

This output indicates that the 8251 contains a character that is ready to be input to the CPU. RXRDY can be connected to the interrupt structure of the CPU or for polled operation the CPU can check the con-

dition of RXRDY using a status read operation. RXRDY is automatically reset when the character is read by the CPU.

RXC (Receiver Clock)

The Receiver Clock controls the rate at which the character is to be received. In synchronous mode, the frequency of $\overrightarrow{\text{RXC}}$ is equal to the actual baud rate (1X). In asynchronous mode, the frequency of $\overrightarrow{\text{RXC}}$ is a multiple of the actual baud rate. A portion of the mode instruction selects the value of the multiplier; it can be 1X, 16X or 64X the baud rate.

For example:

If Baud Rate equals 300 Baud, RXC equals 300 Hz (1X) RXC equals 4800 Hz (16X) RXC equals 19.2 kHz (64X). If Baud Rate equals 2400 Baud, RXC equals 2400 Hz (1X) RXC equals 38.4 kHz (16X) RXC equals 153.6 kHz (64X).

Data is sampled into the 8251 on the rising edge of RXC.

Note: In most communications systems, the 8251 will be handling both the transmission and reception operations of a single link. Consequently, the Receive and Transmit Baud Rates will be the same. Both TXC and RXC will require identical frequencies for this operation and can be tied together and connected to a single frequency source (Baud Rate Generator) to simplify the interface.

SYNDET (SYNC Detect)

This pin is used in SYNCHronous Mode only. It is used as either input or output, programmable through the Control Word. It is reset to "low" upon RESET. When used as an output (internal Sync mode), the SYNDET pin will go "high" to indicate that the 8251 has located the SYNC character in the Receive mode. If the 8251 is programmed to use double Sync characters, then SYNDET will go "high" in the middle of the last bit of the second Sync character. SYNDET is automatically reset upon a

Status Read operation.

When used as an input, (external SYNC detect mode), a positive going signal will cause the 8251 to start assembling data characters on the falling edge of the next $\overline{\text{RXC}}$. Once in SYNC, the "high" input signal can be removed. The duration of the high signal should be at least equal to the period of $\overline{\text{RXC}}$.

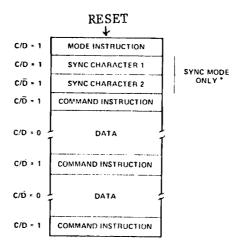
Programming the 8251

Prior to starting data transmission or reception, the 8251 must be loaded with a set of control words generated by the CPU. These control signals define the complete functional definition of the 8251 and must immediately follow a Reset operation (internal or external).

The control words are split into two formats:

1. Mode Instruction,

2. Command Instruction.


Both the Mode and Command instructions must conform to a specified sequence for proper device operation. The Mode Instruction must be inserted immediately following a Reset operation, prior to using the 8251 for data communication.

All control words written into the 8251 after the Mode Instruction will load the Command Instruction. Command Instructions can be written into the 8251 at any time in the data block during the operation of the 8251. To return to the Mode Instruction format a bit in the Command Instruction word can be set to initiate an internal Reset operation which automatically places the 8251 back into the Mode Instruction format. Command Instructions must follow the Mode Instructions or Sync characters (see Figure 3-9).

Mode Instruction:

This format defines the general operational characteristics of the 8251. It must follow a Reset operation (internal or external). Once the Mode instruction has been written into the 8251 by the CPU, SYNC characters or Command instructions may be inserted.

The 8251 can be used for either synchronous or asynchronous data communications. The two least significant bits of the Mode Instruction control

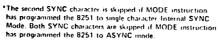


FIGURE 3-9 TYPICAL 8251 DATA BLOCK

word specify synchronous or asynchronous operation. The format for the remaining bits in the control word depends on the mode chosen by bits 0 and 1. Figure 3-10 shows the control word format for the asynchronous mode, while Figure 3-11 illustrates the control word format for the synchronous mode.

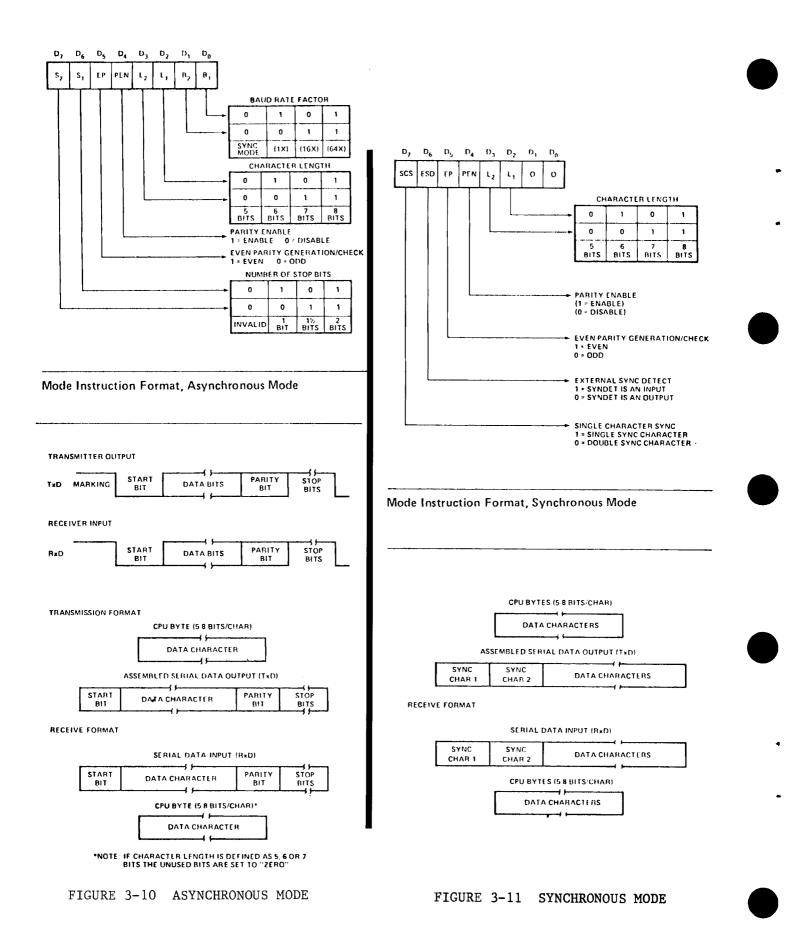
Command Instruction:

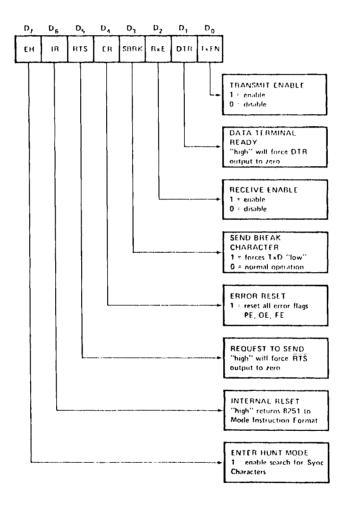
Once the functional definition of the 8251 has been programmed by the Mode Instruction and the Sync Characters are loaded (if in Sync Mode) then the device is ready to be used for data communication. The Command Instruction controls the actual operation of the selected format. Functions such as: Enable Transmit/Receive, Error Reset and Modem Controls are provided by the Command Instruction.

Once the Mode instruction has been written into the 8251 and Sync characters inserted, if necessary, then all further "control writes" $(C/\overline{D} = 1)$ will load the Command Instruction. A Reset operation (internal or external) will return the 8251 to the Mode Instruction Format.

Figure 3-12 illustrate the format of a Command Instruction control word.

Status Read Definition


In data communication systems it is often necessary to examine the "status" of the active device to ascertain if errors have occurred or other conditions that require the processor's attention. The 8251 has facilities that allow the programmer to "read" that status of the device at any time during the functional operation.


A normal "read" command is issued by the CPU with the C/\overline{D} input at one to accomplish this function.

Some of the bits in the Status Read Format have identical meanings to external output pins so that the 8251 can be used in a completely Polled environment or in an interrupt driven environment (refer to Figure 3-13).

8251 DATA TRANSFERS

Once programmed, the 8251 is ready to perform its communication functions. The TXRDY output is raised "high" to signal the CPU that the 8251 is ready to receive a character. This output (TXRDY) is reset automatically when the CPU writes a character into the 8251. On the other hand, the 8251 receives serial data from the MODEM or I/O device; upon receiving an entire character the RXRDY output is raised "high" to signal the CPU that the 8251 has a complete character ready for the CPU to fetch. RXRDY is reset automatically upon the CPU read operation.

.

FIGURE 3-12 COMMAND INSTRUCTION FORMAT

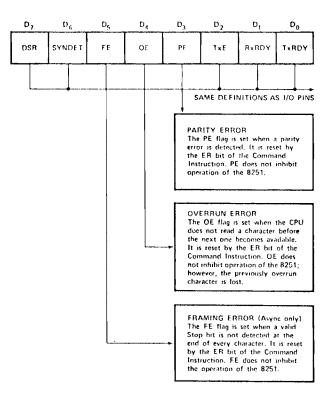


FIGURE 3-13 STATUS READ FORMAT

The 8251 cannot begin transmission until the TXEN (Transmitter Enable) bit is set in the Command Instruction and it has received a Clear To Send (CTS) input. The TXD output will be held in the marking state upon Reset.

Asynchronous Mode (Transmission):

Whenever a data character is sent by the CPU the 8251 automatically adds a Start bit (low level) and the programmed number of Stop bits to each character. Also, an even or odd Parity bit is inserted prior to the Stop bit(s), as defined by the Mode Instruction. The character is then transmitted as a serial data stream on the TXD output. The serial data is shifted out on the falling edge of $\overline{\text{TXC}}$ at a rate equal to 1/16 or 1/64 that of the $\overline{\text{TXC}}$, as defined by the Mode Instruction. BREAK characters can be continuously sent to the TXD if commanded to do so.

When no data characters have been loaded into the 8251 the TXD output remains "high" (marking) unless a Break (continuously low) has been programmed.

Asynchronous Mode (Receive):

The RXD line is noramlly high. A falling edge on this line triggers the beginning of a START bit. The validity of this START bit is checked by again strobing this bit at its nominal center. If a low is detected again, it is a valid START bit, and the bit counter will start counting. The bit counter locates the center of the data bits, the parity bit (if it exists) and the stop bits. If parity error occurs, the parity error flag is set. Data and parity bits are sampled on the RXD pin with the rising edge of RXC. If a low level is detected as the STOP bit, the Framing Error flag will be set. The STOP bit signals the end of a character. This character is then loaded into the parallel I/O buffer of the 8251. The RXRDY pin is raised to signal the CPU that a character is ready to be fetched. If a previous character has not been fetched by the CPU, the present character replaces it in the I/O buffer, and the OVERRUN flag is raised (thus the previous character is lost). All of the error flags can be reset by a command instruction. The occurrence of any of these errors will not stop the operation of the 8251.

Synchronous Mode (Transmission):

The TXD output is continuously high until the CPU sends its first character to the 8251 which usually is a SYNC character. When the $\overline{\text{CTS}}$ line goes low, the first character is serially transmitted out. All characters are shifted out on the falling edge of $\overline{\text{TXC}}$. Data is shifted out at the same rate as the $\overline{\text{TXC}}$.

Once transmission has started, the data stream at TXD output must continue at the $\overline{\text{TXC}}$ rate. If the CPU does not provide the 8251 with a

character before the 8251 becomes empty, the SYNC characters (or character if in single SYNC word mode) will be automatically inserted in the TXC data stream. In this case, the TXEMPTY pin will momentarily go high to signal that the 8251 is empty and SYNC characters are being sent out. The TXEMPTY pin is internally reset by the next character being written into the 8251.

Synchronous Mode (Receive):

In this mode, character synchronization can be internally or externally achieved. If the internal SYNC mode has been programmed, the receiver starts in a HUNT mode. Data on the RXD pin is then sampled in on the rising edge of RXC. The content of the RX buffer is continuously compared with the first SYNC character until a match occurs. If the 8251 has been programmed for two SYNC characters, the subsequent received character is also compared. When both SYNC characters have been detected, the USART ends the HUNT mode and is in character synchronization. The SYNDET pin is then set high, and is reset automatically by a STATUS READ.

In the external SYNC mode, synchronization is achieved by applying a high level on the SYNDET pin. The high level can be removed after one $\overline{\text{RXC}}$ cycle.

Parity error and overrun error are both checked in the same way as in the Asynchronous receive mode.

The CPU can command the receiver to enter the HUNT mode if synchronization is lost.

3.2.5.2 SERIAL 1/O CONFIGURATIONS

The 8251 USART presents a parallel, eight-bit interface to the CPU set via the system data bus (DBO-DB7) and presents an EIA RS232C* or TTY current loop* interface to an external device (via edge connector J3). The 8251's interface with the CPU Set is enabled by a low level on its chip select (CS/) pin. CS/ is low when the I/O address on the system address bus is between EC and EF (hexadecimal). Address bits 2 through 7

* Electrical interfaces provided on SBC 80/10

are decoded (at Al4) to produce the CS/ input. The least significant address bit, ADRO, is applied to the 8251s C/D input (pin 12) thus indicating a control (if set) or data (if reset) byte on the data bus.

I/O ADDRESS (BASE 16)	COMMAND	FUNCTION
ED OR EF	OUTPUT	CONTROL WORD
EC OR EE	OUTPUT	DATA
ED OR EF	INPUT	STATUS
EC OR EE	INPUT	DATA

TABLE 3-1 SERIAL COMMUNICATION (8251) ADDRESS ASSIGNMENTS

An output instruction (IOW/ is true) to port ED or EF (CS/ is low and ADRO is high) causes the 8251 to accept a control byte through its data bus pins. The control byte can be either a mode instruction or a command instruction, depending on the sequence in which it is sent. The various bits in the mode control word specify the baud rate multiplexer, character length, parity and the number of stop bits as described in Section 3.2.5.1. Note that the actual baud rate selected is dependent on the configuration of the baud rate jumper network (refer to Section 3.2.5.3). The various bits in the command control word instruct the USART to enable/disable the receiver and transmitter, to reset errors, to reset internal control and return to the mode control cycle, and to set/ clear the Data Terminal Ready output.

An output instruction to port EC or EE (CS/ and ADRO are low) causes the 8251 USART to accept a data byte through its data bus pins. Bit O is the least significant bit and bit 7 is the most significant bit. The 8251 will subsequently transmit the data byte (if the transmitter is enabled), in serial fashion, to the external device as described in Section 3.2.5.1.

An input instruction (IOR/ is true) to port ED or EF (CS/ is low and ADRO is high) causes the 8251 USART to place a status byte onto the system bus. The status bits are the result of status and error checking functions performed within the USART (see Section 3.5.1).

An input instruction (IOR/ is true) to port EC or EE (CS/ and ADRO are low) causes the USART to output a data byte (previously received from the external device) from its data bus pins. Bit 0 is the least significant bit and bit 7 is the most significant bit.

Timing for the USART's internal function is provided by the \emptyset 2TTL signal (see Section 3.2.1.1). The USART is reset by the occurrence of a high level on the RESET line.

The 8251 USART transmits and receives serial data, synchronously or asynchronously, as described in Section 3.2.5.1. By jumper-connecting the 8251 pins to different external lines, the Serial I/O logic can present either a Teletype-compatible current loop interface or an EIA RS232C interface to an external device. If the TTY-compatible current loop interface is used, the connections listed in Table 3-5 are required (see Section 3.3).

If the EIA RS232C interface is used, the connections listed in Table 3-6 are required (see Section 3.3).

3.2.5.3 BAUD RATE CLOCK GENERATION

The baud rate clock network consists of a 93S16 'divide-by-15' counter, two 74161 'divide-by-16' counters and wire-wrap jumpers for baud rate clock selection. The 93S16 counter is driven by the oscillator output (OSC) from the CPU Set. The QD output from this counter, in turn, drives the two 74161 counters. The outputs from these counters, each providing a different clock frequency, are tied to jumper pins that

can be connected to the BAUD RATE CLK line. The available frequencies are listed in Table 3-9 (located in Section 3.3.2). Recall that the effective baud rate of the 8251 USART is also dependent on the state of the 8251's internal frequency divider and the mode of operation (refer to Section 3.2.5.1). The 8251 is capable of dividing the baud rate clock by 1, 16 or 64.

3.2.5.4 SERIAL I/O INTERRUPTS

The Serial I/O logic can be configured with different forms of an interrupt request mechanism. By connecting jumper pair 16-17 and disconnecting 15-16, the user can allow the 8251's Receiver Ready (RXRDY) output (pin 14) to generate an interrupt request INT51/) to the CPU Set. RXRDY goes high whenever the receiver enable bit of the command word has been set and the 8251 contains a character that is ready to be input to the CPU Set. The user can also choose to have the 8251's Transmitter Ready (TXRDY) or the Transmitter Empty (TXE) output activate the INT51/ interrupt request. If jumper pair 19-21 is connected, a high on TXRDY (pin 15) will activate INT51/. If jumper pair 18-19 is connected instead, an active TXE (pin 18) output will generate INT51/. TXE goes high when the 8251 has no characters to transmit. TXRDY is high when the 8251 is ready to accept a character from the CPU Set. Both TXE and TXRDY are enabled by setting the transmit enable bit of the command word Notice on the schematic that, if jumper pairs 19-20 and 15-16 are connected, Serial I/O interrupts are inhibited.

Upon receiving an interrupt, the program can determine the actual condition which is responsible for the interrupt (RXRDY, TXRDY or TXE) by reading the status of the 8251 device as described in Section 3.2.5.1. The interrupt request will be removed when the data is transferred to/ from the 8251, as required. Note that the TXE or TXRDY output will be high, and consequently maintain an interrupt request, during all idle periods, since the 8251's transmit buffer will remain empty. To disable the transmitter, and the resultant interrupt request, the program can issue a command instruction to the 8251 with the TXEN bit (bit 0) equal to zero (refer to Section 3.2.5.1). The transmitter should not be disabled

until TXE is high.

3.2.6 PARALLEL I/O INTERFACE

The Parallel I/O Interface logic on the SBC 80/10 provides fortyeight (48) signal lines for the transfer and control of data to or from peripheral devices. Eight lines have a bidirectional driver and termination network permanently installed. The remaining forty lines are uncommitted. Sockets are provided for the installation of active driver networks or passive termination networks. The optional drivers and terminators are installed in groups of four by insertion into the 14pin sockets.

All forty-eight signal lines emanate from the I/O ports on two Intel 8255 Programmable Peripheral Interface devices, as shown on sheet 5 of the SBC 80/10 schematic (Appendix B). The two 8255 devices allow for a wide variety of I/O configurations. Before describing the possible configurations, however, we will summarize the general operational characteristics of the 8255 device.

3.2.6.1 INTEL[®]8255 OPERATIONAL SUMMARY

The 8255 contains three 8-bit ports (A, B and C). All can be configured in a wide variety of functional characteristics by the system software but each has its own special features or "personality" to further enhance the power and flexibility of the 8255.

<u>Port A</u>: One 8-bit data output latch/buffer and one 8-bit data input latch.
<u>Port B</u>: One 8-bit data input/output latch/buffer and one 8-bit data input buffer.

<u>Port C</u>: One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input). This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains a 4-bit latch and it can be used for the control signal outputs and status signal inputs in conjunction with Ports A and B.

The 8080 CPU dictates the operating characteristics of the ports by outputting two different types of control words to the 8255:

(1) mode definition control word (bit 7 = 1)

(2) port C bit set/reset control word (bit 7 = 0)

Bit 7 of each control word specifies its format, as shown in Figures 3-14 and 3-15, respectively.

Mode Selection

There are three basic modes of operation that can be selected by the system software:

Mode 0 - Basic Input/Output Mode 1 - Strobed Input/Output Mode 2 - Bidirectional Bus

When the RESET input goes "high" all ports will be set to the Input mode 0 (i.e., all 24 lines will be in the high impedance state). After the RESET is removed the 8255 can remain in the Input mode with no additional initialization required. During the execution of the system program, the other modes may be selected using a single OUTput instruction. This allows a single 8255 to service a variety of peripheral devices with a simple software maintenance routine.

The modes for Port A and Port B can be separately defined, while Port C is divided into two portions as required by the Port A and Port B definitions. All of the output registers, including the status flipflops, will be reset whenever the mode is changed except for \overline{OBF} in modes 1 and 2. Modes may be combined so that their functional definition can be "tailored" to almost any I/O structure. For instance; Group B can be programmed in Mode O to monitor simple switch closings or display computational results; Group A could be programmed in Mode 1 to monitor a keyboard or tape reader on an interrupt-driven basis.

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Reset using a single OUTput instruction (see Figure 3-16). This feature reduces software requirements in Control-based applications.

When Port C is being used as status/control for Port A or B, these

PIN CONFIGURATION

	_		
PA3 [1	$\mathbf{O}^{\mathbf{a}}$	40 PA4
PA2 [2		39 🗍 PAS
PAT	1.		38 🗍 PA6
PAO [4		37 🗖 PA7
ÃD [36 🗋 🗑 🖬
<u>cs</u> [6		35 🗍 RESET
GND [17		34 🗇 📭
A1 []			, a [] cc
A0 [19		32 🗍 D ₂
PC7 [10		31 🗋 D,
PC6 [111	8255	30 🗍 D4
PC5 [12		29] 0,
PC4 [13		28 🗍 De
PC0 []	14		27] 0,
PC1	15		76 🖸 V _{CC}
PC 7 []	16		25 PB7
PC3	17		24 🗍 PB6
PB0 [18		23 🗍 PB5
PB1[រ។		22] PB4
PB2	20		21 603
1	L		

PIN NAMES

D,D.	DATA BUS (BI DIRECTIONAL)	
RESET	RESET INPUT	
cš	CHIP SELECT	
ŔĎ	READ INPUT	
WR	WRITE INPUT	
A0, A1	PORT ADDRESS	
PA7-PA0	PORT A (BIT)	
P87-P80	PORT B (BIT)	
PC7-PC0	PORT C (BIT)	
Vcc	+5 VOLIS	
GND	Ø VOLTS	

FIGURE 3-14 8255 PIN ASSIGNMENTS

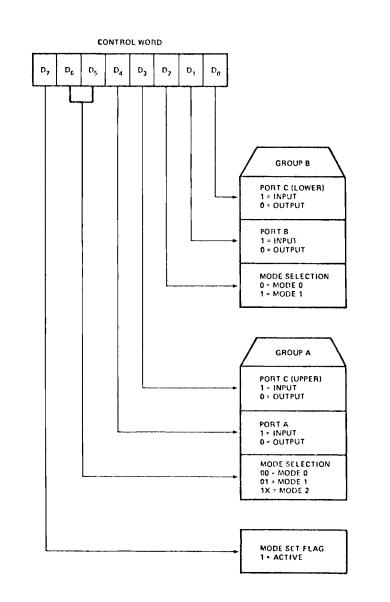


FIGURE 3-15 MODE DEFINITION CONTROL WORD FORMAT *

bits can be set or reset by using the Bit Set/Reset operation just as if they were data output ports.

Interrupt Control Functions

When the 8255 is programmed to operate in Mode 1 or Mode 2, control signals are provided that can be used as interrupt request inputs to the CPU. The interrupt request signals, generated from Port C, can be inhibited or enabled by setting or resetting the associated INTE flip-flop, using the Bit set/reset function of Port C.

This function allows the Programmer to disallow or allow specific I/O devices to interrupt the CPU without effecting any other device in the interrupt structure.

INTE flip-flop definition:

(BIT-SET) - INTE is SET - Interrupt enable

(BIT-RESET) - INTE is RESET - Interrupt disable

Note: All Mask flip-flops are automatically reset during mode selection and device Reset.

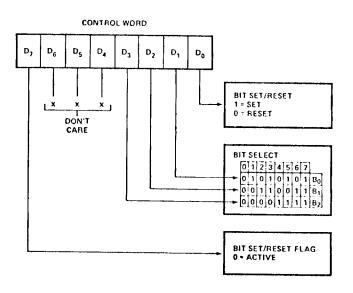


FIGURE 3-16 BIT SET/RESET CONTROL WORD FORMAT

Operating Modes

Mode 0 (Basic Input/Output):

This functional configuration provides simple Input and Output operations for each of the three ports. No "handshaking" is required, data is simply written to or read from a specified port. Mode 0 timing is illustrated in Figure 3-17.

Mode O Basic Functional Definitions:

- . Two 8-bit ports and two 4-bit ports.
- . Any port can be input or output.
- . Outputs are latched.
- . Inputs are not latched.

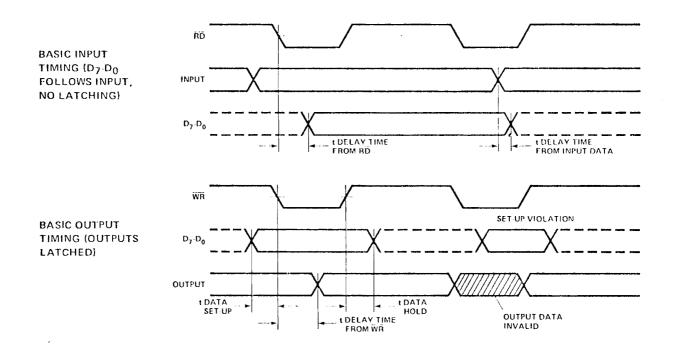
Sixteen different Input/Output configurations are possible in this Mode. Figure 3-18 shows two possible configurations.

Mode 1 (Strobed Input/Output):

This functional configuration provides a means for transferring I/O data to or from a specified port in conjunction with strobes or "handshaking" signals. In Mode 1, Port A and Port B use the lines on Port C to generate or accept these "handshaking" signals.

Mode 1 Basic Functional Definitions:

- . Two transfer ports (A and B).
- . Each transfer port contains one 8-bit data port and 4 bits from one half of the control/data port (Port C).
- . The 8-bit data port can be either input or output. Both inputs and outputs are latched.


Input Control Signal Definition for Mode 1

STB (Strobe Input)

A "low" on this input loads data into the input latch.

IBF (Input Buffer Full F/F)

A "high" on this output indicates that the data has been loaded into

٠

FIGURE 3-17 8255 MODE O TIMING

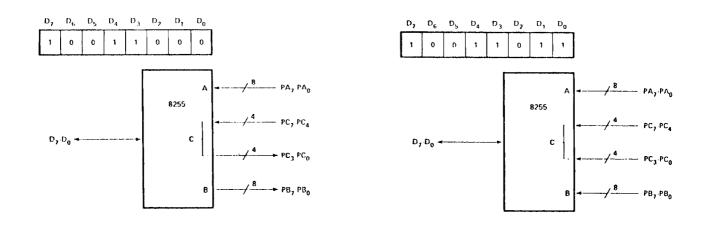


FIGURE 3-18 EXAMPLES OF MODE 0 CONFIGURATION

the input latch; in essence, an acknowledgment. IBF is set by the falling edge of the STB input and is reset by the rising edge of the $\overline{\text{RD}}$ input.

INTR (Interrupt Request)

A "high" on this output can be used to interrupt the CPU when an input device is requesting service. INTR is set by the rising edge of $\overline{\text{STB}}$ if IBF is a "one" and INTE is a "one". It is reset by the falling edge of $\overline{\text{RD}}$. This procedure allows an input device to request service from the CPU by simply strobing its data into the port.

INTE A Controlled by bit set/reset of PC4.

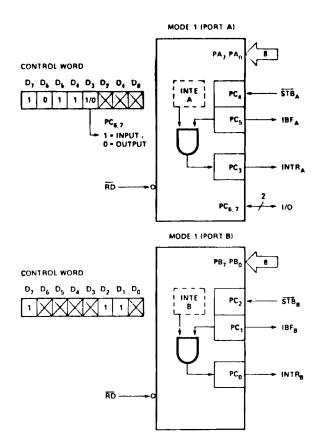
INTE B

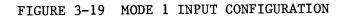
Controlled by bit/reset of PC 2.

Figure 3-19 illustrates the Mode 1 input configuration, while Figure 3-20 shows the basic timing for Mode 1 input.

Output Control Signal Definition for Mode 1 OBF (Output Buffer Full F/F)

The OBF output will go "low" to indicate that the CPU has written data out to the specified port. The OBF F/F will be set by the rising edge of the \overline{WR} input and reset by the falling edge of the \overline{ACK} input signal.


ACK (Acknowledge Input)


A "low" on this input informs the 8255 that the data from Port A or Port B has been accepted. In essence, a response from the peripheral device indicating that it has received the data output by the CPU.

INTR (Interrupt Request)

A "high" on this output can be used to interrupt the CPU when an output device has accepted data transmitted by the CPU. INTR is set by the rising edge of \overline{ACK} if \overline{OBF} is a "one" and INTE is a "one". It is reset by the falling edge of \overline{WR} .

INTE A Controlled by bit/reset of PC6.

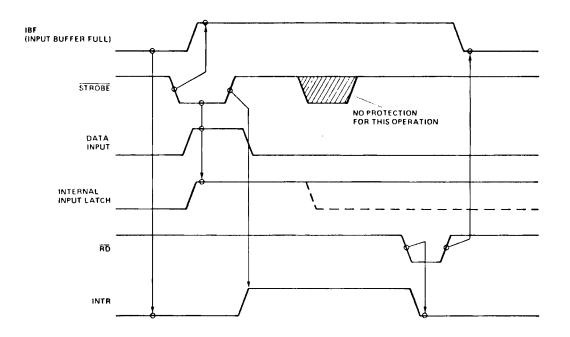


FIGURE 3-20 8255 MODE 1 INPUT TIMING

INTE B

Controlled by bit set/reset of PC2.

Figure 3-21 illustrates the Mode 1 output configuration, while Figure 3-22 shows basic Mode 1 output timing.

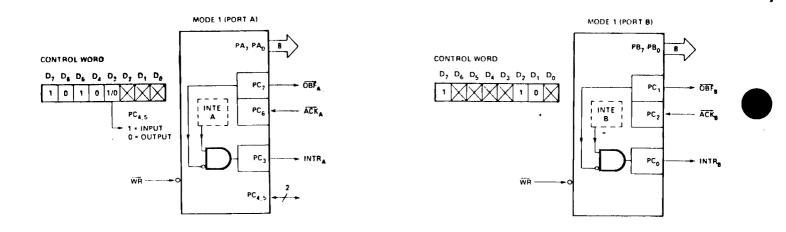


FIGURE 3-21 MODE 1 OUTPUT CONFIGURATION

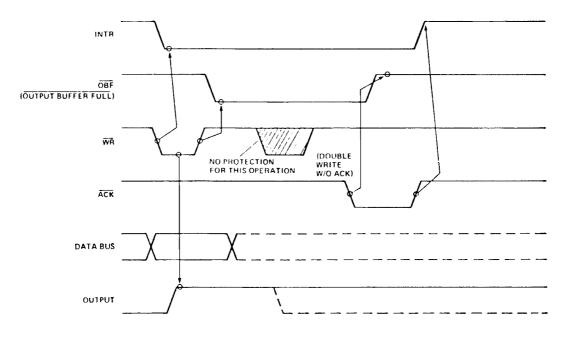


FIGURE 3-22 MODE 1 BASIC OUTPUT TIMING

Mode 2 (Strobed Bidirectional Bus I/O):

This functional configuration provides a means for communicating with a peripheral device or structure on a single 8-bit bus for both transmitting and receiving data (bidirectional bus I/O). "Handshaking" signals are provided to maintain proper bus flow discipline in a similar manner to Mode 1. Interrupt generation and enable/disable functions are also available.

Mode 2 Basic Functional Definitions:

- . Used in Port A only.
- . One 8-bit, bidirectional data Port (Port A) and a 5-bit control Port (Port C).
- . Both inputs and outputs are latched.
- . The 5-bit control port (Port C) is used for control and status for the 8-bit, bidirectional data port (Port A).

Bidirectional Bus I/O Control Signal Definition

INTR (Interrupt Request)

A high on this output can be used to interrupt the CPU for both input or output operations.

Output Operation Control Signals

OBF (Output Buffer Full)

The OBF output will go "low" to indicate that the CPU has written data out to Port A.

ACK (Acknowledge)

A "low" on this input enables the tri-state output buffer of Port A to send out the data. Otherwise, the output buffer will be in the high-impedance state.

INTR A and B (The INTE flip-flop associated with OBF) Controlled by bit set/reset of PC6 (INTE1)

Input Operation Control Signals STB (Strobed Input) A "low" on this output indicates that data has been loaded into the input latch.

INTE 2 (The INTE flip-flop associated with IBF) Controlled by bit set/reset PC4 (INTE 2) $INTR_A = PC6 \cdot OBF_A + PC4 \cdot INF_A$ Figure 3-23 illustrates the port configuration for Mode 2, Figure

Ì

3-24 shows Mode 2 timing, and Table 3-2 summarizes 8255 Mode definition.

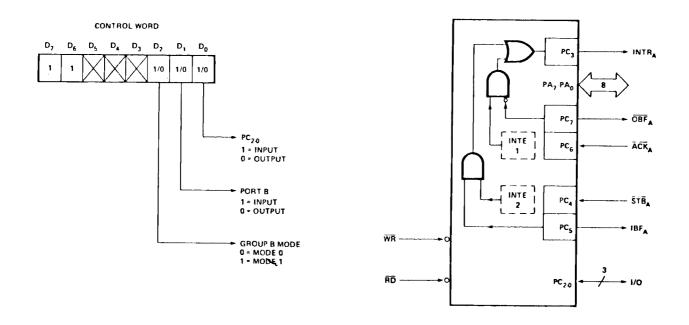


FIGURE 3-23 MODE 2 PORT CONFIGURATION

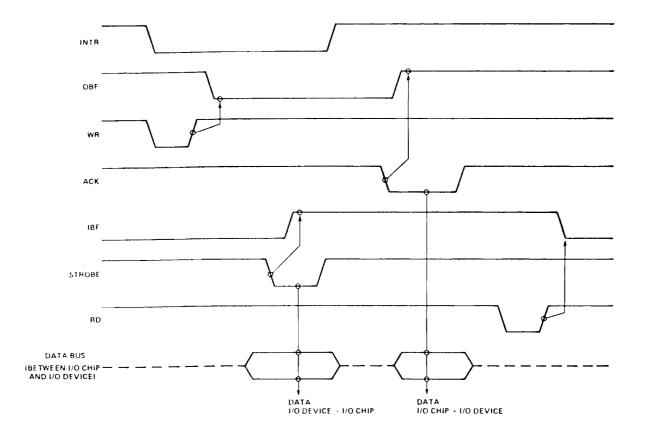
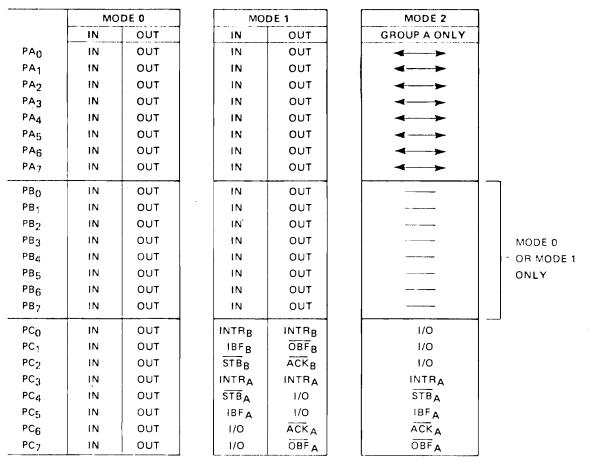



FIGURE 3-24 MODE 2 TIMING

MODE DEFINITION SUMMARY TABLE

TABLE 3-2 8255 MODE DEFINITION SUMMARY

3.2.6.2 PARALLEL I/O CONFIGURATIONS

Referring to sheet 5 of the schematic, we see that there are two 8255 devices, one located at A19, the other at A20. For convenience the following device designations will be used: The device at A19 is called the "group 1" device, while the device at A20 is referred to as the "group 2" device. Each device has three eight-bit ports. The "group 1" ports are designated Ports 1, 2 and 3 while the "group 2" ports are designated Ports 4, 5 and 6.

The group 1 and group 2 devices both communicate with the CPU Set using the same signal lines: the 8-bit data bus, DBO-DB7, and seven control/address lines; ADRO, ADR1, RESET, IOR/, IOW/, CS1/, and CS2/. The data lines bring control bytes or data bytes to an 8255 or deliver data from an 8255 to the CPU Set. The chip select control signals (CS1/ and CS2/) select the group 1 and group 2 devices, respectively, when the proper I/O address appears on the system address bus. CS1/ and CS2/ are the result of decoding address bits 1 through 7 (ADR2-ADR7), as shown on sheet 4 of the schematic (at A14). The two least significant address bits select the control register (when programming an 8255) or one of the three I/O ports (when reading or writing data). IOR/ (8255 \rightarrow CPU Set) and IOW/ (CPU Set \rightarrow 8255) indicate the direction of data flow, as summarized in Table 3-3. Specific I/O addresses for the six ports and two 8255 control registers on the SBC 80/10 are listed in Table 3-4.

A high on the RESET line clears all internal 8255 registers including the control register; all ports (A, B and C) are set for input.

Though both 8255's maintain the same interface (at different I/O addresses) with the CPU Set, the interface between the group 1 device and edge connector J1 is significantly different than the interface between the group 2 device and its associated edge connector (J2). This gives the user a great deal of flexibility when configuring the system's external parallel I/O devices. Because of those flexible "external" interfaces, however, not all ports are capable of operating in each 8255 mode, though all ports can be programmed as either input or output. The group 1 ports can fully utilize the 8255's multi-mode and external interrupt capabilities as described in Section 3.2.6.1. The group 2 ports, however, are limited

A1	A 0	I OR/	1 OW/	CS/	Input Operation (Read)
0	0	0	1	0	Port A \rightarrow Data Bus
0	1	0	1	0	Port B \rightarrow Data Bus
1	0	0	1	0	Port C \rightarrow Data Bus
					Output Operation (Write)
0	0	1	0	0	Data Bus \rightarrow Port A
0	1	1	0	0	Data Bus \rightarrow Port B
1	0	1	0	0	Data Bus \rightarrow Port C
1	1	1	0	0	Data Bus \rightarrow Control
	Disable Function				
x	x	ж	x	1	Data Bus → High-Impedance
1	1	0	1	0	Illegal

TABLE 3-38255BASIC OPERATION

TABLE 3-4 PARALLEL I/O PORT ADDRESSES

Port	8255 Device Location	*Eight-Bit Address (Hexadecimal)
1	8255 #1 Port (A)	E4
2	8255 #1 Port (B)	E5
3	8255 #1 Port (C)	E6
-	8255 #1 Control	E7 For I/O write only.
4	8255 #2 Port (A)	E8
5	8255 #2 Port (B)	E9
6	8255 #2 Port (C)	EA
-	8255 #2 Control	EB For I/O write only.

*Note: If address = 111001xx, CS1/ is activated. If address = 111010xx, CS2/ is activated. to a single mode of operation. The allowable port configurations for both groups are summarized below:

Port 1 (Group 1 Port A) Mode 0 Input Mode 0 Output (Latched) Mode 1 Input (Strobed) Mode 1 Output (Latched) Mode 2 Bidirectional Port 2 (Group 1 Port B) Mode 0 Input Mode 0 Output (Latched) Mode 1 Input (Strobed) Mode 1 Output (Latched) Port 3 (Group 1 Port C) Mode 0 8 Bit Input Mode 0 8 Bit Output (Latched) Note: Control mode dependent upon Port A and B mode. Ports 4 and 5 (Group 2 Port A, B) Mode 0 Input Mode 0 Output (Latched) Port 6 (Group 2 Port C) Mode 0 8 Bit Input Mode 0 8 Bit Output Mode 0 4 Bit Input/4 Bit Output (Unlatched/latched) Mode 0 4 Bit Output/4 Bit Input (Unlatched/latched)

Group 1

Port 1 is the most versatile of the six ports. It can be programmed to function in any one of the three 8255 operating modes. The first port is the only port that already includes a permanent bidirectional driver/ termination network (two 8226 bus driver devices at Al and A2).

Before Port 1 is programmed for input or output in any one of three operating modes (as described in Section 3.2.6.1), certain jumper connections must be made to allow the port to function properly in the chosen mode. The 40-41-42-43 jumper pad specifies the direction of data flow for the two 8226 bidirectional bus drivers. If input in mode 0 or mode 1 is to be programmed for Port 1, jumper pair 41-42 should be connected. If output in mode 0 or mode 1 is to be used, jumper pair 40-41 should be connected. If Port 1 is to be programmed for bidirectional mode 2, then jumper pair 41-42 should be connected. This connection allows the output acknowledge, ACK/, that is input on bit 6 of Port 3 to dynamically dictate direction for the two 8226 devices,

Another jumper pad (48-49-50-51) enables interrupts for Port 1 when it is in mode 1 or mode 2. Jumper pair 49-50 should be connected to allow the INTR output (see Section 3.2.6.1) from bit 3 of Port 3 to activate an interrupt request (INT55/) from the 74LS02 gate at A45. In mode 0, during which there is no provision for interrupts, jumper pairs 48-49 and 50-51 must be connected to allow use of bit 3 of Port 3 and to inhibit Port 1 interrupts.

Because the 8226 bus drivers are inverting devices, all data input to or output from Port 1 is considered to be negative true with respect to the levels at the J1 edge connector.

Port 2 can be programmed for input or output in either mode 0 or mode 1 (see Section 3.2.6.1). If Port 2 is to be used for input (in either mode), terminator networks must be installed in the sockets at A5 and A6. Because these networks must be passive, data that is input to Port 2 will be positive true. If Port 2 is to be used for output (in either mode), driver networks must be installed in the sockets at A5 and A6. Assuming that the drivers are inverting devices, then the data being output will be negative true at the J1 edge connector.

When Port 2 is programmed for mode 1, interrupts can be enabled by connecting jumper pair 45-46. This connection allows the INTR output from bit 0 of Port 3 to activate the interrupt request (INT55/) to the CPU set. When Port 2 is in mode 0, jumper pairs 44-45 and 46-47 must be connected to allow use of bit 0 of Port 3 and to inhibit Port 2 interrupts.

As was described in Section 3,2.6.1, the use of Port 3 is dependent on the modes programmed for Ports 1 and 2. If Port 1 is in mode 1 or mode 2, bits 3, 4, 5, 6 and 7 of Port 3 can have dedicated control functions.

```
Port 3 bit 3 \rightarrow INTR (interrupt request) - input or output

Port 3 bit 4 \leftarrow STB/ (input strobe)

Port 3 bit 5 \rightarrow IBF (input buffer full flag)

Port 3 bit 6 \leftarrow ACK/ (output acknowledge)

Port 3 bit 7 \rightarrow OBF/ (output buffer full flag)

Port 3 bit 7 \rightarrow OBF/ (output buffer full flag)
```

If Port 2 is in mode 1, bits 0, 1 and 2 of Port 3 have dedicated control functions:

```
Port 3 bit 0 \rightarrow INTR (interrupt request) - input or output
Port 3 bit 1 \rightarrow IBF (input buffer full)
Port 3 bit 2 \leftarrow STB/ (input strobe)
Port 3 bit 1 \rightarrow OBF/ (output buffer full)
Port 3 bit 2 \leftarrow ACK/ (output acknowledge)
Port 3 bit 2 \leftarrow ACK/ (output acknowledge)
```

While certain Port 3 bits are available if Port 1 is in mode 1 or if Port 2 is in mode 0, the use of Port 3 as an eight-bit data path is restricted to those configurations that have both Port 1 and Port 2 programmed for mode 0. In this case all 8 bits of Port 3 can be programmed for mode 0 input (termination networks must be installed in the sockets at A3 and A4) or output (driver networks must be installed at A3 and A4). Note: If Port 1 and 2 are not both in mode 0, then a driver network must be installed in the sockets at A3 and a termination network must be installed at A4, so that the Port 3 control lines can function properly.

Group 2

The three ports on the group 2 device can be programmed for input or output, but only in mode 0. If Port 4 is programmed for input, termination networks must be installed in the sockets at A7 and A8. The data being input will be in positive true form. If Port 4 is programmed for output, driver networks must be installed at A7 and A8. Assuming that inverting drivers are used, then the data will be considered negative true at the J2 edge connector.

If Port 5 is programmed for input, termination networks must be installed in the sockets at A21 and A11. If Port 5 is programmed for output, driver networks must be installed at A21 and A11.

All eight bits of Port 6 can be programmed for input or output, or four bits can be programmed for input while the other four bits are programmed for output (see Section 3.2.6.1). Driver termination networks must be

installed in the sockets at A9 and A10 as listed in Table 3-5.

	Sockets at A9	Sockets at A10
8-bit Input	Terminators*	Terminators*
8-bit Output	Drivers ^{**}	Drivers ^{**}
Upper 4-bits Input/ Lower 4-bits Output	$Terminators^*$	Drivers ^{**}
Lower 4-bits Input/ Upper 4-bits Output	Drivers ^{**}	Terminators*

TABLE 3-5. Port 6 I/O CONFIGURATIONS

* Positive-true data.

** Negative-true data if inverting drivers.

In Section 3.3.2, all of the user options for configuring parallel I/O on the SBC 80/10 are summarized for convenient reference.

3,3 USER SELECTABLE OPTIONS

The SBC 80/10 provides the user with a powerful, but flexible I/O capability for both parallel and serial transfers. The serial I/O interface, using Intel's 8251 USART, provides a serial data communications channel that can be programmed to operate with most of the current serial data transmission protocols. Synchronous or asynchronous mode, character length, number of stop bits and even/odd parity are all program selectable. In addition, the user has the option, through jumper connections, of configuring the baud rate and the Serial I/O Interface as an ETA RS232C interface or as a Teletypecompatible current loop interface.

The Parallel I/O Interface, using two Intel 8255 Programmable Peripheral Interface devices, provides 48 signal lines for the transfer and control of data to or from peripheral devices. Eight lines already have a bidirectional driver and termination network permanently installed. The remaining 40 lines, however, are uncommitted. Sockets are provided for the installation of active driver networks or passive termination networks as required to meet the specific needs of the user system.

In this chapter, we will reiterate each of the options available to the user, and summarize, for easy reference, the specific information required to implement the user's tailored I/O configuration. Section 3.3.1 deals with the Serial I/O Interface, while Section 3.3.2 covers Parallel I/O options. Section 3.3.3 will describe general options not covered in the other two sections.

3,3.1 SERIAL I/O INTERFACE OPTIONS

There are three general areas of Serial I/O options:

- (1) choice of interface type, RS232C or current loop,
- (2) baud rate and program-selectable mode options,
- (3) choice of an interrupt request mechanism.

The first two are covered in the following paragraphs; the third, choice of interrupt mechanism, is quite simple and is fully explained in Section 3.2.5.4.

3.3.1.1 INTERFACE TYPE

The user has the choice of configuring the Serial I/O logic to present either an EIA RS232C or a 20 mA current loop interface to an external device. If a Teletype-compatible current loop interface is used, the 8251 I/O pins should be connected to the external Teletype lines as listed in Table 3-6. The reader control logic is controlled by the output DSR/ from the 8251. If an EIA RS232C interface is used, the 8251 can assume the role of a "data set" (see Table 3-7) or a "data processing terminal" (see Table 3-8). Pin definitions for the 8251 USART are listed in Section 3.2.5.1.

3.3.1.2 BAUD RATE AND PROGRAM-SELECTABLE SERIAL I/O OPTIONS

Before beginning Serial I/O operations, the 8251 must be programinitialized to support the desired mode of operation. The CPU initializes the 8251 by outputting a set of control bytes to the USART device. These control words specify:

* synchronous or asynchronous operation, * baud rate factor, * character length, * number of stop bits, * even/odd parity, * parity/no parity.

8251 PIN MNEMONIC			CONNECTOR PIN NO.	JUMPER CONNECTIONS
TXD DTR/ (1) RTS/ (1) CTS/ (2) TXC (2) RXC TXD - - - -	23	TTY Tx TTY RD CONTROL (CTS/) (RTS/) (Baud Rate Clk) (Baud Rate Clk) TTY Rx TTY Rx TTY Rx RET TTY Tx RET TTY RD CTL RET	J3-25 J3-6 - - J3-22 J3-23 J3-24 J3-16	$ \begin{array}{r} 1-2\\ 23-24\\ 27-29, 30-31\\ 27-29\\ 33-34 (8-4, 56-57)\\ 35-36 (8-4, 56-57)\\ 38-39\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$

TABLE 3-6. 20 mA CURRENT LOOP SERIAL I/O INTERFACE

- Notes: (1) The 8251's RTS/ output is connected to the CTS/ input through jumper pair 27-28. The command instruction word for the 8251 must enable RTS/.
 - (2) TXC and RXC are connected to the Baud Rate Clk line via jumpers 33-34 and 35-36. The Baud Rate Clk should be configured for 110 baud by connecting jumpers 8-4 and 56-57 (see Table 3-9), and the 8251 should be programmed for a baud rate factor of 64 (see Section 3.3.2).

8251 PIN	PIN	LINE FUNCTION	CONNECTOR	JUMPER
MNEMONIC	NO.		PIN No.	CONNECTIONS
RXD TXD (1) CTS/ RTS/ DTR/ (2) DSR/ - -	3 19 17 23 24 22 -	TRANSMITTED DATA RECEIVED DATA REQ TO SEND CLEAR TO SEND DATA SET READY DATA TERMINAL RDY PROTECTIVE GROUND SIGNAL GROUND	J3-3 J3-5 J3-7 J3-9 J3-11 J3-14 J3-1 J3-13	37-38 2-3 27-28 29-30 22-23 25-26 - -

TABLE 3-7. RS232C INTERFACE, "DATA SET" ROLE

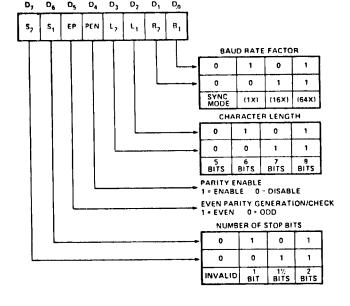
TABLE 3-8. RS232C INTERFACE, "DATA PROCESSING TERMINAL" ROLE¹

8251 PIN	PIN	LINE FUNCTION	CONNECTOR	JUMPER
MNEMONIC	NO.		PIN NO.	CONNECTIONS
TXD	19	TRANSMITTED DATA	J3-5	2-3
RXD	3	RECEIVED DATA	J3-3	37-38
RTS/	23	REQ TO SEND	J3-9	29-30
(1) CTS/	17	CLEAR TO SEND	J3-7	27-28
DTR/	24	DATA TERMINAL RDY	J3-11	22-23
(3) TXC	9	TRANSMIT CLOCK	J3-14	32-33
(2) DSP/ (3) RXC _ _	22 25 -	DATA SET RDY RECEIVE CLOCK PROTECTIVE GROUND SIGNAL GROUND	J3-14 J3-22 J3-1 J3-13	25-26 36-39 - -

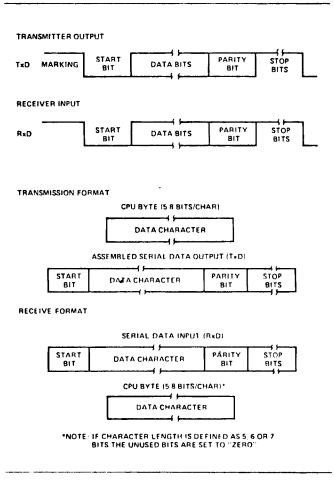
- Notes: (1) The CTS/ input pin on the 8251 must be "low" to enable the 8251 to transmit.
 - (2) When connector pin J3-14 is jumpered (25-26) to the DSR/ input, J3-14 cannot be used to supply an external transmit clock.
 - (3) In the asynchronous mode, TXC and RXC can be connected to externally supplied clocks via jumpers 32-33 and 36-39, or they can be connected to the internal Baud Rate Clk via jumpers 33-34 and 35-36, regardless of the mode.

¹In this role, cable modifications must be made to conform with RS232 standards.

As explained in Section 3.2.5.1, there are two types of control words: (1) Mode instruction and (2) Command instruction. The Mode instruction initializes the 8251 USART. Because the USART supports either synchronous or asynchronous operation, the Mode instruction has one format for synchronous operation and another for asynchronous. The two least significant bits of the Mode instruction byte specify the format. If D0 and D1 both equal 0, synchronous operation is indicated; otherwise, it is asynchronous. The Mode instruction format for asynchronous operation is illustrated in Figure 3-6. The Mode instruction for synchronous operation is shown in Figure 3-26.

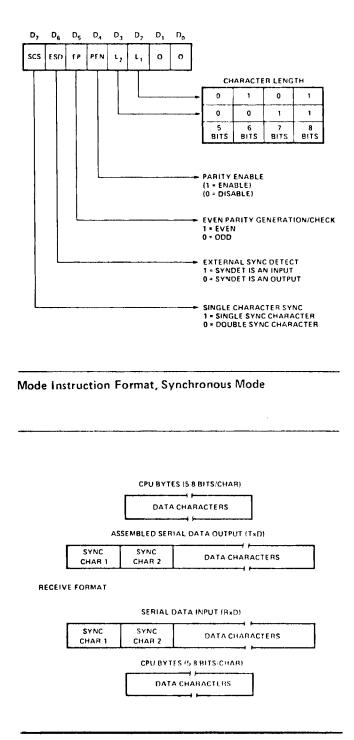

Notice in Figure 3-25 that the baud rate factor is specified by the two least significant bits of the instruction byte (labeled Bl and B2). During asynchronous communications, the Baud Rate Clock frequency supplied to the 8251's TXC and RXC input pins is divided by the baud rate factor to produce the effective baud rate (i.e., the frequency at which data bits are serially transmitted by the 8251 USART). Consequently, the Baud Rate Clock, as well as the program-selected baud rate factor, must be considered in implementing the desired effective baud rate. The Baud Rate Clock frequency is selected through various jumper connections as shown on sheet 4 of the SBC 80/10 schematic (Appendix B). The selection of an effective baud rate is summarized in Table 3-9.

Notice from the schematic that TXC and RXC inputs can be supplied by externally supplied clocks (via connector pins J3-14 and J3-22, respectively), instead of using the Baud Rate Clock, if jumpers 32-33 and 36-39 are connected and jumpers 33-34 and 35-36 are disconnected.


3.3.2 PARALLEL I/O OPTIONS

The Parallel I/O Interface consists of six 8-bit I/O ports implemented with two Intel 8255 Programmable Peripheral Interface devices. The primary user considerations in determining how to use each of the six I/O ports are:

- 1) Choice of operating mode (as defined in Section 3.2.6.1),
- 2) direction of data flow (input, output or bidirectional), and
- 3) choice of driver/termination networks for port's data path.



Mode Instruction Format, A	Asynchronous Ma	de
----------------------------	-----------------	----

Asynchronous Mode

FIGURE 3-25. ASYNCHRONOUS OPERATION

Synchronous Mode, Transmission Format

.

FIGURE 3-26. SYNCHRONOUS OPERATION

TABLE 3-9. BAUD RATE SELECTION

	EFFECTIVE BAUD RATE (Hz)						
JUMPER	SYNCHRONOUS MODE	NOUS MODE					
CONNECTION		BAUD RATE FACTOR=16(2)	BAUD RATE FACTOR=64(2)				
$ \begin{array}{r} 10-4\\ 11-4\\ 12-4\\ 5-4\\ 6-4\\ 7-4\\ (1) 8-4\\ (1) 8-4,\\ 56-57 \end{array} $	- - 38,400 19,200 9600 4800 6980	9600 ⁽³⁾ 4800 2400 1200 600 300	4800 2400 1200 600 300 150 75 110 (TTY)				

Note: (1) If jumper pair 56-57 is not connected, the frequency at jumper pole 8 is 4.8 KHZ. If jumper 56-57 is connected, however, the frequency at jumper pole 8 is 6.98 KHZ which, with a programmed baud rate factor of 64, provides an effective baud rate of approximately 110 baud for Teletype use.

- (2) Baud rate factor is software selectable.
- (3) Caution: Baud Rate Factor = 16

In the following paragraphs, we will define the capabilities of each port and summarize, in tables, that information which is necessary to use the port in each of its potential configurations. Each table will list the port I/O address, the control register address and the format for the control word which is output to the 8255 by the CPU Set and which specifies the particular configuration to be used. Each table will also summarize all of the relevant information concerning the choice and use of driver/ termination networks, the data polarity, the connecting of jumpers and what they enable, and any restrictions on the use of the other two ports in each group. Examples of suitable driver/termination networks are listed in Section 8.1.1.

3.3.2.1 PORT 1 (GROUP 1 PORT A)

Port 1 is the only port that already includes a permanent bidirectional driver/termination network (two 8226 Bidirectional Bus Drivers). Port 1 is also the only port which can be programmed to function in any one of the

three 8255 operating modes, which were defined in Section 3.2.6.1. Before Port 1 is programmed for input or output in any one of the three modes, certain jumper connections must be made to allow the port to function properly in the chosen mode. Other jumper connections must be made to enable interrupts when Port 1 is in mode 1 or mode 2. In all, there are five potential configurations for Port 1. All of the necessary information for implementing each configuration has been summarized in the following tables:

PORT 1 CO	NFIGURATIONS	TABLE
Mode	Direction	
1. Mode 0 2. Mode 0 3. Mode 1 4. Mode 1 5. Mode 2	Input Output (Latched) Input (Strobed) Output (Latched) Bidirectional	Table 3-11 Table 3-12 Table 3-13 Table 3-14 Table 3-15

TABLE 3	-10.	PORT	1	OPERATING	MODES
---------	------	------	---	-----------	-------

TABLE 3-11. PORT 1, MODE 0 INPUT CONFIGURATION

PORT 1 ADDRESS: E4, CONTROL REGISTER ADDRESS: E7 4 3 2 1 0 CONTROL WORD FORMAT: 7 6 5 0 0 1 х х 1 x DRIVER/TERMINATION NETWORKS: Two Intel[®] 8226 Bidirectional Bus Drivers permanently installed at A1 and A2. DATA POLARITY: Negative-true. JUMPER CONNECTIONS: 41-42 to enable input at 8226's. PORT 2 RESTRICTIONS: None; port 2 can be programmed for mode 0 or mode 1, input or output (see Section 3.3.2.2). PORT 3 RESTRICTIONS: None; port 3 can be programmed for mode 0, 8-bit input or output, unless port 2 is in mode 1. (see Section 3.3.2.3).

TABLE 3-12. PORT 1, MODE 0 LATCHED OUTPUT CONFIGURATION

PORT 1 ADDRESS: E4, CONTROL REGISTER ADDRESS: E7 6 5 4 3 2 1 0 CONTROL WORD FORMAT: 7 0 0 0 х х 1 х х DRIVER/TERMINATION NETWORKS: Two Intel® 8226 Bidirectional Bus Drivers permanently installed at A1 and A2. DATA POLARITY: Negative-true. JUMPER CONNECTIONS: 40-41 to enable output at 8226's. PORT 2 RESTRICTIONS: None; port 2 can be programmed for mode 0 or mode 1, input or output (see Section 3.3.2.2).

PORT 3 RESTRICTIONS: None; port 3 can be programmed for mode 0, input or output, unless port 2 is in mode 1 (see Section 3.3.2.3). TABLE 3-13. PORT 1, MODE 1 STROBED INPUT CONFIGURATION

PORT 1 ADDRESS: E4, CONTROL REGISTER ADDRESS: E7 CONTROL WORD FORMAT: 7 6 5 4 3 2 1 0 1 1 1 х х х \mathbf{x} DRIVER/TERMINATION NETWORKS: Two Intel® 8226 Bidirectional Bus Drivers permanently installed at A1 and A2. A driver network must be installed at A3 and a termination network must be installed at A4. DATA POLARITY: Negative-true. The polarity of Port 3 control outputs is dependent on the type of driver installed at A3. JUMPER CONNECTIONS: 41-42 to enable input at 8226's; connect 49-50 to enable interrupt request via INT55/. PORT 2 RESTRICTIONS: None; port 2 can be programmed for mode 0 or mode 1, input or output (see Section 3.3.2.2). PORT 3 RESTRICTIONS: Port 3 bits perform the following dedicated functions: *Bits 0, 1 and 2 - dedicated to control of port 2 if port 2 is in mode 1 (see Tables 3-17 to 3-20). *Bit 3 - INTR (interrupt request) output for port 1. *Bit 4 - STB/ (strobe) input for port 1. *Bit 5 - IBF (input buffer full) output for port 1. *Bit 6 - can be used for input only. Bit 3 of control word = 1*Bit 7 - cannot be used.

TABLE 3-14. PORT 1, MODE 1 LATCHED OUTPUT CONFIGURATION

PORT 1 ADDRESS: E4, CONTROL REGISTER ADDRESS: E7

CONTROL WORD FORMAT: 7 6 5 4 3 2 1 0

1 0 1 0 x x x x

DRIVER/TERMINATION NETWORKS: Two Intel[®] 8226 Bidirectional Bus Drivers permanently installed at A1 and A2. A driver network must be installed at A3 and a termination network must be installed at A4.

DATA POLARITY: Negative-true. The polarity of Port C control outputs is dependent on the type of driver installed at A3.

JUMPER CONNECTIONS: 41-40 to enable output at 8226's; connect 49-50 to enable interrupt request via INT55/.

PORT 2 RESTRICTIONS: None; port 2 can be programmed for mode 0 or mode 1, input or output (see Section 3.3.2.2).

PORT 3 RESTRICTIONS: Port 3 bits perform the following dedicated functions:

*Bits 0, 1 and 2 - dedicated to the control of port 2 if port 2 is in mode 1 (see Tables 3-19 and 3-20). *Bit 3 - INTR (interrupt request) output for port 1. *Bit 4 - can be used for input if bit 3 of control word = 1

*Bit 5 - cannot be used if PC4 is used; can be used for output if control word bit 3 = 0 (PC4 cannot be used then).

*Bit 6 - ACK/ (acknowledge) input for port 1.

*Bit 7 - OBF/ (output buffer full) output for port 1.

TABLE 3-15. PORT 1, MODE 2 BIDIRECTIONAL CONFIGURATION

PORT 1 ADDRESS: E4, CONTROL REGISTER ADDRESS: E7

CONTROL	WORD	FORMAT:	7	6	5		3	2	1	0
			1	1	x	x	x	x	x	x

DRIVER/TERMINATION NETWORKS: Two Intel[®]8226 Bidirectional Bus Drivers permanently installed at A1 and A2. A driver network must be installed at A3 and a termination network must be installed at A4.

DATA POLARITY: Negative-true. The polarity of Port C control outputs is dependent on the type of driver installed at A3.

JUMPER CONNECTIONS: 41-43 to allow ACK/ input on PC6 to dynamically change data direction at 8226's (input when ACK/ = 1 and output when ACK/ = 0); connect 49-50 to enable interrupt request via INT55/.

PORT 2 RESTRICTIONS: None.

PORT 3 RESTRICTIONS: Port 3 bits perform the following dedicated functions:

*Bits 0 and 1 - can be used for output if bit 3 of control word = 0
*Bit 2 - cannot be used if PCO and PC1 are used; can be used for
 input if control word bit 3 = 1 (PCO and PC1 cannot be
 used then).
*Bit 3 - INTR (interrupt request) output for port 1.
*Bit 4 - STB/ (strobe input for port 1.
*Bit 5 - IBF (input buffer full) output for port 1.
*Bit 6 - ACK/ (acknowledge) input for port 1.
*Bit 7 - OBF/ (output buffer full) output for port 1.

3.3.2.2 PORT 2 (GROUP 2 PORT B)

Port 2 can be programmed for input or output in either mode 0 or mode 1. If Port 1 is in mode 2, however, Port 2 must be programmed for mode 0. If Port 2 is to be used for input, in either mode, terminator networks must be installed in the sockets at A5 and A6. If Port 2 is to be used for output, in either mode, driver networks must be installed in the sockets at A5 and A6. When Port 2 is programmed for mode 1, interrupts can be enabled by connecting jumper pair 45-46. The four potential configurations for Port 2 are summarized in the following tables:

TABLE 3-1	6, PORT	2	OPERATING	MODES
-----------	---------	---	-----------	-------

PORT 2 CON	FIGURATIONS	TABLE
Mode	Direction	INDLE
1. Mode 0 2. Mode 0 3. Mode 1 4. Mode 1	Input Output (Latched) Input (Strobed) Output (Latched)	Table 3-17 Table 3-18 Table 3-19 Table 3-20

TABLE 3-17. PORT 2, MODE 0 INPUT CONFIGURATION

PORT 2 ADDRESS: E5, CONTROL REGISTER ADDRESS: E7
CONTROL WORD FORMAT:765432101xxxx01x
DRIVER/TERMINATION NETWORKS: Termination networks must be installed at A5 and A6.
DATA POLARITY: Positive-true.
JUMPER CONNECTION: None.
PORT 1 RESTRICTIONS: None (see Section 3.3.2.1).
PORT 3 RESTRICTIONS: None, port 3 can be programmed for mode 0, input or output, unless port 1 is in mode 1 or mode 2 (see Section 3.3.2.3).

TABLE 3-18. PORT 2, MODE 0 LATCHED OUTPUT CONFIGURATION

PORT 2 ADDRESS: E5, CONTROL REGISTER ADDRESS: E7

7 CONTROL WORD FORMAT: 6 5 4 3 $\mathbf{2}$ 0 1 1 х x 0 х х 0 х

DRIVER/TERMINATION NETWORKS: Driver networks must be installed at A5 and A6.

DATA POLARITY: Negative-true, assuming that inverting drivers are at A5 and A6.

JUMPER CONNECTIONS: None.

PORT 1 RESTRICTIONS: None (see Section 3.3.2.1).

PORT 3 RESTRICTIONS: None, port 3 can be programmed for mode 0 or mode 1, 8-bit input or output, unless port 1 is in mode 1 or mode 2 (see Section 3.3.2.3).

TABLE 3-19. PORT 2, MODE 1 STROBED INPUT CONFIGURATION

PORT 2 ADDRESS: E5, CONTROL REGISTER ADDRESS: E7
CONTROL WORD FORMAT: 7 6 5 4 3 2 1 0 1 0 x x x 1 1 x
DRIVER/TERMINATION NETWORKS: Termination networks must be installed at A5 and A6. A driver network must be installed at A3 and a ter- mination network must be installed at A4.
DATA POLARITY: Positive-true. The polarity of Port C control out- puts is dependent on the type of driver installed at A3.
JUMPER CONNECTIONS: 45-46 to enable interrupt request via INT55/.
PORT 1 RESTRICTIONS: None.
PORT 3 RESTRICTIONS: Port 3 bits perform the following dedicated functions:
<pre>*Bit 0 - INTR (interrupt request) output for port 2. *Bit 1 - IBF (input buffer full) output for port 2. *Bit 2 - STE/ (strobe) input for port 2. *Bit 3 to Bit 7 - dedicated to control of port 1 if port 1 is in mode 1 (see Tables 3-11 to 3-14).</pre>

TABLE 3-20. PORT 2, MODE 1 LATCHED OUTPUT CONFIGURATION

PORT 2 ADDRESS: E5, CONTROL REGISTER ADDRESS: E7 7 CONTROL WORD FORMAT: 65 4 3 2 0 1 0 х 1 0 1 х х x DRIVER/TERMINATION NETWORKS: Driver networks must be installed at A5 and A6. A driver network must be installed at A3 and a termination network must be installed at A4. DATA POLARITY: Negative-true, assuming that inverting drivers are at A5 and A6. The polarity of Port C control outputs is dependent on the type of driver installed at A3. JUMPER CONNECTIONS: 45-46 to enable interrupt request via INT55/ PORT 1 RESTRICTIONS: None. PORT 3 RESTRICTIONS: Port 3 bits perform the following dedicated functions: *Bit 0 - INTR (interrupt request) output for port 2. *Bit 1 - OBF/ (output buffer full) output for port 2. *Bit 2 - ACK/ (acknowledge) input for port 2. *Bit 3 - P3-7 - dedicated to control of port 1 if port 1 is in mode 1 (see Tables 3-11 to 3-14).

3,3,2,3 PORT 3 (GROUP 1 PORT C)

The use of Port 3 is dependent on the modes programmed for Ports 1 and 2 (refer to Tables 3-11 to 3-20). While certain Port 3 bits are available if Port 1 is in mode 1 or if Port 2 is in mode 0, the use of Port 3 as an 8-bit data path is restricted to those configurations that have both Port 1 and Port 2 programmed for mode 0. In this case, all eight bits of Port 3 can be programmed for mode 0 input (see Table 3-22) or output (see Table 3-23). A 4-bit input/4-bit output configuration is never possible for group 1 Port 3.

Note: If Ports 1 and 2 are not both in mode 0, then a driver network must be installed in the sockets at A3 and a termination network must be installed at A4, so that the Port 3 control lines can function properly. 3.3.2.4 PORT 4 AND 5 (GROUP 2 PORTS A AND B)

Ports 4 and 5 can be programmed for input or output but only in mode 0, The two potential configurations for each port are summarized in the following tables:

	ATIONS		
PORT	MODE	DIRECTION	TABLE
1. Port 4 2. Port 4 1. Port 5 2. Port 5	Mode O Mode O Mode O Mode O	Input Output (Latched) Input Output (Latched)	Table 3-24 Table 3-25 Table 3-26 Table 3-27

TABLE 3-21, PORT 4 AND 5 OPERATING MODES

TABLE 3-22. PORT 3, MODE 0, 8-BIT INPUT CONFIGURATION

PORT 3 ADDRESS: E6, CONTROL REGISTER ADDRESS: E7					
CONTROL WORD FORMAT: 7 6 5 4 3 2 1 0 1 0 0 x 1 0 x 1					
DRIVER/TERMINATION NETWORKS: Termination networks must be installed at A3 and A4.					
DATA POLARITY: Positive-true.					
JUMPER CONNECTIONS: 46-47 and 44-45 to disable port 2 interrupts and enable P3-0; connect 48-49 and 50-51 to disable port 1 interrupts and enable P3-3.					

PORT 1 AND 2 RESTRICTIONS: Both ports 1 and 2 must be in mode 0.

TABLE 3-23. PORT 3, MODE 0, 8-BIT LATCHED OUTPUT CONFIGURATION PORT 3 ADDRESS: E6, CONTROL REGISTER ADDRESS: E7 CONTROL WORD FORMAT: 7 6 5 4 3 2 1 0 1 0 0 х 0 0 х 0 DRIVER/TERMINATION NETWORKS: Driver networks must be installed at A3 and A4. DATA POLARITY: Negative-true, assuming that inverting drivers are installed at A3 and A4. JUMPER CONNECTIONS: 46-47, and 44-45 to disable port 2 interrupts and enable P3-0; connect 48-49 and 50-51 to disable port 1 interrupts and enable P3-3. PORT 1 AND 2 RESTRICTIONS: Both ports 1 and 2 must be in mode 0.

TABLE 3-24. PORT 4, MODE 0, INPUT CONFIGURATION

PORT 4 ADDRESS: E8,	CONTRO	DL RE	EGISTI	ER A	DDR	ESS	EB					
CONTROL WORD FORMAT:	76	5	4 3	2	1	0						
	1 0	0	1 x	0	x	x						
DRIVER/TERMINATION NETWORKS: Termination networks must be installed at A7 and A8. DATA POLARITY: Positive-true.												
JUMPER CONNECTIONS: None.												
PORT 5 AND 6 RESTRICT mode 0, input or output			, -					be	progr	ammed	for	•

TABLE 3-25. PORT 4, MODE 0 LATCHED OUTPUT CONFIGURATION

PORT 4 ADDRESS: E8,	CON	TRC	LF	EGI	STE	R A	DDR	ESS	: EB
CONTROL WORD FORMAT:	7	6	5	4	3	2	1	0	
1 0 0 0 x 0 x x									
DRIVER/TERMINATION NETWORKS: Driver networks must be installed at A7 and A8. DATA POLARITY: Negative-true, assuming that inverting drivers are installed at A7 and A8.									
<u>JUMPER CONNECTIONS</u> : None. <u>PORT 5 AND 6 RESTRICTIONS</u> : None; ports 5 and 6 can be programmed for mode 0, input or output (also see Section 3.3.2.5).									

TABLE 3-26. PORT 5, MODE 0 INPUT CONFIGURATION

PORT 5 ADDRESS: E9, CONTROL REGISTER ADDRESS: EB
CONTROL WORD FORMAT: 7 6 5 4 3 2 1 0
1 0 0 x x 0 x x
DRIVER/TERMINATION NETWORKS: Termination networks must be installed at All and A21.
DATA POLARITY: Positive-true.
JUMPER CONNECTIONS: None.
PORT 4 AND 6 RESTRICTIONS: None; ports 4 and 6 can be programmed for mode 0, input or output (also see Section 3.3.2.5).

TABLE 3-27 PORT 5, MODE 0 LATCHED OUTPUT CONFIGURATION PORT 5 ADDRESS: E9, CONTROL REGISTER ADDRESS: EB CONTROL WORD FORMAT: 7 6 5 4 3 2 1 0 1 0 0 х 0 0 х х DRIVER/TERMINATION NETWORKS: Driver networks must be installed at All and A21. DATA POLARITY: Negative-true, assuming that inverting drivers are installed at A11 and A21. JUMPER CONNECTIONS: None. PORT 4 AND 6 RESTRICTIONS: None; ports 4 and 6 can be programmed for mode 0, input or output (also Section 3.3.2.5).

3.3.2.5 PORT 6 (GROUP 2 PORT C)

All eight bits of Port 6 can be programmed for mode 0 input or output, or four bits can be programmed for mode 0 input while the other four bits are programmed for mode 0 output. The four potential configurations for Port 6 are summarized in the following tables:

INDED J ZO. IONI O OIDMIIINO HODE	TABLE	3-28.	PORT	6	OPERATING	MODES
-----------------------------------	-------	-------	------	---	-----------	-------

PORT	6 CONFIGURATIONS	TABLE
		Table 3-29 Table 3-30 Table 3-31 Table 3-32

TABLE 3-29. PORT 6, MODE 0, 8-BIT INPUT CONFIGURATION						
PORT 6 ADDRESS: EA, CONTROL REGISTER ADDRESS: EB						
CONTROL WORD FORMAT: 7 6 5 4 3 2 1 0 1 0 0 x 1 0 x 1						
DRIVER/TERMINATION NETWORKS: Termination networks must be installed at A9 and A10.						
DATA POLARITY: Positive-true.						
JUMPER CONNECTIONS: None.						
PORT 4 AND 5 RESTRICTIONS: None (see Section 3.3.2.4).						

TABLE 3-30. PORT 6, MODE 0,8-BIT LATCHED OUTPUT CONFIGURATION

PORT 6 ADDRESS: EA,	CONI	ROL	RE	GIS	TER	AL	DRE	<u>95</u> :	EB
CONTROL WORD FORMAT:	7	6	5	4	3	2	1	0	
	1	0	0	x	0	0	x	0	
DRIVER/TERMINATION NETWORKS: Driver networks must be installed at A9 and A10.									
DATA POLARITY: Negative-true, assuming that inverting drivers are installed at A9 and A10.									
JUMPER CONNECTIONS: None.									
PORT 4 AND 5 RESTRICTIONS: None (see Section 3.3.2.4).									

TABLE 3-31.PORT 6, MODE 0 UPPER 4-BIT INPUT/LOWER4-BIT LATCHED OUTPUT CONFIGURATION

PORT 6 ADDRESS: EA, CONTROL REGISTER ADDRESS: EB CONTROL WORD FORMAT: 7 6 5 4 3 2 1 0 1 0 0 x 1 0 x 0 DRIVER/TERMINATION NETWORKS: A termination network must be installed at A9 and a driver network must be installed at A10. DATA POLARITY: The upper 4-bits will be in positive-true form; however, the lower four bits will be in negative-true form if an inverting driver is installed at A10. JUMPER CONNECTIONS: None. PORT 4 AND 5 RESTRICTIONS: None (see Section 3.3.2.4).

TABLE 3-32. PORT 6, MODE 0 UPPER 4-BIT LATCHED OUTPUT/LOWER 4-BIT INPUT CONFIGURATION

PORT 6 ADDRESS: EA, CO	NTROL REGISTER ADDRESS: EB					
CONTROL WORD FORMAT: 7	6 5 4 3 2 1 0					
1	0 0 x 0 0 x 1					
DRIVER/TERMINATION NETWORKS: A driver network must be installed at A9 and a termination network must be installed at A10.						
DATA POLARITY: The lower 4-bits will be in positive-true form; however, the upper 4-bits will be in negative-true form if an in- verting driver is installed at A9.						
JUMPER CONNECTIONS: None.						
PORT 4 AND 5 RESTRICTION	IS: None (see Section 3.3.2.4).					

PORT	I/O ADDRESS	SOCKET NUMBERS
1	E4	BI-DIRECTIONAL DRIVER/ TERMINATOR AT A1, A2
2	E5	A5, A6
3	E6	A3, A4*
4	E8	A7, A8
5	E9	A11, A21
6	EA	A9, A10**

TABLE 3-33. PARALLEL I/O ADDRESS AND SOCKET ASSIGNMENTS

*Note requirements specified in Tables 3-11 through 3-23.
**Note requirements specified in Tables 3-24 through 3-32.

3,3,3 GENERAL OPTIONS

There are several other options that may be useful. Details are provided in the following paragraphs.

3.3.3.1 SYSTEM RESET OUTPUT

The user can enable a SYSTEM RESET output from the SBC 80/10 by connecting jumper pair 54-55. This allows the reset signal which is generated on the SBC 80/10 during power-up sequences (see Section 3.2.1.5) to be made available to other modules in the system via connector P1-14. Notice on the schematic that a SYSTEM RESET input is accepted by the SBC 80/10 and P1-14 and applied to the 8080 regardless of jumper connections.

3.3.3,2 DISABLE BUS CLOCK SIGNALS

The bus clock BCLK/ (connector pin P1-13) or the constant clock CCLK/ (P-31) outputs can be disabled (if more drive, or a different frequency is needed) by disconnecting jumper pair 61-63 or 62-64, respectively. When connected, both BCLK/ and CCLK/ provide a 9.216 MHz timing reference to other modules.

3.3.3.3 ADVANCED ACKNOWLEDGE INPUT

Certain OEM mocules generate an advanced acknowledge, AACK/, in response to a memory read command, that allows the memory to complete the access without requiring the CPU to wait. When such modules are used with the SBC 80/10, jumper pair 52-53 should be connected to allow AACK/ to be accepted (at P1-25) and gated to the RDYIN pin on the 8224 Clock generator.

3.3.4. DEFAULT OPTIONS

Table 3-33 lists the default options jumpered on the SBC 80/10. These options permit the SBC 80/10 to communicate to a TTY; they also provide power-up reset, bus clock, and the communication clock to the system bus.

TABLE 3-34.	DEFAULT	OPTION	ON	THE	SBC	80/	10
-------------	---------	--------	----	-----	-----	-----	----

DEFAULT JUMPERS	REFERENCE	DESCRIPTION		
1 - 2	3.3.1.1	Connect 8251 T _x D to 20 mA Current Loop Driver		
23 - 24		Connect 8251 DTR/ to TTY Reader Control Circuit		
39 - 38		Connect 8251 R _x D to 20 mA current Loop Receiver		
4 - 8	3.3.1.2	Generates 6.98K Baud Rate Clock		
57 - 56		Generates 6.98K Baud Rate Clock		
34 - 33		Connect 8251 T Clock to Baud Rate Clock		
35 - 36		Connect 8251 R Clock to Baud Rate Clock		
27 - 29		Connect 8251 RST/ to 8251 CTS/		
19 - 20	3.2.5.4	Disable T_RDY Interrupt from 8251		
16 - 15	3.2.5.4	Disable R RDY Interrupt from 8251		
26 - 25	3.3.1.2	Connect DTR/ Receiver to 8251 DSR/ Input		
30 - 31	3.3.1.2	Connect Set Clear to Send Driver to +12V		
40 - 41	3.3.2.1	Enable Port l Bi-directional Drivers to Input		
54 - 55	3.3.3.1	Connect Power-Up Reset to System Bus		
62 - 64	3.3.3.2	Connect 9.216 MHz Clock to Communication Clock Line		
61 - 63	3.3.3.2	Connect 9.216 MHz Clock to Bus Clock Line		
*65 - 66	3.3.5			
*68 - 69	3.3.5	Configures SBC 80/10A for 4K ROM/PROM		
*73 - 74	3.3.5			
*76 - 78	3.3.5			

*Used with SBC 80/10A only.

3.3.5 JUMPER CONFIGURATION FOR ROM/PROM INSTALLATION

The System 80/10 using SBC 80/10A has jumpers which allow installation of up to 4K or up to 8K bytes of read only memory. Up to 4K bytes can be installed using Intel's 8708 Erasable and Electrically Reprogrammable ROMs (EPROM), Intel's 8308 Metal Masked ROMs, or Intel's 2758 Erasable and electrically Reprogrammable ROMs (EPROM). Up to 8K bytes can be installed using Intel's 2716 Erasable and Electrically Reprogrammable ROMs (EPROM) or Intel's 2316E Metal Masked ROMs. Table 3-35 list the jumper configurations for 4K and 8K

bytes of read only memory. Table 3-36 lists the addresses for each PROM socket in 4K and 8K configurations.

	JUMPER					
4K	65-66	68-69	73-74	76-78		
*4K	66–67	69-71	73-74	76-78		
8K	66–67	69-70	74–75	77–78		

TABLE 3-35. PROM JUMPER CONFIGURATION

.

*Using Intel's 2758 Erasable and Electrically Reprogrammable ROMs (EPROM).

	CHIP ADDRESS				
	A23 A24		A25	A26	
4K	0-3FF	400-7FF	800-BFF	COO-FFF	
*4K	0-3FF	400-7FF	800-bff	COO-FFF	
8K	0-7FF	1000-17FF	800-FFF	1800–1FFF	

*Using Intel's 2758 Erasable and Electrically Reprogrammable ROM's (EPROM)

*

CHAPTER 4

FRONT PANEL

The System 80/10 Front Panel allows the user to reset the entire system and provides a visual indication of AC power on.

The System 80/10 Front Panel consists of two switches:

- (1) AC Power switch
- (2) System Reset switch

4.1 AC POWER SWITCH

The AC power switch is a double-pole-double-throw latching switch. The switch is illuminated by a lamp. The lamp is a midget flanged base lamp, size Tl 3/4, and operates at 28 volts. It can be replaced by simply pulling the plastic push button away from the switch housing. Front panel removable is not necessary.

4.2 SYSTEM RESET SWITCH

The System reset switch is a double-pole-double-throw momentary switch. One half of the DPDT switch is debounced by an RS flip-flop and an inverter driver; the other half of the DPDT switch is not debounced. The inverter driver is an open collector device (48 mA sink current) and it is connected directly to the System Bus (INIT/). See Figure 4-1.

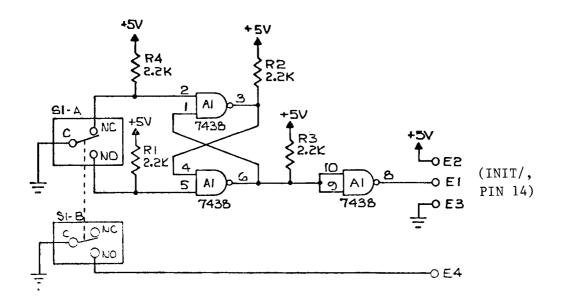


FIGURE 4-1. SYSTEM RESET SWITCH

CHAPTER 5

CARDCAGE AND BACKPLANE ASSEMBLY

5.1 FUNCTIONAL ORGANIZATION OF THE CARDCAGE AND BACKPLANE ASSEMBLY

The System 80/10 modular cardcage and backplane assembly consists of two functional blocks:

(1) Structural foam cardcage

(2) Termination backplane

Structural Foam Cardcage

The structural foam cardcage is an injection molded structure consisting of three separate pieces, the cardcage body and two card guides. The two card guides are bonded to the cardcage body by an ultrasonic bonding process. The cardcage assembly has a very high flexural, compressive and tensile strength. The resin used in the injection molded process allows for very close tolerance control of all dimensions.

Termination Backplane

The termination backplane consists of a motherboard, four 43/86 pin PCB connectors, termination resistors and two 7-pin power connectors. Most of the bus signals on the backplane assembly are terminated. The backplane accepts four SBC modules and each module has access to the bus. The two power connectors are used to supply power to the backplane.

5.2 CARDCAGE AND BACKPLANE ASSEMBLY UTILIZATION

The cardcage and backplane assembly houses the SBC 80/10 module and three additional expansion boards if needed. Paragraph 8.1.2 is a discussion of all signals on the backplane.

Four additional 30/60 pin auxiliary connectors can be added to the backplane assembly to form an auxiliary bus structure. The auxiliary bus structure can be used to implement battery back-up or an inter-module bus.

CHAPTER 6 POWER SUPPLY

6.1 FUNCTIONAL ORGANIZATION OF THE POWER SUPPLY

The System 80/10 Power Supply provides regulated DC output power at +12, +5, -5, and -12 volt levels. The current capabilities of each of these output levels have been chosen to provide power over the System 80/10 temperature range with the Single Board Computer fully loaded with I/O line terminators and drivers, and four 8708 EPROMs plus residual capability for most combinations of up to three SBC memory, I/O, or combination expansion boards within the System 80/10.

Current limiting and over-voltage protection is provided on all outputs. Access for AC input is provided via a standard 4-pin keyed connector. DC output power levels are provided on cables with keyed connectors which are directly compatible with the Modular Backplane/Cardcage assembly. The Power Supply includes logic which senses a system AC power failure and generates a TTL signal for clean system power-down control.

6.2 THEORY OF OPERATION

6.2.1 5V, 14 A OUTPUT

Operation is as follows:

(Ref. Schematic 2000952, Appendix B.)

6.2.1.1 VOLTAGE REGULATION

If we start at the moment of AC on, Cl, 17 and 8 will begin charging up from the current through CRl, 6 and 7. Ul will be "off" until \approx 8 volts is present at pins 11 and 12. At that point, the reference voltage of 7.15V will be present at pin 6. This reference voltage is divided down to 5V at pin 5, which is the non-inverting input of the internal differential amplifier. Pin 4 is the inverting input; since no output is present the differential amplifier is unbalanced and Ul will drive current out pin 10.

When pin 10 goes positive, Q1 turns on and drives the bases of Q2 and 3 on. Collector current through Q2 and 3 will charge the output cap C3 and 17 and deliver power to the load. When the voltage at C3 is 5.0 VDC, the differential amplifier will be balanced; pin 10 will reduce its output, and voltage regulation will occur. The output voltage may be adjusted by varying the resistance of R8.

6.2.1.2 CURRENT LIMIT/FOLDBACK

Ul has an internal current limit transistor that, when turned on, will reduce the output of pin 10.

The base-emitter of this transistor is brought out to pins 2 and 3. respectively. Pin 3 is connected to the output, pin 2 is connected to a current-sensitive point (in this case, the base of pass element Q2,3).

In normal, full load operation, R2 and 4 will drop \approx .5V because of the base current at Q2,3. R3 and 5 are shut-off resistors for the pass elements. (R7 is used to bias the current limit transistor off during normal conditions.)

Under full load operating conditions, the voltage at Q1-E will be approximately 6.5 VDC.

R6 is set to bring pin 2 to a threshold condition ($\simeq 5.5$ VDC) when 120% to 150% of rated current is being delivered.

If additional current is drawn, the current limit transistor in Ul will reduce the output of pin 10. This causes a reduction in output voltage which reduces the bias current in R7 and increases the current to the current limit transistor. At the maximum load (shorted output), very little current flows through R7, which means that it takes only a slight voltage at Ql-E to activate the current limit transistor. The current limit/foldback circuit described above has a fairly low gain, and it is reasonably normal to deliver 20-50% of rated current into a short. This is desirable because most logic circuits have start-up conditions requiring greater current than linear V/I curves would indicate.

6.2.1.3 OVP OPERATION

Zener CR2 senses the output voltage. When this voltage is sufficient to cause CR7 to zener and charge C18, SCR1 will fire which reduces the output to $\simeq 1$ VDC. OVP can be reset by cycling the AC input.

6.2.2 +12V OPERATION (Ref. Schematic 2000952, Appendix B.)

6.2.2.1 REGULATION

When the secondary of Tl charges C8 through CR6 and 7, U3 will drive current out of pin 10 until the differential amplifier is balanced (see Section 6.2.1.1).

6.2.2.2 CURRENT LIMIT/FOLDBACK

U3 has an internal current limit transistor that, when turned on, will reduce the output of pin 10.

The base-emitter of this transistor is brought out to pins 2 and 3, respectively. Pin 3 is connected to the output, and pin 2 is connected to a current-sensitive point (in this case, the base of Q6).

In normal operation, at full load, R27 will have \approx .44 volts dropped across it. R25 and R26 are calculated (and tested) to bias pin 2-3 at \approx +.4V at full load. When excess current (\approx 120% of rated) is drawn, the increased drop across R3 will force the current limit transistor into conduction. When the load is further increased the current limit transistor takes more and more of the drive from U3-pin 10, and the output voltage will decrease. When the output voltage is decreased, the offset bias through R27 is less and further reduces the available current from U3-pin 10. At a short circuit, the current through R27 is minimal and output current will be 20-30% of rated.

6.2.2.3 OVP OPERATION (See section 6.2.1.2.)

6.2.3 -12V OPERATION

6.2.3.1 REGULATION

Regulation is accomplished in a similar manner to the +12V regulator (see Section 6.2.2.1). Q7 is used to maintain U4 at an operational bias level.

6.2.3.2 CURRENT LIMIT

The current limit circuit operates in an identical manner to the circuit of Section 6.2.2.2, except that the circuit does not have foldback characteristics. Current can be drawn until there is \approx .55 volts across R36. Since Pins 2 and 3 are across R36, this maximum current is also the short circuit current.

6.2.3.3 OVP (See Section 6.2.1.2)

6.2.4 -5V OPERATION

6.2.4.1 REGULATION

Regulation is accomplished in a similar manner to the +12V regulator (see Section 6.2.2.1). Q4 is used to maintain U2 at an operational bias level.

6.2.4.2 CURRENT LIMIT

The current limit circuit operates in an identical manner to the circuit of Section 6.2.2.2, except that the circuit does not have foldback characteristics. Current can be drawn until there is \approx .55 volts across Rl6 and R55. Since pins 2 and 3 are across Rl6 and R55, this maximum current is also the short circuit current.

6.2.4.3 OVP (See Section 6.2.1.2.)

6.2.5 POWER FAIL OPERATION

At turn-on Cl5 charges through CR13, 14, U5 is a 723 set up as a comparator. Pin 6 is the reference voltage. R44 adjusts the reference voltage

on pin 4 (the inverting input). When the voltage on pin 5 is higher than on pin 4 the output goes high and Q9 saturates. R48, 46, 51 determines the hysteresis and compensates for the ripple on C15. R49 limits the drive to Q9. Operational power is obtained from C8 (raw 12V).

6.3 DC POWER OUTPUTS

Power supply provides <u>+5V</u> and <u>+12V</u> through power supply connectors P6 and P8. The P8 harness is 16 inches in length and P6 harness is 24 inches in length from mid-point of surface A (see outline drawings in Appendix C). See the diagram below for pin out and voltage assignments.

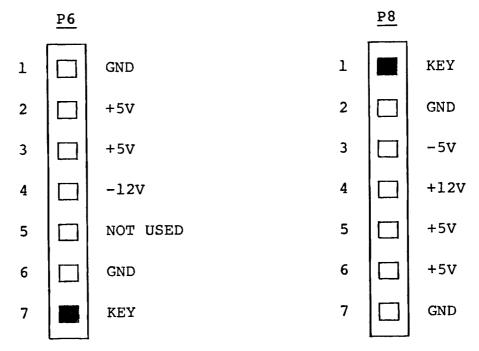
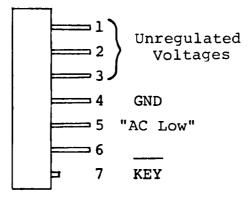
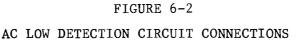


FIGURE 6-1

OUTPUT POWER CONNECTIONS

6.3.1 DC OUTPUT VOLTAGE ADJUSTMENT


Adjustment range for all voltages is <u>+5%</u> of nominal voltage. To adjust output voltage, locate appropriate voltage adjustment trimmer (see outline drawings in Appendix C), then turn trimmer, with non-metallic screwdriver, clockwise to increase output voltage or counterclockwise to decrease output voltage. If over-voltage-protection circuit is tripped during voltage adjustment see OVP reset procedure below.


6.3.2 OVER-VOLTAGE-PROTECTION CIRCUIT RESET PROCEDURE

After OVP is tripped, input power must be turned off for at least 3 seconds. Reduce output voltage of the tripped OVP by rotating the voltage adjustment trimmer about a half turn counterclockwise. Turn power on, normal operation should be restored, if not, repeat OVP reset procedure. Re-adjust output voltage according to <u>DC Output Voltage</u> <u>Adjustment</u> above.

6.4 AC LOW DETECTION CIRCUIT CONNECTIONS*

An active high TTL level signal indicating AC power failure is provided to the user through connector J3 pin 5 (CAUTION: Other voltages are present in connector J3, see pin out diagram below.) Use Molex connector (P/N 09-50-7071), pin (P/N 08-50-0106) and polarizing key (P/N 15-04-0219) for mating parts to J3 connector.

*For 115V/230V operation only.

(NOTE: The location of the AC low detection connector can vary within the indicated volume shown on the outline drawings, (See Appendix C.)

Application of AC Power Failure Detection Circuit

The "AC Low" output from the J3 connector is an active high TTL compatible signal which indicates that the AC input line voltage is below

103/206 VAC (RMS), "AC Low" output should be pulled up by the battery backup logic. In case of a power failure, all DC voltage is guaranteed to stay within regulation for a minimum of 7.5 msec at any frequency within the operating frequency range (47-63 hz) after the "AC Low" line goes high,

In a battery backup system, the "AC Low" signal is used to generate a "Power Fail Interrupt/" to the CPU and enable "Memory Protect" logic to disable any further Read/Write operations to the memory. A "Power Failure Detect/" signal may also be generated by the system to indicate that a power failure has occurred. Typical system timing during a power down and recovery is described in Figure 6-3.

When AC power recovers, the "AC Low" signal will return to the low state, the memory protect logic is then disarmed and a system "RESET" must be generated. Once reset, the system executes a start up routine which will sample the "Power Failure Detect/" line. If it is active, it will restore the CPU to its original line. If it is active, it will restore the CPU to its original state before power failed, and continue operation. If it is inactive, a "Cold Start" initialization routine will be performed.

6.5 MODIFICATION PROCEDURE FOR 230V OPERATION

The System 80/10 is wired for 115v/230v operation. The System is set to operate at 115v as shipped. For 230v operation follow the procedure as listed below:

(1) Turn off System and disconnect power cord from unit.

-- CAUTION --

Be sure power to System is OFF and power cord is removed from unit and power outlet. Damage to the System and personnel might result if power is NOT TURNED OFF!

(2) Remove 3 Amp fuse from fuse holder. Replace with l_2^1 Amp fuse that is shipped with the System.

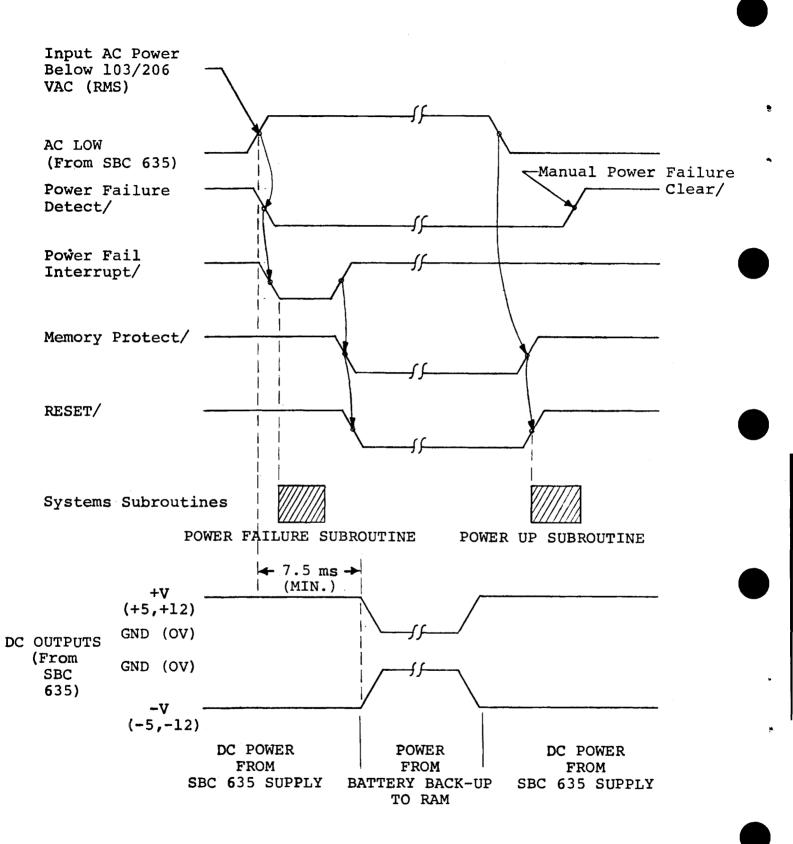
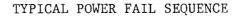
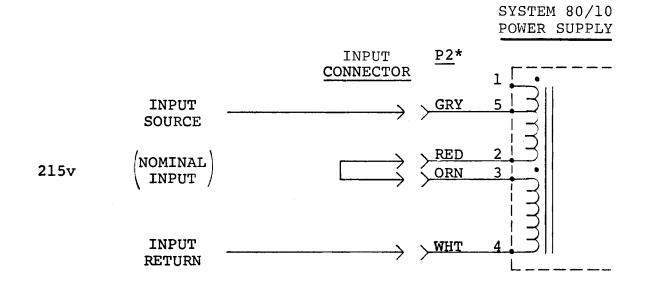



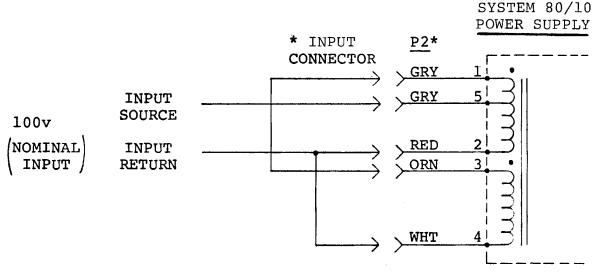
FIGURE 6-3



- (3) Remove top cover of System 80/10 and locate 115v/230v switch mounting bracket. Remove SBC 80/10 module.
- (4) Loosen top two screws and remove switch locking plate from mounting bracket. Reverse orientation of locking plate by flipping locking plate over sideways, Locking plate is stamped with "230".
- (5) Slide voltage selection switch to the left, the side marked with "230" on it, and re-install switch locking plate. Tighten top two screws.
- (6) Re-connect power cord to unit. Turn unit on and verify all voltages on backplane assembly. Turn off power and re-install SBC 80/10 module. Unit is now ready for 230v operation.

Modifications must be made to the transformer for other AC input voltages. See Table 6-1 and Figures 6-4 and 6-5.

OPTIONAL TRANSFORMER CONNECTIONS							
INPUT RANGE	NOMINAL INPUT	INPUT SOURCE (PIN)	INPUT RETURN (PIN)	TRANSFORMER JUMPERS REQUIRED (PIN)			
103.5-126.5	115	1	2	1-3, 2-4			
207-253	230	1	4	2-3			
192.5-236.5	215	5	4	2-3			
90-110	100	5	2	1-3, 2-4			


TABLE 6-1

*Wire from transformer Tl, Pin 1 is moved to Tl, Pin 5.

FIGURE 6-4

215v CONNECTION

*5 pin connectors must be used. Use Molex P/N 03-09-2052 for P2 transformer connector and use Molex P/N 03-09-1052 as mating connector.

FIGURE 6-5

100v CONNECTION

CHAPTER 7 SYSTEM MONITOR

7.1 MONITOR FUNCTIONAL SPECIFICATION

7,1,1 GENERAL CHARACTERISTICS AND SCOPE

The monitor is a program written in Intel[®]8080 macro assembly language. The monitor resides in two programmed ROMs and is located in the memory address space of the System 80/10 microcomputer between 0 and 0560H (H=hexadecimal). The non-volatile nature of the program's storage media means that the monitor is available for use immediately after power-on or reset.

7.1.2 DESCRIPTION OF ALL MAJOR FUNCTIONS PERFORMED

7.1.2.1 CONSOLE COMMANDS

The monitor communicates with the operator via an interactive console, normally a teletypewriter. The dialogue between the operator and the monitor consists of commands in the monitor's command language and the monitor's responses. After the cold start procedure, the monitor begins the dialogue by typing a sign-on message on the console and then requests a command by presenting a prompt character, ".". Commands are in the form of a single alphabetic character specifying the command, followed by a list of numeric or alphabetic parameters. Numeric parameters are entered as hexadecimal numbers. The monitor recognizes the characters 0 through 9 and A through F as legal hexadecimal digits. The valid range of numbers is from 1 to 4 hex digits. Longer numbers may be entered, but such numbers will be evaluated modulo 2^{16} so that they will fall into the range specified above,

The only command requiring an alphabetic parameter is the "X" command. The nature of such parameters will be discussed in the section explaining the command.

7.1,2,2 USE OF THE MONITOR FOR PROGRAMMING AND CHECKOUT

The monitor allows the user to enter, check out, and execute programs, The monitor contains facilities for memory modification, 8080 CPU register display and modification, program input and output from the console device, program initiation, and the recognition of an "RST 7" instruction as an unconditional branch to RAM address 3C3DH. By inserting RST 7 instructions in a program under test, or by using the hardware generated RST 7 instruction (if available), the user can cause execution of a program to transfer to a dedicated location (3C3DH), for whatever purposes he desires.

When the user wishes to re-enter the monitor (also see Appendix E), he should use an RST 1 instruction coded into his program. When entered in this manner, the monitor will print an "#" followed by the contents of the user program counter (byte address of RST 1 instruction plus one). The monitor will also automatically save the state of the 8080: specifically, it will save all registers (A, B, C, D, E, H, L), the CPU flags (F), the user's Program Counter (PC), and the user's Stack Pointer (SP). These may be examined with the X command. When the operator enters a G command, these values will be restored.

7.1.2.3 I/O SYSTEM

The I/O system provides four routines. Console character in and console character out, which the user may call upon to read and write, respectively, characters from and to the console device. The other two routines allow the user to read and punch paper tapes from the teletype.

7.1.3 APPLICABLE STANDARDS

Throughout this specification, the numbering convention for bits in a word is that bit 0 is the least significant, or rightmost bit.

The internal code set used by the monitor is 7 bit (no parity) ASCII.

7.2 MONITOR INTERFACE SPECIFICATIONS

7.2.1 COMMAND STRUCTURE

In the following paragraphs the monitor command language is discussed, Each command is described, and examples of its use are included for clarity. Error conditions that may be encountered while operating the monitor are described in Section 7.3.2.

The monitor requires each command to be terminated by a carriage return. With the exception of the "S" and "X" commands, the command is not acted upon until the carriage return is sensed. Therefore, the user can abort any command, before he enters the carriage return by typing any illegal character (such as RUBOUT or any alphabetic character with the exception of A through F).

Except where indicated otherwise, a single space is synonymous with the comma for use as a delimiter. Consecutive spaces or commas, or a space or comma immediately following the command letter, will be interpreted as null parameters. Null parameters are illegal in all commands except the "X" command (see below).

Items enclosed in square brackets "[" and "]" are optional. The consequences of including or omitting them are discussed in the text.

7.2.1.1 DISPLAY MEMORY COMMAND, D

D<low address>,<high address>

Selected areas of addressable memory may be accessed and displayed by the D command. The D command produces a formatted listing of the memory area between <low address> and <high address>, inclusive, on the console device. Each line of the listing begins with the address of the first memory location displayed on that line, represented as 4 hexadecimal digits, followed by up to 16 memory locations, each one represented by 2 hexadecimal digits.

The D command may be aborted during execution by typing an Escape (ESC) on the console. The command will be terminated immediately, and a new prompt issued.

Example

D9,2A

0009 00 11 22 33 44 55 66

0010 77 88 99 AA BB CC DD EE FF 10 20 30 40 50 60 70

0020 80 90 A0 B0 C0 D0 E0 F0 01 02 03

Note: If the <low addresss> parameter is greater than the <high address> parameter, only the first location defined by <low address> is printed.

7.2.1.2 PROGRAM EXECUTE COMMAND, G

G[<entry point>]

Control of the CPU is transferred from the monitor to the user program by means of the program execute command, G. The <entry point> should be an address which contains an instruction in the user's program. If no entry point is specified, the monitor uses, as an address, the value of the P register saved during a previous "G" command or saved as a result of a RST 1 instruction coded into the user's program.

Example

G1400

Control is passed to location 1400H.

Note: When entering a user program for the first time, the user should initialize the Stack Pointer to his stack area. Also, after a reset to the SBC 80/10 the user Stack Pointer must be reinitialized by the user during subsequent entry into the user's program or by the 'XS' command.

7.2.1.3 INSERT INSTRUCTIONS INTO MEMORY, I

I<address>

Single or multiple instructions are entered into memory with the I command. After sensing the carriage return terminating the command line, the monitor waits for the user to enter a string of hexadecimal digits (0-9,A-F). Each digit in the string is converted into its binary value,

and then loaded into memory, beginning at the starting address specified and continuing into sequential locations, Two hexadecimal digits are loaded into each byte of memory,

Separators between digits (spaces, commas, carriage returns) are ignored; illegal characters will terminate the command. The escape characters will terminate the command. The escape character, ESC (echoed as "\$") terminates the digit string. If an odd number of hex digits have been entered, a Ø will be appended to the string.

Example

I3E10

112233445566778899\$

This command puts the following pattern into RAM: <u>3E10</u> 11 22 33 44 55 66 77 88 99 I3E40 123456789\$ This command puts the following pattern into RAM: 3E40 12 34 56 78 90

Note that, since an odd number of hexadecimal digits were entered initially, a 0 was appended to the digit string.

7.2.1.4 MOVE MEMORY COMMAND, M

M<low address>, <high address>, <destination>

The M command moves the contents of memory <low address> through <high address>, inclusive, to the area of RAM beginning at <destination>. The contents of the source field remain undisturbed, unless the receiving field overlaps the source field.

The move operation is performed on a byte-by-byte basis, beginning at <low address>. Care should be taken if <destination> is between <low address> and <high address>. For example, if location 3E10 contains lAH, the command M3E10,3E1F,3E11 will result in locations 3E10 to 3E20 containing "lAlAlA...".

The monitor will continue to move data until the source field is exhausted, or until it reaches address OFFFFH, If the monitor reaches address OFFFFH without exhausting the source field, it will move data into this location, then stop.

Example

M3E00, 3E0F, 3F00

16 bytes of memory are moved from 3E00-3E0F to 3F00-3F0F by this command.

Note: If the <low address> parameter is greater than the <high address> parameter, only the first destination address is altered.

7.2.1.5 READ HEXADECIMAL FILE, R

R

The R command reads a hexadecimal tape from the teletypewriter and loads the data into the locations specified by the address fields in the hexadecimal records. (See Section 7.3.3 for hexadecimal tape format definition.)

A typical R command will appear as follows:

.R (User should turn on the tape reader before executing this command.)

7.2.1.6 SUBSTITUTE MEMORY COMMAND, S

S<address>

The S command allows the user to examine and optionally modify memory locations individually. The command functions as follows:

- Type an S, followed by the hexadecimal address of the first memory location you wish to examine, followed by a space or comma.
- (2) The contents of the location is displayed, followed by a dash (-).
- (3) To modify the contents of the location displayed, type in the new data, followed by a space, comma, or carriage return. If you do not wish to modify the location, type only the space, comma, or carriage return.
- (4) If a space or comma was typed in Step (3), the next memory location

will be displayed as in Step (2). If a carriage return as typed, the S command will be terminated,

Example

S3D50 AA- BB-CC 01-13 23-24

Location 3D50, which contains AA is unchanged, but location 3D51 (which used to contain BB) now contains CC, 3D52 (which used to contain 01) now contains 13, and 3D53 (which used to contain 23) now contains 24.

7.2.1.7 WRITE HEXADECIMAL FILE, W

W<low address>,<high address>

The W command outputs portions of memory to punched paper tape on the teletypewriter. Data is in hexadecimal format. A leader tape consisting of 60 null characters is punched followed by the memory data specified by the low/high address parameters. An end of file record is punched automatically to terminate the tape. Following the end of file record, a trailer tape is punched consisting of 60 null characters.

An example of the Write Hexadecimal file operation is as follows: W3D00,3DAF (User should turn on tape punch before executing this command.) This command punches out the contents of memory locations 3D00H through 3DAFH.

7.2.1.8 EXAMINE AND MODIFY CPU REGISTERS COMMAND, X

X<register identifier>

Display and modification of the CPU registers is accomplished via the X command. The X command uses <register identifier> to select the particular register to be displayed. A register identifier is a single alphabetic character denoting a register, defined as follows:

- A 8080 CPU register A
- B 8080 CPU register B
- C 8080 CPU register C
- D 8080 CPU register D
- E 8080 CPU register E
- F 8080 CPU flags byte, displayed in the form as it is stored by the "PUSH PSW" (hex code F5) instruction
- H 8080 CPU register H
- L 8080 CPU register L
- M 8080 CPU register H and L combined
- P 8080 Program Counter
- S 8080 Stack Pointer

The command operates as follows:

- (1) Type an X followed by a register identifier or a carriage return,
- (2) The contents of the register are displayed (two hexadecimal digits for A, B, C, D, E, F, H, and L, four hexadecimal digits for M, P, and S), followed by a dash (-).
- (3) The register may be modified at this time by typing the new value followed by a space, comma, or carriage return. If no modification is desired, type only the space, comma, or carriage return.
- (4) If a space or comma was typed in Step (3), the next register in sequence (alphabetical order) will be displayed as in Step (2) (unless S was just displayed in which case the command is terminated). If a carriage return was entered in Step (3), the X command is terminated.
- (5) If a carriage return was typed in Step (1) above, an annotated list of all registers and their contents are displayed.

7.2.2 DEVICE DRIVERS

The monitor has device drivers for the console device including the tape reader and punch (if console device is a teletypewriter). The drivers interface through synchronous/asynchronous receiver/transmitter (USART) which is

described in Section 4 of this Hardware Reference Manual. The monitor configures the USART during a power on or reset condition to the following state:

Mode:

2 stop bits
Parity disabled
8 bit character length
Baud rate factor of 64X

Command:

No hunt mode Request to send high Receiver enabled Data terminal ready low Transmitter enabled

Care should be exercised by the user in modifying the USART mode and command since the monitor depends on the configuration defined above for device driver operation.

7.2.3 USING THE I/O SYSTEM

The user may access the four monitor I/O system routines from his program by calling the routine desired. The following paragraphs describe the routines available and their respective functions.

CI - Console Input

This routine returns an 8 bit character received from the console device to the caller in the A-register. The A-register and the CPU condition codes are affected by this operation. The entry point of this routine is 3FDH.

Example

CI EQU 3FDH ... CALL CI STA DATA ...

CO - Console Output

This routine transmits an 8 bit character, passed from the caller in the C-register, to the console device. The A and C registers, and the CPU condition codes, are affected by this operation. The entry point of this routine is 3FAH.

Example

CO	EQU	3FAH		
	 MVI	c,"."		
	CALL	CÓ		

RI - Reader Input

RI returns an 8 bit character read from the teletype reader in the A-register. If no character was read from the device (i.e., end of file), the CARRY condition code is set equal to 1, and the A-register is zeroed. If data is ready, the CARRY bit is zeroed. The reader driver contains a timer so that if no character is received from the teletype reader within a pre-established time (250 milliseconds), an end of file may be simulated and control returned to the calling program. The entry point of this routine is 400H.

Example

RI EQU 400H CALL RI JC EOF : END OF FILE SENSED STA DATA

PO - Punch Output

PO transmits an 8 bit character from the calling program to the teletypewriter. PO is identical in format to CO, the only difference being the entry point address, '403H'.

7.3 MONITOR OPERATING SPECIFICATIONS

7.3.1 PRODUCT ACTIVATION INSTRUCTIONS

7.3.1.1 COLD START PROCEDURE

After power-on or reset, the monitor will begin execution at location 0 in ROM. The monitor will perform an initialization sequence, and then display a sign-on message "SBC 80P Monitor" on the console. When the monitor is ready for a command, it will prompt with a period, ",".

7.3.1.2 USE OF RAM STORAGE IN THE MONITOR

The monitor dynamically assigns its RAM stack in the first 64 bytes of RAM. The top 3 bytes in this block of RAM are reserved for a jump instruction, supplied by the user, which is used as a destination pointer for RST 7 instructions (or the optional hardwired instruction). Several additional bytes are used, below the stack, for temporary storage. Except for RAM addresses 3C00H to 3C3FH, all other RAM is available for the user.

7.3.2 ERROR CONDITIONS

7.3.2.1 INVALID CHARACTERS

The monitor checks the validity of each character as it is entered from the console. As soon as the monitor determines that the last character entered is illegal in its context, the monitor aborts the command and issues an "#" to indicate the error,

Example

D1400,145G#

The character G was encountered in a parameter list where only hexadecimal digits and delimiters are valid.

Y∦

Y is not a valid command,

7.3.2.2 ADDRESS VALUE ERRORS

Some commands require an address pair of the form <low address>, <high address>. If, on these commands, the value of <low address> is greater than or equal to the value of <high address>, the action indicated by the command will be performed on the data at <low address> only.

Addresses are evaluated modulo 2¹⁶. Thus, if a hexadecimal address greater than FFFF is entered, only the last 4 hex digits will be used.

Another type of address error may occur when the operator specifies a part of memory in a command which does not exist in his particular configuration. In general, if a nonexistent portion of memory is specified as the source field for an instruction, the data fetched will be unpredictable. If a nonexistent portion of memory is given as the destination field in a command, the command has no effect.

7.3.2.3 PERIPHERAL DEVICE ERRORS

Peripheral devices selected by the operator which are not ready or are nonexistent will cause undefined execution of the monitor (usually an indefinite wait for ready status in an I/O loop). This situation may be rectified by readying the device and by executing the Cold Start sequence (Section 7.3.1.1) to reinitialize the system.

7.3.3 HEXADECIMAL OBJECT FILE FORMAT FOR PAPER TAPE

Hexadecimal object file format is a way of representing a binary object file in ASCII. The ASCII character set is defined by the "American National Standard Institute, <u>Code for Information Interchange</u>, X3.4-1968".

The hexadecimal representation of binary is coded in ASCII, For example, the 8-bit binary value 0011 1111 is 3F in hexadecimal. To code this in ASCII one 8-bit byte containing the ASCII code for 3 and one 8-bit byte containing the ASCII code for F are required. This representation (ASCII hexadecimal) requires twice as many bytes as the binary,

A hexadecimal object file can contain either 8-bit or 4-bit data but not both. Two ASCII hexadecimal digits are used to represent both 8-bit and 4-bit data. In the case of 4-bit data, only one of the digits is

meaningful. Whether it is the high-order or the low-order digit must be known by the program reading the file and must be consistent throughout the file.

Since ASCII characters need only 7-bits for their representation, the highest-order bit of each 8-bit byte can be used as a parity bit by a program that generates the hexadecimal format object file. However, when such a file is loaded by an Intel product, the highest order bit is masked as the ASCII is converted to binary. Also, Intel software does not generate parity bits when creating object files.

The format described below is for paper tape and does not define the format for other media, which may use record separators such as the ASCII code for carriage return. On paper tape, one ASCII character requires one frame. The record format is described here according to the fields in the record.

Record Mark Field: Frame 0

The ASCII code for a colon (:) is used to signal the start of a record.

Record Length Field: Frames 1 and 2

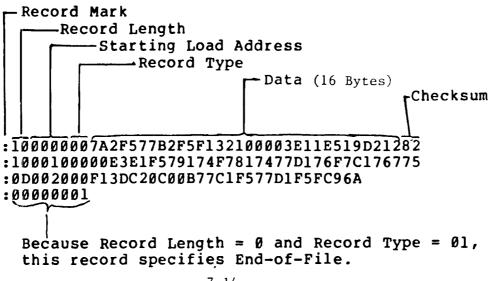
The number of data bytes in the record is represented by two ASCII hexadecimal digits in this field. The high-order digit is in frame 1. The maximum number of data bytes in a record is 255 (FF in hexadecimal). An end-of-file record contains two ASCII zeros in this field.

Load Address Field: Frames 3 - 6

The four ASCII hexadecimal digits in frames 3-6 give the address at which the data is loaded. The high-order digit is in frame 3, the low-order digit in frame 6. The first data byte is stored in the location indicated by the load address; successive bytes are stored in successive memory locations. This field in an end-of-file record can contain the starting address of the program.

Record Type Field: Frames 7 and 8

The two ASCII hexadecimal digits in this field specify the record type. The high-order digit is in frame 7. All data records are type 0; end-of-file records are type 1. Other possible values for this field are reserved for future expansion.


Data Field: Frames 9 to 9+2*(record length)-1

A data byte is represented by two frames containing the ASCII characters 0-9 or A-F, which represent a hexadecimal value between 0 and FF (0 and 255 decimal). The high-order digit is in the first frame of each pair. If the data is 4-bit, then either the high or low-order digit represents the data and the other digit of the pair may be any ASCII hexadecimal digit. There are no data bytes in an end-of-file record.

Checksum Field: Frames 9+2*(record length) to 9+2*(record length)+1

The checksum field contains the ASCII hexadecimal representation of the twos complement of the 8-bit sum of the 8-bit bytes that result from converting each pair of ASCII hexadecimal digits to one byte of binary, from the record length field to and including the last byte of the data field. Therefore, the sum of all the ASCII pairs in a record after converting to binary, from the record length field to and including the checksum field, is zero.

Sample Hexadecimal Tape Format:

7.4 HARDWARE GENERATED BREAKPOINTS

This section is meant to describe a method whereby the user may interrupt the operation of his program, return control to the monitor program which will save the state of the 8080 registers and finally, allow the user to restart his program from the point of interruption.

The first requirement in order to produce an interrupt, would be to attach a switch to ground or a low logic level signal from a user circuit to P1-42 or J1-49 (EXTernal INTerrupt Request 1, EXTernal INTerrupt Request 2 respectively) of the SBC 80/10 connnectors.

The second requirement would be to enter the following instructions in RAM location 3C3DH and 3C3EH.

3C3D	CF	RST	1	;	THIS WILL CAUSE A BREAKPOINT	
3C3E	С9	RET		;	THIS WILL CAUSE THE USER PROGRAM TO)
					BE RE-ENTERED	

An example of how this is used follows:

 The user will start execution of his program by entering the monitor command listed below.

.G<start of user program>

- (2) Now the user may use a switch or a low logic level to force an interrupt to which the SBC 80/10 will respond with a RESTART 7.
- (3) The monitor will break, save the state of the 8080 and print the following message .#3C3E.
- (4) The user may now examine the 8080 registers or memory or his own circuits interfaced to the 80/10.
- (5) To resume operation, the user enters the following monitor command. .G
- Note: In order to use this method of breakpointing, the user must have the interrupts enabled.

y

÷

CHAPTER 8

SYSTEM UTILIZATION

8.1 SYSTEM I/O INTERFACING

The SBC 80/10, with its memory and I/O ports, is a complete computer on a single board. However, the SBC 80/10 can also serve as a primary master module within an expanded System 80/10, communicating with numerous memory and I/O modules. In this chapter we identify each of the SBC 80/10's external connections and define all signals on the external system bus.

8.1.1 ELECTRICAL CONNECTIONS

The SBC 80/10 comes on a 12.00×6.75 inch printed circuit board, 0.50 inch thick and weighing 12 oz. The SBC 80/10 requires DC power at the following levels:

	Without	With 8708	With 2716 or 2758
	EPROM ¹	EPROM ²	EPROM ³
$V_{CC} +5V \pm 5\%$	$I_{CC} = 2.9A$ $I_{DD} = 150mA$ $I_{BB} = 2mA$ $I_{AA} = 175mA$	4.0A	4.36A
$V_{CC} +12V \pm 5\%$		400mA	150mA
$V_{BB} -5V \pm 5\%$		200mA	2mA
$V_{AA} -12V \pm 5\%^{+}$		175mA	175mA

- Does not include power required for optional ROM/EPROM, I/O drivers or I/O terminators.
- With four Intel 8708 EPROMs and 220Ω/330Ω terminators installed for 48 input ports; all terminator inputs low.
- 3. With four Intel 2716 or 2758 EPROMs and $220\Omega/330\Omega$ terminators installed for 48 input ports; all terminator inputs low.
- 4. Required for RS232C drivers.

The SBC 80/10 has five edge connectors, as shown in Figure 8-2. Edge connectors at the top of the module are designed for compatibility with both flat cable and round cable hardware. All parallel I/O functions are paired with an independent signal ground pin. This allows flat cable imple-

mentation to utilize an alternate signal/ground scheme for reduction of cross talk. Round cables may easily be implemented as twisted pair with an individual ground pin for every return wire. The serial connection hardware has similar flexibility but ground return lines are not extensive. The connector is wired for RS232C compatibility, thus, only one signal ground is provided.

NOTE

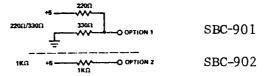
All pin numbers listed in the following tables refer to numbers printed on the board, not to mating connector pin positions. When specifying pin numbers for cable harnesses, use caution since pin numbering is not necessarily the same as the connector pin numbering scheme.

The Parallel I/O Interface communicates with external I/O devices via two 50-pin double-sided PC edge connectors (J1 and J2), 0.1 inch centers. External devices can be attached to J1 or J2 using any of the following mating connectors:

Connector Type	Vendor	Part No.
Flat Cable	ЗМ АМР	3415-0001 2-86792-3
Soldered	AMP VIKING TI	2-583715-3 3VH25/1JV-5 H312125
Wire-wrap	T I VIKING CDC ITT	H 311125 3VH25/1JND-5 VPB01B25D00A1 EC4A050A1A
Crimp	АМР	1-583717-1

J1 and J2 Mating Connectors

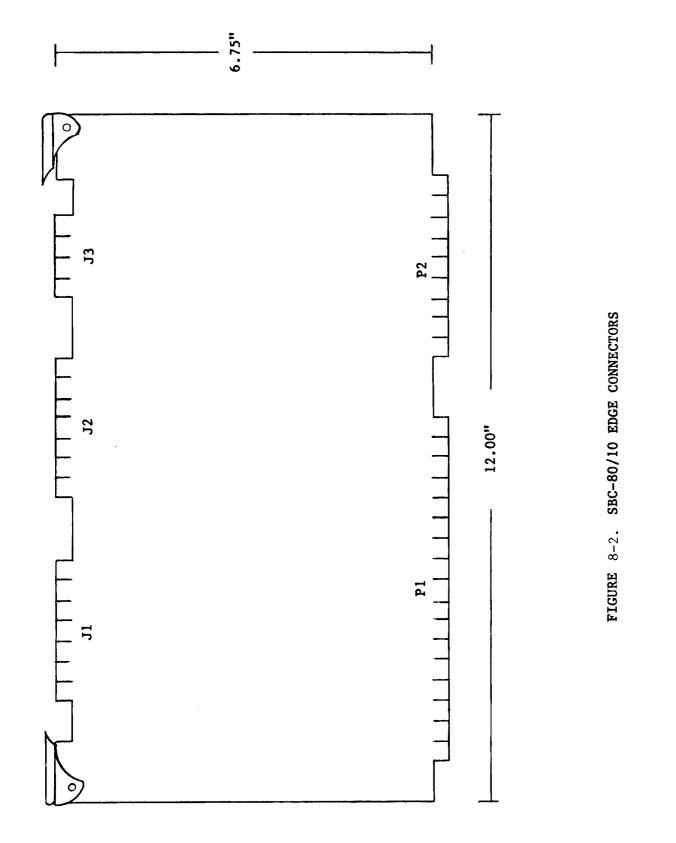
Tables 8-1 and 8-2 provide pin lists for the J1 and J2 connectors, respectively. The following TTL line drivers and Intel terminators are all compatible with the I/O driver sockets in the Parallel I/O Interface:


Driver	Characteristic	Sink Current (ma)
7438 7437 7432 7426 7409 7408 7403	I, OC I NI I, OC NI, OC NI I, OC	48 48 16 16 16 16 16 16
7400	I	16

Note: I = inverting; N.I. = non-inverting OC = open collector

I/O Terminators:

Terminators: $220\Omega/330\Omega$ divider or $1\Omega k$ pull up


FIGURE 8-1. TERMINATION PACK SCHEMATICS

See Appendix B for schematics

PIN	SIGNAL	PIN	SIGNAL
PIN 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37	SIGNAL PORT 2 BIT 3 PORT 2 BIT 2 PORT 2 BIT 1 PORT 2 BIT 1 PORT 2 BIT 1 PORT 2 BIT 1 PORT 2 BIT 4 PORT 2 BIT 5 PORT 2 BIT 6 PORT 2 BIT 7 PORT 3 BIT 3 PORT 3 BIT 4 PORT 3 BIT 5 PORT 3 BIT 6 PORT 3 BIT 5 PORT 3 BIT 7 PORT 1 BIT 6 PORT 1 BIT 6 PORT 1 BIT 5	PIN 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38	GND
39 41	PORT 1 – BIT 4 PORT 1 – BIT 1	40 42	
43 45 47	PORT 1 - BIT 0 PORT 1 - BIT 2 PORT 1 - BIT 3	$\begin{array}{c} 44\\ 46\\ 48\end{array}$	
49	EXT INTR 1/	50	GND

TABLE 8-1.PIN ASSIGNMENTS FOR CONNECTOR J1(Parallel I/O Interface - Group 1)

PIN	SIGNAL	PIN	SIGNAL
1	GND	2	GND
3	PORT 5 - BIT 3	4	
5	PORT 5 - BIT 0	6	🕈
7	PORT 5 - BIT 1	8	
9	PORT 5 - BIT 2	10	
11	PORT 5 - BIT 4	12	
13	PORT 5 - BIT 5	14	
15	PORT 5 - BIT 6	16	
17	PORT 5 - BIT 7	18	
19	PORT 6 - BIT 3	20	
21	PORT 6 - BIT 2	22	
23	PORT 6 - BIT 1	24	
25	PORT 6 - BIT 0	26	
27	PORT 6 - BIT 4	28	
29	PORT 6 - BIT 5	30	
31	PORT 6 - BIT 6	32	
33	PORT 6 - BIT 7	34	
35	PORT 4 - BIT 7	36	
37	PORT $4 - BIT 6$	38	
39	PORT 4 - BIT 5	40	
41	PORT 4 - BIT 4	42	
43	PORT $4 - BIT 0$	44	
45	PORT $4 - BIT 1$	46	
47	PORT 4 - BIT 2	48	T
49	PORT 4 - BIT 3	50	GND

TABLE 8-2.	PIN ASSIGNMENTS FOR CONNECTOR J2	
	(Parallel I/O Interface - Group 2)	

The Serial I/O Interface communicates with an external I/O device via a 26-pin double-sides PC edge connector (J3), 0.1 inch centers. An external device can be connected to J3 using a 3M 3462-0001 flat cable connector or one of the following soldered connectors: TI H312113 or AMP 1-583715-1. Table 8-3 provides a pin list for connector J3.

The SBC 80/10 communicates with other system modules via an 86-pin double-sided edge connector (P1), 0.156 inch centers. Section 8.1.2 defines each of the external system bus signals and includes a pin list for P1 (Table 8-5).

PIN	SIGNAL NAME	PIN	SIGNAL NAME
1	CHASSIS GND	2 4	
3 5	TRANSMITTED DATA RECEIVED DATA	6	TTY RD CONTROL
7	REQ TO SEND	8 10	
9 11	CLEAR TO SEND DATA SET READY	10	
13	GND	14	Tx CLK/DATA TERMINAL RDY
15	DATA CARRIER RETURN	16	TTY RD CONTROL RETURN
17 19		18 20	
21		22	RECEIVE CLK/TTY Rx DATA
23	TTY RX DATA	24	REFURN TTY TX DATA RETURN
25	TTY Tx DATA	24 26	GND

ABLE 8-3. PIN ASSIGNMENTS FOR CONNECTOR J3 (Serial I/O Interface)

The 60-pin double-sided edge connector labeled P2 in Figure 8-1 allows access to various test points on the SBC 80/10 (see Table 8-4). The following wire-wrap connectors will attach to P2:

CDC VPB01B30A00A2, TI H311130 and AMP PE5-14559

SIGNAL NAME	PIN ASSIGNMENT	COM	1ENT
OSC	P2 - 28	TEST	POINT
RAM 3C00 ENABLE/	P2 - 30	4	•
RAM 3D00 ENABLE/	P2 - 32		
RAM 3E00 ENABLE/	P2 - 34		
RAM 3F00 ENABLE/	P2 - 36		
OSC INH/	P2 - 40		
DATA BUS INH/	P3 - 42		
BAUD RATE CLK TTY	P2 - 44		
COUNT 1 ENABLE 1	P2 - 46		
BAUD RATE CLK	P2 - 50		
COUNT 2 ENABLE/	P2 - 52		
TIME OUT ENABLE/	P2 - 54		
B & C CLK SET/	P2 - 55		
STATUS STROBE	P2 - 57		
RDY IN INH/	P2 - 57		
BAUD RATE CLEAR/	P2 - 58	1	7
OSC/2	P2 - 60	TEST	POINT

TABLE 8-4. PIN ASSIGNMENTS FOR CONNECTOR P2 (Auxilliary Connector)

8.1.2 EXTERNAL SYSTEM BUS SUMMARY

A significant measure of the System 80/10's power and flexibility can be attributed to its system bus. In expanded systems, the bus structure allows for master-slave relationships between the various system modules. The bus includes its own clock (BCLK/) which is derived independently from the processor clock. Actual transfers via the bus, however, proceed asynchronously with respect to the bus clock. Thus, the transfer speed is dependent on the transmitting and receiving devices only. Once a module has gained control of the bus by activating the HOLD/ input to the SBC 80/10, single or multiple read/write transfers can proceed at a maximum rate of 5 million data bytes per second. The 16 system address lines allow the

SBC 80/10 to support up to 65,536 bytes of storage. The signal lines on the system bus are defined as follows:

- BCLK/ Bus clock; used to synchronize bus control circuits on all master modules. BCLK/ has a period of 101.725 nanoseconds (9.8304 MHz frequency), 30%-70% duty cycle. BCLK/ may be slowed, stopped or single stepped, if desired.
- INIT/ <u>Initialization signal</u>; resets the entire system to a known internal state.
- BPRN/ Bus priority input signal; indicates to the SBC 80/10 that a higher priority master module is requesting use of the system bus. BPRN/ suspends the processing activity and drivers of the SBC 80/10.
- BUSY/ Bus busy signal; indicates that the bus is currently in use. BUSY/ prevents all other master modules from gaining control of the bus. BUSY/ is driven by the HLDA/ output from the SBC 80/10 in response to a HOLD/ input. It indicates that the bus is available.
- MRDC/ <u>Memory read command</u>; indicates that the address of a memory location has been placed on the system address lines and specifies that the contents of the addressed location are to be read and placed on the system data bus.
- MWTC/ <u>Memory write command</u>; indicates that the address of a memory location has been placed on the system address lines and that a data word has been placed on the system data bus. MWTC/ specifies that the data word is to be written into the addressed memory location.
- IORC/ <u>I/O read command</u>; indicates that the address of an input port has been placed on the system address bus and that the data at that input port is to be read and placed on the system data bus.

- IOWC/ <u>I/O write command</u>; indicates that the address of an output port has been placed on the system address bus and that the contents of the system data bus are to be output to the addressed port.
- XACK/ <u>Transfer acknowledge signal</u>; the required response of an external memory location or I/O port which indicates that the specified read/write operation has been completed. That is, data has been placed on, or accepted from, the system data bus lines.
- AACK/ Advance acknowledge signal; used with 8080 CPU-based systems. 8080/ is an advance acknowledge, in response to a memory read command, that allows the memory to complete the access without requiring the CPU to wait.
- CCLK/ Constant clock; provides a clock signal of constant frequency (9.8304 MHz) for use by option memory and I/O expansion boards. CCLK/ coincides with BCLK/ and has a period of 101.725 nanoseconds, 30%-70% duty cycle.
- EXT INTR/ Externally generated interrupt request.
- ADRO/-ADRF/ <u>16 Address lines</u>: used to transmit the address of the memory location or I/O port to be accessed. ADRF/ is the most significant bit.
- DATO/-DAT7/ Bidirectional data lines; used to transmit/receive information to/from a memory location or I/O port. DAT7/ is the most significant bit.

8.1.3 RS232C CABLING

When the Serial I/O Interface is configured as an RS232C interface, the J3 edge connector is presented to the user's terminal or modem. A 26-pin mating connector, 3M 3462-0001, should be attached to the J3 edge connector on the SBC 80/10 and to a 25-wire flat cable, 3M 3349/25. The flat cable is, in turn, attached to the RS232C pin-compatible connector,

		(COMPONENT	SIDE)	(CIRCUIT SIDE)			
	PIN MNEMONIC DESCRI		DESCRIPTION	PIN	MNEMONIC	DESCRIPTION	
POWER SUPPLIES	1 3 5 7 9 11	GND VCC VCC VDD VBB GND	Signal GND + 5VDC + 5VDC +12VDC - 5VDC Signal GND	2 4 6 8 10 12	GND VCC VCC VDD VBB GND	Signal GND + 5VDC + 5VDC +12VDC - 5VDC Signal GND	
BUS CONTROLS	13 15 17 19 21 23	BCLK/ BPRN BUSY/ MRDC/ IORC/ XACK/	Bus Clock Bus Pri. In Bus Busy Mem Read Cmd I/O Read Cmd XFER Acknow	14 16 18 20 22 24		Initialize Mem Write Cmd I/O Write Cmd	
SPARES	25 27 29 31 33	AACK/ CCLK/	Special Constant Clock	26 28 30 32 34			
INTERRUPTS	35 37 39 41			36 38 40 42		Interrupt request	
ADDRESS	43 45 47 49 51 53 55 57	ADRD/ ADRC/ ADRA/ ADR8/ ADR6/ ADR6/ ADR2/ ADR2/	Address Bus	44 46 48 50 52 54 56 58	ADRF/ ADRD/ ADRB/ ADR9/ ADR7/ ADR5/ ADR3/ ADR1/	Address Bus	
DATA	59 61 63 65 67 69 71 73	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Data Bus	60 62 64 66 68 70 72 74	DAT7/ DAT5/ DAT1/	Data Bus	
POWER SUPPLIES	75 77 79 81 83 85	GND VBB VAA VCC VCC GND	Signal GND -10VDC -12VDC + 5VDC + 5VDC Signal GND	76 78 80 82 84 86	GND VBB VAA VCC VCC GND	Signal GND -10VDC -12VDC + 5VDC + 5VDC Signal GND	

TABLE 8-5. PIN ASSIGNMENTS FOR CONNECTOR P1(System Bus)

▷ Used by Intellec® MDS Bus.

3M 3483-1000. Table 8-6 equates the J3 edge connector pins with the associated RS232-compatible pins on the 3M 3483-1000 connector.

J3 CONNECTOR PIN NO.	RS232C CONNECTOR PIN NO.
1 2	1 14
3	2
2 3 4 5	15
5	3
6	16
7	4
8	17
9	5
10	12
11	6
12	19
13	7
14	20
15	8
16	21
17	9
18	22
19	10
20 21	23 11
21 22	24
22	12
23	25
24	13

TABLE 8-6. J3/RS232C CONNECTOR PIN CORRESPONDENCE

8.2 TELETYPEWRITER MODIFICATIONS

The ASR-33 Teletypewriter must be modified for use with the System 80/10. Appendix H is a procedure for modifying the ASR-33 Teletypewriter.

CHAPTER 9

INTERFACING TO MULTIBUS MASTER

The System 80/10's bus structure permits interfacing to one other multibus-compatible master module. This interface is accomplished using the serial priority scheme as shown in Figure 9-1, using the Intel SBC 604 cardcage/backplane. The System 80/10 does not provide the Bus Priority Request Out (BPRO/) signal and therefore, the System 80/10 can only be used with one other multibus master. For these configurations, the SBC 80/10 or SBC 80/10A must always have lower priority than the other Multibus Master and a wire must be added from Master's BREO/ (pin 12) to the SBC 80/10 BPRN (pin 15). In the configuration shown in Figure 9-1 the SBC 80/10 acquires control of the multibus whenever BREQ/ generated by the Diskette Controller is in the high state. This occurs whenever the Diskette Controller is not using the multibus. Similarly BREQ/ is driven to the low state when the Diskette Controller acquires control of the Multibus disabling the SBC 80/10 from accessing the multibus.

For a detailed description of Multibus interfacing refer to the Intel Multibus Interfacing Application Note (AP-28).

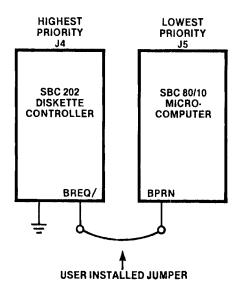
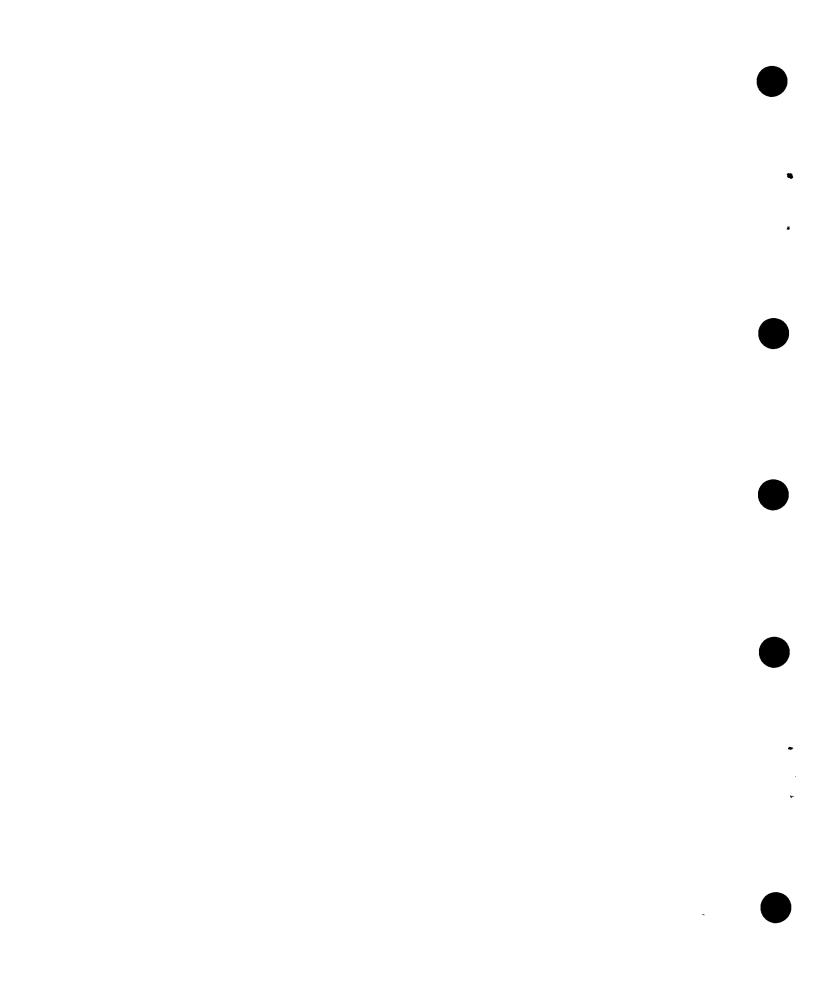



Figure 9-1. Serial Priority Configuration with SBC 80/10 and another Multibus Master

APPENDIX A

SYSTEM SPECIFICATIONS

A.1 GENERAL SYSTEM SPECIFICATIONS

WORD SIZE

Instruction: 8, 16, or 24 bits Data: 8 bits

CYCLE TIME

Basic Instruction Cycle: 1.95 µsec

Note: Basic instruction cycle is defined as the fastest instruction (i.e., four clock cycles).

MEMORY ADDRESSING

On-Board ROM/PROM: 0-1FFF On-Board RAM: 3C00-3FFF

MEMORY CAPACITY

On-Board ROM/PROM: 4K bytes (sockets only)
On-Board ROM/PROM: 8K bytes (sockets only) (SBC 80/10A only)
On-Board RAM: 1K bytes
Off-Board Expansion: Up to 48K bytes using optional RAM, ROM, and
PROM expansion boards.

Note: ROM/PROM may be added in 1K byte increments for the SBC 80/10 and SBC 80/10A, or in 2K bytes on the SBC 80/10A.

I/O ADDRESSING

On-Board Programmable I/O (see Table A-1).

Port	825	5 N	o. 1	825	55 N		8255 No. 1		USART	USART
FOIL	1	2	3	4	5	6	Con- trol	Con- trol	Data	Control
Address	E4	E5	E6	E8	E9	ΕA	E7	EB	EC	ED

I/O CAPACITY

Parallel: 48 programmable lines (see Table A-1).

Note: Expandable with optional I/O boards.

SERIAL BAUD RATES

	Baud Rate (Hz)				
Frequency (kHz) (Jumper Selectable)	Synchronous	Asynchronous (Program Selectable)			
		÷ 16	÷ 64		
307.2		19200	4800		
153.6		9600	2400		
76.8		4800	1200		
38.4	38400	2400	600		
19.2	19200	1200	300		
9.6	9600	600	150		
4.8	4800	300	75		
6.98	6980		110		
	F	1)		

SERIAL COMMUNICATIONS CHARACTERISTICS

Synchronous:

5-8 bit characters Internal or external character synchronization Automatic Sync Insertion

Asynchronous:

5-8 bit characters Break character generation 1, 1¹/₂, or 2 stop bits False start bit detectors

INTERRUPTS

Single-level with on-board logic that automatically vectors processor to location 38_{16} using RESTART 7 instruction. Interrupt requests may originate from user-specified I/O (2), the programmable peripheral interface (2), or USART (2).

TABLE A-1

INPUT/OUTPUT PORT MODES OF OPERATION

		MODE OF OPERATION						
			UNIDIREC					
POPT	NO OF LINES	INF	PUT	Ουτρυτ			CONTROL	
PORT NO. OF LINES		UNLATCHED	LATCHED & STROBED	LATCHED	LATCHED & STROBED	BIDIRECTIONAL		
1	8	X	×	х	×	X		
2	8	X	Х	Х	X			
3	8	X		Х			X1	
4	8	Х		X				
5	8	X		х				
6	4	X		X				
	4	X	_	Х				

1. Note: Port 3 must be used as a control port when either Port 1 or Port 2 are used as a latched and strobed input or a latched and strobed output or Port 1 is used as a bigirectional port.

INTERFACES

Bus:	All signals TTL compatible
Parallel I/O:	All signals TTL compatible
Serial I/O:	RS232C or a 20 mA current loop TTY interface (jumper-selectable)
Interrupt Requests:	All TTL compatible (active-low)

SYSTEM CLOCK

2.048 MHz <u>+</u>0.1%

CONNECTORS

Interface	No. of Double-Sided Pins	Centers (in.)	Mating Connectors
Parallel I/O (2)	50	0.1	3M 3415-000 Flat
Serial I/O	26	0.1	3M 3462-0001 Flat or AMP 88106-1 Flat

PHYSICAL CHARACTERISTICS

```
Height: 8.90 cm (3.5 in.)
Width:
   At Front Panel: 48.3 cm (19 in.)
   Behind Front Panel: 43.2 cm (17 in.)
Depth: 50.8 cm (20 in. with all protrusions)
Weight: 13.6 kg. (30 lbs.)
```

ELECTRICAL CHARACTERISTICS

Input Power:	
Frequency:	47-63 Hz
Voltage:	
Standard:	115 VAC <u>+</u> 10%
Option:	230 VAC <u>+</u> 10%

AIR CIRCULATION

2 x 37 CFM, 74 CFM total

OUTPUT POWER AVAILABLE FOR EXPANSION BOARDS:

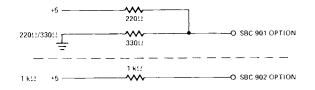
Voltage	Supply Current	Power Available without PROM & Termination Packs Installed	-	Over-Voltage Protection
+12	2A	1.86A	1.6A	+14 to +16 volts
+5	14A	11.1A	10A	5.8 to 6.6 volts
-5	0.9A	0.898A	0.7A	5.8 to -6.6 volts
-12	0.8A	0.625A	0.625A	-14 to -16 volts

*PROMs are 4 each of 8708's; Termination Packs are 10 each of $220\Omega/330\Omega$.

LINE DRIVERS AND TERMINATORS

I/O Drivers:

The following line drivers and terminators are all compatible with the I/O driver sockets on the SBC 80/10.


Driver	Characteristic	Sink Current (mA)	Driver	Characteristic	Sink Current (mA)
7438	1.0C	48	7409	NI,OC	16
7437		48	7408	NI	16
7432	NI	16	7403	I,OC	16
7426	I,OC	16	7400	<u> </u>	16

Note: I = inverting; N.I. - non-inverting; O.C. = open collector.

Port 1 has 25 mA totem-pole drivers and 1 $k\Omega$ pull-up.

I/O Terminators:

Terminators: 220 $\Omega/330\Omega$ divider or 1 k Ω pull-up.

Bus Drivers:

Function	Characteristics	Sink Current (mA)
Data	Tri-state	25
Address	Tri-state	25
Commands	Tri-State	25

ENVIRONMENTAL

Operating Temperature:	0 ⁰ C to 50 ⁰ C
Non-operating Temperature:	-40 ⁰ C to 85 ⁰ C

SYSTEM MONITOR

```
Addresses:
0000-0560<sub>H</sub>(ROM); 3C00<sub>H</sub>-3C3F<sub>H</sub>(RAM)
```

Commands:

Display Memory (D) Program Execute (G) Insert Instructions into Memory (I) Move Memory (M) Read Hexadecimal File (R) Substitute Memory (S) Write Hexadecimal File (W) Examine and Modify CPU Registers (X)

Drivers:

Console Input Console Output Reader Input Punch Output

Breakpoints:

A hardware breakpoint capability may be implemented by an interrupt service routine beginning at RAM location $3C3D_{\rm H}$. Typically, a 2-byte call is used. Interrupt generation at the breakpoint may be accomplished by user hardware or by insertion of single byte calls at instruction boundaries.

ENVIRONMENTAL TEST SPECIFICATION

- (1) Line Voltage and Frequency Variation
 - a) $115v \pm 10\%$, $60hz \pm 10\%$
 - b) $230v \pm 10\%$, $50hz \pm 5\%$
- (2) AC Leakage (Personnel Hazard) (L or N to ground)
 - a) Less than 1.46 ma rms at 115v, 60hz
 - b) Less than 5 ma pk at 66hz and 253 volts
- (3) Insulation Resistance and High Potential (L & N to Ground)
 - a) Less than 210 ua of leakage current at 2,100 volts DC
 - b) No arcing or breakdown as indicated by current flunctuation.
 - c) Minimum insulation of 10 M Ω .

(4) <u>Altitude</u>

Non-operating:	25,000 ft. (10.8 in. hg.), test for 30 minutes minimum after stabilization
Operating:	15,000 ft. (16.8 in. hg.), test for 30 minutes at 25°C after stabilization - the relative humidity is uncontrolled

(5) Temperature

- a) <u>Non-operating</u>: -40°C to +185°C, test for 2 hours minimum after stabilization
- b) <u>Operating</u>: 0^oC to 50^oC, test for 16 hours minimum after stabilization
- c) <u>Exposure</u>: -20^oC to +65^oC, test for 1 hour minimum after stabilization

(6) <u>Humidity</u>

- a) Five 24 hour cycles from 50% to 95% RH and from +25°C to +40°C, product operating at all times.
- b) Condensation at +40 $^{\rm O}{\rm C}$ and 95% RH with product operating at all times.
- (7) Vibration
 - a) Test at all three mutually perpendicular planes with product operating at all times.
 - b) 15 minutes of cycling (15 one minute cycles) from 10-55hz and with a .010" pk-pk excursion.
 - c) 3 minutes at .010" pk-pk excursion at major resonant points.

(8) Shock

a) 3 shocks on each of six sides for a total of 18 shocks.

b) Level 30G; duration 11 ms; shape ½ sinewave

(9) Transportation Environment (Packaging)

- a) Drop Test: 12 free-fall, oriented drops (4 corner, 5 flat, and 3 edge) on a concrete floor or slab.
 - from 30 inches high
 from 20G to 50G shock range
- b) Vibration: 0.5 inch amplitude, low frequency circular synchronous vibration at an acceleration of 1+0.1G
 - on all positions used by common carriers in transporting the package.
 - 2) total vibration time is 2 hours.

(10) Finished Product Test

- a) Unit is tested after final assembly for 48 hours at ambient conditions.
- b) System test consists of 10 sub-tests. They are as follows:
 - 1) Programmable Parallel I/O Port #1 Test
 - 2) Programmable Parallel I/O Port #2 Test
 - 3) RAM Memory Test 3D00-3FFF
 - 4) RAM Memory Test 3C00-3CFF
 - 5) CPU Instruction Test
 - 6) Off Board I/O Test
 - 7) Halt Test
 - 8) Ready Time-out (non-existent memory and I/O) Test
 - 9) Off-board Memory Access Test
 - 10) External Interrupt Test

A.2 SBC 80/10 AND SBC 80/10A SPECIFICATIONS

	Without	With 8708	With 2716 or 2758
	EPROM ¹	EPROM ²	EPROM ³
$V_{CC} +5V \pm 5\%$	$I_{CC} = 2.9A$ $I_{CC} = 150mA$ $I_{BB} = 2mA$ $I_{AA} = 175mA$	4.0A	4.36A
$V_{CC} +12V \pm 5\%$		400mA	150mA
$V_{BB} -5V \pm 5\%$		200mA	2mA
$V_{AA} -12V \pm 5\%^{4}$		175mA	175mA

TABLE A-2. DC POWER REQUIREMENTS

- Does not include power required for optional ROM/EPROM, I/O drivers or I/O terminators.
- 2. With four Intel 8708 EPROMs and $220\Omega/330\Omega$ terminators installed for 48 input ports; all terminator inputs low.
- 3. With four Intel 2716 or 2758 EPROMs and $220\Omega/330\Omega$ terminators installed for 48 input ports; all terminator inputs low.
- 4. Required for RS232C drivers.

					EXCIIANO			
PARAMETER		RALL		READ MEMORY WRITE			DESCRIPTION	REMARKS
	MIN (ns)	MAX (ns)	MIN (ns)	MAX (ns)	MIN (ns)	MAX (ns)		
t _{AS}	82		82		658		Address Setup Time to Command	
t _{AH}	61		0		61		Address Hold Time	
t _{DS}	140		-		140		Data Setup Time to Command	
t _{DH}	61		0		61		Data Hold Time	
t ACKØ			68	191			First ACK Sampling Point of Current Cycle	Generates O Wait States
t _{ACK1}			551	684	-60	132	Second ACK Sampling Point of Current Cycle	Generates 1 Wait State
t _{ACK2}			1034	1174	423	625	Third ACK Sampling Point of. Current Cycle	Generates 2 Wait States
t _{CY}	483	493					ACK & BPRN Sample Cycle Time	
twc			596	796	1412	1516	Command Width	Read, O Wait States Write, 2 Wait States
tACC				344			Read Access Time	
t _{8KD}				68		-60	Advanced ACK Response Time for, Minimum Delay	
^t 8ко	0	100	0	100	0	100	Advanced ACK Turn Off Delay	
t _{XKD}	0		0				XACK Delay From Valid Data or Write	
txko	0	100	0	100	0	100	XACK Turn Off Delay	
tDBS		3500					Bus Sample to Exchange Initiation	Assume HOLD/ becomes active prior to DAD instruction
t _{BS}	0	493					BPRN Sampling Point Delay	
t _{DBY}	358	700					Bus Busy Turn On Delay	

TABLE A-3. AC CHARACTERISTICS (WITH BUS EXCHANGE)

> Memory and I/O access occurs with no wait states.

ŧ

A-10

					BUS CON			
PARAMETER		RALL		AD	MEMORY WRITE		DESCRIPTION	REMARKS
	MIN (ns)	MAX (ns)	MIN (ns)	MAX (ns)	MIN (ns)	MAX (ns)		
t _{AS}	82	(113)	82	(13)	658	(113)	Address Setup Time to Command	
t _{AH}	79		0		79		Address Hold Time	
t _{DS}	140		-		140		Data Setup Time to Command	
t _{DH}	79		0		79		Data Hold Time	
t _{ACKØ}			68	191		-	First ACK Sampling Point of Current Cycle	Generates O Wait States
t _{ack1}			551	684	-60	132	Second ACK Sampling Point of Current Cycle	Generates l Wait State
t _{ACK2}			1034	1177	423	625	Third ACK Sampling Point of Current Cycle	Generates 2 Wait States
t _{CY}	483	493					ACK & BPRN Sample Cycle Time	
t _{SEP}	259		613		259	♪	Command Separation	
twc			596	796	1412	1516	Command. Width	Read, O Wait States Write, 2 Wait States
tACC	344			344			Read Access Time	\square
t _{8KD}				68		-60	Advanced ACK Response Time for Minimum Delay	\square
t _{8KO}	0	100	٥	100	0	100	Advanced ACK Turn Off Delay	
t _{XKD}	-0		0				XACK Delay From Valid Data or Write	
txko	0	100	0	100	0	100	XACK Turn Off Delay	
tBCY	107	110					Bus Clock Cycle Time	80/10 Generator
t _{BW}	25	85					Bus Clock Low or High Periods	80/10 Generator
t _{INT}	3000						Initialization Width	After all voltages have stabilized

TABLE A-4. AC CHARACTERISTICS (WITH CONTINUOUS BUS CONTROL)

.

> MAX assumes no acknowledge delays.

4

> Write Command to next Read Command separation.

TABLE A-5. DC CHARACTERISTICS

SIGNALS	SYMBOL	PARAMETER DESCRIPTION	TEST CONDITIONS	MIN	MAX	UNITS
ADRØ/-ADRF/	V _{OL}	Output Low Voltage	I _{OL} = 50 mA		0.6	v
ADDRESS	V _{ОН}	Output High Voltage	$I_{OH} = -10 \text{ mA}$	2.4		v
-	V _{IL}	Input Low Voltage	Un		0.95	v
	V _{IH}	Input High Voltage		2.0		v
		Input Current at Low V	V _{IN} = 0.45		-0.25	πA
	I I IH	Input Current at High V			10	μA
	*CL	Capacitive Load	IN		18	pF
MROC/, MWTC/	V _{OL}	Output Low Voltage	I _{OL} = 32 mA		0.4	v
IORC/,IOWC/	v _{он}	Output High Voltage	$I_{OH} = -5.2 \text{ mA}$	2.4		v
	ILH	Output Leakage High	$v_0 = 2.4$		40	μA
	ILL	Output Leakage Low	$V_0 = 0.4$		-40	μA
	*C_L	Capacitive Load			15	pF
DATØ/-DAT7/	v _{ol}	Output Low Voltage	I _{OL} = 50 mA		0.6	v
	v _{он}	Output High Voltage	I _{OH} ≠ -10 mA	2.4	_	V
	V _{IL}	Input Low Voltage			0.95	v
	v _{IH}	Input High Voltage	•	2.0		v
	IIL	Input Current at Low V	$V_{\rm IN} \approx 0.45$		-0.25	mA
	ILH	Output Leakage High	$V_0 = 5.25$		100	μA
	ILL	Output Leakage Low	$v_0 = 0.45$		100	μA
	*C _L	Capacitive Load			18	pF
INT1/	V _{IL}	Input Low Voltage			0.8	v
	v _{IH}	Input High Voltage		2.0		v
	I	Input Current at Low V	$V_{IN} = 0.4V$		-2.2	тъA
	IH	Input Current at High V	$v_{IN} = 5.5v$		1	mА
	*C _L	Capacitive Load			18	pF
BPRN/,XACK	v _{IL}	Input Low Voltage			0.8	v
AACK	v _{IH}	Input High Voltage		2.0		v
	IIL	Input Current at Low V	V _{IN} = 0.5		-2.6	mA
	тін	Input Current at High V	V _{IN} = 2.7V		0.30	mΑ
	* C _L	Capacitive Load			18	pF
BUSY/	V _{OL}	Output Low Voltage	$I_{OL} = 25 \text{ mA}$		0.4	v
OPEN COLLECTOR	*CL	Capacitive Load			20	pF
INT	V _{ol}	Output Low Voltage	I _{OL} = 32 mA		0.6	v
(SYSTEM RESET)	^v он	Output High Voltage	OPEN COLLECTOR			
	V _{IL}	Input Low Voltage			0.7	v
	V _{IH}	Input High Voltage		2.0		v
	IIH	Input Current at High V	110 1		0.2	mA
	¹ IL	Input Current at Low V	V _{IN} = 0.3	1	-0.9	mA
	*CL	Capacitive Load			38	pF
BCLK + CCLK	VOI	Output Low Voltage	$I_{OL} = 20 \text{ mA}$		0.5	v
BCLK + CCLK	V _{ol} V _{oh}	Output Low Voltage Output High Voltage	I _{OL} = 20 mA I _{OH} = -1 mA	2.7	0.5	v v

7

.

*Capacitive values are approximations only.

TABLE A-5.	DC	CHARACTERISTICS	(Continued)
------------	----	-----------------	-------------

SIGNALS	SYMBOL	PARAMETER DESCRIPTION	TEST CONDITIONS	MIN	MAX	UNITS
EXT INTRØ/	V _{IL} V _{IH} I _{IL} I _{IH}	Input Low Voltage Input High Voltage Input Current at Low V Input Current at High V	V _{IN} = 0.4V V _{IN} = 5.5V	2.0 6.8	0.8	V V mA mA
PORT E4 BIDIRECTIONAL DRIVERS	*C _L V _{OL} V _{OH} V _{IL} V _{IH} I _{IL} I _{LH} *C _L	Capacitive Load Output Low Voltage Output High Voltage Input Low Voltage Input High Voltage Input Current at Low V Output Leakage High Capacitive Load	$I_{OL} = 20 \text{ mA}$ $I_{OH} = -12 \text{ mA}$ $V_{IN} = 0.45$ $V_{O} = 5.25$	2.4	18 .45 .95 -5.25 .30 18	pF V V V mA mA pF
8255 DRIVER/ RECEIVER	V _{OL} V _{OH} V _{IL} V _{IH} I _{IL} I _{IH} *C _L	Output Low Voltage Output High Voltage Input Low Voltage Input High Voltage Input Current at Low V Input Current at High V Capacitive Load	$I_{OL} = 1.7 \text{ mA}$ $I_{OH} = -50 \mu \text{A}$ $V_{IN} = 0.45$ $V_{IN} = 5.0$	2.4	.45 .8 10 10 18	V V V μΑ μΑ pF

*Capacitive values are approximations only.

FUNCTION	# OF PINS	CENTERS (inches)	CONNECTOR TYPE	VENDOR	VENDOR PART #	INTEL PART #
PARALLEL I/O	25/50	0.1	FLAT CRIMP	3M 3M AMP ANSLEY SAE	3415-0000 WITH EARS 3415-0001 W/O EARS 88083-1 609-5015 SD6750 SERIES	SBC-955 (CABLE ASSY.)
SERIAL I/O	13/26	0.1	FLAT CRIMP	3M AMP ANSLEY SAE	3462-0001 CRIMP 88106-1 609-2615 SD6726 SERIES	SBC-956 (CABLE ASSY.)
PARALLEL I/O	25/50	0.1	SOLDERED	AMP VIKING TI	2-583485-6 3VH25/1JV5 H312125	N/A
SERIAL I/O	13/26	0.1	SOLDERED	TI AMP	H312113 1-583485-5	N/A
AUXILIARY	30/60	0.1	SOLDERED	VIKING TI	3VH30/1JN5 H312130	N/A
BUS D	43/86	0.156	SOLDERED	CDC MICRO PLASTICS ARCO VIKING	VPB01E43D00A1 MP-0156-43-BW-4 AE443WP1 LESS EARS 2VH43/1AV5	N/A
₽ PARALLEL 1/0	25/50	0.1	WIREWRAP	TI VIKING CDC ITT CANNON	H311125 3VH25/1JND5 VPB01B25D00A1 EC4A050A1A	N/A
SERIAL I/O	13/26	0.1	WIREWRAP	TI	H311113	N/A
	30/60	0.1	WIREWRAP	CDC TI	VPB01B30A00A2	MDS-980
BUS D	43/86	0.156	WIREWRAP	CDC CDC VIKING	VFB01E43D00A1 or VPB01E43A00A1 2VH43/1AND5	MDS~985
SBC 201 SBC 501			SOLDER TAIL	VIKING	3VH50/1JN5	MDS-990
SBC 508 SBC 905, etc.	50/100	0.1	SOLDER PAK (RAYCHEM)	CDC	VPBO4B50E00A1E	N/A

4

-

TABLE A-6. SBC BOARDS COMPATIBLE CONNECTOR HARDWARE

- Connector heights are not guaranteed to conform to OEM packaging equipment. Intel OEM and Intellec[®]Development System motherboards offer complete mechanical compatibility.
- Wirewrap pin lengths are not guaranteed to conform to OEM packaging equipment. Intel connectors and OEM and Intellec[®]Development System motherboards offer complete mechanical compatibility.
- CDC VPB01 ..., VPB02 ..., VPB04 ..., etc. are identical connectors with different electroplating thicknesses or metal surfaces.

NOTE: See next page for vendor addresses, telephone numbers and TWX numbers.

VENDORS ADDRESSES

The following information is for our customer's convenience only. Intel does not represent these vendors, guarantee availability nor continued quality of their products.

CDC CONNECTOR DIVISION 31829 W. LaTienda Drive Westlake Village, CA 91361 USA

213-889-3535 TWX 910-494-1224

VIKING INDUSTRIES, INC. 21001 Nordhoff Street Chatsworth, CA 91311 USA

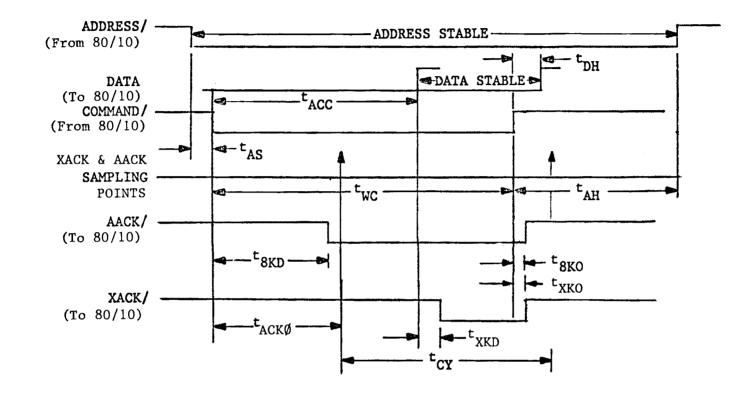
213-341-4330 TWX 910-494-2094

Connector Systems TEXAS INSTRUMENTS, INC. 34 Forest Street Attleboro, MA 02703 USA T & B/ANSLEY Subsidiary of Thomas & Betts Corporation 3208 Humbolt Street Los Angeles, CA 90031 USA

213-223-2331 TWX 910-321-3938

STANDFORD APPLIED ENGINEERING, INC. (SAE) 340 Martin Avenue Santa Clara, CA 95059 USA

408=243-9200 TWX 910-338-0132

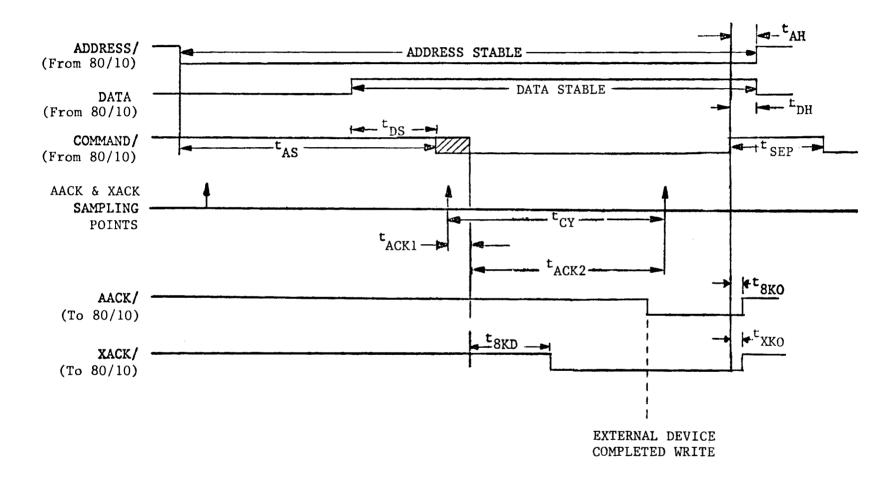

3M Connectors Electronic Products Division, Bldg. 223-4E 3M COMPANY 3M Center St. Paul, MN 55101 USA

612-733-1110

AMP Incorporated P.O. Box 3608 Harrisburg, PA 17105 USA

717-564-0100 TWX 510-657-4110

617-222-2800

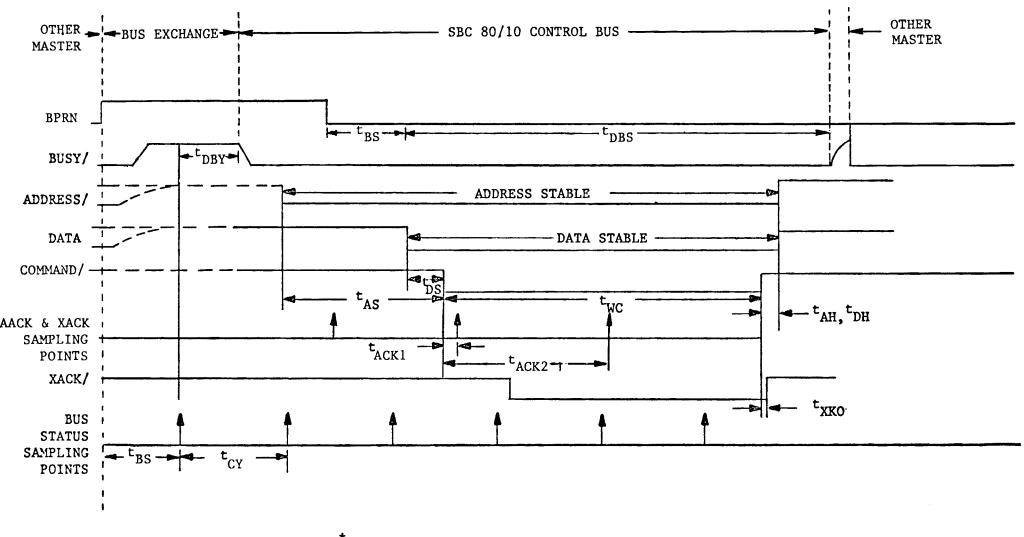

* FIGURE A-1. MEMORY AND I/O READ TIMING (CONTINUOUS BUS CONTROL)

4

\$

.

^{*}NOT DRAWN TO SCALE.



*NOT DRAWN TO SCALE.

4

5

*FIGURE A-3. BUS EXCHANGE (WRITE)

*NOT DRAWN TO SCALE.

A.3 POWER SUPPLY SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

Input: 100/115/215/230 VAC +10%, 47-63 hz, single phase (Input voltage is selectable by transformer jumpers.)

Output:

	TABLE	A-	7
--	-------	----	---

NOMINAL DC VOLTAGE						
Nominal DC Voltage	+5V	-5V	+12V	-12V		
Current (Amp)	14.0	0.9	2.0	0.8		

Protection Circuits:

TABLE A-8

CURRENT LIMIT AND OVP PROTECTION								
Nominal DC Voltage	+5V	-5V	+12V	-12V	Comment			
Current Limit (Amp)	16.8	1.1	2.4	1.0	≈ 120% of Rated I			
OVP Range (Volt)	5.8 to 6.6	-5.8 to -6.6	14 to 16	-14 to -16				

DC output voltage adjustment range: ±5% of nominal voltage (all outputs) Line Regulation: ±0.1% for 10% line change (all outputs) Load Regulation: ±0.1% for 50% load change (all outputs) Ripple and Noise: 10 mv peak-to-peak maximum for DC to 500 Khz (all outputs) Transient Response: Less than 50 µsec for 50% load change (all outputs) Remote Sensing: Provided on +5V output only, regulate at load. Stability: ±0.05% for 8 hours after 30 minutes of warm up (all outputs)

A-19

AC power low detection circuitry: TTL high level signal to indicate AC power line is below 105/207 VAC (RMS).

TTL "AC LOW" SIGNAL						
PARAMETER	MINIMUM	MAXIMUM				
V _{OL} V _{OH} I _{OL} at 0.4V I _{OH} at 3.4V	0.V 2.4V 16.0mA 0.4mA	0.4V 5.25V - -				

TABLE A-9

After "AC Low" signal is active, all DC voltages will conform to specification for a minimum of 7.5 msec at any frequency within the input operating frequency range (47-63 hz).

Input and Output Connectors:

Input AC: 4 pin keyed connector.

TABLE A-10								
AC INPUT								
P	2 CONNE	CTORS						
PIN	TO	WIRE COLOR						
1	T1-1	GRAY						
2	T1-2	RED						
3	т1-3	ORN						
4	т1-4	WHT						

Output DC: 7 pin keyed connector, two sets.

DC OUTPUT								
	I	26	I	28				
PIN	OUTPUT	WIRE COLOR	OUTPUT	WIRE COLOR				
1	GND	BLK	KEY	-				
2	+5V	RED	GND	BLK				
3	+5V	RED	-5V	YEL				
4	-12V	PURPLE	+12V	BLUE				
5	-	-	+5V	RED				
6	GND	BLK	+5V	RED				
7	KEY	_	GND	BLK				

TABLE A-11

Mechanical Specifications:

Dimension: 12.65" maximum width x 3.19" maximum height x 6.03" maximum depth Weight: 13 pounds maximum Finish: Natural aluminum with clear or black anodized plating.

Material: 1/8" thick aluminum

Environmental Specifications:

Operating temperature range:	0° C to 55°C, with 30 CFM of moving air
Temperature Coefficient:	<u>+0.02%</u> per ^O C maximum
Humidity:	90% maximum relative humidity with no condensation.

A.4 SBC 604 MODULAR CARDCAGE AND BACKPLANE ASSEMBLY SPECIFICATIONS

BACKPLANE CHARACTERISTICS

All SBC 80 address, data, and command bus lines are bussed to all four connectors on the Printed Circuit Backplane.

Power connectors for ground, +5, -5, +12, -12, -10 volt power supply lines.

Bus signal terminators and backplane male edge expansion connector.

CONNECTORS

4 86-pin PC edge connectors with 0.156 inch contact centers.

2 7-pin right angle wafer connectors with 0.156 inch contact centers.

PHYSICAL DIMENSIONS

Height:	8.5 in.	(21.59 cm)
Width:	14.2 in.	(36.07 cm)
Depth:	3.34 in.	(8.48 cm)
Weight:	35 oz.	(992.23 gm)

ENVIRONMENTAL

Operating Temperature 0°C to 55°C

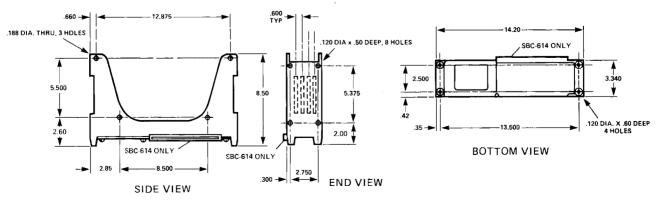
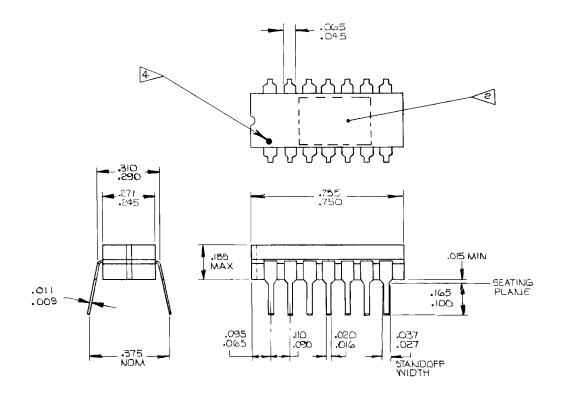
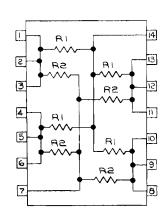




FIGURE A-4. SBC 604 DIMENSIONS

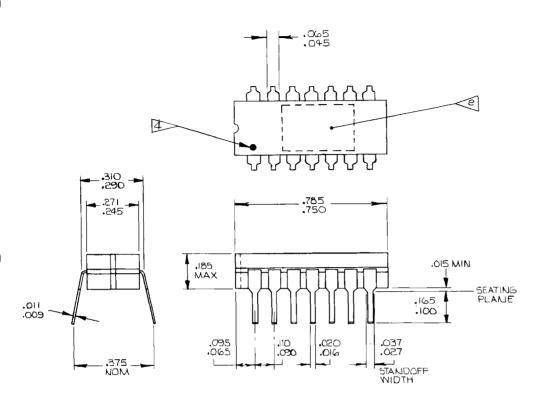
A.5 SBC 901/902 TERMINATION RESISTOR PACKS

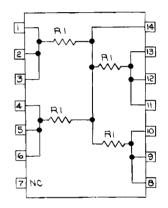
The SBC 901 and SBC 902 terminators are both compatible with the I/O driver sockets on the System 80/10 and all the memory and I/O expansion boards. The SBC 901 is a $220\Omega/330\Omega$ voltage divider terminator and the SBC 902 is a 1K pull up terminator. See Figure A-5 and A-6 for schematics.

RESISTOR NETWORK SPECIFICATIONS:

RESISTANCE VALUES: ±2% (MAX) OPERATING TEMPERATURE: 0°C TO +70°C TEMPERATURE COEFFICIENT: ±200 PPM /°C OVER TEMPERATURE RANGE OF 0°C TO +70°C OPERATING VOLTAGE: 6.0 VDC (MAX) POWER RATING: AT 70°C, 0.7 YVATT PER PACK TRACKING RESISTANCE RATIO: ±1.0% (MAX) STABILITY: ±1% YEAR (MAX) LOAD LIFE: ±1% (AR) OYER LOOD HOURS PACKAGE: DUAL IN LINE - CERAMIC OR PLASTIC NOTES: UNLESS OTHERWISE SPECIFIED,

1. PART NO 15 4500644 -01,


INK STAMP PRODUCT CODE, RUBBT R VALUE, PART NO, AND DASH NUMBER WITH CONTRACTING COLOR INK USING MIN .05 HIGH CHARACTERS, NO OTHICK MARKINGS PERMITTED EXCEPT MANDE BATCH NO. E.G.) SBC-DOI


-BC- 301 RZZO / 330 4500694 -01

3, FOR PROCUREMENT SEE LV 4500644-01.

DN TOP OF PACKAGE.

FIGURE A-5. SBC 901 TERMINATOR SCHEMATIC

RESISTOR NETWORK SPECIFICATIONS: RESISTANCE VALUES: ±2% (MAX) OPERATING TEMPERATURE: 0°C TO +70°C TEMPERATURE COEFFICIENT: ± 200 PPM / °C OVER TEMPERATURE RANGE OF O°C TO +70°C OPERATING YOLTAGE: 6.0 YDC (MAX) POWER RATING: AT 70°C, 0.7 YVATT PER PACK TRACKING RESISTANCE RATIO: ± 1.0% (MAX) STABILITY: 1 1% YEAR (MAX) LOAD LIFE: 1% (AR) OVER 1000 HOURS PACKAGES DUAL IN LINE - CERAMIC OR PLASTIC NOTES: UNLESS OTHERWISE SPECIFIED,

10 PART NO 15 4500645 -010

E.G.)

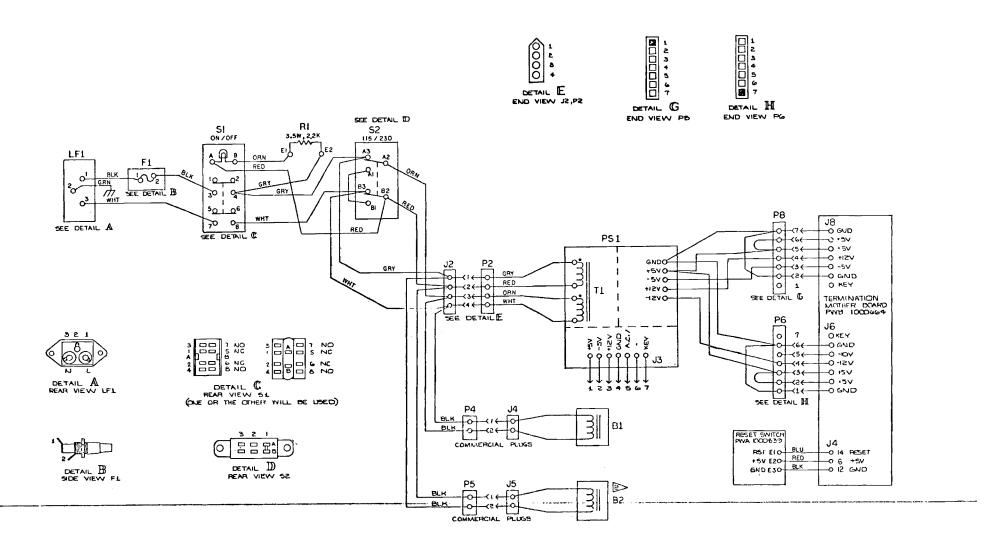
> INK STAMP PRODUCT CODE, RESISTOR VALUE, PART NO AND DASH NUMBER WITH CONTRASTING COLOR AND MIN 12 HIGH CHARACTERS. NO OTHER MARKINGS ARE PERMITTED EXCEPT FOR MANUF BATCH NO,

> 5BC - 902 R 1K 4500645-01

FOR PROCUREMENT SEE LV 4500645 DENTIFY PIN ONE LLEARLY ON TOP OF PACKAGE,

FIGURE A-6. SBC 902 TERMINATOR SCHEMATIC

.


Ĵ

6

<u> نی</u>

APPENDIX B SYSTEM 80/10 SCHEMATICS

Schematic drawings for the System 80/10 are provided in this appendix. Information and diagrams in this section are subject to change without notice. References should be made to schematics shipped with this system.

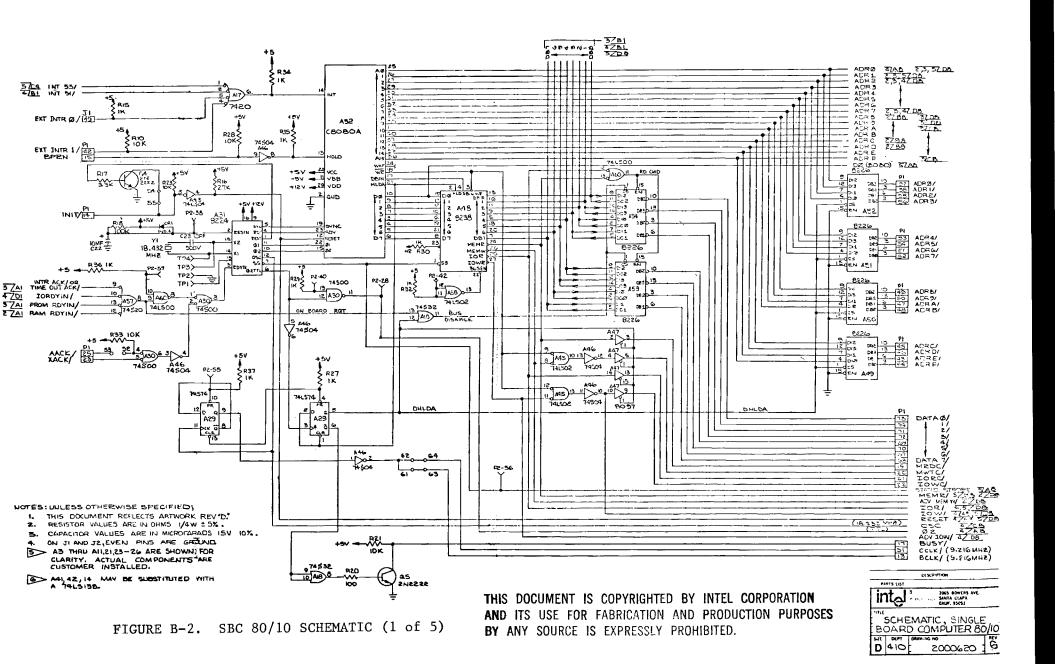
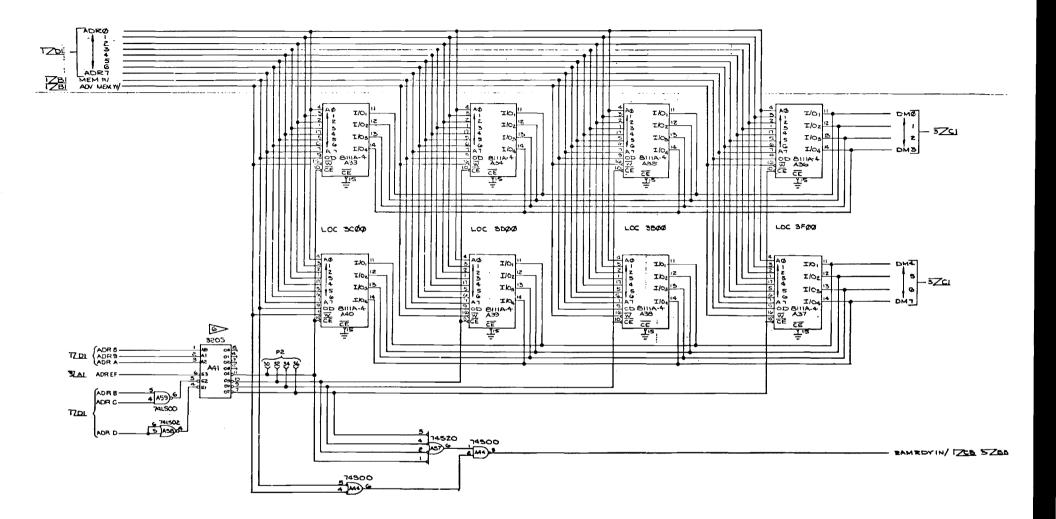

PARTS LIS	π	
inte	3065 BOWERS A BANTA CLARA CALIF. 95051	VE.
TITLE		
v	VIRE DIAGRAM	A
v	C./D.C. POWE	

FIGURE B-1. AC/DC POWER DISTRIBUTION DIAGRAM

ŧ


1

THIS DOCUMENT IS COPYRIGHTED BY INTEL CORPORATION AND ITS USE FOR FABRICATION AND PRODUCTION PURPOSES BY ANY SOURCE IS EXPRESSLY PROHIBITED.

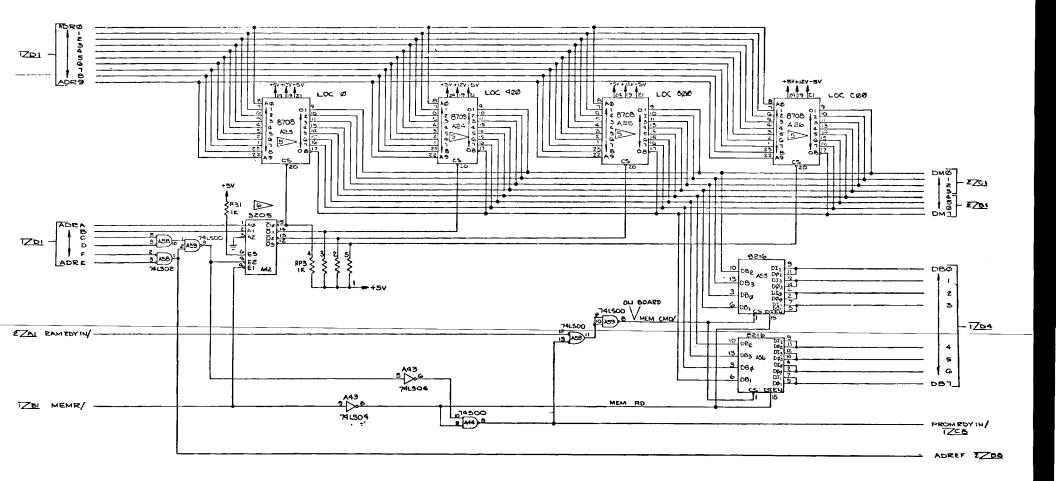
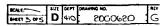
1

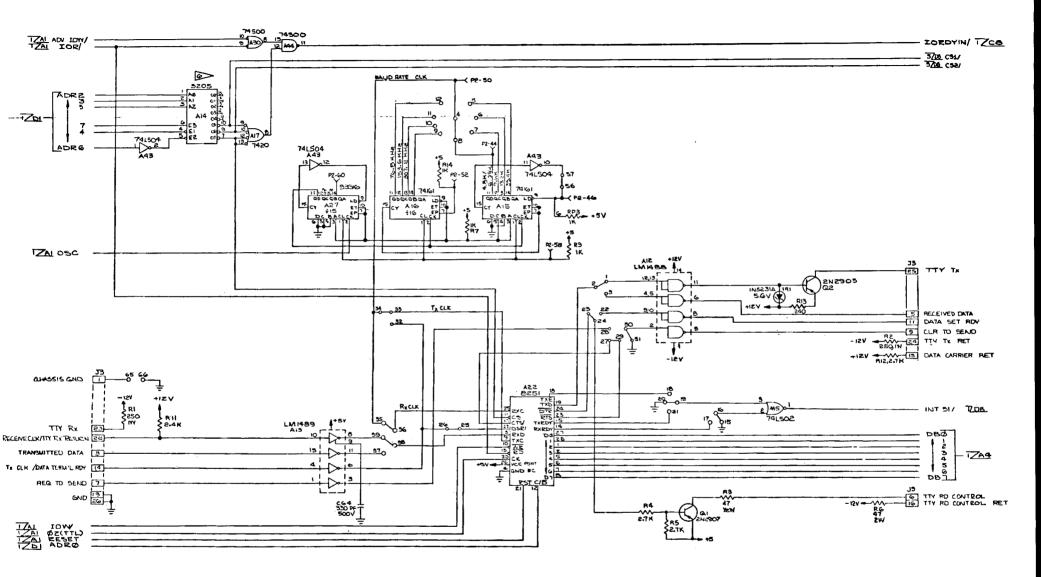
4.

THIS DOCUMENT IS COPYRIGHTED BY INTEL CORPORATION AND ITS USE FOR FABRICATION AND PRODUCTION PURPOSES BY ANY SOURCE IS EXPRESSLY PROHIBITED.

SCALL	3421	DLPT	DRANING NO.	REV	
MILT Z OF 5	D	410	2000620	G	

FIGURE B-2. SBC 80/10 SCHEMATIC (2 of 5)


FIGURE B-2. SBC 80/10 SCHEMATIC (3 of 5)

Ł

4

THIS DOCUMENT IS COPYRIGHTED BY INTEL CORPORATION AND ITS USE FOR FABRICATION AND PRODUCTION PURPOSES BY ANY SOURCE IS EXPRESSLY PROHIBITED.

THIS DOCUMENT IS COPYRIGHTED BY INTEL CORPORATION AND ITS USE FOR FABRICATION AND PRODUCTION PURPOSES

G

FIGURE B-2. SBC 80/10 SCHEMATIC (4 of 5)

*

\$

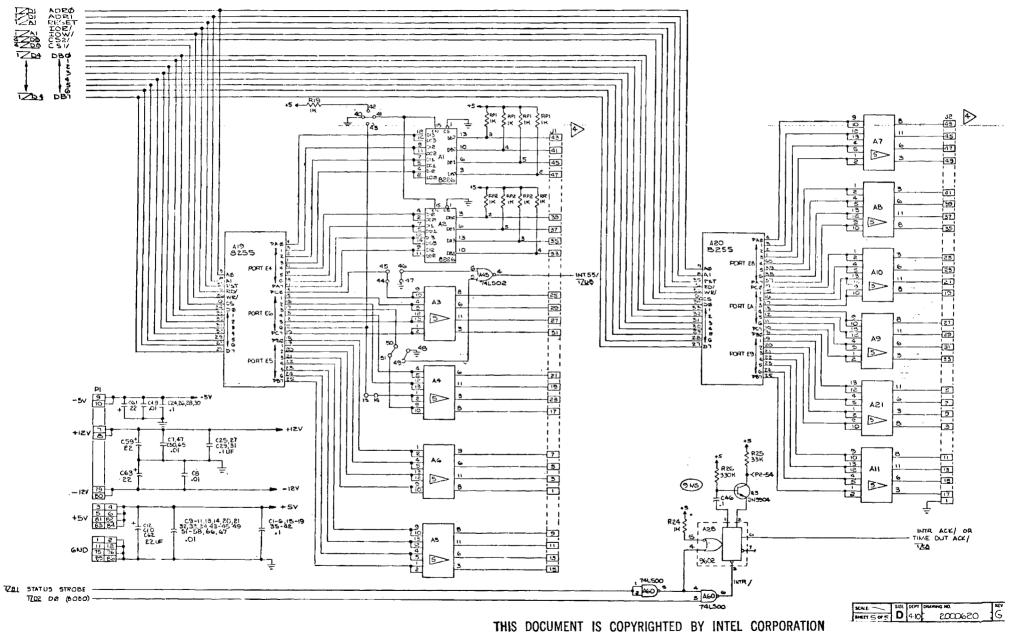


FIGURE B-2. SBC 80/10 SCHEMATIC (5 of 5)

t

£.

THIS DOCUMENT IS COPYRIGHTED BY INTEL CORPORATION AND ITS USE FOR FABRICATION AND PRODUCTION PURPOSES BY ANY SOURCE IS EXPRESSLY PROHIBITED.

.

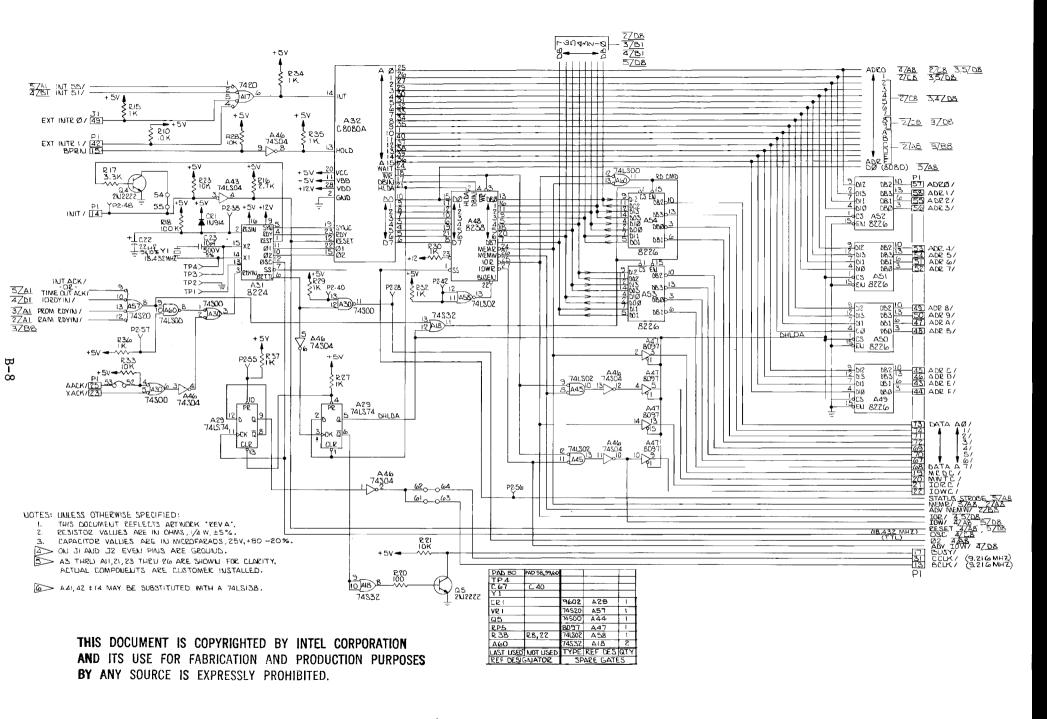
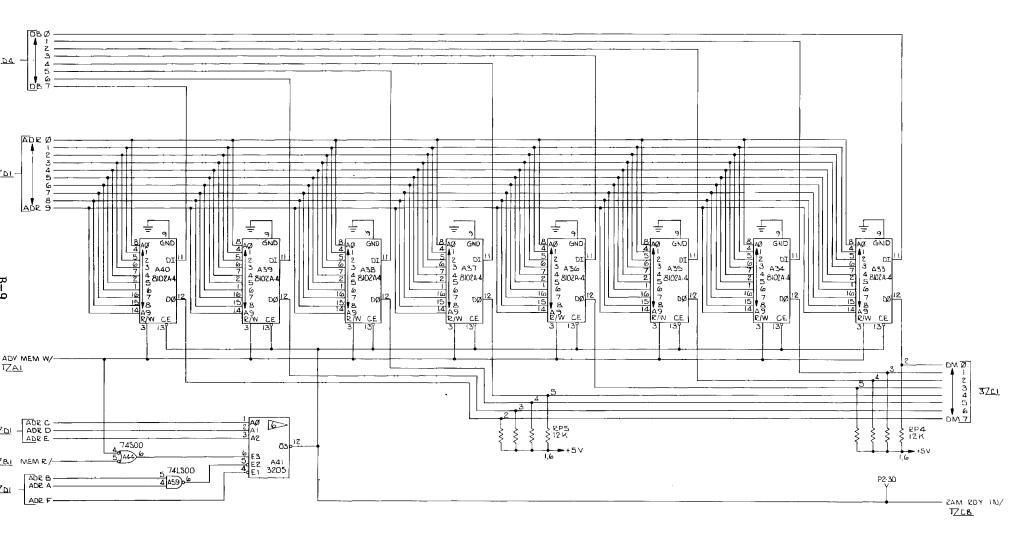
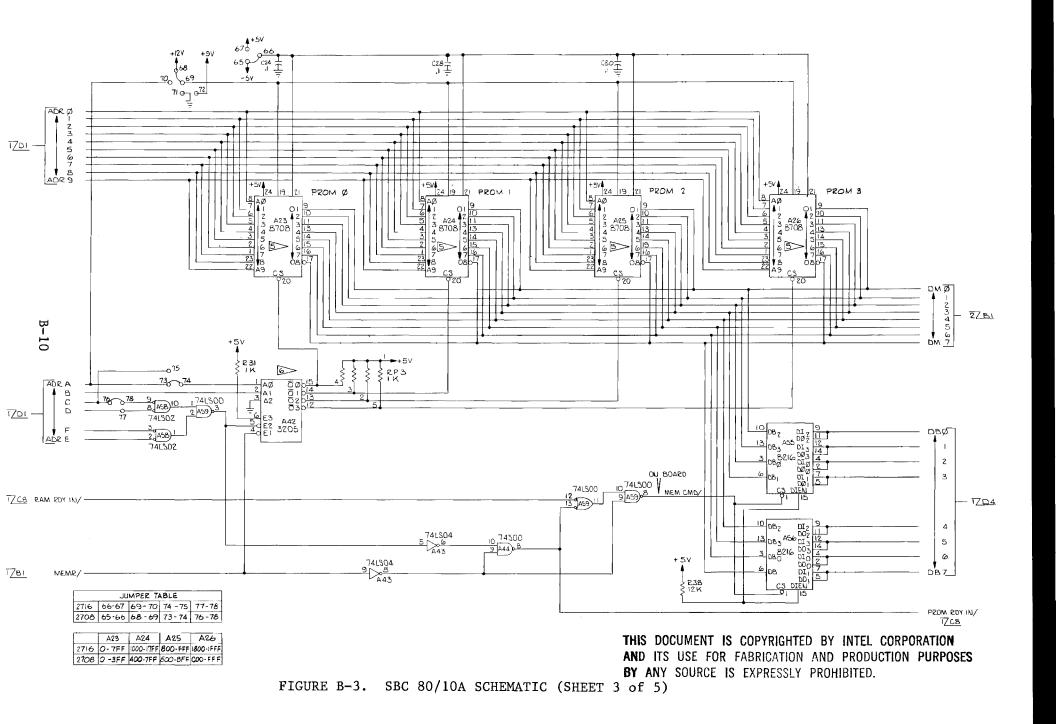
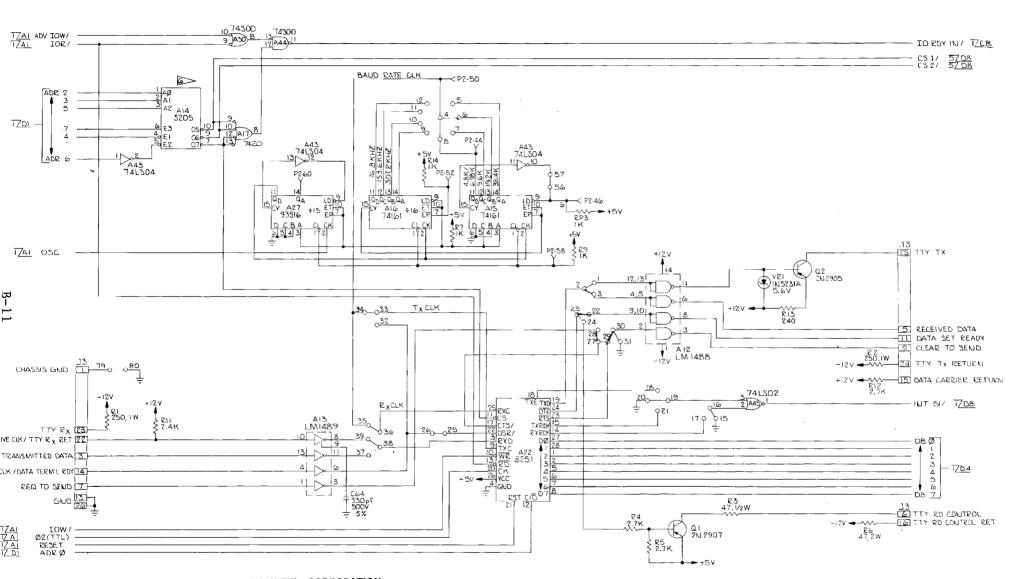



FIGURE B-3. SBC 80/10A SCHEMATIC (SHEET 1 of 5)

¥

*

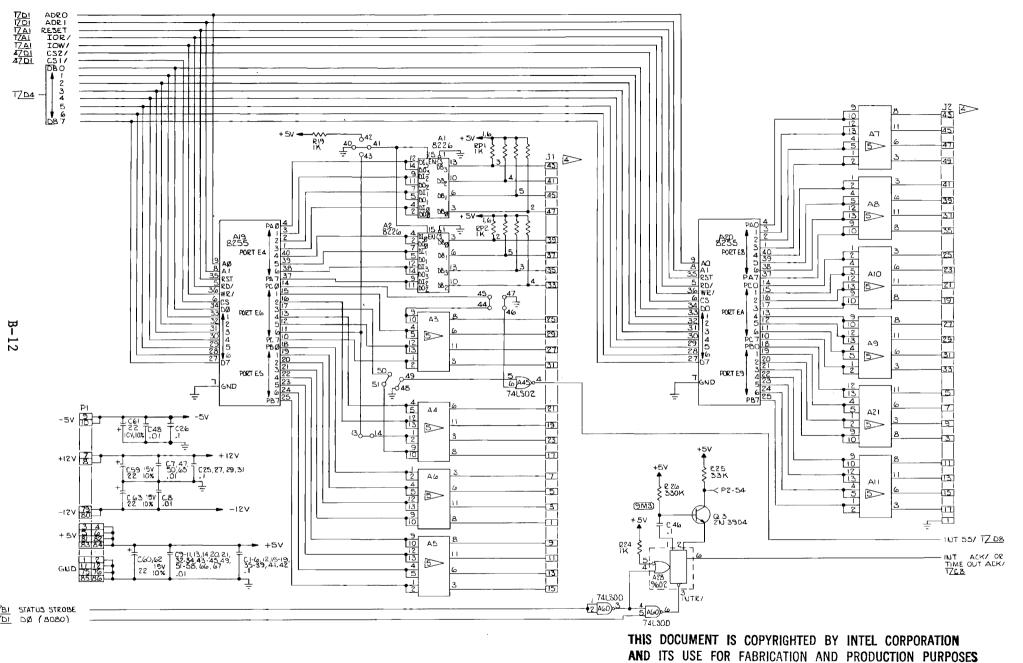

.


THIS DOCUMENT IS COPYRIGHTED BY INTEL CORPORATION AND ITS USE FOR FABRICATION AND PRODUCTION PURPOSES BY ANY SOURCE IS EXPRESSLY PROHIBITED.

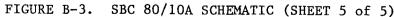
4

4

FIGURE B-3. SBC 80/10A SCHEMATIC (SHEET 2 of 5)



THIS DOCUMENT IS COPYRIGHTED BY INTEL CORPORATION AND ITS USE FOR FABRICATION AND PRODUCTION PURPOSES BY ANY SOURCE IS EXPRESSLY PROHIBITED.


¥

.

FIGURE B-3. SBC 80/10A SCHEMATIC (SHEET 4 of 5)

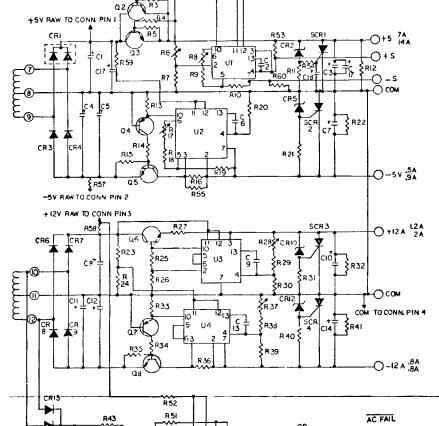
BY ANY SOURCE IS EXPRESSLY PROHIBITED.

k

٠

┢ Q9 CRI5 O TO CONN PIN 5,6 CRI4 ξR 46 11 12 2 R48 U5 CI 5 62 R42 ħ **A** ≥56 ħ R45 T. R44 ħ R61 Ì THIS DOCUMENT IS COPYRIGHTED BY INTEL CORPORATION AND ITS USE FOR FABRICATION AND PRODUCTION PURPOSES

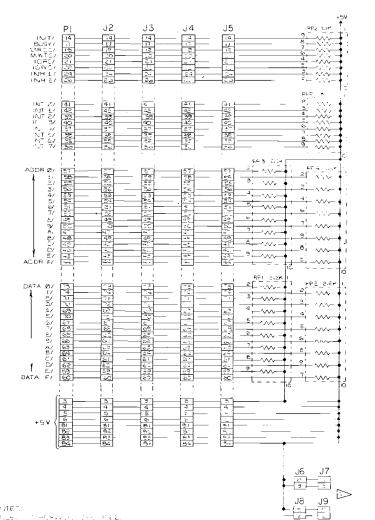
BY ANY SOURCE IS EXPRESSLY PROHIBITED. FIGURE B-4. POWER SUPPLY SCHEMATIC (V/C AA)


NO OTHERRIGHTS ARE GRANTED AND THE DESIGNS, CIRCUITS TECHNIQUES AND ALL OTHER RIGHTS ARE RESERVED.

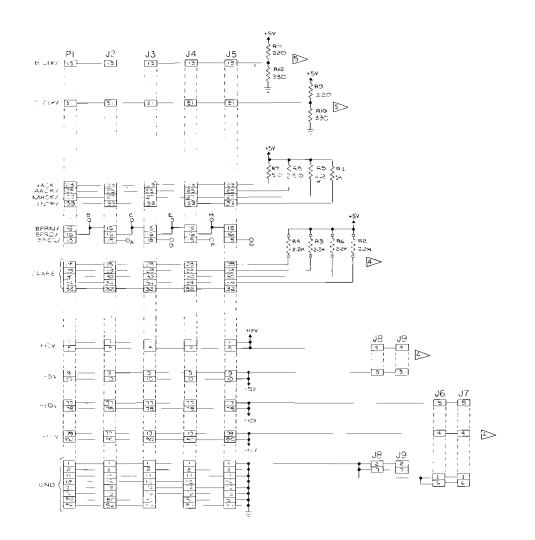
A

.

٠



.


01

+12 PAW

REFDES	4500770	DESCRIPTION
CI	64000/15	CAPACITOR, ELECT.
C 3,4,5,10,14,17	1000/16	
C7	220/16	
C8	3600/35	╶╴┨────┝───┠─────┟─────
	001/100	
C2, 13 CIU2	330/35	
CI8	K0/25	
C18 C17	64000/15	╶╀──┈┼╌──┼╴───┼
C9,16	500 PF	
		MYLAR
C6	.003/100	CAPACITOR, MYLAR
<u>CI5</u>	1/50	CAPACITOR, ELECT
ĈR I	R731	DIODE BRIDGE
CR 3 4 5 9 13 14	AEIC	IA, 2COV
CR 6,7	AE38	3A, 100V
CR 2, 5, 15	IN752A	ZENER
CR 10,12	IN 965A	DIODE, ZENER
C2,13	.001/100	CAPACITOR, MYLAR
SCRI	S0345LS3	8A SCR
SCR 2,3,4	S0303LS3	3A SCR
RI, 11	82-2-	RESISTOR, 1/2W, 5%, CF
R7	22 K	
R 3.5	22-^-	
R46,51	5IK	╺╋╍╍╌┥╴┈┥╸┈┥╸┈┥
R 15, 35	36K	╶┼╍╍╌┽╴┈╶┥╴╍┥
R12 21 22 14 50	82 2	┍╉┉┈╴╊┈╌╌┉┦╶┉╶╋┈╼┫
RI 3 40,23,25, 31	330	- <u>+</u> +++
R5360244254	6.8 ~-	-ttttt
R16,57	1.0	╶┨┈┉╶┉╉╌╍╍╾┫─────┤────┤
R24, 32, 41 20, 49	1.0	┥╾┉┤ <u></u> ┥
R55	.5 4.	╶╁┉───┼╼╾┉┽╌──┼───┥
R33,34,52	330	╶╉┈╾┼╌┉╴┟╌╌╌┨
		1/21/50/05
<u>R43</u>	20K	/2W5%CF
R27 R36, 59	.22.1	2W WW BWH
R62	.55 ~	2W WW BWH
	IOK	4 W 2% MF
RI019,45,48	<u>4.75K</u> 2K	
R 30, 39		
F9/1913 2938 476(5)4	1.2K	RESISTOR, 4 W, 2% MF
R26	4,7 K 15 K	RESISTOR, 12 W, 5% CF
R8.61744,3728		POT. CTS HE54719
Q1,8,5	12500-5	TRANSISTOR NPN POWER
02.3.6	12505~1	NEN FOWER
Q4,7	2N2907	PUP SIG.
Q9	2N2219	TRANSISTOR P.PN SIG
UI2345	UA 723	IC VOLTAGE REGULATOR
TI	13236	TRANSFORMER
CHASSIS	13171	CHASSIS
PCB	13192	PRINTED CIRCUIT BCARD

ŧ

٠

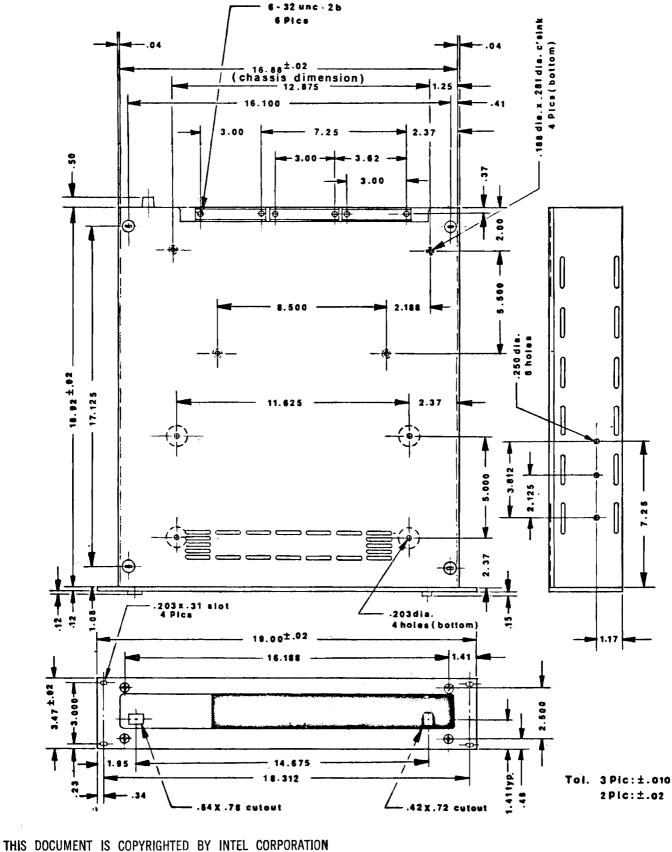
#

NOTED: ULLE. COMPANY OF STREET 1. - F. 2004 PECK D. C. 4 PECK

B114

2. REDUCE VALUE ARE NORMAL

EH Wên Gir Tri L ----- O - BAC LATEL - VV. HE - VVHA: 3.


4>

5

FIGURE B-5. TERMINATION BACKPLANE SCHEMATIC

SYSTEM AND SUB-ASSEMBLY OUTLINES

C.1 SYSTEM 80/10 OUTLINE

THIS DOCUMENT IS COPYRIGHTED BY INTEL CORPORATION AND ITS USE FOR FABRICATION AND PRODUCTION PURPOSES BY ANY SOURCE IS EXPRESSLY PROHIBITED. C-1

system 80/10 outline 98-318 A

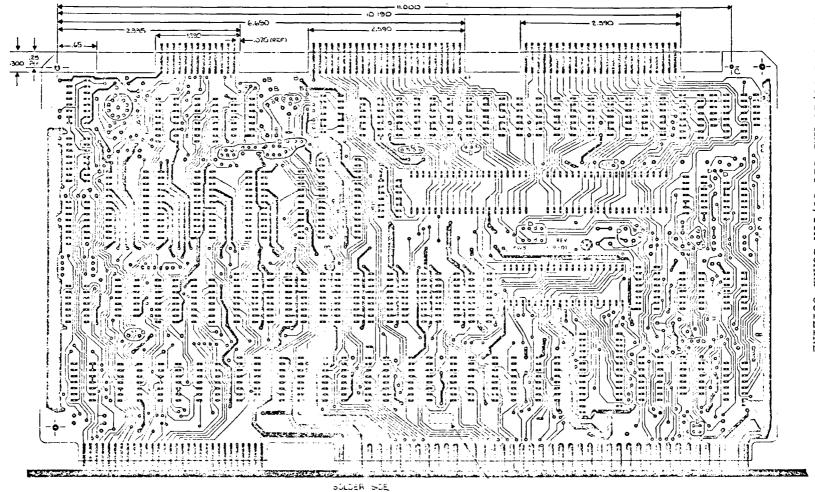


Figure C-2. SBC 80/10 AND SBC 80/10A BOARD OUTLINE (1 of 2) THIS DOCUMENT IS COPYRIGHTED BY INTEL CORPORATION AND ITS USE FOR FABRICATION AND PRODUCTION PURPOSES BY ANY SOURCE IS EXPRESSLY PROHIBITED.

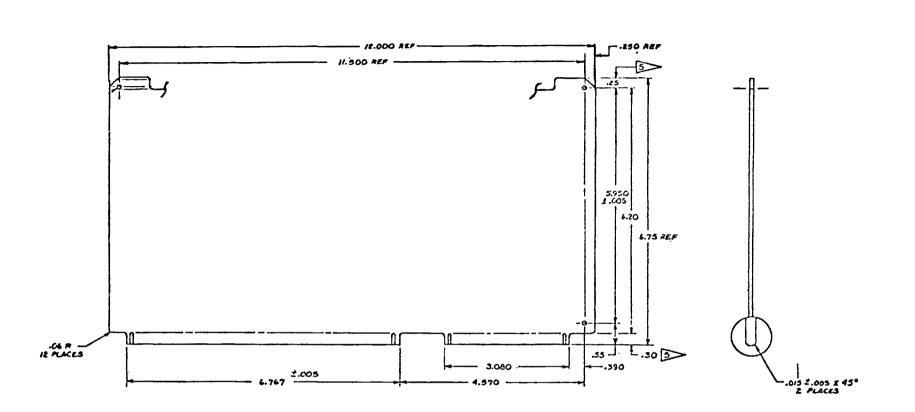


Figure C-2. SBC 80/10 AND SBC 80/10A BOARD OUTLINE (2 of 2)

> THIS DOCUMENT IS COPYRIGHTED BY INTEL CORPORATION AND ITS USE FOR FABRICATION AND PRODUCTION PURPOSES BY ANY SOURCE IS EXPRESSLY PROHIBITED.

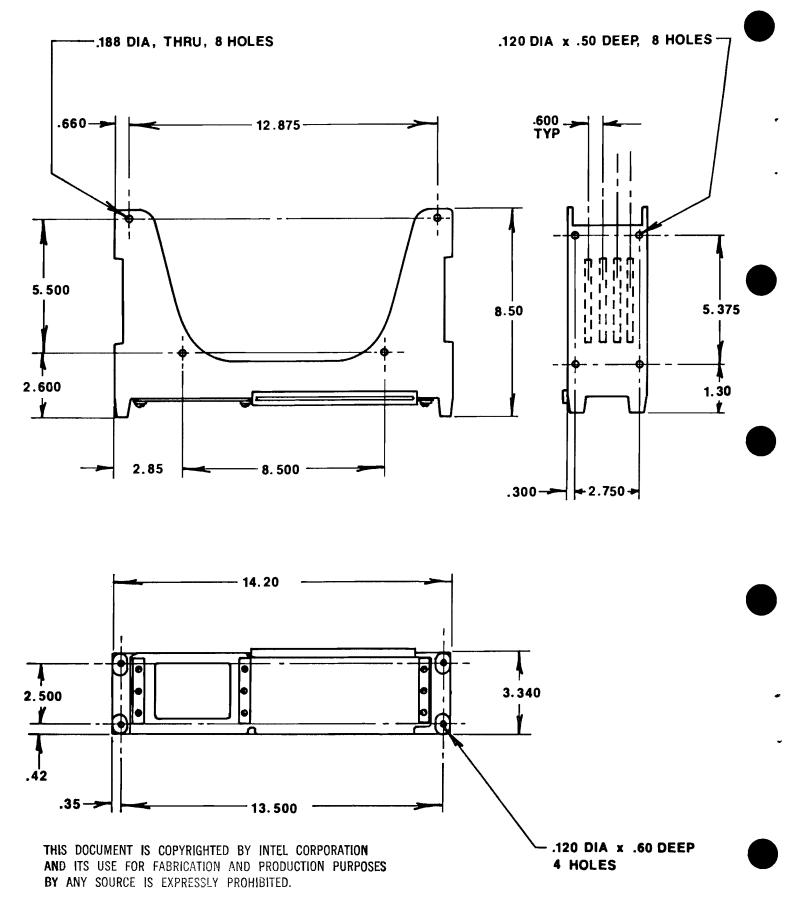
NOTES:

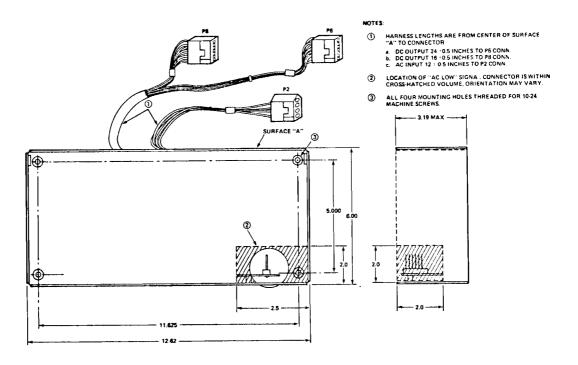
MATERIAL : . 062 THK, I OR COPPER CLAD, NATURAL EPOXY GLASS, TYPE 5 10 (202 AFTER PLATING THRU)

BOARD EDGES ARE LOCATED FROM INDEX HOLES. INDEX HOLES ARE CH. .050 GRID INTERSECTION AND ARE USED FOR ARTWORK REGISTRATION AND MAY BE USED AS TOOLING HOLES, PLATING OPTIONAL.

- 3. HOLES ARE PLATED THRU WITH COPPER WALL THICKNESS OF .0007 MINIMUM.
- 4. HOLE SIZES SPECIFIED ARE AFTER PLATING; 1.003 TOLERANCE

.


.


- S CONTACT FINGERS ARE OVERPLATED WITH A MINIMUM OF SO MILLION THIS GOLD OVER NICKEL TO DIMENSION SHOWN.
- APPLY SOLDER MASK OVER SOLDER PLATE USING MATERIAL ; MECUMASK GREEN

7. E.

- DRILL FROM CIRCUIT SIDE.
- 9. TRACE WIGTHS MUST BE WITHIN 1094 OF ARTWORK NEGATIVES.
- 10. APPLY SILKSCREEN ON COMPONENT SIDE, AFTER SOLDER. MASK IS APPLIED, USING WHITE EPOXY INK.

C.3 MODULAR CARDCAGE OUTLINE

*The System 80/10 Power Supply may come in any one of several versions. External electrical characteristics (including connector types) and mounting information (including overall size) are given for all versions in the above outline and in Chapter 6. Internal parts, schematic, and exact outline dimensions will vary between versions. To determine the version you have, see the two letter code on the side panel closest to the "AC Low" signal output connector. The vendor code is the third group of code following the assembly number and revision level code.

See silkscreen on power supply PC board for location of voltage and current adjustment trimmers.

C-5

ş

APPENDIX D 8080 INSTRUCTION SET SUMMARY

A computer, no matter how sophisticated, can only do what it is "told" to do. One "tells" the computer what to do via a series of coded instructions referred to as a Program. The realm of the programmer is referred to as Software, in contrast to the Hardware that comprises the actual computer equipment. A computer's software refers to all of the programs that have been written for that computer.

When a computer is designed, the engineers provide the Central Processing Unit (CPU) with the ability to perform a particular set of operations. The CPU is designed such that a specific operation is performed when the CPU control logic decodes a particular instruction. Consequently, the operations that can be performed by a CPU define the computer's Instruction Set.

Each computer instruction allows the programmer to initiate the performance of a specific operation. All computers implement certain arithmetic operations in their instruction set, such as an instruction to add the contents of two registers. Often logical operations (e.g., OR the contents of two registers) and register operate instructions (e.g., increment a register) are included in the instruction set. A computer's instruction set will also have instructions that move data between registers, between a register and memory, and between register and an I/O device. Most instruction sets also provide Conditional Instructions. A conditional instruction specifies an operation to be performed only if certain conditions have been met; for example, jump to a particular instruction if the result of the last operation was zero. Conditional instructions provide a program with a decision-making capability.

By logically organizing a sequence of instructions into a coherent program, the programmer can "tell" the computer to perform a very specific and useful function.

The computer, however, can only execute programs whose instructions are in a binary coded form (i.e., a series of 1's and 0's), that is called Machine Code. Because it would be extremely cumbersome to program in machine code, programming languages have been developed. There are programs available which convert the programming language instructions into machine code that can be interpreted by the processor.

One type of programming language is Assembly Language. A unique assembly language mnemonic is assigned to each of the computer's instructions. The programmer can write a program (called the Source Program) using these mnemonics and certain operands; the source program is then converted into machine instructions (called the Object Code). Each assembly language instructions is converted into one machine code instruction (1 or more bytes) by an Assembler program. Assembly languages are usually machine dependent (i.e., they are usually able to run on only one type of computer).

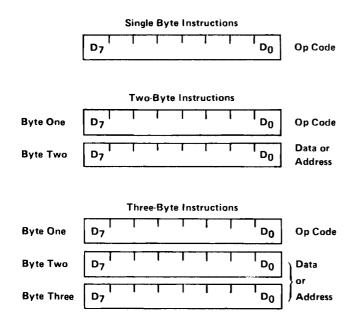
THE 8080 INSTRUCTION SET

The 8080 instruction set includes five different types of instructions:

- Data Transfer Group -- move data between registers or between memory and registers.
- Arithmetic Group add, subtract, increment or decrement data in registers or in memory.
- Logical Group AND, OR, EXCLUSIVE-OR, compare, rotate or complement data in registers or in memory.
- Branch Group conditional and unconditional jump instructions, subroutine call instructions and return instructions.
- Stack, I/O and Machine Control Group includes I/O instructions, as well as instructions for maintaining the stack and internal control flags.

Instruction and Data Formats

Memory for the 8080 is organized into 8-bit quantities, called Bytes. Each byte has a unique 16-bit binary address corresponding to its sequential position in memory.


The 8080 can directly address up to 65,536 bytes of memory, which may consist of both read-only memory (ROM) elements and random-access memory (RAM) elements (read/write memory).

Data in the 8080 is stored in the form of 8-bit binary integers:

	DATA WORD										
D7 1	D ₆ D ₅	D4 D	3 D2	D ₁ D ₀							
MSB				LSB							

When a register or data word contains a binary number, it is necessary to establish the order in which the bits of the number are written. In the Intel 8080, BIT 0 is referred to as the Least Significant Bit (LSB), and BIT 7 (of an 8-bit number) is referred to as the Most Significant Bit (MSB).

The 8080 program instructions may be one, two or three bytes in length. Multiple byte instructions must be stored in successive memory locations; the address of the first byte is always used as the address of the instructions. The exact instruction format will depend on the particular operation to be executed.

Addressing Modes

Often the data that is to be operated on is stored in memory. When multi-byte numeric data is used, the data, like instructions, is stored in successive memory locations, with the least significant byte first, followed by increasingly significant bytes. The 8080 has four different modes for addressing data stored in memory or in registers:

- Direct Bytes 2 and 3 of the instruction contain the exact memory address of the data item (the low-order bits of the address are in byte 2, the high-order bits in byte 3).
- Register The instruction specifies the register-pair in which the data is located.
- Register Indirect The instruction specifies a register-pair which contains the memory address where the data is located (the high-order bits of the address are in the first register of the pair, the low-order bits in the second).
- Immediate The instruction contains the data itself. This is either an 8-bit quantity or a 16-bit quantity (least significant byte first, most significant byte second).

Unless directed by an interrupt or branch instruction, the execution of instructions proceeds through consecutively increasing memory locations. A branch instruction can specify the address of the next instruction to be executed in one of two ways:

- Direct The branch instruction contains the address of the next instruction to be executed. (Except for the 'RST' instruction, byte 2 contains the low-order address and byte 3 the high-order address.)
- Register Indirect The branch instruction indicates a register-pair which contains the address of the next instruction to be executed. (The high-order bits of the address are in the first register of the pair, the loworder bits in the second.)

The RST instruction is a special one-byte call instruction (usually used during interrupt sequences).

RST includes a three-bit field; program control is transferred to the instruction whose address is eight times the contents of this three-bit field.

Condition Flags

There are five condition flags associated with the execution of instructions on the 8080. They are Zero, Sign, Parity, Carry, and Auxiliary Carry, and are each represented by a 1-bit register in the CPU. A flag is "set" by forcing the bit to 1; "reset" by forcing the bit to 0.

Unless indicated otherwise, when an instruction affects a flag, it affects it in the following manner:

Zero: If the result of an instruction has the value 0, this flag is set; otherwise it is reset.

Sign: If the most significant bit of the result of the operation has the value 1, this flag is set; otherwise it is reset.

- Parity: If the modulo 2 sum of the bits of the result of the operation is 0 (i.e., if the result has even parity), this flag is set; otherwise it is reset (i.e., if the result has odd parity).
- Carry: If the instruction resulted in a carry (from addition), or a borrow (from subtraction of a comparison) out of the high-order bit, this flag is set; otherwise it is reset.

Auxiliary

Carry: If the instruction caused a carry out of bit 3 and into bit 4 of the resulting value, the auxiliary carry is set; otherwise it is reset. This flag is affected by single precision additions, subtractions, increments, decrements, comparisons, and logical operations, but is principally used with additions and increments preceding a DAA (Decimal Adjust Accumulator) instruction.

Symbols and Abbreviations

The following symbols and abbreviations are used in the subsequent description of the 8080 instructions:

SYMBOLS	MEANING
accumulator	Register A
addr	16-bit address quantity
data	8-bit data quantity
data 16	16-bit data quantity
byte 2	The second byte of the instruction
byte 3	The third byte of the instruction
port	8-bit address of an I/O device
r,r,1,r2	One of the registers A,B,C,D,E,H,L
DDD,SSS	The bit pattern designating one of the registers A,B,C,D,E,H,L. (DD= destination, SSS=source):
	DDD or SSS REGISTER NAME
	111 A 000 B 001 C 010 D 011 E 100 H 101 L
rn	One of the register pairs:
гр	B represents the B,C pair with B as the high-order register and C as the low-order register; D represents the D,E pair with D as the high-order register and E as the low-order register;
	H represents the H,L pair with H as the high-order register and L as the low-order register; SP represents the 16-bit stack pointer register.
RP	The bit pattern designating one of the register pairs B,D,H,SP:
	RP REGISTER PAIR
	00B-C01D-E10H-L11SP
rh	The first (high-order) register of a designated pair.
rl	The second (low-order) register of a designated register pair.

PC	16-bit program counter register (PCH and PCL are used to refer to the high-order and low-order 8 bits, respectively).
SP	16-bit stack pointer register (SPH and SPL are used to refer to the high-order and low-order 8 bits, respectively).
r _m	Bit m of the register r (bits are number 7 through 0 from left to right).
Z,S,P,CY,AC	The condition flags: Zero, Sign, Parity, Carry, and Auxiliary Carry, respectively.
()	The contents of the memory loca- tion or registers enclosed in the parentheses.
←	"ls transferred to"A
٨	Logical AND
¥	Exclusive OR
V	Inclusive OR
+	Addition
	Two's complement subtraction
*	Multiplication
↔	"Is exchanged with"
	The one's complement (e.g., (\overline{A}))
n	The restart number 0 through 7
NNN	The binary representation 000 through 111 for restart number 0 through 7, respectively.

Description Format

The following pages provide a detailed description of the instruction set of the 8080. Each instruction is described in the following manner:

- 1. The MAC 80 assembler format, consisting of the instruction mnemonic and operand fields, is printed in BOLDFACE on the left side of the first line.
- 2. The name of the instruction is enclosed in parenthesis on the right side of the first line.

- 3. The next line(s) contain a symbolic description of the operation of the instruction.
- 4. This is followed by a narative description of the operand of the instruction.
- 5. The following line(s) contain the binary fields and patterns that comprise the machine instruction.
- 6. The last four lines contain incidental information about the execution of the instruction. The number of machine cycles and states required to execute the instruction are listed first. If the instruction has two possible execution times, as in a Conditional Jump, both times will be listed, separated by a slash. Next, any significant data addressing modes (see Page A-2) are listed. The last line lists any of the five Flags that are affected by the execution of the instruction.

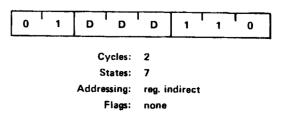
Data Transfer Group

This group of instructions transfer data to and from registers and memory. Condition flags are not affected by any instruction in this group.

MOV r1, r2 (Move Register)

 $(r1) \leftarrow (r2)$

The content of register r2 is moved to register r1.


0	1	D	D	D	s	S	s
		С	ycles:	1			

States: 5 Addressing: register Flags: none

MOV r,M (Move from memory)

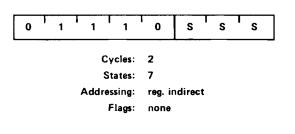
 $(r) \leftarrow ((H) (L))$

The content of the memory location, whose address is in registers H and L, is moved to register r.

MOV M, r (Move to memory) $((H)(L)) \leftarrow (r)$

MVI r, data

 $(\mathbf{r}) \leftarrow (byte 2)$


0

moved to register r.

0

D

The content of register r is moved to the memory location whose address is in registers H and L.

(Move Immediate)

The content of byte 2 of the instruction is

data

2

7

none

immediate

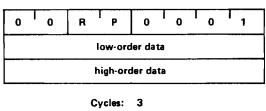
D

Cycles:

States:

Flags:

Addressing:


D

1

LXI rp, data 16 (Load register pair immediate) (rh) ← (byte 3),

 $(rl) \leftarrow (byte 2)$

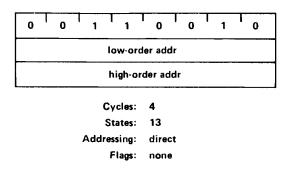
Byte 3 of the instruction is moved into the highorder register (rh) of the register pair rp. Byte 2 of the instruction is moved into the low-order register (rl) of the register pair rp.

States: 10 Addressing: immediate Flags: none

LDA addr (Load Accumulator direct)

(A) \leftarrow ((byte 3)(byte 2))

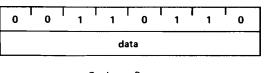
The content of the memory location, whose address is specified in byte 2 and byte 3 of the instruction, is moved to register A.


0	0	T	1	Т	1	T	1	Т	0	Т	1	Т	0
				lo	₩ -01	rde	r ad	dr					
				hi	gh-c	orde	er a	ddr					
				Cyc	les:		4						
				Sta	ites:		13						

Addressing: direct

Flags: none

STA addr (Store Accumulator direct) ((byte 3)(byte 2)) ← (A)


The content of the accumulator is moved to the memory location whose address is specified in byte 2 and byte 3 of the instruction.

dress is specified instruction, is mo

MVI M, data	(Move to memory immediate)
((H)(L)) ← (I	byte 2)
The content	t of bute 2 of the instruction

The content of byte 2 of the instruction is moved to the memory location whose address is in registers H and L.

Cycles: 3 States: 10 Addressing: immed./reg. indirect Flags: none

LHLD addr (Load H and L direct)

 $(L) \leftarrow ((byte 3)(byte 2))$

(H) \leftarrow ((byte 3)(byte 2) + 1)

The content of the memory location, whose address is specified in byte 2 and byte 3 of the instruction, is moved to register L. The content of the memory location at the succeeding address is moved to register H.

	v	•	U		U
lov	w∙orde	r addr			
 hiç	gh-orde	er addr			
			low-order addr high-order addr	low-order addr high-order addr	· · · · · · · · · · · · · · · · · · ·

Cycles: 5 States: 16 Addressing: direct Flags: none

SHLD addr (Store H and L direct)

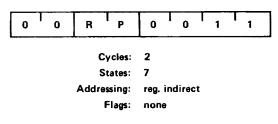
 $((byte 3)(byte 2)) \leftarrow (L)$

 $((byte 3)(byte 2) + 1) \leftarrow (H)$

The content of register L is moved to the memory location whose address is specified in byte 2 and byte 3. The content of register H is moved to the succeeding memory location.

0	0	1	0	0	0	1	0
		1	low-ord	ler add	r		
		ł	nigh-ord	der add	r		

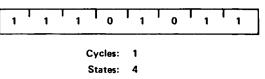
Cycles: 5 States: 16 Addressing: direct Flags: none


LDAX rp (Load accumulator indirect) (A) \leftarrow ((rp))

The content of the memory location, whose address is in the register pair rp, is moved to register A. Note: Only register pairs rp=B (registers B and C) or rp=D (registers D and E) may be specified.

Û	0	R	P	1	0	1	0
		C	ycles:	2			
		S	tates:	7			
		Addre	ssing:	reg. ir	ndirect		
		1	Flags:	none			

STAX rp (Store accumulator indirect) $((rp)) \leftarrow (A)$


The content of register A is moved to the memory location whose address is in the register pair rp. Note: Only register pairs rp=B (registers B and C) or rp=D (registers D and E) may be specified.

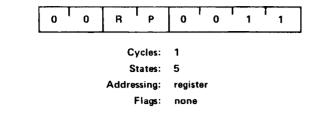
XCHG (Exchange H and L with D and E) (H) \leftrightarrow (D)

 $(L) \leftrightarrow (E)$

The contents of registers H and L are exchanged with the contents of registers D and E.

Addressing: register Flags: none

DCR M (Decrement memory)


 $((H)(L)) \leftarrow ((H)(L)) - 1$

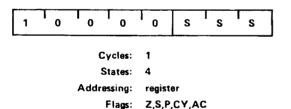
The content of the memory location whose address is contained in the H and L registers is decremented by one. Note: All condition flags except CY are affected.

INX rp (Increment register pair) (rh)(rl) ← (rh)(rl) + 1

The content of the register pair rp is incremented by one. Note: No condition flags are affected.

Arithmetic Group

This group of instructions performs arithmetic operations on data in registers and memory.


Unless otherwise indicated, all instructions in this group affect the Zero, Sign, Parity, Carry, and Auxiliary Carry flags according to the standard rules.

All subtraction operations are performed via two's complement arithmetic, and set the carry flag to one to indicate a borrow and clear it to indicate no borrow.

ADD r (Add Register)

 $(A) \leftarrow (A) + (r)$

The content of register r is added to the content of the accumulator. The result is placed in the accumulator.

ADD M (Add Memory)

 $(A) \leftarrow (A) + ((H)(L))$

The content of the memory location whose address is contained in the H and L register is added to the content of the accumulator. The result is placed in the accumulator.

1	Т	0	Т	0	0	0	Т - ₁		1	Т	0
				C	ycles:	2					
				S	tates:	7					
			A	ddre	ssing:	reg.	indir	ect			
				1	Flags:	Z,S,	P,CY	,AC			

ADI data (Add Immediate)

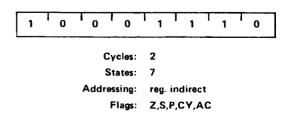
 $(A) \leftarrow (A) + (byte 2)$

The content of the second byte of the instruction is added to the constant of the accumulator. The result is placed in the accumulator.

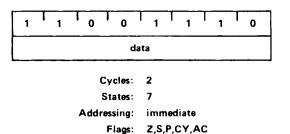
1	1	0	0	0	1	1	0
			da	ita			

Cycles: 2 States: 7 Addressing: immediate Flags: Z,S,P,CY,AC

ADC r (Add Register with Carry) (A) \leftarrow (A) + (r) + (CY)

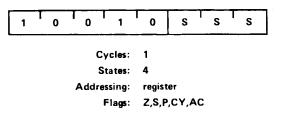

The content of register r and the content of the carry bit are added to the content of the accumulator. The result is placed in the accumulator.

ADC M (Add Memory with Carry)


 $(A) \leftarrow (A) + ((H)(L)) + (CY)$

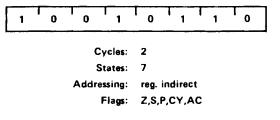
The content of the memory location whose address is contained in the H and L registers and the content of the CY flag are added to the accumulator. The result is placed in the accumulator.

ACI data (Add Immediate with Carry) (A) \leftarrow (A) + (byte 2) + (CY)


The content of the second byte of the instruction and the content of the CY flag are added to the contents of the accumulator. The result is placed in the accumulator.

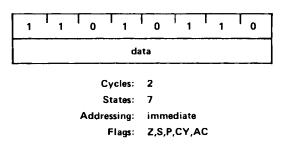
SUB r (Subtract Register)

 $(A) \leftarrow (A) - (r)$


The content of register r is subtracted from the content of the accumulator. The result is placed in the accumulator.

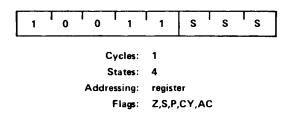
SUB M (Subtract Memory)

 $(A) \leftarrow (A) - ((H)(L))$


The content of the memory location whose address is contained in the H and L registers is subtracted from the content of the accumulator. The result is placed in the accumulator.

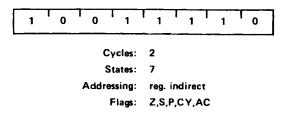
SUI data (Subtract Immediate)

 $(A) \leftarrow (A) - (byte 2)$

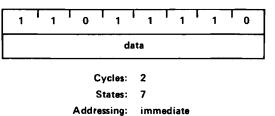

The content of the second byte of the instruction is subtracted from the content of the accumulator. The result is placed in the accumulator.

SBB r (Subtract Register with Borrow)

 $(A) \leftarrow (A) - (r) - (CY)$


The content of register r and the content of the CY flag are both subtracted from the accumulator. The result is placed in the accumulator.

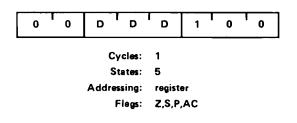
SBB M (Subtract Memory with Borrow)


 $(A) \leftarrow (A) - ((H)(L)) - (CY)$

The content of the memory location whose address is contained in the H and L registers and the content of the CY flag are both subtracted from the accumulator. The result is placed in the accumulator.

SBI data (Subtract Immediate with Borrow)
(A) ← (A) - (byte 2) - (CY)

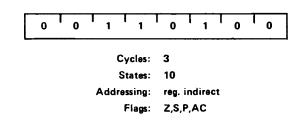
The contents of the second byte of the instruction and the contents of the CY flag are both subtracted from the accumulator. The result is placed in the accumulator.



Flags: Z,S,P,CY,AC

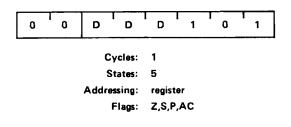
INR r (Increment Register)

 $(\mathbf{r}) \leftarrow (\mathbf{r}) + 1$


The content of register r is incremented by one. Note: All condition flags except CY are affected.

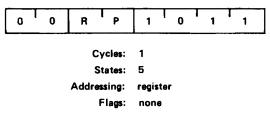
INR M (Increment Memory)

 $((H)(L)) \leftarrow ((H)(L)) + 1$


The content of the memory location whose address is contained in the H and L registers is incremented by one. Note: All condition flags except CY are affected.

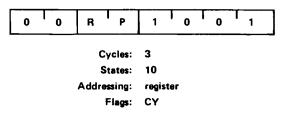
DCR r (Decrement Register)

 $(r) \leftarrow (r) - 1$


The content of register r is decremented by one. Note: All condition flags except CY are affected.

DCX rp (Decrement register pair)

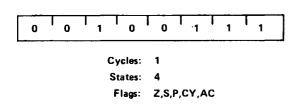
 $(rh)(rl) \leftarrow (rh)(rl) - l$


The content of the register pair rp is decremented by one. Note: No condition flags are affected.

DAD rp (Add register pair to H and L)

 $(H)(L) \leftarrow (H)(L) + (rh)(rl)$

The content of the register pair rp is added to the content of the register pair H and L. The result is placed in the register pair H and L. Note: Only the CY flag is affected. It is set if there is a carry out of the double precision add; otherwise it is reset.



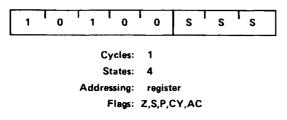
DAA (Decimal Adjust Accumulator) The 8-bit number in the accumulator is adjusted to form two 4-bit Binary-Coded-Decimal digits by the following process:

1. If the value of the least significant 4 bits of the accumulator is greater than 9 or if the AC flag is set, 6 is added to the accumulator.

2. If the value of the most significant 4 bits of the accumulator is now greater than 9, or if the CY flag is set, 6 is added to the most significant 4 bits of the accumulator.

NOTE: All flags are affected.

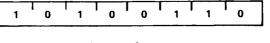
Logical Group


This group of instructions performs logical (Boolean) operations on data in registers and memory and on condition flags.

Unless indicated otherwise, all instructions in this group affect the Zero, Sign, Parity, Auxiliary Carry, and Carry flags according to the standard rules.

ANA r (AND Register)

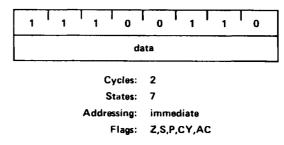
 $(A) \leftarrow (A) \land (r)$


The content of register r is logically ANDed with the content of the accumulator. The result is placed in the accumulator. The CY flag is cleared.

ANA M (AND memory)

 $(A) \leftarrow (A) \land ((H)(L))$

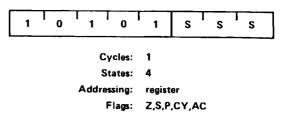
The contents of the memory location whose address is contained in the H and L registers is logically ANDed with the content of the accumulator. The CY flag is cleared.



Cycles:	2
States:	7
Addressing:	reg. indirect
Flags:	Z,S,P,CY,AC

ANI data (AND immediate)

(A) \leftarrow (A) \land (byte 2)

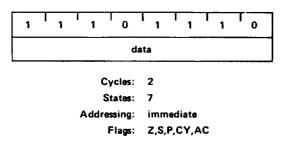

The content of the second byte of the instruction is logically ANDed with the contents of the accumulator. The result is placed in the accumulator. The CY flag is cleared.

XRA r (Exclusive OR Register) (A) \leftarrow (A) \lor (F)

 $(A) \leftarrow (A) \forall (r)$

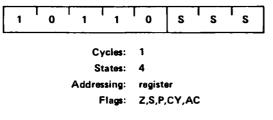
The content of register r is exclusive-ORed with the content of the accumulator. The result is placed in the accumulator. The CY and AC flags are cleared.

XRA M (Exclusive OR Memory) (A) \leftarrow (A) \forall ((H)(L))


The content of the memory location whose address is contained in the H and L registers is exclusive-ORed with the content of the accumulator. The result is placed in the accumulator. The CY and AC flags are cleared.

Cycles:	2
States:	7
Addressing:	reg. indirect
Flags:	Z,S,P,CY,AC

XRI data (Exclusive OR immediate) (A) \leftarrow (A) V (byte 2)


The content of the second byte of the instruction is exclusive-ORed with the content of the accumulator. The result is placed in the accumulator. The CY and AC flags are cleared.

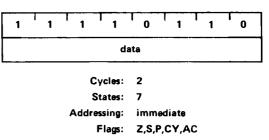
ORA r (OR Register)

 $(A) \leftarrow (A) \lor (r)$

The content of register r is inclusive-ORed with the content of the accumulator. The result is placed in the accumulator. The CY and AC flags are cleared.

ORA M

RA M (OR Memory) (A) \leftarrow (A) V ((H)(L))


The content of the memory location whose address is contained in the H and L registers is inclusive-ORed with the content of the accumulator. The result is placed in the accumulator. The CY and AC flags are cleared.

1	0	1	1	0	1	1	0		
		C	ycies:	2					
		S	tates:	7					
		Addre	ssing:	reg. in	direct				
		I	Flags:	Z,S,P,CY,AC					

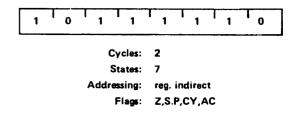
ORI data (OR Immediate)

 $(A) \leftarrow (A) \lor (byte 2)$

The content of the second byte of the instruction is inclusive-ORed with the content of the accumulator. The result is placed in the accumulator. The CY and AC flags are cleared.

CMP r (Compare Register)

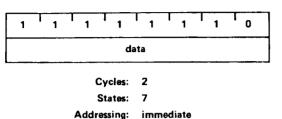
(A) - (r)


The content of register r is subtracted from the accumulator. The accumulator remains unchanged. The condition flags are set as a result of the subtraction. The Z flag is set to 1 if (A) = (r). The CY flag is set to 1 if (A) < (r).

1	0	1	1	1	s	s	s		
		c	Cycles:	1					
		:	States:	4					
		Addr	essing:	regist	er				
			Flags:	Z,S,P	,CY,AC	2			

CMP M (Compare memory)

(A) - ((H)(L))


The content of the memory location whose address is contained in the H and L registers is subtracted from the accumulator. The accumulator remains unchanged. The condition flags are set as a result of the subtraction. The Z flag is set to 1 of (A) = ((H)(L)). The CY flag is set to 1 if (A) < ((H)(L)).

CPI data (Compare immediate)

 $(\mathbf{A}) - (\mathbf{byte}\ 2)$

The content of the second byte of the instruction is subtracted from the accumulator. The condition flags are set by the result of the subtraction. The Z flag is set to 1 if (A) = (byte 2). The CY flag is set to 1 if (A) < (byte 2).

Flags: Z,S,P,CY,AC

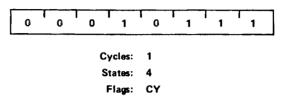
RLC (Rotate left) $(A_{n+1}) \leftarrow (A_n); (A_0) \leftarrow (A_7)$ $(CY) \leftarrow (A_7)$

The content of the accumulator is rotated left one position. The low-order bits and the CY flag are both set to the value shifted out of the highorder bit position. Only the CY flag is affected.

RRC (Rotate right)

$$(A_n) \leftarrow (A_{n-1}); (A_7) \leftarrow (A_0)$$

(CY) \leftarrow (A_0)

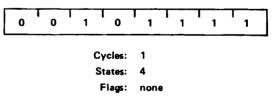

The content of the accumulator is rotated right one position. The high-order bit and the CY flag are both set to the value shifted out of the loworder bit position. Only the CY flag is affected.

0	0	0	0	1	1	1	1	
		(Cycles:					
			Stat es :	4				
			Flags:	CY				

RAL (Rotate left through carry) $(A_{n+1}) \leftarrow (A_n); (CY) \leftarrow (A_7)$

 $(A_0) \leftarrow (CY)$

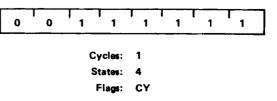
The content of the accumulator is rotated left one position through the CY flag. The low-order bit is set equal to the CY flag and the CY flag is set to the value shifted out of the high-order bit. Only the CY flag is affected.


RAR (Rotate right through carry) $(A_n) \leftarrow (A_{n+1}); (CY) \leftarrow (A_0)$ $(A_7) \leftarrow (CY)$

The content of the accumulator is rotated right one position through the CY flag. The highorder bit is set to the CY flag and the CY flag is set to the value shifted out of the low-order bit. Only the CY flag is affected.

CMA (Complement accumulator)

 $(A) \leftarrow (A)$


The contents of the accumulator are complemented (zero bits become 1, one bits become 0). No flags are affected.

CMC (Complement carry)

 $(CY) \leftarrow (CY)$

The CY flag is complemented. No other flags are affected.

STC (Set carry)

(CY) ← 1

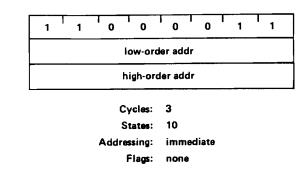
The CY flag is set to 1. No other flags are affected.

0 0	1 1	T O	1	1	1
	Cycles:	1			
	States:	4			
	Flags:	CY			

Branch Group

This group of instructions alter normal sequential program flow.

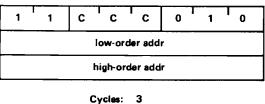
Condition flags are not affected by an instruction in this group.

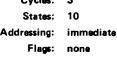

The two types of branch instructions are unconditional and conditional. Unconditional transfers simply perform the specified operation on register PC (the program counter). Conditional transfers examine the status of one of the four processor flags to determine if the specified branch is to be executed. The conditions that may be specified are as follows:

CONDITION CCC NZ - not zero (Z=0) 000 Ζ - zero (Z = 1) 001 NC - no carry (C = 0) 010 $- \operatorname{carry}(CY = 1)$ С 011 - parity odd (P = 0) PO 100 PE - parity even (P = 1) 101 Р - plus (S = 0) 110 М - minus (S = 1) 111

JMP addr (Jump)

 $(PC) \rightarrow (byte 3)(byte 2)$

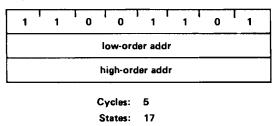

Control is transferred to the instruction whose address is specified in byte 3 and byte 2 of the current instruction.



Jcondition addr (Conditional jump) If (CCC),

 $(PC) \leftarrow (byte 3)(byte 2)$

If the specified condition is true, control is transferred to the instruction whose address is specified in byte 3 and byte 2 of the current instruction; otherwise, control continues sequentially.

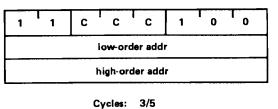

CALL addr (Call)

 $((SP) - 1) \leftarrow (PCH)$

 $((SP) - 2) \leftarrow (PCL)$

- $(SP) \leftarrow (SP) 2$
- $(PC) \leftarrow (byte 3)(byte 2)$

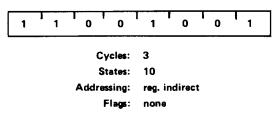
The high-order 8 bits of the next instruction address are moved to the memory location whose address is one less than the content of register SP. The low-order 8 bits of the next instruction address are moved to the memory location whose address is two less than the content of register SP. The content of register SP is decremented by 2. Control is transferred to the instruction whose address is specified in byte 3 and byte 2 of the current instruction.


Addressing: immed./reg. indirect Flags: none **Ccondition addr** (Condition call)

If (CCC),

- $((SP) 1) \leftarrow (PCH)$
- $((SP) 2) \leftarrow (PCL)$
- $(SP) \leftarrow (SP) 2$

 $(PC) \leftarrow (byte 3)(byte 2)$


If the specified condition is true, the actions specified in the CALL instruction (see above) are performed; otherwise, control continues sequentially.

States:	11/17
Addressing:	immed./reg. indirect
Flags:	none

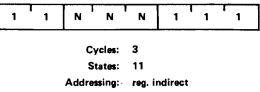
RET (Return) (PCL) \leftarrow ((SP)); (PCH) \leftarrow ((SP) + 1); (SP) \leftarrow (SP) + 2;

The content of the memory location whose address is specified in register SP is moved to the low-order 8 bits of register PC. The content of the memory location whose address is one more than the content of register SP is moved to the high-order 8 bits of register PC. The content of register SP is incremented by 2.

Rcondition (Conditional return) If (CCC),

 $(PCL) \leftarrow ((SP))$ $(PCH) \leftarrow ((SP) + 1)$

 $(SP) \leftarrow (SP) + 2$


If the specified condition is true, the actions specified in the RET instruction (see above) are performed; otherwise, control continues sequentially.

1	1	С	с	' c	0	10	0		
		Cy	cles:	1/3					
		Sta	ates:	5/11					
		Address	sing:	reg. indirect					
		F	lags:	none					

RST n (Restart)

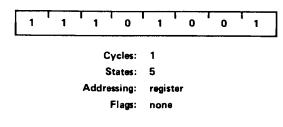
$$((SP) - 1) \leftarrow (PCH)$$

 $((SP) - 2) \leftarrow (PCL)$
 $(SP) \leftarrow (SP) - 2$
 $(PC) \leftarrow 8 * (NNN)$

The high-order 8 bits of the next instruction address are moved to the memory location whose address is one less than the content of register SP. The low-order 8 bits of the next instruction address are moved to the memory location whose address is two less than the content of register SP. The content of register SP is decremented by two. Control is transferred to the instruction whose address is eight times the content of NNN.

Flags:	none

15 14 13	12 11	10	9	8	7	6	5	4	3	2	1	0
	<u> </u>						_		_	_	_	-


	0	0	0	0	0	0	0	0	0	0	N	N	N	0	0	0	
--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Program Counter After Restart

PCHL (Jump H and L indirect – move H and L to PC)

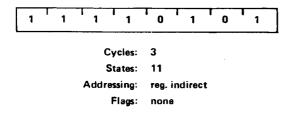
 $(PCH) \leftarrow (H)$ $(PCL) \leftarrow (L)$

The content of register H is moved to the highorder 8 bits of register PC. The content of register L is moved to the low-order 8 bits of register PC.

Stack, I/O, and Machine Control Group

This group of instructions performs I/O, manipulates the Stack, and alters internal control flags.

Unless otherwise specified, condition flags are not affected by any instructions in this group.

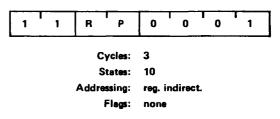

PUSH rp(Push) $((SP) - 1) \leftarrow (rh)$ $((SP) - 2) \leftarrow (rl)$ $(SP) \leftarrow (SP) - 2$

The content of the high-order register of register pair rp is moved to the memory location whose address is one less than the content of register SP. The content of the low-order register of register pair rp is moved to the memory location whose address is two less than the content of register SP. The content of register SP is decremented by 2. Note: Register pair rp=SP may not be specified.

1	1	R	P	0	1	0	1		
			ycles:						
		-	itates: ssing:	11 reg. indirect					
			Flags:	none					

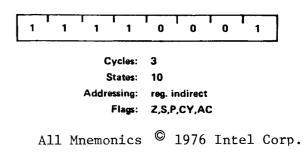
PUSH PSW (Push processor status word) ((SP) - 1) \leftarrow (A) ((SP) - 2)₀ \leftarrow (CY, ((SP) - 2)₁ \leftarrow 1 ((SP) - 2)₂ \leftarrow (P), ((SP) - 2)₃ \leftarrow 0 ((SP) - 2)₄ \leftarrow (AC), ((SP) - 2)₅ \leftarrow 0 ((SP) - 2)₆ \leftarrow (Z), ((SP) - 2)₇ \leftarrow (S) (SP) \leftarrow (SP) - 2 The content of maintain A is merced to the

The content of register A is moved to the memory location whose address is one less than register SP. The contents of the condition flags are assembled into a processor status word and the word is moved to the memory location whose address is two less than the content of register SP. The content of register SP is decremented by two.


D-15

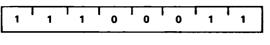
FLAG WORD

D7	D ₆	D ₅	D4	D3	D ₂	D ₁	D ₀
S	z	0	AC	0	P	1	СҮ


 $\begin{array}{c} \textbf{POP rp} \qquad (Pop) \\ (rl) \leftarrow ((SP)) \\ (rh) \leftarrow ((SP) + 1) \\ (SP) \leftarrow (SP) + 2 \end{array}$

The content of the memory location, whose address is specified by the content of register SP, is moved to the low-order register of register pair rp. The content of the memory location, whose address is one more than the content of register SP, is moved to the high-order register of register pait rp. The content of register SP is incremented by 2. Note: Register pair rp=SP may not be specified.

POP PSW (Pop processor status word) (CY) \leftarrow ((SP))₀ (P) \leftarrow ((SP))₂ (AC) \leftarrow ((SP))₄ (Z) \leftarrow ((SP))₆ (S) \leftarrow ((SP))₇ (A) \leftarrow ((SP) + 1) (SP) \leftarrow (SP) + 2


The content of the memory location whose address is specified by the content of register SP is used to restore the condition flags. The content of the memory location whose address is one more than the content of register SP is moved to register A. The content of register SP is incremented by 2.

XTHL (Exchange stack top with H and L) (L) \leftrightarrow ((SP))

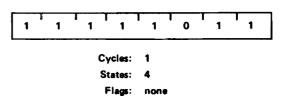
 $(H) \leftrightarrow ((SP) + 1)$

The content of the L register is exchanged with the content of the memory location whose address is specified by the content of register SP. The content of the H register is exchanged with the content of the memory location whose address is one more than the content of register SP.

Cycles: 5 States: 18 Addressing: reg. indirect Flags: none

 1
 1
 0
 1
 1
 1

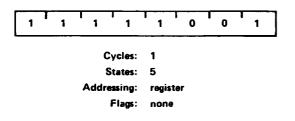
 port
 Cycles: 3


 States:
 10

 Addressing:
 direct

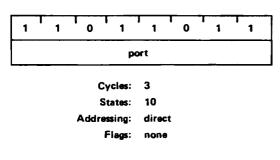
 Flags:
 none

EI (Enable interrupt)


The interrupt system is enabled following the execution of the next instruction.

SPHL (Move HL to SP)

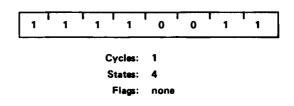
 $(SP) \leftarrow (H)(L)$


The contents of registers H and L (16 bits) are moved to register SP.

IN port (Input)

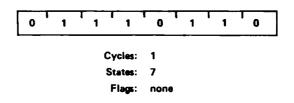
 $(A) \leftarrow (data)$

The data placed on the 8-bit bidirectional data bus by the specified port is moved to register A.

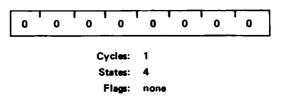

OUT port (Output)

 $(data) \leftarrow (A)$

The content of register A is placed on the 8-bit bidirectional data bus for transmission to the specified port.


DI (Disable interrupts)

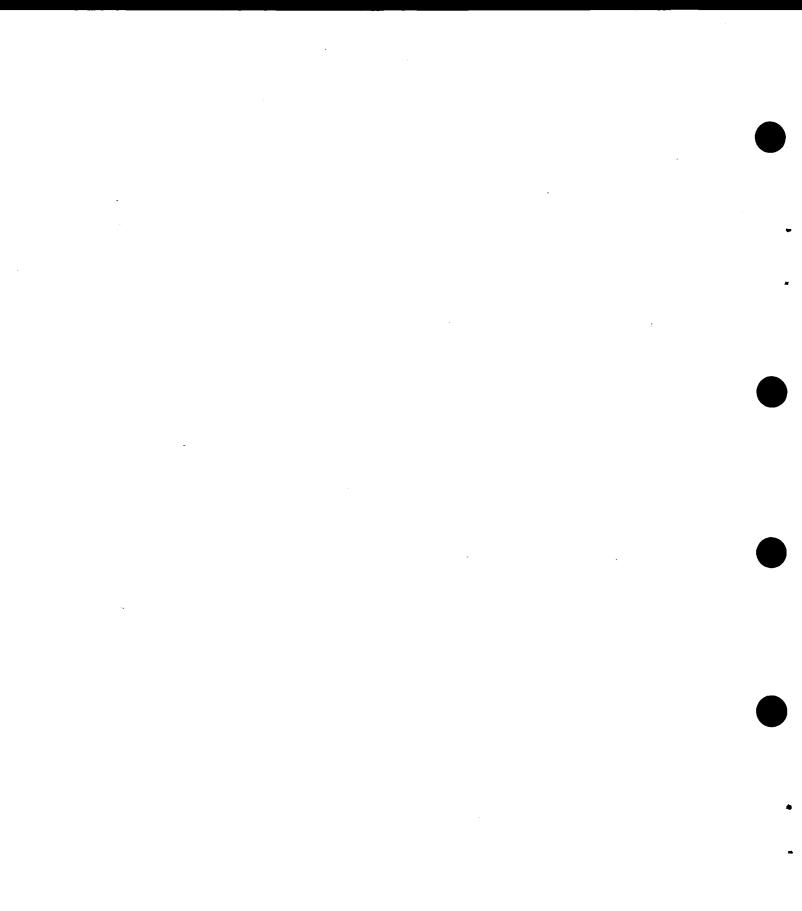
The interrupt system is disabled immediately following the execution of the DI instruction.


HLT (Halt)

The processor is stopped. The registers and flags are unaffected.

NOP (No op)

No operation is performed. The registers and flags are unaffected.



INSTRUCTION SET

Summary of Processor Instructions

MNEMONIC	DESCRIPTION	D7	D ₆	D5	D4	D3	D2	D ₁	D ₀	CLOCK ⁽²⁾ CYCLES	MNEMONIC	DESCRIPTION	D7	Dg	D5	D4	D3	D2	D1		CLOCK ⁽
MOV _{11,12}	Move register to register	U	I	Ð	D	D	s	s	s	5	RZ	Return on zero	1	1	0	0	1	0	0	0	5/11
MOV M,r	Move register to memory	0	1	1	1	0	S	S	S	7	RNZ	Return on no zero	1	1	0	0	0	0	0	0	5/11
MOV 1,M	Move memory to register	0	1	D	D	D	T	1	0	7	RP	Return on positive	1	L.	1	1	0	0	0	0	5/11
HLT	Halt	0	ł	1	I	0	I	L	Û	7	RM	Return on minus	1	Ł	ł	L	1	0	0	0	5/11
MVIr	Move immediate register	0	0	D	D	D	1	1	0	7	RPE	Return on parity even	1	Т	1	0	1	0	0	0	5/11
MVLM	Move immediate memory	0	0	1	1	0	1	1	0	10	RPO	Return on parity odd	1	1	1	0	0	0	0	0	5/11
INR r	Increment register	0	0	D	D	D	1	0	0	5	RST	Restart	1	1	A	A	A	1	1	1	11
DCR r	Decrement register	0	0	D	D	D	ļ	0	1	5	IN	Input		1	0	1	1	0	1	1	10
INR M	Increment memory	0	0	1	1	0	1	0	0	10	OUT	Output	I	I	0	1	0	0	1	ţ	10
DCR M	Decrement memory	0	0	1	1	0	1	0	1	10	LXIB	Loud immediate register	0	0	0	0	0	0	0	1	10
ADD r ADC r	Add register to A	1	0 0	0	0 0	0 1	S S	S S	S S	4	LXID	Pair B & C	0	0	0		0	0	0	i	10
SUBI	Add register to A with carry	1	0	0	1	0	s	S	s	4		Load immediate register	U	U	0		U	0	U	•	10
SBBr	Subtract register from A	1	0	0	1	1	S	S	S	4	LXIH	Pair D & E Load immediate register	0	0	1	0	0	0	0	ı	10
3661	Subtract register from A	1	U	U	- 1	1	3	3	3	4		Pair H & L	0	U		U	0	0	0		10
ANA r	with borrow	ı	0		Û	0	s	s	s	4	LXI SP		0	0	1	1	0	0	0	1	10
XRA	And register with A Exclusive Or register with A	i	0	1	0	1	S	S	S	4	PUSH B	Load immediate stack pointer Push register Pair B & C on	Ĭ	I	0	0	0	1	0	i	11
ORAI	Or register with A	i.	Ű	i	J	0	S	S	S	4		stack		•		5	v	•	v	•	
CMPr	Compare register with A	i	0		1	ĩ	S	S	S	4	PUSH D	Push register Pair D & E on		1	0	L	0	1	0	Т	11
ADD M	Add memory to A	ì	0	o	ó	0	1	1	0	7		stack	•	•	-	·	•	·	ũ	•	••
ADC M	Add memory to A with carry	-	0	ő	ŏ	ĩ	i	ì	ŏ	7	PUSH H	Push register Pair H & L on	I	I	1	0	0	ı.	0	ı	n
SUB M	Subtract memory from A	i	õ	Ō	ĩ	0	i	i	ō	7		stack		-	-	-	-		-	-	
SBB M	Subtract memory from A	ł	ō	0	i	1	1	i	0	7	PUSH PSW	Push A and Hags	I	1	1	1	0	1	0	1	П
	with borrow											on stack									
ANA M	And memory with A	ł	0	1	0	0	1	i	0	7	POP B	Pop register pair B & C off	I.	1	0	0	0	0	0	I.	10
XRA M	Exclusive Or memory with A	1	0	1	0	E	ŧ	L	0	7		stuck									
ORAM	Or memory with A	1	0	1	1	0	1	i	0	7	POP D	Pop register pair D & E off	1	1	0	1	0	0	0	I.	10
CMP M	Compare memory with A	1	0	i.	ì	1	I.	1	0	7		stack									
ADÌ	Add immediate to A	i	1	0	0	0	i.	i	0	7	РОР Н	Pop register pair H & L off	i	1	1	0	0	0	0	L	10
ACI	Add immediate to A with	I.	1	0	0	ι	1	ŧ	Û	7		stack									
	catry										POP PSW	Pop A and Hags	1	ł	1	1	0	0	0	1	10
SUI	Subtract immediate from A	1	1	0	1	0	i	1	0	7		off stack									
SBI	Subtract immediate from A	1	1	0	1	i	1	I.	0	7	STA	Store A direct	0	0	1	1	0	0	1	0	13
	with borrow										LDA	Load A direct	0	0	1	1	1	0	1	0	13
ANI	And immediate with A	1	i	1	0	0	1	1	0	7	XCHG	Exchange D & E, H & L	1	1	1	0	i	0	1	1	4
XRI	Exclusive Or immediate with	1	1	1	0	1	1	ı	0	7		Registers									
	A										XTHL	Exchange top of stock H & L	1	1	1	0	0	0	1	1	18
ORI	Or immediate with A	l	1	1	1	0	1	1	0	7	SPHL	H & L to stack pointer	1	1	1	- I	1	0	0	1	5
CPI	Compare immediate with A	1	1	1	1	1	1	1	0	7	PCHL	H & L to program counter	1	1	1	0	1	0	0	1	5
RLC	Rotate A left	0	0	0	0	0	i	1	1	4	DAD B	Add B & C to H & L	0	0	0	0	1	0	0	I.	10
RRC	Rotate A right	0	0	0	0	1	I	I	L	4	DADD	Add D&E to H&L	0	0	0	1	1	0	0	1	10
RAL	Rotate A left through carry	0	0	0	1	0	1	1	1	4	DADH	Add H & L to H & L	0	0	1	0	1	0	0	1	10
RAR	Rotate A right through	0	Û	0	1	1	1	1	L	4	DAD SP	Add stack pointer to H & L	0	0	1	1	1	0	0	I	10
	carry										STAX B	Store A indirect	0	0	0	0	0	0	1	0	7
JMP	Jump unconditional	1	ı	0	0	0	0	1	1	10	STAX D	Store A indirect	0	0	0	l	0	0	1	0	7
JC	Jump on carry	ł	1	0	1	1	0	1	0	10	LDAX B	Load A indirect	0	0	0	0	1	0	1	0	7
JNC	Jump on no carry	ł	1	0	1	0	0	1	0	10	LDAX D	Load A indirect	0	0	0	1	1	0	1	0	7
JZ	Jump on zero	1	1	0	0	1	0	1	0	10	INX B	Increment B & C registers	0	0	0	0	0	0	1		5
JNZ	Jump on no zero	1	1	0	0	0	0	1	0	10	INX D	Increment D & E registers	0	0	0	1	0	0	1	1	5 5
JM JB	Jump on positive		1	1	1	0	0	1	0	10		Increment H & L registers	0	0	1	0	0	0	1		5
JPE	Jump on minus	1	1		1	1	0	1	0	10	INX SP	Increment stack pointer	0	0 0	1	1	1	0	1		5
1PE	Jump on parity even	1		1	0	1	0	1	0 0	10	DCX B	Decrement B & C	0	0	0	0	1	0	i	1	5
CALL	Jump on parity odd Call unconditional	1	-	1	0	U v	0	1	0	10 17	DCX D DCX H	Decrement D & E	0	0	1	0	1	0	ł	-	5
CC	Call on carry	1	1	0	1	1	1	0	0	17	DCX H	Decrement H & L Decrement stack pointer	0	0	1	1	- 1	0	1	i	5
CNC	Call on no carry	÷	1	0	i	0	i	0	0	11/17	CMA	Complement A	0	0	i	0	÷	ĩ	-i	i	4
CZ	Call on zero	i	1	ő	0	1	i	0	0	11/17	STC	Set carry	0	0	÷	ĩ	ö	i	i	i	4
CNZ	Call on no zero	i	i	0	0	0	i	0	0	11/17	CMC	Complement carry	0	0	i	i	ĩ	i	i	i	4
CP	Call on positive	;	- 1	1	1	0	1	0	0	11/17	DAA	Decimal adjust A	0	0	1	0	0		÷	i	4
CM	Call on minus	1	i	i	i	1	1	0	0	11/17	SHLD	Store H & L direct	0	0	i	Ő	0	Ő	i	ò	16
CPE	Call on parity even	ì	i	1	0	1	i	0	0	11/17		Load H & L direct	0	0	1	Ő	ĭ	õ	i	ŏ	16
CPO	Call on parity odd	í	i	i	0	Ó	i	ŏ	õ	11/17	EI	Enable Interrupts	ĩ	i	i	1	i	ŏ	i	š	4
RET	Return	i	i	ò	Ő	1	ò	ō	1	10	DI	Disable interrupt	,	i	ì	i	ò	õ	i	i	4
RC	Return on carry	i	i	ő	1	i	0	0	0	5/11	NOP	No-operation	ò	ò	0	0	Ő	ŏ	0	ò	4
RNC	Return on no carry	1	i	Ő	1	ò	0	0	0	5/11		AG-operation	U	v	U	0	v	v			-
		•			•				•	-///											

NOTES: 1. DDD or SSS - 000 B - 001 C - 010 D - 011 E - 100 H - 101 L - 110 Memory - 111 A. 2. Two possible cycle times, (5/11) indicate instruction cycles dependent on condition flags.

APPENDIX E

SBC 80P MONITOR PROGRAM LISTING

.

•

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 1 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

4

3

TITLE '80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976' 2 80/10 MONITOR M80/10 VERSION 1.1 1 NOVEMBER 1976 (C) 1976 INTEL CORPORATION. ALL RIGHTS RESERVED. NO PART OF THIS PROGRAM OR PUBLICATION MAY BE REPRODUCED, TRANSMITTED, TRANSCRIBED, STORED IN A RETRIEVAL SYSTEM, OR TRANSLATED INTO ANY LANGUAGE OR : COMPUTER LANGUAGE, IN ANY FORM OR BY ANY MEANS, ELECTRONIC, MECHANICAL, MAGNETIC, OPTICAL, CHEMICAL, MANUAL OR OTHERWISE, WITHOUT THE PRIOR WRITTEN PERMISSION OF INTEL CORPORATION, 3065 BOWERS AVENUE, SANTA CLARA, CALIFORNIA 95051. *********** ABSTRACT _____ ; THIS PROGRAM RUNS ON THE SBC 80/10 BOARD AND IS DESIGNED TO PROVIDE ; THE USER WITH A MINIMAL MONITOR. BY USING THIS PROGRAM, ; THE USER CAN EXAMINE AND CHANGE MEMORY OR CPU REGISTERS, LOAD ; A PROGRAM (IN ABSOLUTE HEX) INTO RAM, AND EXECUTE INSTRUCTIONS ; ALREADY IN MEMORY. THE MONITOR ALSO PROVIDES THE USER WITH ; ROUTINES FOR PERFORMING CONSOLE I/O AND PAPER TAPE I/O. : ; PROGRAM ORGANIZATION ; THE LISTING IS ORGANIZED IN THE FOLLOWING WAY. FIRST THE BASIC ; MONITOR FUNCTIONS TOGETHER WITH THE CONSOLE I/O ARE LOCATED IN THE ; FIRST 1K OF ROM FOLLOWED BY THE PAPER TAPE FUNCTIONS AND I/O IN THE ; SECOND 1K OF ROM. WITHIN THE FIRST ROM IS CONTAINED THE COMMAND ; RECOGNIZER, WHICH IS THE HIGHEST LEVEL ROUTINE IN THE PROGRAM. ; NEXT THE ROUTINES TO IMPLEMENT THE VARIOUS COMMANDS. FINALLY, : THE UTILITY ROUTINES WHICH ACTUALLY DO THE DIRTY WORK. WITHIN ; EACH SECTION, THE ROUTINES ARE ORGANIZED IN ALPHABETICAL ; ORDER, BY ENTRY POINT OF THE ROUTINE. THE SECOND ROM IS ORGANIZED ; IN THE SAME MANNER AS THE FIRST WITH THE ROUTINES WHICH IMPLIMENT : THE COMMANDS FOLLOWED BY THE UTILITY ROUTINES WHICH ACTUALLY DO THE

.

۳ ۱ 8080 MACRO ASSEMBLER, VER 2.4 ERRORS = \emptyset PAGE 2 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976 ; MORE DETAILED OPERATIONS. ; ; THE PROGRAM HAS BEEN PARTITIONED IN SUCH A MANNER THAT THE SECOND ; ROM NEED NOT BE PLUGGED INTO THE BOARD IF ONLY THE BASIC MONITOR ; FUNCTIONS ARE REQUIRED. HOWEVER IF THE PAPER TAPE FUCTIONS ARE DESIRED ; BOTH ROMS ARE REQUIRED. : ; THIS PROGRAM EXPECTS TO RUN IN THE FIRST 2K OF ADDRESS SPACE. ; IF, FOR SOME REASON, THE PROGRAM IS RE-ORG'ED, CARE SHOULD ; BE TAKEN TO MAKE SURE THAT THE TRANSFER INSTRUCTIONS FOR RST 1 ; AND RST 7 ARE ADJUSTED APPROPRIATELY. ; ; THE PROGRAM ALSO EXPECTS THAT RAM LOCATIONS 3C00H TO 3C3FH, ; INCLUSIVE, ARE RESERVED FOR THE PROGRAM'S OWN USE. THESE ; LOCATIONS MAY BE ALTERED, HOWEVER, BY CHANGING THE EQU'ED ; SYMBOL "DATA" AS DESIRED. ; ; LIST OF FUNCTIONS : ******* ; 1 ST ROM ; ****** ; GETCM ; ____ ; ; DCMD ; GCMD ; ICMD ; MCMD ; RCMD SCMD ; WCMD ; XCMD ; ____ ; ; ADRD ; ADROUT ; BREAK ; CI CNVBN : CO CROUT 1 ECHO ERROR FRET GETCH GETHX ; GETNM ; HILO ;

4

٠

*

	; INUST
	; NMOUT
	; PRVAL
	; REGDS
	; RGADR
	; RSTTF
	; SRET
	; STHFØ
	; STHLF ; VALDG
	; VALDG ; VALDL
	;

	; 2 ND ROM • ******
	RCMD
	; WCMD
	;
	; BYTE
	; DELAY : LEAD
	; LEAD ; PADR
	; PBYTE
	; PEOF
	; PEOL
	; PO
	; RI
	; RICH
	,
0000	; ORG ØH
	;

	MONITOR EQUATES
	;
	;

001B	BRCHR EQU 1BH ; CODE FOR BREAK CHARACTER (ESCAPE)
3C3D	BRLOC EQU 3C3DH ; LOCATION OF USER BRANCH INSTRUCTION IN RAM
Ø3FA	BRTAB EQU 3FAH ; LOCATION OF START OF BRANCH TABLE IN ROM
0025	CMD EQU Ø25H ; COMMAND INSTRUCTION FOR USART INITIALIZATION
ØØED	CNCTL EQU ØEDH ; CONSOLE (USART) CONTROL PORT
ØØEC	CNIN EQU ØECH ; CONSOLE INPUT PORT
ØØEC	CNOUT EQU ØECH ; CONSOLE OUTPUT PORT

•

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 3 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

ъ

.

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 4 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

.

3

00 ED 000D 3C00 001B 000F 000F 000A 00CF 000F 0007F 3C2E 0002 0038	CONST EQUØEDH; CONSOLE STATUS INPUT PORTCREQUØDH; CODE FOR CARRIAGE RETURNDATA EQU15*1024; START OF MONITOR RAM USAGEESCEQU1BH; CODE FOR ESCAPE CHARACTERHCHAR EQUØFH; MASK TO SELECT LOWER HEX CHAR FROM BYTEINVRT EQUØFFH; MASK TO INVERT HALF BYTE FLAGLFEQUØAH; CODE FOR LINE FEED;LSGNONEQU; LENGTH OF SIGNON MESSAGE - DEFINED LATERMODEEQU0CFH; MODE SET FOR USART INITIALIZATION;MSTAKEQU; START OF MONITOR STACK - DEFINED LATER;NCMDSEQU; NUMBER OF VALID COMMANDSNEWLN EQUØFH; MASK FOR CHECKING MEMORY ADDR DISPLAYPRTY0EQUØ7FH; MASK TO CLEAR PARITY BIT FROM CONSOLE CHARREGSEQUDATA+64-18; START OF REGISTER SAVE AREARBREQU2; MASK TO TEST RECEIVER STATUSRSTUEQU38H; TRANSFER LOCATION FOR RST 7 INSTRUCTION
001B 0001 00FF 0304 0027 0083	;RTABS EQU ; SIZE OF ENTRY IN RTAB TABLE TERM EQU 1BH ; CODE FOR ICMD TERMINATING CHARACTER (ESCAPE) TRDY EQU 1 ; MASK TO TEST TRANSMITTER STATUS UPPER EQU ØFFH ; DENOTES UPPER HALF OF BYTE IN ICMD TXBE EQU Ø4H ; USART TRANSMITTER BUFFER EMPTY TTYADV EQU 27H ; TTY READER ADVANCE COMMAND ONEMS EQU 131 ; 1 MILLISECOND CONSTANT ; ; MONITOR MACROS
1	;*************************************
1	JC WHERE ENDM
1 1	; FALSE MACRO WHERE ; BRANCH IF FUNCTION RETURNS FALSE (FAILURE) JNC WHERE ENDM ; ;
	, ; ************************************
	; ; USART INITIALIZATION CODE ;
	; * * * * * * * * * * * * * * * * * * *

4

۹.

d л

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 5 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

: 1 THE USART IS ASSUMED TO COME UP IN THE RESET POSITION (THIS FUNCTION IS TAKEN CARE OF BY THE HARDWARE). THE USART WILL ; BE INITIALIZED IN THE SAME WAY FOR EITHER A TTY OR CRT ; INTERFACE. THE FOLLOWING PARAMETERS ARE USED: ; : MODE INSTRUCTION ; ; 2 STOP BITS PARITY DISABLED **8 BIT CHARACTERS** BAUD RATE FACTOR OF 64 COMMAND INSTRUCTION NO HUNT MODE NOT (RTS) FORCED TO Ø ; RECEIVE ENABLED ; TRANSMIT ENABLED ; 3EC₽ €€ 0000 MVI A, MODE 0002 D3ED OUT CNCTL ; OUTPUT MODE SET TO USART ; BRANCH TO COMPLETE USART INITIALIZATION 0004 C3B2Ø2 JMP INUST 0007 ØØ NOP ; FILLER ; ****** : ; ; RESTART ENTRY POINT ; 1 ******* ; ; 0008 GO: 22343C 0008 SHLD LSAVE ; SAVE HL REGISTERS 000B E1 POP H ; GET TOP OF STACK ENTRY 000C 22363C SHLD PSAVE ; ASSUME THIS IS LAST P COUNTER Ø00F PUSH PSW ; SAVE A, F/F'S F5 0010 210200 LXI Н,2 ; SET HL TO 2 SO THAT STACK POINTER SAVED CORRECTLY ØØ13 ; GET STACK POINTER VALUE 39 DAD SP 0014 22383C SHLD SSAVE ; SAVE USER'S STACK POINTER 0017 POP PSW ; RESTORE A,F/F'S Fl ØØ18 31343C LXI SP,ASAVE+1 ; NEW VALUE FOR STACK POINTER ØØ1B C3B1Ø1 JMP ADROUT ; ******************************** ;*

ĺ.

;;

ŧ

3

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 6 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

.

3

		; PRINT SIGNON MESSAGE
		;

		; ; ;
001E 001E	2195Ø3	SOMSG: LXI H,SGNON ; GET ADDRESS OF SIGNON MESSAGE
0021	0611	MVI B,LSGNON ; COUNTER FOR CHARACTERS IN MESSAGE
0023 0023	4 E	MSGL: MOV C,M ; FETCH NEXT CHAR TO C REG
0024 0027	CDE801 23	CALL CO ; SEND IT TO THE CONSOLE INX H ; POINT TO NEXT CHARACTER
0028	Ø5	DCR B ; DECREMENT BYTE COUNTER
0029	C22300	JNZ MSGL ; RETURN FOR NEXT CHARACTER ;
		; • * * * * * * * * * * * * * * * * * * *
		;
		; ; COMMAND RECOGNIZING ROUTINE
		;
		· ************************************
		; ; FUNCTION: GETCM
		; INPUTS: NONE ; OUTPUTS: NONE
		; CALLS: GETCH, ECHO, ERROR
		; DESTROYS: A,B,C,H,L,F/F'S ; DESCRIPTION: GETCM RECEIVES AN INPUT CHARACTER FROM THE USER
		; AND ATTEMPTS TO LOCATE THIS CHARACTER IN ITS COMMAND ; CHARACTER TABLE. IF SUCCESSFUL, THE ROUTINE
		; CORRESPONDING TO THIS CHARACTER IS SELECTED FROM
		; A TABLE OF COMMAND ROUTINE ADDRESSES, AND CONTROL ; IS TRANSFERRED TO THIS ROUTINE. IF THE CHARACTER
		; DOES NOT MATCH ANY ENTRIES, CONTROL IS PASSED TO ; THE ERROR HANDLER.
aaoo		;
002C 002C	312E3C	GETCM: LXI SP,MSTAK ; ALWAYS WANT TO RESET STACK PTR TO MONITOR
ØØ2F	ØE2E	; /STARTING VALUE SO ROUTINES NEEDN'T CLEAN UP MVI C,'.' ; PROMPT CHARACTER TO C
0031	CDF901	CALL ECHO ; SEND PROMPT CHARACTER TO USER TERMINAL
0034	C33CØØ	JMP GTCØ3 ; WANT TO LEAVE ROOM FOR RST BRANCH
ØØ38	63353 6	ORG RSTU ; ORG TO RST TRANSFER LOCATION
0038 003b	C33D3C ØØ	JMP USRBR ; JUMP TO USER BRANCH LOCATION NOP ; FILLER
ØØ3C		; GTCØ3:

ŧ

٠

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 7 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

•

003C 003F 0042 0043 0046 0046	CD2002 CDF901 79 010800 21B803	CALL GETCH ; GET COMMAND CHARACTER TO A CALL ECHO ; ECHO CHARACTER TO USER MOV A,C ; PUT COMMAND CHARACTER INTO ACCUMULATOR LXI B,NCMDS ; C CONTAINS LOOP AND INDEX COUNT LXI H,CTAB ; HL POINTS INTO COMMAND TABLE GTC05:
0049	BE	CMP M ; COMPARE TABLE ENTRY AND CHARACTER
004A	CA5500	JZ GTC10 ; BRANCH IF EQUAL - COMMAND RECOGNIZED
004D 004E	23 ØD	INX H ; ELSE, INCREMENT TABLE POINTER DCR C : DECREMENT LOOP COUNT
004E 004F	C24900	DCR C ; DECREMENT LOOP COUNT JNZ GTCØ5 ; BRANCH IF NOT AT TABLE END
0052	C31202	JMP ERROR ; ELSE, COMMAND CHARACTER IS ILLEGAL
0055	CJ1202	GTC10:
0055	21A6Ø3	LXI H,CADR ; IF GOOD COMMAND, LOAD ADDRESS OF TABLE ; /OF COMMAND ROUTINE ADDRESSES
ØØ58	09	DAD B ; ADD WHAT IS LEFT OF LOOP COUNT
0059	Ø 9	DAD B ; ADD AGAIN - EACH ENTRY IN CADR IS 2 BYTES LONG
005A	7E	MOV A,M ; GET LSP OF ADDRESS OF TABLE ENTRY TO A
ØØ5B ØØ5C	23 66	INX H ; POINT TO NEXT BYTE IN TABLE MOV H.M ; GET MSP OF ADDRESS OF TABLE ENTRY TO H
005D	6F	MOV H,M ; GET MSP OF ADDRESS OF TABLE ENTRY TO H MOV L,A ; PUT LSP OF ADDRESS OF TABLE ENTRY INTO L
005E	E9	PCHL ; NEXT INSTRUCTION COMES FROM COMMAND ROUTINE
		COMMAND IMPLEMENTING ROUTINES FUNCTION: DCMD INPUTS: NONE OUTPUTS: NONE CALLS: ECHO,NMOUT,HILO,GETCM,CROUT,GETNM DESTROYS: A,B,C,D,E,H,L,F/F'S DESCRIPTION: DCMD IMPLEMENTS THE DISPLAY MEMORY (D) COMMAND
ØØ5F		; DCMD;
005F	ØEØ2	MVI C,2 ; GET TWO NUMBERS FROM INPUT STREAM
0061	CD5BØ2	CALL GETNM
0064	Dl	POP D ; ENDING ADDRESS TO DE
0065	El	POP H ; STARTING ADDRESS TO HL
0066	000241	
ØØ66 ØØ69	CDF3Ø1 CDA8Ø1	CALL CROUT ; ECHO CARRIAGE RETURN/LINE FEED CALL ADRD ; DISPLAY ADDRESS
006C	CDRUDI	DCM10:
006C	ØE20	MVI C,''
ØØ6E	CDF901	CALL ECHO ; USE BLANK AS SEPARATOR

4

080 MF 80,	AC) /1	RO ASSEM Ø MONITO	BLER, V R, VERS	ER 2.4 ION 1.1,	1 NOVEM	BE	ERRORS = Ø PAGE 8 R 1976
ØØ71		7E		MOV	A,M		GET CONTENTS OF NEXT MEMORY LOCATION
0072		CDC202		CALL	NMOUT	•	DISPLAY CONTENTS
0075		CDC201		CALL	BREAK		SEE IF USER WANTS OUT
0015	1	CDCZDI	+	TRUE	EXIT		IF SO, BRANCH TO EXIT
0078		DA1702	+	JC	EXIT	'	It bo, BRANCH TO EXIT
007B	-	CDA002	•	CALL	HILO	•	SEE IF ADDRESS OF DISPLAYED LOCATION IS
00.0		02		0.122			GREATER THAN OR EQUAL TO ENDING ADDRESS
	1		+	TRUE	EXIT		EXIT IF NO MORE TO DISPLAY
007E	1	DA1702	.+	JC	EXIT		
0081		23		INX	Н	;	IF MORE TO GO, POINT TO NEXT LOC TO DISPLAY
0082		7D		MOV	A,L		GET LOW ORDER BITS OF NEW ADDRESS
0083		E6ØF		ANI	NEWLN	;	SEE IF LAST HEX DIGIT OF ADDRESS DENOTES
							/START OF NEW LINE
0085		C26CØØ		JNZ			NO - NOT AT END OF LINE
0088		C36600		JMP	DCM05	;	YES - START NEW LINE WITH ADDRESS
			; ; ;**** ;	******	******	* * :	******
			; INP ; OUT ; CAL ; DES ; DES ;	TROYS: A CRIPTION	IE DNE DR,GETHX,I A,B,C,D,E	, Н	
ØØ8B			GCMD:		_		
ØØ8B		CD27Ø2		CALL	GETHX		GET ADDRESS (IF PRESENT) FROM INPUT STREAM
	1		+	FALSE	GCMØ5	;	BRANCH IF NO NUMBER PRESENT
	Ŧ	D2A000	+	JNC	GCMØ5		
ØØ91 ØØ92		7A FEØD		MOV CPI	A,D		ELSE, GET TERMINATOR
0092		C21202		JNZ	CR ERROR		SEE IF CARRIAGE RETURN ERROR IF NOT PROPERLY TERMINATED
ØØ97		21363C		LXI			WANT NUMBER TO REPLACE SAVE PGM COUNTER
009A		71		MOV	M,C	7	WANT NUMBER TO REPLACE SAVE FGM COUNTER
ØØ9B		23		INX	H,C		
009C		23 70		MOV	M,B		
ØØ9D		C3A600		JMP	GCM10		
ØØAØ			GCMØ5		•••••		
ØØAØ		7A		MOV	A,D	;	IF NO STARTING ADDRESS, MAKE SURE THAT
00A1		FEØD		CPI	CR		/CARRIAGE RETURN TERMINATED COMMAND
ØØA3		C21202		JNZ	ERROR		ERROR IF NOT
ØØA6			GCM10			•	
ØØA6	·	C327Ø3		JMP	RSTTF	;	RESTORE REGISTERS AND BEGIN EXECUTION
			;				

••• (

· · · ·

18Ø MACRO ASSEMBLER, VER 2.4 ERRORS = Ø PAGE 9 8Ø/1Ø MONITOR, VERSION 1.1, 1 NOVEMBER 1976

; FUNCTION: ICMD ; INPUTS: NONE ; OUTPUTS: NONE ; CALLS: ERROR, ECHO, GETCH, VALDL, VALDG, CNVBN, STHLF, GETNM, CROUT ; DESTROYS: A,B,C,D,E,H,L,F/F'S ; DESCRIPTION: ICMD IMPLEMENTS THE INSERT CODE INTO MEMORY (I) COMMAND. ; ØØA9 ICMD: ©ØA9 ØEØ1 MVI C,1 ØØAB CD5BØ2 CALL GETNM ; GET SINGLE NUMBER FROM INPUT STREAM ØØAE A, UPPER 3eff MVI 0080 323A3C STA TEMP ; TEMP WILL HOLD THE UPPER/LOWER HALF BYTE FLAG ØØB3 D1 POP D ; ADDRESS OF START TO DE 00B4 ICMØ5: ØØD4 CD2002 CALL GETCH ; GET A CHARACTER FROM INPUT STREAM ØØB7 CDF901 CALL ECHO ; ECHO IT ØØBA 79 MOV A,C ; PUT CHARACTER BACK INTO A ØØBB FElB CPI TERM ; SEE IF CHARACTER IS A TERMINATING CHARACTER ØØBD CAE900 JŻ ICM25 ; IF SO, ALL DONE ENTERING CHARACTERS ØØCØ CD82Ø3 CALL VALDL ; ELSE, SEE IF VALID DELIMITER ; IF SO SIMPLY IGNORE THIS CHARACTER 1 TRUE ICM05 00C3 1 DAB400 + JC ICMØ5 ; ELSE, CHECK TO SEE IF VALID HEX DIGIT 00C6 CD6703 CALL VALDG 1 FALSE ICM20 ; IF NOT, BRANCH TO HANDLE ERROR CONDITION ØØC9 1 D2E3ØØ + JNC ICM2Ø ØØCC CDDFØ1 CALL CNVBN ; CONVERT DIGIT TO BINARY ØØCF 4FMOV C,A ; MOVE RESULT TO C ØØDØ CD48Ø3 CALL STHLF ; STORE IN APPROPRIATE HALF WORD ØØD3 3A3A3C LDA TEMP ; GET HALF BYTE FLAG ØØD6 B7 ORA A ; SET F/F'S 00D7 C2DBØØ JNZ ICM10 ; BRANCH IF FLAG SET FOR UPPER ØØDA 13 INX D ; IF LOWER, INC ADDRESS OF BYTE TO STORE IN ICM10: ØØDB ØØDB EEFF XRI INVRT : TOGGLE STATE OF FLAG ØØDD 323A3C STA TEMP ; PUT NEW VALUE OF FLAG BACK ØØEØ ; PROCESS NEXT DIGIT C3B400 JMP ICMØ5 ØØE3 ICM20: CD3DØ3 ØØE3 CALL STHFØ : ILLEGAL CHARACTER 00E6 C31202 JMP ERROR ; MAKE SURE ENTIRE BYTE FILLED THEN ERROR 00E9 ICM25: Ø0E9 CD3DØ3 CALL STHFØ ; HERE FOR ESCAPE CHARACTER - INPUT IS DONE ØØEC C317Ø2 JMP EXIT ; ; ; ; FUNCTION: MCMD

.

; INPUTS: NONE

; OUTPUTS: NONE

٠

; CALLS: GETCM, HILO, GETNM

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 10 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

\$

٠

		; DESTROYS: A,B,C,D,E,H,L,F/F'S ; DESCRIPTION: MCMD IMPLEMENTS THE MOVE DATA IN MEMORY (M) COMMAND.
ØØEF	a 17 a 2	MCMD:
ØØEF ØØF1	ØEØ3 CD5BØ2	MVI C,3 CALL GETNM ; GET 3 NUMBERS FROM INPUT STREAM
ØØF4	CD5602 Cl	POP B ; DESTINATION ADDRESS TO BC
00F5	El	POP H : ENDING ADDRESS TO HL
ØØF6	Dl	POP D ; STARTING ADDRESS TO DE
00F7	51	MCM05:
00F7	E5	PUSH H ; SAVE ENDING ADDRESS
00F8	62	MOV H,D
ØØF9	6B	MOV L,E ; SOURCE ADDRESS TO HL
ØØFA	7E	MOV A, M ; GET SOURCE BYTE
ØØFB	6Ø	моч н,в
ØØFC	69	MOV L,C ; DESTINATION ADDRESS TO HL
ØØFD	77	MOV M,A ; MOVE BYTE TO DESTINATION
ØØFE	03	INX B ; INCREMENT DESTINATION ADDRESS
ØØFF	78	MOV A,B
0100	Bl	ORA C ; TEST FOR DESTINATION ADDRESS OVERFLOW
0101 0104	CA2CØØ 13	JZ GETCM ; IF SO, CAN TERMINATE COMMAND INX D : INCREMENT SOURCE ADDRESS
0104	El	INX D ; INCREMENT SOURCE ADDRESS POP H ; ELSE, GET BACK ENDING ADDRESS
0105	CDA002	CALL HILO ; SEE IF ENDING ADDRESS
		+ FALSE GETCM ; IF NOT, COMMAND IS DONE
	D22CØØ	+ JNC GETCM
ØIØC	C3F700	JMP MCM05 ; MOVE ANOTHER BYTE
		;
		; • * * * * * * * * * * * * * * * * * * *
		;
		; FUNCTION: SCMD
		; INPUTS: NONE ; OUTPUTS: NONE
		; CALLS: GETHX,GETCM,NMOUT,ECHO
		; DESTROYS: A,B,C,D,E,H,L,F/F'S
		; DESCRIPTION: SCMD IMPLEMENTS THE SUBSTITUTE INTO MEMORY (S) COMMAND.
		;
010F		SCMD:
010F	CD2702	CALL GETHX ; GET A NUMBER, IF PRESENT, FROM INPUT
0112	C5	PUSH B
Ø113	El	POP H ; GET NUMBER TO HL - DENOTES MEMORY LOCATION
0114	~ .	SCM05:
Ø114 Ø115	7A	MOV A,D ; GET TERMINATOR
Ø115 Ø117	FE2Ø CAlFØl	
Ø11A	FE2C	JZ SCM10 ; YES - CONTINUE PROCESSING CPI ',' ; ELSE, SEE IF COMMA
ØIIC	C22C00	JNZ GETCM ; NO - TERMINATE COMMAND
Ø11F		SCM10:
Ø11F	7E	MOV A,M ; GET CONTENTS OF SPECIFIED LOCATION TO A

4

C C

		BLER, VER 2.4 R, VERSION 1.1, 1 N	ERRORS = Ø PAGE 11 Ovember 1976
Ø12E Ø12F	CD2702 D22F01 7J	MOV M,C SCM15:	-' ; USE DASH FOR SEPARATOR HX ; GET NEW VALUE FOR MEMORY LOCATION, IF ANY ; IF NO VALUE PRESENT, BRANCH ; ELSE, STORE LOWER 8 BITS OF NUMBER ENTERED
Ø12F Ø13Ø	23 C314Ø1	INX H JMP SCM	• •
l		; ; ; FUNCTION: XCMD ; INPUTS: NONE ; OUTPUTS: NONE ; CALLS: GETCH,EC ; DESTROYS: A,B,C ; DESCRIPTION: XC	HO,REGDS,GETCM,ERROR,RGADR,NMOUT,CROUT,GETHX ,D,E,H,L,F/F'S MD IMPLEMENTS THE REGISTER EXAMINE AND CHANGE (X) MMAND.
Ø133		; XCMD:	
Ø133	CD2002		CH ; GET REGISTER IDENTIFIER
Ø136	CDF901	CALL ECH	
Ø139	79	MOV A,C	
Ø13A	FEØD	CPI CR	
Ø13C	C245Ø1	JNZ XCM	Ø5 ; BRANCH IF NOT CARRIACE RETURN
Ø13F	CDDFØ2	CALL REG	
Ø142	C32CØØ	JMP GET	CM ; THEN TERMINATE COMMAND
0145		XCM05:	
0145	4F	MOV C,A	
Ø146	CD1003	CALL RGA	DR ; CONVERT IDENTIFIER INTO RTAB TABLE ADDR
Ø149 Ø14A	C5 El	PUSH B POP H	; PUT POINTER TO REGISTER ENTRY INTO HL
Ø14B	ØE2Ø	MVI C,'	
Ø14D	CDF901	CALL ECH	
0150	79	MOV A,C	•
Ø151	323A3C	STA TEM	
0154		XCM10:	
0154	3A3A3C	LDA TEM	
0157	FE2Ø	CPI ''	
Ø159	CA6101	JZ XCM	
Ø15C	FE2C	CPI ','	
015E	C22CØØ	JNZ GET	CM ; NO - MUST BE CARRIAGE RETURN TO END COMMAND
0161	7.0	XCM15:	
Ø161 Ø162	7E B7	MOV A,M ORA A	; SET F/F'S
Ø162 Ø163	CA17Ø2	JZ EXI	• •
Ø166	E5	PUSH H	; PUT POINTER ON STACK
0100		1050 D	1 TOT FOILING ON DIRVE

ŧ

٠

•

.

•

ば | 1 3 8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 12 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

٠

Ø167 5E Ø168 163C Ø16A 23 Ø16B 46 Ø16C D5 Ø16E E1 Ø16F C5 Ø170 7E Ø171 CDC2Ø2 Ø174 F1 Ø175 F5 Ø176 B7 Ø177 CA7FØ1 Ø178 7E Ø177 CA7FØ1 Ø178 7E Ø177 CD292 Ø178 7E Ø177 CD27Ø2 Ø181 CD27Ø2 Ø184 CD27Ø2 Ø185 E1 Ø188 323A3C Ø188 S23A3C Ø189 E1 Ø190 B7 Ø191 CA96Ø1 Ø195 2B Ø196 71 Ø197 11Ø3ØØ Ø198 19 Ø197 1033ØØ Ø198 19 Ø197 1033ØØ Ø198 19 </th <th>MOV MVI INX MOV PUSH POP PUSH MOV CALL POP PUSH ORA JZ DCX MOV CALL XCM20: MVI CALL CALL CALL + FALSE + JNC MOV STA POP POP ORA JZ MOV XCM25: MOV XCM25: MOV XCM27: LXI POP DAD JMP XCM30: MOV STA POP POP</th> <th>H B,M D D H B A,M NMOUT PSW PSW A XCM20 H A,M NMOUT C,'-' ECHO GETHX XCM30 A,D TEMP PSW H A XCM30 A,D TEMP PSW H M,C D,RTABS H D XCM10 A,D TEMP D</th> <th>SHR 8 ; FETCH ADDRESS OF SAVE LOCATION FROM ; /TABLE ; FETCH LENGTH FLAG FROM TABLE ; SAVE ADDRESS OF SAVE LOCATION ; MOVE ADDRESS TO HL ; SAVE LENGTH FLAG ; GET 8 BITS OF REGISTER FROM SAVE LOCATION ; DISPLAY IT ; GET BACK LENGTH FLAG ; SAVE IT AGAIN ; SET F/F'S ; IF 8 BIT REGISTER, NOTHING MORE TO DISPLAY ; ELSE, FOR 16 BIT REGISTER, GET LOWER 8 BITS ; DISPLAY THEM ; USE DASH AS SEPARATOR ; SEE IF THERE IS A VALUE TO PUT INTO REGISTER ; NO - GO CHECK FOR NEXT REGISTER ; NO - GO CHECK FOR NEXT REGISTER ; NO - GO CHECK FOR NEXT REGISTER ; IF 8 BIT REGISTER, BRANCH ; SET F/F'S ; IF 8 BIT REGISTER, BRANCH ; SAVE UPPER 8 BITS ; POINT TO SAVE LOCATION FOR LOWER 8 BITS ; STORE ALL OF 8 BIT OR LOWER 1/2 OF 16 BIT REG ; SIZE OF ENTRY IN RTAB TABLE ; POINTER INTO REGISTER TABLE RTAE ; ADD ENTRY SIZE TO POINTER ; DO NEXT REGISTER ; GET TERMINATOR ; SAVE IN MEMORY ; CLEAR STACK OF LENGTH FLAG AND ADDRESS ; /OF SAVE LOCATION</th>	MOV MVI INX MOV PUSH POP PUSH MOV CALL POP PUSH ORA JZ DCX MOV CALL XCM20: MVI CALL CALL CALL + FALSE + JNC MOV STA POP POP ORA JZ MOV XCM25: MOV XCM25: MOV XCM27: LXI POP DAD JMP XCM30: MOV STA POP POP	H B,M D D H B A,M NMOUT PSW PSW A XCM20 H A,M NMOUT C,'-' ECHO GETHX XCM30 A,D TEMP PSW H A XCM30 A,D TEMP PSW H M,C D,RTABS H D XCM10 A,D TEMP D	SHR 8 ; FETCH ADDRESS OF SAVE LOCATION FROM ; /TABLE ; FETCH LENGTH FLAG FROM TABLE ; SAVE ADDRESS OF SAVE LOCATION ; MOVE ADDRESS TO HL ; SAVE LENGTH FLAG ; GET 8 BITS OF REGISTER FROM SAVE LOCATION ; DISPLAY IT ; GET BACK LENGTH FLAG ; SAVE IT AGAIN ; SET F/F'S ; IF 8 BIT REGISTER, NOTHING MORE TO DISPLAY ; ELSE, FOR 16 BIT REGISTER, GET LOWER 8 BITS ; DISPLAY THEM ; USE DASH AS SEPARATOR ; SEE IF THERE IS A VALUE TO PUT INTO REGISTER ; NO - GO CHECK FOR NEXT REGISTER ; NO - GO CHECK FOR NEXT REGISTER ; NO - GO CHECK FOR NEXT REGISTER ; IF 8 BIT REGISTER, BRANCH ; SET F/F'S ; IF 8 BIT REGISTER, BRANCH ; SAVE UPPER 8 BITS ; POINT TO SAVE LOCATION FOR LOWER 8 BITS ; STORE ALL OF 8 BIT OR LOWER 1/2 OF 16 BIT REG ; SIZE OF ENTRY IN RTAB TABLE ; POINTER INTO REGISTER TABLE RTAE ; ADD ENTRY SIZE TO POINTER ; DO NEXT REGISTER ; GET TERMINATOR ; SAVE IN MEMORY ; CLEAR STACK OF LENGTH FLAG AND ADDRESS ; /OF SAVE LOCATION
		•	•
Ø1A4 D1	POP	D	; /OF SAVE LOCATION
Ø1A5 C397Ø1	JMP	XCM27	; GO INCREMENT REGISTER TABLE POINTER
	; ; * * * * * * * * * * * * * * * * * *		**************************************

•

1

;

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = Ø PAGE 13 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

+

9

đ.

		; ; * * * * * * * * * * * * * * * * * *

		; FUNCTION ADRD ; INPUTS: HL - ADDRESS TO BE DISPLAYED
		; OUTPUTS: NONE
		; CALLS: NMOUT : DESTROYS: A
		; DESCRIPTION: ADRD OUTPUTS TO THE CONSOLE THE ADDRESS
		; CONTAINED IN THE H,L REGISTERS.
Ø1A8 Ø1A8	7C	ADRD: MOV A,H ; DISPLAY FIRST HALF OF ADDRESS
Ø1A9	CDC202	CALL NMOUT
Ø1AC Ø1AD	7D CDC202	MOV A,L ; DISPLAY SECOND HALF OF ADDRESS CALL NMOUT
Ø1BØ	C9	RET ; RETURN TO CALLING ROUTINE

		; FUNCTION ADROUT ; INPUTS: USER REGISTERS ON THE STACK
		; OUTPUTS: NOTHING ; CALLS: ECHO,ADRD
		; DESTROYS: A,B,C,D,E,H,L,F/F'S
		; DESCRIPTION: ADROUT SAVES THE USER REGISTERS AND OUTPUTS TO THE ; CONSOLE THE USER P COUNTER AFTER A RST 1 INSTRUCTION.
Ø181		; ADROUT:
Ø1B1	F5	PUSH PSW ; SAVE A AND FLAGS
Ø1B2 Ø1B3	C5 D5	PUSH B ; SAVE B AND C PUSH D ; SAVE D AND E
Ø1B4 Ø1B6	ØE23 CDF9Ø1	MVI C,'#' CALL ECHO ; OUTPUT '#'
Ø1B9	2A363C	LHLD PSAVE ; LOAD USER P COUNTER
Ø1BC Ø1BF	CDA8Ø1 C317Ø2	CALL ADRD ; DISPLAY ADDRESS JMP EXIT ; GET NEW COMMAND
		;
		; ; FUNCTION: BREAK
		; INPUTS: NONE ; OUTPUTS: CARRY - 1 IF ESCAPE CHARACTER INPUT
		; - Ø IF ANY OTHER CHARACTER OR NO CHARACTER PENDING
		; CALLS: NOTHING ; DESTROYS: A,F/F'S

*

8080 MACRO ASSEMBLER, VER 2.4ERRORS = Ø PAGE 1480/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

4

۰.

		<pre>; DESCRIPTION: BREAK IS USED TO SENSE AN ESCAPE CHARACTER FROM ; THE USER. IF NO CHARACTER IS PENDING, OR IF THE ; PENDING CHARACTER IS NOT THE ESCAPE, THEN A FAILURE ; RETURN (CARRY=0) IS TAKEN. IN THIS CASE, THE ; PENDING CHARACTER (IF ANY) IS LOST. IF THE PENDING ; CHARACTER IS AN ESCAPE CHARACTER, BREAK TAKES A SUCCESS RETURN (CARRY=1).</pre>
Ø1C2		; BREAK:
Ø1C2	DBED	IN CONST ; GET CONSOLE STATUS
Ø1C4 Ø1C6	E602 CA1D02	ANI RBR ; SEE IF CHARACTER PENDING JZ FRET : NO - TAKE FAILURE RETURN
Ø1C0	DBEC	IN CNIN ; YES - PICK UP CHARACTER
ØlCB	E67F	ANI PRTYØ ; STRIP OFF PARITY BIT
ØlCD	FE1B	CPI BRCHR ; SEE IF BREAK CHARACTER
ØlCF	CA3BØ3	JZ SRET ; YES - SUCCESS RETURN
Ø1D2	C31DØ2	JMP FRET ; NO - FAILURE RETURN - CHARACTER LOST
		; ;
		;
		; ; FUNCTION: CI ; INPUTS: NONE ; OUTPUTS: A - CHARACTER FROM CONSOLE ; CALLS: NOTHING ; DESTROYS: A,F/F'S ; DESCRIPTION: CI WAITS UNTIL A CHARACTER HAS BEEN ENTERED AT THE ; CONSOLE AND THEN RETURNS THE CHARACTER, VIA THE A ; REGISTER, TO THE CALLING ROUTINE. THIS ROUTINE ; IS CALLED BY THE USER VIA A JUMP TABLE IN RAM.
Ø1D5		CI:
Ø1D5 Ø1D7	DBED E6Ø2	IN CONST ; GET STATUS OF CONSOLE ANI RBR : CHECK FOR RECEIVER BUFFER READY
Ø1D9	CAD501	JZ CI ; NOT YET - WAIT
ØldC	DBEC	IN CNIN ; READY SO GET CHARACTER
Ølde	C9	RET
		7 7 7
		; · · · · · · · · · · · · · · · · · · ·
		<pre>FUNCTION: CNVBN FUNCTION: CNVBN FUNCTION: CNVBN FUNCTION: CNVBN FUNCTION: CNVBN FUNCTION: CNVBN CONVERTS THE ASCII REPRESENTATION OF A HEX FUNCTION: CNVBN CONVERTS THE ASCII REPRESENTATION CONVERTS THE ASCII RE</pre>

€

à

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 15 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

.

		;
Øldf		CNVBN:
Øldf	79	MOV A,C
01E0	D630	SUI 'Ø' ; SUBTRACT CODE FOR 'Ø' FROM ARGUMENT
Ø1E2	FEØA	CPI 10 ; WANT TO TEST FOR RESULT OF 0 TO 9
01E4	F8	RM ; IF SO, THEN ALL DONE
Ø1E5	D6Ø7	SUI 7 ; ELSE, RESULT BETWEEN 17 AND 23 DECIMAL
Ø1E7	C9	RET : SO RETURN AFTER SUBTRACTING BIAS OF 7
		;

		- FUNCTION: CO
		: INPUTS: C - CHARACTER TO OUTPUT TO CONSOLE
		; OUTPUTS: C - CHARACTER OUTPUT TO CONSOLE
		; CALLS: NOTHING
		; DESTROYS: A,F/F'S
		; DESCRIPTION: CO WAITS UNTIL THE CONSOLE IS READY TO ACCEPT A CHARACTER
		; AND THEN SENDS THE INPUT ARGUMENT TO THE CONSOLE.
		;
Øle8		ćo:
Øles	DBED	IN CONST ; GET STATUS OF CONSOLE
ØIEA	E601	ANI TRDY ; SEE IF TRANSMITTER READY
Ølec	CAE801	JZ CO ; NO - WAIT
ØlEF	79	MOV A,C ; ELSE, MOVE CHARACTER TO A REGISTER FOR OUTPUT
ØlfØ	D3EC	OUT CNOUT : SEND TO CONSOLE
Ø1F2	C9	RET
DICZ	Cy	
		, 。****************
		·
		FUNCTION CROUT
		: INPUTS: NONE
		; OUTPUTS: NONE
		; CALLS: ECHO
		; DESTROYS: A,B,C,F/F'S
		; DESCRIPTION: CROUT SENDS A CARRIAGE RETURN (AND HENCE A LINE
		; FEED) TO THE CONSOLE.
		· · · · · · · · · · · · · · · · · · ·
Ø1F3		CROUT:
ØlF3	ØEØD	MVI C,CR
Ø1F5	CDF901	CALL ECHO ; OUTPUT CARRIAGE RETURN TO USER TERMINAL
Ø1F8	C9	RET
DIFO	C y	
		; · • * * * * * * * * * * * * * * * * * *
		,
		; FUNCTION: ECHO
		, IUNCIION, BONO

¥

.

I

8080 MACRO ASSEMBLER, VER 2.4 ERRORS 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976 ERRORS = \emptyset PAGE 16

.

٠

		; INPUTS: C - CHARACTER TO ECHO TO TERMINAL ; OUTPUTS: C - CHARACTER ECHOED TO TERMINAL ; CALLS: CO ; DESTROYS: A,B,F/F'S ; DESCRIPTION: ECHO TAKES A SINGLE CHARACTER AS INPUT AND, VIA ; THE MONITOR, SENDS THAT CHARACTER TO THE USER ; TERMINAL. A CARRIAGE RETURN IS ECHOED AS A CARRIAGE ; RETURN LINE FEED, AND AN ESCAPE CHARACTER IS ECHOED AS \$.
61 D O		
Ø1F9 Ø1F9	41	ECHO: MOV B,C ; SAVE ARGUMENT
Ølfa	3E1B	MVI A,ESC
Ø1FC	B8	CMP B ; SEE IF ECHOING AN ESCAPE CHARACTER
Ølfd	C20202	JNZ ECHØ5 ; NO – BRANCH
0200	ØE24	MVI C,'\$' ; YES - ECHO AS \$
0202		ECH05:
_0202 0205	CDE8Ø1 3EØD	CALL CO ; DO OUTPUT THROUGH MONITOR
0205 0207	B8	MVI A,CR CMP B ; SEE IF CHARACTER ECHOED WAS A CARRIAGE RETURN
0208	C21002	JNZ ECH10 : NO - NO NEED TO TAKE SPECIAL ACTION
Ø2ØB	ØEØA	MVI C, LF ; YES - WANT TO ECHO LINE FEED, TOO
020D	CDE801	CALL CO
0210		ECH10:
Ø21Ø Ø211	48 C9	MOV C,B ; RESTORE ARGUMENT RET
0211	Cy	RE1 ;

		,
		;
		; FUNCTION: ERROR
		; INPUTS: NONE ; OUTPUTS: NONE
		; CALLS: ECHO,CROUT,GETCM
		; DESTROYS: A,B,C,F/F'S
		; DESCRIPTION: ERROR PRINTS THE ERROR CHARACTER (CURRENTLY AN ASTERISK)
		; ON THE CONSOLE, FOLLOWED BY A CARRIAGE RETURN-LINE FEED,
		; AND THEN RETURNS CONTROL TO THE COMMAND RECOGNIZER.
Ø212		ERROR:
Ø212	ØE23	MVI C,'#'
0214	CDF901	CALL ECHO ; SEND # TO CONSOLE
Ø217		EXIT:
0217	CDF3Ø1	CALL CROUT ; SKIP TO BEGINNING OF NEXT LINE
Ø21A	C32CØØ	JMP GETCM ; TRY AGAIN FOR ANOTHER COMMAND
		; 。************************************
		; ;
		; FUNCTION: FRET

.

٠

8080 MACRO ASSEMBLER, VER 2.4ERRORS = Ø PAGE 1780/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

.

.

		;	RY - ALWAYS Ø NG
021D		FRET:	
Ø21D Ø21E Ø21F	37 3f C9	STC CMC RET	; FIRST SET CARRY TRUE ; THEN COMPLEMENT IT TO MAKE IT FALSE ; RETURN APPROPRIATELY
		;	
		; ; * * * * * * * * * * * * * * *	*******
		;	
		; FUNCTION: GET	
		; INPUTS: NONE ; OUTPUTS: C -	NEXT CHARACTER IN INPUT STREAM
		; CALLS: CI	
		•	GETCH RETURNS THE NEXT CHARACTER IN THE INPUT STREAM TO THE CALLING PROGRAM.
0220		; GETCH:	
0220 0223 0225 0226	CDD501 E67F 4F C9	CALL C ANI P	CI ; GET CHARACTER FROM TERMINAL PRTYØ ; TURN OFF PARITY BIT IN CASE SET BY CONSOLE C,A ; PUT VALUE IN C REGISTER FOR RETURN
		;	
		; * * * * * * * * * * * * * * * * *	***************************************
		;	
		; FUNCTION: GET ; INPUTS: NONE	
		•	- 16 BIT INTEGER CHARACTER WHICH TERMINATED THE INTEGER
		•	RY - 1 IF FIRST CHARACTER NOT DELIMITER
		; • CALLS• GETCH	- Ø IF FIRST CHARACTER IS DELIMITER ,ECHO,VALDL,VALDG,CNVBN,ERROR
		; DESTROYS: A,B	B,C,D,E,F/F'S
		•	GETHX ACCEPTS A STRING OF HEX DIGITS FROM THE INPUT STREAM AND RETURNS THEIR VALUE AS A 16 BIT BINARY
		7	INTEGER. IF MORE THAN 4 HEX DIGITS ARE ENTERED,
			ONLY THE LAST 4 ARE USED. THE NUMBER TERMINATES WHEN A VALID DELIMITER IS ENCOUNTERED. THE DELIMITER IS
		;	ALSO RETURNED AS AN OUTPUT OF THE FUNCTION. ILLEGAL CHARACTERS (NOT HEX DIGITS OR DELIMITERS) CAUSE AN

.

ж.

8080 MACRO ASSEMBLER, VER 2.4ERRORS = 0 PAGE 1880/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

.

٠

		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		ENCOUN GETHX OTHERW	TE WI IS	DICATION. IF THE FIRST (VALID) CHARACTER RED IN THE INPUT STREAM IS NOT A DELIMITER, LL RETURN WITH THE CARRY BIT SET TO 1; E, THE CARRY BIT IS SET TO Ø AND THE CONTENTS E UNDEFINED.
0227		GETHX	:			
0227	E5		PUSH	Н		SAVE HL
0228	210000		LXI	н,0	•	INITIALIZE RESULT
022B 022D	1600	GHXØ5	MVI	Е,Ø	;	INITIALIZE DIGIT FLAG TO FALSE
022D 022D	CD2002	GUVDO	CALL	GETCH		GET A CHARACTER
0230	CDF901		CALL	ECHO	•	ECHO THE CHARACTER
0233	CD82Ø3		CALL	VALDL		SEE IF DELIMITER
1		+	FALSE	GHX10	•	NO - BRANCH
	D245Ø2	+	JNC	GHX1Ø		
Ø239	51		MOV	D,C	;	YES - ALL DONE, BUT WANT TO RETURN DELIMITER
Ø23A	E5		PUSH	Н		
Ø23B Ø23C	Cl El		POP POP	B H		MOVE RESULT TO BC RESTORE HL
023D	7B		MOV	A,E	•	GET FLAG
023E	лБ В7		ORA	A,L	•	SET F/F'S
Ø23F	C23BØ3		JNZ	SRET		IF FLAG NON-Ø, A NUMBER HAS BEEN FOUND
0242	CA1DØ2		JZ	FRET		ELSE, DELIMITER WAS FIRST CHARACTER
0245		GHX10	:			
Ø245	CD67Ø3		CALL	VALDG	•	IF NOT DELIMITER, SEE IF DIGIT
1		+	FALSE	ERROR	;	ERROR IF NOT A VALID DIGIT, EITHER
0248 I 024B	D212Ø2 CDDFØ1	+	JNC CALL	ERROR CNVBN		CONVERSE DIGIT MO INC DINARY VALUE
024B 024E	1EFF		MVI	E,ØFFH		CONVERT DIGIT TO ITS BINARY VALUE SET DIGIT FLAG NON-Ø
0250	29		DAD	H		*2
Ø251	29		DAD	H		* 4
Ø252	29		DAD	Н		*8
0253	29		DAD	н	;	*16
0254	0600		MVI	в,Ø	-	CLEAR UPPER 8 BITS OF BC PAIR
0256	4F		MOV	C,A		BINARY VALUE OF CHARACTER INTO C
0257	Ø9 622582		DAD	B		ADD THIS VALUE TO PARTIAL RESULT
0258	C32DØ2	;	JMP	GHXØ5	;	GET NEXT CHARACTER
		;****	******	* * * * * * * *	**	* * * * * * * * * * * * * * * * * * * *
		;				
		;		000144		
		•	CTION: G			NUMPERS TO PINE IN INCOMPRAN
						NUMBERS TO FIND IN INPUT STREAM - NUMBERS FOUND IN REVERSE ORDER (LAST ON TOP
		; 001			ψĸ	OF STACK)
			LS: GETH	X,HILO,E	RR	
			TROYS: A			
			CRIPTION			NDS A SPECIFIED COUNT OF NUMBERS, BETWEEN 1
		;		AND 3,	T :	NCLUSIVE, IN THE INPUT

4

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 19 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

.s`

۲

		; ; ; ;	OR MORE LESS TH SECOND REQUEST	D RETURNS THEIR VALUES ON THE STACK. I UMBERS ARE REQUESTED, THEN THE FIRST MU OR EQUAL TO THE SECOND, OR THE FIRST A MBERS WILL BE SET EQUAL. THE LAST NUMB MUST BE TERMINATED BY A CARRIAGE RETUR OR INDICATION WILL RESULT.	ND
Ø25B					
	2002	GETNM:	* >		
Ø25B	2EØ3	MVI		PUT MAXIMUM ARGUMENT COUNT INTO L	
025D	79	MOV	•	GET THE ACTUAL ARGUMENT COUNT	
Ø25E	E603	ANI		FORCE TO MAXIMUM OF 3	
0260	C8	RZ		IF Ø, DON'T BOTHER TO DO ANYTHIING	
0261	67	MOV	H,A	ELSE, PUT ACTUAL COUNT INTO H	
0262	000700	GNMØ5:			
0262	CD27Ø2	CALL		GET A NUMBER FROM INPUT STREAM	
1		+ FALSE		ERROR IF NOT THERE - TOO FEW NUMBERS	
	D21202	+ JNC	ERROR		
Ø268	C5	PUSH		ELSE, SAVE NUMBER ON STACK	
0269	2D	DCR		DECREMENT MAXIMUM ARGUMENT COUNT	
026A	25	DCR		DECREMENT ACTUAL ARGUMENT COUNT	
Ø26B	CA7702	JZ		BRANCH IF NO MORE NUMBERS WANTED	
Ø26E	7A	MOV		ELSE, GET NUMBER TERMINATOR TO A	
026F 0271	FEØD	CPI		SEE IF CARRIAGE RETURN	
Ø271 Ø274	CA1202	JZ		ERROR IF SO - TOO FEW NUMBERS	
0274	C362Ø2	JMP	GNNØ5	ELSE, PROCESS NEXT NUMBER	
0277	7A	GNM10: MOV	A,D	WHEN COUNT & CHECK INCO DEDKINATOD	
Ø278	FEØD	CPI	CR CR	WHEN COUNT Ø, CHECK LAST TERMINATOR	
0270 027A	C21202	JNZ		ERROR IF NOT CARRIAGE RETURN	
027D	Ølffff	LXI	B,ØFFFFH		
0280	7D	MOV	•	; HL GETS LARGEST NUMBER GET WHAT'S LEFT OF MAXIMUM ARG COUNT	
Ø281	ло В7	ORA	•	CHECK FOR Ø	
0282	CA8AØ2	JZ		IF YES, 3 NUMBERS WERE INPUT	
Ø285	CAUAUZ	GNM15:	GWMZD	IT 165, 5 NUMBERS WERE INPUT	
0285	C5	PUSH	в	IF NOT, FILL REMAINING ARGUMENTS WITH Ø	FFFF
Ø286	2D	DCR	L	IF NOT, FILL REMAINING ARGUMENTS WITH U	FFFFH
0287	C28502	JNZ	GNM15		
Ø28A	010001	GNM20:	011110		
Ø28A	C1	POP	В	GET THE 3 ARGUMENTS OUT	
Ø28B	Dl	POP	D		
028C	El	POP	H		
Ø28D	CDA002	CALL		SEE IF FIRST >= SECOND	
1		+ FALSE		NO - BRANCH	
Ø29Ø 1	D29502	+ JNC	GNM25		
0293	54	MOV	D,H		
0294	5D	MOV	•	YES - MAKE SECOND EQUAL TO THE FIRST	
Ø295	-	GNM25:			
0295	E3	XTHL		PUT FIRST ON STACK - GET RETURN ADDR	
0296	D5	PUSH		PUT SECOND ON STACK	
Ø297	C5	PUSH		PUT THIRD ON STACK	
Ø298	E5	PUSH		PUT RETURN ADDRESS ON STACK	

.

¥

8299 8299 829A 829B 829B 829C 829D	3D F8 E1 E3 C399Ø2	GNM30: DCR RM POP XTHL JMP ;	A H GNM30	; DECREMENT RESIDUAL COUNT ; IF NEGATIVE, PROPER RESULTS ON STACK ; ELSE, GET RETURN ADDR ; REPLACE TOP RESULT WITH RETURN ADDR ; TRY AGAIN
		; ; ; FUNCTION: ; INPUTS: DE ; HL ; OUTPUTS: C ; ; CALLS: NOT ; DESTROYS:	HILO - 16 BIJ - 16 BIJ ARRY - 0 - 1 HING A,F/F'S N: HILO C INTEGE	T INTEGER
02A0 02A0 02A1 02A2 02A3 02A4 02A5 02A6 02A6 02A7 02A8 02A8 02A8 02A8 02A8 02A8	C5 47 23 7C 85 28 37 CAAFØ2 7D 93 7C 9A 3F	; HILO: PUSH MOV INX MOV ORA DCX STC JZ MOV SUB MOV SBB CMC HILØ5:	B B,A H A,H L H HIL05 A,L E A,H D	; SAVE BC ; SAVE A REGISTER ; INCREMENT HL BY 1 ; WANT TO TEST FOR Ø RESULT AFTER ; /INCREMENTING ; RESTORE HL ; SET CARRY ; IF SO, CARRY IS SET PROPERLY ; IF NOT, MOVE L TO A ; SUBTRACT E ; MOVE H TO A ; SUBTRACT D WITH BORROW ; COMPLIMENT CARRY FOR CORRECT CARRY BIT VALUE
02AF 02B0 02B1	78 C1 C9	MOV POP RET ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	NUST NE	; RESTORE A ; RESTORE BC ; EXIT

• •

• •

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 21 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

٠

.

		; AND INITIALIZES THE STACK POINTER.
02B2 02B2 02B4 02B6 02B9 02BC 02BF	3E25 D3ED 21023C 22383C 312E3C C31E00	; INUST: MVI A,CMD OUT CNCTL ; OUTPUT COMMAND WORD TO USART LXI H,MSTAK-44 ; LOAD POINTER TO STACK SHLD SSAVE ; INITIALIZE USER STACK POINTER LXI SP,MSTAK ; INITIALIZE MONITOR STACK JMP SOMSG ; GO TO PRINT SIGNON MESSAGE
		FUNCTION: NMOUT INPUTS: A - 8 BIT INTEGER OUTPUTS: NONE CALLS: ECHO, PRVAL DESTROYS: A, B, C, F/F'S DESCRIPTION: NMOUT CONVERTS THE 8 BIT, UNSIGNED INTEGER IN THE A REGISTER INTO 2 ASCII CHARACTERS. THE ASCII CHARACTERS ARE THE ONES REPRESENTING THE 8 BITS. THESE TWO CHARACTERS ARE SENT TO THE CONSOLE AT THE CURRENT PRINT POSITION OF THE CONSOLE.
02C2 02C3 02C4 02C5 02C6 02C7 02CA 02CA 02CD 02CE 02D1 02D4	F5 ØF ØF CDD502 CDF901 F1 CDD502 CDF901 C9	; NMOUT: PUSH PSW ; SAVE ARGUMENT RRC RRC RRC ; GET UPPER 4 BITS TO LOW 4 BIT POSITIONS CALL PRVAL ;CONVERT LOWER 4 BITS TO ASCII CALL ECHO ; SEND TO TERMINAL POP PSW ; GET BACK ARGUMENT CALL PRVAL CALL PRVAL CALL ECHO RET
		FUNCTION; PRVAL FUNCTION; PRVAL INPUTS: A - INTEGER, RANGE Ø TO F OUTPUTS: A - ASCII CHARACTER CALLS: NOTHING DESTROYS: NOTHING DESCRIPTION: PRVAL CONVERTS A NUMBER IN THE RANGE Ø TO F HEX TO THE CORRESPONDING ASCII CHARACTER, Ø-9,A-F. PRVAL DOES NOT CHECK THE VALIDITY OF ITS INPUT ARGUMENT.

•

٠

E-22

8080 MACRO ASSEMBLER, VER 2.4ERRORS = 0 PAGE 2280/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

.

٠

4 0 0 5		22112
Ø2D5	D (0D	PRVAL:
Ø2D5	EGØF	ANI HCHAR ; MASK OUT UPPER 4 BITS - WANT 1 HEX CHAR
0207	C690	ADI 90H ; SET UP A SO THAT A-F CAUSE A CARRY
Ø2D9 Ø2DA	27 CE40	DAA ; ADJUST CONTENTS OF A REGISTER ACI 40H : ADD IN CARRY AND ADJUST UPPER 4 BITS
Ø2DA Ø2DC	27	
Ø2DC Ø2DD	27 4F	DAA ; ADJUST CONTENTS OF A REGISTER AGAIN
Ø2DD Ø2DE	4r C9	MOV C,A ; MOVE ASCII CHARACTER TO C RET : ALL DONE
DZDE	Cy	
		;

		, FUNCTION: REGDS
		; INPUTS: NONE
		; OUTPUTS: NONE
		; CALLS: ECHO,NMOUT,ERROR,CROUT
		; DESTROYS: A,B,C,D,E,H,L,F/F'S
		; DESCRIPTION: REGDS DISPLAYS THE CONTENTS OF THE REGISTER SAVE
		; LOCATIONS, IN FORMATTED FORM, ON THE CONSOLE. THE
		; DISPLAY IS DRIVEN FROM A TABLE, RTAB, WHICH CONTAINS
		; THE REGISTER'S PRINT SYMBOL, SAVE LOCATION ADDRESS,
		; AND LENGTH (8 OR 16 BITS).
		;
Ø2DF		REGDS:
Ø2DF	21CØØ3	LXI H,RTAB ; LOAD HL WITH ADDRESS OF START OF TABLE
Ø2E2		REG05:
Ø2E2	4 E	MOV C,M ; GET PRINT SYMBOL OF REGISTER
Ø2E3	79	MOV A,C
Ø2E4	в7	ORA A ; TEST FOR \emptyset – END OF TABLE
Ø2E5	C2ECØ2	JNZ REGIØ ; IF NOT END, BRANCH
Ø2E8	CDF301	CALL CROUT ; ELSE, CARRIAGE RETURN/LINE FEED TO END
Ø2EB	C9	RET ; /DISPLAY
Ø2EC	00000	REG10:
Ø2EC	CDF901	CALL ECHO ; ECHO CHARACTER
Ø2EF	ØE3D	MVI C,'='
Ø2F1	CDF901 23	CALL ECHO ; OUTPUT EQUALS SIGN, I.E. A=
Ø2F4 Ø2F5	23 5E	INX H ; POINT TO START OF SAVE LOCATION ADDRESS MOV E.M : GET LSP OF SAVE LOCATION ADDRESS TO E
02F5 02F6	3E 163C	
Ø2F8	23	MVI D,DATA SHR 8 ; PUT MSP OF SAVE LOC ADDRESS INTO D INX H ; POINT TO LENGTH FLAG
-		
Ø2F9 Ø2FA	1A CDC202	LDAX D ; GET CONTENTS OF SAVE ADDRESS CALL NMOUT : DISPLAY ON CONSOLE
Ø2FD Ø2FE	7E B7	MOV A,M ; GET LENGTH FLAG
	- •	ORA A ; SET SIGN F/F
Ø2FF 0202	CA0703	JZ REG15 ; IF Ø, REGISTER IS 8 BITS
0302 0303	1B 1A	DCX D ; ELSE, 16 BIT REGISTER SO MORE TO DISPLAY LDAX D ; GET LOWER 8 BITS
Ø303	CDC202	LDAX D ; GET LOWER 8 BITS CALL NMOUT ; DISPLAY THEM
Ø304 Ø307	CDC202	REG15:
0307	ØE20	MVI C,''
	0020	

4

	CDF901 23 C3E202				OUTPUT BLANK CHARACTER POINT TO START OF NEXT TABLE ENTRY DO NEXT REGISTER
		;	* * * * * *	* * *	******
		; OUTPUTS: BC - ; CALLS: ERROR ; DESTROYS: A,B, ; DESCRIPTION: R ; D ; F ; R ; R ; A ; T	ARACTE ADDRES GADR T ENOTES OR A M GADR F AVE LO DDRESS HE REG	H AR AR A A A A A A A A A A A A A A A A	DENOTING REGISTER OF ENTRY IN RTAB CORRESPONDING TO REGISTER L,F/F'S KES A SINGLE CHARACTER AS INPUT. THIS CHARACTER A REGISTER. RGADR SEARCHES THE TABLE RTAB CCH ON THE INPUT ARGUMENT. IF ONE OCCURS, CURNS THE ADDRESS OF THE ADDRESS OF THE ATION CORRESPONDING TO THE REGISTER. THIS POINTS INTO RTAB. IF NO MATCH OCCURS, THEN STER IDENTIFIER IS ILLEGAL AND CONTROL IS O THE ERROR ROUTINE.
Ø310 Ø313 Ø316 Ø316 Ø316 Ø318 Ø318 Ø318 Ø318 Ø318 Ø318 Ø328 Ø323 Ø323 Ø323 Ø323 Ø324 Ø325 Ø326	21C003 110300 7E B7 CA1202 B9 CA2303 19 C31603 23 44 4D C9	LXI D, RGAØ5: MOV A, ORA A JZ ER CMP C JZ RG DAD D JMP RG RGA10: INX H MOV B, MOV C, RET	RTABS M ROR AlØ AØ5	; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	HL GETS ADDRESS OF TABLE START DE GET SIZE OF A TABLE ENTRY GET REGISTER IDENTIFIER CHECK FOR TABLE END (IDENTIFIER IS Ø) IF AT END OF TABLE, ARGUMENT IS ILLEGAL ELSE, COMPARE TABLE ENTRY AND ARGUMENT IF EQUAL, WE'VE FOUND WHAT WE'RE LOOKING FOR ELSE, INCREMENT TABLE POINTER TO NEXT ENTRY TRY AGAIN IF A MATCH, INCREMENT TABLE POINTER TO /SAVE LOCATION ADDRESS RETURN THIS VALUE
		; P	F C,D,E, STTF R DINTEF	H, ES	L,F/F'S TORES ALL CPU REGISTER, FLIP/FLOPS, STACK ND PROGRAM COUNTER FROM THEIR RESPECTIVE TIONS IN MEMORY. THE ROUTINE THEN TRANSFERS

6

.

E-24

8080 MACRO ASSEMBLER, VER 2.4 ERRORS 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976 ERRORS = \emptyset PAGE 24

4

۰

		; CONTROL TO THE LOCATION SPECIFIED BY THE PROGRAM ; COUNTER (I.E. THE RESTORED VALUE). THE ROUTINE
		; EXITS WITH THE INTERRUPTS ENABLED.
Ø327		; RSTTF:
0327 0328	F3 312E3C	DI ; DISABLE INTERRUPTS WHILE RESTORING THINGS LXI SP,MSTAK ; SET MONITOR STACK POINTER TO START ; /OF STACK
Ø32B Ø32C	D1 C1	POP D ; START ALSO END OF REGISTER SAVE AREA POP B
Ø32D Ø32E Ø331	F1 2A383C F9	POP PSW LHLD SSAVE ; RESTORE USER STACK POINTER SPHL
Ø332	2A363C	LHLD PSAVE
0335	E5	PUSH H ; PUT USER RETURN ADDRESS ON USER STACK
Ø336 Ø339	2A343C FB	LHLD LSAVE ; RESTORE HL REGISTERS EI : ENABLE INTERRUPTS NOW
Ø33A	C9	RET ; JUMP TO RESTORED PC LOCATION
	•••	1
		; • * * * * * * * * * * * * * * * * * * *
		; ; ; ; ; ; ; ; ; ; ; ; ; ;
Ø33B	~ =	SRET:
Ø33B Ø33C	37 C9	·STC ; SET CARRY TRUE RET : RETURN APPROPRIATELY
0000		;
Ø33D		<pre>FUNCTION: STHFØ INPUTS: DE - 16 BIT ADDRESS OF BYTE TO BE STORED INTO OUTPUTS: NONE CALLS: NOTHING DESTROYS: A,B,C,H,L,F/F'S DESCRIPTION: STHFØ CHECKS THE HALF BYTE FLAG IN TEMP TO SEE IF IT IS SET TO LOWER. IF SO, STHFØ STORES A Ø TO PAD OUT THE LOWER HALF OF THE ADDRESSED BYTE; OTHERWISE, THE ROUTINE TAKES NO ACTION. STHFØ:</pre>
0220		5111.0.

.

٠

с п

8080 MAC 80/1	CRO ASSEME Ø MONITOF	BLER, VER 2.4 R, VERSION 1.1,	1 NOVEM	ERRORS = Ø PAGE 25 IBER 1976
033D 0340 0341 0342 0344 0344	3A3A3C B7 CØ ØEØØ CD48Ø3 C9	LDA ORA RNZ MVI CALL RET	А С,Ø	; GET HALF BYTE FLAG ; SET F/F'S ; IF SET TO UPPER, DON'T DO ANYTHING ; ELSE, WANT TO STORE THE VALUE Ø ; DO IT
		;	*******	*****
		;		****
		; DE ; OUTPUTS: NO ; CALLS: NOTH ; DESTROYS: A	4 BIT V - 16 BIT NE ING ,B,C,H,L : STHLF HALF O HALF B BY THE THAT T	ALUE TO BE STORED IN HALF BYTE ADDRESS OF BYTE TO BE STORED INTO ,F/F'S TAKES THE 4 BIT VALUE IN C AND STORES IT IN F THE BYTE ADDRESSED BY REGISTERS DE. THE BYTE USED (EITHER UPPER OR LOWER) IS DENOTED VALUE OF THE FLAG IN TEMP. STHLF ASSUMES THIS FLAG HAS BEEN PREVIOUSLY SET VALLY BY ICMD).
Ø348		STHLF:		
Ø348 Ø349	D5 E1	PUSH POP	D H	; MOVE ADDRESS OF BYTE INTO HL
034A	79	MOV	A,C	; GET VALUE
Ø34B	E60F	ANI	ØFH	; FORCE TO 4 BIT LENGTH
Ø34D Ø34E	4F 3A3A3C	MOV	C,A TEMP	; PUT VALUE BACK
Ø34E Ø351	B7	LDA ORA	A	; GET HALF BYTE FLAG ; CHECK FOR LOWER HALF
0352	C25BØ3	JNZ	STHØ5	; BRANCH IF NOT
0355	7E	MOV	А,М	; ELSE, GET BYTE
Ø356 Ø358	E6FØ Bl	AN I ORA	ØFØН С	; CLEAR LOWER 4 BITS ; OR IN VALUE
Ø359	77	MOV	M,A	; PUT BYTE BACK
Ø35A	C9	RET		,
Ø35B		STHØ5:	.	
Ø35B Ø35C	7E E6ØF	MOV ANI	A,M Øfh	; IF UPPER HALF, GET BYTE
Ø35E	47	MOV	B,A	; CLEAR UPPER 4 BITS ; SAVE BYTE IN B
Ø35F	79	MOV	A,C	; GET VALUE
0360	ØF	RRC	-	
Ø361 Ø362	ØF	RRC		
Ø362 Ø363	ØF ØF	RRC RRC		; ALIGN TO UPPER 4 BITS
0364	вØ	ORA	В	; OR IN ORIGINAL LOWER 4 BITS
Ø365	77	MOV	M,A	; PUT NEW CONFIGURATION BACK
Ø366	C9	RET		
		;		

5

ŧ

8080 MACRO ASSEMBLE	ER, VER 2.4	$ERRORS = \emptyset$	PAGE 26
80/10 MONITOR,	VERSION 1.1, 1	NOVEMBER 1976	

A2

.

Í			; ************************************
			; FUNCTION: VALDG
			; INPUTS: C - ASCII CHARACTER
			; OUTPUTS: CARRY – 1 IF CHARACTER REPRESENTS VALID HEX DIGIT
			; – Ø OTHERWISE
			; CALLS: NOTHING
			; DESTROYS: A,F/F'S ; DESCRIPTION: VALDG RETURNS SUCCESS IF ITS INPUT ARGUMENT IS
			; AN ASCII CHARACTER REPRESENTING A VALID HEX DIGIT
			; $(\emptyset - 9, A - F)$, AND FAILURE OTHERWISE.
	0367		VALDG:
	Ø367	79	MOV A,C
	Ø368	FE3Ø	CPI '0' ; TEST CHARACTER AGAINST '0'
	Ø36A Ø36D	FA1DØ2 FE39	JM FRET ; IF ASCII CODE LESS, CANNOT BE VALID DIGIT CPI '9' ; ELSE, SEE IF IN RANGE '0'-'9'
	Ø36F	FA3BØ3	CPI '9' ; ELSE, SEE IF IN RANGE '0'-'9' JM SRET ; CODE BETWEEN '0' AND '9'
	Ø372	CA3BØ3	JZ SRET ; CODE EQUAL '9'
	0375	FE41	CPI 'A' ; NOT A DIGIT - TRY FOR A LETTER
	Ø377	FA1DØ2	JM FRET ; NO - CODE BETWEEN '9' AND 'A'
1	Ø37A	FE47	CPI 'G'
ა	Ø37C	F21D02	JP FRET ; NO - CODE GREATER THAN 'F'
L	Ø37F	C33BØ3	JMP SRET ; OKAY - CODE IS 'A' TO 'F', INCLUSIVE
			· · · · · · · · · · · · · · · · · · ·
			7
			; FUNCTION: VALDL
			; INPUTS: C - CHARACTER
			; OUTPUTS: CARRY - 1 IF INPUT ARGUMENT VALID DELIMTER
			; – Ø OTHERWISE ; CALLS: NOTHING
			; CALLS: NOTHING ; DESTROYS: A,F/F'S
			; DESTROIS, A, TT S ; DESCRIPTION: VALDL RETURNS SUCCESS IF ITS INPUT ARGUMENT IS A VALID
			; DELIMITER CHARACTER (SPACE, COMMA, CARRIAGE RETURN) AND
			; FAILURE OTHERWISE.
			1
Í	0382	70	VALDL:
	Ø382 Ø383	79 FE2C	MOV A,C CPI ',' ; CHECK FOR COMMA
	Ø385	CA3BØ3	CPI ',' ; CHECK FOR COMMA JZ SRET
	Ø388	FEØD	CPI CR ; CHECK FOR CARRIAGE RETURN
	Ø38A	CA3BØ3	JZ SRET
	Ø38D	FE2Ø	CPI '' ; CHECK FOR SPACE
	Ø38F	CA3BØ3	JZ SRET
	Ø392	C31DØ2	JMP FRET ; ERROR IF NONE OF THE ABOVE
			;

#!

.

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 27 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

		_						
		; ,****	******	******	**	******	* * * * * * * * * * * * * * * * * * * *	******
		;						
		;						
		;				MONIT	OR TABLES	
		;						
		;					*****	
		;						
		;						
Ø395		; SGNON	•				; SIGNON MESSAGE	
Ø395	ØDØA3830	Donon	DB	CR.LF.'8	sø,	/10 MON	ITOR', CR, LF	
Ø399	2F313020			0.,21, 0	,			
Ø39D	4D4F4E49							
Ø3A1	544F52ØD							
Ø3A5	ØA							
ØØ11		LSGNO	N	EQU	\$-	-SGNON	; LENGTH OF SIGNON MESSAGE	
03A6		; CADDA			_		OF ADDRECCES OF COMMAND DOUGH	NEC
Ø3A6	0000	CADR:	DW	Ø		DUMMY	OF ADDRESSES OF COMMAND ROUTI	NES
Ø3A8	3301		DW	XCMD	•	DOMMI		
ØЗАА	ØF01		DW	SCMD				
ØJAC	EFØØ		DW	MCMD				
Ø3AE	A900		DW	ICMD				
ØЗВØ	8B0Ø		DW	GCMD				
Ø3E2	5FØØ		DW	DCMD				
Ø3B4	0604		DW	RCMD				
Ø3B6	4104		DW	WCMD				
Ø3B8		; CTAB:				ייז א מע	OF VALID COMMAND CHARACTERS	
Ø3B8	57	CIND,	DB	'W' ·	ŧ	INDEE	OF WREID COMMAND CHARACIERS	
Ø3B9	52		DB	'R'				
Ø38A	44		DB	'D'				
Ø3BB	47		DB	'G'				
Ø3BC	49		DB	'I'				
Ø3BD	4D		DB	'M'				
Ø3BE	53		DB	'S'				
Ø3BF ØØØ8	58	NCMDS	DB	יצי ה כתואם	_	NUMBER	OF WALLD CONNANDS	
0000			EQU	\$-СТАВ	;	NUMBER	OF VALID COMMANDS	
		; ;						
Ø3CØ		RTAB:			;	TABLE	OF REGISTER INFORMATION	
Ø3CØ	41		DB	'A'			ER IDENTIFIER	
Ø3C1	33		DB	ASAVE AN			; ADDRESS OF REGISTER SAVE LC	CATION
Ø3C2	ØØ		DB	Ø	;	LENGTH	FLAG - \emptyset =8 BITS, 1=16 BITS	
0003		RTABS	EQU	\$-RTAB			F AN ENTRY IN THIS TABLE	
Ø3C3	42		DB	'B'		_		
Ø3C4	31		DB	BSAVE AN	D	ØFFH		
03C5	00		DB	0 'C'				
Ø3C6 Ø3C7	43 30		DB	-	ī	0.000		
0301	שכ		DB	CSAVE AN	iD.	OFFH		

.

\$

F-38

•

*

		1 NOVEMBER 1976
	DB	Ø
		'D'
		DSAVE AND ØFFH
		0
		'E'
		ESAVE AND ØFFH
		FSAVE AND ØFFH
		0 'H'
		HSAVE AND ØFFH Ø
		»L •
		LSAVE AND ØFFH
		'M'
		HSAVE AND ØFFH
		1
	DB	י p ו
37	DB	PSAVE+1 AND ØFFH
Ø1	DB	1
53	DB	'S'
39	DB	SSAVE+1 AND ØFFH
Ø 1	DB	1
	DB	Ø ; END OF TABLE MARKERS
ØØ	DB	0
	;	
	;	*******
	**********	*********************
	;	
	CDVDT.	
		'(C) 1976 INTEL CORP'
	22	(c) INTO INITE COM
	;	
	;	
	;********	***************************************
	;	
	;	
	;	
	ORG	BRTAB
	;	
		CO ; BRANCH TABLE FOR USER ACCESSIBLE ROUTINES
		CI
		RI
C30F05		PO
	;	
	/10 MONITOR 00 44 2F 00 45 2E 00 46 32 00 46 32 00 46 32 00 46 32 00 46 32 00 46 32 00 40 40 35 00 40 35 00 40 40 37 01 50 37 01 50 30 90 00 00 00 00 00 00 00 00 0	44 DB 2F DB 00 DB 45 DB 2E DB 00 DB 46 DB 32 DB 00 DB 46 DB 32 DB 00 DB 48 DB 35 DB 00 DB 44 DB 35 DB 00 DB 40 DB 35 DB 01 DB 50 DB 01 DB 53 DB 01 DB 00 DB 00 DB 00 DB 01 DB 020 DB 1393736 DB 1393736 DB 131393736 DB 131393736 ORG 7 CRG 7 CRG 7

ERRORS = Ø PAGE 28

8080 MACRO ASSEMBLER, VER 2.4

ø

٠

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 29 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

.

۲

	;		*****	- - -
	;*********	* * * * * * * * * *	**********	* * *
	7			
	; FUNCTION R ; INPUTS: NO ; OUTPUTS: N ; CALLS: GET ; DESTROYS: A	NE ONE CH,ECHO,C		
			MPLEMENTS THE READ HEXADECIMAL TAPE (R)	
	; RCMD:			
CD2002 CDF901 79	CALL CALL MOV	GETCH ECHO A,C	; GET CARRIAGE RETURN CHARACTER ; ECHO IT ; MOVE IT TO A REGISTER	
FEØD C21202	CPI JNZ	CR ERROR	; SEE IF CARRIAGE RETURN ; ERROR IF NOT PROPERLY TERMINATED	
CD1305	RCMØ5:	RICH	; READ CHARACTER FROM TAPE	
FE3A	CALL CPI	*:'	; SEE IF RECORD MARK	
C21204	JNZ	RCMØ5	TRY AGAIN IF NOT MARK	
AF	XRA	A	ZERO A REGISTER	
57	MOV	D,A	; INITIALIZE D FOR HOLDING THE CHECKSUM	
CD9604	CALL	BYTE	; READ TWO CHARACTERS FROM TAPE	
CA2CØØ	JZ	GETCM	; IF ZERO RECORD LENGTH, ALL DONE	
5F CD9604	MOV Call	E,A Byte	; OTHERWISE, PUT THE RECORD LENGTH IN E ; GET MSE OF LOAD ADDRESS	
67	MOV	H,A	; GET MSB OF LOAD ADDRESS ; MOVE TO H	
CD96Ø4	CALL	EYTE	; GET LSB OF LOAD ADDRESS	
6F	MOV	L,A	MOVE TO L	
CD9604	CALL	BYTE	; GET RECORD TYPE	
4B	MOV	C,E	; MOVE RECORD LENGTH TO C	
	RCM10:			
CD9604	CALL	BYTE	; READ DATA FROM TAPE	
77	MOV	M,A	; PUT DATA INTO MEMORY	
23	INX	н	; INCREMENT HL FOR NEXT LOCATION	
	DCR	E	; DECREMENT RECORD LENGTH	
C22FØ4 CD96Ø4	JNZ CALL	RCM1Ø BYTE	; LOOP UNTIL DONE ; READ CHECKSUM FROM TAPE	
C21202	JNZ	ERROR	; CHECKSUM ERROR IF NOT ZERO	
C31204	JMP	RCM05	; GET ANOTHER RECORD	
	;	Renos	, our morner record	
	;			
	*******	*******	*******	***
	;			
	;			
	; FUNCTION W			
	; INPUTS: NO			
	; OUTPUTS: NO		ה האמ מתגם האני אייאמר א	
	CUTTO: GET	ALL LUND'E	O, PBYTE, PADR, PEOL, PEOF	

.

5

Ø4Ø6 Ø4Ø6

0409

040C 040D

040F

Ø412 Ø412

Ø415

Ø417

Ø41A

Ø41B

Ø41C Ø41F

0422

Ø423

0426

Ø427

Ø42A

Ø42B

Ø42E

Ø42F Ø42F

Ø432 Ø433 Ø434

0435

Ø438

Ø43B

Ø43E

8080 MACRO ASSEMBLER, VER 2.4ERRORS = 0 PAGE 3080/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

۴.,

٠

				IMP	,L,F/F'S LEMENTS THE WRITE HEXADECIMAL TAPE (W)
		; ;	COMMAN	ND.	
0441		WCMD:			
0441	ØEØ2	MVI	C,2		
0443	CD5B02	CALL	GETNM	;	GET 2 NUMBERS FROM INPUT STREAM
0446	CDBAØ4	CALL	LEAD	;	PUNCH 60 NULL CHARACTERS FOR TAPE LEADER
Ø449	Dl	POP	D	;	ENDING ADDRESS TO DE
Ø44A	El	POP	н		STARTING ADDRESS TO HL
Ø44B		WCMØ5:		•	
Ø44B	7D	MOV	A,L	;	MOVE L TO A
Ø44C	C610	ADI	16	;	INCREMENT THE LSB OF STARTING ADDRESS BY 16
044E	4F	MOV	C,A	;	MOVE RESULT TO C
Ø44F	7C	MOV	A,H	;	MOVE H TO A
Ø45Ø	CEØØ	ACI	ø	;	ADD CARRY IN FROM PREVIOUS OPERATION
Ø452	47	MOV	B,A		SAVE RESULT IN B
0453	7B	MOV	A,E	;	NOW MOVE LSB OF ENDING ADDRESS TO A
Ø454	91	SUB	C	;	SUBTRACT LSB OF STARTING ADDRESS
Ø455	4 F	MOV	C,A		SAVE IN C
0456	7A	MOV	A,D	;	NOW GET MSB OF ENDING ADDRESS IN A
Ø457	98	SBB	B	;	SUBTRACT MSB OF STARTING ADDRESS
Ø458	DA6004	JC	WCM10	;	BRANCH IF THE RECORD LENGTH IS NOT 16
Ø45B	3E1Ø	MVI	A,16	;	OTHERWISE SET A TO RECORD LENGTH OF 16
Ø45D	C363Ø4	JMP	WCM15	;	NOW BRANCH TO PUNCH THE RECORD
Ø46Ø		WCM10:			
Ø46Ø	79	MOV	A,C	;	THIS IS THE LAST RECORD
Ø461	C611	ADI	17	;	SO SET A TO REMAINING DATA LENGTH
0463		WCM15:			
0463	в 7	ORA	А		CHECK FOR RECORD LENGTH OF ZERO
0464	CA9004	JZ	WCM25	;	IF IT IS, ALL DONE
Ø467	D5	PUSH	D	;	OTHERWISE, SAVE ENDING ADDRESS
0468	5F	MOV	E,A	;	PUT RECORD LENGTH IN E
Ø469	1600	MVI	D,Ø	;	INITIALIZE D FOR HOLDING CHECKSUM
Ø46B	ØE3A	MVI	C, ': '		
Ø46D	CDØFØ5	CALL	PO	;	PUNCH RECORD MARK CHARACTER
0470	7B	MOV	A,E	;	PUT RECORD LENGTH IN A
Ø471	CDCFØ4	CALL	PBYTE	;	PUNCH RECORD LENGTH
0474	CDC604	CALL	PADR	;	PUNCH STARTING ADDRESS
Ø477	AF	XRA	А	;	ZERO A
0478	CDCF04	CALL	PBYTE	;	PUNCH RECORD TYPE
Ø47B		WCM20:			
Ø47B	7E	MOV	A,M	;	CET DATA TO BE PUNCHED FROM MEMORY
Ø47C	CDCFØ4	CALL	PBYTE	;	PUNCH IT
Ø47F	23	INX	Н	;	INCREMENT MEMORY ADDRESS
0480	1D	DCR	E	;	DECREMENT LENGTH COUNT
Ø481	C27BØ4	JNZ	WCM2Ø	;	LOOP UNTIL ALL DATA PUNCHED
0484	AF	XRA	А		
Ø485	92	SUB	D	;	PUNCH CHECKSUM
Ø486	CDCFØ4	CALL	PBYTE		
0489	D1	POP	D	;	RESTORE ENDING ADDRESS
				•	

.

.

ゴーンコ

	~~~~~~		_		
048A 048D 0490	CDØ4Ø5 C34BØ4	CALL PEC JMP WCN WCM25:		;	PUNCH CARRIAGE RETURN AND LINE FEED
	CDE604	CALL PEG			PUNCH END OF FILE RECORD
Ø493	C317Ø2	JMP EX:	Т	;	ALL DONE
		; ;			
		;***********	****	***	************
		•			
		; FUNCTION BYTE			
					LUE OF CHECKSUM
		; OUTPUTS: A - HI ; D - UI			AL CHARACTER ALUE OF CHECKSUM
		; CALLS: RICH, CNV			
		; DESTROYS: A,B,C			
					S 2 ASCII CHARACTERS FROM THE TELETYPEWRITER RTS THE CHARACTERS TO ONE HEXADECIMAL CHARACTE
		-			ISTER CONTAINS THE FINAL CHARACTER AND THE
		•			R CONTAINS THE UPDATED VALUE OF
		; "	E CHE	CK	SUM.
3496		BYTE:			
Ø496 0497	C5 CD13Ø5	PUSH B CALL RIC			SAVE BC
649A	4F	CALL RIC MOV C, A		;	READ ASCII CHARACTER FROM TAPE
049B	CDDFØ1	CALL CNV		-	CONVERT CHARACTER TO HEXADECIMAL
Ø49E Ø49F	07 07	RLC RLC		;	POSITION VALUE INTO UPPER 4 BITS
049F 04A0	Ø7	RLC			
Ø4A1	Ø7	RLC			
04A2 04A3	47 CD1305	MOV B,A CALL RIC		•	SAVE RESULTS IN B
Ø4A5 Ø4A6	4F	MOV C, A		;	GET ANOTHER CHARACTER FROM TAPE
Ø4A7	CDDF01	CALL CNV	BN	-	CONVERT IT
04AA 04AB	ВØ 4F	ORA B MOV C, A		•	OR IN THE UPPER 4 BITS
Ø4AC	82	ADD D			SAVE INCREMENT CHECKSUM
Ø4AD	57	MOV D, A		•	
04AE 04AF	79 Cl	MOV A,C POP B		-	RESTORE HEX DATA TO A REGISTER RESTORE BC
0480	C9	RET		1	RESTORE BC
		;			
		;	*****		****
		;			
		;			
		; FUNCTION DELAY			
		; INPUTS: NONE ; OUTPUTS: NONE			
		,			

e

•

.

.

E-32

8			BLER, VER 2.4 ERRORS = Ø PAGE 32 R, VERSION 1.1, 1 NOVEMBER 1976
			; DESTROYS: F/F'S ; DESCRIPTION: DELAY PROVIDES A PROGRAMMED DELAY OF 1 MILLISECOND ; FOR TAPE READER OPERATION.
	Ø4B1		DELAY:
	Ø4B1	C5	PUSH B ; SAVE BC REGISTERS
	Ø4B2	Ø683	MVI B, ONEMS ; LOAD 1 MILLISECOND CONSTANT
	Ø4B4	~ ~	DEL1:
	Ø4B4	Ø5 630464	DCR B ; DECREMENT INNER COUNTER
	Ø4B5 Ø4B8	C2B4Ø4 Cl	JNZ DEL1 ; JUMP IF NOT DONE POP B ; RESTORE BC REGISTERS
	04B0	C9	RET ; RETURN TO CALLING ROUTINE
	0405	C	;
			*****************
			;
			; ; FUNCTION LEAD
			; INPUTS: NONE
			; OUTPUTS: NONE
			; CALLS: PO
			; DESTROYS: B,C,F/F'S
			; DESCRIPTIOM: LEAD OUTPUTS 60 NULL CHARACTERS TO PAPER TAPE TO FORM A
el 🛛			; LEADER.
່ວ	Ø4BA		LEAD:
ວ	Ø4BA	Ø63C	MVI B,60 ; LOAD B WITH A COUNT OF 60
	Ø4BC		LE05:
	Ø4BC	ØEØØ	MVI C,Ø
	Ø4BE	CDØFØ5	CALL PO ; PUNCH NULL CHARACTER
	Ø4C1	05	DCR B ; DECREMENT COUNT
	Ø4C2	C2BCØ4	JNZ LEØ5 ; DO IT AGAIN IF NOT DONE
	Ø4C5	C9	RET
			****************
			;
			;
			; FUNCTION PADR
			; INPUTS: HL - ADDRESS TO BE PUNCHED ; OUTPUTS: NONE
			; CALLS: PBYTE
			; DESTROYS: A
			; DESCRIPTION: PADR PUNCHES ON THE TELETYPEWRITER THE ADDRESS
			CONTAINED IN THE H,L REGISTERS.
			;
	Ø4C6		PADR:
	Ø4C6	7C	MOV A,H ; PUNCH FIRST HALF OF ADDRESS
	Ø4C7	CDCFØ4	CALL PBYTE
	Ø4CA	7D	MOV A,L ; PUNCH SECOND HALF OF ADDRESS

•

.

٠

٠

		LER, VER 2.4 , VERSION 1.1,		ERRORS = Ø PAGE 33 IBER 1976
04CB 04CE	CDCFØ4 C9	CALL RET	PBYTE	; RETURN TO CALLING ROUTINE
		;	*******	*******
		;		
		; ; FUNCTION PB · INPUTS · A -		TER TO BE PUNCHED
		; D -	CURRENT	F VALUE OF CHECKSUM
		; OUTPUTS: D ; CALLS: PRVA		ED VALUE OF CHECKSUM
		; DESTROYS: A	F/F'S	
		; DESCRIPTION	INTO 7	CONVERTS THE HEXADECIMAL VALUE IN THE A REGISTER TWO ASCII CHARACTERS AND PUNCHES THESE CHARACTERS PER TAPE. THE CHECKSUM CONTAINED IN D IS UPDATED.
0 ACE				
04CF 04CF	F5	PBYTE: PUSH	PSW	; SAVE A,F/F'S
Ø4DØ	ØF	RRC		; POSITION UPPER 4 BITS INTO LOWER 4 BITS
Ø4D1 Ø4D2	ØF ØF	RRC RRC		
Ø4D3	ØF	RRC		
Ø4D4 Ø4D7	CDD502 CD0F05	CALL CALL	PRVAL PO	; CONVERT UPPER 4 BITS JUST ROTATED TO ASCII ; PUNCH CHARACTER
Ø4DA	Fl	POP	PSW	; RESTORE A,F/F'S
Ø4DB Ø4DC	F5 CDD <b>5</b> 02	PUSH CALL	PSW PRVAL	; SAVE A AGAIN ; CONVERT LOWER 4 BITS TO ASCII CHARACTER
Ø4DF	CDØFØ5	CALL	PO	; PUNCH CHARACTER
Ø4E2 Ø4E3	F1 82	POP ADD	PSW D	; RESTORE A ; ADD VALUE TO CHECKSUM
Ø4E4	57	MOV	D,A	; UPDATE D REGISTER WITH NEW CHECKSUM
Ø4E5	C9	RET.		; RETURN TO CALLING ROUTINE
		; ;		
		*********	******	**********************
		; ;		
		; FUNCTION PE ; INPUTS: NON		
		; OUTPUTS: NO	NE	
		; CALLS: PO,P ; DESTROYS: A		
				JNCHES THE END OF FILE RECORD CONSISTING OF A RECORD
		; ;	MARK, A	A LOAD ADDRESS OF Ø, THE RECORD TYPE, AND THE CHECKSUM.
0456		; DEOR		
Ø4E6 Ø4E6	ØE3A	PEOF: MVI	c,':'	
Ø4E8	CDØFØ5	CALL	PÒ	; PUNCH RECORD MARK
Ø4EB	AF	XRA	A	; ZERO CHECKSUM

E-34

٠

8080 MAC 80/1	RO ASSEMB 0 MONITOR	LER, VER 2.4 ERRORS = 0 PAGE 34 , VERSION 1.1, 1 NOVEMBER 1976
04F0 04F3 04F6 04F8 04F8 04FB 04FC 04FD	57 CDCFØ4 210000 CDC604 3E01 CDCFØ4 AF 92 CDCFØ4 CDBAØ4 C9	MOV D,A ; SAVE IN D REGISTER CALL PBYTE ; PUNCH RECORD LENGTH LXI H,Ø ; LOAD HL WITH ZERO ADDRESS CALL PADR ; PUNCH IT MVI A,1 ; LOAD A WITH RECORD TYPE CALL PBYTE ; PUNCH IT XRA A ; ZERO A SUB D ; COMPUTE CHECKSUM CALL PBYTE ; PUNCH IT CALL LEAD ; PUNCH TRAILER RET
		; ;***********************************
		; DESCRIPTION: PEOL PUNCHES A CARRIAGE RETURN AND LINE FEED ONTO ; PAPER TAPE. ;
0504 0504 0506 0509 0508 0508	0E0D CD0F05 0E0A CD0F05 C9	PEOL: MVI C,CR CALL PO ; PUNCH CARRIAGE RETURN CHARACTER MVI C,LF CALL PO ; PUNCH LINE FEED CHARACTER RET
		FUNCTION PO INPUTS: C - CHARACTER TO BE PUNCHED OUTPUTS: NONE CALLS: CO DESTROYS: NOTHING DESCRIPTION: PO PUNCHES THE CHARACTER SUPPLIED IN THE C REGISTER TO THE USER TELETYPEWRITER.
050F 050F 0512	CDE8Ø1 C9	; PO: CALL CO ; CALL CONSOLE OUT TO PERFORM CHARACTER OUTPUT RET ; ;
		;;

• €

•

70 | T

	RO ASSEMB Ø MONITOR					ERROR <b>S = Ø PAGE 35</b> R <b>1976</b>
		; INPU ; OUTP ; ; CALL ; DEST	A S: RI ROYS: A	E - ZERO, ( - CHARAC' ,F/F'S	rei	RRY - 1 IF END OF FILE R, CARRY - Ø IF VALID CHARACTER FS FOR AN END OF FILE CONDITION.
Ø513 Ø513 Ø516 Ø519 Ø51B	CD1CØ5 DA12Ø2 E67F C9	7	CALL JC ANI RET	RI ERROR PRTYØ	;;;	READ A CHARACTER FROM TAPE JUMP IF READER TIMEOUT ERROR REMOVE PARITY BIT RETURN TO CALLING ROUTINE
		; INPU ; OUTP ; ; CALL ; DEST	TION RI TS: NON UTS: A - A - S: DELAY PROYS: A	E - ZERO, ( - Charac' Y ,F/F'S	CAI Fei	RRY - 1 IF END OF FILE R, CARRY - Ø IF VALID CHARACTER A CHARACTER FROM THE TTY TAPE READER.
Ø51C Ø51D Ø51F Ø521 Ø524 Ø528 Ø528 Ø528 Ø528 Ø528 Ø522 Ø522 Ø522	C5 DBED E604 CA1D05 3E27 D3ED 0628 CDB104 05 C22A05 3E25 D3ED 06FA DBED E602 C24905	RIØ5: RIØ7: RIIØ:	PUSH IN ANI JZ MVI OUT MVI CALL DCR JNZ MVI OUT MVI IN ANI JNZ	A,TTYAD CNCTL B,40 DELAY B RI07 A,CMD CNCTL B,250		READ IN USART STATUS CHECK FOR TRANSMITTER BUFFER EMPTY TRY AGAIN IF NOT EMPTY
053B 053E 0541 0542 0545 0546	C24905 CDB104 05 C23705 AF 37		JNZ CALL DCR JNZ XRA STC	RIIS DELAY B RIIØ A	;;;;;	YES - DATA IS READY DELAY 1 MS DECREMENT TIMER JUMP IF TIMER NOT EXPIRED ZERO A SET CARRY INDICATING EOF

¥

•

٠

۰

E-36

	RO ASSEMBI Ø MONITOR,			1 NOVEM		ERRORS = Ø PAGE 36 CR 1976
0547 0548 0549	C1 C9	RI15:	POP RET	В		RESTORE BC RETURN TO CALLING ROUTINE
0549	DBEC		IN	CNIN	;	INPUT DATA CHARACTER
Ø54B	B7		ORA	А		CLEAR CARRY
Ø54C	C1		POP	В	•	RESTORE BC
Ø54D	C9		RET		;	RETURN TO CALLING ROUTINE
		;				
		· * * * * *	******	******	* * 7	******
		;				
05.40		;	-			
054E 054E	28432920	COPYR	DB	1/01 19	76	INTEL CORP'
0552	31393736		<b>D</b> B	(C) 19	/0	INIED CORP
Ø556	20494E54					
Ø55A	454C2Ø43					
Ø55E	4F5250					
		;				
		;	******	******	* * *	*****
		;				
		;				
3CØØ			ORG	DATA		
3C2E			ORG	REGS	;	ORG TO REGISTER SAVE - STACK GOES IN HERE
3C2E		; MSTAK		EQU	\$	; START OF MONITOR STACK
3C2E	00	ESAVE		DB	ø	
3C2F	00	DSAVE		DB	Ø	•
3C30	00	CSAVE	:	DB	Ø	C REGISTER SAVE LOCATION
3C31	ØØ	BSAVE	:	DB	Ø	
3C32	ØØ	FSAVE		DB	Ø	
3C33	00	ASAVE		DB	Ø	,
3C34 3C35	00 00	LSAVE: HSAVE:		DB DB	Ø Ø	,
3035	0000	PSAVE		DB DW	Ø	· ·· ··· ··· · ··· · ··· · ··· · ··· · ·
3C38	0000	SSAVE		DW	ø	
3C 3A	00	TEMP:		DB	ø	• • • • • • • • • • • • • • • • • • • •
		;				
3C 3D			ORG	BRLOC		; ORG TO USER BRANCH LOCATION
2020		; USRBR:		DS	3	; BRANCH GOES IN HERE
3C3D		JOKER:		50	J	j DRANCH GOED IN HERE
		;				
		•	END			
NO PROGRA	AM ERRORS					

**#**1

.

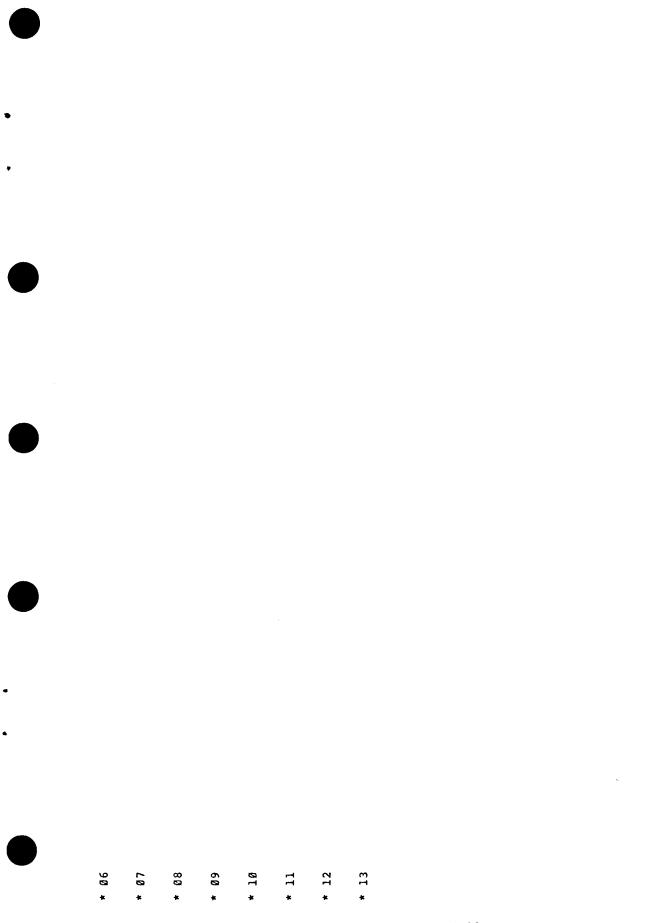
8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 37 80/10 MONITOR, VERSION 1.1, 1 NOVEMBER 1976

.

SYMBOL TABLE

* Øl

А	0007	ADRD	Ø1A8		ADROU	Ø1B1	ASAVE	3C33
В	0000	BRCHR	ØØ1B		BREAK	Ø1C2	BRLOC	3C3D
BRTAB	Ø3FA	BSAVE	3C31		BYTE	0496	С	0001
CADR	Ø3A6	CI	Ø1D5		CMD	0025	CNCTL	ØØED
CNIN	00EC	CNOUT	ØØEC		CNVBN	Øldf	со	Ø1E8
CONST	ØØED	COPYR	Ø54E *		CPYRT	Ø3E3 *	CR	000D
CROUT	Ø1F3	CSAVE	3C3Ø		CTAB	Ø3B8	D	0002
DATA	3000	DCMØ5	0066		DCM10	ØØ6C	DCMD	005F
DELl	Ø4B4	DELAY	Ø4B1		DSAVE	3C2F	E	0003
ECHØ5	0202	ECH10	0210		ECHO	Ø1F9	ERROR	0212
ESAVE	3C2E	ESC	ØØ1B		EXIT	Ø217	FALSE	ØF9C
FRET	Ø21D	FSAVE	3C32		GCMØ5	ØØAØ	GCM10	ØØA6
GCMD	ØØ8B	GETCH	0220		GETCM	ØØ2C	GETHX	Ø227
GETNM	Ø25B	GHXØ5	Ø22D		GHX10	Ø245	GNMØ5	Ø262
GNM10	Ø277	GNM15	Ø285		GNM20	Ø28A	GNM25	Ø295
GNM 30	Ø299	GO	0008 *	r	GTCØ3	ØØ3C	GTCØ5	0049
GTC10	0055	H	0004		HCHAR	ØØØF	HILØ5	Ø2AF
HILO	Ø2AØ	HSAVE	3C35		ICMØ5	00B4	ICM10	ØØDB
ICM20	ØØE3	ICM25	ØØE9		ICMD	00A9	INUST	Ø262
INVRT	ØØFF	L	0005		LEØ5	Ø4BC	LEAD	Ø4BA
LF	ØCØA	LSAVE	3C34		LSGNO	0011	M	0006
MCMØ5	Ø0F7	MCMD	ØØEF		MODE	ØØCF	MSGL	0023
MSTAK	3C2E	NCMDS	0008		NEWLN	000F	NMOUT	Ø2C2
ONEMS	ØØ83	PADR	Ø4C6		PBYTE	Ø4CF	PEOF	Ø4E6
PEOL	0504	PO	Ø50F		PRTYØ	007F	PRVAL	Ø2D5
PSAVE	3C36	PSW	0006		RBR	0002	RCMØ5	0412
RCM1Ø	042F	RCMD	0406		REGØ5	Ø2E2	REG10	Ø2EC
REG15	0307	REGDS	Ø2DF		REGS	3C2E	RGAØ5	Ø316
RGA1Ø	Ø323	RGADR	Ø31Ø		RI	Ø51C	RIØ5	Ø51D
RIØ7	Ø52A	RIlØ	Ø537		RI15	Ø549	RICH	Ø513
RSTTF	0327	RSTU	0038		RTAB	Ø3CØ	RTABS	0003
SCMØ5	Ø114	SCM10	Ø11F		SCM15	012F	SCMD	Ø10F
SGNON	Ø395	SOMSG	ØØlE		SP	0006	SRET	Ø33B
SSAVE	3C38	STHØ5	Ø35B		STHFØ	Ø33D	STHLF	0348
TEMP	3C 3 A	TERM	001B		TRDY	0001	TRUE	ØF9F
TTYAD	0027	TXBE	0004		UPPER	ØØFF	USRBR	3C3D
VALDG	Ø367	VALDL	Ø382		WCM05	Ø44B	WCM10	0460
WCM15	Ø463	WCM2Ø	Ø47B		WCM25	0490	WCMD	Ø441
XCMØ5	Ø145	хсміø	Ø154		XCM15	Ø161	XCM20	Ø17F
XCM25	Ø196	XCM27	Ø1 <b>97</b>		хсмзø	Ø19F	XCMD	Ø133


٠

* Ø2

* Ø3

* Ø4

* Ø5



E-39

# €

# APPENDIX F

# ASCII TABLE

The INTELLEC[®]MDS uses a 7-bit ASCII code, which is the normal 8-bit ASCII code with the parity (high order) bit always reset.

____

_

GRAPHIC OR CONTROL	ASCII (HEXADECIMAL)	GRAPHIC OR CONTROL	ASCII (HEXADECIMAL)
NULL	00	ACK	7C
SOM	01	Alt. Mode	7D
EOA	02	Rubout	7 <b>F</b>
EOM	03	!	21
EOT	04	"	22
WRU	05	#	23
RU	06	\$	24
BELL	07	%	25
FE	08	&	26
H. Tab	09	,	27
Line Feed	0A		28
V. Tab	<b>0B</b>	)	29
Form	OC	*	2A
Return	0D	+	2B
SO	0E	7	2C
SI	0F	and the second se	2D
DCO	10		2E
X-On	11		2F
Tape Aux. On	12	:	3 <b>A</b>
X-Off	13	;	3 <b>B</b>
Tape Aux. Off	14	<	3C
Error	15	=	3D
Sync	16	>	3E
LEM	17	?	3F
SO	18	[	5.B
S1	19		5C
S2	1A	] ]	5D
\$3	1 B	1	5E
S4	1 <b>C</b>		5F
S5	1 <b>D</b>	@	40
S6	1E	blank	20
S7	1 <b>F</b>	0	30

## APPENDIX G

# **BINARY-DECIMAL-HEXADECIMAL CONVERSION TABLES**

						AD	DITIO	ΝΤΑ	BLE			·			
0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
1	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10
2	03	04	05	06	07	08	09	0A	0B	OC	0D	<b>0</b> E	0F	10	11
3	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12
4	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13
5	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13	14
6	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13	14	15
7	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13	14	15	16
8	09	0A	0B	0C	0D	0E	0F	10	11	12	13	14	15	16	17
9	0A	0 <b>B</b>	0C	0D	0E	0F	10	11	12	13	14	15	16	17	18
Α	OB	0C	0D	0E	0F	10	11	12	13	14	15	16	17	18	19
В	[ 0C	0D	<b>0</b> E	0F	10	11	12	13	14	15	16	17	18	19	1 <b>A</b>
C	0D	0E	0F	10	11	12	13	14	15	16	17	18	19	1 <b>A</b>	1B
D	0E	0F	10	11	12	13	14	15	16	17	18	19	1 <b>A</b>	1 <b>B</b>	1C
E	0F	10	11	12	13	14	15	16	17	18	19	1A	1 <b>B</b>	1C	1D
F	10	11	12	13	14	15	16	17	18	19	1 <b>A</b>	1B	1C	1D	1E

#### HEXADECIMAL ARITHMETIC

					MUL	TIPL	ICATI	ON T	ABLE					
1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
2	04	06	08	0A	0C	0E	10	12	14	16	18	1 <b>A</b>	1C	1E
3	06	09	0C	0F	12	15	18	1 <b>B</b>	1E	21	24	27	2A	2D
4	08	0C	10	14	18	1C	20	24	28	2C	30	34	38	3C
5	0A	0F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
6	0C	12	18	1E	24	2 <b>A</b>	30	36	3C	42	48	4E	54	5A
7	0E	15	1C	23	2 <b>A</b>	31	38	3F	46	4D	54	5B	62	69
8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
Α	14	1E	28	32	30	46	50	5A	64	6E	78	82	8C	96
В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
C	18	24	30	3C	48	54	60	6C	78	84	90	9C	<b>A</b> 8	<b>B</b> 4
D	1 <b>A</b>	27	34	41	4E	5B	68	75	82	8F	9C	A9	<b>B</b> 6	C3
E	1C	2 <b>A</b>	38	46	54	62	70	7E	8C	9A	<b>A</b> 8	<b>B</b> 6	C4	D2
F	1E	2D	3C	48	5A	69	78	87	96	A5	<b>B</b> 4	C3	D2	E1

```
POWERS OF TWO
```

### TABLE OF POWERS OF SIXTEEN 10

						16 ⁿ	n			16 ⁻ⁿ			
						++1	0	0.10000	00000	00000	00000	х	10
						16	1	0.62500	00000	00000	00000	Х	10 ⁻¹
						256	2	0.39062	50000	00000	00000	Х	10 ⁻²
					4	096	3	0.24414	06250	00000	00000	Х	10 ⁻³
					65	536	4	0.15258	78906	25000	00000	Х	10-4
				1	048	576	5	0.95367	43164	06250	00000	Х	10 <b>-</b> 6
				16	777	216	6	0.59604	64477	53906	25000	Х	10 ⁻⁷
				268	435	456	7	0.37252	90298	46191	40625	Х	10 ⁻⁸
			4	294	967	296	8	0.23283	06436	53869	62891	Х	10 ⁻⁹
			68	719	476	736	9	0.14551	91522	83668	51807	Х	10-10
		1	099	511	627	776	10	0.90949	47017	72928	23792	Х	10 ⁻¹²
		17	592	186	044	416	11	0.56843	41886	08080	14870	Х	10 ⁻¹³
		281	474	976	710	656	12	0.35527	13678	80050	09294	Х	10 ⁻¹⁴
	4	503	599	627	370	496	13	0.22204	46049	25031	30808	Х	10 ⁻¹⁵
	72	057	594	037	927	936	14	0.13877	78780	78144	56755	Х	10 ⁻¹⁶
1	152	921	504	606	846	976	15	0.86736	17379	88403	54721	Х	10 <b>-</b> 18

÷

### TABLE OF POWERS OF 1016

			10 ⁿ	n		1	0 ⁻ⁿ			
			1	0	1.0000	0000	0000	0000		
			A	1	0.1999	9999	9999	999A		
			64	2	0.28F5	C28F	5C28	F5C3	Х	16 <b>-1</b>
			3E8	3	0.4189	374B	C6A7	EF9E	Х	16 ⁻²
			2710	4	0.68DB	8BAC	710C	B290	Х	16 <b>-</b> 3
		1	86A0	5	0 A7C5	AC47	1 <b>B</b> 47	8423	Х	16 <b>-4</b>
		F	4240	6	0.10C7	F7A0	B5ED	8D37	Х	16-4
		98	9680	7	0.1AD7	F29A	BCAF	4858	Х	16 <b>-</b> 5
		5F5	E100	8	0.2AF3	1DC4	6118	73 <b>B</b> F	Х	16 <b>-6</b>
		3B9A	CA00	9	0.44 <b>B</b> 8	2FA0	9 <b>B</b> 5A	52CC	X	16 ⁻⁷
	2	540B	E400	10	0.6DF3	7 <b>F67</b>	SEF0	EADF	Х	16 ⁻⁸
	17	4876	E800	11	0.AFEB	FF0B	CB24	AAFF	Х	16 <b>-</b> 9
	E8	D4A5	1000	12	0.1197	9981	2DEA	1119	Х	16 ⁻⁹
	918	4E72	A000	13	0.1025	C268	4976	81C2	Х	16 <b>-</b> 10
	5 <b>A</b> F3	107 <b>A</b>	4000	14	0.2D09	370D	4257	3604	Х	16 <b>-</b> 11
3	8D7E	A4C6	3000	15	0.480E	BE7B	9D58	566D	Х	16 ⁻¹²
23	8652	6FC1	0000	16	0.734A	CA5F	6226	F0AE	Х	16 ⁻¹³
163	4578	5D8A	0000	17	0. <b>B</b> 877	<b>AA</b> 32	36A4	B449	Х	16 ⁻¹⁴
DE0	B6B3	A764	0000	18	0.1272	5DD1	D243	ABA1	Х	16 ⁻¹⁵
8AC7	2304	89E8	0000	19	0.1D83	C94F	B6D2	AC35	х	16 ⁻¹⁵

### HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range 0-FFF and decimal integers in the range 0-4095. For conversions of larger integers, the table values may be added to the following figures:

.

۶

HEXADECIMAL	DECIMAL	HEXADECIMAL	DECIMAL
01 000	4 096	20 000	131 072
02 000	8 192	30 000	196 608
03 000	12 288	40 000	262 144
04 000	16 384	50 000	327 680
05 000	20 480	60 000	393 216
06 000	24 576	70 000	458 752
07 000	28 672	80 000	524 288
08 000	32 768	90 000	589 824
09 000	36 864	A0 000	655 360
0A 000	40 960	B0 000	720 896
0B 000	45 056	C0 000	786 432
OC 000	49 152	D0 000	851 968
0D 000	53 248	E0 000	917 504
0E 000	57 344	F0 000	933 040
0F 000	61 440	100 000	1 048 576
10 000	65 536	200 000	2 097 152
11 000	69 632	300 000	3 145 728
12 000	73 728	400 000	4 194 304
13 000	77 824	500 000	5 242 880
14 000	81 920	600 000	6 291 456
15 000	86 016	700 000	7 3 <b>40</b> 032
16 000	90 112	800 000	8 388 608
17 000	94 208 -	900 000	9 437 184
18 000	98 304	A00 000	10 485 7 <b>6</b> 0
19 000	102 400	B00 000	11 534 336
1 <b>A</b> 000	106 496	C00 000	12 582 912
1 <b>B</b> 000	110 592	D00 000	13 631 489
1C 000	114 638	E00 000	14 680 064
1D 000	118 784	F00 000	15 728 640
1E 000	122 880	1 000 000	16 777 216
1F 000	126 976	2 000 000	33 554 432

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
000	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	0010	0011	0012	0013	0014	0015
010	0016	0017	0018	0019	0020	0021	0022	0023	0024	0025	0026	0027	0028	0029	0030	0031
020	0032	0033	0034	0035	0036	0037	0038	0039	0040	0041	0042	0043	0044	0045	0046	0047
030	0048	0049	0050	0051	0052	0053	0054	0055	0056	0057	0058	0059	0060	0061	0062	0063
040	0064	0065	006 <b>6</b>	0067	0068	0069	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079
050	0080	0081	0082	0083	0084	0085	0086	0087	0088	0089	0090	0091	0092	0093	0094	0095
060	0096	0097	0098	0099	0100	0101	0102	0103	0104	0105	0106	0107	0108	0109	0110	0111
070	0112	0113	0114	0115	0116	0117	0118	0119	0120	0121	0122	0123	0124	0125	0126	0127
080	0128	0129	0130	0131	0132	0133	0134	0135	0136	0137	0138	0139	0140	0141	0142	0143
090	0144	0145	0146	0147	0148	0149	0150	0151	0152	0153	0154	1055	0156	0157	0158	0159
0A0	0160	0161	0162	0163	0164	0165	0166	0167	0168	0169	0170	0171	0172	0173	0174	0175
0B0	0176	0177	0178	0179	0180	0181	0182	0183	0184	0185	0186	0187	0188	0189	0190	0191
0C0	0192	0193	0194	0195	0196	0197	0198	0199	0200	0201	0202	0203	0204	0205	0206	2007
0D0	0208	0209	0210	0211	0212	0213	0214	0215	0216	0217	0218	0219	0220	0221	0222	0223
0E0	0224	0225	0226	0227	0228	0229	0230	0231	0232	0233	0234	0235	0236	0237	0238	0239
0F0	0240	0241	0242	0243	0244	0245	0246	0247	0248	0249	0250	0251	0252	0253	0254	0255

C-4

HEXADECIMAL-DECIMAL INTEGER CONVERSION (continued)

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
100	0256	0257	0258	0259	0260	0261	0262	0263	0264	0265	0266	0267	0268	0269	0270	0271
110	0272	0273	0274	0275	0276	0277	0278	0279	0280	0281	0282	0283	0284	0285	0286	0287
120	0288	0289	0290	0291	0292	0293	0294	0295	0296	0297	0298	0299	0300	0301	0302	0303
130	0304	0305	0306	0307	0308	0309	0310	0311	0312	0313	0314	0315	0316	0317	0318	0319
140	0320	0321	0322	0323	0324	0325	0326	0327	0328	0329	0330	0331	0331	0333	0334	0335
150	0336	0337	0338	0339	0340	0341	0342	0343	0344	0345	0346	0347	0348	0349	0350	0351
160	0352	0353	0354	0355	0356	0357	0358	0359	0360	0361	0362	0363	0364	0365	0366	0367
170	0368	0369	0370	0371	0372	0373	0374	0375	0376	0377	0378	0379	0380	0381	0382	0383
180	0384	0385	0386	0387	0388	0389	0390	0391	0392	0393	0394	0395	0396	0397	0398	0399
190	0400	0401	0402	0403	0404	0405	0406	0407	0408	0409	0410	0411	0412	0413	0414	0415
1A0	0416	0417	0418	0419	0420	0421	0422	0423	0424	0425	0426	0427	0428	0429	0430	0431
1B0	0432	0433	0434	0435	0436	0437	0438	0439	0440	0441	0442	0443	0444	0445	0446	0447
1C0	0448	0449	0450	0451	0452	0453	0454	0455	0456	0457	0458	0459	0460	0461	0462	0463
	0464	0465	0466	0467	0468	0469	0470	0455	0472	0473	0474	0475	0476	0477	0478	0479
1E0	0480	0481	0482	0483	0484	0485	0486	0487	0488	0489	0490	0491	0492	0493	0494	0495
1F0	0496	0497	0498	0499	0500	0501	0502	0503	0504	0505	0506	0507	0508	0509	0510	
200	0512	0512		<u> </u>					0520			_				
200	0512 0528	0513 0529	0514 0530	0515 0531	0516	0517 0533	0518		0520	0521 0537	0522 0538	0523	0524 0540	0525 0541	0526 0542	0527 0543
210	0528	0529	0530	0531	0532 0548	0535	0534 0550	0535 0551	0536 0552	0553	0558	0555	0540	0541	0542	0545
220 230	0560	0545	0540	0563	0548	0565	0550	0551	0552	0555	0570	0555	0550	0573	0558	
240	0576	0577	0578	0579	0580	0581	0582	0583	0584	0585	0586	0587	0588	0589	0590	0591
250	0592	0593	0594	0595	0596	0597	0598	0599	0600	0601	0602	0603	0604	0605	0606	0607
260	0608	0609	0610	0611	0612	0613	0614	0615	0616	0617	0618	0619	0620	0621	0622	0623
270	0624	0625	0626	0627	0628	0629	0630	0631	0632	0633	0634	0635	0636	0637	0638	0639
280	0640	0641	0642	0643	0644	0645	0646	0647	0648	0649	0650	0651	0652	0653	0654	0655
290	0656	0657	0658	0659	0660	0661	0662	0663	0664	0665	0666	0667	0668	0669	0670	0671
2A0	0672 0688	0673 0689	0674 0690	0675 0691	0676	0677 0693	0678 0694	0679	0680	0681	0682 0698	0683 0699	0684	0685	0686	0687
2B0					0692			0695	0696	0697			0700	0701	0702	0703
2C0	0704	0705	0706	0707	0708	0709	0710	0711	0712	0713	0714	0715	0716	0717	0718	0719
2D0	0720	0721	0722	0723	0724	0725	0726	0727	0728	0729	0730	0731	0732	0733	0734	0735
	0736	0738	0738	0739	0740	0741		0743	0744	0745	0746	0747	0748	0749	0750	0751
2F0	0752	0753	0754	0755	0756	0757	0758	0759	0760	0761	0762	0763	0764	0765	0766	0767
300	0768	0769	0770	0771	0772	0773	0774	0775	0776	0777	0778	0779	0780	<b>07</b> 81	0782	0783
310	0784	0785	0786	0787	0788	0789	0790	0791	0792	0793	0794	0795	0796	0797	0798	0799
320	0800	0801	0802	0803	0804	0805	0806		0808	0809	0810	0811	0812	0813	0814	0815
330	0816	0817	0818	0819	0820	0821	0822	0823	0824	0825	0826	0827	0828	0829	0830	0831
340	0832	0833	0834	0835	0836	0837	0838	0839	0840	0841	0842	0843	0844	0845	0846	0847
350	0848	0849	0850	0851	0852	0853	0854		0856	0857	0858	0859	0860	0861	0862	0863
360	0864	0865	0866	0867	0868	0869	0870	0871	0872	0873	0874	0875	0876	0877	0878	0879
370	0880	0881	0882	0883	0884	0885	0886	0887	0888	0889	0890	0891	0892	0893	0894	0895
380	0896	0897	0898	0899	0900	0901	0902	0903	0904	0905	0906	0907	0908	0909	0910	0911
390	0912	0913	0914	0915	0916		0918	0919	0920	0921	0922	0923	0924	0925	0926	0927
3A0	0928	0929	0930	0931	0932	0933	0934	0935	0936	0937	0938	0939	0940	<b>094</b> 1	0942	0943
3B0	0944	0945	0946	0947	0948	0949	0950	0951	0952	0953	0954	0955	0956	0957	0958	0959
3C0	0960	0961	0962	0963	0964	0965	0966	0967	0968	0969	0970	0971	0972	0973	0974	0975
3D0		0977	0978	0979	0980	0981	0982	0983	0984	0985	0986	0987	0988	0989	0990	0991
		0993	0994	0995	0996	0997	0998	0999	1000	1001	1002	1003	1004	1005	1006	1007
3E0																

\$

HEXADECIMAL-DECIMAL INTEGER CONVERSION (continued)

.

.

۹.

۰

	0	1	2	3	4	5	6	7	8	9	Α	В	с	D	E	F
400	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039
410	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055
420	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071
430	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087
440	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103
450	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119
460 470	1120 1136	1121 1137	1122 1138	1123 1139	1124 1140	1125 1141	1126 1142	1127 1143	1128 1144	1129 1145	1130 1146	1131 1147	1132 1148	1133 1149	1134 1150	1135 1151
480 490	1152 1168	1153 1169	1154 1170	1155 1171	1156 1172	1157 1173	1158 1174	1159 1175	1160 1176	1161 1177	1162 1178	1163 1179	1163 1180	1165 1181	1166	1167
490 4A0	1184	1185		1187	1172	1175	11/4	1173	11/6	1193	1178	11/9	1180	1101	1182 1198	1183 1199 (
4B0	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215
4C0	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231
4D0	1232	1233	1234	1235	1226	1237	1238	1223	1240	1241	1242	1243	1220	1245	1246	1247
4E0	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1263	1263
4F0	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279
500	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295
510	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311
520	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324		1326	1327
530	1382	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343
540	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359
550	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	11372	1373	1374	1375
560 570	1376 1392	1377 1393	1378 1394	1379 1395	1380 1396	1381 1397	1382 1398	1383 1399	1384 1400	1385 1401	1386 1402	1387 1403	1388 1404	1389 1405	1390 1406	1391 1407
580	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1403				
590	1400	1425	1426	1427	1428	1415	1430	1415	1410	1417	1418	1419	1420 1436	1421 1437	1422 1438	1423 1439
5A0	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455
5B0	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471
5C0	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487
5D0	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503
5E0	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519
5F0	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535
600	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551
610	1552	1553	1554	1555	1556	1557	1558	1559	1560		1562	1563	1564	1565	1566	1567
620	1568		1570					1575	1576n		1578	1579	1580	1581	1582	1583
630	1584	1585		1587	1588	1589	1590	1591	1592		1594	1595	1596	1597	1598	1599
640	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615
650 660	1616 1632	1617 1633	1618 1634	1619 1635	1620 1636	1621 1637	1622 1638	1623 1639	1624 1640	1625 1641	1626	1627	1628	1629	1630	1631
670	1648	1649	1650	1655	1652	1653	1656	1659	1640	1641	1642 1658	1643 1659	1644 1660	1645 1661	1646 1662	1647 1663
680	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675				
690	1680	1681	1682	1683	1684	1685	1686	1671	1672	1675	1674	1675	1676 1692	1677 1693	1678 1694	1679 1695
6A0	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705	1706	1707	1708	1709	1710	1711
6B0	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727
6C0	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743
6D0	1744	1745	1746	1747	1748	1749	1750	1751	1752		1754	1755	1756	1757	1758	1759
6E0	1760	1761	1762	1763	1764	1765	1766	1767	1768		1770	1771	1772	1773	1774	1775
6F0	1776	1777	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791

#### HEXADECIMAL-DECIMAL INTEGER CONVERSION (continued)

	0	1	2	3	4	5	6	7	8	9	Α	В	c	D	E	F
700 710 720	1792 1808 1824	1793 1809 1825	1794 1810 1826	1795 1811 1827 1843	1812 1828	1797 1813 1829	1798 1814 1830 1846		1800 1816 1832 1848	1801 1817 1833 1849	1802 1818 1834 1850	1803 1819 1835 1851	1804 1820 1836 1852	1805 1821 1837 1853	1806 1822 1838 1854	1807 1823 1839 1855
730 740 750 760	1840 1856 1872 1888	1841 1857 1873 1889	1842 1858 1874 1890	1859 1875 1891	1844 1860 1876 1892	1845 1861 1877 1893	1862 1878 1894	1863 1879 1895	1864 1880 1896	1865 1881 1897	1866 1882 1898	1867 1883 1899	1868 1884 1900	1869 1885 1901	1870 1886 1902	1871 1887 1903
770 780 790 7 <b>A</b> 0		1905 1921 1937 1953	1906 1922 1938 1954	1907 1923 1939 1955	1908 1924 1940 1956	1909 1925 1941 1957	1926 1942 1958	1911 1927 1943 1959	1912 1928 1944 1960	1913 1929 1945 1961	1914 1930 1946 1962	1915 1931 1947 1963	1916 1932 1948 1964	1917 1933 1949 1965	1918 1934 1950 1966	1919 1935 1951 1967
7B0 7C0 7D0 7E0 7F0	1968 1984 2000 2016 2032	1969 1985 2001 2017 2033	1970 1986 2002 2018 2034	1971 1987 2003 2019 2035	1972 1988 2004 2020 2036	1973 1989 2005 2021 2037	1974 1990 2006 2022 2038	1991	1976 1992 2008 2024 2040	1977 1993 2009 2025 2041	1978 1994 2010 2026 2042	1979 1995 2011 2027 2043	1980 1996 2012 2028 2044	1981 1997 2013 2029 2045	1982 1998 2014 2030 2046	2031
800 810 820 830	2048 2064 2080 2096	2049 2065 2081 2097		2053 2051 2067 2083 2099	2502 2068 2084	2053 2069	2054 2070 2086	2055 2071 2087		2057 2073 2089 2015		2059	2060 2076 2092 2108		2062 2078 2094 2110	2063 2079 2095 2111
840	2112 2128 2144	2113 2129 2145 2161	2114 2130 2146	2115 2131 2147 2163	2116 2132 2148	2117 2133		2119 2135 2151	2120 2136 2152 2168	2121 2137 2153 2169	2122 2138 2154	2123 2139	2124 2140 2156 2172	2125 2141 2157 2173	2126 2142 2158 2174	2127 2143 2159
880 890 8A0 8B0	2192 2208	21777 2193 2209 2225	2178				2182 2198 2214 2230		2184 2200 2216 2232	2201 2217	2186 2202 2218	2187		2189 2205 2221 2237	2190 2206 2222 2238	2207 2223
		2241 2257 2273 2289	2242 2258 2274 2290	2243 2259 2275 2291	2244 2260 2276 2292	2245 2261 2277 2293	2246 2262 2278 2294	2247 2263 2279 2295	2248 2264 2280 2296	2249 2265 2281 2297	2250 2266 2282 2298	2251 2267 2283 2299	2252 2268 2284 2300	2253 2269 2285 2301	2254 2270 2286 2302	2271
910 920	2320 2336	2305 2321 2337 2353	2322 2338	2323 2339	2324 2340	2309 2325 2341 2357	2326 2342	2327 2343	2328 2344	2329	2314 2330 2346 2362	2331 2347	2332 2348	2333	2318 2334 2350 2366	2335 2351
940 950 960		2369 2385 2401	2370 2386 2402 2418	2371 2387 2403	2372 2388 2404		2374 2390 2406	2375 2391		2377 2393 2409 2425	2378 2394 2410 2426	2379 2395 2411	2380 2396 2412 2428	2381 2397 2413 2429		2383 2399 2415
980 990 9 <b>A</b> 0	2432 2448 2464	2433 2449 2465	2434 2450 2466	2435 2451 2467	2436 2452 2468	2437 2453 2469	2438 2454 2470	2439 2455 2471	2440 2456 2472	2441 2457 2473	2442• 2458 2474	2443 2459 2475	2444 2460 2476	2445 2461 2477	2446 2462 2478	2447 2463 2479
9C0 9D0 9E0	2512 2528	2481 2497 2513 2529	2530	2515 2531	2532	2501 2517 2533	2502 2518 2534	2519 2535	2520	2521	2490 2506 2522 2538	2507 2523	2524	2525	2494 2510 2526 2542	2511 2527
9F0	2544	2545	2546	2547	2548	2549	2550	2551			2554				2558	

HEXADECIMAL-DECIMAL INTEGER CONVERSION (continued)

*

٠

.

:

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
A00	2560	2561	2562	2563	2564	2565	2566	2567	2568	2569	2570	2571	2572	2573	2574	2575
A10	257.6	2577	2578	2579	2580	2581	2582	2583	2584	2585	2586	2587	2588	2589	2590	2591
A20	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603	2604	2605	2606	2607
A30	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622	2623
A40	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639
A50	2640	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655
A60	2656 2672	2657 2673	2658 2674	2659 2675	2660 2676	2661 2677	2622 2678	2663 2679	2664 2680	2665 2681	2666 2682	2667 2683	2668 2684	2669 2685	2670 2686	2671 2687
A70																
A80	2688	2689	2690	2691	2692 2708	2693 2709	2694	2695 2711	2696 2712	2697 2713	2698 2714	2699 2715	2700 2716	2701 2717	2702 2718	2703 2719
A90	2704 2720	2705 2721	2706 2722	2707 2723	2708	2709	2710 2726	27272		2713	2714	2713	2732	2733	2734	2735
	2736	2737	2738	2739	2740	2723	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751
	2752	2753	2754		2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767
	2752	2755	2734	2733	2730	2773	2738	2739	2776	2701	2778	2703	2780	2783	2782	2783
AEO	2784	2785	2786		2788	2789	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799
AF0	2800	2801	2802	2803	2804	2805	2806	2807	2808	2809	2810	2811	2812	2813	2814	2815
B00	2816	2817	2818	2819	2820	2821	2822	2823	2824	2825	2826	2827	2828	2829	2830	2831
B10	2810	2833	2818	2819	2820	2821	2822	2823	2840	2823	2820	2827	2828	2829	2830	2847
B20	2848	2849	2850		2852	2853	2854	2855	2856	2857	2858	2859	2860	2861	2862	2863
B30	2864	2865	2866	2867	2868	2869	2870	2871	2872	2873	2874	2875	2876	2877	2878	2879
B40	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890	2891	2892	2893	2894	2895
B50	2896	2897	2898	2899	2900	2901	2902	2903	2904	2905	2906	2907	2908	2909	2910	2911
B60	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923	2924	2925	2926	2927
<b>B</b> 70	2928	2929	2930	2931	2932	2933	2934	2935	2936	2937	2938	2939	2940	2941	2942	2943
B80	2944	2945	2946	2947	2948	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959
B90	2960	2961	2962	2963	2964	2965	2966	2967	2968	2969	2970	2971	2972	2973	2974	2975
BAO	2976	2977	2978	2979	2980	2981	2982	2983	2984	2985	2986	2987	2988	2989	2990	2991
BB0	2992	2993	2994	2995	2996	2997	2998	2999	3000	3001	3002	3003	3004	3005	3006	3007
BCO	3008	3009	3010	3011	3012	3013	3014	3015		3017		3019		3021	3022	3023
BD0 BE0	3024 3040	3025 3041	3026 3042	3027 3043	3028 3044	3029 3045	3030 3046	3031 3047	3032 3048	3933 3049	3034	3035	3036 3052	3037	3038	3039
BF0	3056	3041	3042	3043	3044	3043 3061	3040	3047	3048 3064	3049	3050 3066	3051 3067	3052	3053 3069	3054 3070	3055 3071
	<u> </u>															
		3073				3077		3079			3082			3085		
C10 C20	3088 3104	3089	3090 3106		3092			3095	3096	3097	3098	3099	3100	3101		3103
C20	3120	3103		3123	3108 3124	3109 3125		3111 3127		3129	3114 3130		3132		3118 3134	
C40	1															
C40 C50	3150	3137 3153		3139	3140 3156	3141 3157	3142 3158	3143 3159			3146 3162		3148	3149 3165		3151 3167
C60	3168	3168		3171		3173	3174				3178				3182	
	3184			3187	3188	3189	3190			3193		3195		3197		3199
C80	3200	3201	3202	3203	3204	3205		3207	3208	3209		3211	3212	3213		3215
1		3217		3219	3220	3221	3222		3224	3225		3227	3228	3229		3231
		3233				3237	3238	3239	3240	3241	3242	3243	3244			3247
CB0	3248	3249	3250	3251	3252	3253	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263
	3264	3265	3266		3268	3269	3270	3271	3272	3273	3274	3275	3276	3277	3278	3279
1	3280	3281	3282		3284	3285	3286	3287	3288	3289	3290	3291	3292		3294	
1	3296	3297				3301		3303		3305			3308			
CF0	3312	3313	3314	3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327

#### HEXADECIMAL-DECIMAL INTEGER CONVERSION (continued)

Г	0	1	2	3	4	5	6	7	8	9	A	В	c	D	E	F
D00 3		3329	3330	3331	3332	3333	3334			3337	3338	3339	3340	3341	3342	3343
				3347	3348	3349	3350	3351	3352	3353	3354		3356	3357	3358	3359
D10		3345	3346		-								3372	3373	3374	3375
D20 3		3361	3362	3363	3364	3365	3366	3367	3368	3369	3370	3371				
D30   3	3376	3377	3378	3379	3380	3381	3382	3383	3384	3385	3386	3387	3388	3389	3390	3391
D40 3	3392	3393	3394	3395	3396	3397	3398	3399	3400	3401	3402	3403	3404	3405	3406	3407
D50	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417	3418	3419	3420	3421	3422	3423
D60		3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436	3437	3438	3439
	3440	<b>344</b> 1	3442	3443	3444	3445	3446	3447	3448	3449	3450	3451	3452	3453	3454	3455
D80 [:		3457	3458	3459	3460	3461	3462	3463	3464	3465	3466	3467	3468	3469	3470	3471
D90   :		3473	3474	3475	3476	3477	3478	3479	3480	3481	3482	3483	3484	3485	3486	3487
DA0]:	3488	3489	3490	3491		3493	3494	3495	3496	3497	3498	3499	3500	3501	3502	3503
DB0 (:	3504	3505	3506	3507	3508	3509	3410	3511	3512	3513	3514	3515	1516	3517	3518	3519
	3520	3521	3522	3523	3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535
		3537	3538	3539	3540	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551
DE0		3553	3554		3556	3557	3558			3561	3562			3565	3566	
								3559	3560							
DF0 (	3268	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580	3581	3582	3583
E00 :	3584	3585	3586	3587	3588	3589	3590	3591	3592	3593	3594	3595	3596	3597	3598	3599
	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615
	3616	3617	3618	3619	3620	3621	3622	3623	3624	3625	3626	3627	3628	3629	3630	3631
E30	3632	3633	3634	3635	3636	3637	3638	3639	3640	3641	3642	3643	3644	3645	3646	3647
E40 :	3648	3648	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663
E50	3664	3665	3666	3667	3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	3678	3679
	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689	3690	3691	3692	3693		3695
	3696	3697	3698	3699	3700	3701	3702	3703	3704	3705	3706	3070	3708	3709	3710	3711
					3700	5/01		3703	5704	3705		3070	3708		3/10	
E80	3712	3713	3714	3715	3716	3717	3718	3719	3720	3721	3722	3723	3724	3725	3726	3727
<b>E90</b>   3	3728	3729	3730	3731	3732	3733	3734	3735	3736	3737	3738	3739	3740	3741	3742	3743
EAO I	3744	3745	3746	3747	3748	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759
EBO	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3770	3771	3772	3773	3774	3775
	2776	2777	0770	2770	2700	2701	2702	2702					2700			270.1
ECO :		3777	3778	3779	3780	3781	3782	3783	3784	3785	3786	3787	3788	3789	3790	3791
ED0		3793	3794	3795	3796	3797	3798	3799	3800	3801	3802	3803	3804	3805	3806	3807
EEO [:		3809	3810	3811	3812	3813	3814	3815	3816	3817	3818	3819	3820	3821	3822	3823
EF0 i	3824	3825	3826	3827	3828	3829	3030	3831	3832	3833	3834	3835	3836	3837	3838	3839
<b>F00</b>  :	3840	3841	3842	3843	3844	3845	3846	3847	3848	3849	3850	3851	3852	3853	3854	3855
	3856	3857	3858	3859		3861	3862		3865	3865			3868	3869	3870	3871
	3872	3873		3875		3877	3878	3879	3880	3881		3883	3884			3887
	3888	3889	3890				3894		3896	3897		3899	3900			3903
	5000	3009			3692	3093	3094	3095		3097	3090	3099	3900	3901	3902	3903
F40	3904	3905	3906	3907	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919
	3920	3921	3922	3923		3925	3926		3928	3929	3930	3931	3932	3933	3934	
	3936	3937	3938	3939	3940	3941	3942	3943	3944	3945	3946	3947	3948	3949	3950	3951
	3952	3953	3954													
- 1			3934	3933	3956	3957	3958	3959	3960	3961	3962	3963	3964	3965	3966	3967
	3968	3969	3970	3971	3972	3973	3974		3976	<b>39</b> 77	3978	3979	3980	3981	3982	3983
<b>F90</b>	3984	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999
FA0	4000	4001	4002	4003	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015
FB0	4016	4017	4018	4019	4020	4021	4022	4023	4024	4025	4026	4027	4028	4029	4030	4031
1																
FC0	4032	4033	4034				4038		4040	4041	4042	4043	4044		4046	4047
DDA L		4049	4050	4051	4052	4053	4054	4055	4056	4057	4058	4059	4060	4061	4062	4063
	4048															
FE0	4064	4065	4066	4067	4068	4069	4070		4072	4073		4075		4077	4078	4079
	4064				4068	4069					4074 4090			4077 4093		4079 4095

ŝ



# APPENDIX H TELETYPEWRITER MODIFICATIONS

#### H-1. INTRODUCTION

This appendix provides information required to modify a Model ASR-33 Teletypewriter for use with certain Intel SBC 80 computer systems.

#### H-2. INTERNAL MODIFICATIONS

#### WARNING

Hazardous voltages are exposed when the top cover of the teletypewriter is removed. To prevent accidental shock, disconnect the teleprinter power cord before proceeding beyond this point.

Remove the top cover and modify the teletypewriter as follows:

- a. Remove blue lead from 750-ohm tap on current source register; reconnect this lead to 1450-ohm tap. (Refer to figures H-1 and H-2.)
- b. On terminal block, change two wires as follows to create an internal full-duplex loop (refer to figures H-1 and H-3):
  - 1. Remove brown/yellow lead from terminal 3; reconnect this lead to terminal 5.
  - 2. Remove white/blue lead from terminal 4; reconnect this lead to terminal 5.
- c. On terminal block, remove violet lead from terminal 8; reconnect this lead to terminal 9. This changes the receiver current level from 60 mA to 20 mA.

A relay circuit card must be fabricated and connected to the paper tape reader driver circuit. The relay circuit card to be fabricated requires a relay, a diode, a thyractor, a small 'vector' board for mounting the components, and suitable hardware for mounting the assembled relay card.

A circuit diagram of the relay circuit card is included in figure H-4; this diagram also includes the part numbers of the relay, diode, and thyractor. (Note that a 470-ohm resistor and a  $0.1 \,\mu\text{F}$  capacitor may be substituted for the thyractor.) After the relay circuit card has been assembled, mount it in position as shown in figure H-5. Secure the card to the base plate using two self-tapping screws. Connect the relay circuit to the distributor trip magnet and mode switch as follows:

- a. Refer to figure H-4 and connect a wire (Wire 'A') from relay circuit card to terminal L2 on mode switch. (See figure H-6.)
- b. Disconnect brown wire shown in figure H-7 from plastic connector. Connect this brown wire to terminal 12 on mode switch. (Brown wire will have to be extended.)
- c. Refer to figure H-4 and connect a wire (Wire 'B') from relay circuit board to terminal L1 on mode switch.

#### H-3. EXTERNAL CONNECTIONS

Connect a two-wire receive loop, a two-wire send loop, and a two-wire tape reader control loop to the external device as shown in figure H-4. The external connector pin numbers shown in figure H-4 are for interface with an RS232C device.

#### H-4. SBC 530 TTY ADAPTER

The SBC 530, which converts RS232C signal levels to an optically isolated 20 mA current loop interface, provides signal translation for transmitted data, received data, and a paper tape reader relay. The SBC 530 interfaces an Intel SBC 80 computer system to a teletypewriter as shown in figure H-8.

The SBC 530 requires + 12V at 98 mA and - 12V at 98 mA. An auxiliary supply must be used if the SBC 80 system does not supply this power. A schematic diagram of the SBC 530 is supplied with the unit. The following auxiliary power connector (or equivalent) must be procured by the user:

Connector, Molex 09-50-7071 Pins, Molex 08-50-0106 Polarizing Key, Molex 15-04-0219

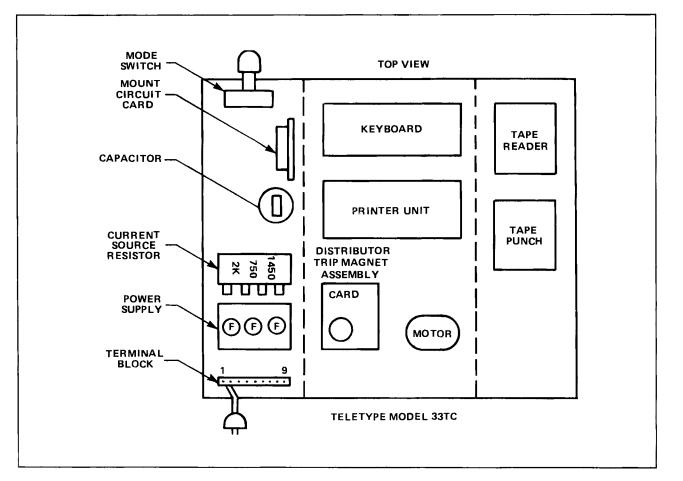



Figure H-1. Teletype Component Layout



Figure H-2. Current Source Resistor



7

۲.

Figure H-3. Terminal Block

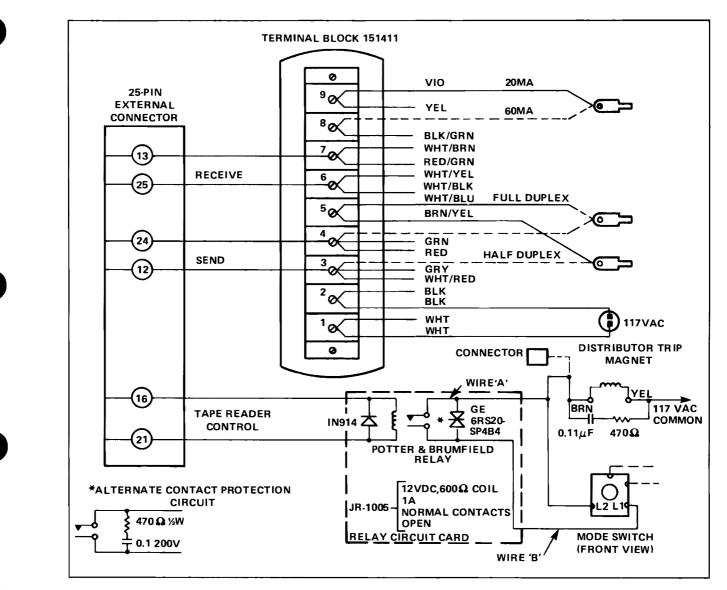



Figure H-4. Teletypewriter Modifications

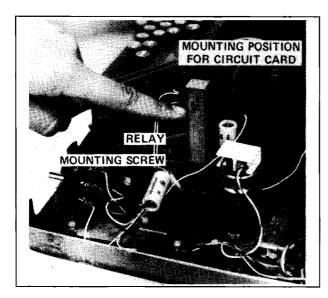



Figure H-5. Relay Circuit

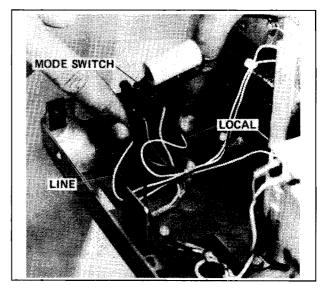
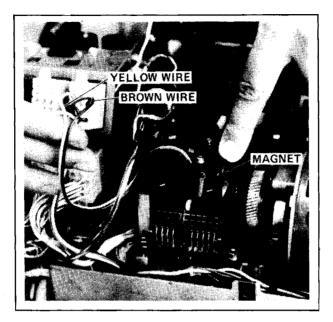




Figure H-6. Mode Switch



î

R-

Figure H-7. Distributor Trip Magnet

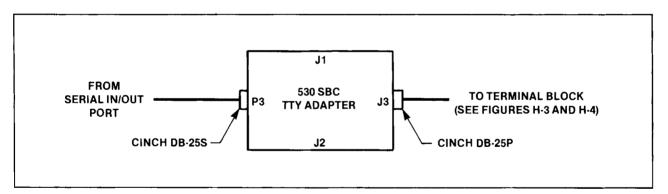



Figure H-8. TTY Adapter Cabling

# intel®

## **REQUEST FOR READER'S COMMENTS**

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

- 2. Does the document cover the information you expected or required? Please make suggestions for improvement.
- 3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are needed?

- 4. Did you have any difficulty understanding descriptions or wording? Where?
- 5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME		DATE	
TITLE			
COMPANY NAME/DEPARTMENT			
ADDRESS			
СІТҮ	STATE	ZIP CODE	

Please check here if you require a written reply.  $\Box$ 

#### WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and suggestions become the property of Intel Corporation.

> First Class Permit No. 1040 Santa Clara, CA

1

٠

#### **BUSINESS REPLY MAIL**

No Postage Stamp Necessary if Mailed in U.S.A.

Postage will be paid by:

Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051

Attention: MCD Technical Publications