

iSBC™
APPLICATIONS

HANDBOOK

SEPTEMBER 1981

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a corT'mitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9). Intel Corporation
assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit
patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of
Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

BXP lntelevision MULTIBUS
CREDIT lntellec MUL Tl MODULE
i iSBC Plug-A-Bubble
ICE iSBX PROMPT
JCS Library Manager Promware
im MCS RMX
In site Megachassis UPI
Intel Micromainframe J.LScope

Micromap System 2000

MOS is an ordering code only and is not used as a product name or trademark. MOS® is a registered trademark of Mohawk
Data Sciences Corporation.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Department SV3-3
3065 Bowers Avenue
Santa Clara, CA 95051

©INTEL CORPORATION. 1981 AFN-01300C· 1

PREFACE
Since Intel introduced the iSBC 80/10 Single Board Computer in early 1976, the family of Intel OEM
Microcomputer Systems has grown rapidly. Original equipment manufacturers and volume end-users
alike have responded to the concept originated by Intel of having all the functions of a computer - cen
tral processing unit, memory, input-output and system expansion capability..,.._ present on one printed cir
cuit board.

The capabilities of a single board computer have been enhanced by the creation of the industry-standard
MULTIBUS system bus. System expansion boards have been introduced for memory, serial 1/0 and
parallel 1/0 expansion, as well as analog 1/0, OMA controllers and peripheral controllers. A unique feature
of the MULTIBUS architecture, however, is its capability to support multiple single board computers. This
capability permits sophisticated multiprocessing configurations using standard off-the-shelf 8-bit and
16-bit single board computers. The introduction of the iSBX MULTI MODULE expansion boards has revolu
tionized the concept of the single board computer. Now iSBC host boards may be custom configured with
iSBX expansion boards based on the 1/0 requirements of the application. This capability provides lower
cost, higher performance single board solutions. Powerful software tools like the iRMX 80 and iRMX 88
Real-Time Executives and the iRMX 86 Operating System are key members of the iSBC product family.
They provide users with the tools for quick implementations of simple or complex systems. iCS product
line provides chassis and signal conditioning/termination strips as well as board level products which
were developed specifically for industrial users.

This application manual is divided into three sections: iSBC Hardware, iSBC Software and iCS Products.
It contains all of the current application notes, reliability reports, magazine articles and professional jour
nal reprints on the products of the Intel iSBC product family. We have compiled all of this information into
a single publication for your convenience. Please contact us with your questions, comments, and sugges
tions on how we may provide you with useful information on our products.

iii

INTEL CORPORATION
OEM Microcomputer Systems
Applications Engineering
Hillsboro, Oregon 97123

AFN·01931A

TABLE OF CONTENTS
iSBC HARDWARE iSBC SOFTWARE (con't.l

AP-26 iSBC 80/10A-SYSTEM 80/10 AP-86 Using the iRMX 86 Operating
Single Board Computer Applica- System 2-73
tions 1-3

AP-88 Multiprocessing Extensions
AP-28A Intel MULTIBUS Interfacing 1-45 for the RMX/80 Real-Time

AP-43 Using the iSBC 957 Execution Executive 2-131

Vehicle for Executing 8086 AP-109 Using Intel Single Board
Program Code 1-79 Computers for Serial Distributed

AP-53 Using the iSBC 544 Intelligent Processing Links 2-173

Communications Controller 1-111 AP-110 Using the iRMX 86 Operating
AP-96 Designing iSBX MUL Tl MODULE System on iAPX 86 Component

Boards 1-175 Designs 2-243

AR-48 Reduce Your µC-Based System AR-41 An Integral Real-Time Executive
Design Time by Using Single for Microcomputers 2-303
Board Microcomputers 1-199 AR-124 Introducing th.e RMX/86 Real-

AR-55 Design Motivations for Multiple Time, Multitasking, 16-Bit
Processor Microcomputer Operating System .•............ 2-311
Systems 1-211

AR-125 Modular Multitasking Executive
AR-65 Triple-Bus Architecture on a Cuts Cost of 16-Bit OS Design .. 2-315

Single Board Microcomputer .1-221
A Small-Scale Operating System

AR-69 Dual-Port RAM Hikes Foundation for Microprocessor
Throughput in Input/Output Applications 2-321
Controller Board 1-229

AR-172 Multitasking Executive Speeds
AR-72 16-Bit Single Board Computer 16-Bit Micros 2-329

Maintains 8-Bit Family Ties 1-237

AR-122 A New Family of MUL Tl MODULE iCS PRODUCTS
Boards Extends the Solutions AP-52 Using Intel's Industrial Control
Provided by Intel's Single Board Series in Control Applications .. 3-3
Computers 1-245

AR-123 Special Function Modules Ride AP-60 Closed Loop Control Using the

on Computer Board 1-249 iSBC 569/941 Intelligent Digital
Processors 3-61

AR-133 Multiprocessing System Mixes
8- and 16-Bit Microcomputers ... 1-257 AR-91 Designing and Assembling

Microcomputer Systems Grows

iSBC SOFTWARE Easier 3-123

AP-33 RMX/80 Real-Time Multitasking DOCUMENTATION
Executive 2-3

AP-47 Using FORTRAN-BO for iSBC
Related Intel Publications 4-3

Applications 2-33 Technical Literature List 4-5

iv AFN·01931A

iSBC TM Hardware 1

~ Intel Corporation, 1978

APPLICATION
NOTE

1-3

AP-26

AFN-01931A

iSBC 80/1 OA·SYSTEM 80/10
Single Board Computer
Applications

1-4

Contents

INTRODUCTION•.. 1-5

OVERVIEW 1-5

SBC CONFIGURATION OPTIONS 1-7

Serial 1/0 Options............................ 1-7
Parallel I/ 0 Options . 1-8
Bus Interfacing . 1-8

APPLICATIONS 1-10

Instrumentation 1-10
Communication 1-15
Process Control 1-23
IIO Device Controller 1-27

CONCLUSION 1-31

APPENDIX A - iSBC 80/lOA
SCHEMATICS 1-33

AFN·01931A

INTRODUCTION

The recent entry of the single board computer into
the broad field of electronic applications is sub
stantiating the billing as a "super component".
Single board computers provide a solution to
several problems that have not been solved by the
use of conventional computers: cost, size, and
design specialization.

Many potential microcomputer applications have
been overlooked because of the design tasks
required to build a microcomputer system. These
tasks traditionally include interfacing of the system
clock, read/write memory, 1/0 ports and drivers,
serial communications interface, bus control logic
and drivers. Intel's iSBC 80/1 OA enables the design
engineer to concentrate on the application of
microcomputers, rather than on implementation
details.

This application note begins with an overview of
the Intel® iSBC 80/ 1 OA. Readers who are familiar
with the iSBC 80/IOA may choose to skip to the
applications section, which describes the following
typical iSBC 80/1 OA applications:

• The iSBC 80/lOA used for instrumentation
control of a Fluke 8375 Digital Multimeter.

• The iSBC 80/lOA used as a SCADA Terminal
in a communication application.

• The iSBC 80/IOA used for temperature moni
toring in a process control application.

• The iSBC 80/lOA used as an interrupt driven
device controller for a Centronics printer.

AS 232C
COMPATIBLE

DEVICE

00 SERIAL
CONTROL DATA

INTERFACE INTER

BK x 8
ROM/PROM
MEMORY

(SOCKETS)

FACE

TTY

SERIALOO
DAT A CONTROL

INTER- INTERFACE
FACE

1-5

Each example shows the user program and hard
ware required for the application. The program
listings are interspersed with the text describing
the application. Both 8080 Macro Assembly
Language and Intel's PL/M-80 are used in the
examples.

The software was developed on an Intel® Micro
computer Development System (MDS). The MDS
provided the tools necessary to edit, assemble or
compile, link and locate the application software.
Hardware development was facilitated by the use
of Intel's In-Circuit Emulator (ICE 80). For further
information regarding the Microcomputer Develop
ment System, the reader is referred to the publica
tions listed at the beginning of this application
note.

OVERVIEW

The iSBC 80/ 1 OA is a member of Intel's complete
line of OEM computer systems which take full
advantage of Intel's LSI technology to provide
economical, self-contained computer based solu
tions for OEM applications. The iSBC 80/lOA is a
complete computer system on a single 6. 7 5-by-12
inch printed circuit card. A block diagram of the
iSBC 80/IOA is shown in Figure I.

Intel's powerful 8-bit n-channel MOS 8080A CPU,
fabricated on a single LSI chip, is the central pro
cessor for the iSBC 80/IOA. The 8080A contains
six 8-bit general purpose registers and an accumu
lator. The six general purpose registers may be
addressed individually or in pairs, providing both
single and double precision operators.

USER DESIGNATED
PERIPHERALS

1K x 8
RAM

AFN·01931A

The 8080A has a 16-bit program counter which
allows direct addressing of up to 64K bytes of
memory. An external stack, located within any
portion of read/write memory, may be used as a
last in/first out stack to store the contents of the
program counter, flags, accumulator and all of the
six general purpose registers. A 16-bit stack pointer
addresses the external stack. This provides sub
routine nesting that is bounded only by memory
size.

The iSBC 80/lOA contains lK bytes of read/
write memory using Intel's low power static RAM.
All on board RAM read and write operations are
performed at maximum processor speed. Four
sockets for up to 8K bytes of non-volatile read
only memory are provided on the board. Read
only memory may be added in 1 K byte increments
(up to 4K total) using Intel® 8708 erasable and
electrically reprogrammable ROMs (EPROMs)
or Intel 8308 masked ROMs. Optionally, if more
than 4K bytes are required, read only memory may
be added in 2K byte increments (up to 8K total)
using Intel® 2716 EPROMs or 23 l 6E masked
ROMs. All on-board ROM or EPROM read opera
tions are performed at maximum processor speed.

The iSBC 80/lOA contains 48 programmable para
llel I/O lines implemented using two Intel® 8255
Programmable Peripheral Interfaces. The system
software is used to configure the I/O lines in any
combination of unidirectional input/output, and
bidirectional ports indicated in Table I. Therefore,
the I/O interface may be customized to meet
specific peripheral requirements. To support the
large number of possible 1/0 configurations,
sockets are provided for interchangeable 1/0 line
drivers and terminators. Hence, the 1/0 interface

provides the appropriate combination of optional
line drivers and terminators to allow the required
sink current, polarity, and drive/termination
characteristics for each application. The 48 pro
grammable 1/0 lines and signal ground lines are
brought out to two 50-pin edge connectors that
mate with flat, round, or woven cable. ·

A programmable communications interface using
Intel's 8251 Universal Synchronous/ Asynchronous
Receiver/Transmitter (USART) is contained on the
iSBC 80/lOA. A jumper selectable baud rate
generator provides the 8251 with all common
communication frequencies. The 8251 can be pro
grammed by the user's system software to select
the desired asynchronous o.r synchronous serial
data transmission technique (including IBM Bi
sync). The mode of operation (synchronous or
asynchronous), data format, control charac.ter
format, parity, and asynchronous transmission
rate are all under program control. The 8251 pro
vides full duplex, double buffered transmission and
receive capability. Parity, overrun, and framing
error detection circuits are all incorporated in the
8251. The inclusion of jumper selectable TTY or
EIA RS232C compatible interfaces on the board,
in conjunction with the 8251, provide a direct
interface to teletypes, CRTs, asynchronous and
synchronous modems, and other RS232C com
patible devices. The RS232C or TTY command
lines, serial data lines, and signal ground lines are
brought out to a 25-pin edge connector that mates
with RS232C compatible flat, round, or woven
cable.

Interrupt requests may originate from six sources.
Two from the 8255's, two from the 8251 and two
from user designated peripheral devices.

TABLE 1 INPUT/OUTPUT PORT MODES OF OPERATION

MODE OF OPERATION
UNIDIRECTIONAL

PORT NO. OF LINES INPUT OUTPUT BIDIRECTIONAL CONTROL
LATCHED & LATCHED &

UNLATCHED STROBED LATCHED STROBED

1 8 x x x x x
2 8 x x x x
3 8 x x xi
4 8 x x
5 8 x x
6 4 x x

4 x x

1. Note: Port 3 must be used as a control port when either Port 1 or Port 2 are used as a latched and strobed input or a latched and
strobed output or Port 1 is used as a bidirectional port.

1·6 AFN·01931A

The 8255's can generate interrupts when a byte of
information is ready to be transferred to the CPU
(i.e., input buffer full) or a byte of information has
been transferred to a peripheral device (i.e., output
buffer is empty).

The 8251 can generate interrupts when a character
is ready to be transferred to the CPU (i.e:, receive
channel buffer is full) or a character is ready to be
transmitted (i.e., transmit channel data buffer is
empty).

The user designated peripheral devices can generate
two interrupts: one via the system bus and the
other via the I/O edge connector.

The two interrupts from the 8255's and the two
interrupts from the 8251 are all individually mask
able under program control. The six interrupt
request lines share a single CPU interrupt level.
When an interrupt request is recognized, a RE
START 7 instruction is generated. The processor
responds by suspending program execution and
making a subroutine call to a user defined interrupt
service routine originating at location 38 (Hexa
decimal).

iSBC 80/1 OA memory and I/O capacity may be
increased by adding standard Intel memory and
I/0 boards. Modular expandable backplanes and
card cages, each with a four-board capacity, are
available to support multi-board systems.

The development cycle of iSBC 80/IOA based
products may be significantly reduced using the
Intellec Microcomputer Development System. The
resident macro~assetnbler, PL/M-80 compiler, text
editor, and system monitor greatly simplify the
design, development, and debug of user designed
iSBC 80/l OA system software. A diskette-.based
system allows programs to be loaded, assembled,
edited, and executed faster than using conventional
paper tape_, card, or cassette peripherals. A unique
In-Circuit Emulator (ICE 80) provides the capa
bility of developing and debugging software
directly on the iSBC 80/lOA.

iSBC CONFIGURATION OPTIONS

The iSBC 80/ 10 provides the user with a powerful
and flexible I/O capability for both parallel and
serial transfers. This section discusses the user
programmable and jumper-selectable options, and
bus interfacing.

SERIAL I/O OPTIONS

The serial I/O interface, using Intel's 8251 USART,
provides a serial data communications channel that
can be programmed to operate with most of the

1-7

current serial data transmission protocols. There
are three general areas of serial I/O options:

1. choice of interface type, RS232C or current
loop,

2. baud rate and program-selectable mode
options,

3. choice of an interrupt mechanism.

The user has the choice, through jumper connec
tions, of configuring the serial I/O logic to present
either an RS232C or a 20 mA. current loop inter
face to an external device. If an RS232C interface
is used, the 8251 can assume the role of a "data
set" or a "data processing terminal". This enables
the serial interface to be connected to different
devices such as modems and computer terminals.

There are two factors which enter into the choice
of baud rate. They are the actual clock frequency
used to drive the transmit/receive clocks on the
8251 and the baud rate factor selected by a pro
grammable mode instruction control word output
by the processor to the 8251. The baud rate factor
is used to effectively divide th.e 8251 transmit and
receive clocks by I, 16 or 64. During normal oper
ation a factor of 16 is selected for asynchronous
transmissions from 9.6K to 300 baud. A factor of
64 must be used to achieve a baud rate of 110. The
baud rate factor is only applicable to asynchronous
transmission, as all synchronous transmission is
done with an implied factor of one.

Before beginning serial I/O operations, the 8251
must be program-initialized to support the desired
mode of operation. The CPU initializes the 8251
by issuing a set of control bytes to the USART
device. These control words specify:

• synchronous or asynchronous operation
• baud rate factor
• character length
• number of stop bits
• even/odd parity
• parity/no parity

Refer to the iSBC 80/ 10 and iSBC 80/ 1 OA Single
Board Computer Hardware Reference Manual or
the "8251 Application Note" for details on the
control words used to direct the operation of the
8251.

The serial I/O logic can be configured with differ
ent forms of interrupt request mechanisms. By
connecting a jumper, the user can allow the 8251 's
Receiver Ready output to generate an interrupt
request. The Receiver Ready output goes high
whenever the Receiver Enable bit of the command

AFN·01931A

word has been set and the 8251 contains a charac
ter that is ready to be input to the CPU. The user
can also choose to have the 8251 's Transmitter
Ready or Transmitter Empty output activate the
interrupt request. The Transmitter Empty goes
high when the 8251 has no characters to transmit.
Transmitter Ready is high when the 8251 is ready
to accept a character from the CPU. Both Trans
mitter Empty and Transmitter Ready are enabled
by setting the Transmit Enable bit of the command
word. Upon receiving an interrupt, the program
can determine the actual condition which is
responsible for the interrupt by reading the status
of the 8251 device.

PARALLEL I/O OPTIONS

The parallel 1/0 interface consists of six 8-bit I/O
ports implemented with two Intel 8255 Program
mable Peripheral Interface devices. Eight lines
already have a bidirectional driver and termination
network permanently installed. The remaining 40
lines are uncommitted. Sockets are provided for
the installation of active driver networks or passive
termination networks as required to meet the
specific needs of the user system.

The primary considerations in determining how to
use each of the six I/O ports are:

1. choice of operating mode,

2. direction of data flow (input, output or
bidirectional),

3. selection of interrupt mechanism,

4. choice of driver/termination networks for
the port's data path.

Operating Modes. There are three basic operating
modes that can be selected by the system software.
The modes of operation will be described here in
general terms, leaving it to the reader to obtain
details from the iSBC 80/ 10 and iSBC 80/ 1 OA
Single Board Computer Hardware Reference
Manual or the "8255 Application Note."

Mode 0 is a basic input/output functional con
figuration which provides simple input and out
put operations. No "handshaking" is required,
data is simply written to or read from a specified
port. The outputs are latched and the inputs are
unlatched.

Mode 1 is a strobed input/output functional
configuration which provides a means for trans
ferring 1/0 data to or from a specified port in
conjunction with strobes or handshaking signals.
The outputs are latched and are accompanied by

1-8

an output control line which indicates that the
processor has loaded the output port with a data
byte. The input data is latched when accompa
nied by its externally operated control signal.

Mode 2 is a strobed bidirectional bus input/
output functional configuration which provides
a means for communicating with a peripheral
device or structure on a single 8-bit bus for both
transmitting and receiving data. Handshaking
signals are provided to maintain proper bus flow
discipline in a manner similar to mode 1.

Data Flow Direction. In addition to the choice of
operating mode, the user may also specify the
direction of data flow, input or output from the
8255's. At the time of RESET, the 8255's are
configured into the input mode until altered by a
control word directed to the control word register.
When an output mode control word is received,
all of the data bits are set to the low output state.

Interrupt Mechanism. When the 8255 is pro
grammed to operate in mode 1 or mode 2, control
signals are. provided that can be used as interrupt
request inputs to the CPU. The interrupt request
signals, generated from one of the ports (port C),
can be inhibited or enabled by setting or resetting
the associated interrupt enable flip-flop, using the
bit set/reset function of port· C. This function
allows the programmer to mask the interrupts from
specific 1/0 devices without affecting any other
device in the interrupt structure.

Driver/Termination Networks. Depending on the
direction of data flow, the user will select the
appropriate TTL line drivers and Intel terminators
that are compatible with the 1/0 driver/terminator
sockets on the iSBC 80/ 1 OA. The list of suitable
line drivers includes those with inverting, non
inverting, and open collector characteristics.
There are two types of terminators: a 220-ohm/
330-ohm divider or a 1 Kohm pull-up.

BUS INTERFACING

The system bus interface logic consists of three
general groups of circuitry:

1. gates ·that accept the various bus control
signals, the interrupt request lines, and the
ready indications, and then apply these
signals to the CPU logic elements,

2. the system bus drivers,

3. the failsafe circuitry which generates an
acknowledgment during interrupt sequences
and during those cycles in which an ac-

AFN·01931A

knowledgment is not returned because a
non-existent device was inadvertently ad
dressed.

Bus Interface Signals. The following paragraphs
describe portions of the system bus interfacing
logic relevant to interfacing a user device to the
iSBC 80/IOA. (Note: Whenever a signal is active
low, its mnemonic is followed by a slash; for
example, MRDC/ means that the level on that line
will be low when the memory read command
is true.)

BCLK/ - Bus clock; used to synchronize bus
control circuits on all master modules. BCLK/
has a frequency of 9.216 MHz. BCLK/ may
be slowed, stopped or single stepped, if
desired.

INIT / - Initialization signal; resets the entire
system to a known internal state.

BPRN - Bus priority input signal; indicates to
the iSBC 80/ IOA that a higher priority mas
ter module is requesting use of the system
bus. BPRN suspends the processing activity
and drivers of the iSBC 80/IOA until the sig
nal goes low.

BUSY/ - Bus busy signal; indicates that the bus
is currently in use. BUSY I prevents all other
master modules from gaining control of the
bus. BUSY I is driven by the HLDA/ output
from the iSBC 80/lOA in response to a
BPRN input. It indicates that the bus is
available.

MRDC/ - Memory read command; indicates
that the address of a memory location has
been placed on the system address lines and
specifies that the contents of the addressed
location are to be read and placed on the sys
tem data bus.

MWTC/ - Memory write command; indicates
that the address of a memory location has
been placed on the system address lines and
that a data word has been placed on the
system data bus. MWTC/ specifies that the
data word is to be written into the addressed
memory location.

IORC/ - I/O read command; indicates that the
address of an input port has been placed on
the system address bus and that the data at
that input port is to be read and placed on the
system data bus.

IOWC/ - I/O write command; indicates that the
address of an output port has been placed on
the system address bus and that the contents

1-9

of the system data bus are to be output to
the addressed port.

XACK/ - Transfer acknowledge signal; the
required response of an external memory
location or I/O port which indicates that the
specified read/write operation has been com
pleted (that is, data has been placed on, or
accepted from, the system data bus lines).

AACK/ - An advance acknowledge, in response
to a memory read or write command, that
allows the memory to complete the specified
operation without requiring the CPU to wait.

CCLK/ - Constant clock; provides a clock signal
of constant frequency (9.216 MHz) for use by
optional memory and 1/0 expansion boards.
The same signal is used to drive both CCLK/
and BCLK/.

INTRl / - Externally generated interrupt re
quest.

ADRO/-ADRF/ - 16 Address lines; used to
transmit the address of the memory location
or I/O port to be accessed. ADRF / is the most
significant bit.

DATO/-DAT7 / - Bidirectional data lines; used
to transmit/receive information to/from a
memory location or I/O port. DAT7 / is the
most significant bit.

Bus Acknowledges. Further distinction between
transfer acknowledge (XACK/) and advance
acknowledge (AACK/) is required. All external
memory and I/O transfer requests must return
XACK/ to the iSBC 80/IOA (even if AACK/ is also
returned). XACK/ indicates that data has been
placed on (read command) or accepted from (write
command) the system data bus lines. AACK/ is an
advance acknowledge in response to a memory or
I/O port command. It has been provided because
the 8080A samples the ready line before valid data
is required on the bus. If this condition is properly
anticipated, AACK/ can be returned before the
data is actually read, thus allowing an earlier opera
tion to be completed. AACK/ should be used only
with a thorough understanding of the additional
information provided in the iSBC 80/ 10 and
iSBC 80/1 OA Single Board Computer Hardware
Reference Manual. DMA Transfers. An external
device can make DMA transfers to or from RAM
expansion boards. The transfer is coordinated
with the iSBC 80/IOA by means of two bus
signals: bus priority input (BPRN) and bus busy
(BUSY/). The first step in making a .DMA transfer
is to obtain control of the system bus. This is

AFN·01931A

achieved by asserting BRPN to t~e iSBC 80/lOA
and then waiting until the !SBC 80/lOA' returns
BUSY/, indicating that it has relinquished control
of the system bus. When this step is completed the
external device may proceed with its DMA trans
fers until it is finished. At that time BPRN should
be removed to allow the iSBC 80/lOA to regain
control of the system bus. It should be noted
that the iSBC 80/ l OA is placed in a hold state
when it •does not have control of the system
bus.

APPLICATIONS

The iSBC 80/1 OA may be applied to a wide variety
of applications. Specific applications in four areas
are presented in this application note. They are
presented to illustrate a broad spectrum of single
board computer capabilities and to demonstrate
the use of various system features.

INSTRUMENTATION

Microprocessors have been used in instrumentation
for many tasks ranging from handling simple inter
face functions to control of the analog to digital
conversion process. The use of a single board com
puter can" further serve in the application of
instruments themselves to laboratory or process
control environments. It is quite: often necessary in
these applications to control instrumentation.
remotely. A ~umber of rather expensive minicam-:
puter-controlled solutions now el(ist on the market
as automatic test equipment (ATE) systems: The
iSBC 80/l OA presents itself as a c.ost effective solu
tion in sit~ations where the larger ATE sys.terns are
beyond,ecqn~micjustification. 1

' ·

The iSBC 80/1 OA can be the sole CPU element
in the system, providing instrumentation control
and .computational capability; or it.can supple
ment a larger host CPU by handling distributed·
processing requirements.

Instrumentation Control Application Example

Most instruments such as DVMs; counters, data
loggers, synthesizers, etc., have optional data out
put units (DOUs) and/or remote control units
(RCUsY. It is particularly time consuming to inter
face each instrument's DOU/RCU •with custom
digital logic. ·Until the recent IEEE-488 interface
standard, there was little in common from one
interface to the next. The parallel I/O lines of the
iSBC 80/ l OA provide a common interface element
that can be adapted to a majority of the DO Us and
RCUs available today by means .Of software·.

1-10

:· fLUKE8375

DOU

DATA

DIGIT
SELECT

CO~TROI- ·,

Figure 2. Interface Block•Diagram

iSBC 80/10A ·.

GROUP#2
8255

This instrumentation control, application shows
how the iSBC 80/ JOA has been usea to control and
read the data from the dat(l output unit (DOU) of
a Fluke 8375 Digital Multtmeter.
Interfacing the iSBC 80/lOA to the Fluke 8375
DOU has been accomplished through the use of
three paraUel I/O ports shown iµ Figure 2. An 8~bit
port has been used to read input .data from the
Fluke 8375 DOU. Another. 8"bit port has been
used to control th.e multiplexing of data. fr.om the
DOU to the iSBC 80/lOA. And, an 8~bit port has
be.en u.sed to provide the required control. and
monitoring of the following DOU functions:
busy flag, sample sync flag, timeout enable, el(ler
nal trigger and trigger inJ:iibit.
The following listing contains a complete program
to provide the necessary interface : control func
tions as wellas an exercise program. The program
listing is interspersed with text t.hat is u~ed to
clarify the elements of the program. ··

INSTRUMENTATION CONTROL APPLICAnoN' '

!!'LUKE 8375 DIGITAL MULTIMF:IER

DATA OUTPUT UNIT (DOU) CONTROLLER

The CSEG directs the ISIS-ff 8080 Assembler to
generate a relocatable code segment. Relocatable
code can later be placed at any memory address by
Intel's LOCATE program. This lets you write your
program without worrying about the application's
final memory configuration.

9
10 ;
11· CSEG
12 ;
13

AFN·01931A

Equate Table. The following table is used to give
symbolic names to the binary I/O port addresses.
The names used later in the program increase
readability.

14
15;
16 ; EQUATE TABLI'.:
17
18 EQLJ
19 EQU
20 STB EQU
21 FLG EQU
22 TRG EQU
23;
24

The exercise program uses some of the subroutines
provided in the iSBC 80/1 OA System Monitor
PROMs. The addresses of the subroutines are
included in the equate table.

25
26
27 EQU
28 EQU
29 EQLJ
30 NMOUT EQU
31;
32

MASK OF'F PARITY

; DISPLAY BYTE IN ACCUM

The use of the iSBC 80/1 OA parallel I/O ports
requires that the mode of operation be defined for
each port. This is typically done by an initializa
tion subroutine executed when the iSBC 80 /I OA
is powered up or reset.

8255 Control Word. When the opcode field (bit 7)
of a control word directed to an 8255 is equal to
one, the control word is interpreted as a mode
definition control word. The mode definition
control word format is shown below:

CONTROL WORD

l o,j Do DsT D41 D3T DzT o,1 nol
-,-- LL GROUPB ~

PORT C {LOWER - PC3-PC0)
1 =INPUT
0 =OUTPUT

PORT B
1 =INPUT
0 =OUTPUT

MODE SELECTION
O=MODE 0
1=MODE1

/ GROUP A " PORT C (UPPER -·PC7-PC4l
1 =INPUT
0"' OUTPUT

PORT A
1 =INPUT
0 =OUTPUT

MODE SELECTION
OO=MODEO
01=MODE1
1X =MODE 2

L OPCODE ~
"L 1 =MODE SET

1·11

Observing the schematic for the iSBC 80/ 1 OA ~
Fluke 8375 DOU (Figure 3), it can be seen that the
8255 #2 should be configured through the use of
the mode control word as:

Port 4 (A)
Port 5 (B)
Port 6 (C)
Port 6 (C)

Mode 0 Input
Mode 0 Output
Bits PC2--PCO Output
Bits PC5--PC4 Input

The following mode control word is used:

Port c Bits PCo-PCz Output= 0

Port B Output = 0

Port B Mode 0 = 0

Port C Bits PC4-PC5 Input= 1

~----Port A Input= 1

Port A Mode = 00

Opcode Mode Set " 1

Mode Control Word 1001 1000 Binary 98H

33
34;
35 ; u'il 8255 112 INITIALIZATION SUBROUTINE
36;
37 INir:
38 MVI CONTROL
39 OUT TO 8255#2
40;
41

WD REG

This coding loads the mode control word into the
825 5 #2 control word register. Additional initial
ization code is required to set the strobe and
trigger output ports to an inactive state. The sche
matic shows that inverting drivers have been used
for both the strobes and the trigger. When a com
mand is issued to place port 5 (B) into the output
mode, bits PB7-PBO are set to the low output
state. Because the low outputs are then inverted
and used as strobes to the Fluke 83 7 5, they must
then be disabled. The initialization subroutine
concludes by disabling the strobes and trigger. The
strobes are signals to the DOU which enable its
drivers to send data to the iSBC 80/!0A. The trig
ger is a signal to the DOU that the Fluke 8375
should take a reading.

42
43;
44 MVI
45 OUT
46 OUT
47 RET
48;
49

External Trigger Control. Two subroutines are
implemented to enable and disable the external
trigger mode of the instrument. These subroutines
use the bit set/reset capability of the 8255 to inde
pendently set or reset three control lines of the
Fluke 8375 DOU.

AFN·01931A

When the opcode field (bit 7) of an 8255 control
word equals zero, the control word is a port 6 (C)
bit set/reset command word.

The bit set/reset control word format is shown
below:

CONTROL WORD

SET/RESET FLAG

NOT USED SET TO 000

0"' RESET BIT
1 "'SET BIT

BIT SELECT

PORT C BIT

OP CODE

BITO
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BITS
BIT 7

0"' BIT SET/RESET

The following example demonstrates how the port
6 (C) bit set/reset control word is constructed to
disable the Fluke 8375 external trigger. Note from
the schematic (Figure 3) that port 6 (C) bit 0 con
trols the inhibit external trigger line.

Bit Select= 000 (Binary)

Not Used"' 000 (Binary)

Bit Set/Reset Opcode "' 0

The control word for set Port C bit 0 is 0000 0001 Binary= 01 H

50
51 ;
52 ; *** ENABLE EXTERNAL TRIGGER SUBROUTINE *-*
53 ;
54 ETRIG:
55 MV I A, 000000008 ; LD RESET BIT 0 CONTROL WORD
56 OUT C\'/R ; OUTPUT TO 8255#2 CNTL WD REG
57 RET
58 ;
59 ; *** DISABLE EXTERNAL TRIGGER SUBROUTINE ***
60 ;
61 DTRIG:
62 MVI A,00000001B ; LD SET BIT 0 CONTROL WORD
63 OUT CWR ; OUTPUT TO 8255#2 CNTL WD REG
64 RET
65 ;
66

Subroutines to enable and disable the timeouts are
written in an analogous fashion. The timeout
enable line is controlled by port 6 (C) bit 2.

67
68 ;
69 i •H ENABLE TIMEOUTS SUBROUTINE ***
70 ;
71 EPOS:
72 MVI A,000001018 ; LD SET BIT 2 CONTROL WORD
13 OUT CWR ; OUTPUT TO 8255112 CNTL WD REG
74 RET
75 ;
76 ; *** DISABLE TIMEOUTS SUBROUTINE ***
77 ;
78 DPOS:

1-12

79 MVI A,000001008
80 OUT CWR
81 RET
82 ;
83

Obtaining Readings. The Fluke 8375 DOU allows
readings to be taken in one of two modes. The
first, a triggered mode, assumes that the external
triggering has not been inhibited and requires the
positive edge of a pulse with a minimum width of
1 microsecond on the trigger input. Setting and
resetting the port 6 (C) bit 1 produces the 8375
external trigger. After a reading is triggered the
8375 busy flag is tested until the not busy state is
reached. At that time the reading that was
triggered can be read by the iSBC 80/!0A. The
last statement in this routine jumps to TKDAT A
which reads the data from the DOU and then
executes the return.

84
85 ;
86 ; *** SUBROUTINE TO TAKE EXTERNALLY TRIGGERED READING ***
87 ;
88 TRGR:
89
90
91
92
93 Tiff:
94
95
96
97
98 ;
99

MVI
OUT
INR
OUT

IN
ANI
JNZ
JM?

A, 0000001 OB
CWR
A
CWR

FLG
001000008
TWT
i'KDATA

; LD RESET BIT 1 CONTROL WORD
; OUTPUT TO 825511-2 CNTL WD REG
; MODIFY _CONTROL WORD TO SET BIT 1
; OUTPUT TO 82551f2 CNTL WD REG

; INPUT THE BUSY FLAG
; TEST PORT C BIT 5
; LOOP UNTIL NOT BUSY
; GO READ DATA E"ROM OOU II.ND RETURN

The second method for reading the Fluke 8375 is
to rely on the sample rate set from the front panel
controls and to wait until a full transition of the
busy flag is observed. This guarantees that a previ
ous reading is not mistakenly interpreted as a new
reading.

100
101 ;
102 ; *** SUBROUTINE TO OBTAIN NEXT. READING ***
103 ;
104 NXTRD:
105
106

; INPUT THE BUSY FLAG
; TEST PORT C BIT 5

107

IN
ANI
JZ

FLG
001000008
NXTRD ; LOOP UNTIL BUSY WITH NEXT READING

108 NXTWT:
109
110
111
112
113 ;
114

IN
ANI
JNZ
JM?

FLG
001000008
NXT\TJT
TKDATA

; INPUT THE BUSY FLAG
; TEST PORT C BIT 5
; LOOP UNTIL NOT BUSY
; GO READ DATA FROM DOU AND RETURN

Notice that the loops beginning at NXTWT in the
above program segment and at TWT in the previous
program segment are identical. This suggests the
possibility of some obvious code optimization that
is omitted here for the sake of clarity.

There is one subroutine remaining to complete full
utilization of the Fluke 8375 DOU capabilities. It
is the subroutine to take data from the 8375 DOU.
The schematic (Figure 3) shows that port 5 (B) bits
PB4-PBO are used to enable the DOU drivers. Data
from the DOU includes:

• 5 decades of digits
• encoded range and overrange

AFN-01931A

• function: Volts DC, Volts AC, Ohms, Kil-
ohms

• modifiers: Filter, Ext. Ref., Remote
• overload
• trigger

The function of this subroutine is to read five
bytes pf data from the 8375 DOU and place them
in a RAM buffer on the iSBC 80/!0A.

115
116 ;
117 ; *** SUBROUTINE TO TAKE DATA FROM 8375 DOU ***
118;
119 TKDATA:
120 LXI
121 MVI
122 T~O:
123 MOV B,A
124 OUT STB
125 IN
126 MOV
121 INX
128 MOV
129 RRC
130 JC T<O
131 OUT STB
132 RET
133 ;
134

This completes the software required to service the
Fluke 8375 DOU. The following code consists of a
routine to display the data from the interface on
the console output device and a short executive
program to allow exercising of the driver sub
routines.

The display subroutine takes 5 bytes of data from
the RAM buffer in which the reading has been
stored and prints them, 2 ASCII characters per
8-bit byte, on the console.

135
136 ;
137 *** SUBROUTINE TO DISPLAY READING BUFFER ON CONSOLE ***
138
139
140
141
142 DISPO:
143
144
145
146
147
148
149
150 ;
151

LXI H, RDBUF
MVI D,5

INX tt
OCR D
JNZ DIS PO
RET

Operator Interface. The short executive program
provides a tool for the purposes of exercising the
8375 DOU driver subroutines. The executive begins
by calling the initialization subroutine and then
continues on to prompt the operator with a '>' on
the console. At that point the operator may enter
one of the following characters, causing the pro
gram to execute the specified subroutine:

SUBR DESCRIPTION

T ETRIG
I DTRIG
E EPOS
D DPOS
N NXTRD
S TRGR
X DISPLAY

Enable external trigger
Disables external trigger
Enable programmed timeouts
Disable programmed timeouts
Next reading
Trigger and get a reading
Display reading buffer

1-13

After the operator has entered a command charac
ter, the program obtains the address of the sub
routine to be executed and proceeds to set up a
return address on the stack. This technique allows
a load program counter instruction (PCHL) to be
used to enter the subroutine and a return instruc
tion (RET) to resume execution of the executive.

152
153 ;
154 ; *** SIMPLE EXECUTIVE EXt:HCISE PROGRAM *'**
155 ;
156 START:
151
158
159 EXEC:
160
161
162
163
164
165
166
167
168 EXECO:
169
170
171
172
113
174
175 EXEC1:
176
117
178
179
180
131
182
183
184
185
186 ;
187

LXI
CALL

CALL
MDV
LXI
LX1

CMP
JZ
INX
DCR
JNZ
JMP

LXI
DAD
DAD
MUV
INX
MDV
MDV
LXI
PUSH
PCHL

A,M
H

; EXEC ENTRY POINT - PRINT <CR><LF>
; C LOADED W'ITH PROMPT CHARACTER
; CONSOLE OUTPUT
; GET CMND CHAR, MASK Off PARITY
; PRINT THE CHARACTER ON THE CONSOLE
; PUT CHARACTER BACK INTO THE ACCUM
; C CONTAINS LOOP AND INDEX COUNT
; HL POINTS TO CMND TABLE

; COMPARE TABLE ENTRY AND CHARACTER
; BRANCH IF EQUAL - CMND RECOONIZED
; ELSE, INCREMENT TABLE POINTER
; DECREMENT LOOP COUNT
; BRANCH IF NOT AT TABLE END
; ELSE, CMND ILLEGAL - IGNORE IT

; LD ADR OF TABLE OF CMND SUBRS
; ADD WHAT IS LEFT OF LOOP COUNT
; - EACH ENTRY IN CADR IS 2 BYTES
; GET !...SP OF ADR OF TABLE ENTRY TO A
; POINT TO NXT BYTE IN TABLE

OF TABLE ENTRY TO H
• -·--· -···-·· OF TABLE ENTRY TO L

ADR ON THE STACK

; NEXT INSTR COMES FROM CMND SUBR

The command and address tables as well as the
reading buffer follow to complete the application
software.

188
189 ;
190 ; C01'1MAND AND ADDRESS TABLES
191 ;
192 CTAB:
193 DB 'XSNDEIT'

194 NCMDS EQU ~-CTAB ; NUMBER OF VALID COMMANDS
195 ;
196 CADR:
197 DW
198 DW
199 DW
200 DW
201 DW
202 ow
203 DW
204 DW
205 ;
206 ; READING BUFF'ER AND STACK SPACE
207 ;
208 RDBUF:
209 DS ; READING BUFFER
210 ;
211
212
213 END START ; TRANSFER ADDRESS IS TO START

SUMMARY /CONCLUSIONS

This instrumentation control application has been
presented to demonstrate the simple techniques
used to apply the iSBC 80/1 OA to the task of inter
facing instrumentation. A natural extension of this
example would include the control of the Fluke
8375 RCU, as well as the control of many addi
tional instruments to build a small ATE system.

AFN·01931A

BUSY FLAG

SAMPLE SYNC
FLAG

TIMEOUTS
ENABLE

EXTERNAL
TRIGGER

EXTERNAL
TRIGGER

INHIBIT

OVERLOAD

TRIGGER

POLARITY

FILTER

REMOTE

VOLTS DC

VOLTS AC

OHMS

KILOHMS

FLUKE 8375 DOU

(DATA OUTPUT UNIT)

(28)

(212)

~.,_~"-'_01__,I--__.
1135)

(1361

1SBCB0/10A

IJ229l

Figure 3. Interface Schematic

1-14

8255
GROUP2

AFN-01931A

COMMUNICATION

A diverse range of single board computer applica
tions exists in the field of communication. The
increase in distributed processing generates require
ments for self-contained computers to control
elements of a communication system, increasing
both the throughput and reliability.

There are many situations that necessitate monitor
ing and controlling a system from a remote site.
Typical examples are systems that cover large geo
graphic areas or systems in dangerous environments
for human operators. If the object system, which
provides the actual parallel inputs and outputs to
the plant, is far from the controlling system, you
can lower costs by reducing the number 6f inter
connecting wires via the addition of multiplexers
to both systems. In the extreme (and often desira
ble) case of reducing the interconnects to an
absolute minimum, all communication between the
systems takes place on a single serial data link. If
large distances are involved, this link can be stand
ard telephone wires. For moderate distances, the
link can be a single twisted pair. In either case, the
equipment used to interface the object system to
the serial link is called a supervisory control and
data acquisition (SCADA) terminal.

The decision to replace a multitude of intercon
nects with a SCADA terminal is largely economic.
Cables and their associated drivers and receivers
can represent a significant part of the total cost of
a factory automation project, particularly if an
electrically noisy environment requires the use of
shielded cables. Any potential savings in cabling
must, of course, compensate for the additional cost
incurred by adding the SCADA terminal to the
system.

Communication Application Example

A SCAD A terminal demonstrates an industrial eom
munication application of the iSBC 80/1 OA. The
Intel® 8251 USART provides the serial communi
cation link and the two Intel 8255 Programmable
Parallel 1/0 devices provide 48 parallellines for the
object system. A block diagram of· a SCADA
terminal is shown in Figure 4.

The task of the software in this SCADA terminal
example is twocfold. First, it must continually scan
its parallel inputs, transmitting the status of those
lines in a bit serial mode using the USART. And
second, it receives bit serial data fromthe USART
which is to be used to update the parallel outputs.
Thus, a major portion of the software deals with

1•15

PARALLEL
OUTPUT

PARALLEL
INPUT

iSBC B0/10A

Figure 4. SCADA Terminal Block Diagram

the communications protocol on the serial data
lines.

Communications Protocol. A communication pro
tocol is an agreement between communications
users that defines the record formats used for data
transmissions. The protocol selected ·for this
SCADA terminal application provides the follow
ing features:

1. A readable character set to simplify the
human interface.

2. Error detection by means of a checksum.

3. Each record specifies the number of data
bytes in the record and the initial port
number.

Despite its value for human interface, the ASCII
character set has problems representing 8-bit
binary values, since the high-order bit is not used.
Therefore, each binary value is treated as two 4-bit
hexadecimal values. Because hexadecimal numbers
fall in the range 0~9 artd A-F, they can be repre
sented as ASCII characters. However, this repre
sentation requires twice as many bytes as a pure
binary format.

Record Format. The information encoded into the
ASCII hexadecimal format is grouped to form
records. Each record has a record mark to flag the
beginning of the record, a number of ports specifi
fication (record length), destination output start
port number, the data field itself, and a checksum.

The record format described below is according to
the fields in the record.

Record mark field: Byte 0

The ASCII code for a colon (:) is used to signal
the start of a record.

Number of ports field: Byte I

The number of data bytes in the record is repre
sented by a single ASCII hexadecimal digit in this
field. This corresponds to the number of 8-bit

AFN·01931A

ports to which data will be output by the
SCADA terminal in a parailel fashion. The maxi
mum number of data bytes in a record is 15 (F
in hexadecimal). A record length of zero is a
special case .and can be reserved for control
information.

Port address field: Byte 2

The single ASCII hexadecimal digit in byte 2
gives the port number of the initial ·output port.
The first data byte is output to the port indi
cated by the port address; successive bytes are
output in successive port locations on the iSBC
80/lOA or on expansion 1/0 boards.

Data field: Bytes 3'to 3+2*(number of ports)-1

An 8-bit binary value is represented by two
bytes containing the ASCII characters 0~9 or
A-F, which represent a hexadecifil.al value
between 0 and FF (0 and 255 decimal). The
high-order digit is in the first byte of each pair.

Checksum field: Bytes 3+2•(number of ports) to
3+2*(number of ports)+ 1
The checksum field contains the ASCII hexa
decimal representation of the two's complement
of the 8-bit sum of the 8-bit bytes that result
from converting each pair of ASCII hexadecimal
digits to one byte of binary, from the number of
ports field (the number of ports and port ad
dress constitute a pair) to and including the last
byte of the data field. Therefore, the sum of all
the ASCII pairs in a record after.converting to
binary, from the number of ports. field to and
including the checksum field, is zero.

Sample Hexadecima!format:

,a~O~~fO Chook•umF~ld
Data Field

Starting Port Addren

Num~r of Pons

Record Mark

Design· Approach Using a State Diagram. Before
proceeding to examine the software used to imple
ment the SCADA terminal; consider how the prob
lem might have been approached with ITL logic
rather than a microcomputer. The design would
likely have been formulated with a state diagram to
specify the transitions of a sequential state ma
chine. The . sequential-circuit operations would
include decoding the serial . input records and

1-16

encoding the serial output records .. An examination
of the serial input record state diagram (Figure 5)
is useful. in understanding some of the procedurys
encountered later. ·

INIT

HAC

Figure 5. State Diagram

Notes: HAC = Hexadecimal ASCII character
LHAC = Last Hexadecimal ASCII character
PO Parallel output

The receipt of art invalid HAC will cause a return
to state 0.

The receipt of a colon at any time will produce a
transition to state I.

STATE DESCRIPTION .

0 record n;iark. state
1 number of ports state
2 start port number state ..
3 high-order half of data byte state
4 = lowcorder half of data byte state

State 0 is entered at the time of initialization. All
state transitions occrtr when the next character is
received. States 1, i, and 3 are entered with the
input of a colon (:),the number of ports and starf
port number, respectively. States 3 and 4 will cycle
as required until all the high and low-order pairs of
data have been input. The transition from state 4
to state 0 occurs when the last data byte has been
received. If the checksum is correct, the parallel
output .latches are loaded with the data field of
the record.

There are many references to the states contained
in this· diagram during the discussion of the soft
ware procedures. Thus; the state diagram is used as
a "flowchart" for the software. As in the other
examples in this application note, a textual descrip"
tion accompanies each segment of code. Intel's
high-level programming language, PL/M-80, has
been used to show the capability to program in a
natural, algorithmic language which eliminates the
need to manage register usage or memory alloca
tion ..

AFN-01931A

SCADA Terminal Program. The program begins
with a comment, that is followed by the program
segment label "SCADA". With resident PL/M-80,
all programs are considered to be labelled blocks,
or modules. This means that all PL/M programs
must begin with a LABEL and a DO statement and
end with an END statement.

1•
INDUSTRIAL COMMUNICATION APPLICATION

SCADA TERMINAL
•;

SCADA;

00;

All variables used in the program must be declared
before they can be referred to by their identifiers.
This is done by means of a DECLARE statement.
In addition to the declaration of variables, macros
are declared using the reserved word LITERALLY.
These macros are expanded at compile time by
textual substitution.

DECLARE
SRLINSTATE BYTE,
SRLINPRT BYTE,
SRL$1N$CNT BYTE,
PRLINSTATE BYTE,
PRLINSTRT$PRT BYTE,
PRLINNMB$PRTS BYTE,
SRL$1N$PRL$0UT$BFR(3) BYTE,

PRL$0UT$PRT$0 LITERALLY '0E5H',
PRL$0UT$PRT$1 LITERALLY 'OEAH',
PRL$0UT$PRT$2 LITERALLY 'OE8H',

SRL$0UT$STATE BYTE,
SRL$0UT$PRT BYTE,
SRL$0UT$CNT BYTE,
PRL$0UT$STATE BYTE,
PRL$0UT$STRT$PRT BYTE:,
PRL$0UT$NMB$PRTS BYTE,
SRL$0UT$PRLINBFR(4) BYTE,

PRLINPRT$0 LITERALLY 'OE4H',
PRLINPRT$t LIT.E:RALLY 'OE6H',
PRLINPRT$2 LITERALLY 'OE9H',

USART$CMD LITERALLY 1 0EDH 1 ,

USART$IN LITERALLY 'OECH',
USART$0UT LITERALLY 'OECH 1 ,

USART$STATUS LITERALLY 'OEDH',
USART$MODE$INSTR LITERALLY 1 OCFH',
USARTCMDINSTR LITERALLY '025H',

TXRDY LITERALLY '001H',
RXRDY LITERALLY '002H',

PPI$a.IR$1 LITERALLY 1 0E7H',
PPICWR2 LITERALLY 1 0EBH',
PPICWD1 LITERALLY •Q80H',
PPICWD2 LITERALLY '09BH',

THUE LITERALLY 'OffH',
FALSE LITERALLY I OOOH I '

FOREVER LITERALLY 'WHILE TRUE',

NEXT$BYTE BYTE,
CHECKSUM BYTE;

8251 and 8255 Initialization. The INIT procedure
sets up the 8251 and 8255's and initializes several
variables. Interrupts are disabled to insure that no
interrupts are serviced during the execution of the
INIT procedure.

!NIT: PROCEDURE;

4 2 DISABLE;

1-17

The serial input and serial output state counters are
set to state 0. Port number 0 is the parallel input
start port and 3 ports of data are input from the
parallel ports for serial transmission.

SRLINSTATE = O;
SRL$0UT$STATE = O;
PRLINSTRT$PRT = O;
PRLINNMB$PRT8 = 3;

The Intel 8251 USART must be set up by loading
it with mode and command instructions.

The mode instruction format is shown below:

~T~~
BAUD RATE FACTOR

00.,.SYNMODE
01 "'"ASYNX1
1 0 .,. ASYN X16
1 1 °'" ASYN X64

CHARACTER LENGTH

0 0 _, 5 BITS
0 1 °'" 6 BITS
1 0 ""7 BITS
1 1 ., 8 BITS

PARITY CONTROL

X 0 .-.. NO PARITY
0 1 .,. ODD PARITY
1 1 .,. EVEN PARITY

FRAMING CONTROL

NO - ASYN (D1 Do" 0 0) 00 _,,NOT VALID
>----------! 0 1"'"1 STOP BIT

1 0 "'" 1lt.. STOP BITS
11""2STOPBITS

SYN CONTROL

X 0 INTERNAL SYN
'-------------1 X 1 EXTERNAL SYN

0 X DOUBLE SYN CHAR
1 X SINGLE SYN CHAR

The 8251 characteristics required by this SCADA
terminal application include 9600 baud transmis
sion and 8-bit characters. The parallel inputs of the
8255's are periodically scanned. The scanning
frequency is determined by the baud rate and
number of ports of data being transmitted. For
example, the transmission of 3 ports of data
requires 11 characters. At a baud rate of9600 the
approximate scan rate is JOO Hz.

The following 8251 mode instruction is used:

Instruction= 11001110 Binary= CEH

AFN-01931A

After the mode instruction is· sent to the 8251, a
command instruction is required to complete the
8251 initialization.

The command instruction format is shown below:

De Ds Dz Di

EH IA ATS ER SBRK RxE

.TRANSMIT ENABLE
1 =ENABLE
0 =DISABLE·

DATA TERMINAL
READY

"HIGH" wrLL FORCE
.D'TR OUTPUT TO ZERO

RECEIVE ENABLE
'----~~1 1 "' ENABLE RxRDV

0,. DISABLE RxRDV

SEND BREAK

'--------.-. CH1A=n:g~~~s TxD "LOW"
0 = NORMAL OPERATION

ERROR RESET
'---------I 1 = RESET ALL ERROR

FLAGS (PE, OE, ~E)

REQUEST TO SEND
"HIGH" WILL FORCE
RTS OUTPUT TO ZERO

IN.TERNAL RESET.,
"HIGH" RETURNS8261
TO MODE INSTRUCtlON
FORMAT

ENTER HUNT MOOE
'---------------•! 1 •ENABLE SEARCH FOR

SYN CHARACTERS

The command instruction enables the transmit and
receive functions of.the 8251.

The following command instruction.is used:

Transmit Enable= 1

Data Terminal Ready = 0 ·

'-----• Receiv& Enable= 1

'------- Seh~ ~reak c;haracter = 0

'-------- Error Reset"' O

'--------- Request to Send= 1
·.\ '

'-'--'--------'~-- lniern&I Reset= O

'------------ Enter Hunt Mode= 0

Instruction= 0010 0101 Binary= 25H

Output instructions send· the mitialization com
mands to the 8251. Note that previously declared
macros are used to literally replace the mnemonics
in the following lines of code.

9
10

OUTPUT{USART$CMD) = USAR'.1$MODE$INSTR;
OUTPUT(USART$CMD) = USART$CHD$INSTR;

1-18

Initialization of the: 8255's is then 'done to set''up
the following configurations:

8255 #1:
Port 1 (A) · .. Mode a

' Port 2 (B) .M~d~ 0
Port 3 (C) Mode 0

8255 #2

Port 4 (A)
Port 5 (B)
Port 6 (C)

ModeO
ModeO
ModeO

oiiii)iil
Output
output

Input
Input
Input

The following·command instructionis used for the
8255#1:

L~d_Ds DsJDtlD~D2.lD 1jooJ

Port c Biu PC3-P.Co Output ~ O

- 'l.___ l_,_.,_, _s _o"~''-"-t ·_'o
Port B Mode 0 = 0

Port C.Bits p~7-PC4 Output= 0

· Port A OutPut "' 0

Port A Mode = 00

Qpcode Mode ,Set = 1

Mode Control Word= 1.~o~ 0000 Binary= 80.H

The following command instruct~on is used for the
8255 #2:

Port C B~ts .PC3-PC0 Input= 1

· P.ort B lnpui:=·1

POrt B Mode O = O

,P.~t C Bits ~C7-PC4 Input '" 1

Port A Input.; 1

Portf\.M~.i-00

Mode Control Word= 1001 101~ Binart= 9BH

The 8255 initialization commands are given in a
similar manner to the 8251 commands.

11 2 OUTPUT(PPICWR1), ; PPI$CW0$1;
12 2 OUTPUT(PPICWR2) '; PPICWD2;

The !NIT procedure concl~des by enabling intei:-
rupts. · · ·

13 2 ENABLE;

14 2 END INIT;

AFN·01931A·

Conversion Procedures. Two conversion procedures
are required in the program. The first procedure
produces a hexadecimal ASCII character from a
4-bit binary value. A typed procedure has been
used which returns a value of the type byte. It is
called by using its name in an expression.

1~ 1 CHAR$CONV: PROCEDURE (CHAR) BYTE;

16 2 DECLARE CHAR BYTEi

17
18
19
20

CHAR = CHAR + '0';
IF CHAR > '9' THEN

CHAR = CHAR + 1i
RETURN CHAR ;

21 2 END CHAR$CONV j

The second procedure produces a 4-bit binary
value from a hexadecimal ASCII character. Because
this procedure is used only when a hexadecimal
ASCII character is expecteq, an illegal character
(i.e., not a 0-9 or A-F) causes the serial input
state counter to indicate state 0. This procedure is
also typed. The NMB$CONV procedure emphatic
ally illustrates the point that PL/M-80 performs
unsigned arithmetic. Note' that when the ASCII
value for a zero is subtracted from the digit,
NUM = NUM - 'O'; a positive number is always
produced, even if the value of NUM is less than 'O'.

22 1 NMB$CONV: PROCEDURE (NHB) BYTE i

23 2 DECLARE NHB BYTE i

2!1 NMB = NHB - '0';
25 IF NHB > 9 THEN
26 00;
27 IF (NHS > 16) AND (NMB < 23) THEH
28 NHBoNMB-7;

Ill.SE
29 SRLINSTATE = Oj
30 END;
31 RETURN 1118;

32 2 END NHB$COHV;

Parallel Input Procedure. A parallel input proce
dure is used to input data bytes from the 82SS's.
The data bytes are then transmitted by the bit
serial output device. This procedure also computes
the checksum for the serial output record. The
checksum, TEMP2, is initialized to contain the
parallel input number of ports and the start port,
shifted to fit within a single byte. Each cycle of the
iterative DO block adds the next data byte to the
checksum and places the input data into the
SRL$0UT$PRL$1N$BFR array until the loop is
complete. The checksum ·is then computed as the
two's complement of the accumulated sum and
also stored in the serial input parallel output
buffer.

1-19

33 1 PARALLEL$IN: PROCEDUREi

311 2 DECLARE (TEHP1,TEMP2) BYTE;

35 2 TF.MP2 = PRLINNMB$PRTS * 16 + PRL$IN$STRT$PRT;

36 2 DO PRLINSTATE = PRLINSTRT$PRT TO
PRLINSTRT$PRT + PRL$INHHBPRTS - 1;

"If. 3 DO CASE PRLINSTATE;

!* PRL IN PRT 0 •t
38 4 TEMPI • INPUTCPRLINPRT$0);

11 PRL IN PRT 1 */
39 4 TEMPI • INPUT(PRLINPRT$1);

I* PRL IN PRT 2 *I
40 4 TEHP1 : INPUT(PRLINPRT$2);

41 11 END;

SRL$0UT$PRL$1N$BfR(PRLINSTATE) • TEMPI;
TEMP2 : TEMP2 + TEHP1 i

44 3 EHD;

45 2 SRL$0UT$PRLINBFR(PRLINSTRT$PRT + PRL$INNHBPRTS) • -TEHP2;

46 2 END PARALLE:I..$IN;

Parallel Output Procedure. When a complete serial
input record has been received and the checksum is
correct, the transition from state 4 to state 0 is
accompanied by the parallel output of the data
from the data field of the serial input record. The
parallel output starting port and the number of
ports of data is contained in the input record and
is thus used in directing the parallel output opera
tion. An iterative DO block increments the
}>RL$0UT$ST ATE index variable through the
required ports and a DO CASE block selectively
executes one of the OUTPUT statements for each
cycle of the loop.

l.17 1 PARALLEI.$0UT: PROCEDURE;

J.i8 2 DECLARE Tl!'iU' BYTE;

49 2 00 PRL$0UT$STATE • PRL$0UT$STRT$PRT TO
PRL$0UT$STRT$PRT + PHL$0UTNMBPRTS - 1 ;

50 3 TEMP o SRLINPRL$0UT$BFR(PRL$00T$STATE);

51 3 00 CASE PRI..$0UT$STATE;

I* PRL OUT PHT 0 */
52 4 OUTPUT(PRL$0UT$PRT$0) ,. TEMP;

t• PRL OUT PRT 1 */
53 4 OUTPUT(PRL$0UT$PRT$1) • T"'1f;

!• PRL OUT PRT 2 *I
54 4 OUTPUT(PRL$0UT$PRT$2) • TEMP;

55 END;
56 E:NDj

57 2 END PARAlLEL$0UT;

Serial Input and Output Procedures. The next two
procedures contain the software implementations
of the state diagram described previously. The
proces~ing qµring each state of the first procedure,
the serial char~cter input procedure, is described
in t~e following text.

The procedure begins by reading a character from
the 825 l and then converts the character into a
4-bit binary value using the number conversion
procedure. The DO CASE block is the mechanism
by whielt a program segment is selected to examine

AFN-01931A

the input character, provide the required outputs,
and to specify the transition to the next state.

58 SERIAL$CHAR$IN: PROCEDURE;

59 2 DECLARE (CHAR, TEMP) BYTE;

60 CHAR = 1NPUT(USART$1N) AND 07FH;
61 TEMP = NMB$CONV(CHAR);

62 2 DO CASE SRLINSTATE;

State 0 is entered through the initialization proc
ess, at the completion of the processing of a serial
input record, or when an invalid character has been
received. The serial input state will remain 0 until a
colon. (:) is received, at which time a transition to
state 1 is specified.

63
64
65
66

I* SRL IN STATE 0 = RECORD MARK *I
00;

IF' CHAR=':' TttEN
SRLINSTATE = 1;

ENDi

The parallel output number of ports is obtained,
the counter initialized, and a transition to state 2 is
specified from state 1 .

67
66
69
70
71

I* SRL IN STATE 1 = NMB PRTS */
00;

PRL$0UT$NMB$PRTS = TEMP;
SRLINCNT = TEMP;
SRL$1N$STATE = 2;

END,;

In state 2 the. parallel output starting port number
is obtained, the serial input port is initialized, the
checksum is set to contain the parallel output
number of ports and starting port, and a transition
to state 3 is specified.

72
73
74
75
76
77

I* SRL IN STATE. 2 = STRT· PRT */
00;

PRL$0~T$STRT$PRT = TEMP;
SRL$!N$PRT = TEMP;
CHECKSUM = PRL$0UT$NM6$PRTS*16 + PRL$0UT$STRT$PRT;
SRLINSTATE = 3;

END;

In state 3 the high-ordei: half of a data byte is
obtained and shifted into the proper position of
the NEXT$BYTE variable. A transition is specified
to state 4.

78
79
80
81

!* SRL IN STATE 3 = HI ORDER HALF DATA BYTE */
00;

NEXT$BYTE = TEMP*16;
SRLINSTATE = 4;

END;

State 4 is the final state and requires more process
in~ than the others. First, a whole byte of data is
assembled by adding the low and high-order data.
halves, and then testing to determine if the check
sum has been received. If so, and the checksum is
correct, the parallel output procedure is executed.
Once the entire serial input record has been re
ceived, a transition is specified to state 0 whether
the checksum is correct or not. However, if the

1-20

serial input count has not been exhausted, the
assembled byte is placed into the serial input
parallel output buffer and a transition back to state
3 is specified.

82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97

98 3

99 2

!* SRL IN STATE 4 = LO ORDER HALF DATA BYTE */
00;

NEXT$BYTE = NEXT$BYTE + TEMP;
CHECKSUM = CHECKSUM + NEXT$BYTE;
IF SRLINCNT = 0 THEN
DO;

IF CHECKSUM = 0 THEN
CALL PARALLEL$0UT;

SRLINSTATE = 0;
END;
ELSE
00;

SRLINPRL$0UT$BFR(SRL$1N$PRT) : NEXT$BYTE;
SRLINPRT = SRLINPRT + 1;
SRLINCNT = SRLINCNT - 1 ;
SRLINSTATE = 3;

END;
END;

END; /* END OF CASES *!

END SERIAL$CHAR$IN;

The serial character output procedure is similar to
the serial character input procedure. During state 0
the parallel inputs of the 825 5 's are stored in the
serial output parallel input buffer for transmission.

100 SERIAL$CHAR$0UT: PROCEDURE;

101

102 2

103 2

104
105
106
107
108

109
110
111
112
113

114
115
116
117
118

119
120
121
122

123
124
125
126

127
128
129
130
131
132

133 J

DECLARE ('CHAR, TEMP) BYTE;

CHAR = O;

00 CASE SRL$0UT$STATE;

I* SRL OUT STATE G ,;: RECORD MARK *!
DO;

CHAR : 1 :';

CALL PARALLEL$IN;
SRL$0UT$STATE = 1;

END;

!* SRL our STATE 1 ;: NMB PRTS */
DO;

~~~~O~T~~tiI~$~:t~ RTS ; 

SRL$0UT$STATE = 2; 
END; 

I* SRL OUT ::iTATE t:' = STRT PRT •/ 
DO; 

TEMP = PRL$IN$STRT$PRT; 
SRL$0UT$PRT = TEMP; 
SRL$0UT$STATE = 3; 

END; 

!* SAL OUT STATE 3 = HI ORDER HALF DATA BYTE */ 
DO; 

TEMP = SHR(SRL$DUT$PRL$IN$BFR(SRL$0UT$PRT) ,4); 
SRL$0UT$STATE = 4; 

END; 

!* SRL OUT STATE 4 = LO ORDER HALF DATA BYTE */ 
DD; 

TEMP = SRL$0UT$PRL$IN$BFR(SRL$DUT$PRT) AND OFH; 
IF BRL$0UT$CNT = 0 . THEN 

SRL$0UT$STATE ;: O; 
ELSE 
00; 

SRL$0UT$CNT = SRL$0UT$CNT :- 1 ; 
SRL$0UT$PRT i:: SRL$0UT$PRT + 1 ; 
.$RL$0UT$STATE = 3; 

END'; 
END; 

END; /* END OF CASES *! 

131.J IF CHAR <> ':' THEN 
135 CHAR = CHAR$CONV(TEMP); 
136 OUTPUT ( USART$0UT) . = CHAR; 

137 2 END SERIAL$CHAR$0UT; 

Interrupt Service Routine. The software in this 
SCADA terminal applicatioh example is interrupt 
driven. Interrupts, which occur when the trans
mitter of the 8251 is ready for another character 
or when the receiver has obtained a serial charac-. 
ter, direct the execution of either the serial input 

AFN·01931A 



or output character procedures. The following 
procedure is entered when an interrupt occurs. 

138 1 USART$INTERRUPT: PROCEDURE INTERRUPT 1; 

139 2 DECLARE STATUS BYTE; 

140 2 STATUS = INPIJT(USART$STATUS); 

1111 IF (STATUS AND TXRDY) = TXRDY THEN 
142 CALL SERIAL$CHAR$0UT; 

143 IF (STATUS AND RXRDY') = RXRDY THEN 
144 CALL SERIAL$CHAR$IN; 

145 2 END USART$INTERRUPT; 

Main Program. The function of the main program 
is rather simple. It calls the initialization routine 
and then loops "FOREVER." Notice that the 
other software is executed only when an interrupt 
occurs. Rather than loop idly while waiting for an 
interrupt, the "main program" could take advan
tage of excess CPU time by processing some other 
task. 

!*********** 

MAIN$PROGRAM: 

146 1 CALL INIT; 

147 
14d 

DO FOREVER; 
END; 

149 1 END; 

1-21 

SUMMARY /CONCLUSIONS 

Further consideration should be given to error 
checking in the implementation of a SCADA termi
nal. A checksum has been used in this example 
which provides some error detection but no 
correction. 

The industrial communication example in this 
application note has shown a SCADA terminal. 
Besides providing a convenient forum in which to 
explore the use of PL/M in an interrupt-driven 
environment, this application provides a realistic 
and almost fully-developed tool for the replace
ment of a multitude of parallel lines. Two such 
systems can be connected through the serial lines 
to provide a parallel to parallel transmission 
scheme as shown in Figure 6. 

SCADA TERMINAL 

"' 

SERIAL 1/0 

Figure 6. Two SCADA Terminals 

...----, PARALLEL 1/0 

SCADA TERMINAL 

"' 

AFN·01931A 



BIT SERIAL INTERF~CE 

:.::i 

Vee 

SERIAL OUTPUT 

SERIAL lfl!PUT 

PARALLEL IN 

OUTO 

OUT 1 

OUT2 

OUTJ 

OUT4 

OUTS 

OUTS 

OUT7 

f . "~ 
tOUTX 

OUTB 

OUT9 

our10 
OUT 11 

OUT 12 

OOT 13 

OU1'14 

OUT 15 

r~··· CH 

INPUT 

OUT 16 

OUT 17 

OUT 18 

OUT 19 

OUT20 

OUT21 

OUT22 

OUT23 

INO 

IN1 

IN2 

IN3 

IN4 

INS 

IN& 

IN7 

INB 

IN9 

IN 10 

IN 11 

IN12 

IN 13 

IN 14 

IN 15 

IN 16 

IN 17 

IN 18 

IN 19 

IN20 

IN21 

IN22 

IN23 

> 
_J 

TERFACE.....;, 

" 
~ 

L 

'L 

' 

L 

L 

L 

L 

L 

f 

> 
' > 

> 

' 

> 

' 
~ 
~ 
/ 

/ 

> 

~ 
~ 
> 

---' 

'SBC&e/10 
·~5~ 

A 

~ SERIAL INPUT 
(JJ.J) 

SERIAL OUTPUT 

8226 
(Jl-43) .A. 
!Jl-41) ~-

.A. 
IJ1451 .A. ."" .. 
(J147) ~ .A. 
(Jl 39) .A..:""'.: 
(Jl-37) .... .A. 
iJl-351 .A..:""'.: 
!Jl-33) .... .A. 

7437 
(J1"7) .A. 
!J1·5) .... .A. 
(JHI .A.~-

(Jt-11 .... .A. 
(Jt-9) 

~-

(Jl-11) .... .A. 
!Jl-13) .A.~ 

(Jl-15) .... .A. 
743;"" 

il1·25J .A. 
(Jl.29) .... .A. 
(J1·19) .A.~-

(Jl-17) -....:: .A. 
fJl-21) .A.~ 
{Jl-27) 

~-

.A. 
(Jl-23) .A. .... 
(J1·31) ~-.A. 

vcc .... 

(J2-43J l 
(J2-45) 

IJ2·471 

(J2-49) 

(J2-41) 

(J2-39J 

(J2-371 

{J2·35) 

fJ2·5) l 
IJ2·71 

IJ2·91 

{J2·3) 

IJ2·11) 

IJ2·13) 

!J2-15) 

fJ2·171 

(J2·251 l 
_H2·23) 

(J2-21) 

IJ2·191 

(J2·27) 

IJ2·29) 

(J2·31) 

(J2·33) 

Figure 7. SCADA Terminal Schematic 

GROUP 1 
8255 r-----

I 
I 

PAo 

I 
PA1 

I 
PA2 

J_ 
PA3 

PORT 1 !Al 
PA4 

I 
PAi; 

I 
PA& 

I 
PA7 

I 
I 
I 

Pll() 

I 
PB! 

PB2 
I 

PB3 
I PORT2 (B) 

! 
p .. 

P85 

p .. 

..J. P87 

I 
I 

PCo 

I 
PCt PORT 3 (CJ 

I UPPER 

I 
PC2 

PCJ 

I t';c;"" __ _, 
I 
I PC5 PORT 3 IC) 

PCe ,LOWER 
I 
j PC7 

., 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L,...---- __J 

GROUP2 
8255 1Kr-----., 

_l 
PAO 

_l 
PA1 

_l 
PA2 

_l 
PAJ 

_l PORT 4 (A) 
PA4 

_l 
PA5 

_J 
PA& 

_l 
PA7 

I 
,.1 

I 

J 
Pll() 

PB1 

__!_ 
P83 

_!_ 
PB2 

__!_ 
P84 

PORT5 (8) 

I 
P85 

~ PB& 

I PB7 

I 
'"I 

PCo 

PCl PORT 6 (C) 

PC3 UPPER 

PC2 

PC4 

PC5 PORT 6 fC) 

PC& LOWER 

PC7 

L ____ _ J 

AFN-01931A 



PROCESS CONTROL 

Many single board computers have already been 
applied in the field of process control. Some of the 
common denominators observed in these applica
tions include the use of A/D and D/ A peripheral 
boards, process monitoring functions such as 
servicing display panels for operator interaction, 
and alarm indicators. 

Temperature Monitoring Application Example 

A temperature monitoring system has been devel
oped for the purposes of a process control applica
tion example. The single open loop system utilizes 
an A/D converter, a multiplexed display, switches 
for operator control, and two alarms. A block dia
gram of the operator's panel is shown in Figure 8 
and a schematic in Figure 9. 

GROUP ::;.-2 
8255 

iSBC 80/10A 
TEMPERATURE MONITORING 

OPERATOR'S PANEL 

SWITCH 

,~----! INPUT 

7·SEGMENT 
DATA 

DIGIT SELECT & 
ALARM 
INDICATORS 

Figure 8. Operator's Panel Block Diagram 

Operator's Panel. The operator's panel in this 
temperature monitoring system contains four 
7-segment displays to show the temperature, two 
light emitting diodes (LEDs) that indicate alarm
low and alarm~high conditions, and six switches. 
The function of the switches is as follows: 

Set Limit ·- controls whether the current 
temperature reading is to be displayed (off) or 
if upper/lower limits are to be set (on). 

Set Hi Lo ~ when seUimit is "on", this switch 
controls whether the low (off) or high (on) 
limit is .to be displayed. 

Digit Selects - these two switches control the 
selection of the digit of the limit which is to 
be modified. The four binary positions 00, 
01, 10 and 11 correspond to the four 7-
segment digits. 

1-23 

Leave It - controls whether the digit selected 
is to be incremented (off) or maintained at its 
current value (on). When this switch is "off" 
the digit selected is incremented every 512 ms 
until the operator turns the switch "on". 

Enable Alarm - when set limit is "off" and the 
current temperature is displayed, this switch 
controls whether the action of the alarm indi
cators is to be enabled (on) or disabled (off). 

The simple means used to set upper and lower 
temperature limits is similar to setting the time on 
a digital wrist watch. 

The purpose of the software is to initialize the 
system and then to enter an endless loop which 
accumulates 16 readings, updates the displayed 
reading or handles limit setting, updates the display 
latches, waits 4 ms, and obtains an A/D reading. 

Temperature Monitoring Program. This application 
example has been coded in Intel's resident PL/M-
80 language. 

J• 

•1 

PROCESS CONTROL APPLICATION 

OPEN LOOP 

TEMPERATURE MONITOR 

TEMPERATURE$MONITOR: 

DO; 

The declaration statement includes some dimen
sioned variables with INITIAL attributes. They 
provide data strobe positions, a table of bit pat
terns to convert BCD data to 7-segment data, and 
a table of the powers of 10 for binary to BCD 
conversions. 

2 1 DECLARE 
READING -ADDRESS, 
DIGITS(4) BYTE INITIAL (80H,40H,20H, 10H), 
BCDT07SEG( 11) BYTE INITIAL ( 3FH,06H, 5BH, 4FH, 66H, 

6DH, 7CH,07H, 7F'H,67H,0), 
TENS(4) ADDRESS INITIAL ( 1000, 100, 10, 1), 
DIGIT$DATA(4) BYTE, 
NXT$DIGIT BYTE, 
UPDATE$COUNT BtTE, 
SET$COUNT BYTE, 
LIMIT(2) ADDRESS, 
ACCUM$RDNG ADDRESS, 

CWR LITERALLY 'OEBH', 
SLCT LITERALLY 'OEAH 1 , 

SEGS LITERALLY 'OE8H', 
SWTS LITERALLY 'OE9H' , 
SE:rUP$PORTS LITERALLY '082H'• , 

.SET$LIMIT LITERALLY '001 H' , 
SET$HI$LO LITERALLY '002H', 
LEAVE$IT LITERALLY '010H', 
DIGIT$SLCT LITERALLY 'OOCH', 
ENABLE$ALARM LITERALLY 1 020H', 
SET$ALARM$LO LITERALLY 1 001H', 
SET$ALARM$HI LITERALLY: '003H', 
RESET$ALARM$LO LITERALLY 'OOOH', 
RESET$ALARM$HI LITERALLY '002H', 

TRUE LITERALLY 'OFFH', 
FOREVER LITERALLY 'WHILE TRUE' ; 

AFN·01931A 



The analog to digital conversion procedure has 
been coded in assembly language and is not in
cluded in this application note. It is declared as an 
external typed procedure with no arguments and 
returns a value of the type address. The value 
returned is the current temperature. The ATOD 
procedure is linked later in a step to produce an 
absolute load module of the entire program. 

3 1 ATOD: PROCEDURE ADDRESS EXTERNAL; 

4 2 END ATOD; 

Bit set/reset functions of the 8255 have been used 
to control the alarm-low and high output bits. Use 
of this function allows individual bits to be con
trolled without affecting others of port C which 
are concurrently selecting the digit to be multi
plexed on the display. 

5 1 RESET$ALARMS: PROCEDURE; 

OUTPUT(CWR) = RESET$ALARM$LO; 
OUTPUT( CWR) = RESET$ALAR1'1$HI; 

d 2 END RE:SET$ALARMS; 

The following procedure is used to initialize the 
8255 and several program variables. 

9 1 INIT: PROCEDURE; 

10 
11 
12 
13 
14 
15 
16 
17 
1d 

19 2 END INH; 

A multiplexed display is controlled by the soft
ware. Two ports of an 8255 are required for this 
function shown in Figure 9. The first output port 
holds the data which drives the four 7-segment dis
plays in parallel. The second output port contains 
four strobes, each going to a separate common 
cathode of one of the 7-segment displays. 

The update display procedure begins by blanking 
7-segment data in the output port. This step avoids 
shadows that would be produced if the data for 
the next digit position were loaded prior to up
dating the strobe. The strobe is then advanced, 
retaining the alarm bits that occupy other bits of 
the same output port. Note that an output con
figured 8255 port can be read with an 8080A 
INPUT instruction to determine the currently 
latched output data. The BCD data is obtained 
from the next digit position of the DIGIT$DATA 
array and used as a subscript into a table of 
BCDT07SEG data. The 7-segment data is also 

1-24 

output to the 8255 port in the 
The procedure concludes by 
NXT$DIGIT pointer. 

same statement. 
advancing the 

20 1 DLSPLAY$UPDATE: PROCEDURE; 

21 OUTPUT(SEGS) = O; 
22 OUTPUT(,SLCT) = (~!GITS(NXT$DIGIT) OR (INPUT(SLCT) AND 03H)); 
23 OUTPUT(SEGS) = BCDT07SEG(DIGIT$.DATA(NXT$DIGIT)); 
24 NXT$DIGIT : (NXT$DIGIT+ 1) AND 03H; 

25 2 END DISPLAY$UPDATE; 

Binary to BCD Conversion. Binary data from the 
A/D converter must be converted to BCD before it 
can be used by the DISPLA Y$UPDATE procedure 
to show the current temperature reading. The 
BINTOBCD procedure performs this conversion 
operation. 

26 1 BINTOBCD: PROCEDURE; 

27 2 DECLARE (BCD,!) BYTE; 

2d 2 

29 
30 

31 
32 

33 4 

34 3 

35 3 

DO I = 0 TO 3; 

BCD : O; 
DO WHILE READING >= TENS(!); 

READING = READING - TENS( I) ; 
13CD=l3CD+1; 

END; 

DIDIT$DATA(I) = BCD; 

END; 

36 2 END B!NTOBCD; 

BCD to Binary Conversion. The reverse conversion 
process is also needed. That is, BCD data must be 
converted to binary. This procedure is used to take 
limits, which are set by manipulating BCD digits, 
and convert them to binary data for use in testing 
against current temperature readings. Based vari
ables have been used in this procedure to allow 
access to the actual variables used as arguments in 
the calling program. 

37 1 BCDTOBIN: PROCEDURE ( BCD$ARRAY$ADR ,'BIN$DATA$ADR); 

313 2 DECLARE 
(BCD$ARRAY$ADR ,BIN$DATA~ADR) ADDRESS, 
(BCD$ARRAY BASED BCD$ARRAY$ADR) ~4) BYTE, 
(BIN$DATA BASED BIN$DATA$ADR) ADDRESS, 
I BYTE; 

39 BIN$DATA :: O; 
40 DOI::OT03; 

I* BIN$DATA :: BIN$DATA*l0 + BCD$ARRAY(I) */ 
41 BIN$DATA:: SHL{BIN$DATA, 1) + SHL(BIN$DATAi3) + BCD$ARRAY(I); 
42 END; 

43 2 END BCDTOBIN; 

Updating the Display. The UPDATE procedure is 
entered each time 16 readings have been taken 
from the A/D converter. The UPDATE$COUNT is 
reset and the operator switches are input to control 
the execution path through the procedure. The 
accumulated reading, which is the total of 16 A/D 
readings, is divided by 16 to obtain an average 
reading. Then the accumulated reading is zeroed. 

AFN-01931A 



411 1 UPDATE: PROCEDURE; 

115 2 DECLARE (SWT$FLG,HI$LO,DIGIT) BYTE; 

116 UPDATE$COUNT = 15; 
117 SWT$FLG = INPUT(SWTS); 
48 READING :: SHR(ACCUM$RDNG, II) i 
119 ACCUM$RDNG :: 0; 

Setting Limits. If the set limit switch is ON, the 
limits are to be dealt with instead of testing and 
displaying the current temperature reading. The 
alarms are reset during limit setting. The specified 
limit is converted to BCD and then the Leave-It 
switch is tested to see if the digit selected is to be 
incremented or held constant. 

50 
51 
52 
53 
5' 
55 
56 

IF (SWT$FLG AND SET$LIMIT) :: SET$LIMIT THEN 
DO; 

CALL RESET$ALARMS i 
HI$LO = SHR( (SWT$FLG AND SET$H!$LO), 1); 
READING ; LIMIT(HI$LO) i 
CALL BINTOBCD; 
IF (SWT$FLG AND LEAVE$IT) <> LEAVE$IT THEN 

Another counter is used to control digit incre
menting. Its purpose is to control the rate at which 
the selected digit is to be incremented. The major 
loop in the program has a 4-millisecond delay. 
Thus, 16 A/D conversions require a period of 
64 ms which provides an update frequency of 16 
readings per second. This is too fast to accurately 
select a desired digit which is being incremented. 
SET$COUNT insures eight update periods (512 
ms) between each increment. After the digit has 
been incremented, the BCD limit value is con
verted back to binary to set the respective limit. 
This concludes the action taken when setting 
limits. 

57 DO; 
5d IF SET$COUNT == 0 THEN 
59 DO; 
60 SET$COUNT = 7; 
61 DIGIT = SHR( {SWT$fLG AND DIGIT$SLCT) ,2) i 
62 IF DIGIT$DATA(DIG!T) ; 9 THEN 
63 DIGIT$DATA(DIGIT) = O; 

ELSE 
64 DIGIT$DATA(DIGIT) ; D!GIT$DATA( DIGIT) + 1; 
65 CALL BCDTOBIN( .DIGIT$DATA,. LIMIT(HI$LO}} i 
66 END; 

ELSE 
67 SET$COUNT == SET$COUNT ~ 1; 
68 END; 
69 END; 

Testing the Averaged Reading. If the set limit 
switch is OFF, then the averaged reading is to be 
tested and displayed. The averaged reading is con
verted to BCD and then a test is performed to 
determine whether the reading is to be compared 
with the upper and lower limits. 

ELSE 
70 00; 
71 CALL BINTOBCD; 
72 IF (SWT$fLG AND ENABLi:":$ALARM) = ENABLE$ALARM THEN 

1-25 

The reading is compared with both the upper and 
lower limits if the alarms have been enabled. The 
results of the tests are used to set and reset the 
corresponding alarm output bits. 

73 
7' 
75 

76 ' 

77 
78 

79 
80 

00; 
IF HEADING < LIMIT( 0) THEN 

OUTPUT(CWR) == SET$ALARM$LO; 
ELSE 

OUTPUT(Clt'R) == RESET$ALARM$LD; 

ff HEADING > LIMIT( 1) THEN 
OUTPIJT(CWR) = SET$ALARM$HI; 

ELSE 
OUTPUT(CWR) = RESET$ALARM$HI; 

END; 

If the alarms are not enabled, both the alarms are 
reset to the "off" condition. 

81 
82 

ELSE 
CALL RESET$ALARMS; 

END; 

83 2 END UPDATE; 

Main Program. The main program is shown below. 
Its purpose is to initialize the system and then to 
cycle, continuously executing the code previously 
described. 

1••··········· 
MA1N$PROGRAM: 

............. ! 

811 l CALL !NIT i 

85 1 00 FOREVER; 

86 2 ACCUM$RDNG :: ACCUM$RDNG + READING; 

87 IF UPDATE$COUNT = 0 THEN 
88 CALL UPDATE; 

ELSE 
89 2 UPDATE$COUNT = UPDATE$COUNT - 1; 

90 CALL DISPLA:£$UPDATE; 
91 CALL TIME(llO); 
92 READING = A TOD; 

93 2 END; 

94 1 END; 

SUMMARY /CONCLUSIONS 

The goal of this application example is to demon
strate some of the common functions required for 
process control systems. Rather than show a small 
portion of a larger, more complex problem, this 
example was chosen because it presents a complete 
solution to a smaller problem. In summary, refresh
ing a multiplexed display was shown. Conversion 
procedures for binary to BCD and BCD to binary 
were used. A simple technique, in terms of hard
ware requirements, was used to enter lower and 
upper test values. And, limits testing was done, 
providing alarm indicators. 

AFN·01931A 



iSBC 80/10A ---..., ,...----. X-LOGIC 

OPERATOR'S PANEL ,-----1 
lK 

I PB5 t-l-t-+-+-+-t--1' 2-·1-31-+---f---r .--:-- ENABLE ALARM 

I I 1J2.111 

GROUP -"2 I 
a255 I 

I 
I 
I 
I 
I 

PB4 t-r-+-t-t-t_.----t----1----" - LEAVE IT 

POR\ 5 (~~J I (J2·9) = )' DIGIT SELECT: 
PB2 t-

1
-t-t_.------t----+----' · · · 

l (J2·3) 

(J2.7) 
PB1 t-_J_lr-+_. _____ IJ

2
-.

5
-'-
1 
-+---f---/ ------ SET Hl/[5 

PBQ ...._,>---+-------+-----+--_, ~ SET LIMITS 

I -::-
1 

I 
I 
I 

I = -.----P-A7..., .:..1.. ......... (J2-35) 2 kn .1.J,¥' 

I ~ IJ2·37) . . ,.---! I\!:::: 
PAS t-r---_.......t >o----t---+--J\/l~l'v----+-+----+---+-+----+-.iV"+c 

LI v (J2.30) n ~ 
PA5 J.V 

I -v .r1 \"-

p0RT41:';4J. 1 r 1
,, .• 

11 
Jc ~ -K · '-1 

" (J2-49) ~ : '-J 
PA3f--'1---~ ....... ~>o---'--"-+----lf--~N'v----+---+---lr-f-C° 

PA2 Tl ....... IJ2.471 _Q -tK 
(J2-45} ,_ ........._ 

PA1t-r-----t:>o-----t----t--~-V\llv•r---t-t-.C• 

: PAa 1 .... {J2·43) •v ', ~ 
I I .,..... '\t:;: 
I I c 13 1.2 11 

I 
4 

2on 

10 

I I A 8 C D E F G Op 

' t l ' l ' t ~~ I I 
I I 2.9 

I I :437 
IJ2·33{ I PC7 t-r-----1"><.---'--'--l-----l-+.r 

I : -v 

I t-+:~~~><>--~-1--~-+~~ I IJ2·31) 

: PCs : V 

I '-+:~~~•><>~~+--~-+-~A I . .. _........ IJ2·29) 
: PC5 T ....... 
j PORTGICI : ~ €{~ 
I .1'. 1J2.211 

: PC4 : ........ 

I I 

: PC1f-1\---i~>o-,~IJ_2_23~1+----t-~+:+~~--~~--~-llV\v·~-,_..; 
I : '-/ 

Vee 

ALARM HI 

Tll313 

l _ --~o-t-~-t:---Pl>o---"IJ-"'2·2:;c51'-+----t-@t-...l.i<~9-1--. ---'l/l'IY-A--' ALARM LO 

Figure 9. Operator's Panel Schematic 

1-26 AFN·01931A 



1/0 DEVICE CONTROLLER 

Peripheral processors have become common ele
ments in computer systems of all sizes and capa
bilities. The purpose of such a processor is to 
relieve a central processor from the burden of 
handling 1/0 devices. In effect, it is a form of 
distributed processing. The iSBC 80/lOA can be 
used as a peripheral processor and/or as an 1/0 
device controller. In such a capacity it can signifi
cantly reduce the amount of hardware required to 
interface peripherals. Because the iSBC 80/ l OA 
controls only 1/0, it is of little consequence that 
it must do a great deal of detail work that other
wise wastes the processing capability of a larger 
central processor. 

Consider the activity of producing a listing on a 
line printer. The overhead in maintaining a pro
gram in the queue of a central processor which is 
producing data for a line printer can seriously 
impact system throughput. If, however, the pro
gram were to send the list to a disk file arid then 
command a peripheral processor to take care of the 
printing, a significant improvement in system 
performance may be achieved; Printers represent 
one example of a large number of 1/0 devices that 
can be controlled by an iSBC 80/lOA. Other 
devices include cassettes, magnetic tape drives, 
paper tape readers and punches, etc. 

Character Printer Controller Application Example 

The control of a Centronics 306 character printer 
is used as an 1/0 device controller application 
example. This example shows the interrupt capa
bility of mode l 8255 operation. A block diagram 
of the printer controller is shown in Figure 10 and 
a schematic in Figure l l. 

Table 2. Printer Software Control Block 

NAME POSITION 

iSBC 80/10A 
CENTRONICS 

PRINTER 

DATA 

CONTROL 

Figure 10. Printer Controller Block Diagram 

When the mode l or mode 2 configuration is used, 
software is generally required to support interrupts 
used in conjunction with handshaking operations. 
Software routines written for an interrupt driven 
environment terid to be more complex than status 
driven routines. The added complexity is because 
interrupt-driven systems are constructed su.ch that 
other software tasks are run while the 1/0 transac
tion is in progress. A software routine that controls 
a peripheral device is generally referred to as a 
device driver. One method of implementing an 
interrupt-driven device driver is to partition the 
device driver into a "command processor" and an 
"interrupt service routine." The command proces
sor is the module that validates and initiates user 
program requests to the device driver. A common 
method of passing information between the various 
software programs is to have the requesting routine 
provide a device control block in memory. The 
device control block used in this application 
example is shown in Table 2. 

DEFINITION 

Status Byte 0 A 1-byte field which defines the completion status of an 1/0. 

00 = Good completion 
01 = Error - command already in progress. 

Buffer Address Byte 1, 2 Pointer to the start of the data to print. 

Character Count Byte 3 Count of the number of characters to print. 

Character Byte 4 The number of characters transferred. 
Transferred Count 

Completion Byte 5, 6 Address ofa user supplied routine which will be called after the 1/0 has been 
Address performed. 

AFN-01931A 



The command processor validates the transaction 
and initiates the operation described by the control 
block. Control is then returned to the requester 
so that other processing may proceed. The inter
rupt service routine processes the remainder of the 
transaction. 

Interrupt Service Routine Requirements. The 
interrupt service routine requires the following 
functions: 

l. The state of the machine (registers, status, 
etc.) must be saved so that it may be re
stored after the interrupt is processed. 

2. The source of the interrupt must be deter
mined. The hardware may support a register 
which indicates the interrupting device, or 
the software may poll the device status 
registers. 

3. Data must be passed to or from the device. 

4. Control must be passed to the requesting 
routine at the completion of the 1/0. 

5. The state of the machine must be restored 
before returning to the interrupted program. 

Printer Controller Program. The software for this 
application has been coded using Intel® 8080 
Macro Assembly Language. 

0; 
1 ;HfH 

2 ; 
3 ; I/0 DEVICE CONTROLLER APPLICATION 
4; 
5 ; INTERRUPT DRIVEN 
6 ; 
7 ; CHARACTER PRINTER 
8 ; 
9 ;***H 

The following program equates are used to allow 
symbolic reference to the 8255 ports. Group #l 
8255 on the iSBC 80/lOA has been used because 
it will support mode l operation. 

10 ; 
11 ;UH• 
12 ; PROGRAM EQUATES 
13 ;***** 
14 PORTA EQU OE4H 
15 PORTS EQU UE5H 
16 PORTC EQU OE6H 
17 CWR EQU OE7tl 

; 8255 PORT A 
; 8255 PORT B 
; 8255 PORT C 
; 8255 CONTROL WORD REGISTER 

An initialization control word sent to the control 
word register of the 8255 will set up the desired 
configuration. 

18 j 
19 ;H•H 
20 i 
21 ; 
22 i 
23 i 
24 ; 
25 ; 
26 ; 
27 ; 
28 j 
29 ; ..... 
30 !CW 
31 ;***** 

INITIALIZATION CONTROL WORD 

EQIJ 

USED TO CONFIGURE THE 8255 AS FOLLOWS: 

PORT A - OUTPUT MODE 1 
PORT B - INPUT MODE 0 (NOT USED) 
PORT C LD'tlER - OUTPUT 

101010108 ; INITIALIZATION CONTROL WORD 

1·28 

The bit set/reset capability of the 8255 is used to 
control the strobe to the printer and to enable/ 
disable interrupts from the 8255. 

32 ; SET I RESET CONTROL WORDS 
33 ;HHf 
34 STBON EQU 000000018 ; SET STROBE 
35 STBOF EQU 00000000~ i R!¥i~T STROBE 
36 ;*Hit* 
37 ; 8255 ENABLE/DISABLE ·INTERRUPT CO~TROL. WORDS 
38 ;***** 
39 !EN EQU 000011018, ; ENABLE INTERRUPTS 
40 tDN EQU 000011008 ; D!SABLE INTERRUPTS 
41 ;HH* 

Device status, control block, and completion 
equates are sl).own below. 

42 ; DEVICE Si'ATUS EQUATES 
43 i***** 
44 LPBSY EQU 
45 INTRA EQU 

080H 
08H 

; BUFFER FULL (LINE PR.INTER BUSY) 
; INTERRUPT REQUF.ST 

46 ;***** 
47; CONTROL BLOCK EQUAT~ 
48 ;***** 
49 CBST EQU 
50 CBUF EQU 
51 CBCC EQU 
52 CBCT EQU 
53 CBCMP EQJ 

OOH 
01H 
OJH 
04H 
05H 

i STATUS BYTE 
; BUFFER ADDRESS 
; CHARACTER COUNT 
; CHARACTER TRANSFERED COUNT 
; COMPLETION SERVICE ADDRESS 

54 ;***** 
55 ; COMPLETION STATUS EQUATFS 

; GOOD GrnPLETION 
56- ;***** 
57 STGD 
58 STE1 
59 ;***** 

8QU 
EQU 

OOH 
01H i ERROR - COMMAND ALRBADY IN PROGRESS 

There are two origin statements in this program. 
The first origin at 38 hexadecimal is the entry 
point used when an interrupt is generated by the. 
8255. A jump instruction to the printer illterrupt 
routine is stored at that location. The second 
origin at 3000 hexadecimal is the. address where 
the rest of the code will be .located. 

60 ; RFSTART 7 ENTRY POINT 
61 ;***** 
62 ORG 00381-l. 
63 JMP. PINT 
64 ;***** 
65 ; PROGRAM ORIGIN 
66 ;***** 
67 ORG 3000H 
68 j ...... 

An initialization subroutine issues the mode con
trol word to the 8:255 control word register after 
reset of the device. The printer strobe must then be 
disabled. 

69; 
70 j 
71 ; 
12 ; 
73 ; 
74 ;***** 
75 !NIT: 
76 
7l 
78 
79 
80 
81 

INITIALIZATION ROUTINE 

A,H,L REGISTERS MO_DIFIED 

MVI A, ICW ; GET MODE CONTROL WORD 
OUT CW'R. ; OUTPUT TO CONTROL WORD REGISTER 
MVI A,STBON ; GET SET DATA STROBE CONTROL WORD 
OUT CWR j SET DATA STROBE (LOW TRUE SIGNAL) 
RET j RETURN TO CALLER 

The command processor is started by the user 
routine through a subroutine call to PSTRT, with 
the address of the control block in the D and E 
registers. The command processor insures that an 
1/0 operation is not already in progress, starts the 
1/0, enables interrµpts, and returns to the caller so 
that other processing may proceed. 

AFN·01931A 



The flowchart and listing for the command proces
sor are shown below. 

82 
83 ; ***** 
84 ; 
85 ; 
86 ; 
87 ; 
88 ; 
89 ; 
90 ; 
91 ; 
92 ; 
93 ;***** 
94 PSTRT: 
95 
96 
97 
98 
99 

100 
101 
102 
10) 
104 
105 
106 
107 
108 
109 ;***** 
110 ; 
111 ;***** 
112 PSTE: 
113 
114 
115 

PST AT 

YES 

ERROR 

RETURN 

COMMAND PROCESSOR 

INPUTS: CONTROL BLOCK ADDRESS IN D AND E REGISTERS 

OUTPUTS: START I/O OR ERROR STATUS IN CONTROL Bl.OCK 

A,H,L REGISTERS MODIFIED 

LOA PIPRG+1 
ANA A 

THEN 

JNZ PSTE 
XCHG 
SHLD PIPRG ; SAVE CONTROL BLOCK ADDRESS 
XCHG 
LXI ; GET INDEX TO CT 
DAD ; COMPUTE ADDRESS Of CT 
MVI M, OOH ; CLEAR CT 
CALL POii.TA ; START I/O 
EI ; ENABLE PROCESSOR INTE:RRUPTS 
RET ; RETURN TO CALLER 

ERROR - TRANSACTION ALREADY IN PROGRESS 

MVI A,STE1 ; GET ERROR STATUS CODE 
JMP POST ; PASS CONTROL TO COMPLETION ROUTINE 

Interrupt Processing. When the 8255 generates an 
interrupt, the interrupt request is serviced by the 
8080A CPU. The CPU disables processor interrupts 
and then executes the instruction at location 38 
hexadecimal, which is a jump to the interrupt 
service routine. The interrupt service routine saves 
the processor state and polls the 8255 to determine 
the source of the interrupt. Once the interrupting 
device is identified, the printer output data routine 

is called. After the entire buffer has been printed, 
the interrupt service routine passes control to the 
user-supplied completion routine. Before returning 
from the interrupt, the state of the processor is 
restored. 

There are a number of error conditions which may 
occur, such as an interrupt from a device that does 
not have an active control block, or an interrupt 
when polling establishes that no device requires 
service. Neither of these errors should occur, but if 
they do, the driver should perform in a consistent 
fashion. The recovery routines implemented to 
handle these interrupt error conditions are deter
mined by the environment of the particular appli
cation. 

The flowchart and listing for the printer interrupt 
service routine are shown below. 

INT 7 

NO 

NO 

POLL 
OTHERS & 
PROCESS 

ERROR 

116 
117 ;**'** 
118 ; 
119 ; 
120 ;****' 
121 PINT: 
122 
123 
124 
125 
126 ;**'** 

PRINTER INTERRUPT SERVICE ROUTINE 
ALL REGISTERS SAVED AND RESTORED 

PUSH PSW 
PUSH B 
PUSH D 
PUSH H 

SAVE PSW 
SAVE REGISTER PAIR B A.ND C 
SAVE REGISTER PAIR D AND E 
SAVE REGISTER PAIR H AND L 

AFN-01931A 



127 j f>9LL :IN1'.ERRUPT SOURCE - SEE OF 8255 
128 ;'**** 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 

IN 
ANI 
JZ 
MVI 
OUT 
EI 
LHLO 
XRA 
CMP 
JZ 
XCHG 
CALL 

PORTC 
INTRA 
PPOLL 
A,IDN 
CWR 

PIPRG 
A 
H 
PIER1 

i'DATA 

GE:T STATUS OF DE:V!CE 
SE:E IF INT 
NO -BRANCH TO POLL OTHER DEVICES IF' ANY 
GET 8255 INT DISABLE ·CONTROL WORD 
DISABLE DEVICE INTERRUPTS 
lmABLE PROCESSOR INTERRUPTS 
GET CONTROL BLOCK ADDRESS 
CLEAR A REG 

; SEE: IF PRINT IN PROGRESS 
; NO - BRANCH ~ ERROR ROUTINE 

; PRINT DATA 
141 ;tUH 

142 ; RESTORE REGISTERS AND RETURN FR()o'I INTERRUPT 
143 ;tHH 
144 PRTN: 
145 
146 
147 
148 
149 
150 

POP 
POP 
POP 
POP 
EI 
RET 

Ii 
D 
B 
PSW 

; RESTORE RWISTER PAIR H AND L 
; RESTORE REGISTER PAIR D AND E. 
; RESTORE REGISTER PAIR 8 AND C 
; RESTORE PSW AND A 
; ENABLE PROCESSOR INTERRUPTS 
; RETURN TO INTERRUPTED PROCESS 

151 ;HHI 

152 i POLL OTHER DEVICES IF ANY . , 
153 ; 
154 ; 

IF NO OTHER DIVICES TO POLL - USER SUPPLIED ERROR 
RECOVl!:.RY ROUTINE. 

155 ;*"" 
156 PPOLL: 
157 JMP PRTN ; RE:TURN 
158 i ..... 
159 ; ERROR - INTERRUPT FROM IDLE DEVICE 
160 i USER SUPPLIED ERROR RECOVERY ROUTINE 
161 ;tHH 
162 P!ER1: 
163 JMP PRTN i RETURN 
164 

The printer output data routine places a character 
in the output buffer of the 8255. Data in the 
control block is used to direct the transfer of a 
character. A data strobe signal is then generated 
through the use of the port C bit set/reset feature. 

The flowchart and listing for the printer output 
data routine are shown below. 

DISABLE 
PROCESSOR 
INTERRUPTS 
ENABLE 8255 
INTERRUPTS 

RETURN 

YES 

POAT A 

YES 

- 195 
'·166 ; ..... 

167 ; 
168 j 

169 j 
170 ; 
171 j 
172 ;tHH 

173 PDATA: 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 

PRINTER OUTPUT DATA ROUTINE 

CONTROL BLOCK ADDRE!SS IN D AND E REG 

IN PORTC ; GET STATUS OF DEVICE 
AN! LPBSY ; SEE IF BUSY (BUFFER FULL) 
JZ PD10 ; IF BUSY - BRANCH 
LXI H , CBCT i GEl' INDEX TO CT 
DAD D ; COMPUTER ADDRESS OF CT 
MOV A,M ; GET CT 
INR M ; INC CT 
DCX H DEC TO CC 
CMP M SEE IF EQUAL 
JZ PCOMP IF EQUAL - DONE: GO TELL USER 
LXI H,CBUF GET INDEX TO BUFFER ADDRESS 
DAD D COMPUTE ADDRESS OF BUFFER ADDRESS 
PUSH D SAVE D AND E REGISTERS 
MOV E,M GET LSB 6F BUFFER ADDRESS 
INX H INC TO NEXT BYTE: 
MOV U,M GET BUFFER MSB 
MVI H,OOH CLEAR H REG 
MOV L,A GET CT 
DAD D ; COMPUTER CHARACTER ADDRESS 
MDV A, M ; GET CHARACTER 
OUT PORTA ; OUTPUT CHARACTER TO PRINTER 
MVI A,STBOF ; RESET DATA STROBE (LOW TRUE SIGNAL) 
OUT CWR 
fl\IR A ; GENERATE SET CONTROL WORD 
OUT CWR ; SET DATA STROBE 
POP D ; RESTORE CONTROL BLOCK ADDRESS 
JMP PDATA ; LOOP UNTIL BUSY 

If the printer is busy at the time the printer output 
routine is called, a printer busy routine is executed. 
The printer busy routine d~sables the processor 
interrupts, enables the 8255 interrupts and then 
enables the processor interrupts on its return to 
the caller. 

1-30 

202 
203 ;'**** 
204 ; 
205 ;'**** 
206 PD10: 
207 
208 
209 
210 

PRINTER BUSY - RETURN 

DI ; DISABLE INTERRUPTS 
MVI A, !EN ; ENABLE: DEVICE INTERRUPTS 
OUT CWR ; SET INTERRUPT ~ABLE 
RET ; RETURN TO CALLER 

When the printer output routine has exhausted the 
data from the buffer, a good status code is posted 
to th11 user. The command in progress flag is also 
cleared. 

211 ;111 .. 

212 ; 
213 ;1111* 
21ll PCOMP: 
215 
216 
217 
218 
219 
220 

POST GOOD Ca-lPLETION TO USER 

MVI 
CALL 
XRA 
STA 
RET 

A,STGD 
<OST 
A 
PIPRG+.1 

; GET GOOD STATUS CODE 
; POST TO USER 
; CLEAR A REG 
; CLEAR COMMAND IN PROGRESS ADDRESS 
; RETURN TO CALLER 

The post to user completion routine obtains the 
completion address from the device control block 
and passes control to the user routine. 

221 
222 ;**"* 
223 i 
22ll ; 
225 j 

·226 ; 
227 ; 
228·; 
229 ; 
230 j 

231 ; 
232 ; 
233 ; 
234 ;**~·· 

POST TO USER. CC«PLETION ROUTINE 

INPUTS:. STATUS CODE IN A ·REG 
CONTROL BLOCK ADDRESS IN D AND E REG 

OUTPUTS: PASSE:s CONTROL TO USER COMPLETION ADDRE:S 
SPECIFIED IN CONTROL BLOCK 
WlTH CONTROL BLOCK ADDRESS IN D AND E RE 

A,H,L 1B,C REG MODIFlED 

AFN·01931A 



235 POST: 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 

XCHG 
MOV 
XCHG 
LXI 
OAO 
MOV 
INX 
MOV 
PUSH 
RET 

; UPDATE STATUS 

H,CBCMP ; GET INDEX TO COMPLETION ADDRE:sS 
D ; COMPUTE ADDRESS 
C, M ; GET LSB OF CO"lPLETION ADDRESS 
H ; INC TO NEXT BYTE 
B,M ; GET MSB OF COMPLETION ADDRESS 
8 ; PUSH ADDRESS ON STACK 

; PASS CONTROL TO USER ROUTINE 
246 , ..... 
247 j DATA AND TABI..E'S 
248 i****' 
249 ORO 
250 PIPRG: OW 
251 
252 

3DOOH 
0 ; IN PROGRESS CONTROL BLOCK ADDRESS 

; IF DATA = 0 NO CONTROL BLOCK IN PROGRESS 
; IF' DATA <> 0 CONTROL BLOCK IN PROGRESS 

253 ;***** 
254 j END OF MOOE ONE EXAMPLE 
255 ;***** 
256 ENO 

SUMMARY /CONCLUSIONS 

The iSBC 80/ 1 OA has the capability to function in 
the capacity of a peripheral processor and/or a 

GROUP~1 

8255 

iSBC 80/10A CENTRONICS 306 

r-----~ 7437 

PA7 l-.-l"~-'IJ:..:.1·=33.:...I 1-----.1 

PA5 
(J1-35) 

PA5 
(J1-37) 

, .. (J1-39) 

PORTl (A) 

PA3 
(Jl-47) DATA 

(J1·45) 
PA2 

(Jl-41) 
PA1 

~Jl-43) 
PAo 

7437 

1--J-l ·~_:__:_J-_--.I DAT A STROBE I 
(Jl-25) 

PCQ 

I Vee 
I 
I 

PORT 3 (C) 
1K 

device controller. This capability is provided in •c•NLG 
I (Jl-23) 

I PCs 

part by the interrupt support logic accompanying 
the parallel 1/0 ports. This application example 
shows how the iSBC 80/lOA requires only an inter-

I 
ACKA I 

L _____ J 

connect to the device to be controlled. Figure 11. Printer Controller Schematic 

CONCLUSION 

The purpose of this application note has been to 
expose the reader to a broad spectrum of potential 
applications of the Intel iSBC 80/1 OA and System 
80/10 products. Applications have been presented 
in the areas of instrumentation, communication, 
process control and 1/0 device control. The exam
ples were limited to short problems that could be 
completely described. 

Intel's PL/M-80 and 8080 Macro Assembly Lan
guage were both used in the examples. Instead of 
using only assembly language, it was felt that 
PL/M-80 should also be shown. Coding in an 
algorithmic language is generally more natural than 
assembly language and provides these added bene
fits: reduced program development time and cost, 
improved product reliability, and easier program 
maintenance. 

1-31 

While the task of actually configuring the SBC 
80/10 for the applications has not been described 
in this note, detailed instructions are contained in 
the tables of Chapter 4 in theiSBC 80I10 and iSBC 
80/ 1 OA Single Board Computer Hardware Refer
ence Manual. 

The Intel iSBC 80/ 1 OA has been designed to pro
vide users with subsystems that have processing 
power, memory storage, parallel and serial pro
grammable 1/0 interfaces. A design goal of the 
iSBC 80/1 OA was to minimize the requirements 
for customized interface hardware in user applica
tions. This application note has demonstrated the 
achievement of this goal. The net effect is to 
reduce the number of tedious design tasks, thus 
allowing the systems designer to concentrate on 
systems integration and other problems unique 
to his job. 

AFN·01931A 





APPENDIX A 
iSBC 80/10A SCHEMATICS 

1·33 AFN-01931A 



c'..> .,.. 

?;; 
z 
6 

~ 
> 

+• l. l~~!I ~ 
R.34 A~~ ADR0 ~ ~ 

Sb_ IMT 55/ I II( Z t1 ADR:L 
1 

4Zlil_ ir\J-r ~/ z "'- ,4 ~ ADR2 ~ 
+ 5 ' ADR4-

A.iS ~2.0 ~ A.OR$ 1 f,l" ··- . ADR3 I 
I IK -, ~ AOR.:O 

E'ff!NTR.ai/~ +'5V +5V 8 4 ADR7 ~ -- A32 ., 5 "ORO ~ ~ 

P• '5~ ~OOK ~~l ,.504 ;r ceoeoA :; ~' :g,H I ~) 
EXT ItJTR l/14'n- .1. ~r A4'- 1 .9 , AOFl.C. EZ.B..e._ 

BP~W ~ -+ 9 1 
HOLO : ?AID 74~0 ~g~~ ~ ~ 

~ '5' -~5' •SV~~C ""~ <' ~ D"'C.MO) "7Ar. ll~ Rib -'5\1 -:;:J Vl)B t>el" n 13 AbO 11 D l"IO 022.b 

\DIC 4- 21K ... ii':\J ~ '1100 ti 2.I 2. il~ I 15 i! ~': Dee IQ P! ADRIZl/ 

p r~\.6+ ""'" n'"D r~:;' T .. ""1··~·""r1~:: q~ •0 ~o~ =~ ~:i:;;;, 
1rM M-38 A.31 -=- ~ , '~ ~ A48 't. ~ +---+:! D•3 ~3 t9 I~ cs ACR~/ 
~ l SeZ4 "' 4 • 4 ez'6 • ~4 00''54 ·~ Ao2. 

+ ~~e"""'~ ~g:.,N<:. ~~ i: ! :•e ~;~~ ~ 3 ~ 
YI C23 OfF 15 l:E'!!.T 1 <l£5Er o-r 4' 8 O"l i:>B< -:r ~ O•:l. ~ 'Ol Pl ~rr~ lB.432.~~x:t ~~f~ +-----fzi .. , ~ MEM~ Z<1 ~ ~ •2. ~; tae :~ ~3 ADR4/ -· 5~· ~ - -1-k!ir t-r":, ;~ -; "'"" - R"36 lK ~-s-i TP:3~ ~?:DYIJI ~~Ji= +!S 1 I SS U>WI! Zl [ , ~ t-- ' C'> l> <:! AOR7/ 

IITTR f>.C.K OR TP2~ i)Zn R2') PZ.·40 j ?Z Z8 +5 l'i2;42.. ~ ~~2 ~ 10 e.N A~I ~ T<ME.OUT/,.CKf~ TPI l:..:r ,,.:N500 i - >' " "o ~'~ 22'o 

4"ZQ! IORD'<IN/ • ~5"1 ~A/:£; ~ A 3 ~ 1<3'2. rj At:}!, I~ ~ ~: A5~ 3 I~:. CllZ 10 =~ AORI'>/ 
STuJ PROM RDYltJ/ 14LSOO 74LS02 7 1:()0 -1 7 ~ t3 &':> ACIP.~/ ~ RAM ROY1t.i/ - - - - -- - 12-J14 s20 74:;'.oo ON BQA<!O ROT 13 14~~ . 5 L~1. m~P=lll.," I ~o~ ~· "' AOR Al 

' -----., -;-;-iA\8)..11 BUS ~ H I cs D 3 AOR Bl I \} 1':;04 ~ OosAe.i...E. 822/0 ,5 E'.1'.l A.SO 

+S~33lOK ~- Az_"•f.._..3 ~ 
A"'CK. ~~ ~ 4 ~'- 3 4 V " AA"- A4~ ~~;;, ~ io :t ADRCI '-ACK(~ 5 ~5 J5V ~·o·~. ,,~. lP"•< ~~ % Arn<D' r.t.soo A4"' 6 - ':'.;,.., L-<;f1 I , _:i:_ 0 .,., 0001 AORE1 

74$04- P:-;;s R37 ><Zr C4LS02 NSO't "4.•'-':-:-1 I H • cs o 3 
<1 ACR 1=1 

T II', It<.. I~ '"'"'A49 
12 .. ~ .. ~~ I 

1'1t574 io ~4-l..'514-4 u]MS i~ ~ i~ I .,,. 

'2 ".:,. 5 e 0; 29 s D"'DA 
10

""" "''°' ~ i 0 "'°"' ~ 
II .: <> 3 Q Go 1?:. - ~ ~ ~ I ~~ 

T~,,,4-i.o "z r<.4 ~ t ~ 

\.IOTE'S: U\.ILESS OTHE!i?.W15E SPECIFIED) 

1. THlS DOCUMENT REFLECTS ARTWORK. REV "D.~ 
a. RESISTOR VALUES ARE lN 01-lMS l/4W !. 5%. • 

~. CC>.PACITOR VALUE$ t:.RE IN MICR0f"C.qAD5 15V 

4- ON JI AND J<". 1E.VE"-l Pl"-lS ARE GAOlJNO. 

@:::> A3 l\--IRU All,2.l,2.3-Z<.> ARE 51-lOW~ ro~ 
CLARITY. ACTUAL COM PONE,t-JTS ARE 
CUSTOMER INSTALLED. 

~ A4l, 42, 14 MAY ElE 5Lll'BT!TUTE0 'NITH 
A fqL"51~\!i. 

1ar~. 

9 74~3e_ 

~8 

--i+$.04 PE. -5o l ~ Qf>,.TA y "°1 r..3 r @ Ml:!DC 2.0 MWTC./ 
'2.1 I.C'e.C/ 

---- -- 1'1.J ':i~g_~~. 

+s~ov 
0 

Q5 
2N22.22 

= 
~MHi! 

.rm 
--'5T1 ,-,-

MEM~/ ~
AOI MFMW/ 
:i:::o~I 
'!,OW/ 
l<::E.-&E:T 
a.,c 
~z 

ADV J.OW/ 
SU'5Y/ 
CCLK/ (9.?.HOMl·U.) 
BC.LK/ (9.2!G.MIH.) 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY_ 



c:,, 
(J1 

~ 
z 
6 

~ 
)> 

ADRr 
={n 
~ ~M~~~==================~+:J::j::j:j:::j::j::::j:::============::;:Jl:J::j::j::j::j::j:j::::j:::::===========~+:l::j::j::j::j:jl:J::j==============;-i 

[§:> 
32.0S 

= 
"""-

D.m 

Ce 

"' 

LOC "!-£0</> 

q 

5 
'------ , • ._J•4-520 

' A5 ~ 

~ 

d 

"IJo, II 

J:IO •Z

IIO 1 ~ 

1.-0C -;:,~ 

rr 

140::.00 

1...CC Oext<Z\ l...OC ~f'(Zl(ll 

l}' = 
OM» 

0!=1-= 
DMj 

~ A44 3 P?:AM'RDY!N/ \Zs.§. ~ 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



8l 

> .,, 
z 
6 

B 
> 

-rn 1L9 

{ .. ~ 
1Zru I ~ 

,,, .. 

~ '2:A.M'l'bYIN,/ 

~ '"'1EMR/ 

~ L.OC. *' 
~"~ 01 

~1~B106t~ ~ >.23 ~ 14 

J!&>ol~ 
~ 

·~· 
"" [P 
iic. :izois ·. 

·~ f?"' ?11 ~~WO AZ gz 1~ 
8 ~ ~~ b 

~ H.. ~ ~,, 
.3 >0& E2 RP?> 
-14-~02 ~ lit 

I 

.1::., 
..t:so4 

... sv+1;i:v-ev 

~~' 9L,.OC.4'(,l)Q) 

~1~~~~ '-------1 • • 
' ' e. oe 7 

l>.'9C..5. 
~ 

+sv 

5~3 

~~04 ] 
~ 
~ 

~ 
+si+1~~sv 

~""' L.CX °""' ~ 1'!t Z.I 1...0C. C:.09 

~r6?~r~ ~re-r~ ~ ~A26 ~~· ~i~i~ !!~~ ~~ ~~1 , .,@...-
"': oep.3i ~ e ·~' ~ ~ ""'fl 

l ;r= 
iL~ 

OM~ 

L...J£..062A5S ~~~ 
~083 ~~ 

o..e 

OU &O.A.li!t> 
~D .. ::[£ 

9~:~V~c~ ~"".!.<;:;.A• 
::Jf j'" 

J4l...SOO _ .. 
~ 

~ 

MEM RD 

~ 
-""'""- 9 

~DB,e. :::.l 

~083~ ~Rti" 
...... ,,.. ::~ 

l •t"<rq? 
. "' ,,.,., 

PR.OMlttlVlw./ = 
Ao11teF ~ 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



c:., 
...... 

)> .,, 
z 
6 

El ;: 

~ A°.i:_01fi!/ l:.Ol!::O"T'll>.I/ ~ 

'Zta{r; 
A.DR.I;; 

~o~c 

.., IY K,.; 

74LSQ4-
'"'--• 

J"3 <QS "-«-
CD-------0 °-i 
I I -::-

1 

I I 

., ,,0 
·~ "" 2.41( 

~ 
-:::====±===============================================================================================~CSi/ I ~C52/ 

~ " 

R,C.U< 
~"3 3 

"Oo,.~ 
17_ ~5 74LS02 

11'.ll 51/ 12...D.B... 

,,, 
Tx Clk JbATll. TE.RM'L RVT l ., 

"'"I} li ~ 
I 

RE.Q TO SCNO 1.,,1 C-----------------+-1 »+'--+-----~ 

GND m-i 
-i 

~ WW( 
¢<'.:(TTL) 
~E.'SET 
AD2..0 

L-~ 

c•4 

3~~1 

oe> 

J' 

~ -·u~~~~:g~gz;~~ 
"" 47 

"" 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



~ •D~ I 
'~ _1111' 111111 

~ 06, 

+5~~.,r"--1 
~~j ~~:1 

--{fu a> 
' ' 
.~ 

@OJ 

@I] 

~~2~~1 : 
: I 

--00 
D 

c:., 
CX> 

~£',,,.,, r· 
l ·w :~'{1 

I: ::=,: ===!::l+-l ~ 
i~ K..;!iL_ ·~=-=:::::: 

--@ 
4~ 

IN15'5/ 

12!& 

§] 

~ 
lij 

' ~ 
: ' 

' ' 
<Il 
fil 

':@ 

~ 
' 

: 
' 
' D 
tj 

:>] 

q 

' 

I 
I 

D 
Ii 
Cl:l 
"'1 

Pl 

SV~ lc ... 1! I I ·1" r'Zti'·"'""'_., 
IZV~ -

' "'i <5'J lorn l "I I"'"" as" • +izv 
.01 I C~16~1 

~c;t L i 
12V 19 [ r·g -::::-

• sd ee L, I I: ::: 
~mil ['11" I i 

~ 

~ "-------- f 
3~~~iit~~~,1~ 

.01 

?;,5~~;:-19 
.I 

<§> 

1Zlu ST.6.TU'> STl?OBE 5 

~ 00 (eOCIO) 74 

";; 
z 

@ 
)> 

""' '''" 
'"" ·' 

J~ [? 
lfil 

-kd 
'® 

' ' 
:El 
'fil 

_{fil 
·~ 
: I 
I I --= 
~ 
':TI 
:~ 
' ' 
' ' -ill] 

'fil 
--@ 

~ 
I I 

' ' 
OJ 
z::i 

---.rn 
I~ 
' I ' 

CJ 
'ill 
fil 

~ 
It.IT". AC"-/ OP. 

-1ME OUT ACK/ 

"" 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY, 



__. 
w 
"' 

)> .,, 
z 
6 

i£ 
> 

•OV 

~ J~t~Yf eoA 

+SY IK ll~l~!l~~.~~1111111~~~~~~~~~~~~~~~~ EXT im"ll JI 14 l"1 
•5V 

ADe.D ~ -

~~~t_~'" I~~" m.''" I 
~f-zzg; =

t~ ~ 3ZQf;

~ 2l& ~
t+IH-i-+J::C:- ADe D!ZJ(&D) ~

ADE.el/
AOl2_1/

""' "'IF' '""

4Zt:ll ib~ty~T /A[_K(

3ZAf PlQllA tOYllJ /

~11'.AIVlttlYlf\J/

\JOTE:::i: W.JLE_?:.S 01HEew1st: 3.PEtlFIED:
Tj..jlS DOtUME.IJT i'..IO_l=Lt_n::; Aef'l\JOCK "tEV A·,
('.£.'.!.ls:TO!Z. VALUE..:'. A12E. llU 0\4M&, 1/4 \'IJ, .:!:S"!...

3.. CAPAC.ITOI:! Vti.LLJf_S. AP.~ llU l1.MC.12Q~A~03, '25V,+80 -20%.

@> OIJ JI AUD J2 EV8J Plf\l!S A".:E Ge.Cuti.JD.
~ A~ Tl-H2LI All,l:'.1,23 TWE'.U 'U.o Att_ ~OW\J VOC LUCi'TTY,

.O..C.TLJAL COMPDlJE.l.JTS A'i.'.'t:. C.U~TOMER. llJSTALLE..D.

(§:>- AAl,42. t 14 MAY & 5UB:'.TITUTE.D WIT~ A 14LS.I;:'}&,

•5V

"'° ~. 100
~
14~32:

·~' IDK

JQ5
~~um'

~~~~~~~~~~~~~~~~~~~f~~~TtL~lt MVVTC. / 
IOIZ.C.. 1 
IOWC.I 

:lm 
Pl 

INFORMATION ANO SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



;,.. 
0 

,,. ,, 

i 
> 

~~&!~~~~~ 1JB7=== 

~n~i~~~~~~= 
lLf .rlllllll 1,11111111 I ,r!llllll I 11111111 I 1111111 ' .r I ,11111111 I .rlllllll I ,i 

Q.,~·~ • H-
-rn.c DJ 

lZ..c! Dli!. O EP4 
llE. l'Z.K 

12.fil ME.MR./ 

1Zot ~~ 
l_"°"F~~~~~~~~~~~~~ 

~~~---·'" 
'·"

PZ-30

L-~~~~~~~~~~~~~~~~~-c-~~~~~~~~~~~~~~~~~~~~~~~~~~-fAM ~DYi~/

~

INFORMATION ANO SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

;,..
~

,. ,,
z
6

~
>

,----·'o ·'~:- T
7~

o5

~~
?~~.~1..-1----------,-,.-1--1-----------,-,0-r-..------------,

- ·~ J~ ·~

{j"' "'' [!
DR9

·~ ri·~ ll.

t5V

,-,-..--.~1 -+5V

RP:O
IK

~ 12.AM 120'f l\,,l/ 1274LS00
I 5911

~

74LS04
s r--..._ fu l l.?'; 10 14000

Mm•/ o1mg• ~ I t:::o;:.,

---i1(4:>:,

JUMP.Et TABLE
271E:. 06-67 6~-70 74 -75 77-78
2700 65-t:.6 08-69 73-74 76-76

2708 IO -3FF

C1J BOAICD

~s~o ~ ""' '"" 1

91•"~

001

+5V

R35
llK

o~n_

1i =

DB

12c.4

"'
DB'Z

P120M !COY l/\J/

1Z.f&

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

.....
~

> ... z
6

fl
;:

TZa!. ArN IOW/ I0~/4,00 1 74'°8 IDeDYIMf ~
--.---------,---~·~ CS!f 5ZDli I ~ [~2/· 5Z.M 1.

1Z!L IO£/

&AUD 12ATE UK I :::: pt.SQ

r =r ~
4 cfe---,

pz.44

~·LTI
T7fil o~c.

57

S•

P'Z-4Co ...
·~ "-" r.,

u·~

+5V

,-----------(]~TTV 1X

I

33 Tx_C.LK

~ ~~~ I l

'-------------------'~ ~~~~~;:D"<
J~ C.LEAl2. TO ~~D

DIA'515 [,>JD ~ o!!l -~12V ~TTY T• li'.ETUE>J

11

~ . I I
-12.V +12V.~DATACAeelE~ li!ETLllZN

'Z!>O,IW RI\ -:- ZI Ito t IUT ~/ ~ UJIZ.I +1'2.V ~19 ~74~02. · 2.1K

TTY li!:x, 'Z.4K 17 15

meNErn<tTTY ex e.ET l 1 ?M -=-

TJUW~L'\1TTE.t:i DATA Da ~
T:11.. Q..K /DATA TEJZtll'l I I ~

TZA!
lZ-81
lZ-81 =

llli>.10IDID 1 I ~ ~
6UD~ ~ 5-::i_ ~~ OB

47,l/2W J3

(bZ(~'?'(_{ .~4K 0.1 -12V~~~~ :ii'~':\i,~\u
~'fl, •• 2>12'0? 4~,'1w

1?.7K

+5V

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

J:,.
(.)

)> ,,
z
6

El
>

= JZQJ
lZAJ
TZA.l
lZAJ
'Zill

ADlC.O
ADR.l

R,_E_~[l"

IOR/
TOW/
CS2/

-

-------,

=til u.7
+5V~0,41

IK 41

43

Pl -

-5V tiE3:J let.I 1 -5V

II + 02 c4B
iOV,IOr. .or 1~'6--o'."l--_L

+12vfij::J • +IZV

11

+5V

+lci,,:s 15vrc• +sv czs
-'2Y ~ _ n '°' _.OI

0
-IZV "2w 3SK • • 31>0K P2·"4

+svg§ ~
l

~------------!LiT~~/iZ..Qg, I I I +! 1 1 • +5V '15 V C.41'1 itJ3~04
~ Icwr,,2 1"·"·""'2021 T~'

GUD . 22 '1i:,v ~f:~4,i,;4.2;": H~c~~'~r"~· 014 ~ z
__ IOX ·'°.' _ - l.{ • • c I K - -

' {n r~.n Ac.<.1 oi: s'
4

ITh!. ~TATU~ 5UOB£
lTu.!. D!Z\ (8050)

TIME OUT ACK/
WJ;

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

APPLICATION
NOTE
ADDENDUM

1·45

AP-28A

July 1980

AFNCQ1931A

Intel® MULTIBUS™
Interfacing

1-46

Contents

I. INTRODUCTION 1-47

II. MULTIBUS™ SYSTEM BUS
DESCRIPTION 1-47

Overview 1-4 7
MULTIBUS™ Signal Descriptions 1-47
Operating Characteristics 1-51
MULTIBUS™ Slave Interface Circuit

Elements 1-60

III. MULTIBUS™ SLAVE DESIGN
EXAMPLE 1-62

Functional/Programming
Characteristics 1-62

Theory of Operation 1-63

IV. SUMMARY 1-66

APPENDIX A - MULTIBUS™ PIN
ASSIGNMENTS 1-67

APPENDIX B - BUS TIMING
SPECIFICATIONS 1-69

APPENDIX C - BUS DRIVERS,
RECEIVERS, AND TERMINATIONS 1-71

APPENDIX D - BUS POWER SUPPLY
SPECIFICATIONS 1-73

APPENDIX E - MECHANICAL
SPECIFICATIONS 1-74

APPENDIX F - MULTIBUS™ SLAVE
DESIGN EXAMPLE SCHEMATIC
8/16-BIT VERSION 1-75

APPENDIX G - MULTIBUS™ SLAVE
DESIGN EXAMPLE SCHEMATIC
8-BITVERSION 1-77

AFN-01931A

I. INTRODUCTION

A significant measure of the power and flexibility
of the Intel OEM Computer Product Line can be
attributed to the design of the Intel MULTIBUS
system bus. The bus structure provides a common
element for communication between a wide
variety of system modules which include: Single
Board Computers, memory, digital, and analog
I/O expansion boards, and peripheral controllers.

The purpose of this application note is to help you
develop a working knowledge of the Intel MULTI
BUS specification. This knowledge is essential for
configuring a system containing multiple mod
ules. Another purpose is to provide you with the
information necessary to design a bus interface for
a slave module. One of the tools that will be used to
achieve this goal is the complete description of a
MULTIBUS slave design example. Other portions
of this application note provide an in depth
examination of the bus signals, operating charac
teristics, and bus interface circuits.

This application note was originally written in
1977. Since 1977, the MULTIBUS specification
has been significantly expanded to cover opera
tion with both 8 and 16-bit system modules and
with an auxiliary power bus. This application
note now contains information on these new
MULTIBUS specification features.

In addition, a detailed MULTIBUS specification
has also been published which provides the user
with further information concerning MULTIBUS
interfacing. The MULTIBUS specification and
other useful documents are listed in the overleaf of
this note under Related Intel Publications.

II. MULTIBUS™ SYSTEM BUS
DESCRIPTION

Overview

The Intel MULTIBUS signal lines can be grouped
in the following categories: 20 address lines, 16
bidirectional data lines, 8 multilevel interrupt
lines, and several bus control, timing and power
supply lines. The address and data lines are
driven by three-state devices, while the interrupt
and some other control lines are open-collector
driven.

Modules that use the MULTIBUS system bus have
a master-slave relationship. A bus master module
can drive the command and address lines: it can
control the bus. A Single Board Computer is an
example of a bus master. A bus slave cannot

1-47

control the bus. Memory and I/O expansion
boards are examples of bus slaves. The MULTI
BUS architecture provides for both 8 and 16-bit
bus masters and slaves.

Notice that a system may have a number of bus
masters. Bus arbitration results when more than
one master requests control of the bus at the same
time. A bus clock is usually provided by one of the
bus masters and may be derived independently
from the processor clock. The bus clock provides a
timing reference for resolving bus contention
among multiple requests from bus masters. For
example, a processor and a DMA (direct memory
access) module may both request control of the
bus. This feature allows different speed masters to
share resources on the same bus. Actual transfers
via the bus, however, proceed asynchronously
with respect to the bus clock. Thus, the transfer
speed is dependent on the transmitting and
receiving devices only. The bus design prevents
slow master modules from being handicapped in
their attempts to gain control of the bus, but does
not restrict the speed at which faster modules can
transfer data via the same bus. Once a bus request
is granted, single or multiple read/write transfers
can proceed. The most obvious applications for the
master-slave capabilities of the bus are multi
processor configurations and high-speed direct
memory-access (DMA) operations. However, the
master-slave capabilities of the bus are by no
means limited to these two applications.

MDL TIBUS™ Signal Descriptions

This section defines the signal lines that comprise
the Intel MULTIBUS system bus. These signals
are contained on either the Pl or P2 connector of
boards compatible with the MULTIBUS specifi
cation. The Pl signal lines contain the address,
data, bus control, bus exchange, interrupt and
power supply lines. The P2 signal lines contain the
optional auxiliary signal lines. Most signals on
the bus are active-low. For example, a low level on
a control signal on the bus indicates active, while a
low level on an address or data signal on the bus
represents logic "l" value.

NOTE

In this application note, a signal will be
designated active-low by placing a slash(/)
after the mnemonic for the signal.

Appendix A contains a pin assignment list of the
following signals:

AFN·01931A

MULTIBUS Pl Signal Lines -

Initialization Signal Line

INIT/

Initialization signal; resets the entire system to
a known internal state. INIT I may be driven by
one of the bus masters or by an external source
such as a front panel reset switch.

Address and Inhibit Lines

ADRO! - ADR13/

20 address lines; used to transmit the address of
the memory location or I/O port to be accessed.
The lines are labeled ADRO/ through ADR9/,
ADRA/ through ADRF I and ADRlO/ through
ADR13/. ADR13/ is the most significant bit.
8-bit masters use 16 address lines (ADRO/ -
ADRF /) for memory addressing and 8 address
lines (ADRO/ - ADR7 /) for I/O port selection.
16-bit masters use all twenty address lines for
memory addressing and 12 address lines
(ADRO/ - ADRB/).for 1/0 port selection. Thus,
8-bit masters may address 64K bytes of memory
and 256 1/0 devices while 16-bit masters may
address 1 megabyte of memory and 4096 I/O
devices. (The 8086 CPU actually permits 16
address bits to be used to specify 1/0 devices,
the MULTIBUS specification, however, states
that only the low order 12 address bits can be
used to specify 1/0 ports.) In a 16-bit system,
the AD RO/ line is used to indicate whether a low
(even) byte or a high (odd) byte of memory or
1/0 space is being accessed in a word oriented
memory or I/O device.

BHEN/

Byte High Enable; the address control line
which is used to specify that data will be trans
ferred on the high byte (DAT8/ - DATF /) of the
MULTIBUS data lines. With current iSBC
boards, this signal effectively specifies that a
word (two byte) transfer is to be performed. This
signal is used only in systems which incorporate
sixteen bit memory or 1/0 modules.

INHl/

Inhibit RAM signal; prevents RAM memory
devices from responding to the memory address
on the system address bus. INHl/ effectively
allows ROM memory devices to override RAM
devices when ROM and RAM memory are

1-48

assigned the same memory addresses. INHl/
may also be used to allow memory mapped 1/0
devices to override RAM memory.

INH2/

Inhibit ROM signal; prevents ROM memory
devices from responding to the memory address
on the system address bus. INH2/ effectively
allows auxiliary ROM (e.g., a bootstrap pro
gram) to override ROM devices when ROM and
auxiliary ROM memory are assigned the same
memory addresses. INH2/ may also be used to
allow memory mapped 1/0 devices to override
ROM memory.

Data Lines

DATO/ - DATF/

16 bidirectional data lines; used to transmit or
receive information to or from a memory loca
tion or I/O port. DATF I being the most signifi
cant bit. In 8-bit systems, only lines DATO/ -
DAT7/ are used (DAT7/ being the most signi
ficant bit). In 16-bit systems, either 8 or 16 lines
may be used for data transmission.

Bus Priority Resolution Lines

BCLK/

Bus clock; the negative edge (high to low) of
BCLK/ is used to synchronize bus priority re
solution circuits. BCLK/ is asynchronous to the
CPU clock. It has a 100 ns minimum period and
a 35% to 65% duty cycle. BCLK/ may be slowed,
stopped, or single stepped for debugging.

CCLK/

Constant clock; a bus signal which provides a
clock signal of constant frequency for unspeci
fied general use by modules on the system bus.
CCLK/ has a minimum period of 100 ns and a
35% to 65% duty cycle.

BPRN/

Bus priority in signal; indicates to a particular
master module that no higher priority module
is requesting use of the system bus. BPRN/ is
synchronized with BCLK/. This signal is not
bused on the backplane.

AFN·01931A

BPRO/

Bus priority out signal; used with serial (daisy
chain) bus priority resolution schemes. BPRO/
is passed to the BPRN I input of the master
module with the next lower bus priority. BPRO I
is synchronized with BCLK/. This signal is not
bused on the backplane.

BUSY/

Bus busy signal; an open collector line driven
by the bus master currently in control to indicate
that the bus is currently in use. BUSY I prevents
all other master modules from gaining control
of the bus. BUSY I is synchronized with BCLK/.

BREQ/

Bus request signal; used with a parallel bus
priority network to indicate that a particular
master module requires use of the bus for one
or more data transfers. BREQ/ is synchronized
with BCLK/. This signal is not bused on the
backplane.

CBRQ/

Common bus request; an open-collector line
which is driven by all potential bus masters
and is used to inform the current bus master
that another master wishes to use the bus. If
CBRQ/ is high, it indicates to the bus master
that no other master is requesting the bus, and
therefore, the present bus master can retain the
bus. This saves the bus exchange overhead for
the current master.

Information Transfer Protocol Lines

A bus master provides separate read/write
command signals for memory and I/O devices:
MRDCI, MWTC/, IORC/ and IOWC/, as ex
plained below. When a read/write command is
active, the address signals must be stabilized at all
slaves on the bus. For this reason, the protocol
requires that a bus master must issue address
signals (and data signals for a write operation) at
least 50 ns ahead of issuing a read/write command
to the bus, initiating the data transfer. The bus
master must keep address signals unchanged until
at least 50 ns after the read/write command is
turned off, terminating the data transfer.

A bus slave must provide an acknowledge signal to

1-49

the bus master in response to a read or write
command signal.

MRDC/

Memory read command; indicates that the
address of a memory location has been placed
on the system address lines and specifies that
the contents (8 or 16 bits) of the addressed
location are to be read and placed on the system
data bus. MRDC/ is asynchronous with respect
to BCLK/.

MWTC/

Memory write command; indicates that the
address of a memory location has been placed
on the system address lines and that data (8 or
16 bits) has been placed on the system data bus.
MWTC/ specifies that the data is to be written
into the addressed memory location. MWTC/ is
asynchronous with respect to BCLK/.

IORC/

110 read command; indicates that the address
of an input port has been placed on the system
address bus and that the data (8 or 16 bits) at
that input port is to be read and placed on the
system data bus. IORC/ is asynchronous with
respect to BCLK/.

IOWC/

110 write command; indicates that the address
of an output port has been placed on the system
address bus and that the contents of the system
data bus (8 or 16 bits) are to be output to the
address port. IOWC/ is asynchronous with
respect to BCLK/.

XACK/

Transfer acknowledge signal; the required
response of a slave board which indicates that
the specified read/write operation has been
completed. That is, data has been placed on, or
accepted from, the system data bus lines.
XACK/ is asynchronous with respect to BCLK/.

Asynchronous Interrupt Lines

INTO/ - INT7 I

8 Multi-level, parallel interrupt request lines;

AFN-01931A

used with a parallel interrupt resolution net~
work. INTO/ has the highest priority, while
INT7 I has lowest priority. Interrupt lines
should be driven with open collector drivers.

INTA/

Interrupt acknowledge; an interrupt· acknowl
edge line (INTA/), driven by the bus master,
requests the transfer of interrupt information
onto the bus from slave priority interrupt con
trollers (8259s or 8259As). The specific informa
tion timed onto the bus depends upon the
implementation of the interrupt scheme. In
general, the leading edge of INT A/ indicates
that the address bus is active while the trailing
edge indicates that data is present on the data
lines.

MULTI BUS P2 Signal Lines - The signals
contained on the MULTIBUS P2 auxiliary con
nector are used primarily by optional power
back-up circuitry for memory protection. P2
signals are not bused on the backplane, and
therefore, require a separate connector for each
board using the P2 signals. Present iSBC boards
have a slot in the card edge and should be used
with a keyed P2 edge connector. Use of the P2
signal lines is optional.

ACLO

AC Low; this signal generated by the power
supply goes high when the AC line voltage
drops below a certain voltage (e.g., 103v AC in
115v AC line voltage systems) indicating D.C.
power will fail in 3 msec. ACLO goes low when
all D.C. voltages return to approximately 95%
of the regulated value. This line must be pulled
up by the optional standby power source, if one
is used.

PFIN/

Power fail interrupt; this signal interrupts the
processor when a. power failure occurs, it is
driven by external power fail circuitry.

PFSN/

Power fail sense; this line is the output of a
latch which indicates that a power failure has
occurred. It is reset by PFSR/. The power fail

1-50

sense latch is part of external power fail cir
cuitry an.d must be powered by the . standby
power source.

PFSR/

Power fail sense reset; this line is used to reset
the power fail sense latch (PFSN /).

MPRO/

Memory protect; prevents memory operation
during period of uncertain DC power, by in
hibiting memory requests. MPRO/ is driven
by external power fail circuitry. .

ALE

Address latch enable; generated by the CPU
(8085 or 8086) to provide an auxiliary address
latch.

HALT/

Halt; indicates that the master CPU is halted.

AUX RESET/

Auxiliary Reset; this externally generated sig
nal initiates a power-up sequence.

WAIT/

Bus master wait state; this signal indicates
that the processor is in a wait state.

Reserved - Several Pl and P2 connector bus
pins are unused. However, they should be regard
ed as reserved for dedicated use in future Intel
products.

Power Supplies - The power supply bus pins
are detailed in Appendix A which contains the
pin assignment of signals on the MULTIBUS
backplane.

It is the designer's responsibility to provide
adequate bulk decoupling. on the })oard to avoid
current surges on the power supplylines. It is also
recommended that you provide high frequency

AFN·01931A

decoupling for the logic on your board. Values of
22uF for +5v and + 12v pins and lOuF for -5v and
-12v pins are typical on iSBC boards.

Operating Characteristics

Beyond the definition of the MULTIBUS signals
themselves, it is important to examine the
operating characteristics of the bus. The AC
requirements outline the timing of the bus signals
and in particular, define the relationships between
the various bus signals. On the other hand, the DC
requirements specify the bus driver character
istics, maximum bus loading per board, and the
pull-up/ down resistors.

The AC requirements are best presented by a
discussion of the relevant timing diagrams.
Appendix B contains a list of the MULTIBUS
timing specifications. The following sections will
discuss data transfers, inhibit operations, inter
rupt operations, MULTIBUS multi-master opera
tion and power fail considerations.

Data Transfers -Data transfers on the MULTI
BUS system bus occur with a maximum band
width of 5 MHz for single or multiple read/write
transfers. Due to bus arbitration and memory
access time, a typical maximum transfer rate is
often on the order of 2 MHz.

Read Data

Figure 1 shows the read operation AC timing
diagram. The address must be stable (tAsl for a
minimum of 50 ns before command (IORC/ or
MRDC/). This time is typically used by the bus
interface to decode the address and thus provide
the required device selects. The device selects
establish the data paths on the user system in
anticipation of the strobe signal (command)
which will follow. The minimum command pulse
width is 100 ns. The address must remain stable
for at least 50 ns following the command (tAH)·
Valid data should not be driven onto the bus prior
to command, and must not be removed until the
command is cleared. The XACK/ signal, which is
a response indicating the specified read/write
operation has been completed, must coincide or
follow both the read access and valid data (tuxLl·
XACK! must be held until the command is cleared
(txAH). <

1-51

-1CMD-

Figure 1. Read AC Timing

Write Data

The write operation AC timing diagram is shown
in Figure 2. During a write data transfer, valid
data must be presented simultaneously with a
stable address. Thus, the write data setup time
(tDs) has the same requirement as the address
setup time (tAs). The requirement for stable data
both before and after command (IOWC/ or
MWTC/) enables the bus interface circuitry to
latch data on either the leading or trailing edge of
command.

IOWC/

" MWTC/

DATA
LINES

XACK/

IONS MIN 1- IXACK -1 f-.- IXAH-->-
65NS
MAX

Figure 2. Write AC Timing

Data Byte Swapping in 16-bit Systems

MASTER
TO

SLAVE

A 16-bit master may transfer data on the MULTI
BUS data lines using 8-bit or 16-bit paths
depending on whether a byte or word (2 byte)
operation has been specified. (A word transfer
specified with an odd 110 or memory address will
actually be executed as two single byte transfers.)
An 8-bit master may only perform byte transfers
on the MULTIBUS data lines DATO/ - DAT7!.

In order to maintain compatibility with older
8-bit masters and slaves, a byte swapping buffer
is included in all new 16-bit masters and 16-bit
slaves. In the iSBC product line, all byte transfers
will take place on the low 8 data lines DATO/ -
DAT7 /. Figure 3 contains a example of 8/16-bit

AFN-01931A

data driver logic for 16-bit master and slave
systems. In the 8/16-bit system, there are three
sets of buffers; the lower byte buffer which
accesses DATO/ - DAT7/, the upper byte buffer
which accesses DATS/ - DATF/, and the swap
byte buffer which accesses the MULTIBUS data
lines DATO/ - DAT7 I and transfers the data
to/from the on-board data bus lines DS - DF.

Figure 4 summarizes the 8 and 16~bit data paths
used for three types of MULTIBUS transfers. Two
signals control the data transfers.

Byte High Enable (BREN/) active indicates that
the bus is operating in sixteen bit mode,. and
Address Bit 0 (ADRO/) defines an even or odd byte
transfer address.

On the first type of transfer, BREN I is inactive,
and ADRO/ is inactive indicating the transfer of
an even eight bit byte. The transfer takes place
across data lines DATO/ - DAT7/.

On the second type of transfer, BREN I is inactive,
and ADRO/ is active indicating the transfer of a
high (odd) byte. On this type of transfer, the odd
(high) byte is transferred through the Swap Byte
Buffer to DATO/ - DAT7/. This makes eight bit
and sixteen bit systems compatible.

16-BIT DEVICE MULTIBUS BHEN/

LOW, EVEN
DATO/- OAT7/ BYTES

H

HIGH.ODD
DAT8/ - DATF/ BYTES

LOW, EVEN
DATO/ - OAT7/

BYTES

H

OATS/ - OATF/

DATO/ - OAT7/

L

OATS/· DATF/

BUFFERED
SHEN/

ADAO

ADRO/

H

L

H

USER BUS
LOWER
BYTE
BUFFER

D0-07

DIRECTION

SWAP
BYTE
BUFFER

OE T

8287

OE T

MULTIBUS

DATO/-DAT7/

DATO/

D'ATF/

DATS/-DATF/

UPPER
BYTE
BUFFER

Figure 3. 8/16-Bit Data Drivers

MULTIBUS DEVICE
TRANSFER BYTE
DATA PATH TRANSFERRED

8-BIT, EVEN
DATO/ - DAT7/

8-BIT, ODD
DATO/ - DAT7/

16-BIT, EVEN
DATO/ - DATF/ AND

ODD

Figure 4. 8/16-Bit Device Transfer Operation

1-52 AFN·01931A

The third type of transfer is a 16 bit (word)
transfer. This is indicated by BHEN/ being
active, and ADRO/ being inactive. On this type of
transfer, the low (even) byte is transferred on
DATO/ - DAT7/ and the high (odd) byte is
transferred on DAT8/ - DATF/.
Note that the condition when both BHEN/ and
ADRO/ are active is nut used with present iSBC
boards. This condition could be used tu transfer a
high odd byte of data on DAT8/ - DATF/, thus
eliminating the need for the swap byte buffer.
However, this is not a recommended transfer type,
because it eliminates the capability of communi
cating with 8-bit modules.

Inhibit Operations - Bus inhibit operations are
required by certain bootstrap and memory mapped
1/0 configurations. The purpose of the inhibit
operation is to allow a combination of RAM, ROM,
or memory mapped 1/0 to occupy the same
memory address space. In the case of a bootstrap,
it may be desirable to have both ROM and RAM
memory occupy the same address space, selecting
ROM instead of RAM for low order memory only
when the system is reset. A system designed to use

""""" ~
DATA/ 11

COMMAND/

(I
DRIVER

I I

ENABLE/

I

memory mapped 1/0, which has actual memory
occupying the memory mapped 1/0 address
space, may need to inhibit RAM or ROM memory
to perform its functions.

There are two essential requirements for a success
ful inhibit operation. The first is that the inhibit
signal must be asserted as soon as possible, within
a maximum of 100 ns (tCI), after stable address.
The second requirement for a successful inhibit
operation is that the acknowledge must be delayed
(tXACKB) to allow the inhibited slave to ter
minate any irreversible timing operations in
itiated by detection of a valid command prior to its
inhibit.

This situation may arise because a command can
be asserted within 50 ns after stable address (tAs)
and yet inhibit is not required until 100 ns (tID)
after stable address. The acknowledge delay time
(txACKB) is a function of the cycle time of the
inhibited slave memory. Inhibiting the iSBC 016
RAM board, for example, requires a minimum of
1.5 usec. Less time is typically needed to inhibit
other memory modules. For example, the iSBC 104
board requires 475 ns.
Figure 5 depicts a situation in which both RAM

...---- READ DATA

SLAVE A XACK/

~ I

(RAM)

LOCAL

II SELECT I

I. -\ ~RAM XACK ~':.'.N~ITED ~ _j

txACKA-----1

~

SLAVE B
(PRO"A)

DRIVER
ENABLE/

XACK/

INH1/

LOCAL
SELECT I

\ I

\ I

\

\\
1XACKB--\---

'm v_ _____ ____,,

Figure 5. Inhibit Timing

1·53 AFN-01931A

and PROM memory have the same memory
addresses. In this case, PROM inhibits RAM,
producing the effect of PROM overridirtg RAM.
After address is stable, local selects are generated
for both the PROM and the RAM. The PROM local
select produces the INHI/ signal which then
removes the RAM local select and its driver enable.
Because the slave RAM has been inhibited after it
had already begun its cycle, the PROM XACK/
must be delayed (tXACKB) until after the latest
possible acknowledgement from the RAM
(tXACKA).

Interrupt Operations -The MULTIBUS inter
rupt lines INTO/ - INT7/ are used by a MULTI
BUS master to receive interrupts from bus slaves,
other bus masters or external logic such as power
fail logic. A bus master may also contain internal
interrupt sources which do not require the bus
interrupt lines to interrupt the master. There are
two interrupt implementation schemes used by
bus interrupts, Non Bus Vectored Interrupts and
Bus Vectored Interrupts. Non Bus Vectored
Interrupts do not convey interrupt vector address
information on the bus. Bus Vectored Interrupts
are interrupts from slave Priority Interrupt Con
trollers (PICs) which do convey interrupt vector

e'us MASTER

address information on the bus.

Non Bus Vectored Interrupts

Non Bus Vectored Interrupts are those interrupts
whose interrupt vector address is generated by the
bus master and do not require the MULTIBUS
address lines for transfer of the interrupt vector
address. The interrupt vector address is generated
by the interrupt controller on the master and
transferred to the processor over the local bus. The
source of the interrupt can be on the master module
or on other bus modules, in which case the bus
modules use the MULTIBUS interrupt request
lines (INTO/ - INT7 /) to generate their interrupt
requests to the bus master. When an interrupt
request line is activated, the bus master performs it
own interrupt operation and processes the inter
rupt. Figure 6 shows an example of Non Bus
Vectored Interrupt implementation.

Bus Vectored Interrupts

Bus Vectored Interrupts (Figure 7) are those inter
rupts which transfer the interrupt vector address
along the MULTIBUS address lines from the
slave to the bus master using the INTA/ command
signal for synchronization.

REMOVED BY BUS
MASTER COMMAND

MASTER CPU

INTX/ "-~~~~~~~T-0-SL-A-VE_'.,._:i~~~~

lNTA/ iNTR/ DATA
BUS

PROGRAMMABLE INTERRUPT
CONTROLLER

7 6 5 4 3 2 1
FROM

MASTER

BUS SLAVE

INTERRUPT INTERRUPT

~ REQUEST
FLIP-
FLOP

R

IORC/
OR

IOWC/

l~ 0.C.

BUS SLAVE

INTERRUPT INTERRUPT
STROBE REQUEST - FLIP-

fLOP
R

IORC/
FROM OR

MASTER IOWC/

l_~- 0.C,

. . .

INT2/ -----------------4---f-----t--------+--t-----t-+--

INT3/ -----------------__.-----i---------------t-+--

INT7/ ------------------------------------~+--

Figure 6. Non Bus Vectored Interrupt Implementation

1-54

+5

+5

+5

+5

+5

"' w
z
:J

AFN·01931A

US MASTER BUS SLAVE

INTERRUPT
STROBE

MASTER CPU INTERRUPT
(IOAC/ HEQUEST

FROM OR FLIP-
MASTER IOWC/)

R
FLOP

DATA INTR/
INTA/

BUS

INT 7 6 5 4 3 2 1 0

PROGRAMMABLE INTERRUPT PROGRAMMABLE INTERRUPT
CONTROLLER CONTROLLER

OAT0/·7/ 0-7 INT DAT0/·7 I

- - I---' '---- -- -- -

INTERRUPT ACKNOWLEDGE (INTA/)

INTERRUPT REQUEST (INTx/)

INTERRUPT CODE (ADAS/· A.ORA/)

INTERRUPT VECTOR ADDRESS (DATA BUS)

MULTIBUS TIMING

INTR/ ~I'-------------------------------~
---11 INTA/ _____ __.

AOR8/A

DAT0/·7

XACK/

* NON MUL TIGUS SIGNAL BUS LOCK/
, _______ !

Figure 7. Bus Vectored Interrupt Logic (With 2 INTA/ Timing Diagram)

When an interrupt request from the MULTIBUS
interrupt lines INTO/ - INT7 I occurs, the interrupt
control logic on the bus master interrupts its
processor. The processor on the bus master
generates an INTA/ command which freezes the
state of the interrupt logic on the MULTIBUS
slaves for priority resolution. The bus master also
locks (retains the bus between bus cycles) the
MULTIBUS control lines to guarantee itself
consecutive bus cycles. After the first INTA/
command, the bus master's interrupt control logic
puts an interrupt code on to the MULTIBUS
address lines ADR8/ -ADRA/. The interrupt code
is the address of the highest priority active inter
rupt request line. At this point in the Bus Vectored

1-55

Interrupt procedure, two different sequences could
take place. The difference occurs, because the
MULTIBUS specification can support masters
which generate one additional INTA/ (8086
masters) or two additional INTA/s (8080A and
8085 masters).

If the bus master generates one additional INT A/,
this second INTA/ causes the bus slave interrupt
control logic to transmit an interrupt vector 8-bit
pointer on the MULTIBUS data lines. The vector
pointer is used by the bus master to determine the
memory address of the interrupt service routine.

If the bus master generates two additional
INTA/s, these two INTA/ commands allow the

AFN·01931A

bus slave to put a two byte interrupt vector address
on to the MULTIBUS data lines (one byte for each
INT A/). The interrupt vector address is used by
the bus master to service the interrupt.

The MULTIBUS specification provides for only
one type of Bus Vectored Interrupt operation in a
given system. Slave boards which have an 8259
interrupt controller are only capable of 3 INTA/
operation (2 additional INTA/s after the first
INTA/). Slave boards with the 8259A interrupt
controller are capable of either 2 INTA/ or 3
INTA/ operation. All slave boards in a given
system must operate in the same way (2 INTA/ s or
3 INTA/s) if Bus Vectored Interrupts are to be
used. However, the MULTIBUS specification
does provide for Bus Vectored Interrupts and Non
Bus Vectored Interrupts in the same system.

MULTIBUS Multi-Master Operation - The
MULTIBUS system bus can accommodate several
bus masters on the same system, each one taking
control of the bus as it needs to affect data trans
fers. The bus masters request bus control through
a bus exchange sequence.

Two bus exchange priority resolution techniques
are discussed, a serial technique and a parallel
technique. Figures 8 and 9 illustrate these two
techniques. The bus exchange operation dis
cussed later is the same for both techniques.

Serial Priority Technique

Serial priority resolution is accomplished with a
daisy chain technique (see Figure-8). The priority
input (BPRN/) of the highest priority master is
tied to ground. The priority output (BPRO/) of the

HIGHEST
PRIORITY
MASTER

BPAN/

BPRO/

BPRN/

highest priority master is then connected to the
priority input (BPRN/) of the next lower priority
master, and so on. Any master generating a bus
request will set its BPRO/ signal high to the next
lower priority master. Any master seeing a high
signal on its BPRN/ line will sets its BPRO/ line
high, thus passing down priority information to
lower priority masters. In this implementation,
the bus request line (BREQ/) is not used outside of
the individual masters. A limited number of
masters can be accommodated by this technique,
due to gate delays through the daisy chain. Using
the current Intel MULTIBUS controller chip on
the master boards up to 3 masters may be accom
modated if a BCLK/ period of 100 ns is used. If
more bus masters are required, either BCLK/ must
be slowed or a parallel priority technique used.

Parallel Priority Technique

In the parallel priority technique, the priority is
resolved in a priority resolution circuit in which
the highest priority BREQ/ input is encoded with
a priority encoder chip (74148). This coded value is
then decoded with a priority decoder chip (7 4Sl38)
to activate the appropriate BPRN/ line. The
BPRO/ lines are not used in the parallel priority
scheme. However, since the MULTIBUS back
plane contains a trace from the BPRN/ signal of
one card slot to the BPRO/ signal of the adjacent
lower card slot, the BPRO/ must be disconnected
from the bus on the board or the backplane trace
must be cut. A practical limit of sixteen masters
can be accommodated using the parallel priority
technique due to physical bus length limitations.
Figure 9 contains the schematic for a typical
parallel resolution network. Note that the parallel
priority resolution network must be externally
supplied.

LOWEST
PRIORITY
MASTER

SPAN/

BPRO/ BPAO/

Figure 8. Serial Prioriiy Technique

1-56 AFN·01931A

NO. 1
PRIORITY
!HIGHEST)

r--0 BPRN/

BREO/ P---i

NO. 2
PRIORITY

r----0 BPRN/

BREO/ ~

NO. 7
PRIORITY

r---0 BPRN/

BREO/ p---

NO. 8
PRIORITY
(LOWEST)

rl BPRN/

BUS
PRIORITY

RESOLVER

~-----t-<A7

Lo6

1,--qs ~~
OTHER ---0 4 ' C

MASTER l O 0
INPUTS I ---0 3 7 ~

\---02 ~R

I" 1

~o 74148

,.,_ ___ _
748138 0 <>-----+--'

Figure 9. Parallel Priority Technique

MULTIBUS Exchange Operation -A timing
diagram for the MULTIBUS exchange operation
is shown in Figure 10. This implementation
example uses a parallel resolution scheme, how
ever, the timing would be basically the same for
the serial resolution scheme.

In this example, master A has been assigned a
lower priority than master B. The bus exchange
occurs because master B generates a bus request
during a time when master A has control of the
bus.

The exchange process begins when master B
requires the bus to access some resource such as an
I/O or memory module while master A controls the
bus. This internal request is synchronized with
the trailing edge (high to low) of BCLK/ to
generate a bus request (BREQ/). The bus priority
resolution circuit changes the BPRN I signal from
active (low) to inactive (high) for master A and
from inactive to active for master B. Master A
must first complete the current bus command if
one is in operation. After master A completes the
command, it sets BUSY I inactive on the next
trailing edge ofBCLK/. This allows the actual bus
exchange to occur, because master A has relin
quished control of the bus, and master B has been
granted its BPRN/. During this time, the drivers

1-57

for master A are disabled. Master B must take
control of the bus with the next trailing edge of
BCLK/ to complete the bus exchange. Master B
takes control by activating BUSY I and enabling
its drivers.

It is possible for master A to retain control of the
bus and prevent master B from getting control.
Master A activates the Bus Override (or Bus Lock)
signal which keeps BUSY I active allowing con
trol of the bus to stay with master A. This
guarantees a master consecutive bus cycles for
software or hardware functions which require
exclusive, continuous access to the bus.

Note that in systems with only a single master it is
necessary to ground the BPRN/ pin of the master,
if slave boards are to be accessed. In single board
systems which use a CPU board capable of Bus
Vectored Interrupt operation, the BPRN I pin must
also be grounded.

In a single master system bus transfer efficiency
may be gained if the BUS OVERRIDE signal is
kept active continuously. This permits the master
to maintain control of the bus at all times, there
fore saving the overhead of the master reacquiring
the bus each time it is needed.

The CBRQ/ line may be used by a master in
control of the bus to determine if another master

AFN-01931A

PRIORITY
RESOLUTION

SHOWN
HERE

EXCHANGE
OF BUS
SHOWN

HERE

MASTER A

MASTER B

MASTER A

MASTER B

BCLK/

TRANSFER
RE OU EST I

l BREO/

BPRNI

TRANSFER
REQUEST I

l BREOI

SPAN/

•NOTE: BUS PRIORITY MUST BE RESOLVED
WITHIN ONE BCLK/ PERIOD.

BUSY/

ADDRESS/ ACTIVE STATE

COMMAND/ ACTIVE

DRIVER
ENABLE/

HIGH IMPEDENCE
ADDRESS/

HIGH IMPEDENCE
COMMAND/

DRIVER
ENABLE/

MASTER A
ON BUS

-1 •ecv 1--
--.\ 1ew .__

MASTER B
ON BUS

(LOW)

(LOW)

HIGH IMPEDENCE
STATE

HIGH IMPEDENCE

Figure 10. Bus Control Exchange Operation

requires the bus. If a master currently in control of
the bus sees the CBRQ/ line inactive, it will
maintain control of the bus between adjacent bus
accesses. Therefore, when a bus access is required,
the master saves the overhead of reacquiring the
bus. If a current bus master sees the CBRQ/ line
active, it will then relinquish control of the bus
after the current bus access and will contend for
the bus with the other master(s) requiring the bus.
The relative priorities of the masters will deter
mine which master receives the bus.

1-58

Note that except for the BUS OVERRIDE state, no
single master may keep exclusive control of the
bus. This is true because it is impossible for the
CPU on a inaster to require ccntinuous access to
the bus. Other lower priority masters will always
be able to gain access to the bus between accesses
of a higher priority master.

Power Fail Considerations -The MULTIBUS
P2 connector signals provide a means of handling
power failures. The circuits required for power

AFN·01931A

AC LINE

115 VAC

ACLO

200 ns MAX

+ SV Vee

PFIN/

PFSN/

MPRO/

INIT/

1.....---- 5 ms MIN _______.I
POWER DOWN POWER UP

Figure 11. Power Fail Timing Sequence

failure detection and handling are optional and
must be supplied by the user. Figure 11 shows
the timing of a power fail sequence.

The power supply monitors the AC power level.
\11.'hen power drops below an acceptable value, the
power supply raises ACLO which tells the power
fail logic that a minim um of three milliseconds will
elapse before DC power will fall below regulated
voltage levels. The power fail logic sets a sense
latch (PFSN/) and generates an interrupt (PFIN /)
to the processor so the processor can store its
environment. After a 2.5 millisecond timeout, the
memory protect signal (MPRO/) is asserted by the
power fail logic preventing any memory activity.
As power falls, the memory goes on standby
power. Note that the power fail logic must be
powered from the standby source.

As the AC line revives, the logic voltage level is
monitored by the power supply. After power has
been at its operating level for one millisecond
minimum, the power supply sets the signal ACLO
low, beginning the restart sequence. First, the
memory protect line (MPRO/) then the initialize
line (INIT /)become inactive. The bus master now
starts running. The bus master checks the power
fail latch (PFSN/) and, if it finds it set, branches to

1·59

a power up routine which resets the latch (PFSR/),
restores the environment, and resumes execution.

Note that INIT/ is activated only after DC power
has risen to the regulated voltage levels and must
stay low for five milliseconds minimum before the
system is allowed to restart. Alternatively, INIT/
may be held low through an open collector device
by MPRO/.

How the power failure equipment is configured is
left to the system designer. The backup power
source may be batteries located on the memory
boards or more elaborate facilities located off
board. The location of the power· fail logic
determines which MULTIBUS power fail lines are
used. Pins on the P2 connector have been specified
for the power failure functions for use as needed.

To further clarify the location and use of the power
fail circuitry, an example of a typica.l power fail
system block diagram is shown in Figure 12. A
single board computer and a slave memory board
are contained in the system. It is desired to power
the memory circuit elements of the memory board
from auxiliary power. The single board computer
will remain on the main power supply. To ac
complish this, user supplied power fail logic and

AFN-01931A

*USER SUPPLIED

Figure 12. Typical Power Fail System Block Diagram

an auxiliary power supply have been included in
the system.

The single board computer is powered from the Pl
power lines and accesses the P2 signal lines
PFIN/, PFSN/ and PFSR/ (only the P2 signal
lines used by a particular functional block are
shown on the block diagram). The PFSR/ line is
driven from two sources: a front panel switch and
the single board computer. The front panel switch
is used during normal power-up to reset the power
fail sense latch. The single board computer uses
the PFSR/ line to reset the latch during a power-up
sequence after a power failure. Current single
board computers must access the PFSN/ and
PFSR/ signals either directly with dedicated
circuitry and a P2 pin connection or through the
parallel 1/0 lines with a cable connection from the
parallel 1/0 connector to the P2 connector.

The slave memory board uses both the Pl and P2
power lines, the P2 power lines are used (at all
times) to power the memory circuit elements and
other support circuits, the Pl power lines power all
other circuitry. In addition, the MPRO/ line is
input and used to sense when memory contents
should be protected.

The power fail logic contains the power fail sense
latch, and uses the PFSR/ and ACLO lines for
inputs and the PFIN/ PFSN/, and MPRO/ lines
for outputs. The power fail logic must be powered
by the P2 power lines.

1-60

DC Requirements - The drive and load charac
teristics of the bus signals are listed in Appendix
C. The physical locations of the drivers and loads,
as well. as the terminating resistor value for each
bus line, are also specified. Appendix D contains
the MULTIBUS power specifications.

MULTIBUS™ Slave Interface
Circuit Elements

There are three basic elements of a slave bus
interface: address decoders, bus drivers, and
control signal logic. This section discusses each of
these elements in general terms. A description of a
detailed implementation of a slave interface is
presented in a later section of this application note.

Address Decoding - This logic decodes the
appropriate MULTIBUS address bits into RAM
requests, ROM requests, or 1/0 selects. Care must
be taken in the design of the address decode logic
to ensure flexibility in the selection of base address
assignments. Without this flexibility, restrictions
may be placed upon various system configura
tions. Ideally, switches and jumper connections
should be associated with the decode logic to
permit field modification of base address assign
ments.

The initial step in designing the address decode
portion of a MULTIBUS interface is to determine
the required number of unique address locations.
This decision is influenced by the fact that
address decoding is usually done in two stages.
The first stage decodes the base address, pro
ducing an enable for the second stage which
generates the actual device selects for the user
logic. A convenient implementation of this two
stage decoding scheme utilizes a pair of decoders
driven by the high order bits of the address for the
first stage and a second decoder for the low order
bits of the address bus. This technique forces the
number of unique address locations to be a power
of two, based at the address decoded by the first
stage. Consider the scheme illustrated in Figure
13.

As shown in Figure 13, the address bits A4 -AB are
used to produce switch selected outputs of the first
stage of decoding. The 1 out of 8 binary decoders

AFN-01931A

have been used. The top decoder decodes address
lines A4 - A 7, and the bottom decoder decodes
address lines Ag -AB. If only address lines Ao -A 7
are being used for device selection, as in the case of
I/O port selection in 8-bit systems, the bottom
decoder may be disabled by setting switch S2 to the
ground position. Address lines A7 and AB drive
enable inputs E2 or E3 of the decoders. The
address lines Ao - A3 enter the second stage
address decoder to produce 8 user device selects.
The second stage decoder must first be enabled by
an address that corresponds to the switch-selected
base address.

Address decoding must be completed before the
arrival of a command. Since the command may
become active within 50 ns after stable address,
the decode logic should be kept simple with a
minimal number of layers of logic. Furthermore,
the timing is. extremely critical in systems which
make use of the inhibit lines.

A linear or unary select scheme in which no binary
encoding of device address (e.g., address bit Ao
selects device 0, address bit Ai selects device 1,
etc.) is performed is not recommended because the
scheme offers no protection in case multiple

Ao
A1
A2
A3

A4 ------<Ao
As A1
A5 A2
Ay ------IE2/E3

8200
DECODER

Ei

Aa-----~Ao
Ag A 1
AA A2
As E2/E3

8205

~;-'E-CO_D_E~R f
-:- FIRST Sl'AGE BASE

ADDRESS DECODER

Ao
A1
A2
E2;E3

820ti
DECODER

Ei
SECOND ST AGE USER
DEVICE SELECTS

Figure 13. Two Stage Decodiog Scheme

DSo
DS1
DS2
DS3
DS4
DS 5
Ds 6
DS7

1-61

devices are simultaneously selected, and because
the addressing within such a system is restricted
by the extent of the address space occupied by such
a scheme.

Data Bus Drivers - For user designed logic
which simply receives data from the MULTIBUS
data lines, this portion of the bus interface logic
may only consist of buffers. Buffets are required
to ensure that maximum allowable bus loading is
not exceeded by the user logic.

In systems where the user designed logic must
place data onto the MULTIBUS data lines, three
state drivers are required. These drivers should be
enabled only when a memory read command
(MRDC/) or an 1/0 read command (IORC/) is
present and the module has been addressed.

When both the read and write functions are re
quired, parallel bidirectional bus drivers (e.g., Intel
8226, 8287, etc.) are used. A note of caution must be
included for the designer who uses this type of
device. A problem may arise if data hold time
requirements must be satisfied for user logic
following write operations. When bus commands
are used to directly produce both the chip select for
the bidirectional bus driver and a strobe to a latch
in the user logic, removal of. that signal may not
provide the user's latch with adequate data hold
time. Depending on the specifics of the user logic,
this problem may be solved by permanently
enabling the data buffer's receiver circuits and
controlling only the direction of the buffers.

Control Signal Logic - The control signal logic
consists of the circuits that forward the 1/0 and
memory read/write commands to their respective
destinations, provide the bus with a transfer
acknowledge response, arid drive the system
interrupt lines.

Bus Command Lines

The MULTIBUS information transfer protocol
lines (MRDC/, MWTC/, IORD/. arid IOWC/)
should be buffered by de~ices with very high speed
switching. Because the bhs DC requiremerits
specify that each board may load these lines with
2.0 mA, Schottky devices are recommended. LS
devices are not recommended due to their poor
noise immunity. The commands should be gated

AFN-01931A

with a signal indicating the base address has been
decoded to generate read and write strobes for the
user logic.

Transfer Acknowledge Generation

The user interface transfer acknowledge genera
tion logic provides a transfer acknowledge re
sponse, XACK/, to notify the bu.s master that write
data provided by the bus master has been accepted
or that read data it has requested is available on
the MULTIBUS data lines. XACK/ allows the bus
master to conclude its current instruction.

Since XACK/ timing requirements depend on both
the CPU of the bus ma$ter an:d characteristics of
the user logic, a circuit is needed which will provide
a range of easily modified acknowledge responses.

The transfer acknowledge signal~ must be driven
by three-state drivers which are enabled when the
bus interface is addressed and a command is
present.

Interrupt Signal Lines

The asynchronous interrupt lines must be driven
by open collector devices with a minimum drive of
16mA.

In a typical Non Bus Vectored Interrupt system,
logic must be provided to assert and latch-up an
interrupt signal. In addition to driving the
MULTIBUS interrupt lines, the latched interrupt
signal would be read by an 1/0 operation such as
reading the module's status. The interrupt signal
would be cleared by. writing to the status register.

III. MULTIBUS™ SLAVE DESIGN
EXAMPLE

A MULTIBUS slave design example has been
included in this application note to reinforce the
theory previously discussed. The design example
is of general purpose 1/0 slave interface. This
design example could easily be modified to be used
as a slave memory interface by buffering the
address signals and using the appropriate
MULTIBUS memory commands. In addition, to
help the reader better understand an application
for an 1/0 slave interface, two Intel 8255A Parallel
Peripheral Interface (PPI) devices are shown con
nected to the slave interface.

The design example is shown in both 8/16-bit
version and an 8-bit version. The 8/16-bit version

1-62

is an 1/0 interface which will permit a 16-bit
master to perform 8 or 16 bit data transfers. 8-bit
masters may also use the 8/16-bit version of the
design example to perform 8-bit data transfers.

The 8-bit version of the design example may be
used by both 8 or 16-bit masters, but will only
perform: 8-bit data transfers. It does not contain
the circuitry required to perform 16-bit data
transfers.

Both the 8/16-bit version and the 8-bit version of
the design example were implemented on an iSBC
905 prototype board. The schematics for each of
the examples are given in Appendices F and G.

Functional/Programming Characteristics

This section describes the organization of the
slave interface from two points of view, the
functional point of view and the programming
characteristics. First, the principal functions
performed by the hardware are identified and the
general data flow is illustrated. This point of view
is intended as an introduction to the detailed
description provided in the nextsection; Theory of
Operation. In the second point of view, the
information needed by a programmer to access the
slave is summarized.

Functional Description - The function of this
1/0 slave is to provide the bus interface logic for
general purpose 1/0 functions and for two Intel
8255A Parallel Peripheral Interface (PPI) devices.
Eight device selects (port addresses) are available
for general purpose 1/0 functions. One of these
device select lines is used to read and reset the state
of an interrupt status flip-flop, the other seven
device selects are unused in this design. An
additional eight 1/0 device port addresses are
used by the two 8255A devices; four 1/0 port
addresses per 8255A (three 1/0 port address for
the three parallel ports A, B, and C and the fourth
1/0 port address for the device control register).

Figure 14 contains a functional block diagram of
the slave design example. This block diagram
shows the fundamental circuit elements of a bus
slave: bidirectional data bus drivers/receivers,
address decoding logic and bus control logic. Also
shown is the address decoding logic for the low
order four bits, the interrupt logic which is selected
by this decoding logic, and the two 8255A devices.

AFN-01931A

:~i~;-<~Cts========-----,
ADRO/ - ----f-'-----J-..._ I
ADR3/ ----h--~

CSO/
~-~ CS7/

ADDRESS
ADR4/ - DECODING
ADRB/ ---n-~;-1

INTERRUPT
REQUEST

BASE ADDR SELECT

---CQNTRQLI---- RD/
LOGIC 1-----WRT/

8255A
PPI
(2)

IQRD/

IOWAT/--

XACK/ 1----- BD ENABLE/

16 16

DO

DATO/
DATF/

DATA
BUS

DRIVERS ON-BOARD DATA BUS DO - OF

Figure 14. MULTIBUS'" Slave Design Example
Functional Block Diagram

Programming Characteristics - The slave
design example provides 16 I/O port addresses
which may be accessed by user software. The
base address of the 16 contiguous port addresses
is selected by wire wrap connections on the proto
type board. The wire wrap connections specify
address bits ADR4/ - ADRB/. They allow the
selection of a base address on any 16 byte
boundary. Twelve address bits (ADRO/ -ADRB/)
are used since 16-bit (8086 based) masters use 12
bits to specity I/O port addresses. If an 8 bit (8080
or 8085 based) master is used with this slave board,
the high order address bits (ADR8/ -ADRB/) must
not be used by the decoding circuits; a wire wrap
jumper position (ground position) is provided for
this.

The 16 I/O port addresses are divided· into two
groups of8 port addresses by decoding address line
ADR3/. Port addresses XXO - XX7 are used for
general I/O functions (XX indicates any hexi
decimal digit combination). Port address XXO is
used for accessing the interrupt status flip-flop and

1-63

port addresses XXl - XX7 are not used in this
example. Port addresses XX8 - XXF are used for
accessing the PPis. If port addresses XX8 - XXF
are selected, then ADRO/ is used to specify which
of two PPis are selected. If the address is even
(XX8, XXA, XXC, or XXE) then one PPI is selected.
If the address is odd (XX9, XXB, XXD, or XXF),
then the other PPI is selected. ADRl/ and ADR2/
are connected directly to the PPis. Table 1
summarizes the I/O port addresses of the slave
design example. Note that if a 16-bit master is
used, it is possible to access the slave in a byte or
word mode. If word access is used with port
address XX8, XXA, XXC, or XXE, then 16 bit
transfers will occur between the PPis and the
master. These 16 bit transfers occur because an
even address has been specified and the MULTI
BUS BHEN/ signal indicates that a 16-bit
transfer is requested.

Theory of Operation

In the preceding section, each of the slave design
example functional blocks was identified and
briefly explained. This section explains how these
functions are implemented. For detailed circuit
information, refer to the schematics in Appendices
F and G. The schematic in Appendix F is on a
foldout page so that the following text may easily
be related to the schematic.

The discussion of the theory of operation is divided
into five segments, each of which discusses a
different function performed by the MULTIBUS
slave design example. The five segments are:

1. Bus address decoding

2. Data buffers

3. Control signals

4. Interrupt logic

5. PPI operation

Each of these topics are dl.scussed with regard fo
the 8/16-bit version of the design example;
followed by a discussion of the circuit elements
which are •required by the 8-bit version of the
interface.

Bus Address Decodfo.g- Bus address decoding
is performed by two 82051 out of 8 binary decoders.
One decoder (A3) decodes address bits ADR8/ -
ADRB/ and the second decoder (A2) decodes
address bits ADR4/ - ADR7/. The base address

AFN·01931A

Table 1

SLAVE DESIGN EXAMPLE PORT ADDRESSES

1/0 PORT ADDRESS ,, READ WRITE

BYTE ACCESS

xxo Bit ci = Interrupt Status Reset Interrupt Status

XXl-XX7 Unused Unused

XXB Parallel Port A, Even PPI Parallel Port A, Even PPI

XX9 Parallel Port A Odd PPI Parallel Port A, Odd PPI

XXA Parallel Port B, Even PPI Parallel Port B, Even PPI

XXB .Parallel Port B, Odd PPI Parallel Port B, Odd PPI

xxc Parallel Port C, Even PPI Parallel Port C, Even PPI

XXD Parallel Port C, Odd PPI Parallel Port C, Odd PPI

XXE Illegal Condition Control, Even PPI

XXF Illegal Condition Control, Odd PPI

WORD ACCESS

xxo Bit O = Interrupt Status Reset Interrupt Status

XX2 - XX6 Unused Unused

XXB Paralle! Port A, Even and Odd PPls !Parallel Port A, Even and Odd PPls

XXA Parallel Port B, Even and Odd PPls Parallel Port B, Even and Odd PPls

xxc Parallel Port C, Even and Odd PPls Parallel Port C, Even and Odd PPls

XXE Illegal Condition Control, Even and Odd PPls

XX = Any hex digits, assigned by jumpers; XX defines the base address.

selected is determined by the position of wire wrap
jumpers. The outputs of the two decoders are
ANDed together to form the BASE ADR SELECT I
signal. ' This signal specifies the base address
for a group of 16 I/O ports .. Using the wire wrap
jumper positions shown ,in the schematic, a base
address of E3 has been selected. Therefore, this
MULTIBUS slave board will respond to I!O port
addresses in the E30 - E3F range.

If this slave board is to be used with8-bitMULTI
BUS masters, the high order address bits must not
be decoded. Therefore, the wire wrap]umper
which selects the output of decoder A3 must be
placed in the top (ground) po~ition (pin 10 of gate
A9 to ground). . .

The low order 4 address lines (ADRO/ -ADR3/) are
buffered and inverted using 74LS04 inverters.
These address lines are input to an 8205 for
decoding a chip select for the interrupt logic; the
address lines are also used directly by the PPls.
LS-Series logic is required for buffering to meet the
MULTIBUS• specification for I IL (low level input

1-64

current). S-Series or standard series logic will not
meet this specification.

Address decoder A4 is used to decode addresses
E30 - E37. The CSO/ output of this decoder is used
to select the interrupt logic, thus I/O port address
E30 is used to read and reset the interrµpt latch.
The remaining outputs from decoder A4 (CSl/ -
CS7 /) are not used in this example. They would
normally be used to select other functions in a
slave board with more capability. Note that in the
schematic shown in Appendix G for the 8-bit
version of this slave design example, the high
order (ADR8/ - ADRB/) address decoder is not
included and the BHEN I signal is not used.

Data Buffers - Intel 8287 8-bit parallel bi
directional bus drivers are used for the MULTI
BUS d,ata lines DATO/ - DATF/. In the 8/16-bit
version of the slave board, three 8287 drivers
are used.

When an 8-bit data transfer is requested, either
driver A5, which is connected to .on-board data

AFN·01931A

lines DO - D7, or driver A6, which is connected to
on-board data lines DB - DF, is used. If a byte
transfer is requested from an even address, driver
A5 will be selected. If a byte transfer from an odd
address is requested, driver A6 will be selected. All
byte transfers take place on MULTIBUS data
lines DATO/ - DAT7/. When a word (16-bit)
transfer is requested from an even address, drivers
A5 and A 7 will be used. Note that ifa user program
requests a word transfer from an odd address,
16-bit masters in the iSBC product line will
actually perform two byte transfer requests.

The logic which determines the chip selection
(8287 input signal OE, output enable) signals for
the bus drivers uses the low order address bit
(ADRO/) and the buffered Byte High Enable
signal (BHENBL/). Note that the MULTIBUS
signal BHEN/ has been buffered with an 74LS04
inverter. This is done to meet the bus address line
loading specification. The SW AP BYTE/ signal
which is generated is qualified by the BD ENBL/
signal and used to select the bus drivers.

The steering pin for the 8287 drivers is labelled T
(transmit) and is driven by the signal RD. When
an input (read) request is active or when neither a
read or write command is being serviced, the
direction of data transfer of the 8287 will be set for
B to A.

The 8287 drivers are set to point IN (direction B to
A) when no MULTIBUS 1/0 transfer command is
being serviced for two reasons. First, ifthe driver
were pointed OUT (direction A to B) and a write
command occured, it would be necessary to turn
the buffers IN and set the OE (output enable)
signal active before the data could be transferred
to the on-board bus. A possibility of a "buffer
fight" could occur in some designs ifthe OE signal
permitted an 8287 to drive the MULTIBUS data
lines momentarily before the steering signal could
switch the direction of the 8287. In this case, both
the MULTIBUS ·master and the slave would be
driving the data lines; this is not recommended.
(In this particular design, the steering signal will
always stabilize before the OE signal becomes
active.)

The second reason the driver is pointing IN when
no command is present is due to the "data valid
after WRITE" requirements of the 8255As. The
8255A requires that data remain on its data lines
for 30 ns after the WRITE command (WR at the
8255A) is removed. This requirement will be met if
the direction of the 8287 drivers is not switched

1-65

when the MULTIBUS IOWC/ signal is removed
(WRT I could have been used to steer the 8287
instead of RD); and if the capacitance of the on
board data bus lines is sufficient to hold the data
values on the bus after the 8287 OE signal and the
8255A PPI WRT I signal go inactive. The on-board
data bus may easily be designed such that the
capacitance of the lines is sufficient to meet the 30
ns data hold time requirement. In addition, the
current leakage of all devices connected to the on
board bus must be kept small to meet the 30 ns data
hold time requirement.

The 8-bit version of this design example uses only
one 8287 instead of the three required by the 8/16-
bit version. The logic required to control the swap
byte buffer is also not necessary. The chip select
signal used for the 8287 is the BD ENBL/ signal.

Control Signals - The MULTIBUS control
signals used by this slave design example are
IORC/, IOWC/, and XACK/. IORC/ and IOWC/
are qualified by the BASE ADR SELECT/ signal
to form the signals RD and WRT. RD and WRT
are used to drive the interrupt logic, the PPI logic
and the XACK/ (transfer acknowledge) logic.

For the XACK/ logic RD and WRT are ORed to
form the BD ENBL/ signal which is inverted and
used to drive the CLEAR pin of a shift register.
When the slave board is not being accessed, the
CLEAR pin of the shift register will be low (BD
ENBL/ is high). This causes the shift register to
remain cleared and all outputs of the shift register
will be low. When the slave board is accessed, the
CLEAR pin will be high, and the A and B inputs
(which are high) will be clocked to the output pins
by CCLK/. To select a delay for the XACK/ signal,
a jumper must be installed from one of the shift
register output pins to the 8089 tri-state driver.
Each of the shift register output pins select an
integer multiple of CCLK/ periods for the signal
delay. Since the CCLK/ signal is asynchronous,
the actual delay selected may only be specified
with a tolerance of one CCLK/ period. In this
example a delay of 3 - 4 CCLK/ periods was
selected; with a CCLK/ period of 100 ns, the
XACK/ delay would occur somewhere within the
range of 300 - 400 ns from the time when the
CLEAR signal goes high.

The control signal logic used in the 8-bit version of
the slave design example is identical .to .the logic
used in the 8/16-bit version.

AFN·01931A

lnt_errupt Logi«; - The interrupt logic. uses a
74S74 flip-flop.to latch.an asynchronous interrupt
request from some external logic. The Q output
ofthe INTERRUPT REQUEST LATCH is outpµt
through ap. . open col\ector gate to one of the
MULTIBUS interrupt Jj.nes. . The state of the
INTERRUPT REQUEST .LATCij is transferred
~ the INTE:R~tjPT STATUS LATCH when a
read command is performed on 1/0 port BASE.
ADDRESS+O (E30 for the jumper configuration
shown). The.Q.output oflNTERRUP'l' STATUS
LATCH is used to drive data li_:µe DO of the o,n
board data bus by using an 8089 tri-state driver.
If a user program performs an INPUT from 1/0
port E30, data bit 0 will be set to 1 ·if the INTER
RUPT REQUEST LATCH is set ..

"~

The purpose of INTERRUPT STATUS LATCH is
to minimize the possibility of the asynchronous
interrupt occuring while the interrupt status is
being read by a bus master. If the latch was not
included. in the design and im asynchronous inter
rupt did dccur .while a bus niaster is reading
MULTIBUS data liiie DATO/, a data bufferori the
master could go intc> a meta:stable state. By
adding the extra latCh, which is clocked by the
IORD/ command for 1/0 port E30, the possibility
of data line DATO/ changing during a bus master
read operation is eliminated.

The INTERRUPT REQUEST LATCH is cle~ed
when a user program performs an OUTPUT to 1/0
port E30.

This ·· interiU:pt · structure assumes that several
interrupt sources :inay exist on the 'same MULTI
BUS interrupt line (for example, INT3/). When the
MULTIBUS master gets interrupted, it must poll
the possible Sources of the interrupt received and
after determining the source of the interrupt, it
must clear the INTERRUPT REQUEST LATCH
for that particular interrupt source. ·

The interrupt ·logic for the 8-bit version of the
design example.is iden.tical to the intei;rupt.logic of
the 8116-bit version of the design example~

PPI Operation -Two8255AParallelPeripheral
Interface (PPI) devices are shown interfaced to
the slave design example logic.. One• PPI is con
nected to the on-board data bus lines DO - D7 and
is addressed with the even I/O port addresses
E38, E3A, E3C; and~ E3E. The second PPI is
connected to data bus lines DB - DF and is address'
ed with the odd 1/0 port addresses E39; ·. E3B,.

E3D, and E3F .. The even. or odd 1/0 port selection
is controlled, J;>y using. the ADRO a_dd;ress line in
the chip select te.nn of the .PPis ... In addition, the
odd PPI ·(All) is select~d wh.~n. the)~HENBL
term is high,. This oc~µr~ when the MULTIBUS
signal· BREN/. is low. in.dic;:ating that a wo;rd
(16-bit) 1/0 instruction is being executed. When
a word 1/0 instruction is executed, both PPis will
perform the 1/0 ~peration specifi~d. · . . ·

Th~• specifications of the 8255A device state that
the address lines AO and Al and the chip select
lines ~ust he stJble before the RD or WR lilies afo
activated. The MULTIBUS specification,address
set-up time of 50 ns and the short gate propagation
delays in this· design assure that the address' lines
are stable before RD or WR are active.

The data. h,old requirements .o.f the 8255K were
diScussed in a p;revious sec;:ticin,_ The 8255Aspeci
.fication states that data will be,sta.ble on the <iafa
bus lines a: maximum. of 250 ns ·after a ·READ
comm~rid. T)lis specification was used to select
the delay for the XACK/ signal.

The PPI operation for the 8,bit version of the
design example is slightly different than that used
for the 8/16,bit version .. The chip select signal for
the bottom PPI .does not use the BHENBL term
since 16cbit data transfers are not possible with an
8-bit 1/0 slave board. Also, the chip select and
address signals have been swapped so the top PPI
occupies I/O address range XS - XB, and the
bottom PPI occupies 1/0 address range XC -XF (X
is the base address of the 8-bit version). This
swapping 'of the address lihes was not necess·ary;
however, it was thought to be more convenient to
access the PPis in two groups Of 4 contiguous 1/0
port addresses.

IV. Sl.JMMARY

This applica~ion note has shown the structure 'of
the Intel MULTIBUS syl;ltem bus. 'l'he stn1cture
supports a wide f!lnge of system module~ from th~
Intel OEM Microcomputer Systems product line
that can be extended with the addition of user
designed modules. Because the user designed
modules are no doubt unique fo particular applica
tions, a goal 6f this application :note has been to
describe in detail the singular common element -
the ·bus inte.rface. Material has also been
presented to assistthe systems designer to under'
standing the bus functions. so that successful
systems integration can be achieved,

AFN-01931A

APPENDIX A

PIN ASSIGNMENT OF BUS SIGNALS ON MULTIBUS BOARD P1 CONNECTOR

(COMPONENT SIDE) (CIRCUIT SIDE)

PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION

1 GND SignalGND 2 GND Signal GND
3 +5V +5Vdc 4 +5V +5Vdc

POWER 5 +5V +5Vdc 6 +5V +5Vdc
SUPPLIES 7 +12V +12Vdc 8 +12V +12Vdc

9 -5V -5Vdc 10 -5V -5Vdc
11 GND SignalGND 12 GND SignalGND

13 BCLK/ Bus Clock 14 INIT/ Initialize
15 BPRN/ Bus Pri. In 16 BPRO/ Bus Pri. Out

BUS 17 BUSY/ Bus Busy 18 BREQ/ Bus Request
CONTROLS 19 MRDC/ Mem ReadCmd 20 MWTC/ Mem Write Cmd

21 IORC/ l/ORead Cmd 22 IOWC/ 1/0 Write Cmd
23 XACK/ XFER Acknowledge 24 INH1./ Inhibit 1 disable RAM

BUS 25 Reserved 26 1NH2/ Inhibit 2 disable PROM or ROM

CONTROLS 27 BHEN/ Byte High Enable 28 AD10/

AND 29 CBRQ/ Common Bus Request 30 AD11/ Address
31 CCLK/ Constant Clk 32 AD12/ Bus ADDRESS 33 INTA/ lntr Acknowledge 34 AD13/

35 INT6/ Parallel 36 INT?/ Parallel

INTERRUPTS 37 INT4/ Interrupt 38 INT5/ Interrupt
39 INT2/ Requests 40 INT3/ Requests
41 INTO/ 42 INT1/

43 ADRE/ 44 ADRF/
45 ADRCI 46 ADRDI
47 ADRA/ Address 48 ADRB/ Address

ADDRESS 49 ADRB/ Bus 50 ADR9/ Bus
51 ADR6/ 52 ADR71
53 ADR4/ 54 ADR51
55 ADR2/ 56 ADR31
57 ADRO/ 58 ADR1/

59 DATE/ 60 DATF/
61 DATCI 62 DATO/
63 DATA/ Data 64 DATB/ Data

DATA 65 OATS/ Bus 66 DAT9/ Bus
67 OATS/ 68 DAT?/
69 DAT4/ 70 DAT5/
71 DAT2/ 72 DAT3/
73 DATO/ 74 DAT1/

75 GND SignalGND 76 GND SignalGND
77 Reserved 78 Reserved

POWER 79 -12V -12Vdc 80 -12V -12Vdc
SUPPLIES 81 +5V +5Vdc 82 +5V +5Vdc

83 +5V +5Vdc 84 +5V +5Vdc
85 GND SignalGND 86 GND SignalGND

All Mnemonics© Intel Corporation 1978

1-67 AFN-01931A

APPENDIX Ao(Continued)

P2 (:9NN!OC1:0R ,~IN ASSIGNMENT OF OP"ilPNAL BUS SIGNAlS , ·

(COMPONENT SIDE) , . (CIRCUIT SIDE)

PIN M.NEMONIC
•'

PESCRIPTION PIN . MNEMONIC ·,:;,;_ DESCRIPTION

1 GND SignalGND 2 GND SignalGND
I

3 5 VB +5V Battery 4 5 VB +5V Battery
5 Reserved 6 VCCPP +5V Pulsed Power
7 -5 VB -5V Battery 8 ~5.VB -5V Battery :
9 Reserved 10 Reserved

11 12 VB +12V Battery 12 12 VB + 12V Battery
13 PFSR/ Power Fail Sense Reset 14 Reserved
15 -12 VB -12V Battery 16 -12 VB. -12V Battery
17 PFSN/ Power Fail Sense 18 ACLO AC Low
19 PFIN/ Power Faillnterr.upt 20 MPRO/ Memory Protect
21 GND SignalGND 22 GND Signal GND
23 +15V +15V 24 +15V +.15V
25 -15V ~15V 26 -15V -15V
27 PAR1/ Parity 1 28 HALT/ Bus Master HALT
29 PAR2/ Parity 2 30 WAIT/ Bus Master WAIT STATE
31 I\ 32 ALE Bus Master ALE
33 34 Reserved
35 36 Reserved
37 38 AUX RESET/ Reset switch
39 4<r \
40 42
43 > Reserved 44
45 46
47 48
49 50 > Reserved
51 52
53 54
55 56
57 58
59 60 IJ

Notes:

1. PFIN, on slave modules, if possible,shou[q have the option of connecting to 1.NTO/ on P1.
2. All undefined pins are reserved for future use.

All Mnemonics© Intel Corporation 197!!
--: ·'

1-68 AFN·01931A

AP-28A

APPENDIX B

BUS TIMING SPECIFICATIONS SUMMARY

Parameter Description Minimum Maximum Units

•BcY Bus Clock Period 100 D.C. ns

tBw Bus Clock Width o.35 •Bcv o.65 •BcY
(Not Restricted)

ISKEW BCLK/skew 3 ns

•PD Standard Bus 3
Propagation Delay

IAS Address Set-Up Time 50 ns
(at Slave Board)

•Ds Write Data Set 50 ns
Up Time

IAH Address Hold Tirne 50 ns

IDHW Write Data Hold Time 50 ns

•DxL Read Data Set 0 ns
Up Time To XACK

tDHR Read Data Hold Time 0 65 ns

IXAH Acknowledge Hold 0 65 ns
Time

txACK Acknowledge Time 0 8 µS

ICMD Command Pulse 100 9 5 ns
Width

t1D Inhibit Delay 0 100 ns
(Recommend< 100 ns)

IXACKA Acknowledge Time of t1AD+50 ns 1500
of an Inhibited Slave

IXACKB Acknowledge Time of 15 8 µs
an Inhibiting Slave

t1AD Acknowledge Disable 0 100 ns
from Inhibit (An
internal parameter on

(arbitrary)

an inhibited slave;
used to determine
IXACKA Min.)

tAIZ Address to Inhibits I 00 ns
High Delay

t1NTA INTA/ Width 250 ns
tcsEP Command Separation 100 ns

1-69 AFN·01931A

AP-28A

APPENDIX B (Continued)

BUS TIMING SPECIFICATIONS SUMMARY

Parameter Description Minimum Maximum Units

tBREOL IBCLKI to BREQI 0 35 ns
Low Delay

tBREQH IBCLKI to BREQ/ 0 35 ns
High Delay

tBPRNS BPRN/ to IBCLKI 22 ns
Setup Time

tBusY BUSY/ delay 0 70 ns
from IBCLK/

tBusYs BUSY I to IBCLKI 25 ns
Setup Time

tBPRO IBCLKI to BPRO/ 0 40 ns
(CLK to Priority Out)

tBPRNO BPRN/ to BPRO/ 0 30 ns
(Priority In to Out)

tcBRO IBCLKI to CBRQI 0 60 ns
(CLKto Common
Bus Request)

tcBRQS CBRQI to IBCLKI 35 ns
Setup Time

txco XACKI to Command I 0 1500 ns
Delay

tBsYo CBRQ/I and BUSY/I - 12 JlS

to BUSY/I

tccv C-clock Period 100 110 ns

tcw C-clock Width o.35 tccv o.65 tccv ns

t1NIT INIT/Width 5 ms

t1NITS INIT/toMPROI
Setup Tir:p'e

100 ns

tPBD Power Backup 0 200 ns
Logic Delay

tpflNW PFIN/ Width 2.5 ms

tMPRO MPRO/ Delay 2.0 2.5 ms

tACLOW ACLO/ Width 3.0 ms

tpfSRW PFSR/ Width 100 ns

tTOUT Timeout qelay 5 ""(D C.) ms

tDcH D.C. Power Supply 3.0 ms
Hold from ALCO/

toes D.C. Power Supply 5 ms
Setup to ACLO I ...:...

1-70 AFN-01931A

AP-28A

APPENDIX C

BUS DRIVERS, RECEIVERS, AND TERMINATIONS

Driver 1,3 Receiver 2,3 Termination

Bus Signals Location Type IOL IOH Co Location l1L l1H C1 Location Type R Units

Min ma Mln~a MaXpf Max ma Maxµa MaXpf

DATOl-DATFI Masters TRI 16 -2000 300 Masters -0.8 125 18 1 place Pull up 2 2 KQ

(16 lines) and Slaves and Slaves

ADROl-ADRBI, Masters TRI 16 -2000 300 Slaves -0.8 125 18 1 place Pull up 2 2 KQ

BHENI
(21 lines)

MRDCl,MWTCI Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pull up 1 KQ

(Memory;
memory-
mapped 110)

IORCl,IOWCI Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pullup 1 KQ

(110)

XACKI Slaves TRI 32 -2000 300 Masters -2 125 18 1 place Pullup 510 Q

INH11,INH21 Inhibiting oc 16 - 300 Inhibited -2 50 18 1 place Pull up 1 KQ

Slaves Slaves
!RAM, PROM,
ROM, Memory-
Mapped 110)

BCLK/ 1 place TTL 48 -3000 300 Master -2 125 18 Mother- To+ 5V 220 Q

(Master us) board ToGND 330 Q

BREOI Each TTL 5 -200 60 Central 2 50 18 Central Pull up 1 KQ

Master Priority Priority

Module Module
(not req)

BPROI Each TTL 5 -200 60 Next Master -1.6 50 18 (not reqJ

Master in Serial
Priority
Chain at
its BPRNI

BPRNI Parallel TTL 5 -200 300 Master -4 100 (not reqJ

Central
Priority
Module
Serial:Prev
Masters
BPROI

BUSY/, CBRQ All Masters O.C. 20 - 300 All Masters -2 50 18 1 place Pullup 1 KQ

INIT/ Master o.c. 32 - 300 All -2 50 18 1 place Pullup 2 2 Kil

CCLK/ 1 place TTL 48 -3000 300 Any -2 125 18 Mother- To+ 5V 220 Q
board ToGND 330 Q

INTA/ Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pull up 1 KQ

(Interrupting
I/OJ

INTOl-INT?I Slaves o.c. 16 - 300 Masters -1.6 40 18 1 place Pull up 1 KQ

(8 l1nes)

PFSRI User's Fron TTL 16 -400 300 Slaves, -1.6 40 18 1 place Pull up 1 KQ

Panel? Masters

PFSNI Power Back TTL 16 -400 300 Masters -1.6 40 18 t place Pull up 1 KQ

Up Unit

ACLO Power o.c. 16 -400 300 Slaves, -1.6 40 18 1 place Putlup 1 KQ

Supply Masters

PFINI Power Back- o.c. 16 -400 300 Masters -1.6 40 18 1 place Pull up 1 Kil

Up Unit

MPRO/ Power Back- TTL 16 -400 300 Slaves -1.6 40 18 1 place Pull up 1 Kil

Up Unit Masters

1-71 AFN-01931A

AP-28A

APPENDIX C (Continued)

BUS DRIVERS, RECEIVERS, AND TERMINATIONS

Driver 1,3 Receiver 2,3 Termination

Bus Signals Location Type IQL IQH Co Location l1L l1H c, Location Type R Units

Min ma Minµa M&Xpf M••ma Maxµa Max pf

Aux Reset/ User's Switch - - - Masters -2 50 18 None
Front toGND
Panel? !Note 51

Notes

1. Driver Requirements

10H = High Output Current Drive
IOL = Low Output Current Drive
Co = Capacitance Drive Capability
TRI = 3-State Drive
o.c. = Open Collector Driver
TTL = Totem-pole Driver

2 Receiver Requirements

l1H = High Input Current Load
l1L = Low Input Current Load
C1 = Capacitive Load

3. TTL low state must be 2 -0.Sv but ,,;. 0.8v at the receivers
TTL high state must be2 2.0v buts:. 5.Sv at the receivers

4. For the iSBC 80/10 and the iSBC 80/10A use only a 1K pull-up resistor to +Sv for BCLK/ and CCLK/ termination.

5. Recommend a 47\l resistor in series with switch.

1-72 AFN-01931A

AP·28A

APPENDIX D

BUS POWER SPECIFICATIONS

Standard (P1) Optional (P2)

Analog Power Battery Power Backup

Ground +5 +12 -12 +15 -15 +5 + 12 -12 -5

Mnemonic GND +5V + 12V -12V + 15V -15V +58 + 128 -128 -58

Bus Pins P1+1,2, P1 +3,4, P1+7,8 P1+79, P2+ 23, P2+ 25, P2+ 3,4, P2+ 11, P2+ 15, P2- 7,8
11,12, 5,6,81, 80 24 26 5,6 12 16
75,76 82,83,
85,86 84

Nominal Output Ref. +5.0V + 12.0V - 12.0V + 15.0V -15.0V +5.0V + 12.0V -12.0V -5.0V

Tolerance from
Nominal' Ref. ±5% ±5% ±5% ±3% ±3% ±5% ±5% ±5% ±5%

Ripple
(Pk-Pk)' Ref. 50 mV 50 mV 50 mV 10 mV 10 mV 50 mV 50 mV 50 mV 50 mV

Transient
Response 500 µS 500µ.s 500 µS 100 µS 100 µS 500 µS 500 µS 500 µS 500 µS

Time'

Transient
Deviation' ± 10% ±10% ± 10% ±10% ± 10% ± 10% ± 10% ±10% ± 10%

NOTES:

1. Tolerance 1s worst case, including initial voltage setting line and load effects of power source, temperature drift, and any additional steady
state influ~nces.

2. As measured over any bandwidth not to exceed O to 500 kHz.

3. As measured from the start of a load change to the time an output recovers within ±0.1% of final voltage.

4. Measured as the peak deviation from the initial voltage.

1-73 AFN·01931A

0.25 x 45°
2PLACES

0 109 DIA
3 HOLES

0.06R
TVP

AP-28A

APPENDIX E

MECHANICAL SPECIFICATIONS

--------------- 1200 ;0,005 ____________ __.,

------------11.500---------------*1

COMPONENT SIDE

-------6.835 .:!:0007-------<

i'l) BOARD THICKNESS 0 062 G> EJECTOR TYPE SCANBE :tS203

0.25

]

0.25

3

620

_J '"""
0.30

'
"" CHAMFER All

CONNECTOR EDGES
0 040 ' 45 ~

0.015 ~ 0.005 x 45°
2PLACES

:i> MUL Tl BUS CONNECTOR 86-PIN, 0.156 SPACING

~ AUXILIARY CONNECTOR 60·PIN. 0100SPACING

5. BUS DRIVERS ANO RECEIVERS SHOULD ae LOCATED AS CLOSE AS POSSIBLE TO
THEIR RESPECTIVE MULTIBUS PIN CONNECTIONS

BOARD SPACING· 0.6

COMPONENT HEIGHT: 0.4

CLEARANCE ON CONDUCTOR NEAR EDGES 0.050

1-74 AFN·01931A

APPENDIX F
MULTIBUS™ SLAVE DESIGN EXAMPLE SCHEMATIC

8/16-BIT VERSION

1-75 AFN·01931A

a

D

c

..:_,

"'

B

A

a

7 6 5 4

~~UlTIB\J'.::i c.Dt.lN(C.TDR
Pl

~ <'=-~~~~~~~~~~~~~-----
--__ 10 _ _ __ -- -- INIT

~ Al 74l.504

~I -~~ :~~/ Jr.--=:7 ~51/
' -~ --------j j;,, 7 f>-:--- L ,,-= ~-·--- --r- ' A4"'8--cso1 l'.""""I - -- -- -- A\ 74LS04 I '2. 6152'16'5~- C.S5/

~I --~4-- - --- 4iJl___CS4/ = ---- Al 74LS04 _, .1. ?Wf------cs-:.1
'i G -- c_ IJ2-_ ~ -- ---- --------2i-f>f4LSM <=;, z_~4 - CS ~I
I"; 12. . __ - El I IS - CS I ~ -- ~. Al 74l'504. ·- ADR"J t- ~ Dt.I © , C.S(ll/

__ ~f2---·--<l · --ADR L 4 I ~ -- ~I ,,,_~;.:..w~" ~ . L___ - ADR 1 IK
2 E:Z0'?~ Af"JR0

§o::J ---~B :~I . v~
~ -------i' ' :~ ~ ! _J Trr=4/' 5D 2 i4 I
~ / ? il21 ~ff=~

JllltHJS~/ IKl. ~ 4 ------, ~B E%E1'DR'filtT/ --WRT --

Vu -=- -, I_ -e I 745?2. ;--,--------R_D __

~ -- - ---i> >0 ~ ~ ~ I 1 ~- IK

[i;D~ - d~wm: :::==: I : [t

' -- ' '~~ l s 1'- 1' ~ ,, z"~ r .. ~5
- t.l l 14 ' L ':> 74'JJZ ".IA.I') ~ ei IS -1..t> t.\') 4 74502. ' l l ll ' i 74502 "> ~

t:. '! I ! I ~~ ... ,"
[lDRt_I]

~
~
~
ITTW1
l1'illJ

D~1B/-'
[Ji..lf/

7

------------"'> 00-Dl

~L :>DB-Dr
' I I

___J

6 5 4

3

v~

2

I
~

D0
(00·&'.:lP-RDDt>.\il...BL\S)

--- PPIWRT/

(\'rnWI

-- PPIRD/

RD
WE.NBL/

~DR 2. --ij~~-=='.> OO-D1
ADR I M l/>..\0 B'2.5S/l..
;1.DRl2l~&, t'::,/ Pl\~-1 _ _
lNll ~') l.Lt<.. R.1 .r::=====:> 110 POIT':. ('Z.4 LlNE.'::i)

l?DIW\<11
~Lo PPIRN

f.'PIWR./

!)b-\J';

D

c

I

x I .• ' •HAI r:Jt= I ~·"-•ATU•E ~:...a. I® lOllSllOWER. SA~ J•

jOf\

3

MULTIBUS™ SLAVE DESIGN EXAMPLE SCHEMATIC 8/16-BIT VERSION

l>
"C
"C
m
z
0
x
"T1

APPENDIX G
MULTIBUS™ SLAVE DESIGN EXAMPLE SCHEMATIC

8·BIT VERSION

1-77 AFN-01931A

~

)> ,,
z
~
~
;:

D

c

B

A

8

8

7 6 5 4

~i~ ,., ~~· INIT

-'»----------------------r-~ i 74LS04 I =~
- - """ II ~CS'/

'"'1 C "™ . l - .1~" ;; I ""
,,.., • , L~. ·r-- 'L - 74L504 11 - "" \

l-'"''11 ' -7}--------o - "' ' t
""" ~:1 ·-: -· ~ ' . u

B 7<Sllfl

~
~
~
§]

l Bt>SEMJR'>filtT/ _ ___j

'u

:1E rooU1 < b !>.. - > D0-Dl
~ 1 OE

RD 6D[NBL/

7 6 5 4

3

v~

3

~rnr01 I

INT2f

1

OL ~

~
I 140i.. ~fS1 1

IITTol
Vu.~

1 b-fr00 PPIWRTI l · 74500 WI RD/

A.DR">

WI

k=-=====:;> l!OVO~(ZGLtt\!b).

le= oo-D1
f,'lS">A.

D

c

I

I "~'""' I~· I ... _.,_ --~ .. , IA
• A '"~ ••-e SANUCl.ARA

2

Slt>..\ll t:fS.\~ ~~
ed~:H .Jt.RS.1Dt..I

Dl~WWl.™&!lJlllG.M).

"""' ~,

MULTIBUS™ SLAVE DESIGN EXAMPLE SCHEMATIC 8-BIT VERSION

)>
"11
"11
m z
c x
C)

' ©Intel Corporation, 1978

.. APPLICATION
NOTE

AP-43

November 1978

AFN·01931A

Using The iSBC™ 957
Execution Vehicle
For Executing 8086
Program Code

1-80

Contents

I. INTRODUCTION 1-81

II. THE iSBC™ 86/12 SINGLE BOARD
COMPUTER . 1-81

III. THE iSBC™ 957 PACKAGE 1-85

IV. THE iSBC™ 957-iSBC™ 86/12
MONITOR PROGRAM 1-88

V. MATRIX MULTIPLICATION
EXAMPLE. 1-92

VI. CONCLUSION 1-98

APPENDIX A - iSBC™ 86/12
SIMPLIFIED LOGIC DIAGRAM. 1-99

APPENDIX B - PROGRAM LISTINGS
FOR EXECUTION$VEHICLE AND
FIND MODULES 1-101

APPENDIX C - PROGRAM LISTING
FOR EXECUTION$VEHICLE MODULE
FOR CODE EXPANSION 1-107

AFN·01931A

I. INTRODUCTION

The iSBC 957 Intellec-iSBC 86/ 12 Interface and
Execution Package contains the hardware and soft
ware required to interface an iSBC 86/ 12 Single
Board Computer with an Intellec Microcomputer
Development System. The iSBC 957 package gives
the 8086 user the capability to develop software on
an Intellec System and then debug this software on
an iSBC 86/12 board using a program download
capability and an interactive system monitor. The
8086 user has all the capabilities of the Intellec sys
tem at his disposal and has the powerful iSBC
86/ 12 system monitor commands to use for
debugging 8086 programs.

The iSBC 86/12 board is an Intel 8086 based proc
essor board which, in addition to the processor,
contains 32K bytes of dual port RAM, sockets for
up to 16K bytes of ROM/EPROM, a serial 1/0
port, 24 parallel 1/0 lines, 2 programmable
counters, 9 levels of vectored priority interrupts,
and an interface to the MULTIBUS™ system bus.
The iSBC 957 package consists of monitor EPROMs
for the iSBC 86/ 12 board, Loader software for the
Intellec system, four (4) cable assemblies, assorted
line drivers and terminators, and signal adapters.
The iSBC 957 package provides the capability of
downloading and uploading program and data
blocks between an iSBC 86/ 12 board and an Intellec
system. In addition, monitor commands and
displays may be input and viewed from the Intellec
system console. The iSBC 957 package, when used
with the iSBC 86/12 board and an Intellec Micro
computer Development System, provides the user
with the capability to edit, compile or assemble,
link, locate, download, and interactively debug
programs for the 8086 processor. The iSBC 957
package and the iSBC 86/ 12 board form an ex
cellent "execution vehicle" for users developing
software for the 8086 processor regardless of
whether the users are 8086 component users or
iSBC 86/12 board users. Using the iSBC 957 pack
age 8086 programs may be debugged at the full 5
MHz speed of the processor. The recommended
hardware for the execution vehicle is an iSBC 660
system chassis with an 8 card slot backplane and
power supply, an iSBC 032 32K byte RAM memory
board, the iSBC 957 package, and the iSBC 86/12
board.

This application note will describe how the iSBC
957 package may be used to develop and debug
8086 programs. First a description of the iSBC
86/ 12 board will be presented. Readers familiar

1·81

with the iSBC 86/ 12 board may want to skip this
section. Next follows a detailed description of the
iSBC 957 package and the iSBC 86/ 12 system
monitor commands. A program example of a
matrix multiplication routine will then be presented.
This example will contain both assembly language
and PL/M-86 procedures. The steps required to
compile, assemble, link, locate and debug the
program code will be explained in detail. A typical
debugging session using the iSBC 86/ 12 system
monitor will be presented.

II. THE iSBC™ 86/12 SINGLE BOARD
COMPUTER

The iSBC 86/12 Single Board Computer, which is
a member of Intel's complete line of iSBC 80/86
computer products, is a complete computer system
on a single printed-circuit assembly. The iSBC 86/
12 board includes a 16-bit central processing unit
(CPU), 32K bytes of dynamic RAM, a serial com
munications interface, three programmable parallel
1/0 ports, programmable timers, priority interrupt
control, MULTIBUS control logic, and bus expan
sion drivers for interface with other MULTIBUS
compatible expansion boards. Also included is dual
port control logic to allow the iSBC 86/ 12 board
to act as a slave RAM device to other MULTIBUS
masters in the system. Provision is made for user
installation of up to 16K bytes of read only mem
ory. Figure 1 contains a block diagram of the iSBC
86/ 12 board and in Appendix A is a simplified
logic diagram of the iSBC 86/ 12 board.

Central Processing Unit

The central processor for the iSBC 86I12 board is
Intel's 8086, a powerful 16-bit H-MOS device. The
225 sq. mil chip contains 29,000 transistors and has
a clock rate of 5MHz. The architecture includes
four (4) 16-bit byte addressable data registers, two
(2) 16-bit memory base pointer registers and two (2)
16-bit index registers, all accessed by a total of 24
operand addressing modes for complex data han
dling and very flexible memory addressing.

Instruction Set - The 8086 instruction repertoire
includes variable length instruction format (in
cluding double operand instructions), 8-bit and 16-
bit signed and unsigned arithmetic operators for
binary, BCD and unpacked ASCII data, and iter
ative word and byte string manipulation functions.
The instruction set of the 8086 is a functional
superset of the 8080A/8085A family and with

AFN-01931A

OUAL·PORT
BUS

ON·BOARO INTERNAL BUS

MULTIBUS

POWER FAIL
INTERRUPT

MULTIBUS/
MULTIMASTER

INTERFACE

RS232C
COMPATIBLE

DE\llCE
24 PROGRAMMABLE
PARALLEL.110 LINES

Figure 1. iSBC™ 86I12 Single Board Computer Block Diagram

available software tools, programs written for the
8080A/8085A can be easily converted and run on
the 8086 processor.

Architectural Features - A 6-byte instruction queue
provides pre-fetching of sequential instructions and
can reduce the 1.2 µ sec minimum instruction cycle
to 400 nsec by having the instruction already in the
queue.

The stack oriented architecture facilitates nested
sub-routines and co-routines, reentrant code and
powerful interrupt handling. The memory expan
sion capabilities offer a 1 megabyte addressing
range. The dynamic relocation scheme allows ease
in segmentation of pure procedure and data for
efficient memory utilization. Four segment registers
(code, stack, data, extra) contain program loaded
offset values which are. used to map 16-bit addresses
to 20-bit addresses. Each register maps 64K-bytes at
a time and activation of a specific register is con
trolled explicitly by program control and is also
selected implicitly by specific functions and
instructions.

1·82

Bus Structure

The iSBC 86/ 12 board has an internal bus for
communicating with on-board memory and I I 0
options, a systei;n bus (the MULTIBUS) for refer
encing additional memory and I/ 0 options, and
the dual-port bus which allows access to RAM
from the on-board CPU and the MULTIBUS Sys
tem Bus. Local (on-board) accesses do not require
MULTIBUS communication, making the system
bus available for use by other MULTIBUS masters
(i.e. DMA devices and other single board com
puters transferring to additional system memory).
This feature allows true parallel processing in a
multiprocessor environment. In addition, the MUL
TIBUS interface can be used for. system expansion
through the use of other. 8- and 16-bit iSBC com
puters, memory and 1/0 expansion boards.

RAM Capabilities

The iSBC 86/12 board contains 32K-bytes of
dynamic read/write memory. Power for the on
board RAM and refresh circuitry may be option
ally provided .on an auxiliary power bus, and

AFN-01931A

memory protect logic is included for RAM battery
backup requirements. The iSBC 86/ 12 board con
tains a dual port controller which allows access to
the on-board RAM from the iSBC 86/12's CPU
and from any other MULTIBUS master via the
system bus. The dual port controller allows 8- and
16-bit accesses from the MULTIBUS System Bus
and the on-board CPU transfers data to RAM over
a 16-bit data path. Priorities have been established
such that memory refresh is guaranteed by the on
board refresh logic and that the on-board CPU has
priority over MULTIBUS requests for access to
RAM. The dual-port controller includes independent
addressing logic for RAM access from the on-board
CPU and from the MULTIBUS system bus. The
on-board CPU will always access RAM starting
at location OOOOOH. Address jumpers allow on
board RAM to be located starting on any SK-byte
boundary within a 1 megabyte address range for
accesses from the MULTIBUS system bus. In con
junction with this feature, the iSBC 86/ 12 board
has the ability to protect on-board memory from
MULTIBUS access to any contiguous SK-byte
segments. These features allow multi-processor
systems to establish local memory for· each proces
sor and shared system (MULTIBUS) memory con
figurations where the total system memory size
(including local on-board qiemory) can exceed 1
megabyte without addressing conflicts.

EPROM/ROM Capabilities

Four sockets are provided for up to 16K-bytes of
non-volatile read only memory on the iSBC S6/12
board. Configuration jumpers allow read only
memory to be installed in 2K, 4K, or SK increments.

On-board ROM is accessed via 16 bit data paths.
System memory size is easily expanded by the
addition of MULTIBUS compatible memory boards
available in the iSBC 80/S6 family.

Parallel I/ 0 Interface

The iSBC S6/ 12 board contains 24 programmable
parallel I/O lines implemented using the Intel
S255A Programmable Peripheral Interface. The
system software is used to configure the I/O lines
in any combination of unidirectional input/ output
and bidirectional ports.

Therefore, the I/ 0 interface may be customized to
meet specific peripheral requirements. In order to
take full advantage of the large number of possible
I/ 0 configurations, sockets are provided for inter
changeable I/O line drivers and terminators.
Hence, the flexibility of the I/ 0 interface is further

1-83

enhanced by the capability of selecting the appro
priate combination of optional line drivers and
terminators to provide the required sink current,
polarity, and drive I termination characteristics for
each application. The 24 programmable I/O lines
and signal ground lines are brought out to a 50-pin
edge connector that mates with flat, woven, or
round cable.

Serial 1/0

A programmable communications interface using
the Intel S251A Universal Synchronous/ Asyn
chronous Receiver /Transmitter (USART) is con
tained on the iSBC S6/ 12 board. A software
selectable baud rate generator provides the USART
with all common communication frequencies. The
USART can be programmed by the system soft
ware to select the desired asynchronous or syn
chronous serial data transmission technique (in
cluding IBM Bi-Sync). The mode of operation (i.e.,
synchronous or asynchronous), data format, con
trol character format, parity, and baud rate are all
under program control. The S25 IA provides full
duplex, double buffered transmit and receive capa
bility. Parity, overrun, and framing error detection
are all incorporated in the USART. The RS232C
compatible interface on each board, in conjunction
with the USART, provides a direct interface to
RS232C compatible terminals, cassettes, and asyn
chronous and synchronous modems. The RS232C
command lines, serial data lines, and signal ground
line are brought out to a 26 pin edge connector that
mates with RS232C compatible flat or round cable.
The iSBC 530 teletypewriter adapter provides an
optically isolated interface for those systems re
quiring a 20 mA current loop. The iSBC 530
adapter may be used to interface the iSBC S6/12
board to teletypewriters or other 20 mA current
loop equipment.

Programmable Timers

The iSBC S6/ 12 board provides three independent,
fully programmable 16-bit interval timers I event
counters utilizing the Intel S253 Programmable In
terval Timer. Each counter is capable of operating
in either BCD or binary modes. Two of these
timers I counters are available to the systems de
signer to generate accurate time intervals under
software control. Routing for the outputs and gate/
trigger inputs of two of these counters is jumper
selectable. The outputs may be independently
routed to the S259A Programmable Interrupt Con
troller and to the I I 0 line drivers associated with

AFN-01931A

the 8255A Programmable Peripheral Interface, or
may be routed as inputs to the 8255A chip. The
gate/trigger inputs may be routed to I/O termin
ators associated with the 8255A or as output con
nections from the 8255A. The third interval timer
in the 8253 provides the programmable baud rate
generator for the iSBC 86/12 RS232C USART
serial port. In utilizing the iSBC 86/ 12, the systems
designer simply configures, via software, each timer
independently to meet system requirements. When
ever a given time delay or count is needed, soft
ware commands to the programmable timers/event
counters select the desired function.

The contents of each counter may be read at any
time during system operation with simple read
operations for event counting applications, and
special commands are included so that the contents
can be ready "on the fly".

MULTIBUSTM and Multimaster Capabilities

The MULTIBUS system bus features asynchronous
data transfers for the accommodation of devices
with various transfer rates while maintaining maxi
mum throughput. Twenty address lines and sixteen
separate data lines eliminate the need for address I
data multiplexing I demultiplexing logic used in
other systems, and allow for data transfer rates up
to 5 megawords I sec. A failsafe timer is included in
the iSBC 86/12 board which can be used to gener
ate an interrupt if an addressed device does not
respond within 6 msec.

Multimaster Capabilities -The iSBC 86/ 12 board
is a full computer on a single board with resources
capable of supporting a great variety of OEM sys
tem requirements. For those applications requiring
additional processing capacity and the benefits of
multiprocessing (i.e., several CPUs and/or con
trollers logically sharing system tasks through
communication over the system bus), the iSBC 86/
12 board provides full MULTIBUS arbitration
control logic. This control logic allows up to three
iSBC 86/ 12 boards or other bus masters, including
iSBC 80 family MULTIBUS compatible 8-bit single
board computers, to share the system bus in serial
(daisy chain) priority fashion, and up to 16 masters
to share the MULTIBUS with the addition of an
external priority network. The MULTIBUS arbitra
tion logic operates synchronously with a MULTI
BUS clock (provided by the iSBC 86/12 board or
optionally provided directly from the MULTIBUS
System Bus) while data is transferred via a hand
shake between the master and slave modules. This

1-84

allows different speed controllers to share resources
on the same bus, and transfers via the bus proceed
asynchronously. Thus, transfer speed is dependent
on transmitting and receiving devices only. This
design prevents slow master modules from being
handicapped in their attempts to gain control of the
bus, but does not restrict the speed at which faster
modules can transfer data via the same bus. The
most obvious applications for the master-slave
capabilities of the bus are multiprocessor configur
ations, high speed direct memory access (DMA)
operations, and high speed peripheral control, but
are by no means limited to these three.

Interrupt Capability

The iSBC 86/12 board provides 9 vectored interrupt
levels. The highest level is the NMI (Non-Maskable
Interrupt) line which is directly tied to the 8086
CPU. This interrupt cannot be inhibited by soft
ware and is typically used for signalling catastrophic
events (e.g., power failure).

The Intel 8259A Programmable Interrupt Con
troller (PIC) provides vectoring for the next eight
interrupt levels.

The PIC accepts interrupt requests from the pro
grammable parallel and serial I/O interfaces, the
programmable timers, the system bus, or directly
from peripheral equipment. The PIC then deter
mines which of the incoming requests is of the
highest priority, determines whether this request is
of higher priority than the level currently being
serviced, and, if appropriate, issues an interrupt to
the CPU. Any combination of interrupt levels may
be masked, via software, by storing a single byte
in the interrupt mask register of the PIC. The PIC
generates a unique memory address for each .in
terrupt level. These addresses contain unique
instruction pointers and code segment offset values
(for expanded memory operation) for each interrupt
level. In systems requiring additional interrupt
levels, slave 8259A PIC's may be interfaced via the
MULTIBUS system bus, to generate additional
vector addresses, yielding a total of 65 unique
interrupt levels.

Interrupt Request Generation - Interrupt requests
may originate from 16 sources. Two jumper select
able interrupt requests can be automatically gener
ated by the programmable peripheral interface.

Two jumper selectable interrupt requests can be
automatically generated by the USART when a
character is ready to be transferred to the CPU or a
character is ready to be transmitted.

AFN·01931A

A jumper selectable request can also be generated
by each of the programmable timers. Eight addi
tional interrupt request lines are available to the
user for direct interface to user designated peripher
al devices via the system bus, and two interrupt
request lines may be jumper routed directly from
peripherals via the parallel I/ 0 driver I terminator
section.

Power-Fail Control

Control logic is also included to accept a power-fail
interrupt in conjunction with the AC-low signal
from the iSBC 635 Power Supply or equivalent.

Expansion Capabilities

Memory and I/ 0 capacity may be expanded and
additional functions added using Intel MULTIBUS
compatible expansion boards. High speed integer
and floating point arithmetic capabilities may be
added by using the iSBC 3 JO high speed mathe
matics unit. Memory may be expanded to I mega
byte by adding user specified combinations of
RAM boards, EPROM boards, or combination
boards. Input/output capacity may be increased by
adding digital I I 0 and analog I I 0 expansion
boards. Mass storage capability may be achieved
by adding single or double density diskette con
trollers. Modular expandable backplanes and card
cages are available to support multiboard systems.

III. THE iSBC™ 957 PACKAGE

The iSBC 957 Intellec-iSBC 86/ 12 Interface and
Execution Package extends the software develop
ment capabilities of the Intellec Microcomputer
Development systems to the Intel 8086 CPU. Pro
grams for the 8086 may be written in PL/M-86
and/ or assembly language and compiled or as
sembled on the Intellec system. These programs
may then be downloaded from an Intellec ISIS-II
disk file to the iSBC 86/ 12 board for execution and
debug. The programs will execute at the full 5 MHz
clock rate of the 8086 CPU with no speed degrada
tion caused by the iSBC 957 hardware or software.
Special communication software allows transparent
access to the powerful interactive debug commands
in the iSBC 86/ 12 monitor from the Intellec con
sole terminal. These debug commands include
single-step instruction execution, execution with
breakpoints, memory and register displays, memory
searches, comparison of two memory blocks and
several other commands. After a debugging session,
the debugged program code may be uploaded from
the iSBC 86/12 board to an Intellec ISIS-II disk
file.

1-85

The iSBC 957 Intellec-iSBC 86/12 Interface and
Execution Package consists of the following:

a. Four Intel 2716 EPROMs which contain the sys
tem monitor program for the iSBC 86/ 12 board.

b. An ISIS-II diskette containing loader software
for execution in the Intellec which provides for
communications between the user or an Intellec
ISIS-II file and the iSBC 86/12 board. Also in
cluded on the diskette are a library of routines
for system console 110.

c. Four cable assemblies used for transmitting com
mands, code and data between the iSBC 86/ 12
board and the Intellec system.

d. An iSBC 530 adapter assembly which converts
serial communications signals from current loop
to RS232C.

e. Line drivers and terminators used for the iSBC
86/ 12 parallel ports.

f. A small printed circuit board which is plugged
into an iSBC 86/ 12 receiver /terminator socket
and is used when program code is downloaded
or uploaded using the parallel cable.

iSBC™-Intellec TM Configurations

There are two distinct functional configurations for
the iSBC 957 package; one configuration for the
Intellec Series II, Models 220 or 230 development
systems and another for the Intellec 800 series
development systems.

Intellec Series II System Configurations

When used with Intellec Series II Model 220 or
230 systems, a set of cables are used to connect the
serial I/ 0 port edge connector on the iSBC 86 I 12
board and the SERIAL 1 output port on the Intellec
system. This configuration is shown in Figure 2.
How this system functions is explained in the fol
lowing paragraphs.

The SERIAL 1 port on the Intellec Series II Model
220 or 230 system is an RS232 port which is de
signed for use with a data terminal. This port may
be used on the Intellec system for interfacing to
RS232 devices such as CRT terminals or printers.
The serial ports on the iSBC 86/12 board and the
Intellec systems are connected as shown in the
Figure 2. The flat ribbon cable connected to the
iSBC 86/ 12 board has an edge connector for con
necting to the board on one end and a standard
RS232 connector on the other end. The second
cable, the RS232 Up/Down Load cable, has an
RS232 connector on each end. This cable, however,

AFN-01931A

INTELLEC SERIES II
MODEL 220, 230

SERIAL I /0
PORT

iSBC 86/ 12

Figure 2. lntellec™ Series II Model 220, 230-iSBC™ 86/12 Configuration

is not a standard cable with the RS232 signals bussed
between identically numbered pins on each of the
connectors. The schematic for the cable is shown in
Figure 3. Note that the TXD (transmit data) and
the RXD (receive data) and the RTS (ready to send)
and the CTS (clear to send) signals have been
crossed. This is done because both the Intellec system
and the iSBC 86/ 12 board are configured to act as
data sets which are communicating with data
terminals. Swapping these signals permits the units
to communicate directly with no modifications to
the Intellec or iSBC 86/ 12 systems themselves.

(FRAME GROUND)

{TRANSMIT DAT A)

(RECEIVE-DATA)

(READY TO SEND)

(CLEAR TO SEND)

!---------! 7 SGD (SIGNAL GROUND)

Figure 3. lntellec™-iSBC™ 86/12 RS232
UP I DOWN LOAD Cable

The software in the Intellec system accepts characters
output from the iSBC 86/ 12 board through the
Intellec SERIAL 1 port. The software then outputs
these characters on the CRT monitor built into the
Intellec Series 11 Model 220 or 230. In a. similar
fashion, characters input from the Intellec key-

1·86

board are passed down the serial link to the iSBC
86/12 monitor program. The integrated CRT
monitor and keyboard on the Intellec system then
becomes the "virtual terminal" of the iSBC 86/12
monitor program. If this were the only function of
the iSBC 957 package, there would be no real
benefit to the user. However, when the "virtual
terminal" capability is combined with the capa
bility to download and upload program code and
data files between the lntellec ISIS-II file system
and the iSBC 86/ 12 board, a very powerful soft
ware development tool is realized. The software in
the Intellec system must examine the commands
which are input from the keyboard and in the case
of the LOAD and TRANSFER commands (see
later sections for details on monitor commands),
the software must open and read or write ISIS-II
disk files.

Transfer rates using Intellec Series II Model 220 or
230 system are 9600 baud when transferring hexa
decimal object files to or from a disk file and 600
baud when transferring commands between the
iSBC 86/ 12 board and the CRT monitor and key
board. With a 9600 baud transfer rate, it is pos
sible to load 64K bytes of memory in about four
minutes.

Intellec 800 System Configurations

The iSBC 957 package may be used with the In
tellec 800 system in four different configurations.
These four configurations are determined by two

AFN·01931A

variables. The first variable is whether the iSBC
86/ 12 board is connected to the Intellec 800 TTY
port or to the Intellec 800 CRT port. The second
variable is whether or not a parallel cable is used
for uploading and downloading hexadecimal object
files. Figures 4A and 4B illustrate the four
configurations.

In Figure 4A, the configuration shows the TTY
port of the Intellec 800 system connected to the
iSBC 86/ 12 serial port using two cables and an
iSBC 530 teletypewriter adapter. The TTY port of
the Intellec 800 system is designed for using a
teletypewriter as the Intellec console device. To use
this port for communication with the iSBC 86/ 12
board, the current loop TTY signal must be con
verted to an RS232 compatible voltage signal. This
function is performed by the iSBC 530 adapter.

4A

INTELLEC
MDS 800
SYSTEM

PROM
PORT

The cable which connects the Intellec 800 system to
the iSBC 530 adapter performs a function similar
to the RS232 Up/Down Load cable described
above. A schematic for this cable and all other
components of the iSBC 957 package are included
with the delivered product.

The transfer rate for both commands and data
when the TTY port is connected to the iSBC 86/ 12
board is 110 baud. This means to download even
moderately sized programs would require large
amounts of time, several minutes or even hours.
However, much faster times may be achieved by
using the parallel ports of the iSBC 86/12 board
and the Intellec system for downloading program
files. This parallel port used on the Intellec 800
system is the output port labeled PROM which is
normally used with the Universal Prom Pro-

/
;ssc as 112

BOARD

Q~
~ 'ISBC530

OEM RS232-C
CABLE

48

INTELLEC
MOS 800
SYSTEM

CRT
PORT

"'- TTY ADAPTER
TTY UP I DOWNLOAD

CABLE

PARALLEL
LOAD CABLE
IOPTIONALI

/
iSBC 86 I 12

TOTTY

,._TERMINA~~ 7
OEM RS232-C

CABLE

Figure 4A, 48. lntellec™ 800-iS8C™ 86/12 Configurations

1-87

SERIAL
1/0 PORT

AFN·01931A

grammer. A cable is connected between the In
tellec PROM port and the parallel I/ 0 port, J1 of
the iSBC 86/ 12 board. Parallel port B of the iSBC
86/ 12 board is used for the 8-bit byte transfers
from the Intellec system to the iSBC 86/12 board,
port A is used for the byte transfers from the iSBC
86 I 12 board to the Intellec system and port C is
used for controlling the byte transfers. A special
status adapter piggyback board must be inserted
into a receiver /terminator socket of the iSBC 86/ 12
board. This status adapter circuit is required to
provide the necessary handshaking signals from the
iSBC 86I12 parallel ports to the Intellec PROM
port.
The transfer rate achieved when downloading and
uploading hexadecimal object files with the parallel
cable is approximately 1,000 bytes per second. The
time required to load 64K bytes of memory is
approximately 2 Yz minutes.

Figure 4B shows a configuration with the Intellec
800 CRT port connected to the serial port of the
iSBC 86/ 12 board. The TTY port of the Intellec
800 system is connected to a teletypewriter or some
other current loop device to act as a system con
sole. The optional parallel load cable is also shown.
The cables used for this configuration are the same
as those used with the Intellec Series II Configur
ations. Command transfer rates require 110 baud
because the TTY port of the Intellec 800 system is
used for communicating with the console device.
However, hexadecimal object files can be loaded at
9600 baud since this operation uses only the Intellec
to iSBC 86/ 12 RS232 link.

It is also possible to download files with the parallel
cable, this mode being somewhat faster than the
serial download mode (2 Yz minutes versus four
minutes for 64K bytes of memory). Table I con
tains a summary of the command and memory
transfer rates for each of the Intellec-iSBC 86/ 12
configurations.

Comparing the Intellec 800 configurations shown in
Table I and in Figures 4A and 4B it should be
noted:

1. Using the TTY port (Figure 4A) of the Intellec
800 system for communications with the iSBC
86/ 12 board (essentially) requires installation of
the parallel cable and jumper modifications for
downloading and uploading files, and thus, pre
vents the use of the parallel ports for other I/ 0
functions.

2. Using the CRT port (Figure 4B) of the Intellec

1·88

800 system for communication with the iSBC
86I12c board provides for a fast serial download
capability, thus freeing the parallel ports for
other uses. However, this configuration requires
a teletypewriter or a CRT capable of accepting
a current loop input signal as the Intellec system
console.

Table 1

COMMAND AND MEMORY TRANSFER RATES FOR
INTELLEC-iSBC™ 86/12 CONFIGURATIONS

Effective
Command Rate

Load/Transfer
Rate

Serial
Parallel

Approximate Time
to load 64K bytes
of memory

Serial
Parallel

INTELLEC
SERIES 11220/230

SERIAL PORT
TO iSBC 86/12

600 Baud

9600 Baud
N/A

4 minutes
N/A

INTELLEC 800
TTY PORT

TO iSBC 86/12

110 Baud

110 Baud
1 K bytes I sec**

5 hours
2.5 minutes

I NTELLEC 800
CRT PORT

TO iSBC 86/12

110Baud*

9600 Baud
1 K bytes I sec**

4 minutes
2.5 minutes

*The actual baud rate of the lntellec-iSBC 86/ 12 link is 9600 baud, but the effective
command rate is determined by the slower lntellec- console serial link.

urransmission rate over the parallel link is determined by the speed of the two processors
and is approximately 1 K bytes per second.

IV. THE iSBC 957-iSBC 86/12 MONITOR
PROGRAM

The iSBC 86/12 monitor program is an EPROM
resident program which facilitates debugging of
user written programs. The monitor program used
in the iSBC 86/12 board with the iSBC 957 pack
age is the same monitor program written to inter
face the iSBC 86/ 12 directly to an RS232C data
terminal. When interfaced directly to a terminal,
the iSBC 86/12 board functions in a stand-alone
environment communicating directly with the user
via the data terminal. A user may use the monitor
for entering small programs in hexadecimal format,
executing a program, examining registers and
memory contents, etc.

To use the monitor program with an Intellec system,
the proper cables must be installed and the iSBC
957 Loader program must be loaded into Intellec
memory and executed. The Loader program is resi
dent on a file named SBC861, and when executed,
the Loader outputs a sign-on message. Next, the
iSBC 86/ 12 monitor program must be started and
the baud rate of the iSBC 86/ 12 to Intellec serial
communications link must be determined. This is
done by pressing the RESET switch on the chassis

AFN-01931A

Table 2
MONITOR COMMAND LIST

COMMAND FUNCTION AND SYNTAX

L Load Hex Loads hexadecimal object file from lntellec into iSBC
Object File 86/12 memory using serial (S) or parallel (P) mode.

L{SIP} ,< filename>[,<bias addr>l<cr>

T Transfer Hex Transfers blocks of iSBC 86/12 memory to lntellec as
Object File a hex object file using serial (SJ or parallel (P) mode.

E Exit

T[X] {SIP} ,<start addr>,<end addr>,<filename>

[,<exec addr>)<cr>

Exits the loader program and returns to ISIS.

E<CP

N Single Step Executes one user program instruction.

N[<addr>], [[<addr>], [*<Cr>

G Go Transfers control of the 8086 CPU to the user program
with up to 2 optional breakpoints.

G[<start addr>] [,<break 1 addr>

[,<break 2 addr":> 11 <Cf:>

S Substitute Displays/modifies memory locations in byte or word
Memory format.

S[Wl<addr°',[[new contents],]* <Cr">

X Examine/Modify Displays/modifies 8086 CPU registers.

Register X[<reg°') {(<new contents">],]*<cr°'

D Display Memory Displays contents of a memory block in byte or word
format.

D[W]<start addr>[,<end addr>]<Cr>

M Move Moves contents of a memory block.

M<start addr>, <end addr >, < dest;nation addr> < cr,.

C Compare Compares two memory blocks.

C<Start addr>,<end addr">,<destination addr>< cr>

F Find Searches a memory block for a byte or word constant.

F[W]<start addr">,< end addr>,<data><Cr>

H Hex Arithmetic Performs hexadecimal addition and subtraction.

H<data 1>,<data 2><Cf>

I Port Input Inputs and displays byte or word data from input
port.

l[W]<port addr">,[,]*<cr>

0 Port Output Outputs byte or word data to output port.

O[W]<port addr>, <data>[,<data>}*<cr,.

Syntax conventions used in the command structure are as follows:

[Al indicates that "A" is optional

[Al* indicates one or more optional iterations of "A"

<B" indicates that "B" is a variable

{AIB} indicates "A" or "B"

<Cr> indicates a carriage return is entered

Numeric arguments can be expressed as a number, the contents of a register,
or the sum or difference of numbers and register contents. Thus, addresses
and data can be expressed as follows:

addr I <expr>.°]<expr>

expr :: = <number,,.l<reg;ster>j<expr°' {+ 1--} <number>!

<expr> {+I-} <reg;ster>

register :: ~ AXIBXICXIDXISPIBPISllDllCSIDSISSIESllPIFL

number :: = <digit>l<digit><number>

digit::~ Olll2l314l5l6171819IAIBICIDIEIF

Numeric fields within arguments are entered as hexadecimal numbers. The
valid range of numerical values is from 0000-FFFF. Larger numbers may be
ehtered, but only the last four digits (or two in the case of byte values) are
significant. Leading zeros may be omitted.

An address argument consists of a segment value and an offset value. separ
ated by a colon (:). If a segment Value is not specified, the default segment
value is the CS register value.

1-89

containing the iSBC 86/ 12 board and typing two
"U"s on the Intellec console. The ASCII uppercase
character U has a binary pattern of alternating ones
and zeros, the iSBC 86/ 12 monitor uses this pattern
to determine the baud rate of the serial link. After
the baud rate has been determined, the monitor
program outputs a sign-on message to the console.
An example of loader program execution and
monitor program initialization is shown below (user
entered characters are underlined).

:Fl:SBC861
ISIS-II iSBC 86/ 12 LOADER, Vx.x
(user resets iSBC 86/ 12 board and types two "U"s)
jSBC 86/ 12 MONITOR, Vy.y

The monitor prompts with a period "." when it is
ready for a command. The user can then enter a
command file, which consists of a one- or two
character command followed by zero, one, or more
arguments. The command may be separated from
the first argument by an optional single space; a
single comma is required as a delimiter between
arguments. The command line is terminated by a
carriage return or a comma depending on the com
mand, and no action takes place until the command
terminator is sensed. The user can cancel a com
mand before entering the command terminator by
pressing any illegal key (e.g., rubout or Control-X).

Table 2 contains a summary of the loader and
monitor commands. These commands will not be
explained in detail; instead, the next section of the
application note will show examples of using these
loader and monitor commands. The iSBC 957
User's Guide referenced at the front of this docu
ment does, however, contain a complete description
of each of the monitor and loader commands.
Table 3 contains a list of the 8086 hardware registers
and abbreviations used by the monitor program.

Table 3
8086 CPU REGISTERS

REGISTER NAME ABBREVIATION

Accumulator AX
Base BX
Count ex
Data DX
Stack Pointer SP
Base Pointer BP
Sour'ce Index SI
Destination Index DI
Code Segment cs
Data Segment DS
Stack Segment SS
Extra Segment ES
Instruction Pointer IP
Flag FL

AFN·01931A

ON-BOARO { FFFFFH
EPROM MONITOR PROGRAM

rnK bytes) FEOOOH

AVAILABLE
SOOOH ------USER------

AREA

ON-BOARD
1COH

RAM INITIAL US~R ST ACK

d2K bytes) 130H

MONITOR
DATA
AREA

AOH

INTERRUPT
VECTORS

0-39

OH

39

38

37

36

35

34

33

32

31

. '
•I
•I . '
•I

I

INTR'7

INTR 6

INTR 5

lNTR 4

INTR 3

INTR 2

INTR 1

1NTR 0

RESERVED
FOR

FUTURE
USE BY
INTEL'

9CH

98H

94H

90H

SCH

88H

84H

80H

Interrupt on Overflow tOH

One-Byte lntr lnstruc;:tion CH

Non-Maskable lntr BH

Single Step 4H

Divide by Zero OH

8259A PIC

VECTORS

Figure 5. Memory Map of iSBC™ 86I12 Memory With Monitor Program

Figure 5 contains a memory map of the iSBC
86/ 12 memory with the monitor program. Note
that the monitor uses the top 8K bytes of memory
for its program code and the first 384 bytes of
memory (locations I/) hex to 17F hex) for monitor
and user stack, data and interrupt vectors. When
the monitor program is reset, the segment registers,
the IP and the flags are set to I/);· and the SP is set
to l/)lCl/)H allowing·64 bytes for the user's stack. If
64 bytes is not sufficient for the user's· application
program, the SP should be set to some other value.
The monitor program sets the single-step, one-byte
instruction trap and non-maskable interrupt vectors
to monitor entry points. The monitor also sets the
8259A Priority Interrupt Controller to fully nested
mode with level I/) at the highest priority and all
interrupts unmasked. The eight interrupt vector
addresses for the 8259A are also set to addresses in
the monitor. User programs may change the 8259A
interrupt vectors to interrupt service routine ad
dresses within the user programs; it is not necessary
for users to program the 8259A chip directly. When
an interrupt occurs, control passes to either the
monitor or directly to user code depending on the
address stored in the vector location. When the
monitor responds to an interrupt, it acknowledges
the interrupt and displays the interrupt level, CS
and IP register values and next instruction byte on

1-90

the system console (e.g., I= 3 @ 100:230F F5).

When a user requests a breakpoint with a "G"
command, the monitor inserts the single byte
instruction trap instructions (INT 3) in the location
where the breakpoint is requested. It is also possible
for the user to code an INT 3 instruction in his
program. When a user coded INT 3 instruction is
executed, the monitor will be re-entered and a line
with the format @<CS Value>:<IP Value> <In
struction byte>will be displayed (e.g., @1200:3F02
F5).

Included on the diskette with the Loader program
are two libraries containing I/ 0 routines for the
console. The library files are named SBCIOS.LIB
and SBCIOL.LIB; they contain similar routines.
The routines in SBCIOS.LIB are written to be
called with intrasegment subroutine calls, a PL/M-
86 module compiled with the "small" control
generates this type of call. The routines in
SBCIOL.LIB are written to be called with interseg
ment subroutine calls, a PL/M-86 module com
piled with either the "medium" or "large" control
generates this type of call.

The co~sole input output routines, CI and CO,
contained in the library should be used when per
forming character input and_ output on the console.
Example PL/M-86 calls to the two routines are:

AFN-01931A

CI: PROCEDURE BYTE EXTERNAL;
END CI;

CO:PROCEDURE(X)EXTERNAL;
DECLARE X BYTE;
END CO;

DECLARE INPUT$CHAR,
OUTPUT$CHAR BYTE;

INPUT$CHAR = CI;

CALL CO(OUTPUT$CHAR);

General Comments on Use of the iSBC 957 Package

1. If the iSBC 86/ 12 board is reset any time after
the initial baud rate search, it is not necessary to
reload the iSBC 957 Loader program or to
download the program code a second time to the
iSBC 86/ 12 board. It is only necessary to re
establish the communications link by typing two
"U"s for the baud rate search.

2. The iSBC 86/ 12 board should not be plugged
into an available card slot in an Intellec chassis;
a separate chassis should be used. There are at
least three reasons for this:

a. There is only one RESET signal available on
the Intellec system bus. Thus, each processor
may not be reset independently. This means
that the iSBC 86I12 board cannot be reset
without re-booting the ISIS-II operating sys
tem and restarting the iSBC 957 Loader.

b. The Intellec system uses five of the eight avail
able interrupts on the system bus. This severely
restricts the range of interrupts available to
the iSBC 86/ 12 board. Also, the iSBC 86/ 12
board cannot turn-off the interrupt lamps on
the Intellec front panel.

c. The iSBC 86/12 board may address up to 1
Megabyte of memory using a 20 bit address.
Many Intellec systems contain boards which
generate and decode only the low order 16
address bits. For example, the iSBC 016 mem
ory expansion board and the Intellec 800

1-91

monitor PROMs only decode 16 address bits.
Memory expansion above 64K bytes in these
systems is difficult since the boards which de
code only 16 bits will force "holes" in the
address space above 64K.

3. The iSBC 86/ 12 board is delivered with two
inputs to the 8259A Priority Interrupt Controller
connected. Interrupt request 2 (IR2) is connected
to the counter ~ output of the 8253 Program
mable Interval Timer. IR5 is connected to the
INT5 I signal of the MULTIBUS System Bus. If
these interrupts are not desired, the wire wrap
jumpers making the connections should be re
moved from the iSBC 86/ 12 board. A particular
problem may exist with the counter ~ connection
to IR2. If the 8253 counter ~ is not specifically
initialized with software, a low frequency square
wave output will exist at counter ~'s output. This
may cause unwanted interrupts when interrupts
are enabled by user programs.

4. If the iSBC 86/ 12 board is used in a system with
expansion boards, it is important that the MUL
TIBUS bus exchange pins be properly jumpered.
For example, if the iSBC 86/ 12 board is used
with an iSBC 032 expansion memory board in a
system, the BPRN I MULTIBUS pin for the
iSBC 86/ 12 board should be grounded.

In addition, if any interrupts are used with the
iSBC 86/12 board the BPRN/ pin must be
grounded. This is true in both single and mul
tiple board systems.

5. Certain user systems require more than one single
board computer in the system for performing the
functions required by the application. The MUL
TIBUS System Bus has been specifically designed
to permit multiple CPU boards to communicate
and to share system resources. However, de
bugging systems with multiple CPUs has always
posed somewhat of a problem. The iSBC 957
package provides a solution to this problem. The
serial cable which connects the iSBC 86/ 12
board to the Intellec system may be removed
after the program has been downloaded to the
iSBC 86/ 12 board. A console CRT may then be
connected directly to the iSBC 86 I 12 board and
the monitor program may be used to debug the
program running on the board. Other iSBC
86/ 12 boards may also be downloaded from the
Intellec system and then switched to their own
local terminals. An 8-bit processor board, such
as the iSBC 80/30 board, may also be included

AFN·01931A

in the system and ICE-85™ may be used for
debugging the iSBC 80 I 30 program concurrently
with the iSBC 86/12 programs. Using this
scheme, it is possible to debug a system which
has several CPU boards by setting breakpoints
and using other debugging features on each of
the individual CPUs.

V. MATRIX MULTIPLICATION EXAMPLE

To illustrate how the iSBC 957 package can be used
to assist in the writing and debugging of 8086 pro
grams on the iSBC 86/12 board, an example pro
gram of a matrix multiplication will be presented.
The example chosen has been intentionally kept
simple and straightforward. The emphasis of this
section will be to document the steps required to as
semble, compile, link, locate and debug software
using an Intellec system, the iSBC 957 package and
the iSBC 86/12 board. Part of the example will be
written in 8086 assembly language and part in PL/
M-86.

The main program is written in PL/M-86. The
main program first performs some initialization
and the matrix multiplication, then the program
calls an assembly language procedure (subroutine),
a PL/M-86 procedure and the console output pro
cedure CO supplied in the I I 0 library on the iSBC
957 diskette. A flow diagram for the example
program is shown in Figure 6.

Explanation of the Program Code

The program code is contained in three software
modules EXECUTION$VEHICLE, FIND, and
SBCCO. EXECUTION$VEHICLE contains the
main program coded in PL/M-86 and the binary
to ASCII conversion procedure BINDECASC
also coded in PL/M-86. The module FIND con
tains the assembly language . procedure FIND$MX
which· searches a matrix for its maximum value.
The module SBCCO resides in the library of con
sole I/ 0 routines supplied with the iSBC 957 pack
age. The procedure CO will be used from this
library.

The program code for the EXECUTION$VEHICLE
and FIND modules will be explained in the follow
ing paragraphs. Appendix B contains compilation
and assembly listings for the two modules; also
contained in Appendix B is. a memory and debug
map for the linked modules. The listings contain
circled reference letters (e.g., @)which are referred
to by the code description below. The listings in the
appendix have been printed on fold-out pages so
that they may easily be seen when reading the text.

1-92

START

Initialize
X$ROW & Y$ROW

Matrices

Multiply
Matrices,

store result in
Z$ROW

FIND$MAX

Find MAX value
in Z$ROW

BINpECASC

Convert to
ASC11

Output MAX
value on

terminal using
CO routine

END

Figure 6.
Flow Diagram of Matrix Multiplication Example

Much of the description given below assumes that
the reader is familiar with the PL/M-86 language
and compiler, the 8086 assembler, and the link and
locate program QRL86. It is recommended that the
reader have at least a cursory knowledge of these
subjects. The Intel literature for these subjects is
listed near the front of this application note.

The EXECUTION$VEHICLEModule

@ The first section of the module includes intro
ductory comments and then statements. to de
clare the matrices, other variables, and pro
cedures used in. the program. Note that the
matrix dimensions are declared using the literals
M, N, and P which are initially set to 6, 5, and
3. Later in this note, other values for M N
and P will be used. ' '

® The next section of code contains the state
ments which initialize the two matrices that will
be multiplied X$R0Wand Y$ROW.

As a result of this initialization, the two ma
trices will contain values as shown in Figure 7.

AFN·01931A

0 0 0 0 - 1 -2

-1 -2

2 2 2 -1 -2

3 -1 -2

4 4 4 4 4 0 -1 -2

5 5

X$ROW (6X5) Y$ROW (5X3)

Figure 7.
X$ROW and Y$ROW Matrices After Initialization

@ The next program section performs the matrix
multiplication. The algorithm required to mul
tiply two matrices X and Y, storing the result in
a third matrix Z is:

n

Zmp = L Xmi *Yip

i = 1

Assuming X to be 6X5 matrix and Y a 5X3
matrix then

Zll = XllYll + X12Y21 + X13Y,1 + X1.Xi1 + X1sYs1
Thus, the upper left term is equal to the sum of
the products of the top row of the X matrix
times the left column of the Y matrix. The re
sult that is obtained by multiplying the two
matrices X$ROW and Y$ROW after they are
initialized as explained above, is shown in
Figure 8.

0 0 0

-5 -10

0 -10 -20

-15 -30

0 -20 -40

0 -25 -50

Z$ROW (6X3l

Figure 8. Result of Multiplying the Initialized Matrices
X$ROW and Y$ROW

@ The external assembly language procedure
FIND$MX is called to determine the maximum
value in the matrix. The procedure is a typed
procedure and returns the maximum value to
the calling program which stores it in the inte
ger variable MAX.

1·93

@ The maximum value is then converted to a six
(6) digit ASCII character string by the pro
cedure BINDECASC. The character string is
stored in the array MAXASCARRA Y, which
contains the sign of the number and five (5)
digits for the magnitude.

® Finally, the characters "MAX VALUE =" are
output on the system console followed by the
6 ASCII characters containing the maximum
value. The PL/M-86 built-in procedure SIZE
returns the number of bytes of the array TEXT
as a word value. The PL/M-86 built-in pro
cedure SIGNED changes the type of the value
from WORD to INTEGER. This is required so
that the type of the arguments in the DO state
ment agree. The console output procedure CO
is used to output the characters on the system
console.

@Also contained in the module MATRIX.PLM
is the binary to ASCII conversion procedure
BINDECASC. The first portion of the code
contains the comments explaining the para
meters and the calling sequence followed by the
declarations. Note that the address of the array
where the characters are to be stored is passed
to the procedure and that the characters will be
stored in the array using based variables. The
next section of the code stores either a + or -
sign in the first character position of the ASCII
array and stores the absolute value of VALUE
in the variable TEMP. Finally, the binary value
is converted to ASCII using the algorithm
explained in the comments. The MOD operator
returns the remainder of the division by 10. The
UNSIGN built-in procedure is required to
change the type of the expression from INTE
GER to WORD.

The FIND Module

@ The FIND module contains the assembly lan
guage procedure FINDMX. The calling se
quence and the parameters are explained in the
comments at the beginning of the listing. Note
that the label FINDMX has been declared
PUBLIC so the link program can fill in its
address in the CALL statement in the main
program of module EXECUTION$VEHICLE.

The FIND module will contain three segments:
a data segment, a stack segment and a code
segment. It will be both convenient and prag
matic to append these three segments to the
code, data and stack segments created by the

AFN-01931A

0

compiler for the EXECUTION$VEH1CLE
module. To accomplish this, the three segments
must be given the same SEGMENT and CLASS

. names as those given these segments by the
compiler. The SEGMENT and CLASS. names
used by the compiler are CODE, DATA, and
STACK. The GROUP statements are used to
place the segments DAT A and ST ACK in the
group DGROUP and the segment CODE in the
group CGROUP. These group definitions con
form with the group definitions generated by
the PL/M-86 compiler when the SMALL size
control option is used. A group is a collection
of segments which requires less than 64K bytes
of memory.

The ASSUME directive informs the assembler
that the DS and SS registers will contain the
base address of DGROUP and the CS register
will contain the base address of CG ROUP.
This information will be used by the assembler
when constructing machine instructions.

The first ·segment appearing in the module is
the data segment.· The order of the segments is
arbitrary, although it is recommended that the
data segment precede the code segment to mini
mize forward references to variables which may
cause the assembler to generate longer instruc
tion codes. The data segment is declared
PUBLIC, aligned on a WORD boundary and
given both a segment and class name of DATA.
Then follows the contents of the segment. In
this particular example, only one word of stor
age is required. The ENDS directive indicates
the end of the segment.

® Next comes the stack segment which is given
the segment name of ST ACK, the combine
type attribute of ST ACK and the class name of
STACK. The combine-type attribute of STACK
assures that the stack storage required in this
module will be appended to. the storage re
quired in the PL/M-86 compiled modules. Two
bytes of stack are required by the code in this
module, however, the monitor uses 13 words of
stack when breakpoints and interrupts are used.
Therefore, 14 words are reserved for the stack.

@ Finally comes the code segment. The code seg
ment has been given a segment name and class
name of CODE and a group name of
CGROUP, and has been declared PUBLIC.
The alignment attribute of BYTE is specified

1-94

since it 1s desired that the code from this
module be appended directly to the code from
other modules without gaps between the code
modules .

The assembly language code follows next. The
code for the procedure must be enclosed be
tween a pair of PROC, ENDP statements. The
PROC statement is given the label FINDMX
and specified as a NEAR procedure indicating
it will be called with a near (intra-segment)
CALL instruction and not a far (inter-segment)
CALL instruction.

The comments at the beginning of the module
and adjacent to the program statements ex~
plain the function being performed by the
assembly language code.

The SBCCO Module

@ The console output procedure CO is .contain~d
in the object module SBCCO of the library f!le
SBCIOS.LIB. SBCIOS.LIB is part of the iSBC
957 package 1/0 libraries. The calling sequence
and parameters for CO may be seen in the
external procedure declaration in the EXE
CUTION$VEHI CLE module.

Compiling the E~ECUTION$VEHICLE
Module

The EXECUTION$VEHICLE module is stored on
a file named MATRIX.PLM on disk device :Fl:.
To compile the module, the following command
line is used:

- PLM86 :Fl :MATRIX.PLM DEBUG

This command line will cause the module stored in
the file :Fl:MATRIX.PLM to be compiled. The
object code generated will be stored in a file with
the default name :Fl:MATRIX.OBJ and the listing
generated will be stored in a file with the default
name :Fl:MATRIX.LST. To override the default
object and listing files, the NOOBJECT and NO
LIST compiler control switches can be used. File
names for the listing and object files may also be
specified in the command line. The DEBUG com
piler control switch causes the compiler to generate
extra symbol and line number information which
will be used during debugging of the program. A
listing of the compiled EXECUTION$VEHICLE
module is contained in Appendix B.

To aid in the debugging of the program, the
module was compiled ·a second time with the fol
lowing command line:

AFN·01931A

- PLM86 :Fl:MATRIX.PLM NOOBJECT
CODE DEBUG PRINT (:Fl :MATRIX.XLS)

This command line specified that no object file is to
be created and a listing file should be stored in the
file :Fl:MATRIX.XLS. The CODE compiler con
trol switch causes the compiler to list the assembly
language statements which the compiler has gener
ated for each line of PL/M code. The listing stored
in the file MATRIX.XLS is contained in Appendix
c.
Assembly of the FIND Module

The assembly language module FIND is stored on a
file named FIND.ASM, to assemble this module
the following command line is used:

ASM86 :Fl :FIND.ASM DEBUG

This command line will cause the FIND module to
be assembled with the object code stored in the
default file :Fl :FIND.OBJ and the listing stored in
the default file :Fl:FIND.LST. The listing of the
assembled FIND module is contained in Appendix
B.

Linking and Locating the Object Module

To link and locate the object modules, the QRL86
program will be used. The QRL86 program per
forms both the linking and the locating of the
object modules in a single step. QRL86 is primarily
designed for the debugging stages of program devel
opment. Some applications may require the extended
capabilities of the separate LINK and LOCATE
programs when the final link and locate is per
formed. The command line used to invoke the
QRL86 program is:

QRL86 :Fl:MATRIX.OBJ, :Fl:FIND.OBJ,
SBCIOS.LIB ORIGIN (lOOOH)

This command line will cause QRL86 to link the
code from the three modules and to locate the
resultant absolute object module starting at location
1000 hexadecimal. The iSBC 86/12 monitor uses
the first 180H bytes of memory for the monitor
stack, data and interrupt vectors, lOOOH was chosen
as a convenient starting address for the program.
The absolute object code will be stored in a default
file :Fl:MATRIX (note no file name extension is
used). By default, the memory and debug maps
which are generated are stored in the file :Fl :MA
TRIX.MPQ and are contained in Appendix B.

@ The memory map contains the starting ad
dresses and sizes of the CODE, CONST,
DATA, STACK and MEMORY segments of
the object module. Note that the start address

1·95

for the program is specified as (\i)l~H, ~2H)
indicating a CS value of \i)l~H and an IP
value of ~2H or an absolute value of 01~2H.
The first two bytes of the code segment contain
address values which the code generated by the
compiler will use for setting up the DS and SS
registers. The memory map shows the code
segments from the three modules collected into
the group CGROUP. The code segment from
the EXECUTION$VEHICLE module is given
the segment and class names of CODE and is
put into CGROUP by the PL/M compiler. To
assure that the code segment from the FIND
module is concatenated with the code segment
from the EXECUTION$VEHICLE module the
identical class, segment and group names were
specified in the SEGMENT and GROUP state
ments in the FIND module. Next, the group
DGROUP is shown in the memory map.
DGROUP contains 4 segments labelled
CONST, DATA, STACK and MEMORY.
Putting all of these segments in the same group
tells the linker that they will all be in the same
64K block of memory. The SMALL size con
trol option of the compiler, which was invoked
by default, creates CG ROUP, DGROUP, and
the segments contained in them.

® The debug map contains the memory address
of variables, instruction labels and the ad
dresses of each code line of the PL/M-86
module. Notice that the variable storage labels
have their addresses specified in the format (DS
register value, displacement). For example, the
variable TEMP has an address of DS=012AH,
displacement = 000CH or an absolute address
of 0136H. Instruction labels and line numbers
use the format (CS register value, IP register
value). Thus, line number six (6) in the module
EXECUTION$VEHICLE has the address
cs=01y>y>H; IP=y>B5H or 011B5H.

Object to Hex Conversion

Before downloading the program to the iSBC 86/12,
the format of the object module must be converted
from the absolute object module format which
QRL86 creates to a hexadecimal/ ASCII representa
tion of the object module. This is done using the pro
gram OH86 with the following command line:

OH86 :Fl:MATRIX TO :Fl:MATRIX.HEX

Downloading and Debugging the Program

The hardware configuration used for debugging the
matrix multiplication example program code was

AFN-01931A

an Intellec Series II Model 230 development sys
tem, the iSBC 957 package, an iSBC 86/ 12 board,
and an iSBC 660 system chassis. What follows is
the system-user dialog for a typical debugging
session.

The first step required is to bootstrap load the
ISIS-II operating system by hitting the RESET
switch of the Intellec. The Intellec resident loader
software is then loaded and executed. Throughout
the dialog which follows operator entered charac
ters will be underlined:

ISIS-II, V3. 4
-~

ISIS-II I.SBC 86/12 LOADER, Vl. 2

To initialize the iSBC 86/ 12 monitor, the user must
hit the RESET switch on the iSBC 660 chassis and
type two "U"s on the system console. The monitor
program will output a line on the console when it is
properly initialized.

!SBC 86/12 MONITOR, Vl. 2

The monitor command "X" is typed to check that
the monitor is properly operating and to examine
the contents of the 8086 registers .

. x
A°X=!HHHl BX=0000 CX='0000 DX=0000 SP=01C0 BP=0000 5!=0000
DI=001:Hl CS=00110 DS=000il 55=0000 ES=0000 IP=0000 FL=0000

To download the hex object file to the iSBC
86/ 12, the "L" command is used. Because an
Intellec Series II Model 230 is being used, a serial
download is specified. The hex file name is
MATRIX.HEX which is resident on disk device
:Fl:,

• LS,: Fl: MA'I'RIX. HEX

The "X" command is used again to examine the
CPU registers. Note that the monitor has changed
the contents of the CS and IP registers to the value
of the starting address of the program.

.~
AX=0000 BX=0000 CX=0000 DX=0000 SP=01C0 BP=0000 SI.=0000
01=0000 CS=0100 DS=001illf 55=001:10 ES=0000 IP=0002 FL=0000

The "D" command is next used to display the first
101 bytes of the program code. Unless another seg
ment register is specified, the display command
assumes all addresses specified are relative to the CS
register. Thus, the code displayed will be from abso
lute addresses 1000 through 1100. The program code
displayed may be compared with program code gen
erated by the PL/M-86 compiler shown in Appendix
C, code line 36.

1-96

.00.100
0000 2A 01 FA 2E 8E 16 00 00 BC 00 00 88· EC 16 lF FB
0010 C7 06 8E 00 00 00. 81 3E BE 00 05 00 7E 03 E9 3C
0020 00 C7 06 90 00 00 '00 Bl 3E 90 00 04 00 7E 03 E9
0030 22 00 BB 06 BE 00 B9 0A 00 F7 E9 BB 36 90 00 Dl
0040 E6 B9 C3 BB 0E BE .00 B9 BB 10 00 Bl 06 90 00 01
0050 00 E9 03 FF Bl 06 BE 00 01 00 E9 B9 FF C7 06 8E
0060 00 00 00 Bl 3E BE 00 04 00 7E 03 E9 40 00 C7 06
0070 90 00 00 00 Bl 3E 90 00 02 00 7E 03 E9 26 00 BB
0080 06 90 00 F7 DB 50 8B 06 BE 00 B9 06 00 F7 E9 BB
0090 36 90 00 Dl E6 B9 C3 59 89 BB 4C 00 81 06 90 00
00A0 01 00 E9 CF FF 81 06 BE 00 01 00 E9 ·95 FF C7 06
00B0 92 00 00 00 Bl 3E 92 00 02 00 7E 03 E9 BC 00 C7
00C0 06 BE 00 00 00 Bl 3E BE 00 05 00 7E 03. E9 72 00
0000 8B 06 BE 00 .B9 06 00 F7 E9 BB 36 92 00 Dl E6 B9
00E0 C3 C7 80 6A 00 00 00 C7 06 90 00 00 00 Bl 3E 90
00F0 00 04 00 7E 03 E9 41 00 BB 06 BE 00 B9 0A 00 F7
0100 E9

The PL/M-86 compiler ends the main program in
the EXECUTION$VEHICLE module with a halt
instruction. After execution of the program it is
more desirable to return to the monitor. To ac
complish this, an INT 3 instruction (code=CC)
will be substituted for the halt instruction (code=
F4) at the address of 1B4H relative to a CS value
of lOOH. First the "D" command is used to verify
the address of the halt instruction, then the "S"
command is used to change the instruction to an
INT 3 instruction.

• DlB4
0ls4F4
. SlB4, F4- Q;;

To execute the PL/M-86 main program, the "G"
command is used. After the "G" is typed, the
current contents of the IP are output, followed by
the contents of the byte pointed to by the IP. A
new value for the IP or. breakpoint addresses may
be specified before a carriage return <CR> is typed.
I.n this example, only a <CR> is typed.

·Ii 1:1002- f'A
MAX VALUE = -00050
@0100,01B5 55

The program executes and outputs the maximum
value of the matrix calculated. The INT 3 instruc
tion is executed which causes a return to the
monitor. The monitor types out an at-sign (@)
followed by the CS and IP register values and the
first byte of the instruction following the INT 3
instruction.

The "X" command is typed to examine the CPU
registers. Note that the program has set both the SS
and DS registers to ~12A. (912A~H is the address
of the DGROUP as shown in the memory map.)

.x
AX=0030 BX=0005 CX=000A DX=0000 SP=0000 BP:00D0 SI=000
DI=0006 CS=0100 DS=012A SS=012A ES=0000 IP=01B5 FL=F20 ...

The three matrices are displayed. Note that a word

AFN·01931A

display has been specified by using the "DW"
Command and that the addresses have been speci
fied relative to the DS register. The addresses of
XROW, YROW, and Z$ROW may be found in
the debug map given by QRL86. Note that the
values stored in the matrices are the same as those
shown in Figures 8 and 9.

.DW DS:l0,4A
0010 0000 0000 0000 0000 0000 0001 0001 0001
0020 0001 0001 0002 0002 0002 0002 0002 0003
0030 0003 0003 0003 0~~3 0004 0004 0004 0004
0040 0004 0005 0005 0005 0005 0005
.DW DS:4C.68
004C 0000 FFFF
0050 FFFE 0000 FFFF FFFE 0000 FFFF FFFE 0000
0060 FFFF FFFE 0000 FFFF FFFE
.Dw DS:6A,8C
006A 0000 0000 0000
0070 0000 FFF8 FFF6 0000 FFF6 FFEC 0000 FFFl
0080 FFE2 0000 FFEC FFD8 0000 FFE7 FFCE

The "G" Command is used to reset the IP register
to the start address of the program ('/1/)2) and to
specify a breakpoint at address ~AEH, which is the
address of statement 57 of the main program.
Statement 57 is the point in the program after the
X$ROW and Y$ROW matrices have been initial
ized, but before the matrix multiplication is
performed. After the <CR> is typed, the program
executes until the breakpoint is encountered. At
this point, the monitor outputs a line specifying
the number of the breakpoint, the CS and. IP
values and the first byte of the next instruction to
be executed.

.~ 0185- 55 002,AE

BRl @0100: 00AE C7

Next, the single-step capability is used with the
"N" command to execute single instructions. At
any time, CPU registers may be examined or
changed. In this example, the "X" command is
used. Execution of succeeding instructions is caused
by typing a comma(,).

·!! l:i0AE- C7 .J.
0084- 81 L

00BA- 7E ,
00BF- C7 -

·~
AX=0018 8X=0018 CX=FFFE DX=0000 SP=00D0 ~P=00D0 SI=0004
DI=0006 CS=0l00 DS=012A SS=012A ES=0000 IP=00BF FL=F293

·~0~~~F81 C~ L

00CB- 7E -

The contents of the X$ROW and Y$ROW matrices
are examined and changed with the "SW" (sub
stitute word) command~ If a comma (,) is typed
after the contents of memory are displayed, then
the contents are left unchanged and the next word
of memory is displayed. If a value followed by a
comma or <CR2 is entered, then the contents are
changed. If a <CR> is entered, the substitute

1·97

sequence is terminated.

fl~~CD~~i~~ ~00l- '
001E 0001- 1@
.SW DS:SA, FFFF- -1.

005C FFFE- L
005E 0000- L

0060 FFFF- §-4

After the matrices are modified, execution is
resumed with the "G" command. The max value is
output and the INT 3 instruction executed. Finally,
the contents of the 3 matrices are displayed.

.g 00C8- 7E
MAX VALUE = +00430
@0100: 0185 55
.DW DS:l0,8C
0010 0000 0000 0000 0000 0000 0001 0001 0010
0020 0001 0001 0002 0002 000i 0002 0002 0003
0030 0003 0003 0003 0003 0004 0004 0004 0004
0040 0004 0005 0005 0005 0005 0005 0000 FFFF
0050 FFFE 0000 F~'FF FFFE 0000 FFFF FFFE 0000
0060 0064 FFFE 0000 FFFF FFFE 0000 0000 0000
0070 0000 0051 FFD8 0000 00C0 FFEC 0000 0120
0080 FFE2 0000 0180 FFD8 0000 01E0 FFCE

Expanding the Example Program's
Memory Requirements

To illustrate how the iSBC 86/ 12 board may be
used for executing 8086 programs which require
large amounts of RAM, the example program will
be modified. The matrix dimensions of the example
will be changed from values of 6, 5 and 3 for the
literal symbols of M, N, and P to values of 100,
50, 70. The three matrices will then be of size
100X50, 50X70, and 100X70. The memory re
quired for these matrices is 15.5K words or 31K
bytes. The data, constant, stack and memory
segments which are contained in the group
DGROUP will· now comprise almost 32K bytes of
memory.

The extra memory requirements will be supplied
by using an iSBC 032 board with the iSBC 86/ 12
board in the iSBC 660 chassis. The iSBC 032 board
is a 32K byte RAM board which is compatible
with both 8- and 16-bit CPU boards. The base
address of the board may be selected anywhere in
a 0 to 1 megabyte range on any 16K byte boundary.
8- or 16-bit data transfers may be selected. The
iSBC 032 board will be jumpered to respond to
addresses in the 512K or 544K address space (20
bit hex address range to 8~B to 87FFFH). This
will illustrate the capabilities of the 8086 to access
a 20-bit, 1 megabyte address range.

One other modification is required to the program.
The magnitude of the numbers which would result
from multiplying matrices of this size would great
ly exceed the capacity of the 16-bit integer storage,
even with the two matrices initialized to the small

AFN-01931A

values they presently contain. To keep the example
simple, the initialization values will be changed so
all elements of the X$ROW matrix are set equal to
2 and all elements of the Y$ROW matrix are set
equal to 3. The result of the multiplication . .should
make all the elements of Z$ROW equal to 300.

The modified lines of program code are shown
below.

27
28
29

/* MATRIX DHtENSIONS. * /
DECLARE M LITERALLY '100';
DECLARE N. LITERALLY 1 50 1 ; '

DECLARE P LITERALLY 1 70 1 ;

36 DOI=•TO(M-1);
3 7 DO .J = 0 TO (.N-1) ;
38 K$ROW(I) .COL(J) = 2;
39 END;
40 END;

41 DO I = 0 TO (N-1);
42 DOJ=0TO(P-l);
43 Y$ROW(I) .COL(J) = 3;
44 END;
45 END;

The EXECUTION$VEHICLE module must be re
compiled and then the tI:iree program modules must
be linked and located using the QRL86 program.
Specifying the SEGMENTS option of QRL86, the
origin of the CODE segment which is in the group
CGROUP is set at lOOOH, as in the first example.
However, the origin of the CONST, DATA
STACK and MEMORY segments which make up
the group DGROUP is set at 80000R

QRL86 :Fl:MATRIX.OBJ,:Fl:FIND.OBJ,
SBCIOS.LIB SEGMENTS (CODE(lOOOH),
CONST (80000H), DATA STACK, MEMORY)

The memory map generated by QRL86 shows· the
CGROUP having a start address of OlOOOH and
the DGROUP having a start address of 80000H.

INVOKED 'BY:
QRL86 :Fl:MATRIY.OBJ,:Fl:FI.NO.OBJ,SBCIOS.~113 &
SEGME.NTS (CODE (1001'H) ,CONST (80000H) , DATA, STACK ,-MEMORY)

INPUT MODUL.ES INCLUDED: .
:Fl :MATRIY .OBJ (EKECUTIONVEHICLE I
: Fl: FIND. OBJ (FIND)
SBCIOS .• LIB (SBCCO)

RE:SULT 'WRITTEN ·ro : Fl: MATRIY'(EXECUTIONVEHICLE)
START ADDRESS IS (ftfl00H,0002H)

START LTH ALIGN NAME CLASS

01000H 298H G /GS/ CGROUP
01000H 21DH w CODE'(EXECUTIONVEHIC LE) CODE
•121DH 41H B CODE (FIND) CODE
0125EH · 3,AH w CODE (SBCCO) CODE

/GE/ CGRQUP
80000H 7970H G /GS/ DGROUP
80000H CH w CONST (EKECUTIONVEHICLE I CONST
8000CH 0H w CONS'r (SBCCO) CONST
8000CH 792AH w DATA (EXECUTIONVEHICLE) DATA
B7936H 2H w DA-TA (FIND) DATA
87938H 0H w DATA(SBCCO) DATA
B7940H 30H SW STACK STACK
87970H 0H w MEMORY MEMORY

/GE/ DGROUP
87970H 0H G ??~EG (FIND) (NULL)

1·98

The object code is then conv.erted to hex format
and downloaded to the iSBC 86/i2 board. When
the program is executed, the maximum value is
calculated andoutput on the console.

-SBC861

ISIS-I.I ISBC 86/12: LOADER, Vl ~ 2

ISBC 86/12 MONITOR, ,Vl.2
, LS, :Fl: MATRIY, HEX

.SlAC, F4- ~

.G 0002- FA
MAX VALUE = +1:'10300
@0100 :01AD 55

VI. CONCLUSION

This application note has described the iSBC 957
Intellec-iSBC 86/ 12 Interface and Execution
Package, and how this package may be used to
develop and debug programs for the 8086 processor.
First, the iSBC 86/ 12 single board computer was
described, followed by a detailed description of the
iSBC 957 package and the iSBC 86/12 system
monitor commands. The power and versatility of
the iSBC 957 package and monitor commands. for
developing and debugging programs for the 8086
were illustrated by a program example. In the
example a program which consisted of PL/M-86
and assembly language routines was presented. The
program code was explained, and the steps required
to compile, assemble, link, locate, and debug the
program were illustrated. Finally, a typical de
bugging session using the iSBC 86/ 12 system moni
tor which illustrates the powerful capabilities of the
monitor was presented.

AFN-01931A

cb
(0

)> ..,
z
6
§
,;

--'
INITI RESET/ RESET'

n = ~

---ROI

rsus.Yi
15 MHZ RESET/ S0-52

Oh
~

'"'"'

BUS ADE~
'·' .:·::: " ') "~'!., " o"'o "'"

~
READY 51 QMCE t:ll,; U(;

IORC

" s2 ~E:c LOCK + ovERFllOE cc I

'

~~ r.+r'::"~''-::_-...,-;:_-::_-::_-::_~--+--+--~

~ LOCK

- INTR ADlG-Aoig 4 INTA CYCLE :~~.I

ADO·A015 16

SLAVE MOOE

ADO-AOf 16

' DP ON BO ADR EN
ADO-AD7

-0-TIR __ ..,.. ______________ ..,.._. ~-·-·-"-·"·"--......... ----------------""1
ABO-ABF 16

ASJ-ABF

10AACK 1-"''0.""";'''~''_' --l----1--------1---------L=-----1--'======t---------=:-i
of.'R

ADO-AOF 16 16

LOCAL INTA DEN

AD6-ADA

B~~~:R CS ENABLE 1·0 READ/WRITE
"' L_ ____ -'co"-o°'.,"',_",.~,~ .. ------~--~ OMCE

l

"iJ

BUS INTA DEN

I
"i~ T I . .

DATA CS RfW ,.-,,,OA,..,.,..---,,t,,,--,e*<W,,---,<,,\ITT,,., --...,,,;.,,,,..-,

2.46 MHZ

,,

8253PITA28 8259A PIC A24

CTR1 IRO-IR7 INTA

.

iSBC™ 86/ 12 SIMPLIFIED LOGIC DIAGRAM

INPUT /OUTPUT AND INTERRUPT

"""9
L8t1

II
)>
-0
-0
m z
0 x
)>

=
0 -~

~

~

g

> ,,
~
~
>

!NIT/ RESETi

BUS ADEN~

n =
~ R~~ r,-1-----"""~~L_---------------------------.-1---------~~

ccoc' r=
GENE,,:-TOR ~

READY

"'

STATUS
DECODER

..... ~
aw;

-~
F'"--'-+-'DTIR

ABO-AB13 20

XACKi

OTIR

~
ATA PROM ENABLE

" .

OBO·DBF

v _112
•N OUT

ADV ~O ADR 8 ADll-ADF 19 ABO-ABF 16 Ae°JIF'}~~ 16 AMO·AMF 4 AMC·AMF AD~ESS
(SEEAG.4-1) A42/58 DRIVER

cs • - •
EN DP ON SD ADA EN

A;~~:Ss DP ROI
DECODE AB13

i~ PROM ENABLE ON BO RAM Rar ADr=~

SLAVE MOOE/ ~~:~
3

AB1-ABC 12

' ADRDi·
AOR13/

BHENI I

1,..-J

"'
t

cs

.....
co•m•>c

mTI fil
VR l:ii!

.. o.
A28129146/47 .

" ""°"'
~

AOO·ADF 1 16 DMO-OMF OMO-DMF OATOl-OATF/ j

iSBC™ 86/ 12 SIMPLIFIED LOGIC DIAGRAM

ROM I EPROM AND DUAL PORT RAM

sw

DATillOATfl

}>
"'O
"'O
m z
0
x
}>

1'>
g,
~

APPENDIX B

PROGRAM LISTINGS FOR EXECUTION$VEHICLE AND FIND MODULES

1-101 AFN-01931A

®

@

®{

PL/M-8fi COMPILER EXECUTIONVEHICLE

ISIS-II PL/M-8fi Vl. el COMPILATION OF MODULE EXECUTIONVEHICLE
OBJECT MODULE PLACED IN :Fl:MATRIX.OBJ
COMPILER INVOKED BY: PLM8Fi :Fl:MATRIX.PLM DEBUG

rn
11
12
13
14

15
in
l 7
18
19
20
21

22

23

24
25
26

27
28
29

/* MATRIX MULTIPLICATION EXAMPLE PROGRAM

PL//11-86 MAIN PROGRAM WHICH:
A) INITIALIZES TWO INTEGER MATRICES
B) MULTIPLIES THE TWO MATRICES AND STORES THE RESULT IN A

THIRD MATRIX
C-:) CALLS AN ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES THE

THIRD MATRIX FOR THE MAXIMUM Vl',LUE

D) CALLS A PL/M PROCEDURE WHICH CONVERTS THE MAXIMUM VALUE
FROM INTEGER TO ASCII

E) CALLS P. PROCEDURE WHICH OUTPUTS THE ASCII CHARACTERS ON
THE SYSTEM CONSOLE

•/

EXECUTIONSVEHICLE:

DD;

/* FINDfMX - EXTERl\JAL ASSEMBLY Ll\NGUAGE
MATRIX FOR THE LARGEST ABSOLUTE

PARAMETERS:

WHTCH SEARCHES 11.

MATRIX$/l.DR - ADDRESS OF THE "'lATRIX TD RE SEARCHED
ROWS - NUMBER OF ROWS IN THE MATRIX
COLS - NUMBER OF COLU.MNS IN THE r.tATRIX

'I
FINDSMX: PROCEDURE (MATRIX$PTR, ROWS, COLS) INTEGER EXTERNl\L;
DECLARE (ROWS, COLS) INTEGER;
DECLARE ~ATRTXSPTR POINTER;
END FINDSMX;

/* BINSDECSASC - BINARY TO Of'CIMAL ASC1 l CONVERSION PROCEDURE

PARAMETERS:

•I

VALUE - INTEGER VJl.LUE TO l:\E CONVERTED TO ASCII

CHP.RSJl.RR1\Y$ADR - ADDRESS OF f, BYTE ARRAY WHERE ASCl I
STRING CONTAINING THE VALUE WILL BE .STOR80

BINSDEC$ASC: PROCEDURE (VALUE, l-HARSARRAY$ADR);

DECLARE (VALUE, TEMP, I) INTEGER;
DECLA.RE CHARSARRP..YSADR POINTER;
DECLARE (CHARSARRAY BASED CHARSARRAY$ADR) (6) BYTE;

IF VALUE < e' THEN
DD;

CHARSARRAY(~) = '-'·
TEMP = -VALUE;

END;
ELSE

DD;
CHARSARRAY (0) = '+';
TEMP = VALUE;

END;
DO T = 5 TO l BY -1;

/* SIGN CHAR/l..CTER */

CHAR$/>.RRAY (I) = UNS IGN (TEMP MOD 1 r'1) + 30H;

TE/VIP = TEMP/) QI;
/* ASCII CHARACTERS ?\l THRU 19 HEX REPRESENT THE' DIGITS e THRU 9. THUS

TO CONVERT AN INTEGER TO ASCII RE.PEA.TED DIVISIONS BY 10 AND ADDING

THE REMAINDER TO :.10 HEX WILL ACCOMPLISH THE CONVERSION */
END;

END BINSDEC$ASC;

/* CO - EXTERNAL PROCEDURE TO OUTPUT A CHARACTER TO THE SYSTEM CONSOLE.

•/

THIS PROCEDURE IS PART OF THE JSBC 957 LJBR1\RY FOR CONSOLE I/O

PARAMETER:
CHAR - ASCII CHARACTER TO BE OUTPUT ON THE CONSOLE

CO: PROCEDURE (CHAR) EX'fERNi'>.L;
DECLARE CHAR l:'YTE;
END CO;

/* MATRIX DIMENSIONS */
DECLARE M LITERALLY 'fj';
DECLARE N LITERALLY '5 1 ;

DECLARE P LITERl\LLY '.l';

/* THE THREE MATRICES ARE DECLARED Jl..S ARHAYS OF STRUCTURES. XSRDW IS COMPOSED

OF M STRUCTURES EACH OF WHICH IS COMPOSED OF N INTEGER ELEr-'IENTS. THUS
X$ROW MAY BE THOUGHT OF AS A M X N MATRIX. THE MATRIX WILL BE STORED AS
A ROW-ORDER MATRIX WJTH THF.: ELEMENTS OF EACH ROW STORED IN ADJACENT MEMORY

LOCATIONS, YSROW IS DECLARED AS A N X P MATRIX AND Z$ROW AS A N X P MATRIX */
30
31
.12
33
14
35

DECLARE X$ROW(M) STRUCTURE (COL(N) INTEGER);
DECLARE Y$ROW(N) S~'RUCTURE (COL (P) INTEGER);
DECLARE ?.$ROW(M) STRUCTURE (COL(P) INTEGER);
DEC LARI!', (I ,,J ,K,MAX) INTEGER;
DECL>RE MAXMCMRAY (o) BYTE;
DECLAR~: T8XT(*) BYTE: DATA ('MAX VALUE= ');

1-102 AFN·01931A

36
3 7
J8
39

® ''

4 1

4?
ll J
'4
'5

@{ 46
'7
'8
4 9
50
51
52
53

@ 54

® 55

®\
56
57
58

59
60
61

62

®

/* INITIALIZE X$RO\.</ SUCH THAT THE FIRST R0\.11 rs SET EQUAL TO 0, THE SECOND
ROW EQUAL TO 1, THE THIRD ROW EQUAL TO 2, ETC. */

DO I = 0 TO (M-1);
DO J = r TO (N-1);

X$RQW(I),COL(J) =I;
END;

END;

I* INITIALIZE Y$ROW SUCH THAT THE FIRST COLUMN rs SET EQUAL TO 0, THE
SECOND COLUMN EQUAL TO -1, AND THE THIRD COLUrYIN EQUAL TO -.?.. */

DO I"' 0 TO (N-l);

DO ,J = Vl TO (P-1) ;
YSROW(I).COL(J) = -J;

END;
END;
/* PERFORM MATRIX MULTTPLICAT!Ot-1 */
DO K = 0 TO (P-1) ;

DO I = 0 TO (M-1);
Z$ROW(I).COL(K) = 0; /*SET Z$ROW ELEMENT TO 0 */
DO J = r' TO (N-l); /* SUM THE PRODUCT OF X$ROW ROW TERMS AND Y$ROW COLUMN TERMS */

Z$ROW(!),COL(K) ""Z$ROW(I).COL(K) +. (X$ROW(I).COL(J) * Y$ROW(J).COL(K));
END;

END;
,END;

!"IAX = FIND$MX l@ZtRO\.I;, M, P); /* FIND MAX VALUE OF ZSROW */

CALL BINSDEC$ASC (MAX, i<IMAX$ASC$ARRAY); /* CONVERT 'l'O DECIMAL ASCII */

DO I = 0 TO (SIGNED (SIZE (TEXT.)) - 1) ; /* OUTPUT HEADER TEXT * /
CALL CO (TEXT (I)) ;

END;

DO I = ~ TO 5; /* OUTPUT ASCII MAX VALUE */
CALL CO(MAXSASC$ARRAY (I));

END;

END EXECUTION$VEHICLE;

MODULE INFORMATTON:

CODE AREA SIZE 0225H 5490
CONSTANT AREA SIZE 0er.cH 120
VARIABLE AREA SIZE 0~90H J 440
MAXIMUM STACI< SIZE 0008H 80
J.:'!7 LINES READ
0 PROGRAM ERROR (S)

END OF PL/M-86 COMP I LAT ION

ISIS-II MCS-86 ASSEMBLER ASSEMBLY OF MODULE FIND
OBJECT MODULE PLACED IN :Fl:FIND.OBJ
ASSEMBLER INVOKED BY: ASM86 :Fl:FIND.ASM DEBUG

L OC OBJ

LINE SOURCE

6
7
8
9

10
11
12
13
14
15
16
1 7
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

NAME FIND
PUBLIC FINDMX

FINDMX
ASSEMBLY LANGUAGE PROCEDURE TO FIND THE ELEMENT OF AN INTEGER
MATRIX WITH THE LARGEST ABSOLUTE MAGNITUDE. THE VALUE OF THE
ELEMENT IS RETURNED IN THE AX REGISTER.

PL/M CALLING SEQUENCE:
MAX$VALUE = FIND$MX(ADROFMATRIX, #$0F$ROWS, #$0F$COLS};

PARAMETERS:
ADR$0F$MATRIX - ADDRESS OF THE MATRIX WHICH WILL BE SEARCHED
#$0F$ROWS - NUMBER OF ROWS IN THE MATRIX
#OFCOLS - NUMBER OF COLUMNS IN THE MATRIX

PL/M WILL PASS THE THREE PARAMETERS IN THE CALL TO THIS PROCEDURE ON
THE STACK. ON ENTRY TO THE PROCEDURE SP+6 WILL POINT TO THE FIRST
PARAMETER (ADROFMATRIX) AND SP+4 AND SP+2 WILL POINT TO THE SECOND
AND THIRD PARAMETERS.

THE PROCEDURE IS A TYPED PROCEDURE WHICH ASSIGNS THE MAXIMUM VALUE
IN THE MATRIX TO A VARIABLE (IN THIS CASE MAX$VALUE) IN A PL/M
ASSIGNMENT STATEMENT. TO ACCOMPLISH THIS ASSIGNMENT THE VALUE rs
RETURNED IN THE AX REGISTER.

THE ALGORITHM USED IS SIMILAR TO THE FOLLOWING PL/M CODE:
FOR I = 0 TO (#$0F$ROWS - 1);

FOR J = 0 TO (#OFCOLS - 1);
IF IABS(MATRIX(I) .Y(J)) > IABS(MAX) THEN MAX= MATRIX(!) .Y(J) l

END;
END;

WHERE !ABS (XYZ) REPRESENTS THE ABSOLUTE VALUE OF THE INTEGER XYZ

1-103 AFN·01931A

©

LOC OBJ

0000 (14
'100!/l
I

0006 I J
000~ r 1
0ft08 I J

0 ?00
0000 55
IHHH 8BEC
0003 3302
0005 8BFA
0007 8BF2
0009 891Hl000
0000 8B4Elil4
0010 DlEl

1Hll2 PBSE08

0015 8800

~017 0BC0
011119 7902
0018 F7D8
0010 3BC?
00) F 7Ci.J7
e:r.21 8BDP:
0023 8R00
0r2s A300e0
0028 83C602
0028 3BF.l
0020 72E6
·ll02F 8018
e:031 BE0000
r, 031! 4 7

~035 3B7E06
0038 72DB
003A Al 0000
00 30 50
003E C20600

SYMBOL TABLE LISTI-NG

NAME TYPE

??SEG SEGMENT
ABC L NEAR
ADR OF MATRIX V WORD
cGROuP-:- GROUP
CODE. SEGMENT
DATA. SEGMENT
DEF L NEAR
DGROUP. GROUP
FINDMX, L NEAR
~AX V WORD
NO OF COLS. V WORD
NO-OF-ROWS, V WORD
STACK- SEGMENT
XYZ L NEAR

LINE SOURCE

40
41
42
4 3
4 4
45
46
47
48
49
50
51
52
5 3
54
55
56
57
58
59
60
51
6 2

o3
6 4
55
66
67
68
59
70
71
72
73
7 4
75
76
77
78
79
80
81
82
8 3
84
85
86
87
88
89
9e
91
92
9 3
94
95
96
97
98
99

100
101
102

103
104
105
106
107
108
109
110
111
112

VALUE

0015H
0008H

001DH

e'000H
0000H
012104H
0006H

0028H

0GROUP
CG ROUP

DEFINE GROUPS TO CONFORM 'WITH PL/M-86 CONVENTIONS. DATA, STACK, AND
CODE SEGMENTS WILL BE APPENDED TO THEIR RESPECTIVE SEGMENTS IN THE
PL/M-86 MODULES.
GROUP DATA,STACK
GROUP CODE

INSTRUCT THE ASSEMBLER THAT 'rHE DS, SS, AND CS REGISTERS WILL CONTAIN
THE BASE ADDRESS VALUES FOR THE DGROUP, DGROUP AND CGROUP GROUPS.
ASSUME OS: DGROUP, SS: DGROUP ,CS: CG ROUP

;***************DATA SEGMENT

DATA SEGMENT WORD PUBLIC 'DATA'
MAX DW 0
DATA ENDS

;*************,.,*STACK SE:Gf"IENT

STACK SEGMENT STACK 'S'rACK 1

DW 14 DUP (0) ;RESERVE 13 WORDS OF STACK FOR MONITOR

; AND 1 WORD FOR FINDMX PROCEDURE
STACK ENDS
;
; ***************CODE SEGMENT

CODE SEGMENT BYTE PUBLIC 'CODE'

; PARAMETERS ON
NO OF ROWS
NO-OF-COLS
ADR_OF_MATRIX

FINDMX PROC
PUSH
MOV

XOR
MOV
MOV
MOV
MOV
SHL

ABC: MDV
OR
JNS
NEG

DEF: CMP
JL
MOV
MOV
MOV

XYZ: ADD

'

CMP
JB
LEA
MOV
INC
CMP

JB
MOV
POP
RET

FINDMX ENDP
;
CODE ENDS

END

ATTRIBUTES

STACK, DISPLACEMENT FROM TOS INCREASED BY TWO DUE TO INITIAL PUSH
EQU WORD PTR [BP+6J
EQU WORD PTR [BP+4]
EQU WORD PTR [BP+8]

NEAR
BP
BP, SP
DX,DX
DI ,DX
SI ,DX
MAX,DX
CX,NO OF COLS
ex, 1 - -

; PROCEDURE DECLARATION
;SAVE BP REGISTER
; BP POINTS TO PARAMETERS
; SET DX = ABS OF CURRENT
;DI = !_(ROW INDEX) = 0
;SI = j (COLUMN INDEX) = 0
; MAX = CURRENT MAX = 0

ON STACK
MAX = 0

;CX • (#$0F$COLS) * 2
;TERMINATION FOR J {SI) INDEX

BX,ADR OF MATRIX ;ADRQFMATRIX PARAMETER
- - BX POINTS TO FIRST ELEMENT OF A GIVEN ROW

AX, (BX] [SI]
AX,AX
DEF
AX
AX,DX
XYZ
DX,AX
AX,[BX] [SI]
MAX,AX
SI, 2
SI ,ex
ABC
BX, [BX+SI]
SI, 0
DI
DI ,NO OF HOWS

ABC
AX,MAX
BP
6

GET ELEMENT OF MATRIX
SET FLAGS
JUMP IF SIGN = 0
NEGATE TO FORM POSITIVE NUMBER
COMPARE TO CURRENT MAX
JUMP IF LESS THAN CURRENT MAX
MOVE TO ABS OF CURRENT MAX
MOVE MATRIX VALUE TO CURRENT MAX

INCREMENT J INDEX BY TWO
END OF THIS ROW ??
IF NO, LOOP BACK FOR NEXT ELEMENT OF THIS ROW
BX = BX + {2 * #$0F$COLS), BX POINTS TO NEXT ROW
J = 0
I = I + 1
LAST ROW ? ?

IF NO, DO THE NEXT ROW
RETURN MAX VALUE IN AX REGISTER
RESTORE BP REGISTER
INCREMENT SP BY 6 AND RETURN TO CALLER

SIZE=121~00H PARA PUBLIC
CODE
[BP)
CODE
SIZE=0041H BYTE PUBLIC 'CODE'
SIZE=0002H WORD PUBLIC 'DATA'
CODE
DATA STACK
CODE PUBLIC
DATA
(BP]
[BP]

SIZE=fHHCH PARA STACK 1 STACK'
CODE

ASSEMBLY COMPLETE, NO ERRORS FOUND

1-104 AFN·01931A

®

®

rsIS-II QRL-Pli, v1.1

INVOKE:D RY:
QRLRl'i ; Fl: MATRIX. OBcJ, :F J: FIND. OH cl, SBCIOS. LIB ORTG TN (] 0rf'H)

fNPUT MODULES INCLUDED;
: fl

SBC IDS. LIB (SBCCO)

RESULT WRITTEN TO : Fl :MATRIX (EXECUTTONVEHICLE)
START ADDRESS IS ((ll00H,VCrn2H)

STAR'f L'I'H l1LIGN NAME: CLASS

1i1HHl0H 7AV1H G /GS/ CGROUP
r:10V'HlH 7/SH w CODE (EXECUTIONVEH TCLE} CODE

01 ?.2SH "1 lH 8 CODS (FIND) CODE
017.6GH '.lAH w CODE (SBCCO) CODE

/GE/ CG ROUP
01/.Af'H mrn /GS/ DGROUP
012/\0H CH w CONST (EXECUTIONVERTCLE)
C'l2ACfl OH w \ONST(SPCCO)
0 l 2ACH 9r,g w DATA (EXECUTIONVEHICLE) DATA
013 3CH 211 w DATA(FIND) DATA
013 ~EH OH w DATA(SBCCO) DATA
013 4 0H ::i0H SW STACK STACK
0l370H OH w MEMORY MEMORY

/GE/ DGROUP

' 370H OH ??SEG (FIND) (NULL)

DEBUG Ml\P OF : Fl: Ml\ TRIX (EXECUTIONVE!l TCLE)

MODULE: EXECUTJONVEH If:LE 0 HJ 0H, 0 lE J H

0 l 2Ml, e 0D!'.'H SYMBOL MEMORY 0H!PiH, 01FBH
0l00H,?JB5H SYMBOL BINDECASC 0HHlH,021 :1H
V' l 2AH, fH~0CH SYMBOL TEMP V'Hl0H, V'2JEH

012AH,!i100EH SYMBOL I
0l?AH, P,010H SYMBOL XROY.r

~12AH,004CH SYMBOL YROW Vl100H,00?1H
012AH, 006AH SYMBOL ZROW 0100H, 0032H
01/AH,008EH S YMROL I 0100H, 004BH

IH2AH, 0090H SYMBOL J
rn ?AH, 0092H SYMBOL K
012AH, f"094H SYMBOL MAX

012AH,009hH SYMBOL MAXASCARRAY 0l00H,0Vl7FH
fH2AH, P-000H SYMBOL TEXT 17100H, '109CH
0100H,0185H LINE I 6 VlJ 00H, 0fllA5H
0l00H,0188H LINE I 10 0J00H,0121AEH
010?H,0J.C:2H LINE I 12 VlH0H,0f'JBFH
010P!H, 01C8H LINE I] 3 01 C0H, 00Dl?IH
0rnrtt,ernJH LINE I 14 0HJflH,00E7H
0100H, 01D4H LTNE I 16 0HHrn, 00F8H
r'Hlf'H,01DAH LINE I 17 r'l00H,0J :rntt

1-105

LINE

LINE:
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

LTNE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

i, 19 0lf'eH,013SH LINE ,, '2

I' 2.0 I' SJ

I' '1 #' 54 , , 2 2 I 5 5 , , 23 I 56 . ' 30 # 57

'' 3 7 I S8

I' 38 I " ,, <9 I 60 , , 4" # 61 , , 41 I 62

I' " MODULE FIN
'3 0HH'JH,023AH SYMBOL ABC
44 0100H,0242H SYMBOL DEF
4 5 0100H,0225H SYMBOL FINDMX
46 012AH,009CH SYMBOL MAX

4 7 0100H,024DH SYMBOL XYZ
4 8 0Hl0H,02251-l PUBLIC FINDMX
4 9 MODULE SBCCO
50 CHJ0H,0266H PUBLIC co
51

AFN-01931A

APPENDIX C

PROGRAM LISTING FOR EXECUTION$VEHICLE MODULE WITH CODE EXPANSION

PL/M-86 COMPILER EXECUTIONVEHICLE

ISIS-II PL/M-8fi Vl.£! COMPILATION OF MODULE EXECUTIONVEHICLE
NO OBJECT MODULE REQUESTED

COMPILER INVOKED BY: PLM80 :FJ:MATRIX.PLM DEBUG CODE NOOBJECT PRINTl:Fl:MATRIX.XLS)

ll
12

13

14

J 5
JG

l 7

18

19

/* MATRIX MULTIPLICATION EXAMPLE PROGRAM

PL/M-86 MAIN PROGRAM WHICH:
Al INITIALIZES TWO INTEGER MATRICES

B) MULTIPLIES THE TWO MJ\TRICES AND STORES THE RESULT IN A
THIRD MATRIX

C) CALLS AN ASSEMBLY U\NGUl\GE PROCEDURE WHICH SEARCHES THE
THIRD MATRIX FOR THE MAXIMUM VALUE

D) CALLS A PL/M WHICH CONVERTS THE MAXIMUM VALUE
FROM INTEGER

E) CALLS A PROCEDURE \.liHICH OUTPUTS THE ASCII CHARACTERS ON
THE SYSTEM CONSOLE

*I

EXECUTION$VEHTCLE:
DO;

/* FJND$1"!X - EX'I'ERNAL ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES A
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE.

- ADDRESS OF THE MATRIX TO BE SEARCHED
ROWS - NUMBER OF ROWS TN THE MATRJX
COLS - NUMBER OF COLUMNS IN THE MATRIX

*!
FIND$MX: PROCEDURE (MATRIX$PTR, ROWS, COLS) INTEGER EXTERNAL;

END FIND$MX;

/* BINDEC'ASC - BINARY TO DECIMAL ASCII CONVERSION PROCEDURE
PARAMP.TERS:

VJl.LUE - INTEGER VALUE TO BE CONVERTED TO ASCII

*I

6 BYTE ARRAY WHERE ASCII
WILL BE STORED

8TNDECASC: PROCEDURE (VALUE, CHAR$ARRAY$ADR);
STATEMENT # S

tillB5 55
0186 8BEC

B INDECASC
PUSH
MDV

PROC NEAR
BP
BP, SP

DECLARE (VALUE, TEMP, I) INTEGER;
DECLARE CHARSARRAYSADR POINTER;
DECLARE (CHAR$fl..RRJl.Y BASED CHARSARRAY$ADR) (G) BYTE;

IF VALUE < 0 THEN

0188 817E0h0000 CMP

P.lBD 7C03 JL
01BF E9120~ JMP

DO;
CHAR$Jl..RRA y (?,) ' - I •

rllC2 8B5Ek'4 MCV
01CS Cfi072D MOV

TEMP = -VALUE;

ClC8 8B41j06 MDV
01CB F7D8 NEG
('IJCD 890600('!0 MOV

END;

0101 E90D00

ELSE
DO;

@l'

CHAR$ARR'1 (@)

01D4 885£1?.4
0107 C6072B

TEMP = Vl\LUE;

0JD/I 8841106
01DD 890G0Pl0PJ

END;
@2'

JMP

•+• i

MOV
MOV

MOV
fl'lOV

DO I = 5 TO .1 BY -1 ;

01£1 C706020005"0
01E7 E90fi00

@3'
01EA 8J.0h02f'0FFFF

MOV
JMP

ADD

; STATEMENT !t 10
[BP] ,VALUE,0H

S+5H
@l

/* SIGN CHAR1'.CTER * /
; STATEMEN'r # 12

BX, rap] .CHARARRAYADR
CHARARRAY fBX], 2DH

; STATEMENT Ii 13
AX, fBP]. VALUE
AX
TEMP ,AX

STA'rEMENT # 14
@2

; STATEMEN'r # 16
BX, rBPJ .CHARARRAYADR
CHARARRAY rsx1, ?BH

; STATEMENT l 7
AX, [BPl. VALUE
TEMP, AX

I, SH
@5

I I 0FFFFH

1-107

STATEMENT # 19

AFN-01931A

20

21

23

21!
25
?6

27
?P
29

30
3)

'2

.D
34
35

3o

17

38

J9

(<l5:
0lF0 813E0?e0PIHHl CMP I, JH
elF6 7.D03 JGE S+SH
01F8 E926?0 JMP @4

CHAR$ARRAY (I) UNSIGN (TEMP MOD 10) + 30H;
; STA'fEMENT t 20

0'1FB 88060000 MOV AX,TEMP
01FF B90A00 MOV ex, 0AH
0202 31D2 XOR DX,DX
0204 F7F9 !DIV ex
0206 81C?3000 ADD DX,30H
fl20A 885E04 MOV BX, [BPl .CHARARRAYADR
0200 88360200 MOV SI, I
02Jl 881PI MOV rsx] .CHARARRAYfSIJ ,DL

TEMP = TEMP/] 0;
; STATEMENT # 21

/* ASCtr CHARACTERS 30 THRU 39 HEX REPRESENT THE DIGITS 0 THRU 9. THUS
TO CONVERT AN INTEGER TO ASCII REPEATED DIVISIONS BY H! AND ADDING
THE REMAINDER TO 30 HEX WILL ACCOMPLISH THE CONVERSION */

P-213 88060000 MOV AX,TEMP
0217 99 CWD
0218 F7F9 !DIV ex
021A 89060000 MOV TEMP,AX

END;
STATEMENT # 22

021E E9C9FF JMP @3
@l1:

END BINDECASC;
STATEMENT # 2 3

0221 SD POP BP
0227. C20400 RET 4H

BI NDECASC END P

/* CO - EXTERNAL PROCEDURE TO OUTPUT P.. CHARACTER TO THE SYSTEM
THIS PROCEDURE IS PART OF THE ISBC 957 LIBRARY FOR CONSOLE
PARAMETER:

CHAR - ASCII CHARACTER TO BE OUTPUT ON THE CONSOLE

*I
ro: PROCF.DURE (CHAR) EXTERNl\L;
DECLARE CHAR BYTE;
END CO;

/* MATRIX DIMENSIONS * /
DECLARE M LJTERALLY 'G';
DECLARE N LITERALLY '5';
DECLARE P LITERALLY '3';

/* THE THREE MATRICES ARE DECLARED AS ARRAYS OF S'fRUC'l'URES. X$ROW IS COMPOSED
OF M STRUCTURES EACH OF WHICH IS COMPOSED OF N INTEGER ELEMENTS. THUS
X$ROW MAY RE THOUGHT OF AS A M X N MATRIX. THE MATRIX WILL BE STORED AS
A RCW-ORDER MATRIX WITH THE ELEMENTS OF EACH ROW STORED. IN ADJACENT MEMORY
LOCATIONS. YSROW IS DECLARED AS A N X P MATRIX AND Z$ROW AS A N X P MATRIX */

DECLARE X$ROW(M) STRUrTURE (COL (N) INTEGER);
DECLARE Y$ROW (N) STRUCTURE (COL (P) INTEGER) ;
DECLARE ZSROW(M) STRUCTURE (COL (P) If\JTEGER);

DECLARE (I,.J,K,MAX) INTEGER;
DECLARE MAX$ASCSARRAY (fi) BYTE;
DECLARE TEXT I*} BYTE DATA ('MAX VALUE = 1);

/* JNI'rIALIZE X~ROW SUCH THAT THE FIRST ROW IS SET EQUAL TO 0, THE SECOND
ROW EQUAL TO 1, THE THIRD ROW EQUAL TO 2, ETC. */

DO I= 0 TO (M-l);

; STATEMENT I 35
000 2 FA CLI
0003 2E8El6~HHH~ MOV SS, CS: @@STACK$FRAME

0008 BC0800 MOV SP ,@@STACK$0FFSET
0008 88EC MOV BP,SP
0000 16 PUSH SS
000E 1F POP DS
Pl00F FB STI
00Hl C706820?i0000 MOV I, rH

@6'
0016 813E820fl~500 CMP I, SH

001C 7E03 cl LE $+SH
001E E93C00 JMP 07

DO J " 0 TO (N-1 I;
STATEMENT I 37

00?.l C70684000000 MOV J, 0H
@8'

0027 813E840004\i'0 CMP ,J, 4n
0020 7EV13 ,TLE S+SH
12l02F E9220Q' JMP @9

X$ROW(I} .COL(J) " I;
STi\TEMENT I 38

0032 8B0h8200 MOV AX, I
0036 B9rA00 MOV ex, 0AH
0039 F7E9 IMUL ex
0038 88368400 MOV SI ,-J
003F DlE6 SI-lL SI, 1
00111 89C3 MOV BX,AX
004 3 880£8200 MOV ex, r
004 7 898804PHJ MOV rsx J. xRow rsr 1 ,ex

END;

1·108 AFN-01931A

40

'1

42

'3

44

45

49

50

STATEMENT ~ 39
r011B P. l 1?1'184 0V'0l0C •DD J' JH
0051 E0D3FF ,JMP es

(<l9:
END;

; STATEMENT # " ADO I, l H
JMP f6

(<17:

I' INITIP.LJZE YSROW SUCH THAT THE fo'IRST COLUMN IS SET EOUAL TO
SECOND COLUMN EQUAL TD -l' AND THE THIRD COLUMN EQUAL TO

DO I = • TO (N-l);
; STATEMENT ' 41

0050 C70682YH'!00e0 MDV I, 0H
@10:

0e63 813E82000400 CMP I, 4H
0f69 7E03 JLE $+5H
0er,s E94000 JMP @]]

DO J -- 0 TO (P-1 I;
; STATEMENT I 42

fH'l6E C70684000000 MOV J, f'H
@12:

0074 813£84000200 CMP J, 2H
007A 7E03 JLE $+5H

0el7C E92600 JMP @13
YSROW (I). COL (J) = -J;

STATEMENT I '3
007F PB0fi8400 MDV AX,J
0083 F7D8 NEG AX
0085 so PUSH AX ; J
008fi 88068200 MDV AX, I
008A 890fi00 MDV ex, 6H
0080 F7E9 IMUL ex
liHl8F 88368400 MDV sr,.J
0093 DlEfi SHL SI, 1
0095 89C3 MOV BX, AX
0!!:97 59 POP ex 1
0Vl98 89884000 MDV fBXl. YROWfSI J ,ex

END;
; STATEMENT ' 44

8Hl684Vl0~HH:" ADD ,J, lH
E9CFFF JMP @17

01 3:
E.~D;

STATEMENT ' 4 5

00A5 8HHi82~0010r ADD I, !H
Pi0AB E9R ')FF JMP 1<110

@11 !

/* PERFORM MATRTX MULTTPLJr:ATJON */
no K = 0 TO (P-l);

rOBLl
00BA 7Ef~3

00BC

MDV

CMP

JLE

K, rH

MDV r, ?H

C'rvlP I I SH
,JLE S+SH
JMP

ST/\.TEf'llENT ~ t 7

Z$RQW(I).COL(K) = r'.; SET Z SRO\.>! F.:LE-'l!ENT TO (' * /
; STA'fE1'1ENT # 48

0000 flBV'hR20Vl
rl0D4 B9%0k'

0000 DlEfi
0llDF
00El

MDV
MDV
JMUL
MDV
SHL
MDV
MDV

AX, l
ex, -;;;H
ex
SI, K
SI I 1
BX,.71.X
rsx] .ZROWfSI1 ,rH

-2. "' THE
•/

OD J = 0 TO (N-1); I' SUM THE PRODUCT OF XSRot'/ ROW TEk"'iS AND Y$ROW COLUMN TERl>'IS */
; STATEMENT # 4 9

00E7 C701)84000Vl00 MDV
@18:

0C"ED CMP
00FJ JLE
0f!F5 E9l1J 00 JMP

ZSROW(!) .COL(K) =

rrnF8 88 068 20e' MDV
00FC B9rA00 MDV
00FF F7E9 IMUL
0101 883684011! MDV
0105 DlEfi SHL
(II] 07 50 PUSH
01~8 88068400 MOV
010C 890600 MDV
010F F7E9 IMUL
(II] ll 883E8600 MOV
0115 DJ E7 SHL
Vlll 7 89C3 MDV
0119 88814000 MDV
0JlD SB POP
0J.1E F7A80400 IMUL
0122 50 PUSH
0123 88068200 MDV
rl27 F7E9 IMUL
0129 89C?. MDV

JI 0H

J' r"]H
S+SH
@19

Z$ROW(I) .COL(K) + I XSROW(I) .COL(a) * Y$ROW(cJ) .COL(K)) ;
; STATF.MENT # 50

AX, I
CX,VAH
ex
SI ,J
SI, l
AX ; 1
AX,J
ex, 6H
ex
DI, K
DI, 1
BX,AX
AX, rsxJ. YROW~DJl
BX ; 1
fBXJ. XROW [SI J

AX ; l
AX, I
ex
BX ,AX

1-109 AFN-01931A

01

52

5 3

54

55

56

57

58

59

61

62

012B 58 POP AX 1
P!J 2C 01815E(l!0 ADD rsx] • ZROW [DI J, AX

END;
; S'l'l\TEMENT I 51

0130 a1068A000urn ADD J, lH
0.13&} E9RL!FF JMP e1 a

@] 9:
END;

STATEMENT I 52
0139 8 J VHiF2'1(1!0100 ADD J, lH
013F E98 3FF JMP 016

(ill 7:
END;

STATEMENT I 53
fH42 810686000100 ADD K, lH
0148 E9"i9FF JMP {<'!] 4

i?J 5:

MAX = FINDSMX f@Zt,ROW, M, P); I' FIND MAX VALUE OF Z$ROW 'I
; STATEMENT I 5'

0148 B85E00 MOV AX,OFFSET(ZROW)
Yll4E 50 PUSH AX l
IH<1F 880G0Y' MOV AX, l)H

0152 50 PUSH AX ; 2
0153 88~300 MOV AX, 3H
~.1 SIS 50 PUSH AX ; J
0157 E8e0Vlf' CALL FINDMX
015A 89068800 MOV r.tAX, AX

CALL 8INDECASC (MAX, (ilMAXASCARRAY); /* CONVERT TO DECIMAL ASCII */
; STATEMENT # 5 5

015E FF368800 PUSH MAX ; l
0162 B88Ml0 MOV AX, OFFSET (MAXASCARRAY)
0165 51" PUSH AX ; 2
0166 E84C00 CALL 8 INDECASC

DO I = 0 TO (SIGNED (SIZE (TEXT}) - 1); /* OUTPUT HEADER TEXT * /
; STATEMENT # 56

011S9 C706821Hl0000 MOV I, 0H
@20:

016F E'l3E820~0B00 CMP I, 0BH
0175 7E03 JLE $+SH
01 77 E91400 JMP @21

CALL CO(TEXT (I));
STATEMENT * 57

01. 7A 881E8200 MOV BX, I
017E FFB7EH'!00 PUSH TEXT rsxJ ; 1
0182 E80000 CALL co

END;

018 5
0188

DO

0188

0194
019A
019C

810682000100 ADD I, JH
F:9ElFF JMP ri'120

@21:

I = 0 TO 5; /' OUTPUT ASCII MAX

C70682000000 MOV I, rH
@22:

813E82000500 CMP I ,5H
7EP'3 JLE $+SH
E9J 400 JMP @23

CALL. CO (MAX$ASCSARR,ll.Y IT));

019F 8B1E8200 BX, I

STATEMENT * 58

VALUE 'I
; STATEMENT # 59

; STATEMENT # 60

0JA3 FFB"18A00
flA7 E80000

MOV
PUSH
CALL

MAXASCARRAY rsx];]
co

END;

0JAA 810682000100
~180 E9ElFF

@23:

ADD
JMP

END EXECUTION$VEHICLE;

0183 FB
111184 F4

ST!
HLT

I, lH
@22

; STATEMENT # 61

STATEMENT # 6 2

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
137 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

0225H
000CH
0090H
0008H

5490
12D

1440
8D

1·110 AFN·01931A

©Intel Corporation, 1979.

APPLICATION
NOTE

1-111

AP .. 53

October 1979

AFN-01931A

Using the
iSBC 544 Intelligent
Communications Controller

1-112

Contents

I. INTRODUCTION 1-113

II. OVERVIEW 1-113

Intelligent Slave Architecture 1-113
The iSBC 544 Board 1-115

III. HARDWARE CONSIDERATIONS .. 1-115

Two Mode Operation 1-115
Dual Port RAM 1-116
Interrupt Structure 1-117
Modem and Autocall Interface 1-117

IV. SOFTWARE CONSIDERATIONS ... 1-117

Device Programming 1-117
Master /Slave Protocols 1-118
Communications Support 1-119

V. THROUGHPUT ANALYSIS 1-119

Stand-Alone Throughput 1-119
Intelligent Slave Throughput 1-121

VI. APPLICATIONS EXAMPLES 1-124

A Distributed Control System 1-124
Design Requirements 1-125
System Configuration 1-126
Preliminary Design 1-126
Summary 1-127
Terminal Cluster Controller 1-127
Design Criteria 1-127
System Configuration 1-128
Preliminary Design 1-129

VII. SYSTEM SOFTWARE 1-130

Data Transfer Primitives 1-130
Sample Slave Software 1-130
Sample Master Software 1-135

VIII. SUMMARY 1-136

APPENDIX A 1-138

APPENDIXB 1-140

APPENDIX C 1-145

APPENDIX D 1-151

AFN-01931A

I. INTRODUCTION

As the microcomputer system found its way into
more and more demanding applications the need
became clear for a new and innovative solution to
the old problem of providing timely response to
real world events. This need was never clearer
than in the field of communications where
throughput and response time are the keys to
success. The iSBC 544 Intelligent Communica
tions Controller (ICC) is the vanguard of a family
of intelligent slave computers that provide a
unique and powerful answer to the needs of the
microcomputer user.

This application note is intended to introduce the
reader to the intelligent slave concept in general
and the iSBC 544 board in particular. After a
brief overview of the evolution of the concept and
the features it provides, the hardware and
software aspects of the controller are studied.
Following this a summary of various system
throughput tests is examined to evaluate the
performance of the intelligent slave versus more
traditional system architectures. We then study
two example applications of the product and
relate the earlier discussions to the real world.
Finally, some system software is presented that
handles all data transfer duties between master
single board computers and intelligent slaves on
the MULTIBUS system bus. More detailed
information on many of the topics covered in this
note can be found in the related publications
listed in the front-piece.

II. OVERVIEW
Intelligent Slave Architecture

Over the years, component technology has
increased at a rapid pace going from discrete
components (eg. transistors) to integrated circuits
(eg. TTL devices) to programmable peripheral
controllers (eg. Intel 8251A Universal Synchro
nous/ Asynchronous Receiver/Transmitter) to
fully intelligent slave devices (eg. Intel 8041A
Universal Peripheral Interface). At the system
level the evolution followed a similar path using
the increasing component technology to create
more and more powerful system building blocks.
The iSBC 508 I/O board used TTL logic to provide
digital I/O expansion for iSBC computers. The

1-113

iSBC 534 board took advantage of programmable
LSI devices to provide a programmable commu
nications expansion board. Now, with the advent
of the iSBC 544 Intelligent Communications
Controller, a new level of system capability is
made possible with the fully intelligent slave
controller.

The cornerstone of the intelligent slave architec
ture is the dual port memory. Through the use of
this shared memory space, a fast and efficient
protocol can be established to allow for coopera
tion between master and intelligent slave in
solving the needs of the application system. In
addition to the shared memory, the CPU on the
intelligent slave also has some local RAM and
local PROM storage for programs. By using this
architecture the advantages of multiprocessing
and Direct Memory Access (DMA) controllers are
blended together. Unlike DMA controllers, the
intelligent slave works totally within its own data
space. Therefore, it is not affected by bus traffic
nor does it add to this traffic. And, since the on
board CPU gets its instructions from local PROM
instead of predefined hard-wired logic or micro
code, the user has total flexibility in defining the
functions the intelligent slave will assume in the
overall system.

Although the contents of an intelligent slave
make it look very similar to a single board
computer, the assumption of the slave role pro
vides a distinct advantage. By performing duties
for a .master single board computer, the slave
relieves the master of low-level processing duties
and at the same time is itself relieved of system
responsibilities.

In order to position the iSBC 544 product and
outline what features it brings to the application
system it is necessary to define the functions
involved with communicating data. The three
main functional divisions are illustrated in Fig
ure 1. At the lowest level the physical intercon
nection is maintained. This level involves such
standards as RS232C which defines the require
ments for transmitting bits from point to point.

The data transmission level involves the transfer
of bytes and/or blocks of data from devices to
computers and from node to node in computer
networks. The hardware dependent software
such as interrupt service and device polling is

DATA PROCESSING

I I I I
DATA TRANSMISSION

I I I I
PHYSICAL INTERCONNECTION

Figure 1. Layering of Com.munlcatlon System Functions

part of this level as aie handlers for. standard
protocols such as SDLC, HDLC, Bisync and X.25
or special purpose schemes and custom protocols.

The highest level performs the actual processing
of the data and calls upon the lower levels to move
the data from place to place. The application
software resides at this level as do some high level
software functions such as program to program
and process·to process communications packages.

\ . : .

Now that we have a map of system functions to
guide us, it is possible to gain an understanding of
the usefulness of a product like the iSBC 544
Intelligent Communications Controller. If an
iSBC 534 board (which contains four USART
devices) was included to ·handle the expansion of
serial I/O capacity·· the mapping of system
functions would look like that shown in Figure
2. The four USARTs on the board would handle
the physical interconnection but due to the lack of
intelligence on the board the master CPU would
be burdened with all of the data transmission
duties in addition to its real duty, data processing.

When an iSBC 544 board is used in the system,
the mapping of system functions is as shown in
Figure 3. .The physical interconnection is still
handled by the USARTs on the board but now the
on-board CPU can be programmed to assume the
data transmission duties. With an intelligent
slave in the system, the master CPU is freed to
concentrate on the data processing functions and
the end result is that each function in the system
is handled in the most efficient manner possible.

I- - - - - --;,;:ST~I~ ~D-;-MPJTE;i"I

II· ·.1 ; 11 QATA PROCESSING

I I
. l I
I I
I I
I DATA TRANSMISSION I
I I
I . I -~ --~ Il"'"'~~'m"' --

1 ISBC 534 BOARD I

I 1--------USARTI I

I I I ···11, I l PHYSICAL INTERCONN_ECTION

I I I I
I ' . I I

L-==-=--=--=- ·= ==_:__ _J
Figure 2. Mapping of System Functions with

1-114

ISBC 534 Board . .

I - - - M~E;;N;.:; B;;;D~M~E-;-1

': · ... 11:. ,DATA· PROCESSING .

I

-~~---_-Il"·~~ra•~J-
1

I
I
I
I
I

ISBC 544 BOARD

DATA TRANSMISSION

I 1--------~s~-l
I . I I

I PHYSICAL INTERCONNECTiON I

I I . I
: '---- - - ____ .:._---:J
_____________ _J

Figure 3. Mappl_'1g of System Functions with
ISBC 544 Board

AFN·01931A

The iSBC 544 Board

The iSBC 544 Intelligent Communications
Controller contains:

• An Intel 8085A CPU operating at 2. 76 MHz.

• Sockets for up to BK bytes of read only memory
(user can choose Intel 2716, 2316E or 2732
devices).

• 16K bytes of dynamic, dual port Random
Access Memory (RAM).

• 256 bytes of static local RAM.

• Four Intel 8251A USARTs with programmable
baud rates.

• Two Intel 8253 Programmable Interval Timers.

• Intel 8155 parallel interface providing 22
parallel 1/0 lines and one 14 bit interval
timer. Various input and output lines are
dedicated to provide an interface to a Bell 801
or equivalent Automatic Call Unit (ACU).

• 8259A Priority Interrupt Controller.

III. HARDWARE CONSIDERATIONS

This section of the application note will focus on
the iSBC 544 hardware and will outline the
features of the board and its uses. Appendix A
contains simplified logic diagrams of the iSBC
544 board which can be referenced in the follow
ing discussions.

Two Mode Operation

The iSBC 544 board is capable of operating in one
of two modes; 1) intelligent slave and 2) stand
alone communications computer. The mode can
either be set with a switch or it can be "toggled"
via a software driven flip-flop on the board. In
the intelligent slave mode the CPU on the iSBC
544 board operates strictly within its on-board
resources. Communications with 8-bit and 16-bit
master single board computers is accomplished
through the dual port memory. Since the on
board CPU executes code out of its local PROM
program storage the system designer is free to
define which functions the slave will assume in
the system design. As discussed earlier, this
could include all or part of the system data
transmission duties or could involve application
specific duties such as terminal format control,
code conversion or terminal input editing.

1-115

In the stand-alone mode, the logic on the board
disables off board access to the dual port RAM
and the bus buffers are used to allow the on-board
CPU to access expansion memory and 1/0 on the
MULTIBUS system bus. In this mode the iSBC
544 board drives the bus busy (BUSY/) control
line active disallowing any other bus master
access to the bus. The stand-alone communica
tions computer is capable of performing all of the
functions of the applications system. Referring
once again to the diagram of the functions of a
communication system, the stand-alone commu
nications computer, with or without system
expansion, is responsible for all data transmis
sion and data processing functions. In small
applications requiring multiple serial lines the
stand-alone iSBC 544 controller is a perfect fit.

In very special circumstances it is possible to
share the system bus by toggling the mode set
flip-flop between master and slave mode. Figure 4

iSBC 544
a OARD

iSBC 204
CONTROLLER

Figure 4. iSBC 544 Controller Running iSBC 204
Disk Controller

AFN·01931A

shows the flow chart for a routine (code in
Appendix B) that makes use of the "software
switch" to operate an iSBC 204 Diskette Control
ler. Using the iSBC 544 board in a system with
DMA devices is not recommended except in cases
where DMA accesses are short and relatively
rare. The use of the CPU for the handling of other
system devices could seriously degrade its
performance as a communications controller.
However, this capability could be extremely
useful in a system such as a small message store
and forward where the disk traffic is not heavy
and including a CPU card just to handle the disk
would be wasteful. Use of the "software switch"
to share the bus with another iSBC CPU is not
advised because of the amount of protocol that
would be required to keep the CPUs from interfer
ing with each other on the bus.

Dual Port RAM

Figure 5 illustrates the dual port RAM memory
array on the iSBC 544 card. A triple bus architec
ture is used to allow other MULTIBUS bus
masters access to the RAM on the intelligent
slave. Both the on-board CPU's bus and the
MULTIBUS system bus are connected to the dual

"' ::>
CD
:;

~
>
"' "' ::>
CD

~
::>
:;

16K
RAM

"' . ::>
m
c
a: ..
0
m
z
0

8085A

port controller. From here the dual port bus is
connected to the 16K of dynamic RAM memory.
Memory transfer requests from either of the first
two busses are handled by the dual port control
logic with the on-board CPU being given priority
if contention arises. The local CPU is favored so
that it is not overly delayed in handling its time
critical functions.

The address mapping of the dual port memory on
the iSBC 544 is diagrammed in Figure 6. The user
can enable access from the MULTIBUS system
bus to 0, 4K, BK or all 16K of the RAM on each
iSBC 544 board. The dual port control logic
decodes the full 20-bit address and provides an
8-bit data path to the bus. For these reasons the
iSBC 544 board is compatible with 8080A, 8085A
and 8086 based single board computers. The user
can also select the block of addresses on the
system bus to which the iSBC 544 RAM will
respond.

MULTIBUS iSBC 544
SYSTEM ON-BOARD

ADDRESS ADDRESS
SPACE SPACE

XFOOO FOOO

XDOOO EOOO

XEOOO DOOO

xcooo cooo

XBOOO BOOO

XAOOO AOOO

X9000 9000

xaooo 8000

X7000 7000

X6QOO 6000

xsooo 5000

X4000 4000

X3000 3000

X2000

.,~,· (
----- 2000

X1000 ----- 1000

X 0 ANY PAGE ADDRESS. 0 TD F(HEX)

Figure 5. Dual Port Control Logic Figure 6. Address Mapping .on D.ual Port RAM Block

1-116 AFN-01931A

When accessed by the on-board CPU, the dual
port RAM always appears at 8000H. If the iSBC
544 board is operating in the stand-alone compu
ter mode, the board is capable of generating the
16-bit bus address supported by the 8085A CPU.

Interrupt Structure

The interrupt structure of the iSBC 544 controller
is designed to handle the heavy load imposed by
the inherent real-time nature of the communica
tions application. An 8259A Priority Interrupt
Controller handles the four receiver and transmit
ter ready interrupts from the 8251A devices and
provides vectored interrupts using one of many
available priority schemes. In addition to the
eight interrupt sources handled by the 8259 there
are various others that can be connected directly
to the vectored interrupt inputs on the 8085A
(RST 5.5, 6.5, 7.5 and TRAP). One interrupt is
generated by the dual port control logic whenever
a byte is written into the base address of the dual
port memory by an offboard CPU. This interrupt,
the flag interrupt, is cleared automatically when
the on-board CPU reads the byte and is useful
when designing a master-slave protocol since it
provides a unique interrupt to each slave in the
system.

If the 8251A devices are used to interface to
modems the loss of carrier and ring indicator
interrupts from all four channels need to be
connected to 8085A interrupt request inputs. This
is accomplished with four input OR gates tying
the eight sources into RST 6.5. The ring indicator
and carrier detect lines can also be monitored
through a parallel 1/0 port. This port would be
read in a polled system to determine status or
could be used along with the OR-tied interrupts to
determine which channel is sourcing the current
interrupt.

The remaining interrupt sources come from the
extra timer/counters and from the MULTIBUS
interrupt lines. In addition to receiving interrupts
from the bus, the iSBC 544 board has the
capability of generating MULTIBUS interrupts
using the Serial Output Data (SOD) line on the
8085A CPU.

Modem and Autocall Interface

The iSBC 544 controller uses 8251A and 8155
devices for interface to modems and an autocall

unit respectively. All of the necessary handsha
king signals concerned with the modem interface
are connected to the 8251A and the carrier detect
and ring indicator signals, as previously men
tioned, can be connected to interrupt inputs. The
8155 parallel ports are wired as shown in Figure
7. All of the commonly used signals defined in the
EIA RS-366 specification for interface to an
autocall unit are provided. The software neces
sary for handling the ACU becomes a simple
matter of responding to the ACU requests and
sending out the BCD digits representing the
number being dialed. In addition to the ACU
interface, the 8155 monitors various signal states
and provides software reset capabilities for the
USARTs and some interrupts.

IV. SOFTWARE CONSIDERATIONS

Software for the iSBC 544 ICC falls into three
main categories; device programming, master
slave protocols, and communications support.
Each of these three topics is covered in the
following section with the aim of defining the
software requirements and functions of the iSBC
544 board.

Device Programming

The main sources of the power and flexibility of
this product are the programmable LSI devices on
the board. The first duty of the on-board software
is programming these devices to handle the
specific task at hand. To start with, the 8251A
USART can be programmed for synchronous or
asynchronous operation. In synchronous mode
the user specifies even, odd or no parity and either
external or internal sync detect with one or two
sync characters. In the asynchronous mode the
programmer selects the parity, the character
length (5, 6, 7 or 8 data bits), the framing control
(1, l1/2 or 2 stop bits) and the baud rate scaling
factor (input clock frequency divided by 1, 16 or
64).

The 8253 Programmable Interval Timers provide
the receiver and transmitter clocks for the
USARTs and, along with the 8251A baud rate
scaling factor, are programmed by the software to
provide the desired communications frequency. In
addition, two additional 16 bit timers are left
available to the applications programs. to be used
as event counters, real-time interrupts, etc.

1-117 AFN·01931A

PORT A PORT B

07 _Os D5 D4 D3 D2 01 Do D7, D5 05 D4 03 02 01 Do

O~J~¥T CAO DPR IR UR NBS NB4 NB2 NB1 1~6~i CD3 C02 C01 COO Rl3 Rl2 Rl1 RIO

j I ; :::::: ::: ::: ';'";~~; ,. ..
NUMBER BIT NB4: 1 = TRUE

NUMBER BIT NBS (MSB): 1 = TRUE

USART RESET: 1 = TRUE

~-------INTERRUPT RESET: 1 =TRUE

'-----------DIGIT PRESENT ON NUMBER BIT

LINES: 0 = TRUE

'------------CALL REQUEST: 0 =TRUE

PORT C

D5 D4 03 D2 D1 Do

l~~i PFS FINT ACR DLO COS PNO

~t t LI.NG IN.DIC.ATOR, PORT 0:. 0 =TRUE L.= RING INDICATOR,-PORT 1: _O =TRUE

RING INDICATOR, PORT 2: 0 =TRUE

RING INDICATOR, PORT 3: 0 =TRUE

CARRIER DETECT, PORT 0: 0 =TRUE

CARRIER DETECT, PORT 1: 0 =TRUE

'----------~ CARRIER DETECT, PORT 2: 0 =TRUE

~---------- CARRIER DETECT, PORT.3: 0 =TRUE

~ PRESENT NEXT DIGIT: 0 =TRUE

~~\LR~~MPLETE, LINE TRANSFERRED TO MODEM:

DATA LINE OCCUPIED: 0 "TRUE

ABANDON CALL & RETRY:. 0 =TRUE

~------- FLAG INTERRUPT: 1 =TRUE

'----------- POWER FAIL SENSED: 1 =TRUE

Figure 7. 8155 Pinout Definitions

The 8259A Priority Interrupt Controller is
programmed to vector all interrupts through a
jump table in memory. Also, the device provides
software selectable priority schemes and an
interrupt mask register for sophisticated interrupt
management designs.

Last, but not least, the 8155 Programmable
Peripheral Interface provides various software
controlled input and output ports as discussed in
previous sections. One specific point to remember
is that the power on state of the 8155 clamps the
reset signal to the USARTs active and must be
removed by programming the 8155 before com
munications can begin.

Master-Slave Protocols

If an application system is visualized at the
highest level it appears to be a computer with
various inputs and outputs as depicted in Figure
8a. If this computer is broken down into a master
CPU and one or more intelligent slaves, great
increases in efficiency and system throughput

can be realized by distributing the duties between
the CPUs (Figure 8b). Once this split is per
formed, some well defined means of communica
tion between master and slaves needs. to be
defined so that the processes that execute on the
different machines can cooperate; This means of
communication takes the form .of a protocol
followed by both master .and slave.

INPUTS

INPUTS ----

APPLICATION

SYSTEM

OUTPUTS

OUTPUTS

Figure Ba and 8b. System Software Block Diagrams

1 ·118 AFN·01931A

The intelligent slave architecture was designed to
simplify the development of the necessary
protocol. The shared memory space in the dual
port RAM provides a large communications
buffer area where data and commands can be
transferred using normal memory transfers. Data
structures of any needed complexity can be built
in this memory area and accessed by both master
and slave. The flag interrupt can be used to
provide a unique synchronization signal from a
master to a given slave. In addition, the MULTI
BUS interrupt lines can be used to provide extra
signals in both directions. As we shall see in the
system software section, these basic tools can be
utilized to design a general purpose data transfer
mechanism which isolates the applications
processes from the worries of protocols and
synchronization.

Communications Support

The previous software topics dealt mainly with
the system overhead that must be handled by the
communications processor. The larger and more
important duty of the CPU is dealing with the
application at hand-communications.

When configured as an intelligent slave to some
master iSBC CPU board, the iSBC 544 board
works to offload the master of communications
related functions and at the same time is itself
relieved of a major share of the system overhead
and can be tuned to provide the highest possible
throughput. With this combination, more com
plex applications can be tackled where the
number of lines and the line frequencies are
greatly increased. Multiple systems can be
employed to provide a network facility with the
iSBC 544 board now handling the network
protocol in addition to its other duties. The
architecture of the iSBC 544 controller is designed
to simplify the user's software development
process. The board can be programmed to handle
many possible data transmission functions from
simple line protocols to terminal control to link
protocols and all the way up to network protocols.

In the stand-alone mode, the iSBC 544 board can
assume total responsibility for the application.
This can be done with on-board resources only or
can include the support of offboard expansion like
the iSBC 534 four channel serial controller. Appli-

1·119

cations of the stand-alone controller could include
cluster controllers, peripherals managers, line
concentrators or any other small system.

V. THROUGHPUT ANALYSIS

This section of the application note deals with
studies that have been done to quantify the
performance of the iSBC 544 board in both the
stand-alone and intelligent slave modes. After
describing the various test configurations and
assumptions the data will be presented in
graphical form and analyzed. The graphical data
can be found in Appendix C.

Stand Alone Throughput

The first two tests were run to determine the
absolute best case throughput of the iSBC 544
board configured as a stand-alone computer. Fig
ure 9a shows the iSBC 544 controller continuously
outputting data from four buffers to the four
USARTs. Figure 9b shows essentially the same
setup with eight channels, four on the iSBC 544
board and four on the iSBC 534 expansion
card. In each configuration the 8251A was run in
synchronous mode and the baud rate was incre
mented until the transmitter empty signal from
the USARTs became active. Further increments
of the baud rates would not have resulted in
higher throughput since the CPU was already
spending 100% of its available time responding to
USART service requests.

The maximum rate for the first configuration
(iSBC 544 board only) was 32,311 baud per
channel. When the iSBC 534 expansion board
was added a rate of 12,186 baud per channel was
achieved. The drop in baud rate was due to the
extra processing required by the offboard logic
(eg. reading 8259 interrupt controller on the iSBC
534 board to determine which device is requesting
service).

It should be noted that the serial throughput tests
were run with almost no overhead and no actual
processing of the data involved. The reader is
expected to apply information on the amount of
overhead expected in each individual application.
For instance, if the application code for a given
system is expected to utilize approximately 40% of
the available CPU time and we wish to run four

AFN·01931A

8085A

iSBC
544

BOARD

MULTIBUS SYSTEM BUS

Figure 9a and 9b. Stand-Alone Throughput Configurations

1-120

8251A

RING BUFFERS

~ iSBC 544 BOARD

iSBC
534

BOARD

AFN·01931A

full duplex channels in asynchronous mode the
estimate of maximum baud rate would take the
following form.

32,331 baud per channel - 40% = 19,398.6 baud

19,398.6 baud per channel synchronous x 10/8
= 24,248.25 baud asynchronous

24,248.25 baud per channel half duplex/2 =
12,124.125 full duplex

Therefore, the maximum standard baud rate
would be 9600 baud per channel in full duplex
asynchronous mode.

Intelligent Slave Throughput

The remaining four configurations were set up to
determine the effectiveness of the intelligent slave
in the overall system. The general system config
uration is illustrated in Figure 10. The boards
surrounded by the box represent the systems
under test. The disk controller and two iSBC
80120 single board computers were active on the
bus to simulate the normal bus traffic load in an
application system. Various bus duty cycles were
created using the computers and the disk control
ler to perform tasks that resulted in fixed bus
utilization.

Figure 1 O. General System Configuration for
Throughput Testing

In each configuration a single full duplex channel
was set up with the input provided by another
CPU. Only those functions dealing with system
overhead were included and the data measured

1-121

reflected the amount of bus time, master CPU
time and slave CPU time left available to
applications oriented tasks. In each case this
percentage of time available was measured as the
baud rate was stepped up so that a graph could be
constructed showing time available as a function
of transmission speed.

CPU free time was measured using a counting
program running in the background. After each
USART interrupt the counter was started. As
interrupts from other sources came in the count
ing was preempted and then resumed after
servicing the interrupt. When the next USART
interrupt occured, the counter contents were
examined and if the value was lower than the
stored value the current value became the stored
value. After ten minutes the stored value was
retrieved and used as an indicator of the worst
case time available between interrupts.

System bus utilization was measured using the
circuit shown in Figure 11. The voltage measured
by the digital voltmeter represented a time
average of the voltage at the output of the flip
flop. A calibration chart was created using a
pulse generator to simulate various duty cycles
and then this chart was used to measure bus
activity while the test was running.

VOLTMETER

+

BUSY/

a
CLK

BCLK/

I
Figure 11. Bus Free Time Measurement Circuit

Configuration 1 is shown in Figure 12. This
system uses a typical method of communications
expansion with the iSBC 80/30 single board
computer handling the lines directly via the serial
I/O ports on the iSBC 534 I/O controller board.

AFN·01931A

!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I.

ISBC 80/30 CPU

I MULTIBUS SYSTEM BUS

ISBC 534
SERIAL

EXPANSION BOARD

I I
I I
l_ _________ --- ---- - -- --- ---- - __ _J

Figure 12. System Throughput Test, Configuration 1

MEMORY

The second configuration (Figure 13) illustrates
the performance of the traditional DMA control
ler approach. If the communications controller
had DMA logic instead of a dual port memory and
transferred data directly into system memory the
performance would be as observed in this test.

configuration differs from the second in that
memory transfers involved only local memory
and bus access was not required on a per
character basis.

In configuration 3 (Figure 14) the iSBC 544 board
was used in the intelligent slave mode. This

The fourth and final configuration sought to
identify the loading that additional intelligent
slave controllers would impose on master CPU
time and bus free time. Figure 15 shows the

1------------- ------ - - ------- - -- - - - -,
I I
I I
I I
I I
I I
I ~~ ~~ I
I s1~g~EP~~t:o s1~g~eP~~t:o I
I I
I I
I I
I I
I I

MEMORY

I I
I I
I I
I I

MULTIBUS SYSTEM BUS

I I
I
'- - - ---' -'- - - - - - _J

Figure 13. System Throughput Test, Configuration 2

1-122 AFN·01931A

r--------------------------------------~

I I

iSBC 80/30
SINGLE BOARD

COMPUTER

iSBC 544
INTELLIGENT

COMMUNICATIONS
CONTROLLER

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I_ - - - - - - -- __ J

Figure 14. System Throughput Test, Configuration 3

Figure 15. System Throughput Test, Configuration 4

1-123 AFN·01931A

configuration with two iSBC 544 boards execut
ing identical programs.

The graphical presentation of the results is split
into two sections. The first three graphs (Graph 1
through Graph 3) show the relationship between
baud rates and the master CPU, system bus, and
slave CPU utilization. All of these results are
based upon tests with 30% induced bus traffic (i.e.,
the two iSBC 80/20 computers and the iSBC 204
disk controller were active.)

In graph 4, processor free time is graphed as a
function of bus traffic. The processor in this case
is the one actually involved with the data on a per
character basis (i.e., iSBC 80/30 board in con
figuration 1, iSBC 80/30 board simulating DMA
Controller in configuration 2, and iSBC 544 board
in configuration 3).

Finally, graph 5 illustrates the maximum attain
able baud rate for each configuration as the bus
traffic is increased.

All of the graphs identify the relative perfor
mance difference between the configurations.
Absolute numbers are not presented due to the
fact that the overhead imposed by the test
software affects the CPU time being measured.
Since the overhead applies equally to all config
urations, the relative performance indications are
valid.

Based upon the data presented, the DMA control
ler and intelligent slave use 3 times less CPU time
than an I/O controller. Also, the iSBC 544
intelligent slave generates 12% and 6% less bus
traffic than the I/O controller and DMA control
ler respectively. Finally, the intelligent slave uses
8% less slave CPU time than the DMA controller
approach.

The earlier discussion that dealt with the intelli
gent slave architecture pointed out that the
distribution of intelligence would offload the
master CPU so that it would retain sufficient
processing power for the actual application,
whatever that may be. In addition, it was stated
that the assumption of the slave role would relieve
the slave CPU of system overhead and at the
same time reduce system bus traffic. All of these
assumptions are supported by the results of the
testing presented here.

The second set of graphs identify the effects of
bus traffic on the performance of the various
components of the system. The main observation
to be made in this sequence is the drop in CPU
free times and maximum baud rates that occurs
when the bus gets busy. This effect is observable
in the communications processor free time when
the iSBC 534 expansion board or the DMA
controller configuration is used. No effect is
evident in the configuration with an iSBC 544
board.

The cause of this effect is the amount of bus
access required by each configuration to move the
characters from the USART to or from the
buffer. With an iSBC 534 board the master CPU
receives an interrupt, polls the offboard 8259
interrupt controller, reads in a character, stores it
in system memory and sends an end of interrupt
command to the offboard interrupt controller.
When the iSBC 80/30 computer receives an
interrupt all processing is performed onboard
until a bus access is required to move the data
byte from/to memory. In the case of the intelli
gent slave, all processing for a character is
performed onboard. Thus, as the system bus
becomes very fully utilized, the delays encounter
ed in receiving bus access by the first two
configurations become significant.

The fourth configuration, which was set up to test
the effects of adding more intelligent slaves,
shows that extra slaves cause no appreciable
increase in system load. All of the data points for
two slaves were identical to the points for one
slave in graphs 1 through 5.

VL APPLICATION EXAMPLES

A Distributed Control System

The potential applications for a product like the
iSBC 544 communications controller are almost
unlimited and not restricted to the traditional
Data Communications market. The first applica
tion example that is studied concerns industrial
automation. Due to the fact that the system is
distributed and requires a generalized network,
the iSBC 544 board is a natural prospect to handle
the communication links between the various
nodes in the system.

1-124 AFN·01931A

Design Requirements

The system to be designed is intended to provide
the framework for a family of distributed control
systems where the configurations and the objects
to be controlled vary from system to system. Fig
ure 16 shows the general picture of the system.

HOST

Figure 16. General Diagram of Distributed
Control System

SERIAL

Figure 17. Expanded Diagram of Distributed Control System

1-125

The host is responsible for providing supervisory
control and a high-level human interface. The
system can be expanded as shown in Figure 1 7
where the controllers attached to the host are
replaced by intermediate nodes which contain
controllers or other nodes. This process can be
continued as far as is necessary to provide the
needed number of controllers. Each controller in
the diagram represents a localized closed loop
control system that is tailored to the specific
application.

The following system requirements need to be met
by the computer network:

• The host CPU must have sufficient computa
tional power to handle the human interface,
mass storage management, supervisory control
calculations and network control.

• The host CPU must not be overly burdened by
low-level communications functions if it is to
handle the other duties assigned to it.

• Node controllers must be capable of handling 8
medium speed lines and also modems and
autocall units since the nodes or controllers
attached may be remote.

~ D, D
D

AFN·01931A

e<The message· transmission format must be
independent of the configuration and end
application. The nodes in the network must be
capable ofpassirig through messages with and
without interpreting the· contained data.

• The system must be capable of auto-~onfigura
tion. (since the network configuration is tailored
to the specific application, the host must be
able to automatically determine the setup at
power on).

• Each node controller is responsible for verify
ing the integrity of the nodes attached.

System Configuration

Based upon the design criteria and the bench
mark information the chosen configuration uses
an iSBC 86/12 Single Board Computer as the host
with an iSBC 544 intelligent .slave handling the
communications load for the CPU. The USART
on the CPU board will talk to the local terminal
and an iSBC 206 Hard Disk Controller will be
used to provide up to 40 Megabytes of mass
storage capacity.

The requirements for the node controllers point to
an iSBC 544 board configured as a stand-alone
communications computer with an iSBC 534
board as expansion to provide the necessary 8
lines. The throughput data indicated a raw
throughput value of 12K baud on each channel.
With the data rates expected being far below this,
sufficient time will be left over for background
functions. Thus, the software requirements for
each node can all be met by the CPU on the iSBC
544 board and the inclusion of an expansion
board does not necessitate another iSBC compu
ter.

A typical controller in the system would look like
that shown in Figure 18. The iSBC CPU handles
the local closed loop control, using parametric
information sent from the host. This information
would typically include setpoints, tolerances and
alarm limits. The serial channel on the CPU will
be used to maintain the link to the next level in
the network.

Preliminary Design

The message format that the system uses is
shown in Figure 19. When multiple nested levels

1-126

ANALOG
INPUTS

SERIAL
LINK

DIGITAL INPUTS

CLOSED (OOP
CONTROLLER

iSBC'80/10A SINGLE BOARD
COMPUTER WITH iSBC 732

ANALOG 1/0 BOARD

DIGITAL OUTPUTS

ANALOG
OUTPUTS

Figure 18. Typical Controller In .Distributed System

Figure 19. Message Format

FLAG COMMAND LENGTH DATA FRAME FLAG
CHECK

I I
I \

I \
I \

\ I \ I
I \

I \
I \

ADDRESS COMMAND DATA

Figure 20. Nested Level Address Information

of nodes are used the data area of the message
contains command and address information for
the next level down (Figure 20). Interpretation of
the commands in a given message is done on an
individual basis except for a set of.system-wide
commands (eg. IDENTIFY is a system command
meaning respond with your ID code). The flexi
bility afforded by this scheme can be extremely
useful in a system where the end applications and
configurations may be quite diverse (eg. a node
controller that is processing a transmit command
may be the only one that knows that it is sending
to another node via a phone line and thus it
interprets the contained data differently than
another node would). The level of intelligence
and the ease of programming of the iSBC 544
board make this generali:.!;ed transmission scheme
possible.

AFN-01931A

The simplest means of auto-configuration re
quires each controller in the system to send an
identity message to the nearest node. This node
would know the logical address of the controller
that sent the message and would attach this
address to the message and retransmit it to the
next level as illustrated in Figure 21. This process
would be repeated until the host is reached and
would contain, at this point, all necessary address
information to reach the given controller.

CONTROLLER

Figure 21. Auto Configuration

The human interface on the host would provide a
mapping mechanism to attach meaningful
symbolic names to the various nodes in the
system. This labeling, along with the application
specific control algorithms, make ·it possible to
say something like "lower the temperature on the
third floor to 68 ° F". The host. breaks this
information down into setpoints and tolerances,

1-127

uses the map to determine the pathto the node(s)
responsible for the third floor and transmits the
information through the network.

Each node controller in the system has the added
responsibility of verifying the integrity of all the
nodes attached to it. This duty can be handled by
periodic background commands issued from the
host and propagated through the network. Each
node is responsible for passing the command
along and also polling the nodes attached to it
and reporting back any error conditions.

Summary

Through the use of a powerful 16-bit iSBC Single
Board Computer, various low-cost 8-bit iSBC
CPUs and the iSBC 544 communications control
ler, a flexible and extensible distributed control
system is easy to design. The dual nature of the
iSBC 544 board provides both an intelligent front
end to the host computer and a high-speed stand
along nodal concentrator. The ability to individ
ually customize the software on each controller
provides for an easily expandable system design.

Terminal Cluster Controller

The second application example concerns itself
with a terminal cluster controller. The system
shown in Figure 22 uses a number of "dumb"
terminals and makes them appear "intelligent"
via a local microcomputer system. The local
microcomputer interfaces with the operator and
accesses a local data base to provide an inquiry
and data entry service. When necessary, the local
microcomputer is capable of calling the host via
an autocall unit and exchanging information and
updates to the data base.

Design Criteria

The terminal cluster controller must meet the
following criteria:

• Support must be provided for from four to
sixteen operator terminals all running at rates
up to 2400. baud.

• Line editing on input must be provided (delete
characters, delete lines and pause output).

AFN·01931A

HOST

~ -~~~-~ ?-

~
[jMINALJ

Figure 22. Terminal Cluster

• Support for the terminals must be configurable
in that certain stations may require different
screen formats ..

• Support for an optional hard copy device must
be allowed for.

• A considerable amount of CPU free time must
be available after the basic terminal facilities
are included. This is due to the fact that the
data base management software to be written
to run on the master single board computer will
be extensive.

• Type ahead would be a desired feature since the
processing on the master CPU after a line of
input has been transmitted may cause a delay
in responding and we would like to have the
ability to continue entering input while waiting
for the response.

System Configuration

The specific iSBC products needed to implement
the system described are the iSBC 80/30 Single
Board Computer with an iSBC 032 RAM Expan-

1-128

CPU

LOCAL
DATA
BASE

sion Board, an iSBC 206 Hard Disk Controller
and one to four iSBC 544 Intelligent Communica
tions Expansion boards. Intel's RMX/80 Real
Time Multitasking Executive will provide the
basis for the software system and will include
disk file support for the iSBC 206 controller
through DFS/80. The full system configuration
is illustrated in Figure 23.

BLOCK DIAGRAM

MULTIBUS SYSTEM BUS

Figure 23. Terminal Cluster Controller System
Configuration

AFN-01931A

Preliminary Design
The first design decision to be made involves the
distribution of system functions. Due to the
requirements for line-editing and type-ahead the
software for processing characters input from the
terminal keyboards will be somewhat lengthy.
The standard terminal output handler will be
very small but provisions for special screen
format controls and/or hard copy devices must be
allowed for. All of these requirements lead to the
use of the iSBC 544 controller for all terminal
functions. If the master CPU were burdened with
all of these duties it would be unable to adequately
perform its data base management functions.
The fast CPU and BK PROM capacity of the iSBC
544 board will be more than adequate for the task
at hand.

The throughput tests indicate that the loading
imposed by expanding the number of terminals
(and therefore the number of iSBC 544 boards)
will not adversely affect the performance of the
rest of the system. Master CPU free time and bus
traffic data for two intelligent slaves in the
system were identical to the numbers for one
slave. Thus, since the iSBC 80/30 single board
computer and the MULTIBUS system bus can
handle one iSBC 544 controller they can also
handle the maximum of four controllers that may
be required by this application. The only observ
able effect will be caused by the load the extra
operators impose on the data base software itself.

The software needed for the iSBC 544 board is
now defined and divided into three major pieces; a
terminal input handler, a terminal output handler
and system software to support the handlers.
Since the input and output handlers are invoked
via USART interrupts, all that need be done is to
write a single routine for each handler and have it
talk to all of the devices on the board. This can be
accomplished by vectoring the proper interrupts
to the entry point of the routine and then polling
the 8259A interrupt controller to determine which
device needs servicing.

The standard terminal input handler needs to
read in the available character from the USART,

1·129

check it to see if it is a special command character
and, if not, store it into a buffer. If a command
character is encountered, the handler will respond
by performing the appropriate operation.

The standard terminal output handler simply
takes characters out of a buffer upon interrupt
from the transmitter and sends them to the
appropriate USART. If a different output handler
needs to be substituted for a special terminal or a
hard copy device, a new routine can be included
by modifying the interrupt vector address in the
8259A jump table.

Since the RMX/80 Real-Time Multitasking
Executive is being utilized on the master CPU it is
desirable to create an RMX/80 handler for the
iSBC 544 boards that accepts and processes
normal terminal handler request messages. In
this manner, application tasks that formerly
communicated with the on-board USART via the
RMX/80 Terminal Handler can be made to talk to
one of the devices on the iSBC 544 board by
simply changing the address of an exchange. The
following paragraphs, as well as paragraphs in
the section on system software, assume a know
ledge of the RMX/80 Real-Time Executive. This
knowledge is not necessary to use the information
contained in this application note. Interested
readers are referred to the RMX/80 references
listed in the front-piece.

Since this application can have from one to four
iSBC 544 boards the RMX/80 driver will need to
be configurable. A set of tasks and exchanges
will be created for each terminal in the system.
One task and exchange pair will accept and
process terminal input request messages while
another pair will process terminal output re
quests.

The remaining piece of software that is needed by
this system will provide the means for getting
commands and data between the master and
intelligent slave. Since this is a common need in
any system utilizing an intelligent slave we will
develop a general purpose scheme that can be
used by any application. In this manner, a
routine such as the terminal input handler can be
written without any concern for how it will get the
data it is inputting to the master CPU; all it need
do is call upon a standard routine to "transmit"

AFN·01931A

the <Ulta. ·With the.se .thl?ughts in mind, tpe
following s,ection discusses the system software
developed for master-intelligent slave communi.
cation. After t}J,e di11cussio,n, of the system soft
ware we will revisit the software for the second
application· as an example of the use of the data
transfer· routin'es;

VII. SYSTEM' SOFl'WARE

In the earlier discussion of master-slave protocols,
the notion vv,as presented of developing a general
purpose data transfer scheme which would enable
the applications routines on both the slave and
master to operate without concerning themselves
with protoc~IS 'a:n.4 sy))chronization. This scheme
can 'be i~pleme~ted py designing a set of
primitive routines. to handle the data transfer
activities. Thus, ;Figure 8b iii expanded as shown
in Figure 24 and the applications proce11ses now
call up.on the primitives to handle the communica
tions between the master and the slave.

Data Transfer' Primittves

The basic mechani11m used by this implementa
tion of the primitives is a wraparound queue as
shown in Figure 25. Each 8251A device has
associated with it,. in dual port memory; an input
and an output queue each of which have. a giue

MASTER

TAKE
POINTER

GIVE
POINTER,·

,,..,'
TQP .

•. , POINTER .. "

Figure 25. Wrap-around Queue Used by Data
. Transfer Prlrnltlves · · · ·

' .. ;

and a take pointer. The give pointer cont'aj.ns .the
address of the next location in the queue that is
available for filling with data. The take poin*er
contains the address .of the next byte· in an output
queue that has been filled and is available. A
queue is empty when the.give and take· pointers
ate equal and it is full when the act of incr&
menting the giiie pointer 'would make it equal to
the take pointer; ·A wrap function is defined to'
increment a pointer such that 'an increment past
the bottom of the queue "wraps" the· pointer
around to the top of the queue. · ·

SLAVE

MULTIBUS
SYSTEM

BUS

MASTER
APPLICATION

SOFTWARE

APPLICATION SYSTEM

OATA
TRANSFER------~
PRIMITIVES

~lgure 24: Systitm $oftware Diagram with Datil Trai1st11r Primitives

1·130

SLAVE
'APPLICATION

SOFTWARE

AFN-01931A

The primitives all make use of a queue informa
tion block located at the base address of the
slave's dual port memory (Figure 26). All pointer
information is base relative to accommodate the
needs of the two CPUs who have different
memory maps. The two flag bytes carry informa
tion for master-slave and slave-master synchron
ization signals.

FLAG MASTER - SLAVE

FLAG SLAVE - MASTER

f GIVE {0)

Bl =1===GIVE{7) =
_ TAKE {O)

TAKE {7)

TOP {O)

TOP {7)

BOTTOM {0)

BOTTOM {7)

Figure 26. Queue Information Block

The set of primitives provides two distinct
methods of information transfer, line oriented
and byte oriented. The line oriented primitives
are listed in Table 1. Both get$line and send$line
transfer information between the queues and
buffers provided by the caller. The disadvantage
of this scheme is the number of memory moves
needed to transfer information. The advantages
of the line oriented method are the relative
efficiencies and the simplicity of the interface
from the calling routine.

The byte oriented primitives (Table 2) allow the
calling routine to transfer data directly into and
out of the queues. An example of the sequence for
putting a character into a queue is illustrated in
Figure 27. The routine servicing the receiver
ready interrupt calls next$space to get a pointer to
the next available slot in the queue and then uses
this pointer to transfer the data byte directly into
the queue. The new$line, xmit, open$line and
receive primitives are necessary since the global
give and take pointers cannot be modified until
all manipulations on the affected section of the
queue are complete. If the pointers were modified
continuously the routine gathering the data from
the other side may see invalid data.

I* OPERATOR TYPES "l" */

PTR: NEXT$SPACE {QUEUE$NUMBER):
VALUE: INPUT {USART$DATA$PORT);

QUEUE QUEUE
TOP -

GIVE

--+
BOTTOM

N

T

..-TAKE

N

T

~TAKE

z
LINES OF INPUT

~ WAITING FOR
~ ASTER PROCESSOR

1---GIVE

Figure 27. Sequence for Putting Data Into Queue

Table 1

Line Oriented Primitives

Primitive Arguments Usage

send$/ine Queue$token, buf$ptr, count Inserts count characters into queue from buffer
Returns: overflow If insufficient room available, overflow indicates how many would not fit

get$1ine Queue$token, buf$ptr, count Retrieves count _characters from queue and puts them in buffer
Returns: Actual Actual indicates how many were actually moved

1-131 AFN-01931A

The remaining primitive routines deal with the
ge:r;ieral purpose needs of the application software
with regard to interrupts, initialization and status
checking. A full list of these support routines is
contained in Table 3.

Another important feature. of t_he primitivt)
routines is the fact that they do not interpret tl:ie
bytes that are sent to them. Due to .this fact, the
applications routines are free to send commands
and parameters intersp.ersed with the actual
data: As an example, the terminal drlyer on an
iSBC 544 board might perform format control
based upon table information. The master appli
cations software could use the data transfer
primitives to transmit commands and parameters
to the slave to update.its format. control informa
tion. Another advantage of the fact that the data
is not interpreted is that it allows the calling
routine to determine what data gets sent along.
For instance, a specific terminal might be
transmitting ASCII code while the master

There are many features of this implementation
and a few of them should be pointed out at this
time. By. defining a general purpose set of
primitive routines to handle the data transfer, the
actual means by which the bytes are transferred
between slave and master is not visible to the
calling routine. If the actual mechanism used
needs to be altered the change will not affect the
application software as long as the same external
interface is maintained.

Primitive Arguments

new$1ine Queue$token
Returns: ptr

next$space Queue$token
Returns: ptr

back$space Queue$token
.. Returns: ptr

xmit Queue$token
Returns: status

open$/ine Queue$token
Returns: ptr

next$char Queue$token
Returns: ptr

receive Queue$token
Returns: status

Primitive Arguments

get$status Queue$token
Returns: status

set$interrupt Queue$token, type
Returns: status

set$handler Queue$token, handJer$adr ..
Returns: status

s$init none

m$init none

Table 2

Byte Oriented Primitives

Usage

Sets up a queue for byte oriented input.
Ptr returned points to the first available byte.

Increments the temporary give pointer to the next open space.
Ptr returned either points to next byte or is zero specifying full queue.

Decrements temporary give pointer.
Ptr returned either points to byte or is unchanged indicating that the
global give pointer was reached.

Closes off a line entered via byte mode by updating global give ptr to
equal temporary give ptr. Status is either "normal" or "null".

Opens up a line for byte oriented output.
Ptr returned either points to the next byte or is zero indicating an·
empty queue.

Increments temporary take pointer.
Ptr returned either points to next byte or is zero indicating an
empty queue.

Closes off a line retrieved in byte mode by updating global take
pointer to equal temporary ptr. Status is either "normal" or "null".

Table 3

Support Routines

Usage

Returns status of queue. Possible values are "normiil'', "empty",
"full" and "null".

Generates a slave - master or master -slave interrupt. Type code o
is illegal and codes 8H - OFH are _reserved for use by the primitives.

Inserts address into vector table used for handling interrupts
described above.

Called from slave software to initialize.

Called from master software to inhialize.

1-132 AFN·01931A

software is expecting EBCDIC. The routine on
the slave can very easily perform the necessary
code conversion before stuffing the data into a
queue.

Sample Slave Software

Given the existence of the primitive routines the
applications routines on the slave and master can
deal with the specific duties of each device. The
following paragraphs revisit the code from
application example 2, first for the slave and then
for the master. Full code listings for these
programs can be found in Appendix D.

The flowchart for the terminal input handler
resident on the iSBC 544 board is shown in Figure
28. Support is provided for deleting characters
(Rubout), deleting lines (control-X), pausing and
resuming output (control-S and control-Q) and
terminating lines (escape and carriage return).
The sections of code reproduced below use this
terminal input handler to present an example of
the use of the data transfer primitives to enter and
edit a line of input from a terminal. The byte
variable value is based on the address variable
ualue$ptr which is assigned by calls to the
primitives. The routine uar$inp inputs and
returns a data byte from an I/O port specified by
a calling parameter. This is necessary since the
particular USART to be serviced is determined by
reading the 8259A in-service register.

I* CASe i; rubout; ~elete char */

do;

end;

new$ptr=back$space(token);
if new$ptr=t.ength$ptr then

dummy=echo(tokentl,. (bell J, 1 J;
else

do;

end;

dummy=echo(token+1,.CBS,SP,BSJ,3);
ptr=new$ptr;
count=count-1;

Following this, the byte input is checked to see if
it is a control character and if so a block within a
DO CASE statement is executed. As an example
of one of these blocks, ifthe character input was a
RUBOUT the code sequence below is executed.
The back$space primitive is called and a tempo
rary pointer is returned to a location in the queue.
A check is made to determine if the line was
empty and, if so, a bell is echoed to signal the
operator. If the pointer returned did not indicate

1-133

an invalid RUBOUT the real pointer is assigned
the value of the temporary pointer and a back
space, space, backspace is echoed to delete the
previous character on the screen. Lastly, the
character count for the current line is decre
mented.

VALUE~PTR=NEXT$SPACE (QUEUE$NUMBER);
VALUE=VAR$INP (lJSART;>DA:rA$PORT (NOM));

RECEIVER READY
INTERRUPT

t
SAVE

STATE

DETERMINE
WHICH
8251A

GET
CHARACTER

ECHO
CHARACTER

PUT INTO
QUEUE

INCREMENT
COUNTER

UPDATE
POINTER

END
INTERRUPT

RESTORE
STATE

RETURN

YES

YES

HANDLE
IT

STOP
FURTHER ECHOING

Figure 28. Flow Chari for Terminal Input Handler

AFN-01931A

In order to facilitate retrieval of the proper
amount of information .on the master side, the
first byte of each message .is defined to contain
the number of characters in the message. Thus,
when the master routine needs a line of input he
uses the first byte as a count to retrieve the full
line. The requirement for type-ahead is met by
this mechanism since the number of lines in the

TRANSMITTER
READY

INTERRUPT

SAVE
STATE

DETERMINE
WHICH
8251A

GET
CHARACTER

OUTPUT (USART)
"BYTE--PTR

DECREMENT
COUNTER

NO

END
INTERRUPT

RESTORE
STATE

RETURN

YES DISABLE
TRANSMITTER

INTERRUPT
MASTER

Figure 29. Flow Chart for Terminal Output Handler

NO

1-13.4

queue at a given timeis limited only bythe length
of the q~eue. When a fuU line of input is finished,
the terminal input handler generates a slavlJ to
master interrupt to signal the master routine who
may be waiting for this event.

The flowchartfor .a minimal terminal output
handler is shown in Figure 29. Upon receipt ()fa

CLOSE
LINE

OPEN NEW
LINE

COUNTER
0 100

AFN-01931A

transmitter ready interrupt the output handler
requests a character from the appropriate queue.
If one is available it is output to the USART. If
the queue is empty, the transmitter is disabled.
Whenever the master routine sends a line into the
queue it will generate an interrupt to signal the
slave handler and the transmitter will be reen
abled. A line is opened via a call to open$line and
it is kept open until 100 characters have been
retrieved via calls to next$byte. At this time the
line is closed by a call to receive making the space
available to be reused. After this, a new call to
open$line starts the process over again. If the
call to get$status shows that the queue was full
prior to the call to receive, an interrupt is sent to
the master to reawaken any routine that may
have been waiting for room in the queue to
become available.

INPUT
HANDLER

' ' ' ' ' ' ' ' ---- ', ./''' ,

Sample Master Software

The RMX/80 handler for the master single board
computer that will communicate with the soft
ware on the iSBC 544 board is diagrammed in
Figure 30. In addition, the RMX/80 message used
to convey information to the handler is shown on
the right. The full software diagram is illustrated
in Figure 31.

The input driver tasks execute a reentrant routine
that services a request exchange that is specified
in an initialization block that is unique to each of
the input tasks. The necessary information is
extracted from the request message and the
get$line primitive is called upon to get a line of
input from the queue. If the call to get$line for the
length byte is unsuccessful the input task waits at

--
LINK

LENGTH

TYPE l
HOME EXCHANGE

~ USER \
I RESPONSE /----+-
\ EXCHANGE /

I /

RESPONSE EXCHANGE

OUTPUT
HANDLER

' ' ' ' ' '

', ___ /

',, ·. / -- ,
°"f1

USER . \
I RESPONSE 1----..
\ EXCHANGE I
\ I ' __ /

Figure 30. RMX/80 Handler for. ISBC 544 Board

H35

STATUS CHARSBUFF

BUFFER ADDRESS J---J
COUNT

ACTUAL

AFN·01931A

MASTER

....... --.......

/ ' I \ MASTE'R APPLICAilON SOFTWARE

I IN I
I I
' / .___/

DATA
TRANSFER
PRIMITIVES

RMX/80
DRIVER ------0 USER

SOFTWARE

1" '
(OUT)

\ I __ ,,,,.

Figure 31. Master Software with RMX/80 Handler

the appropriate signal exchange for an interrupt
from the slave indicating that a line is now
available. Once the request is fulfilled the actual
and status fields are set and the message is sent to
the response exchange specified by the user.

The output handler performs in a manner very
similar to the input handler. Upon receipt of a
request message the handler attempts to transfer
the characters from the user buffer to the
appropriate queue. If the attempt is unsuccessful
(ie. the queue has insufficient room available) the
handler sends as many characters as will fit
(count - overflow) and then waits for an interrupt
from the slave indicating that room has been
made available. This process is repeated until all
~f the data has been transmitted. As soon as the
operation is complete the status field is cleared
and the message is returned to the user specified
response exchange.

Since the number of iSBC 544 slaves in the
system is variable as are the memory base
address, device programming information and

queue sizes, some means of providing configura
tion information to the RMX/80 handlers is
needed. This information resides in the mem
ory$allocation$module. Public variables are
declared in this module that are used by the
RMX/80 tasks to determine how many devices
(and therefore how many tasks need to be created)
are in the system and where in the system address
space their dual port RAM is located. In addition,
queue sizes and device programming information
are specified here.

VIII. SUMMARY
The intent of this application note has been to
introduce the reader to the concept of the
intelligent slave architecture and show the
versatility of the first product based upon this
architecture, the iSBC 544 Intelligent Communi
cations Controller. The hardware and software
aspects of the device were studied and results of
benchmark tests were presented and studied.
Finally, two example applications were worked
out using the product as both a stand,alone
controller and as an intelligent slave.

1-136 AFN·01931A

The bottom line is that the iSBC 544 controller,
due to the advanced architecture around which it
is designed, can be the means to the end for any
application that requires communication. The
dual nature of the controller provides the full
power of a single board computer to the small
application while the large system can make use

of the fully programmabale intelligent slave to free
the CPU for complicated processing duties.

I would like to extend my gratitude to Dave
Jurasek for the work on the throughput testing
and to Jack Tyler Inman for aid in the design of
the system software.

1-137 AFN-01931A

~PPENDIX A

Figure A-1. iSBC 544 Input/Output and Interrupt Block Diagram

1-138 AFN-01931A

0 ..
;r~

APPENDIX A (Continued)

~()~Cl:

.-----..... !:~~ ~--"""'!----
0 •

Figure A-2. ISBC 544 Memory Block Diagram

1-139 AFN-01931A

APPENDIX B

A M81/J :Fl:DMA544.M81l

ISIS-II 81l80/81/J85 MACRO ASSEMBLER, V3.0 MODULE PAGE 1

LOC OBJ

00a0
00E4
ll0E5

,0052
41lFF
l:Hl0 4
0001
0002

0000

11J 2C
00 2C
00 2i;;
0030
0031
0034
ld035

0000
id001
0004
01106
0009
0008
000D
000F
0011
0013
0015
0017
0019
0018
001D
0020
0022
0024
0027
0029
01/J28
002E
00 30
0032

D3E4
DB81
AF
C43900
FB
C9

F3
31FFBF
D3E4
CD0000
3E04
D388
3EFF
D385
3E40
D385
3E00
D384
3E00
0384
CD001:10
3E52
D380
CD0000
3E01
D381
CD0000
3E02
D381
D3E5

c

E

D

D

E

E

E

LINE

1 $MOD85
2 BASE
3 MMSET
4 MMRSET
5 REA;)
6 TCOUN'r
7 DMAMOD
S TADDR
9 SADDR

10
11 BUFFER:
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

SOURCE STA'rEMENT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DSEG
OS

' ASEG
ORG 2CH
ou·r
IN
XRA

'CNZ
EI
RET

' EXT RN
EXT RN
EXT RN
CSEG
DI
LXI
OUT
CALL
MVI
OUT
MVI
OUT
MVI
OUT
MVI
OUT
MVI
OUT
CALL
MVI
OUT
CALL
MVI
OUT
CALL
MVI
OUT
OUT

80H
0E4H
0E5H
52H
4ilJFFH
04H
1
2

128

;BASE ADDRESS OF 204
;MASTER MODE SET ADDRESS
;MASTER MODE RESET ADDRESS
; READ COMMAcm CODE
;.TERMHlAL COUNT AND OMA MODE "OF
;DMAMODE WORD
;TRACK ADDRESS
;SECTOR ADDRESS

; SECTOR 3UF FER

TEST OF CAPABILITY FOR 544 TO SHARE MULTIBUS
WITH o·rHER MASTERS. ROUTINE PROGRAMS THE 204
BOARD, INITIATES A READ TRANSFER, WAITS FOR
AN INTERRUPT AND THEN TRAPS TO ICE85 BREAK
POINT AT 2fiJ0.

MMSET
BASE+l
A
ER RT RP

MAINLINE ROUTINE

INI·r24
WAI TC
WAITP

SP,0BFFFH
MMSET
INIT24
A,DMAMOD
BASE+8
A,LOW{TCOUNT)
BASE+5
A,HIGH{TCOUNT)
BASE+5
A,LOW{BUFFER)
BASE+4
A,HIGH{BUFFER)
BASE+4
WAI'rC
A,READ
BASE+0
WAITP
A,TADDR
BASE+l
WAITP
A.,SADDR
BASE+l
MMRSET

1·140

RST 5.5 ENTRY POINT
SET MASTER MODE
GE·r RESULT
SET FLAGS
NON-ZERO RESULT; ERROR TRAP
REENABLE
CONTINUE! ON

204 INITIALIZATION ROUTINE
WAIT FOR 204 NO'r BUSY ROUTINE
WAIT FOR 204 PARAMETER REGISTI

DISABLE
SET STACK POINTER
SET MASTER MODE FLIP FLOP
INITIALIZE 204
SET DMA MODE

SET CONTROL REGISTER

OUTPUT LOW BYTE OF OMA ADDRESS

OOTPUT'HIGH BYTE OF OMA ADDRESE

OUTPUT READ COMMAND

TRACK ADDRESS

SECTOR ADDRESS

RESET MASTER MODE FLIP/FLOP

AFN·01931A

0034 FB
00 35 76
0036 C31HJ02

0039 76

PUBLIC SYMBOLS

EXTERNAL SYMBOLS
INIT24 E 0000

USER SYMBOLS
BASE A 01!80
READ A 0052

58
59
60
61 ERRTRP:
62
63

WAI TC E 001!0 .

BUFFER D 0000
SAO DR A 0002

APPENDIX B (Continued)

EI
HLT
JMP 200H

HLT
END

WAITP E 0000

DMAMOD A 0004
TAD DR A 0001

1-141

ENABLE
AND HALT : WAIT FOR INTEF
TRAP TO ICE85 BREAKPOINT 'AT 200
ERROR TRAP
FOR NOW

ERRTRP c 0039 INIT24 E 0000 MF
TCOUNT A 40FF WAI TC E 0001! WAI

AFN.01931A

APPENDIX,B (Conllrtue'd)

A M8f/l:.: li'h UUT24.M80

ISIS-II 8080/8085 MACRO ASSEMBLER, V3.0 MODULE PAGE 1

LOC OBJ

0080
00E4
001!:5
0069
0035
0010
0.01a
00FF
00FF
0000
0008
0008
0009
4000
0004
f/10.~0
iHl20
flltH0

0000 F3
0001 3E0E
0003 30
001114 03E4
001116 038F
00011 3Eflll
000A 0382
fll00C AF
0000 0382
00fllF C0990fll
0012 3E35
0014 0380
0016 COA100
0019 3ElllO
0111·18 0381
0010 COA10fll
0020 3E08
0022 0381
0024 CDA100
0027 3E08
00 29 0381
0028 CDAli60
002E 3E09
00 30 0381
0032 C09900

c

c

c

c

c

c

LINE

l $M0085
2 SASE
3 MMSET
4 MMRSET
5 SEEK
6 SPECFY
7 BADTRl
8 BADTR2
9 NOBAD

10 c·rAODR
11 CHARS
12 SETTLE
13 STEP
14 LOAO
15 TCOUNT
16 DMAMOD
17 BUSY
18 PARFUL
19 RESFUL
20
21
22
23
24
25
26
27
28
29 INI'r24:
30
31
32
33
34
35
36
37
38
39
40
41
42
43
H
45
46
47
48
49
50
51
52
53
54

SOURCE STATEMENT

EQU
EQU
EQU

.. EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

;
CSEG
PUBLIC
PUBLIC
PUBLIC

DI
MVI
SIM
OUT
OUT
Ml/I
OUT
XRA
OUT
CALL
MVI
OUT
CALL
MVI
ou·r
CALL
MVI
OUT
CALL
MVI
OUT
CALL
MVI
OUT
CALL

80H
0E4H
0E5H
69!!
35H
l0H
18H
0FFH
lrlFFH
0DH
08H
08H
09H
4000H
04H
8iJH
20H
l~H

BASE ADDRESS.OF 204
MAS'rER MODE SET ADDRESS
MASTER MODE RESET ADDRESS··
SEEK COMMAND
"SPECIF'.!'." COMMAND CODE
SPECIF'.!'. BAD ·rRACKS SURFACE 1
SPECIF\'. BAD TRACKS SURFACE 2
NO BAD TRACKS
CURRENT TRACK ADDRESS NOT KNOW!'
SPECIF'.!'. DRIVE CHARACTERISTICS
HEAD SETTLE TIME(SA800)
STEP RA·rE
HEAD LOAD 'l'IME
TERMINAL COUNT AND OMA MODE 'OF
OMA MODE WORD
204 BUSY MASK
204 PARAMETER REGISTER FULL AS
204 RESUL'r BYTE FULL MASK

204 INITIALIZATION ROUTINE. RESETS 204 BOARD
AND PERFORMS ALL OF THE NECESSARY INITIALIZATIO~
OF THE 8257 AND 8271.

INI'r24
WAI TC
WAITP

A,0EH

Mi'ISET
BASE+15
A,l
BASE+2
A
BASE+2
WAI'rC
A,SPECF'.l
BASE+l/J
WAITP
A,CHARS
BASE+l
WAITP
A,STEP
BASE+l
WAITP
A,SETTLE
BASE+l
WAITP
A,LOAO
BASE+l
WAHC

1-142

ENTRY POINT
WILL BE USED EXTERNALLY

DISABLE
ENABLE 5. 5 IN'rERRUPT

SE'r MASTER MODE FLIP FLOP
RESET INTERFACE
RESET 204

WAIT TILL COMMAND WRITE VAL!
OUTPU'r "SPECIF\'." COMMAND

WAIT TILL PARAMETER WRITE Vl Ir
SPECIFYING DRIVE CHARACTERISTIC

OUTPUT STEP RATE

OUTPU·r HEAD SETTLE 'rlME

OUTPUT HEAD LOAD 'rlME

AFN.01931A

APPENDIX B (Continued)

l/JllJ35 3E35 55 MVI A,SPECFY ;SPECIFY BAD TRACKS
01137 D380 56 OUT BASE+llJ
0039 CDAHl0 c 57 CALL WAITP .
0113C 3El11 58 MVI A,BADTRl ; BAD 'rRACKS FOR SURFACE l
003E D381 59 ou·r SASE+l
0040 CDAHJ0 c '.i~ CALL WAITP ;
lll!l43 3EFF 61 Ml/I A,NOBAD ; FIRS'r TRACK
0045 D381 62 OUT BASE+l
004 7 CDAHJ0 c 63 CALL WAITP ' 004A 3EFF 64 MVI A,t~OBAD ;SECOND BAD rRACK
0l!i4C D381 65 OUT BASE+l
01/J4E CDA1~0 c 66 CALf" WAI·rp ;
0'151 3EFF 67 MVI A,CTADDR ;CURRENT ·rRACK ADDRESS (NOT r ·o~
0053 0381 68 OuT BASE+l
0055 CD9901cl c 69 CALL WAI·rc
0058 3E35 70 MifI A,SPECFY
0~5A D380 71 ou·r BASE+0
01/J5C CDA1110 c 72 CALL WAITP ;
01/J5F 3El8 73 MVI A,BAOTR2 ;SURFACE 2
0061 D381 74 OUT BASE+l
0063 CDA100 c 75 CALL WAITP

' llJ066 3EFF 76 !"!VI A,NOBAO ;FIRST TRACK
0068 D381 77 OUT BASE+l
006A CDA100 c 78 CALL WAl'rP ' 0060 3EFF 79 MVI A,NOBAD ;SECOND TRACK
006F 0381 80 OIJ'r BASE+l
0071 CDAH!0 c 81 CALL WAI'l'P ' 01rl'14 JEFF 82 MVI A,C'TAODR ;CURRENT TRACK ADDRESS (NOT r o~

00 76 D381 83 OUT BASE+l
0078 CD9900 c 84 CALL WAI TC

' 007B 3E69 85 MVI A,SEEK ;SEEK TO TRACK 0
007D 0380 86 OUT BASE+l!l
007F CDAHHJ c ~7 CALL WAITP
0082 3E00 88 MVI A,0
0084 D381 89 OUT BASE+l ' 0086 03E5 90 OUT MMRSET ;GO TO SLEEP WHILE 204 DOES IT
0088 FB 91 EI ;ENABLE INTERRUPTS
00 89 76 92 HLT ;SLEEP
0 08A F3 93 DI ;DISABLE
0088 3E04 94 MVI A,OMAMOD ; SET OMA MODE
0080 0388 95 OUT BASE+8 ;
008F 3E00 96 MVI A,LOW(TCOUNT) ;SE'r CONTROL REGISTER
00 91 D385 97 OUT BASE+S
0093 3E40 98 MVI A, HIGH ('rCOUNT)
0095 0385 99 OUT BASE+S
0097 FB 100 EI ' 0098 C9 UH RET ;RETURN

102
103 WAITC AND WAITP ROUTINES
104

' 0099 DB80 105 WAITC: IN BASE+0 GE·r STATUS BYTE
0098 E680 llil6 ANI BUSY BUSY?
009D C29900 c 107 JNZ WAI TC YES,LOOP
00A0 C9 108 RET NO,RETURN

109
' 00Al DB80 110 WAITP: IN BASE+iil GET STATUS REGISTER

00A3 E620 111 ANI PA RF UL PARAMETER BUFFER FULL?
00A5 C2Al00 c 112 JNZ WAITP YES,LOOP
00A8 C9 113 RET NO,RE'rURN

114 END

PUBLIC SYMBOLS
INIT24 c 0000 WAI TC c 0099 WAITP C l'JlilAl

1-143 AFN·01931A

EXTERNAL SYMBOLS

USER SYMBOLS
BADTRl A fd0llil
INIT24 C lillillllfd
SEEK A 011169

BADTR2 A 011118
LOAD A. 001119
SETTLE A 0008

APPENDIX B (Continued)

BASE A 0080
MMRSET A 00E5
SPECFY A 0035

1-144

BUSY
l'1MSET
STEP

A 011180
A 00E4
A 01<!08

CHARS A 0000
NOBAD A 00FF
TCOUNT A 41!Hl0

CTI.\
AF

WAI

AFN-01931A

APPENDIX C

1·145 AFN·01931A

~

i
!I ;::
~
IL
0
a:

i ..
0

"'

APPENDIX C (Continued)

GRAPH 1
MASTER CPU FREE TIME

VS BAUD RATE

100-t-~~~~~~~~~~~~~~~~~~~~~~~~~~D_M_A~C~ON_T_R_OL_L_ER_A_N_D_IN_TE....._LL~IG~!~NT_l~LA~VE~~~ 4~

80

80

40

20

BAUD RATE

.1'..146 AFN-01931A

95

90

w
m 85

i
4:
w
::E
>=
"' ~ 80 m
u.
0
-<f'

10

APP~ND.IX C (Co11tlnued)

GRAPH 2
BUS FREE TIME
VS BAUD RATE

BAUD RATE

1-147 AFN-01931A

100

80

IU
-'
ID
j

80 :c
~
!II
j:::
::> ..
<>
IU
>
j 40 .,
IL
0 ..

20

GRAPH 3
SLAVE CPU FREE tlME

VS 'B~UD ''RATE

BAUD RATE

AFN-01931A

1/0 CONTROLLER

10 20

APPENDIX C (Continued)

GRAPH. 4
COMMUNl~ATIONS PROCESSOR FREE TIME

VS BUS TRAFFIC
@ 9600 BAUD FULL DUPLEX

30 40 60 70

% MAX BUS TRAFFIC

1-149

80 90 100

AFN·01931A

1/0 COt!TROlLER

0 10 20 30

APPENDIX c (Col\tlnued)

··~RAf>H5
MAXtMUM BAUD' RATE

VS BUS TRAF.FI<;

40 50 60

% MAX BUS TRAFFIC

1·150

. 70 80 90 100

AFN-01931A

APPENDIX D

PL/M-d0 Ca.l.PILER SLAVE MAINLINE ROUTINE PAGE 1

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE MAINLINE
OBJECT MODULE PLACED IN :Fl:MAINLN.OBJ
COMPILER !Ni/OKED BY: PLM80 :Fl:MAii~LN.PLM PRINT(:F5:MAINLN.LST) PAGEWIDTH(78)

1

13
14

15

16
17
18

19

20

21
22
23
24

·I

1.
2

1

1
1
1

1

1

1
1
1
2

$title('slave mainline routine')
main$line:

DO;

/*
Mainline routine. Sets up stack$ptr, calls s$init to init
ialize queues,initializes some of the hardware, sets up the
initial flag interrupt handlers, and then halts with interru

pts
enabled allowing the rest of the system to operate totally
in i~terrupt mode.

*/

~no list

initial$handler: PROCEDURE EXfERNAL;
END initial$handler;

DECLARE
command$word LITERALLY '4lh',
porta8155 LITERALLY '0e9h',
command$8155 LITERALLY '0e8h',
mask$8259 LITERALL~ '0e7h',
icwl$8259 LI'rERALLY '0e6h',
icw2$8259 LITERALLY '0e7h',
ocw3$8259 LITERALLY '0e6h',
read$isr LITERALLY '0bh',
mask$word BY·rE PUBLIC,
portavalue BYTE PUBLIC,
stat BYTE,
i BYTE;

output(icwl$8259)=0f6h;
output(icw2$8259)=0fh;
output(mask$8259) ,mask$word=0ffh;

CALT. s$init;

/* set up 8259 for ISR reads */

output(ocw3$8259)=read$isr;

output(command$8155)=command$word;
output(porta8155) ,portavalue=0c0h;
DO i=0 TO 7;

stat=set$handler(i,.initial$handler);

1-151 AFN-01931A

APPENDIX D (Continued)

25 2 END;

26 l DO WHILE l;
27 2 HALT;
28 2 ENO;

29 l END main$line;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
72 LINES READ
0 PROGRAM ERROR{S)

f/J04DH
k"104H
0kl02H

770
40
20

1-152 AFN·D1931A

APPENDIX D (Continued)

P /M-80 COMPILER SLAVE APPL!CA'rION LEVEL SIGNAL HANDLE PAGE 1

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE INITIALHANDLER
OBJECT MODULE PLACED IN :Fl:FINTRT.OBJ
COMPILER INVOKED BY: PLM80 :Fl:FINTRT.PLM PRINT(:FS:FINTRT.LST) PAGEWIDTH(78)

1

32 1

$title('slave application level signal handler')
initial$handler:

/*

*/

DO~

Fields application level flag interrupts from the
master. If the type=go$type the device attached to the queue
specified is initialized with programming info sent into
the queue by the master. If the type is data$available the
specified transmitter is enabled unless a control$s pause
is in effect.

$no list

DECLARE
no$pause LITERALLY 'l' ,
go$type LITERALLY 'l',
data$available LITERALLY '2',
enable$xmit LITERALLY 'l',
reset LITERALLY '40h',
timer1command$port LI'rERALLY '0dbh',
timer2command$port Lr·rERALLY 'lrldfh',
mask$8259 LITERALLY '0e7h',
mask$word BYTE EXTERNAL,
mask (8) BYTE DATA(

0fch,
0f ch,
0f3h,
0f3h,
0cfh,
0cfh,
03fh,
03 fh) ,

transmitter$state (8) BYTE PUBLIC,
type .13YTE,
token BYTE,
i BY'l'E,
progSinfo (5) BYTE,
actual ADDRESS,
:.isart$command$port (8) BYTE EXTERNAL,
usart$state (8). BYTE PUBLIC,
length$pointer (8) ADDRESS PUBLIC,
pointer (8) ADDRESS PUBLIC,
char$count (8) 9YTE PUBLIC,
timer$load$oort (8) BYTE DATA(

0d8h,

1-153 AFN-019:l1A

11
i.

!_;

33 1

34 2

35 2
36 2

37 ·2
38 ' ·2
39 :3.'

;:·.-:,

4fil 3
41 4
42 4

43 3

44 3

•I

45 3
46 3

47 3
48 3

49 3
5fil 3
51 3

52 3
53 3
54 3
55 3
56 3

57 2

58 2
59 3
60 3

61 3

APPEND1X 0 (CC>ntli'iu8d)

0d8h:,
0d9h,
fild9h,

· fildah,
l/Jdah,
0acti.,·
0dch);

.\'

in itia.1$handler: PROCEDORE (code) PUBLIC:

DECLARE code BYTE;

token=code AND fllfh;
type=shr(code,4);

]' . ' . .

IF type=go$type THBN
DO;··. . :•. .

·tran;smi tter$state(token) :no$palise;
/* reset :Jsart */ .. ' ·• .· .: ' ; ..• '

DO i=fil TO 3;

',('. ',.\·:

CALL var out (usart$command$port (token) ,0);
END;

CALL var out (usar_t$command$port (t'oken), reset);

actual=get$line (token, .prog$info~5);

/* program the devices. */

CALL varout(usart$c:omniand$port(token) ,prog$info(0));
'CALL varout fusart$commarid$p6r't'(token) ,usart$state (token)

:=prog$info {l))'; ·
IF token (1 TaEN

CALL varout (ti'mer$'f$command$port,prog$info (2));
ELSE

CALL varout(timer2command$port,prog$info(2));
CALL varout(timer$load$poit~token) ,prog$info(3));
CALL varout(timer$load$port(token) ,prog$info(4));

/* open up the four input queues fdt·~ata input */

length$pointer(token-l)=new$line(token-l);
pbinter (tokeri-1) =next$spa:ce ftoken-1);
char$count(token-l)=fil; ··
output(mask$8259) ,mask$word=mask$~ord AND mask(token);

E~; ...

ELSE
1'F'lt'ype"'data$availab1~} ANO (trarismitter$state(token)=no$pa

use) THEN
DO; · ,·

usart$state (token) =usar:t$state (token) OR enable$xmit;
CALL varout (usart$comniand$port (token) , usart$state (token)

) ; ' '· ' ' :··;
END;

. 1-~154 AFN-01931A

63
RETURN;
ENO;

APPENDIX D (Continued)

64

2

l END initial$handler;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
154 LINES READ
0 PROGRAM ERROR(S)

0182H
01i143H
0004H

3860
67D

4D

1-155 AFN-01931A

APPEND.IX D (Conttnlled)

ISIS-II PL/M-8 lil V3 .1 COMPILATION OF MODULE INPUTliANDLER
OBJEC'r MODULE PLACED IN :Fl:INHDLR.08J
COMPILER INVOKED BY: PLM80 :Fl:INHDLR.PLM PRINT(:F5:INHDLR.LST) PAGEWID'rH(78)

1

34 1

35 1

$nointvector title('slave terminal input handler')
input$handler:

/*

*/

DO;

544 resident interrupt service routine. After receiver
ready interrupt the 8259 In Service Register(ISR) is
read to determine which device is requesting service.
The character is read in and placed in the ap~ropriate
queue. A check is made for break characters and appropriate
action is taken if any are found. When an endline character
is encountered the length byte is filled in (it was left
vacant when the line was started) and the xmit primitive is
called to update the global queue pointer to permit access
to the line. At this time the master is signalled to signify
that a new line is available for processing.

$no list

DECLARE
control$x LITERALLY '18H',
control$s LirERALLY '13H',
control$q LITERALLY 'llH',
rubout LITERALLY '7FH',
escape LI'rERALLY 'lBH •,
CR LITERALLY '0DH',
LF LITERALLY '0AH',
BS LITERALLY '08H',
SP LITERALLY '20H',
bell LITERALLY '07H',
,tr LITERALLY 'pointer(token) ',
length$ptr LITERALLY 'length$pointer(token) ',
count LITERALLY 'char$count(token) ',
disable$xmit LITERALLY 'lilFEH',
enable$xmit LI'rERALLY '01H',
no$pause LITERALLY 'l',
pause LITERALLY '0',
line$available LITERALLY 'l',
ocw2$8259 LITERALLY 'idE6H'.
ocw3$B259 LITERALLY '0E6H',
EOI LITERALLY '20H';

DECLARE
value$ptr ADDRESS,
value BASED value$ptr BYTE,
line$length BASED value$ptr BYTE,
dummy ADDRESS,
ISR BYTE,
token BYTE,

1-156 AFN-01931A

36 1

37 1
38 2

39 2
41 2
43 2
45 2
47 2
49 2
51 2
52 2

53 1

54 2

55 2
56 2
57 2
58 2
59 2

60 1

61 2
62 2
63 2
64 2
65 2
66 2

67 1

68 2
69 2
70 2
71 2
72 2
73 2
74 2
75 2
76 2
77 2

APPENDIX D (Continued)

stat BYTE,
new$ptr ADDRESS;

DECLARE
pointer (8) ADDRESS EXTERNAL,
length$pointer (8) ADDRESS EXTERNAL,
char$count (3) BYTE EXTERNAL,
usart$state (8) BYTE EXTERNAL,
usart$command$port (8) BYTE EXTERNAL,
usart$data$port (8) BYTE EXTERNAL,
transmitter$state (8) BYTE EXTERNAL;

index: PROCEDURE (value) BYTE;
DECLARE value BYTE;

END;

IF value=control$x THEN RETURN 0;
IF value=rubout THEN RETURN l;
IF value=control$s THEN RETURN 2;
IF value=control$q THEN RETURN 3;
IF value=escape THEN RETURN 4;
IF value=CR THEN RETURN 5;
RETURN 6;

echo: PROCEDURE(token,bufptr,numchar) ADDRESS;

DEC~~RE (bufptr,numchar,actual) ADDRESS,
token BYTE;

actual=send$line(token,buf$ptr,num$char);
usart$state(token)=usart$state(token) OR enable$xmit;
CALL varout(usart$command$port(token) iusart$state(token));
RETURN actual;
END;

delete$line: PROCEDURE;

END;

length$ptr=new$1ine (token);
ptr=next$space(token);
count=0;
durnmy=echo (token+l,. ('#' ,CR,LF) ,3);
RETURN;

end$line: PROCEDURE;

END;

value$ptr=length$ptr;
line$length=count;
ptr=next$sp~ce(tokenJ;
stat=xmit(token);
length$ptr=new$line(token);
ptr=next$space(token);
count=0;
stat~set~s$interruptltoken,line$available);
RETURN;

1-157 AFN-01931A

78 1
79 2

80 2

81 2

82 2
83 2
84 3

86 3
87 4
as 4
89 4

90 3
91 2
92 2

93 2

94 3
95 4
96 4

97 3
98 4
99 4

100 4

101 4
102 5
103 5
Hl4 5
HJS 5
106 4

107 3
108 4

109 4

llttl 4
111 4

112 3
113 4

APPEt,aDIX D (Ccmtlnued)

in$hdlr: PROCEDURE INTERRUPT 0 PUBLIC;
ISR=input(ocw3$8259) 1

token=61

again: ,
ISR=sh 1 (!SR, 2) I

IF NOT carry. THEN
DO;
iF tok~n=0 THEN RETURN; /* nn bits set */
ELSE

001

END1

token=token-21
GOTO again1

END1
value$ptr=ptr1
value=varinp (usart$data$port·(token)) ANO tl7fh 1

DO CASE index(value) 1

/* case 01 control$x1 delete line */

DO;
CALL delete$line1

El'lD1

/* case 11 rubout;. delete char */

D01
new$ptr=back$space (token) 1
IF new$ptr=length$ptr THEN

dummy=echo(token+l,. (bell) ,1)1
ELSE

DO;

El'IDJ

dummy=echo(token+l;.(l3S,SP,BS) ,3) 1
ptr=new$ptr1
count=count-l 1

/* case 21 control$s1 pause output */

D01
usart$state (token+!) =usart$state (token+l) AND disabl

e$xmit1
CALL varout(usart$cornmand$port(token+l) ,usart$state(

token+l)) 1
transmitter$state(token+l)=pause:

E1'ID1

/* case 31 control$g1 resume output */
DO; .

usart$state(token+l)=usart$state(token+l) OR enable$

1-158 AFN-01931A

114 4

115 4
116 4

117 3
118 4
119 4
120 4
121 4
122 4

12 3 3
124 4
125 4
126 4
127 4
128 4
129 4
130 4
131 4

132 3
133 4
134 4
135 4
137 4
138 4

139 3
140 2

141 2

142 2

143 1

APPENDIX D (Continued)

xmit;
CALL varout(usart$command$port(token+l) ,usart$state(

token+l));
transmitter$state(token+l)=no$pause;

E1~D;

/* case 4; escape; terminate line */
DO;

END;

dummy=echo (token+!,. ('#' ,CR,LF) ,3);
value=CR;
count=count+l;
CALL end$line;

/* case 5; carriage return; terminate line */
DO;

END;

dummy=echo(token+l,. (CR,LF) ,2);
count=count+l;
ptr=next$space(token);
value$ptr=ptr;
value=LF;
count=count+l;
CALL end$line;

/* case 6; non-break character; stuff into queue */
DO;

END;

dummy=echo(token+l,ptr,l);
ptr=next$space(token);
IF ptr=0 THEN CALL delete$line; /* full buffer */
ELSE count=count+l;

END; /* of do case */
output(ocw3$8259)=EOI;

RETURN;

END;

END input$handler;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
255 LINES READ
0 PROGRAM ERROR(S)

0398H
0011H
00lfi.JH

920D
17D
16D

1-159 AFN-01931A

APPENDIX D (Continued)

P /M-80 COMP ILER SLAVE CHARACTER 0 cl'rP UT HANDLER

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE OUTPUTHANDLER
OBJECT MODULE PLACED IN :Fl:OU'rHLR.OBJ

PAGE 1

COMPILER INVOKED BY: PLMBIO :Fl:OU'£HLR.PLM PRINT(:F5:0UTHLR.LST) PAGEWIDTH(78)

1

11 1

12 1

13 1

$nointvector title('slave character output handler')
output$handler:

/*

*/

DO;

544 resident interrupt service routine. After transmitter
ready interrupt, 8259 In Service Register (ISR) is read to
determine which device is requesting service. A charactex
is requested from the appropriat~ queue and, if available,
is sent to the usart. If the queue is empty the transmitter
is disabled pending a signal from the master when more
characters are put into the queue.

$no list

DECLARE
ocw2$8259 LITERALLY '0E6H',
ocw3$8259 LITERALLY '0E6H',
disable$xmit LITERALLY '0FEH',
true LITERALLY 'liJFFH',
false LITERALLY '00H I,
EOI LITERALLY '0A0H';

DECLARE
ISR BYTE,
token BY'I'E,
actual ADDRESS,
value BYTE;

DECLARE
usart$state (8) BYTE EXTERNAL,
usart$command$port (8) BYTE PUBLIC DATA(

lilDlH,
0DlH,
0D3H,
003H,
0D5H,
0D5H,
0D7H,
0D7H),

usart$data$port (8) BYTE PUBLIC DATA(
0D0H,
liJDliJH,
0D2H,
0D2H,
0D4H,

1-160 AFN-01931A

14 1

15 2

16 2

17 2

18 2
19 2
21/J 3

22 3
23 4
24 4
25 4
26 4
27 3

28 2
29 2
31/J 2
31 3

32 3

33 3

34 2
35 2
36 2
37 2
38 1

APPENDIX D (Continued)

0D4H,
llJD6H,
llJD6H);

out$hlr: PROCEDURE INTERRUPT 1 PUBLIC;

/* get active level number and use it to determine queue$token *
I

ISR=input(ocw3$8259);

tok-:::i=7;

again:
ISR=shl (ISR,l);
IF NOT carry THEN

DO;

e$xmit;

END;

IF token=l THEN RETURN; /* no bits in ISR set */
ELSE

DO;

END;

token=token-2;
ISR=shl (ISR,l);
GOTO again;

actual=get$line(token,.value,l);
IF actual=li!J THEN

DO; /* empty queue. Disable transmitter */
usart$state(token)=usart$state(token) AND disabl

CALL varout(usart$command$port(token) ,usart$stat
e (token)) ;

END;
ELSE

CALL varout(usart$data~port(token) ,value);
output(ocw3$8259)=EOI;
RETURN;
~ND:

END output$handler;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
102 LINES READ
li!J PROGRAM ERROR(S)

l:HJA4H
0005H
000CH

1640
SD

120

1-161 AFN·01931A

APPENDIX D(Continued)

PL/M-80 COMPILER RMX/80-544 INITIALIZATION 'rASK

ISIS-II PL/M-80 V3.l COMPILA.TION OF MODULE INIT544
OBJECT MODULE PLACED IN : Fl: INIT54. OBJ

PAGE 1

COMPILER INVOKED BY: PLM80 :Fl:INIT54.PLM PRINT(:F5:INI·r54,LST) PAGEWIDTH(78)

1

56
57

58
59

60
61

62

63

1
2

1
2

1
2

1

1

$title('rmx/80-544 initialization task')'
init$544:

/*

DO;

Task code for 544 driver initialization task. Info
from a"()plication supplied memory allocation block
is accessed to set up queues and transfer device programming
info to the slave board(s) and create the required
service handler tasks. ·

*/

$no list

input$driver: PROCEDURE EXTERNAL;
END input$driver;

output$driver: PROCEDURE EXTERNAL;
END o~tput$d!iver;

signali PROCEDURE ~XTERNAL;
END signal;

DECLARE
stack$size LITERALLY
go$type LITERALLY

DECLARE
ptr ADDRESS,

'256',
I l' ;

init$table BASED ptr STRUCTURE(
base$adr ADDRESS, . .
queue$token BYTE,
prog$info (5) BYTE),

i BYTE,
overflow ADDRESS,
queue$init$table (1) STRUCTURE(

base$adr ADDRESS,
aueue$size (8) ADDRESS) EXTERNAL,

initielization$table (1) BYTE EXTERNAL,
stat BYTE,
num$devices BYTE EXTERNAL,
num$boards BYTE EXTERNAL,
service$exchange$table (1) ADDRESS EXTERNAL,
signal$exchange$table (1) ADDRESS EXTERNAL,
service$exchanges (1) BYTE EXTERNAL,
signal$exchanges (1) BYTE EXTERNAL,
task$descriptors (l) BiTE EXTERNAL,

1-162 AFN-01931A

64 1

65 1

66 2

67 2
68 2
69 2
70 2
71 2

72 1

73 2
74 3
75 3

76 2

77 2

78 2

79 2

80 3

81 3

APPENDIX D (Continued)

stacks (1) BYTE EXTERNAL,
info$block (1) STRUCTURE(

base$adr ADDRESS,
queue$token BYTE,
index BYTE) EXTERNAL,

rqactv ADDRESS EXTERNAL;

DECLARE
:om$input$std static$task$descriptor DATA(

'input ' ,
. inp\lt$driver,
0, /* stack will be assigned individually */
stack$size,
200,
0, /* tba */
0 l , !* tba *I

rom$output$std static$task$descriptor DATA(
'output',
.output$driver,
0,
stacksize,
201,
0,
0) ,

input$hdlr$std static$task$descriptor,
output$hdlr$std static$task$descriptor;

init$xch: PROCEDURE (xch$ptr);
/* initializes expanded interrupt exchanges */

DECLARE xch$ptr ADDRESS,
xch BASED xch$ptr int$exchange$descriptor;

xch.link=.xch.link;
xch.type=int$type;
xch.length=5;
RETURN;
END;

init$54: PROCEDURE PUBLIC;

DO i=0 TO num$boards-l;
CALL m$init(.queue$init$table(i));

END;

CALL move(size(rom$input$std) ,.rom$input$std,.input$hdlr$std
) ;

CALL move(size(rom$output$std),.rom$output$std,.output$hdlr$
std);

ptr=.initialization$table;

DO i=0 TO num$devices*2 BY 2;
/* send pogramming info to slave */

overflow=send$line(init$table.base$adr,init$table.queue$
token,.init$table.prog$info,5);

stat=setminterrupt(init$table.base$adr,init$table.queu

1-163 AFN·01931A

82 3

83 3

84 3
85 3
86 3

87 3

88 3

89 3
90 3
91 3
92 3

93 3
94 3
95 3
96 3
97 3
98 3

99 3
100 3
Hll 3
HJ2 3

103 2
104 2
105 2
106 2

107 1

APPENDIX D (Continued)

e$token,go$type);

/* create service and signal exchanges */

CALL rqcxch(service$exchange$table(i) :=.service$exchange
s+l0* i);

CALL rqcxch(service$exchange$table(i+l) :=.service$exchan
ges+l0* (i+l)); ·

CALL init$xch(:sig~~l$exchanges+l5*i);
CALL init$xch(.signal$exchanges+l5*(i+l));
CALL rgcxch(signal$~xchange$table(i) :=,signal$exchanges+

15*i);
CALL rqcxch(signal$exchanqe$table(i+l) :=.signal$exchange

s+l5* (i+l));

END;

info$block(i) .base$adr,
info$block(i+l).base$adr=init$table.base$adr;
info$block(i) .queue$token=init$table.queue$token-l;
info$block(i+l) .queue$token=init$table.queue$token;
info$block(i) .index=i;
info$block(i+l) .index=i+l;

input$hdlr$std.sp=.stacks+stack$size*i;
output$hdlr$std.sp=.stacks+stack$size*(i+l);
input$hdlr$std.exchange$address=.info$block(i);
output$hdlr$std.exchange$address=.info$block(i+l);
input$hdlr$std.task$ptr=.task$descriptors+2fil*i;
output$hdlr$std.task$ptr=.task$descriptors+2fil*(i+l);

CALL rqctsk(.input$hdlr$std);
CALL rqctsk(.output$hdlr$std);
ptr=ptr+8;

CALL rqsetv(.signal,2);
CALL rqelvl(2);
CALL rqsusp(rqactv);

END; /* of task */

END init$544;

MODULE INFORMATION:

COPE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
285 LINES READ
fiJ PROGRAM ERROR(S)

fil2C3H
0fil2AH

= filfil06H

7fil7D
420

60

1-164 AFN·01931A

APPENDIX D (Continued)

P /M-80 COMP ILER RMX/80-544 INITIALIZATION MODULE AND PAGE 1

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE INITMODULE
OBJECT MODULE PLACED IN :Fl:MAB.OBJ
COMPILER INVOKED BY: PLM80 :Fl:MAB.PLM PRINT(:F5:MAB.LS'I') PAGEWIOTH(78)

1

2 1

$title('rmx/80-544 initialization module and memory allocation b
lock')

init$module:

/*

44

*/

DO;

Initialization tables created and allocation of memory for 5

handler done here.

DECLARE
numberofdevices LITERALLY '4',
baud$rate$count$1 LITERALLY '32',
baud$rate$count$h LITERALLY '00',
usart$mode LITERALLY '4eh',
usart$cmd LITERALLY '27h',
ctr$(:1$mode LI'rERALLY '36h',
ctr1mode LI'rERALLY '76h',
ctr2mode LITERALLY '0b6h',
ctr3mode LITERALLY '36h',
num$devices BYTE PUBLIC DATA(numberofdevices-l),
num$boards BYTE PUBLIC DATA(l),
service$exchange$table (8} ADDRESS PUBLIC,
signal$exchange$table (8) ADDRESS PUBLIC,
signal$type (8) BYTE PUBLIC,
service$exchanges (80) BYTE PUBLIC,
signal$exchanges (120) BYTE POBLIC,
task$descriptors (160) BYTE PUBLIC,
stacks (2048) BYTE PUBLIC,
info$block (32) BYTE PUBLIC,
queue$init$table (1) STRUCTURE(

base$adr ADDRESS,
gueue$size (8) ADDRESS) PUBLIC DATA(

0e0 00h,
256,
1765,
2 56,
1765,
256,
1765,
256,
1765) ,

base$table (1) ADDRESS PUBLIC DATA(
0e000h),

initialization$table (number$of$devices) STRUCTURE(
base$adr ADDRESS,

1·165 AFN-01931A

APPENDIX D (Continued)

queue$token BYTE,
prog$info (5) BY~E) PUBLIC DATA(

lllelllllllllh,
1,
usart$mode,
usart$cmd,
ctr$11J$mode,
baud$rate$count$1,
baud$rate$count$h,

lllelllfl.llllh,
3,
usart$mode,
usart$cmd,
ctr1mode,
baud$rate$count$1,
baud$rate$count$h,

lllefl.l 011lh,
5,
usart$mode,
usart$cmd,
ctr2mode,
baud$rate$count$1,
baud$rate$count$h,

lllelll011Jh,
7,
usart$mode,
usart$cmd,
ctr3mode,
baud$rate$count$1,
baud$rate$count$h) 1

3 1 END init$modulei

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
7 9 LINES READ
Ill PROGRAM ERROR(S)

llJ036H
09BllJH
llJllJ00H

·54D
24800

llJD

1-166 AFN-01931A

APPENDIX D (Continued)

P /M-80 COMPILER 3LAVE->MASTER INTERRUPT HANDLER PAGE l

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE SIG~ALHANDLER
OBJECT MODULE PLACED IN :Fl:SIGNAL.OBJ
COMPILER INVOKED BY: PLM80 :Fl:SIGNAL.PLM PRINT(:FS:SIGNAL.LST) PAGEWIDTH(78)

l

26

27

28

29

30
31
32
33

35
36

37
38

l

l

2

2

2
2
3
3

3
3

2
2

$nointvector title('slave->master interrupt handler')
signal$handler:

DO;

I*

a
Fields all slave->master signals(interrupts) and calls rqisn

with the proper signal exchange address.
*/

$no list

DECLARE
i BYTE,
ptr ADDRESS,
(flag BASED ptr) BYTE,
num$boards BYTE EXTERNAL,
num$devices BYTE EXTERNAL,
signal$type (1) BYTE EXTERNAL,
index BYTE,
token BYTE,
signal$exchange$table (1) ADDRESS EXTERNAL,
base$table (1) ADDRESS EXTERNAL;

signal: PROCEDURE INTERRUPT 2 PUBLIC;

/* poll slave boards and find one generating interrupt */

i=0;

next:
ptr=base$table(i)+l;
IF flag=0 THEN

DO;
i=i+l;
IF i > num$boards THEN RETURN; /* erroneous signal *

I
ELSE GOTO next;

END;

/* get queue token and use it to index into signal exchange tab!
e */

token=(flag AND 0fh);
index=4*i+token;

I* if index is out of range don't attempt the isend */

1·167 AFN-01931A

APPENDIX D {Continued)

39 2 IF index <= num$devices THEN
41/J 2 DO;
41 3 CALL rqisnd(signal$exchange$table(index));
42 3 signal$type(index)•shr(flag,4);
43 3 END;

ELSE
44 2 CALL rqendi;

/* zero flag to acknowledge interrupt */

45 2 flag=llJ;
46 2 RETURN;
47 2 END;

48 1 END signal$handler;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
110 LINES READ
0 PROGRAM ERROR(S)

01/JBBH
001/J5H
01/JllJAH

139D
5D

11/JD

1-168 AFN·01931A

APPENDIX D (Continued)

P /M-80 COMPILER RMX/8~-544 INPUT SERVICE HANDLER PAGE l

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE INPUTDRIVER
OBJECT MODULE PLACED IN :Fl:INPUT.OBJ
COMPILER INVOKED BY: PLM811l :Fl:INPUT.PLM PRINT(:F5:INPUT.LST) PAGEWIDTH(78)

l

27

28

29

30

31

l

l

2

2

2

$title('rmx/80-544 input service handler')
input$driver:

/*

rs

*/

DO;

Master resident task code. Monitors service exchange
and fills input requests by retrievinq characters from
the proper queue(board$base and device info is passed
via default exchange field). By definition the first byte
of a line of input contains the length of that line.
This figure is used to retrieve the exact number of characte

available in a given line.

$no list

DECLARE
rqactv ADDRESS EXTERNAL.
ta BASED rqactv task$descriptor,
service$exchange$table (1) ADDRESS EXTERNAL,
signal$exchange$table (1) ADDRESS EXTERNAL;

input$driver: PROCEDURE REENTRANT PUBLIC;

DECLARE
service$exchange ADDRESS,
board$base ADDRESS,
gueue$token BYTE,
signal$exchange ADDRESS,
msg$ptr ADDRESS,
msg BASED msg$ptr th$msg,
actual ADDRESS,
dummv ADDRESS,
infoSblock$ptr ADDRESS,
info$block BASED info$block$ptr STRUC'rURE (

base$adr ADDRESS,
queue$token BYTE,
index BYTE) ,

num$char BYTE,
stat BYTE;

/* get info out of default field */

info$block$ptr:td.exchange$address; /* default exchange fiel
d */

service$exchange:service$exchange$table(info$block.index);

1·169 AFN·01931A

32
33
34
35

36

37

38
39
40
41
42

43

44
45
46
47

48

4':1

2
2
2
2

3

3

3
3
4
4
4

3

3
3
3
3

2

1

APPENDIX D (Continued)

board$base=infolblock.base$adr;
gueue$token=info$block.queue$token;
signal$exchange=signal$exchange$table(info$block.index);
DO forever;

/* wait for request message */

msg$ptr=rgwait(service$exchange,0);

retry:
/* try to get line count out of queue */

actual=get$line(board$base,queue$token,.num$char,l);

/* if unsuccessful wait for signal and try again */

IF actual=0 THEN
DO;

dummy=rqwait(signal$exchange,0);
GOTO retry; .

END;

/* if all okay get line */

actual=get$line(board$base,queue$token,msg.buffer$adr,nu
m$char);

~sg.actual=actual;
msg.status=0;
CALL rqsend(msg.respex,msgptr);

END; /* of do forever */

END; /* of task */

END input$driver;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
171 LINES READ
fil PROGRAM ERROR(S)

012CH
00filfilH
0017H

300D
0D

23D

1-170 AFN·01931A

APPENDIX D (Continued)

P /M-80 COMPILER RMX/80-544 OUTPUT SERVICE HANDLER PAGE l

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE OUTPUTDRIVER
OBJECT MODULE PLACED IN :Fl:OUTPUT.OBJ
COMPILER INVOKED BY: PLM80 :Fl :OUTPUT.PLM PRINT (:FS:OUTPUT. LST) PAGEWIDTH (78)

1

39 l

40 1

41 1

42 2

$title('rmx/80-544 output service handler')
output$driver:

/*

DO;

Master resident task code. Monitors service exchange and
fills output requests by stuffing characters into the approp

riate

*/

queue. If insufficient room is available the task waits
for l second and retries up to 100 times after which it
signals a time out error. If the transmission completes
successfully the slave is signalled to indicate that data is

available.

$no list

DECLARE
data$available LITERALLY '2',
time$out LITERALLY 'l';

DECLARE
rgactv ADDRESS EXTERNAL,
(td BASED rqactv) task$descriptor,
service$exchange$table (1) ADDRESS EXTERNAL,
signal$exchange$table (1) .ADDRESS EX'fERNAL;

output$driver: PROCEDURE REENTRANT PUBLIC;

DECLARE
service$exchange ADDRESS,
signal$exchange ADDRESS,
base$adr ADDRESS,
queue$token BYTE,
msg$ptr ADDRESS,
msg BASED msg$ptr th$msg,
tries$left . BYTE,
overflow ADDRESS,
dummy ADDRESS,
stat BYTE,
info$block$ptr ADDRESS,
info$block BASED info$block$ptr STRUC'rURE (

base$adr ADDRESS,
queue$token BYTE,
index BYTE);

1-171 AFN·01931A

43 2
44 2
45 2
46 2
47 2

48 2

49 3
50 3
51 3

52 3
53 3
54 4
55 4
56 4

58 4
59 5
60 5
61 5
62 5
63 4
64 3
65 3

66 3
67 3

68 3

69 2

70 1

APPENDIX D (Continued)

/* initialize */

info$block$ptr=td.exchange$address;
service$exchange~service$exchange$table(info$block.index);
signal$exchange=signal$exchapge$table(info$block.index);
bas3$adr=info$block.base$adr;
queue$token=info$block.queue$token;

DO forever;

/* wait for request inessa·ge */

msg$ptr=rqwait(service$exchange,0);
tr ies$left=HHl;

retry:
~verflow=send$line(base$adr,queue$token,msg.buffer$adr,m

sg.count);

) ;

IF overflow <> 0 THEN
DO;

END;

dummy=rqwait (signal$ex,change, 20);
tries$left=tries$left-l;
IF tries$left > 0 THEN GOTO retry;
ELSE

DO;

END;

msg.status=time$out;
msg.actual=0;
GOTO quit;

msg.status=0;
stat=setminterrupt(base$adr,queue$token,data$available

msg.actual=msg.count;
quit:

CALL rqsend(msg.resp$ex,rnsg$ptr);
END; /* of do forever */

END; /* of task */

END output$driver;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
198 LINES READ
0 PROGRAM ERROR(S)

0159H
0000H
0019H

. 3450
0D•

250.'

1-172 AFN-01931A

APPENDIX D (Continued)

A M8il :Fl:CFG544.M81:l PRir;J"r(:F4:CFG544.Ls·r) PAGEWID·rtt(78) MACROFILE

ISIS-II 8fll81il/8085 MAC<l.O ASSEMBLER, V3.t1l CFG544 PAGE 1

LOC OBJ LINE SOURCE S'rATEMENT

1 NAME CFG544
2 CSEG
3 PUBLIC RQRATE

1.:HHHi 0800 4 RQRA1'E: DW 8
5 $NOLIS'r

127 $LIST
128 $NOGEN

0000 129 N'rASK SET 0
0000 130 NEXCH SET 0

131
132 BUILD Tt:IE INITIAL TASK TABLE
133
134 --------\ THIS TASK IS NECESSARY FOR THE 544 HANDLE

R
135 --------/ IT CREATES EVERYTHING ELSE IT NEEDS.
136 STD Il.'HT54,200,l,0
191 STD LINECH,64,130,fll
246
247 Af,LOCATE TASK DESCRIPTORS
248
249 GENTD
253
25i BUILD INITIAL EXCHANGE TABLE
255
256 XCHADR RESPEX
264
265 BUILD CREA·rE TABLE
266
267 CRT AB
274 END

PUBLIC SYMBOLS
RQCRTB C 0026 RQRATE c 0011)0

EXTERNAL SYMBOLS
INI'r54 E 0000 LINECH E 0000 RESP EX E iHJ00

USER SYMBOLS
CRT AB + 0000 GENTD + 01il00 IET c 0024 INIT54 E 0000
INTXCH + 0000 ITT c 0002 LINECH E 0000 NEXCH A 0001
NT ASK A 0002 PUBXCH + 11)11)07 RESP EX E 0000 RQCRTB c 0026
RQRATE c 0000 STD + 0000 TD BASE D 0108 XCH + 0005
XCHADR + 0002

1·173 AFN-01931A

APPLICATION
NOTE

1-175

AP-96

July 1980

AFN·01931A

Designing iSBX™
MULTIMODULE™ Boards

·contents

INTRODUCTION 1-177

iSBX™ MULTIMODULE™ BOARD
CONCEPT•.. 1-177

iSBX™ MULTIMODULE™ SYSTEM
INTERFACE • 1-178

Host Boards • 1-178
iSBX™ MULTIMODULE™ Boards 1-178
iSBX™ Connector 1-180
iSBX™ Bus Interface Signals........... 1-180

iSBX™ BUS INTERFACING•.. 1-181

Bus Timing . 1-181
Command Operations 1-181
iSBX™ Addressing 1-183
Considerations for iSBX™ Bus

Interfacing 1-183
Optionallnterface Lines 1-184

iSBX™ MULTIMODULE™ DESIGN
EXAMPLE 1-185

iSBX™ MULTIMODULE™ Board
Design 1-185

Display Module Design 1-186
Keyboard Interface Design 1-187
Operation With The iSBC 80/lOB™

Single Board Computer. 1-188
Breadboarding The Design 1-189
Software Considerations 1-189
Debug Considerations................. 1-190

SUMMARY•••................... 1-190

APPENDIX A - iSBX™ Signal
Pin Assignments. 1-192

APPENDIX B - iSBX™ MULTIMODULE™
I/O AC Specifications 1-193

APPENDIX C - Listing for the iSBX™
Design Example Software Exerciser 1-194

1-176 AFN-01931A

AP-96

INTRODUCTION
Intel's single board computers and the MULTIBUS™
system bus have become de facto industry standards in
the microcomputer board market. The speed and capa
bility of the bus coupled with the functionality and per
formance of the boards have been used to solve a large
number of problems. iSBC products are in applications
ranging from simple single board relay replacement to
sophisticated multi-board business systems supporting
large hard disk files. However, even with the range of
functionality provided by standard iSBCs and expan
sion boards, designers have felt the need to design
custom MULTIBUS-compatible boards to fit their ap
plication. Until the introduction of the iSBX concept,
these custom boards had to be implemented using a
separate MULTIBUS form factor board.

Intel has recently introduced a new line of board prod
ucts anu :i new bus which are destined to become
another industry standard because of the niche they fill.
The new iSBX MUL TIMODULE boards are designed
to extend the functional capabilities of single board
computers at a much lower cost than previously possi
ble. iSBX MUL TIMODULE boards are supp0rted by a
new bus - the iSBX bus, which allows the MULTI
MODULE boards to be added directly to the on-board
microprocessor bus. iSBX MUL TIMODULE boards
are from 10 to 20 square inches in size, therefore permit
ting small modular increments to a single board com
puter's capabilities.

System designers now have the capabilities of using
either standard iSBCs or iSBX MUL TIMODULE
boards, or designing custom MULTIBUS compatible or
iSBX MUL TIMODULE boards. Cost-effective solu
tions are easily realized because of this added flexibility.

This application note discusses the iSBX MULTI
MODULE concept, currently available MUL TIMOD
ULE boards and the iSBCs which support these boards.
The iSBX bus interface specifications are discussed
next, followed by consideration for designing custom
iSBX MUL TIMObULE boards. A specific design ex
ample using an Intel® 8279 Programmable Keyboard/
Display Controller is presented.

The objective of the note is to introduce the reader to
the iSBX MULTI MODULE concept for expanding
iSBC functionality and to illustrate how a designer can
effectively use this concept with either standard or
custom iSBX boards.

References to further documentation on the iSBX bus,
specific iSBX MULTIMODULE boards and iSBC host
boards currently available may be found in the Related
Intel Publications section in the front overleaf of this
application note.

1-177

iSBX™ MULTIMODULE™ BOARD
CONCEPT
The iSBX MUL TIMODULE board concept was devel
oped to provide the users of Intel single board com
puters (iSBCs) with a convenient method to increment
ally expand the 1/0 or the computing capabilities of a
single board computer. This expansion is done through
the use of a new interface called the iSBX bus interface.
This interface gives the user the capability of adding 1/0
mapped functions directly onto the microprocessor bus
via plug-in modules that connect to the iSBC board by
means of a special iSBX connector. With the use of this
new bus interface, it is now possible to expand or add
new features to your iSBC system without incurring
large costs and long engineering development times.

There are a number of unique advantages to using the
iSBX bus interface for system expansion rather than
adding a separate expansion board to your system.
First, when expansion is required, the user needs only to
buy what is required for the application. Second, it is
now possible to return to one board solutions for small
systems. One board solutions eliminate the need for ex
pensive backplanes and cardcages. Next, the iSBX inter
face connects directly to the microprocessor or local
bus, as opposed to interfacing to the MULTIBUS sys
tem bus, therefore 1/0 expansion does not require
system bus cycles. To the CPU, the iSBX board looks
like any other on-board 1/0 device (Figure 1). Address
decode logic exists on the iSBC host board for each
iSBX connector on the host board.

CPU BUS

iSBC'"'
SINGLE BOARD

COMPUTER

Figure 1. iSBC™ Host Board Block Diagram

Third, if there is no iSBC or MULTIBUS compatible
expansion board available to fit the needs of your appli
cation or if the expansion boards available offer more
capability than required, then it is possible to design a
custom iSBX MULTIMODULE board. Custom iSBX
boards offer several advantages over custom MULTI
BUS boards: they require less board real estate (10 or 20

AFN-01931A

AP-96

square inches versus 81 square inches) and less engineer
ing design time; consequently, they cost considerably
less to implement. Additional capability is therefore
achieved with maxirnum productivity.

Currently available Int.el iSBX MULTIMODULE
Boards include:

1) iSBX 350 Parallel l/O MULTIMODULE board
which contains 24 programmable I/O lines with
sockets for.line drivers and terminators.

2) iSBX 351 Serial l/O MULTIMODULE board
containing one RS232 or RS449/ 422 program
mable synchronous/asynchronous communica
tions channel and two timers.

3) iSBX 331 Fixed/Floating Point Math MULTI
MODULE board which permits fixed or floating
point mathematics via th.e Intel 8231.device.

4) iSBX 332 Floating Point Math MULTIMODULE
board which permits floating point mi'\thematics
using the Intel and proposed IEEE floating point
standards via an Intel 8232 device.

With these iSBX MUL TIMODULE boards and other
soon-to-be-announced boards, the capability now exists
to economically tailor a single board computer to the
application using off-the-shelf products.

iSBX™ MUL Tl MODULE™ SYSTEM
INTERFACE
This section begins by describing the basic system ele
ments used in an iSBX MUL TIMODULE interface con
figuration and then defines the interface signals used for
the communication between these elements. The specifi
cations contained in this application note are included
for descriptive and tutorial purposes only. The ultimate
source for this information is the iSBX Bus Specifica
tion which is referenced in the front overleaf of this
note.

Host Boards
The host board provides an electrical and mechanical in
terface for the iSBX expansion module. The.host board
is the master of the communications between the host
and iSBX board, it controls the address and command
signals.

A new generation of iSBX bus compatible host boards
are evolving. The first board available from Intel is the
iSBC 80/lOB Single Board Computer. The 80/IOB con
tains an 8080A CPU operating at 2 MHz, IK bytes of
RAM with sockets available for expansion to 4K bytes
of RAM, sockets for up to 16K bytes of EPROM, 24
parallel l/O lines, a programmable synchronous/asyn
chronous communications interface and a fixed 1.04
msec timer. The 80/lOB has one iSBX connector, per
mitting the µse of an iSBX MUL TIMODULE. board.

The second iSBC board availal?le supporting iSBX
boards is the iSBC 80/24 Single Board Computer. The
80/24 board, which supports two iSBX MUL TIMOD'
ULE boards, contains an 8085A'2 CPU operationg at
4.8 or 2.4 MHz, 4K bytes bf RAM, sockets for up fo
32K bytes of EPROM, 48 parallel I/O lines, a program'
mable synchronous/asyI1chronoils communications in
terface, three programmable interval timers and a pro'
grammable interrupt cbntrollfr. Further RAM expan
sion on the 80/24 board is accomplished by the addition
of an iSBC JOl 4K byte RAM MUL TIMODULE board
which expands the RAM by an additional 4K bytes for a
total of SK bytes. The iSBC 301 MUL TIMODULE
board is not iSBX bus compatible; it is attached via pins
and sockets in the RAM section· of the host board.

iSBX™ MUL TIMODULErM Boards
The iSBX MUL TIMODULE boards communicate with
the host boards via the iSBX bus interface. These iSBX
boards are I/ 0 mapped through pre'defined select lihes
to specific port addiesses. The iSBX bus currently
defines an 8cbit data path compatible with both 8 and
16-bif future iSBC host boards.· Examples of possible
iSBX expansion boards include a floppy disk controller,
a cassette interface, analog-to-digital converter or
digital-to-analog converter boards, an interface to the
IEEE 488 Bus and a video graphics display interface
board.

1-178

There are two standard sizes of iSBX boards: a single
wide board measuring 7.24 by 9.40 cm (2.85'by 3.70
inches) and a double-wide board measuring 7.24 by
1.9.05 cm (2.85 by 7.50 inches). The iSBX MULTI
MODULE boards mount onto any microcomputer
board containing an iSBX connector and mounting
hole. The iSBX boards physically .plug into. the iSBX
connector on the host board and are secured with a
nylon stand-off and screws .. The mounting hardware
supplied as part of the iSBX board includes:

I) One nylon spacer, l/2 11 threaded
2) Two nylon screws, 1/4" 6-32
3) One 36cpin connector, factory-,installed onto the

iSBX module. (These may also be purchased from
Intel.) '.

The interconnection between the host board and iSBX
board, as well as the mounting clearances, may be seen
in Figures 2 and 3.

NOTE

The iSBX board, when installed onto a host
board, occupies an additional c<1rd slot adjacent to
the base board in an iSBC 604/614 Cardcage.
However, the base board may .be inserted in. the
top card ,slot of the cardcage .. If this is done, no
additional slots are required.

AFN·01931A

1.13(max.)

AP-96

INTEL iSBX'"
MULTIMODULE'" BOARD

/HOST BOARD

Figure 2. Connection of iSBX™ MUL TIMODULE™ to Host Board

0.80(max.) MULTIMODULE'" BOARD

CONNECTOR
(MALE) I

,
___ .._c_o_NN_E_C_T_D_R.._ __ _. __ s_o_C_K-ET _ __,.__ _ __, O.SOl(min.)

(FEMALE)

HOST MICROCOMPUTER BOARD

Figure 3. iSBX™/iSBC™ Mounting Clearance (inches)

1-179 AFN·01931A

AP-96

iSBX™ Connector
The iSBX interface connector is a 36-pin custom made
connector that was designed by Intel especially for this
interface. The connector is plastic with gold plated con
tact pins for maximum reliability. The connector for the
iSBX interface was designed for high reliability and dur
ability. The connection between the host board and the
iSBX MULTIMODULE board was extensively tested
for vibration, shock, humidity, and temperature to in
sure that the connection is rugged enough to be used in
severe environments. This connection was tested for the
following environment:

Vibration:

Shock:

Humidity:

Sweeping from 10 Hz to 55 Hz and back
to IO Hz at a distance of 0.010 inches
peak-to-peak, lasting 15 minutes in each
of the three planes.

30g's of force for an 11-msec duration,
three times in three planes, both sides
(total of 18 drops).

90% maximum relative (no condensa
tion).

Temperature: 0 to 55 °C (32-131 °F) free moving air
across the base board and the iSBX
MUL TIMODULE board.

Further information on the reliability testing that was
done on this inter-connection, or reliability information
on the iSBX MUL TIMODULE boards in general, is
contained in the Reliability Report, RR-29, "Intel iSBX ·
MULTIMODULE Boards and iSBC 80/lOB Single
Board Computer," listed in the overleaf of this note.

The male half of this connector is available from Intel in
the form of the iSBX 960-5 package which contains five
of the connectors.

iSBX™ Bus Interface Signals
The iSBX bus interface signals are grouped into six
basic groups, or classes, according to the functions per- -
formed relative to the interface:

These signals are:

CONTROL LINES
ADDRESS LINES
DATA LINES
INTERRUPT LINES
OPTIONAL LINES
POWER LINES

Many of the signals on the iSBX bus are active-low,
meaning a low level on a control signal of the bus indi
cates a logic "I" value, while a low level on an address
or data signal of the bus represents a logic "O" value. -

l-180

NOTE

In this application note, an active-low signal will
be designated by placing a slash (/) after the
mnemonic for the signal.

Appendix A contains a pin assignment list of the follow
ing signals:

CONTROL LINES

The following signals are classified as control lines:

I) COMMANDS - IORD/, IOWRT/
2) DMA- DMRQT, MDACK/, TDMA
3) INITIALIZE - RESET
4) CLOCK - MCLK
5) SYSTEM CONTROL - MWAIT/, MPST/

Command Lines (1/0 READ, 1/0 WRITE)

The command lines are active-low signals which control
the communication link between the host board and the
iSBX board. An active command line conditioned by
chip select indicates to the iSBX board that the address
lines are valid and the iSBX board should perform the
specified operation.

OMA Lines (MDRQT, MDACK/, TOMA)

The OMA lines control the communication link between
the OMA device on the host board and the iSBX mod
ule. OMRQT is an active-high output signal from the
iSBX board to the host board's OMA device requesting
a DMA cycle. MOACK/ is an active-low input signal to
the iSBX board from the host board OMA device ac
knowledging that the requested OMA cycle has been
granted. TOMA is used by the iSBC board to terminate
DMA activity. The use of the OMA lines is optional as
not all host boards will provide OMA channels nor will
all iSBX boards be capable of supporting them.

Initialize _Line (RESET)

This active-high input line to the iSBX board is gener
ated by the host board to put the iSBX board into a
known internal state.

Clock Line (MCLK)

This input line to the iSBX board is a timing signal. The
clock frequency is 10 MHz (+ 0%, - 10%), and the
clock is asynchronous with respect to all other iSBX bus
sigll.als.

System Control Lines (MWAIT/, MPST)

These output signals from the iSBX board control the
state of the system. Active MW AIT I (active-low) will

AFN-01931A

AP-96

put the CPU on the host board into a wait state, provid
ing additional time for the iSBX board to perform the
requested operation. MPST I is an active-low signal
(usually tied to signal ground) that informs the host
board 1/0 decode logic that an iSBX module has been
installed.

ADDRESS AND CHIP SELECT LINES

The address and chip select lines are made up of the
following signals:

I) ADDRESS LINES - MAO, MAI, MA2
2) CHIP SELECT LINES - MCSO/, MCSI/

Address Lines (MAO, MA1, MA2)

These active-high input lines to the iSBX boards are
generally the least three significant bits of the 1/0 ad
dresses. In conjunction with the command and chip
select lines, they establish the 1/0 port address being ac
cessed.

Chip Select Lines (MCSO/, MCS1/)

These active-low input lines to the iSBX board are the
result of the host board 1/0 decode logic. When active,
the MCS/ lines condition the 1/0 command signals and
thus enable communication between the iSBX board
and the host board.

DATA LINES (MDO-MD7)

There are eight bidirectional data lines. These active
high lines are used to transmit or receive information to
or from the iSBX ports. MDO is the least significant bit.

INTERRUPT LINES (MINTRO, MINTR1)

These active-high output lines from the iSBX board are
used to make interrupt requests to the host board. These
lines are jumper enabled and disabled on the host board
via wire wrap posts.

OPTION LINES (OPTO, OPT1)

These two signals are reserved lines that are connected
to wire wrap posts on both the host board and the iSBX
MUL TIMODULE board. They are for unique require
ments where a user needs a host board or MULTIBUS
bus signal on the iSBX module.

POWER LINES

All host boards provide + 5 volts as. well as ± 12 volts to
the iSBX MULTIMODULE board along with signal
ground. All power supply voltages are ±5%. Table I
gives the power supply specifications for the iSBX inter
face.

1-181

Table 1. Power Supply Specifications

Minimum Nominal Maximum Maximum
(volts) (volts) (volts) (current)*

+4.75 +5.0 + 5.25 3.0A

+ 11.4 +12 + 12.6 1.0A

-12.6 -12 -11.4 l.OA

- GND - 6.0A

*Per iSBX MULTIMODULE board mounted on base board.

iSBX™ BUS INTERFACING
This section of the application note focuses on the iSBX
interface and design considerations related to interfac
ing with the iSBX bus. It discusses the way the major
operations like READ, WRITE, and DMA work, and
the timing diagrams associated with each. There is also a
discussion on other considerations for designing with
the iSBX bus.

Bus Timing
The AC timing specifications for the iSBX bus interface
can be found in Appendix B of this application note. It
should be emphasized that the interface timing between
the host board and the iSBX MULTIMODULE board is
very critical. This is largely due to the fact that the iSBX
board is attached directly to the microprocessor bus. If
the timing specifications are not met, unpredictable and
possibly intermittent operation of the host board may
result.

Command Operations
The command lines (IORD/, IOWRT) are driven from
the h(·'t board by three-state drivers with pull-up resis
tors or standard TTL totem-pole drivers. These lines in
dicate to the iSBX board that action is being requested.
There are two types of operations for each command
line and it is the iSBX board that determines which
operation is .to be performed.

READ OPERATIONS (IORD/)

Two different types of read operations are possible. The
first type of read is called a full speed 1/0 READ. The
host board generates a valid l/O address (MAO-MA2)
and a valid chip select signal (MCSI/) which is then sent
to the iSBX board; after the set-up times are met, the
host board activates the IORD/ line. At this time, the
iSBX board must generate valid data from the ad
dressed 1/0 port in less than 250 ns. The host board
then reads the data and removes the READ command,
address and chip selects. These are shown in the timing
diagram for this operation (Figure 4). The second type
of read operation is called an 1/0 READ with Wait.
This READ is used by iSBX boards that cannot perform
a full speed read operation. Under this operation the

AFN·01931A

AP-96

host board generates the valid address and chip select
signals, as in the full speed read. But this time the iSBX
board will activate the MWAIT I signal, which in turn
removes the READY input to the CPU, putting it into a
Wait state. The CPU, however, first activates the
IORD/ signal before going into the Wait state. After
valid data is placed on the iSBX data bus by the iSBX
board, the iSBX board will remove the MW AIT I signal.
The host board will then read the data and remove the
command, address, and chip select lines. This 1/0
READ with Wait operation is shown in Figure 5.

WRITE OPERATIONS (IOWRT/)

There are also two types of write operations possible:
the type performed is again determined by the iSBX
board. In the full speed 1/0 WRITE operation, the host
board generates a valid 1/0 address and chip select and
then activates the IOWRT/ line after the necessary set
up times are met. The IOWRT I line, after being acti
vated, will remain active for 300 ns and the data will be
valid for 250 ns before the IOWRT I command is re-

MAO-MA2

MCS/

IORD/

MDO-MD7

moved. The host board will then remove the data, ad
dress, and chip select lines after the hold times are met,
as shown in the timing diagram of this operation (Figure
6).

This second write operation is the 1/0 WRITE with
Wait operation. This WRITE is used by the iSBX
boards that cannot write into an 1/0 port with the full
speed write specifications. The host board again
generates valid address and chip select signals as in the
full speed write operation. However, this time the iSBX
board generates the MW AIT I signal based on address
information (chip select and MAO-MAI). The activa
tion of MW AIT I causes the removal of READY to the
CPU, thus causing the CPU to go into a Wait state. The
iSBX board removes the MW AIT I signal (allowing the
CPU to leave Its Wait state) when it has satisfied the
WRITE pulse width requirements. At this time the
board removes the WRITE command, followed by the
data, address, and chip select lines. This. 1/0 WRITE
with Wait operation can be seen in Figure 7 ..

VALID ADDRESS

VALID DATA

Figure 4. Full Speed 1/0 Read Operation

MAO-MA2 VALID ADDRESS

MCS/

MWAIT/

IORD/

MDO-MD7 VALID DATA

Figure 5. 1/0 Read with Wait Operation

1-182 AFN-01931A

AP-96

MAO-MA2 VALID ADDRESS

MCS/

IOWRT/

MDO-MD7 VALID DATA

Figure 6. Full Speed 1/0 Write Operation

MAO-MA2 VALID ADDRESS

MCS/

MWAIT/

IOWRT/

MDO-MD7 VALID DATA

Figure 7. 1/0 Write with Wait Operation

iSBX™ Addressing
The iSBX boards are addressed by the host board
through the use of the address lines MAO, MAI and
MA2, and the chip select lines MCSO/ and MCSI/. The
host board decodes the I/O addresses and in turn gener
ates the chip selects for the iSBX boards. In an 8-bit sys
tem the host board decodes the high order 13 address
bits and generates the appropriate chip select corre
sponding to those address bits. The low order three ad
dress bits are passed to the iSBX board via MAO-MA2.
Thus, a host board reserves two blocks of eight I/O
ports for each iSBX connector. There can be as many as
three iSBX connectors per host board, therefore a total
of 48 addresses or six blocks of eight I/O ports that can
be reserved for the iSBX boards. Table 2 contains a list
of the I/O addresses and their corresponding host board
iSBX port assignments of the iSBC 80/IOB and iSBC
80/24 host boards.

1-183

Table 2. iSBX™ Host Board Port Assignment

iSBX™ Connector
Chip Select

iSBX™ Port
Number Addresses

iSBC 80/IOB MCSO/ FO-F7
Connector MCS!/ F8-FF

iSBC 80/24 First MCSO/ FO-F7
Connector MCSI/ F8-FF
iSBC 80/24 Second MCSO/ CO-C7
Connector MCS!/ CS-CF

Considerations for iSBX™ Bus Interfacing
When designing with the iSBX interface it is important
to note that the iSBX bus is not buffered on the host
board. Since there is no isolation between the iSBX
board and the host board CPU bus, a short between sig
nal lines and power or ground could have a direct effect

AFN-01931A

AP-96

on the CPU or the drivers and receivers a:,sociated with
the CPU on the host board. This must be taken into
consideration, especially when designing and debugging
any custom designed iSBX MUL TIMODULE board. It
is usually during the development states of a product
that these types of problems occur. One advantage to
not buffering the iSBX bus is increased speed of data
and command transfers. Applications requiring buffer
ing may add the buffers on the iSBX board. A second
advantage to not buffering is the saving of parts costs,
board real estate and development time for the host
board. Another consideration when designing with the
iSBX interface is, if the application to be designed re
quires high throughput, like a floppy disk controller or
a CRT controller, the designer may consider putting
some type intelligent control of buffer RAM onto the
iSBX board. By doing this, the transfer information can
be stored in this buffer and the throughput of the system
increased.

iSBX™ BUS LOADING REQUIREMENTS

Loading requirements for the iSBX bus have been
broken. up into two basic categories, output specifica
tions and input specifications, which can be viewed in

Tables 3 and 4. The output specifications arc the re
quirements on the output drivers of the iSBX board and
are the minimum drive requirements necessary. A good
example of this would be that the data bus output
drivers must be able to sink a minimum of 1.6 mA and
maintain VoL at a maximum of 0.5 volts and a mini
mum source of 200 µA, while providing a minimum out
put of 2.4 volts. The input specifications are the re
quirements on the receivers of the iSBX board. An ex
ample of this would be that the loading of the address
lines (MAO- MA2) can be no greater than 0.5 mA with a
minimum low threshold of 0.8 volts.

Optional Interface Lines
The iSBX interface has two optional lines which were
included for the user to configure the iSBX board for
special application needs. These two lines can be used in
a number of ways helpful in unique situations. For ex
ample, they could be used as a way to get two extra in
terrupt lines down to the host board, thus yielding a
total of four interrupt lines running between the iSBX
MUL TIMODULE board and the host board. They
could also be used to get extra address Jines, or even
another clock signal to the iSBX board. They could also

Table 3. Output Specifications

Bus Signal Type 2 loL Max @ Volts loH Max @Volts Co Min
Name Drive -Min(mA) (VoL Max) -Min (µA) (VoH Min) (pF)

MDO-MD7 TRI 1.6 0.5 -200 2.4 130

MINTR0-1 TTL 2.0 0.5 -100 2.4 40

MDRQT TTL 1.6 0.5 -50 2.4 40

MWAIT/ TTL 1.6 0.5 -50 2.4 40

OPTl-2 TTL 1.6 0.5 -50 2.4 40

MPST/ TTL Note 3

Table 4. Input Specifications

Bus Signal Type2 l1L Max @Volts l1H Max @ Volts C1 Max
Name Receiver (mA) (V1N Max) (µA) (V1N Min) (pF)

MDO-MD7 TRI -0.5 0.4 70 2.4 40

MAO-MA2 TTL -0.5 0.4 70 2.4 40

MCSO/-MCSI/ TTL -4.0 0.4 100 2.4 40

MRESET TTL -2.1 0.4 100 2.4 40

MD ACK/ TTL -1.0 0.4 100 2.4 40

IORD/ TTL -1.0 0.4 100 2.4 40
IOWRT/

MCLK TTL 2.4 0.4 100 2.4 40

OPT1-0PT2 TTL 2.0 0.4 100 2.4 40

NOTES:
I. Per iSBX MULTIMODULE board.

2. TTL= standard totem-pole output. TRI= three-state.
3. iSBX MULTIMODULE board must connect this signal to ground.

1-184 AFN·01931A

AP-96

be used to send a special status line to or from the iSBX
MUL TIMODULE board.

iSBX™ MULTIMODULE™ DESIGN
EXAMPLE
This section covers the description of a custom iSBX
MULTIMODULE board which uses the Intel 8279 Pro
grammable Keyboard/Display Controller. This iSBX
board, when added to an iSBC host board, provides an
interface to a keyboard and display. A description of
the hardware design considerations for breadboarding
the hardware is presented. Following this, a software ex
erciser, useful for debugging the board, is described. A
listing for the exerciser is contained in Appendix C.

Since the iSBX MUL TIMODULE board was designed
using the Intel 8279 Programmable Keyboard/Display
Controller, a brief description of the 8279 is presented.
The 8279 is a general purpose programmable keyboard
and display I/O controller which was designed for use
with the Intel microprocessors. The keyboard portion of
this device is capable of providing a scanned interface to
a 64-contact key matrix. It is also possible to interface to
an array of sensors or a strobed keyboard, such as those
of the Hall Effect or the ferrite variety. The 8279 pro
vides a variety of keyboard inputs (i.e., 2-key lockout
and N-key rollover), and all key entries are debounced

iSBX™ BUS CUSTOM ISBX'" BOARD

I Vee
RESET RESET

RLO-RL7

IRQ SHIFT

CNTUSTB

AO

SLO-SL3

cs 8279·5

IORD/ RJ)

and strobed into an 8-character FIFO. The display por
tion provides the user with a scanned display interface
for LED, incandescent, and other popular display tech
nologies. Both numeric and alphanumeric segment dis
plays may be used, as well as simple indicators. The
8279 is used in this iSBX design example to provide an
interface of 2-key lockout with key debounce to a
64-character keyboard, and an interface for a 16-char
acter, 18-segment alphanumeric display.

iSBX™ MULTIMODULE™ Board Design
The iSBX board that was designed for this application
note contains a total of three I C's, the keyboard/display
controller, a flip-flop, and a 3-to-8-line decoder. Figure
8 contains a block diagram of the hardware used in this
design example. Figure 9 contains a schematic for the
portion of the design example resident on the custom
iSBX board.

The design offers the user some flexibility as to the type
of display or keyboard to be attached. For example, if
the application design was defined to be for a 7-seg
ment, 16-character display (as the 8279 is designed to
drive), a 4-to-16-line decoder along with the display
drivers could be added to the iSBX board. Another idea
would be to include everything except the display drivers
and the display on the iSBX board, and to put the dis-

DISPLAY ELECTRONICS

KEYBOARD

DECODER

WR Bil
DISPLAY

>---------~-• ONE-SHOT

MPST/

AO-A3

Yss B0-83

ASCII
DECODER

Figure 8. Block Diagram of the iSBX™ Design Example

1-185 AFN·01931A

.AP·96

play and drivers in with the keyboard. It is possible, and
probably desirable in some applications, to incorporate
some of the display electronics onto the iSBX MULTI
MODULE board. Some of the I C's found in the display
portion of this design could also have been placed on the
iSBX board, as there is enough room on the finished
product for doing so.

The design was very easy to implement because, with the
exception of one signal, all of the' iSBX bus signals nec
essary to drive the 8279 are connected directly 'Yithout
any extra logic needed. The one signal that would not
connect directly to the interface is the clock signal
MCLK from the bus to CLK onthe controller. It is not
possible to connect these two together as MCLK is a 10
MHz signal and the 8279 requires a maximum clock sig
nal of 3 .1 MHz to generate its internal timings. It is nec
essary to add a 74LS74 dual D-type flip-flop to divide
the MCLK signal by 4 for the controller. With this ex
ception, all other signals, DBO-DB7 to MDO-MD7, Ao
to MAO, CS/ to MCSO/, etc., are connected directly

J4 P4

to the iSBX interface. To meet the timing requirements
of the iSBX bus, a high speed version of the 8279; the
8279-5, is used.

~ ~ ;- .'

The keyboard inferface side of the iSBX board consists
of a 3-to-8-line decoder' which is used for scanning the
keyboard matrix. The 8279 scan lines SLO-SL2 are de
coded by a'74LS156 open-collector output decoder and
sent to the keyboard via a connector.

The display interface of the iSBX board consists of
sending the scan lines and the display outputs to the dis
play module via a connector. The scan lines SLO-SL3
are sent to the display di'ivers, and the display outputs
AO-A3 and BO-B3 are serit to an ASCII to 18-segment
decoder driver. The display is discussed in further detail
in the next section of this, application note.

Display Module Design
The display module design (Figure 10) consists of two
8-digit HDSP 6805 Alphanumeric Displays by Hewlett

GN0_1 ISBX~ CONNECTOR l
RESET _________ ___ ...ij:;jlRESET

IOWI 13------------~:::11 ~O
IOR/ 15--------------.

MOO 33------------1'.:j2 DBO
MD1 31 13 DB1

- ~ M~
- v u~

Vee Rlol'"L.1-------------24 l
~~~ r ~ I 
RLS 6 " t:i 
RL6 7 18 ~ 

~· " MD' 25 1 084 - ~ "~ 
=~~ ,;, ____________ '4,: ~:~ 
MAO 

M;A1 
MA2 

MCLK 

MPSTI 

MWAIT 

MCSO/ 
MCS11 

OPT1 

OPT2 

'1r 21 Ao ·-
7- +S~V74LS74 13 i .. CLR CLR 
6 3 Q 5 11 Q 9 3 CLK 

=--i 2 D Q 6 12 D Q a 7 

&- "::' PRS -PRS 1 
2- 4 10 
o-

~= +rv -= 
MINTRO 4---.--

MINTR1 -

+12V 1-

-12V 2-

ONO 

ONO 

ONO 

+SV 
+SV 
+SV 

20 cs 
L-----------44 IRQ 

-2 CNTRLISTRBJ'37'--t------------
SHIFTJ'36'--t-------------

8279·5 

13 A SL0>=32'-+--.--4 
SL11"'33'-+~---+----1 
SL21"'34'-+-+-t-t-~ 

3 • 

1C 

,_J+sv 

SL3~ wi 2C 74LS156 

A3 24 

A2 25 
A1 26 

AO 27 

2 10 TI2G 

~ 

o~ 
:~ 
4 7 

5 • 
• 5 
7 4 

= 
OUT B3~26L---------~---

B2 29 

81 33 

BO 31 
IJlj 23 

+sv·-· -oNo __ 

3 

4 

5 

• 
7 

• 
' 1 
1 

1 
1 
1 
11 

N/C 

N/C 

• 

Fi.gure.9. Schematic of the custom iSBX™ .Board 

1-186 

~ 
z 

~ 

5 
~ 
g 

AFN-01931A 



AP·96 

Packard, the AC5947 ASCII to 18-segment decoder 
driver by Texas Instruments, two Signetics NE590 
Peripheral Drivers, and a 74LS122 monostable multi
vibrator. The display is scanned by the outputs AO-Al 
and BO-B3, which are connected to the inputs of the 
AC5947, and the SLO-SL3 outputs which are connected 
to the NE590 digit scanning circuitry. The interdigit 
blanking is provided by the 74LS122, which prevents a 
display ghosting type effect. With the 8279 display con
troller it is possible for the display to have either left 
entry, where the data enters from left to right across the 
display, overflowing in the left most display position, or 
right entry, where the data enters from the right side of 
the display and all previous data shifts left. Left entry 
was chosen for this example. The controller also pro
vides commands for blanking or clearing the display. 

DISPLAY CONNECTO 
(FROM ISBX'M BOARD ~f 

A1 

AO 
83 

82 
81 
BO 

3.9K 
(TYP) 

+5V 
GND 

--+5v 
--GND 

+5V 

t7 AS 
15 A4 
14 A3 
13 A2 
12 A1 
10 AO 

t----1! OE 

~CK 

_1+5V 
Vee A1 19 ., . 

• 8 
c 1 

01 8 
02 27 

E 22 

AC5947 

F 2-0 
01 23 

G2 5 
H 24 

I 4 
J 28 

• 3 
L 2 
M 26 

DP 21 
co 25 

4711 
(TYP) 

Keyboard lnterf ace Design 

The eight output lines from the decoder on the iSBX 
board select l-of-8 keyboard matrix rows for testing by 
the controller to see if a key depression has been made in 
the selected· row. The keyboard matrix column output 
lines are connected directly to the return lines of the 
8279, RLO-RL7. Open-collector outputs presented by 
individual keys within the matrix eliminate the need for 
isolation diodes when two. keys in a given column are 
depressed. The keyboard/ display controller has the op
tion of using either scan keyboard, scan sensor matrix, 
or strobed input as modes of operation. With the scan 
keyboard mode there is a choice of using either 2-key 
lockout or N-key rollover for keyboard entry. The scan 
keyboard with 2-key lockout mode is used for this ex-

23 A1 ~ A1 
19 A2 ~ A2 
22 • t-¥.- • 24 c t--lL c 
11 01 I-':!-- 01 
4 02 t=t= 02 
1 E E 

28 F ~ F 
1 G1 HOSP t+.- G1 HOSP 

18 02 8508 
G2 

.... 
DISPLAY rt,- DISPLAY 

25 H 
~ H 

20 I t-T.- I 
18 J I-';'- J 

•• ~ K 
5 L 

~ L 
8 M 1-T M 
2 DP 

~ 
DP 

17 co co 
GND 

SEGMENT 1 2 3 4 5 • 7 • 1 2 3 4 5 • 7 8 

1i 1: ~J 101Trr l3 l"1 10 15lJJ 
DECODER +5V 

8 11 12 13 14 5 8 7 8 11 12 13 14 
00 01 02 03 04 05 06 07 16 16 00 01 02 03 04 05 06 07 

DIGIT NE590 NE590 
DRIVERS • 8 

AO At A2 CE Q ClJi AO At A2 Q ctiml 

IT 3 14 13 15 

JJ 
3 13 '415 .,,. 

j_ 
SLO 14 

Sl1 13 
SL2 12 

SL3 11 

+SY L 
3~ 1~ 

81 8 
+5V~B2 0 

£4•1 Q 8 
A2 -u 748122 

4700pF 

J 
T 

BO 

Figure 10. Display Module Schematic 

1-187 AFN·01931A 



ample .. A diagram of the keyboard interfaces and matrix 
can be seen in Figure 11. 

Operation with the iSBC 80/108™ Single 
Board Computer 

SC 0 
SC 1 
SC 2 

SC 3 
SC4 

SC • 
SC • 
SC 7 

T 

Figure 11. Keyboard Matrix Schematic 

The 8279 on the iSBX expansion board is initialized to 
its mode of operation following.ii system reset. The key
board mode of operation is to .scan the keyboard with 
2-key lockout, and the display mode is set ·for. the 
16-character left entry mode.of operation .. Upon receive 
ing a character from the, keyboard, the 8279 generates 
an'interrupt along the MINTROJine of the.iSBX bus to. 
the CPU .. At th.is timethe iSBC 80/108 board com
mences I/O read operations to theiSBX board by gener
ating valid I/O address a11d chip select commands on 
the MAO and. MCSO( signal !in.es .. After the setup times 
are met, the 80/IOB i~sues an I/O read command. by 
asserting the IORD/ line .on the ]?us, and the bas.e board 
reads the data from the iSBX board and removes the 
IORD/, MAO, and MCSO/ signals from the bus. After 
the data has been read in from the keyboard, it must be 
output to the display. The iSBC 80/108 board starts an 
I/O write operation by generating a valid I/O address 
and the chip select signal with the. MAO and MCSO/ 
lines. After the valid setup times are met, the IOWRT/ 
line is activated by the base board. When, the d.ata has 
been valid for a minimum .of 250 ns, the host board 
removes the IOWRT/ line. When the hold times have 
been met, the data, address and chip select lines are. also 
.removed. Figure 12 shows the timing diagrams just 
discussed. 

READ 

MA(N) 

MCS(N~ 

MWAITI 

IORDI 

WRITE 

MA(N) 

MCS(N~ 

,,,,_,__ _____ ,,, _____ ., 
MWAITI ,,._ 
IOWRTI 

,,,, __ __.., 

MOO-MD7 

J,___,,,_ __ ,,.--i 
=============================r~~~~~~~~~~~--1~ 

Figure· 12. System Timing Diagrams 

1-188 AFN-01931A 



AP-96 

Breadboarding the Design 
When doing the layout of the breadboard, it is also nec
essary to take into consideration the space required by 
the mounting holes and to plan the positioning of the 
components accordingly. (This information is available 
in the iSBX Bus Specification Manual.) 

When attaching the breadboarded design, which typi
cally contains raised wirewrap posts, it is necessary to 
raise the breadboard well above the host board. This 
can be accomplished by building a small cable and put
ting the breadboard on longer nylon standoffs. It is not 
recommended that the cable be longer. than 15 cm (6 
in.), otherwise bus timing problems could result. 

With the breadboarding finished it is a good idea to re
check all wiring connections for possible errors. Also 
check all signal lines with an ohmmeter between power, 
and then ground, for potential shorts. An error at this 
point can cause serious damage to the host board! 

Software Considerations 
The software written for this application is an exerciser 
that is used for hardware checkout. It is a small pro
gram designed to echo characters from the keyboard to 
the display. The software was edited, assembled, linked 
and located with an Intel development system; it was 
then debugged with an in-circuit emulator. Both the 
software and the hardware debug is covered in the next 
section of this application note. 

To facilitate this discussion the software exerciser is 
divided into three sections based upon the functions per
formed. The three functions are: 

I) Keyboard interrupt routine 
2) Initialization and flag checking routine 
3) Character output routine 

A complete listing of the software exerciser can be 
found in Appendix C. 

KEYBOARD INTERRUPT ROUTINE 

The 8279 generates an interrupt to the CPU whenever 
data is introduced into its FIFO/Sensor RAM. The in
terrupt is cleared by doing a data read. Whenever a key 
on the keyboard is depressed an interrupt is generated. 
Two things are required when an interrupt occurs. First, 
the keyboard input data must be retrieved and stored. 
Second, the interrupt routine must indicate that there is 
some data ready to be output to the display. Therefore, 
a buffer is created in memory (called "BUFF") at loca
tion 3COOH to store the keyboard data. A data present 
flag is set in a register (REG. C) to indicate that data is 
ready to be output and can be found in the buffer. In 
this way the interrupt routine is used to input characters 
from the keyboard to the input buffer. The buffer is 
then read by the output routine, which sends the charac
ters to the display. 

1'189 

INITIALIZATION AND FLAG CHECKING 
ROUTINE 

The initialization and flag checking routine first sets the 
stack pointer to the top of memory. After this the pro
gram proceeds to initialize the 8279 Keyboard/Display 
Controller to its proper mode of operation. The modes 
of operation used for this application note is scanned 
keyboard with 2-key lockout for the keyboard, and I 6 
characters with left entry for the display. As the 8279 
has a desired internal operating frequency of JOO kHz, 
the frequency divider chain is programmed to divide by 
19 hex, or 25 decimal. After the 8279 has been initial
ized, the program begins its next procedure of clearing 
the buffers. The keyboard input buffer, "BUFF", as 
well as the display buffer, "DBUFF", are both cleared 
to a blank display. This is done so that at the time of 
power up, the display will come up blank. With the 
initialization now complete, the program disables the in
terrupts and checks the data present flag for an indica
tion that data might be present for output. If the data 
present flag is set, the output character routine is called; 
if it is not set, the interrupts are enabled and the pro
gram loops back around to check again. In summary, 
this routine initializes the 8279 and clears the buffers, 
and then loops on the data present flag looking for an 
indication that data is present in the input buffer. The 
input buffer is a one-byte wide buffer named "BUFF." 

CHARACTER OUTPUT ROUTINE 

The character output routine brings the character in 
from "BUFF" (the keyboard input buffer) and com
pares it to the characters located in a table. If the char
acter can be matched to a character in the table it is 
replaced in "BUFF" with the corresponding character 
located in the same position of a second table. If there is 
no match, it is compared to the code for a control char
acter. If there is no match with a control character, a 
compare is made to see if the character is a delete char
ater. When a match is found and the acceptable charac
ter is placed in "BUFF", the output routine shifts the 
data in the display buffer (Figure 13) one position to the 
left and places the character from the input buffer into 
the display buffer at position "DBUFF" + 15. Now that 

BASE 
ADDRESS 

DBUFF 

I I I I I I I I I I I 
OLD 
DATA -DISPLAY 

II I II 

BASE 
ADDRESS 

+15 

NEW 
DATA 

Figure 13. Display Buffer 

AFN·D1931A 



AP-96 

the new information is in the display, the routine copies 
the complete contents of the display buffer, "DBUFF", 
to "DBUFF" + 15 to the display. In the case of the in
put character being matched up with a delete character, 
all information in the display buffer is shifted to the 
right one position and the ASCII code for a blank char
acteris placed into the left-most position or the base ad
dress of ''DBUFF'', thus making the next character sent 
to the display a blank character. In the case of a control 
character, nothing is done and the program returns to 
the flag checking routine. 

Debug Considerations 
Hardware and software debug was accomplished using 
an iSBC 80/lOB Single Board Computer, an iSBC 655 
Chassis, an Intellec® Series II Model 230 Microcom
puter Development System, and an ICE-SO™ In-Circuit 
Emulator. 

The software was down-loaded from the disk to the 
iSBC 80/lOB board using the in-circuit emulator. The 
ICE™ module ·gives the engineer the capability of 
interrogating the iSBC system by allowing the user to 
access and display the CPU register contents, status, 
system memory contents, and all 1/0 devices and their 
data. 

The iSBC 80/lOB board was configured to enable inter
rupts from the iSBX board via the interrupt 0 line 
(MINTRO), which is connected to the interrupt pin of 
the 8080 CPU. The iSBX board was attached to the 
iSBC 80/lOB board via the iSBX connector. The iSBC 
80/lOB board was powered-up and the iSBX board was 

checked for proper power and ground connections. The 
ICE-80 emulator was connected to the iSBC 80/lOB 
board. Using the interrogation mode of the emulator, it 
is possible to check proper functioning of the iSBX 
board by sending and receiving data to/from the 8279. 
The keyboard can be tested by depressing a key on the 
keybpard and then examining the FIFO/Sensor RAM to 
see if the data was entered. The display RAM can alsc, 
be read and written to for testing the interface to the 
display. 

After this initial checking of the iSBX board, the soft· 
ware exerciser can then be down-loaded with the ICE 
module to further check the board. 

SUMMARY 
The objective of this application note is to introduce the 
reader to the iSBX MUL TIMODULE concept for ex
panding a single board computer's functionality, and to 
illustrate how a designer can use this concept with either 
standard or custom iSBX boards. In contrast to system 
expansion using MULTIBUS-compatible boards, iSBX 
MULTIMODULE boards provide smaller, lower cost, 
incremental expansion. This application note explains 
how a custom iSBX board can be designed and de
bugged. Using this capability, it is now possible to more 
quickly add new VLSI technology to systems as the 
technology becomes available. Intel will continue to 
provide new iSBX MUL TIMODULE boards and, be
cause of the the publication of the iSBX Bus Specifica
tion and this application note, it will be easier for Intel's 
customers to also design and build. their own custom 
iSBX boards. 

1·190 AFN·01931A 



AP-96 

APPENDIX A ............ 1-192 
APPENDIX B ............. 1-193 
AP PEN DIX C ............. 1-194 

1-191 AFN·01931A 



AP-96 

APPENDIX A 

iSBX™ SIGNAL PIN ASSIGNMENTS 

Pin Mnemonic Description Pin Mnemonic Description 

35 GND Signal Ground 36 +5V + 5 Volts 

33 MOO MDATA Bit 0 34 MDRQT M OMA Request 

31 MD! MDATA Bit 1 32 MD ACK/ M OMA Acknowledge 

29 MD2 MDATA Bit2 30 OPTO Option 0 

27 MD3 MDATA Bit 3 28 OPT! Option 1 

25 MD4 MDATA Bit4 26 TOMA Terminate OMA 

23 MOS MDATA Bit 5 24 Reserved 

21 MD6 MDATA Bit 6 22 MCSO/ M Chip Select 0 

19 MD7 MDATA Bit 7 20 MCSI/ M Chip Select 1 

17 GND Signal Ground 18 +5V + 5 Volts 

15 IORD/ I/O Read Command 16 MWAIT/ MWait 

13 IOWRT/ 1/0 Write Command 14 MINTRO M Interrupt 0 

11 MAO M Address 0 12 MINTRI M Interrupt 1 

9 MAI M Address 1 10 Reserved 

7 MA2 M Address 2 8 MPST/ iSBX MUL TIMODULE Board Present 

5 RESET Reset 6 MCLK M Clock 

3 GND Signal Ground 4 +5V + 5 Volts 

1 +12V + 12 Volts 2 -12V - 12 Volts 

All undefined pins are reserved for future use. 

1-192 AFN-01931A 



AP-96 

APPENDIX B 

iSBX™ MULTIMODULE™ BOARD 1/0 AC SPECIFICATIONS 

Symbol* Parameter Min (ns) Max(ns) 

t1 Address stable before read 50 -

t1 Address stable after read 30 -

t3 Read pulse width 300 -

tP> Data valid from read 0 250 

ts(2) Data float after read 0 150 

t6 Time between RD and/or WRT - Note 3 

t7 CS stable before CMD 25 -

ts CS stable after CMD 30 -

(9 Power up reset pulse width 50 ms -

t10 Address stable before WRT 50 -

t11 Address stable after WRT 30 -

t1P1 Write pulse width 300 -

t1P> Data valid to write 250 -

t14 Data valid after write 30 -

t15 MCLK cycle 100 110 

t16 MCLK width 35 65 

t1/I) MW AIT I pulse width 0 4 ms 

tis Reset pulse width 50 ms -

t19 MCS/ to MWAIT/ valid 0 75 

t20 DACK set up to 1/0 CMD 100 -

t11 DACK hold 30 -

t21 CMD to OMA RQT removed to end of OMA cycle - 200 

t13 TOMA pulse width 500 -
tz4(1) MW AIT I to valid read data - 0 

t15(l) MWAIT/ to WRT CMD 0 -

NOTES: 
I. Required only if WAIT is activated. 
2. If MW AIT I not activated. 
3. To be specified by each iSBX MUL TIMODULE board. 

* For a more complete definition of symbols refer to iSBX Bus Specification, 142686-001. 

1-193 AFN·01931A 



AP-96 

APPENDIX C 

LISTING FOR THE iSBX™ DESIGN EXAMPLE SOFTWARE EXERCISER 

LDC OBJ 

OOFO 

OOFI 

0008 

0039 

0040 
0060 
0070 

0080 
0090 

OOD8 

3COO 
3DOO 

0000 F3 
0001 C33BOO 

00·38 
0038 C3D100 

0038 31FF3F 
003E 3E08 
0040 D3Fl 
0042 3E39 
0044 D3FI 
0046 3ED8 
0048 D3Fl 
004A OEEO 
004C 21003C 
004F 71 
0050 060F 
0052 210F3D 
0055 71 
0056 2B 
0057 05 
0058 C25500 

005B F3 
005C AF 
005D B9 
005E CA6400 
0061 CD6800 
0064 FB 
0065 C35BOO 

LINE SOURCE STATEMENT 

1 , ** •••••• * *** •••••••••••••••••••••••••• **. ***. *** **** ••••• * ••••••• ** * ••••• ***** 
2 ,. • 
3 I* THIS PROGRAM WAS USED AS AN EXAMPLE FOR EXERCISING THE 
4 I* ~279 15BX MULTlMODULE BUILT FOR THIS APPLICATION NOTE. 

:• 5 
6 
7 
8 
9 

; •••••••••••••••••••••••• *** ••••••••••• * *** •••••••••••••••••••••••••••••••••••• 

1 • ••• * •••••••••••••••••••••••••• * ••••••••••••• * **** •••••••••••••••••••••••••••• 
I PROGRAM EQUATES ' 10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

; •••••••••••••••••••••••••••••••• **** •••••••• *. ****. * •••••••••••••••••••••••••• 
DATAAD 

CMDAD 

MODEO 

PROGCK 

RDFIFO 
RDRAM 
RDRAMA 

WRRAM 
WRRAMA 

CLR 

BUFF 
DBUFF 

EQU 

EQU 

EQU 

EQU 

EQU 
EQU 
EOU 

EOU 
EQU 

EQU 

EQU 
EOU 

OFOH 

OF1H 

08H 

39H 

40H 
60H 
70H 

80H 
90H 

OD8H 

3COOH 
3DOOH 

I POPT ADDRESS TO READ OR WRITE 
I/DATA. TO/OR FROM KEYBOARD/DISPLAY 
I POP? ADDRESS TO SEND COMMANDS 
I/TO KEYBOARD/DISPLAY 
I CONTROL CHAR. TO SET 
I /KEYBOARD/DISPLAY MODE FOR 
11C2 KEY LOCKOUT, 16 CHAR LEFT ENTRY 
I CONTROL CHAR. TO SET 8279 CLK 
I/TO 100 KHZ INTERNAL TIMING 
I CONTROL CHAR. TO READ KEYBOARD 
I CONTROL CHAR. TO READ DISPLAY RAM 
; CONTROL CHAR, TO READ DISPLAY RAM 
I/AUTO INCREMENT 
I CONTL CHAR. TO WRITE TO DISPLAY RAM 
I CONTL CHAR. TO WRITE TO DISPLAY 
I/RAM AUTO INCREMENT 
I CONTROL CHAR. TO CLEAR OR BLANK 
I /DISPLAY 
I ADDRESS OF KEYBOARD INPUT BUFFER 
1 ADDRESS OF DISaLAY BUFFER 

; ............................................................................. . 
START: DI 

JMP BEGIN 

:••····················· RST 7 ENTRY POINT •••••••••••••••••••••••••••••••• 
ORG 
JMP 

38H 
INT 

44 ;••············································································ 
45 1 INITIALIZE PROGRAM 
46 1 AND KEY SOARD DISPLAY CONTROLLER 

; 
BEGIN: 

ZDBUFF: 

LXI 
MYI 
OUT 
MVI 
OUT 
MVI 
OUT 
MVI 
LXI 
MOY 
MVI 
LXI 
MOV 
DCX 
DCR 
JNZ 

SP, lFFFH 
A,MODEO 
CMDAD 
A,PROGCK 
CMDAD 
A.,CLP 
CMDAD 
C ,OEOH 
H,SUFF 
M,C 
B, Ot'H 
H, DBUFF+OFH 
M,C 
H 
B 
ZDBUFF 

INITIALIZE STACK PT 
GET CONTROL CHAR. 
SET KEYBOARD/DISPLAY MODE 
GET CONTROL CHAR. 
SET 8279 CLK FOR 100 KHz 
GET CONTROL CHAR. 

1 CLEAR OR BLANK DISPLAY 

SET POINTER TO INPUT BUFFER 
CLEAR INPUT BUFf'ER TO BLANK 
SET COUNTER = 15 

I SET POINTER TO DBUFF +15 
I CLEAR DISPLAY BUFFER TO 
I/DISPLAY BUFFER +15 TO CODE 
I/FOR CLEARING OR BLANKING OUT 
I/THE DISPLAY 

CODE 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

: ............................................................................. . 
bB ; 
69 CKFLAG: 
70 
71 
72 
73 
74 LABEL: 
75 
76 

THIS IS THE BACKGROUND PROGRAM 
WHICH LOOPS CHECKING FOR THE DATA PRESENT FLAG 

DI 
XRA 
CMP 
JZ 
CALL 
EI 
JMP 

A 
c 
LAB~L 
OUTPT 

CK FLAG 

1-194 

DISABLE INTERRUPTS 
/CL.EAR A REG AND COMPARE WITH 
IC REG CHECKING FOR DATA PRESENT 
/IF PRESf:NT CALL OUTPT 
/TO DISPLAY CHAR. 
/IF NO DATA PRESENT ENABLE 
/INTERRUPTS AND JMP BACK 

AFN·01931A 



00b8 3A003C 
006B 062B 
0060 21DEOO 
0070 110901 
0073 BE 
0074 CA8000 
0077 05 
0078 CAC600 
0078 23 
007C 13 
0070 C37300 
0080 EB 
0081 7E 
0082 21003C 
0085 77 
0086 060F 
0088 110030 
008B 210130 
008E 7E 
008F 23 
0090 EB 
0091 77 
0092 23 
0093 EB 
0094 05 
0095 C28EOO 
0098 3A003C 
009B 320F30 
009E 0610 
OOAO 210030 
OOA3 7E 
OOA4 03FO 
OOA6 23 
OOA 7 05 
OOA8 C2A300 
OOAB OEOO 
OOAO C9 

OOAE 060F 
OOBO 110F30 
OOB3 21 OE30 
0086 7E 
OOB7 2B 
OOB8 EB 
0089 77 
OOBA 2B 
OOBB EB 
OOBC 05 
OOBO C2B600 
OOCO EB 
OOCl 36EO 
OOC3 C39EOO 

OOC6 FEFA 
OOC8 CA3BOO 
OOCB FEF9 
OOCO CAAEOO 
0000 C9 

0001 3E40 
0003 03Fl 
0005 DBFO 
0007 21003C 
OOOA 77 
OOOB OEFF 
0000 C9 

77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 

AP·96 

;••··················*························································· OUTPUT CHARACTER TO DISPLA l 

OUTPT: 

COMPARE: 

MATCH: 

LOOP!: 

LOOPA: 

LOOP2: 

LOA 
MVI 
LXI 
LXI 
CMP 
JZ 
OCR 
JZ 
INX 
INX 
JMP 
XCHG 
MOY 
LXI 
MOY 
MYI 
LXI 
LXI 
MOY 
INX 
XCHG 
MOY 
INX 
XCHG 

BUFF 
B,2BH 
H,TABLEl 
D,TABLE2 
M 
MATCH 
B 
CONTROL 
H 
D 
COMPARE 

A,M 
H,BUFF 
M,A 
B,OFH 
b,PBUFF 
H,OBUFF+l 
A,M 
H 

M,A 
H 

LOAD A •ITH KEYBOARD DATA 
SET COUNTER MAX POSSIBLE CHAR. 
SET POINTER TO INPUT TABLE 

l SET POINTER TO OOTPUT TABLE 
; COMPARE KEYBD DATA TO INPUT 
;/TABLE IF = JMP TO MATCH 
;1nsE DECREMENT COUNTER IF 0 
; /JMP TO CONTROL 
;/ELSE INCREMENT BOTH TABLE 
; /POINTERS ANO JMP TO COMPARE 

; IF MATCH CHANGE INPUT WITH 
; /OUTPT DATA AND PLACE IN BUFF 

I SET COUNTER • TO 15 
POINTER TO FIRST LDC IN DBUFF 
POINTER TO 2NO LDC IN DBUFF 

; READ HIGH POINTER FROM OBUFF 
I /UPDATE HIGH POINTER 

; SHIFT DATA LEFT IN D BUFF 
; UPDATE LOW POINTER 

OCR B ; TEST IF DONE 
JNZ LOOP! I/AND GO BACK IF NOT 
LOA BUFF ; /ELSE READ KEYBOARD DATA 
STA DBUFF+OFH I/ANO PLACE IT IN THE DBUFF 
MYI B,IOH I SET COUNTER = 16 
LXI H,DBUFF I SET POINTER : PBUFF IST POS. 
MOY A, Pil ; /READ 1 BYTE FROM DBUFF 
OUT DATAAD ;/AND SENT IT TO DISPLAY 
INX H ; UPDATE POINTER 
OCR B ; I ANO TEST IF DONE 
JNZ LOOP2 I /GO BACK IF NOT DONE 
MYI C,OH I/ELSE CLR DATA PRESENT FLAG 
RET ; I AND RETURN 

: ............................................................................. . 
DELETE: 

LOOPB: 

MYI 
LXI 
LXI 
MOV 
DCX 
XCHG 
MOY 
ocx 
XCHG 
OCR 
JNZ 
XCHG 
MVI 
JMP 

CHARACTFR OFLETE 
OR RUB OUT 

B,OfH 
DI DBUFF+OFH 
H, DBUFF+OEH 
A,M 
H 

M,A 
H 

B 
LOOPS 

M,OEOH 
LOOPA 

SET COUNTER =15 
SET POINTER = DBUFF+l5 

I SET POINTER = DBUFF+14 
; READ LOW POINTER !'ROM DBUFF 
J/UPDATE LOW POINTER 

; SHIFT DATA RIGHT IN DBUFF 
; /UPDATE HIGH POINTER 

; TEST IF DONE 
;/AND GO BACK IF NOT 
; /ELSE SET DBUFF FOR 
; /CODE TO BLANK. DISPLAY 
1 /AND JMP TO LOOPA 

, ............................................................................. . 
I CHECK IF CHARACTER JS 

; 
CO~TROL: CPI 

JZ 
CPI 
JZ 
RET 

CONTROL OR DELETE CHARACTER 

Of'AH 
BEGIN 
OF9H 
DELETE 

; COMPARE FOR CONTROL CHAR• 
; /IF CONTROL JMP TO BEGIN 
;/ELSE COMP. FOR DELETE CHAR. 
;/IF DELETE JMP TO DELETE 
; /ELSE RETURN 

'·································••*•••······································· KEYBOARD INPUT 

; 
INT: MVI 

OUT 
IN 
LXI 
MDV 
MVI 
RET 

INTERRUPT ROUT!kE 

A,RDFIFO 
CMDAD 
DATAAD 
H,BUFF 
M,A 
C,OFFH 

1-195 

GET CON TL CHAR. TO READ FIFO 
SET 8279 FOR READ MODE 
READ KEYBOARD DATA IN 
SET POINTER TO BUFF 

I AND STORE KEYBOARD DATA 
/THEN SET DATA PRESENT FLAG 
/AND RETURN 

~FN·01931A 



AP-96 

158 ' ....................•......................................................... 
159 ' TABLE I 
160 ACCEPTABLE INPUT CHARACTERS FROM KEYBOARD 
161 , 

OODE DE 162 TABLE I: DB ODEH ,OFFH, OEFH, OEEH, 0E5H, OF6H 1 OFEH, 0C6H 
OODF FF 
OOEO EF 
OOEI EE 
00E2 ES 
OOE3 F6 
00E4 FE 
OOES C6 
OOE6 C9 163 DB OC9H, OCAH, 002H, OOAH, 003H, OC7H, 001 H ,OD9H 
OOE7 CA 
OOEB 02 
OOE9 DA 
OOEA D3 
OOEB C7 
OOEC DI 
OOED 09 
OOEE OS 164 DB DOSH, OEDH, OE6H, OF5H, OC1 H ,OF7H, OOOH, OE7H 
OOEF ED 
OOFO E6 
OOF1 FS 
OOF2 CI 
OOF3 F7 
OOF4 DD 
OOFS F.7 
OOF6 FD 165 DB OFOH ,OOFH, OCCH, 004H 1 ODCH, OE4H 1 DECH, OF4H 
OOF7 OF 
OOF8 CC 
OOF9 04 
OOFA DC 
OOFB E4 
OOFC EC 
OOFD F4 
OOFE re 166 DB OFCH, OCOH, OC8H ,'OOOH 1 098H, OA2H, OCFH, OAAH 
OOFF CO 
0100 CB 
0101 DO 
0102 98 
0103 A2 
0104 CF 
0105 AA 
0106 EB 167 DB OEBH 1 QE3H,008H 
0107 E3 
0108 08 

168 

1-196 AFN-01931A 



AP-96 

169 ;••••·········································································· 170 TABLE 2 
171 ACCEPTABLE OUTPUT CHAHACTERS TO DISPLAY 
172 I 

0109 Cl 173 TABLE2: OB OCl H, OC2H, OC3H, OC4H, OCSH, OC&H, 0C7H, OC8H 
OIOA C2 
OIOB Cl 
OlOC C4 
0100 C5 
OIOE C6 
OIOF C7 
0110 CB 
0111 C9 174 OB OC9H ,OCAH, OCBH, OCCH, OCDH, OCEH, OCFH, ODOH 
0112 CA 
0113 CB 
0114 cc 
0115 co 
0116 CE 
0117 CF 
0118 co 
0119 DI 175 OB 001 H, OD2H, OD3H, OD4H, DOSH, 006H, OD7H, OD8H 
01 IA 02 
OllB 03 
OllC 04 
0110 05 
01 lE: 06 
01 IF 07 
0120 08 
0121 09 176 OB OD9H, ODAH / OF1 H, OF2H, Of' 3ri, OF4H, OFSH, OF6H 
0122 CA 
0123 Fl 
0124 F2 
0125 Fl 
0126 F4 
0127 F5 
0128 F6 
0129 F7 177 DB OF7H, OF8H, OF9H, OFOH, OFDH, OEBH, OEOH, OEAH 
012A FB 
012B F9 
012C ro 
0120 FD 
012E EB 
012F EO 
0130 EA 
0131 EF 178 OB OEFH,OEEH,020H 
0132 EE 
0133 20 
0000 179 ENO START 

PUBLIC SYMBOLS 

EXTERNAL SYMBOLS 

USER SYMBOLS 
BEGIN A 003B BUFF 3COO CKFLAG 005B CLR 0008 CMDAO OOFI COM PAR 0073 CONTRO A OOC6 
OATAAO A OOFO OBUFf' 3000 DELETE OOAE INT 0001 LABEL 0064 LOOP! 008E LOOP2 00A3 
LOOP A A 009E LOOPB 0086 MATCH 0080 MOOED 0008 OUTPT 0068 PROGCK 0039 ROFIFO 0040 
RORAM A 0060 RORAMA 0070 START 0000 TABLE I OOOt TABLE2 0109 WRRAM 0080 WRRAMA 0090 
ZOBUFF A 0055 

ASSEMBLY' C0"1PLETE:, NO ER HORS 

1-197 AFN·01931A 





ARTICLE 
REPRINT AR·48 

-----~F=eebbnruary 1, 1978 

AFN·01931A 



Technolog~ 
1 

Reduce your µC-based system design time 
by using single-board microcomputers. Assembled boards 
in the SBC-80 series offer stock answers to custom demands. 

System designers eager to take advantage of the 
dramatically increased capabilities of micro
computers have been hindered two ways: Their pro
duction volumes have been too low to amortize soft
ware and hardware development costs effectively, or 
hardware subtleties and test requirements have con
fined them to fully assembled and tested computer 
subsystems. But now those obstacles are overcome 
with families of fully assembled and tested micro
computers and system-expansion boards like the Intel 
SBC-80 series. They are ready-to-use, flexible and 
inexpensive-prices range from just $195 to $825 in 
unit quantities. 

The main members of the SBC-80 family are the 
80/04, 80/05, 80/lOA, 80/20 and 80/20-4 central
processor boards, with either an 8080A or 8085 micro
processor acting as the master CPU (Table 1). Most 
of the boards measure 6.75 X 12 in. and contain the 
CPU, clock, read/write memory, control ROM, 1/0 
ports, serial communications interface and bus-con
trol logic. 

1/0 interfacing is an area where design flexibility 
is essential to meet changing requirements efficiently. 
The programmable parallel and serial 1/0 structures 
of the boards make them versatile enough to do just 
that. What's more, upgrading system performance is 
easy thanks to the SBC-80 system bus, the Multibus, 
which permits modular performance· expansion. 

The Multibus provides a defined;. standard interface 
between the SBC-80 single-board computers and ex
pansion boards. As many as 16 SBC-80 family boards 
can simultaneously share the bus. 

All in the SBC-80 family 

As exemplified by the block diagram of the 
SBC-80/lOA (Fig. 1), the SBC-80 microcomputer sys
tem has all that's needed for many applications. The 
SBC-80/lOA is the oldest board in the family and has 
been widely imitated since it was one of the first 
"standardized" microcomputers commercially avail
able. 

The CPU section of the 80/lOA board consists of 

George Adams, Product Line Manager, Single-Chip Micro
computers, Intel Corp., 3065 Bowers Ave., Santa Clara, 
CA 95051. 

Note: Multibus, RMX·80, ICE and lntellec are registered trademarks of Intel Corp. 

Reprinted from ELECTRONIC DESIGN/February 1, 1978 

the 8080A CPU, the 8224 clock generator and the 8238 
system controller. Capable of fetching and executing 
any of the 8080A's 78 instructions, the CPU section 
can respond to interrupt requests originating on and 
off the board. (For more about the 8080A, see "Micro
processor Basics, Part 2," ED No. 10, May 10, 1976, 
p. 84). 

The system-bus interface section includes an assort
ment of circuits to gate the interrupt and hold re
quests, the ready signals, and a system-reset signal. 
Other circuits drive the various control lines. Two 
8216s help drive the bidirectional data bus, and six 
8226s drive the external system-data and address 
buses as part of the SBC-80/lOA's Multibus interface. 

The RAM section of the 80/lOA consists of 1024 
bytes of static MOS memory. For program storage, 
up to 8192 bytes of ROM can be mounted on the board 
in 1024-byte increments by means of a 2708 or 8708 
EPROM, an 8308 mask-programmed ROM, or in 2048 
byte increments via the 2716 EPROM or 2316 ROM. 

A serial interface on the board uses an 8251 pro
grammable universal synchronous/asynchronous 
receiver/transmitter to provide a serial-data channel. 
The serial port operates at programmable rates up to 
38,400 baud (synchronously) or 19,200 baud (asynchro
nously) with a choice of character length, number of 
stop bits, and even, odd or no parity. On-board 
interfaces provide direct EIA RS-232 or teletypewriter 
current-loop compatibility. 

Two 8255 programmable peripheral interface 
circuits provide 48 1/0 lines for transferring data to 
or from peripheral devices. Eight already-committed 
lines have bidirectional drivers and termination 
networks permanently installed, so that they can be 
inputs, outputs or bidirectional (jumper-selectable): 
The other 40 lines are uncommitted. On-board sockets 

. permit drivers and termination networks to be in" 
stalled, as needed. Since software configures the 1/0 
lines, 1/0 can be customized for every application. 

The 80/lOA also responds to a single-level interrupt 
that can originate from one of many sources, the 
USART, programmable 1/0 and two user-designated 
interrupt-request lines. When an interrupt is recog
nized, a Restart-7 instruction is generated, and the 
processor acces.ses location 38H to get the starting 
address of the service routine. 

System expansion and support are possible with a 

h '' '"'"" ll1s";' 3. February I. 1978 
Copyright Hayden Publishing Co., Inc. 1978. All rights reserved. 

1-200 AFN·01931A 



wide variety of alternate-source CPU, memory, and 
I/O boards (Tables 2 and 3). Up to 65,536 bytes of ROM, 
PROM or RAM can be accessed by one 80/lOA. 
Expandable backplanes and card cages are also avail
able to support multiboard systems. 

Interfacing starts with the bus 

Although the SBC-80/lOA is a complete micro
computer system, it can be expanded readily or it can 
serve as a primary master controller for other micro
computer cards. The 80/lOA has five edge connectors, 
three on the top of the board and two on the backplane, 
or bottom, side. Two of the "top" connectors, J1 and 
J,, serve as parallel I/O ports, while J3 is a serial I/O 

RS 232C 
COMPATIBLE 

DEVICE 

00 SERIAL 
CONTROL DATA 

INTERFACE INTER 

BK x 8 
ROM/PROM 

MEMORY 
(SOCKETS) 

FACE 

TTY 

SERIAL DD 
DATA CONTROL 
INTER· INTERFACE 
FACE 

port. All parallel 1/0 lines on the 50-contact J 1 and 
J2 connector areas are paired with an independent 
signal/ground pin to permit alternate signal/ground 
wiring when using flat-cable interconnects. Serial port 
J3 uses a 26-contact PC-edge connector to provide 
interfaces for both RS-232 and current-loop devices. 

To communicate with other system-compatible 
boards, the 80/lOA uses the 86-pin Multibus (P1). To 
provide accessible test points, the 80/lOA has a 60-
pin edge connector (P2). The control signals on the 
Multibus provide the real power and capability in 
control applications. 

Of the 86 pins that make up the Multibus, 24 are 
assigned to power and ground, 16 to addressing, eight 
to bidirectional data, and 12 to signal and control 

1 
INTERRUPT 

REQUEST 
LINE 

USER DESIGNATED 
PERIPHERALS 

D 

lK x 8 
RAM 

MEMORY 

Interrupts originating from the Programmable Communications Interface and Programmable Peripheral Interface are jumper selectable. 

J1 

! 

CPU 

P1 

1. Based on an 8080AµP, the 80/lOA microcomputer has 
a straightforward design suitable for general-purpose 

Er.EcTRoN1c DESIGN 3, February I, 1978 

J2 

1 

1-201 

J3 

1 

PROM/ROM 

RAM 
P2 

computing and control. The board has 48 programmable 
1/0 lines and serial interfaces. 

AFN-01931A 



CPU MASTER NO. I 
SBC 80120 

1/0 DEDICATED 10 
MASTER NO. I 

COMMON HIGH 
SPEED MATH 

PROCESSOR 

(SBC 310\ 

COMMON l/O 
AND PERIPHERALS 

1/0 DEDICATED TO 
MASTER N0.2 

MULTIBUS 

2. ·The Multi.bus interface for the SBC-80 CPU boards not 
only permits simultaneous multiprocessing, but also 
enables seyeral processors to share the same bus and 

(these 12 are defined in Table 4). The remaining 26 
pins are unassigned at this point. Higher capability 
SBC-80 products, though, are in development. These 
boards will use many of the unassigned lines (eight 
unassigned pins are allocated for additional bidirec
tional data lines). The remaining lines provide multi
level (eight) interrupt lines, various control lines and 
a multimaster, bus-arbitration control structure (Fig. 
2). Address and data lines are three-state, and the 
interrupt' and control lines are open-collector. 

Boards using the Multibus have a master-slave 
relationship: A bus master-such as an SBC 80 CPU 
board, a DMA controller or a diskette controller-can 
control the command and address lines. Conversely, 
slave boards-such as a memory, 1/0-expansion or 
mathematics boards-cannot control the bus. 

Arbitration resolves. priority disputes 

In multimaster systems, the bus-arbitration logic 
uses the CCLK signal of the bus to provide a timing 
reference to help satisfy many simultaneous requests 
for bus control. As a result, different speed masters 

peripheral devices. Arbitration logic on the CPU boards 
decides which board gets on the bus first if several units 
simultaneously access the bus. 

can share resources on one bus. Actual transfers on 
the bus proceed asynchronously with respect to the 
bus clock. Once bus access is granted, single or 
multiple read/write transfers can proceed at up to 150 
kbytes/s for CPU operations and up to 1 Mbyte/s for 
DMA operations. The bus has a bandwidth of 5 
Mbytes/s so that future performance enhancements 
may be directly supported. 

Both serial and parallel modes of bus-priority reso
lution are available. In the serial mode, up to three 
masters can share the system bus, with requests 
ordered on the basis of bus location. Each master on 
the bus notifies the next one down in priority when 
it needs to use the bus, and monitors the bus-request 
status of the closest higher-priority master. With an 
external priority network, up to 16 masters can share 
the bus. 

The dual-bus nature of the Multibus permits each 
processor-based master within the system to retain 
its own local memory and 1/0, which it uses for most 
operations. Such local operations occur entirely on the 
individual board and don't require the system bus. 

In contrast to the dual bus architecture, all masters 

Table 1. Comparison of SBC-80 CPUs 
SBC 80/04 SBC 80/05 SBC 80/lOA 

CPU 8085 8085 8080A 

EPROM capacity (bytes) 
(with 2716) 4096 4096 8192 

(with 2708) 2048 2048 4096 

RAM (bytes) 256 512 1024 

Programmable parallel 
1/0 lines 22 22 48 

Serial 1/0 capability RS232C RS232C RS232C/TTY 
SID/SOD!· 2 SID/SOD!. 2 USART 

Timers 1 1 0 

Interrupt levels 4 4 1 

Multibus interface None Multi-master Single-master 

Price (unit quantity) $195 $350 $495 

Notes: !Provided by 8085 CPU SID and SOD serial 110 tines. 2Qptmnal SBC 530 TTY interface is available, 

1-202 

SBC 80/20 SBC 80/20-4 

8080A 8080A 

8192 8192 

4096 4096 

2048 4096 

48 48 

RS232C2 RS232C2 

USART USART 

2 2 

8 8 

Multi-master Multi-master 

$735 $825 

Ei1<1R0~1< D1s1<;~ J. February 1. 1978 

AFN·01931A 



Table 2. Additional SBC support boards 

Function 

RAM 

EPROM 

Digital 
110 

Model 

SBC 016 
SBC 032 
SBC 048 
SBC 064 
SBC 094* 

SBC 416 

SBC 508* 

Description 

16 kbyte dynamic RAM 
32 kbyte dynamic RAM 
48 kbyte dynamic RAM 
64 kbyte dynamic RAM 

4 kbyte CMOS static 
RAM with 96 hour bat
tery backup. 
16 ~~ytes u~rg 2708 
~~1024 x ~ EPROM 
32 input lines/32 out
put lines, all buf
fered/terminated 

Price 
(unit 
qty) 

$ 825 
$1360 
$1860 
$2200 
$ 795 

$ 295 

$ 350 

SBC 517 48 programmable par- $ 400 
allel lines with full 
buffering/termination 
options, full RS232C 
port. 1 ms real-time 
clock, and 8-line inter-
rupt control 

SBC 519* 72 pro1;irammable par- $ 395 
allel Imes with full 
buffering/termination 
options, real-time 
clock (interval is 
jumper selectable to 
0.5, 1, 2, or 4 ms), and 
8-level programmable 
interrupt control. 

Communi- SBC 534 Four programmable $ 650 
cations synchronous/asyn-

chronous serial ports, 
each with: program
mable baud rates, pro
grammable data for
mats, programmable 
interrupt control, 16 
RS232C buffered pro
grammable parallel 
1/0 lines configured as 
a Bell Model 801 auto
matic calling unit in
terface. Two program
mable 16-bit interval 
timers (usable as real
time clocks), and soft
ware selectable loop
back of serial ports for 
diagnostic use. 

SBC 556* 48 optically isolated $ 395 
lines; 24 input 16 out-
put, and 8 program-
mable (in/out), 8-level 
programmable inter-
rupt control, and 1 ms 
real-time clock. 

Analog SBC 711* 16/8 (single-ended/ $ 895 
110 differential) 12-bit aid 

channels; user expan
dable on-board to 
32/16 channels 

SBC 724* Four 12-bit d/a chan- $ 750 
nels 

SBC. 732* 

Combina- SBC 104 
ti on 
memory 
and 1/0 

.:.Requires +5 V only. 

Combination analog $1125 
1/0; same aid capabili-
ty as SBC 711 plus 2 
dla channels 
8 kbytes capacity $ 715 
(sockets) using 2716 
(2 k x 8) EPROM or 4 
k using 2708, 4 kbytes 
dynamic RAM, 48 pro
grammable parallel 
110 lines, with full buf
fering/termination, as 
options. RS-232C port, 
a 1 ms real-time clock, 
and an eight-line inter-
rupt control 

E1 H'TRONI<' DFSIGN 3. February I. 1978 

in multimaster/single-bus systems use the common 
bus for all instruction or data fetches or whenever 
data must be written to output devices or memory. 
Rapidly, then, the system bus becomes the bottleneck 
for over-all system throughput. Masters in SBC-80 
systems only use the Multibus when data or instruc
tions are resident in common, or global, memory or 
I/O. Since masters can request the Multibus simulta
neously, on-board arbritration logic resolves any mul
tiple contention. 

Examine board performance 

A look at the entire family of SBC-80 micro
computers reveals varied levels of performance. All 
five boards are inexpensive, but the most inexpensive 
is the 80/04, which costs $99 in 100-unit quantities, 
and is intended for stand-alone applications. To get 
the cost down, the board was designed to use the 8085 
CPU and the 8155 RAM, timer and 1/0 circuit. 

The 80/04 contains an 8085 CPU, 256 bytes of RAM, 
space for up to 4 kbytes of EPROM (two 2716 EPROMs, 
or two 2708 EPROMs), 22 programmable parallel 1/0 
lines with sockets for buffer and termination options, 
a 14-bit programmable timer/event counter, and pro
vision for an RS-232-C serial port using the 8085 
SID/SOD serial interface. The board can also house 
an on-board +5-V regulator, so an unregulated voltage 
can be connected. 

The next step up, the 80/05, has the same architec
ture and connector types and pinouts as the 80/04. 
Direct software compatibility is achieved with the 
same CPU along with the same RAM, ROM, I/O, and 
timer addressing. However, the 80/05 contains twice 
as much RAM as the 80/04. And since the 80/05 has 
the full Multibus multimaster interface, 80/05-based 
systems can be expanded with any of the Multibus
compatible boards from Intel or other suppliers. 

The SBC-80/lOA comes next. It provides more on
board memory and 1/0 for systems requiring ex
panded on-board resources. Based on the 8080A CPU, 
the board contains 1 kbyte of RAM, up to 8 kbytes 
of EPROM/ROM, 48 programmable parallel 1/0 lines, 
a full USART serial port with RS-232-C and tele-

1-203 

SBC 108 Same as SBC 104, ex- $ 815 
cept has 8 kbytes of 
dynamic RAM 

SBC 116 Same as SBC 104, ex- $ 985 
cept has 16 kbytes of 
dynamic RAM 

High-speed SBC 310* High speed mathema- $ 595 
math tics processor includ

ing floating-point ca
pability (32 bit). 

Peripheral SBC 201 Dual single-density dis- $ 995 
control kette controller 

SBC 202 Quad double-density $1290 
diskette controller 

DMA SBC 501 DMA controller, up to $ 450 
control 1 MHz transfer rates 

AFN·01931A 



typewriter interfaces, and a full Multibus intedace 
(but only single-master capability; the board h:i.s no 
multimaster capability). I.ntended for single·CPU sys
tems with only one other Multibus peripheral con
troller, the 80/lOA can interface with such as the 
SBC-201 or SBC,202 single and double-density dis
kette controllers, or the SBC-501 DMA, controller. 

System designers requiring the same on~board I/O 
capability as the SBC-80/lOA but with more RAM, 
more efficient real-time capability, and full multi
master Multibus control can go further up the ladder 
to the SBC-80/20 or SBC-80/20-4. These boards differ 
only in that the 80/20 contains 2 kbytes of RAM and 
the 80/20-4 contains 4 kbytes. Both boards can hold 
up to 8192 bytes of ROM or EPROM, handle up 

CPU BOARD 

BIDIRECTIONAL. DRIVERS 
ANO TERMINATORS 

~---0 
~---0 
o-jf----0 
0 ;;jf'.---0 

;)J/fl 

SWITCHES 

CONlllCTS 

LEOS 

~ 
INDUCTIVE 

LOADS 

~ASCII 

~ARO 

INTERPROCESSOR BUS 

( TO SECOND SBC BO l 

I---+-~ CONTROL 

D 
CPU BOARD 

3. Programmable 1/0 lines from the SBC-80 parallel 
interfaces can be set so that they are individually program
mable as inputs or outputs (a). byte-programmable as 
inputs or outputs with handshaking (b), or bidirectional 
on a byte-programmable basis (c). 

to eight levels .of prioritized interrupt, and share the 
Multibus in the multimaster rriode. Either board has 
two programmable interval timers/event counters. 
Auxiliary power buses and memory-protect control 
logic on the board permit battery backup of the RAM. 

Take advantage of interrupts and timers 

Real-time applications frequently require that high
priority programs operate on the basis of external 
events, time-of-day, or elapsed time without impact
ing current background processing. These multi
programming requirements are supported in the 
80/20 and 80/20-4 by an eight-level programmable 
interrupt controller (PIC) and two programmable 
interval timer/event counters. The priority level of 
any event generating an interrupt request is assigned 
through jumper selection and the priority algorithm 
chosen by system software. 

Any combination of interrupt levels may be masked 
by storing a single byte in the interrupt-mask register 
contained by the PIC, whose four software-selectable 
priority algorithms are described in Table 5. The PIC 
generates a unique memory address for each interrupt 
level. These addresses are equally spaced at intervals 
of 4 or 8 bytes (software-selectable). The resulting 32 
or 64-byte block may begin at any 32 or 64-byte 
boundary in the 65,536-byte memory space. A single 
8080A jump instruction at each of these addresses 
then provides linkage to locate each interrupt service 
routine independently anywhere in memory. 

The two programmable timers may be used to 
generate real-time clocks by requesting periodic inter
rupts through the PIC, so that the CPU is free to 
handle numerous other system-timing and control 
functions. The outputs and gate/trigger inputs of the 
timer/counters can be routed via jumpers to the PIC, 
the I/O driver/terminators, or the programmable 
parallel I/O. 

1-204 

Seven software-selectable timing/counting func
tions are available. Either timer may be set to act as 
a rate generator (divide-by-N counter), a square-wave 

CONFIGURATIQtl 
PARAMETERS 

USER TASKS 
!Pl../t.i-SOOR 
ASSEhlBLY 

LANGUAGE) 

LINKER/ 
LOCATE 

UNIVER$AI.. 
PRoM 

PROGRAMMER 

lllCIR<:UIT 
EMULATOR 

4. By using the RMX-80 executive and the library of often
used subroutines, program development can be simplified 
since the subroutines are modular and can be linked 
together. then checked out in a system prototype. 

F11 c TRONI< D1 <ic;N 3, February I, 197'8 
AFN-019311>. 



Table 3. Non-Intel SBC-compatible boards 

ID .. u 
'E ... ~' .. ... Ill ID 

'E 'E .8 ID .5 .. l Ill l 'E e .. 0 Ill !!! ..0 0 c c 
:::> ..0 .. c .. ID 0 .S! 0 

~ 'E 0 :I u u ; .. .. .. a. .. 0 ::E Ill u ..0 ~ :il 'E .. 'E (.) 'E E 0 .8 ... .!i! :! ~ .. :! ; co 2! :g c :! ci ID a: co :I :I E ' 211 .E ,:.. ..0 a. ..0 c 
..0 ..0 

::E 0 :1; E "'O a. 0 ID = ::E !! 0 ii a. ! a. E ID .z: Ill 1! :I c (.) L&I 0 ~ 
; !! c 0 a: !!:! Ill 0 

Mahufacturer ::E a: (.) a. c c .... i&: (.) ::E a:I u 
ADAC Corp., 118 Cummings Park, 
Woburn, MA 01801.(617) 935-6668 • 451 
Ampex, Memory Products Div., 200 N. Nash St., 
El Segundo, CA 90245.(213) 640-0150 • 452 
Analog Devices, Route 1 Industrial Park, • 453 P 0. Box 280, Norwood, MA 02062.(617) 329-4700 
Au~at Inc., 33 Per~ Ave., P.O. Box 779, 
Att eboro, MA 027 3. (617) 222-2202 • 454 
Burr-.Brown, International Airgort Industrial Park, 
P.O. Box 11400, Tucson, AZ 5734J..60~294-1431 • 455 
Cybernetic Micro~stems, 2460 Embarcadero Way, • • 456 Palo Alto, CA 943 3. (415) 321-0410 ..;;:. 
Data Translation Inc., 23 Strathmore Rciad, • 457 Natick, MA 01760 (617) 655-5300 · 
Datacube Corf)., 25 Industrial Park, 
Chelmsford, MA 01824. (617) 256-2555 • 458 
Daiei Systems Inc., 1020 Turnpike St., Building S ., 
Canton, MA 02021.(617) 828-8000 • 459 

Digidata Cor;!b·8580 Dors~ Run Road, 
Jessup, ~D 0 94. (301) 4 8·0200 • 460 
EDAC Corp., 1417 San Antonio Ave .. • 461 Alameda, CA 94501.(415) 521-6600 
Electronic Engineering & Prod. Services, TE. #2, 
Louisville, TN 37777. (615) 984-9640 • 462 
Electronic Solutions, 7969 Engineer Rd., 
San Diego, CA 92111.(714) 292-0242 • • • 463 
Garry Mfg. Co., 1010 Jersey Ave., 
New Brunswick, NJ 08902.(201) 545-2424 • 464 
Hal Communications Corp., Box 365B, 807 E. Green St., 
Urbana, IL 61801.(217) 367-7373 • 465 
Iasis, 815 W. Maude Ave,, 
Sunnyvale, CA 94086. (408) 732-5700 • 466 
ICOM, 6741 Variel Ave, • Canoga Park, CA 91303.(213) 348-1391 467 
Megalo~ic Corp., 9650 National Road, 
Brookvi le, OH 45309. (513) 833-.5222 • 468 
Micro Memories Inc., 9438.lrondclle Ave., 
Chatsworth, CA 91311.(213) 998-0700 • 469 
Microtec, P.O. Box 60337. • Sunnyvale. CA 94088.(408) 73.3.-2919. 470 
Monolithic Systems Inc., 14 lnverne.ss Drive, 
East, Englewood, CA 80110.(303) 770-7400 • • 471 
!'.:Jat1on~! Semiconductor, 2900 Semiconductor Drive, 
Santa Clara, CA 95051.(408} 737-5000 • 472 
North Star Computers· Irie., 2465 F,ourth St. 
Berkeley; <:;A 94710. (415) 549-0858 ' • . 473· 

The Th9mas Engi[ieeri11: Co., 1.201 Park Ave., 
Emeryville, CA 94608.( 15) 547-5860 • 474 
Vector Electronic Products .. 12460 Gladstone Ave., • Sylmar, CA 91342.(213) 365-9661 475 
Zia Tech., 10762 La .Roda Drive, . • Cupertino, CA 95015:(408}996-7082 476 

Fr"'"""'" D1'";" 3. February I. 1978 1-2.05 AFN-01931A 



generator, a programmable retriggerable one-shot, or 
software or hardware-triggered strobe. One of the 
timers can be jumper-selected as an event counter, 
and either can generate an interrupt after a specified 
interval or after a specified number of events. 

The programmability of each on-board timer allows 
timing intervals from approximately 2 µ.s to over 60 
ms. But the two timers may be cascaded to provide 
intervals greater than 1.1 hour, in 1.86 µ.s increments. 
In the event counter mode, external event rates up 
to 1.1 MHz may be counted. 

Flexible 1/0, a . must for any system 

All SBC~80 microcomputers provide 22 or 48 pro
grammable parallel I/O lines that, grouped as 8-bit 
ports, are fully programmable to allow enough flex
ibility to handle any changes in system interfacing. 
Programmability is permitted through data direction, 
control mode, interrupt handling, and 
buffer/termination. The 1/0 configuration for a spe
cific application is selected through software in
itialization of the parallel 1/0 control logic, jumper 
selection of control/interrupt line routing, and the 
particular buffer and termination devices chosen. 

Fig. 3 illustrates the basic modes of operation that 
may be selected by software to meet application 
requirements. Mode 0 is used for slow-to-medium
speed interfacing where immediate handshake re
sponse or interrupt generation is not needed. This 
mode is extremely useful for interfacing to inputs such 
as switches or outputs such as LED indicators or 
numeric displays. 

Mode 1 provides handshaking lines required for 
many medium to high-speed peripherals. A typical 
output function could be a line printer; an input device 
could be an encoded keyboard or paper tape reader. 

In addition, the 80/lOA and 80/20 have Mode 2, a 
bidirectional data/control structure. This interface 
may provide, for example, a communication link 
between parallel processors. 

The SBC-80 1/0 structure also permits multiple 
options for output buffering and input termination. 
TTL drivers with 16 to 48 mA of drive can be used, 
and input lines may be terminated to minimize the 
impact of noise and cable disconnects. Any of the TTL 
drivers (four outputs) or input terminators(for inputs) 
listed in Table 6 may be inserted into sockets to provide 
proper buffering or termination. 

Like the design flexibility of the SBC-80parallel1/0 
structure, the serial. 1/0 structure allows interface 
characteristics to be revised rapidly through software, 
jumper, and buffer changes. Besides the SBC-80/lOA, 
the 80/20 and 80/20-4 contain the USART serial 
channel. These boards provide RS-232 interfaces, but 
the SBC-80/lOA also has a teletypewriter current-loop 
interface. Synchronous/ asynchronous mode, data for
mat, control-character format, and parity are all 
under program control. So is baud rate on the 80/20 
and 80/20-4. Baud rate is jumper-selectable on the 

1-206 

Table 4. Multibus control signals 
AACR 

BCLK 

BPRN 

BUSY' 

CCLK 

INIT 

INTRl 

IORC 

IOWC 

MRDC 

MWTC 

XACK 

Advance~acknowledge signal, used in 
8080A-based systems. It is sent to the 
SBC-80 board by a memory bank in re-
sponse to a mjlmory-read command, allow-
ing the memory to complete the access 
without requiring the CPU to wait. 

Bus clock, used to synchronize bus-control 
circuits on all master boards. It has a period 
of 101.725 ns (9.8304 MHz) and a 30to 70% 
duty cycle. The signal may be slowed, 
stopped or single-stepped. 

Bus-priority-input signal, used to indicate to 
the master that a higher-priority master 
board wants to use the system bus. When 
brought high, the signal suspends process-
ing activity and places line drivers of the 
master in a standby mode. 

Bus-busy signal, a bidirectional control line 
that allows control and monitoring of the 
Multibus in multimaster s9U§Q1s. As an 
output from a bus master, indicates 
the bus is being used by the board. It 
prevents all other master boards from gain-
ing control of the bus. Each master 
monitors BUSY as an input to determine 
current Multibus usage status. 

Constant clock, used to provide a 9.8304-
MHz clock signal for o~~1'ff' memory and 
1/0 expansion boards. co.incides with 
scr'R and has a period of 101.725 ns and 
a 30 to 70% duty cycle. 

Initialize signal, used to reset the entire 
system to a known internal state. 

Interrupt input, used to interrupt the proc-
essor via an externally generated interrupt 
request. 

1/0-read command, a signal generated by 
the master to indicate that the address of 
an input port has been placed on the 
system-address bus and that the data at 
that input port are to be read and placed 
on. the system-data bus. 

1/0-write command, a signal generated by 
the master to indicate that the address of 
an output port has been placed on the 
system-address bus ahd that the contents 
of the system-data bus are to be output to 
the addressed port. 

Memory-read command, a signal generated 
by the master that indicates that the ad-
dress of a memory location has been placed 
on the system-address bus. It specifies that 
the contents of the addressed location are 
to be read and placed on the system-data 
bus, 

Memory-write command, a signal gener-
ated by the master to indicate that the 
address of a memory location has been 
placed on the system-address bus. It causes 
information on the data bus to be written 
into the addressed memory location. 

Transfer-acknowledge signal, an input sig-
nal to the master board from an external 
memory location or 1/0 port to indicate that 
a specified read or write operation has been 
completed. 

ELECTRONIC DESIGN 3, February I, 1978 
AFN-01931A 



80/lOA CPU board. 
The synchronous and asynchronous nature of the 

serial interface makes it compatible with virtually 
every standard serial data-transmission technique 
used today (including IBM's Bi-Sync). This allows 
multiple SBC-80 boards to be interconnected as a 
distributed-processing network. The resulting task 
segregation or redundancy (or both) significantly 
improves both system performance and reliability. 

Two jumper-selectable interrupt requests may be 
generated automatically by the serial interface. One 
occurs when a newly received character is ready to 
be loaded into the CPU (receive-channel buffer is full). 
The other occurs when new data are ready to be 
transmitted to the remote device (transmit-data buf
fer is empty). 

Both the SBC-80/04 and 80/05 provide serial 110 
capability through the serial input data (SID) and 
serial output data (SOD) functions of the 8085 CPU. 
These functions are controlled by software executing 
the 8085 read-interrupt mask (RIM) and set-interrupt 
mask (SIM) instructions. 

For systems requiring many serial channels, the 
SBC-534 communications-expansion board provides 
four USART channels with RS-232-C and optically 
isolated current-loop interfaces, programmable inter
rupt, timing, baud-rate control, and a Bell 801 Auto
Call unit interface. 

Expand the system via the Multibus 

The SBC-80 family is gaining not only in popularity 
but in support for its Multibus as more and more 
companies offer SBC-compatible boards. Intel now 
provides high-speed mathematics, RAM, EPROM, 
mass storage, digital 110, combination memory and 
110, serial communications, and analog-I/O expansion 
boards. 

For applications requiring fast, high-precision 
number crunching, the SBC-310 math unit acts as an 
intelligent slave to perform floating-point and fixed
point mathematics. A processor uses the 310 by 
passi11g parameters to it along with a command byte 
to select the desired operation from the SBC-310's 14 
instructions. The repertoire includes 32-bit floating
point (single-precision) addition, subtraction, multi
plication, division, squaring, square root, com
parisons, and tests; 16-bit fixed-point muitiply, sub" 
tract, extended divide, and extended compare; and 
conversion from fixed to floating point or vice versa. 

A completed operation may be signaled either by 
the math unit via an interrupt or by the host 
processor's polling the "operation complete" flag in the 
unit's status register. The result may be retrieved at 
this point or left in the .310's accumulator for further 
use. 

In addition, the 310 provides control circuitry so that 
it may be treated as a "shared resource" among several. 
CPU boards. 

Two diskette options are available for mass storage. 

Table 5. Programmable interrupt 
modes, SBC-80/20-4 

Mode Operation 
Fully nested Interrupt request line prior-

ities fixed at 0 as highest. 7 
as lowest. 

Autorotating Equal priority. Each level, af-
ter receiving service, be-
comes the lowest priority 
level until next interrupt oc-
curs. 

Specific priority System software assigns low-
est priority level. Priority of 
all other levels based in se-
quence on this assignment. 

Polled System software examines 
priority-encoded system in-
terrupt status via interrupt 
status register. 

Table 6. Line drivers and terminators 
Line drivers 

Driver Characteristic Sink current (mA) 

7438 l,OC 48 
7437 I 48 
7432 NI 16 
7426 l,OC 16 
7409 Nl,OC 16 
7408 NI 16 
7403 l,OC 16 
7400 I 16 

Note; J = inverting; NI = noninverting; OC = open collector 

5V~ 
0 INTEL SBC 901 

220 

':' 330 
--- - -- - -- ---- -------------- --- --

5VO """"' 0 INTEL SBC 902 
lk 

The SBC-201 diskette controller provides full control 
for one or two single-density diskette drives and acts 
as a programmable slave to masters on the Multibus. 
All diskette information is stored in the IBM soft
sectored format. For systems requiring greater 
storage capacity, the SBC-202 provides full control for 
up to four double-density diskette drives. Thus, 2 
Mbytes of mass storage may be added to SBC-80-based 
systems for each SBC-202 plugged into the bus. 

Digital 110 may be expanded using any of three Intel 
boards. The SBC-519 provides 72 programmable par
allel I/O lines as well as interrupt handling and a real
time clock. 

The 519's clock can interrupt the appropriate CPU 
periodically so that the CPU can monitor system-I/O 
status. l:Iigh-speed I/O events can gain the CPU's 
attention via interrupts. The SBC-517 combination 
IIO board and the SBC-104, 108and 116 combination 
memory and I/O boards offer 48 programmable par
allel lines, a full RS-232 USART serial channel, 
interrupt handling and a 16-ms real-time clock. The 

ELECTRONIC DESIGN 3, February I, 1978 1-207. AFN-01931A 



Table 7. RMX-80 routine library 
RMX/80 module Function 

Nucleus (executive) Provides basic capabilities (concurrence, priority, and synchroniza-
tion/communication) found in all real-time systems. 

Terminal handler Provides real-time asynchronous 1/0 between an operator's terminal and tasks 
running under the RMX/80 executive, includes a line-edit feature similar to 
that of ISIS-11 (supervisory system on the lntellec development system) and 
type-ahead facility. 

Diskette file systems Diskette driver and file management capabilities, allows user to load tasks 
into the system and to create, access, and delete files in a real-time 
environment without disrupting normal processing. File formats compatible 
with ISIS-11 for both single and double-density systems. 

Free space manager Maintains a pool of free RAM and allocates memory out of the pool upon 
request from a task; reclaims memory areas when no longer needed. 

Debugger Specifically designed for debugging software running under the RMX/80 
executive; used by linking it to an application program or task. Thus, it can 
be run directly from the single-board computer's memory. 

Math handler Provides full control and communication for SBC 310 math board for high-
speed fixed and floating-point math functions . 

.. 
Analog interface handler Provides real-time control for SBC 711. 724, and 732 analog 1/0 expansion 

boards. 

104, 108 and 116 also hold up to 8 kbytes of EPROM, 
along with 4, 8 or 16 kbytes of RAM, respectively. 

For systems geared to especially noisy environ
ments, the SBC-556 provides 48 optically isolated 1/0 
lines, which are configured as 24 input lines, 16 output 
lines, and eight programmable-1/0 lines. The user 
fixes the optical-isolation characteristics according to 
his exact system requirements by installing the opto
isolators and current-limiting resistors of his choice 
into the board sockets. Input voltages up to 48 V, 
output lines up to 30 V and currents up to 60 mA may 
be interfaced. 

Of course, many more RAM, ROM, communications 
and interface options are available. But for systems 
to come together quickly during development, there 
must be some standardized operating software to 
provide some of the most fundamental system rou
tines. 

System software: the glue that binds 

Where the Multibus provides a standard hardware 
structure, RMX-80, a real-time multitasking executive 
supplies a modular software framework. With 
RMX-80, routines don't have to he developed for task 
synchronization, priority resolution and peripheral 
control (printers, terminals, diskettes, etc.). Versions 

are available for the SBC-80/20, 80/20-4 and 80/lOA 
CPU boards. 

Critical projects can be completed rapidly because 
RMX-80 provides major portions of the software 
requirements for many real-time systems. For exam
ple, the diskette file-extension software of the RMX-80 
program may be linked into the system software. 
Thus, users can immediately have a diskette file 
structure with facilities to open and close files, create 
and delete files, read or write files sequentially :Jr 
randomly (read function may be used for initial 
program load, if desired), or allocate file storage 
dynamically on single or double-density diskettes. 

The compactness of RMX-80-the entire executive 
resides in 2 kbytes of ROM-reduces memory require~ 
ments and eliminates the need for bootstrap-program 
loading. All RMX-80 operations are based on individ
ual tasks. A task is a program with unique data and 
stack that operates asynchronously with other such 
programs in the system. 

Basically, the RMX-80 is a library of "standard" 
routines (Table 7), such as an analog-interface handler 
and a terminal handler. Fig. 4 illustrates how to 
develop software by selecting appropriate RMX-80 
modules, then locating and linking them with particu
lar software tasks on an Intellec microcomputer 
development system. In addition, a debugger module 

1-208 
E11nRoN1c DESIGN 3, February I, 1978 

AFN-01931A 



r------- ----------, 
1 

I 

SEE FIG. 6 FOR EXPANSION 

I 
I 
I 
I 
I 
I 
I 
I 
L-

TO REMOTE 
EOP 

CENTER 

I L-~~~-""~==~~~~~~~ 
L-- - - - - - - - - - - - - - - - - - _J 

5. This possible SBC-80 system configuration uses four 
SBC-80/05s to monitor and control pipeline parameters 

in the RMX-80 speeds real-time system development. 
The executive accesses system resources according 

to task priority, intertask communication, interrupt
driven control for standard devices, real-time clock 
control, interrupt handling, and other optional func
tions. In all, there are 255 separate task-priority levels, 
and since multiple tasks may share the same level, 
the actual number of tasks is limited only by memory 
size. 

Develop programs with the lntellec 

The Intellec and its ICE-80 and ICE-85 in-circuit 
emulators help minimize the time required to develop 
software and hardware. Standard Intellec stand-alone 
software includes resident macroassemblers for the 
8080A and 8085 CPUs, a text editor, and a system 
monitor/debugger. As a result, programs can be 
assembled, loaded, edited, executed, and debugged. 

ICE diagnostics can significantly reduce program 
development and debug time. Break points may be 
set on user-specified memory-read or write opera
tions, I/O read or write operations, or user-defined 
extension parameters. Programs can be single-stepped 
to check operating conditions and performance. 

PL/M-80 is the high-level systems-programming 
language. The optional Intellec-resident PL/M com
piler provides the ability to program in this natural, 
algorithmic language, so there is no need to manage 
register usage or to allocate memory. PL/M programs 

fahTRONIC DESIGN 3. February I, 1978 

and feed data back to a master controller, an SBC-80/20-4. 
The master controller sends data back to a host system. 

6. Expanding the pipeline monitor/controller system is as 
simple as plugging more cards into the Multibus and 
altering the software. By adding another SBC-80/20 to the 
master controller, some local processing can be done and 
a local CRT and high-speed printer can be added as well 
as RAM and diskette-memory space. 

may be linked to assembly-language programs to 
hasten product development further. 

A relocatable macroassembler residing on the In
tellec translates symbolic assembly language into 8080 
or 8085 machine code and permits the use of re
locatable and linkable object code. With full macro 
capability, similar sections of code needn't be written 
over and over. 

Intellec options include a diskette operating system, 
ISIS-II, with diskette controller, single or dual diskette 

1·209 AFN·01931A 



drives and ISIS-II software. ISIS-II provides all the 
facilities for producing and handling relocatable code, 
including a relocating macroassembler, relocating 
loader and a linker to help link separately compiled 
or assembled programs: 

Apply the SBC boards to real use 

To get an idea of the SBC 80 family's capabilities, 
examine the application shown in Fig. 5. In this case, 
a remote control/monitoring section of a pipeline 
supervisory control system grows with increasing 
requirements for additional local throughput and 
processing capability. 

Four SBC-80/05s act as remote pipeline 
monitors/ controllers. Each unit monitors various con
tact closures (limit switches, relays, etc.) and a hex 
keypad, with a subset of its own I/O lines programmed 
as inputs. Contact debounce is performed in software. 
Other digital I/O lines on each SBC-80/05 act as output 
lines to drive a numeric display and various control 
relay coils. 

Analog-control lines are interfaced with an SBC-732 
combination analog-1/0 board. Transducers indicat
ing temperature and pressure drive analog inputs, and 
analog outputs drive valves. Flow rate is determined 
in software by manipulating differential pressure 
data available from pressure transducers. 

The four 80/05s are linked serially to a remote 

1-210 

SBC-80/20-4-based data concentrator. An SBC-534 
communications expansion board provides four 
RS-232-C serial channels, each interfacing directly 
with one of the four 80/05-based pipeline 
monitor/controllers. The 80/20-4 periodically queries 
each monitor to determine its current status. The 
concentrator also relays control commands from a 
host computer controlling the entire pipeline. The 
80/20-4's own RS-232-C serial channel provides the 
interface for this high-speed synchronous link to the 
host CPU. 

The 80/20-4 can contact the host CPU with the Bell 
801 automatic calling-unit interface on the SBC-534. 
The synchronization and control of communication 
between the four 80/05s and the host are handled by 
RMX-80 on the 80/20-4. 

The 80/20-4 system can be expanded to provide local 
processing capability, as shown in Fig. 6. Here, anoth
er 80/20 is added as a second master on the Multi
bus to provide control for a local CRT and high
speed printer, and to provide local processing 
capability. 

An additional 32 kbytes of RAM are furnished by 
an SBC-032 RAM-expansion board. A third master, 
an SBC-202 dual-density diskette controller, can also 
be added to the Multibus, along with two double
density diskette drives. Communication between the 
two 80/20s is handled via user-written intermaster 
message tasks ... 

AFN·01931A 



orporation, 1978 

ARTICLE 
REPRINT 

AR-55 

---- ,April,1978 

AFN·01931A 



DESIGN MOTIVATIONS 
FOR MULTIPLE PROCESSOR 
M.ICROCOMPUTER SYSTEMS 

Design decision factors involved in developing multiple processor 
microcomputer systems include means of minimizing contention for 
system bus utilization. System applications detail the appropriate 
hardware and software considerations as related to single-board 
computers in a multimaster bus structure 

George Adams and Thomas Rolander Intel Corporation, Santa Clara, California 

Large-scale integrated circuit technology has reduced 
the cost of central processors to such a low level that 
the previously avoided concept of applying multiple 
processors to meet system performance requirements has 
now become an attractive and viable alternative. Several 
key benefits accrue from such an approach. In addition 
to enhanced system performance (throughput), improved 
system reliability, and improved system realtime re: 
sponse, modular system expansion capabilities may be 
realized. Although designing such systems "from 
scratch" with microprocessor component families can 
be a complex system design task with many subtle pit
falls which can inhibit efficient system operation, the 
advent of second generation single-board computers, 
such as the Intel® SBC 80/05 and 80/20, has allowed 
multiple processor microcomputer systems to become 
off-the-shelf products. 

Motivation and Desi9n Concepts 

Discussion of the benefits of multiple processor structures 
in system applications will provide an understanding of 
the motivation for this implementation approach in sys
tem design. A primary objective addressed through 

Reprinted from COMPUTER DESIGN/March 1978. 

Copyright Gainers Publishing Co., Inc., 1978. All rights reserved. 1-212 

multiple processor approaches is enhanced system per
formance and throughput. Enhanced performance is 
achieved through partitioning of overall system functions 
into tasks that each of several processors can handle 
individually. 

In general, as the number of individual tasks any 
given processor must handle is reduced, that processor's 
response time to new requests for service will be reduced. 
A well planned multiple processor bus structure will 
allow new processors to be added to the system in 
modular fashion. When new system functions (ie, more 
peripherals) are added, more processing power can be 
applied to. handle them without impacting existing pro
cessor (master) task partitioning. 

As used here, a "master" is any element existing on the 
system bus that may take control of the bus ( ie, assert 
address and control lines) . Typical examples include 
processors and .direct memory access ( DMA) controllers 
that address memory and input/ output (I/ o) locations 
resident on the bus. "Slave" elements include passive 
functions on the bus, such as memory or non-DMA 1/0 

interfaces. Note that although slaves may possess intelli-

AFN-019311\ 



Fig 1 Multiple processor bus structure. Dual onboard/offboard structure of MULTIBUS allows each master to use its 
own memory and 1/0 without utilizing. common system bus (a). Only when. a master requires access to common mem
ory or 110 does it use the bus {b). Note that other masters may continue onboard operations simultaneously 

22 PROGRAMMABLE 
1/0 LINES 

2 1/0 INTERRUPT 
REQUEST LINES 

EXTERNAL 
INTERRUPT 

REQUEST 
LINE 

SERIAL 1/0 SERIAL 1/0 
INTERFACE INTERFACE 

(TTL LEVELS} (RS-232-C LEVELS) 

1-213 

Fig 2 SBC 80/05 block diagram. 
SBC 80/05 is a full microcom
puter on a single PC board. It 
provides 8085 CPU plus RAM for 
program or data storage, EPROM/ 
ROM for program storage, inter
val timer, programmable parallel 
110 (22 lines), serial 110, and 
full MULTIBUS multimaster con
trol logic 

COMPUTER DESIGN/MARCH 1978 
AFN·01931A 



gence ( eg, an onboard processor), they are not bus 
"masters" unless they can control the system bus. 

Hardware Considerations 

Hardware considerations must be thoroughly evaluated 
in any multiple processor bus structure. These factors 
are described in detail around a specific implementation 
of such a structure, the Intel" MULTIBUS™, which sup
ports multiple processor systems with its multi-master 
bus structure. 

Bus Architecture 

One architectural option open to the system designer is 
that of a multiple master/single bus structure. Under 
this partitioning, every master utilizes the common bus 
data path to fetch instructions or data from memory, 
read data from input devices, or write data to output 
devices or memory. Therefore, the common system bus 
rapidly becomes the bottleneck for overall system 
throughput, and fast DMA transfers can easily approach 
the full bandwidth of the bus during block transfers so 
that all other masters must idle for extended periods. 

RS-232-C 
COMPATIBLE 

DEVICE 

Such performance constraints can severely limit total 
system performance. 

System bus utilization may be minimized through 
implementation of an alternate dual-bus structure as 
shown in Fig I. Each processor-based master within the 
system retains its own local memory and 1/0 that it 
utilizes for most operations. Such !peal operations occur 
totally on the individual board and do not require the 
system bus. This greatly reduces the service request 
frequency by each master requiring use of the system bus. 
Such a dual-bus structure is implemented on the SBC 
80/05 and 80/20 single-board computers, as shown in 
Figs 2 and 3, respectively, with the multi-master system 
bus (MULTIBUS) .1·2 

Access to the system bus is requested only when a 
global (resident on the bus and accessible by multiple 
masters) memory location or 1/ o device is referenced 
during an instruction execution cycle. Local/ global (on
board/ offboard) distinction is defined through the value 
of the physical address referenced. If it lies within the 
address range of onboard memory or 1/0, no bus request 
is made. Only when the address references a global 

Intel® and MULTIBUSTM are trademarks of Intel Corp, Santa Clara, 
Calif. 

R iliNuTE~~R··T· •. ·• •. ··.R·•. 8~1s 
'\it 
•' 
,y 

USER DESIGNATED 
PERIPHERALS 

48 PROGRAMMABLE 
PARALLEL l/0 LINES 

Fig 3 SBC 80/20-4 block diagram. SBC 80/20-4, also a full microcomputer on a single PC board, provides BOBOA-2 CPU, 
4k bytes of RAM, up to Bk bytes of EPROM/ROM, 48 programmable 1/0 lines, three interval timers, full RS-232-C serial 
port, 8-level priority interrupt logic, and MULTIBUS multi master control logic 

1-214 AFN-01931A 



memory or I/ o location, is a system bus request initiated. 
If no other master is currently utilizing the bus, this 
"new" master will be granted access immediately. How. 
ever, this new master must wait if another master is 
currently utilizing the system bus. It continues to monitor 
the status of the system bus to determine when its cur. 
rent cycle may be completed. Thus, the MULTIBUS must 
provide a method for masters to determine whether or 
not another master is currently utilizing it. 

Other masters may also simultaneously request the 
system bus. Arbitration must then be performed to re· 
solve this multiple contention for the system bus. The 
MULTIBUS structure provides this arbitration in one of 
two techniques: serial (daisy chain) or parallel (en· 
coded) . The structure consists of four control lines that 
are synchronized by the common bus clock. These four 
control lines and the bus clock are active low. This is 
represented by the slash (/) character after each signal 
mnemonic. Control lines are as follows: 

Bus Clock (BCLK/) -The negative edge of BCLK/ is 
used to synchronize bus arbitration. BCLK/ may be asyn
chronous to all CPU clocks, and it has a 100-ns minimum 
period. BCLK/ may be slowed, stopped, or single· 
stepped for debugging. 

Bus Priority In Signal (BPRN/)-lndicates to a par
ticular master that no higher priority master is request
ing use of the system bus. 

Bus Priority Out Signal (BPRO/)-Used with serial bus 
priority resolution scheme. BPRO/ is passed to BPRN/ 
input of master with next lower bus priority. 

Bus Busy Signal (BUSY/)-Driven by bus master cur. 
rently in control of MULTIBUS to indicate that bus is 
currently in use. BUSY /prevents all other masters from 
gaining control of bus. 

Bus Request Signal (BREQ/)-Used with parallel bus 
priority network to indicate that a particular master re
quires use of the bus for one or more data transfers. 

Serial (Daisy-Chain) Bus Arbitration 
In a serially arbitrated MULTIBUS system (Fig 4) re
quests for system bus utilization are ordered by priority 
on the basis of bus location. Each master on the bus 
notifies the next lower priority master when it needs to 
use the bus for a data transfer, and it monitors the bus 
request status of the next higher priority master. Thus 
the masters pass bus requests along from one to the next 
in a daisy-chain fashion. 

The highest priority master (Master 1) in the system 
will always receive access to the system bus when it 
requires it. There is no higher priority master to inhibit 
its bus requests, and its bus priority input line (BPRN/) 
is thus permanently enabled. 

Masters operate asynchronously on the MULTIBUS. A 
master may thus be in the middle of a bus operation 
when a higher priority master requests the bus. Ob
viously, interruption of such an in-process cycle must 
not be allowed. The mechanism for avoiding such 
erroneous operation is the BUSY/ line. Upon being 
notified that access to the bus is possible, the master 
examines BUSY/. If this control line is inactive, the 
master will assert it, and complete its bus operation. 
If BUSY/ is already active, another master is currently 
using the bus. In this case, the master will examine 
BUSY/ upon every falling edge of BCLK/, typically 
once every 100 ns, until it becomes inactive. When 
BUSY /returns to its inactive state, the master will assert 
it, then complete its operation. The BUSY /line then in
hibits higher priority masters from destroying a bus 
transfer cycle that may be already in progress. 

The BUSY/ line is also controlled by a bus lock 
function on the SBC. 80/05 and 80/20. This function 
allows a master, which currently has control of the bus, 
to retain control by independently asserting the BUSY/ 
line until it issues an unlock command that releases 
BUSY/. This permits a bus master to obtain exclusive 
control of the system bus for critical system functions, 

Fig 4 Serial bus arbitration. When any master 
requires use of MULTIBUS in serial (daisy-chain) 
priority mode, its BPRO/ line inhibits lower prior· 
ity masters from system bus utilization. BUSY I 
line is used to ensure that in-process operations 

N c of lower priority masters are not destroyed by 
asynchronous bus requests of higher priority 

__ ._ __ susvt masters 

COMPUTER DESIGN/MARCH 1978 

1·215 AFN-01931A 



such as high speed memory or r/o data transfers and 
critical read-modify-write operations. With BUSY/ 
asserted in this way, all other masters will find the bus 
"in use" when they attempt to access it. Whereas system 
bus transfers normally take place on an interleaved basis 
(bus arbitration performed for each cycle), this bus 
lock function permits fast multiple-word transfers, when 
needed. 

Two basic parameters determine the number of masters 
that can coexist on the system bus in serial bus arbitra
tion mode. These are the BCLK/ cycle time and the 
BPRN/ to BPRO/ propagation delay of bus masters. 
Masters may be added to a system as long as the cumula
tive BPRN/ to BPRO/ propagation delay is such that the 
lowest priority master will always have its BPRN/ line 
driven inactive before the next BCLK/ falling edge after 
the highest priority master requests the bus. This worst
case timing condition is met as long as the following 
relationship is satisfied. 

N-1 
~ ( larn:-.'-RPRO) 1 < tncr.K - l,h 

i=l 

where 

(tnrn:-.-Rrno) i = Propagation delay for master i 
tHcLK-= Bus clock (BCLK) cycle time (period) 
t~h = Allowance for bus setup and hold times 
N = Number of bus masters 

Using serial bus arbitration and SBC 80 onboard 
clocks, up to three masters may coexist on the system 
bus. This number can easily be extended, if desired, by 
generating a BCLK with a longer cycle. The SBC 80/05 
and 80/20 provide a jumper option which allows the 
onboard BCLK/ to be disabled. This allows the system 
designer to generate BCLK/ externally. 

Parallel (Hardware-Encoded) Bus Arbitration 

The parallel bus arbitration technique resolves system 
bus master priorities using external hardware. The 

1·216 

parallel multimaster control line (BREQ/) comes into 
force in this case. Each master asserts BREQ/ when it 
requires access to the system bus. These lines are fed 
to a 2-chip parallel priority network. As with serial 
priority resolution, BPRN/ acts as the bus access enable 
input to each master. As Fig 5 illustrates, up to eight 
master priority levels are encoded by a 74148 priority 
encoder to a 3-bit code representing the highest priority 
master currently requesting the system bus. This code 
drives the 8205 3-to-8 decoder which asserts the proper 
BPRN/ line low to grant bus access to the highest 
priority master. The 74148/8205 propagation delay is 
less than 40 ns, easily fast enough to allow eight masters 
to coexist in this configuration utilizing a BCLK/ with 
a 100-ns period. 

Systems requiring up to 16 masters may implement bus 
arbitration by utilizing two 74148 priority encoders and 
two 8205 decoders to provide a 16-level hardware pri
ority network. The actual number of bus masters feasible 
on the system bus will also depend on bus drive/loading 
considerations. Even under this consideration, systems 
containing up to 16 masters are feasible. 

Thus, single-board computer masters, in conjunction 
with the MULTIBUS control structure, provide off-the-shelf 
hardware solutions for the development of efficient multi
ple processor microcomputer systems. In addition to this 
hardware capability, the system designer needs to con
sider several software design issues. 

Software Considerations 

Several software operations, such as mutual exclusion, 
communication, and synchronization, are essential to 
proper multiple processor system operation. The 
MULTIBUS/SBC 80 functions that enable these software 
operations are examined. 

Mutual Exclusion 
In a multiple processor microcomputer system, there are 

Fig 5 Parallel bus arbitration. Under parallel bus 
arbitration structure, multiple requests for access to 
the MULTIBUS are determined by 2-chip hardware 
priority network. When simultaneous multiple bus r&
quests occur, only highest priority master has its bus 
grant (BPRNI) line asserted. BUSY I line inhibits other 
masters from interfering with system bus cycles in 
progress 

AFN-01931A 



usually many resources that are shared by the processors. 
Such shared resources include common memory and 
peripherals. A properly functioning system must provide 
a mechanism to guarantee that asynchronous access to 
those resources is controlled in order to protect data 
from simultaneous change by two or more processors. 
Thus, some form of mutual exclusion must be provided 
to enable one processor to lock out access of a shared 
resource by other processors when it is in a critical 
section. A critical section is a code segment that once 
begun must complete execution before it, or another 
critical section that accesses the same shared resource, 
can be executed. 

A Boolean variable can be used to indicate whether 
a processor is currently in a particular critical section 
(true) or not (false). Testing and setting this variable 
also presents a critical section. This function must be 
performed as a single indivisible operation; if it is not, 
two or more processors may test the variable simul
taneously and then each set it, allowing them to enter 
the critical section at the same time. Such simultaneous 
entry would destroy the integrity of data and control 
parameters in global memory or cause erroneous double 
initialization of a global peripheral controller. 

Mutual exclusion can be implemented as a software 
function alone, as described by Dijkstra\ for n proces
sors operating in parallel. The SBC 80/05 and 80/20 
bus lock function mentioned earlier provides a means 
for using program control to simplify mutual exclusion. 
While the system bus is locked, the master can perform 
the indivisible test and set operation on the Boolean 

SBC 534 SBC 016 SBC 80/05 

1-217 

variable used to control access to a critical section with
out intervention from other masters. 

Communication 

Communication is an essential function that allows a 
program executing on one processor to send or receive 
data from a program executing on another processor. 
Typically, two processors communicate through buffer 
storage in common memory. One program, called a 
producer, adds data to buffer storage; another, called a 
consumer, removes information from buffer storage. 

In a typical application, one master may produce 
buffers of data that are to be consumed by a program 
executing on another master that services an output 
device. Communication through buffer storage requires 
the operations of adding to and taking from buffers. 
These operations constitute critical sections that can be 
controlled by providing mutual exclusion around the 
buffer manipulation operations. 

Synchronization 

At times there is a need for one master to send a syn
chronization signal to another. In a sense, synchronization 
is a special case of communication during which no 
data is transferred. Rather, the act of signaling is used 
to "wake up" a program executing on another master. 
A program may "sleep," by waiting for a synchronizing 
signal, until it receives a wake-up signal that enables 
it to continue execution. Manipulation of synchronization 
signals requires mutual exclusion. 

SBC 80/20 Fig 6 Multiple processor 
communication application. 
Multiple processors may be 
utilized to increase throughput 
in system requiring several 
high speed serial channels. 
SBC 80/05 single-board com
puter controls four RS-232-C 
or 20-mA serial channels in
terfaced to system through 
SBC 534 communication ex
pansion board. Second single 
board computer (SBC 80/20) 
retrieves data records con
structed by SBC 80/05 and 
performs further processing 

COMPUTER DESIGN/MARCH 1978 

AFN·01931A 



System Initialization 

In a microcomputer system that has multiple processors 
sharing a common system bus, a system initialization 
lllechanism must be designed to set up the ~ariables that 
control access to the shared resources ... All single-board 
col'Ilputers on the MU.LTIBUS begin exec11tion simulta
neously following a system reset. The bus lock function 
of the computers can be used by one specifically desig
nated master .to lock the bus immediately upon system 
reset and to perform system initialization for common 
resources before any other master attempts to access 
them. Since a locked bus has .no effect on a single-board 
computer that is executing out of its local memory and 
using its local I/ o,, p.ormal initializ.atio11 by each. processor 
can proceed while the shared resource initialization takes 
place. 

Multiprocessor 
Applications 

Two applications that are well. suited to multiple pro
cessor microc0 mputer systems are examined. The first 
provides increased throughput, and the second allows 
shared resources. 

Increased Throughput 

Consider a system that 1s controlling multiple high speed 

SBC 310 SBC 116 SBC 80/05 

1-218 

serial communication channels in additfori to other data 
processing activities. In this case, multiple processors 
may be utiliZed to increase system throughput. Such a 
system with four full-duplex serial channels operating 
at 4800 baud could produce interrupts every 250 p.s. 
Interrupts. at that frequency in a single rnaster system 
would leave little time for other processing activities. 
In a multiple processor. approach, one processor can be 
used to handle ·the interrupts from the serial channels, 
accumulate data into records, and theri provide those 
records to another processor by placing them in com
mon memory. The second processor is not burdened 
with the overhead of handling each character on an 
interrupt-driven basis, instead it is sent entire records 
o( data available for further processing. 

As shown iI) Fig 6, this. application can be handled 
on the MULTIBUS with four boards. The SBC 80/05 
siug]e-board computer is used to service the communi
cation board and prepare the data records. A 4-channel 
serial communication board (SBC 534) is used to pro
vide the hardware interface for four serial communica
tion channels. The SBC 80/20 single-board computer is 
used to processdata records prepared by the SBC 80 /05. 
Common memory is provided by the SBC 016 16k 
random-access memory (RAM). 

Application . of multiple processors to this problem 
requires communication through buffer storage. Two 
primitive operations, introduced by Dijkstra\ can be 
us.id to simplify the communication and synchronization 
between the masters. These primitives, designated P and 
V, operate on non-negative integer variables called 

SBC 80/20 

Fig 7 . Multiple processor 
shared-resource applica
tion. MULTIBUS multiple 
processor structure allows 
two independent single
board computers to share 
common system resource, 
such as an SBC 310 high 
speed math board, to per
form floating point opera-. 
lions 

AFN-01931A 



semaphores. The V procedure increments the sema
phore (S) in a single indivisible operation. To make 
certain that fetch, increment, and store are not inter
rupted by another processor, the bus is locked during 
the operation. 

Procedures for P and V primitive operations can be 
implemented in PL/M8 as follows: 

V: 
PROCEDURE (SSADR); 
DECLARES BASED SIADR BYTE; 

OUTPUT(BUStLOCK) =LOCK; 
S = S+l; 
OUTPUTCBUSSLOCK) =UNLOCK; 

ENDV; 

1• I.ork Mlll,TIDUS • , 

I' Im·rement semaphore'/ 
,. Unlurk MULTIBUS., 

The P procedure loops in a busy wait until S is greater 
than zero, at which time it decrements S. The act of 
fetching, testing, decrementing, and storing S is also an 
indivisible operation. Note that if several masters with 
different speeds are in a busy wait on the same sema
phore, the solution presented may not he "fair" to the 
lower speed processor; that is, the lower speed processor 
would test the semaphore less frequently, resulting in 
an unfair advantage for higher speed processors. 

Implementation of a procedure for the P primitive is 
shown in the following PL/M code. 

P: 
PROCEDURE(SIADR); 
DECLARES BASED SSADR BYTE; 

DO FOREVER: 
IFS> 0 THEN 
DO; 

OUTPUTCBUSSLOCK) =LOCK; 
IFS>OTHEN 

-DO; 
S = S-1; 
OUTPUTCBUSSLOCK) = UNLOCK; 
RETURN; 

END; 
OIJTPUTCBUSSLOCK) = UNLOCK; 

END; 
END; 

ENDP; 

/'Test semaphure 'I 

/' Lm~k MULTIBllS '/ 

I' Rt>test semaphore 'I 

I' Derrement semaphore*/ 
,. Unlock MULTIBUS., 

I' Exit from P procedure * / 

,. Unlol'k MULTIBUS • , 

I* and conlinue testing * / 

It is important to observe in the program listing that S 
is tested prior to issuing a bus lock. This initial test 
avoids continuous locking and unlocking of the system 
bus while looping in a busy wait. The second test is 
required because another processor could also have found 
S greater than zero and tried to enter the critical section 
at the same time. 

With the P and V operations, semaphores can he used 
as resource c·ounters in the buffer manipulation required 
'for communication between the SBC 80/05 and 80/20. 
For example, a consumer program can use the P oper
ation to decrement the number of full buffers and a V 
operation to increment the number of empty buffers. 
In a similar fashion, a producer program can use the 
P operation to decrement the number of empty buffers 
.and a V operation to increment the number of full 
buffers. In addition to full and empty buffer counters, 
it is necessary to maintain linked lists pointing to actual 
full and empty buffers. A semaphore can he used to 
provide mutual exclusion around the manipulation of 
the linked lists. In the example that follows, three 
variables (FULL, EMPTY, and SEMA) are used to imple
ment these functions. The two PL/M programs illustrate 
consumer and producer code segments, respectively. 
Note that the consumer performs initialization because 
it accesses the semaphores prior to the producer. 

.1-219 

CONSUMER: 
DECLARE EMPTY BYTE EXTERNAL; 

FUl.L BYTE EXTERNAL; 
SEMA BYTE EXTERNAL; 

OUTPUT !BUSS LOCK) = LOCK; 
EMPTY = NUMBSBUFFERS; . 
FULL= 0· 
SEMA =I; 
OUTPUTcBUSSLOCK> = UNLOCK; 
DO FOREVER; 

CALL PC FULL); 
CALL PISEMA>; 

!Take dala from buffer and 
place il in local memory, 
move buffer from full to 
emply Jinked list) 

CALL VCSEMA); 
CALL V !EMPTY); 

(Process the data) 

END; 
END CONSUMER; 

PRODUCER: 

I' Number of empty bufl'era * / 
I' Number of full buft'er1 */ 
I' Binary semaphore 'I 
I' Lock MULTIBUS*/ 

I' Initialize semaphores * / 

,. Unlock MULTIBUS • / 

I' Decrement full buffer • / 
t • semaphore • t 
t • Decrement mutual excluaion • / 
t• semaphore•/ 

t• lncremenl mulual exclusion 'I 
I' semaphore • / 
t • Increment empty buffer • / 
1 • semaphore 'I 

DECLARE !EMPTY, FULL, SEMA) BYTE EXTERNAL; 
DO FOREVER; 

(Prepare data in local 
memory) 

CALL PC EMPTY); 
CALL PCSEMA); 

(Place data in a huff er, 
move buffer from empty 
lo full linked !isl) 

CALL V lSEMA>; 
CALL V CFllLL) ; 

END; 
END PRODUCER; 

Shared Resources 

t • Decrement empty buffer semaphore • / 
t • Decrement mutual' exclusion • / 
t • semaphore • / 

t• Increment mutual exclusion • / 
t• semaphore'/ 
t• Increment full buffer semaphore'/ 

Another typical application for a multiple processor 
microcomputer system would be to allow sharing of a 
resource by two processors. For example, consider two 
independent processors that have a need for high speed 
mathematical functions. Although it inay not he possible 
to justify a high speed math module for each system, 
such a module might he justified if it were to he shared 
by ·both processors. A multiple processor microcomputer 
system could provide the capability to allow both pro
cessors to share the math module and not interfere with 
their otherwise unrelated functions. 

This application (illustrated in Fig 7) could be 
handled with four boards. The SBC 80/05 single-board 
computer is used to perform various data processing 
functions requiring high speed floating-point arithmetic. 
The SBC 80/20 single-board computer controls a process 
where high speed numeric computations are required. 
High speed floating-point mathematics functions for 
both single-board computers are performed by an SBC 
3iO high speed math unit. SBC 116 combination memory 
and 1/0 board provides 16lc RAM, Bk electrically pro
grammable read-only memory (EPROM), 48 parallel 
1/0 lines, and an RS-232-C serial port. 

COMPUTER DESIGN/MARCH 1978 

AFN·01931A 



The problem to be solved in . this application is · to 
ensure that only one processor lia~ access to. the shared 
math module resource at one time. Thus, mutual ex
clusion must be provided to control the access to the 
resource, The following PL/M function returns. TRUE 

if access to a critical section, used to implement the 
mutual exclusion, has been granted. 
ENTERtcRITICALtsECTION: 

PROCEDURE (FLAGSADR) BYTE; 
DECLARE FLAG BASED FLAG$ADR BYTE; 
DECLARE ACCESS BYTE; 

IF FLAG = BUSY THEN 
RETURN FALSE; 

ACCESS= FALSE; 
OUTPUT(BUSSLOCK) = LOCK; 
IF FLAG = NOT BUSY THEN 
DO; 

FLAG= BUSy; 
ACCESS = TRUE; 

END; 
OUTPUT(BUSSLOCK) =UNLOCK; 
RETURN ACCESS: 

END ENTERSCRITICALtsECTION; 

j• Test flag•/ 
;•Return false if busy •I 

;•Lock MULTIBUS•; 

; • Retest flag •I 

j• Set flaa: busy •./ 
I' and access TRUE '/ 

I' Unlock MULTIBUS •I 
I' Return either TRUE or • / 
I• FALSE access • / 

This PL/M function first tests the flag for the busy 
condition before issuing a busy lock. As in the P pro
cedure described . earli~r, this initial test avoids con
tinuous locking and unlocking of the MULTIBUS while a 
busy wait is being executed. The following procedure 
performs a busy wait operation on the flag used to 
control access to a critical section. 

BUSY$WAIT: 
PROCEDURE (FLAGSADR) ; 
DO WHILE NOT ENTERSCRITICALSSECTION(FLAGSADR); 
END; 

END BUSY$WAIT; 

Typical code segments illustrating the use of these pro
cedures follow. 

DECLARE MATHSBD$FLAG BOOLEAN EXTERNAL; /'Flag must be'/ 
/' initialized • / 

MA THtBDSFLAG = NOT BUSY.; 

CALL BUSYSW AIT (.MA THSBDIFLAG) ; 

(Process math functions) 

MA THIBDIFLAG = NOT BUSY; 

I' We could also test .. and then do some othi;r. 'I 
/• prO:ces.sing If the rriath module·· is bus-y •/ 

IF ENTERSCRITICALSSECTION (.MATH$BDIFLAG) 
THEN DO; 

(Process math: functions) 

I• Here we wait until "'/ 

/ • we have access • / 

J • Set flag not busy· "'I 

MATH$BDSFL.AG = NOT BUSY; ;• Set ftag not busy • / 
END; . 

ELSE DO: 

(Something else) 

END; 

Conclusions 

The· motivations for implementing multiple processor 
microcomputer systems include enhanced performance 

and throughput. When the appropriate hardware/soft
ware design. considerations are made, modularity· is 
easily achieved. Hardware solutions· to many . problems 
are provided by means of a MULTIBUS structure and 
SBC 80 single.board computers that have multimaster 
capability. Through control of MULTIBUS functions, the 
software designer can perform multiple processor com
munication, synchronization, and mutual exclusion. 

Even with these significant steps toward the simpJifi. 
cation of multiple processor microcomputer systems, the 
design of such systems remains a complex software/ 
hardware design task. The fut.u.re trend of multiple 
processor microcomputer systems will be to simplify the 
software . tasks of implementing communications, syn, 
chronization, and mutual exclusion. These functions 
could be performed in varying degrees by additional 
hardware. bus functions. 

Potential rewards for a multiple processor archiiecture 
include enhanced system throughput, improved real-time 
response, modular system expansion, and improved sys
tem reliability. These benefits will pressure the tech
nology of parallel. processing to. include microcomputers 
in an increasing number of computer applications. 

References 
1. "SBC 80/05 Hardware Reference Manual," Pub 9800483, 

Intel Corp, Santa Clara, Calif, 1977 
2. "SBC 80/20 Hardware Reference Manual," Pub 9800317, 

Intel Corp, Santa Clara, Calif, 1976 
3. A. C. Shaw, The Logical Design of Operating Systems, Pren

tice.Hall, Englewood Cliffs, NJ, 1974, pp 59-78 
4. E. W. Dijkstra, "Solution of a Problem in Concurrent Pro

gramming ·Coritrol," Communications of the ACM, Sept 1965, 
p 569 

5. "Intel MULTIBUS Interfacing," Pub AP·28, Intel Corp, Santa 
Clara, Calif, 1977 

6. D. McCracken, A Guide to PL/ M Programming for Micro
computer Applications, Addison-Wesley, Reading, Mass, 1978 

1-220 

George Adams, as product fine man
ager. for single-chip microcomputers 

··with Intel, is tesponsible tor marketing 
and applications engineering for MCS-
48™ microcomputers. His experience in
cludes work as a microcomputer appl/
catlons specialist and product planner, 
and as a computer design engineer. He 
holds a BSEE from the University of 
Miami and an MBA from Boston Uni
versity. 

Thomas Rolander is currently a partner 
of Dharma Systems, . a computer sys
tems consulting firm, where. he is in
volved in systems engineering, soft
ware, and hardware· design. Previously 
he served as an applications engineer
ing manage.r for OEM computer sys
tems at Intel. He received a Bachelor's 
degree in civil engineering and a Mas
ter's degree in electrical engineering 
from the University of Washington. 

AFN·01931A 



ARTICLE 
REPRINT 

1-221 

AR-65 

September, 1978 

AFN-01931A 



Triple-bus architecture lets a 
single-board microcomputer's CPU operate at full speed 
while other system components share the main memory. 

The introduction of Intel's iSBC 80/30 marks the 
beginning of the third generation of single board 
computer architecture. Two features separate the new 
microcomputer from second-generation single-board 
µCs. The major one is a triple-bus architecture that 
supports a dual-port memory. As a result, the on
board CPU does not tie up the main system bus (Intel's 
Multibus) when using the memory. Moreover, with. 
two ports, the memory becomes a global resource, 
accessible via the three buses from the on-board 8085A 
CPU as well as from remote CPUs and other external 
devices in multimaster schemes. 

In addition, the 80/30 contains two microprocessors: 
an 8085A acting as the master CPU and an 8041 single
chip microprocessor acting as a slave, or intelligent
I/O, processor. 

Jim Johnson, Project Leader, Craig Kinnie, Project Man
ager, and Mike Maerz, Marketing Manager, Intel Corp., 
Santa Clara, CA 95051. 

Reprinted by Permission: Electronic Design, 1978. 

To appreciate the benefits of the 80/30's triple-bus, 
dual-port memory architecture, examine the following 
problem. Now that fully one fourth (16-kbytes) of the 

. available memory space in a 64-kbyte µC system can 
reside on a single-board µC, the CPU must share these 

' 16~kbytes with other system components, such as 
direct-memory-access devices, discs and other proces
sors, What's the best solution-especially when, in 
many applications, 16-kbytes is all the memory that's 
required by the whole system? 

1-222 

Alternatives have. problems 

The . most straightfqrward way is a split-bus 
architecture; in which both the CPU and the system 
have equal access to the memory (Fig. la). While the 
system bus will l:>e able to handle memory access 
efficiently from devfoes tied· to it, it will be tied up 
by the CPU-so external operations not related to 
memory accesses will be hindered. 

faECTRONIC DESIGN )5, July )9, 1978 
AFN-01931A 



DUAL BUS: 

BUS 
ARBITRATION 

LOGIC 

BUS 

1. Microcomputer-bus organizations takes several forms: 
In a split-bus approach (a) the CPU and system have equal 
access to memory, but the CPU ties up the system bus; 
in a single-bus (b), the CPU encounters extra delays in 

A single-bus approach (Fig. lb) is hampered by 
buffer and bus-intervention delays which limit the 
CPU's performance. And dual-bus architecture (Fig. 
le), while granting the CPU exclusive access, does not 
allow other bus masters access to the memory. Also 
dual-bus suffers from buffer delays. 

A triple-bus, dual-port architecture (Fig. ld) pro
vides the benefit of both single and dual-bus architec
tures: total system access and exclusive access by the 
CPU. But it also has its disadvantages: Dual-port 
architecture requires many buffers as well as access
arbitration logic. However, 20-pin octal buffers in
troduced by several manufacturers don't take up 
nearly as much board space or cost as much as 
equivalent standard buffers. Since the octal buffers 
come in unidirectional or bidirectional forms-and at 
nearly the same cost-the three-bus approach used 
on the 80/30 actually takes only as many packages 
as the split~bus approach. 

Access arbitration is solved in the 80/30 with cycle 
status signals from the 8085A CPU. Instead of provid
ing equal access to the RAM from both the CPU and 
the system, the arbitration logic is designed to favor 
the CPU. By assigning the default state of the arbiter 

ELECTRONIC DESIGN 15, July 19, 1978 1-223 

SINGLE BUS: 

BUFFER 

~----"------""... SYSTEM 
BUS 

TRIPLE BUS: 

BUS 
ARBITRATION 

LOGIC 

PROM 

110 

using the system bus. A dual-bus structure (c) also has 
buffer delays, and no system access to on-board memory. 
But a triple-bus (d) avoids all these problems, allowing 
total system access to memory. 

to the CPU, the logic anticipates a CPU memory access 
and reserves the memory until the cycle is complete. 

In addition, if an on-board CPU access is imminent, 
a reservation signal derived from the 8085A CPU 
status signals, the ALE (address latch enable), the 
address, and the cycle status signals (SO, SI, IO/M) 
will hold off bus contention. As a result, the CPU can 
operate at full speed without tying up the system bus. 

Of course, this extra CPU performance cuts into the 
rest of the system's memory-access time. However, 
the penalty imposed by the arbiter is less than 200 
ns-less than the time it would take a DMA device 
to regain control of the bus in the split-bus approach, 
where access must be interleaved. 

A bus hierarchy 

The three buses in the 80/30 hierarchy (Fig. 2) are 
an on-board bus, a dual-port (DP) bus and the Multi
bus (system bus). Innermost is the on-board bus, 
which connects the 8085A, all on-board I/O peripher
als and ROM. The next bus in the hierarchy, the dual
port connects a dual-port controller, 16-kbytes of 
dynamic RAM and a dynamic RAM controller. The 

AFN·01931A 



RS232C 

COMPATIBLE 
DEVICE 

USER DESIGNATED 

PERIPHERALS 

42 PROGRAMMABLE 
PARALLEL 1/0 LINES 

POWER FAIL 

INTERRUPT 

16K x 8 

RAM 

MULTIBUS" 

2. The full 80/30 one-board microcomputer is organized 
around its three buses: on board, dual-port, and the 
external-system Multibus. The main CPU, an 8085A, runs 

RAM 
ADDRESSES 

16K-32K 

RAM 
ADDRESSES 

16K-32K 

MULTIBUS" 

iSBC 201 
DISKETTE 

CONTROLLER 

3. The microcomputer's on-board memory may be ad
dressed independently by the on-board central processor 
and Multibus bus masters to increase the efficiency of 
usage of the total available memory space. 

4 INTERRUPT 

REQUEST LINES 

8 INTERRUPT 

2 INTERRUPT 
REQUEST LINES 

TWO 
PROGRAM 

MABLE 

at 2.76 MHz, while an 8041A one-chip microprocessor 
serves as a peripheral controller or slave processor, 
running with a 2.6-ms cycle time. 

outermost bus, the Multibus, offers modules that 
permit either the expansion or addition of system 
resources. 

With the on-board bus, the 80~5A communicates 
with its on-board I/O and ROM (or PROM, if desirable) 
and the dual-port bus. Since the on-board bus permits 
access to the 1/0 and ROM only from the 8085A, all 
1/0 and ROM (up to 8-kbytes are the 8085A's private 
property). And as a result, the 80/30 can operate on 
its on-board bus while another Multibus master uses 
th,e Multibus,. accessing data from the board's dual
port RAM without reducing processor speed. 

The dual-port (DP) bus contains 16-k of read/write 
memory, implemented with Intel's 2117 16-kbyte 
dynamic RAM and the 8202 dynamic RAM controller 
(DRC). The DRC interfaces the DP bus to the 16-
kbytes of dynamic RAM, and provides an almost 
static-RAM type interface. It provides the system with 
multiplexed addresses, address strobes, and refresh 
control to the RAM, as well as refresh/access arbi
tration and acknowledges. 

The RAM on this bus can be accesse_d from either 
ELECTRONIC DESIGN 15, July 19, 1978 

1·224 AFN·01931A 



the 8085A on the 80/30 or the Multibus. The DP 
controller arbitrates the RAM requests and performs 
the bus exchanges. 

The DP controller always leaves the DP bus under 
the control of the 8085A when it is not in use. This 
permits the 8085A to operate at maximum processor 
speed when controlling the bus, since there isn't any 
bus-exchange overhead. When the Multibus requests 
access to the DP RAM, the DP controller transfers 
control of the DP bus to the multibus, as soon as the 
DP bus is not busy. Once the Multibus transfer is 
complete, the DP bus is returned to the 8085A. 

Multiple communication 

The DP controller has two independent address 
decoders-one for decoding Multibus requests, the 
other for 80/30 requests. This not only permits the 
address space of the memory to be located in two 
different parts of memory (Fig. 3), it enables several 
80/30s to talk to each other over the Multibus, while 
sharing the same on-board address as seen by the 
8085A. Thus, one program can be loaded in any 80/30 
without relinking and relocating the software for 
execution. 

Each bus can communicate either within itself, or 
with the adjacent bus. Thus, the on-board bus cannot 
communicate directly with the multibus. However, 
when the CPU makes a bus request, the on-board and 
dual-port buses simultaneously determine if they can 
fulfill it. If the on-board bus can acknowledge the 
request, it does so, and the DP bus control is not 
required to determine if the DP bus can acknowledge 
the request. If the DP bus, not the on-board, can 
acknowledge the request, it does so, and the controller 
then lets the CPU use the bus. Thereafter, the RAM 
controller completes the operation and generates an 
acknowledge signal. 

If neither the on-board nor DP bus can fill the bill, 
the Multibus is solicited by the CPU. Since a bus can 
only communicate with an adjacent bus, the on-board 
bus must request the DP bus to commu.nicate with 
the Multibus via the DP controller. The on-board bus 
will retake control of the DP bus only after the request 
to use the Multibus is granted. This prevents lockout 
problems with the DP bus, where the CPU requests 
the Multibus when it is controlled by another bus 
master accessing the DP RAM. 

How the 80/30 performs is directly related to how 
many buses it must .use to complete a requested 
operation. The on-board bus always operates at max
imum processor speed. The DP bus operates at max
imum only if it hasn't been busy and a memory refresh 
cycle was not in process. The processor speed when 
the Multibus is used depends on bus overhead involved 
and the type of module requested. 

The 80/30 boasts more than a three-bus architec
ture. For one thing, its 1/0 is designed to interface 
to a wide variety of external devices, including 
switches, motor drives, bistable sensors, displays, 

ELECTRONIC DESIGN 15, July 19, 1978 1'225 

The 80/30 in brief 

The iSBC 80/30 uses the latest LSI components to 
obtain the highest performance of any Intel single
board computer. Built on a 6.75 X 12-in. board, it 
contains the following features: 

• 8085A central processor operating at 2. 76 MHz. 
• 16-kbytes of dual-port RAM using Intel's new 16-

kbyte dynamic RAMs and 8202 dynamic RAM con
troller. 

• Sockets for 2, 4 or 8-kbytes of ROM using Intel's 
2758, 2708, 2716, or 2332 EPROMs or ROM re
placements. 

• A socket for Intel's 8041A/8741A universal pe
ripheral interface (UPI) having 18 software-con
figurable I/O lines with sockets for drivers/termi
nators. 

• A programmable serial-communication channel 
with RS-232 interface and programmable baud rate. 

• Multibus control logic which allows up to 16 
masters to share the system bus. 

• 12 vectored priority interrupts. 
• Two programmable 16-bit BCD or binary internal 

timers. 

keyboards, printers, teletypewriters, communicator 
modems, cassettes and other computers. This ver
satility is provided with LSI programmable devices 
such as Intel's 8255 programmable parallel 1/0 device, 
8251A programmable communication channel, 8253 
interval timer, 8259 interrupt controller, and 
8041A/8741A universal peripheral interface (UPI). 

The slave processor 

The ability to interface this wide variety of external 
devices is facilitated by the B041A/8741A UPI (Fig. 
4), which can be added to the 80/30. The UPI is a 
complete single-chip microcomputer which acts as a 
peripheral to the 8085A. It is completely user-pro
grammable with 1-kbyte of ROM (8041A) or EPROM 
(8741A) memory for data storage. The UPI allows you 
to fully specify your control algorithm in the peripher
al chip without relying on the 8085A. Devices such 
as printer controllers and keyboard scanners can be 
completely self-contained, relying on the 8085A only 
for data transfers. 

The UPI is a powerful 8-bit CPU with a 2.6-ms cycle 
time and an instruction set optimized for bit manipu-

AFN·01931A 



·· ~ERiPHERAL 

SYSTEM 

4. The 8041A/8741A single-chip microcomputer (Uf'>l-41) 
has its own on-chip ROM and RAM and can be pro
grammed to perform various peripheral control functions. 

I 
I DATA 

(fl REGISTER 

I 
I DB 

I PORT 

I 
I 
I DATA 

I 
REGISTER 

I 
TOB085 -

~J STATUS 
~---1 REGISTER 

STATUS 
PORT 

5. The UPl's two data·registers are organized so that the 
8Q85A CPU can write in just one register and read from 
the other. As a result, the two registers appear as one 
register to the main 8085A CPU. · 

lation and I/O operations. It contains an 8-bit 
counter/timer, buffers to communicate with the 
8085A, and two 8-bit programmable I/0 ports; which 
can be customized· by software or by plugging in 
suitable line drivers or terminators into sockets. The 
UPI also has two input bits that it can test directly. 
An RS-232 dfiver antl receiver on the 80/30 permit 
the UPI to be programmed as a simple serial-com
munication channel. 

lnterfac,:ini to tl"le on-board bus 

The UPI interfaces asynchronously with the tih" 
board bus using two data and two status registers. 
The UPI's two internal data registers appear to the 

8085A as only one register, since one data register cart 
be written into only by the UPI and read orHfby the 
8085A, and the other can be writtenili.toonly by the 
8085A and read by the UPI (Fig~ 5). This is done to 
prevent the two CPUs from simultaneously writing 
into a d'ata register. 

The ·UPI can communfoate · with the 8085A by 
loading a data register and then returning to its 
previous controltask. The &085A can pericidicallypoll 
the UPI s'tatus port for the valid-read (VR) flag, which 
is set in hardware when the 'UPI writes to its data 
port,-or the UPI can generate an interrupt·to the 8085A 
via an I/O bit that can be programmed to be the VR 
flag. . 

Once the 8085A determines the VR flag is tt~e, it 
can· transfer the. data to its. :own memory without 
disturbing the UPI. The. VR flag is automatically 
cleared after the data are transferred. Similarly, when 
the 8085A transfers data to the UPI, a valid output 
(VO) flag is set and an interrupt to the UPI is 
generated (if enabled) automatically. Once the UPI 
transfers the data, the VO flag is cleared. The VO flag 
can also be prograinmed to.a port bit for generating 
interrupts to the 8085A to indicate that the transfer 
is complete. 

An extensive interrupt system 

The ·80/30 provides 12 vectored priority interrupts, 
four of which are handled directly by the 8085A's 
interrupt-processing capability and routed to fixed, 
unique memory locations. The remaining eight levels 
are handled via the 8259A programmable interrupt 
controller· (PIC), which generates a unique memory 
address for each level. These addresses are equally 
spaced at intervals of four or eight (software·selec~ 
table) bytes. This 32 or 64'-byte block may be located 
to begin at any 32 or 64-byte boundary in the 65;536-
byte memory space. A single 8085A jump instruction 
at each of these addresses then provides the linkage 
to locate each interrupt-service routine independently 
anywhere in memory. The PIC provides a selecticin 
of four priority algorithms so that the manner in 
which real:time requests are processed may be con
figured to meet the requirements of the system under 
design. 

The 80/30 also has two 8253-based programmable 
16-bit BCD and binary timers/event counters, which 
can be used for a variety of functions. Both timers 
may be set to act as a rate generator (divide-by-N 
counter), 'a·square-wave generator, a programmable 
retriggerable one-shot, or· one. of the timers can be 
jumper-selected as an event counter. In addition; an 
interrupt cari be generated when a time interval has 
expired or when a specified number of events has 
occurred. 

1-226 

To see how useful the 80/30 can be, consider a 
supervisory control/monitoring system (Fig: 6) using 
an Intel iSBC 80/30 single~board computer, iSBC201 
diskette controller, and iSBC 732 analog input/output 

faECTRONIC DESIGN .15, July 19, 1978 
AFN-01931A 



HOST 

COMPUTER 

G RS232C 

COMPATIBLE 
DISPLAY 

DIGITAL 

CONTROL 

INPUTS 

OUTPUTS 

iSBC 80/30 

SYNCHRONOUS 

DATA 
LINK 

J, 

SYSTEM 

DATA 

1SBC 201 
DISKETTE 

CONTROLLER 

MUL Tl BUST~ 

ANALOG ANALOG 

CONTROL PROCESS 

SIGNALS VARIABLES 

ANALOG INPUT/ 

OUTPUT 

6. In this application example, the 80/30 forms the heart 
of a remote data-acquisition system. By taking advantage 
of the one-board microcomputer's dual-port memory and 
universal peripheral interface, the system achieves a 
combination of attractive cost and efficiency. 

ELECTRONIC DESIGN 15, July 19, 1978 
1-227 

board. Here local commands and process-status sig
nals are given and displayed on a CRT, which is 
interfaced via the iSBC 80/30 resident UPI and 
RS232C components. Process variables are converted 
from analog to digital using the analog I/O board. 
Control variables are passed over the Multibus from 
the 80/30 to the 732, where they are converted from 
digital to analog. 

System data are logged on two diskettes, which are 
controlled by the 201. The controller board's on-board 
DMA interface accesses the 80/30's dual-port memory 
and stores the data on one of the floppy discs. 

At the end of the day, a remote host processor, 
interfaced to the 80/30 via a modem (through the 
80/30's 8251A and RC232C circuits) can request all 
or part of the diskette-resident data. Here, the 80/30 
uses its on-board dual-port memory as a data buffer 
for transfers to the host. 

Intel's RMX/80 real time executive, disc-file system 
and analog drivers provide the majority of the 
system's software ... 

Note: Multibus and iSBC are registered trademarks 
of Intel Corp. 

AFN·01931A 





ARTICLE 
REPRINT 

1-229 

AR·69 

November 1978 

AFN-01931A 



Dual~port RAM hikes throughput 
in inpuv output controller board 
On-board random-access memory, accessible from system bus, 

makes input/ output controller subsystem look like 
just another memory board to the host microprocessor 

by Craig Kinnie and Michael Maerz, tntetCorp., Santa Clara, ca1;1. 

D Input/output controllers based on microprocessors 
step up throughput in microcomputer systems by reliev
ing the host processor of tedious, time-consuming control 
tasks-and a new design concept that increases the 
processing capability of this su)lsystem promises to hike 
throughput even more. It will cut the host intervention 
needed to transfer data and to run the controller. 

In this configuration, all communications between the 
host processor and the controller are handled through a 
section of dual-port memory that resides in the controller 
subsystem. This setup allows more efficient transfer of 
large blocks of data from the 110 device to the system 
without contention over access to the system bus. It also 

1/0 DEVICES 

TAILORED 1/0 

simplifies interprocessor communications because the 
subsystem controller appears to the host processor sim
ply as an additional RAM board. 

Although this concept allows the subsystem to remain 
dedicated to its 110 control function and to assume a 
subservient role to the host processor, it has more 
processing power than previous generations of such 
controllers. Hence it has been dubbed the intelligent
slave concept by Intel, which applies it in the iSBC 544 
intelligent communications controller. 

The new subsystem architecture is divided into three 
major sections: dedicated 110, dedicated computer, and 
dual-port memory (Fig. 1). The dedicated input/output, 

DEDICATED 
INPUT/OUTPUT 

1. Heart ol memory. New controller archi
tecture includes the dedicated input/ output 
circuitry and dedicated processor of an intel
ligent peripheral controller, but its heart is 
the dual-port random-access memory. 

r-----.,.------ ---------, 
1 

I 
I 
I 
I 
I 
I 
L_ 

COMMON 1/0 
(TIMERS. INTERRUPT) 

CENTRAL PROCESSING 
UNIT 

Electronics/ August 17, 1978 

READ-ONLY II 
MEMORY/ 

PROGRAMMABLE I 

I DEDICATED 
I PROCESSOR 

DEDICATED I· 
1•••11 RAN~~~0wEss 1 

t 

HOST SYSTEM BUS 

1-230 

Reprinted' with permission from Electronics 
Copyright McGraw-Hill, Inc., 1978 

AFN-01931A 



(a) 

CPU 

(b) 

CPU 

(c) 

r-----, 

MEMORY 

rt~~ul r----., 
I . CPU I 
L...:- __ J 

2. Performance advantage•. In adding a real-time task to an existing real-time system, the load on the system bus is significantly reduced 
over the traditional multitasking approach (a) or the intelligent controller approach (b) by the intelligent-slave controller approach (c). 

i------------------- ---~DEDICATED 1/0 

I 
I 
I 
I 
I 
I 
I. 
I 
I 
I 
I 
I 
L_ 

r-

' I FOUR 

I Jt~~ii~fri~s 
I 
I 
I 
I 
I 
I 
I 

TJMERS 

OSCILLATOR 1------------

RECEIVER/ 
TRANS· 
MITTER 

'" ! 

3!18~~l10 

--, 
I 
I 
I 
I 
I 
I 
I 

'- - - - - - - - - - - - - - - - - -_;;; - - - - _J 
DEDICATED PROCESSOR 

JUMPERS TO CONVERT FROM DATA 
TERMINAL TO DATA SET INTERFACE 

USART= UNIVERSAL SYNCHRONOUS/ASYNCHRONOUS 
RECEIVER /TRANSMITTERS 

INTERRUPT 

LINES 

TO HOST SYSTEM BUS 

3. The 544. Based on the 8085A microprocessor with 4 kilobytes of PROM and 16 kilobytes of RAM. the subsystem is designed as a 
communications controller with four synchronous/asynchronous buffered serial 1/0 channels, and a 10-blt parallel 1/0 interface. 

Electronics/ August 17, 1978 

1-231 AFN-01931A 



Dual-port RAM a~so shows up In new slngle-board computer 

The concept of a dual-port read-write memory used in the 
iSBC-544 communications board is also employed in 
another new Intel product: its latest single-board comput
er, the iSBC-80/30. A dual port makes. the 80/30's· 
random-access memory directly accessible by the on
board 8085A central processing unit via internal busing 
without tying up the external system bus, the Multibus. At 
the same time, it also makes the RAM directly accessible 
by any other boards, like direct-memory-access control
lers or other one-board computers that may be tied to the 
Multibus. 

Moreover, the 80/30 adds its dual-port bus to. the 
earlier iSBG computers' pair of b.uses: an internal bus, 
which hooks the CPU to peripheral chips and read-only
memory program storage and the system bus, over which 
the CPU and other boards communicated with RAM. Eight 
bits wide, the new bus is connected to a pair of buffer 
registers that coordinate, thus making the RAM accessible 
either by the internal bus or the system bus. 

The objective is throughput: the CPU has priority in 
access to the on-board RAM. But since the access is not 
over the Multibus system bus, which might be tied up, 
there is no waiting. From the viewpoint of other system 
boards, the system bus is accessible a greater percentage 
of the time. 

cons1stmg of the necessary peripheral chips, timers, 
buffers, and interface integrated circuits, tailors the 
controller to the application's 110 requirements. 

The dedicated computer consists of a general-purpose 
microprocessor, electrically programmable read-only 
memory, dedicated RAM, timers, interrupt logic, and the 
decode and chip-select logic. The size and speed of the 
central-processing unit can be tailored to match the 
requirements of the dedicated 110 section. 

The dual-port memory is the heart of the architecture 
a!ll.d sets it apart from traditional approaches to intelli
gent controllers and multiprocessing. Passing all 
commands and data between the system and the control
ler's processor through this memory offers a number of 
significant advantages. 

First, the dedicated computer's performance can be 
optimized for its applications. Its software always oper
ates at full speed, since all required memory and 110 

resources are immediately accessible on the board, with
out indeterminate delays caused by other system activity 
on the bus. This accessibility is especially important in 
real-time systems; since it allows the controller's 
performance to remain constant even though system bus 
activity may change. 

Secondly, the architecture presents a consistent and 
convenient interface between the host CPU and all the 
controllers in the system, regardless of function. Because 
the controllers' dual-port RAM looks to the host CPU like 
just another location in system memory, the hardware 
and software problems associated with connecting multi
ple processors together are reduced to interfacing a 
number of identical intelligent memory locations. 

Also, the architecture offers a degree of protection for 
the data in memory. The subsystem computer and soft-

Electronics/ August 17, 1978 

With the incorporation of 16 kilobytes of memory on the 
80/30, Intel had little choice but to move to the dual-port, 
triple-bus architecture. The reason is that few system 
designs require more than 16 kilobytes, so in many appli
cations all boards will be demanding access to the 
80/30's memory over the Multibus. The CPU had better 
have priority to its RAM, through its own private line, lest 
the queue for the system bus bog down throughput. 

The 80/30 also packs lots of extras, in addition to the 
total 16,384 bytes of read/write memory built with 2116 
16-K dynamic RAMs. A pair of ROM sockets provide 
4,096 bytes of program storage if fitted with 16-K erasable 
programmable read-only memories like the 2716. When 
pin-compatible 32-K erasable PROMs are available, 
program storage can be extended to 8 kilobytes. 

Also on board is a socket for Intel's universal peripheral 
interface chip, the 8041 (or 8741 erasable-PROM 
version), which can function as a slave processor to drive 
peripheral devices. An 8251 A universal synchro
nous/ asynchronous receiver /transmitter is included for 
serial communications, and the 80/30 also boasts three 
16-bit programmable timers. The 24 programmable 
input/output lines are brought out to sockets that accept 
quad line-drivers or -terminators for interfacing. 

Ray Capece 

ware can only alter that portion of system memory that 
resides in its own dual-port memory section. In contrast, 
traditional intelligent controllers have access to the 
entire system RAM and, should a malfunction occur, can 
destroy all of that memory. 

System performance advantages 

Because all processing assigned to the new controller's 
CPU takes place off the system bus, its architecture offers 
important performance advantages to the system. These 
advantages come from the appearance of the processed 
data blocks in system memory without consuming any 
system resources or bus time 

The advantages of this approach are best demon
strated by comparing it to alternative means of adding a 
real-time task to an existing real-time system. In this 
case, the new task requites additional CPU, memory, and 
110 resources. 

The traditional multiprocessor approach of Fig. 2a 
expands CPU resources in one of. two ways: software 
u.tilizatfon of reserve capacity in the existing processor, 
or adding another processor. In either case, memory and 
110 increments generally will be required. 

The primary disadvantages of this approach are the 
increased complexity of the system software and the 
increased load on the system bus. Both will slow the 
existing real-time system unless it has been designed 
with adequate reserve. The system bus must also provide 
sufficient capacity for the incremental memory-execu
tion and data-transfer operations. This additional bus 
load will also require that the primary real-time task can 
tolerate CPU delays due to bus contention. 

The intelligent-controller approach of Fig. 2b has 
gained widespread use since the advent of the micropro-

1-232 AFN-01931A 



HEXADECIMAL HEXADECIMAL 
SYSTEM SUBSYSTEM 

ADDRESSES ADDRESSES 

XFOOO FOOD 

XEOOO EOOO 

xoooo 0000 

xcooo 

l 
cooo 

XBOO~ 8000 

XAOOO AOOO 

X9000 9000 

XBOOO 

}fl 
8000 

X7000 7000 

X6000 6000 

X5000 5000 

X4000 4000 
DEDICATED 

X3000 STATIC RAM 3000 

X2000 

ROM/PROM { 

2000 

X1000 1000 

X •ANY PAGE ADDRESS,O TD FIHEXI 

4. Memory mapping. The variable system memory addresses are 

always mapped into the on-board address of BOOOHEX, providing 
software independence for the subsystem and the host. 

cessor. This approach combines the CPU and 110 incre
ments onto a single module that usually includes direct
memory-access transfer logic. In some cases the execu
tion memory for the CPU is included. 

This approach lessens the bus-loading problem since 
the 110 data transfers and some memory-execution cycles 
take place off the system bus. However, both CPUs' 
programs will have to tolerate delays caused by 
increased bus contention. Increased software sophistica
tion is the primary disadvantage of this approach, much 
as with the multiprocessing approach of Fig. 2a. 

The intelligent-slave approach of Fig. 2c can be 
viewed as a logical extension to the intelligent-controller 
approach. Combining the CPU, 110, and memory incre
ments creates a single module that has a minimal impact 
on the existing system software and bus loading. What's 
more, the subsystem can operate at full capacity without 
regard to other system activity. It can be programmed 
outside the primary system and then added with minimal 
impact on the system software or performance. 

A limitation of the approach is the inability of the 
subsystem to transfer data into portions of the system 
memory space that reside off its board. This problem is 
minimized by the ability of the controller's RAM to serve 
as a substantial portion of the entire memory space 
addressable by the system. In this light, the on-board 
processor can be viewed as having a OMA capability 
limited to a portion of the system's address space. 

In a system with more than one of the new controllers, 
the system CPU handles any data that must be trans-

TABLE EIA RS 232 C SIGNALS PROVIDEO AND SUPPORTED 

Carrier detect Receive clock 

Clear to send Receive data 

Data set ready Ring indicator 

Data terminal ready Transmit clock 

Request to send Transmit data 

ferred from one to another. Applications involving the 
transfer of large blocks of data would be best served by a 
central block-transfer device elsewhere on the bus. 

The advantages offered by the new approach in this 
example of adding onto an existing system are just as 
applicable to a ground-up design. This modular 
approach to configuring real-time multiprocessing 
systems simplifies hardware and software design, as well 
as system integration. 

While the primary design objective of the new archi
tecture is operation in a multiprocessing system, it can 
provide significant utility as stand-alone processors. 
Thus these controllers incorporate a second mode of 
operation called the limited bus-master mode. 

In this mode of operation the new controller can be 
used like a single-board computer as long as it is the 
system's only master of the bus. It can be connected to 
standard memory or 110 expansion boards to enhance its 
capability. It can even be used to drive other such 
controllers as long as they are used in the subsystem 
mode. This dual operational mode will allow the new 
controllers to serve a broad range of applications. 

Communications first 

Communications applications present complex pro
cessing requirements and an inherent real-time nature, 
so it is logical that a communications processor be the 
first of these new controllers to be marketed. The iSBC 
544 intelligent communications controller can serve as a 
flexible front end to an iSBC system or as a cost
etfective stand-alone processor configured as a terminal 
cluster or line concentrator. Its design (Fig. 3) incorpo
rates an 8085A CPU, 16 kilobytes of dual-ported dynamic 
RAM, 4 kilobytes of PROM, programmable interrupt 
control, three interval timers, four programmable baud
rate generators, four synchronous/asynchronous buf
fered serial 110 channels, and a 10-bit parallel interface 
compatible with a Bell 801 automatic calling unit. 

The dual-port memory block basically consists of the 
16-kilobyte bank of random-access memory, which is 
accessible from either the system bus or the on-board 
processor through the dual-port controller. This memory 
block provides the primary means of communication 
between the system and the on-board 8085A. The port to 
the memory, which looks to the system bus like any other 
RAM card belonging to the system, features full 20-bit 

Electronics/ August 17, 1978 

1·233 AFN-01931A 



addressing and a typical access. time of 600 .nanoseconds. 
The .interface's address-decode logic allows switching 

of the base address of the iSBC 544 to any 4-kilobyte 
boundary in the host system's address space. In addition, 
the user may reserve 8, 12, or 16 kilobits of the 544's 
memory for use by the on-board processor only. This 
reserved memory is not accessible from the system bus 
and does not occupy any system address space. The only 
restriction is that all of the unreserved memory reside in 
the same 64-K address page of the system memory. 

This memory division can be a significant advantage 
in large 8-bit microcomputer systems. Only that portion 
of the controllers' memory needed to pass data between 
CPUs must be made accessible to the system. The 
remaining buffer and execution memory does not 
consume any system address space. 

The net result is an increase in the system's overall 
mei;nory capacity. For example, a microcomputer system 
that would usuaily be limited to 64 kilobytes of memory 
has a total memory capacity of over 190 kilobytes when 
driving seven 544s. 

Address maps and interrupts 

To tlte on-board processor, the base address of its 
memory is fixed at 8000HEX. Furthermore, all on-board 
addresses are. fixed, so that multiple 544s operating on 
the same system bus can be running identical programs 
regardless of their base address on that bus. This capa
bility necessitated the address-mapping logic to trans
form addresses from the system bus into the equivalent 
in the on-board address space starting at location 
8000HEX (Fig. 4). 

The address-mapping lQgic also implements the flag
interrupt feature. It provides an interrupt to the on
board processor whenever a byte is written into the 544's 
base address from the system bus, and a read from the 
on-board processor to the base address clears the inter
rupt. Since each 544. in a system has a different base 
address in that system's RAM, it also has a unique 
interrupt. This flag-interrupt capability is a key element 
in establishing a protocol for communications between 
the host CPU. and the subsystems' processors. 

The dual-port control logic is responsible for resolving 
contention over access to the t)lemory and is designed to 
optimize the performance of the subsystem CPU. Unless 
the system bus has initiated a memory cycle before the 
on-board processor requests roeroory, that CPU runs at 
full speed. The maximum delay that can be encountered 
is one memory cycle. The arbitration logic actually 
reserves the memory for the on-board processor before it 
generates the necessary commands. This advance reserv
ing guarantees that the oncboard CPU. will suffer mini
mum intervention from system bus accesses. 

When the iSBC 544 is used in the stand-alone limited 
bus-master mode, .the dual-port logic is disabled and the 
bus interface buffers are turned around to drive onto the 
bus. This reversal allows the on-board central-processing 
unit access to the memory of other subsystems or 110 
expansion boards on the system bus. 

The dedicated computer is built with an 8085A CPU 

operating at 2.76 megahertz, between 2 and 4 kilobytes 
of PROM and ROMS or 8 kilobytes of ROM using 2332 

Electronics/ August 17, 1978 

HOST-SYSTEM BUS 

5. Communication• appllcatlona. Two typical applications of the 
new iSBC 544 would be as a front-end communications processor to 
a microcomputer system and as a remote concentrator to a series of 
point-to-point or multidrop connected terminals. 

mask-programmable parts, 256 bytes of static RAM, two 
16-bit and one 14-bit interval timers, and a 8259 
programmable interrupt controller for individual receive 
or transmit interrupt inputs for each serial port. 

Special command-decode logic was added to the CPU 

to allow it to operate at maximum speed independent of 
other system activity. There are 21 sources of interrupt 
on the 544, including the separate transmit and receive 
interrupts for each port and separate timer interrupts. In 
addition to receiving an interrupt from the system, the 
544 can also send an interrupt to the system bus via the 
8085A's serial-output data line. 

Since this controller is intended for communications 
applications, latched interrupts are provided directly to 
the CPU for loss of carrier and ring indicator for all four 
110 ports. The ring-indicator and carrier-detect lines car 
also be monitored through the parallel port. 

Dedicated 1/0 

The dedicated-110 section of the 544 provides a high 
degree of flexibility and programmability. This results 
primarily from the inclusion of four 8251A universal 
synchronous/asynchronous receiver/transmitters. These 
devices are programmable for synchronous or asynchro
nous . mode, character size, parity bits, stop bits, and 
baud rates. Data, clocks, and control. lines are buffered 
with RS-232-C-<:ompatible drivers and receivers to four 
26-pin card-edge connectors. Each port is configured as 
a data-terminal interface, but may be converted to a 

1-234 AFN-01931A 



(a) 

(b) 

AUTOMATIC DIALER 

REMOTE-CONNECTION 
TOHQ~T 

REMOTE CONNECTION 
TO HOST 

SERIAL PRINTER 

8. From slave to meeter. In its stand-alone mode, the 544 can operate as a bus master and be configured as an intelligent terminal controller 
connecting dumb terminals to a data link (a) or as a peripheral controller connecting RS-232-C-compatible units to the terminal (b). 

data-set interface by changing a single jumper-plug 
assembly. The ports support most RS-232-C signals 
(those that are listed in the table). 

A programmable baud-rate generator is also provided 
for each port. The range of baud rates available is 75 to 
56 kilobits per second. The generators are implemented 
with 8253 programmable interval timers, which receive a 
jumper-selectable input frequency of 1.84 or 1.23 MHz. 
In addition, one of the CPU's interval timers can be 
converted to baud-rate operation and jumpered to any 
port to provide it with split-speed operation. 

The 544 also provides a parallel port with four 
RS-232-C buffered input lines and six RS-232-C 
buffered output lines. This port is configured to interface 
to most automatic calling units but may be used as a 
general-purpose 110 port. It is implemented with an 8155 
programmable peripheral interface that also provides the 
256 bytes of static RAM and the 14-bit timer. 

Applications 

A likely common use of the 544 as a subsystem is as a 
front-end processor or terminal multiplexer (Fig. 5) in 
an iSBC system. The 544 performs all communications
related functions such as format control, code conver
sion, data-link control, error checking, data compression, 
and protocol management. It can handle multiple proto
cols, line speeds, and data formats. 

All the system processor sees are the processed data 

blocks that appear in system memory. An automatic 
dialer could be added to provide a dial-up connection to 
a host processor or network. 

Also shown in Fig. 5 is another 544 used in its limited 
bus-master mode as a remote concentrator and terminal 
controller. The line and memory capacity of the remote 
concentrator can be increased by the addition of stan
dard iSBC memory and 110 expansion boards. 

The intelligent-terminal controller shown in Fig. 6a is 
a prime example of a 544 used in the stand-alone mode. 
It can connect one or more dumb terminals to a data link 
and provide the necessary buffering, code conversion, 
and data-link control. It could also connect a terminal 
that happens to communicate in a different protocol to a 
new network or to more than one network. 

The iSBC 544's multiple serial lines do not have to be 
used for communications. They can also be used to 
connect RS-232-C-compatible peripherals to the termi
nal (Fig. 6b). In this configuration, the 544 can provide 
message editing and formatting, bulk storage, and hard
copy output. 

As this last application suggests, the 544 is the 
vanguard of a family of intelligent 110 controllers that 
will add tremendous increases in throughput and versa
tility to the iSBC line of single-board computers. The 
basic architecture will simplify the task of developing 
multiprocessing hardware and software solutions that 
will overcome throughput limitations. D 

Electronics/ August 17, 1978 

1·235 AFN-01931A 





ARTICLE 
REPRINT 

1-237 

AR-72 

November 1978 

AFN-01931A 



Technical articles _________ _ 

16-bit single-board computer 
maintains 8-bit family ties 
Three-bus 8086-based board addresses a megabyte, 

communicates over expanded system bus 

by Robert Garrow, Jim Johnson, and Les Soltesz, Intel Corp., Santa Clara, ca111. 

D For the first time ever, 8- and 16-bit single-board 
computers can brainstorm over the same system bus. 
The iSBC 86/12 16-bit sec has been designed to work 
intimately with its predecessors, the iSBC 80 family of 
8-bit boards. What's in it for the user? Design flexibili
ty-8-bit designs can be enhanced to 16 bits, developed 
software can be transported and, beyond that, 8- and 
16-bit devices can be mixed in multiprocessing configu
rations. Several features make these options possible: a 
16-bit CPU and instruction set designed for 8-bit compat
ibility; greatly expanded memory resources; and an 
extension of the Multibus specifications. 

At the heart of the iSBC 86/12 is a 16-bit, high
performance metal-oxide-semiconductor 8086 central 
processing unit that operates at 5 megahertz. Because 
the 8086 instruction set is a superset to that of both the 
8080A and 8085A 8-bit processors, the CPU can execute 
the full set of 8080A/8085A-type 8-bit instructions plus 

MU LTIBUS/MULTIMASTER 

a new set of 16-bit instructions. Thus, programs gener
ated for 8-bit-CPU systems can easily be upgraded to run 
on the iSBC 86/12 using the software tools available 
with the Intellec microcomputer development system. 
Programs written in Intel's high-level programming 
language, PL!M, can be executed on both iSBC 80 and 
iSBC 86 products, preserving the software investment in 
8-bit systems as a user moves into 16-bit applications. 

Other features of the 8086 CPU are signed 8- and 
16-bit arithmetic (including multiply and divide), effi
cient interruptible byte-string operations, and improved 
bit manipulation. Furthermore, the 8086 provides mech
anisms for n::entrant code, position-independent code, 
and dynamically relocatable programs. 

This enhanced processing power is supported by the 
largest memory ever offered on a CPU board (Fig. 1). 
Memory address space has been extended over the iSBC 
80 series to one million bytes. Up to 16 kilobytes of 

UNIVERSAL 
SYNCH RO NOUS/ ASYNCHRONOUS 
REC El VER/TRANSMITTER 

ROM 
SOCKETS 

1. What a board. The iSBC 86/ 12 has 32 kilobytes of RAM and room for 16 kilobytes of ROM. The 5-MHz 8086 CPU executes 
8080A/8085A-type as well as 16-bit instructions, including multiply and divide. Address space has been increased to a megabyte. 

Electronics/October 12, 1978 

1-238 

Reprinted with permission from Electronics 
Copyright McGraw-Hill, Inc., 1978 

AFN·01931A 



L 

POWER FAIL 
INTERRUPT 

MU LTIBUS/MULTIMASTER 
INTERFACE 

RS-232-C 
COMPATIBLE DEVICE 

24 PROGRAMMABLE 
PARALLEL 1/0 LINES 

-----------------~ 

2. LSl+SBC=88/12. A number of programmable LSI devices take credit for the power and flexibility of the iSBC 86/12. Note their 
interconnection to the three-bus hierarchy. When the 8086 requests a resource. the system bus is used only as a last resort. 

read-only memory can be installed on the iSBC 86/12 
itself. Furthermore, an additional 32 kilobytes of 
dynamic random-access memory with on-board refresh 
may be accessed independently by the CPU or by the 
system bus (Multibus). 

Like the iSBC 80/30, the 86/12's RAM has dual ports 
to extend its use off board for access by other Ml\ltibus 
masters, including single-board computers, direct-memo
ry-access devices, and peripheral controllers [Electronics, 
Aug. 17, p. 109]. All memory operations on the board 
occur independently of the Multibus, freeing it for exter
nal parallel operations. For applications that require 
data integrity at all times, a separate bus supplies power 
to the RAM and support logic via the edge connector. An 
auxiliary power source energizes the RAM in the event of 
power failure. 

Multibus-the new look 

To exploit the. greater performance of the 8086 CPU 

and simultaneously make the iSBC 86/12 fully compati
ble with the iSBC 80 family of secs and expansion 
products, the Multibus specification has been extended 
to support 20 bits of address and 16 bits of data. The 
control lines, too, have been expanded to direct 8- and 
16-bit data transfer over the system bus. These improve
ments enable the iSBC 86/12 to address directly a fllll 
one megabyte of system memory, access data in 8- or 
16-bit word lengths, and recognize and acknowledge a 
variety of interrupts. 

Address space has been enlarged to 1 megabyte by 
adding four address lines, A10-A13. Next, 8- and 16-bit 

data operations have been defined to permit both types 
in the same system. This is done by reorganizing the 
memory modules, adding one new signal and redefining 
another. The memory is divided into two 8-bit data 
banks, which form a single 16-bit word. The banks are 
organized such that all even-byte-addressed data is in 
one bank (Do-D1) and all odd-byte-addressed data is in 
the other bank (Ds-DF). A new bus-address signal has 
been defined to control the odd-byte bank called byte 
high enable (BHEN) during 16-bit operations. When 
active, BHEN enables the high byte of the data word from 
the addressed boards on the Ds-DF Multibus data lines. 
Ao controls the even byte bank and, when inactive, 
enables the low byte of the data word on the D0-D1 
Multibus data lines. All word operations must occur on 
an even-byte-address boundary with BHEN active for 
maximum efficiency. (Ao is inactive for all even 
addresses-see the table.) Word operations on odd-byte 
boundaries will be converted to 2-byte operations by the 
8086, one for low-byte, one for high-byte. Byte opera
tions can occur in one of two ways. The even bank is 
accessed when BHEN and Ao are both low. This puts the 
data on Do-D1. To access the odd bank (normally placed 
on Ds-DF during a word operation), a new data. path has 
been defined. The active state of Ao and the inactive 
state of BHEN are used to enable a swap-byte buffer, 
which places the odd data bank on Do-D1. This permits 
an 8-bit master access to both bytes of the data word 
while controlling only Ao. Ao therefore specifies a unique 
byte and is not part of the word address, since all word 
operations are on even•byte boundaries. 

Electronics/October 12, 1978 

1-239 AFN-01931A 



Flexlblllty: LSI chips are the key 

The iSBC 86/12 owes much of its flexibility to program
mable large-scale integrated devices. An 8255A peripher
al interface chip provides 24 programmable I IO lines that 
may be tailored to the customer's needs by simply 
programming the device tor input, output, or bidirectional 
modes with or. without handshaking abilities. In conjunc
tion with the 8255A's configuration the user may then 
select appropriate line drivers and terminators for the I I 0 
lines that can be inserted into sockets on the iSBC 86I12 
board. 

An 8251A universal synchronous/asynchronous receiv
er /transmitter is included to provide an RS-232-C inter
face .tor serial communication with other computers, RS-
232-C-type peripherals (cassette tape, modems, etc.) or 
cathode-ray-tube terminals. The 8251A enable.s the user 
to customize the communication link. Synchronous/ asyn-

chronous mode, data format, control character format, 
parity and baud rates from 75 to 38.4 kilobauds are all 
under program control. 

For system timing functions an 8253 programmable 
interval timer provides two programmable timers, each of 
which may be used as a square-wave generator, retrigger
able one-shot multivibrator or as an event counter. 

The interrupt structure of the iSBC 86/ 12 encompasses 
nine levels with vectored priority. Eight of these levels are 
handled . by an 8259A programmable interrupt controller 
chip, which may be configured for different priority 
processing modes in accordance with the application. 
One nonmaskable interrupt is available to immediately 
alert the CPU to catastrophes like a power failure, in which 
case the CPU can branch to an appropriate routine in 
memory to effect an orderly system shut-down. 

JVMPERc 
SELECTABLE OlFFF 

SYSTEM 
03FFF 128·Kl.LOBYTE 

SEGM.ENT 
(X PARAMETER) 05FFF 

NO ACCESS 07FFF 
SYST~M 
MEMO Y 

09FFF FFFFF 

07FFF 

06000 

04000 

BK 
02000 

BK 20000 - 3FFFF 

00000 - 1 FFFF 
17FFF 00000 

18FFF 00000 

lDFFF 

lFFFF 

3. RAM, please. The 8086's view of on-board memory is fixed from zero to 07FFFH. When an outside master accesses this space. the DP 

controller performs the translation. Here, locations 06000H to 07FFFH are available to another master by addressing CAOOOH to CBFFFH. 

Since all 8-bit accesses via Multibus are done on the 
lower byte of the data word, the iSBC 86/12 can access 
8-bit memory or 110 devices from the system bus. This 
makes the iSBC 86/12 compatible with all iSBC 80 
Multibus modules. 

More interrupts, too 

The iSBC 86/12 expands the previous Multibus defi
nition of interrupts by creating two distinct types: non
bus-vectored (NBVI) and. bus-vectored (av1) interrupts. 
Each Multibus interrupt line can be individually defined 

Electronics/October 12, 1978 

through software to be a BVI or NVBI. Using BVIs, the 
interrupt capability of a Multibus system can be 
increased to 64 bus-vectored-priority interrupts. 

Using NBVIs, a slave module activates an interrupt line 
and the interrupted bus master generates its own restart 
address to service that interrupt. The Multibus address 
or data lines are not used. A, BVI uses the Multibus 
address and data lines to communicate with the inter
rupting slave. When the slave module generates an inter
rupt, the bus master requires that module to generate the 
restart address. One additional command signal is 

1·240 AFN-01931A 



LO HI 
0 • 0 

LIMIT LIMIT ALARM 

,-, C'• 

iSBC B0/20-4 

TELETYPEWRITER 
16 DIFFERENTIAL INPUTS 

iSBC 711 
ANALOG INPUT BOARD 

4. Open loop. Shown above is a simple alarm and monitoring system. The iSBC 711 analog-input board samples 16 differential inputs and the 
8-bit iSBC 80120 compares the inputs to the high and low limits. An alarm condition illuminates an LED and gets logged·on a teletypewriter. 

LO HI 
0 0 0 TELETYPEWRITER 

LIMIT ALARM 16 DIFFERENTIAL INPUTS 4 CONTROL OUTPUTS 

iSBC 86/12 iSBC lll iSBC 724 

5. Closed loop. Suppose the system in Fig. 4 needs to be upgraded to handle a closed-loop system. For this application an iSBC 86 / 12 
replaces the 80/20-04 to cope with the higher processing. The output control variables are handled by an iSBC 724 analog-output board. 

LO HI . . . 
LIMIT LIMlt ALARM .., 
0 

iSBC 86/12 

CONTROL FOR 
VALVES, VENTS, 
AND DAMPERS 

iSBC 80/05 

TELETYPE 
WRITER 16 DIFFERENTIAL INPUTS 

iSBC 711 

4 CONTROL OUTPUTS 

iSBC 724 

6. Multi/master. To enhance the control system in Fig. 5, add a dedicated CPU to control valves, vents, and dampers that, in turn, affect 
pressure and flow parameters in the system. This has been done by adding an iSBC 80/05 in a Multibus/multimaster arrangement. 

defined-interrupt acknowledge (INTA)-to request the 
restart address from the slave module. 

The iSBC 86/12 board architecture, like that of the 
8-bit iSBC 80/30, is organized around a three-bus hier
archy: an on-board bus, a dual-port bus and a system bus 
(Multibus). All three buses have been expanded over 
their 80/30 counterparts to incorporate 20 address lines 
and 16 data lines. 

The iSBC 86/12 architecture 

The on-board bus links the 8086, all the 110 peripher
als, and the read-only memory. Next in the hierarchy is 
the dual-port bus, which connects to the DP controller, 32 
kilobytes of dynamic RAM, and the dynamic RAM 
controller. Finally, the system bus permits expansion of 
system resources through Multibus modules (Fig. 2). 

The bus protocol of the iSBC 86/12 dictates that each 

of the three buses communicate with an adjacent bus or 
operate independently. When the CPU makes a request 
for a resource, the on-board and dual-port buses simulta
neously determine if their hardware can fulfill the 
request. If the on-board bus is able to acknowledge the 
request, it does so and the DP bus is not disturbed. (The 
DP bus is not interrupted to determine whether it can 
acknowledge the request.) The 8086 always controls the 
on-board bus, and requested operations can be 
completed without delay. If the DP bus is needed, it is 
requested and the dual-port controller grants the use of 
the bus to the processor. Thereafter, the dynamic-RAM 
controller completes the operation and generates an 
acknowledge. 

If neither the on-board nor the DP bus can satisfy the 
request, the CPU asks for the system bus. The 8086 must 
use the on-board and dual-port buses to communicate 

Electronics/October 12, 1978 

1-241 AFN·01931A 



r-~7~----~~0L~-~~~---~~-------, 
. •; · .. f . ••.• , VALVES VENTS WR.ITER 16 DIFFERENTIAL I 

I . . I 

l 1a1alsJ1:11~r ANooAMPERs ~· . 1.NP~~~ ~4coNTRoLouTPuTs 1 

l iSBC 80/05 . iSBC 711 • i_SBC 724 i 
L________ -------------------~ 

-----_-___.}TO OTHER CLOSEO·LOOPSYSTEMS 

iSBC 544 

7. Four loops. An iSBC 86/ 12 can be used in conjunction with an iSBC 544 intelligent communications controller to peiform a supervisory 
function for four closed-loop systems. The iSBC 544 controls the line protocol and the iSBC 86/ 12 processes the 544's data. 

with the system bus. The 8086 takes control of the DP 
bus when the system bus is granted. This prevents lock
out problems with the DP bus-that is, when the proces
sor requests the system bus while another bus master has 
control of it and is accessing the dual-port RAM. 

Naturally, the fewer the buses it has to access, the 
faster the iSBC 86/12 completes a transaction. The 
on-board bus always operates at maximum board. speed. 
But the DP bus operates at maximum board speed only if 
it was not busy or taken up with a memory refresh cycle. 
When the system bus is brought into play, the processor 
speed depends on the overhead in acquiring it and the 
type of Multibus module being accessed. 

With this three-bus architecture the iSBC 86/12 can 
be operating over its on-board bus at the same time as 
another Multibus master is using the system bus. It does 
so by accessing data from the DP RAM at no reduction in 
board speed. The on-board bus permits access only from 
the 8086. Thus all 110 and ROM are private to the 8086. 

The dual-port controller has two independent address 
decoders-one for the 8086 and one for the Multibus. 
The 8086 decoder fixes the 8086's RAM addresses from 
hexidecimal 00000 to 07FFF using a fusible-link 
programmable ROM. The Multibus decoder allows the 
user to select any address range for the on-board RAM by 
specifying two parameters-a top-of-memory pointer 
and the size of the accessible memory. The TOM pointer 
(as seen by another Multibus master) can be set to any 
8-kilobyte boundary in the I-megabyte memory space. 
The amount of memory on the iSBC 86/12 accessible by 
another master can be set to 8, 16, 24, or 32 kilobytes (or 
no access) with an on-board jumper. For example, fixing 
the accessible memory size to 24 kilobytes provides the 
8086 with 8 kilobytes of RAM that only it can access. 
This private area can be used for the processor's stack, 
interrupt jump table and other special system paramet
ers that are generally protected from other Multibus 
masters. The only addressing restriction is that the 
memory block accessible to the Multibus cannot cross a 
128-kilobyte boundary. 

Suppose a Multibus master wants to load a program 

Electronics/October 12, 1978 

into the iSBC 86/12's dual-port RAM for execution. 
Since the 8086's view of the DP-RAM address space is 
fixed, the Multibus address must be translated into the 
on-board 8086 memory space. The DP controller 
performs this translation by mapping the TOM pointer 
(as seen by other Multibus masters) to 8086-address 
07FFFH, the. top of the 8086's on-board RAM. Point
er - I is mapped to the top of 8086 on-board RAM- I, 
and so on. 

In the example shown in Fig. 3, the Multibus address 
selection is divided into three parts-two selecting the 
TOM pointer (X and Y) and one sel.ecting the size of the 
accessib.le memory (Z). The TOM pointer is equal to a 
128-kilobyte segment (X) plus address displacement (Y) 
from that segment. In this example, X is set to COOOOH 
and Y is set to OBFFFH, so the TOM pointer equals 
CBFFFH. Next, the size of the accessible memory (Z) is 
set, in this case to 8 kilobytes. This address translation 
makes the top 8 kilobytes of the 8086's RAM locations 
06000H to 07FFFH available to another Multibus 
master when it addresses locations CAOOOH to 
CBFFFH. The 8086 still has 24 kilobytes (OOOOOH to 
05FFFH) of private memory. 

Multiprocessing schemes 

In multiprocessing systems, a master must be able to 
access the system without another master obtaining the 
bus. The iSBC 86/12 incorporates bus~arbitration logic 
to effect these transactions. Since the system bus is only 
requested when a system resource is needed, the iSBC 
86/12 can perform true parallel processing with other 
iSBC 80 or 86 masters. 

A typical example is the use of a common memory 
location that contains the status byte (busy/hot busy) of 
a floppy-disk controller. When the floppy disk is needed, 
the master must first read the location and, if 11ot busy, 
write the status word without another master. obtaining 
the bus (to use the floppy disk). A bus-lock function.on 
the iSBC 86, once enabled, allows the iSBC. 86 to 
maintain control of the system bus until the lock is 
disabled by program control. This bus-lock function may 

1-242 AFN·01931A 



NEW MULTIBUS MEMORY ORGANIZATION 

Data Master BHEN ADRO 

LOW EVEN BYTES 

8-bit 8-bit 
even 16-bit 0 0 
address mixed 

HIGH ODD BYTES 

LOW EVEN BYTES 

16-bit 16-bit 0 

HIGH 000 BYTES 

LOW EVEN BYTES 

8-bit 8-bit 
odd 16-bit 0 
address mixed 

HIGH ODO BYTES 

be activated in one of two ways-by an output bit from 
the resident 8255A peripheral-interface chip or by a 
software prefix on any 8086 instruction. The iSBC 86 
can perform the test and set function by exchanging the 
accumulator with the memory location, preceding the 
instruction by a lock prefix. For example, the status 
word is read into the accumulator and, without another 
intervening bus cycle, a busy status is written. The 
accumulator is then tested: if busy-try again (writing a 
busy does not destroy status as it was already busy); if 
not busy, the floppy disk is now under the master's 
control and the status location is set to busy. 

The iSBC 86/12: a design tool 

For system debugging and full-speed execution, the 
iSBC 86/12 can be linked to the Intellec microcomputer 
development system. Programs generated on the Intellec 
system can be downloaded into the iSBC 86/12 RAM via 
cables. Through a virtual-terminal capability, the Intel
lec console can directly access an iSBC-resident monitor, 
which provides commands for software debug. Once the 
debugging cycle is completed, the user has the option of 
uploading the software back to the Intellec for storage 
on diskettes. 

The Multibus and form-factor compatibility of the 
8-bit iSBC 80 and 16-bit iSBC 86 single-board comput
ers provide a degree of design flexibility previously unob
tainable. Initial design problems can be solved with 
low-cost 8-bit hardware. As product requirements 
evolve, 16-bit performance can be added. Eventually, 8-
and 16-bit multiprocessor solutions can be conveniently 
implemented. 

Consider the application shown in Fig. 4, an alarm 
and monitoring system in a typical process plant. Sixteen 
differential inputs from pressure and flow transducers 
are sampled once every second, then compared to high 
and low limits previously entered through thumbwheel 

Data paths 

EVEN-BYTE BUFFER 0o-7 

SWAP-BYTE BUFFER 

ODO-BYTE BUFFER D B-F 

EVEN-BYTE BUFFER D 0-7 

SWAP-BYTE BUFFER 

ODD-BYTE BUFFER DB-F 

EVEN-BYTE BUFFER D 0-7 

SWAP-BYTE BUFFER 

ODD-BYTE BUFFER D B-F 

switches. The iSBC 711 analog-input board takes care of 
sampling the inputs and the 8-bit iSBC 80120-4 com
pares the data to the high and low limits. Whenever 
these limits are exceeded, an alarm LED lights up and the 
alarm condition is logged on the system teletypewriter 
along with input identification, high limit, low limit and 
sampled value. 

Closed loops 

Instead of an open-loop system, suppose the design 
must be enhanced to control four output variables
thereby making it a closed-loop system. The sampling 
rate must be increased to once every third of a second 
and more processing will be required to run through the 
control algorithm and output the control-loop data. For 
this application, and iSBC 86/12 replaces the 80120-4 to 
handle the higher processing requirements. An iSBC 724 
analog-output board is also added to provide the four 
output-control variables (see Fig. 5). Carrying this 
example one step further, one may want to dedicate 
another processor to controlling valves, vents, and damp
ers that in turn affect pressure and flow parameters in 
the system. This can be done by adding an iSBC 80/05 
in a multimaster arrangement as shown in Fig. 6. 

Finally, an iSBC 86/12 can be used with an iSBC 544 
intelligent communication-controller to supervise four 
closed-loop systems of the type shown in Fig. 6. The 
86/ l 2 of each system interfaces with the supervisory 
system via its serial interfaces, which are connected to 
the iSBC 544's serial ports (see Fig. 7). The iSBC 544 
performs the control functions associated with the line 
protocol. The supervisory iSBC 86/12 can access the 
iSBC 544's dual-port memory and can perform further 
processing of the data received from the four closed-loop 
systems. In this configuration large amounts of memory 
may be required; since the iSBC 86/12 can address up to 
1 megabyte, this presents no problem. 0 

1-243 

Electronics/October 12, 1978 
AFN-01931A 





ARTICLE 
REPRINT AR·122 



FEATURE 

A new family of MULTIMODULE™ boards 
extends the solutions proviped by 

Intel's single board computers 

Figure 1. The iSBX 350™ Programmable l/OMULT.IMODULEplug·in, 
shown here, connects directly on one end into the special iSBX 
bus connector and screws onto the edge of the single board com· 
puter on the other end. 

A cbi:nplete new family of products, called 
MULTIMODULE hoards, has been announced 

•. by In•tJ;l, Corporation. The new MULTI· 
.. . MOpULE boards designed to extend the func

. tional capabilities of· single board computers at much 
lower cost than has bc~n previously possible. Intel is 
supporting the MULTIM()DULE concept with a new 
bus sta:mlard:..._the iSBX bus. The iSBX bus will now he 
desigrted into a he\Y generatiort of single hoard com
puters to. <J<Chicve compatibliity with. the emerging iSBX 
bus compatible. MULTIMOI)ULE ptcJduq liry.e. Uscrs of 
Intel's single hoard comp\.1tcrs can incrementally 
eipan(l syst~mresourccs by ag.ding small 12.1.i.S" x 3.7") 
iSBX '.Ml)LTIMODULE boards which. plug directlyinto 
iSBC h6ards. ' ' · · "·' ·· · 

Three newiSBX bus MULTIMODULEplug-ins have 
been introduced-modules for parallel I/O, serial I/O, 

1·246 AFN-01931A 



Figure 2. The iSBX 350™ Programmable f/O MULTIMODULE™ · 
board provides 24 programmable 1/0 lines using the 8255A·5 pro
grammable peripheral interface. Sockets are provided for inter· 
changeable line drivers/terminators. 

Figure 3. The iSBX 351™Serial 1/0 MULTIMODULE board extends 
the serial communications capability of a single board computer 
via an Intel~ 8251A USART. It incl_udes an on-board programmable 
baud rate generator, two programmable 16-bit BCD/binary timers, 
and RS232C or RS422/449 interfacing. 

Figure 4. The iSBX 332™ Floating Point Math MULTIMODULE 
board uses· an Intel" 8232 Floating Point Processor and is com· 
patible with the new proposed IEEE format. It provides users with 
both single-precision (32·bit) and double-precision (64-bit) 
arithmetic functions. 

and floating-point math. The showcase for the MULTI
MODULE family is the iSBC 80/lOB board-the first 
iSBX bus compatible single board computer. 

MULTIMODULE™ boards allow users to 
tailor board level products 

Customers can choose MULTIMODULE boards to 
precisely configure single board computers for their in
dividual applications at a lower cost. The MULTIMOD
ULE boards enable users to buy exactly the capabilities 
that they require for their iSBC-based systems. This 
can, of course, keep system size and system cost at a 
minimum. 

Any of the three new iSBX bus MULTIMODULE 
products-the iSBX 350 Programmable 1/0, the iSBX 
351Serial1/0, and the iSBX 332 Floating Point Math 
board-plug into a special interface called the iSBX bus 
on the iSBC 80/lOB single board computer, (see Figure 
l). The iSBX bus is being introduced by Intel to facilitate 
the interface betweeen the iSBX MULTIMODULE 
boards and the iSBC products. The iSBX bus will 
become a standard, similar to the standard MULTIBUS 
system architecture. The new iSBX bus allows system 
expansion through the new MULTIMODULE boards 
without making any demands on the system's MULTl
B US interface. As a result, the system design achieves 
maximum on-board performance while freeing up the 
MULTIBUS interface for other system activities. 

iSBC 80/108™ board is customer-expandable 

The new iSBC 80 I lOB single board computer is fully 
compatible with the popular iSBC 80/lOA, but it is 
customer-expandable in "all directions'.' This board can 
be expanded in three dimensions to tailor EPROM, 
RAM, and 1/0 needs directly on the board. This gives a 
user a built-in adaptablility on one board that was 
previously unattainable. First, the user can choose four 
types of Intel PROMs-the 2708, 2758, 2716 or 2732-
expandable up to 16K bytes. Second, lK of RAM 
memory is included on-board and may now be extended 
up to 4K with the use of standard Intel 2114A-5 lK x 4 
static RAMs. Sockets on the 80/lOB board are provided 
for these additional RAMs. Input /output is the third 
dimension in every single board computer and may now 
be expanded on-board the iSBC 80 I lOB by using one of 
the iSBX bus MULTIMODULE boards. In addition, a 
Ul4 millisecond timer has been added as a standard 
feature of the iSBC80/10B board. In comparison, the 
iSBC 80/ lOA board has only lK of on-board RAM, SK of 
EPROM memory, no 110 or memory expansion 
facilities and no timer. 

Two of the new MULTIMODULE boards-the iSBX 
350 and iSBX 351-provide expansion to the I I 0 
already on the iSBC 80 I lOB board. The iSBX 350 Pro
grammable 110 MULTlMODULE (see Figure 2) pro
vides 24 II 0 lines with sockets for interchangeable line 

1-247 AFN·01931A 



iSBC 80/108 ™Single Board Computer 

Here's what ISB)(TM bus MULTIMODULES™ 
provide the user: 
•The ability to incrementally expand the iSBC Single 

B<:>ard Computer, via iSBX bus, allowing the user to 
add only the function his application requires. 

•The on-board addition of totally new capabilities 
(mathematics processing and the like) to single 
board computers. 

• Maximum performance by reducing traffic required 
for standard expansion boards on the industry stan· 
dard MULTIBUS interface. 

•Compatibility with future 8-bit and 16-bit single 
board computers from Intel 

• A high-reliability, 36-pin iSBX 960·5 male connector 
for customer design 

drivers and terminators. The iSBX 351 Serial II 0 
MULTIMODULE (see Figure 3) provides program
mable, synchronous I asynchronous RS232C or 
RS422/ 449 compatible serial expansion with fully soft· 
ware selectable baud rate generation. Additionally, two 
programmable 16-bit BCD and binary timers are 
available, allowing iSBC 80/lOB users to implement 
programmable timing functions directly on the board. 

A third MULTIMODULE board which users may 
select, provides additional on-board mathematics 
capability to their single board computer. The iSBX 332 
Floating Point Math MULTIMODULE board (see Figure 

New iSBX 960·5™ MULTIMODULE™ connectors 
are available off-the-shelf 

4) is compatible with the proposed IEEE format stan
dard. It offers single-pr1Ccision (32-bit) and double
precision (64-bit) arithmetic functions including Add, 
Subtract, Multiply and Divide. It also includes end-of
operation and error interrupts to its host iSBC single 

1-248 

board computer and full software reset control. 
User may easily implement their more specialized 

requirements on the new iSBX bus through a readily 
available 36-pin male connector, the iSBX 960-5 
(packaged with 5 connectors). In addition, Intel is pro
viding an iSBX bus specific;ation describing the elec
trical and mechanical parameters of the interface. The 
iSBX 960-5 male connectors mate directly to the female 
iSBX bus connector on the iSBC 80 /10B single board 
computer. The connector, together with th~ iSBX bus 
specification, allows system designers to take full ad
vantage of MULTIMODULE benefits. 

New MULTIMODULES boards will be introduced
as will new generation iSBX bus compatible iSBC single 
board computers-by Intel throughout the remainder of 
1980 .and into the future. MULTIMODULE boards and 
the iSBX bus represent a maior commitment by Intel for 
the future and offer system designers new options to 
complement single board computers and MULTIBUS 
expansion. 

The immediately available MULTIMODULE 
family-with the iSBC 80/lOB single board computer
provides great flexibility and savings for users. The op
tions now exist to expand a system in small increments 
with MULTIMODULE boards, or in large increments 
with MULTIBUS boards .. And, with the three dimen
sional expansion capability of the iSBC 80/lOB board, 
the user may configure his entire system on-board to 
achieve a single board, low cost solution. 

PRICE: Call your lcica!Irttel sales office or distributor for 
the latest.prices on all of the MULTIMODULE 
prod tic ts 

AVAILABILITY: Now 

LITERATURE iSBC 80/lOB Single Board Computer N/C 
Data Sheet 
iSBX 350 MULTIMODULE Data Sheet NI C 

iSBX 351 MULTIMODULE Data Sheet NI C 

iSBX 332 M ULJIMODULE Data Sheet NI C 

AFN-01931A 



ARTICLE 
REPRINT 

Reprinted from ELECTRONICS, April 10, 1980. Copyright McGraw-Hill, lnc., 1980. All rights reserved. 

1-249 

AR-123 

August 1980 

AFN·01931A 



Special-function modules 
ride on computer board 

Smaller cards donate floating-point processing or added serial and parallel 1/0 
to primary single-board computer; memory is extensible on the main card 

by Gary Sawyer, Jim Johnson, David Jurasek, and Steve Kassel, 1n1e1corp., Hillsboro. ore. 

0 In the design of board-level computers, two basic 
methods coexist. One is to pack each card with inte
grated circuits to the limits of its capacity, and the other 
is to distribute the computer functions among other 
boards occupying additional card slots. 

Both approaches have their advantages. The single 
powerful module conserves space and expensive connec
tors, while the decentralized boards allow the user to 
pick and choose functions-and add them incremental
ly-although the expense of one board might spell over
kill for one particular application. 

A new concept in single-board computer architecture 
strikes a neat compromise between both camps. Rather 
than cram more chips on an already overstuffed board, 
the idea is simply to provide it with a connector for 
plugging in smaller modules having limited functions for 
specialized applications. 

Best of both worlds 

This is the idea behind iSBX Multimodule boards, 
which cost from $155 to $450 apiece. Plugging into a 
primary processor card, I 0.5-square-inch boards with 
various types ()f memory or input and output functions 
provide the larger single-board.computer with more ver
satility. Linking Jhe base board and these M ultimodule 
boards is a new 36-line bus called. the iSBX bus, for 
single-board expansion .. This interface is destined to 
match the popularity of the main board's Multibus inter
face connector (Fig. I). 

The iSBX bus is derived directly from the .on-board 
microprocessor system bus and, as such, an iSBX
compatible board becomes an integral element of the 
single-board computer. The physical interface uses a 
unique connector designed specifically for the iSBX bus. 
The bus is brought to a female connector on the single
board computer; its male equivalent is resident on the 
iSBX board (Fig. 2). 

The iSBC 80/ I OB board in Figs. I and 2 is the first 
single-board computer to be compatible with the iSBX 
bus. Upwardly compatible with its predecessor, the iSBC 
80/ I OA, the iSBC 80/ I OB is functionally equivalent but 
offers significant enhancements. . 

The iSBC 80/ I OB board offers direct functional 
expansion in three dimensions-not only read-only mem
ory (as in the iSBC 80/IOA), but also static random
access memory and input and output, as facilitated by 

Electronics/ April 10, 1980 

the Multimodule boards. One kilobyte of static RAM is 
provided along with sockets for expansion in increments 
of 1-K bytes to 4-K bytes using standard 2114A-5 memo
ries. Read-only memory may be expanded with standard 
ultraviolet-light-erasable and mask-programmable types 
to 16-K bytes. 

The iSBC 80/IOB also features an on-board 
1.04-millisecond timer with ongoing clocking that users 
may optionally configure for microprocessor interrupts. 
In addition, power-fail control is provided for the 2114A-
5 static RAMs, enabling the user to add battery backup if 
the memory contents must be preserved. 

Three Multimodule boards 

Being introduced along with the iSBC 80/ I OB are 
three Multimodule boards that expand the functional 
capacity of the single-board computer. Two of these, the 
$155 iSBX 350 and $230 iSBX 351, provide the same 
kind of input/output functions as are to be found on the 
processor board, only more of them. 

For example, the 48 programmable 110 lines on the 
iSBC 80/ I OB board may be expanded to 72 lines by 
simply plugging in the iSBX 350 module-a 50% 
increase. Serial 110 is similarly expanded with the iSBX 
351 module, which provides a programmable universal 
synchronous-asynchronous receiver/transmitter, or 
Usart (an 8251 A), for compatibility with the RS-232-C 
and RS-449/422 interfaces. The iSBX 351 module fur
ther offers software-selectable baud rates and two pro
grammable 16-bit binary or binary-coded decimal 
timers. 

The third M ultimodule board adds otherwise unavail
able high-speed math capabilities to the iSBC 80/1 OB 
board. The $450 iSBX 332 board uses the 8232 floating
point processor for arithmetic compatible with the stan
dard currently being proposed by the Institute of Electri
cal and Electronics Engineers. 

Many applications require a custom design. To com
plement the standard family of Multimodule boards, the 
iSBX 960c5 is provided. This includes five male iSBX 
connectors, and a full bus specification is available for 
custom interfacing by the user. This combination per' 
mits a user to satisfy his or her requirements for special
ized 110 interfaces with the M ultimodule concept. 

The Multimodule concept can be divided into two 
logical elements: base boards and Multimodule boards. 

AFN·01931A 



SlRIAL 

RS 232 C 
COMPATIBLE 

DEVICE 

OAT A/CONTROL 
INTERFACE 

RS 232 C 
INTERFACE 

TELETYPE 
WRITER 

~ 

SERIAL 
DATA/CONTROi 
INTEHFACE 

TTY 
INTERFACE 

BAUD RAH 
SELECTOR 
(JUMPERS) 

USER DESIGNATED 
PERIPHERALS 

48 PROGRAMMABLE 
PARALLEL INPUT' 
OUTPUT LINES 

1.04-ms 
INTERVAL 

TIMER 

DRIVER/ 
TERMINATOR 
INTERFACF 

USER-0 ESIGNATED 
1SBX MULTIMOOULE 

BOARD 

1SBX BUS 
INTERFACE 

1 t"-
NEW BUS 
STANDARD 

1SBX BUS 
MULTIMDDULE 

CONNECTOR 

L~ POWER FAIL 
INTERRUPT 

JUMPER ·y 
SELECTED --- rt ..... [ 

l INTERRUPTSELfCTOR 
(J II MPERSI 

SOCKETS FOR 
16 K-BY-8 BIT 

READ ONLY 
MEMORY 

OR ERASABLE 
PROGRAMMABLE 

ROM 

1-K-BY'8-BIT 
RANDOM 
ACCESS 

MEMORY 
(SOCKETS TD 

4 K-BY-8·BITS) 

.... .. ... 
PROGRAMMABLE 

COMMUNI 
CATIONS 

INTERFACE 
(USART) 

8080A 
CENTRAL 

PROCESSING 
UNIT 

PROGRAMMABLE 
PERIPHERAL 
INTERFACES 

• • _. 
:!RiI t • ' I • • [ MULTIBUS 

INTERFACE 

L 

1. Distributed. The first processor card to receive the iSBX bus connector 1s the 1SBC 80/ 108, a follow-on ~o the iSBC 80/ 10A. The off-board 

system bus is the Multibus, which interfaces to the on-bocird system bus. This, in turn, connects to the Multimodule board connector. 

The base board is the master of the system in that it 
controls communication between the base's microproces
sor and the Multimodulc board's port. Though the first 
base board is a single-board computer the iSBC 
80/IOB Multibus-co111patible slaves and intelligent 110 

boards will also incorporate iSBX bus interfaces. The 
Multimodule board is a slave of the system in that it 
carries out 110 eommands from the base board. 

The iSBX interface 

The iSBX bus specification includes both electrical 
and mechanical characteristics. The mechanical inter
face is convenient and rugged; the Multimodule board is 
mounted to the base board in two places. at the top with 
a screw and at the bottom by the iSBX bus connector. 
The connector is extremely reliable. It has gold-plated 
phosphor-bronze contacts, it is keyed to assure proper 
orientation, and a shroud protects its pins during han
dling. The connector also incorporates interlocking tabs 
to ensure a solid mechanical interface. 

Electrically, the iSBX bus interface lines can be 

Electronics I April 10, 1980 

grouped into six classes control, address and chip 
select, data. interrupts, options, and power--for a total 
or 36 signal lines_ 

Control lines can be further grouped into those for 
commands, initialintion, a clock. and system control. 
The two command lines (!ORD/ and IOWRT/) arc 
active-low 110-read and -write signals that control the 
communication link between the base board and the 
Multimodule board. With a chip-select signal, an active 
command line indicates that the address lines arc valid 
and that the Multimodulc board should perform a speci
fied operation. 

The initialize line (reset) is an active-high input line 
from the base board that puts the Multimodulc board 
into a known internal state. The clock line (MClK) has a 
frequency of 10 megahertz, +O'X. or -10%. Being asyn
chronous with respect to all other Multimodule signals, 
this fre4uency can vary from base board to base. board. 

The remaining control lines, MWAIT/ and MPST, arc 
output signals from the Multimodulc board that control 
the state of the system. MWAIT/, active low, puts the 

1-251 AFN-01931A 



2. Three to one. Below is the iSBC 80/ 106 main processor board. and above it are the three new Multimodule boards. They are. from left to 
right, the iSBX 351serial1/0 module, the LSBX 350 parallel 1/0 module, and the iSBX 332 floating-point mathematics Multimodule board. 

base-board processor. into a wait state, allowing the 
Multimodule board extra time to perform a requested 
operation, if necessary. MWAIT/ is generated from 
address and chip-select information only. MPST is tied to 
ground on the Multimodule board to inform the base 
board that a Multimodule board has been installed. 

The second class of iSBX bus lines includes the 
address lines (MA0-MA2) and the chip-select lines 
(MCS01 and MCS 11). The base board decodes 110 
addresses to generate the chip-select signals for the 
Multimodule boards. In so doing, it normally decodes all 
but the three lowest-order addresses (MA0-MA,). A 
base board normally reserves two blocks. of eight 110 
ports for each iSBX bus connector provided. 

Defining the lines 

Eight bidirectional data lines (MD0-MD1, active 
high) carry information to and from the Multimodule 
ports. MDo is the least significant bit. The two active 
high interrupt lines from the M ultimodule board, 
MINTR0 and MINTR 1, make interrupt requests to the 
base board. 

Two optional lines, OPT0 and OPT,, are connected to 
wire-wrapped posts on both the base and M ultimodule 
boards. They may serve either as additional interrupts 
from the Multimodule board or as special signals from 
the base board. 

Electronics I April 10, 1980 

Finally: aH !:last: boards provide + 5 and ± 12 volts to 
the Multimodule boards. These power lines complete the 
six iS BX bus classes .. 

The primary function of the iSBX bus is to provide a 
path for 110-mapped data between base board and Mui, 
timodule board. This happens when the base board per
forms an 110-read or 110-write operation. There are two 
types of 110-write operations, and the M ultimodule 
board determines which is performed. 

Data transfers 

The first is a full-speed 110 write (Fig. 3). The base 
board generates a valid 110 address aBd chip-select and 
activates the IOWRT / line after the set-up times are met. 
The IOWRT/ line will remain active for a minimum of 
300 nanoseconds and the data will be valid for a mini
mum of 250 ns before IOWRT/ is removed. The base 
board then removes the data, address, and chip-select 
signals after the hold times shown in the timing diagram. 
. The alternative 110 write is a write-with-wait, 

used by Multimodule boards that cannot write into an 
110 port at full speed. Again, the base board generates a 
valid address and chip-select. The Multimodule board 
activates the M-W:AIT / signal based on address and chip
select information. This will remove the ready condition 
from the processor, causing it to go into a wait state after 
the write command has been activated and valid data 

1-252 AFN·01931A 



ADDRESS 
(MA0-MA2) 

CHIP SELECT 
(MCS1) 

WAIT 

1/0 WRITE 
(IOWRT) 

DATA BUS 
(MDo-M07 ) 

VALID ADDRESS 

VALID DATA 

FULL-SPEED WITH WAIT STATE 

3. Write types. Two modes of sending information to a Multimodule board are available: full-speed and with a wait state. The wait line is not 

used tor peripherals that meet the full-speed specifications. The wait signal extends the time for which data remains valid. 

provided. The Multimodule board will remove the 
MWAIT/ signal-allowing the processor to leave its wait 
state-when it has satisfied the write-pulse-width 
requirement. The base board removes the write com
mand, then the data, address, and chip-select signals, 
after the hold times are met. 

There are two types of 110-read operations as well, and 
again they are determined by the Multimodule board. 
The first is a full-speed 110 read (Fig. 4). The base 
board generates a valid 110 address and chip-select and, 
after the set-up timings are met, it activates the !ORD/ 
line. The Multimodule board must generate valid data 
from the addressed 110 port in less than 250 ns. The base 
board reads the data and removes the command, 
address, and chip-select signals as indicated in the timing 
diagram. 

Read-with-wait, whose timing is at right in Fig. 4, is 
used by Multimodule boards that cannot perform a read 
operation under the full-speed specifications. The base 
board generates a valid address and chip-select, just as 
with a full-speed read. However, the Multimodule board 
now activates the MWAIT/ signal, which in turn removes 
the ready input to the base's processor, putting it into a 
wait state. The processor activates the !ORD/ signal 
before going into a wait state. 

The Multimodule board will remove the MWAIT/ sig
nal when valid data can be read from the data bus. After 
reading the data, the base board removes the command, 
address, and chip-select signals. 

The iSBX 351 serial 110 board is a good example of 
how easily large-scale integrated circuits may be inter
faced by the iSBX bus. It presents the iSBC 80/lOB 

ADDRESS 
(MAo-MA,) 

CHIP SELECT 
(MCS1) 

WAIT 

1/0 READ ___ __,,__ 

VALID ADDRESS 

(IORD) (\,.;,~-----" 

board with a second serial port. 
The iSBC 351 board (Fig. 5) provides a synchronous 

or asynchronous serial communications channel with 
programmable format and baud rates up to 64 kilobits 
per second. In the synchronous mode, the user selects via 
software the number and format of the synchronization 
characters and the number of data bits. Parity may be 
even, odd, or disabled. In the asynchronous mode, the 
number of data bits and stop bits, as well as parity 
generation and detection, may be specified under pro
gram control. The added channel is compatible with 
either the RS-232-C or RS-422/449 interface. 

Two additional 16-bit counters are on the board for 
other uses. Their mode of operation and count value may 
be written or read under program control. With the 
interrupt lines provided by the iSBX bus, they may also 
be used as real-time interrupt sources (see Table 1 ). 

As stated earlier, an 8251A Usart gives the iSBX 351 
module a high-performance communications channel. In 
addition, an 8253 programmable interval timer (PIT) 
provides the three counters for clock generation and 
timing. Note in the block diagram of Fig. 5 that both 
devices are connected directly to the data, address, and 
command buses with no buffers. (Each chip, however, 
has its own chip-select line, preventing data bus conten
tion.) The absence of buffers keeps the parts count down 
and the speed up. 

Also shown in the extra block diagram are two option
al lines that may be used as additional interrupt lines or 
to interface to the additional timer/counters. There are 
four interrupt sources on the board. Two, from the 
8251 A, indicate either that a character has been received 

FULL-SPEED WITH WAIT STATE 

4. Read typH. As in writing data into a Multimodule board, information is read from it in one of two ways: full speed or read-with-wait. The wait 
state extends the length of time that data is valid. This is necessary tor slower transactions such as analog-to-digital conversions. 

Electronics/ April 10, 1980 
1-253 AFN-01931A 



CHIP SELECT 0 

CHIP SELECT 1 

8251A 
USART 

CRYSTAL 
OSCILLATOR 

ny1up191t11+ 

JUMPER 
MATRIX 

I 

RS-232-C 
AND 

RS-422 
BUFFERS 

INTERFACE 
MOOE 

SELECT 

5. More serial 1/0. The iSBX 351 serial inpul/oulput Multimodule board provides the base processor with an additional synchronous or 

asynchronous communications channel-one that is compatible with either the RS-232-C or the RS-422/ 449 interface specifications. 

for reading or that the transmitter buffer is empty and 
ready for transmission. Two other interrupts may be 
generated by the timer/counters. The timers count from 
an on-board crystal-controlled oscillator. 

Compatible with both 

The iSBX 351 module uses a unique split-edge con
nector to provide compatibility with both RS-232-C and 
RS-449 interfaces. RS-232-C is commonly used to com
municate with terminals, modems, and other equipment 
up to a distance of 50 feet away. RS-422 is a new 
interface that allows high-speed data transfers of up to 
4,000 feet through differential lines that reduce noise 
such as crosstalk. The iSBX 351 module is the first 
expansion board to offer both interfaces. 

The iSBX 351 module is programmed by a series of 
110-read and -write commands. Table 2 shows the 110 
port assignments on the iSBC 80/108 board by way of 
explaining the code sequences in Table 3 that run on it. 
The first routine in Table 3, INIT, initializes the 8251A 
for asynchronous operation and programs the 8253 to 
generate a baud rate of 9,600. XMIT takes a character 
from the C register of the 8080A and sends it to the 
Usart for transmission. RECV gets a character from the 
Usart and places it in the accumulator. Note that in both 
data-transfer routines the Usart status register is check-

Electronics/ April 10, 1980 

ed to ensure proper operation. 
The iSBX 350 programmable 110 Multimodule board 

provides 24 general-purpose 110 lines (or three 8-bit 
ports) via a standard 50-pin edge connector, giving the 
iSBC 80/IOB a total of 72 110 lines. The 8255A is the 
only LSI component on the board, and six sockets are 
provided for line drivers or terminators. 

Two bidirectional inverting 4-bit bus transceivers are 
provided for one of the three ports; sockets for the other 
two are TTL-compatible, allowing the use of inverting, 
noninverting, or open-collector drivers. When either of 
these other two ports is used as an input, the lines may 
be terminated either with I-kilohm pullup resistor packs 
or with 220/330-ohm pullup/pulldown resistors. 

TABLE 1 1SBX 351 SERIAL INPUT/OUTPUT BOARD'S 
BAUD RATES AND INTERVAL TIMES 

Minimum values Maximum values 

Baud 18.75 bauds 64 kilobauds 
generator {limited by 8251A) 

Single timer 1.63 µs 428 ms 

Dual cascaded 3.26 µs 7.8 h 
timers 

1-254 AFN-01931A 



TABLE 2 tSBX 351 ADDRESS ASSIGNMENTS 

Universal data port FD, F2, F4, or F6 synchronous/ 
asynchronous 
receiver- tra nsm 1 tter 

control port Fl, F3, F5, or F7 

Timer counter 0 FB or FC 

counter 1 F9 or FD 

counter 2 FA or FE 

control port FB or FF 

TABLE 3 SERIAL INPUT /OUTPUT ROUTINES 

INT: MVI A, 96 Mode word to 8253 counter 2 

OUT OFB 

MVI A, 8 Divide value to 8253 counter 2 

OUT OFA 

MVI A, OFE Mode word to 8251 A Usart 

OUT OF1 

MVI A, 27 Command word to 8251 A 

OUT OF1 

RET 

XMIT: IN OF1 Check Usart status to make sure it's 

ready to transmit a character 
ANI 01 

JZ XMIT Loop until ready 

MOV A, C Get data charncter 

OUT OFO Send it 

RET 

RECV: IN OF1 Check Usart status to see if a new 

character has been received 

AN! 02 

JZ RECV Loop until data is available 

IN OF1 

ANI 38 Check framing, overrun, and parity 

error bits 

JNZ ERROR Jump to an error handler if there 

are any problems 

IN OFO Get data 

RET 

The iSBX 350 module supports all three 8255;\ 
modes: basic 110, strobed 110, and strobed bidirectional 
bus 110. Several of the handshaking signals arc available 
as interrupt sources, and an additional external interrupt 
may be brought in via the edge connector. 

Programming this board is as simple as programming 
the 8255As on the iSBC 80/ I OB itself. First, a mode 
word is written to the control port to specify the opera
tional mode for each port. Data transfer may then begin, 
in the form of 110-read or -write operations. 

The iSBX 332 module is an accurate 32- or 64-bit 
lloating-point processor that performs arithmetic opera
tions in accordance with the proposed IEEE floating-point 
standard. It uses the 8232 floating-point processor. 

The math module uses one data format that has two 
word lengths of 32 or 64 bits. The board will add, 
subtract, multiply, and divide for both word lengths. 

Electronics/ April 10, 1980 

Command 
type 

32 bit 

32-bit 

32·b1t 

64-bit 

64bit 

64bit 

64-bit 

~ 

32·bit 

64·bit 

32~bit 

64~bit 

32·brt 

64·bit 

32·bit 

TABLE 4 COMMAND MNEMONICS OF rSBC 332 
FLOATING POINT MATH MULTIMODULE 

Mnemonic 

SADD 

SSUB 

SMUL 

SDIV 

DADD 

DSUB 

DMUL 

DDIV 

CLR 

CHSS 

CHSD 

PTOS 

PTOD 

POPS 

POPD 

XCHS 

Command description 1 

Add TOS to NOS. Result to NOS. Pop 
stack. 

Subtract TOS from NOS. Result 
to NOS. Pop stack 

Multiply NOS by TOS. Result to NOS. 
Pop stack. 

Divide NOS by TOS. Result to NOS. 
Pop stack 

Add TOS to NOS. Result to NOS. Pop 
stack. 

Subtract TOS from NOS. Result 
to NOS. Pop stack. 

Multiply NOS by TOS. Result to NOS. 
Pop stack. 

Divide NOS by TOS. Result to NOS. 
Pop stack. 

Clear status register. 

Change sign of single-precision operand 
on TOS. 

Change sign of double-precision operand 
on TOS. 

Push single-precision operand on TOS 
to NOS. 

Push double-precision operand on TOS 
to NOS. 

Pop single-precision operand from TOS. 
NOS becomes TOS. 

Pop double-precision operand from TOS. 
NOS becomes TOS. 

Exchange single-precision operands 
TOS and NOS. 

1- abbn;via1ions: NOS next 011 stack, TOS top of stack 

Table 4 shows the instruction mnemonics and functions, 
as well as the positions in the stack (top of stack or next 
on stack) the operands and results occupy. 

The 8232 runs at 4 MHz for maximum throughput. A 
multiplication of two 32-bit quantities takes about 50 
microseconds, excluding data entry and retrieval. In 
addition, two interrupts signal the base-board processor 
of completion of an operation or an error. 

Floating-point math 

The two word lengths of the floating-point standard 
were chosen for the highest speed and accuracy. If speed 
is the primary objective, the 32-bit format gives a 
dynamic range of approximately J0·38 to J0+ 38 • If range 
and accuracy arc required, the 64-bit format spans in 
excess of I Q+ 3oo to 10-300. This wide dynamic range, in 
conjunction with highly accurate rounding algorithms, 
renders the iSBX 332 module ideal for scientific prob
lems and other applications requiring high speed, accu
racy, and range. 0 

1·255 AFN·01931A 





ARTICLE 
REPRINT 

Reprinted by permission from Computer Design Magazine. Copyright Computer Design Publishing Corp., February 1980. 

1·257 

AR-133 

April 1980 

AFN-01931A 



MULTIPROCESSING SYSTEM MIXES 
8· AND 16·BIT MICROCOMPUTERS 

Combining different single-board computers on a single 
bus and assigning to each the tasks most suited 
enable a cost-effective multiprocessing system configuration 
with improved throughput and reliability 

Joseph P. Barthmaier Intel Corporation, Hillsboro, Oregon 

Two or more single-board computers can share a com
mon system bus to provide improved performance; ' 
reliability, and cost-effectiveness in medium to large 
scale applications. Interfacing multiple computers across 
a system bus affords a dual-bus architecture in which 
global system traffic is isolated from local traffic on the 
board buses. This allows a straightforward design of 
modular multiprocessing systems that combines different 
computer boards, and allocates to each that portion of 
the overall system function to which it is best suited. 

In a typical design, 8- and 16-bit single-board com
puters ( SBCs) communicate across a system bus to ser
vice an application that requires both realtime data ac
quisition and extensive signal processing. Partitioning 
system tasks and assigning each to the appropriate SBC 
optimizes performance without adding components. Dual
port memory provides a convenient way to synchronize 

processes on different SBCs. Because most system func· 
tions are isolated on one SBC, reliability and throughput 
are increased, and implementation is facilitated. 

Sin9le-Board Computer Concept 

In earlier SBC design, the fundamental goal was to pro
vide a board containing all the resources required for a 
large variety of microprocessing applications. A typical 
processor board supplies an 8080A processor, 4k bytes 
of random access memory (RAM), sockets for up to 8k 
bytes of erasable programmable read only memory /read 
only memory (EPROM/ROM), a serial input/output (1/0) 
interface, 48 parallel 1/0 lines, three timer/counters, and 
eight levels of priority interrupt. With this hardware 
configuration, many small applications can be served 
with no need for additional memory or digital logic. 

1-258 AFN·01931A 



SINGLE-BOARD COMPUTER 

E··~ [--·1 EMORY 1/0 

·C5~.-~:Jr CD <-'.1' I 

[. J.J ~ ONBOARD 
CPU BUS 

-7\-
)' 

MEMORY 
EXPANSION 

BOARD 

Because forger appliratio11s require additio11al re
sources, an external bus structure was defined. The 
MllLTilll'S.,." system bus was desig11ed for communication 
hetween SBCs and system expa11sion hoards. Address, data, 
a11d handshake lines were defined for memory and 1/0 

transfers between sues and expa11sion hoards. There are 
hus expansion hoards for system expansion in areas of 
RAM and ROM storage, serial and parallel I ·o, analog 
r/o, and peripheral controllers. 

In Fig 1, two huses interconnect a system with an SBC 

and two expansion hoards. An onhoard hus acces"" 
local resou;·ces, and the system bus acTesses glohal re
sources. A key advantage of this structure is that an SBC 

may not require the system bus for a large portion of its 
memory or 1/0 transactions. In many applications, less 
than 10'. i of the time is taken hy system bus accesses. 
The large amount of potential system bus capacity makes 
this architecture a natural candidate for multiprocessing 
applications. As additional Siles are included in the svs
tem, the incremental amount of system hus hanchli<ith 
required is usually small. 

Motivations for Multiprocessin9 

Certain system applications benefit from using more than 
a single SBC. Motivations for constructing multiproc'essing 
systems with sues include: 
Resource sharing. In a multiprocessing system designed 
around the resource sharing concept, two or more pro
cessor hoards share a common resource, such as a high 

MULTIBUS is a registered trademark of Jnte] Corp. 

110 
EXPANSION 

BOARD 

Fig 1 Single SBC system with 
two expansion boards. CPU 
uses data path 1 to access 
local memory and II 0, and 
data path 2 to access expan
sion boards on MULTIBUS sys
tem bus 

speed mathematics hoard or a peripheral controller. 
These hoards perform independent functions with no 
relationship to one another except for the shared re
source. Low cost is the obvious motivation for using a 
resource sharing multiprocessing configuration. If two 
processor hoards share the same diskette controller, for 
example, oYerall system costs are considerably reduced. 

Enhanad system throughput and performance. In many 
a1>plications, significant impro,~eiilents in performance 
may he achiernd by using more than one processor in 
the 'yslem. Two ways of allocating or partitioning sys
tem functions among multiple processors, such as pipe
line and parallel partitioning, are shown in Fig 2. In pipe
line partitioning, system functions I tasks) are divided 
among sewral processors, so that data flow through the 
syskm is primarily serial. Each processor performs its 
portion of system functions, and then calls upon an
other processor to perform another set. An example of 
pipeline partitioning is when one processor performs 
data acquisition and huffering, while a second uses the 
data lo perform digital signal processing. 

Parallel partitioning allocates system functions among 
sernral processors in such a way that each processor per
forms a separate system task in parallel. An example is 
a system where one Jl!"Ocessor performs an industrial 
pro!'ess control loop, while another monitors and con
trols a Yarying parameter, such as temperature. 

Few systems may be characterized as totally parallel 
or pipeline partitioned; but designating systems in this 
manner can often be helpful during the system design 
phase, particularly when interprocessor communication 
software is being designed. 

Jlfodu1arlr configured systems. A prlmary design goal, 
particularly in systems that are produced in low volume, 

1-259 AFN-01931A 



SINGLE PROCESSOR 

A~Y~_J_y_l__.. 
1 

PIPELINE PARTITIONING 

is often flexibility of system configuration. Using modu
larly configured systems, independent hardware and soft· 
ware modules are desig11ed and implemented with indi
vidual processors or intelligent slave boards. When a 
particular configuration is required, the system designer 
selects the necessary hardware and software modules and 
combines them -with interprocessor communicatioil soft. 
ware. Shortened system development time, simple debug
ging, ->and a convenient upgrade path for system ex pan· 
sion are the benefits of such a technique. 

High reliability. Multiprocessing may be used to isolate 
system tasks on individual processors in applications 
where a high degree of reliability is a requirement. If 
a processor fails, the remainder of the system continues 
to operate. Redundant designs, where a second processor 
may be dynamically assigned to perform the functions 
of a disabled processor, are a· possibility. 

Multiprocessing With 
Sin9le-Board Computers 

The MULTIBUS architectural design facilitates multiproces· 
sing because multiple bus masters are accommodated, 
bus masters generate and acknowledge -bus interrupts, 
and dual-port memory and intelligent slave architecture 
can be implemented. 

Multiple Bus Masters 

A bus master is a dynamic board that takes control of 
the bus by asserting address and control lines. Only one 
bus master may control the bus· at any given ·moment. 
Examples of bus masters include single-board computers 

PARALLEL PARTITIONING 

r---""] 

ic_r 

B _Lx_J_xj _x_l_xj ___ ~ 

Fig 2 Pipeline and parallel 
partitioning. Single processor 
A performs tasks X, Y, and Z. 
Pipeline partitioning among 
three processors allows pro
cessor B to perform task X 
and pass result to processor 
C; processor C to perform 
task Y and pass result to 
processor D; and processor D 
to perform task Z. Each pro
cessor except first must wait 
for input data generated as 
output from another processor. 
Parallel partitioning allows 
each processor to perform its 
task independently D _l_Z_JZ L' J z I 

1-260 

and direct memory access ( DMA) contrnllers_. _A bus 
slave is a passive element on the bus that. does not assert 
addre>S and control lines. Examples of bus slaves include 
memory or 1/0 expansion boards and intelligent .slaves. 

Several control lines exist on the bus so that potential 
bus masters can exchange control. These control lines, 
plus logic on the master boards, implement a priority 
scheme in which the highest priority master requesting 
the bus obtains control. There are two priodty resolution 
schemes for exchange of the bus, serial and. parallel. l's· 
ing serial priority resolution, there may be up to three 
bus masters in the system: the parallel technique allows 
up to, 16. A bus master is always given the opportunity 
to complete a bus transaction before being. preempted by 
a higher priority master., In addition, bus masters may 
retain control of the bus by "locking'' the bus. The bus 
lock .feature is required when a master .must have ex
clusive control of the bus_ for such functions as testing 
and setting software semaphores and completing opera· 
tionsinvolvjng 1/0 devices. 

Since SBCs have extensive onboard resources, system 
bus transactions are not required for all 1/0 and memory 
accesses. Depending on the application and system design, 
multiple bus master systems wit_h a _ sml!ll • nu~per of 
transactions can be configured. 'fhe system desig~ goal 
is to use onboard resources whenever possible. Frequently 
executed or time critical code should be stored in on· 
board memory to minimize system bus accesses and to 
avoid delays while contending for the bu-s. 

Interprocessor Interrupts 

Eight interrupt lines exist on the system bus. In addition 
to interrupts from I/0 slave hoards or D.MA controllers, 

AFN-01931A 



these interrupt lines can be used for communication be
tween master SBC boards. Individual master boards may 
either generate interrupts or be interrupted from one or 
more of the interrupt lines. Interprocessor interrupts pro
vide a fast and effective way for multiple SBCs to com
municate over the system bus. 

Dual-Port Memory 

Single-board comµuters have been designed with onboard 
RAM containing two access ports. Dual access µorb per
mit the onboard CPU to access the RAM directly using the 
onboard bus. Other sues also access the HAM using the 
system bus. The amount of memory available for system 
bus access may be selected from all memory accessible to 
no memory accessible, in increments of one-half or one
quarter of available memory size. This ability to block 
RAM access from the system bus provides memory pro
tection for data and code stored in those nonaccessible 
areas of the dual-port HAM. Fig 3 illustrates an example 
of two sues accessing the dual-port memory of one SBC. 

Two important benefits are gained by using the dual
port architecture. First, in a multiple-processor system, if 
two processors communicate through shared memory, 
only one must access . the memory using the system bus, 
and the amount of system bus traffic may he significantly 
reduced. Second, in a multiprocessor configuration where 
limited HAM storage is required, a separate memory 
board is not needed. Such small systems have all the 
required· system bus-accessible memory on one or more 
of the SBCs. 

Intelligent Slave Architecture 

To distribute intelligence in larger systems, the intelligent 
slave concept was developed. An intelligent slave is a 

.80/05 BOARD 

board that contains a CPU, some dedicated 1/0 capability, 
and a dual-port RAM for interfacing to the system bus. 
For example, the isuc 544.,." intelligent communications 
controller contains an 80B5A processor, four B25IA 
serial 1/0 devices universal synchronous/asynchronous 
receiver /transmitters ( USARTs), 12 levels of priority in
terrupt, and 16k of dual-port RAM. All communication be
tween a master processor hoard, such as an isBc 86/12A "' 
hoard, and the 514 takes place using the 544 dual-port 
RAM I Fig 4.). The 80B5A processor does not have the 
capability of taking control of the system bus (becoming 
a bus master) anrl accessing other system resources. 

The 544 hoard was designed to operate using only 
onhoard resources. The master SBC in the system transfers 
blocks of data and parameters to or from the 514 using 
the onhoard dual-port RAM. To facilitate communication 
with the 544, an interruµt occurs when a master SBC 
writes into the lowest byte of memory of the dual-port 
RAM. The intelligent slave board can interrupt a master 
SBC by asserting one of the system bus interrupt lines 
with an 1/0 instruction. The address space occupied by 
the dual-port HAM may he set anywhere within lM bytes; 
20 address hits are decoded. 

Primary advantage of intelligent slave architecture is 
the ease with which multiprocessing applications may be 
implemented. The intelligent slave may be sent a buffer 
of data and commands with an interrupt occurring, via 
a write to the lowest byte of memory, as a start command. 
The master SBC may continue operation with other func
tions to be notified, via an interrupt or a status byte in 
dual-port RAM, when the slave has completed a task. Since 
the intelligent slave may not access system resources via 
the system· bus, no interference with the master SBC can 
occur. 

iSHC and the combination of issc and a numerical suffix are reg
isterf:'d trademarks of Intel Corp 

MULTIBUS 
ACCESSIBLE 

MULTIBUS 
ACCESS 

BLOCKED 

F g 3 Dual-port memory archi
tecture. 8086 microprocessor 
on 86/ 12A uses dual-port con
troller to access onboard RAM. 

8086 8085A on 80105 accesses this 
ACCESSIBLE _same RAM across system bus. 

bifferent configurations allow 
8085A access to part or all 
of dual port memory 

MULTIBUS'"SYSTEM BUS ---=> 

1.c261 AFN·01931A 



86/12A BOARD 

544 BOARD 

MULTIBUS'" SYSTEM BUS 

The 86/12A Board 

The isBC 86/12A single-board computer' has many of the 
architectural features of 8-bit boards I serial and parallel 
1/0, multiple interrupt levels, and timer/counters I but 
includes a 5-MHz 8086 microprocessor and larger 
amounts of RAM and EPROM/ROM storage. The Hi-bit 
8086 permits byte and word transfers, hardware multi
ply/ divide, lM-byte addressability, extensive string ma
nipulation instructions, and many other features. The 
86/12A contains 32k bytes of dual port RAM and sockets 
for up to 16k bytes of EPROM/ROM, doubling the memory 
available on previous boards. If more RAM or El'IWM/HOM 
storage is required, memory expansion modules permit 
doubling HAM and/or EPROM/1\0M storage to 64k bytes 
of RAM and 32k bytes of El'l\OM/ROM. 

Memory expansion modules are small printed circuit 
boards that attach to the 86/12A board using sockets and 
nylon bolts. Use of the expansion modules is advan
tageous from a price/performance point of view. Price 
of either of the memory expansion modules is significant
ly less than that of an equivalent separate memory ex
pansion hoard with its own system bus interface and 
support circuitry. Memory expansion modules also offer 
higher performance since it is not necessary to use the 
system bus for memory transactions. All transactions 
take place using the onboard bus with no additional 
wait states or bus contention. 

8- and 16-bit MULTIBUS Compatibility 

The 8086 microprocessor performs 8- or 16-hit transfers 
to or from memory or 1/0 devices. When a byte ( 8-hit) 
transfer is requested from an even address, data are pre-

Fi9 4 Intelligent slave archi
tecture. 86/12A and intelligent 
slave board 544 communicate 
using dual-port RAM 

sented to the microprocessor on its low order data lines, 
DO through D7. When a byte transfer is requested from 
an odd address, data transfer must occur on the high 
order data lines, D8 through Dl5. When a 16-bit (word) 
transfer is requested, data are transferred on all 16 data 
lines, DO through 015. When an 8-bit microprocessor 
lllOBOA or 80B5A) is used, however, all byte transfers 
must take place on data lines DO through D7, the only 
lines available. 

To maintain compatibility between boards with 8-bit 
and 16-hit processors, a system bus transfer protocol has 
been developed where all byte transfers, regardless of 
whether from an odd or even address, take place on 
the low order system bus data lines, DATO/ to DAT7/; 
word transfers, however, use all 16 data lines, DATO/ to 
DATF /. To accomplish these byte transfers, an 8-bit 
buffer is used on 16-bit master and slave boards for trans
ferring data from the high order data lines on the board 
to the low order data lines of the system bus. An addi
tional signal line, byte high enable, ( BHEN/) indicates 
whether a word transfer is taking place on the high order 
and low order data lines or whether a byte transfer is 
taking place only on the low order data lines. Fig 5 
illustrates 8- and 16-bit transfers and the use of the ad
ditional buffer for transferring the signal to or from the 
high order data byte. 

~ultiprocessing System Example 

A data acquisition and signal processing system design 
demonstrates the capabilities of a multiprocessing system, 
where improved performance is mandatory. General ap
plication of the system is power spectrum analysis of 
vibration and acoustic signals. Application areas for such 

1-262 AFN·01931A 



MULTIBUS DEVICE 
CASE 16-BlT DEVICE MULTIBUS™ BHENI ADROll TRANSFER BYTE 

DATA PATH TRANSFERRED 

DO- \LOW,EV~tD~O~ DAT71 

A. 
"c>m~ 

H H 
8-BIT 

EVEN 
: 

DATO/ - DA T7I 

D8-rHIGH.-O LtfDATB/-DATF/ 
D15 ~-El'.>J:~__J · i 

DO- \Cow:EVE1-J~DATOl-DAT71 
Fig 5 Three mechanisms for 

D7 , __ ElYl§§_ l_ I byte and word transfers. All 
' byte transfers use DATO to 

B. 

D8·[HIGH:o-~~DAT&-DATF1 I 
H 

8-BIT ODD DAT7. Only word transfers use DATO/ - DAT71 
high order bus lines DATB to 
DATF. Slash (/) after name 

D15 _BffE_S _ -~t--------i---- indicates active low signal 

1 
DATO/· DAT7/ 

' 
' 16-BIT EVEN c. : H AND 
I 

DATO/ - DATFI ODD 
I 
I 

DATBl-DATF/ 

systems include vibration analysis in mechanical struc
tures such as electric motors, automobiles, aircraft, and 
buildings, as well as speech, sonar, and low frequency 
radar analysis. 

Design objective is to monitor the condition of large 
electric motors. Power spectra of vibration signals from 
various points on the motor are calculated in order to 
detect bearing wear and to predict an impending motor 
failure. Calculated power spectra are compared with ref
erence spectra, and, if thresholds in various regions of 
the spectra are exceeded, an operator alarm is activated. 
Information regarding the state of the motors and the 
reference spectra is stored on disc. 

The system monitors 16 channels of analog input sig
nals generated by pairs of accelerometers mounted on 
each of eight motors. Sampling and calculations for the 
two channels of a single. motor are performed simulta
neously; then the next motor in sequence is monitored. 

Fast Fourier transform ( FFT) of a buffer of samples 
from an analog to digital converter (ADC) performs 
power spectrum calculations. Real and imaginary parts 
of the FFT results are squared and summed to form a pow
er spectrum that is compared to the reference power spec· 
trum in order to determine if the motor vibrations are 
within acceptable tolerances. A CRT displays calculated 
and reference power spectra. At periodic intervals, data 
arc stored on disc for archiving the condition of each 
of -the motors. If the motor spectra exceed the reference 

spectra, the CRT display and a control panel indicator 
alert the operator. 

System Hardware 
As shown in Fig 6, the 711 analog input board, contain
ing a 12-hit ADC, samples the 16 analog signals from the 
motors. The 80 /05 processor board drives the 711 analog 
board and handles all system data acquisition activities. 
The 80/05 contains an 8085A CPU, 512 bytes of RAM, up 
to 4k bytes of-EPROM/ROM, a timer/counter, parallel and 
serial 1/0 lines, and four levels of priority interrupt. The 
86/12A board is the main system processor. The 8086-
based board performs all the signal processing functions, 
displays the spectra on the CRT, drives the system control 
panel, and transfers motor condition data onto disc using 
the 204 single-density diskette controller. 

Increased system performance is· the design motivation 
for using two processor boards. The 86/12A board, with 
its 5 MHZ 8086 CPU, 16-bit multiply /divide capability, 
64k bytes of dual-port RAM, and 32k bytes of EPROM/ROM, 
is used for the mathematically intensive power spectrum 
calculations. 

The 80 /05 processor board is used to offload data 
acquisition activities from the main processor. It assumes 
all the overhead of handling the 711 analog board. Sam
pling is performed at 250-,us intervals using the onboard 
timer; data from the two channels are scaled, demulti
plexed, and stored in a buffer. The 8-bit processor board 

AFN-01931A 



CONTROL PANEL 

INTELLIGENT ANALOG SUBSYSTEM 

\ms chosen for this function because it had the necessary 
onboard resources, yet was low in cost. Throughput per· 
formance improvements of up to 40'./, can be achieved 
using this 2-processor approach. 

The 80/05-711 combination assumes the role of an 
intelligent analog subsystem, when viewed by the 86;12A 
processor. The B6/12A sends the 80;05 commands via 
a parameter block, and the 80/05 collects the data samples 
in buffers. When a buffer is complete, the 80/0.5 signals 
the B6/12A using the parameter block. Thus, the 80/0.~ 
acts as an intelligent DMA controller for the 711 board. 

System Software 

Due to the large RAM requirements of the system, the 
issc 300"'" RAM expansion module is used to increase RAM 

capacity to 64k bytes. Memory has been configured to 
make 16k bytes of memory accessible to the system bus, 
with the remaining 48k bytes reserved for use by the 
onboard 8086 and not accessible to the system bus. The 
amount of 86/12A dual-port RAM that is system bus ac
cessible may be configured in 16k increments from zero 
(no memory accessible) to 64k I all memory . accessible) . 
The parameter block used for interprocessor communica· 
tion and a pair of buffers used for storage of the analog 
samples are stored in the memory accessible to the 80 /05. 
Memory not accessible to the 80 /05 contains the data and 
buffers used for the calculated averaged power spectra, 
rderence spectra, CRT displays, and disc data. The 16 
bytes of the parameter block contain all information re
quired for communication between the two SBCs in the 
system, including buffer addresses, status, size, sample 
rate, and start and end channel. 

Fig 7 is a flow diagram illustrating how buffer status 
bytes are used to synchronize the fiiling and processing 
of the data buffers. Each buffer may be in one of two 
states, FULL or EMPTY. Initially, both buffers are EMPTY. 

At initialization, the 80 /05 fills buffer 0, sets its status 
to FULL, fills buffer 1, sets its status to FULL, and waits 

711 
ANALOG INPUT 

BOARD 

ANALOG 
SIGNALS 

Fig 6 Data acquisition and 
signal analysis system. 80/05 
drives 711 to handle all data 
acquisition functions while 86/ 
12A performs signal analysis, 
operator interfacing, data stor
age, and data retrieval func
ti.ons 

for buffer () to become EMPTY. It then fills buffer 0, sets 
its status to FULL, waits for buffer 1 to become EMPTY, 

etc. Initially, the 86/12A waits for buffer 0 to be FllLL, 

processes it, sets its status to EMPTY, waits for buffer 1 
to be FULL, etc. Using this simple technique, the two 
processors synchronize each other with a minimal amount 
of overhead. 

The parameter block approach is used to provide a 
simple means for interfacing the two SBCs. At system in
itialization, the 80/05 board needs only to know the base 
address of the parameter block. Once this is known, all 
other information required for the 80/05 to function 
properly is available. The end application and even the 
specific type of SBC that calls upon the 80/05 for data 
samples remain irrelevant to the 80/05. Driver software 
for the 80/05 is therefore highly modular and may be 
used in a variety of applications and configurations with 
no changes required. 

A key capability of this system design is that the 
86/12A board does not use the system bus to access data 
samples, thus minimizing execution time for the highly 
iterative FFT computation. The 80 /05 processor takes 
the samples from the analog board and stores them di
rectly into the 86/12A dual-port memory. Therefore, ex
cept for occasional disc transfers by the 86/12A, the 
80/0.S is the only processor using the system bus. This 
increases system throughput and eliminates contention 
for the system bus. 

Signal Processing Software 

The algorithm used for the FFT in this application is 
known as "time decomposition with input bit reversal."2 

Using this algorithm, an in-place FFT has been pro
grammed for an input frame size of 128 complex points. 
Sixteen-bit integer mathematics is used for all internal 
calculations of the FFT. The 86/12A board computes the 
128-point complex FFT in llO ms. Computation of the 
a\•eraged power spectra is performed using a double pre-

1-264 AFN·D1931A 



SET POINTER 
TO BUFFER 0 

WAIT FOR 
BUFFER F 
TO EMPTY 

FILL 
BUFFER F 

SET STATUS 
OF BUFFER 
F = FULL 

SWITCH BUFFER 
POINTERS 

WAIT FOR 86/12A 
TO INITIALIZE 

PARAMETER BLOCK 

/ 
/ 

= 1 

,,,
'\ 

/ / \ 

INITIALIZE PARAMETER 
BLOCK 

SET STATUS = EMPTY 
FOR BOTH BUFFERS 

SET POINTER 
TO BUFFER 0 

WAIT FOR 
BUFFER P 
TO FILL 

PROCESS 
BUFFER P 

SET STATUS 
OF BUFFER 
P =EMPTY 

SWITCH BUFFER 
POINTERS 

BUFFER 0 STATUS 

BUFFER 1 STATUS 

Fig 7 Synchronization of two SBCs. Buffer status bytes are used in shared parameter block. 
Simple semaphore mechanism is natural extension of double buffered acquisition technique 

CISlon integer format. The 16-bit integer real and imagi
nary values which result from the FFT are squared and 
summed to obtain a 32-bit power spectrum. Thirty-two 
frames of data are processed and summed to form the 
averaged power spectrum. 

Summary 

Two reasons for the slow growth of multiprocessing have 
been the limited selection of SBCs and the relatively small 
application base. These conditions are changing rapidly 
due to the large number of SBCs now available. These 
boards contain dual-port RAM and newer 8- and 16-bit 
CPUs, and provide system designers with a comprehensive 
set of tools for tackling applications that require the 
power of multiprocessing. Thus, the SBC application base 
has grown significantly in recent years. 

The system application combines a low cost 8-bit SBC 
and a high performance 16-bit SBC in a configuration 
designed for both data acquisition and signal analysis. 
The 8-bit SBC relieves the 16-bit SBC of all system data 
acquisition functions. Because the 16-bit board spends 

1-265 

full time processing data, system throughput can be in
creased by as much as 40'/r. 

References 

I. iSBC 86/12A Hardware Reference Manual, 98003074-01, Intel 
Corp, Santa Clara, Calif, 1979 

2. S. D. Stearns, Digital Signal Analysis, Hayden Book Co, 
Rochelle Park, NJ, 1975 

Joseph P. Barthmaier is applications en
gineering manager for the OEM Micro
computer Systems Operation at Intel. 
He is responsible for application notes 
and seminars covering the SBC product 
family and for future product planning. 
He holds BSEE and MSEE degrees from 
the University of Florida and Stanford 
University, respectively. 

AFN-01931A 





iSBC TM Software 2 





©Intel Corporation, 1977. 1978, 1979 

APPLICATION 
NOTE 

2·3 

AP·33 

October 1977 

AFN-01931A 



RMX/80 Real-Time 
Multitasking Executive 

2-4 

Contents 

INTRODUCTION ....................... 2-5 

OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 

Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 
General Characteristics .................... 2-5 
Nucleus Operations . . . . . . . . . . . . . . . . . . . . . . . 2-7 

EXTENSIONS ........................... 2-10 

Free Space Manager ...................... 2-10 
Terminal Handler ........................ 2-11 
Disk File System .......................... 2-11 
Debugger ................................ 2-11 

USINGTHERMX/80™SOFTWARE ...... 2-11 

Task and Exchange Definition .............. 2-12 
Priority Assignment. ...................... 2-13 
Static Descriptions ........................ 2-13 
Compilation/ Assembly .................... 2-13 
Linking ................................. 2-14 
Locating ................................ 2-14 
Debugging ............................... 2-14 

APPLICATIONS ........................ 2-14 

Minimal Terminal Handler ................. 2-14 
Closed-Loop Analog Control. .............. 2-18 

APPENDIX A ........................... 2-21 

APPENDIX B ........................... 2-25 

APPENDIX C ........................... 2-27 

AFN·01931A 



INTRODUCTION 

A large number of microcomputer applications 
require the ability to respond to events in real time. 
RMX/80 provides the system software around 
which you can build a real-time multitasking appli
cation on Intel SBC 80 Single Board Computers. 
In addition, RMX/80 increases the utilization of 
a Single Board Computer by allowing its resources 
to be shared among several tasks executing concur
rently. Synchronization of these multiple real-time 
tasks is handled by RMX/80, freeing you to con
centrate your major programming efforts on your 
application. 

This application note begins with an overview of 
RMX/80. Readers who are familiar with the mate
rial presented in the RMX/80 User's Guide may 
choose to skip to the next section, a description of 
how to use RMX/80 and the steps involved in 
using it by describing two applications. 

• An interrupt driven minimal terminal handler 
for a CRT or Teletypewriter. 

• A closed-loop analog control subsystem utiliz-
ing the Intel SBC 711 analog-to-digital board. 

Each example has diagrams illustrating the rela
tionships between its tasks and exchanges. These 
are useful tools in conceptualizing the activities 
taking place in real time. Program listings of the 
applications are interspersed with text describing 
the application. 

OVERVIEW 

Real-time systems provide the ability to control 
and respond to events occurring asynchronously 
in the physical world. Later in this application 
note, a process control application is described 
that monitors and controls the temperature within 
several chambers. The system controls the process 
by simply turning on and off a heat source. The 
system could also display the temperature on an 
operator's console and permit entry of new set
point temperatures and error ranges. 

A single large program could have been used to 
perform the functions in a sequential manner. 
However, this approach may not permit an opera
tor to enter control variables at the same time the 
process is being monitored and controlled. In 
contrast, real-time systems do not operate sequen
tially. A number of events may all be happening 
at the same time. This concurrence of events is a 
distinguishing characteristic of real-time systems. 

2-5 

BASIC CONCEPTS 

There are basically three concepts that the user 
must master to effectively use RMX/80. The first 
is the task, an independent program which com
petes for resources within the system. The second 
concept is the message. Messages convey data and 
synchronization information between tasks. The 
third concept is the exchange. An exchange enables 
one task to send a message to another. As we will 
see later, the interaction between tasks and ex
changes enables the user to implement mutual 
exclusion, communication, and synchronization. 
Mutual exclusion is a technique that controls 
access to a shared resource such as an I/O device 
or a data structure. 

Task 

Under RMX/80, the user codes a separate program, 
known as a task, for each event. An arbitrary num
ber of these tasks execute concurrently and are 
subject to synchronization as required by their 
functions. Tasks share resources such as data struc
tures and can communicate between themselves. 

Message 

A message is a unit of communication between 
tasks. Together with the exchange mechanism, it 
conveys information between tasks and can syn
chronize their operations. 

Exchange 

RMX/80 uses message exchanges for task-to-task 
communication. An exchange is a pair of queues 
represented by a data structure at which messages 
are left by one task to be picked up by another. 
Tasks may send messages to an exchange, and may 
wait for messages at an exchange. A task which 
waits for a message may perform a timed or an 
untimed wait. A timed wait will terminate upon 
the receipt of a message or at the end of the speci
fied period of time, even if it has not received a 
message. When a task does an untimed wait for a 
message it is guaranteed that the task will not exe
cute again until a message is available for it. A 
representation of the exchange data structure is 
shown in Figure I. 

GENERAL CHARACTERISTICS 

In addition to the basic concepts of tasks and ex
changes, several other general characteristics of 
RMX/80 are relevant in this overview, 

AFN·01931A 



Figure 1. Exchange Data Structure 

System Time Unit 

RMX/80 uses a system time unit that is the period 
of time between "ticks" of the system clock. The 
standard RMX/80 system time unit is 50 milli
seconds. The system time unit provides timing and 
user task scheduling. A task may wait at an ex
change for a specified number of system time 
units and then continue execution. A task could 
be written to generate messages at specific time 
intervals. Tasks; waiting for the messages would 
then be schedded according to those time intervals. 

Message Producing/Consuming Tasks 

In general, tasks can be classified as message pro
ducing or message consuming tasks. The processing 
flow of these types of tasks are usually cyclic in 
nature and can be shown as follows. 

TASK ENTRY POINT 

INITIALIZE TASK 

WAIT FOR REQUEST 

PERFORM FUNCTION 

SEND RESPONSE 

CONSUMER 

TASK ENTRY POINT 

INITIALIZE TASK 

~--1 PERFORM FUNCTION 

INITIALIZE OPERATION 
(SEND MESSAGE) 

'-----' WAIT FOR RESPONSE 

PRODUCER 

Figure 2. Message Producing/Consuming Tasks 

A consumer task waits for a message to be posted 
at a particular exchange and takes control of the 
processor only when it has received a message and 
no other tasks of higher priority are ready to exe
cute. The consumer task performs some action 
based upon the message and then simply resumes 
waiting until the next message is received. Usually, 
the consumer task acknowledges completion of 
its function by sending a response message to some 
other exchange associated with a task. 

2-6 

A producer task initiates its function by sending 
a message to another exchange and then surrenders 
control of the processor. The task continues to 
wait until it receives a response to its message. 

Notice that the distinction between these types 
of tasks is relative since most tasks both produce 
and consume messages. However, the producer/ 
consumer concept helps clarify the general struc
ture of tasks-tasks are typically programmed 
loops. A producer task performs a function, sends 
a message, waits for a response, then loops back to 
begin again. A consumer task waits for a message, 
performs a function, sends a response, then loops 
back to wait again. 

Interrupts 

Hardware interrupts are treated as messages from 
peripheral devices for which a task can wait, as if 
the interrupt were a message from some other task. 
These messages arrive at particular exchanges, 
called interrupt exchanges, but are otherwise treated 
as described above. The system provides the abil
ity to mask particular interrupts so that no mes
sages ever arrive at a particular interrupt exchange 
associated with the masked interrupt. In the event 
that the overhead associated with turning an inter
rupt into a message is too high, the interrupt can 
be treated by the user directly via a user supplied 
interrupt service routine. 

Task States 

Tasks may exist in a number of states. A task is 
running if it actually has the processor executing 
instructions on its behalf. A ready task is one that 
could be running (any wait for a message or time 
period has been satisfied), but a higher priority 
task is currently running. A task is waiting if it 
cannot be ready or running because it is waiting 
at an exchange for a message. A suspended task is 
one that is not permitted to run or compete for 
system resources until it is resumed. The rela
tionships between the task states are illustrated in 
Figure 3. 

Priority 

Each task has associated with it a priority that in
dicates its importance relative to other tasks in 
the system and relative to the interrupts of peri
pheral devices. RMX/80 schedules a task for exe
cution based on the task's priority. Whenever a 
decision must be made on which task should be 

AFN-01931A 



run, the highest priority ready task is chosen. Each 
of the eight hardware interrupt levels has a set of 
priorities, one of which must be assigned to the 
task that services the interrupt. When an interrupt 
occurs that task is executed if it is the highest 
priority ready task. At the time a higher priority 
task preempts a lower priority task, RMX/80 
saves all the relevant information about the pre
empted task so it can eventually resume execution 
as though it were never interrupted. This process 
is known as a context save. 

RUNNING 

READY 

SUSPENDED 

WAITING 

Figure 3. Task States 

NUCLEUS OPERATIONS 

The RMX/80 nucleus provides several operations 
that you can access with programmed calls. Two 
basic operations are covered in this section (addi
tional operations are described in the RMX/80 
User's Guide): 

• RQSEND, send a message to an exchange 

• RQWAIT, wait for a message or time interval 

These two operations provide the capability to 
pass messages between tasks in a system running 
under RMX/80. 

Message Format 

The messages used by the send and wait operations 
to convey information between tasks are variable 
in length and contain the information shown in 
Figure 4. 

2-7 

0 

2 

4 

5 

7 

9 

LINK 

LENGTH 

TYPE I 
HOME EXCHANGE 

RESPONSE EXCHANGE 

REMAINDER 

+Indicates optional 

Figure 4. Message Format 

(BASE) 

+ 

+ 

+ 

Fields 

1. LINK - a 2-byte field used to enter the mes
sage on a linked list at an exchange. 

2. LENGTH - a 2-byte field containing the total 
length of the message in bytes. The minimum 
message length is 5 bytes (LINK, LENGTH, 
and TYPE). 

3. TYPE - a I-byte field indicating the type of 
message. 

4. HOME EXCHANGE - an optional 2-byte 
field containing the address of an exchange to 
which this message should be sent when it has 
no further use. This field is very useful in im
plementing and managing a pool of messages. 

5. RESPONSE EXCHANGE - an optional 
2-byte field containing the address of an ex
change to which a logical response to this 
message should be sent. This field is intended 
to specify the exchange at which a sending 
task is waiting for an acknowledgement 
message if one is needed. 

6. REMAINDER - an optional field of arbi
trary length that may contain any data por
tion of the message. 

Sending a Message to an Exchange 

The RQSEND operation enables a task to post a 
message at an exchange. When you send a message 
to an exchange, RMX/80 actually posts only the 
address of the message at the exchange, not the 
body of the message. RMX/80 avoids the overhead 
required to move an entire message to an ex
change. Thus it is possible to queue a number of 
messages at the same exchange with little overhead 
in either execution time or memory requirements. 
When a task sends a message to an exchange, sev
eral functions are performed. 

AFN·01931A 



• The message is placed. on the ·specified ex
change. 

• If there are one or more tasks waiting at the 
exchange, the first task is . given the message 
and is made ready. 

• If a higher priority task is thereby made 
ready, the sending task loses control until 
it once again becomes the highest priority 
ready task. 

After a message is sent to an exchange, it must not 
be modified by the sending task. A task which then 
receives the message by waiting at the exchange 
where the message has been posted is free to modi
fy the message. The format of the RQSEND opera
tion is as follows. 

RQSEND( exchange-address,message-address) 

Message exchanges are defined by the user, and are 
normally addressed symbolically. For example, 
the exchange used to pass readings from an analog
to-digital (A/D) task might be named ATODEX. 
The reading itself could be contained in a message 
with the name RDNG. Thus, a typical call for a 
send in a PL/M program might be as follows: 

CALL ROSEND (.ATODEX,.RDNG); 

The call procedure in assembly language is as 
follows. 

LXI B.ATODEX 

LXI D,RDNG 

CALL ROSEND 

The assembly language rules for passing parameters 
to RMX/80 ·are the same as for passing parameters 
to a PL/M procedure called from an assembly lan
guage module. For 2-byte parameters, the first 
parameter is passed in the B and C registers; the 
second parameter is passed in the D and E registers. 

Waiting for a Message or Time Interval 

The RQWAIT operation causes a task to wait for 
a message to arrive at an exchange. It is also pos
sible to delay execution of a task when no message 
is anticipated for the task. The task simply waits 
for the desired time period at a message exchange 
where no message is ever sent. When a task waits 
for a message at an exchange several operations 
are performed. 

2-8 

• The task is made to wait until a message is 
sent to the specified exchange; or until the 
time limit has expired. 

• When a· message is available, its address is 
returned to the task. 

• If the time limit expires before a message 
becomes available, a system TIME$0UT mes
sage js returned to the task. 

The format of the RQWAIT operation is as follows. 

RQW AIT( exchange-address, time-limit) 

The time limit is entered as some number of sys
tem time units (50 milliseconds); a I-second wait 
is equal to 20 time units. If zero is specified the 
wait is not timed, producing an indefinite wait 
until a message is actually sent to the exchange. 
Note that a specified wait of five time units may 
sometimes only produce an actual wait of four 
time units. This can occur if you enter a wait 
immediately before the clock "ticks." In this 
case the count would be decremented immediately 
after entering the wait. Only four full time unit 
periods would lapse before completion of the 
wait. Thus a user who wishes to ensure that at least 
five time units are spent in an asynchronous wait 
must specify six time units in the wait operation. 
A task which waits synchronously to the system 
clock, i.e., performs repetitive timed waits, does 
not have this problem because a new wait is exe
cuted following a tick that satisfied the previous 
wait. The following are typical calls for the 
RQWAIT operation. 

PL/M 

PTR = RQWAIT(.ATODEX,20) ; 

The RQW AIT procedure returns an address value 
which is the address of a message. 

Assembly Language 

LXI B,ATODEX 

LXI D,20 

CALL RQWAIT 

The address of a message is returned in the HL 
register pair. 

AFN·01931A 



Send - Wait Interaction 

To a large extent, the power of RMX/80 as a pro
gramming tool is derived from the interaction 
between send and wait. The interaction includes 
three multi-tasking operations. 

• Communication 

• Synchronization 

• Mutual Exclusion 

In describing these operations, a graphic notation 
for diagramming tasks, exchanges, and their 
interaction (send and wait operations) is useful. 
The notation is described in the next section on 
communication. 

Communication. The most common interaction 
between tasks is that of communication - the 
transmission of data from one task to another 
via an exchange (Figure 5). 

TASK 
A 

Figure 5. Communication 

TASK 
B 

Rectangles designate tasks while circles represent 
exchanges. Arrows that are directed from tasks to 
exchanges indicate send operations. Wait opera
tions are shown by arrows directed from exchanges 
to tasks. 

Figure 5 shows an example of communication 
between task A and task B. Task A sends a message 
to exchange X and task B waits for a message at 
that exchange. Task A is the message producer 
and task B the message consumer. 

Synchronization. At times there is a requirement 
to send a synchronizing signal from one task to 
another. This signal can take the form of a message 
that contains only header information, that is, 
LINK, LENGTH, and TYPE. 

Let us consider the implementation of a task 
scheduler, used for the purposes of synchronizing 
another task that performs a particular function 
at periodic intervals. The relationship between the 
tasks and exchanges is shown in Figure 6. 

2-9 

G~ 
~TASK 

A 

Figure 6. Synchronization 

TASK 
B 

Task A, the scheduler, performs a timed wait on 
the X exchange. Note that the full wait period 
will always occur because there is no task that 
is sending messages to exchange X. In this manner, 
a specific timed wait by task A precedes the pass
ing of a synchronization message from task A to 
task B via exchange Y, and then the return from 
task B to task A via the Z exchange. 

If task B waited on X directly, rather than using 
task A for scheduling, it would be scheduled n sys
tem time units from when it waits instead of n 
units from the last time it was awakened. A com
parison between the two methods is shown in 
Figure 7. 

TIME B B B TIME 

~~ 

nBnB nnn 

TASK 8 WAITING DIRECTLY ON X TASK A SCHEDULING TASK B 

Figure 7. Scheduling Methods 

Mutual Exclusion. In an environment with multi
tasking, resources often must be shared. Examples 
of shared resources include data structures and 
peripherals such as the In tel SBC 310 Math Module. 
Mutual exclusion can be used to ensure that only 
one task has access to a shared resource at a time. 
Figure 8 shows ho~ an exchange can be used to 
limit access to a resource. 

AFN·01931A 



TASK 
A 

TASK 
B 

TASK 
N 

Figure 8. Mutual Exclusi.on 

In this example, the X exchange is. sent a single 
message at system initialization. Then, as tasks re
quire the resource, ·they wait for a message from 
the X exchange: When the message is received, 
the task knows it has sole access to the resource 
because there is only one message associated 
with the exchange. After the task finishes with 
the resource it sends the message back to the X 
exchange. The next task waiting for the resource 
continues, knowing it has exclusive .access to the 
resource. 

EXTENSIONS 

RMX/80 has several extensions which provide 
operations commonly used in real-time applica
tions. The nucleus of RMX/80 requires less than 
two thousand bytes of memory and includes all 
of the basic operations. The extensions include a 
Free Space Manager, Terminal Handler, Disk File 
System, and a Debugger. 

FREE SPACE MANAGER 

The Free Space Manager maintains a pool of free 
RAM and allocates memory from that pool upon 
request from a task. The Free Space Manager also 
reclaims memory and returns it to the pool when 
it is no longer needed. 

The Free Space Manager is especially useful in two 
applications. The first application arises from the 
need for variable length messages •. If you have a 
task that produces messages of variable length, 
such as a task sending text for display on a· CRT; 
the Free Space Manager can be used to provide 
a message to meet your exact· size requirements, 

2·10 

An alternate solution is to maintain 'a poor 
of. large. fixed length messages. The pool can, be 
maintained without the Free, Space .M8cnager; 
he;weyer, memory is wasted because of the unused 
space remaining in th,e fixed . length messages. 

The second application of the Free Space Manager 
relates specifically to effective . use of memory. 
In a typical application, the total RAM require
ment is computed by adding up the maximum 
RAM requirements for each task in a system as 
shown in Figure 9. , 

TASK A 

RAMTOTAL"' MAXA + MAXe' + MAXc 

':TASKC· 

ROM 

RAM 

Figure 9. RAM Requirements 

The efficiency. of memory utilization is a function 
of the total RAM memory needed during typical 
system operatiqn. Reduci~g the total amount of 
RAM by sharing it among the tasks often has 
little impact ~n totaf performance. However, signi
ficant cost advantages may be gamed by reducing 
the total amount ofriibmory. The memory require
ments can be calculated as the minimum RAM for 
each task ·plus the pool (shared memory), as showri 
in Figure 10. ' 

POOL 

[] 
RAMroTAL"' MINA+ MINe + MINc +'POOL 

Figure'10.' RAM Requirements Using a Pool 

AFN-01931A 



TERMINAL HANDLER 

The Terminal Handler provides real-time asyn
chronous I/O between an operator ten'ninal and 
tasks running under the RMX/80 executive. The 
Terminal Handler provides a line-edit capability 
similar to that of ISIS-II artd an additional type
ahead feature. (ISIS-II is the ·diskette supervisor 
system used on the Intellec Microcomputer Devel
opment System.) Access to the Terminal Handler 
is provided by two exchanges where messages are 
sent to initiate read and write requests. ' 

Several features of the Terminal Handler have 
been incorporated specifically, to facilitate intera.c
tion with the c;lebugger .. Because ofth~sinte:r;action, 
the Terminal Handler is required for. operation of 
the debugger. 

DISK FILE SYSTEM 

The Disk File System (DFS) provides users of 
RMX/80 with disk file management capabilities. 
This system a11ows user tasks to ,create, access, and 
maintain disk files. in a real-time envir6nment. This 
means that many I/O requests can be processed 
concurrently, rather than one at a time; 

In addition to the file handling services, DFS prb
vides a program loading facility that allows you to 
load program segments into memory from disk, 

The DFS can be configured to indude only those 
functions wh'ich you require. For example, if 
your disk accesses are sequential rather than 
random, you omit the SEEK function. This pb.ilo
sophy of 'minimizing memory requirements ~y 
including only the functions your application· r~ 
quires is found in virtually all aspects of RMX/80. 

DEBUGGER 

An environment that is continually changing in 
response to asynchronous physical events can pre
sent a serious debugging challenge. The Debugger 
aids you in debugging tasks running under the 
RMX/80 executive. The Debugger provides a 
command language that can be used to passively 
display fuformation about the system, or actively 
modify and interact .with the system .. 

Passive Functions 

Because RMX/80 manages a fairly complex set of 
data structures, the Debugger has the capability 
of displaying them in an intelligible format. The 
Debugger can, be use,d in Jhis n.ianner ,to view 
tasks, .. exchanges: messages, and other data struc-

2·11 

tures maintained within the RMX/80 environment. 
The contents of all RAM and ROM memory loca
tions may also be displayed by the Debugger. 

Active Functions 

The active Debugger functions include those of 
modifying memory, setting breakpoints, and moni
toring stack overflow. The memory modification 
commands enable you to update the contents of 
memory and to move a series of bytes from any 
location to any uther location. 

Breakpoints can be set, allowing you to gain con
trol when encountered by a task. Two kinds of 
breakpoints are supported: execution breakpoints 
and exchange breakpoints. An execution break
point can .be placed at any instruction within read/ 
write (RAM) memory. When the breakpoint is 
reached, the task encountering the breakpoint is 
stopped from further execution. The task registers 
may then be examined artd modified before resum" 
ing execution. · 

Exchange breakpoints can be used to detcd 
RQSEND and/or RQWAIT operations pcrf'onni·d 
on specified exchanges. The exchange brcakpoi11 l 
can thus enable you to monitor the activity of any 
of the exchanges in y0ur system. The task execut
ing thtl appropriate RQSEND or RQWAIT to an 
exchange which has.a breakpoint is stopped, allow
ing you to examine the task. This enables you to 
breakpoint a ROM resident task. The breakpointed 
task and the message involved in the operation 
with the exchange may then be displayed and 
modified before resuming execution. 

The . d~bugger can also be use.d to monitor stack 
ove~tiow. This function is provided by the De
);>ugger SCAN command which examines the stacks 
of all tasks in the system at a specified periodic 
interval.. The fact that each task's stack is initialized 
with a unique value allows stack overflow to be 
detected. When a. task stack overflows, it is re
moved from the system and a message is displayed. 

USING RMX/80 

This section of the application note describes·the 
steps involved in using RMX/80. The process 
begins with' the definition of the individual tasks 
and exchanges in youf application. It continues 
with a discussion of the data structures that you 
must prepai:e. The task 'coding, compilation or 
assembly, linking, and locating is also described. 

AFN-01931A 



Finally, some comments are directed towards d~
bugging tasks within the. RMX/80 envirnment. 

Before the details of using RMX/80 are discussed, 
some general observations are necessary to deter
mine the suitability of RMX/80 for your applica
tion. To effectively utilize RMX/80, your applica
tion must either use interrupts or require device 
polling. Thus, the key element is the need to 
respond to external events.· If your application 
satisfies this criteria, it is a likely candidate. How
ever, you must then determine if RMX/80 is capa
ble of supporting your application. This can be 
done by examining your interrupt response time 
and frequency requirements. The time required to 
transform an interrupt into a message that is serit 
to an interrupt exchange is approximately 800 
microseconds for an SBC 80/20. This .is the 
RMX/80 interrupt latency. It can be reduced· to 
60 microseconds by handling the interrupt directly, 
using ·. the RQSETY operation to bypass the 
RMX/80 interrupt exchange mechanism. In this 
latter mode, an interrupt-driven asynchronous 
block transfer rate of about 10 kHz can be achieved. 

TASK AND EXCHANGE DEFINITION 

The initial design step for an application that runs 
under the RMX/80 Executive is to define your 
tasks, exchanges, and the interaction between 
them. This is perhaps best accomplished using the 
graphic notation introduced earlier in the section 
on Send - Wait Interaction. The graphic notation 
provides a clear picture of the relationships be
tween the tasks and exchanges in your system. 
You can begin either in a top-down or bottom-up 
fashion. That· is, you can use a top-down approach 
to define, ·at a gross level the operation of your 
system and then gradually break it down to the 
individual tasks. Or, you can start with the tasks 
associated with the external events in your appli
cation and then build the pieces to form the gross 
structure of your system. 

The bottom-up approach forces you to begin with 
external events that drive your system. The num
ber of these events, the amount of processing 
required, and the relationships between them 
define the tasks and exchanges in a system. For 
example, consider a system that samples an analog 
input with an A/D converter. Assume that the A/D 
provides an interrupt at the completion of a con
version. To use the data from the A/D converter it 
may also be necessary to scale it and add an offset. 

2·12 

With this information the portion of the task. and 
exchange definition that relates to this function 
can be constructed.' 

Begin with the external event, the interrupt from 
the A/D. An interrµpf priority level must be as
signed to the A/D converter; This same 11:Jvel will 
be used by .the task ~hich waits on the interrupt 
exchange. 

The relationship between the interrupt exchange 
and the A/D task is shoWn in Figure 11. If pro
cessing must be performed on raw data from the 
A/D, a second, lowdt prio-rity, task could be used. 
Another task for this f\l.nction will require a syn
chronizing signal from the ADC task to indicate 
that raw A/D data has been obtained and is ready 
for processing. 

Q 1:1 
·~ 

Figure 11. lnterruptExchange and A/D Task 

The interaction between the ADC task and the 
CONY task that processes the raw A/D data is 
shown fn Figure 12. Two exchanges provide 
synchronization. The ADC task uses the TRGR 
exchange to signal that data is ready for process
ing by the CONY task. The CONY task uses the 
RTRGR exchange to signal the completion of its 
processing and thus its readiness to accept more 
raw data. 

Figure 12. · ADC and CONV Task Interaction 

CONV 
TASK 

AFN·01931A 



In this example two tasks and three exchanges 
have been defined. To develop an entire system, 
the tasks and exchanges associated with all of the 
external events in the system can be defined in 
the same manner. Then, proceeding bottom-up, 
the next step is to define the tasks and exchanges 
required to support the interaction between tasks 
running at the level of the real-time events. 

After defining. the entire application, you can begin 
actual coding of the tasks. You may choose to 
code in either assembly language or the PL/M 80 
high-level language. Where possible, it is desirable 
to code in PL/M because PL/M lends itself to 
structured programming. Assembly language often 
encourages an ad hoc approach. Even if your appli
cation ultimately requires assembly language coding 
because of critical time and/or space parameters, 
initial design work in PL/M followed by transla
tion into assembly language is recommended. 

A total of 15 operations are supported by the 
RMX/80 nucleus. Only two of the operations, 
RQSEND and RQWAIT, are described in any detail 
in this application note. The remaining operations 
are described in the RMX/80 User's Guide. The 
reason for presenting only the send and wait opera
tions is because they are sufficient for the imple
mentation of a large number of real-time applica
tions. These two operations provide a great deal of 
power and flexibility, yet their simplicity should 
enable those who are new to real-time program
ming to quickly develop applications. 

PRIORITY ASSIGNMENT 

The relative priority of tasks within a system run
ning under RMX/80 determines which task is to 
be executed. Therefore, the assignment of a pri
ority to each task is extremely crucial. For exam
ple, consider a compute bound task placed at a 
higher priority than an interrupt-driven task 
responsible for servicing an I/O device. This im
proper assignment of priorities could result in 
missed interrupts from the I/O device. Several 
steps can be followed in the assignment of task 
priorities. 

1. Assign hardware interrupt priority levels 
according to the requirements of your appli
cation. 

2. Specify priorities for the tasks which service 
the interrupts. These tasks should generally 
be short and serve only to perform the data 

2-13 

transfers. A second task with a priority lower 
than those assigned to the hardware inter
rupts should be used where further processing 
of the data is required. 

3. Priority assignment should be made for all 
other tasks in the system based on the relative 
importance and interaction among the tasks. 

Unfortunately the last step in assigning task pri
orities is largely intuitive. In fact, you may need 
some empirical data from actually running your 
application before you settle on your final task 
priority assignment. 

STATIC DESCRIPTORS 

When a system running under RMX/80 begins 
execution, several tables of data are used to ini
tialize the system. These tables usually reside in 
ROM. The first table is the create table (RQCRTB) 
that specifies the number of tasks and exchanges 
in the system, and the addresses of the initial 
task table and the initial exchange table. The ini
tial exchange table contains the addresses of all 
the exchange descriptors. The initial task table 
contains the static task descriptors for each task, 
and contains the following task parameters. 

I. Name 

2. Initial PC - the location at which to start 
task execution 

3. Initial SP - the location at which to start 
the task stack 

4. Stack length 

5. Priority 

6. Initial Exchange (described in the RMX/80 
User's Guide) 

7. TD Address - the RAM address of the task 
descriptor 

You must prepare all three of these tables to pro
duce a configuration module for RMX/80. The 
release diskette for RMX/80 includes a set of files 
which contain assembly language macros that sim
plify the preparation of your configuration module. 
The relationship between these tables is shown in 
Figure 13. 

COMPILATION/ ASSEMBLY 

Preparing program segments for compilation and 
assembly can be simplified by use of files provided 
on the RMX/80 diskette. As described in the last 

AFN-01931A 



section, a set of macros is included to assist you in 
preparing your configuration module. Other files 
are provided that are useful when coding calls to 
RMX/80 and preparing data structures in PL/M. 

ROCTAB 

ITT POINTER 

TASK 
COUNT 

IET POINTER 

5 EXCHANGE 
COUNT 

ITT IET 

EXCHANGE-ADDRESS-1 

EXCHANGE-ADDRESS-2 

EXCHANGE-ADDAESS-n 

Figure 13. ROM Based Tables 

By coding in a modular fashion you can separately 
compile and maintain tasks. This is advisable since 
a single large module containing all your tasks 
would require a lengthy recompilation to change 
any one of the tasks. Following the compilation 
and assembly of your source code modules, a 
library containing the object modules can be 
created. 

LINKING 

The process of linking prepares a single object mo
dule from libraries containing the RMX/80 object 
modules and your own application libraries or se
parate object modules. The order in which you 
specify the files to be linked is crucial to successful 
linking. In general, your libraries or separate object 
modules should be specified before the RMX/80 
libraries. The link command should conclude with 
the unresolved library (UNRSLV.LIB) that con
tains miscellaneous modules for resolving PUBLICs 
not used in the application code. PUBLICs extend 
the scope of variables to allow linkage between 
separate program modules. Figure 14 illustrates 
how an application program is linked from RMX/80 
and user tasks. 

LOCATING 

It is appropriate in this section to give some guide
lines regarding the assignment of RAM and ROM 
address space for your Single Board Computer 
environment. The SBC 80 Single Board Computers 
have ROM based at location 0. Since the LOCATE 
program places all code in a contiguous block, the 
code must begin at location 0. Likewise, the read/ 
write (RAM) data is also placed in a contiguous 
block. The base address of data should be placed 
at your RAM base address. Depending on the 

2-14 

amount of code space required by your applica
tion it may be necessary to· move the RAM mem
ory base address on your SBC to a higher location. 
A ST ACKSIZE of zero should be specified because 
you allocate stack for each RMX/80 task in the 
static task descriptors. 

DEBUGGING 

As mentioned in the overview of the RMX/80 De
bugger, the real-time environment is a complex 
one in which to debug your programs. Intel pro
vides two tools that you can use for debugging. 
The RMX/80 Debugger and the Intel In-Circuit 
Emulator (ICE). It is desirable to have both of 
these debugging tools at your disposal. 

Figure 14. RMX/80 Linking 

ICE enables you to use Intel Microcomputer Devel
opment System memory in place of SBC 80 mem
ory. This allows RAM residency duringyourdebug
ging as opposed to programming PROMs for each 
iteration. Your system may initially fail before the 
RMX/80 Debugger can begin operation. In this 
situation ICE can be used to debug your program. 

APPLICATIONS 

RMX/80 is suitable for a wide variety of applica
tions. Two specific examples are presented in this 
application note. Each example illustrates the 
steps involved in using RMX/80 and provides a 
detailed description of the coding itself. 

MINIMAL TERMINAL HANDLER 

The basic functions required for a terminal handler 
are well defined. The handler must respond to 

AFN·01931A 



operator input, transmit output characters, and 
echo characters as they are entered. This applica
tion note describes one implementation of a mini
mal terminal handler. 

The terminal handler presented here is not the 
RMX/80 Terminal Handler. It does provide some 
common functions and uses the same exchanges 
and message formats. However, many features 
of the RMX/80 Terminal Handler have been left 
out. Omitted features include special hooks to run 
with the Debugger, an alarm exchange, control S, 
Q, and 0 operations. 

As described in the chapter on using RMX/80, the 
process of developing an RMX/80 application be
gins with the definition of the tasks and exchanges. 
The graphic notation is used to prepare a diagram 
(Figure 15) showing the tasks, exchanges, and their 
interaction. 

RDMIN 
TASK 

8~RECEIVER RQL7EX 
READY 

USART TRANSMITTER 
READY 

Figure 15. Minimal Terminal Handler 

As shown in Figure 15, the RDMIN task waits 
on the RQINPX exchange for input requests. The 
RDMIN task also successively waits on the RQL6EX 
and RQL 7EX exchanges. It uses the RQL6EX 
exchange to determine when a character has been 
received by the USART. The RQL 7EX exchange 
is used to indicate when the transmitter is ready 
to accept another character. RD MIN uses RQL 7EX 
for echoing input characters. 

The WRMIN task waits on the RQOUTX exchange 
for output requests. When it receives a request, it 

2-15 

waits on the RQL 7EX to determine when charac
ters can be sent to the USART. 

The following listing* shows the RDMIN and 
WRMIN tasks. These tasks provide a minimal ter
minal handler. The program is written in PL/M. 
The WRMIN task is also presented in assembly 
language in Appendix B. The program listing is 
interspersed with explanatory text. The program 
begins with the program segment label "MINI
MAL$TERMINAL$HANDLER:" and a DO state
ment. 

Ml!>< l MAL$'I"E;RMI NAL$HAN1,;LE.k: 

L0; 

Several macros are declared using the reserved 
word LITERALLY. These macros are expanded 
at compile time by textual substitution. 

DECLARE. 'UWJ:: LITl:..kALLY '0FFH'; 
D£CLARE. FUKEVER LI'IERALLY 'MJILE '!'RUE'; 

/* SPECIAL ASCII CllARACTERS */ 
DECLARE 

Bl:.LL 
Lf 
CR 
CONTROL$!\ 
CONTkOL$X 
osc 
RUBOU'l' 

LITf.RALLY '07H', 
LITERALLY '0AH', 
LI'I'ERALL\' '~DH', 
LI'I'ERALLY '12H', 
Ll'I'E.RALLY '18H', 
LITE.RALLY 'lBH', 
LITERALLY '7l"H'; 

Some macros are used to simplify the declaration 
of RMX/80 data structures. The structures de
clared here are for the exchange descriptor, inter
rupt exchange descriptor, and the messages used 
by the minimal terminal handler. 

6 l 

L!Tf.:RALLY 'S'I'RUC'l'URE ( 

DE.CLARE IN'.l:·$t;XCHANGE$Df.SCRIP'l'OR LITERALLY 'STRUC'I'URE ( 
MESSAGE$Hl'..AD ADDRESS, 
ME.SSAG£$TAIL ADDk!';SS, 
'I"A&K$HEAD ADDRESS, 
TASK$TAIL ADDRESS, 
EXCHANGE$LINK ADDR!:.SS, 
Ll~K ADORE.SS, 
LENGTH ADDRl::SS, 
TY PE BY'fE) '1 

The following macros are specifically for the SBC 
80/20. The macros require changes to run the 
minimal terminal handler on a different Single 
Board Computer. Intel 8253 timer/counter and 
8251 USART chips are used. 

*Full size listings in Appendixes A and C. 

AFN·01931A 



lO 
ll 
12 
13 

14 

15 
16 
17 

16 

I' 
8253 PORT ADORl:.SSES. 

'I 
J:.£CLARE A8253$MOOE LITERALLY 'i!Df'li'; 
DECLARE A8253$CTR2 -LI'l'.E.RALLY '0DEh'; 

I' 
82$3 COMMANDS. 

'I 
DECL.ARE SELECT$2 LITERALLY 'l110iHl000B'; 
DECLARE RL$BOTH LITERALLY '001100008'; 
DECLARE MODE$3 LITERALLY 'il01HlilllilB'; 
DECLARE 82400 Ll'l'ERALLY '001CH' I 

I' 
82Sl PORT ADDRESSES. 

'I 
DECLARE USART$IN LI'rERALLY '0ECH', 

USART$0UT Ll'l'ERALLY 'ilECh', 
USART$CONTROL LITERALLY '8EDll'; 

I' 
8251 MODES. 

'I 
DECLARE STOP$1 LITERALLY '010000008'1 
DECLARE er.a LITERALLY 'iHlil01100B'I 
DECLARE RATE$16X LiTERALLY 'iHH100010B'; 

I' 
8251 COMMANDS. 

'I 
DECLARE USART$Rf.SET LITERALLY 1 el000000B 1 , 

RTS LITERALLY '001000008', 
ERROR$RESET LITERALLY '000Hl000B', 
RXE LI1'ERALLY '000001008', 
DTR LITERALLY '000000H'IB', 
TXEN LITERALLY '000000018'; 

RDMIN and WRMIN call three RMX/80 opera
tions. They are RQSEND, RQW AIT, and RQEL VL. 
RQSEND and RQWAIT allow tasks to send and 
receive messages from exchanges. RQEL VL enables 
a specific interrupt level. 

" 21 

22 

23 
24 

Rl.ISENO= 
PROCEOIJRE. { EXCHANGE$POINTER, MESSAGE$POINTER) EXTERl'lAL; 

DECLARE (EXCHANGE$POINTER,MESSAGE$POINTER) ADDRESS/ 
END R1.1SEND; 

Rl.lhAI'I: 
PROCEDURE (EXCHANGE$POINTER,DELAYJ ADDRESS EXTERNALJ 

DECLAIU. (EXCHANGE.$POIN'I ER, DELAY) ADDRESS i 
END R11WAIT; 

Rl.IE.LVL; 
PROCEDURE (LEVEL) EXTERNAL; 

26 DECLARE LEVEL BYTE.; 
27 END R<,;E.LVL; 

The exchange descriptors and interrupt exchange 
descriptors must be .PUBLIC because they are 
referenced by the configuration module. 

2B DECl.ARE RQINPX EXCHANGE$DESCR1PTOR PUBLIC f 
29 DECl'..ARE R1.10UTX EXCHANGE$DESCRIPTOR PUBLICr 

30 DECLARE RQL6EX INT$EXCHANGE$DESCRIPTOR PUBLIC; 
31 DECLARE RQL7tX lNT$EXC11ANGE$DESCRIPTOR PUBLIC: 

The following procedure initializes the 8253 and 
8251 (USART). The 8253 generates the baud rate 
clock (2400 baud in this example). The program 
sends four nulls to the USART control port to 
ensure that the USART is ready for a command, 
no matter what state it was previously in. The pro
gram then sends a reset command to the USART, 
followed by the mode and another command. 

32 

" ' 34 ·2 

35 
36 

" " " 
" 

INITIALIZATION: 
PROCEDURE; 

0UTPUT(A8253$MODE) ., SELECT$2 OR RL$BOTH OR MODE$3; 
OUTPUT(A8253$CTR2) ~ LOW(B2400) I 

OUTPU'I'(AS253$CTR2) = HIGH(B2400); 
OUTPU'I' (USAkT$CON'I'ROL) , 
OllTPUT (USART$CON'I'ROL), 
OUTPUT (USART$CONTROL), 
OUTPUT (USART$CONTROL) = 0 J 
OUTPUT (tJSART$CON'l'R0L) • USART$RESETJ 
OUTPUT(USART$CONTROL) "' S'I'0P$l OR CL8 OR RATE$16X; 
OUTPU'I'(USART$CON'l'ROL) • RTS OR ERROR$RESET OR 

RXE OR DTR OR 'l'XEN; 
ENO INITIALIZATION; 

2·16 

Tasks coded in PL/M take the form of parameter
less PUBLIC procedures. The procedure declara
tion is followed by the variables used in RDMIN. 
MSGPTR receives the address of an input request 
message. The based-variable MSG accesses the 
data in the input request message. INTMSG is a 
dummy variable whkh simply receives the address 
of the interrupt message. BUF$ADDRESS points 
to the buffer where the input characters are to be 
placed. The BUF array is based at the buffer 
pointed to by BUF$ADDRESS. 

41 

42 
43 
44 
45 

RD$MIN: 
PROCEDURE. PUBLIC; 

DECLARE (MSGPTR, INTMSG ,BUF$ADDRESS) ADDRESS; 
DECLARE (CHAR,PTR,I) BYTE; 
DECLARE MSG SASED MSGPTR TH$MSG; 
DECLARE (BUF BASE.D BUF$ADDRE.SS) (1) BYTE; 

The RDMIN task echoes characters after they are 
read in. The ECHO$CHAR procedure performs this 
function. It waits for a level 7 interrupt, indicating 
that the transmitter is ready for another character. 
ECHO$CHAR then transmits the character. 

46 

47 
48 

" " 

E.Cl:!O$CHAK: 
PROCEDURE. (CHAR); 

DECLARE CHAR BYTE.; 
INTMSG = RQY.AI'I (. RQL 7E.X, 0) ; 
0U'I'Pli'I'(USAR'I'$0UT) = CHAR; 

END ECtt0$Cl1AR; 

Execution of the RDMIN task starts with the next 
statement, a call to the initialization procedure. 
This call is followed by two calls to the procedure 
which will enable interrupt levels 6 and 7. 

51 

52 
53 

CALL INITIALIZA'I·ION; 

CALL Ri,JELVL(6); 
CALL R1,JELVL(7); 

The basic structure of an RMX/80 task is that of 
a program with an imbedded infinite loop. This 
loop starts with the DO FOREVER statement. 
In the continuous loop, the task waits for an input 
request message. This wait is satisfied when some 
other task in the system sends an input request 
message to the RQINPX exchange. The based 
variable used to point to BUF is assigned from a 
field in the input request message, MSG.BUF-
FER$ADDRESS. An index for the BUF array, 
PTR, and the variable CHAR are initialized. 

54 
55 
56 
57 
58 

DO FOREVl::R; 
MSGPTR = RQl'IAIT(,RQINPX,0); 
BUF$ADDRE.SS "' MSG.BUFFER$ADDRESS - l; 
PTR = 0; 
CHAR = NO'I' CR; 

Task execution continues inside the next loop 
until a carriage return (CR) is input. An escape 
character (ESC) within the loop simulates a CR 

AFN·01931A 



which enables an exit from the loop. The task 
simply waits on the RQL6EX exchange for a mes
sage. This amounts to an interrupt service routine. 
When the wait is satisfied, the USART has received 
a character. 

59 

" 
DO WHILl:. lHAk O CH; 

lN'IM&G = Rl.<WAIT(,RQL6E.X,0); 

The next statement performs a whole series of 
operations. The character input from the USART 
is logically ANDed with 7FH to mask off the parity 
bit, assigned to the variable CHAR, and tested to 
determine if it is a RUBOUT character. If a RUB
OUT is found, either a BELL is echoed to the ter
minal if there are not characters to delete in the 
buffer (PTR = 0), or the last character in the 
buffer is echoed and the pointer is decremented. 

61 
62 
63 
64 

65 
66 
67 
68 
69 

lNPUT(USAh1$IN) AND 7FH) = RUBOUT THEN 

= ~ THEN 
8CH0$Cf-JAR(BELL); 

ECH0$CHAR(BUF(PTR)); 
= i?TR ~ l; 

If CHAR is not a RUBOUT, it is tested for a 
CONTROL$X. The function of a CONTROL$X 
is to delete the entire line by resetting PTR to 
zero. After deleting the line, the system prompts 
the operator with a "#" character and is ready to 
accept a new line. 

7' 
71 
72 
73 
74 
75 
76 
77 

The next test determines if CHAR is a CON
TROL$R. CONTROL$R echoes the entire line 
that has been entered. This function is useful for 
displaying a line containing a number of RUBOUTs. 
Such lines can be difficult to interpret because 
RUBOUT echoes deleted characters. Because 
CONTROL$R echoes only the remaining data 
in the buffer, it eliminates "garbage" from the 
display. 

76 5 

79 
80 
81 
62 
83 
84 
85 
86 

ELSE 
DO; 

2-17 

The character is then placed in the buffer unless 
the end of the buffer has been reached. If the 
buffer is full, a BELL is sent to the terminal. 

87 
88 
89 

9' 
91 
n 
93 

The last test is for an ESC character. It is echoed as 
a "$" and is treated as if a CR were entered. 

94 
95 
96 
97 
9b 
99 

m 
3'l 
1'2 
103 LND; 

IF (_J!A1{ = 

CU; 
CALL t.U1U$CHAli.( '$'); 

= CH; 

l:.Cl1()$Cf1Al<(C!IA"); 

The program places a line feed (LF) at the end of 
the buffer when an exit is forced by a CR or an 
ESC. The input request message actual character 
count (MSG.ACTUAL) and the status (MSG. 
STATUS) are set before sending the message to 
its response exchange. 

m 
m 
106 
1'7 
1'8 
m 
118 
lll 

!:.NU; 
END kD$MIN; 

The WRMIN task begins by enabling interrupt 
level 7. Note that no other initialization is per
formed before WRMIN waits for an output request 
message to arrive at the RQOUTX exchange. Here 
correct operation depends on the fact that RDMIN 
has a higher priority than WRMIN. Were this not 
the case, WRMTN could try to transmit a message 
before the 8253 and 8251 have been set up. 

112 1 

113 ACLRESS; 
114 
115 
116 

117 2 CALL R\,/£LVL(7); 

The next loop transmits all of the characters speci
fied by the output request message. Once again, 
the interrupt service routine is implemented by 
simply waiting on the RQL 7EX exchange for a 
transmitter ready interrupt message. When this 
message is received, the next character in the 
buffer is transmitted. 

AFN-01931A 



121 
122 
123 
124 

DO PTR = l TO MSG.COUNTf 
INTMSG ;: RQWAI'l'(.RQL7EX,0).1 
OUTPUT(USART$0UT) = BUF(PTR); 

END; 

The WRMIN task concludes by setting the actual 
count and status, and then sends the output re
quest message to its response exchange. 

125 MSG.ACTUAL = MSG.COUNT; 
126 MSG,S'l'ATliS = ti; 
127 CALL RQSEND (MSG. RESPONSE$EXChANGE,MSGPTR) ; 
128 END; 
129 END WR$HlN; 

Using the macros provided on the RMX/80 dis
kette, the following static task descriptors (STD) 
should be placed in your configuration module. 

STD RDMIN,64, 112,0 

STD WRMIN,64, 128,0 

The entries in the STD are interpreted as follows. 

STD NAME,STKLEN,PRl,EXCH 

where: 

NAME 

STKLEN 

PRI 

EXCH 

the symbolic name assigned to the task asso

ciated with the STD 

the number of bytes allocated to the task 
stack 

the task priority level 

an optional field, usually 0 

Priorities of 112 and 128 have .been assigned to 
RDMIN and WRMIN because they correspond to 
hardware interrupt levels 6 and 7. 

The following exchange addresses should be 
placed in your configuration module. 

XCHADR 

XCHADR 

XCHADR 

XCHADR 

RQINPX 

RQOUTX 

RQL6EX 

RQL7EX 

The XCHADR macro only requires the address of 
the exchange descriptor. 

Characters typed at the terminal are ignored unless 
an input request message has been received. Thus, 
type-ahead is not a built-in feature. However, 
if type-ahead is desired, it is sufficient to ensure 
that input requests are always queued for the 
RDMIN task and that the full input buffers are 
sent to an exchange that queues full buffers. 

2-18 

This can easily be accomplished by sending several 
input requests to the RQINPX. These input 
requests have the address of a "full-buffer" ex
change as the response exchange and the RQINPX 
exchange as the home exchange. Then, tasks need
ing terminal input wait on the "full-buffer" ex
change and send the message to the home exchange 
when finished. 

CLOSED-LOOP ANALOG CONTROL 

In the next example, a closed-loop analog control 
subsystem using the Intel SBC 711 analog-to
digital board illustrates task scheduling and syn
chronization in a process control application. In 
general, the subsystem samples an analog input at 
specified intervals, converts the data to temperature 
in degrees centigrade, and then - based upon pro
grammed temperature limits - controls a heating 
element. The algorithm used provides a 2-position 
controller with neutral intermediate zone (or sim
ply "bang-bang" control). The control algorithm 
is shown in Figure 16. 

(ON) \ : 

I 
I 

POSITION 
1
oUTt:riPUT ~SWITCHING POINTS 

: ~ 
PO~g~~)N 2 TEMPERATURE 

SETPOINT 

Figure 16. 2-Position Controller with Neutral Intermediate 
Zone 

The graphic notation in Figure 17 diagrams the 
tasks, exchanges, and their interaction. 

Figure 17. Analog Subsystem 

AFN-01931A 



This application includes three tasks and six asso
ciated exchanges. The TICKER task schedules 
the ADC task. TICKER has a very high priority 
because nothing else in the system should inter
fere with its scheduling activities. It is also a very 
short task since it repetitively executes a timed 
wait and then handshakes a message. 

TICKER schedules the ADC task. The ADC task 
services the A/D converter. After obtaining data 
from the A/D it handshakes with the CONTROL 
task to signal that data is ready for processing. 
The ADC task is assigned a priority equivalent 
to the level of the hardware interrupt from the 
A/D. Clearly, calculations should not be performed 
at that priority. 

Thus, CONTROL performs the processing function 
at a lower priority. The CONTROL task used the 
T$P ARAM$LOCK exchange to govern access to 
the control parameters. This avoids problems re
sulting when some other task is updating the pa
rameters at the same time the CONTROL task is 
using them for testing. 

As in the minimal terminal handler, the following 
listing contains the complete analog subsystem 
tasks and is interspersed with explanatory text. 
The program begins with the program segment 
label "ATOD:" and a DO statement. 

DO; 

The macros and externals used in this module 
are brought in by means of INCLUDEs from the 
RMX/80 diskette. 

$INCLUDE(: F1: EXCH ,ELT) 
DECLARE EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE ( 

2-19 

13 

17 

" 

END ROEN DI; 

{LEVEL) EXTE:RNAL; 

LEVEL BYTE; 

END RQELVL; 

(LEVEL) EXTERNAL; 
LEVEL BYTE; 

END RQDLVL; 

{PROC,LE:VEL) EXTERNAL; 
PROC ADDRESS; 

DECLARE LEVEL BYTE; 

END RQSETV; 

(EX CHANG f~$ POI NT EH, MESSAGE$ POINTER) EXTERNAL.; 
( EXCHANGE$POINTER, MESSAGE$POINTEH) ADDRESS; 

24 END RQSEND; 

(EXCHANGE$ POI ~HER, DELAY) ADD RESS EXTERNAL; 
(EXCHANGE$ POINTER, DELAY} ADDRESS; 

END RQWAIT; 

RQACPT: 
PROCEDURE EXTERNAL; 

29 

30 END RQACPT; 

3' 
( IED$PTR) EXTERNAL; 

32 IE:D$ PTR ADDRESS; 

33 END RQISND; 

Additional macros are declared to aid in the use 
of the SBC 711 analog-to-digital board. 

34 
35 
36 
37 
38 
39 
40 

4' 
4' 
43 
44 
45 
46 

47 

SBC 711 ANALOG TO DIGITAL BOARD 

DECLARE EN0$0F$CONVERSION LITERALLY '80H'; 

The exchange descriptors and the interrupt ex
change descriptors are declared. 

48 
49 
50 
51 
5' 
53 DECLARE RQL2EX 1NT$EXCHANGE$DESCRIPTOR; 

The CONTROL task uses an external data struc
ture to obtain operating parameters. This data 
structure (BOX$P ARAMS) has an exchange asso
ciated with it (T$PARAM$LOCK) that is used to 
provide mutual exclusion, ensuring that only one 
task accesses the data structure at a time. 

5~ DECLARE T$PARAM$LOCK EXCHANGE$DESCRIPTOR EXTERNAL; 

55 

AFN·01931A 



TICKER, the scheduler task, has an initialization 
sequence in which it sets up two messages and 
sends them to the RET$PULSE exchange. Then it 
enters an infinite loop where it waits on the 
DUMMY exchange for 250 milliseconds. After 
the timed wait is complete, TICKER passes a mes
sage from the RET$PULSE exchange to the GO$
PULSE exchange. In effect this is a handshake, 
checking to see that the ADC task has completed 
its last operation and then signaling it to perform 
another. 

57 
58 

59 2 

60 2 

61 
62 

63 
64 
65 
66 
67 

68 2 END TICKER$TASK; 

Scheduled by TICKER, the ADC task performs the 
A/D sampling. It begins by setting up TRIGGER$
MSG and enabling the level 2 interrupt from the 
A/D. Inside the ADC task continuous loop, mes
sages are passed from the GO$PULSE exchange to 
the RET$PULSE exchange. Then it waits for ac
cess to the BOX$P ARAMS data structure. When 
the ADC task has access, it loops through the A/D 
channels, accumulating readings in BOX$P ARAMS. 
After all the A/D channels are sampled and the 
BOX$P ARAMS readings updated, the LOCK$MSG 
is returned to the T$P ARAM$LOCK exchange. 
The ADC task concludes the continuous loop by 
handshaking a message with the CONTROL task. 

69 

70 2 

71 
72 
73 

" 
75 
76 
77 
78 

79 
80 
81 
82 
83 
84 

05 ' 

86 
87 
88 

89 
go 
91 
92 
93 

94 2 

END; 

END ADC$TASK; 

2-20 

The CONTROL task waits for a message from the 
ADC task signaling. that A/D readings have been 
taken and are ready for further processing. It com
pletes the handshake by sending the message to 
the RET$TRIG exchange. Then, as in the ADC 
task, accesses the BOX$PARAMS data structure. 

Inside the next loop, the readings are averaged, 
scaled, offset, and tested. Appropriate action is 
taken to turn the heating elements on or off. The 
loop concludes by returning the message to the 
T$P ARAM$LOCK exchange. 

95 1 

96 
97 
98 
99 

1C4 
105 
1C6 
107 
108 
109 

113 5 

114 5 

115 5 

116 5 

118 
119 

120 
121 

SETUP$8255; 

CALL RQSEND( .T$PARAM$LOCK,LOCK$MSG); 
END; 

END CONTROL$TASK; 

123 1 END ATOD; 

SUMMARY /CONCLUSIONS 

The purpose of this application note is to intro
duce you to the Intel RMX/80, Real-Time Multi
tasking Executive. The general framework of 
RMX/80 was discussed, including the nucleus and 
extensions. 

This application note described the steps involved 
in using RMX/80. Key emphasis has been placed 
on the need to fully define the tasks and exchanges 
in your application using graphic notation. 

Applications have been presented to demonstrate 
task communication, synchronization, and mutual 
exclusion in a minimal terminal handler and an 
analog subsystem. The tasks responded to real
time asynchronous events such as USART and 
A/D interrupts. 

RMX/80 represents a significant step in the sophis
tication of microcomputer software. Its ease of 
use, flexibility, and power should enable you to 
quickly implement real-time software for your 
applications. 

AFN-01931A 



l 

2 
3 

4 

5 

6 

7 

& 
9 

l 
l 

l 

l 

l 

l 

l 
l 

APPENDIX A 

MINITH PL/M LISTING 

MINIMAL$TERMINAL$HANDLER: 

DO; 

DECLARE '!'RUE LI'l'ERALLY I 0FFH I; 
DECLARE FOREVER LITERALLY 'WHILE TRUE'; 

/* SPECIAL 
DECLARE 

BBLL 
LF' 
CR 
CONTROL$k 
CONT.kOL$X 
ESC 
RUBOU'l' 

ASCII CHARACTERS */ 

LI'I'ERALLY '07H', 
LITERALLY '0AH', 
LI'l'ERALLY I 0DH I I 

LI'l'ERALLY I 12H' I 

LI'l'ERALLY I 188 I I 

LITERALLY 'lBH', 
LI'I'ERALLY I 7FH I; 

DECLARE EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE ( 
MESSAGE$HEAD ADDRESS, 
MESSAGE$TAIL ADDRESS, 
TASK$HEAD ADDRESS, 
TASK$TAIL ADDRESS, 
EXCHANGE$LINK ADDRESS)'; 

DECLARE INT$EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE ( 
MESSAGE$HEAD ADDRESS, 
MESSAGE$TAIL ADDRESS, 
TASK$HEAD ADDRESS, 
TASK$TAIL ADDRESS, 
EXCHANGE$LINK ADDRESS, 
LINK ADDRESS, 
LENG'I'H ADDRESS 1 

'.I'Y.PE BYTE) I; 

DECLARE Th$MSG LITERALLY 'STRUCTURE( 
LINK ADDRESS, 
LENGTH ADIJRESS, 
TYPE BYTB, 
HOME$EXCHANGE ADDRESS, 
RESPON3E$EXCHANGE ADDRBSS, 
S'I'A'l'US ADDRESS I 

BUFFER$ADDRESS ADDRESS, 
COUNT ADORE.SS, 
ACTUAL ADDRBSS) '; 

/* 
8253 PORT ADDRESSES. 

*/ 
LECLARE A8253$MODE LITERALLY '0DFH'; 
DECLARE A825 3$C'I'.f<.2 LITERALLY '0DE.h'; 

2-21 AFN·01931A 



HJ 
11 
12 
13 

14 

15 
16 
17 

18 

19 

20 
21 

22 

23 
24 

25 

26 
27 

28 
29 

30 
31 

32 

33 
34 

1 
1 
1 
1 

1 

1 
1 
l 

1 

1 

2 
2 

1 

2 
2 

1 

2 
2 

1 
1 

1 
1 

1 

2 
2 

/* 
8253 COM1"1ANDS. 

*/ 
DECLARE SELECT$2 LITERALLY '100000008'; 
DECLARE RL$80'l'H LI'I'ERALLY I 001100008 Ii 
DECLARE MODE$3 LI'I'ERALLY I 000001108 Ii 
DECLARE 82400 LITERALLY '001CH'; 

/* 
8251 PORT ADDRESSES. 

*/ 
DECLARE USART$IN LITERALLY '0ECH', 

USAR'I'$0UT LI'I'ERALLY I 0ECh I, 
USART$CON'I'ROL LITERALLY I 0ED& Ii 

/* 
8251 MODES. 

*/ 
DECLARE STOP$1 LITERALLY '010000008'; 
DECLARE CL8 LITERALLY '000011008'; 
DECLARE RA'I'E$16X LITERALLY I 000000108 Ii 

/* 
8251 COMI>'IANDS. 

*/ 
DECLARE USART$RESET 

RTS 
ERROR$RESE'I' 
RXE 
DTR 
'I·XEN 

RQSEND: 

LI'I'ERALLY 
LITERALLY 
LI'I·ERALLY 
LI'I'ERALLY 
LITERALLY 
LITERALLY 

'010000008', 
'001000008', 
I 00l!Jl0000B I, 
'000001008', 
'000000108', 
'000000018'; 

PROCEDURE (EXCHANGE$POINTER,MESSAGE$POINTER) EXTERNAL; 
DECLARE (EXCHANGE$POINTER,MESSAGE$POINTER) ADDRESS; 

END RUSEND; 

RQWAIT: 
PROCEDURE (EXCHANGE$POINTER,DELAY) ADDRESS EXTERNAL; 

DECLARE (EXCHANGE$POINTER,DELAY) ADDRESS; 
END RQWAI'I'; 

R{,JELVL: 
PROCEDURE (LL V EL) EX'I'ERNAL; 

DECLARE LEVEL BYTE; 
END Rl,.iELVL; 

DECLARE RQINPX EXCHANGE$DESCRIPTOR PUBLIC; 
DECLARE Rl,./OUTX EXCBANGE$DESCRIPTOR PUBLIC; 

DECLARE RQL6EX INT$EXCBANGE$DESCRIPTOR PUBLIC; 
DECLARE RQL7EX INT$EXCttANGE$DESCRIPTOR PUBLIC; 

Il.'HTIALIZA'I'ION: 
PROCELURE; 

OUTPUT(A8253$MODE) 
OUTPUT(A8253$CTR2) 

SELECT$2 OR RL$BOTH OR MODE$3; 
LOW (82400); 

2-22 AFN·01931A 



35 
36 

37 
38 
39 

40 

41 

42 
43 
44 
45 

46 

47 
48 
49 
50 

51 

52 
53 

54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

65 
66 
67 
68 
69 

70 
71 
72 
73 
74 
75 
76 
77 

78 

2 
2 

2 
2 
2 

2 

1 

2 
2 
2 
2 

2 

3 
3 
3 
3 

2 

2 
2 

2 
3 
3 
3 
3 
3 
4 
4 
4 
5 
5 

5 
6 
6 
6 
5 

4 
5 
5 
6 
6 
6 
6 
6 

5 

OUTPUT(A8253$CTR2) = HIGB(B2400): 
OU'l'PU'I' ( USART$CON'l'ROL) , 
OUTPUT(USART$CONTROL), 
OUTPUT(USART$CONTROL), 
OUTPUT(USART$CONTROL) 
OUTPUT(USART$CONTROL) 
OUTPUT(USART$CONTROL) 
OU'l'PU'I' ( USAR'I·$CONTRGL) 

END INITIALIZATION: 

RD$1YJIN: 
PROCEDURE PUBLIC: 

0: 
USART$RESE'I': 
S'I'0P$1 OR CLB OR RATE$16X: 
RTS OR ERROR$RESET OR 
RXE OR D'I'R OR 'I'XEN: 

DECLARE (MSGPTR,INTMSG,BUF$ADDRESS) ADDRESS: 
DECLARE (CHAR,PTR,I) BYTE: 
DECLARE MSG BASED MSGPTR TH$MSG: 
DECLARE (BUF BASED BUF$ADDRESS) (1) BY'rE: 

ECH0$CHAR: 
PROCEDURE (CHAR): 

DECLARE CHAR BY'I'E: 
INTMSG = RQWAIT(.RQL7EX,0): 
OUTPUT(USART$0UT) = CHAR: 

END ECHO$ChAR: 

CALL INITIALIZATION: 

CALL R.QELVL(6): 
CALL R.QELVL ( 7) : 

DO FOREVER: 
MSGPTR = RQWAIT(.RQI~PX,0).: 
BUF$ADDRESS = MSG.BUFFER$ADDRESS - l: 
P'I·R = 0: 
CHAR = NO'I' CR: 
DO WHILE CHAR <> CR: 

INTMSG = RQWAIT(.RQL6EX,0): 
IF (CHAR := INPUT(USART$IN) AND 7FH) 
DO: 

RUBOUT TBEN 

IF P'I'R = 0 'I'HEN 
CALL ECHO$CHAR(BELL): 

ELSE 
DO: 

CALL ECH0$CHAR(BUF(PTR)): 
P'I·R = PTR - 1: 

END: 
END: 
ELSE 
DO: 

IF CHAR = CON'I'ROL$X 'I'hEN 
DO: 

CALL ECHO$CHAR('#'): 
CALL ECHO$CHAR(CR)1 
CALL ECH0$CHAR(LF): 
P'l'R = 0: 

END: 
ELSE 
DO: 

2-23 AFN-01931A 



79 6 
80 6 
81 7 
82 7 
83 7 
84 8 
85 8 
86 7 

87 6 
88 7 
89 7 

90 7 
91 8 
92 8 
93 8 
94 7 
95 7 
96 8 
97 8 
98 8 
99 7 

100 7 
HJl 6 
102 5 
103 4 
H.14 3 
HJ5 3 
106 3 
107 3 
108 3 
109 3 
lHJ 3 
111 2 

112 1 

113 2 
114 2 
115 2 
116 2 

117 2 

118 2 
119 3 
120 3 
121 3 
122 4 
123 4 
124 4 
125 3 
126 3 
127 3 
128 3 
129 2 
130 1 

IF CHAR = CONTROL$R THEN 
DO; 

CALL ECH0$CHAR(CR); 
CALL ECHO$CBAR(LF); 
DO I = l TO P'l'R; 

CALL ECH0$CHAR(BUF(I)); 
END; 

END; 
ELSE 
DO; 

IF PTR < MSG.COUNT THEN 
BUF(PTR := PTR+l) =CHAR; 

ELSE 
DO; 

IF CHAR <> CR THEN 
CHAR = BELL; 

END; 
IF CHAR = ESC THEN 
DO; 

CALL ECH0$CHAR('$'); 
CHAR = CR; 

END; 
CALL ECH0$CHAR(CHAR); 

END; 
END; 

END; 
END; 
IF PTR < MSG.COUNT THEN 

BUF(PTR:=PTR+l) = LF; 
MSG.ACTUAL = PTR; 
MSG. S'l'A'I'US = 0; 
CALL R~SEND(MSG.RESPONSE$EXCHANGE,MSGPTR); 
CALL ECHO$CHAR(LF); 

END; 
END RD$1"!IN; 

~~R$MIN: 
PROCEDURE PUBLIC; 

DECLARE (MSGPTR,INTMSG,BUF$ADDRESS) ADDRESS; 
DECLARE PTR BYTE; 
DECLARE MSG BASED MSGPTR TH$MSG; 
DECLARE (BUr' BASED BUF$ADDRESS) (1) BY'I'E; 

CALL R(,JELVL ( 7) ; 

DO F0REVER; 
MSGP'l'R = RQWAI'l' (. RQOU'I'X, 0) ; 
BUF$ADDRESS = MSG.BUFFER$ADDRESS - l; 
DO PTR = 1 TO MSG.COUNT; 

IN'l'MSG = RQWAI'l' (. RQL 7 EX, 0) ; 
OUTPUT(USART$0UT) = BUF(PTR); 

El'lD; 
MSG.ACTUAL = MSG.COUNT; 
MSG.S'l'ATUS = 0; 
CALL RQSE1\JD(MSG.RESPONSE$EXChANGE,MSGPrl'R); 

END; 
END WR$MIN; 

END MINIMAL$TERMINAL$HANDLER; 

AFN-01931A 



APPENDIX B 

WRMIN ASSEMBLY LANGUAGE LISTING 

LOC OBJ SEQ SOURCE STATEMENT 

1 NAME WRMIN 
2 EXT RN RQELVL,RQOUTX,RQWAIT,RQSEND 
3 PUBLIC WRMIN,RQL7EX 

OOEC 4 DATOUT EQU OECH ; USART OUTPUT PORT ADR 
5 CSEG 
6 WRMIN: 

0000 OE07 7 MVI C,7 
0002 CDOOOO E 8 CALL RQELVL ENABLE INTERRUPT LVL 7 

9 WRO: 
0005 110000 1 0 LXI D,O 
0008 010000 E 1 1 LXI B,RQOUTX 
OOOB CDOOOO E 12 CALL RQWAIT WAIT FOR OUTPUT RQST 
OOOE E5 13 PUSH H PUSH MESSAGE ADDRESS 
OOOF 110700 14 LXI D,7 
0012 19 1 5 DAD D 
0013 4E 16 MOV C,M GET RESPONSE EXCHANGE 
0014 23 1 7 INX H 
0015 46 18 MOV B,M 
0016 23 19 INX H 

0017 C5 20 PUSH B PUSH RESPONSE EXCHANGE 
0018 3600 21 MVI M,O STATUS = 0 
001A 23 22 INX H 
001B 3600 23 MVI M,O 
001D 23 24 INX H 
001E 5E 25 MOV E,M GET BUFFER ADR IN DE 
001F 23 26 INX H 
0020 56 27 MOV D,M 
0021 23 28 INX H 
0022 4E 29 MOV C,M GET COUNT IN BC 
0023 23 30 INX H 
0024 46 31 MOV B,M 
0025 23 32 INX H 
0026 71 33 MOV M,C ACTUAL COUNT 
0027 23 34 INX H 
0028 70 35 MOV M,B 

36 WR 1 : 
0029 78 37 MOV A,B 
002A Bl 38 ORA c 
002B CA4300 c 39 JZ WR2 EXIT LOOP IF COUNT = 0 
002E C5 40 PUSH B 
002F D5 4 1 PUSH D 
0030 110000 42 LXI D,O 
0033 010000 D 43 LXI B,RQL7EX 
0036 CDOOOO E 44 CALL RQWAIT WAIT FOR TXRDY INTRPT 
0039 D1 45 POP D 
003A C1 46 POP B 
003B 1A 47 LDAX D 
003C 13 48 INX D 
003D D3EC 49 OUT DATO UT TRANSMIT NEXT CHAR 
003F OB 50 DCX B 
0040 C32900 c 5 1 JMP WR1 

52 WR2: 

2-25 AFN-01931A 



0043 C1 53 POP B BC = RESPONSE EXCHANGE 
0044 D1 54 POP D DE = MSG ADDR1:!:SS 
0045 CDOOOO E 55 CALL RQSEND SEND MSG TO RESP. EXCH 
0048 C30500 c 56 JMP WRO 

57 
58 DSEG 
59 RQL7EX: 

OOOF 60 DS 1 5 
6 1 
62 END 

2-26 AFN-01931A 



2 
3 
4 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

= 
= 
= 

= 
= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 

= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
= 

2 = 
= 
= 

2 = 
= 

2 = 

APPENDIXC 

ATOD PL/M LISTING 

ATOD: 
DO; 

$INCLUDE( :F1 :COMMQN,ELT) 
DECLARE TRUE LITERALLY 'OFFH'; 
DECLARE FALSE LITERALLY 'OOH'; 
DECLARE BOOLEAN LITERALLY 'BYTE'; 
DECLARE FOREVER LITERALLY 'WHILE 1'; 

$INCLUDE( :F1 :EXCH,ELT) 
DECLARE EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE ( 

MESSAGE$HEAD ADDRESS, 
MESSAGE$TAIL ADDRESS, 
TASK$HEAD ADDRESS, 
TASK$TAIL ADDRESS, 
EXCHANGE$LINK ADDRESS)' ; 

$INCLUDE( :F1 :IED.ELT) 
DECLARE INT$EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE ( 

MESSAGE$HEAD ADDRESS, 
MESSAGE$TAIL ADDRESS, 
TASK$HEAD ADDRESS, 
TASK$TAIL ADDRESS, 
EXCHANGE$LINK ADDRESS, 
LINK ADDRESS, 
LENGTH ADDRESS, 
TYPE BYTE)' ; 

$INCLUDE( :F1 :MSG,ELT) 
DECLARE MSG$HDR LITERALLY ' 

LINK ADDRESS, 
LENGTH ADDRESS, 
TYPE BYTE, 
HOME$EXCHANGE ADDRESS, 
RESPONSE$EXCHANGE ADDRESS'; 

DECLARE MSG$DESCRIPTOR LITERALLY 'STRUCTURE( 
MSG$HDR, 
REMAINDER ( 1) BYTE)' ; 

$INCLUDE(: F 1: INTRPT, EXT) 
RQENDI: 

PROCEDURE EXTERNAL; 

END RQENDI; 

RQELVL: 
PROCEDURE (LEVEL) EXTERNAL; 

DECLARE LEVEL BYTE; 

END RQELVL; 

2-27 AFN·01931A 



15 

16 

17 

18 

19 
20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 
35 
36 
37 
38 
39 
40 

41 
42 
43 
44 
45 
46 

= 
= 
= 

2 = 
= 

2 = 

= 
= 

2 = 
2 = 

= 
2 = 

= 
= 

2 

= 
2 = 

= 
= 
= 

2 = 
= 

2 = 
= 
= 
= 

2 = 
= 

2 = 
= 
= 
= 

2 = 
= 

2 = 

1 
1 
1 
1 
1 
1 
1 

RQDLVL: 
PROCEDURE (LEVEL) EXTERNAL; 

DECLARE LEVEL BYTE; 

END RQDLVL; 

RQSETV: 
PROCEDURE (PROC,LEVEL) EXTERNAL; 

DECLARE PROC ADDRESS; 
DECLARE LEVEL BYTE; 

END RQSETV; 

$INCLUDE( :F1 :SYNCH.EXT) 
RQSEND: 

PROCEDURE (EXCHANGE$POINTER,MESSAGE$POINTER) EXTERNAL; 
DECLARE (EXCHANGE$POINTER,MESSAGE$POINTER) ADDRESS; 

END RQSEND; 

RQWAIT: 
PROCEDURE (EXCHANGE$POINTER,DELAY) ADDRESS EXTERNAL; 

DECLARE (EXCHANGE$POINTER,DELAY) ADDRESS; 

END RQWAIT; 

RQACPT: 
PROCEDURE (EXCHANGE$POINTER) ADDRESS EXTERNAL; 

PECLARE EXCHANGE$POINTER ADDRESS; 

END RQACPT; 

RQISND: 

I* 

PROCEDURE (IED$PTR) EXTERNAL; 
DECLARE IED$PTR ADDRESS; 

END RQISND; 

SBC 711 ANALOG TO DIGITAL BOARD 
*I 
DECLARE ADC$BASE ADDRESS AT (OF700H); 
DECLARE COMMAND$REGISTER BYTE AT (,ADC$BASE+O); 
DECLARE STATUS$REGISTER BYTE AT (,ADC$BASE+O); 
DECLARE FIRST$CHANNEL$REGISTER BYTE AT (.ADC$BASE+1); 
DECLARE LAST$CHANNEL$REGISTER BYTE AT (,ADC$BASE+2); 
DECLARE CLEAR$INTERRUPT$REQUEST BYTE AT (,ADC$BASE+3); 
DECLARE ADC$DATA$REGISTER ADDRESS AT (.ADC$BASE+4); 

DECLARE GO$BIT LITERALLY '1'; 
DECLARE AUTO$INCREMENT$ENABLE LITERALLY '2'; 
DECLARE BUSY LITERALLY 1 8 1 ; 

DECLARE EOS$INTERRUPT$ENABLE LITERALLY '10H'; 
DECLARE EOC$INTERRUPT$ENABLE LITERALLY '20H'; 
DECLARE END$0F$SCAN LITERALLY '40H'; 

2-28 AFN-01931A 



47 

48 
49 
50 
5 1 
52 

53 

54 

55 

56 

57 
58 

59 

60 

6 1 
62 

63 
64 
65 
66 
67 

68 

69 

70 

7 1 
72 
73 
74 

75 
76 
77 
78 

2 
2 

2 

2 

2 
2 

2 
3 
3 
3 
3 

2 

2 

2 
2 
2 
2 

2 
2 
2 
2 

DECLARE END$0F$CONVERSION LITERALLY '80H'; 

DECLARE DUMMY EXCHANGE$DESCRIPTOR PUBLIC; 
DECLARE RET$PULSE EXCHANGE$DESCRIPTOR PUBLIC; 
DECLARE GO$PULSE EXCHANGE$DESCRIPTOR PUBLIC; 
DECLARE TRIGGER EXCHANGE$DESCRIPTOR PUBLIC; 
DECLARE RET$TRIG EXCHANGE$DESCRIPTOR PUBLIC; 

DECLARE RQL2EX INT$EXCHANGE$DESCRIPTOR; 

DECLARE T$PARAM$LOCK EXCHANGE$DESCRIPTOR EXTERNAL; 

DECLARE BOX$PARAMS(5) STRUCTURE( 
CHANNEL BYTE, 
SET$POINT ADDRESS, 
ERROR ADDRESS, 
OFFSET ADDRESS, 
SAMPLES ADDRESS, 
COUNT ADDRESS, 
ACCUM ADDRESS, 
READING ADDRESS ) EXTERNAL; 

TICKER$TASK: 
PROCEDURE PUBLIC; 

DECLARE MSG ADDRESS; 
DECLARE PULSE$MSG(2) STRUCTURE ( 

MSG$HDR ); 

PULSE$MSG ( 0) , LENGTH, 
PULSE$MSG(1),LENGTH = SIZE(PULSE$MSG(O)); 
PULSE$MSG( 0), TYPE, 
PULSE$MSG(1),TYPE = 65; 
CALL RQSEND( ,RET$PULSE, ,PULSE$MSG(O)); 
CALL RQSEND(, RET$PULSE,, PULSE$MSG( 1)); 

DO FOREVER; 
MSG= RQWAIT(,DUMMY,5); 
MSG = RQWAIT( ,RET$PULSE,O); 
CALL RQSEND(,GO$PULSE,MSG); 

END; 

END TICKER$TASK; 

ADC$TASK: 
PROCEDURE PUBLIC; 

DECLARE TRIGGER$MSG STRUCTURE ( 
MSG$HDR ); 

DECLARE (T$MSG,MSG,LOCK$MSG) ADDRESS; 
DECLARE I BYTE; 
DECLARE GAIN LITERALLY '00'; 
DECLARE N$CHNLS LITERALLY '5'; 

TRIGGER$MSG,LENGTH = SIZE(TRIGGER$MSG); 
TRIGGER$MSG.TYPE = 65; 
CALL RQSEND(,RET$TRIG,,TRIGGER$MSG); 
CALL RQELVL(2); 

2-29 



79 
80 
8 1 
82 
83 
84 

85 

86 
87 
88 

89 
90 
9 1 
92 
93 

94 

95 

96 
97 
98 
99 

100 

101 

102 

104 
105 
106 
107 
108 
109 
110 

111 
11 2 

11 3 

114 

115 

2 
3 
3 
3 
3 
4 

4 

4 
4 
4 

4 
3 
3 
3 
3 

2 

2 
2 
2 
2 

2 

2 

2 

2 
3 
3 
3 
3 
4 
4 

4 
5 

5 

5 

5 

DO FOREVER; 
MSG= RQWAIT(.GO$PULSE,O); 
CALL RQSEND(, RET$ PULSE, MSG); 
LOCK$MSG = RQWAIT(.T$PARAM$LOCK,O); 
DO I= 0 TO N$CHNLS-1; 

FIRST$CHANNEL$REGISTER = BOX$PARAMS(I).CHANNEL 
+ ROL(GAIN,6); 

COMMAND$REGISTER = G0$8IT 
OR EOC$INTERRUPT$ENABLE; 

MSG = RQWAIT(, RQL2EX, 0); 
COMMAND$REGISTER = O; 
BOX$PARAMS(I),ACCUM = BOX$PARAMS(I).ACCUM 

+ ADC$DATA$REGISTER; 
END; 
CALL RQSEND(.T$PARAM$LOCK,LOCK$MSG); 
T$MSG = RQWAIT(,RET$TRIG,O); 
CALL RQSEND(.TRIGGER,T$MSG); 

END; 

END ADC$TASK; 

CONTROL$TASK: 
PROCEDURE PUBLIC; 

DECLARE (LOCK$MSG,T,MSG) ADDRESS; 
DECLARE I BYTE; 
DECLARE NCHNLS LITERALLY '5'; 
DECLARE TURN$LAMP$0N 

LITERALLY 'OUTPUT( OE7H) =SHL( I 1 1)'; 
DECLARE TURN$LAMP$0FF 

LITERALLY 'OUTPUT(OE7H)=SHL(I,1)+1'; 
DECLARE SETUP$8255 LITERALLY '0UTPUT(OE7H):80H; 

OUTPUT(OE6H):OFFH'; 

SETUP$8255; 

DO FOREVER; 
MSG= RQWAIT{,TRIGGER,O); 
CALL RQSEND(.RET$TRIG,MSG); 
LOCK$MSG= RQWAIT(,T$PARAM$LOCK,O); 
DO I= 0 TO NCHNLS-1; 

BOX$PARAMS(I),COUNT = BOX$PARAMS(I),COUNT + 1; 
IF BOX$PARAMS( I) ,COUNT 

= BOX$PARAMS(I),SAMPLES THEN 
DO; 

T' 
BOX$PARAMS(I).READING 

= (BOX$PARAMS(I).ACCUM 
/BOX$PARAMS(I).SAMPLES) I 38 
+ BOX$PARAMS(I),OFFSET; 

IF T <= BOX$PARAMS(I).SET$POINT 
- BOX$PARAMS(I).ERROR THEN 

TURN$LAMP$0N; 
ELSE 

IF T >= BOX$PARAMS(I),SET$POINT 
+ BOX$PARAMS(I),ERROR THEN 

2-30 AFN-01931A 



116 

11 8 
1 1 9 

120 
1 2 1 

122 

123 

5 

5 
4 

3 
3 

2 

TURN$LAMP$0FF; 
BOX$PARAMS(I).ACCUM, 
BOX$PARAMS( I) .COUNT = O; 

END; 
END; 
CALL RQSEND( .T$PARAM$LOCK,LOCK$MSG); 

END; 

END CONTROL$TASK; 

END ATOD; 

2-31 AFN-01931A 





© Intel Corporation 1978 

APPLICATION 
NOTE 

2-33 

AP-47 

November 1978 

AFN-01931A 



Using FORTRAN-80 for 
iSBC™ Applications 

2-34 

Contents 

I. INTRODUCTION ................... 2-35 

II. OVERVIEW ........................ 2-35 

FORTRAN-80 ....................... 2-35 
Software Decisions ................... 2-35 

III. USING FORTRAN-80 ................ 2-36 

1/0 Capabilities ..................... 2-36 
Math Capabilities .................... 2-38 

IV. APPLICATION EXAMPLE .......... 2-39 

An Automated Test Stand ............. 2-39 

V. USING THE iSBC 801. ............... 2-42 

RMX/80™ Overview ................. 2-43 
The RMX/80™ Model ................ 2-43 

VI. APPLICATION EXAMPLE .......... 2-44 

A Sewage Treatment Plant Control 
System ........................... 2-44 

VII. SUMMARY ......................... 2-50 

APPENDIX A ........................... 2-51 

APPENDIX B ........................... 2-63 

AFN·01931A 



I. INTRODUCTION 

In March of 1978, Intel announced the availability of a 
resident FORTRAN compiler for the Intellec® Micro
computer Development System. In November of 1978, 
Intel announced the availability of a run-time package 
to support the execution of FORTRAN-80 compiled 
programs in the RMX/80™ environment. With this sup
port package, user's of Intel's complete line of iSBC™ 
Single Board Computer products can benefit from the 
full set of I/O and math capabilities provided by the 
FORTRAN-80 language. 

This application note is intended to familiarize the 
reader with the features, benefits and usage of the 
FORTRAN-80 package and RMX/80™ Executive. The 
reader who is unfamiliar with any of these topics is 
urged to refer to the related Intel publications listed in 
the front-piece. 

Following the overview, two application examples will 
be studied. In the first example, FORTRAN code is used 
in a "stand-alone" environment; i.e., without operating 
system support. The second example is a multitasking 
system managed by the RMX/80 Executive which sup
ports standard I/O interfaces to the RMX/80 Terminal 
Handler and Disk File System. 

II. OVERVIEW 

Intel's FORTRAN-80 compiler is an implementation of 
the standard FORTRAN known as ANS FORTRAN 77 
approved by the American National Standards Institute 
(ANSI) in April, 1978. The implementation is of the 
FORTRAN 77 subset, plus most of the full I/O capabil
ity and Intel defined extensions. For a fuller description 

FORTRAN 
80 

PL/M 
80 

ASM 
80 

2-35 

of the implementation, consult the FORTRAN-SO Pro
gramming Manual. 

FORTRAN-80 is a high level applications program
ming language with flexible I/O handling and floating
point math instructions. With the FORTRAN-80 lan
guage, the programmer can easily implement sophisti
cated applications involving scientific calculations, 
process and instrument control, test and measurement, 
and a host of other applications requiring the power 
and flexibility the FORTRAN-80 language provides. 

With the addition of the iSBC 801 FORTRAN-80 
RUN-TIME PACKAGE for RMX/80 SYSTEMS, the 
user who wishes to implement his application using 
Intel's Single Board Computers and the RMX/80 Real
Time Multitasking Executive can take full advantage of 
the FORTRAN-80 I/O and math capabilities. The pack
age allows the user to accelerate the run-time execution 
of FORTRAN-80 coded mathematical formulae through 
special interfaces to the optional iSBC 31 O™ High 
Speed Mathematics Unit. All disk and terminal I/O is 
interfaced directly to the RMX/80 Disk File System and 
either the full or the minimal Terminal Handler. The 
libraries that comprise the iSBC package are construc
ted in a modular fashion, allowing the user to configure 
systems with as much or as little of the support libraries 
as needed for a given application. 

In order to effectively utilize the hardware and software 
products now available, it is important to design the ap
plication system from the top down. This implies that 
we need to think of an application in very general terms 
and then successively introduce more detail until we 
have program code as our final step. At each stage of 
the definition, we have to make decisions about the us
age and configuration of various products. 

FORTRAN 
80 

PL/M 
80 

ASM 
80 

AFN-01931A 



The decision-making process that concerns itself with 
software can be shown as a tree (Figure 1). The first 
decision that must be made is whether or not the 
RMX/80 Real-Time Multitasking Executive should be 
utilized. In general, this package will prove extremely 
useful if the application to be designed must respond to 
multiple asynchronous events, or contains multiple, 
semi-independent processes that could be executed in 
parallel, or has need of standard vendor supplied device 
drivers. If the application is very small and simple, 
handles few or no interrupts, has no need for parallel 
execution of multiple processes, and the de.signer is 
willing to supply his own. I/O device drivers, the pro
gram may be able to execute without the support of an 
operating system. 

Whether the RMX/80 package is used or not, the system 
designer must now choose in which language or 
languages the programs should be coded. Each of the 
three languages shown is optimized for different pur
poses. The PL/M-80 language is well suited for systems 
programming. The ASM-80 language is best suited for 
applications requiring direct control of the computer 
(e.g., the registers and memory). The FORTRAN-80 
language is highly desirable for those applications 
requiring mathematical calculations and formatted 

PORT 
1/0 

NON·RMX/80™ 
FORTRAN-80 

INTERNAL 
BUFFER 

FORMATTING 

USER HIGH· 
LEVEL DRIVERS 

I/O. In many cases, the optimal solution will use a mix 
of two or even all three of these languages. 

III. USING FORTRAN-80 

1/0 Capabilities 

After the decision has been made to use the FORTRAN
SO language for an application, various types of I/O 
support are available to the user (see Figure 2). If the 
program code is to run without any support from an 
operating system, the user must supply drivers for any 
devices he wishes to include in his system. 

When designing an RMX/SO system, the iSBC SO I pack
age supplies the standard interface to the disk and 
terminal while the user may support additional devices 
in the same manner as the "stand alone" program 
would. The following sections expand on the topic of· 
FORTRAN-SO I/O support. 

Port 1/0 

The simplest and most direct method of performing I/O 
in the FORTRAN-SO language uses two pre-defined sub
routines, INPUT and OUTPUT. The example below il
lustrates the use of these subroutines to input bytes from 
and output bytes to any of the SOSOA/SOSSA I/O ports. 

RMX-BQTM 
DISK FILE 
SYSTEM 

RMX/80™ 
FORTRAN-80 

RMX/80™ 
TERMINAL 
HANDLER 

NON 
STANDARD 

DEVICES 

PORT 1/0 

INTERNAL 
BUFFERS 

USER HIGH. 
LEVEL DRIVERS 

Figure 2. The 1/0 Support Decision 

2-36 AFN·01931A 



INTEGER* 1 IV AL 

c 
C--PROGRAM THE 8255 PARALLEL I/O CHIP 
C--PORT# =EB; VALUE= 94 
c 

CALL OUTPUT (#OEBH, # 94H) 
• 
• 
• 

c 
C -- INPUT 8 BITS FROM PORT A INTO IV AL 
C -- PORT# = E8; VALUE INPUT TO IV AL 
c 

CALL INPUT (#OE8H,IVAL) 
• 
• 
• 

Port I/O is extremely useful in many applications. How
ever, this method requires the programmer to directly 
handle each and every byte. Also, it does not utilize the 
power of the FORTRAN-80 formatting routines. 

Internal Buffer Formatting 

One method of overcoming the shortcomings of Port 
I!O is to use character strings as "virtual devices." This 
is accomplished by specifying a character string as the 
unit number in a READ or WRITE statement. External 
routines can be used to fill the character strings with 
input for the READ statement and to output buffers that 
have been formatted by the WRITE statement. The ex
ample below shows the use of th.is method. 

c 

SUBROUTINE EXAMPL 
CHARACTER* 80 BUFFER 

• 
• 
• 

C-- CALL DEVICE DRIVER TO GET BUFFER OF 
C -- CHARACTERS 
c 

CALL BUFIN (BUFFER) 
c 
C -- NOW READ FROM BUFFER INTO VARIABLES 
C-- UNDER FORMAT CONTROL 
c 

READ (BUFFER, 100) X, Y, Z 
100 FORMAT (F!0.3, Fl2.4, F!3.5) 

• 
• PROCESS DATA STORED IN VARIABLES 
• X,Y,Z 
• 

c 
C-- WRITE RESULTS TO BUFFER 
c 

WRITE (BUFFER, 200) A, B, C, D 
200 FORMAT (4Fl2.3) 
c 

2-37 

C -- CALL DEVICE DRIVER TO OUTPUT BUFFER 
c 

CALL BUFOUT (BUFFER) 
• 
• 
• 

User Provided High-Level Drivers 

If an application requires only simple input (READ) and 
output (WRITE) capabilities, the previous method 
would probably be sufficient. If, however, the device(s) 
in the system are more complex, it may be necessary to 
perform other I/0 operations. One way of doing this 
would be to write subroutines for each operation. A 
much nicer solution is to use the FORTRAN-80 I/O in
structions (OPEN, CLOSE, READ, WRITE, PRINT, 
BACKSPACE, REWIND, and ENDFILE) to interface 
to user-written routines which implement these instruc
tions for the special device. 

This is possible because, for each open file in the system, 
the FORTRAN-80 I/O system keeps a table connecting 
the unit number with the addresses of the routines that 
handle all operations on that unit. The I/O system 
allows the user to substitute his own device drivers into 
this table. To do this, the system designer codes a 
routine and labels it FQOLVL. This routine is then 
made known to the I/0 system (i.e., declared PUBLIC). 
Whenever a file is first accessed (i.e., OPENED), the I/O 
system calls FQOL VL with a set of parameters, one of 
which is the file name referenced in the OPEN state
ment. The designer, in his code for FQOLVL, scans the 
file name to decide if this is one of the files for which he 
wishes to supply drivers. If so, he passes back a table of 
the addresses of the routines that will take care of the 
eight primitive file I/0 capabilities (refer to the example 
following this paragraph and to the FOR TRAN-80 
Compiler Operators Manual) . 

FQ0LVL: PROCEDURE(file$ptr,buf$ptr} BYTE PUBLIC; 

/* table of entry point addresses for driver routines */ 

DECLARE fable (8) ADDRESS DATA( 
.open$hdlr, /* address of OPEN routine */ 
.close$hdlr, /* address of CLOSE routine */ 
.read$hdlr, /*address of READ routine*/ 
.write$hdlr, /*address of WRITE routine */ 
.back$hdlr, /* address of BACKSPACE routine */ 
.mv2rec$hdlr, /* address of MV2REC routine */ 
.rewind$hdlr, /*address of REWIND routine*/ 
,make$eof$hdlr /* <1ddress of END OF FILE routine */ 
); 

DECLARE (returned $stat us, index) BYTE; 
DECLARE (file$ptr ,buf$ptr) ADDRESS; 
DECLARE buf BASED buf$ptr fl) BYTE; 
DECLARE file$name BASED file$ptr (1) BYTE; 
DECLARE analog$in (*)BYTE DATA(':AI:'}; 

/* set flag initially =FFH */ 

returned Ss ta tus=0FFH; 

/* if any character of file$name does not compare set f.lag:0 */ 

DO index=0 TO 3; 
IF filenamefindex) <> analog$in(index) THEN 

returned$s ta tus=0; 
END1 

/* if flag=FFH pass back the addresses of the drivers */ 

IF returned$status=0FFH THEN 
CA.LL move (size (fable) , • table ,buf$ptr) ; 

RETURN returned$status; 
END; /* of FQ0LVL */ 

AFN-01931A 



RMX/80™ Support 

When using the RMX/80 Executive, the iSBC 801 
FORTRAN-80 RUN-TIME PACKAGE for RMX/80 
SYSTEMS can be used to provide a direct interface to 
standard RMX/80 high level drivers, the Disk File 
System and the Terminal Handler. With the RMX/80 
Executive, users can code multiple, concurrently 
executing programs that perform formatted 1/0 to disk 
files and the console, as shown in the following 
example: 

c 
C -- OPEN disk file 
c 

c 

OPEN (8,FILE = ':DO:TSTDTA.FIL',ACCESS = 
'SEQUENTIAL') 

C -- perform tests 
c 

• 
• 
• 

c 
C -- WRITE results to file for archival storage 
c 

WRITE(8,100) (RESULT (I),l= 1,10) 
I 00 FORMAT( I OF 12. 3) 
c 
C -- PRINT completion message on console 
c 

PRINT 200 
200 FORMAT ('TESTS COMPLETE') 

• 
• 
• 

If it is necessary for a FORTRAN program in the 
RMX/80 system to perform 1/0 to a device not handled 
by one of the high level drivers, any of the methods pre
viously described can be utilized to augment the 1/0 
system. 

FORTRAN-80 Math Capabilities 

The FORTRAN-80 language supports four data types 
labelled INTEGER, REAL, LOGICAL, and CHARAC
TER. Also supported are various operators which can 
manipulate objects of various types. Both INTEGER 
(fixed point) and REAL (floating-point) objects can be 
manipulated by the add ( + ), subtract ( - ), multiply(*), 
divide(/), and exponentiation(**) operators. In addition, 
Integers can be operated on by the Boolean operators 
(e.g., .AND.,.OR.). In this case, the operations are per
formed bit-wise on the operands. 

All floating-point arithmetic operations are performed 
with algorithms that adhere to the Intel Floating-Point 
Standard! which allows for seven decimal digits of pre
cision. Whenever math operations are used, the user 

can make the decision to use a software package to 
implement the floating point support or to accelerate the 
execution of these operations (by as much as a factor of 
five or six) by installing an iSBC 310 High-Speed Mathe
matics Unit and linking in special FORTRAN-310 
drivers. In either case, due to the adherence to the 
standard, the results of all calculations will be identical. 
In addition, the libraries have been designed to allow the 
switch to be made from software routines to a faster hard
ware solution with no code changes. 

Above and beyond the basic mathematical operators in 
FORTRAN-80, a large number of intrinsic functions 
are available. These functions provide services like type 
conversion, remaindering, and logarithmic and trigo
nometric calculation. Since the calculations involved 
in performing these high-level functions require the 
mathematical operators, they too can be accelerated by 
the inclusion of the iSBC 310 board and its associated 
drivers . 

Error Handling 

The math processing system also provides flexible error 
handling. The user can choose to use either an Intcl
supplied error handler or one of his own design. The 
capability also exists to change the active error handler 
dynamically in cases where different routines require 
different handlers. The default error handlers are named 
FQFERH. One exists in each of the arithmetic libraries 
(Figure 3). This error handler will attempt to recover 
from an error by taking the most reasonable action (e.g., 
underflow error returns result= 0). If code is being run 
"stand-alone" or under the RMX/80 executive the 
handlers in the math libraries should be used or the user 
should supply his own. Appendix B of the ISIS-II FOR
TRAN-80 Compiler Operator's Manual contains all of 
the information necessary to implement a custom error 
handler or to use the default routines. 

FPSOFT.LIB - Software package for "stand-alone" 
and ISIS-II systems 

FPHARD.LIB - iSBC 310 drivers for same 
• FPSFTX.LIB - Software package for RMX/80 systems 
*FPHRDX.LIB - iSBC 310 drivers for iSBC 80/20, 

80/20-4 and 80/30 boards 
*FPHXlO.LIB - iSBC 310 drivers for iSBC 80/10 and 

80/ I OA boards 

2-38 

FPEF.LIB - Library of routines implementing 
intrinsic functions 

*Available in iSBC 801 FORTRAN-80 RUN-TIME 
PACKAGE for RMX/80 Systems. 

Figure 3. Available Math Libraries 

I Palmer, John F., "The Intel Standard for Floating-Point Arithmetic," Proceedings of the 
First International Computer Software and Applications Conference (Chicago: IEEE Com
puter Society), November, 1977, pp 107-112. 

AFN·01931A 



IV.APPLICATION EXAMPLE 

An Automated Test Stand 

This example shows the steps taken to design and imple
ment an automated test stand. The hardware system 
must interface to a test fixture upon which test items can 
be mounted. Operator inputs and test outputs involve a 
300-baud hard copy terminal. The software to be devel
oped must allow an operator to invoke a variety of tests 
from the console and to receive some printed perfor
mance record for the object under test. In addition, the 
software must allow for tests to be added and deleted 
often, and each test must be allowed to obtain any 
number of parameters from the command line tail. 

After examining the problem definition and the decision 
making diagram presented earlier, it was decided that 
this application could be implemented with a simple 
sequential program. 

Since formatted I/0 and mathematical calculations 
are involved, the FORTRAN-80 language is well suited 
to be the main programming language. Also, some 
ASM-80 routines will come .in handy for communicating 
with the console. 

An analysis of the I/O to be performed breaks down into 
two distinct types. Various inputs to and outputs from the 
text fixture will be 8-bit parallel transfers. These will 
likely go through the 8255A ports on the Single Board 
Computer. Port I/O will be used to handle this function. 
Interface with the operator requires READ'S AND 
WRITE's to the console device. The simplest way of per
forming this function is to use character strings as the 
target of READ and WRITE operations and coding small 
ASM-80 routines to transfer these buffers from/to the 
console. 

A diagram of the test stand is shown in Figure 4. The 
computer hardware necessary to solve this application 
includes a Single Board Computer (the iSBC 80/20 
board), a PROM memory module and an analog I/O 
board. Digital I/O with the test fixture is handled by the 
8255A ports on the Single Board Computer. The analog 
inputs on the test fixture come from the two DIA conver
ter channels on the iSBC 732 board. 

The software solution utilizes a very rudimentary com
mand line interpreter. The mainline routine gets a line 
of input and finds the first non-blank character. If this 
character is an alphabetic character, it is used in a 
computed GOTO statement to transfer control to one 
of a possible 26 entry points. Tests may be added by 
choosing a keyletter and inserting a label in the GOTO 
statement to transfer control to the new test routine. The 
command input line and the index in the line are stored 
in a common block so that any test routine can continue 
scanning the line for parameters or can reset the index 
and find out what keyletter caused its invocation. The 
flow of the software is illustrated in Figure 5. 

For the purpose of explanation, routines are shown to 
implement a "calculator mode" which allows the opera-

2-39 

tor to perform arithmetic from the console, and a logic 
transition tester which determines whether the object on 
the test fixture changes state at the proper voltages. 

K COMPUTER 

,.- SYSTEM 

v 
[ DIA J [ AID J 

~ 
TEST 

FIXTURE 

Figure 4. Test Stand Diagram 

Code Description 

The following sections describe the program code for 
this application example. Fold-out code listings are con
tained in Appendix A. The circled reference letters in 
the text refer to the corresponding letters in the listings. 

The DRIVRS Module 

The module DRIVRS contains three primary routines. 
START @ is located at 0 so that it is executed upon 
power up. This routine is responsible for programming 
the on-board hardware (8255A, 8251, 8253), setting up 
the system stack, and calling the FORTRAN routine 
labeled MAINLN. 

The input routine BUFIN @ is called from 
FORTRAN routines with a character string as an argu
ment. Note that passing a string argument from FOR
TRAN results in the address and length of the string 
being sent as parameters. The string is filled with char
acters input from the console until a carriage return is 
encountered. A simple line-editing scheme is imple
mented allowing character deletion (RUBOUT), line de
letion (CONTROL-X), and echoing of the current buffer 
contents (CONTROL-R). Attempted entry of characters 
beyond the end of the string and RUBOUTS past the be
ginning cause the audible bell to sound. 

AFN-01931A 



The output routine, BUFOUT © , also .takes a char
acter string as an argument. The entire contents of the 
string are sent to the console unless a carriage return is 
encountered in the string. If a carriage return is the ter
minator, a line feed is output as well. If a CONTROL-S 
is entered at the console while output is in progress, 
output is suspended until a CONTROL-Q is typed. 

INITIALIZE 

GET FIRST 
NON-BLANK 
CHARACTER 

GOTO 
PROPER 
ROUTINE 

... 
Figure S. Flow Diagram 

The MAINLN Module 

The module MAINLN @ contains the mainline rou
tine that implements the command line interpreter. The 
statement IMPLICIT LOGICAL A-Z will cause most 
usages of undeclared variables to be reported as illegal 
mixed mode; the intent in writing these programs was 
to declare all variables, which is generally considered 

good programming practice, even though Fortran 
makes default assumptions about undeclared variables. 

The default handler is to be used for any errors that 
may occur while performing mathematical calculations. 
Also, the routines that perform the calculations must be 
initialized. Both of these oi;>erations are performed by 
the call to FQFSET @ . The call takes two arguments. 
The first argument is a two byte field specifying which 
error handler is to be used. If the low order bit of the 
high order byte is a one (e.g., 100 hexadecimal), the 
math routines will call a user error handler whose 
address is. given as the second parameter. If the low 
order bit is zero (as is the case in this example), the 
routines will use the default handler and ignore the 
second argument. 

A banner is output to the console by the sequence at 
® where a formatted WRITE is performed on an 

internal buffer (IMAGE) and then the external driver 
BUFOUT is called to output the buffer to the console. 
The variable CARRET is used to insert a carriage 
return into the string to be output. In order to allow in
dividual characters in the character string to be accessed, 
the EQUIV ALEN CE statement is used to cause 
LINBUF and IMAGE to occu~ the same memory 
space. The variable INDEX <,gJ is used to scan 
through the input buffer. 

A call to BUFIN @ fetches the command line from 
the console. DBLANK is called CD to position INDEX 
to the first non-blank character. This character is con
verted to its integer representation, normalized to I and 
checked to see if it is a valid alphabetic character CD 
If the keyletter is valid, the computed GOTO @ 
causes execution to branch to the correct point in a 
jump table @ . Note that A (add,) S (subtract), M 
(multiply), and D (divide) all branch to a single routine 
MATH, T (transition test) branches to a routine called 
TRANST and all other keyletters are trapped into line 
100. Any and all I/O errors cause the ERROR routine to 
be.called. 

The DBLANK Module 

The DBLANK routine @ de-blanks the input line. If 
a carriage return is encountered, the operator is 
prompted for more input. 

The ERROR Module 

The ERROR routine @ prints out an error message, 
with the error number, to the console. 

The MATH Module 

In many of the tests, the human operator must supply 
numeric parameters. A calculator mode is supplied for 
the simple calculations that might be needed here. This 
mode is implemented through the MA TH routine @ 
Since any one of four keyletters could have caused this 
routine to be invoked, MA TH rescans the command line 
to obtain the keyletter ® . Following this, two oper
ands are read in by calls to CONVRT @ and the 
operation requested is performed on them. 

AFN-01931A 



The CONVRT Module 

Subroutine CONVRT @ is called from other routines 
to extract floating-point operands from the input line 
buffer. Characters are transferred into a temporary 
buffer @ until either a carriage return or a comma is 
encountered. The temporary buffer is then read under 
format control to obtain the returned value QJ 
The TRANST Module 

The item to be tested is composed of combinatorial 
logic as shown in Figure 6. The transition test sets all 
inputs except one to a constant value. By varying the 
voltage at the remaining input, the transitions at the 
output can be checked. This test must be run while the 
+ SV power to the fixture is varied through a range of 
values. This testing is performed by the TRANST 
routine. 

Vee 

Power is supplied to the test fixture through one of the 
two DIA channels on the iSBC™ 732. Three of the input 
parameters specify the starting and stopping voltage 
values for Vee and the increment to be added each step. 
The fourth parameter is the tolerance to be used to 
decide if the test passes or fails at each step. Once the 
test is running, the output voltage at @ is measured 
for inputs at (D of 0 and SV. The voltage input is then 
incremented from OV (using DIA channel I) until a 
transition is sensed in the output voltage at @ . At 
this point, the input voltage at Q) is checked to see if 
it is within tolerance. The same process is then repeated 
with the voltage at (!) going from + SV downward. 
After the test is complete, a formatted report is 
generated containing the ambient temperature 
(measured through a temperature sensor) and the per
formance record for the item under test. 

TEST INPUT CD 
COMBINATIONAL 

LOGIC 

TEST OUTPUT @ 

LOW TO HIGH TRANSITION 

TIME 

TF:ST STAND V0. V' 
COMMAND? 
M 3~.678,'l45.t3 

34.678~0 * 
COMMAND? 
T 4.5,5.5,.2,5. 

. . . 
ALL OTHER 

INPUTS 
HELD 

CONSTANT 

Figure 6. Transition Test 

345.43000 

HIGH TO LOW TRANSITION 

TIME 

11978.82160 

TRANSITION TEST TOLERANCE= 5.0% AMBIENT TEMPERATURE = 25.30 DEGREES C 
VCC HIGH TRANS LOW TRANS 
4.5 00.81 3.42 
4.7 00.80 3.44 
4.9 00.80 3.67 
5.1 00.80 3.71 
5.3 00.80 3.73 
5.5 0e.s0 3.74 

COMMAND? 

HIGH LOW TEST 
4.43 0.12 PASSED 
4.67 0.08 PASSED 
4.88 0.02 PASSED 
4.93 0.02 PASSED 
~.98 0.01 PASSED 
4.99 0.01 PASSED 

Figure 7. Sample Output 

2-41 AFN-01931A 



An external routine @ , ADCIN, is called to input 
samples into the variable given as the first parameter 
from the channel given as the second parameter. The 
counts from the temperature sensor exhibit a logarith
mic curve, so the input is linearized using the equation 
shown. The routine DACOUT @ takes the first para
meter and outputs it to the channel specified by the 
second parameter. If no transition occurs when the test 
input is run through its entire range, the item is assumed 
non-functional, a message is output, and control is re
turned to the console @ 

The ADCIN Module 

Subroutine ADCIN @ fetches samples from the AID 
converter on the iSBC 732 board. The channel number 
is an input parameter and the data is the returned value. 
Of special note in this routine is the use of the FORTRAN 
common block to control a memory-mapped device. 
The master CPU communicates with the iSBC 732 by 
way of memory read and write commands instead of 
IIO commands. The primary reason for this is the fact 
that the 8080A IN and OUT instructions operate on 
only 8 bits at a time whereas SHLD and LHLD instruc
tions can manipulate 16 bit operands. This is 
convenient when working with 12-bit inputs from the 
AID and 12 bit outputs to the DIA. In the code, a 
common block is created which has the same makeup as 
the memory mapped registers on the iSBC 732 board. 
The common block will be origined at the address of the 
iSBC 732 by the ISIS-II LOCATE program. 

The DACOUT Module 

Subroutine DACOUT Q'.) makes use of the same com
mon block to output given values to a specified DIA 
channel. 

LINK and LOCATE 

The ISIS-II LINK command needed to pull together the 
individual pieces of this example is shown in Figure 8. 
After compilation, the object modules of all of the pre
viously described routines are placed in the library 
FRTMOD.LIB by the ISIS-II Library Manager™. The 
LINK statement starts with the module DRIVRS.OBJ, 
which has one EXTERNAL reference, MAINLN. To 

satisfy this reference, MAINLN.OBJ is linked in from 
FRTMOD.LIB and its EXTERNAL references cause the 
inclusion of other modules. 

The LOCATE command shown in Figure 9 is used to 
assign absolute memory locations to the code in the 
LINKED modules. The common block labelled ADC is 
explicitly assigned to FFFOH so that it will correctly 
overlay the memory-mapped space of the iSBC 732 
board. The ORDER statement is used to tell the locator 
in what order the various segments should be placed in 
memory. 

LINK :Fl:DRIVRS.OBJ, & 
:Fl:FRTMOD.LIB, & 
: F 0: F8 0R UN.LIB, & 
:F0:F80NIO.LIB, & 
:F0:F80ISS.LIB, & 
:F0:FPEF.LIB, 
:F0:FPSOFT.LIB, & 
:F0:PLM80.LIB & 

TO :Fl:TSTND.LK0 PRINT(:Fl:TSTND.LNK) MAP 

Figure 8. LINK Command for Test Stand Example 

V. USING THE FORTRAN-80 RUN-TIME PACKAGE 
FOR RMXl80™ SYSTEMS 

The iSBC 801 package provides 1/0 interface and math 
routines for users who are coding RMX/80 applications 
in the FORTRAN-80 language. In the following sec
tions, an overview of the RMXl80 system will be 
presented along with a discussion of the use of the iSBC 
801 package. This overview is not intended to be ex
haustive. If the reader is unfamiliar with the RMXl80 
package, he should gain from this section enough un
derstanding to comprehend the concepts in the example 
presented. If the reader is planning on implementing an 
RMXl80 system, the RMXl80 references in the front
piece should be studied carefully. 

LOCATE :Fl:TSTND.LK0 PRINT(:Fl:TSTND.LOC) MAP LINES SYMBOLS PUBLICS & 
ORDER(CODE DATA /LINE/ /ADC/) /ADC/(0FFF0H) STACKSIZE(0) CODE(0) 

Figure 9. Locate Command for Test Stand Example 

2-42 AFN-01931A 



Overview of the RMX/80™ Executive 

A large number of microcomputer applications require 
the ability to respond to events in real-time. The 
RMX/80 Executive provides the system software around 
which you can build a real-time multitasking applica
tion using Intel iSBC 80™ Single Board Computers. In 
addition, the RMX/80 package provides the application 
designer with various high-level drivers (such as a 
terminal handler and a disk file system) which make it 
easier to develop sophisticated applications software. 

The RMX/80™ Model 

At this time, it is appropriate to discuss the RMX/80 
model, or in other words, the general concepts upon 
which the RMX/80 Executive is built. Real-time 
systems, such as the RMX/80 system, provide the cap
ability to control and respond to events occurring asyn
chronously in the physical world. To handle these 
events, the application is broken up into smaller semi
independent pieces, and each of these pieces is brought 
into action to handle the event for which it is intended. 
Each of these independent program units is a task. The 
RMX/80 Executive manages the execution of these tasks 
in accordance with a user-designated priority scheme to 
insure that the highest-priority task in the system has 
control of the CPU. It is also necessary, in a system such 
as this, for these semi-independent program units (tasks) 
to communicate with each other. This communication 
may be for the purpose of synchronization, data 
passing, mutual exclusion or any other use that may 
arise. To facilitate inter-task communication, the 
RMX/80 model incorporates the notion of messages and 
exchanges. A message is a data structure that can con
tain an arbitrary amount of information to be commun
icated from one task to another. An exchange is a "mail 
box" where tasks may send messages to be picked up by 
other tasks. The primary operations (primitives) that 
accomplish message transfers in the RMX/80 system are 
RQSEND* and RQWAIT*. Figure 10 diagramatically 
shows the interaction of tasks, messages, and exchanges 
and introduces the symbolism used to represent these 
RMX/80 concepts in the system design. 

Tasks 

Typically, a task will execute a section of code that per
forms some initialization and then enters an infinite 
loop performing some processing over and over again 
as shown in Figure 11. 

Each task in the system has a priority associated with it. 
The RMX/80 Executive uses this priority scheme to de
termine which ready task to run. The assignment of 
priorities to individual tasks is up to the system design
er, giving him the capability to tune his system by 
assuring timely execution of important functions. 

2-43 

LEGEND: 

TASKD 

EXCHANGE 0 
TASK SENDING MESSAGE o--o 

TASK RECEIVING MESSAGE o-o 

TASK 
A 

TASK 
B 

Figure 10. Task, Message, Exchange Interaction 

SUBROUTINE TASK I 

c 
C -- DECLARATION OF VARIABLES HERE 
c 
c 
C -- INITIALIZE VARIABLES AND I/O PORTS 
c 

c 

CALL OUTPUT (#OE8H,0) 
FLAG= I 
INDEX= I 
COUNT= 0 
SUM= 0 

C -- ENTER INFINITE LOOP 
c 
I CALL INPUT(#OE9H,IV AL) 

• 
• 
• 
GOTO! 
END 

Figure 11. Task Loop 

*In order to differentiate RMX/80 procedures and data structures from the user's, the names 

of sy~tem objeds arc always preceded by HQ. 

AFN·01931A 



Each RMX/80 task also has its own stack, and there is 
no system stack. Whenever a task must give up the pro
cessor (e.g., must wait for the occurance of an interrupt) 
all of the information necessary to reawaken it at some 
future time without affecting the results of it's proces
sing is stored on its stack. 

Exchanges 

An exchange in the RMX/80 system is a data structure 
that contains pointers to lists of tasks and messages. 
Whenever a message is sent to an exchange where there 
are no tasks waiting, it is added to the list of messages at 
that exchange until a task accepts it. Similarly, if a task 
waits at an exchange for a message and there is no mes
sage in the list, the task is added to the list of tasks wait
ing at that exchange. In both cases, the tasks and mes
sages are serviced on a first come, first served basis. Fig
ure 12 shows the possible states an exchange may be in 
at a given time. 

8 
Figure 12. Exchange Lists 

Messages 

A message in the RMX/80 system is a contiguous section 
of memory of an arbitrary length. Information can be 
stored in the message prior to it being sent to an 
exchange where it will be accepted by another task. 

Configuration 

The configuration module contains various tables and 
PUBLIC variables that are accessed by the system at 
start-up time. All of the necessary information on the 
tasks and exchanges to be created and the disk file 

system to be utilized are contained in this section of 
code. Configuration modules can be coded in either 
PL/M or assembly language (for which there are macros 
included with the RMX/80 product.) 

2-44 

Memory Usage 

In systems using disk, it is necessary to ensure that cer
tain buffers used by the disk controller for Direct Mem
ory Access (DMA) are located in memory that is acces
sible to the disk controller. The buffers needed are allo
cated in a separate module called the controller addres
sable memory module. In the case of the iSBC 80/10, 
80/IOA, 80/20, and 80/20-4 boards, this module should 
be LOCATED before being included in the LINK state
ment to make sure that it does not contain any RAM on 
the CPU board itself (and, therefore, not controller
addressable). This restriction does not apply to iSBC 
80/30 systems, since the iSBC 80/30 board has a dual 
port bus allowing system access to on-board RAM. 

VI. APPLICATION EXAMPLE 

A Sewage Treatment Plant Control System 

In the early 1900's, the most popular type of sewage 
treatment system was known as a Sequencing Batch 
Reactor. It provided excellent effluent quality, but as 
populations grew, the amount of control necessary to 
operate the plant became too great for human opera
tors, and a new type of treatment system came into use. 
This new system did not require such accurate control, 
but it also did not perform as well. With the passage of 
stricter and stricter water quality laws, and with the 
advent of low-cost, high powered microcomputer con
trol systems, a serious look is being taken once again at 
Sequencing Batch Reactors. 

A diagram of the treatment system and its sensors and 
actuators is shown in Figure 13. The system usually 
consists of three tanks, with each tank having individual 
influent and effluent valves, mixers and aeration equip
ment. 

At any given time, all influent is being routed to one 
tank. When this tank is filled, the influent is routed to 
one of the other two. The full tank is agitated and 
aerated until the bacteria in the tank digest the sewage 
to within given limits. At this time, the mixer and aer
ator are turned off and the contents settle. After a time, 
the supernatant fluid is drawn off leaving the layer of 
concentrated bacteria to digest the next batch. 

The computer control system necessary for controlling 
these reactors is shown in Figure 14. The system is res
ponsible for monitoring the various sensors and contact 
closures, maintaining archives of system status, logging 
reports upon command, activating operator alarms, 
and performing on-line control of the batch cycle. 

AFN·01931A 



FLOW 
SENSOR 

BATCH REACTOR #1 

ON/OFF 
VALVE 

INFLUENT 

SENSORS 

SENSORS 

MIXON 

AIRON 

ON/OFF 
VALVE EFFLUENT 

PNEUMATIC 
POSITION ER 

FLOW 
SENSOR 

Figure 13. Sewage Treatment System and Sensors 

Software 

An analysis of the functions that need to be performed 
by the software for this control system leads to a 
decision to use the RMX/80 Executive. Timely response 
to multiple asynchronous events is the main thrust of 
this application. A breakdown of the individual func
tions in the system would be: 
• data collection - gathers inputs from the sensors and 

contact closures and stores them where other routines 
can access them. Also, converts data from analog 
counts to engineering units. 

• on-line control - based on current sensor inputs 
determines whether aeration, agitation, discharge 
and fill should be on or off. 

• alarm scanning - compares current status values 
with setpoints and sets operator alarms if conditions 
are out of tolerance when effluent is on. 

• data logging - once every five minutes logs current 
system status into a disk file record. 

• real-time clock - maintains day, month, year, and 
time of day. 

• operator console handler - monitors operator con
sole to detect operator commands for time and set
point changes, report generation, alarm clearing, etc. 

• report generation - upon operator command, for
mats either the file corresponding to yesterday's oper
ation or today's operation to the current moment. 

Each of these functions must be studied independently 

2-45 

before the decision on which language to use for each is 
made. The functions concerned with data collection, 
on-line control, and alarm scanning will be concerned 
with mathematical calculations. The functions concern
ed with data logging and report generation will have 
need of formatted disk and console I/0. These routines 
will thus be coded in the FORTRAN-80 language. 

As was mentioned earlier, the PL/M-80 language is a 
systems programming language. This means that it is 
optimized to deal with the concepts embodied in a high
level system such as the RMX/80 system. The program 
code that implements the real-time clock and operator 
console handler will be written in the PL/M-80 
language. In addition, various PL/M-80 support routines 
will be written to be called on by one or more of the 
FORTRAN-80 routines. The purpose of these routines 
will be explained as they come up in the code descrip
tions following. 
Hardware 

The hardware used to implement this control system 
must perform the following functions: 
• inputting analog samples from the various sensors 
• outputting analog values to the pneumatic positioners 
• inputting digital values from the contact closures and 

operator console 
• outputting digital values to the operator console and 

alarm panel 
• storing and retrieving data from diskette files 

AFN·01931A 



REPORT 
GENERATION 

PNEUMATIC 
POSITIONERS 

I I I I o o 
,1/,1/,1/ ,1/,1/ 
-0--0--0- -0--0-
/ I' /1'/1' /J' /I' 

OPERATOR 
CONSOLE 

RELAYS 

DISK DATA STORAGE 

Figure 14. Computer Control System 

The hardware configuration chosen includes an iSBC 
80/30 Single Board Computer, an iSBC 732 Combina
tion Analog Input/Output Board, a combination of 
PROM and RAM memory modules, and an iSBC 201 
Diskette Controller. 

There are various types of I/O devices in this system and 
each will require different FORTRAN-80 I/O support. 
The terminal and disk devices are supported through 
the iSBC 801 run-time package and the RMX/80 high 
level drivers. Communications with the AID and D/A 
converters is accomplished using internal buffer 
formatting in conjunction with the RMX/80 Analog 
Handlers. Finally, port I/O is used for the digital inputs 
and outputs. 

1be next step in the design is to assign the system soft
ware functions to individual tasks in a manner that will 
allow for their parallel execution. The following tasks 
will be created to handle this application: 

• STSINP - status input and unit conversion 
• CNTROL - on-line control 
• SCAN and TIMERS - alarm scanning and data 

logging 
• TIMER and TIMUPD - real-time clock 
• CONSOL - operator console handler 
• REPORT - report generation 
Figure 15 shows the interaction of these tasks in the 
RMX/80 system. 

2·46 

System Considerations 

At this point, let us consider some of the mechanisms this 
system will require to synchronize and co-ordinate the 
tasks we have created. Status and setpoint information 
will be stored in FORTRAN common blocks. This will 
allow the STSINP, CNTROL, SCAN, CONSOL, and 
TIMUPD tasks access to the ST A TUS information, and 
the CNTROL, SCAN, and CONSOL tasks access to the 
SETPNT information. Once per five minutes, SCAN will 
be notified through a flag byte (MINSUP) that he is to 
write the current system status to the file TODA YS.RPT. 
Upon command from the operator, REPORT will need to 
read these files to generate reports. 

Since the RMX/80 system is designed to handle asynchro
nous events, it is quite possible for any of the tasks to be 
pre-empted at any point in their execution (e.g., an inter
rupt occurs or a higher priority task becomes ready to 
run). Thus, the SCAN task may be in the process of 
reading the last byte of a four-byte REAL integer when 
STSINP pre-empts the SCAN task and writes new infor
mation into the ST A TUS common block, thus inval
idating the current SCAN operation. In another instance, 
REPORT may be in the process of fetching a disk record 
when SCAN attempts to write to the file. For these 
reasons, and more, it is necessary to implement some sort 
of synchronization mechanism in this system. We will 
insure that at most, one task has access to the common 
blocks and disk records by using a technique called 
mutual exclusion. In the RMX/80 system, this is accom-

AFN·01931A 



GLOBAL 
VARIABLE ~ 

8&,........,...._SCAN 

TIMUPD 

BMP$ 

CONSOL ? 
REPORT 

0TIM GIMER D 
L 

TTY 

Figure 15. System Design Diagram 

plished by creating an exchange for each shared resource 
and initially sending one message to it. Any task 
requiring access to the resource first waits at the associ
ated exchange for the key message. If a message is at the 
exchange, the task obtains the message and continues 
running until finished and then sends the message back. 
If another task waits at the exchange while the first is pro
cessing, it will stop execution until the first task finishes 
and returns the message. 

Code Descriptions 

What follows is a description of the code used to imple
ment most of the tasks discussed. Appendix B contains 
fold-out code listings with circled reference letters. In the 
description, sections of the code will be called out using 

2-47 

circled letters that correspond to symbols in the 
appendix. 

The Semmod Module 

Two PL/M routines called LOCK and UNLOCK perform 
the mutual exclusion operation discussed earlier. There 
are three exchanges used for the purpose of exclusion: 
STSLOK, SETLOK, and DSKLOK. They govern access 
to the STATUS common block, the SETPNT common 
block and the disk file respectively. The LOCK procedure 
@ takes one parameter, a number representing one of 

the three exchanges, and performs a wait at the appro
priate exchange. Note the use of based variables to access 
the parameter. This is necessary since FORTRAN passes 
parameters by reference (address) rather than by value. 
The UNLOCK procedure @ takes the same para
meter and sends the single key (message) back to the 
appropriate exchange. 

AFN·01931A 



These routines are written in the PL/M language because 
they must deal directly with a few system concepts that 
the FORTRAN-80 language does not. In particular, the 
RQW AIT routine returns to the caller the address of the 
message received from the exchange. In either the PL/M-
80 or ASM-80 languages this address can be used to 
access the information in the message received. 
FORTRAN-80 routines do not have the capability to use 
address values to access data outside of their own 
module. 

The STSINP Module 

The module STSINP © performs the function of 
updating the STATUS common block with new data 
from the sensors that has been converted to engineering 
units. STSINP initializes the FORTRAN-80 math 
routines @ and directs them to use the default error 
handler. STSINP then calls INIT$10 @ which initial
izes the message that will be used to communicate with 
the RMX/80 Analog Input Handler. The call to 
SMPLIN ® fills the buffer with analog samples from 
the sensors, and the following DO loop right-justifies 
the 12-bit samples in the 16 bit field @ . STSINP now 
waits for access to the STATUS block, converts the 
samples, stores them, inputs and stores the values of the 
contact closures and calls UNLOCK @ . The function 
performed by STSINP is not a continuous function. 
Update of the status information once per second is 
sufficient. The call to WAIT Q) delays execution for 
one second. 

~-

LINK 

LENGTH 

TYPE I 
HOME EXCHANGE 

RESPONSE EXCHANGE 

STATUS 

BASE REGISTER POINTER 

ARRAY1 POINTER 

ARRAY2 POINTER 

COUNT 

Figure 16. Request Message for Sequential Channel In· 
put with Single Gain 

The ANALOG$IO$MOD Module 

In the module labelled ANALOG$10$MOD, the declar
ation of READ$MSG (D uses the predefined LITERAL 
called Al$MSG. This LITERAL is one of many in the 
RMX/80 package that can be used to attach meaningful 
symbolic names to PL/M data structures. In this instance, 
Al$MSG defines the fields of a standard analog input 
request message. Figure 16 is a diagram of the individual 

fields of the request message. The definition and usage of 
each of these fields is described in the RMX/80 User's 
Guide. The procedure INIT$10 ® is called by 
STSINP. It simply initializes the analog input request 
message and returns. Note the assignment operation in 
line 29. The RESPONSE$EXCHANGE field of the 
request message must contain the address of the exchange 
where the RMX/80 Analog Handler should send the res
ponse to the request (see Figure 1 7 for a diagram of the 
request-response mechanism). In the PL/M language, this 
address is assigned using a location reference - a variable 
name preceded by a period, which stands for the address 
of the variable. FORTRAN-80 routines lack the ability to 
refer to the address of variables. 

2-48 

Figure 17. Request/Response Mechanism 

The procedure SMPLIN @ fills in a buffer, given as an 
input parameter, with analog samples from sequential 
channels on the AID. Note the mechanism used to handle 
the passing of a FORTRAN string as a parameter. For 
every string in the parameter list, FORTRAN passes the 
starting address. of the string followed by its length in 
bytes. 

PH 

CHARACTER 
'57 BUFFER 

MEMORY 
BLOCK 

Figure 18. Use of EQUIVALENCE Statement 

AFN·01931A 



The SCAN Module 

The SCAN task is responsible for operator alarms and 
data logging. The EQUIV ALEN CE statements @ 
cause the STATUS common block to be overlaid by a 
character string, as illustrated in Figure 18. This allows 
for a compact file on disk of numerical data which can 
be broken out later for report generation. 

After initialization, SCAN waits for access to both the 
STATUS and SETPNT common blocks. Operator alarms 
need to be set only if a parameter is out of specification 
and the effluent pump is on @ . After performing the 
scan, the variable MINSUP is checked @ to see if a 
report should be logged. If so, SCAN ~ins access to the 
disk file and writes a single record \E) . All locks are 
now released, a one-second delay is counted out, and 
SCAN repeats the whole process. Normally, any errors 
that occur during the execution of I/0 statements in the 
run-time package cause a message to be output on the 
console and the offending task to be suspended. Since this 
action is often undesirable, it is wise to handle one's 
errors programatically @ 

The MIN$5$MOD Module 

The module MIN$5$MOD contains two procedures. 
Both routines make use of the timed wait facility in the 
RMX/80 system. Any time a task calls RQW AIT to wait 
for a message at an exchange, an optional time limit (in 
50 msec. intervals) can be specified. This is useful if the 
designer does not wish the task to be hung up forever if 
a message is never sent to that exchange. This mechan
ism can also be used to implement a timed wait if an 
exchange is specified to which no one will ever send a 
message. WAIT @ delays execution of the calling 
task for one second. TIMERS @ waits for five 
minutes and then sets the variable MINSUP to signal 
SCAN to log a disk record of current status. 

The REPORT Module 

The system console contains two buttons, one each for 
requests for printouts of today's and yesterday's status 
reports. Whenever one of these two buttons is pushed, the 
CONSOL task sends a message to the PRTREQ 
exchange with the TYPE field indicating which file to 
print. REPORT accepts these messages, checks the TYPE 
field G) , and calls the FORTRAN subroutine PRINT 
with the appropriate filename as a parameter. It then 
returns the request message to its sender via the response 
exchange field and waits for another request. Figure 19 is 
an example of the report generated by this system. 

The PRINT Module 

The PRINT subroutine will read in the compressed 
records written by SCAN and use the same set of EQUIV
ALENCE statements to break out the numerical data so 

2-49 

that it can be formatted for printout. If the type 
field @ indicates that today's file is being accessed, 
PRINT obtains the key to the DSKLOK exchange since 
SCAN may disturb output operations if it attempts to log 
a new record. If yesterday's file is being accessed, the lock 
is not necessary, since no other task will be accessing this 
file. Once the lock is obtained, a record is read, the digital 
value of the contact closure status is converted to a more 
readable form @ (ON or OFF), and the status line is 
formatted and printed. Since the SCAN task has an 
important function (operator alarms), we do not wish to 
hold it up for long if it happens to want to log a new status 
record. For this reason, PRINT relinquishes access to the 
file after every tenth record to allow SCAN to log its 
record and continue on. The rest of the code @ checks 
for end of file indications and returns when printing is 
finished. 

The INITMOD Module 

Last in order (but first in execution) is the INIT proce
dure. It is called from the TIMER task, which is the 
highest-priority task in the system (and thus, will be the 
first to execute after start-up). INIT's role in life is to call 
FQOGO @ to initialize the FORTRAN I/0 system, 
send one message to each of the lock exchanges W , and 
initialize the operator alarm panel @ . The call tb 
FQOGO is a requirement for an RMX/80 system in which 
any FORTRAN-80 code that makes use of the iSBC 801 
package is to be executed. The call must be made prior to 
the execution of any FORTRAN-80 I/O or math instruc
tions. Also, the call to FQOGO should only be made 
once. 

DATE TIME 

9/19/78 8: 5: 0 6.1 
9/19/78 8:10: 0 6.2 

(CU.M) 

2012. 32 
2614. 08 

TEMP DISSOLVED 
OXYG'EN 

(CJ (MG/ML) 
2s .4':l00 12. 340e 
25. Hl00 12. 5400 

TOTAL ORGANIC 
CARBON CARBON 
(MG/ML) (MG/ML) 
76.9600 34 .0870 
88, P340 40. 4933 

SUSPENDED PHOSPHATE INFLUENT EFFLUENT TURbID AIR DIS MIX rNf 
SOLIDS CONC FLOW FLOW 

(MG/ML) (MG/ML) (MG/ML) (MG/ML} \ 
16.0987 56.9808 112.090 0.000 74.56 ON OH ON ON 
19, 3943 61.4300 119.340 0.000 86.43 ON OFF ON ON 

Figure 19. Sample Output 

SYSTEM GENERATION 

Configuration Module 

Now that all of the code for the individual tasks is written, 
it is time to generate the tables that give the RMX/80 
Executive the information it needs to configure all of the 
tasks and exchanges. Assembly language macros are in
cluded in the RMX/80 product to help make building 
the configuration module a little easier. After the 
counters have been initialized, the STD macro is invoked 
several times to define Static Task Descriptors for the 
tasks in the system. Of special note are the last two entries 
@ . Any task that uses the FORTRAN I/O system 

must allocate approximately 800 bytes of stack. This 
extra stack space is needed to save information on the 

AFN·01931A 



current 1/0 operations. A!So, any task performirtg 
floating point calculations with the software package 
needs to append an extra 18 bytes to its Task Descriptor 
as a workSpace area. If the' iSBC 310 drivers are used 
this need be only 13 bytes long. This fast field is de
fined by passing a value of 13 or 18 to the optional 
parameter, TDXTRA, in the STD macro. The routines in 
the FORTRAN-80 Run-Time Package require one ex
change, FQOLOK, which is allocated using the XCH 
macro @ , and adde.~ the Initial Exchange Table 
by the PUBXCH macro ~ 

Controller Addressable Memory Module 

The CAMMOD module @ allocates the blocks of 
memory needed by the HMX/80 Disk File System. 
Specific details on the contents of this module can be 
found in the RMX/80 User's Guide. 

LINK 

Figure 20 shows the ISIS-II LINK command used to bind 
all of the individual modules together with the RMX/80 
libraries needed to' implement this application. The 
FORTRAN-80 I/0 interface routines are found in the 
library F80RMX.LIB which is part of the iSBC 801 pack
age. the library FPSFTX.LIB contains the software 
floating point package. If it is desired to accelerate the 
execution of the mathema.tical operations in this system, 
the iSBC 310 board can be included and the library 
changed to FPHRDX.LIB for iSBC 80/20, 80/20-4, and 
80/30 systems or FPHX 1 O.LIB for iSBC 80/10 and 
80/ l OA systems. 

The RMX/80 extensions included are the Disk File Sys
tem, the Analog Handlers, and the Minimal Terminal 
Handler. 

LOCATE 

After the Link has been finished, the command shown in 
Figure 21 is used to invoke theJSIS-II LOCATE program. 
The ORDER statement sets the proper order for all of the 

different segments and common blocks. The common 
blocks themselves are allocated as fixed blocks of 
memory to make possible their shared usage by PL/M 
routines using the AT attribute. This mechanism is 
discussed in greater detail in AP-44, "How to use 
FORTRAN With Other Intel Languages". 

VII. SUMMARY 

The purpose of this application note has been to describe 
the design process used to decide what operating system 
support to use, what language to code programs in, what 
hardware to use and what type of I/O to use to solve a 
given application problem. The specific application ex
amples presented have keyed on the use of the 
FORTRAN-80 language. 

The lesson that has been learned is that proper design 
techniques result in the use of the right tool for every job. 
With a complete set of programming languages, each 
optimized for a specific use, a powerful real-time 
executive, and a complete line of flexible hardware 
products, complicated applications become easy to 
solve. 

LINK :Fr':RMXR3LLIB{START)' & 
:F 1 :X2CFG.OBJ, & 
:Fl:RPTMOD.OBJ, & 

;Fl:fRTf10D,LIB, & 

: Fl: INITMD. OBJ I Ii. 
:FV!:F8~RUN.LIB, 

: Fr :FB0RMX. LIB, 
:F0:FPEF.LIB, & 
:FC:FPSFT),<.LIB, & 
:F0:SYSTEM.LIB, & 

: Fl?: DFSDIR. LIB (DIR EC TORY, DELETE, RENAME, SEEK) , & 
:F0:DI0830.LTB, & 
:FC:DFSUNR.LIB, & 

:F'l :CAM.OBJ, & 
: FJ i PLMMOD. LIB, & 
:F0:AIHDLR.LIB, & 

:F0:AOHDLR.LIB, 
:F0:MTI830.LIB, 
: F0:MT0830.LIB, 
:F!i::RMX830.LIB, 
:F0:UNRSLV.LIB, & 
:F0:PLM80.LIB TO :FJ:SEWAGE.LKri PRINT(:Fl:SE ...... AGE.LNK) MAP 

Figure 20. LINK Command for Sewage Treatment Example 

LOCATE :FltSEWAGE.LKe PRINT(:Fl:SEWAGE.LOC) MAP & 
CODE(0) STACKSIZE(0) LINES SYMBOLS PUBLICS & 
ORDER(CODE DATA /LSTREC/ /STATUS/ /SETPNT/ /MINS/) /STATUS/(FFASH) & 
/SETPNT/ (Fr'DEH) /MINS/ (FFEEH) /LSTREC/ (FFA3H) 

Figure 21. LOCATE Command for Sewage Treatment Example 

2·50 AFN·01931A 



APPENDIX A 
CODE LISTINGS 

2-51 AFN-01931A 



ASM80 :Fl:DRIVRS.M80 DEBUG PAGEWIDTH(78) PRINT(:F5:DRIVRS.LST) 

ISIS-II 8080/8085 MACRO ASSEMBLER, V2.0 DRI VRS PAGE 

LOC OBJ 

000D 
000A 
001B 
0018 
007F 
0008 
0013 
0011 
0007 
0012 
00ED 
00EC 
0001 
0002 
0040 
004E 
0027 
00B6 
0092 
00DE 
00DF 
00EB 
0080 
00E0 

LOC 

00se 

e002 

0000 
000 3 
0004 
0006 
0 008 
000A 
0e0c 
00 0E 
0 010 
0012 
0 014 

OBJ 

311rn0 
AF 
D3ED 
D JED 
D3ED 
D3ED 
3E4 0 
D3ED 
.3E4E 
D3ED 
3E27 

0 

SEQ 

l NAME 
2 

SOURCE STATEMENT 

DRIVRS 

3 
4 
5 

;+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
~5 

46 
47 
48 
49 
50 
51 
52 

SEQ 

53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

CONSOLE I/O ROUTINES FOR FORTRAN-i SBC SYSTEM. 
START INITIALIZES THE HARDWARE AND CALLS THE 
FORTRAN ROUTINE MAINLN. BUFOUT ACCEPTS TWO 
PARAMETERS FROM THE CALLING FORTRAN ROUTINE 
(ACTUALLY ONE FROM THE ROUTINE SINCE PASSING 

A STRING ARGUMENT FROM FORTRAN RESULTS 
IN THE ADDRESS AND LENGTH OF THE STRING BEING 
SENT) AND OUTPUTS THE STRING TO THE USART 
ON THE B0/20. BUFIN TAKES THE SAME TWO 
ARGUMENTS AND FILLS IN THE BUFFER WITH 
CHARACTERS UNTIL <CR> IS ENCOUNTERED. LINE 
EDITING IS PROVIDED TO THE EXTENT THAT 
RUBOUT DELETES A CHARACTER AND ECHOES IT, 
CONTROL-X DELETES THE BUFFER AND STARTS OVER, 
AND CONTROL-R PRINTf> THE BUFFER CONTENTS. 
BUFOUT CALLS THE ROUTINE CHKIO TO DETERMINE 
IF' A CNTL-S HAS BEEN ENTERED TO CAUSE A PAUSE 
IN THE OUTPUT. IF ENCOUNTERED THE ROUTINE 
WAITS UNTIL A MATCHING CNTL-Q IS ENTERED. 

;+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
CR EQU 0DH ;ASCII CODE FOR CARRIAGE RET. 
LF EQU 0AH ;ASCII CODE FOR LINE FEED 
ESC EQU lBH ; ASCII CODE FOR ESCAPE 
CNTLX EQU !SH ; ASCII CODE FOR CONTROL-X 
RUBOUT EQU 07FH ; ABC I I CODE FOR RUBOUT 
BS EQU 08H ;ASCII CODE FOR BACKSPACE 
CNTLS EQU 13H ;ASCII CODE FOR CONTROL-S 
CNTLQ EQU l lH ;ASCII CODE FOR CONTROL-Q 
BELL EQU 07H ;ASCII CODE FOR BELL 
CNTLR EQU 12H ;ASCII CODE FOR CONTROL-R 
CSTS EQU 0EDH ;USART COMMAND/STATUS PORT ADD 
COAT A EQU 0ECH ;USART DATA PORT ADDRESS 
TXRDY EQU 01H ;MASK FOR TRANSMITTER READY 
RXRDY EQU 02H ;MASK FOR RECEIVER READY 
RESET EQU 4 0H ;USART RESET COMMAND 
USMODE EQU 4EH ;USART MODE WORD 
USCMND EQU 27H ;USART COMMAND WORD 
TIMCMD EQU 0B6H ;BAUD RATE CNTR COMMAND WORD 
CMD55 EQU 9 2H ;8255 COMMAND WORD 
CNTR2 EQU 0DEH ;BAUD RATE CNTR PORT ADDRESS 
TIMCP EQU 0DFH ;TIMER CONTROL PORT ADDRESS 
PR8255 EQU 0EBH ;8255 COMMAND PORT ADDRESS 
STKSIZ EQU 128 ;STACK SIZE 
BDFCTR EQU 224 ;BAUD RATE FACTOH(COUNT VALUE) 

ALLOCATE STACK 

SOURCE STATEMENT 

OSEG 
FRTSTK: OS STKS I Z 

LOCAL DATA STORAGE 
; 
BUFPTR: OS ;BUFFER POINTER STORAGE 

CSEG 

START--STARTUP ROUTINE PROGRAMS THE USART 
AND TIMER THEN CALLS THE FORTRAN 
ROUTINE. IF THE FORTRAN ROUTINE 
RETURNS START SIMPLY STARTS OVER. 

EXT RN MAINLN 
START: LXI SP,FRTSTK+STKSIZ-1 ; SET STACK POINTER 

XRA A ;ZERO ACCUMULATOR 
OUT CSTS ;BRING USART TO KNOWN STATE 
OUT CSTS ;BY SENDING FOUR NULLS 
OUT CSTS 

® OUT CSTS 
MVI A,RESET ;RESET USART 
OUT CSTS 
MVI A,USMODE ;SEND USART MODE WORD 
OUT CSTS 
MVI A, USCMND ;SEND USART COMMAND 

2-52 AFN-01931A 



0016 D3ED 
0018 3EB6 
001A D3DF 
001C 3EE0 
00JE D3DE 
0020 3E00 
0022 D3DE 
0024 3E92 
0026 D3EB 
0028 CD0000 E 
002B C30000 C 

002E E5 
002F F5 
0~3? cs 
0031 60 
0Pl32 fi9 
0033 2280e0 D 
0036 1600 

0038 D5 

0039 CDE200 C 
003C FE7F 
003E C24700 C 
0041 CD9000 C 

LOC OBJ 

0044 C33900 

0047 FE18 
0049 CAA200 
004C FE12 
004E CAF900 
0051 JD 
0052 C26300 
0055 FE0D 
0057 CA6300 
005A JC 
005B 0E07 
005D CDB4 00 
0060 C33900 

0063 4F 
0064 CDB400 
0067 71 
0068 23 
0069 14 
006A 3E0D 
0HC B9 
006D C23900 
0070 DJ 
0071 Cl 
0072 Fl 
0073 El 
0074 C9 

0075 ES 
0076 FS 
0077 60 
0078 69 
0079 CDCD00 
007C 4E 
007D CDB400 
0080 3E0D 
0082 B9 
0083 CA8D00 
0086 23 
0087 lB 
0088 7A 
0089 B3 
008A C27900 
008D Fl 
008E El 
008F C9 

0099 15 

c 

c 

c 

c 

c 

c 
c 

c 

c 

c 

c 

c 

c 

78 
79 
Br 

CSTS 
A,TIMCMD ;SEND COMMAND WORD 
TIMCP 

~~ fji\ 
8 3 \:::J 
84 

OUT 
MVI 
OUT 
MVI 
OUT 
MVI 
OUT 
MVI 
OUT 
CALL 
JMP 

A,LOW(BDFCTR) ;SEND LOW ORDER BYTE 
CNTR2 ;OF COUNTER VALUE 
A,HIGH(BDFCTR) ;SEND HIGH BYTE OF 
CNTR2 ;COUNTER VALUE 

85 
86 
n 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
Je7 

A,CMDSS ;8255 COMMAND WORD 
PR8255 ;PROGRAM 8255 
MAINLN ;CALL FORTRAN ROUTINE 
START ;IF ROUTINE RETURNS START OVER 

BUFIN--FILLS BUFFER WITH INPUT FROM TERMINAL 

PUBLIC 

BUFIN:~ PUSH 
PUSH 
PUSH 
MOY 
MOY 
SHLD 
MVI 

PUSH 
GETCHR: 

CALL 
CPI 
JNZ 
CALL 

BUFIN 

H 
PSW 
B 
H,B 
L,C 
BUFPTR 
D,0 

D 

CI 
RUBOUT 
BUFP!S 
DLTCHR 

;SAVE HL PAIR 
;SAVE PSW 
;SAVE BC 
;GET BUFFER POINTER TO HL 

;SAVE IT 
;ZERO TO f CHARACTERS COUNTER 
;NOTE: STRING LENGTH <=255 
;SAVE COUNTERS 

;GET CHARACTER 
;RUBOUT? 
;NO,CONTINUE 
;YES,OELETE LAST CHARACTER 

SEQ® 

108 

SOURCE STATEMENT 

JMP GETCHR ;GET NEW ONE 
109 
110 
111 
ll2 
113 
114 
llS 
116 
ll 7 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
14 0 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 

BUF0 5: 

BUF10: 

CPI 
JZ 
CPI 
JZ 
DCR 
JNZ 
CPI 
JZ 
INR 
MVI 
CALL 
JMP 

MOY 
CALL 
MOY 
INX 
INR 
MVI 
CMP 
JNZ 
POP 
POP 

CNTLX 
DLTLIN 
CNTLR 
PRTBUF 
E 
BUF10 
CR 
BUF10 

c I BELL 
ECHO 
GETCHR 

C,A 
ECHO 
M,C 
H 
D 
A,CR 
c 
GETCHR 
D 
B 

POP PSW 
POP H 

;CONTROL-X? 
;YES,OELETE BUFFER 
;CONTROL-R? 
;YES,PRINT BUFFER 
;DECREMENT SPACE LEF'I' COUNTER 
;CONTINUE IF COUNTER > 0 
;IF THIS ENO OF LINE ALL IS OK 

;BRING COUNTER BACK ONE 
;NOT OK, ECHO BELL 

;GET NEW CHARACTER 

;MOVE CHARACTER TO C 
;AND ECHO IT 
;STORE IT IN BUFFER 
;INCREMENT BUFFER POINTER 
;INCREMENT# OF CHARS COUNTER 
;IS IT A NEWLINE CHARACTER 

;NO,CONTINUE FILLING 
;YES,RETURN 

RET ;RETURN 

BUFOUT ENTRY POINT 

rruBLIC 
BUFOUT: PUSH I PUSH 

MOY 
MOY 

OUTCHR: CALL 
MOY 
CALL 
MVI 
CMP 
JZ 
INX © 
DCX 
MOY 
ORA 
JNZ 

EXITLP: POP 
I ~OP 
~ET 

BU FOUT 
H 
PSW 
H,B 
L,C 
CH KIO 
C,M 
ECHO 
A,CR 
c 
EXITLP 
H 
D 
A,D 
E 
OUTCHR 
PSW 
H 

;SAVE HL REGISTER PAIR 
;SAVE PSW 
;GET STRING POINTER INTO HL 

;CHECK FOR PAUSE(CNTL-S) 
;GET CHARACTER 
;OUTPUT TO TERMINAL 
;IS IT A <CR>? 

;YES,EXIT 
; INCREMENT POINTER 
;DECREMENT STRING COUNT 
;GET HI BYTE 
;AND WITH LO BYTE 
;IF STRING COUNT <> 0 CONTINUE 
; RESTORE PSW 
;RESTORE HL 
;ALL THROUGH 

DLTCHR--DELETES LAST CHAR ENTERED INTO BUFFER 
; 
DLTCHR: 

DCR D ;DECREMENT f OF CHARS COUNTER 

2-53 AFN·01931A 



LOC OBJ SEQ SOURCE STATEMENT 

0091 F29B00 c 163 JP DLTC10 IF >=0 CONTINUE 
0094 14 164 INR D RUBOUT PAST START OF BUFFER 

0095 0E07 165 MVI C,BELL INCREMENT COUNT,ECHO A BELL 
0097 CDB400 c 166 CALL ECHO 
S09A C9 167 RET AND RETURN 

168 DLTC10: 
009B lC 169 INR ;INC. SPACE LEFT INDICATOR 
009C 2B 170 DCX ;DECREMENT BUFFER POINTER 
0090 4E 171 MOV C,M ;ECHO DELETED CHARACTER 
009E CDB40e c 172 CALL ECHO 
00Al C9 173 RET ;AND RETURN 

174 
175 DLTLIN--DELETES LINE BUFFER AND BEGINS REFILL 

176 
177 DLTLIN: 

00A2 0E23 178 MV! c I I :It I ; ECHO A • #. 
00A4 CDB400 c 179 CALL ECHO 
00A7 0E0D 180 MVI C,CR ;ECHO A CRLF 
00A9 CDB400 c 181 CALL ECHO 

00AC 2A8000 D 182 LHLD BUFPTR ;GET ORIGINAL POINTER BACK 
00AF Dl 183 POP D ;GET COUNTERS BACK 
00B0 DS 184 PUSH D ;RESAVE 
0081 C33900 c 185 JMP GETCHR ;GET NEW CHARACTERS 

180 
187 ECHO--ECHOES CHARACTERS TO THE TERMINAL 
188 

00B4 41 189 ECHO: MOV B,C ;SAVE ARGUMENT 
00B5 3ElB 190 MVI A, ESC ;SEE IF ECHOING AN 
0SB7 BB 191 CMP B ;ESCAPE CHARACTER 
0088 C2BD00 c 192 JNZ ECH05 ;NO--BRANCH 
00BB 0E24 193 MVI C, '$' ;YES,ECHO AS • $. 

194 ECH05: 
00BD CDEE00 c 195 CALL co ; OUTPUT IT 
00C0 3E0D 196 MVI A,CR 
00C2 BB 197 CMP 8 ;CHARACTER ECHOED A CR? 
00C 3 C2CB00 c 198 JNZ ECH10 ;NO--SPECIAL ACTION NOT NEEDED 
0SC6 0E0A 199 MVI C, LF ;YES--ECHO FREE LINE FEED 
00CB CDEE00 c 200 CALL co 

201 ECH10: 
00CB 48 202 MDV C,B ;RESTORE ARGUMENT 
0SCC C9 203 RET 

204 
205 CHKIO--CHECKS FOR CNTL-S OPERATION 
206 

00CD OBED U7 CHKIO: IN CSTS ;GET STATUS 
00CF E602 208 AN! RXRDY ;CHARACTER AVAILABLE? 
0001 ca 209 RZ ;NO,RETURN 
0002 DBEC 210 IN CDATA ;YES,GET CHARACTER 
0004 E67F 211 ANI 7FH ;STRIP OFF PARITY 
0006 FE13 212 CPI CNTLS ;CONTROL-S? 
0008 C0 213 RNZ ;NO, IGNORE IT 
0009 CDE200 c 214 WAIT4Q: CALL CI ;YES,WAIT FOR A CONTROL-Q 
00DC FE) 1 215 CPI CNTLQ 
00DE C2D900 c 216 JNZ WAIT4Q 
00E 1 C9 217 RET ;GOT IT,RETURN 

LOC OBJ SEQ SOURCE STATEMENT 

218 
219 CI--ENTER CHARACTER FROM TERMINAL 
220 

eeE2 OBED 221 I: IN CSTS ;GET STATUS BYTE 
00E4 E602 222 ANI RXRDY ;CHARACTER AVAILABLE 
00E6 CAE200 c 223 JZ CI ; NO, LOOP 
00E9 DBEC 224 IN CDATA ;READY,GET CHARACTER 
00EB E67F 225 ANI 07FH ;STRIP OFF PARITY 
00ED C9 226 RET 

227 
228 co--OUTPUT CHARACTER IN C REGISTER TO TERMINAL 
229 

00EE OBED 230 CO: IN CSTS ;GET STATUS BYTE 
00F0 E601 231 AN! TXRDY ;TRANSMITTER READY? 
00F2 CAEE00 c 232 JZ co ;NO, LOOP 
00F5 79 233 MOV A,C ;YES,MOVE CHARACTER TO ACC. 
00FG D3EC 234 OUT CDATA ;SEND TO TERMINAL 
00F8 C9 235 RET 

236 
237 PRTBUF--PRINTS CURRENT BUFFER(CONTROL-R) 
238 
239 PRTBUF: 

00F9 0E0D 240 MVI C,CR ;ECHO CRLF 
00FB CDBfl0lil c 241 CALL ECHO 
00FE ES 242 PUSH H ;SAVE CURRENT BUFFER POINTER 

2·54 AFN-01931A 



!il0FF 2A8 0?0 D 24 3 LHLD BUFPTR ;GET POINTER TO BEGINNING 
0102 D5 244 PUSH D ;SAVE CURRENT COUNTERS 

2~ 5 PRLOOP: 
010 3 15 246 DCR D ;DECREMENT COUNTER 
0rn 4 FA0F0 l 247 JM PREXIT ;NO MORE CHARACTERS JN BUFFER 
01?7 4E 248 MDV C,M ;GET CHARACTER 
0108 CDB400 249 CALL ECHO ;ECHO IT 
0HB 23 250 INX H ;INCREMENT POINTER 
010C CJ030l 2 51 JMP PR LOOP ;LOOP UNTIL ALL CHARS OUTPUT 

252 PREXIT: 
0 l 0F DJ 253 POP D ;RESTORE COUNTERS 
0110 El 254 POP H ;RESTORE POINTER 
0111 C33900 255 JMP GETCHR ;GET NEW CHARACTER 

256 END 

FORTRAN COMPILER 10/12/78 PAGE 

ISIS-II FORTRAN-80 COMPILATION OF PROGRAM UNIT MAINLN 
OBJECT MODULE PLACED IN :Fl:MAINLN.OBJ 
COMPILER INVOKED BY: FORT80 :Fl :MA!NLN.FRT DEBUG DATE(l0/12/78) PAGEWIDTH(78) 

@ 
c 

SUBROUTINE MAINLN 
IMPLICIT LOGICAL (A-Z) 

C-- MAINLINE ROUTINE FOR TEST STAND SOFTWARE. COMMAND LINE IS 
C-- SEARCHED FOR KEYLETTER AND APPROPRIATE ROUTINE IS CALLED. 
C-- ALL UNUSED LETTERS TRAP TO ERROR ROUTINE. 

c 

c 

CHARACTER LINBUF(80)*1,IMAGE*80 
INTEGER INDEX*2,CARRET*l,KEYLTR*l,ERRFLG*2,DUMMY*2 
COMMON /LINE/ LINBUF,INDEX,CARRET 
EQUIVALENCE (LINBUF,IMAGE) 
DATA CARRET /13/ 

C-- INITIALIZE SYSTEM 
c ® DUMMY=0 

CALL FQFSET(DUMMY,DUMMY) 
c 
C-- WRITE BANNER 
c 

rn 1 WRITE(JMAGE,1~ 1 IOSTAT=ERRFLG,ERR=999) CARRET 
FORMAT('TEST STAND V0.0',A) ]]® 10 

F ~-- OUTPUT BUFFER 
c 

12 CALL BUFOUT (IMAGE) 
c 
C-- INITIALIZE INDEX POINTER TO START OF LINBUF 
c 

13@c20 INDEX=! 

C-- PROMPT OPERATOR 

14 
15 
lo 

c 

30 

c--

n @: 
c--

rn QX 
c-
c 

~~CDC 

WRITE (IMAGE, <0, IOSTAT=ERRFLG, ERR=999) CARRE'I' 
FORMAT( 'COMMAND?' ,A) 
CALL BUFOUT(IMAGE) 

GET COMMAND LINE 

CALL BUFIN(IMAGE) 

POSITION INDEX TO FIRST NON-BLANK CHARACTER 

CALL DB L..a.NK 

CONVERT KEYLETTER TO NORMALIZED INTEGER VALUE IE. 1 A 1 =l 

KEYLTR=ICHAR(LINBUF(INDEX))--40H 
INDEX=INDEX+l 

C-- CHECK FOR INVALID CHARACTERS 
c 

21 
22 

c 

fF(KEYLTR.GE.l) THEN 
IF(KEYLTR.LE.,lAH) THEN 

C-- IF VALID CHARACTER JUMP TO PROPEH HANDLING ROUTINE 
c 
c 

23@c 

A C D I J K L M N 
GOTO ( 3 0 0, i 0 0, 10 0, 3 0 r , J 0 0, 10 0, 10 ~, J 0 r:, l Ii 0, 10 vx, l c r, 1 o 0, 3 0 ~, l vi~, 

0 P Q R S T U V W X Z 
Cl00,100,100,100,3~0,200,J0!".,Hrn,1er,1ee, 100) KEYLTR 

2-55 AFN·D1931A 



24 
25 

26 
27 
28 
29 

30 
31 
32 
33 

c 

ENDIF 
END IF 

C-- IF INVP.LID OUTPUT ERROR AND GET NEW LINE 
c 

40 

c 
c-
c 
c 
c-
c 
1~0 
110 

c 
c-
c 

WRITE (IMAGE, 4 0, IOSTAT=ERRFLG, ERR=99 9) CARR ET 
FORMAT-( 'INVALID KEYLTR' ,A) 
CALL BUFOUT(IMAGE) 
GOTO 20 

CONTROL BRANCHES TO ONE OF THESE BASED ON KEYLE'rTER 

STATEMENT LINE 100 IS USED TO 'rRAP ALL KEYLETTERS NOT USOD 

WRITE(IMAGE,110,IOSTAT=ERRFLG,ERR=999) CARRET 
FORMAT('NO SUCH TEST 1 ,A) 
CALL BUFOUT(IMAGE) 
GOTO 20 

TRANSITION TEST 

~~@m 
c 

CALL TRANST 
GOTO 20 

C-- CALCULATOR MODE 
c 

36 300 CALL MATH 
37 GOTO 20 

c 
C-- ERROR HANDLER 
c 

38 999 CALL ERROR IERRFLG) 
39 GOTO I 
40 END 

ISIS-II FORTRAN-80 COMPILATION OF PROGRAM UNIT DBLANK 
OBJECT MODULE PLACED IN :FJ:DBLANK.OBJ 
COMPILER INVOKED BY: FORTB0 :Fl:DBLANK.FRT DEBUG DATE(l0/l2/7R) PAGEWIDTH(78) 

@ SUBROUTINE DBLANK 
IMPLICIT LOGICAL (A-Z) 

c 
C-- POSITIONS INDEX TO NEXT NON-BLANK CHAHACTER IN LINBUF 
c 

INTEGER INDEX*2,CARRET*l,ERRFLG*2 
CHARACTER LINBUF(80)*1,IMAGE*80,ENDLIN*l 
EQUIVALENCE (LINBUF,IMAGE), (ENDLIN,CARRET) 
COMMON /LINE/ LINBUF,INOEX,CARRET 

c 
7 I IF(LINBUF(INDEX) .EQ.ENDLIN) GOTO 
8 IF (LINBUF(INDEX) .NE.' ') RETURN 
9 INDEX=INDEX+l 

10 IF(INDEX.LE.72) GOTO 
c 
C-- IF END OF LINE ASK FOR MORE PARAMETERS 
c 

II 2 WRITE(IMAGE,3,IOSTAT=ERRFLG,ERR=999) CARRET 
12 3 FORMAT ( 'MI SS ING PARAMETER, PLEASE ENTER' , A) 
13 CALL BUFOUT(IMAGE) 
14 CALL BUFIN(IMAGE) 
15 INDEX=! 
16 GOTO I 

c 
C-- ERROR HANDLER 
.c 

17 999 CALL ERRORIERRFLG) 
18 RETURN 
19 END 

ISIS-II FORTRAN-8~ COMPILATION OF PROGRAM UNIT ERROR 
OBJECT MODULE PLACED TN :FJ:ERRDR.OBJ 
COMPILER INVOKED BY: FORT80 :Fl:ERROR.FRT DEBUG DATE(l~/12/78) PAGEWIDTH(78) 

@ 
c 

SUBROUTINE ERROR (ERRNUM) 
IMPLICIT LOGICAL(A-Z) 

C-- OUTPUT ERROR MESSAGE 
c 

2-56 AFN-01931A 



CHARACTER IMAGE*P~ 1 LINBUF(80)*1 
INTEGER ERRNUM*2,INDEX*2,CARRET*l 

(LINBUF, IMAGE 
/LINE/ L lNBUF, 

~RJTS(IMAGE,10) ERRNUM,CAHRET 
FORMAT('***ERROR*** #' ,I4,A} 
CALL BUFOUT(IMAGE) 
RETURN 
END 

ISIS-IT FORTRAN-er COMPILATION OF PROGRAM UNTT MATH 
Of~cJECT MODULE PLAC'P.D fN :fJ :MATH.08cT 
COl\1PILP.R INVOKED tlY: FORTP0 :FJ:MAT!l.FRT DEBUG OATE(lf1/l.?./78} PAGEWIDTH(78) 

117 

@ SUl:HWUTINI:: MATH 
[.MPLICTT LOCI CAL (A-'Z) 

(:-- IMPLEMENT~ CALCULATOR MODE 
c 

lN'n~r~ER fNDEX*2,C.l\RRET*l ,ERRFLG*2 
CHARACTER LI NBUF ( 8 0) ~ l, IMAGE*8 C, COMMND* J, SYMBOL* l 
RE/l..L OPl 
EQUI , IMAGE) 
COMMON /LINE/ LINHUF,JNDEX,CARRET 

C-- nESC"AN KEYl.ETT~R 'I'O !JETERMINE OPERATION 

® INDEX=INDEX-1 
:::'OMMND=LlNBUF ( lNDJ::X) 

INDEX=JNDEX+l 
c 
c·-- MOVE IN8EX T0 F'If!ST OPERAND 

J l CALL DB LANK 

C-- CET fT IN 

CALL roNVflT ((1p]) 

c l© 
L-- REP!::..11.T F'OH SECOND OPERAND 

l' C!ILL DB LANK 

l' CALL CONVRT (OP2) 

PEPFOHM OPERATIOr--1 
c 

1c, IF(COMMND. E:Q. 'M') 
J' RE:::;uLT=OPl "'OP.? 
l 7 SYMRCL:::'*' 
JR GOTO 11 
l 3 END IF 

?V: JF(COMMNO. P.O. 'D') 

7.1 RESULT=OPJ/OP.? 
n 'OYMBOL= 'I I 

)] c_:oTO ll 

·'' ENDI F 

7' JF(CDMMIW. E('. 'A') 
) (, HESULT=IJPJ+OP.? 
27 SYMBOL-"''+ I 

28 GOTO 11 
)Q ENDI F 

30 IF (COMMND. P.Q. 'S') 

31 RESULT=OP1-0P2 
32 SYMBOL='-' 
33 GOTO 11 
34 ENDIF 

c 
C-- OUTPUT RESULTS 
c 

THEN 

THt:N 

THEN 

THEN 

35 11 WRITE(IMAGF,12,IOSTAT=ERRFLG,ERR=999) OPl,SYMBCL,OP.?,RESULT, 

36 
37 

12 
lCARRET 

FORMAT ( F 1 8. 5, lX, A., J X 1 F'1 8. 5, l X, '= 1 , l X, F 18. 5, A) 
CALL BUFOUT(IMAGE) 

2-57 AFN-01931A 



38 RETURN 
c 
C-- ERROR HANDLER 
c 

39 999 CALL ERROR(ERRFLG) 
40 RETURN 
41 END 

FORTRAN COMPILER 

ISIS-II FORTRAN-80 COMPILATION OF PROGRAM UNIT CONVRT 
OBJECT MODULE PLACED IN :Fl:CONVR,T.OBJ 

10/12/78 PAGE 

COMPILER INVOKED BY: FORT8C1 :Fl:CON\!R'l'.FRT DEBUG DATE(l0/12/78) PAGEWIDTH(78) 

8 
9 

10 
11 

12 
13 
14 
15 
l Ii 
17 
18 
19 
20 

® SUBROUTINE CONVRT {VALUE) 
IMPLICIT LOGICAL(A-Z) 

c 
C-- INPUTS NEXT PARAMETER IN LINBUF 

c 

c 

INT8GER I* 1, INDEX* 2, TMPIND* ! ,CARRE'!'* 1, ERRFLG* 2 
REAL VALUE 
CHARACTER LINBUF { 8 0) * J , TMPBUF ( 20) * l , BUfo'FER* 20, END LIN* 1 
EQUIVALENCE (TMPBUF,BUFFER), (ENDLIN,CARRET) 
COMMON /LINE/ LINBUF, INDEX, CARRE'J' 

C-- INITIALIZE 
c 

21 

c 
c--
c 

22 

® 
c 
c-
c 

DO 21 I~l,19 
TMPBUF(I)=' I 

TMPBUF' ( 20) =ENDLIN 
TMPIND=J 

FILL BUFFER UNTIL COMMA OR ENDLINE ENCOUNTERED 

TMPBUF (Tl<PIND) =LINBUF (INDEX) 
INDEX=INDEX+l 
'I'MPIND=TMPIND+l 
IF(LINBUE'(INDEX).EQ, 1 , 1 ) THEN 
INDEX=INDEX+l 
GOTO 23 
END IF 
IF(LINBUF(INDEX) .EQ.ENDLIN) G01'0 23 
GOTO 22 

READ UNDER FORMAT CONTROL 

21@,23 
22 T 24 
23 

READ(BUFFER,24,IOSTAT=ERRFLG,ERR=999) VALUE 
FORMAT(Fl9.5) 
RETURN 

24 
25 
26 

c 
c-
c 
999 

ERROR HANDLER 

CALL ERROR ( ERRFLG) 
RETURN 
END 

ISIS-II FORTRAN-80 COMPILATION OF PROGRAM UNIT TRANST 
OBJECT MODULE PLACED IN :Fl:TRANST.OBJ 
COMPILER INVOKED BY: FORT80 :Fl:TRANST.FRT DEBUG OATC(l0/12/78) PAGEWIDTH(78) 

c 

SUBROUTINE TRANST 
IMPLICIT LOGICAL (A-Z) 

C-- PERFORM TRANSITION TESTING 
c 

c 

c 

c 

c 

c 

REAL START,STOP,STEP,TOL,TEMP,VOLTAG,VCC(20), 
lLOWLVL (20), LOTOHI (20) ,HILVL (20), HITOLO (20) 

INTEGER CARRET*l,ITEMP*2,TSTINP*2,SAMPLE*2, 
1LSTSAM*2,DELTA*2,ERRFLG*2,PNTCNT*l,INDEX*2,I*l 

CHARACTER LINBUF(80)*1,IMAGE*8~,TEST(20)*G 

EQUIVALENCE (LINBUF,IMAGE) 

COMMON /LINE/ LINBUF,INDEX,CARRET 

C-- INITIALIZE 
c 

2-58 AFN·01931A 



8 
9 

10 
11 

12 
13 
14 
15 
11; 

17 
18 
19 

2P, 
21 
22 
23 
24 
25 

26 
27 

2 8 
29 

H 
l] 

3 2 

J 3 

J 4 
l 5 
JI) 

c 

DO 5, I=l,20 
TEST(I)='PASSED' 
TSTINP=~ 
PNTCNT=l 

C-- SCAN COMMPND TAIL FOR PARAMETERS 
c 
c 
c 

c 

VCC START STOP 

CALL DBLANK 
CALL CONVRT(START) 
CALL DBLANK 
CALL CONVRT(STOP) 
CALL DBLANK 
CALL CONVRT (STEP) 
CALL DBLANK 
CALL CONVRT (TOL) 

STEP TOLERANCE 

C-- IF (STOP-START)/STEP YIELDS MORE TflAN 2~ STEPS 
C-- OUTPUT MESSAGE AND RETURN 
c 

c 

IF(IFIX((STOP-START)/STEP).GT.20) THEN 
WRIT~(IMAGE,10,IOSTAT=ERRFLG,ERR=999) CARRET 
FORMAT ('TOO MANY POINTS' ,A) 
CALL BUFOUT(IMAGE) 
RETURN 
ENDIF 

C-- GET TEMPERATURE AND LINEARIZE 
c 

@ 
CALL ADCIN(ITEMP,0) 
TEMP=9 8. h3*ALOG (FLOAT (I TEMP)) +l 3. SG 

c 
C-- OUTPUT HEADER 

]~ 

c 

WRITE(IMAGE,2n,ros1·AT=ERRFLG,ERR=999) TOL,TEMP,CARRET,CARRET 
FORMAT('TRANSITION TEST TOLERANCE=',FS.l, 

J '% AMBIE'NT TEMPERATURE = ',Fh.2, 1 DEGREES C' ,A,A) 
CALL BUFOUT(IMAGE) 
WRITE(IMAGE,30,IOSTAT=ERRfLG,ERR=999) CARRET,CARRET 
FORMAT (' VCC HIGH TRANS LOW TRANS HIGH LOW TEST 1 , 

lA ,/>..) 
CALL BUFOUT(IMAGE) 

C-- BEGIN TEST; OUTPUT STAHTING VCC VALUE 
c 

VOLTAC=START 
VCC ( PNTCNT) =VOL TAG 
CALL DACOUT(IFIX(VOLTAG*4~9.6) ,~) 

C-- OUTPUT ZERO VOLTS TO TEST INPUT 

37®: U.LL DACOUT(TSTINP,l) 

C-- GET ONE SAMPLE 

38 CALL ADCIN(SAMPLE,l) 
c 
C-- MAKE IT THE LAST S'MPLE AND ALSO STORE IT 

LSTSAMo::SAMPLE 
LOWLVL(PNTCNT)=FLOAT(SAMPLE)*409.Fi 

C-- PECIN LOOP LOOKING FOR LO~ TO HIGH TRANSITION 
c 

41 se 1STINP=TSTINP+l 
42 CALL DACOUT(TSTINP,l) 

4 1 
44 

47 

C-- GET SAMPLE 
c 

c 

CALL ADC IN (SAMPLE, l) 
DELT A=SAMPLE-LSTSAM 

C-- SEE IF TRANSITION;DELTA .CT. 2.7 VOLTS 
c 

IF(DELTA.LT.9(7.l) THEN 
LSTSAM=SAMPLE 

C-- NO TRANSITION; IF TSTINP NOW UP TO 5.SV AND NO TRANSITION 
C-- OUTPUT MESSAGE INDICATING DEAD PART AN[ RETURN 

JF(TSTINP.GE.2251) THEN 

2-59 AFN·01931A 



t 8 ® l'RI l E (IMAGE, h0, IOST/\T=ERRFLG, ERR=999) 
49 w 60 FORMi\T( 'DEAD NO TRANSITION' ,A) 
sr CALL BUFOUf( 
51 RETURN 
52 ENDIF 

c 

53 
54 

55 

C-- CONTINUE LOOP 

c 

c 

GOTO 50 
END IF 

C-- TR/l.NSITION; ASSIGN ARRAY ELEMENT 

c 
LOTOHI(PNTCNT)=FLOAT(TSTINP)/409.fi 

c 
C-- CHECK TOLERANCE 
c 

CARRET 

56 IF ( ( LOTOHI I PNTCNT) • GE. I • 8- I TOL/ l 00. *. ~) I I • 

57 

58 
59 

60 

1 (LOTOHI (PNTCNT) .LE. (.S+(TOL/100.*.8) I I I GOTO 
c 
C-- TEST FAILED 
c 

TEST(PNTCNT)='FAILED' 
c 
C-- BEGIN HIGH TO LOW TEST 
c 
c 
C-- OUTPUT 5. 0 VOLTS 
c 
70 

c 

TSTINP=2048 
CALL DACOUT(TSTINP,l) 

C-- GET SAMPLE 

CALL ADCIN(SAMPLE) 
c 
C-- MAKE IT LAST SAMPLE AND ALSO STORE IT 
c 

61 LSTSAM=SAMPLE 
62 HILVL(PNTCNT)=FLOAT(SAMPLE)*409.G 

c 
C-- BEGIN LOOP LOOKING FOR HIGH TO LOW TRANSITION 
c 

63 80 TSTINP=TSTINP-1 
64 CALL DACOUT(TSTINP,l) 

65 
66 

67 
68 

69 

70 
71 

77 
73 

7 ~ 
75 

76 

C-- GET SAMPLE 
c 

c 

CALL ADCIN(SAMPLE,J) 
DELTA=LSTSAM-SAMPLE 

C-- SEE IF TRANSITION; DELTA .GT. 2.2 VOLTS 
c 

c 

IF(DELTA.LT.901) THEN 
LSTSAM=SAMPLE 

C-- NO TRANSITION; CHECK TO SEE IF VOLTAGE DOWN TO Z!::RO 
c 

IF(TSTINP.LE.0) THEN 
c 
C-- YES; OUTPUT DEAD PA·RT MESSAGE 

c 

c 

WRITE(IMAGE,60,IOSTAT=ERRFLG,ERR~999) CARHET 
CALL BUFOUT(IMAGE) 

RETURN 
END IF 

C-- CONTINUE LOOP 

c 

GOTO 2r 
ENDIF 

C-- TRANSITION; ASSIGN ARRAY ELEMENT 

HITOLO(PNTCNT)=FLOAT(TSTINP)*409·.6 
c 
C-- CHECK TOLERANCE 
c 

77 IF( (HITOLO(PNTCNT) .GE. (3.5-(TOL/10e.*3.5))) .AND. 
1 (HITOLO(PNTCNT) .LE. (3.5+(TOL/100.*J.5) )) ) GOTO 90 

l:-- TEST FAILED 

2·60 AFN·01931A 



78 

79 
80 
Bl 
82 
83 
S' 

TEST(PNTCNT)='FAILED' 
c 
C-- INCREM.E;NT VC'C AND TF NOT .GT, STOP CONTINUE 
c 
90 

c 

VOLTAG=VOLTAG+STEP 
IF(VOLT~G.LE.STOP) THEN 
PNTCN"I'=PNTCNT+ l 
TSTINP=!l.l 
COTO ~e 

END IF 

C-- TEST CO~PLETE; OUTPUT RESULTS 

85 DO llr,J=l,PNTCNT 
8() WRITE(IMAGE,10e,rosTAT=ERRFLG,ERR=999) VCC(I), 

lLOTOHI {I) ,HITOLO{I) ,HILVL(I) ,LOWLVL(I) ,TEST(!) ,CARRET 
87 1Vl0 FORMAT (3X,FS. 2, 3X,Ffi. 2,6X, F6. 2, 3X, F6. 2, 1X,F6. 2,2X, 6A,A) 
ee 110 CALL BUFOUT(IMACEJ 
89 RETURN 

90 
91 
92 

c 
C-- ERROR HANDLER 
c 
999 CALL ERROR (ERRF'LG) 

RETURN 
END 

ronTRAN COMPILER 

ISIS-II FORTRAN-82 COMPILATION OF PROGRAM UNIT ADCIN 
OBJECT MODULE PLACED IN :Fl:ADCIN.CBJ 

10/12/78 PAGE 

COMPILER INVOKED BY: FORT80 :Fl:ADCIN.FRT DEBUG DATE(l0/12/78) PAGEWIDTH(78) 

11 

12 

13 

] 4 

® SUBROUTINE ADCIN (VALUE,CHAN) 

c 
C-- ROUTINE TO INPUT SINGLE VALUE FROM A/D CONVERTER CHANNEL 
C-- GIVEN !"ND RETURN IT IN VALUE FIELD. 
c 

INTEGER*/ VALUE 
INTEGER*! CHAN 

SINCLUDE(:Fl:ADCDAC.DEC) 
c 
C-- DEFINITIONS OF TSBC 712 REGISTERS 
c 
c 
C-- COMMAND STATUS REGISTER 
c 

INTEGER*! CMDSTS 
c 
c-- MUX ADDRESS REGISTER 
c 

INTEGER*! MUXADR 
c 
C-- LAST CHANNEL REGISTER 
c 

INTEGER*! LSTCHN 
c 
c-- CLEAR INTERRUPT COMMAND 
c 

INTEGER*! CLRINT 
c 
c-- ADC DATA REGISTER 
c 

INTEGER*2 ADC DAT 
c 
c-- DAC ~ DATA REGISTER 
c 

INTEGER*2 DACr 
c 
c-- DAC l DATA REGISTER 
c 

INTEGER*2 DACl 
c 
c-- SET UP COMMON BLOCK 
c 

WORD 

COMMON /ADC/ CMDS'rS, MUXADR, LSTCHN, CLRINT, ADC DAT, DACfJ ,DACl 
c 
C-- SET UP CHANNEL ADDRESS 
c 

MUXADR=CHAN 
c 
C-- START CONVERSION 
c 

CMDSTS•#lH 

2-61 AFN·01931A 



c 
C-- W~IT FOR ~ND OF CONVERSION 
c 

JS 1 IF((CMDSTS./,ND.#80H).NF..~80H) GOTO l 

]Ii 

17 
18 
19 
2e 

c 
C-- GET DATA JN 
c 

VA LUE=ADCDAT 
c 
C-- nIGHT JUSTIFY AND CONVERT TO COUNTS 

VALUE=VALUE/16 
TF(VALUE.LT.O) VALUE=VALUE+4096+1 
RETURN 
END 

ISIS-II FORTRAN-80 COMPILATION OF PROGRAM UNIT OACOUT 
OBJECT MODULE PLACED IN :Fl:DACOUT.OBJ 
COMP! LER INVOKED BY: FORT80 : Fl: DACOUT. FRT DEBUG DATE ( l~/12/78) PAGEWIDTH (78) 

10 SUBROU'I I NE DACOUT (VALUE, CHAN) 

l~ 

11 

12 
13 
14 
15 
16 
17 

c 
c-- OUTPUTS Vl\LUE TO D/A CONVERTER 

INTEGER*2 VALUE,CHAN 
$INCLUDE (: F 1 :ADCDAC. DEC) 
c 
C-- DEE'INITIONS OF ISBC 732 REGISTERS 
c 
c 
C-- COMMAND STATUS REGIS'fER 

INTEGER* 1 CMOS TS 
c 
c-- ~ux ADDRESS RECIS1'ER 

lNTEGER*l MUXP..OR 

c-- LAST CHANNEL REGISTER 

INTEGER*l LSTCHN 
c 
c-- CLEAR INTERRUPT COMMllND WCRD 
c 

INTEGER*l CLRINT 
c 
c-- PDC DATA REGISTER 
c 

INTEGER*2 ADC DAT 
c 
c-- DAC 0 DATA REGISTER 

INTEGER* 2 DAC0 
c 
c-- DAC l DA'TA REGISTER 

INTEGER* 2 DAC 1 
c 
C-- SET UP COMMON BLOCK 

COt'ltMON /ADC/ CMDSTS, MUXADR, LSTCHN, CLRINT, ADC DAT, D/l,C0, DAC 1 
c 
C-- OUTPUT VALUE TO PROPER CHANNEL 
C-- AFTER SHIFTING INTO HIGH ORDER 12 BITS 
c 

IF (VALUE. LT. 0) VALUE=VALUE+4096+1 
VALUE=VALUE* 16 
IF(CHAN.EQ,0) DAC0=VALUE 
IF(CHAN.EQ.l) DACl=VALUE 
RETURN 
END 

2-62 AFN·01931A 



APPENDIX B 
CODE LISTINGS 

2-63 AFN·01931A 



PL/M-80 COMPILER 

ISIS-II PL/M-80 V3.l COMPIL~TION OF MODULE SEMAPHORES 
OBJECT MODULE PLACED IN :Fl:SEMMOD.OBJ 

10/12/78 PAGE 

COMPILER INVOKED BY: plm80 :Fl:SEMMOD.plm DEBUG DATE(l0/12/78) PAGEWIDTH(78) 

17 
18 

19 

20 

21 
22 
23 

24 
25 
26 

27 

28 
29 

SEMAPHORES: 
DO; 

/** ***** * ** *** **" * **** * * ** ** ** * * * * * * * * * * * * ** * * ** * * * * * * * ** ** 
Contains LOCK and UNLOCK procedures for 
manipulating semaph~r.es. Called by FORTRAN 
routines with one parameter; the address of 
the index of the semaphore to be operated on. 

**********************************************************! 

$nolist 

DECLARE (stslok ,setlok ,dsklok) ( 10) BYTE PUBLIC; 
DECLARE semaphore(3) ADDRESS PUBLIC DATA( 

.stslok, 

.setlok, 

.dsklok); 
DECLARE token (3) STRUCTURE( 

link ADDRESS, 
length ADDRESS, 
type ADDRESS) PUBLIC; 

LOCK: PROCEDURE(sema$number$ptr) REENTRANT PUBLIC; 

DECLARE sema$number$ptr ADDRESS; 
DECLARE sema$number BASED sema$number$ptr BYTE; 
DECLARE msg$ptr ADDRESS; 

msg$pt r=RQWAIT (semaphore ( sema$number), fl); 
RETURN; 
END; 

UNLOCK: PROCEDURE(sema$number$ptr) REENTRANT PUBLIC; 

DECLARE sema$number$ptr ADDRESS; 
DECLARE sema$number BASED sema$number$ptr BYTE; 

30 
31 
32 
33 
~® 

CALL RQSEND(semaphore{semaSnumber), .token(semaSnumber)); 
RETURN; 
END; 

l END SEMAPHORES; 

ISIS-II FORTRAN-80 COMPILATION OF PROGRAM UNIT STSINP 
OBJECT MODULE PLACED IN :Fl:STSMOD.OBJ 
COMPILER INVOKED BY: FORT80 :Fl:STSMOD.FRT DEBUG DATE(l0/12/78) PAGEWIDTH(78) 

3 
4 
5 
6 
7 
8 

© 
c 
C-
C-
c-
c 

c 
c--

9 ®c 
10 

c 
c--

11@: 
c-
c 

12®10 

F ~--
c 

SUBROUTINE STSINP 
IMPLICIT LOGICAL (A-Z) 

TASK CODE FOR STATUS INPUT TASK. UPDATES STATUS COMMON 
BLOCK WITH ANALOG AND DIGITAL DATA VALUES. ALSO DOES 
ANALOG COUNT TO ENGINEERING UNIT CONVERSIONS. 

CHARACTER SMPLBF*22,CLOCK*l2 
INTEGER*2 SAMPLS(ll) ,DUMMY 
REAL ANDATA(ll) 
EQUIVALENCE (SMPLBF, SAMPLS) 
INTEGER*! DIGDAT,I 
COMMON /STATUS/ ANDATA,DIGDAT,CLOCK 

INITIALIZE FLOATING POINT LIBRARIES 

DUMMY=0 
CALL FQFSET(DUMMY,DUMMY) 

CALL INITIALIZATION ROUTINE 

CALL INITIO 

CALL ROUTINE TO INPUT SAMPLES 

CALL SMPLIN(SMPLBF) 

SHIFT SAMPLS TO RIGHT JUSTIFY 

2-64 AFN-01931A 



DO 50 I=l,11 
SAMPLS(I)=SAMPLS(I)/16 i~@ 

15 50 IF (SAMPLS (I). LT. 0) SAMPLS I I) =SAMPLS I I) +4096+1 
c 
C-- WAIT FOR ACCESS TO STATUS COMMON BLOCK FOR UPDATE 
C-- THEN CONVERT SAMPLES TO ENGINEERING UNITS AND STORE 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

c 

@ 

c 

CALL LOCK(0) 
ANDATA(l)=FLOAT(SAMPLS(l)) 
ANDATA ( 2) =ALOGl0 (FLOAT (SAMPLS) *2. 34) -365. 98 
ANDATA(3)=ALOG10(FLOAT(SAMPLS(3)/13.9)-21.53 

AN DATA( 4) =13. 23*FLOAT (SAMPLS ( 4)) -20. 78 
ANDATA (5) =FLOAT ( SAMPLS I 5) ) 
ANDATA ( 6) =FLOAT ( SAMPLS (6)) /14. 225 
ANDATA(7)=FLOAT(SAMPLS(7)) 

ANDATA(8)=ALOG(FLOAT(SAMPLS(8)/23.98)+235.98 
ANDATA (9) =FLOAT (SAMPLS (9) ) 
ANDATA ( rn) =FLOAT ( SAMPLS ( 10)) , 
ANDATA (11) =(FLOAT (SAMPLS ( 11) )-119. 34) /5. 734 
CALL INPUT(#0E8H,DIGDAT) 

C-- RELEASE LOCK ON STATUS COMMON BLOCK 

c 
29 CALL UNLOCK(0) 

c 
C-- DELAY FOR l SECOND THEN SCAN AGAIN 

20 0: CALL WAIT 

31 
32 

C-- LOOP BACK 
c 

GOTO 10 
END 

PL/M-80 COMPILER 

ISIS-II PL/~-80 V3.l COMPILATION OF MODULE ANALOGIOMOD 
OBJECT MODULE PLACED IN :Fl:aiomod.OBJ 

10/12/78 PAGE 

COMPILER INVOKED BY: plm80 :Fl:aiomod.plm DEBUG DATE(l0/12/78) PAGEWIDTH(78) 

ANALOG$IOSMOD: 
DO; 

/***************+****************************************** 

Inputs analog samples into buffer provided as 
calling parameter. 

**********************************************************/ 

$nolist 

2' IQ) DECLARE AN$RESP (10) BYTE PUBLIC; 
25 1 DECLARE ANALOG$REQUEST$MESSAGE ai$msg; 

2r, 

27 
28 
29 
30 
31 

32 
33 

34 

35 
36 

37 
38 

39 
40 

INITIO: PROCEDURE PUBLIC; 

/* initializes mesage to be used for analog samples */ 

2 liNALOG$REQUEST$MESSAGE. leng th=s i ze (ANALOG $REQUEST$MESSAGE); 
2® ANALOG$REQUEST$MESSAGE. type=AISQS; 
2 K ANALOG SR EQUESTSM ES SAGE. response$exchange=. AN$RESP; 
2 ANALOG$REQUEST$MESSAGE.base$ptr=0FFF0H; 
2 ANALOG$REQUEST$MESSAGE.channel$gcin=0; 

2 RETURN; 
2 END; /* of INIT$IO */ 

SMPL$IN: PROCEDURE(sample$buffer$ptr,buf$size) PUBLIC; 

/* jnputs buf$size/2 analog word samples */ 

DECLARE (sample$buffer$p~r,buf$size,dummy} ADDRESS; 
DECLARE sample$buffer BASED sample$buffer$ptr (1) BYTE; 

ANAL0§$REQUESTSMESSAGE.array$ptr=sample$buffer$ptr; 
ANALOG~REQUEST$MESSAGE.count=buf$size/2; 

CALL RQSEND(.RQAIEX,.ANALOG$REQUEST$MESSAGE); 
dummy=RQWAIT(.AN$RESP,0); 

2-65 AFN·01931A 



41 
42 

43 

RETURN; 
END; /* of SMPL$IN */ 

END ANALOGSIO$MOD; 

ISIS-II FORTRANc80 COMPILATION OF PROGRAM UNIT SCAN 
OBJECT MODULE PLACED IN :Fl:SCANMD.OBJ 
COMPILER INVOKED BY: FORT80 :Fl:SCANMD.FRT DEBUG DATE(10/12/78) PAGEWIDTH(78) 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

34 

SUBROUTINE SCAN 
c 
C-- CODE FOR SCAN TASK THAT COMPARES STATUS VALUES WITH 
C-- SETPOINTS AND SETS OPERATOR ALARMS ACCORDINGLY. ALSO 
C-- LOGS DISK RECORD OF STATUS WHEN MINSUP FLAG IS TRUE. 
c 
$INCL DE(:Fl:EQUIV.DEC) 

c 

CHARACTER BUFFER*57, PARAMS (57) *1 
REAL PH,VOLUME,TEMP,DISOXY,TOTCAR,ORGCAR 
REAL SUSSOL,PHOSFT,INFLOW,EFLFLO,TURBID 
INTEGER* I DIGDAT 
INTEGER*2 MONTH,DAY,YEAR,HOUR,MINUTE,SECOND 
EQUIVALENCE (PARAMS,BUFFER) 
EQUIVALENCE (PARAMS,PH) 
EQUIVALENCE (PARAMS(S) ,VOLUME) 
EQUIVALENCE (PARAMS (9) ,TEMP) 
EQUIVALENCE (PARAMS(13),DISOXY) 
EQUIVALENCE (PARAMS (17) ,TOTCAR) 
EQUIVALENCE (PARAMS(21) ,ORGCAR) 
EQUIVALENCE (PARAMS (25) ,SUSSOL) 
EQUIVALENCE (PARAMS (29) ,PHOSFT) 
EQUIVALENCE (PARAMS (33), INFLOW) 
EQUIVALENCE IPARAMS (37) ,EFLFLO) 
EQUIVALENCE (PARAMS(41),TURBID) 
EQUIVALENCE (PARAMS(45) ,DIGDAT) 
EQUIVALENCE (PARAMS (46) ,MONTH) 
EQUIVALENCE (PARAMS(48),DAY) 
EQUIVALENCE (PARAMS (50), YEAR) 
EQUIVALENCE (PARAMS(52),HOUR) 
EQUIVALENCE (PARAMS (54) ,MINUTE) 
EQUIVALENCE (PARAMS(56) ,SECOND) 
INTEGER*2 ERRFLG,RECNO,DUMMY 
REAL SETSOL,SETCAR,SETPHS,SETTRB 
INTEGER*! MINSUP 
COMMON /MINS/ MINSUP 
COMMON /SETPNT / SETPHS, SETSOL, SETCAR, SETTRB 
COMMON /STATUS/ BUFFER 
COMMON /LSTREC/ RECNO 

C-- INITIALIZE RECORD COUNTER 
c 

RECNO=l 
c 
C-- INITIALIZE MATH LIBRARIES 
c 

35 DUMMY=0 
36 CALL FQFSET(DUMMY,DUMMY) 

c 
C-- WAIT FOR ACCESS TO STATUS AND SETPOINT COMMON BLOCKS 
c 

37 10 CALL LOCK(0) 

38 CALL LOCK(!) 

39 
40 
4 J 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

c 
C-- SCAN FOR ALARMS ONLY IF EFFLUENT PUMP IS ON 
c 

® 

IF((DIGDAT.AND.#04H).EQ.#04H) THEN 
IF(PHOSFT.GT.SETPHS) THEN 
CALL OUTPUT (#0EBH, t01H) 
ELSE 
CALL OUTPUTl#0EBH,#00H) 
ENDIF 
IF(SUSSOL.GT.SETSOL) THEN 
CALL OUTPUTl#0EBH,#03H) 
ELSE 
CALL OUTPUT(#0EBH,#02H) 
END IF 
IF(TOTCAR.GT.SETCAR) THEN 
CALL OUTPUTl#0EBH,#05H) 
ELSE 

2-66 AFN-01931A 



53 
54 
55 
56 
57 
58 
59 
60 

® IF(TURBID.GT.SETTRB) THEN 
CALL OUTPUT(#0EBH,#07H) 
ELSE lCALL OUTPUT(t0EBH, 104H) 
ENDIF 

c 
c--

CALL OUTPUT(l0EBH,106H) 
END IF 
END IF 

IF MINS TASK HAS SET MINSUP LOG STATUS ON DISK 

61 @c 
62 

IF(MIN5UP.NE.H) THEN 
MIN5UP=0 

c 
C-- WAIT FOR ACCESS TO DISK 

63 
64 OPEN(1,FILE=':D0:TODAYS.RPT',STATUS='OLD',IOSTAT=ERRFLG, 

C [CALL LOCK ( 2) 

65 
66 
57 
<iR 
69 

lERR=9~00,ACCESS='DIRECT',RECL=57) ® WRITE ( 3, REC=RECNO, IOS'fAT=ERRFLG, ERR=9100) BUFFER 
RECNO=RECNO+l 
CLOSE (3,IOSTAT=ERRFLG,ERR=92C0) 
CALL UNLOCK(2) 
ENDIF 

c 
C-- RELEASE LOCK ON STATUS AND SETPOINT COMMON BLOCKS 

70 
71 

72 

74@ 

75 
76 
77 
78 
79 
80 
81 
82 
83 

c 

c 

CALL UNLOCK (l) 
CALL UNLOCK(0) 

C-- DELAY FOR 1 SECOND THEN SCAN AGAIN 
c 

CALL WAIT 

C-- LOOP Bl'ICK 
c 

GOTO 10 
c 
q-- ERROR HANDLERS 

c 
9000 WRITE (6,9001) ERRFLG 
9001 FORMAT('OPEN ERROR IN 

GOTO' 10 
9100 WRITE (6,9101) ERRFLG 
9101 FORMAT ('WRITE ERROR IN 

GOTO 10 
9200 WRITE (6,9201) ERRFLG 
9201 FORMAT( 'CLOSE ERROR IN 

GOTO 10 
END 

SCAN; I ' , I 4) 

SCAN; #It 14) 

SCAN; #I I !4) 

PL/M-80 COMPILER 

ISIS-II PL/M-80 V3. l COMPILATION OF MODULE MINSMOD 
OBJECT MODULE PLACED IN :Fl:MINSMD.OBJ 

10/12/78 PAGE 

COMPILER INVOKED BY: plm80 :Fl:MINSMD.plm DEBUG DATE(l0/12/78) PAGEWIDTH(/8) 

19 
20 
21 
22 
23 

24 

25 
26 

MIN$5$MOD: 
DO; 

/********************************************************** 

This module contains the code for TIMERSS who 
waits for 5 minutes and sets a flag telling 
SCAN to log a report on the disk, and for 
WAIT who waits for 1 second then returns 

**********************************************************/ 

$nolist 

DECLARE min$5$ex {10) BYTE PUBLIC; 
DECLARE min$5$up BYTE AT(0FFEEH); 
DECLARE time$out$msg$ptr ADDRESS; 
DECLARE five$minute$delay$count LITERALLY '6000'; 
DECLARE timesSup LITERALLY '01H'; 

WAIT: PROCEDURE REENTRANT PUBLIC; 

time$out$msg$ptr=RQWAIT(.min$5$ex,20); 
RETURN; 

2-67 AFN-01931A 



27 

28 
29 

JO 
31 
32 
33 
34 
35 

END; 

TIMERS: PROCEDURE PUBLIC; 
min$5$up=~; 

/* enter task Joop */ 

DO WHILE l; 
time$out Smsg $ptr =RQWAIT (.mi nS 5$ex, f i ve$mi nute$del ayScount) ; 
min$5$up=times$up; 
END; /* of do while l */ 

END; /* of proce~ure */ 
END; /* of moOule */ 

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE REPORT 
OBJECT MODULE PLACED IN :Fl:RPTMOD.OBJ 
COMPILER INVOKED BY: plm80 :Fl:RPTMOD.plm DEBUG 0ATE(10/12/78) PAGEWIDTH(78) 

21 
22 
23 
24 

25 
26 
27 

28 

29 

30 
31 
32 
33 

34 
35 

36 
37 

38 
39 

40 
41 

42 
43 

45 
46 
47 

REPORT: 
DO; 

I************************************************************** 

This module contains the code for the REPORT 
task that prints formatted reports of system 
status upon command. Commands come in from 
PRTREQ exchange with type=l00 for todays 
status report and type = 101 for yesterday's 
status report. PRINT is the FORTRAN routine 
that does the actual work. 

**************************************************************/ 

$nolist 

PRINT: PROCEDURE (file$ptr,name$size,request$type) EXTERNAL; 
DECLARE {file$ptr,name$size} ADDRESS; 
DECLARE requestStype BYTE; 

END PRINT; 

FQFSET: PROCF.DURE(A,ERRH) EXTERNAL; 
DECLARE (A,ERRH) ADDRESS; 
END FQFSET; 

DECLARE prt$req (10) BYTE PUBLIC; 

REPORT: PROCEDURE PUBLIC; 

DECLARE today$type LI'I'ERALLY '100 1 ; 

DECLARE yesterdayStype LITERALLY '101 1 ; 

DECLARE (ptr,dummy) ADDRESS; 
DECLARE msg BASED ptr STRUCTURE( 

link ADDRESS, 
1 eng th ADDRESS, 
type BYTE, 
home$exchange ADDRESS, 
response$exchange ADDRESS); 

DECLARE today$file$name {*)BYTE DATA(':D0:TODAYS.RPT 1 ); 

DECLARE ystday$file$name {*) BYTE DAT!'.( 1 :00:YSTDAY.RPT'); 

/* initialize math handler */ 

dummy=0; 
CALL FQFSET(.dummy,.dummy); 

/* enter task loop */ 

DO WHILE 1; 
ptr=R'QWAIT( .prt$req,0); 

IF msg.type=today$type THEN 

ype); 
CALL pr int (.today Sf i leSname, SIZE ( today$f i le$name) , .msg. t 

ELSE IF msg.type=yesterd,ay$type ·THEN 
CALL print(.ystday$file$name,size(ystday$file$name),.msg 

.type); 
CALL RQSEND(msg.response$exchange,ptr); 
END; /*of do while*/ 

END; /* of task */ 
END REPORT; 

2-68 AFN·01931A 



ISIS-II FORTRAN-80 COMPILATION OF PROGRAM UNIT HEADER 
OBJECT MODULE PLACED IN :Fl:PRNTMD.OBJ 
COMPILER INVOKED BY: FORT80 : F 1: PRNTMD. FRT DEBUG DATE ( 10/ 12/7 8) PAGEW IDTH ( 7 8) 

c 
C--
c 

200 

201 

202 

SUBROUTINE HEADER 

CALLED BY PRINT TO OUTPUT REPORT HEADER 

WRITE(6,200) 
FORMAT (I DATE TIME PH VOLUME TEMP DISSOLVED 

! 'TOTAL ORGANIC SUSPENDED PHOSPHATE INFLUENT EFFLUENT ', 
2'TURBID AIR DIS MIX INF') 

WRITE (6, 201) 
FORMAT(44X,'OXYGEN CARBON CARBON SOLIDS CONC',6X, 

l'FLOW FLOW') 
WRITE (6, 202) 
FORM•Tl24X,' (CU.M) (C) (MG/ML) (MG/ML) (MG/ML) 

l' (MG/ML) 
RETURN 
END 

(MG/ML) (MG/ML) (MG/ML) % ') 

TSIS-II FORTRAN-80 COMPILATION OF PROGRAM UNIT PRINT 
OBJECT MODULE PLACED IN :Fl:PRNTMD.OBJ 
COMPILER INVOKED BY: FORT80 :Fl:PRNTMD.FRT DEBUG DATE(l0/12/78) PAGEWIDTH(78) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
l.l 
l 4 
15 
16 
17 
1 R 
19 
20 
2 l 
22 
n 
24 
25 
26 
n 
28 
29 
30 
31 
32 
33 

3 4 

35 

36 

c 
C-- SUBROUTINE PRINT CALLED BY REPORT TO GENERATE FORMATTED 
C-- REPORTS. PRINTS EITHER TODAY'S FILE OR YESTERDAY'S 

DEPENDING ON FILNM INPUT VALUE. 

SUBROUTINE PRINT(FILNM,TYPE) 
IMPLICIT LOGICAL (A-Z) 
CHARACTER*l4 FILNM 
INTEGER*2 ERRFLG,RECCNT,LSTREC 
INTEGER*l TYPE 
INTEGER*l INDEX 

$INCLUDE(:Fl:EQUIV.DEC) 

c 

CHARACTER BUFFER*57,PARAMS (57) *l 
REAL PH,VOLUME,TEMP,DISOXY,TOTCAR,ORGCAR 
REAL SUSSOL,PHOSFT,INFLOW,EFLFLO,TURBID 
INTEGER*l DIGDAT 
INTEGER*2 MONTH,DAY,YEAR,HOUR,MINUTE,SECOND 
EQUIVALENCE (PARAMS,BUFFER) 
EQUIVALENCE (PARAMS,PH) 
EQUIVALENCE (PARAMS(5) ,VOLUME) 
EQUIVALENCE (PARAMS(9),TEMP) 
EQUIVALENCE (PARAMS (13) ,DISOXY) 
EQUIVALENCE (PARAMS(l7) ,TOTCAR) 
EQUIVALENCE (PARAMS(21) ,ORGCAR) 
EQUIVALENCE (PARAMS (25) ,SUSSOL) 
EQUIVALENCE (PARAMS(29),PHOSFT) 
EQUIVALENCE (PARAMS (33) ,INFLOW) 

rn~g~t~~g~ i~~~~~~ mi :~imgi 
EQUIVALENCE (PARAMS(45),DIGOAT) 
EQUIVALENCE (PARAMS(46),MONTH) 
EQUIVALENCE (PARAMS (48) ,DAY) 
EQUIVALENCE (PARAMS(50) ,YEAR) 
EQUIVALENCE (PARAMS(52) ,HOUR) 
EQUIVALENCE (PARAMS (54) ,MINUTE) 
EQUIVALENCE (PARAMS(56),SECOND) 
CHARACTER*3 AIR,MIX,INFLNT,DISCHG 
COMMON /LSTREC/ LSTREC 

C-- INITIALIZE RECORD COUNT 
c 

HECCNT=l 
c 
C-- INITIALIZE INDEX 
c 

INDEX=l 
c 
C-- OUTPUT HEADER 
c 

CALL HEADER 
c 

2-69 AFN·01931A 



C-
C 

WAIT FOR FILE ACCESS IF TODAY 1 S FILE 

37 l 

38@ 

39 10 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

® 

62 rn 1 

c 

IF(TYPE.EQ.100) CALL LOCK(2) 
OPEN(B,FILE=FILNM,STATUS='OLD',IOSTAT=ERRFLG, 

1ERR=9000,ACCESS='DIRECT',RECL=57) 
READ(8,REC=RECCNT,IOSTAT=ERRFLG,ERR=91~0) BUFFER 
RECCNT=RECCNT+l 
IF( (DIGDAT.AND.~01H) .EQ.lllH) THEN 
AIR=' ON' 
ELSE 
AIR='OF'F' 
END IF 
IF( (DIGDAT.AND.#02H) .EQ.#02H) THEN 
MIX=' ON' 
ELSE 
MIX='OFF' 
END IF 
IF((DIGDAT.AND.#04H).EQ.#04H) THEN 
DISCHG=' ON' 
ELSE 
DISCHG='OFF' 
ENDIF 
IF((DIGDAT.AND.#08H).EQ.#08H) THEN 
INFLNT=' ON' 
ELSE 
INFLNT= I OFF I 

.END IF 
WRITE(6,101) MONTH,DAY,YEAR,HOUR,MINUTE,SECOND, 

lPH, VOLUME, TEMP, DISOXY, TOTCAR, ORGCfl.R, SUSSOL, PHOSFT, 
2INFLOW,EFLFLO,TURBID,AIR,DISCHG,MIX,INFLNT 

FORMAT (I 2, I I I , I 2, I I I , I 2, 1 x, I 2, I : I , I 2, I : I , I 2 I 1 x, F 4. 1 , l x, F 9. 2, 
Z lX, F9. 4, lX, F9. 4 1 lX, F8. 3, 1 X, F8. 3, lX, F9. 4, l X, F9. 4, lX, F8. 3, lX, F8. 3 

-,1X,F7. 3, 
ZlX,A3, 1X,A3, 1X,A3, 1X,A3) 

C-- CHECK FOR END OF FILE AND OTHER THINGS 
c 

63 
64 
65 
66 
67 
68 
69 

~~ 'vi' 
72 '!!) 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 

83 
84 
85 
86 

c--
c 

87 9000 
88 9001 
89 
90 9100 
91 9101 
92 
93 9200 
94 9 201 
95 
96 

INDEX=INDEX+l 
IF(TYPE.EQ.100) THEN 
IF(INDEX.LE.10) THEN 
IF(RECCNT.LT.LSTREC) THEN 
GOTO 10 
ELSE 
CLOSE(8,IOSTAT=ERRFLG,ERR=9200) 
CALL UNLOCK ( 2) 
RETURN 
END IF 
ELSE 
INDEX=! 
CLOSE(8,IOSTAT=ERRFLG,ERR=9200) 
CALL UNLOCK(2) 
GOTO 1 
END IF 
ELSE 
IF(RECCNT.LE.288) THEN 
GOTO 10 
ELSE 

CLOSE(8,IOSTAT=ERRFLG,ERR=9200) 
RETURN 
ENDIF 
END IF 

ERROR HANDLERS 

WR!TE(6,900l) ERRFLG 
FORMAT ('OPEN ERROR IN PRINT; # ' , I 4) 
RETURN 
WRITE('i,9101) ERRFLG 
FORMAT ( 'READ ERROR IN PRINT; I', I4 I 
RETURN 
WRITE (6, 9201) ERRFLG 
FORMAT {'CLOSE ERROR IN PRINT; #'. I4) 
RETURN 
END 

2-70 AFN·01931A 



PL/M-Se COMPILER 

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE INITMD 
OBJECT MODULE PLACED IN :Fl:INITMD.OBJ 

10/12/78 PAGE 

COMPILER INVOKED BY: plm80 :Fl:INITMD.plm DEBUG DATE(l0/12/78) PAGEWIDTH(78) 

1 h 
l 7 

18 
19 

20 
21 

22 

n 
24 
25 

2c; 

27 

28 
29 
Jr 

2@ 

INITMD: 
DO; 

$no list 

FQ0GO: PROCEDURC EXTERNAL; 
END FQ0GO; 

DECLARE semaphore (3) ADDRESS EXTERNAL; 
DECLARE token (3) STRUCTURE ( 

msgShdr) EXTERNAL; 

INIT: PROCEDURE PUBLIC; 
DECLARE i BYTE; 

CALL FQ0GO; 

/* initi8lize semaphores */ 

DO i:0 TO 2; 
CALL RQSENO(semaphore(i) ,.token(i)); 
END; 

/* PROGRAM THE 8255 */ 

OUTPUT(0EBH)•92H; 

/* TURN OFF ALL ALARMS */ 

OUTPUT(0EAH)=0; 

RETURN; 
END; 
E1\JO INJTMD; 

ASM80.0V3 :Fl:X2CFG.M80 DEBUG PAGEW1DTH(78) 

!SIS-II 8080/8085 MACRO ASSEMBLER, V2.0 X2CFG PAGE 

LOC OBJ SEQ SOURCE STATEMENT 

l NAME X2CFG 
2 CSEG 
3 PUBLIC RQRATE 

0 ~H'.'0 U00 4 RQRATE: DW 32 
5 $'NO LIST 

350 $LIST 
1c1 $NOGEN 

0000 ]62 NT ASK SET 
0000 3G3 NEXCH SET 
01'00 3 64 NDEV SET 
0000 365 NC ONT SET 

366 
BUILD INITIAL TASK TA!;3LE 

31\9 STD RQADBG,64,129,RQWAKE 
426 STD RQTHDI,36,112,RQOUTX 
483 STD RQPDSK,~8,129,RQDSKX 
54 0 STD RQPDIR,48,130,RQDIRX 
597 STD RQPDEL, 64, 131, RQDELX 
654 STD RQPRNM,154,132,RQRNMX 
7] 1 STD RQAIH,34,133,RQAIEX 
7158 EXTRN RQHDl 
769 CONS TD CNTROL,RQHDl,80,CNSTK,81,CONTEX 
882 STD TIMER,64,20," 
9 39 STD TIMUPD,64,140,0 
996 STD TIMERS,64,141,0 

1053 STD STSINP,154,J42,0 
ll 10 STD CHANGE,64,143,0 
1167 

/~ 
STD REPORT,800,144,~,18 

1224 STD SCAN,800,144,0,18 
1281 
1282 ALLOCATE TASK DESCRIPTORS 
1283 
1284 GENTD 
1288 
1289 ALLOCATE EXCHANGES 
1290 
1291 XCH CONT EX 
1295 XCH FQ0LOK 

2·71 AFN·01931A 



1299 
@ 

INTXCH RQL5EX 
1305 
1306 BUILD INITIAL EXCHANGE TABLE 
1307 
U08 XCHADR RQDSKX 
1315 XCHADR RQDIRX 
1322 XCHADR RQRNMX 
1329 XCHADR RQDELX 
l 33fi XCHADR RQAIEX 
1343 PUBXCH CONT EX 
1350 @ PUBXCH RQL5EX 
1357 PUBXCH FQ0LOK 
1364 XCHADR RQINPX 

LOC OBJ SEQ SOURCE STATEMENT 

1371 XCHADR RQOUTX 
1378 XCHADR RQDBUG 
1385 XCHADR RQWAKE 
1392 XCHADR RQALRM 
1399 XCHADR RQL6EX 
1406 XCHADR RQL 7EX 
1413 XCHADR STSLOK 
1420 XCHADR SET LOK 
1427 XCHADR OSK LOK 
1434 XCHADR BM PT IM 
1441 XCHADR TIMPOL 
1448 XCHADR PRTREQ 
1455 XCHADR CHRESP 
1462 XCHADR ANRESP 
1469 XCHADR MIN5EX 
1476 XCHADR TIMEEX 
1483 XCHADR RDRESP 
1490 
1491 BUILD CREATE TABLE 
1492 
1493 CRTAB 
1500 
1501 BUILD DEVICE CONFIGURATION TABLE 
1502 
1503 OCT 00, Pl, 0, 0 
1544 OCT 01,0,0,1 
1585 
1586 BUILD CONTROLLER SPECIFICATION TABLE 
1587 
1588 CST 0,80H,5,RQLSEX,CONTEX 
1604 
1605 BUILD BUFFER ALLOCATION BLOCK 
1606 
1607 BAB 3,BUFPOL 
1627 END 

PL/M-80 COMP! LER 10/12/78 PAGE 

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE CAMMOD 
OBJECT MODULE PLACED IN :Fl:CAM.OBJ 
COMPILER lNVOKED BY: plm80 :Fl:CAM.plm DEBUG DATE(l0/12/78) PAGEWIDTH(78) 

CAMM OD: 
DO; 

/* CONTROLLER TASK STACK */ 

1 DECLARE CN$STK (80) BYTE PUBLIC; 

~ /* OFS INTERNAL BUFFER SPACE */ 

DECLARE RQDBUF (700) BYTE PUBLIC; 

/* DFS STATIC BUFFER POOL * / 

DECLARE BUF$POL (1200) BYTE PUBLIC; 

END CAMMOD; 

2·72. AFN-01931A 



APPLICATION 
NOTE 

2-73 

AP-86 

July 1980 

AFN-01931A 



Using the iRMX 86™ 
Operating System 

2-74 

Contents 

INTRODUCTION ...................... 2-75 

OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-75 

INTRODUCTION TO THE iRMX 86 
OPERATING SYSTEM .................. 2-78 

Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79 
Tasks ................................ 2-79 
Job and Free Space Management ........ 2-79 
Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80 
Communication & Synchronization ...... 2-81 
Interrupt Management ................. 2-81 
Error Management . . . . . . . . . . . . . . . . . . . . 2-81 
Asynchronous I/O ..................... 2-81 
Synchronous I/O ...................... 2-82 
Loaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82 
File Management . . . . . . . . . . . . . . . . . . . . . . 2-83 
Human Interface Subsystem . . . . . . . . . . . . 2-83 
Debugging Subsystem . . . . . . . . . . . . . . . . . . 2-83 
Configuration and Initialization . . . . . . . . . 2-83 

DESIGN METHODOLOGY. . . . . . . . . . . . . . 2-84 

Application Example 1 . . . . . . . . . . . . . . . . . . . 2-84 
System Requirements . . . . . . . . . . . . . . . . . . 2-84 
Hardware Requirements . . . . . . . . . . . . . . . . 2-84 
System Design . . . . . . . . . . . . . . . . . . . . . . . . 2-85 

Application Example 2 . . . . . . . . . . . . . . . . . . . 2-87 
Overview of Device Driver Construction . . 2-87 
Design of an iSBC 534™ Driver. . . . . . . . . . 2-89 

CODE EXAMPLES . . . . . . . . . . . . . . . . . . . . . 2-90 

APPENDIX A - Code Listings . . . . . . . . . . . 2-97 

APPENDIX B - Configuration 
Listings/Worksheets .................. 2-121 

AFN·01931A 



AP·86 

INTRODUCTION 
Companies seeking to develop microcomputer appli
cations are faced with two significant problems. First, 
applications are growing more and more sophisticated. 
With competition always present, products are con
tinually being enhanced with new features. This bur
dens the underlying computer system by increasing 
both the complexity of the software and the number of 
events and functions that must be handled by the 
system. 

The second problem is a management problem. These 
newer and more sophisticated application systems 
must be developed quickly in order to hit shrinking 
market windows. Also, they must be developed with 
lower manpower costs to be feasible in an engineering 
community struck by insufficient technical personnel 
and skyrocketing software development costs. 

These are the needs addressed by the iRMX 86™ Oper
ating System. The two goals in the development of this 
product have been power/flexibility to meet the needs 
of increasingly complex application systems, and ease 
of understanding and use, to boost the productivity of 
available engineering resources. Users of Intel's line of 
iSBC 86™ Single Board Computers or custom-designed 
8086-based boards can now obtain the same benefits 
from Intel supplied system software as they can from 
Intel supplied system hardware. 

The reader of this application note is provided with 
information in four subject areas. 

• The requirements of operating systems are 
discussed along with traditional solutions. 

• The iRMX 86 Operating System is introduced 
and its features are discussed in relation to the 
requirements studied earlier. 

• System design using the iRMX 86 Operating 
System is studied using example solutions. 

• Code for two example systems is examined to 
learn the details of system implementation. 

Some of the topics in this note may not be of interest 
to all readers. For example, an experienced real-time 
programmer may not need to read the entire overview 
of real-time systems. For those who want to brush up 
on a few topics, the overview is organized to allow the 
reader to focus attention on areas of specific interest. 

Throughout this application note, various terms and 
concepts are introduced and discussed. If further 
information on any of these topics is desired, the 
references listed in the front of this note should be 
used. 

2-75 

OVERVIEW 
This overview is provided to investigate both the prob
lems encountered in the design of applications soft
ware and also the classical solutions to these problems. 

Multitasking 
A real-time system is defined to be a system that 
reacts to events occurring external to the computer 
and which monitors or controls these events as they 
occur (or in "real-time"). The converse of a real-time 
system is known as a batch system where the outcome 
of a program does not depend on when it is run (for 
example, a payroll program). 

Two other characteristics typically encountered in a 
real-time system are asynchronous event occurrences 
and concurrent activity. The first characteristic is 
caused by events occurring randomly rather than at 
scheduled intervals. The second characteristic, con
current activity, takes place when two or more events 
occur nearly at the same time, requiring simultaneous 
activity. 

One method of dealing with the requirements of a 
real-time system would be to write a program that 
knows what events could potentially occur (for 
example, an interrupt occurrence, a real-time clock 
counting down to zero, a byte in memory being 
modified by another program). This program could 
then execute a large loop checking for the occurrence 
of these events. 

There are several problems with this approach. While 
processing one event which has occurred, the program 
is not responsive to other events. Also, the 
programmer has no way of prioritizing the importance 
of the various events. From a maintenance standpoint, 
this program is complex and difficult to enhance or 
modify. 

The traditional solution to these problems is a tech
nique called multitasking. Essentially, this involves 
writing many small routines instead of one large one. 
Each of these routines (tasks) can process events in
dependent of the other tasks in the system. In addi
tion, a priority can be assigned each task so that the 
operating system can decide as to which task is the 
most important when more than one task requests 
control of the CPU. 

The support for multitasking involves a scheduler 
which is part of the service provided by the operating 
system. The scheduler allows each task to execute its 
program as if it has sole control of the CPU, ensuring 
that all tasks desiring CPU time are serviced according 
to the priority associated with each task. 

AFN·01931A 



AP-86 

From the standpoint of system design, multitasking 
has many desirable qualities. Large and potentially 
complex application programs can be decomposed into 
smaller more manageable units. This makes feasible 
the use of programmer teams to implement the appli
cation. Perhaps even more importantly, the potential
ly overwhelming problems surrounding concurrent exe
cution and interrupt handling become transparent to 
the application programmer. Also, multitasking 
makes the modification of existing tasks and. the 
addition of new ones become a manageable objective 
since the interaction between tasks is minimized. 

Interrupt Handling 
A common event in a real-time system is the occur
rence of an interrupt. Because this event is so com
mon, an important feature of a real-time operating 
system is its interrupt processing capabilities. 

From the standpoint of application software, interrupt 
handling can be cumbersome. The currently running 
task must be preempted, various hardware devices 
must be manipulated and perhaps a hardware inter
rupt controller must be dealt with. 

A real-time operating system can abstract the occur
rence of an interrupt into something more consistent 
with the way other events are handled. A task can 
simply inform the scheduler that it does not require 
any CPU time until an interrupt occurs. The relative 
priority of different interrupts can also be handled in 
the same manner as the priority of multiple tasks are 
handled. Thus, the application programmer need only 
deal with the actual processing related to interrupt 
occurrence. 

Reliability 
Reliability is a keyword in all real-time systems. In 
this type of system, reliability does not refer to mean 
time between failure. In fact, the software in a real
time application typically cannot be allowed to fail. 
The difficulty imposed on the software by the en
vironment comes from the near infinite .number of 
permutations that can occur. A system that appears to 
be fully debugged can fail in the field because of a 
combination of simultaneous events that never 
occurred before. 

The only means to avoid failure in these instances is 
through the use of a consistent, well-thought-out 
model for handling events. Any special-cased solution 
is subject to failure when the special cases that were 
designed for are violated in the real world. 

Error handling can also add reliability to an appli
cation system. When the application software is 

2-76 

unable to anticipate the outcome of certain conditions, 
or the software has undiscovered bugs, it is vital for 
the operating system to gracefully handle the situation 
and allow for further processing to continue as best as 
possible. 

110 Handling 
Many applications for 16-bit microcomputers require a 
variety of 1/0 devices. The support for I/O opera
tions on these devices is typically provided by the 
operating system. Both sequential access and random 
access devices are typically encountered and, in addi
tion, flexibility in handling I/O requests and acknowl
edgements is important. 

The flexibility necessary typically involves the sched
uling of a task's execution after an 1/0 request has been 
made. The greatest flexibility can be obtained by an 
asynchronous 1/0 system. In this system, a task makes 
an 1/0 request by calling the operating system. Once 
the processing of the request has begun, control is 
returned to the calling task. 

In this manner, the task can continue executing its 
program while the I/O operation is progressing. When 
the results of the operation .are desired, the task can 
call the operating system again to wait for the com
pletion of the previous 1/0 request. 

The second type of I/O support is less flexible but also 
easier to use. An operating system that supports syn
chronous 1/0 allows a task to make a single operating 
system call to make an I/O request. Once control is 
returned to the calling task, .the I/O operation is 
complete and the results are immediately available. 
This type of I/O support sometimes takes advantage of 
a technique known as autobuf fering to regain some of 
the performance advantage of the overlapped I/O 
found in the asynchronous system. 

Debug Support 
The inherent characteristics of the real-time environ
ment sometimes make it difficult to debug new soft
ware. If the simultaneous occurrence of two events 
causes a bug in the software, detection may be difficult 
because the next time the system is run the error is not 
reproduced. Also, because of the fact that the software 
is broken down into many independent tasks, the in
teraction may be difficult to track using standard 
debugging techniques. 

The solution to these problems is a piece of software 
ca)led the system debugger. The debugger typically 
has three characteristics. 

AFN-01931A 



AP-86 

1) It is designed to interact with the operating system 
and therefore has intimate knowledge of code, data 
structures and system objects. 

2)-Since the debugger is just another task in the 
system, it does not affect the operation of the other 
tasks that are running. 

3) Through the use of sophisticated breakpointing 
facilities, the debugger allows the designer to track 
the tasks in the system, investigate their interac
tion with other tasks and selectively stop one or 
more tasks without stopping the entire system. 

Multiprogramming 
In some application systems, there arises the require
ment to run several "applications" on the computer at 
the same time. This may be due to the desire to 
squeeze more use out of the hardware or it may be due 
to some system design consideration. These separate 
"applications" (often termed jobs) share many system 
resources (especially the CPU) but at the same time 
they need to be protected as much as possible from 
other jobs. In essence, it should be possible to develop 
two jobs independently and then run them both on the 
same hardware without any interaction. If interaction 
is desired, the operating system should support some 
well-defined protocol forjobs to use to communicate. 

Free Space Management 
One of the most important resources in the computer 
system is the memory. In some applications, the 
amount of memory needed can be determined when 
the system is designed. In the more general case, the 
amount of memory needed by the system fluctuates. 
One solution to this management problem is to have 
available the amount needed in the worst possible 
case. A more flexible and economical solution is to 
dynamically allocate memory from a central pool upon 
demand and return it when possible. This service 
provides two tangible advantages. First, total memory 
needs are reduced. Second, this service allows for ease 
of use by the application programmer because there is 
no need to set aside blocks of memory and implement 
code to maintain information about current usage. 

File Management 
The ability to easily store and retrieve data stored on 
mass storage devices is a requirement in many appli
cation systems. Devices such as disks, tapes and bubble 
memories are used to store program code, data files 
and parameter tables. The operating system is called 
upon to store and retrieve the data and organize it 
such that application programs can easily find and 
manipulate the data when necessary. 

2-77 

Typically, this service is provided through the use of a 
file system. The mass storage device is partitioned into 
blocks and logical addresses are assigned to the blocks. 
Files are created to serve as directories where the 
names of other files can be cataloged and looked up. 

In many systems, the directory structure can go many 
levels deep (see Figure 1). This provides several advan
tages. Directory searches can be done much faster if 
the general area where a file exists is known. Also, if 
several jobs are running at the same time, each can be 
given its own directory and therefore isolated from the 
others. Lastly, for human users, it is much easier to 
manage the information on the disk when some logical 
structure of files exists. 

OBSTETRICS 

GYNECOLOGY 

PRENATAL 

DELIVERY 

ROOT 
DIRECTORY 

EMPTY 
DIRECTORY 

IN-LABOR 

POST-PARTUM 

EMPTY 
DIRECTORY 

IN-PATIENT 

OUT· PATIENT 

Figure 1. Hierarchical File System 

AFN·01931A 



AP-86 

Device Independence 
One of the unfortunate characteristics of I/O devices is 
that they all tend to present different interfaces to the 
system software. When this is the case, the application 
programmer must become familiar with the unique 
characteristics of each device in order to communicate 
with it. One solution is to create an I/O driver which 
does the actual I/O. This driver can then be called by 
the application program whenever communication 
with the device is desired. 

The problem with this solution is that the programmer 
must still know what type of device is being talked to 
since the I/O driver is specialized. If the system con
figuration changes, all of the software must be 
rewritten to call new device drivers. The best solution 
is to design a standard interface to device drivers and 
postpone until run-time the decision about which 
devices to use. With this type of system, an application 
program can be written assuming that at run-time the 
human or program that invokes it will provide a speci
fication of which devices should be used. 

High-Level Man-Machine Interface 
In addition to the services provided for application 
programs by the operating system, a set of services 
typically is offered to the human user sitting at the 
system console. System utilities are needed for file 
copying, disk formatting, and directory maintenance. 
Programs need to be loaded off disk to run and the 
programs themselves must be able to retrieve 
parameters passed to them by the operator. All of 
these functions are usually provided by the man
machine interface software in the operating system. 

Make Versus Buy 
The previous sections dealt with operating system re
quirements. These requirements are encountered in 
the application development process. Whether the 
solution to meet the needs comes from the individual 
application designer or from a computer system 
vendor, the requirements do not change. 

There usually exists a rather simple tradeoff between 
designing a custom operating system or buying a 
generalized system and tailoring it to the individual 
needs of the application. There are advantages to the 
custom solution. The system can often be made 
smaller since the requirements are known in great 
detail. Also, some small performance improvements 
can sometimes be made by taking advantage of the 
special cases to speed things up. 

1) Engineering resources are becoming scarce. The use 
of an opearting system from a vendor allows atten
tion to be focused on the application software. 

2) The time taken to bring the product to market can 
be shortened, thereby gaining a competitive edge 
and generating early revenue. 

3) Long-term maintenance costs can be reduced be
cause the vendor supports the operating system 
software. 

4) Personnel in all branches of the company can be
come familiar with one software architecture and 
apply this knowledge to a range of products. 
This applies not only to the design engineers, but 
also to quality assurance, customer engineers and 
system analysts. 

5) The computer system vendor has knowledge of 
future technological advances coming in the prod
uct lines. For this reason, the operating system can 
be constructed so that applications software can be 
transported to future hardware without the need 
for expensive redesign. 

In summary, the trade-offs are clear. An operating 
system from a computer system vendor is not the 
answer for every application. But in most cases, the 
most economical and safest bet is to take advantage of 
the expertise of the vendor for the system software 
and use engineering resources to more quickly solve 
the application problem. 

INTRODUCTION TO THE iRMX 86™ 
OPERATING SYSTEM 
The iRMX 86 Operating System meets the needs of 
real-time applications while simultaneously providing 
the full set of services normally found in a general
purpose operating system. 

The overall picture of the iRMX 86 Operating System 
is shown in Figure 2. The iRMX 86 Nucleus provides 

Buying an operating system from a computer system Figure2.LayersofSupportintheiRMX86™System 
vendor offers five advantages. 

2·78 AFN-01931A 



AP-86 

support for multitasking, multiprogramming, inter
task communication, interrupt handling and error 
checking. The Basic 1/0 System provides support for 
device independent and file format independent 
manipulation of data on 1/0 devices. The Extended 1/0 
system provides synchronous 1/0 calls, automatic 
buffering, logical file name support and high-level job 
management. The application loader provides the 
ability to load code and data from mass storage devices 
into RAM memory. The Human Interface provides for 
a high-level man-machine interface as well as file 
utilities and parsing support for application programs. 

The following sections deal in more detail with each of 
these iRMX 86 pieces. If more information is desired on 
the features discussed, please refer to the documents 
listed in the front of this application note. 

Architecture 
The iRMX 86 architecture is an object-oriented archi
tecture. This means that the operating system is 
organized as a collection of building blocks that are 
manipulated by operators. The building blocks of the 
iRMX 86 system are called objects and are of several 
types. Some of the object types are tasks, jobs, mail
boxes, semaphores and segments. These types are 
explained in subsequent sections of this application 
note. 

This type of architecture has two major advantages. 
First, the system is easier to learn and use. The at
tributes of the various objects and the operations that 
can be performed on them are well defined and con
sistent. Once an object type is understood, all objects 
of that type are understood. 

The second advantage to an object-oriented archi
tecture is the ease with which the operating system 
can be tailored to the application. If there is no need 
for a given object in the application, all operators for 
that object are not included in the final configured 
system. On the other hand, if the application designer 
needs a more complex building block that is not in the 
basic system, he can define and use a new object type. 

Table 1 lists all of the system calls in the iRMX 86 
Nucleus. There are three groupings of system calls in 
this table. 

1) The general system calls apply to all objects uni
formly. 

2) The first two system calls for each object are the 
create and delete calls. These calls simply create a 
new object and initialize its attributes or delete an 
existing object. 

2-79 

3) The remaining system calls are specific to the at
tributes of a particular object. With this organiza
tion in mind, the entire operation of the iRMX 86 
nucleus can be glimpsed in a single table. 

Tasks 
Tasks are the active objects in the iRMX 86 archi
tecture. Tasks execute program code and therefore are 
the only objects that can manipulate other objects. The 
attributes of a task include its program counter, stack, 
priority and dispatcher state. 

Tasks compete with each other for CPU time and the 
iRMX 86 scheduler determines which task to run based 
upon priorities. The dispatcher states for an iRMX 86 
task are shown in Figure 3. At any given point in time, 
the highest priority task that is ready to run has 
control of the CPU. Control is transferred to another 
task only when 

Figure 3_ Task State Transition Diagram 

1) the running task makes a request that cannot im
mediately be filled and is, therefore, moved to the 
asleep state, 

2) an interrupt occurs causing a higher-priority task to 
become ready to run or 

3) the running task causes a higher-priority asleep 
task to become ready by releasing some resource. 

The suspended and asleep-suspended states are 
entered whenever the suspend system call is invoked 
for a particular task. 

Job and Free Space Management 
Support for multiprogramming is provided by the job 
object. A job provides the environment for tasks to 
execute their programs. All other objects needed for a 
particular application are contained within the job. 

AFN-01931A 



AP-86 

Table 1. Nucleus Object Management System Calls 

System Calls for 
O.S. Objects Attributes All Objects 

JOBS Tasks 
Memory pool 
Object directory 
Exception handler 

TASKS Priority 
Stack 
Code 
State 
Exception handler 

CATALOG$0BJ ECT 

UNCATALOG$0BJECT 

LOOKUP$0BJECT SEGMENTS Buffer with length 

ENABLE$DELETION 

DISABLE$DELETION 
MAILBOXES List of objects 

List of tasks waiting for objects 
FORCE$DELETE 

GET$TYPE SEMAPHORES Semaphore unit value 

List of tasks waiting for units 

REGIONS List of tasks waiting for critical 
section 

USER License rights to a given extension 
OBJECTS type 

New object template 

A specific attribute of the job is a free memory pool 
from which blocks can be allocated only by tasks 
within the job. Also, the job contains an object direc· 
tory which can be used by tasks to catalog objects 
under ASCII names so that other tasks, knowing the 
ASCII name, can look up the object and thereby gain 
addressability to it. 

Object-Specific 
System Calls 

CREATE$JOB 
DELETE$JOB 
SET$POOL$MIN 
GET$POOL$ATTRIB 
OFFSPRING 

CREATE$TASK 
DELETE$TASK 
SUSPEND$TASK 
RESUME$TASK 
GET$EXCEPTION$HANDLER 
SET$EXCEPTION$HANDLER 
SLEEP 
GET$TASK$TOKENS 
GET$PRIORITY 
SET$PRIORITY 

CREATE$SEGMENT 
DELETE$SEGMENT 
GET$SIZE 

CREATE$MAILBOX 
DELETE$MAILBOX 
SEND$MESSAGE 
RECEIVE$MESSAGE 

CREATE$SEMAPHORE 
DELETE$SEMAPHORE 
RECEIVE$UN ITS 
SEND$UNITS 

CREATE$REGION 
DELETE$REGION 
RECEIVE$CONTROL 
ACCEPT$CONTROL 
SEND$CONTROL 

CREATE$EXTENSION 
DELETE$EXTENSION 

CREA TE$COM POSITE 
DELETE$COMPOSITE 
INSPECT$COMPOSITE 
ALTER$COMPOSITE 

More than one job can co-exist in the computer system. 
Tasks within jobs can also create children jobs forming 
a hierarchical tree of jobs (see Figure 4). Each job in 
the system has its unique set of contained objects, its 
own memory pool and its own object directory. 

Figure 4. iRMX 86™ Job Tree Example 

Segments 
A fundamental resource that tasks need is memory. 
Memory is allocated to tasks in the form of the 

2·80 

segment object. The segment is a block of contiguous 
memory. The attributes of a segment are its base 
address and size. A task needing memory requests a 
segment of whatever size it requires. The Nucleus 
attempts to create a segment from the memory pool 
given to the task's job when the job was created. 

AFN·01931A 



AP-86 

If there is not enough memory available, the Nucleus 
will try to get the needed memory from ancestors of 
the job. 

Communication and Synchronization 
In many cases it is necessary for two tasks to com
municate in order to exchange data and commands. 
This is supported through the use of an object known 
as a mailbox. As its name implies, a mailbox is a 
holding place for objects. One task can send an object 
to a mailbox, causing the object to be queued there. 
Another task can later receive an object from the mail
box and thereby gain access to it (see Figure 5). If a 
task tries to receive an object from a mailbox and there 
are no objects there, the task can optionally be made to 
sleep for a specified time for an object to appear. 

Figure 5. Intertask Communication via Mailboxes 

Note that any object can be sent to a mailbox to be 
received by another task. Typically, the object sent is a 
segment which is a block of memory and can contain 
any commands or data. The term message is often used 
to describe the object during the time it is being sent 
through a mailbox. 

In those cases where there is a requirement for syn
chronization between tasks but no data need be sent, a 
simpler more efficient mechanism exists. The sem
aphore object provides for the allocation of abstract 
entities called units. The primary attribute of the 
semaphore is an integer number. Tasks may send units 
to a semaphore thereby increasing the integer number 
or they can request units, thereby decreasing the 
number. If a task makes a request for more units than 
are available, it can optionally be made to sleep for a 
specified amount of time. This mechanism can be used 
for synchronization, resource allocation and mutual 
exclusion. 

2-81 

Interrupt Management 
When an interrupt is sensed by the 8086 hardware, a 
user interrupt handler is executed. The interrupt 
handler can either perform all interrupt processing 
itself without making any iRMX 86 system calls, or it 
can signal an interrupt task allowing more general 
interrupt processing including calls to the operating 
system. 

The operating system maps hardware interrupt priori
ties into the software priority scheme allowing the 
designer to specify what software functions are im
portant enough to have some interrupt levels masked 
off during their execution. Although this mapping 
should always be kept in mind during design, the 
mechanics of dealing with interrupt control are 
handled by the operating system. 

Error Management 
One of the central themes in the design of the iRMX 
86 operating system has been reliability. The results of 
these efforts are evident in two particular features of 
the architecture. Beyond the ease of understanding 
brought about by the symmetry of the system, the 
reliability of applications using the iRMX 86 software 
is increased. 

The general case (as opposed to checking only for 
specific combinations of errors) has been designed for. 
Because of this, an unexpected combination of events 
or the simultaneous occurrence of interrupts will 
never catch the system by surprise. 

In the event that errors do occur, the operating system 
is set to detect them. Virtually all parameters in calls 
to the operating system are checked for validity. Any 
inconsistency causes a jump to an error routine to 
handle the problem. Two types of errors can poten
tially occur and there are two ways of handling errors. 

The first error type is the programmer error condition 
which comes about due to some mistake in the coding 
of a system call. The second type is an environmental 
c.ondition which arises due to factors out of the control 
of the engineer (e.g. insufficient memory). Each of 
these error types can be handled in-line by checking a 
status code upon return from the call or can cause an 
error handling subroutine to be called by the system. 
The system designer can choose the desired method for 
the system, for a specific job, and even for individual 
tasks within a job. 

Asynchronous 1/0 
Asynchronous I/O system calls are provided to 
support device independent I/O to any device in the 

AFN-01931A 



AP-86 

system. The type of I/O and· the type of device are 
interrelated as shown in Figure 6. Every device driver 
in theJ/O system is required to· support a standard 
interface. In this manner, all devices look the same to 
higher level software, In the same manner, the 
individual. file drivers, which provide the different 
types of file systems, all have a standard interface and 
call upon the various device drivers to perform I/O. 
These interface standards 

1) provide for the device independence in the higher 
layers of the I/O system 

2) make it easier for Intel to add future device drivers 
as new devices become available and 

3) make it possible for iRMX 86 users to add their own 
drivers for custom I/O devices. 

Figure 6. 1/0 System Structure 

The iRMX 86 I/O system provides both asynchronous 
and synchronous system calls. The asynchronous I/O 
calls are faster, provide more flexibility in the 
selection of options and allow the program making the 
call to perform other functions while waiting for the 
I/O operation to complete. 

The metho~ by which the I/O system responds to the 
requestor is through the use of a mailbox. When any 
call is made to the asynchronous I/O system, one of the 
parameters indieates a mailbox where the caller 
expects to receive a segment containing the results of 
the operation (see Figure 7). 

Synchronous 1/0 
The alternative to using the asynchronous I/O system 
is to use synchronous I/O system calls. As shown in 
Figure 8, the number of options available are fewer 
and the caller cannot continue execution until the 
entire I/O operation is completed but from an ease-of
use standpoint, the situation is much simplified. 

2-82 

Response$mailbox$token = RQ$create$ 
mailbox (0, @status); 

CALL RQ$A$read(connection$token, buf$ptr, 
count, response$mailbox$token, @status); 

IORS$token = RQ$receive$message 
(response$mai lbox$token,OFFFFH, 
@ resp$t, @status); 

{check status} 
Cal I RQ$delete$segment(IORS$token, 

@status); 

Figure 7. Asynchronous 1/0 Call 

Call RQ$S$read(connection$token,buf$ptr, 
count, @status); 

{check status} 

Figure 8. Synchronous 1/0 Call 

Two other features provided by the Extended I/O 
System are logical name support and autobuffering, 
Logical names allow the application designer to post
pone the decision concerning which files to use until 
run-time. Essentially, all programs can be written and 
compiled using logical file names and then these 
logical names can be mapped into real file names at 
run-time. 

The use of autobuffering regains much of performance 
advantage offered by overlapped I/O. When a user task 
opens a file for input, one or more buffers are auto
matically created and filled with data from the file. 
Thus, when the user task makes an I/O request, the 
data may already be available in memory. A similar 
case exists for write requests in that the I/O system 
will buffer data to be written to a device, allowing the 
user task to continue on. 

Loaders 
The iRMX 86 application loader and bootstrap loader 
perform a variety of services for the user software. 
The following is a brief summary of the available 
features. 

!)Systems can be boot loaded from mass storage 
devices at system reset. This saves not only ROM or 
EPROM memory, but also reduces field mainte
nance costs by allowing easy field updates. 

2) Users can design their own SYSGEN procedure 
allowing tailoring of an application system to the 
individual installation. 

3) Infrequently used programs can be brought in from 
mass storage when needed instead of using system 
memory unnecessarily. 

AFN-01931A 



AP·86 

File Management 
There are three types of files supported by the iRMX 
86 1/0 system, named files, physical files and stream 
files. Named files are supported on devices possessing 
mass storage capability. Files in this system have 
ASCII pathnames and are cataloged in directories. 
Each device in the system contains a directory tree as 
shown previously in Figure 1. Access protection is 
provided through the use of access lists for each file. 
Each user or group of users in the system can be given 
different types of access to the file or can be denied 
access to it; 

For devices that cannot support a Iianied file structure 
(e.g. printers and terminals) the physical file driver is 
used. Devices in this category are treated strictly as 
data going into and/or out of the device. If it is 
desirable to treat a mass storage device strictly as a 
large mass of data, it can also be addressed through 
the physical file driver. 

The third type of file is the stream file. This file type 
has no correlation with any physical device but rather 
uses system memory for temporary storage of data. An 
example of the usage of a.stream file is a job that gets 
its input stream of data from a file. Depending on 
which time the job is run, this file might be a named 
file on disk, a terminal, or a stream file being written 
to by another job (see Figure 9). 

RUN1 . 

c::::i INPUT ~OUTPUT c::::i 
~~· 

·RUN 2 _..........., INPUT ~OUTPUT c::::i 
LJ~' 

TERMINAL 
RUN 3 

Figure 9. Stream File Example 

Human Interface Subsystem 
The highest level of support provided by the iRMX 86 
Operating System is the Human Interface Subsystem. 
This piece of software provides two basic services. 
Programs can be invoked by typing the program name 
at the system console. The Human Interface will load 
the given program into memory, set it up as a job and 
start it running. The invoked program can then call 
upon the Human Interface routines to determine what 
parameters were passed to it as part of the operator 
input. · 

2-83 

The Human Interface also contains a set of system 
utility routines which are used to copy files and disks, 
format disks, dynamically alter the system configura
tion and others. 

Debugging Subsystem 
The iRMX 86 Debugging Subsystem allows the de
signer to interact with the prototype system and iso
late and correct program errors. Since the debugger is 
an object-oriented debugger and is aware of the in
ternal structure of the operating system, it can provide 
detailed information concerning objects and can mon~ 
itor mailboxes and semaphores providing a breakpoint 
facility as well as error detection. 

Specifically, the. iRMX 86 Debugging Subsystem 
provides six sets of functions: 

1) Wake-up upon operator invocation'. The operator 
types a control-D key to cause the debugger to 
wakeup. 

2) View system lists. The debugger can view lists of 
objects either globally or specifically for n given 
job. Also, lists of objects and tasks queued at 11111il
boxes and semaphores can be seen. 

3) Inspect objects. A detailed report on any object can 
be requested showing the current state of ,all 
relevant attributes. · 

4) Inspect and modify memory. 
5) Breakpoint control. Any number of breakpoints 

can be set causing a single task to break on either 
execution of particular instructions or sends and 
receives of messages or units. 

6) Error handling. The debugger can be set up to be 
the system default error handler thus catching 
system exceptions .. 

Configuration and Initialization 
Once the application is designed and coded, the 
engineer needs a mechanism to inform the operating 
system of the software and hardware. configuration. 
Essentially, this involves building tables of informa
tion using tools provided with the.iRMX 86 product. 

As shown earlier in Figure 4, the jobs in an iRMX 86 
system form a hierarchical tree. The root in every job 
tree is known as the root job and is supplied as part of 
the iRMX 86 system. There are three important fea
tures of this job. 

1) The root job has an object directory for cataloging 
and looking up objects. The special feature of this 
directory is that is is accessible by all tasks in the 
system since everyone can address the root job. For 
this reason the root object directory is useful for 
setting up inter-fob communication paths. · 

AFN·01931A 



AP-86 

2) The root job initially contains all free space in the 
system. Part of the system initialization code per· 
forms a memory scan to automatically determine 
the amount of free RAM in the system. This 
memory is put into the free space pool of the root 
job and parceled out as user jobs are created. 

3) The root job contains only one task, the root task. 
This task scans the configuration tables generated 
by the user and creates the user-specified jobs. 

Examples of configuration, initialization and the 
LINK 86 and LOC 86 operations needed to generate a 
system will be presented in the Code Examples section. 

DESIGN METHODOLOGY 
This section describes the design process involved in 
using the iRMX 86 system to solve application prob
lems and presents two example solutions. 

System design with the iRMX 86 Operating System 
should be viewed as a process starting with the highest 
level definition of system requirements and succes· 
sively .adding more detail until the end product is 
program code. This description sounds very much like 
the description of top-down design and, of course, it 
should. This· methodology offers not only quicker 
designs, fewer design flaws and.easier implementation, 
but also easier maintenance and enhancement. 

In general, every iRMX 86 design progresses through 
the following steps: 

1) Define system.requirements. 
2) Breakdown into highest level sub-functions Gobs). 
3) Define job functions. 
4) Determine inter-job command and data flow. 
5) Break down each job into sub-functions. 
6) Based upon requirements, assign tasks to perform 

job functions. 
7) Determine inter-task command and data flow. 
8) Write program code for each task. 

Step 8 becomes the design process associated with the 
application programs themselves. The code for each 
task is essentially a sequential program that performs 
one of the functions of the computer system. Standard 
techniques for top-dowri design can therefore be used 
here to specify each module and its inputs and outputs 
as well as global and local data structures etc. The end 
product of this procedure is a modularized application 
system that should be easy to debug. 

APPLICATION EXAMPLE 1 
The first example presented here is based on the dis
tributed local network diagrammed in Figure 10. Each 

2-84 

Figure 10. Block Diagram of Example System 1 

workstation shown is an intelligent terminal having 
local data and program storage. The stations all use 
the File Sharing Node (FSN) for storage and retrieval 
of records in much.the same way as the secretaries in 
an office would make use of a filing cabinet. The FSN 
maintains the files on a fixed disk device and responds 
to requests from the workstations for access to the 
data. The design to follow concentrates on the File 
Sharing Node. 

System Requirements 
Each intelligent terminal in the network has command 
processing software. When a file reference is made 
that cannot be satisfied by the local file system, a 
request is made to the File Sharing Node. This request 
consists of a log-on request followed by a string of 1/0 
requests and ultimately a log-off request. 

The number of intelligent terminals (workstations) 
hooked up to the FSN varies from installation to 
installation. Therefore, the FSN must be capable of 
handling many simultaneous requests and no assump
tions can be made about the maximum number of 
workstations or requests that may need to be handled. 

Each node in the network has a unique address. A 
packet is sent onto the network by one node and the 
address field is examined by all other nodes. If this 
field does not match the node's address the packet is 
ignored. If a match is found the packet is retrieved 
from the network. 

Hardware Requirements 
The three main hardware building blocks needed by 
this application are shown in Figure 11. The iSBC 
86/12A Single Board Computer will communicate 
with the iSBC 544 Intelligent Communications Con
troller to establish and maintain communications with 
the network. The Intel 8085A on the iSBC 544 board 
will perform all of the address recognition, acknowl
edgements, packet retrieval and packet transmittal. 
The iSBC 206 Hard Disk Controller will be used to 

AFN·01931A 



AP-86 

create, maintain and access the data files which are at 
the heart of this application. 

Figure 11. Hardware Block Diagram 

System Design 
The first step in the system design process is the 
breakdown of the system functions into one or several 
jobs. The reasons for doing this are system modularity 
and protection. With this type of design, each job can 
be designed separately, perhaps even by a different 
engineer or engineering team. The input and output 
requirements will be specified very tightly and the job 
will take on the appearance of a black box to other jobs 
in the system. If the job is enhanced or modified at a 
later date, the rest of the system can be left undis
turbed providing that the input and output response 
remains the same. 

The job object in the iRMX 86 operating system also 
affords a degree of software protection for the tasks 
and other objects contained within the job. Each job 
has a separate memory pool, a separate object 
directory· and a separate identification to the 1/0 
system. 

The two primary groupings of functions in this appli
cation lire 'those related to the network communica
tions and those related to processing the file trans
action request. A list of a possible split-up of system 
functions is shown in Figure 12. 

2-85 

COMMUNICATIONS JOB 

• ISBC 544r~ INPUT INTERRUPT 
SERVICE 

FILE TRANSACTION JOB· 

•RETRIEVE INPUT REQUEST 
PACKETS FOR SERVICING 

• iSBC 544'" OUTPUT INTERRUPT • OETERMINE WORKSTATION 
SERVICE STATUS 

•SERVICE OUTPUT REQUEST •SERVICE TRANSACTION 
MAILBOX REQUESTS 

•QUEUE PACKETS OF INPUT DATA •PERFORM LOG-ON AND LOG-OFF 
AT INPUT MAILBOX FUNCTIONS 

•ACKNOWLEDGEMENT 
GENERATION 

• BUILO AND SENO RESPONSE 
MESSAGES 

Figure 12. Function Split-up 

The communication between the file transaction job 
and the communication job must fulfill two basic 
needs. The communication job will receive interrupts 
when packets addressed to the FSN are received. 
In order to remain attentive to new requests coming 
in, the communications job should have the capability 
to "spool" the requests off to the file transaction job. 
This buffering can be provided by using the mailbox 
object. Segments can be created to contain the packet 
request data and can then be sent to a mailbox where 
the file transaction job can receive and process them. 

When the file transaction job must send a packet to a 
workstation, the requirement is seen for another 
queue of requests. Since the communications board 
can only put one packet at a time on the network, a 
mailbox should be provided to allow tasks. in . the· file 
transaction job to send output request segments into 
the queue and then continue on (see Figure 13). 

. COMMUNICATIONS JOB FILE TRANSACTION JOB 

Figure 13. Output Mailbox Queue 

Since tasks in both· the file transaction job and the 
communications job must have access to these input 
and output mailboxes,· some means must be set up to 
''broadcast" the identifier for· these objects. 

In the iRMX 86 system, each object has associated 
with it a 16-bit number called a token. Whenever an 
object is referenced in,an operating system call, the 

AFN-01931A 



AP-86 

token for the object is used. For example, assume that 
a segment must be sentto a mailbox. The segment and 
mailbox each have a token and these tokens are passed 
to the operating system as parameters in the 
send$message system call. 

There are three major ways to get the token for an 
object. The first way is to create an object. Whenever 
the operating system is called to create a new object, 
the value retlll'.lled from the procedure call is the token 
for the new object. The second way to receive a token 
is through the receive me888.ge system call where an 
object is received from the queue at a mailbox where it 
was sent by another task. 

The third major mechanism for the receipt of a token 
is provided by. the object directory concept. As men
tioned previously, each job in the system has an object 
directory. 

If a task in a job has the token for an object and wishes 
to let other .tasks in other jobs have access to the 
object, the task· can· "catalog" the object in the object 
directory. The catalog$object system call takes the 
token for an object and an ASCII name as parameters 
and creates an entry in the object directory; If another 
task knows the ASCII name for an object, it can obtain 
the token by performing a lookup$object call. 

The object directory mechanism will be used in this 
example to allow the communications job to "broad
cast'" the tokens for the input and output mailboxes. 
The jobs for this application are shown in Figure 14. 

Figure 14. Job Structure 

The next step of the design methodology calls for each 
job to be further divided into sub-functions. In this 
application note, only the file transaction job is 
studied. 

In time sequence, the file transaction job will: 

2-86 

1) Retrieve input requests from the mailbox set up by 
the communication job. 

2) Determine state of specified workstation (for ex
ample, is it logged on?). 

3) Perform JJO operation or log-on or log-off. 
4) Build and send response to the workstation. 

Recall from the discussion of system requirements 
that the number of nearly simultaneous requests that 
may be received by the FSN is not known. For this 
reason, some mechanism must be provided to allow 
parallel processing of many requests. This should 
prove feasible since the performance of step 3 will 
involve many delays while waiting for the operating 
system to perform JJO operations. 

One straightforward way to provide for parallel 
processing is to create a task for each workstation that 
logs on. In this manner, each JJO request will be 
handled by a unique task. Through the use of the 
iRMX 86 scheduler, maximum CPU utilization will be 
gained by allowing each task to individually compete 
for CPU time. These "worker" tasks fulfill function 3 
and 4 for the file transaction job. 

Function 1 and 2 can be fulfilled by a single task. This 
task will wait at the input mailbox set up by the 
communications job. When a packet is received that 
requests a log-on operation, the "listener" task will 
create a new "worker'' task to handle the request. 
Figure 15 shows a picture of the design. 

Figure 15. Diagram of Design of 
File Transaction Job 

The string of transaction requests that follow will 
simply be demultiplexed by the listener task. The 
workstation ID will be searched for and, if found, the 
packet will be sent to the appropriate worker task. If a 
request comes in.from a.station that is not logged on, 
an error response is sent directly to the communica
tions output mailbox for transmittal to the station 
that made the request. 

AFN·01931A 



AP-86 

If the request packet indicates that a station desires to 
log-off, the listener task will delete all local reference 
to the station and pass the packet along. The listener 
task cannot simply delete the worker since the worker 
may be in the process of servicing a previous I/O 
request. In general, it is never a good idea to arbi
trarily delete another task. A better protocol is to pass 
along the message signaling the worker task to delete 
itself when convenient. 

An investigation of the intertask communications 
needs highlights the requirement for passing data 
between tasks. The interjob communications protocol 
discussed earlier specified that the listener task will 
receive input request segments from the communica
tions job via a mailbox. 

Within these segments are fields containing the work
station ID and the command. Based upon these fields 
one of two things happens. If the command indicates 
that the station wishes to log on, a new worker task 
must be created to process the I/O requests that will 
follow. 

The code executed by all worker tasks will be identical 
since they all perform identical functions. However, 
some unique pieces of information must be passed to a 
new worker task. This can be accomplished by having 
the worker task first wait at a "log on" mailbox. Here it 
will receive a segment from the listener task which 
contains the necessary information (see Figure 16). 

LISTENER 

TASK 

WORKER 

TASK 

SERVICE 
MAILBOX TOKEN 

RESPONSE 
MAILBOX TOKEN 

WORKSTATION 
ID 

Figure 16. Communications Between Listener 
Task and a Newly Created Worker Task 

After this initialization is complete, the workstation 
requests that are received by the listener task can be 
sent to the service mailbox associated with the work
station. The token for the service mailbox is one of the 
pieces of information contained in the log on segment. 

The last communication path needed is predefined by 
the interj ob communication protocol. When either the 

2-87 

listener task or one of the worker tasks needs to 
transmit a packet to a workstation, a segment is sent 
to the output request mailbox of the communication 
job. 

The final step in the design methodology is to write 
program code for the tasks in the system. This step is 
performed in the Code Examples section. 

APPLICATION EXAMPLE 2 
This example will deal with the design of a custom 
device driver for the iRMX 86 operating system. As 
shown in Figure 6, a device driver accepts high-level 
commands from the file drivers (such as read, write, 
seek, etc.) and transforms these commands into I/O 
port read and write commands in order to commu
nicate with the device itself. By studying the construc
tion of a driver for the iSBC 534 Serial Communication 
Expansion Board, a better understanding of the iRMX 
86 I/O system will be gained along with an example of 
the use of nucleus facilities to construct a higher-level 
software function. 

Overview of Device Driver Construction 
Each I/O device consists of a controller and one or 
more units. A device as a whole is identified by a 
device number. Units are identified by unit number 
and device-unit number. The unit number identifies 
the unit within the device and the device-unit number 
identifies the unit among all the units on all of the 
devices. 

A device driver must be provided for every device in 
the hardware configuration. That device driver must 
handle the I/O requests for all of the units on the 
device. Different devices can use different device 
drivers; or if they are the same kind of device, they can 
use the same device driver code. 

At its highest level, a device driver consists of four 
procedures which are called directly by the I/O 
System. These procedures can be identified according 
to purpose, as follows: 

Initialize I/O 
Finishl/O 
QueueI/O 
CancelI/O 

When a user makes an I/O System call to manipulate a 
device, the I/O System ultimately calls one or more of 
these procedures, which operate in conjunction with 
an interrupt handler to coordinate the actual I/O 
transfers. This section provides a general description 
of each of these procedures, and the interrupt handler. 

AFN·01931A 



AP-86 

INITIALIZE 1/0 

This procedure creates all of the iRMX 86 objects 
needed by the remainder of the routines in the device 
driver. It typically creates an interrupt task and a seg
ment to store data local to the device. It also performs 
device initialization, if any such is neces8ary. The JJO 
System calls this routine just prior to the first attach 
of a unit on the device (the first RQ$A$PHYSICAL 
$ATTACH$DEVICE system call). The time sequence 
of calls to these procedures will be described a little 
later. 

FINISH 1/0' 

The JJO System calls this procedure after all units of 
the device have, been detached (the last RQ$A$ 
PHYSICAL$DETACH$DEVICE system call). The 
fin~h,$10 procedure performs any necessary final 
processing on the device and deletes all of the objects 
used> by :the device handler, including the , interrupt 
task and the device-local data segment. 

QUEUEl/O 

This procedure places I/O requests on a queue, so that 
they can start when .the appropriate unit. becomes 
available. If t)ie device is not busy, the queue$IO 
procedure startsthe request. ' · 

CANCELl/O 

'rhis procedure . cancels a previously queued 1/0 
request. Unless the device is such that.a request can 
take an indefinite amount of time to process (such as 
keyboard input from a terminal), this procedure can 
perform a null.operation. 

INTERRUPT HANDLERS AND INTERRUPT TASKS 

After a device finishes processing an I/O request, it 
sends an interrupt to the iRMX 86 system. As a 
consequence, the interrupt handler for the device is 
called. This handler either processes the interrupt 
itaelf or signals an interrupt task to process the 
interrupt. Since.an interrupt handler is limited in the 
types of system calls that it can make, an interrupt 
task usually services the interrupt. The interrupt task 
feeds the results of the interrupt back to the appli
cation software (data from a read operation, status 
from other types of operations). It then gets the next 
1/0 request from the queue and starts the device 
processing this request. This cycle continues until the 
device is detached. The interrupt task is normally 
created.by the initialize JJO procedure. 

The JJO System calls each .one of the four device driver 
procedures in response to specific conditions. Three of 
the procedures are called under the following 
conditions. 

2-88 

1) In order to start I/Oprocessing, the user must make 
an I/O request. This can be done by making a variety 
of system call&. However, the first IJO request to 
each device-unit must be the RQ$A$PHYSICAL$ 
A'ITACH$DEVICE system call. 

2) The JJO System checks to see if the JJO request 
results from the first RQ$A$PHYSICAL$ATTACH 
$DEVICE system call for the device (the first unit 
attached in a device). If it is, the IJO System realizes 
that the device has not been initialized and calls the 
initialize I/O procedure first, before queueing the 
request. 

3) Whether or not the .IJO System called the initialize 
I/O procedure, it ·calls the queue I/O procedure to 
queue the request for .execution. 

4) The JJO System checks to see if the request just 
queued resulted from the last RQ$A$PHYSICAL$ 
DETACH$DEVICE system call for the device (de
taching the last unit of a device). If so, .. the IJO 
System calls the finish JJO procedure to do any 
final processing on the device·and clean .up objects 
used by the-device driver routines. 

The JJO System calls the fourth· device driver 
procedure, the cancel JJO procedure, under the 
following conditions: 

• If the user makes an RQ$A$PHYSICAL$ 
DETACH$DEVICE system call specifying the 
hard detach option, in order to forcibly detach 
the connection objects associated with a device, 
unit. 

• If a job containing the task which made the 
request is deleted, , 

Each procedure will now be discussed in more detail. 
The initialize $IO procedure takes three parameters: 

init$io: Procedure (duib$p, ret$data$t$p, status $p) 

The duib$p parameter.contains a pointer to a device 
unit information block (DUIB) which is the configu
ration table for the device in question. The structure of 
this table is shown in Figure 17. Note that this table 
con~ns pointers to device 11nd unit information tables 
which.can contain hardware specific information (such 
as JJO base addresses, interrupt levels etc.). 

The second parameter is a pointer to a word which can 
be assigned the value of a token-for an iRMX 86 object. 
Quite often. this object would be a segment which could 
be created by the' init$ic~ procedure and filled with 
information needed by the other procedures in the 
driver. The token for this segment will be provided to 
the other procedures when they are called. 

AFN-01931A 



AP·86 

~ ) 

FILE DRIVERS 

FUNCTIONS 

DEVICE 
GRANULARITY 

DEVICE SIZE J 
~ T 

DEVICE UNIT 

INITSIO 

QUEUESIO 

CANCELSIO 

FINISHSIO 

DEVICE INFORMATION J POINTER 

UNIT INFORMATION POINTER J 

Figure 17. DUIB Format 

The final argument in the call is a pointer to a status 
word. This word should be assigned by the init$io 
procedure before a RETURN is executed. If a non-zero 
value is returned indicating an error condition, the 110 
System assumes that init$io has deleted any objects 
created before the error was encountered. 

The finish$io procedure is called by the 110 System just 
after the last detach$device call is made on the device. 
This procedure is expected to delete any objects 
created by the init$io procedure and shut down the 
connected device. 

finish$io: Procedure (duib$p, ret$data$t); 

Once agiiin, the first parameter to the call is a pointer 
to a DUIR The second parameter is the token returned 
by the init$io procedure. 

The queue$io procedure is called to initiate an 110 
request. 

queue$io: Procedure (IORS$t,duib$p, ret$data$t) 

The speciflcs of the request are indicated ip. an 110 
request segment (IORS) which is provided by the first 
parameter. The format of this segment is shown in 
Figure 18. The most important fields here are the 
count, function, status and buffer pointer fields which 
tell the queue$io procedure what needs to be done. The 
second and third parameters are once again the 
pointer to the DUIB and the token for the object 

2·89 

STATUS J 
UNIT STATUS l 

ACTUAL 

DEVICE J 

~ . 
SUBFUNCTION 1 

DEVICE LOCATION 

BUFFER POINTER 

COUNT 

AUXILLIARY POINTER 

LINK FORWARD 

LINK BACKWARD 

RESPONSE J 
MAILBOX 

~ 

Figure 18.1/0 Request Segment Format 

creahid by the init$io procedure. 

The final device driver procedure is cancel$io. This 
procedure is called by the 110 System to cancel a 
previous 110 request. If the device is of such a nature 
that a request will complete in a bounded amount of 
time, this procedure can be 11 null procedure. The 
parameters to the call are identical to those for the 
queue$io call. 

In addition to the elementary support discussed here, 
the 110 System provides extra support to the designer 
of a device driver if some simplifying assumptions 
about the device can be made. Also, if the device 
supports random access (such as disks, magnetic 
bubbles, etc.), support routines can be used to simplify 
the process of blocking and deblocking 110 requests. 
More detail on the process of writing 110 drivers can be 
found in the manual titled "A Guide to Writing Device 
Drive!'B for the iRMX 86 110 System." 

Design of an iSBC 534™ Device Driver 
The following section will discuss an example device 
driver for the iRMX 86 Operating System. The driver 
will be for the iSBC 534 board which contains four 
8251 USART devices; therefore, there is one device 
and four units on the device. 

The init$io procedure for this driver initializes the 
hardware, creates an interrupt task, creates other 
necessary objects and creates a segment to contain the 
relevant information. 

AFN·01931A 



AP~8.6 

The· structure of the queue$io procedure · is mon) 
complex. When calls are made to this procedure to peri 
form data reading and writing, the actual operation 
could be somewhat lengthy ·(especially an input 
operation). Since the queue$io procedure is called by 
the 1/0 system, it is not efffoient 1;0 perform the entire 

: operation before control is returned to the 1/0 system. ' 

A more efficient mechanism is to have an independent 
task take the request and fulfill it while the queue$io 
procedure returns to. the 1/0 system allowing other 
operations to be started in parallel. This leads to the 
structure diagrammed in Figure 19. When a read or a 
write request is received, the I/O request segment is 
sent to the request mailbox where it is received by an 
1/0 handler task. When the request is complete, the 
1/0 task sends the segment to the response mailbox 
indicated in the segment. 

·'Figure 19. Queue$io Procedure Interface 
to l/OTasks 

The remaining design of the device driver is concerned 
with interrupt handling. The iSBC 534 board contains 
four 8251 USART devices; Each device supplies two 
interrupts; one indicating that the ·receiver has a data 
character available and the other indicating. that the 
tramimitter is ready to accept a character. Each.:of 
these interrupts (8 in all) are connected to one of the 
8259 Interrupt Contr6llers on the board; The software 
on the iSBC 86/12A board must read a register in the 
8259 cop:troller to determine which of the eight sources 
caused the current interrupt. This information must 
then be fed to th~ 1/0 task which ~ay be waiting for 
the event. · 

One way to meet this requirement uses an interrupt 
task for the iSBC 534 board. The task receives the 
interrupt, determines which device caused. it, and 
sends a unit to a semaphore to-indicate the occurrence 
of the event. Thus, when an I/O task wishes to be 
informed of a :receiver ·or· transmitter interrupt; it 
simply tries to receive a. unit from the appropriate 
semaphore. If :a unit is available, the receiver has a 
character or the transmitter is ready. If the unit is not 

available, the USART is not ready and the task will·be 
: put in the asleep state until the interrupt occurs and 
the unit is sent. · 

2·90 

.CODE EXAMPLES 
This chaper will present and analyze some sample code 
for the iRMX 86 applications presented in Chapter 4. 
The code listings are contained in Appendix A and the 
individual modules are numbered sequentially. When 
a specific line or sequence of linei;i J>f code must be 
pointed out in the text, a two. part number is used 
where the first part is the module number and the 
second is the compiler-assigned line number. For 
example, 3.27 would be used to pointiout line 27 in 
module3. 

A standard set of suffixes to label~ will. be followed in 
the code to follow. APL/M'.86 WORD variable that 
will contain the token for an iRMx 86 object will have 
the suffix "$t." A POINTER variable will be followed 
by "$p" and a structure w1ed to overlay a POINTER 
allowing access to the base and. offset will be followed 
by "$p$o." · ' · · · · 

Listener Task 

The first module to be studied contains the :code for 
the listener task. The various incl Ude statements bring 
in literal declarations and external procedure decla
rations. The file NUCPRM.EXT is on the iRMX 86 
diskette and contains the external declarations for all 
iRMX 86 nucleus systemcalls. .. 

Line 1.323 contains an· of the declarations . for the 
module. The literal..· req$segment$struc is· used ·to 
access the fields of a segment returned.from the com
munications job. The format of a request packet from 
a workstation is shown in.Figure 20 .. The literal node is 
used to access the information in a segment used as a 
workstation descriptor in a list ·maintained· by the 
listener task. The format ofa node in this list is shown 
in Figure 21. The structure at. the end of the declara
tion statement is used to individually access the two 
halves of a 32-bit PL/M-86 POINTER. · .. 

Note in line 1.330 that the task is coded as a public 
procedure having no parameters. · A: mairi procedure 
should never be used for a task's code since the pre
amble for a main procedure sets the stack pointer. 

The mailbox to be used for sending a newly. created 
worker task an .. information: segment is .called .the 
log$on$info$mbox. This mailbox is. created in line 
1.331. Lines 1.332-1.334 perform the opeication ·of 
finding the tokens for.the communication·job's input 
and output request mailboxes in the object directory.of 

AFN-01931A 



AP-86 

FUNCTION 

COUNT 

ACTUAL 

EXCEPTION CODE 

WORKSTATION ID 

COMMAND 

SHARE 

MODE 

STATUS 

FILE NAME J 
(64) 

BUFFER J 
(128) 

Figure 20. Request Packet Format 

LINK FORWARD 

LINK BACKWARD 

WORKSTATION ID 

SERVICE MAILBOX 

WORKER TASK TOKEN 

RESPONSE MAILBOX 

Figure 21. Workstation Descriptor Format 

the root job. The token for the root job is obtained by 
the system call in 1.332. 

Whenever a workstation logs on, various actions are 
taken by the listener task. One of these actions 
involves adding a descriptor for the workstation to a 
list so that the state of the workstation can be main
tained by the listener task. The list structure is shown 
in Figure 22. Statements 1.336-1.340 create the root 
of this list and initialize the list to an empty state. 

Line 1.340 marks the beginning of an infinite loop. 
Most often a task executes a procedure which performs 
some initialization and then enters an endless loop 
performing the necessary processing. The literal "for
ever" translates into "while 1." 

A packet is received from the input mailbox by the call 
in line 1.341. The command field of the message is 
checked in line 1.343. If the command indicates that a 
log on request is being made, lines 1.345-1.356 are 
executed. A log on information segment.is created in 
line 1.345. A mailbox is created to handle further 
request packets and another is created to be used by 
the worker task as .a response mailbox. The worker 

Figure 22. Workstation Descriptor List Structure 

task that will handle I/O requests from this work
station is created in line 1.351. Note the use of the 
structure data$seg$p$o, which is declared at the same 
address as the POINTER data$seg$p. The POINTER is 
initialized to equal the beginning of the data segment 
of the worker task module (1.323) and then the base 
portion is used as a parameter in the create task call. 

Once the. worker task is created, it will wait at the 
log$on$info$mbox for a segment giving it its initiali
zation information. The segment is sent in line 1.352 
and received back as an acknowledgement in line 1.353. 
At this point, the segment is inserted on the list of 
active workstation descriptors by the call in line 1.354. 
Finally the request packet itself is sent to the worker 
task via the service mailbox for the new worker. 

If a log off request is received, lines 1.358 to 1.366 are 
executed. First, the active workstation list is searched 
for the ID of the requesting station. If the station is 
not found to be logged on, the status field is set and 
the request segment is sent to the workstation through 
the communications job. If the station is logged on, the 
descriptor is deleted from the list, the packet is sent 
along to the worker task, and the descriptor is deleted. 

If the command is anything but log on or log off, lines 
1.368-1.376 are executed. Once again the station ID is 
checked to see if it is logged on. If not, an error 
message is returned. If the station is logged on, the 
request packet is sent along to the worker task. 

AFN-01931A 



AP-86 

WORKER TASK 

The code for the worker task is shown in module 2. 
Upon creation of a new worker task, a segment is 
received at the log$on$info$mbox (2.242). The data in 
this segment is copied into local variables and the 
segment is returned (2.24 7). 

The initialization task for this job has already created 
a user object for this job and has also set up a prefix 
which points to the root directory for the disk device. 
These tokens have been cataloged in the root object 
directory. The worker task obtains these tokens 
through the sequence of calls 2.248-2.250. 

The worker task now enters an infinite loop servicing 
the workstation it is assigned to. The specific action to 
be taken by the worker is determined by inspecting the 
cmd field of the request message. 

If the command is a log on, the code from 2.256-2.263 
is executed. The file name specified in the request 
segment is attached and opened and thereby made 
ready for subsequent 1/0 requests. After this, an ac
knowledgement is sent back to the workstation via the 
output$request$mailbox (2.263). 

If a log off command is received, the file is closed and 
detached, the service and response mailboxes are 
deleted, a response is sent to the workstation and the 
worker task is deleted. 

If the command is either a read or write command, the 
operation is performed by calling the 1/0 system. 
When the response is received, an acknowledgement is 
sent to the workstation. Note that the: j:.ask would 
normally perform more processing. In this example its 
duties have been kept simple. 

POINTERIZE PROCEDURE 

The ASM-86 code for the pointerize support routine is 
shown in Module 3. The. token for a segment is the 
base portion of a 32-bit POINTER to the memory. In 
order to access the data in a segmeqt, this 16-bit token 
must be loaded into the bas.e part of a POINTER while 
the offset portion of the POINTER is set to zero. The 
base and offset values are returp.ed in the ES and BX 
regusters as specified by the PL/M-86 calling con
ventions. This is the operation performed by the 
pointerize routine. 

LIST MANIPULATION ROUTINES 

Lines 4.1-4.47 provide three subroutines used by the 
tasks in this system to manipulate the list of work
station d!Jscriptors. Insert$on$list (4.15-4.26) inserts 
the indicated node at the head of the list whose root is 
given as the first parameter. 

2-92 

Delete$from$list (4.27-4.35) unlinks the indicated 
node from the list it belongs to. Search$list (4.36-4.46) 
searches a list for the workstation ID given. If the ID is 
not found, a zero is returned. If the ID is found, the 
token for that node is returned. 

At this point an overview of the configuration process 
is needed. A more detailed coverage of the process of 
configuring an iRMX 86 system is provided in the 
manual entitled "iRMX 86 Configuration Guide for 
ISIS-II Users." 

For each iRMX 86 application, the following steps 
must be performed. 

1) Program code for each .task in the system must be 
written and compiled or assembled. 

2) A memory map for the software must be drawn up. 
3) The system software must be linked and located. 
4) The application ]obs must be linked and located. 
5) Tables of configuration data must be drawn up. 
6) The tabular data from step 5 must be formatted 

irito a memory data block through the use of a set 
of' ASM-8(1 macros provided with the iRMX 86 
product. 

7) The root job must be linked and located. 

The code executed by the root task is part of the iRMX 
86 system code. This task is initially the only task in 
the system. The root task will access the data block 
constructed by the ASM-86 macros and will create the 
user jobs specified by the macros. The data for the 
configuration process for example 1 is shown in 
AppendixB. 

The first page diagrams the memory map for the 
example. The iterative link and locate process to put 
these pieces together begins on the second page. The 
LINK86 and LOC86 commands shown place the 
iRMX/86 nucleus into memory. The LOCATE map 
indicates that the last memory location used by the 
nucleus was 077DFH. Therefore, the next contiguous 
piece, the I/O system, is located at 077EOH. 

This process is repeated for the remainder of the jobs 
in the system. 

When the link and locate process is complete, the 
information for the ASM-86 macros must be brought 
together. Worksheets are provided in the iRMX 86 
configuration guide to simplify this process. 

The filled-out worksheets for the macros are shown in 
the appendix. A configuration file is constructed using 

AFN·01931A 



AP-86 

the editor and the worksheet information is entered 
into this file. When the file is complete, the con
figuration table is created by assembling the file 
CTABLE. A86. This file accesses the configuration file 
built earlier. 

The configuration tables are then linked and located 
together with the code for the root task and the system 
generation process is complete. 

EXAMPLE 2 

INIT$10 AND FINISH$10 

The start$and$finish module (5.1-5.371) contains the 
code for the init$534$io and finish$534$io pro
cedures. The init$534$io procedure creates a seg
ment, shown in Figure 23, which is used to hold the 
various pieces of information needed by the other 
driver procedures (5.323). The discussion of this 
procedure in Chapter 4 pointed out that any errors 
encountered in the initialization are indicated by the 
non-zero status and that the assumption is made that 
any partial creations must be cleaned up by the init$io 
procedure. This assumption is carried out by the check 
at line 5.324 (and the others at 5.331, 5,335, 5.339 and 
5.342). 

INTERRUPT LEVEL 

1/0 BASE 
ADDRESS 

INTERRUPT 
PENDING SEMAPHORE(8) 

INTERRUPT TASK TOKEN 

REQUEST MAILBOX TOKEN 

USART COM· 
MAND PORT (4) 

USART DATA 
PORT(4) 

TIMER COM· 
MAND PORT (4) 

TIMER LOAD 
PORT(4) 

TIMER COM· 
MAND(4) 

Figure 23. init$534$io Segment Format 

The device information contained in the device unit 
information block for this device is retrieved in line 
5.328-5.329. A mailbox to be used for sending I/O 
request segments .to the I/O handler tasks is created in 
line 5.330. The interrupt task for this job is created by 
the call in line 5.337. 

The do loop starting at line 5.340 is executed to create 
eight semaphores to be used by the interrupt task to 
indicate the occurrence of an interrupt. Note that the 
initial value of the semaphore is zero (no interrupt 

2-93 

pending) and the maximum value is one. Since the 
nature of the 8251 USART device does not support 
buffering, when a new character overruns the previous 
character before the interrupt can be serviced, the 
data is lost. Therefore, there is no need to indicate the 
occurrence of multiple interrupts pending on the same 
device. 

The call at line 5.345 initializes the programmable 
devices on the iSBC 534 board. If execution has 
proceeded to line 5.346, the initialization is complete 
and a zero status is returned. If an error occurred at 
any point, the code in lines 5.348-5.356 will clean up 
the partial initialization. 

The finish$534$io procedure (5.358-5.370) undoes the 
work of the init$534$io procedure. The segment, 
mailbox, interrupt task and semaphores are all 
deleted. 

The queue$534$io procedure is shown in lines 6.1, 
6.382. In line 6.322 the function field of the I/O 
request segment is checked to see if it is within 
bounds. If it is not, a bad status code is returned. If the 
function is valid, a do case block is executed using the 
function code as the index. · 

If a read request is encountered, the auxiliary pointer 
is set to point to the ret$data structure (initialized 
earlier by the init$534$io procedure). In line 6.327 the 
segment is then sent to the request mailbox to be 
received and processed by an I/O processor task. In 
lines 6.330-6.334 the same action is taken with write 
requests. 

Since this driver does not support seeking and special 
functions, the code for these two cases simply returns 
an error condition. 

In the case of an attach$device call, the code in lines 
6.341-6.361 is executed. First, two I/O processing 
tasks are created. All of these tasks execute identical 
code and each task is capable of servicing a read or a 
write request on any 8251. Two tasks are created for 
each 8251 device so that the peak load can always be 
handled (that is, all receivers and transmitters going 
simultaneously). Lines 6.346-6.357 perform the initi
alization of the 8251 USART and the baud rate gen
erators for this channel. The calls in line 6.358 and 
6.359 accept an interrupt and a character from the 
semaphore associated with the receiver just initialized. 
This is done to clear off an interrupt generated by the 
8251 whenever it is initialized. 

In the case of a detach$device call, the code in lines 
6.363-6.367 sends the I/O request segment to the 

AFN·01931A 



AP·86 

request mailbox twice.· This is done to signal two of the 
IJO handler tasks to delete themselves. As discussed 
earlier in the attach$device section, none of the IJO 
handler tasks is any different from any of the others. 
There are two created for each 8251 device which is 
attached. The protocol set up for their deletion is 
shown here. When an IJO handler task receives a 
segment of type "detach$device" it will send the 
segment to the response mailbox and then delete itself. 

The code for the open and close requests is the same. 
Both cases are supported but .are NOPs since no 
specific action needs to be taken by the driver. 

Lines 6.379-6.382 contain the code for the cancel$ 
534$io procedure. As discussed earlier, this pro
cedure is simply a placeholder and serves no par
ticular purpose. 

INTERRUPT CONTROL MODULE 

The interrupt handler and interrupt task are shown in 
lines 7.1-7.329. The interrupt task is the first piece 
executed. It is created by the init$534$io procedure. It 
callsRQ$set$interrupt in line 7.325 to indicate to the 
iRMX 86 nucleus that it is an interrupt task. 

Once the initialization is complete, the task enters an 
infinite loop. The call to RQ$wait$interrupt in line 
7.322 causes the task to be put into the asleep state 
until an interrupt occurrence is signaled. The task will 
be returned to the READY state when an interrupt 
occurs, the interrupt handler is started, and the call to 
RQ$signal$interrupt is executed at line 7.312. The 
current interrupt level is then determined by polling 
the 8259 chip on the iSBC 534 board. Using the 
encoded level number, a unit is sent to the appropriate 
semaphore to indicate that an interrupt is pending. 

llOTASK 

The final procedure that makes up this driver contains 
the code for the tasks that perform the actual IJO to 
the iSBC 534 board. The loop executed by each task 
starts by waiting at the request mailbox for an IJO 
request segment. When the segment is sent by the 
queue$534$IO procedure, its function code is checked 
(line 8.327, 8.332, 8.340). If the function is {$ 
detach$device, the task sends the segment to the 
response mailbox and then deletes itself. 

If the request was for a read, the task fills the buffer 
with input data. The call at line 8.334 waits for a unit 
at the semaphore which Will indicate a receiver ready 
on the input line. When the unit is sent by the in
terrupt task, the character is read in, the pointers and 
counts are updated, and another unit is requested. 

2-94 

The last request which is recognized by the IJO task is 
for a write operation. The code for this request· is 
almost identical to the code for a read request. An 
interrupt from the transmitter is awaited, a character 
is output and the counts are updated in lines 8.341-
8.346. 

Once the request is fulfilled, the message is sent to the 
response exchange in line 8.350. 

The configuration of this system is studied next. The 
code for the iSBC 534 driver is linked directly to the 
rest of the IJO system libraries. The entry point 
addresses for the queue$534$io, cancel$534$io, init$ 
534$io, and finish$534$io procedures are declared in 
the IOCNFG.A86 file on the IJO system disk. This file 
also contains the device unit information block (DUIB) 
structures for the four units on the iSBC 534 board. 
The unique information for the iSBC 534 device and 
the units on the device is contained in the device and 
unit information tables. Pointers to these tables are 
contained in the DUIB structures. All of this 
information is shown in Figure 24. 

The submit file used to build an JJO system using the 
iSBC 534 driver is shown in Figure 25. The file 
DRV534.LIB contains the object files generated by 
PL/M-86 and ASM-86 from the source code shown in 
modules 5-9. 

SUMMARY 
This application note is an introduction to the iRMX 
86 Operating System. The requirements of operating 
systems were studied along with traditional solutions. 
Following this, the iRMX 86 Operating System was 
introduced and its correlation with the requirements 
was studied. 

Later in the application note, the topic of system 
design was covered. Example solutions were studied to 
solidify a methodology for solving application 
problems and then the code· for these solutions was 
discussed to gain insight into the details of imple
menting iRMX 86 systems. 

The purpose of a configurable, real-time, multi
purpose operating system is to provide a solid foun
dation for application software. The iRMX 86 system 
provides this foundation, giving the software engineer 
a means to quickly and easily implement new designs. 
In addition, the iRMX 86 architecture is the bridge to 
future technology providing the designer with an up
grade path to future hardware and software products. 

AFN-01931A 



AP-86 

ex trn 
extrn 
extrn 
extrn 

init534io: near 
queue534io: near 
cancel534io: near 
finish534io: near 

; Duib(8): iSBC 534, unit 

define duib 
& 1 i534.l', 

03H, 
00033H, 
0, 
0, ('i, 

3' 
1, 
6, 
init534io, 
finish534io, 
queue534io, 
cancel534io, 
dev 534 info, 
unit_534_l~info 

&> 
; 534 device info 

dev 534 info dw 
db 
db 

unit info: iSBC 534.0 

~nit 534 0 info db 
- dw 

unit info: iSBC 534.1 

~nit 534 1 info db 
- dw 

unit info: iSBC 534.2 

unit 534 2 info db 
- - dw 

unit info: iSBC 534.3 

unit 534 3 info db 
dw 

48H 
61 
040H 

4EH 
8 

4EH 
8 

4EH 
8 

4EH 
8 

name (14) 

supp$opt 
file drivers 
granularity 
device size 

device 
unit 
device unit 
init$i0 
finishSio 
queue$ io 
cancel$io 
device info 
unit_irlfo 

level 
priority 
base address 

usart$cmd 
baud rate 

usart$cmd 
baud rate 

usart$cmd 
baud rate 

usart$cmd 
baud rate 

Figure 24. IOCNFG A86 File Entries for iSBC 534™ Driver 

ios(date,origin) 
Sample I/O System .csd file to link and locate an I/O System. 

This file links an I/O System with the timer included. 

This .csd file assumes the I/O System configuration module is 
iocnfg.a86 (found on the release diskette). 

The origin parameter sets the low address of the I/O System; 
all the segments are contiguous in memory. 

asm86 :fl:iocnfg.a86 date(%0) print(:f5:iocnfg.lst) 
link86 & 

:fl:ios.lib(ioinit), & 
:fl:iocnfg.obj, & 
:fl:ios.lib, & 
:fl:drv534.lib, & 
:f4:rpifc.lib & 

to :fl:ios.lnk map print(:fl:ios.mpl) 
loc86 :fl:ios.lnk to :fl:ios map sc(3) print(:fl:ios.mp2) & 

oc(noli,nopl,nocm,nosb) & 
order(classes(code,data,stack,memory)) & 
addresses(classes(code(%1))) & 
segsize(stack(0)) 

Figure 25. Submit File for Generating an 110 System with the iSBC 534™ Driver 

2-95 AFN·01931A 



AP PEN DIX A .......................... 2-97 
AP PEN DIX B ......................... 2-121 

2-96 AFN·01931A 



APPENDIX A 
Code Listings 

2·97 AFN-01931A 



AP-86 

Module 1 

ISIS-II PL/M-86 V2.0 COMPILATION OF MODULE LISTENERMODULE 
OBJECT MODULE PLACED IN :Fl: listen.OBJ 
COMPILER INVOKED BY: plm86 :Fl:listen.plm PRINT(:Fl:LISTEN.LST) 
DEBUG COMPACT OPTIMIZE(3) ROM DATE(5/28/8e 

1 listener$module: 
do; 

/************************************************************************ 

11 

24 

321 
322 

1 

1 

1 
2 

LISTENER: TASK. 

This task creates segments, sends them to the input service 
job to be filled with input packet info. Upon response 
the info is checked to see what action needs to be taken. 
If a log$on request is sensed, a worker task, service 
mailbox, and response mailbox are created and the packet is 
sent along to the worker task. If a log$off is sensed all 
local reference to the workstation is deleted and the packet 
is sent along to tell the worker to delete himself. If an 
I/O request is sensed the station ID is checked to make 
sure it is logged on. If it is, the packet is sent along to 
the worker. If it isn't an error packet is sent back to the 
requesting workstation. 

************************************************************************/ 

$include(: f 2:common.l it) 
$SAVE NOLIST 
$include (: f 1: node.lit) 
/* literal declaration o~ node descriptor for list utilities */ 

declare 
node literally 'structure( 

link$f word, 
link$b word, 
work$station$ID word, 
service$mbox$t word, 
worker$task$t word, 
resp$mbox$t word)'; 

$include (: f 1: lstutl .ext) 
/* external declarations for list manipulation utilities */ 

$save nolist 
$include (: f 1: pointr .ext) 
/* external declaration of pointerize procedure */ 
$save nolist 
$include(:fl:rqpckt.lit) 
/* literal declaration for request packet structure */ 

declare req$segment$struc literally 'structure( 
funct word, 
count word, 
actual word, 
ex$val word, 
work$station$ID word, 
cmd word, 
share word, 
mode word, 
status word, 
file$name (64) byte, 
buf (128) byte)'; 

$include( :f2:nucprm.ext) 
$SAVE NOLIST 

worker$task: procedure external; 
end worker$task; 

2·98 AFN-01931A 



323 

324 

325 
326 
327 
328 
329 

330 

331 
332 
333 

334 

335 
336 
337 
338 

339 

340 

341 

342 

343 
344 

1 

2 
2 
2 
2 
2 

1 

2 
2 
2 

2 

2 
2 
2 
2 

2 

2 

3 

3 

3 
3 

AP-86 

Module 1, continued 

declare 
begin$listener$task$data byte public, 
begin$worker$taskSdata byte external, 
log$on$info$mbox$t token public, 
ex$val word, 
log$on$mbox$name (7) byte data(6,'LOG$0N'), 
packet$size literally '132', 
f$read literally '5', 
f$write literally '6', 
log$on literally '0', 
log$off literally 'l', 
not$logged$on literally 'l', 
(root$ job$ t, input$ reg11est$mbox$ t) token, 
( outp11t$ reguest$mbox$ t, resp$mbox$ t) token, 
( wo r k$sta t ion$ list$ root$ t, reg$ sE>gment$ t) token, 
( log$on$ info$ seg$ t ,d ummy$t, ws$desc$ t) token, 
(reg$ segment$ p, wo r k$station$ list$ root$ p) pointer, 
(log$on$info$seg$p,data$seg$p,ws$desc$p) pointer, 
(reg$ segment based reg$ segment$ p) reg$ segment$struc, 
(work$station$list$root based work$station$list$root$p) node, 
(log$on$info$seg based log$on$info$seg$p) node, 
data$seg$p$o structure(offset word, base word) at(@data$seg$p), 
(ws$desc based ws$desc$p) node; 

return$error$to$WS: procedure; 

end; 

reg$segment.funct=f$write; 
reg$segment.status=not$logged$on; 
call rg$send$message(output$reguest$mbox$t,reg$segment$t,0,@ex$val); 
ret1un; 

Listener: procedure public; /* task */ 

log$on$info$mbox$t=rg$create$mailbox(0,@ex$val); 
root$job$t=rg$get$task$tokens(3,@ex$val); 
input$reguest$mbox$t=rg$lookup$object( 

/* job */ root$job$t, 
/*name*/ @(9,'INPUT$REQ'), 
/* time limit */ 0FFFFH, 
/*status ptr */ @ex$val); 

output$reguest$mbox$t=rg$lookup$object( 
/* job */ root$job$t, 
/* name*/ @(10,'0UTPUT$REQ'), 
/* time limit */ 0FFFFH, 
/*status ptr */ @ex$val); 

resp$mbox$t=rg$create$mailbox(0,@ex$val); 
work$station$list$root$t=rg$create$segment(l6,@ex$val); 
work$station$list$root$p=pointerize(work$station$list$root$t); 
work$station$list$root.link$f, 
work$station$list$root.link$b=work$station$list$root$t; 
work$station$list$root.workstation$ID=0; 

do forever; 

reg$segment$t = rg$receive$message( 
/* mbox token */ input$reguest$mbox$t, 
/* time limit */ 0FFFFH, 
/* response ptr */ @dummy$t, 
/*status ptr */ @ex$val); 

reg$segment$p=pointerize(reg$segment$t); 

if reg$segment.cmd= log$on then 
do; 

2-99 AFN-01931A 



345 

346 

347 

348 

349 

350 
351 

352 

353 

354 

355 

356 

357 
358 
359 

360 
361 

362 
363 
364 

365 

366 

367 

368 
369 

4 

4 

4 

4 

4 

4 
4 

4 

4 

4 

4 

4 

3 
3 
4 

4 
4 

4 
5 
5 

5 

5 

4 

3 
4 

end; 

AP-86 

Module 1, continued· 

log$on$info$seg$t=rq$create$segment( 
I* s i ze *I 1 6, 
/* st~tus ptr*/ @ex$val)J 

log$on$info$seg$p=pointerize( 
log$on$info$seg$t); 

log$on$ info$seg. serv ice$mboi<$ t= 
rq$create$mailbox(0,@ex$va1); 

log$on$info$seg.resp$mbox$t= 
rq$create$mailbox(0,@ex$val); 

log$on$info$seg.work$station$ID= 
req$segment.work$station$ID; 

data$seg$ p=@beg in$wo rker$ task $data; 
log$on$info$seg.worker$task$t= 
rq$create$task( 
/* priority */ 
/* start addr */ 
/* data seg ptr */ 
/* stack pointer */ 
/* stack size */ 
/* task flags */ 
/* status ptr */ 

200, 
@worker$task, 
data$seg$p$o.base, 
0, 
500, 
0, 
@ex$val); 

call rq$send$message( 
/* mbox token */ log$on$info$mbox$t, 
/* object token */ log$on$info$seg$t, 
/* response token */ resp$mbox$t, 
/*status ptr */ @ex$val); 

log$on$info$seg$t=rq$receive$message( 
/* mailbox token */ resp$mbox$t, 
/* time limit */ 0FFFFH, 
/* response token */ @dummy$t, 
/*status ptr */ @ex$val); 

call insert$on$list(work$station$list$root$t, 
log$on$info$seg$t); 

call rq$send$message( 
/* mbox tok */ log$on$info$seg.service$mbox$t, 
/* obj tok */ req$segment$t, 
I* response */ 0, 
/*status*/ @ex$val); 

else if req$segment.cmd = log$off then 
do; 

end; 

else 
do; 

ws$desc$t=search$list(work$station$list$root$t, 
req$segment.work$station$ID); 

if ws$desc$t = 0 then 
call return$error$to$WS; 

else 
do; 

end; 

ws$descp=pointerize(ws$desc$t); 
call delete$from$list( 

ws$desc$t); 
call rq$send$message( 

ws$desc.service$mbox$t, 
req$segment$t, 
0, 
@ex$ val) ; 

ws$desc$t=search$list(work$station$list$root$t, 
req$segment.work$station$ID); 

2·100 AFN-01931A 



370 
371 

372 
373 
374 

375 
376 
377 
378 

379 

380 

4 
4 

4 
5 
5 

5 
4 
3 
3 

2 

1 

end; 

AP·86 

Module 1, continued 

if ws$desc$t=0 then 
call return$error$to$WS; 

else 
do; 

end; 

ws$descp=pointerize(ws$desc$t); 
call rq$send$message( 

ws$desc.service$mbox$t, 
req$ segment$ t, 
0, 
@ex$val); 

call rq$delete$segment(req$segment$t,@ex$val); 
end; /* of do forever */ 

end; /* of listener task */ 

end listener$module; 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
694 LINES READ 
0 PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

0281H 
0000H 
002BH 
0018H 

641D 
0D 

43D 
24D 

2·101 AFN-01931A 



AP-86 

Module2 

ISIS-II PL/M-86 V2.0 COMPILATION OF MODULE WORKERTASK 
OBJECT MODULE PLACED IN :Fl:worker.OBJ 
COMPILER INVOKED BY: plm86 :Fl:worker.plm PRINT(:Fl:WORKER.LST) 
DEBUG COMPACT OPTIMIZ..E(3) ROM DATE.(5/28/80) 

l 

239 

240 

241 

242 

243 
244 
245 
246 

1 

1 

2 

2 

2 
2 
2 
2 

worker$task: 
do; 

/************************************************************************* 

WORKER$TASK: TASK. 

This module contains the code executed by the worker tasks. 
When started, the task goes to a mailbox to receive a segment 
containing initialization information. Using this information 
the task services a service mailbox performing any I/O functions 
requested of it. When a log$off request comes in the worker 
task closes and detaches the file and deletes itself. 

*************************************************************************/ 

$include( :fl:nucprm.ext) 
$SAVE NOLIST 
$include (:fl: iosys .ext) 
$save nolist 
$include(:fl:node.lit) 
/* literal declaration of node descriptor for list utilities */ 
$save nolist 
$include(:f2:common.lit) 
$SAVE NOLIST 
$include( :fl:pointr.ext) 
/* external declaration of pointerize procedure */ 
$save nolist 
$include(:fl:rqpckt.lit) 
/* literal declaration for request packet structure */ 

$save nolist 

declare 
read literally 'l', 
write literally '5', 
log$on literally '2', 
log$off literally '3', 
(log$on$info$mbox$t,output$request$mbox$t) token external; 

worker$task: procedure reentrant public; 

declare 
(log$on$info$seg$t,log$on$resp$mbox$t,resp$mbox$t, 
root$job$t,user$object$t,prefix$t,iors$t, 
service$mbox$t,conn$t,req$seg$t) token, 
(log$on$info$p,req$seg$p) pointer, 
(req$seg based req$seg$p) req$segment$struc, 
(log$on$info based log$on$info$p) node, 
(dummy$t,ex$val,work$station$ID) word; 

log$on$info$seg$t=rg$receive$message( 
/* mbox token */ log$on$info$mbox$t, 
/* time limit */ 0FFFFH, 
/* response p'tr */ @log$on$resp$mbox$t, 
/*status ptr */ @ex$val); 

log$on$info$p=pointerize(log$on$info$seg$t); 
service$mbox$t=log$on$info.service$mbox$t; 
resp$mbox$t=log$on$info.resp$mbox$t; 
work$station$ID=log$on$info.work$station$ID; 

2-102 AFN-01931A 



247 

248 
249 

250 

251 

252 

253 

254 
255 
256 

257 

258 
259 

260 

261 
262 
263 

264 

265 
266 
267 

2 

2 

2 

2 

2 

3 

3 

3 
3 
4 

4 

4 
4 

4 

4 
4 
4 

4 

3 
3 
4 

AP-86 

Module 2, continued 

call rq$send$message( 
/* mbox token */ log$on$resp$mbox$t, 
/* object token */ log$on$info$seg$t, 
/* response token */ 0, 
/*status ptr */ @ex$val); 

root$job$t=rq$get$task$tokens(3,@ex$val); 
user$object$t=rq$lookup$object( 
/* job token */ root$job$t, 
/*name*/ @(ll,'USER$0BJECT'), 
/* time limit */ 0FFFFH, 
/*status ptr */ @ex$val); 
prefix$t=rq$lookup$object( 
/* job token */ root$job$t, 
/*name*/ @(6,'PREFIX'), 
/* time limit.*/ 0FFFFH, 
/*status ptr */ @ex$val); 

do forever; 

req$seg$t=rq$receive$message( 
/* mailbox token */ service$mbox$t, 
/* time limit */ 0FFFFH, 
/* response ptr */ @dummy$t, 
/*status ptr */ @ex$val); 

req$ seg$ p=po inter i ze ( req$ seg$ t) ; 

if req$seg.cmd=log$on theri 
do; 

end; 

call rq$a$attach$file( 
/* user object */ user$object$t, 
/* prefix token */ prefix$t, 
/* ppthname */ @req$seg.fi1e$name, 
/* resp token */ resp$mbox$t, 
/*status ptr */ @ex$val); 
iors$t=rq$receive$message( 
/* mbox token */ resp$mbox$t, 
/* time limit */ 0FFFFH, 
/* resp ptr */ @dummySt, 
/*status ptr */ @ex$val); 
call rq$delete$segment(iors$t,@ex$val); 
call rq$a$open ( 
/* connection */ conn$t, 
/* mode */ req$seg.mode, 
/* share */ req$seg.share, 
/* resp token */ resp$mbox$t, 
/*status ptr */ @ex$val); 
iors$t=rq$receive$message( 
/* mbox token */ resp$mbox$t, 
/* time limit */ 0FFFFH, 
/* resp ptr */ @dummy$t, 
/*status ptr */ @ex$val); 
call rq$delete$segment(io~s$t,@ex$val); 
req$seg.status=0; 
call rq$send$message( 
/* mbox token */ output$request$mbox$t, 
/* object token */ req$seg$t, 
/* resp ptr */ 0, 
/*status ptr */ @ex$val); 

else if req$seg.cmd=log$off then 
do; 

call rq$a$close ( 
/* connection */ 
/* resp token */ 
/* status ptr */ 

2-103 

conn$t, 
resp$mbox$ t, 
@ex$val); 

AFN·01931A 



268 

269 
270 

271 

272 
273 
274 
275 
276 

277 
2 78 

279 
280 

281 

282 

283 
284 
285 

286 

287 
288 

289 

290 

291 

4 

4 
4 

4 

4 
4 
4 
4 
4 

4 
4 

3 
3 

4 

4 

4 
4 
4 

4 

3 
3 

4 

4 

4 

end; 

Module2, eontintled 

ior s$ t= rq$ rece i ve$me·sSag e ( 
/*· mbox token */ resp$mbox$t, 
/*.time limit */ 0FFFF.H, 
/* resp ptr */. @dummy$t, 
/* status ptr, */ @exSval); 
call rq$delete$segment(iors$t,@ex$val); 
call rq$a$deleteSconnection( 
/* connection */ conn$t, 
/* response ptr */ resp$mbox$t, 
/*status ptr */ @ex$val); 
iors$t=rq$receive$message( 
/* mbox token */ resp$mbox$t, 
/* time limit*/ 0FFFFH, 
/* response ptr *I @dummy$t r 
/*status ptr */ @ex$val); 
call rq$delete$ segment ( iors$ t ,@exSval) ; 
call rq$delete$mailbox(service$mbox~t,@ex$val); 
call rq$deleteSmailbox(resp$mboxSt,@ex$val); 
req$seg.status=0; 
call rq$send$message( 
/* mbox token */ output$request$mbox$t, 
/* object token */ req$seg$t~ 
/* resp token*/ 0, 
/*status ptr */ @ex$val); 
call rq$delete$task(0,@ex$v•l); 

else if req$seg.cmd=read then 
do; 

end; 

cal 1 rq$ a$ read ( 
/* connection */ conn$t, 
/* buf ptr */ @reqSseg.buf, 
/* count */ req$seg.count, 
/* resp token */ resp$mbox$t, 
/*status ptr */ @ex$val); 
iors$t=rqSreceive$message( 
/* mbox. token */ . resp$mbox$t, 
/* time limit */. 0FFFFH; 
/* resp ptr */ @dummy$t, 
/*status ptr */ @ex$val); 
call rq$delete$segment(iors$t,@ex$val); 
req$seg.status=0; 
call rq$send$message( 
/*:mbox token */ o~tput$request$mbox$t, 
/* object token */ req$seg$t, 
/* resp token */ 0, 
/*status ptr */ @ex$val); 

else if req$seg.cmd=write then 
do; 

call rq$a$write( 
/* connection */ conn$t, 
/* buf ptr */ @req$seg.buf, 
/* count */ req$seg.count, 
/* resp token */ resp$mbox$t, 
/*status ptr */ @ex$val); 
iors$t=rq$receive$message(' 
/* mbox token */ resp$mbox$t, 
/* time limit */ 0FFFFH, 
/* resp ptr */ @dummy$t, 
/*status ptr */ @ex$val);. 
call rq$delete$segment(iors$t,@ex$val); 

AFN-01931A 



292 

293 

295 

296 

4 

4 

2 

1 

end; 

AP-86 

Module 2, continued 

call rq$send$message( 
/* mbox token */ 011tp11t$req11est$mboxst, 
/* object token */ req$seg$t, 
/* resp token */ 0, 
/*status ptr */ @ex$val); 

end; /* of do forever */ 

end; /* of task */ 

end worker$task; 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
71 7 LINES READ 
0 PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

0288H 
0000H 
0000H 
0034H 

648D 
flD 
0D 

52D 

2-105 AFN-01931A 



AP-86 

Module3 

ISIS-II MCS-86 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE POINTR 
OBJECT MODULE PLACED IN :Fl:POINTR.OBJ 
ASSEMBLER INVOKED BY: asm86 :fl:pointr.a86 debug pr(:f5:pointr.lst) 

LOC OBJ LINE SOURCE 

1 ·$title(pointerize Utility) 
0004 

0000 55 
0001 RBEC 

0004 [] 

0003 8E4604 
0006 33DB 

0 0 08 SD 
0009 C20200 

2 
3 
4 
5 
6 
7 
8 
9 

10 
ll 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

arg off 

code 
code 

cgroup 
code 

pointeri ze 

token 

pointeri ze 
code 
end 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

equ 4 ; 

segment word public 'CODE' 
ends 

group code 
segment 
assume cs: cgroup 

proc near 
public pointerize 
push bp 
mov bp, sp 

equ word ptr [ bp + arg 

mov es, token 
XO r bx, bx 

mov sp, hp 
pop bp 
ret 2 
endp 
ends 

set args for 

save 
mark stack 

off + 0] 

get base 
zap offset 

restore stack 

"DELUXE" 

AFN-01931A 



AP-86 

Module4 

ISIS-II PL/M-86 Xl67 COMPILATION OF MODULE LISTUTILITIESMODULE 
OBJECT MODULE PLACED IN :Fl:lstutl.OBJ 
COMPILER INVOKED BY: plm86 :Fl:lstutl.plm PRINT(:FS:LSTUTL.L~T) 
DEBUG COMPACT OPTIMIZE(3) ROM DATE(3/7/80) 

1 list$utilities$module: 
do; 

/************************************************************************ 

15 

16 

17 
18 
19 
20 
21 
22 
23 
24 
25 

26 

27 

28 

29 
30 
31 
32 
33 
34 

1 

2 

2 
2 
2 
2 
2 
2 
2 
2 
2 

2 

1 

2 

2 
2 
2 
2 
2 
2 

LIST$UTILITIES: PUBLIC PROCEDURES. 

This module contains three list manipulation utilities. 
Insert$on$list takes the given node and inserts it ori the 
list indicated by the root node parameter. Delete$from 
list unlinks the indicated node from the list it is 
linked to. Search$list scans the list from the root looking 
for the indicated node. If found, the token for the node 
is returned. If not found, a zero is returned. 

************************************************************************/ 

$include(:f4:common.lit) 
$SAVE. NOLIST 
$include(:fl:node.lit) 
/* literal declaration of node descriptor for list utilities */ 
$save nolist 
$include(: f 1 :pointr .ext) 
/* external declaration of pointerize procedure */ 
$save nolist 

Insert$on$list: procedure( root$t,new$desc$t) reentrant public; 

declare 
(root$t,new$desc$t,fwd$desc$t) token, 
(root$ p ,new$desc$ p, fwd$desc$ p) pointer, 
(root based root$p) node, 
(new$desc based new$desc$p) node, 
(fwd$desc based fwd$desc$p) node; 

root$p=pointerize(root$t); 
new$desc$p=pointerize(new$desc$t); 
fwd$desc$t=root.link$f; 
fwd$desc$p=pointerize(fwd$desc$t); 
root.link$f=new$desc$t; 
new$desc.link$f=fwd$descSt; 
new$desc.link$b=root$t; 
fwd$desc.link$b=new$descSt; 
return; 

end; /* insert$on$list */ 

Delete$from$list: procedure(desc$t) reentrant public; 

declare 
desc$t token, 
(desc$p,b$desc$p,f$descSp) pointer, 
(desc based desc$p) node, 
(b$desc based bSdescSp) node, 
(f$desc based fSdescSp) node; 

desc$p=pointerize(desc$t); 
b$desc$p=pointerize(desc.link$b); 
f$desc$p=pointerize(desc.link$f); 
b$desc.link$f=desc.link$f; 
f$desc.link$b=desc.link$b; 
return; 

2-107 AFN·01931A 



35 

36 

37 

38 
39 

40 
41 
42 
43 
44 
45 

46 

47 

2 

2 

2 
2 

2 
2 
2 
2 
2 
2 

2 

AP~86 

Module 4, continued 

end; /* delete$from$list */ 

search$list: procedure(root$t,WS$ID) word reentrant public; 

declare 
(root$t,WS$ID) word, 
ls$desc$p,root$p) pointer, 
(root based root$p) node, 
(s$desc based s$desc$p) node, 
s$desc$p$o structure (offset word, base word) at(@s$desc$p), 
temp pointer; 

s$desc$p=pointerize(root$t); 
next$node: 

if s$desc.work$station$ID=WS$ID then 
return s$desc$p$o.base; 

if s$desc.link$f = root$t then 
return t1I; 

temp=pointerize(s$desc.link$f); 
s$desc$p=temp; 
goto next$node; 

end; /* search$list */ 

end list$utilities$module; 

MdDULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
114 LINES READ 
0 PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

tilt:'IFEH 
llC'lllllH 
0fH'l0H 
ll018H 

254D 
t:'ID 
0D 

24D 

2·108 AFN-01931A 



AP-86 

Modules 

ISIS-II PL/M-86 Xl67 COMPILATION OF MODULE STARTANDFINISH 
OBJECT MODULE PLACED IN :Fl:strfin,OBJ 
COMPILER INVOKED BY: plm86 :Fl:strfin.plm PRINT(:F5:STRFIN.LST) 
DEBUG COMPACT OPTIMIZE(2) ROM DATE (4/28/80) . 

1 

314 
315 
316 

317 
318 

319 

320 

321 

1 
2 
2 

1 
2 

1 

1 

2 

start$and$finish: 
do; 

/****************************************************·******************* 

INIT$534$IO and FINISH$534$IO: PUBLIC PROCEDURES. 

This module contains the init$534$IO and the FINISH$534$IO 
procedures which can be called by the RMX/86 I/O system. START$IO 
is called just before the first attachSdevice is performed. 
It will create the interrupt task and the eight interrupt$pending 
semaphores. The FINISH$IO procedure is called just after the 
last detach$device is performed. It.undoes everything the START$IO 
call did. 

***********************************************************************/ 

$include (: f 4: nucprm.ext;) 
$SAVE NOLIST 
$include(:f4:common.lit) 
$SAVE NOLIST 
$inc 1 ud e ( : f 1: du i b .1 it) 
/* duib structure definition */ 
$save nolist 
$include(:f4:nerror.lit) 

$SAVE NOLIST 
$include (: f 1: pointr .ext) 
/* external declaration of pointerize procedure */ 
$save nolist 
$include (: f 1: retd ta .1 it) 
/* literal declaration of ret$data structure for init$534$io */ 
$save nolist · 

init$534$hw: procedure(data$p) external; 
declare data$p pointer; 

end init$534$hw; /* initializes 534 hardware */ 

int$534$task: procedure external; 
end int$534$task; 

declare 
begin$int$534$data byte external, 
IO$base$addr byte public, 
int$level word public, 
g$ret$data$p pointer public, 
req$mbox$t token public; 

init$534$IO: procedure(duib$p,ret$data$t$p,status$p) reentrant public; 

declare 
(duib$p,ret$data$t$p,status$p) pointer, 
(duib based cluibSp) clev$uni t$ info$block, 
( ret$ data$ t bas eel ret$ cl ataS t$ p) token, 
(status based status$p) word, 
dev$info$p pointer, 
dev$info b~sed dev$infci$p structure( 

level word, 
priori t y byte , 
IO$base$addr byte), 

2·109 AFN-01931A 



322 

323 
324 
325 
326 
327 
328 
329 

330 

331 
332 

333 
334 
335 

336 
337 

338 
339 

340 
341 

342 

343 

344 
345 
346 
347 

348 

349 
350 
351 
352 

353 

354 

2 

2 
2 
2 
2 
2 
2 
2 

2 

2 
2 

2 

2 
2 

2 
2 

2 
2 

2 
3 

3 

3 
2 
2 
2 

2 

3 
3 
2 
2 

2 

2 

AP-86 

Module 5, continued 

ex$val word, 
data$seg$p pointer, 
data$seg$p$o structure(offset worcl,base word) at(@data$seg$p), 
( i I j) byte i 

declare 
ret$dataSp pointer, 
ret$data based ret$data$p structure(ret$dataSstruc); 

ret$data$ t= rq$create$ segment (size ( ret$data) ,@ex$ val) ; 
if •xSval <> 0 then 

goto err0; 
g$ret$data$p,ret$data$p=pointerize(ret$data$t); 
dev$info$p=duib.dev$info$p; 
IOSbase$addr,ret$data.IO$base=dev$i~fo.IOSbase$addr; 
int$level,ret$data.intSlevel=devSinfo.level; 

/* create the request mailbox */ 

ret$data.request$mbox$t,req$mbox$t 
=rq$createSmaiJbox(0,~exSval); 

if ex$val <> 0 then 
goto errl; 

ret$clata.resp$mbox$t=rq$create$mailbox{0,@ex$val); 
if ex$val <> 0 then 

goto err2; /* clean up partial creation */ 

data$seg$p=@begin$int$534$data; 
ret$data.int$task$t=rq$create$task( 

/* priority */ 'dev$info.priority, 
/* entry point */ @int$534$task, 
/* data segment */ data$seg$p$o.base, 
/* stack pointer */ ~. 
/* stack size */ ' 4fHl, 
/* task flags */ 0, 
/*status pointer*/ @ex$val); 

if ex$val <> 0 then 
goto err3; /*can't create. clean up partial creation*/ 

do i=~ to 7; /* create semaphores */ 

end; 

ret$data.int$sema(i)•rqScreate$semaphore( 
/* initial value */ 0, 
/* max value */ 1, 
/* priority queue */ 1, 
/*status ptr */ @ex$val); 

if exSval <> 0 thery 

goto err4; /* clean up partial ~reation */ 

call init$534$hw(retSdataSp); 
status=ESOK; 
return; 

err4: 
do j=0 to i; 

call rq$de1 eteS semaphore ( retSdata. i nt.S sema ( j) ,status$ p); 
end; · 
call rq$resetSinterrupt(dev$info.level,statusSp); 

err3: 
call rqSdeleteSmailbox(~etSdata.resp$mboxSt,statusSp); 

err2: 
call rqSdeleteSmailbox(retSdata.requestSmbox$t,status$p); 

errl: 
call rq$de1ete$segment(ret$data$t,status$p); 

2·110 AFN-01931A 



355 

356 
357 

358 
359 

360 
361 
362 
363 
364 
3fi5 
366 

31;7 
3fi8 
3fi9 
370 
371 

2 

2 
2 

2 

2 
2 
2 
2 
2 
2 
3 

3 
2 
2 
2 
1 

AP·86 

Module 5, continued 

err0: 
status=ex$val; /* restore original status condition */ 
return; 

end; /* of procedure */ 

finish$534$IO: procedure(duibSp,ret$data$t) reentrant public; 
declare 

duib$p pointer, 
dev$info$p pointer, 
dev$info based devSinfo$p structure( 

level word, 
priority byte, 
IOSbase$addr byte), 

ret$data$p pointer, 
ret$<lata based ret$datil$p structure(ret$data$struc), 
(duib hased duib$p) dev$unit$info$block, 
ret$data$t token, 
i byte, 
ex$val word; 

dev$info$p=duib.devSinfoSp; 
ret$data$p=pointerize(ret$dataSt); 
call rq$reset$interrupt(dev$info.level,lexSval); 
call rq$de1ete$mailbox(ret$data.requestSmbox$t,lexSval); 
call rq$deleteSmailbox(ret$data.respSmbox$t,lexSval); 
do i.=0 to 7; 

end; 

call rq$delete$semaphore( 
ret$data.i'1t$sema(i), 
iaexSval); 

call rqSdeleteSsegment(ret$data~t,lexSval); 

return; 
end; /* of procedure */ 
end start$andSfinish; 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
671 LINES READ 
0 PROGRAM ERROR(S) 

END OF PL/M-8() COMPILATION 

0220H 
0000H 
1Hl0'lH 
0034H 

544D 
0D 
C)D 

52D 

2·111 AFN·01931A 



AP~ss 

Modules 

ISIS-II PL/M-86 X167 COMPILATION OF MODULE QUEUE534IOMODULE 
OBJECT MODULE PLACED IN :Fl:queio.OBJ 
COMPILER INV()KED BY: plm86 :Fl:queio.plm PRINT(:FS:QUEIO.LST) 
DEBUG COMPACT OPTIMIZE(2) ROM DATE(4/25/80) 

1 

315 
316 

317 

318 

319 

1 
2 

2 

queue$534$io$module: 
do; 

/******************************************************************* 

QUEUE$534$IO. PUBLIC PROCEDURE. 

This procedure is called by the I/O System to queue 
an I/O request to the 534 board. The function.field 
in the IORS is used to determine what specific action 
to take. Module also contains a dummy cancel$534$io 
procedure. 

*******************************************************************/ 

$include (: f 4 :nucprm .ext) 
$SAVE NOLIST 
$include(: f 4 :common .1 it) 
$SAVE NOLIST 
$include(: f4:nerror.l it) 

$SAVE NOLIST 
$include (: f l:pointr .ext) 
/* external declaration of pointerize procedure */ 
$save nolist 
$include(: f I :duib.l it) 
/* duib structure definition */ 
$save nolist 
$include(: f 1: iors.l it) 
/* literal declaration for iors */ 
$save nolist 
$include( :f 1: retdta .1 it) 
/* literal declaration of ret$data structure for init$534$io */ 
$save nolist 

io$534$task: procedure external; 
end io$534$task; 

declare 
begin$io$task$data byte external; 

queueS534$io: procedure(iors$t,duib$p,ret$data$t) reentrant public; 

declare 
(iors$t,ret$data$t) token, 
data$seg$p pointer, 
data$seg$p$o structure(offset word,base word) at(@data$seg$p), 
IDDR literally '2AH', 
(duib$p,ret$data$p,iors$p) pointer, 
(duib based duibSp) dev$unit$info$block, 
( ret$data based !'et$data$p) structure C ret$pata$:;;truc), 
(iors hased lorsSp) IOSrequestSresult$segment, 
i. 0$ task St token, 
unit$1nfo$p polnter, 
unit$1nfo based unlt$info9p stru~ture(. 

us1nt$cmcl byte, 
haur'l$rat<' word), 

i byte, 
n ummySt token, 
exSva1 word; 

2·112 AFN·01931A 



320 
321 

322 
323 

324 

325 
326 
327 

328 
329 

330 
331 
332 

333 
334 

335 
336 
337 

338 
339 
340 

341 

342 
343 
344 

345 

346 
347 
348 
349 
350 
351 

352 
353 
354 

355 

356 

2 
2 

2 
2 

2 

3 
4 
4 

4 
4 

3 
4 
4 

4 
4 

3 
4 
4 

3 
4 
4 

3 

4 
4 
5 

5 

4 
4 
5 
5 
4 
4 

4 
4 
4 

4 

4 

AP-86 

Module 6, continued 

iors$p=pointerize{iors$t}; 
ret$data$p=pointerize{ret$data$t}; 

if iors.funct > 7 then 
goto bad$request; 

do case iors.funct; 

do; /* case 0-- read */ 

end; 

i ors .aux$ p= ret$data$ p; 
call rq$send$message{ 

/* mbox */ ret$data.request$mbox$t, 
/* token */ iors$t, 
/* resp */ 0, 
/*status ptr*/ @ex$val}; 

return; 

do; /* case 1-- write */ 
iors.aux$p=ret$data$p; 
call rq$send$message( 

end; 

/* mbox */ ret$data.request$mbox$t, 
/* token */ iors$t, 
/* resp*/ 0, 
/*status ptr*/ @ex$val}; 

return; 

do; /* case 2--seek (illegal) */ 
goto bad$request; 

end; 

do; /* case 3-- special (illegal} */ 
goto bad$request; 

end; 

do; /* case 4-- attach$device */ 

/* create two I/O tasks */ 

data$segSp=@begin$IO$task$data; 
do i=0 to l; 

end; 

ioStask$t= rq$create$task( 
/* priority*/ 150, 
/* entry pnt */ @io$534$task, 
/* data seg */ data$seg$p$o.base, 
/* stack ptr */ 0, 
/* stack size */ 
I* task flags */ 
/* status ptr */ 

500, 
0, 
0exSval}; 

unitSinfoSp=duib.unit$info$p; 
do i=0 to 3; 

output(ret$data.usart$cmd$port(iors.unit})=0; 
end; 
output(ret$data.usart$cmd$port(iors.unit})=40H; 
output(ret$data.usartScmd$port(iors.unit))= 

unit$info.usart$cmd; 
output(ret$data.usart$cmd$port(iors.unit)}=27H; 
output(ret$data.IO$base+0CH)=O; /* select cntrl blk */ 
output(ret$data.timer$cmd$port(iors.unit))= 

ret$data.timer$cmd(iors.unit); 
output(ret$data.timer$1oad$port(iors.unit))= 

low( unit$ info .baud$rate); 
output ( retSdata .timer$load$port( !ors.unit))= 

high (unit$ info .baud$ rate); 

2-113 AFN·01931A 



357 

358 

359 
360 
361 

362 

363 

364 

365 

366 

367 
368 

369 
370 
371 

372 
373 
374 
375 
376 
377 

378 
379 

380 

381 
382 

383 

384 

385 

4 

4 

4 
4 
4 

3 

4 

4 

4 

4 
4 

3 
4 
4 

3 
4 
4 
3 
2 
2 

2 
2 

2 

2 
2 

1 

2 

2 

AP-86 

Module 6, continued 

output(ret$data.IO$base+0DH)=0; /* select data blk */ 

/* accept interrupt and character from receiver */ 

end; 

dummy$t=rg$receive$units( 
/* sema */ ret$data.int$sema( 2 * iors.unit), 
/* units */ 1, 
/* time$out */ 0, 
/*status*/ @ex$val); 
i=input(ret$data.usart$data$port( iors.unit )); 
goto ok$send$resp; 

do; /* case 5-- detachSdevice */ 

/* send two copies of the detach request to the request mailbox. 
This will signal to two of the I/O tasks that they are to 
delete themselves */ 

end; 

call rg$send$message( 
/* mbox token */ ret$data.reguest$mbox$t, 
/* object token */ iors$t, 
/* response */ ret$data.respSmbox$t, 
/*status*/ @exSval); 
dummy$t=rg$receive$message( 
/* mbox token */ ret$data.resp$mbox$t, 
/* time$limit */ 0FFFFH, 
/* response ptr */ @dummy$t, 
/*status ptr */ @ex$val); 
call rg$send$message( 
/* mbox token */ ret$data.reguest$mbox$t, 
/* object token */ iorsSt, 
/* response */ retSdata.resp$mbox$t, 
/*status*/ @ex$val); 
dummy$t=rq$receive$message( 
/* mbox token */ ret$data.resp$mbox$t, 
/* time$limit */ 0FFFFH, 
/* response ptr */ @dummySt, 
/*status ptr */ fexSval); 
goto ok$send$resp; 

do; /* case 6~- open */ 
goto ok$send$resp; 

end; 

do; /* case 7-- close */ 
goto ok$send$resp; 

end; 
end; /* do case */ 
return; 

bad$ request: 
iors.status=IDDR; 
goto send$resp; 

ok$send$resp: 
iors.status=ESOK; 

send$resp: 
call rq$send$message(iors.resp$mbox,iors$t,0,@ex$val); 
return; 

end; /* procedure */ 

cancel$~34 $io: procedure ( iorsSt,duib$p,ret$data$t) public; 

declare 
(iors$t,ret$data$t) token, 
duib$p pointer; 

return; 

2-114 AFN·01931A 



386 
387 

MODULE 

END OF 

2 
1 

AP-86 

Module 6, continued 

end; 
end queue$534$io$rnodule; 

INFORMATION: 

CODE AREA SIZE fiJ2fiJCH 524D 
CONSTANT AREA SIZE fiJ(iJfiJ(iJH 0D 
VARIABLE AREA SIZE (iJfilflflH flD 
MAXIMUM STACK SIZE '11il38H 56D 
729 LINES READ 
fiJ PROGRAM ERRORISl 

PL/M-86 COMPILATION 

2-115 AFN-01931A 



AP-86 

Module7 

ISIS-II PL/M-86 V2. 0 COMPILATION OF MODULE INTERRUPT534MODULE 
OBJECT MODULE PLACED IN :Fl:int534.0BJ 
.C.OMPILER INVOKED BY: plm86 : F.l: int534. plm PRINT (:Fl: INT534. LST) 
DEBUG COMPACT OPTIMIZE(2) ROM DATE(5/28/80) 

1 
$nointvector 
Interrupt$534$module: 

do; 

/*********************************************************************** 

308 

309 

310 

311 
312 
313 
314 

315 

316 

317 
318 
319 
320 

1 

1 

2 

2 
2 
2 
2 

1 

2 

2 
2 
2 
2 

INT$534$TASK and INT$534$HND: 
PUBLIC PROCEDURES: 

This module contains the interrupt handler and the interrupt 
task for the 534 board interrupt. The handler simply calls 
signal$interrupt and the task reads the ISR on the 534 
board's 8259 and sends a unit to one of eight interrupt$ 
pending semaphores to signal the occurrence of the event. 

***********************************************************************/ 

$include (: f 2: nucprm. ext) 
$SAVE NOLIST 
$include(: f 1: retdta .lit) 
/* literal declaration of ret$data structure for init$534$io */ 
$save nolist 
$include(:f2:common.lit) 
$SAVE NOLIST 

declare 
begin$int$534$data byte public, 
g$ret$data$p pointer external, 
IO$base$addr byte external, 
int$level word external; 

int$534$hnd: procedure interrupt 5; 

declare 
l word, 
ex$val word; 

l=rq$get$level(@ex$val); 
call rq$signal$interrupt(l,@ex$val); 
return; 
end; 

int$534$task: procedure reentrant public; 

declare 
I0$534$base byte, 
int$534$level word, 
ret$data$p pointer, 
ret$data based ret$data$p structure(ret$data$struc), 
c$level byte, 
ex$val word, 
eoi literally '20H'; 

I0$534$base=IO$base$addr; 
int$534$level=int$level; 
ret$data$p=g$ret$data$p; 
call rq$set$interrupt( 

/* level */ int$534$level, 
/* flags */ 1, 
/* entry point */ 
/* data segment */ 
/* status ptr */ 

interrupt$ptr(int$534$hnd), 
0, 
@ex$val); 

2-116 AFN-01931A 



321 
322 
323 
324 
325 
326 
327 
328 

329 

MODULE 

END OF 

2 
3 
3 
3 
3 
3 
3 
2 

1 

AP·86 

Module 7, continued 

do forever; 
call rq$wait$interrupt(int$534$level,@ex$val); 
output(I0$534$base+8)=0CH; 
c$1evel=input(I0$534$base+8) and 07H; 
call rq$send$units(ret$data.int$sema(c$level) ,l,@ex$val); 
output(I0$534$base+8)=EOI; 

end; /* of do forever */ 
end; /* of procedure */ 

end interrupt$534$module; 

INFORMATION: 

CODE AREA SIZE 00B5H 
CONSTANT AREA SIZE 0000H 
VARIABLE AREA SIZE 0005H 
MAXIMUM STACK SIZE 0026H 
541 LINES READ 
0 PROGRAM ERROR(S) 

PL/M-86 COMPILATION 

1810 
0D 
5D 

380 

2-117 AFN-01931A 



AP-86 

Modules 

ISIS-II PL/M-86 Xl67 COMPILATION OF MODULE I0534TASKMODULE 
OBJECT MODULE PLACED IN :Fl:iotask.OBJ 
COMPILER INVOKED BY: plm86 :Fl:iotask.plm PRINT(:F5:IOTASK.LST) 
DEBUG COMPACT OPTIMIZE(2) ROM DATE(4/25/80) 

1 

314 

315 

316 

317 
318 

319 
320 
321 

1 

1 

2 

2 
3 

3 
3 
3 

io$534$task$module: 
do; 

/*********************************************************************** 

I0$534$TASK: TASK. 

This task receives IORS segments from the queue$io 
procedure and performs the necessary input or 
output operations on the iSBC 534 board. 

***********************************************************************/ 

$include(:f4:common.lit) 
$SAVE NOLIST 
$include (: f l:pointr .ext) 
/* external declaration of pointerize procedure */ 
$save nolist 
$include (: f 4: nucprm .ext) 
$SAVE NOLIST 
$include(:f4:nerror.lit) 

$SAVE NOLIST 
$include(:fl:retdta.lit) 
/* literal declaration of retSdata structure for init$534Sio */ 
$save nolist 
$include(:fl:iors.lit) 
/* literal declaration for iors */ 
$save nolist 

declare 
begin$io$task$data byte public, 
req$mbox$t token external, 
f$detach$device literally '5', 
f$read literally '0', 
f$write literally 'l'; 

I0$534$task: procedure reentrant public; 

declare 
iors$t token, 
iors$p pointer, 
iors based iors$p IO$request$resultSsegment, 
ex$val word, 
resp$t token, 
buff$p pointer, 
buf based buff$p (1) byte, 
i WO rd, 
unit byte, 
ret$data$p pointer, 
ret$data based ret$data$p structure ( ret$data$struc), 
c$val word; 

do forever; 
iors$t=rq$receive$message(req$mbox$t,0FFFFH,@resp$t,@ex$val); 

/* check for non-existence of mailbox. IF last device has been detached 
the mailbox will be deleted In this case, delete thyself*/ 

if ex$val= E$exist then 
call rq$delete$task(0,@ex$val); 

iors$p=pointeri ze ( iors$t); 

2-118 AFN-01931A 



322 
323 
324 
325 
326 

327 
328 
329 

330 
331 

332 
333 
334 

335 
336 
337 
338 
339 

340 
341 
342 

343 
344 
345 
346 
347 

349 
350 
351 

352 

353 

3 
3 
3 
3 
3 

3 
3 
4 

4 
4 

3 
3 
4 

4 
4 
4 
4 
4 

3 
3 
4 

4 
4 
4 
4 
4 

3 
3 
3 

2 

1 

AP·86 

Module 8, continued 

buff$p=iors.buff$p; 
unit=iors.unit; 
iors.actual=l'I; 
i=0; 
ret$data$p=iors.aux$p; 

if iors.funct = f$detach$device then 
do; 

end; 

call rg$send$message1 
/* mbox token */ resp$t, 
/* object token */ iors$t, 
/* response token */ 0, 
/*status ptr */ @ex$val); 
call rg$delete$task(0,@ex$val); 

if .iors.funct= f$read then 
do while iors.count >0; 

c$val=rq$receive$units( 

end; 

/* sema */ ret$data.int$sema(2*unit), 
/* units */ 1, 
/* time */ 0FFFFH, 
/* status*/ @ex$val); 

buf(i)=input(ret$data.usart$data$port(unit)) and 07FH; 
i=i+l; 
iors.count=iors.count-1; 
iors.actual=iors.actual+l; 

else if iors.funct= f$write then 
do while iors.count >'11; 

c$val=rg$receive$units( 
/* sema */ ret$data.int$sema(2*unit+l), 
/* units */ 1, 
/* time */ 0FFFFH, 
/*status*/ @ex$val); 

output(ret$data.usart$data$port(unit))=buf(i); 
i=i+l; 
iors.count=iors.count-1; 
iors.actual=iors.actual+l; 

end; 
iors.status=E$0K; 
iors.done=TRUE; 
call rg$send$message(iors.resp$mbox,iors$t,0,@ex$val); 

end; /* of do forever */ 

end; /* of procedure */ 

end io$534$task$module; 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
624 LINES READ 
0 PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

018DH 
000fHI 
0fl01H 
0028H 

397D 
0D 
lD 

40D 

2·119 AFN·01931A 



AP-86 

Module9 

ISIS-II PL/M-86 Xl67 COMPILATION OF MODULE INI.T534HW 
OBJECT MODULE PLACED IN :Fl:inithw.OBJ 
COMPILER INVOKED BY: plm86 :Fl:inithw.plm PRINT(:F5:INITHW.LST) 
DEBUG COMPACT OPTIMIZE(2) ROM DATE(4/25/80) 

1 init$534$hw: 
do; 

/*********************************************************************** 

init$534$hw: PUBLIC PROCEDURE. 

This procedur~ initializis the iSBC 534 hardware and 
sets up the device dependent fields of the ret$data 
segment which will be used by the queue$io procedures. 

***********************************************************************/ 

12 

13 

14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

30 
31 
32 
33 

I 

2 

2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
3 
3 
3 
3 
2 
2 

2 
2 
2 
1 

$include(:f4:common.lit) 
$SAVE NOLIST 
$include(: f 1: retdta .1 it) 
/* literal declaration of ret$data structure for init$534$io */ 
$save nolist · 

init$534$hw: procedure(ret$data$p) reentrant public; 

declare 
ret$data$p pointer, 
ret$data based ret$data$p structure ( ret$data$ st rue) , 
(base,i) byte; 

base=ret$data.io$base; 
output(base+0FH)=0; /* board reset */ 
output(base+0DH)=0; /* select data block */ 
output(base+8)=16H; /* output ICWl */ 
output(base+9)=1'1; /* output ICW2 */ 
output(base+9)=0; /* output mask word */ 

/* attach$device calls will initialize usarts and timers */ 
/* set up tables of port addresses for use by queue$io procs */ 

ret$data.timer$cmd(l'I) ,ret$data.timer$cmd(3)=36H; 
ret$data.timer$cmd(l)=76H; 
ret$data.timer$cmd(2)=0B6H; 
do i=0 to 3; 

ret$data.usart$cmd$port(i)=base+2*i+l; 
ret$data.usart$data$port(i)=base+2*i; 
ret$data.timer$load$port(i)=base+i; 

end; 
ret$data.timer$load$port(3)=base+4; 
ret$data.timer$cmd$port(0), 
ret$data.timer$cmd$port(l), 
ret$data.timer$cmd$port(2)=base+3; 
ret$data.timer$cmd$port(3)=base+7; 
return; 

end· 
·end 1 init$534$hw; 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZF 
77 LINES READ 
0 PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

00E4H 
1'1000H 
001'10H 
0008H 

228D 
l'ID 
0D 
SD 

2-120 AFN·01931A 



APPENDIX B 
Configuration Listings/Worksheets 

2-121 AFN-01931A 



AP-86 

FREE 
SPACE 

ROOT 
JOB 

APPLICATION 
JOB 

COMMUNICATIONS 
JOB 

l/OSYSTEM 

NUCLEUS 

INTERRUPT VECTOR 

System Memory Map 

*-*-*-*-*-*-*-*-*-*-*-*-- NUCLN.K. CSD --*-*-*-*-*-*-*-*-*-*-*-*-* 
THIS SUBMIT FILE LINKS THE NUCLEUS. 

F0:LINK86 & 
:Fl:NUC86.LIB(NENTRY), & 
:Fl:NUC86.LIB & 
TO :Fl:NUCLUS.LNK MAP PRINT(:Fl:NUCLUS.MPl) NAME(NUCLEUS) 

*-*-*-*-*-*-*-*-*-*-*-*-- NUCLOC.CSD --*-*-*-*-*-*-*-*-*-*-*-*-* 
; 
;THIS SUBMIT FILE LOCATES THE NUCLEUS IN MEMORY. 

:F0:LOC86 & 
:Fl:NUCLUS.LNK TO :Fl:NUCLUS MAP PRINT(:Fl:NUCLUS.MP2) SC(3) & 
RESERVE(0 TO 7FFH) SEGSIZE(STACK(0)) & 
ORDER(CLASSES(CODE,DATA,STACK,MEMORY)) & 
OBJECTCONTROLS(NOLINES,NOCOMMENTS,NOPUBLICS,NOSYMBOLS) 

Nucleus Link and Locate Commands 

2-122 AFN-01931A 



AP-86 

ios(date,origin) 
Sample I/O System .csd file to link and locate an I/O System. 

This file links an I/O System with the timer included. 

This .csd file assumes the I/O System configuration module is 
iocnfg.a86 (found on the release diskette). 

The origin parameter sets the low address of the I/O System; 
all the segments are contiguous in memory. 

asm86 :fl:iocnfg.a86 date(%0) 
link86 & 

:fl:ios.lib(ioinit), & 

:fl:iocnfg.obj, & 
:f 1: ios.l ib, & 

:fl:rpifc.lib & 
to :f 1: ios.lnk map print (: f 1: ios.mpl) 

loc86 :fl:ios.lnk to :fl:ios map sc(3) print(:fl:ios.mp2) & 
oc(noli,nopl,nocm,nosb) & 
order (cl asses (code ,data, stack ,memory) ) & 
addresses(classes(code(%1))) & 
segsize(stack(0)) 

1/0 System Link and Locate Commands 

Submit file to generate located version of file transaction job 
; 
link86 & 

:fl:ftinit.obj, & 
:fl:listen.obj, & 
:fl:worker.obj, & 
:fl:pointr.obj, & 
:fl:rpifc.lib & 

to :fl:apexl.lnk map print(:fl:apexl.mpl) 

I 

loc86 :fl:apexl.lnk to :fl:apexl map sc(3) print(:fl:apexl.mp2) & 
oc(noli,nopl,nocm,nosb) & 

order(classes(code,data,stack,memory)) & 
addresses(classes(code(%1))) & 
segsize(stack(0)) 

File Transaction Job; Link and Locate Commands 

Submit file to generate located version of communications job 
; 
link86 & 

:fl:cminit.obj, & 
:fl:comm.lib, & 
:fl:pointr.obj, & 
:fl:rpifc.lib & 

to :fl:comm.lnk map print(:fl:apexl.mpl) 
loc86 :fl:comm.lnk to :fl:comm map sc(3) print(:fl:comm.mp2) & 

oc(noli,nopl,nocm,nosb) & 
order (cl asses (code ,data, stack ,memory) ) & 

addresses(classes(code(%1))) & 
segsize(stack(0)) 

Communications Job; Link and Locate Commands 

2-123 AFN-01931A 



AP-86 

077EH 10E4H PUB INITDEVICETABLES 077EH 0FBCH PUB NAMEDDELETE 
077EH 0EB3H PUB DECRUSECOUNT 077EH 0E 51H PUB UNLINKCONN 
077EH 0CA8H PUB NAMEDCHANGEACCES 077EH 0B5AH PUB ATTACHNAMEDFILE 

-s 
-+-077EH 073EH PUB ATTACHDEVICETASK 077EH 0574H PUB ILLEGALFUNCT 

077EH 003EH PUB RQA ros INITTASK 077EH 0006H PUB COPYRIGHT 

SEGMENT MAP 

START STOP LENGTH ALIGN NAME CLASS 

077E0H 1453EH CDSFH w CODE CODE 
14540H 145FFH 00C0H w REQ TABLE CODE 
14600H 146DFH 00E0H w IDS-TABLE CODE 

--+146E0H 14745H 0066H w DATA DATA 
14746H 14746H 0000H w STACK STACK 
14750H 14750H 0000H G ??SEG 

--+14750.H 14751/lH 0000H w MEMORY MEMORY 

Locate Map for 1/0 System 
(The"-+-" indicates entries for job macros and memory map) 

1475H 079EH PUB SETUP544, 1475H 06C5H PUB PACKETINPUT 

1475H 05B5H PUB INDEX -+-1475H 0572H PUB COMMINITTASKENTRY 
-ESS 

SEGMENT MAP 

START STOP LENGTH ALIGN NAME CLASS 

14750H 15BCDH 147DH w CODE CODE 
-+-15BD0H 1 70D2H 1502H w DATA DATA 

1 70D2H 1712EH 004CH w STACK STACK 
1 7130H 1 7130H 0000H G ??SEG 

-+-l 7130H l 7130H 0000H w MEMORY MEMORY 

Locate Map for Communications Job 

l 7D6H 03B5H PUB BEGINLISTENERTASKDATA1713H 0153H PUB POINTERIZE 
-+-1713H 0112H PUB INITTASKENTRY l 713H 0401H PUB WORKERTASK 

SEGMENT MAP 

START STOP LENGTH ALIGN NAME CLASS 

17130H l 7D59H 0C29H w CODE CODE 
17D60H l 7E 28H 00C8H w DATA DATA 
1 7E30H 1 7E9AH 006AH w STACK STACK 

Locate Map for File Transaction Job 

2-124 AFN-01931A 



AP-86 

Macro call: SYSTEM (s}'.stem j!&rameters) 

Number of calls required: exactly one 

CONFIGURATION FILE NAME 

FORMAT: 

suggested 
parameter type default value --

%SYSTEM (nucleus_entry, base 80:0 
rod_size, word (0) _jjl_ 
min_trans_size, work (64) .M__ 
debugger, see note (A) 

1 _N __ 
def au lt_e_h_provided, see note (N) 

2 _N __ 
mode) word 1 

NOTES: 

1. Valid entries for the debugger parameter include: 

A Debugger available 
N No debugger available 

2. Valid entries for the default_e_h_provided parameter include: 

y Yes 
D Debugger 
N No 

%SYSTEM Macro Worksheet 

2-125 AFN-01931A 



AP-86 

Macro call: SAB (for system address blocks) 

Number of calls required: one or more 

CONFIGURATION FILE NAME: APEX1 

FORMAT: 

suggested 
parameter type default value 

-- --
%SAB (start_base, base _o __ 

end_base, base -1.!mQ_ 
type) see note u 

1 u ---

NOTES: 

1. The type parameter is reserved for future use. Enter 
the character U for this parameter. 

2. A SAB is declared between start_base:O and end_base:F, inclusive. 

%SAB Macro Worksheet 

2-126 AFN·01931A 



AP-86 

Macro call: JOB (defines first-level jobs) 

Number of calls required: one for each first-level job 

CONFIGURATION FILE NAME: APEX1 

FORMAT: 

suggested 
parameter type default value ---

%JOB (directory_size, word (0) 0 
pool_min, word OFFFF 
pool_max, word (OFFFFH) QFFEF 
max__objects, word FFFF 
max_tasks, word FFFE 
max_job_priority, byte 129 
exception_handler_entry, addr (0:0) 0:0 
exception_handler_mode, byte (1) 1 
job_flags, word (0) 0 
init_task_priority, byte 1713:112 
data__segment_base, base (0) 1706 
stack_pointer, addr (0:0) 0:0 
stack_size, word (512) 512 
task_flags) word (0) 0 

NOTE: 

1. addr is specified as base:offset 

%JOB Macro Worksheet 

2·127 AFN-01931A 



AP-86 

%sab(0,1900,U) 
%job(0,300h,0FFFh,0ffffh,0ffffh,0,0:0,0,0,128,77e:3e,146e,0:0,512,0) 
%job(0,1FFH,0FFFH,0FFFFH,0FFFFH,128,0:0,0,0,131,1475:572,15bd,0:0,400,0) 
% job ('0, 300H, 0FFFFH, 0FFFFH, 0FFFFH, 128, 0: 0, 1, 0, 130, 1713: 112, 1 7d6, 0: 0, 400H, 0) 
%system(80,10,64,N,N,l) 

Configuration File Apex 1.CN F 

, 
;*-*-*-*-*-*-*-*-*-*-*-- CTABLE.CSD --*-*-*-*-*-*-*-*-*-*-* 

SUBMIT :Fx:CTABLE( fsys, fin, fout, config file, date 

This submit file 
fsys 
fin 
fout 
config file 
date -

assembles the CTABLE module, where: 
the system disk containing ASM86 
the source/input disk (Fl is assumed) 
the object/listing/output disk 
the path-name of the configuration file 
the date 

copy %3 to :f l:config.cnf b 

:%0:asm86 :%l:ctable.a86 pr(:%2:ctable.lst) oj (:%2:ctable.obj) date(%4) & 
xref debug ep 

Submit File to Generate Configuration Table 

;*-*-*-*-*-*-*-*-*-*-*-- CLNKRJ.CSD --*-*-*-*-*-*-*-*-*-*-* 

SUBMIT :Fx:CLNKRJ( fsys, fin, fout) 

This submit file links the Root-Job, where: 
fsys the system disk containing LINK86 
fin the source/inpr1t disk 
fout the object/listing/output disk 

:%0:link86 :%l:croot.lib(root) ,& 
:%2:ctable.obj,& 
:%l:croot.lib & 

to :%2:rootjb.lnk map pr(:%2:rootjb.mpl) 

Submit File to Link the Root Job 

2·128 AFN-01931A 



AP-86 

' ;*-*-*-*-*-*-*-*-*-*-*-- CLOCRJ.CSD --*-*-*-*-*-*-*-*-*-* 

SUBMIT :Fx:CLOCRJ( fsys, fin, fout ) 

This submit file locates the Root-Job, where: 
fsys the system disk containing LOC86 
fin source/input disk 
fout object/listing/output disk 

;-- NOTE: BE SURE TO REPLACE THE "?????" BELOW WITH THE APPROPRIATE 
;-- ADDRESS THE ROOT-JOB IS TO BE LOCATED AT!! 

:%0:loc86 :%2:rootjb.lnk to :%2:rootjb & 
map pr(:%2:rootjb.mp2) sc(3) & 
name(ROOT JOB) oc(nocm,noli,nopl,nosb) & 
segsize(stack(200h)) & 
order(classes(data,stack,memory,code)) & 
addresses(classes(data(l2C00H))) 

Submit File to Locate Root Job 

2-129 AFN-01931A 





APPLICATION 
NOTE 

2-131 

AP-88 

May 1980 

AFN-01931A 



Using the RMX/80™ 
Nucleus in Multiprocessor 
Applications 

Contents 

INTRODUCTION ..................... 2-133 

Multiprocessor Strengths . . . . . . . . . . . . . . 2-133 
Process Example . . . . . . . . . . . . . . . . . . . . . 2-133 

MULTIBUS™ MULTITASKING 
OPERATIONS ........................ 2-135 

Bus Priority Resolution Lines . . . . . . . . . . 2-135 
Resource Contention .................. 2-136 

Bus Lock . . . . . . . . . . . . . . . . . . . . . . . . . . 2-136 
Semaphores . . . . . . . . . . . . . . . . . . . . . . . 2-137 

Hardware Semaphores ............ 2-137 
Software Semaphores ............. 2-138 

MULTIPROCESSOR 
COMMUNICATIONS . . . . . . . . . . . . . . . . . . 2-138 

Messages ............................ 2-139 
Exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-139 
RMX/80™ Nucleus Communications ... 2-140 
Multiprocessor Message Transfers ...... 2-140 

Waiting for a Message ............... 2-140 
Sending a Message .................. 2-142 

Responding to Interrupt Request. . . . 2-144 
Testing an Exchange ................ 2-144 
Initialization of Descriptors . . . . . . . . . . 2-144 
Use of Semaphores ................. 2-144 

System Resource Sharing .............. 2-145 

APPLICATION EXAMPLE ............. 2-146 

Supervisor Implementation . . . . . . . . . . . . 2-146 
Weighing Ingredients. . . . . . . . . . . . . . . . . . 2-147 
Other Application Tasks ............... 2-149 
Total Application Configuration . . . . . . . . 2-149 

CONCLUSION ........................ 2-149 

APPENDIX A - Multiprocessor 
Message Transfer Programs . . . . . . . . . . . . . 2-152 

APPENDIX B- BIPI Program Listing ... 2-168 

2·132 AFN-01931A 



AP-88 

I. INTRODUCTION 
As computer systems become more complex, a recurring 
need occurs to use multiple processing units. Multiproc
essing can, in many applications, increase throughput, 
enhance reliability, or create a more modular design ap
proach. Intel's single board computer family provides a 
convenient tool for creating a multiprocessing environ
ment when combined with the Multibus system bus 
architecture. The use of the Intel RMX/80 Real-Time 
Multitasking Executive simplifies the creation of modu
lar designed system architectures. It also allows more 
efficient use of the processor's capabilities by sharing 
them between several independent tasks. 

This application note provides insight as to the tech
niques which can be used to create a multiprocessing 
system which is fully compatible with the use of Intel's 
RMX/80 multitasking executive. Both hardware and 
software capabilities of the Intel single board computers 
are discussed. For example, an explanation of both 
serial and parallel priority resolution techniques for 
creating a multimaster system are included. The tech
niques for using the bus lock features to provide mutual 
exclusion of resources and for creating both hardware 
and software semaphores is also a part of the applica
tion note. Many of the multiprocessing principles are 
combined to create the capability of transferring mes
sages between tasks operating on different processor 
boards, thus creating a combined multiprocessor/multi
tasking operating system. 

A potentially complex application is examined and the 
benefits gained by using a multiprocessing approach are 
discussed. The various requirements defined from the 
application are used to demonstrate the available fea
tures of the Intel product line as applied to multi
processing. 

Extensions of the features are developed where neces
sary to create a complete solution to the design exercise. 
For example, a capability is provided for a flexible oper
ator interface to the system which provides certain 
global functions to the multiple processors. This capa
bility, called the Common System Module (CSM), in
cludes the required drivers for disk drives and for an 
operator's CRT terminal. The operator interface in
cludes a BASIC interpreter capability. 

Finally, the application is modularized and the tech
niques which make the control solution easily imple-, 
mented using multiprocessing techniques are demon
strated. 

It is assumed that the reader has a fundamental knowl
edge of multitasking operating system concepts and is 
familiar with the use of PL/M-80 as a language on 
Intel's single board computers. In addition, a working 
knowledge of BASIC is assumed. The reader not having 
these skills should refer to the documents referenced in 
the Related Publications section of this application 
note. 

Multiprocessing Strengths 
The most common use of multiprocessing is to offload a 
main processor of low level duties in order to increase 
system throughput. Significant examples of this tech
nique are the use of Intel UPI devices such as the 8741A 
and the use of intelligent slave boards such as the Intel 
iSBC 544 Intelligent Communications Controller or the 
iSBC 569 Intelligent Digital Controller. The techniques 
which are developed in this application note do not 
apply to these multiprocessor implementations because 
they have been extensively covered in other application 
notes. 

2·133 

Processors can be offloaded of other than low level 
functions in complex systems. Just as a real-time appli
cation can be divided into functional tasks, these tasks 
can be grouped according to function. Each function or 
class of tasks can be assigned to a single board com
puter. The system throughput can thus be increased 
since tasks can now run concurrently and, using the 
software pr0cedures developed in this application note, 
can communicate among themselves as though they 
were operating on the same processor board. Single 
board computers operating in this manner are known as 
multimaster computers. 

A second instance where multiprocessing can be con
sidered in a system design is in those cases where the 
operational integrity can be enhanced by having more 
than one processor. In these cases, the application may 
require that no single component failure can completely 
cause the system to fail. Multiprocessing provides this 
feature by allowing control of those operations associ
ated with a processor board to continue to function even 
when another board has failed. In many cases, provi
sion can be made to have the remaining board or boards 
take over some or all of the functions which were associ
ated with the failed board. Even though this would 
result in slower throughput, critical functions would still 
be performed by the computer system. 

Another benefit is the modular system design and ex
pansion capabilities which can be realized by using 
multiprocessing in industrial ,control applications. Here, 
it has been found that process definitions and opera
tions tend to be rather dynamic. As products are im
proved or new ones added to the operation, the control 
system must be capable of being updated to conform to 
the new product flow. It is common to have an added 
requirement that the changes in a process must be made 
with no impact on other processes being controlled by 
the same system. Using a multimaster board for each 
process allows this operation to be easily implemented. 

Process Example 
To emphasize the advantages which can be gained using 
multiprocessing, consider the chemical production facil
ity whose process flow is shown in Figure I. This prod
uct flow chart is typical of many found in the chemical 
industry where a product is manufactured from several 

AFN·01931A 



AP·88 

raw ingredients which are purchased, This type of prod
uct lends itself well to automation. Consider, then, the 
approach to designing a control system which will oper
ate in the facility which has been defined. 

The first design goal is to define global system tasks 
which ne.edto be performed by the system. Examination 
of the flow diagram in Figure 1 might lead one to define 
the system tasks as: 

1) Inventory control 
2) Quality control · 
3) Production scheduling 
4) Weighing ingredients 
5) Mixing ingredients 
6) Drying and forming product 
7) Packaging 

The choice just made certainly is not the only valid pos
sibility but it should .be adequate to allow the design dis
cussion to continue. 

The system tasks listed can be grouped according to 
supervisory and control tasks. Items 1 through 3 fall 
into the supervisory category and items 4 through 7 
belong to control category. This breakdown also groups 

QUALITY 
CONTROL 

the items according to the type of programs which will 
be required to implement the functions. 

The grouping of system functions into categories sug
gests. that a multimaster approach is a good design path 
to create a system solution. Five multimaster boards are 
suggested, one for the supervisor and four boards which 
provide the control capabilities. This functional group
ing is seen in Figure 2. 

The examination of the product flow and system inter
actions shown in Figure 1 indicate that extensive com
munications are required between the various boards of 
the system. In addition, several tasks are required on 
each multimaster board and communications are re
quired between these tasks. 

Intel's RMX/80 Real-Time Multitasking Executive pro
vides a simple method of handling the on-board com
munication operations by supporting the transmission 
and receipt of messages for data communication and 
synchronization. After a discussion of the hardware 
features which support multiprocessing, the application 
note will deal with the extension of the RMX/80 nucleus 
to support the transmission of messages between tasks 
which reside on different single board computers. 

RECEIVE 
MATERIALS 

WEIGH OUT 
CORRECT 
FORMULA 

MIX 
INGREDIENTS 

TOGETHER 

DRY & FORM 
PRODUCT 

INTERMEDIATE 
STORAGE 

-------------...--------
-------------_______ .i_ __ 

SHIPPING PACKAGING 

Figure 1. Chemical Production Flow 

MULTIBUS™ COMPATIBLE SYSTEM CHASSIS 

Figure 2. Multimaster System Solution 

2-134 AFN-01931A 



AP-88 

II. MULTIBUS™ MULTITASKING 
OPERATIONS 

The interactions of the various multimaster board func
tions occur via the medium of the Multibus system bus. 
This bus structure is designed to easily support the use 
of more than one master processor in a system. Subse
quent paragraphs explain in some detail the features of 
the Multibus system bus which allow multimaster opera
tions when used with multimaster compatible single 
board computers. 

Bus Priority Resolution Lines 
The Multibus system bus uses seven control lines to sup
port the bus priority resolution techniques. Before con
tinuing with a discussion of these techniques, the reader 
should be provided with a definition of these lines and 
their functions. These lines are defined in subsequent 
paragraphs .. One line is used for the system clock. It is: 

BCLK/ Bus Clock; the negative edge of BCLK/ is used 
to synchronize bus priority resolution circuits. 
BCLK/ is asynchronous to the CPU clock. It 
has a JOO ns minimum period and a 35 to 65 
percent duty cycle. 

All Intel single board computers which are capable of 
being used as a bus master can provide this clock signal. 
In a multiple processor application, it is necessary to 
select only one board which is to actually supply this sig
nal to the system bus. On all other processor boards, 
this signal must be disabled by removing the jumpers as 
indicated in the appropriate Hardware Reference Man
ual (HRM). 

Several bus signals are dedicated to providing informa
tion as to the status of the bus to processors which are 
attempting to obtain control for their own data transfer. 
These are defined to be: 

BPRN/ Bus Priority In Signal; indicates to a request
ing bus master board that no higher priority 
board is requesting use of the system bus. 
BPRN/ is synchronized with BCLK/. The sig
nal is not bused on the backplane and must be 
generated and connected by the user as will be 
seen. 

BUSY I Bus Busy Signal; an open collector line driven 
by the current bus master to indicate that the 
bus is currently in use. BUSY I prevents all 
other potential masters from gaining control 
of the bus. BUSY I is synchronized with 
BCLK/. 

CBRQ/ Common Bus Request; an open-collector line 
which is driven by all potential bus masters and 
is used to inform the current bus master that 
another device wishes to use the bus. If 
CBRQ/ is high, it indicates to the current bus 
master that no other master is requesting the 
bus, and therefore, the present master can re
tain the bus control. This saves the bus ex-

change overhead which would be required to. 
release and again re-acquire control of the bus. 

The timing relationship of these signals can be seen in 
Figure 3. Note that some type of bus request signal is 
generated by the master wishing to assert control of the 
system bus. Through some type of logic, a determina
tion must be made as to the effect that the requesting 
master has the highest priority. If so, the logic informs 
the requesting master by setting the BPRN/ signal low. 

Tcpm 

----\ 1-
BCLK/ _nnnnJ 

REQUEST/ l 
BPRN/ l 

Figure 3. Bus Master Request Timing 

Two signals are generated by single board products 
designed to be bus masters. These signals are used to 
generate the request signal. The request lines provided 
are known as: 

BPRO/ Bus Priority Out Signal; used with serial bus 
priority resolution schemes. BPRO/ is passed 
to the BPRN/ input of the master module with 
the next lower priority. BPRO/ is synchro
nized with BCLK/ and is not bused on the 
backplane. 

BREQ/ Bus Request Signal; used with a parallel bus 
priority network to indicate that a particular 
master board requires the use of the bus for 
one or more data transfers. BREQ/ is synchro
nized with BCLK/. It is not bused on the back
plane. 

The most easily implemented technique for supporting 
bus priority resolution is the serial or the daisy chain 
method. In this method, each board examines its 
BPRN/ line. If the line is low and the master desires to 
use the system bus, it may do so. Internal board logic 
then places the BPRO/ line high to inhibit boards along 
the daisy chain with lower priority from gaining control. 
Any board in the chain with its BPRN/ line high or 
which is requesting priority will set the BPRO/ line 
high. The wiring technique and logic of the serial prior
ity resolution scheme is shown in Figure 4. As long as 
the worst case propagation delay time between the high
est and the lowest potential bus master does not exceed 
30 ns, the technique provides a simple and effective 
method for resolving bus contention problems. Because 
of logic delays on iSBC boards, it has been found that 
the serial technique can only be used for a maximum of 
three bus masters when using a 100 ns clock rate. If 

2-135 AFN·01931A 



AP-88 

more masters are desired, either the clock must be 
slowed or the priority resolution technique must be 
modified. Thus, the BREQ/ line is used to support the 
second or parallel priority scheme. 

In a parallel priority network, all requests from bus 
masters are supported in parallel logic. Each master 
desiring use of the system bus places its BREQ/ line to a 
logical low condition. A parallel priority encoder chip 
such as a 74148 can be used to indicate the requestor 
having the highest priority. The output of the encoder 
can next be fed into a decoder network (74S138) to gen
erate a unique enable signal back to the processor 
board. These signals are fed back to the requesting 
boards as the BPRN/ control line. The logic to perform 
this parallel resolution is not a part of current Intel 
Multibus backplanes, so it must, when required, be con
structed and supplied by the user. Figure 5 shows an 
implementation which can be used to support a twelve
slot cardcage such as can be obtained using the Intel 
iCS-80 chassis. Since all bus priority requests are 
handled using parallel logic, additional potential bus 
masters may be added without adding to the signal delay 
time. Thus, the number of requests which may be re
solved is limited only by the number of available card 
slots on the Multibus system bus. 

---.., 
I 
I 
I 
I 
I 
I 

I 
I 
I ___ J 

HIGHEST PRIORITY 
iSBC™ BOARD 

r---~----------------, 

I BOARD \ 
\ REQUEST I 
I FOR BUS I 
i BPRO/ I 

I BPRN/ I 

I i , __________________ J 

Resource Contention 
Even though the bus priority resolution networks de
scribed above provide against two or more bus masters 
taking control of the bus at the same time, they do not 
prevent one processor from examining and modifying 
data at the same time that another is operating on this 
data (this is true because data is only transferred in 8 or 
16-bit blocks and the bus may be used by another master 
between transfers). Some technique for inhibiting the 
contention of resources must be provided if true multi
processing is to be performed. Three candidates can be 
considered to support this exclusion process. The tech
niques required to support each are explored in subse
quent paragraphs. 

BUS LOCK 

Single board computers provide the capability of lock
ing the system bus from access by other bus masters. 
This feature is provided by means of a bus lockout flip
flop which may be set or reset by writing to a dedicated 
I/O port on each board. This flip-flop has the effect of 
keeping the BUSY I active which keeps the master in 
control of the bus. In this way, a master assures that it 
has exclusive control of a bus common resource. In fact, 
it has exclusive control of all bus resources even though 

LOWER PRIORITY 
iSBC™ BOARD r------------------------.., 

I BOARD I 
\ REQUEST \ 

! FOR BUS BPRO/ I 
I BPRN/ I 
I I 
I \ 
L-------------------~ 

1 
Figure 4. Serial Priority Implementation 

1 
~ 
cc 
0 
cc 
a. -
~s 
za: 
(ii., 

ili 
a: 
c..> 
!:: 

74148 74138 

0 7 
1 Ao A 6 
2 5 
3 A1 B 4 

4 3 
5 A2 c 2 
6 1 
7 Gs G2 0 

--<J E1 
EoP--- - G1 

.· 
0 7 
1 Eolo L---.j G1 6 
2 5 
3 Ao A 4 

----tj 4 ap--
~5 A1 B 2p--
---<) 6 1P--

=: 7 A2 c op--
E1 

Gs Gi~ 

Figure 5. Parallel Priority Implementation 

2-136 AFN-01931A 



AP·88 

it may be using but one of them. This drawback prohib
its other masters from using devices on the bus which 
are not in contention as well as those that are. In many 
systems, this potential delay can prohibit the use of bus 
locks in all but a few special applications. 

SEMAPHORES 

Mutual exclusion can easily be obtained by using the 
concept of a semaphore. A semaphore may be thought 
of as a type of traffic signal which can be used to pro
hibit access to certain roads or resources. When such a 
semaphore technique is used with microprocessors, it is 
referred to as a test-and-set operation. This means that 
the act of testing the semaphore not only returns the 
current status but also forces the semaphore to the 
"on" condition. If the returned status from the test in
dicated a previously cleared condition of the sema
phore, the resource associated with it is considered 
available for exclusive use. Since the semaphore is now 
set, all other masters testing it will find a busy condition 
and must wait until the user processor clears the sema
phore assocaited with the resource. Each time a proc
essor completes its operations on a shared resource, it 
clears the semaphore by writing a zero to it. 

In practice, two types of semaphores are commonly 
found, the hardware semaphore and the software sema
phore. The use of each is identical and follows the gen
eral concepts outlined in the preceding paragraphs. 

Hardware Semaphores 

Hardware semaphores are those which are implemented 
using physical hardware. Logic components are used in 
circuits which must be designed and constructed by the 

ADR(nV 

IORC/ 

user. Currently, no Intel boards provide for this type of 
semaphore implementation. Hardware semaphores 
have the advantage over a software implementation of 
being faster and requiring less system- bus time. The 
most common designs consider the semaphore as an 1/0 
port although memory mapped designs are certainly 
feasible. 

Hardware semaphores are conceptually thought of as a 
D-type flip-flop. A simplified diagram of a typical sem
aphore is seen in Figure 6(a). Examining the timing rela
tionships of Figure 6(b), it is seen that, if an ini.tial state 
of a clear semaphore is assumed, when a master proces
sor reads the 1/0 port, a data value of "zero" will be 
returned. The hardware immediately sets the flip-flop to 
a logical "one" on the trailing edge of the read signal. 
Any subsequent reads will find the semaphore "set". 
When the user is finished with the resource, it can clear 
the flip-flop by performing a "write" operation to the 
110 port. 

+V 

DATA(n) 

~~~~:-r-<11....-)0---""'CK Q 
XACKI

CLR

Figure 6(a). Hardware Semaphore

----------------r
FLIP·FLOP - - - - - - - - - - - - - - - - ,

XACKI ,_____ _ ____.!
DATA(n)I----~(,,_ _____ _.~~

IOWCI I._____.

Figure 6(b). Hardware Semaphore Timing .

2·137 AFN·01931A

AP·88

The user can prevent contention of a system resource by
incorporating a "wait for semaphore clear" into . his
program. For example, if a resource is protected by a
semaphore at I/O. port 35H, the following PL/M code
could be used to protect the resource:

/* WAIT FOR SEMAPHORE TO CLEAR, LOCK IT *I
DO WHILE INPUT (035H) < > O; END;

/*PERFORM OPERATIONS ON RESOURCE*/

/*CLEAR SEMAPHORE TO ENABLE RESOURCE*/
OUTPUT (035H) = O;

The hardware semaphore is seen to be an effective
method of incorporating mutual exclusion in a multi
processing application. Its major asset is that it mini
mizes system bus overhead and assures maximum bus
throughput by higher priority master devices. Its weak
ness is the requirement for the user to provide hardware
to implement the semaphores. In many cases, the bus
overhead incurred by continuous sampling of the sema
phore when it is busy can be eliminated by providing a
system bus interrupt each time a semaphore is cleared.
If this technique is used, a processor desiring a busy
resource could enable the appropriate interrupt level,
then wait until the semaphore is cleared by the current
user.

Software Semaphores

The concept of software semaphores has long been used
in programming applications. A byte of memory is re
served for the semaphore or flag and this byte is then
tested by software programs to convey data. This imple
mentation is not valid for multiprocessor designs since
there is nothing to prevent a second processor from test
ing and finding a semaphore clear while the first is
attempting to set it. To be effective in multiprocessor
systems, the software semaphore must exhibit the char
acteristics of the ·"test"and-set" hardware implemen
tation.

Many Intel single board computers such as the iSBC
86/ l 2A board incorporate a special instruction prefix
which provides the test-and-set feature. This prefix, the
LOCK, causes the processor board to maintain control
of the system bus while the byte or word operand is
tested and set. PL/M-86 incorporates a special instruc
tion which implements the software semaphore. The use
of this instruction is:

oldvalue = LOCK SET (memory address, newvalue)

This instruction causes the processor board to lock the
bus and place the new value into the specified memory
location. The old value is returned to the calling proc
gram. Only then will the bus be unlocked. An example
demonstrates how this provides mutual exclusion of a
resource.

Assume that a software semaphore, LOCK$BYTE has
been declared. A value of I indicates that the resource is

being used and is not available. A value of 0 indicates
that the common .resource is available to a task. If .the
function reference LOCKSET(@LOCK$BYTE, 1) is
executed, the value of I will be assigned to
LOCK$BYTE. Furthermore, the old value of the sem

, aphore will be returned. If a value other than 0 is re
turned, the statement must be repeated as the resource is
being used by another task. When a value of 0 is re
turned as the old value, the resource has been dedicated
to the calling task. When the task is finished with the
shared resource, a zero. must be written to the sema
phore byte.

A similar technique can be used with 8-bit single board
computers. For example, consider the iSBC 80/30
board. Provision has been made to provide a bus lock
condition when the CPU SOD (the SOD is a output data
line unique to the 8085 processor which is normally in
tended to be used as a serial output line) is active. A task
desiring to gain exclusive access to a common resource,
can lock the bus, then test and set the semaphore flag;
finally, the bus can be freed by clearing the SOD signal.
An example will make this more clear.

Consider the same semaphore which was used in the
PL/M-86 discussion. A task executing on an iSBC
80/30 board and desiring to use the protected resource
w~uld have code similar to the following:

/*WAIT FOR RESOURCE AVAILABLE*/
OLDVALUE = I;
DO WHILE OLDVALUE = I;

CALL S$MASK (OCOH); /*lock bus */
OLD VALUE = LOCK$BYTE; /*get old value */
LOCK$BYTE = I; /*set semaphore */
CALL S$MASK (040H); /* unlock bus */

END;

!* Perform necessary operations on protected resource *I

/* Unlock resource for other tasks to use *I
LOCK$BYTE = O; I* clear semaphore*/

Other boards use a dedicated I/O port to control the bus
lock feature. For example, the iSBC 80/24 single board
computer has dedicated port 05 to control the lock.
Writing a I to this port will lock the bus and writing a 0
will unlock it. With this exception, the technique shown
for the iSBC 80/30 board will work when using the
iSBC 80124 processor board in a multiprocessing appli
cation.

Ill. MULTIPROCESSOR COMMUNICA·
TIONS

For efficient operation of a system solution which uses
more than one processor, a means must be found to
transmit data between the system bus master boards.
:'he data, so transferred, might be used to pass param-

2-138 AFN-01931A

AP·88

eters, to move data strings, or to synchronize events on
the various boards. While it is not the intent of this
application note to fully explain all possible techniques,
it does provide some insight into the most common
multiprocessor data transfer methods.

After a short discussion of various transfer mecha
nisms, the techniques used in the RMX/80 nucleus are
described. The descriptions provide a basis for the
development of an extension to the nucleus which
allows tasks to reside on multiple boards in a multi
master environment.

The most straightforward technique to communicate
between processors is the use of flags or semaphores to
synchronize operations. The procedures used in this
type of data transfer have been explained in previous
paragraphs. As will be seen, this technique will be later
combined with more complex methods to synchronize
the transfer of data.

A second type of communications which may be used
involves creating and maintaining data queues. This
method was created to support a special case of multi
processing, the use of intelligent slaves. The creation
and support of data queues has been thoroughly de
tailed in an Intel application note, AP-53, Using the
iSBC 544 Intelligent Communications Controller. It
should be noted that, even though created for intelligent
slaves, the technique is certainly applicable to the gen
eral case of multiprocessor communications.

The generalized data queue is designed to primarily deal
with the movement of data strings between processors.
The queue provides independent operation for each of
the two involved processors, which may operate upon
the data contained within the queue independently. The
queue handlers, however, must interact since the queue
pointers must never be allowed to pass each other or in
valid data would be handled. This implies that mutual
exclusion must be applied to the pointers to quarantee
their integrity. If this is done, the queue can readily be
applied to the special cases where string data transfers
must take place between various processor boards.

Multiprocessor systems infer that the application breaks
down into functionally independent blocks or "tasks".
Frequently, these global tasks will most often be further
subdivided into smaller on-board or local tasks. These
systems will frequently use real-time executive operating
systems.

Communications between tasks can involve the trans
fer of many types of information. In some cases, data
strings must be moved. In others, the transfer may be
only used for synchronization of events. Intel's
RMX/80 multitasking operating system supports the
movement of data (messages) through the use of ex
changes. In this implementation, actual messages are
not moved in memory, but instead, a pointer is gener
ated to the message area and this variable is passed
between tasks. Before proceeding with the development
of a multiprocessor message driver, some time must be

2·139

taken to assure that the message/ exchange relationships
are fully understood by the reader.

Messages
A message is a collection of data that one task sends to
another task. It may be thought of in the context of a
letter which is to be sent from one person (task) to
another. Like a letter, the purpose of the message is to
convey information or to request a service. Messages
used in RMX/80 systems conform to a standard format
similar to conventional letter connotations. It contains a
heading and a variable length data area. The heading
can be from 5 to 9 bytes in length and corresponds to the
format shown in Figure 7.

The LINK PORTION of the heading is used by the
RMX/80 nucleus to keep track of other messages which
are addressed to the same place (exchanges). If no other
messages are present, the field will be set to zero.

2 LENGTH

4 TYPE

. I ""
5 I HOME EXCHANGE ------i
r-------------------------~

7 I RESPONSE EXCHANGE I
L-------------------------~ g I I

: : DATA :

nL------------------------~

Figure 7. RMX/80™ Message Format

Exchanges
The exchange can be thought of as a mailbox into which
messages are placed. In reality, only the location pointer
of the message is placed into the exchange. Each ex
change is defined by an Exchange Descriptor area of
RAM memory. The format of an Exchange Descriptor
is shown in Figure 8. The purposes of each field will be
defined in the following paragraphs and should be
understood since the development of a multiprocessor
RMX/80 exchange protocol will use many of these
fields.

0 MESSAGE HEAD

MESSAGE TAIL

TASK HEAD

TASK TAIL

EXCHANGE LINK

Figure 8. RMX/80™ Exchange Descriptor

MESSAGE HEAD is used to provide a pointer to the
first message which has been placed into the exchange.
If no messages are present at an exchange, the value of
the field will be set to zero. As will be seen, this field can
be tested by a task to determine if a message is already

AFN·01931A

AP•B8

waiting at an exchange when the task is. to accept a
message.

MESSAGE TAIL provides a pointer to the last message
waiting at an exchange. If no messages are waiting; the
pointer will be set to the address of the exchange. The
multiprocessor interface which will be designed must
provide an update ·capability for maintaining this field.

TASK HEAD is a pointer to the first taskwhich is wait
ing at the exchange for a message. If no task is waiting,
this field will be set to zero. Again, a simple tdst, when
sending a message to see if a task is to be activated, is to
test the. field for a zero value. ·

TASK TAIL provides another pointer whichjndicates
the last task which is waiting at an exchange. As.with the
Message Tail, the field is set to the address ofthe ex
change when no task is waiting at the exchange.

EXCHANGE LINK contains the address of the next
Exchange Descriptor in the list of all. the exchange
descriptors in the system. This value is established by
the RMX/80 nucleus and does not require special atten
tion in the multiprocessor modifications.

RMX/80™ Nucleus Communications
This section of the application note will deal with the
generation of an RMX/80 extension which will allow
the transfer of messages between tasks which reside on
different processors. Three RMX/80 operations will be
supported and parallel procedures developed. These will
be the nucleus functions RQWAIT, RQSEND, and
RQACPT.

RQWAIT is used to allow a task to receive a message
from an exchange. If a message is available, its location
will be transferred to the receiving task and program
execution will continue. When no message is available,
the task will be placed on the wait list until such time
that a message has been placed into the exchange by
some other task. RQWAIT provides for the capability
of allowing a maximum time during which a task will
wait at arr exchange for a message. The multiprocessor
equivalent of this function which is explained in this
application note is identified as IPWAIT. It is func
tionally equivalent except that no provision has been
made to support a maximum time interval.

RQSEND is a procedure which allows a task to send a
message to an exchange. If no tasks are waiting at the
exchange, the message will he queued with any other
messages which may already be waiting there. If a task
is found to be waiting at the exchange, it will be placed
onto the ready list so that it can compete again for proc
essor resources. The. multiprocessor equivalent defined
by this note is called IPSEND.

RQACPT provides a procedure which gives a task the
ability to test an exchange to see if a message is present.
If oneis waiting, its address will be returned to the call
ing task. If no message is available, a value of zero is

returned. The . multiprocessor equivalent is called
lPACPT.

The concepts used to develop each of the three. exten
sions are discussed in the following paragraphs. Not
only should this development assist the user in creating a
multiprocessor executive, but it should also help in the
understanding of the operation of the RMX/80 nucleus.

Multiprocessor Message Transfers
Normal message transfers take place between tasks
which are resident on the same processor board and thus
are able to share a common memory area for the storage
of the message's data. When a multiprocessor configur
ation is implemented, these tasks may not necessarily
have all· memory areas accessible to each other. An area
of memory which is common to all processor boards
must be created to implement a multiprocessor system.
This memory will be hereafter referenced as GLOBAL
memory. All common resources which may be needed
or used by a task which might have a need to perform
multiprocessor operations must use the Global memory
area.

The implementation of a RMX/80 extension which pro
vides a multiprocessor communications driver can be
performed using the knowledge gained from the defini
tions of the fields in the messages and exchanges. The
development will begin with the concepts involved in
executing an exchange wait.

WAITING FOR A MESSAGE

First consider the condition in which a message is wait
ing at the specified exchange when the task performs a
request to obtain a message from an exchange. In this
case, the message can be accepted directly (and the
pointer fields updated accordingly) and the task can
proceed normally. The sequence of events. for this. type
of condition can be seen in the flow chart of Figure 9. A
complete listing of the code can be found in Appenc)ix
A. References will be made to lines of cod'e which are
pertinent to the discussion by using a pointer in paren
thesis. Thus a reference to code at line (1.14) will indi
cate program 1, line 14 in the appendix.

The procedure can exai;nine the LINK field of the mes
sage to determine if more than one message is waiting at
the exchange (1,36). A zero in the field indicates that no
other messages are present. The value of the LINK field
should be moved into the MESSAGE HEAD field of
the Exchange Descriptor (1.36). The MESSAGE TAIL
field should reflect the last message. If more messages
are present, the field can be left unchanged; otherwise,
the field should be set to the exchange address. The ad
dress of the message is returned to the calling program,
allowing it to use the data contained in the message
(1.40). Note how the use of a software semaphore has
been used to prevent more than one processor modify
ing the exchange and message descriptor data at the
same time (1.24; 1.39).

2-140 AFN·01931A

LOCK OUT DATA
STRUCTURES

ADJUST EXCHANGE
MESSAGE TAIL

ADJUST EXCHANGE
MESSAGE HEAD

SET MESSAGE LINK
TO MESSAGE ADDRESS

UNLOCK DATA
STRUCTURE

RETURN MESSAGE
ADDRESS

AP·88

The technique described above provides a direct ap
proach to getting a message from an exchange. A more
complete methodology is required when a message is not
waiting at the exchange. This is the subject of the fol
lowing paragraphs.

As tasks queue up at an exchange waiting for a message,
provision must be made to create and maintain a link
list of those tasks. Since the source code associated with
RMX/80 is not normally available to the user, the effect
of using the existing data structures cannot always be
determined. An extension must be developed which will
support the maintenance of a link list of queued tasks.
Thus, each task descriptor will have a THREAD pointer
added which will point to the next task waiting at the ex
change. Each exchange descriptor will have two fields
added, one for use as a TASK HEAD pointing to the
first task waiting at the exchange, and a second field,
TASK TAIL which points to the last task waiting at the
exchange. These fields will be added to the existing
RMX/80 descriptors for those tasks and descriptors
which are associated with multiprocessor operations.

Figure 9. Getting a Message from an Exchange

Figure 10 provides representations of the exchange and
task descriptors as they would be configured for various
conditions. Consider first the condition in which one
task is already waiting at an exchange. The TASK TAIL
and the TASK HEAD will be pointing to the task de
scriptor of the waiting task. Since only one task is wait
ing, the THREAD field of the task will contain a zero
value. Appendix A contains the listing of the code re
quired to add a task to the exchange queue. The pro
gram is the same as the one previously discussed when a
message was waiting at the exchange as the calling task
attempted to obtain a message. If the test indicates that
no message is present (1.25), the fields must be updated

EXCHANGE
DESCRIPTOR

IP$TASK$H EAD

IP$TASK$TAIL

EXCHANGE
DESCRIPTOR

IP$TASK$HEAD

IP$TASK$TAIL

EXCHANGE
DESCRIPTOR

IP$TASK$HEAD = 0

IP$TASK$TAIL

TASK
DESCRIPTOR

1

IP$THREAD

l .,,,.,, "'"'"
(VALUE=O)

TASK TASK
DESCRIPTOR DESCRIPTOR

1 2

IP$THREAD IP$THREAD

) >WO'"" WAm'°

(VALUE=O)

Figure 10. Task Queuing at an Exchange

2·141 AFN·01931A

AP·88

as shown in Figure 8 and add the new task to the waiting
list. The RMX/80 nucleus maintains the address of the
task descriptor of the task currently running in a vari
able, RQACTV. This pointer to the current task must
be placed into both the TASK TAIL of the exchange de
scriptor and into the THREAD of the last task queued
onto the exchange (1.29). In addition, the THREAD of
the current task should be set to zero to indicate that it
will be the last task waiting at the exchange (1.30).

The reader, studying the program listings, might note
the condition of the exchange having no tasks waiting
when the task is queued up (1.28; 1.29). In this case, the
TASK TAIL pointer is clearly pointing to the exchange
descriptor and not to a task! The pointer normally
placed into the task descriptor's THREAD field will be
placed into a field of the exchange descriptor. This
potential trouble area is overcome by constructing the
fields of both descriptors to have offsets equivalent as
shown in Figure 10. The THREAD data will now be
placed into the TASK HEAD field as should.be done if
no tasks are already queued up.

Finally, since the task should no longer compete for
system resources until a message is available to it, the
program should be placed onto the delay list. However,
since this list is maintained by RMX primative proce
dures which are unavailable to the user, the same effect
can be obtained by constructing a multiprocessor user
wait list and then suspending the task (1.32). At this
point, the nucleus will activate another task from the
ready list and the suspended task will remain in that
state until it is resumed. When resumed, program execu
tion will begin at (l.35), where a pointer from the
DELAY pointer of the task descriptor will be returned
to the calling program. Programs which will activate the
task must ascertain that the pointer contains a reference
to the message which is to be received by the task.

SENDING A MESSAGE

The conditions which may be encountered in perform
ing a sending of a message to an exchange must now be
considered. Two paths must be explored in the discus
sion; the operations required when a task is waiting at
the exchange and the operations used when a task is not
already waiting. The program which is constructed to
support the required operation is called IPSEND and
will have its line numbers referenced as (2.n) where n is
the line number on the listing.

If the exchange to which a message is being sent does
not have a task waiting (2.26), it is only necessary to
modify the descriptors to indicate the presence of the
message. Figure 11 shows the field pointer requirements
for the various conditions which may be encountered at
the exchange when no task is waiting.

An exchange having no messages already present will
have the MESSAGE TAIL pointing to the exchange
descriptor. A message structure of the last message at
the exchange will be defined based upon the MESSAGE

TAIL and the first element of the structure will be set to
point to the new message (2.28; 2.29). When no message
was already queued, this. action will set the MESSAGE
HEAD to the new message. When a message was pres
ent, the LINK field will be set to point to the new mes
sages. Next. The LINK field of the new message will be
set to zero, indicating that it is the last message in the
queue (2.30). Operation of the program can then con
tinue.

EXCHANGE
DESCRIPTOR

MESSAGE HEAD 1------i
MESSAGE TAIL µ

EXCHANGE
DESCRIPTOR

MESSAGE HEAD

MESSAGE TAIL

EXCHANGE

MESSAGE

LINK=O

DESCRIPTOR MESSAGE

MESSAGE HEAD 1-----ulN:• K 7
MESSAGE TAIL

MESSAGE

LINK=O

..._ __ _,

Figure 11. Placing a Message in an Exchange

The operations become more complex when one or
more tasks are already waiting at an exchange for a mes
sage. In this case, the task will have been suspended as
was shown in the previous discussion about waiting for
a message. A technique must be established to again
cause the waiting task to be placed on the ready list of
the RMX/80 nucleus.

Conceptually, this can be done by generating an inter
rupt which will cause all processors to test if they are the
one which controls the task which is waiting at the ex
change to which the message has been sent. If not, no
action will be taken by that board. If the task resides on
the single board computer responding to the interrupt,
the suspended task can be resumed and placed again on
the ready list. For the purposes of this application note,
interrupt level 4 will be used to provide the mechanism
to cause each system processor to determine if the task
to which the message is directed r.:sides on that board.

The generation of an interrupt onto the Multibus system
bus is implemented on newer iSBC boards by merely
adding jumpers to wire wrap posts on the board. Figure
12 shows the schematic of the interrupt mechanism
associated with interrupt level 4 on the iSBC 80/30
single board computer. An interrupt can be generated
onto the Multibus system by toggling bit 7 of the I/O

2-142 AFN·01931A

AP-88

port. Note that the interrupt is also routed back to the
source board, so all processor boards, including the one
generating the interrupt, will respond to it.

8259

185

8255A QC

CONTROL PORT= EB

Figure 12. Interrupt Mechanism

A program has been written and is shown in Appendix
A which generates the required interrupt onto the
system bus. The program is identified by the name
SET$INT and is referenced in this application note with
the pointer scheme (3.n) where n is the line number of
the code.

Of specific interest in the program listing is the use of
software semaphores to provide an indication of the
length of time which the interrupt line must be kept
active. Semaphore 6 is used to provide mutual exclusion
to the interrupt gneration mechanism (3. I I) and sema
phore 5 provides the synchronization mechanism. The

EXCHANGE
DESCRIPTOR

IP$TASK$HEAD

IP$TASK$TAIL v
TASK #1

DESCRIPTOR

THREAD

latter semaphore is set prior to establishing an active
condition on the interrupt line (3.13). When the pro
cessor having the task which is to be activated recog
nizes the interrupt, it will clear the semaphore level. The
interrupt should be held active (low) by the processor
board which generates the interrupt until the semaphore
has been cleared (3.16; 3.17).

Note that in line (3.14), a processor identification num
ber was stored in the variable PROC$ID. The technique
which can be used to obtain this target processor refer
ence is to store the processor number into the exchange
descriptor ST A TUS field when the task is queued onto
the exchange descriptor (L27). When the message is
finally sent to the exchange and the task is taken off the
exchange descriptor (2.40), the identification can be
stored for use by the interrupted processor. Any proces
sor which receives an interrupt with an identification in
PROC$ID which does not match its own processor
identification should ignore the interrupt.

Figure 13 shows the process of dequeueing a task from
the exchange descriptor. Since one or more tasks were
waiting at the exchange, no messages could exist at the
exchange. The first operation (2.36) involves adjusting
the pointer to the first task waiting at the exchange to
point to the next waiting task (if only one task was
waiting, the value of zero will be stored as a pointer). If
only one task is waiting (2.36), the exchange task tail is
set to point to the exchange (2.37). The message link and
the task delay pointers must be set to the address of the

MULTIPROCESSOR
VARIABLES

INT$PROC$EXCH = 0

PROC$1D = OFFH
STATUS (PROC ID)

EXCHANGE
DESCRIPTOR

IP$TASK$HEAD

IP$TASK$TAIL

1-,

!---'

IP$THREAD

WAITING FOR A MESSAGE

TASK #1
DESCRIPTOR

THREAD

STATUS

IP$THREAD

INTERRUPT GENERATED

MUL Tl PROCESSOR
VARIABLES

.---IN_T_$-PR_O_C_$_E_X-CH-~

PROC$1D=
PROCESSOR#

MESSAGE

LINK

Figure 13. Dequeueing a Task

2-143 AFN·01931A

AP•88

message (2.38) to support standard RMX/80 protocol.
The task delay pointer is used by the receiving task to
pass the address of the message when it returns to the
active condition (l .33).

Before generating the interrupt which will place the
waiting task onto the ready list, parameters which iden
tify the task's processor (2.38) and internal descriptors
(2.39) must be placed into a global memory area. As will
be seen, this area can then be tested by each processor
when an interrupt is received. An interrupt can now be
generated which will cause all processors to examine the
multiprocessor global memory to determine if the mes
sage is directed to a task which resides on that processor
board.

RESPONDING TO INTERRUPT REQUEST

As the interrupt is generated, each processor in the sys
tem will service the request. An RMX/80 task can be
written which waits at the interrupt exchange and which
will service the interrupt request. However, in order to
optimize the system performance, a user interrupt
routine has been provided. A listing of this program,
INT4, can be found in Appendix A. Code line numbers
for this listing are identified by the nomenclature (5 .n)
where n is the line number of the code.

The program will first test the target processor identifi
cation (5 .40) to determine if the task to be placed onto
the ready list resides on the board. If the interrupt is
found to be for another master, it will be ignored and
the interrupted program will continue (5.41).

If, however, the processor is the recipient of the mes
sage, the global field containing the identification is
cleared (5.43), the interrupt i.s acknowledged (5.44)
allowing the sending master to continue the execution of
its tasks, and a message is sent to the RMX/80 interrupt
handler task, INTHND (5.45).

The interrupt handler continues with the INTHND pro
cedure which is identified by the use of (6.n) where n is
the line number of the code in the procedure. This task
operates under the standard RMX/80 nucleus and is
waiting at an interrupt exchange (6.34) for an interrupt
message to be sent by the interrupt handler program,
INT4. A second validity test is then performed (6.36) to
verify that a multiprocessor message has actually actu
ated the task and that the interrupt is not to a spurious
noise signal. The task pointer is saved and then cleared
to allow transfer of additional messages (6.38; 6.39).
The task which was waiting at the exchange is then again
placed onto the ready list by performing a "resume"
RMX/80 command (6.42). Thus, the transfer of a mes
sage between two tasks residing on either. different or
the same processors has been completed.

TESTING AN EXCHANGE

Many tirnes it is required to test an exchange for. the
presence of a message without actually waiting ·if no

message is available at the time. This is the function of
the standartl RMX/80 procedure RQACPT. A multi
processing version of this function, IPACPT, was in
cluded in the extension to the RMX/80 nucleus. It is
found in Appendix A and is identified by the references
(4.n).

Basically, the program need only determine if a message
is present at the exchange. This is done by testing the ex
change message head field (4.25) for a non-zero value.
If no message is present, the value will be set to zero and
a return to the calling task can be performed which indi
cates that no message was found (4.28). If a message is
found, the functions defined in IPW AIT can be exe
cuted to adjust the descriptor fields and return the mes
sage address. This is most easily accomplished by simply
calling the IPWAIT procedure (4.32).

INITIALIZATION OF DESCRIPTORS

Before the multiprocessor message exchange procedures
just described can function properly, various data fields
must be initialized just as is done by the RMX/80
nucleus. Two programs have been written to accomplish
this task. One, the GLINIT program, initializes the
common global variable fields which are common to all
processors. This includes such fields as the processor
identification (7.14) and the target task pointer (7 .9).
This program also initializes the extensions which have
been made to the exchange descriptors (7.10).

A second program operates on functions which are
unique to each processor board in the system. For exam
ple, the I/O ports used to generate the global interrupts
must be initialized to the correct state (9.43). The inter
rupt exchange (9 .45) and interrupt handler (9 .46) must
be created and linked to the nucleus. Since user written
interrupt service routines are used, they must also be
defined to properly vector the interrupts when they oc
cur. This is the function of lines (9 .47) and (9 .48).

If a board other than the iSBC 80/30 computer were
used in the system, this second initialization routine
would require modification to adjust it to the peculiar
characteristics of the board used,

2-144

USE OF SEMAPHORES

All of the tasks which provide for multiprocessor mes
sage transfers rely ·upon the ability of procedures to
exclude access to the RMX/80 extension which provides
this capability until the message has been transferred or
queued onto an exchange. This is done using sema
phores in two programs identified as LOCK and
UNLOCK. The same techniques which were earlier
described are used and can be seen in the Appendix list
ings. Since the processors used in this application note
were iSBC 80/30 single board computers, a bus lock
command (8.17) for that board was used. The use of
other boards, would require a modification of this in
struction to conform to the board design. The bus lock
command has no effect on memory which is accessed

AFN-01931A

AP-88

using the on-board local bus. In order to provide an
effective semaphore, the RAM used for a software
semaphore must reside in a memory area which is exter
nal to the processor board. For this reason, the dual
ported memory of an iSBC 80/30 board cannot be used
and memory which is not contained on a board which
uses the semaphore must be included in the system.

System Resource Sharing
Many of the advantages of a multiprocessor system can
be lost when drivers and peripheral devices are dupli
cated for each single board computer. For example,
consider a system which maintains an on-going inven
tory system on a mass storage device such as a disk
drive. If distributed single board computers are used to
support each individual operation of a product as it
moves through the process, only a common disk system
will allow modification of the data base by each proces
sor. If a means can be found to also share the driver to
the disk, considerable programming effort and code
space can be saved.

The RMX/80 nucleus is designed to support many spe
cial 1/0 device handlers such as the terminal handler,
and the disk file system (DFS). An intermediate level in
terface can be constructed which will allow any of the
system processors to use common drivers on one master
board. The program which will be developed in this ap
plication note for interfacing with common system
drivers is called BIPI. A listing of this program can be
found in Appendix B.

Several options exist when selecting a target device
which is to contain all the required system resources.
One possibility is to arbitrarily pick a processor board
and configure the necessary drivers onto it. However,
another choice seems to present many more system ben
efits. This is the dedication of one processor board to
the operator interface and then using the iSBC 802
RMX/80 BASIC interpreter on this board. Consider,
for a minute, the implications of configuring a system in
this manner.

It is a fact that minimal development cost will be in
curred if the programming is done in a high level
language. Unfortunately, systems involving large
amounts of digital input and output, or having to inter
face with peripheral controllers, do not lend themselves
well for programming with a high level language. On the
other hand, it is difficult to perform data manipulations
of strings and numerical data using programs written in
lower level languages. An optimum solution is then to
create a system which combines the attributes of both of
the language types.

An analogy can be drawn between a conventional single
processor system and one which uses multiprocessors.
In the system which uses a single processor, assembly
language routines can be written for minimum code size
or time critical functions and can be linked with PL/M
or FORTRAN programs to produce the final object

2·145

module. A multiprocessor system can be thought of in
the same manner. Here, individual functions are repre
sented by a complete single board computer, each of
which can use some combination of the available lan
guages. System design can emphasize the positive attri
butes of each language which is available.

The iSBC 802 BASIC package can be included in a
multiprocessor system much the same as a common sub
routine in smaller systems. Various other processor
boards can use the I/O capabilities of the BASIC inter
preter as needed. In particular, the DFS (Disk File Sys
tem) and terminal handler can be shared as needed by
each board.

Because the 1/0 drivers contained in the BASIC Inter
preter use standard RMX/80 exchanges, they cannot be
directly accessed using the multiprocessor interface
which has been developed earlier in this application
note. A special intermediate interface is required which
will interface with the iSBC 802 software. This is the
function of the program, BIPI, which will be linked
together with the other tasks contained on the single
board computer used for the BASIC interpreter. Cer
tainly, the concepts which will be used to develop the in
terface to the common 1/0 services of the iSBC 802
software can easily be extended to support other pack
ages such as the iSBC 801 FORTRAN run-time pack
age.

Requests to have a service performed by the BIPI
module will be received in the form of a message to the
global exchange, BIPI$EX. A definition of services
which may be required by a remote processor will pro
vide the basis for a definition of message types which
will be supported by the interface.

A fundamental request will be to gain access to the
operator keyboard or display terminal. Thus two
message types can be defined to read from the terminal
keyboard (READ$TYPE) and to output to the display
(WRITE$TYPE). To provide process tasks with the
ability to examine and modify data which is stored on
the disk drive media, a set of commands must also be
generated which interface to DFS. Five command types
will prove to be sufficient for this task. Corresponding
to the RMX DFS disk message types, the program will
define disk open operations (DFS$0PN) and close
operations (DFS$CLS). Positioning capabilities are sup
ported by a seek command (DFS$SK). Finally, read and
write requests are supported by the read &DFS$RD) and
write (DFS$WT) commands.

Examination of the program listing will indicate that
disk request message types use the type numbers from
72 to 79. This provides a simple method of distinguish
ing a disk request from a terminal operation message.
The numbers were chosen such that subtraction of 64
from the message type will yield the message type which
must actually be sent to the DFS exchanges by BIPI.

In many cases, it may be desirable to suspend the
BASIC program (or the FORTRAN program) while

AFN·01931A

AP~aa

peripheral I/O resources are being shared by another
processor. An example might be when a task is report·
ing an. alarm condition to the operator and requires
some interactive communications with him. Certainly,
these communications cannot be intermixed with mes
sages from the program which was running on the ter
minal. Therefore, two additional commands have been
provided which will suspend (SUSBAS) and resume
(RESBAS) the task which might have been competing
for a system resource.

Study of the program listing for BIPI will provide the
reader with an insight into the use of the multiproces
sing RMX/80 extensions which have been developed in
this application note. Both standard RQ ... calls and
multiprocessor IP ... calls are integrated into the task.
When the concepts are clear, a real application example
can be examined to see how multiprocessing can assist in
the solution of an otherwise very complex design prob·
!em.

IV. APPLICATION EXAMPLE

The previous development of multiprocessing exten·
sions to the RMX/80 nucleus allows the application ex
ample development to continue. A solution using multi
processor techniques can be easily implemented using
these concepts and the extensive line of Intel single
board computer products. The results can be examined
to verify that multiprocessing has provided a better
solution than would have been gained if only one proc
essor had been used.

The merits and deficiencies of multiprocessing must be
examined to ascertain that the application is likely to
benefit from a solution which uses more than one proc
essor. Certainly, many functions can be better per
formed using a higher speed microcomputer on a single

DUAL
DISK

DRIVE

board. The decision to use multiprocessing must be
made on a cost/performance basis.

The application defined at the beginning of this applica
tion note provides an excellent example of the multi
master solution. Each functional section of the applica
tion is developed into an actual board implementation
which includes all resources required for its support.

Supervisor Implementation
The supervisory functions are likely to require extensive
computational functions, report generation and oper
ator interaction. It is also likely that, as the management
gains experience with the system, the functions required
and the algorithms used will be constantly modified.
These operations are not generally real-time driven so
extremely high system throughputs will not be required.
The Intel iSBC 802 BASIC package running on a single
board computer will provide a solution to these require
ments. In terms of hardware design, the supervisory
functions can be considered without regard to any con
trol functions. The primary interface can be through
data bases stored on a mass storage device and with the
"peek" and "poke" instructions where necessary. The
system configuration for the supervisory function can
be seen in Figure 14.

Because the supervisor will rely extensively upon the
interaction with the operator and the mass storage
devices, it is natural that it have associated with it the
terminal handler and the DFS system. The addition of
the BIPl interface task to the BASIC interpreter pack
age will allow the control tasks to easily interface to the
inventory and control data bases as required. Figure 15
shows the primary tasks which operate on the supervisor
control processor. Note that there exists two operating
tasks, BASIC and BIPI, along with support functions
of the DFS and terminal handler. Any program which is

iSBC 204™
DISKETTE

CONTROLLER

iSBC032™
MEMORY

EXPANSION

iSBC 80/30™
SINGLE BOARD

COMPUTER

INTEL iCS 80™ INDUSTRIAL CHASSIS WITH iSBC 640™ POWER SUPPLY

Figure 14. Supervisory Configuration

2·146 AFN·01931A

AP-88

being run under BASIC will essentially become an ex
tension of the existing interpreter task.

Programs can be written which will provide the required
algorithms to implement the inventory control system
and production scheduling of the system using a high
level language which may easily be modified as required
by the future system requirements.

The rest of the system consists of control elements. They
may easily be thought of as supervisor subroutines
which are called as required and which have parameters
passed with the call. Unlike conventional designs, these
subroutines will reside on different processor boards.

Weighing Ingredients

One functional task has been defined as weighing the in
gredients according to a formula in order to provide the
correct ratio of ingredients to produce the final product.
As with most functional areas, a closer examination
shows that this involves rather complex relationships
and breaks down into many smaller tasks. Figure 16
shows the logical flow of operations which are required
to weigh the ingredients into their proper ratios. From
the information contained in this flow diagram, tasks
and exchanges necessary to implement the function can
be defined and the coding generated.

BASIC WORK
&

VARIABLE STORAGE ,-
1
I
I
I GLOBAL '-,
I DESCRIPTORS '-,
I & VARIABLES ' I __ ...,

__ _, i------- I
I I
I I
\ ___)

-----' L.....-----

Figure 15. Supervisor Software Structure

ALERT

TRY AGAIN OPERATOR ACCEPT IT

l TOO MUCH
TIME

COMPUTE ADD -1-- DESIRED t---r-1 MATERIAL ALERT ACCEPTED
INGREDIENT TO OPERATOR

WEIGHTS SCALE I TARGET WT.
REACHED I TOO MUCH

WAIT FOR
TEST DISCHARGE

WEIGHT ~ UPDATE BATCH
VIBRATIONS 'TIME FOR INVENTORY

INTO r-
TO SETTLE COMPLETE MIXER

UP a.c.

J TOO LITTLE MOVE
MATERIALS

Figure 16. Weighing Logic Flow

2-147 AFN·01931A

AP-88

The tasks which were defined for this application exam
ple are shown in Figure 17. The task communication
paths through exchanges has also been illustrated in the
figure. Basically, the weighing function consists of four
on-board tasks and calls upon tasks contained on other
boards as is required using the global exchanges created
according to the structure defined earlier in this applica
tion note. Some time should be taken to explain the
functions of each task and how they relate with tasks of
other processors in the multiprocessor design solution.

The schedule task,. SCHDLE, is the interface between
the operator commands and the weighing functions.
This task will wait for a POKE command to pass it a
flag which indieates that a batch is to begin. At this
point it will organize the data which will be required by
the weighing task into predefined memory structures
and will then signal the weighing task to begin its opera
tions. A second function performed by the schedule task
is the initialization of system variables each time a reset
is performed on the processor board.

The weighing task, SCALEO, is responsible for actually
producing the required amounts of each ingredient. All
the functions indicated in Figure 15 are implemented by
the weighing task. The task uses resources of other proc
essors as well as on-board tasks to assist in the prepara
tion of a batch of material.

A scale driver task, SCLWT, is included on the proces
sor as a local support task to assist the weighing opera
tions. It is responsible for interfacing with the analog to
digital converter (ADC) and converting the data re-

ceived from it into engineering units which represent the
actual weight of material which is in the scale. The scale
weights are passed between two tasks using an exchange
(SCL WTEX) to provide mutual exclusion.

In wighing applications, many times a feeder will mal
function and not deliver material into a scale when
directed to do so. If no provision is incorporated into a
system design to detect this condition, an infinite time
period could be required to weigh a material and, need
less to say, the system throughput would be severely
degraded. A slow fi)I detection algorithm is normally in
corporated into weighing systems to provide this ser
vice. For this application, this function is generated
using a slow fill task, SLOFIL. Functionally, the opera
tion of the task is to accept a message from the weighing
task that it has commenced weighing a material.
SLOFIL will then begin a timed wait at an exchange for
a period which corresponds with the maximum allow
able time period for the material to be added into the
scale. If the time elapses and a message has not been
received from the weighing task indicating that cutoff
has been reached, a message will be sent to the weigher
indicating that a problem with the equipment exists. The
operator can then be alerted to correct the malfunction.

The weighing function provides a good example of how
off-board system tasks can be used to interface with
those which are on-board to extend the capabilities of
the system. The sharing of the terminal handler and of
the DFS system has already been discussed. The weigh
ing function calls upon these tasks, through BIPI, for
assistance in updating the inventory and when it is
necessary to communicate with the operator to resolve a

r-------, r--------,
SCALE
DRIVER
SCLWT

SCHEDULER ,__ __ ___,
SCHDLE

SLOW FILL
SLOFIL

I DFS I I TERMINAL I
I HANDLER 1
I BIPI I
'---7- ... --.J

,//// '',,

I FREE I
I SPACE I I MANAGER :

~;:---'";;----"
_,,,,.... /'

/

///

r-------,
I I

---------1 MIXER I
~ FUNCTIONS I

------, I
...... -..... -- ~-------J

,,
'',, r-------,

'',, I DIGITAL I
.... 1/0 I DRIVERS I

L. _______ J

Figure 17. Weighing Task/Exchange Relationships

2·148 AFN-01931A

AP-88

system problem. Other examples can also be seen. For
example, the decision was made to use a common digital
I/O board for all process functions. This gives the abil
ity for access to the control and sensor devices to both
the controlling tasks and to the operator for performing
maintenance programs or even operating the system in a
semi-automatic mode should a controller fail. All 110
data is moved through exchanges, PTBnEX, and the ac
tual I/O is performed by a task which resides on another
board.

Another example of multiprocessor communications in
volves message passing between the weighing tasks and
the mixing tasks contained on another board. The
weighing task is responsible for discharging the material
into the mixer, but it certainly cannot do so unless it
ascertains that the mixer is empty and available. It does
this by testing the exchange, MIXINT, for the presence
of a message indicating that the mixer is available. The
mixer tasks, as will be seen, support this exchange by
removing the message when no material should be
added into the mixer and placing a message into the ex
change when a mixer is ready. Further communications
with the mixer are required because the mixer task must
be synchronized with the discharging of material into it
by the weighing function. This is provided by message
transfer through global exchange, MIXEX.

Finally, because only a limited amount of RAM is avail
able in a particular system, the free space manager was
used in this application to allocate blocks of global
memory to individual processor boards. This allocation
is handled by sending messages to the global exchange,
BUSEX, which will be received by an intermediate task
on another processor and will result in a block of mem
ory being allocated to the weighing task for message
generation.

Other Application Tasks
A processor was dedicated to support each of the re
maining three application processes. It would be repeti
tious to again detail each subtask which makes up each
functional area. The same techniques which were
demonstrated in defining the weighing application can
be used to define the generalized functions and to break
these functions into codable tasks.

Data is transferred between processors in the form of
messages which occupy RAM area. The use of the
RMX/80 Free Space Manager provides a global tool to
allocate and reclaim this memory area. The Free Space
Manager was implemented on the mixing processor be
cause substantial amounts of ROM remained on-board
after coding all the required tasks. This ability to select
from many processors the location for global resources
is an important tool in multiprocessor applications.

Total Application Configuration
Figure 18 shows the functional software implementation
for the entire chemical application chosen for this appli-

2-149

cation note. The approach has demonstrated that a rela
tively complex application can easily and quickly have a
control solution generated using multiprocessing con
cepts. The ability to extend the multitasking capabilities
of the RMX/80 nucleus led toward the creation of
modular software.

Figure 18. Software Configuration

In addition to allowing the generation of modular soft
ware, the approach taken on this example has allowed a
modular approach to the hardware implementation.
Figure 19 provides the complete hardware block dia
gram of the final implemented system. Each functional
section was designed as though it were the only required
element to create a solution to the control. problem.
Indeed, even after start-up, a functional module can be
removed from the system without affecting the opera
tion of remaining modules. The concept can be ex
tended to include the capability of adding new processes
to the total system without having to disrupt the existing
production flow control.

V. CONCLUSION
This application note has demonstrated how a user can
extend the concepts of multitasking into a multiproces
sing/multitasking environment. The built-in multiproc
essing capabilities of the various Intel single board com
puters have been explained and their implementations
demonstrated through examples.

Resource sharing between processors has been dis
cussed. In particular, the use of a high level language
such as BASIC or FORTRAN as a supervisor has been
explained and shown in an application. Since these soft
ware packages contain the resources required for disk
support and terminal 1/0, a program has been devel
oped which will allow other processors to share the
RMX/80 drivers.

AFN·01931A

AP·88

iCS 80™ INDUSTRIAL CHASSIS WITH iSBC 640™ POWER SUPPLY

ICS 930™ PANEL
CCTlTITTTITIJTI

SYSTEM DIGIT AL '10

SENSORS & CONTROLS

iCS 930™ PANE,l

=

Figure 19. Hardware Block Diagram

Finally, an application has been selected, and a control
solution developed using the concepts derived in the ap
plic<1tion note. The operation of the RMX/80 exten
sions have been tested and their operation verified.

Multimaster operations are possible because of many
built-in features of the Intel products and the extensions
to the RMX/80 nucleus used in this application. A sum
mary of these features and the corresponding product
is:

Multitasking Capability -
Furnished by the RMX/80 nucleus. It allows the user
to share the on-board resources of a processor board
between multiple tasks or functions.

Message Transfer Capabilities -
Also furnished by the RMX/80 nucleus. This func
tion allows data to be passed between tasks to pro
vide both an information exchange and a means of
task synchronization.

Free Space Management -
The RMX/80 executive provides the ability to share
memory between various tasks. Memory which is not
constantly required can be used by more than one
user, then returned to the memory pool.

Terminal Handler -
The RMX/80 terminal handler provides a convenient
resource for supporting the communications with the
operator via a CRT terminal.

Disk File System -
The RMX/80 Disk File System (DFS) provides a
common resource which allows tasks to access or to
store data on a diskette.

Interprocessor Communication Software -
The software developed in this application note pro
vides an extension to the RMX/80 nucleus which
allows tasks to reside on any multimaster board con
nected to the Multibus system bus.

Bus Arbitration Logic -
The Intel single board computers used in this applica
tion incorporate bus arbitration logic which controls
the bus access to the Multibus system bus.

Parallel Priority Logic -
The application uses a parallel priority logic network
which is constructed on a prototype board. In con
junction with the bus arbitration logic on each multi
master board, it controls the requests for data trans
fers over the Multibus system bus.

Bus Lock -

2·150

The capability of assuming exclusive control of the
Multibus system bus by using the bus lock mecha
nism allows the implementation of software sema
phores. These semaphores are used to provide
mutual exclusion of certain physical resources.

AFN-01931A

AP-88

BASIC Interpreter -

The use of the iSBC 802 BASIC interpreter greatly
reduces the amount of time required for the genera
tion of report programs and of interactive com
munications with the operator.

PL/M 80 High Level Language -

This softwasre language provides an efficient means
of coding the application software where intensive bit
manipulations are required. The structured language
also provides a rapid development cycle.

The reader should have considerable insight into possi
ble system level solutions to applications which he may
face in his particular expertise. The increased productiv
ity which results from applying the engineering/pro
gramming resources into application oriented efforts
can easily be seen. The development costs which can be
saved by using modular software and high integration
level board products can certainly justify the use of
these system solutions.

I would like to extend my gratitude to Steve Verleye for
his valuable assistance in generating the multiprocessor
communications programs used in this application note.

AFN·01931A

APPENDIX A
MUL Tl PROCESSOR MESSAGE TRANSFER PROGRAMS

2·152 AFN·01931A

l IJ?WAIT:
do;

AP-88

I*
+++

PUBLIC PROCEDURE: IPWAIT. LAS'r CHANGED 11/07/79

This procedure provides the inter-processor wait facility.
If a message is available at the given exchange it is
taken off the exchange and its address is returned to the
calling routine. If no message is available, the processor
ID is encoded in the status field. the task address is queued
on the exchange list, and the task is suspended. When a
message is sent to the exchange by another processor, the
processor ID is used to send the task and message addresses
into the incoming task queue for the processor and then interrupt
it. The service routine thus activated sets the delay field of
the indicated task equal to the message address and RESUMES the
task. The task then simply RETUR~~s the stored message address.

++
*/

2 1

3 1

4 1
5 2
s 2

7 1
8 2
~ 2

10 1

11 2

12 2

13 l

14 1

$include (:fl :global. ext)
/* Declaration of global inter-processor data

structures */ -

declare
proc$id byte external,
r~y$pid byte external,
in$que address external;

declare
my$proc$id literally 'my$pid',
int$proc$exch literally in$que';

$include (: f 1: sema. ext)
lock: procedure (sema$ir'l) external;
declare sema$ia byte;
end;

unlock: procer'lure (sema$id) external;
declare sema$id byte;
end;
$include(suspnd.ext)
RQSUSP:

PROCEDURE (T$PTR) EXTERNAL;
DECLARE T$P'1'H ADDRESS;

END RQSUSP;
$include(msg.elt)
DECLARE MSG$HDR LI'rERALLY '

LINK ADORE SS,
LENG'l'H ADDRESS.
'l'YP E BYTE.
HOME$EXCdANGE ,ZIJ)DRESS,
RESPONSE$EXCrlANGE ADD HESS';

DECLAHE i'1SG$DESCRIPTOH LITERALLY 'S'rRuc·ruRE (
MSG$HDR,
REl'1AINDER (1) BYTE) I;

2•153 AFN-01931A

15

16

17
18
19
20

21

l

1

1
1
1
1

1

AP·88

$include (: f 1: i pta sk. el t)
DECLAHE IP$TASK$DESCRIPTOR LITERALLY 'STRUC'fUHE (

DE LAY$LINK$FORWARD ADDRESS,
DELAY$ LINK$BACK ADDRESS,
'fHREAD ADDRESS -
DE LAY ADDRESS,
EXCHANGE$ADDHESS ADDRESS,
SP ADDRESS.
MARK EH ADDRESS,
PRIORI'fi BYTE,
STA'l'US BYTE,
NAME$P'fR ADDRESS.
TASK$LINK ADDRESS,
IP$'rHREAD ADDRESS)';

$include(:fJ,:ipexch.elt)
DECLAHE IP$EXCHANGE$DESC!UPTOR LITERALLY , STRUC'l'URE (
MSG$HEAD ADDHESS
MSG$TAIL ADDRESS,
'fASK$HEAD ADDRESS,
TASK$'l'AIL ADDRESS.
NEXT$EXCH ADDRESS,
RESERVED (10) BYTE,
It' $'l'ASK$HEAD ADD RE SS,
IP$TASK$TAIL ADDRESS) I;
$include(common.elt)
DECLAHE TRUE LITERALLY . 0FFH';
DECLARE FALSE LITERALLY '00H';
DECLARE BOOLEAN LITERALLY 'BY'rE .;
DECLARE FOHEVEH LI'l'ERALLY 'WHILE 1 1 ;

$list
declare

RQACTV address external;

22 1 IPWAI'l': procer'lure (exch$adr.delay) address reentrant public;

23 2 declare

24 2

25 2
26 2

27 3
28 3
29 3
30 3
31 3
32 3
33 3
34 3

35 2

(exch$adr,delay,temp$msg$ptr,last$task$ptr) address,
(temp$msg based temp$msg$ptr) msg$descriptor,
(last$task based last$task$ptr) ip$task$descriptor.
(exch based exch$adr) ip$exchanqeSdescriptor,
(task based RQACTV) ip$task$descriptor;

/* lock exchange data structure */

call lock (7);

if (tempmsgptr: = ex ch .msg$head) =lJ then
do;

/* no message at exchange, queue task uP */
task.stntus=task.status OH shl (my$proc$id,3);
la st$task $ p tr=exch. i p$ task$ tail;

end;

last$task. ip$thread, ex ch. ip$task$tai l=l<QAC'rV;
task.ip$thread=O;
call unlock(7);
call RQSUSP (RQAC TV);
return task.delay;

else do;

2·154 AFN-01931A

36
37
38
39
40
41

42

43

3
3
3
3
3
3

2

1

AP·88

/* There is a message here. Oequeue it and return
its address */

end;

if(exch.msg$hend:= temp$msg.link) =0 then
ex ch. msg$ tail= .e xch;

temp$msg. link=temp$msg$ptr;
call unlock (7);
return tempmsgptr;

end; /* of procedure */

end IPWAIT;

MODULE INFORMATION:

1

2

3

4

5

6

CODE AREA SIZE
VAHIABLE AREA SIZE
MAXIMUM STACK SIZE
13 3 LINES READ

0 0 E'6H
00 00H
00 0Atl

24'iD
0D

HID

0 PROGRA/Vl ERHOR(S)

1

2

2

1

1

$title(-IPSC:ND routine, Version 1.3')
IPSt::ND:

do;
/* .

+++

PUBLIC PROCEDURE: IPSEND. LAST CHANGED 02/11/80

'l'his routine provides the interprocessor send facility.
If no tasks are waiting tor the message, the ~essage is
queued on the exchange. If a task is waiting, it is taken
off the queue, given the address of the message. and
queued on the interprocessor exchange.
Following this an interrupt is generated to
signal the responsible processor that a task is ready.

+++
*/

=

$include(suspnd.ext)
HQSUSP:

PROC~~DURE (T$P'l'R) EXTF.RNAL;
DECLAHE T$P'rR ADDRESS;

END ROSUSP;
$includ~(msg.elt)
DECLAHE l"1SG$HDR LITERALLY

LINK ADDRESS •
LENGTH AID RESS,
TYPE BY'rF:,
H01V!t:$EXCl:IANGE ADDRESS,
RESPONSE$EXCHANGE ADDRESS';

DECLARE 1"1SG$DESCRIPTOR LI'rERALLY 'STRUC'l'URE (
MSG$HOR,

AFN-01931A

7

8

9
10
11
12

13
14
15

16
17
18

19

20

21
22

23

24

1

1

1
1
1
1

l
2
2

1
2
2

1

1

1
2

1

2

=

AP·88

REMAHIDER(l} BYTE} 1 ;

$include (:fl: iptask.elt}
DECLARE IP$TASK$DESC\UP'l'OR LITERALLY 'STRUC'l'URE (

DELAY$LINK$.FORWARD ADDRESS,
DELAY$LINK$BACK ADDRESS,
THREAD ADORE SS,
DELAY ADDRESS,
EXCrlANGE$AODRESS ADDnESS,
SP ADDRESS,
MARK EH ADDRESS,
PRIORITY BY'l'E,
ST/:\·rus 8YTE.
NAME$l?'l'R ADDRESS,
TASK$LI NK ADORE SS,
IP$THRP.AD ADDRE:SS} I;

include(:fl:ipexch.elt}
DECLARE IPSEXCHA."'IGE$DESCRI!:'TOR LI'rERALLY 'STRUC'fURE (
MSGSHEAD ADDRESS,
MSG$TAIL ADDRESS,
'rAsK$HEAD ADDRESS,
TAS1<$TAIL ADDRESS.
NEXT$EXCd ADDRESS,
RESEiVED (10} BYTE,
IP$TASK$HF.:AD ADDRESS,
If' $TASK$'l'iHL ADD RE SS) I;
$include(co!T.\on.elt}
DECLARE 'l'RUE LI'fERALLY '0FFH';
DECLARE FALSE LITERALLY 'O~H~;
DECLARE BOOLEAN LI'fERALLY 'RYTE ';
D£CLAH.E FOREVER LI'fl!:R/\LLY ·wHI LE 1 1 ;

$1i st
$include(:fl:sema.ext}
lock: procedure (sema$in) external;
declare sema$id byte; ·
end;

unlock: procedure (sema$ id} external;
declare sema$id byte;
end;
$include(:fl:global.ext)
/* Declaration of global inter-processor

dnta structures */

clecla re
proc$id byte external,
my$pid byte external,
in~que address external;

declare
my$proc$id literally 'my$pid',
int$proc$exch literally 'in$que';

. 1 _.

set$ int: procedure external;
end set$int;

IPSEND: procedure (exchptr,msgptr) reentrant public:;;

declare
(exch$ptr,m8g$ptr,lastmsgptr,task$ptr) address,

2·156 AFN-01931A

25

26
27
28
29
30
31
32
33

34

35
3 fi
37

38
39
40
41
42
43
44
45

46

2

2
2
3
3
3
3
3
3

2

3
3
3

3
3
3
3
3
3
3
2

1

AP-88

(exch 'based exch$ptr) ip$exr.hange$de scr iptor.
(msg based msg$ptr) msg$descriptor,
(1ast$msg based last$msg$ptr) 1asg$descr iptor.
(task based task$ptr) ip$task$descriptor;

/* get access to data structures */

call lock (7) :;

/*check to see if any tasks are wa.iting */

if (task$ptr:= exch. ip$task$head)=O then
do; /* no tasks waiting; queue messaqe */

la stmsgp.tr=e:x ch. msg$t Ail;

e ro;

last$msg. link, exch.msg$tail=msg$ptr;
msg. li nk=0;
ca 11 unlock (7) ;
return;

else do;
/* unqueue task and send it to i:>roper processor */'

if(exch.ip$task$head:= task.ip$thread)= 0 then
ex~h.ip$task$tAil=exch$ptr;

msg.link,task.delay=msg$ptr;

/* queue task on the interprocessor exchAnge */

ero;

proc$id=shr(task.status.3) ana 07H;
int$proc$exch=task$ptr;
task. ip$threaa=ll;
call set$int;
call unlock (7);
return;

end; /* of procedure */

end I.l?SC:ND;

MODULE INFORMATION:

1

CODE ARE!A SIZE
VAHIABLE AREA SIZE =
MAXIMUM STACK SIZE =
130 LINES READ
0 PROGRAM EHROR(S)

0 l!J SH
oo mm
000CH

2640
00

12D

$title('set interrupt routine')
Set$ int:

do;
I*

++

PUBLIC PROCEDURE: SE;l'$INT. LAS·r CHANGEO 2/11/80.

Set interrupt routine~' Generates· a level
four interrupt on the bus. The semaph()re associated

'.~Ji ..

AFN.01931A

2 1

3 1

4 1
5 2
G' 2

7 1
l.) 2 v

9 2

10 1

11 2
12 2
13 2
14 2
15 2
16 2
17 2
18 2
19 2
20 1

AP·88

with the proc$id field is left set unti 1 the i.nterrupt
is serviced. An semaphore, level 5, is set and used as
a.n ·indicator that the interrupt has been acknowledged.

+ +++++++ 1-+++1-++ ++++++++++++++++++++++++++++++++ ++++++ 1-++++
*/

=

$ i n cl u de (: f l : g 1 ob a 1. ex t)
/* Dec la rat.ion of globa 1 inter-processor

data st·ructures */

· dc·cla re
procSid byte external,
my$pid byte external,
inSque a.ddress external;

declare
my$proc$id literally "my$pi<l',
int$proc$exch literally 'inSque';

$ i nc 1 u de (: f 1 : se ma • ext)
lock: procedure (sema$id) external;
neclare semaSid byte;
end;

unlock: procedure (sema$id) external;
declare serna$id byte;
end;

set$ int: procedure public;

call lock (6);
call lock (5);
output(0EBH)=0Fd;
call locl<(5);
output (0EGH) =OEH;
call unlock (5);
call unlock (5);
return;
end;

end set$int;

MODULE IN~'ORMA'rION:

1

CODE AREA SIZE
VARIABLE AREA SIZE
MAAI.i\'IUM s·rACK SIZE
4 9 LI 11.TE: S HEAD
0 PROGRAM EHR OR (S)

00 22d
00 00 H
000211

340
OD
2D

$title(' IPACP'r routine)
IPACl'"r:

do;,
I*

++++++++++++;!-++

PUBLIC PROCEDUHE: IPACPT. L~·r <:;HANGED 10/12/79

'l'his routine implements the interprocessor accept facilitv.

2·158 AFN·01931A

2

3

4

5

6

7

8

9
10
11
12

13
14
15

16
17
18

AP-88

If no message is queued at the exchanqe, a zero is returned.
Else, a call is r1ade to IPWAI'l' to retrieve the first message
on the queue.

+ +++ +++++++ ++++++ ++++++++++ +++++++++++ +++++++++++ ++++++++++++++
*/

1

2

2

1

1

1

1

1
1
1
1

1
2
2

1
2
2

$include(susrnd.ext)
RQSlJSP:

PHOC:EDURE (T$P'i'H) EXTERNAL;
Dt;CLAH E ·r$P'rR ADDRl': SS;

END HQSUSP;
$include(msg.elt)
OECLAHE MSG$9DR LI~ERALLY '
LINK ADDHESS,
LENGTH ADDHESS,
TYPE BYTE,
HO!'IP,$ EXCHANGE ADDRESS,
RESPONSE$EXC1La..NGE ADDRESS';

Ot:CLAH.E !'1.SG$Dt>SCH.IPTOR LITERALLY STRIJC'1'URE (
MSG$HDH,
REMAI t'>IDER (1 l s Y'rE l •;

$include(task.elt)
DECLAHE Tl\SK$DESCRIP'rOR LI'l'ERALLY 'S'rRuc·ruRE (

DC::LAY$ Lil\!KSFO RWAt<D ADDRESS,
DELAY$LI1\TK$BACK ADDRESS,
'rHREAD ADDRESS,
DELAY ADDRESS,
EXCt!ANGE$A.DDH!:~SS ADD RE SS,
SP ADDRESS,
MARKE!l. ADDRESS,
PRI ORI'l'Y dYTJ::,
s·ra..'l'!JS BYTE,
NAT11E$PTH. ADDRESS,
TASK$LI~ll< ADDRESS)';

$include(exch.elt)
DECLAHE r~XC'.HANGE$DESC!UPTOR LITERALLY 'sTRUCl'iJRE: (

:'1.SG$HE:AD ADDHESS,
MSG$TAIL ADDRESS.
'l'ASK$nEAD ADD HESS,
·rAsK$'l'AIL ADD[{ESS'
NEXT$EXCd ADDHESS)';

$include (comnon.elt)
DECLARE TRUE LITERALLY '0FFH';
DECLARE FALSE LITERALLY '00H';
DECLARE BOOLEAN u·rERALLY 'BY'rE.;
DECLARE FOREVEH LITERALLY 'WHILE l ';
$include (:fl: sema.ext)
lock: procedure (sema$id) external;
declare sema$id byte;
end;

unlock: procedure (sema$id) external;
declare sema$id byte;
end;
$list

2-159 AFN-01931A

AP·88

19
20

l
2

IPWAI'f: ,,procedure (exch$adr,delay) address external;
·declare (exchSadr,delay) addres~;.

21 2 end IPWAIT;

22 l IPACPT: procedure (exch$ptr) address reentrant public;

23 2 declare
exch$ptr address,
(exch based exch$ptr) exchange$descriptor;

24 2 call lock(7);
25 2 if exch.msg$he~d = 0 then
2!i 2 do;
27 3 call unlock.(7);
28 3 return 0;
29 3 end;
30 2 else do;
31 3 call unlock (7);
32 3 return IPWAI'f(exch$ptr,0);
33 3 end;
34 2 end; /* of procedure */
3 5 1 end I PAC P'l' f .

MODULE INFORMATION:

1

CODE AREA SIZE
lfAlUABLE AREA SIZE
MAXIMUM 'S'i'ACK SIZE =
90 LIT\JES READ
0 PROGRAM ERROR(S)

0 0313H
U000H
0004H

59D
OD
4D

$title('Level 4 interrupt handler')
$nointvector
Int$pro c:

do;

I*
+++

38

39

40
41

PUBLIC PROCEDUHE: SE'rVEc4. LAST CHANGE:D 2/11/80

'fhis routine fields all level 4 interrupts. If the global
proc$id matches the locnl processor ID 'RQISND is callec'I
to awaken the int$hnd task and the lnterrupt semaphore is
cleared. If the processor ID does 'not match·, the ,interrupt
is ignored. ·

+++~+++++++++++++++++++++
*I

l

1

2
2

$nolist

declare
rql4ex (15) byte external;

setvec4: procedure interrupt 4 public;

if proc$id <> my$proc$id then
call rqendi;

2-160 AFN-01931A

AP-88

42 2 else do;
43 3 pr oc$id=0FF'il;
44 3 call unlock (5);
45 3 call rqisnd(.rql4ex);
4fi 3 end;
47 2 return;
48 2 end; /* of int$proc */
49 1 end int$proc;

MODULE I\\lr'ORMATIO\\I:

l

2

3

4
5
6

7
8
9

l iJ

11

CODE AREA SIZC:
lfAHI.l\BLE II.REA SIZE
MAXIMUM STACK SIZE
110 LINES HEAD

002AH
0000H
01J0Al:i

420
0D

lQJD

0 PHOGRAJVI ERROR(<;)

$title('Interrupt aannler')
Int$handler:

do;
/*

+++

PUBLIC PHOCF.Dl.lRE: IN'r$HANDLER. LAST CHA1\JGF.:D 2/11/80

Interprocessor interrurt handler task. When notified by the
Setvec4 routine that the In$queue contains a task-message
pair for this processor, the Int$handler task unqueues
the task descriptor and resumes the task where it was
suspended.

+++
*I

l

l

1
2
2

1
2
2

1

2

$include(:fl:global.ext)
/*Declaration of global inter-processor

data structures */

declare
proc$id byte external,
my$pid byte external,
in$que address external;

declare
my$proc$id literally 'my$pid',
int$proc$exch literally 'in$que';

$include(:fl:sema.ext)
lock: proce<'lure (sema$id) external;
declare sema$id byte;
end;

unlock: procedure (sema$id) external;
declare sema$id byte;
end;
$include(synch.ext)
RQSEND:

PROCEDURE (E.X:CHANGE$POINTER,MES SAGE$POINTER) EXTERNAL;
DECLARE (EXCHANGE$POIN'rER ,MESSAGE$POINTER) ADDRESS;

2-161 AFN·01931A

12

13

14

15

16

17

18

19

20

21

22
23
24
25

26

27

28

29

30

31

32

33

34
35
36
37

2

1

2

2

1

2

2

1

2

2

1
1
1
l

1

2

2

1

1

1

2

2

3
3
3
3

=

AP~ss

END HQSEND;

RQWAIT:
PROCEDURE (EXCHANGE$POIN'rER ,DELAY) ADD RESS EXTE:RNAL;

DECLAH.E (EXCHANGE$POINTEH,DELAY) ADDR8SS; .

ENO RQWAI'r;

RQACPT:
PROCEDUHE (EXCdANGE$POINTER) ADDHESS EX'rERNAL;

DECLARE EXCHANGE$POIN'rER ADDRESS;

END RQACPT;

RQI SND:
PROCEDURE (IED$P'rR) EXTERNAL;

DECLARE IED$P'l'R ADDRESS;

END RQISND;
$include(common.elt)
DECLARE ·rRUE LITERALLY '0FFli';
DE.CLARE FALSE LI'l'ERALLY '00tf';
DECLAHE BOOLEAN LITERALLY 'BYTE';
DECLARE FOREVER LITERALLY 'WHILE l';
$include(resume.ext)
RQRESM:

.PROCEDURE (T$PTH) EXTERNAL;
DECLARE 'r$P'rR ADDRESS;

END RQRESM;
$include (: f 1: ip task. el t)
DECLARE IP$TASK$DESCRI PTOR LI'rERALLY 's·muc·ruRE
Dt~LAY$LINK$FORWAHD ADORE SS,
DELAY$LI1'Tl<$BACK ADDRESS.
'rHREAD ADDRE:SS.
DELAY ADDRESS,
EXCHANGE$ADDRESS ADDHESS.
SP ADDRESS.
MARKER ADDRESS,
PRIORI rY BYTE,
S'rATUS BYTE,
NAME$PTR ADDRESS,
TASK$LINK ADDRESS,
IP$THREAD J.\DDRESS) Ii

declare
rql4ex (15) byte external;

int$hnd: procedure public;

declare
(msg$p tr, ta sk$ptr) address;

do forever;

r.1~g$ptr=rqwai t (. rql4ex,0);
call lock (7);
if int$proc$exch <> 0 then

do;

2-162 AFN-01931A

38
39
40

41
42
43
44
45

4
4
4

3
3
3
2
1

em;
else

AP-88

taskSptr = i nt$oro c$exch;
int$proc$exch = ~;

call unlock (7);
call rqresm (taskSptr);

end; /* of do forever */
end; /* of task */
end intShandler;

MODULE INPOR~ATION:

1

2

3

4

CODE AHEA SIZE
VAHIABLE AREA SIZE
MAXI~UM STACK SIZE
l(JB LINES READ

01J3DH
0004H
00 Oi!i

61D
4D
2D

0 PROGRA1'1 E KRO R (S)

$title('Global Initialization. Version 1.1')
globalSinit:

do;

/*
++

PUBLIC i?ROCEDURE: GLOBAL$INI'f. LAS'f CHANGED 02/11/80

·rhis is an initialization routine that is called hy only
one of the procesoors in the system. It initializes those
structures that must be initialized before any IP routines
are used and must then be lef.t alone.

+++
*I

1

l

=
l =

=
=

$include (:f 1: ipexch.el t)
DECLARE IP$EXC!iANGESDF:SCRIP'r'JR LITEIH\LLY 'S'fRUCTURE (
1'1SGSHEAD l\DDRESS,
MSG$'fAIL ADDRESS,
·rASK$HE:AD A JD RESS.
TASK$TAIL ADDRE:SS,
NE;('r$ E:XCa AODRJ!:SS.
R8SERVED (10) B~TE,
II:' $TASKSHE:AD ADDRESS,
IP$TASK$TAIL ADDRESS)';
$ i nc 1 u de (: f 1 : g 1 ob a 1. ext)
/* Declaration of global inter-processor

data structures */

declare
proc$id byte external,
my$ p id byte exte rna 1,
inSque address external;

declare
rny$proc$id literally 'my$pid',
int$proc$exch 1i terally 'in$que';

2·163 AFN-01931A

5

6

7

8

9

10
11
12
13

14

15
16
17

18
19

20

1

1

1

2

2

2
3
3
3

2

2
3
3

2
2

1

AP·88

declare
ip$exch$tab address external,
ip$exch (1) ip$exchange$descriptor at(. ip$exch$tab),
numipexch byte external;
declare semaphore(8) byte external;

glohalSinit: procedure public;

declare i byte;

/* initialization the int$proc$exch queue */

i nt$pr oc$exch=O;
/* initialize user ip$exch decsriptors */

do i=O to numSipSexch-1;
ip$exch(i).ip$task$head=0;
ip$exch(i).ip$task$tail=~ip$exch(i);

end;

/* initialize proc$id field */

pr oc$id =UFFH;

/* initialize semaphores */

do i =O to 7;
semaphore(i)=0;

end;

return;
end;

end global$init;

MODULE INFORMATION:

1

CODE AREA SIZE
VARI.l\BLE AREA SIZE
MAXIMUM STACK SIZE
7 3 LINES READ
0 PROGRAM ERROR(S)

0075tl
0" 01H
0002H

1170
lD
2D

$title('LOCK and UNLOCK procedures, Version 1.1
SEMA:

do;

/*
+++

PUBLIC PROCEDUHE: LOCK,UNLOCK. LAS'r CHANGED 10/12/79

These procedures provide mutual exclusion on access
to global data structures used in the interprocessor
communication package. Both routines use the seventh
semaphore for global data and the sixth semaphore for
interrupts. Software semaphores are used.

+++

2·164 AFN-01931A

2

3
4
5

6
7
8

9
10

11

12
13

14
15
16
17
18
19
20
21
22
23

24

25

26
27
28

29

1

1
2
2

1
2
2

1
1

l

2
2

2
2
3
3
3
3
3
3
2
2

1

2

2
2
2

1

AP-88

*/
$include (exch.elt)
D~CLARF. EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE (

MSG$HEAD ADDRESS,
MSS$TAIL ADDRESS,
TASK$HEAD ADDRESS,
TASKSTAIL ADDRESS,
Nl~XT$EXCH ADDRESS) I;

rqwait: procec1ure(exch$ptr,c1elr.iy$time) address external;
declare (exch$ptr,delay$time) address;

end rq»1ait;

s$1:iask: procedure (mask) external;
declare mask byte;

end s$nask;

declare tiraout exchange$descriptor external;
declare semaphore(B) byte external;

/* lock procedure cr.illed upon entry of coae modifying
data structures */

lock: procedure (sema$num) reentrant nublic;

declare (se mo$ nu m ,s emc.>) byte;
declare (mem$ptr) address;

sema=l;
do while sema=l;

mem$ptr=rqwai t(.ti mout, l);
call s$mask (0C01i);
sema=semaphore(sema$num);
semaphore (sema$nu!'1)=0FFH;
call s$mask(040h);

end;
return;
e nd ; I* o f LO CT< * I

/* unlock called to exit region */

unlock: procedure (se ma$num) reentrant p11bl ic;

declare sena$num byte;

semaphore (sema$num)=0;
return ;
en::l; /* of unlock */

end SEMA;

MODULE INFORMATION:
CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
67 LINES HEAD
0 PROGRAM ERROR(S)

0 05F:i
0000H
00 0f)H

2-165

950
lJD
6D

AFN·01931A

1

2

3

4
5
5

7
8
9

34
35

3 ()
37

38

39

AP·88

$title('IP$INIT initialization routine')
Ip$ i nit:

do;
/*

+++

PU1:3LIC PROCEDURE: IP$IN IT. LAST CHANGED 10/11/79

Initialization routine. Creates HQL4EX, initializes
the interrupts and the interrupt handlers and creates
the interrupt task int$hnd.

+++++++++++++t+++++++++++++++++++++++++t++++++++++++++++++++++++
*/

1

1

1
2
2

1
2
2

1
2

1
2

1

1

$include(:fl:global.ext)
/* Declaration of global inter-processor

data structures */

declare
proc$icl. byte external,
rny$pid byte external,
in$que address external;

declare
n1y$proc$icl literally 'my$piil'.
int$proc$exch literal1y · in$que';

$include (:fl:sema.ext)
lock: procedure (sema$id) external;
declare sema$id byte;
e n<i;

unlock: procedure (sema$id) external;
declF1re sema$id byte;
encl;
$nolist

int$hhc1: procedure external;
end int$hnn;

setvec4: procedure external;
e nd s e t $ ve c $ 4 ;

dee la re
inthndstl literally 'ii0 ',
inthndstk (inthndstl) byte,
inthndtd (213) byte,
rql4ex (15) byte public,
int$ hn d $pr i 1 it er a 11 y ' 6 5 ' ;

de cln re i nthnds tel static$task$descr iptor data (
'in thnd' ,
.int$hnd,
. inthndstk,
inthndstl,
i nthnnpr i,
0,
• inthndtc1);

2-166 AFN-01931A

40 l

41 2
42 2

43 2
44 2
45 2
4'1 2
47 2
48 2
49 2
50 2

:il l

AP·88

ip$init: procedure public;

/* wait for sor:ieone to nerform qlohal initiali7,i'ltion
and reset semaphore~ */

Ci'!ll lock (7) ;
call unlock (7);

output (08Bif) =80H;
output (OEl~'l)= 0EH;
ca 11 rqcxch(.rql4ex);
call rqctsk (.inthndstf1);
call rqsetv (. setvec4, 4);
call rqelvl(4);
return;

end; /* of pro ce<lu re */

en::l i p$ i ni. t;

MODULE INFORMATION:
CODE AREA SIZE
Vl\HIABL8 AREA SIZE
MAXIMUM STACK SIZE
133 LINE:S READ
U ~ROGRAM ER~OR(S)

OU 3DH
00 SF' d
00 02!-I

2-167

Glo
95D

2D

AFN·01931A

APPENDIX B
BIPI PROGRAM LISTING

2-168 AFN-01931A

AP-88

$TITLE('RMX/BASIC MULTIPROCESSOR INTERFACE, VERSION 1.1')
/**
* BI PI *
* •rqIS IS ·r!:iE INTERFACE BE'fWEEN 'fliE HMX/BASIC PHOCESSOR l\ND *
* THE MUL'rI-PROCESSOR WORLD. THF. R"1X/BASIC INTERPORCF.:SSOR *
* INTEl:U'ACE (BIPI) nrrEI{FACES ·ro ·rHE 'l'ERMINAL Hl\NDLF:R AND ·ro *
* 'f!iE DISK IO SYS'fEM. ·r1-JF. BIPI SUPPORT 'l'HE RECF.IP'r OF ·rdE *
* r'OLLOWING MESSAGE TYPES: *
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

·rrnMINAL HANDLER REQlJES'rS:
H EAD$TY'PE 8
WHI'rf::$TiPE = 12

DISK I/O SYS'l' EM
D.l:!'S $RD
DFS$W'l'
DFS$SK
DE'S $CLS
DFS$0PN

REQUES'l'S:
72
76
Tl
78
79

BASIC 'fl\SK C01VI1V\AND REQUES·rs:

READ FROll.1 TERMINAL
WHI'l'E TO TERMINAL

HEM FROM iJISK
WHI'I'E TO DISK
DISK SEEK OPERATION
DI SK FILE CLOSE
DI SK FILE OPEN

SUSBAS 128 SUSPEND l:lASIC 'l'ASK
HES BAS = 129 HESUME BASIC TASK

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* * THE 'fASK WILL BE ENTERED BY SENDING 'l'HE NORMAL REQUES·r MES- *

* SMJ E ·ro THE GLOBAL EXCHANGE BIPI$EXCH. *
***********************************~****************************/

1

2
3
4
5
6
7
8
9

10

11
12

13

14
15
11)

17
18

1
1
1
1
1
1
1
1
1

1
1

1

2
2
1

2
2

BIPI$MODULE: DO;

/* DEFINE THE LITERALS */

DECLARE READ$TYPE LITERALLY '8';
DECLARE WRITE$TYPE LITERALLY '12';
DECLARE DFS$RD LI'rERALLY '7 2';
DECLAHE DT!'S$wT LI'rERALLY '76 ·;
DECLARE DFS$SK LITERALLY '77';
DECLARE DFS$CLS LITERALLY '78';
DECLARF, DFS$OPN LI'rERALLY 79';
iJE:CLARE SUSBAS LI'l'ERALLY '128';
DECLAHE RESBAS LI'rERALLY '129';

/* DECLARATION OF INTERNAL VARIABLES */

DECLAHE (MSG$PTR,RESPONSE$P'rH) ADDttESS;
DECLAHE (TYPE) BYTE;

/* DEFINE HMX J:>HOCEDURES USED BY ·rHE TASK */

RQS END:
PROCEDURE (EXCH$P'rR,IVIF.SSAGE$PTR) EXTERNAL;
DECLAHE (EXCH$PTR,MESSAGE$PTR) ADDRESS;
Et'ID HQSEND;

RQWAIT:
PROCEDURE (EXC:H $ P'rR ,TI 1"1EOUT) ADD RESS EXTERNAL;
DECLAHE (EXqi$PTR ,TIMEOUT) ADD RESS;
END RQWAIT;

2·169 AFN-01931A

19

21/J
21
22

23
24

25

26
27
28

29
30
31

32
33

34

35

36

37
38
39
40
41

42

l

2
2
1

2
2

1

2
2
l

2
2
1

2
1

2

1

l

l
l
l
l
l

l'

AP·.88

RQSUSP: ..
PROCEDURE (TASK$DESC$P'.UH), .EXTERNAL;.
DECLARE ('rASK$DESc$PTR) .l\DDHESS;
END RQSUSP;

RQRC:SM:
PROCEDURE (TASK$DESC$PTR) E.f('fERNAL;
DECLARE (TASK$DESC$P1'R) ADDRESS;
END RQRESM;

/* DEFINE INTER-PROCESSOR PROCEDURES USED
BY THE TASK */

I PS END:
PROCEDURE (EXCH$PTR,MESSAGE$P-rR) EXTERNAL;
DECLAHE (EXCH$PTH ,r'1ESSAG E$PTR) ADD HESS;
END IPSEND;

IPWAIT: .
. PROCEDURE. (EXCH$P'l'R,DUMMY) ADDRESS EX'rERNAL;

DECLARE (EXCH$P'rR,DUl'llMY) ADDRESS;
END IPWAIT;

IPINIT:
PRO,CEJ:>URf: EXTERNAL;
END IPINI'r;

SG'l'VEC4:
PROCEDUHE EX'IBRNAL;
END SE'r$V8C$4;

/* DEFINE 'rHE E;(CHANGES HEQUIRED BY
'rHE TASK */

$INCLUDE (:Fl:EXCH.DEF)
DECLAHE EXCHANGE$DESCHIP1rOR LITERALLY . STRUCTURE

MESSAGE$HEAD ADDRESS,
MESSAGr~$TAIL ADDRESS,
'rASK$HEAD . ADORE SS,
TASK$'l'AIL A OD RESS,
EXCHANGE$LINK. . ADD:(lESS) ';

DECLARE IN'r$EXCdANGE$Dt:SCR,IP'rOR LiTERALLY 'S'rRuc·rURE
ME SSAG E $HE AD ADD RE SS·,
MESSAGE$TAIL ADDRESS,
W\.SK$HEAD . ADDRESS,
'rASK$TAIL. ADDRESS,
EXCHANGE$LINK ADDRESS,
LINK ADORE SS,
LENGTH ADDRESS,
TYPE BY'rE) •;

DECLAHE BIPI$EX EXCHANGE$DESClUPTOH. EXTERNAL;
DECLARE 'RQINPX. EXCHANGE$DESCRIPTOR EXTERNAL;
DECLAHE RQOUTX EXCHANGE$DESCRIPT0R EXTERNAL;
DECLAHE RQOPNX EXCHANGESDESCRIPTOR EXTERNAL;
DECLARE BIPI$RE EXCHANGF.:$DESCRIPTOR EXTERNAL;

I* DEFINE THE BASIC MESSAGE S'rRUC'fURE OF
I.NCOMI NG MES SAG ES * /

DECLARE ·MSG BAsto MSG$P:rR s·muc·ruHt:
LINK · ADORE sS ... i't ,
LENGTH ADDRESS,

2·170 AFN-01931A

43

44

45
46

47

48

4 Sl
50

51

52

54

56

58

60

1

1

2
2

2

3

3
3

3

3

3

3

3

3

AP-88

TYPE BYTE,
ri0ME$EXCHANGE ADDRESS.
RESPONSE$ EXCHANGE ADD Rf: SS) ;

/* DEFINE LOCA'rION OF 1 81\S IC' 'rASK DESCRIPTOR */

DECLAHE BASC$TD AIURESS EX'rERNAL;

/* BEGINNING OF 13IPI PROGRAM PROC:EDURC * /

Bl PI:
PROCEDURE PUBLIC;

/* AT INITIALIZATION WAIT FOH C:OMMUNICATIONS
PROCESSOR TO COME UP */

MSG$PTR = RQl'JAT'l'(.BIPI$RE, 100);
CALL IP$ rnr·r;

DO WHILE l;

/* WAIT FOR A REQUEST FROM A PROCESSOR ON BUS */

JY!SG$PTH = IPWAI'l' (.BIPI$EX,0);

/* SWl\P RESPONSE ADDRESSES FOR LA'rER USE * /

RE c;PONSF.: $P'l'H = MSG. R8SPON SE$ EXCrlANG E;
MSG.HBSPONSE$EXCilANGE = .13IPI$RE;

/* SAVE MESSAGE TYPE: FOR TESTI!'JG */

TYPE = MSG.TYPE;

/* TEST FOR A READ HE'.JUEST FROM TBRll1INAL */

IF TYJ?E = REl\D$TiPE
'rHEN CALL HQS8ND (.RQI!\IPX,MSG$PTR);

/* TEST FOR A WRITE REQUEST TO TER111INAL */

IF TYPE = WRITE$TYPE
rHEN CALL RQSEND (.RQOUTX,N!SG$PTH);

/* CONVERT REQUE~J'r TYt>E TO DISK CO!V!PA'rI13LE TYPE */

IF 'rYPE > 7 1
THEN MSG.TiPE = MSG.TYJ?E - 64;

/* HA!\JDLE OPEN DISK FILE REQUEST */

IF TYPE = DFSSOPN
THEN CALL HQSE:l\JD (.RQOPNX, 1V!SG$PTR);

I* SUPPOR1' ALL OTHER REQUES'r 'rYPES FOR DISK I/O *I

IF ((TYPE > 71) AND ('rYPE < 79)) 'l'HEN
CALL RQSEND (IVlSG.HOIV!E$EXCHANGE,MSG$P'rR);

2-171 AFN-01931A

62

64

66

68

69

70

71

72
73
74

3

4

4

4

3

3

3

3
2
1

AP~aa

/* SUPPORT REQUES'rS FOR 'BASIC' 'rASK OPERATIONS *I

IF TYPE > 12 7
THEN DO;

/* SlJSPEND 'l'ASKS IN OPEHATION */

IF TYPE = SUSBAS
'rf-IEN CALL R()SUSP (BA.SC$TD);

/* H ESUME TASKS INTO OPERATION * /

IF TYPE = RESBAS
THEN CALL HQRESM (BASCSTD) ;

END;

/* WAI'l' FOH RESPONSE FOR NON-' BASIC' OPEHATIONS * /

ELSE MSG$ P'rH = RQWA I'l' (. 8IPI$RE, 0) ;

/* SWAP RESPONSE EXCtlANGES AGABI BEFORE
RETURNING MESSAGE */

MSG. RE SP ON SE$ EXCHANGE = HESPONSE $P'l'R;

/* HF.:l'URN THE MESSAGE TO THE CALLING PROGRAM */

CALL IPSEND (RESPONSEPTH, MSGP'l'H);

/* END OF TASK */

END;
El\JD BIPI;

END BIPI$MODULE;

MODULE INFORMATION:

CODE AREA SIZF.:
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
206 LINES READ
0 PROGRAM EHROR(S)

0101H
00 0sa
00 02H

2-172

257D
SD
20

AFN-01931A

APPLICATION
NOTE

2-173

AP-109

December 1980

AFN·01931A

Using Intel
Single Board Computers
for Serial Distributed
Processing Links

2'174

Contents

INTRODUCTION 2-175
Common Network Designs. 2-175

Loop Networks 2-175
Multidrop Networks 2-175
Star Networks 2-176

Sample Application 2-176

HARDWARE IMPLEMENTATION 2-177
Star Network Design 2-177
Multidrop Network Design. 2-179

SOFTWARE IMPLEMENTATION 2-180
Master/Slave Relationships 2-181
Data Packet Formats. 2-181
Multitasking Message Concepts 2-182
iRMX 80™ Named Exchange

Extension . 2-183
Generation of Multiprocessing Serial

Communications Link 2-184
Protocol Level Communications
Package . 2-184

Link Level Communications
Package . 2-185

Physical Level Communications
Package 2-185

APPLICATION EXAMPLE 2-185

CONCLUSIONS 2-186

APPENDIX A - Extension to Name
iRMX™ 80 Exchanges 2-189

APPENDIX B - Master Communications
Protocol Software 2-193

APPENDIX C - Slave Communications
Protocol Software . 2-205

APPENDIXD-'
Queue Initialization Procedure 2-215
Queue Data Input Procedure 2"217
Queue Data Output Procedure 2-220
ASCII to Hex Conversion.Procedure 2-222
Hex to ASCffConversion Procedure 2-225 ·.
Checksum Calculation.Procedure 2-227
Generate Ready Message Proced.ure 2-230
Generate DataMes~age Procedure ..•. , . 2-233

APPENDIX E - ~hysical Level· Driver
for the iSBX 351 ™ Board 2-236

AFN·01931A

AP-109

INTRODUCTION
System designers are satisfying more and more difficult
application needs with solutions which use microproces
ors in a distributed environment. This distribution of
intelligence results in many system benefits, including a
simplification of the design and a resulting decrease in
the development time of the system solution. An addi
tional feature is the minimization of the installation
costs of the system resulting from reduced wiring and
from resource sharing. However, to effectively create
distributed solutions, a reliable communication scheme
must be used which links the various parts of the solu
tion together.

The purpose of this application note is to demonstrate
the ease with which Intel iSBC™ boards can be config
ured to implement distributed solutions. Several ap
proaches are offered which apply standard operating
modes of both the hardware and of the software. While
certainly not the only solution, a distributed processor
communications protocol is developed which will sup
port many typical applications.

Distributed systems generally fall into one of two cate
gories. The first consists of those systems in which the
processors are located in such a manner as to allow com
munications over a common system data bus, such as
Intel's MULTIBUS™ system bus. The second category
involves systems in which the processors are also geo
graphically distributed. This class of system generally
uses a form of serial communications to allow each pro
cessor to communicate with other processors in the
system.

The emphasis of this application note is on serial multi
processing links. Before proceeding with a development
of application solutions which involve serial communi
cations, this note includes a short discussion of common
network designs.

Common Network Designs
Serial networks may be classed into three general cate
gories. These are the LOOP, the MULTIDROP, and
the STAR. Each has applicability to certain iSBC prod
ucts and has distinct advantages and disadvantages in an
application, After discussing the characteristics of each
network, an application scenario illustrates their uses.

LOOP NETWORKS

The loop represents the most common of the communi
cation schemes. It is derived from the older teletype
communication networks in which several printers were
connected in series. Any data generated on one machine
causes all machines concerned in the network to echo
the data. This arrangement is shown in Figure I. Loop
communications normally use a 20-milliamp signal to
convey the data. The presence of this current, known as

2·175

marking, represents a binary 1 and the absence, or spac
ing, of any circuit (an open circuit) represents a binary
0. Both full and half duplex configurations are com
monly used.

NODE
1

NODE
4

NODE
2

NODE
3

Figure 1. Serial Loop Configuration

The incorporation of loop networks into a system im
plementation creates both advantages and disadvan
tages. The strongest argument for using a loop is the
inherent noise immunity which can be gained by using
the 20-milliamp current to convey the data. The use of a
high compliance voltage also allows the transmission of
data for large distances at low to moderate transmission
rates.

Solid state circuits common to current technology are
somewhat less reliable than older mechanical units when
many stations are configured onto the loop. This is the
result of the requirement to reproduce the information
at each node for transmission to the next node. If any
node fails, all other nodes downstream in the communi
cation network will not be capable of communicating.
Even with this constraint, many good designs incorpo
rate the loop network concepts.

MUL Tl DROP NETWORKS

Multidrop networks are fast becoming the accepted net
work for multiprocessor communications. This type of
network is shown in Figure 2. As can be seen, this ar
rangement is similar to that of the loop. The advantage
is that all stations are capable of receiving data simulta
neously. Multidrop networks are voltage driven since to
pass current through a node creates a loop situation.
The electrical interface for multidrop networks consists
of tri-state drivers and high impedance receivers. The
RS422 electrical interface is common for this type of
network since it provides high speed data transmission
over long distances with good noise immunity.

AFN-01931A

AP·109

NODE
1

NODE
2

NODE
4

NODE
3

Figure 2. Multidrop Loop Network

The ability to implement networks with a minimum
amount of hardware and the potential expansion capa
bilities provide the multidrop network with a significant
advantage in many applications. Since each node in the
network can be added by simply adding another tee net
work, expansion is performed without the need for
modification of the communication network.

Intel's iSBX 351™ Serial MULTIMODULE™ Board is
an ideal vehicle for the implementation of multidrop
networks. Its use is detailed in subsequent paragraphs of
this application note.

STAR NETWORKS

Star networks are implemented where either data
throughput or hardware limitations prohibit the use of
other types of communication arrangements. Figure 3
illustrates a typical star network implementation. Note
that a star network is really an example of multiple
point to point communications. System throughput is
improved since communication can occur with all slave
nodes simultaneously without the need to have each
node monitor traffic which is not intended for it.

Intel's iSBC 544™ Intelligent Communications. Con
troller and the iSBC 534™ Four-Channel Communica
tions Board are ideal choices to design star communica
tions networks. The outer points of the star are im
plemented using any single board computer which has
oncboard serial co111munications. An example of this
type of network is included in this application note.

Sample Application
An application example. is used in this application note
to illustrate the techniques which are required to imple
ment various types of serial communication networks.
Both hardware and software aspects of the design are
described in some detail.

The application discussed in this note involves the crea
tion of an alarm and security systemjor a multiple
building complex. This complex is shown in Figure 4.
The solution generated allows monitoring of three exist
ing buildings with provision for the addition of a fourth
at a later date. The figure shows that each building is to
have a local annunciator panel for reporting activity in
those areas served by the building sensors. In addition, a
main security station provides monitoring of all build
ings in the complex.

PART TIME
SECURITY STATION

PART TIME
SECURITY STATION

r---,.,.~---------r--------'"'!T"1
I L"

I
I
I
I

BUILDING#4
(FUTURE) BUILDING #3

L-- -- -- - - - - -- -.----~---,...------_.

SECURITY
STATION

BUILDING #1

CAFETERIA

ENERGY CENTER

PART TIME
SECURITY STATION

BUILDING #2

Figure 4. Application Building Complex

Applications such as this are optimized by distributing
the system intelligence throughout the complex. This
serves two needs; that of minimiz;ng the wiring costs,
and of providing an improvement in system reliability.
When a system is distributed in this way, a means must
be devised which allows communication between the
various elements of. the .network. Both hardware net
work design and software communication protocol are
required before the system can .be considered opera-

Figure 3. Star Configuration tional ..

2-176 AFN·01931A

AP·109

In order to illustrate various network designs, the exam
ple is broken into a distributed system as shown in Fig
ure 5. This is an example of a multidrop communication
network. The system design does not require that build
ing nodes communicate with each other; all communica
tions are between building annunciator nodes and the
main operator station. This illustrates the concept of a
master and a slave. This will be further discussed in a
later portion of this application note.

BUILDING#4
SENSORS

~] ~J [} . ·~~ [J []
I! I I I I

BUILDING ~3
SENSORS

BUILDING #2
SENSORS

BUILDING #1
SENSORS

I I I I I I

r..L...L.l..-...L...L.l.1 ~~~...., ~~~~........, ~~~

I BUIL~ING I
I ANNUNCIATOR I
L--- ___ .J ~---~ ~---~ ~---~

Figure 5. A Multidrop Application

The building annunciator can be further distributed as
shown in Figure 6. Here, a star communication network
is created which places data gathering intelligence near
clusters of sensors. These stations, or nodes, then trans
mit information regarding local activity to their master
node, the building concentrator/annunciator panel.
Note that this panel serves both as a master node forthe
sensor units and as a slave node for the main operator
station. This arrangement is common in many system
designs.

SENSOR
CLUSTER

SENSOR
CLUSTER

SENSOR
CLUSTER

• THE USER OF CLUSTER
SENSOR INTERFACE
CONCENTRATORS
MINIMIZES
WIRING COSTS

•HIGH SPEED SERIAL
LINKS REPLACE
MULTIPLE SENSOR
WIRING

•SYSTEM INTEGRITY IS
ENHANCED BY LOCAL
DECISION MAKING AT
COMMUNICATION
NODES

MAIN
OPERATOR

STATION

Figure 6. A Star Application

HARDWARE IMPLEMENTATION
The implementation of communication networks using
iSBC boards for both star and multidrop techniques is
detailed in the following sections. In each case, a
master/slave relationship is assumed. For purposes of
illustration, actual data from the application example is
used in performing the sample calculations. While not

the only possible system designs, those shown are con
sidered to be typical and should enable the reader to
gain an insight into techniques which can be used to
create similar designs.

Star Network Design
A star network can use almost any accepted transmis
sion media. This is because each node communicates
with only one other node, creating a multiple point to
point link. Since the techniques are identicai for all
media, this note discusses only a representative exam
ple. RS232C data transmission is used to demonstrate
the techniques which can be used to establish a star net
work.

The heart of a star network is the master node. It must
provide a means of independent communication with
each of its slave nodes. Costs can be minimized if multi
ple communication drivers are placed onto the same
board. The example chosen requires that four slave
nodes be controlled by the master. The iSBC 544 Intelli
gent Communications Controller provides this func
tion. It provides a software selectable baud rate and the
ability to offload the host processor of communication
activities. If additional slave nodes are required, the
system can be expanded by adding iSBC 544 controller
boards.

An ideal choice for a slave node is the iSBC 80/lOB™
Single Board Computer. This computer provides good
processing capabilities with low cost. It includes both an
RS232C and 20-milliamp current loop communications
interface. For many small applications it makes an ideal
choice for a complete single board solution.

Figure 7 shows the implementation for a four-node plus
master star communication network for the security ap
plication. Both the iSBC 544 communications board
and the iSBC 80/lOB Single Board Computer require
jumpering and component insertion to allow operation
in either the RS232C mode or in the EIA mode. EIA
operation is electrically identical to RS232C but has
specifications which allow transmissions at significant
distances when the baud rate is reduced. For the pur
poses of this application note, the terms are used inter
changeably.

2-177

~~ F~~~1 ' ISBC 80/108'" I ISBC 801108'•
SINGLE BOARD SINGLE BOARD 1

COMPUTER COMPUTER j

~~
ISBC 544 ~ 1

INTELLIGENT
COMM BO~

Figure 7. Star Implementation

AFN-01931A

AP-109

In the case of the iSBC 544 board, a header plug can be
inserted. into an on,board connector to enable the cor~
rect mode of operation. The wiring for this header is
shown in Figure 8. Note that the ready to send and the
clear to send signals are jumpered to allow the correct
operation of the USART without the control signal of a
modem. Also note that the transmit and receive signals
are reversed through the header.

TOJ1

DTETxC

DSR

OTA

CTS

ATS

RxD

TxD

STxD

SRxD

Figure 8. Master to Master Wiring Header.

The use of an RS232C signal for long distance com"
munication necessitates the use of a low baud rate for
reliable data transmissions. This is shown in Figure 9.

METERS I FEET

~
1.2K 4K

1K 3K

600 2K

The security system application design allows· for mini"
mum communication traffic so a baud rate of 1200 is
used for the star networks. The placement of intelli"
gence at the sensor cluster minimizes the amount of data
which must be transmitted, providing adequate re"
sponse time at this data rate.

The hardware design phase includes the selection of the
communication scheme to be used between the host pro"
cessor and the slave node. Fortunately, this task is
simplified by the use of buiJt,in master/slave protocol
functions contained on the iSBC 544 communications
board. These functions involve three hardware features.
The first is the incorporation of dual,ported memory
onto the board. This memory provides a media for the
storage of data and commands for communication be"
tween the slave and the host processor. The second
feature generates a flag interrupt each time the host
board writes into the first location of the dual,ported
memory. The interrupt is cleared when the memory lo"
cation is read by the slave processor. Finally, the execu"
tion of the 8085A,2 SOD instruction generates a MUL"
TIBUS interrupt to inform the host board of the need to
service the slave. This interrupt can be vectored to the
hostinterrupt matrix to activate a service routine in sup"
port of the slave board.

A detailed explanation of the use of these features is
found in another application note, AP,53, Using the
iSBC 544™ Intelligent Communications Controller.
The reader should refer to this document for details of
the board and its use.

·~r
~

300 1K

\~ " " .,
" ~ 150 500
w

" z 100 X-CABLE IS 22 AWG
~ 75 250 4·CONDUCTOR (QUAD) .,

BAUD SHIELDED UNSHIELDED
(IN FEET) (IN FEET)

110 5000 3000
300 5000 3000

1200 3000 3000
2400 1000 500
4800 1000 250
9600 250 250

iS

30 100

15 50

INSIDE STATION WIRE
DEC P.N. 9105856·04.

0-CABLE IS TWO 22 AWG
TWISTED PAIRS EACH
SHIELDED IN BELDEN 8777
(THREE PAIR).
DEC P.N. 9107723. SHIELDS
TIED TO GROUND.

110 150 300 600 1200 2400 4800 9600

DATA RATE IN BAUD (LOG SCALE)

ALL DISTANCES SHOWN ARE MORE THAN
50 FEET/2500 pF. HENCE THESE
TRANSMISSIONS VIOLATE RS232C.

NOTE THAT THE "EIA"" INTERFACE CASE,
SHIELDED PAIR OUT·PERFORMED
UNSHIELDED WIRE.

Figure 9. RS232 Baud Rate vs Distance

2,178 AFN-01931A

AP·109

Multidrop Network Design
The complexity of a multinode system is minimized
through the use of a multidrop network. Certain limita
tions are placed on the acceptable hardware transmis
sion media in multidrop applications. A scheme must be
used which allows each of the nodes to alternatively gain
control of the network in order to communicate its
message.

Both half and full duplex configurations are allowable
in a multidrop network. While it is simpler from a hard
ware standpoint, a half duplex connection requires
more stringent communications protocol as this system
allows communications in only one direction at a time.
For all practical purposes, no priority for masters or
slaves is provided. All nodes may listen to whomever is
using the line at the time. The software must be written
to allow only one node to communicate at a given
instant. An example of a half duplex network is the
Ethernet.

More straightforward software can be written for full
duplex communication configurations. In this instance,

USART

HEADERS
XU4 AND XUS . BUFFER U1
,---------, r-------,
I I I !

~-R~.-+.--0--~~--H :>-+-'--~

DM
I I
I I L _______ J

an assumption is made that only one master is config
ured into the system and always drives the output lines.
Any number of slaves can be placed to drive the input
lines, communicating only when queried by the master
node. This is the scheme used for the application exam
ple which is discussed in this application note.

Intel's iSBX 351 Serial MULTIMODULE Board lends
itself well to a multidrop application. It allows. a wide
variety of system solutions to be created using any of the
single board computers which incorporate iSBX bus
connectors. Several board options must be enabled to
create the multidrop communications configuration.

The first option involves configuring the drive.rs to.use a
tri-state driver on the output lines. This allows only the
board desiring to control the communications signals to
place data on the serial output lines. The board config
uration is different for a slave and for a master node. In
the Intel implementation, the driver output signal lines
are controlled using the DTR (data terminal ready)
signal from the USART. The jumper configuration for
both a slave and a master is shown in Figures 10 and 11.

Vee

BUFFERU2

RS

HEADERS
XU4ANDXU5 ,-------,

I

1 ,so

TR

NOT USED

Ci
I NOT USED
I

------1
ISBX 351™ SERIAL MUL TIMODULE"' BOARD

RD

DM

HEADERS
XU4ANDXU!5 r-------,
I '

I : L ______ ...J

Figure 10. Master Configuration Detail

USART Vee

BUFFERU2 r------.,
I

>-r------<CTS RTSl------+-i RS

HEADERS
XU4ANDXU5 r-------,

I I

SD

I NOTUSED

RS
..A'-f---+~r-r~:---

1
o-'--

: NOTUSED
~-----------~-~------+-<>~ o-r---------L ______ J

ISBX 351,. SERIAL MUL Tl MODULE"' BOARD

Figure 11. Slave Configuration Detail

2·179 AFN·01931A

AP·109

Fig~re 12 illustrates the physical wtnng data paths
which are used t1;1,create a full duplex multidrop net
work having a master and four slave stations. Each
board must be configured using a header block to pro
vide the correct signals. This is done as shown in Figures
10 and 11.

Fin!illy, bias resistors are chosen to terminate the serial
communication l!ata paths. A discussion of the formu
las for. determining the correct values . for the two
resistors is provided in Appendix A of the iSBX 351™
Serial MULTIMODULE Board Hardware Reference
Manual (Order Number 980319Q). If the equations are
solved for the componnts used on the RS422 section of
the board, the equations for calculating the correct
values become:

Rbl = 4500 I (18.6 - 1.6n)

where n is the number of slave nodes

AND

Rb2 = 2500 I (18.6 - 1.6n)

where n is the number of slave nodes.

The drivers used on the iSBX 351 communications
MUL TIMODULE board limit the number of slave
nodes to 11 for any one network. If greater numbers of
nodes are required, a driver component substitution
may be required.

For the example application in this note, four slave
nodes are used, so the calculated resistor values become
370 ohms for Rbl and 205 ohms for Rb2.

Figure 13 illustrates the acceptable baud rates for vari
ous communications cable lengths using the RS422 in-

BIAS RESISTORS
ON THE INPUT LINES
TO THE MASTER

r ~ ~
R.,

t>-------i r r R.,)RD so\)RD so\
R.,

h' R ..)DM TR\)DMRS\

r ISB~RIAL ISBX 'ai?iiRIAL
MULTIMODULE'"' MULTIMODULE"'

BOARD BOARD

NOTE: ABBREVIATIONS
RD= RECEIVE·DATA TR =TERMINAL READY
DM~DATAMODE RS •REQUESTTOSEND
SD •SEND DATA

terface. The iSBC 351 board is designed to support data
transmission rates of up to 19.2 kilobaud. Thus, the
system designed usiii.g these boards is seen to permit a
total multidrop cable length of up to 4000 feet (1.219
km). The sample application discussed in this note in
corporated a total communications link length of 1600
feet, well within the performance limits.

10K 24 AWG TWISTED PAIR CABLE

1K

i
:z: ,_
" z
w ..
w ..
~ 100

40

DATA MODULATION RATE (btluds)

Figure 13. RS422 Data Rate vs Distance

SOFTWARE IMPLEMENTATION
Once the hardware has been defined, the design process
moves into a software phase. Here, protocols are de
fined which provide both data transmission and hand
shaking between nodes. Handshaking is defined as
background communication which maintains synchro
nization and integrity of the communications link.

~~

~

~)RD SD\ I>--
)OMRS{ ~

iSBX~RIAL
MULTIMODULE'•

BOARD

RY
TERMINATION

RY ON THE INPUTS
REStSTOAS

TO THE
THE SYSTEM LAST SLAVE IN

SLAVE n
~ r----i)••so\

~ ~)DM RS\ r--
ISBX~RIAL
MUL Tl MODULE"'

BOARD

Figure 12. Master/Slave Physical Wiring

2·180 AFN-01931A

AP-109

Again, standard features of both iSBC board products
and of iRMX™ software products simplify the incorpo
ration of communication protocols into the system solu
tion.

Master/Slave Relationships
In order to maintain an orderly flow of data between
nodes, software must be created which allocates priority
and only allows one node to transmit at any instant. The
most straightforward technique which incorporates this
function is the master/slave relationship. Here, one
node is designated as a master and all others are slaves.
Each slave is allocated a time during which it may trans
mit any information to other nodes. The master node
controls the prioritization of all slave nodes. The com
plexity of the system can be further reduced if a full
duplex scheme is implemented. In this mode, all slaves
listen only to the master and transmit their messages
over a common serial channel to the master. A disad
vantage of this technique is that direct slave to slave (vir
tual channel) transmissions are not permitted.

Figure 14 shows how a master node establishes time
slots for windows, during which a slave may control the
output channel and transmit data to the master. Each
slave node is assigned a unique identification or address.

QUERY QUERY QUERY
SLAVE1 SLAVE2 SLAVE3 ---..... ..------.-----

MASTER
WINDOW

SLAVE1 .

SLAVE2 L_J

SLAVE3

Figure 14. Generation of Windows

Each data packet contains an address as an integral
part. When a slave recognizes its address in the packet
from the master, it knows that it has fixed time window
in which to return its own data packet to the master.

Data Packet Formats
Communications between each slave and its master in
volve the transmission of data packets. Each packet
contains both handshaking information (such as check
sums and message counts) and the information which is
to pass between nodes. The handshaking portions of the
message are used to maintain the integrity of transmis
sions in the face of such external stimuli as electrical
noise.

Debugging and system maintenance is minimized when
a means is provided which allows easy viewing and in
terpretation of the communication messages. The
scheme used in this application note uses a fully ASCII
compatible communications format. This allows a CRT
terminal to tap onto the link and to monitor all com
munication messages.

Each message packet begins and ends with a unique
character. This character cannot exist with a message
block. Using the ASCII formats, all messages use the
numeric representation of 0 to 9 and the alpha charac
ters from A to Z. A line feed is used to begin a message
packet and a carriage return i~ used to terminate the
message. The assignment of these characters assures an
easily interpreted message packet. ·

The layout of the data packet is shown in Figure 15. The
justification and description of each field is given in the
following paragraphs. Note that much of the message is
concerned with maintaining system integrity. The re
quirement for an address field has already been de
scribed. Two characters are used for this field and pro
vide for 256 addresses (0-FF hex). The protocol being
described used 0 as the system master and 1 through 255
for possible slave addresses.

,,.------.----'--,...-----.-----~t-------il-T-----.-----,
START CHARACTER TARGET NODE COMMAND MESSAGE COUNTERS DATA CHECKSUM END CHAR

(LINE FEED) (0-255) (0-F) (O-FF) (OPTIONAL) (0-FF) (CR)
'------'------'-------'--------Wt-----ffrl-----'-----"'

COMMUNICATIONS MESSAGE FORMAT

~:,_...,.. _______ R_M_X•-•S_P_E-Cl-Fl-ED---------.--EX-T-EN_S_IO-N--..---T-A-SK-...--f f--

LENGTH TYPE RESPONSE EXCHANGE HOME EXCHANGE EXCHANGE NAME MESSAGE
~,__.r_~~--~----_-_-_-_-~_~._u~~~--+~---_-_-_-_-~7x_-_-_-_-_-_~_-_-_-_-_-_7.~x-:::.-:::.-:::.-:::.":::'. __ ~_c_H_AR_l_~_D_A_TA_~ r--

COMMUNICATION DATA FIELD
UIS - USER SPECIFIED
•THE LENGTH"(IN BYTES) OF THE DATA FIELD

Figure 15. Communications Packet Format

2-181 AFN·01931A

AP-109

The next field indicates the type of message being sent
and the action .which is required by the receiver. Anal
ysis of system communication requirements indicate
that five message types are sufficient. The use of a single
byte of the packet for this field allows a total of 16
message types. This leaves 11 for future expansion. The
types being used in this application are:

Type 0 - This is a reset request from the master to
a slave. It will cause the target slave to generate a
software reset. This command is used only when
communications cannot be established using other
means.

Type 1 - A type 1 command is used to synchro
nize the master and the slave. It will cause the
message counters (see subsequent paragraphs) to
reset to zero. This command is issued only by the
master node.

Type 2 - The type 2 message is defined to be that
which contains information which is to be moved
between nodes of the communications network.
The exact format of the data is discussed else
where. This is the only message which is not con
sidered to be of a strictly handshaking nature.

Type 3 - A type 3 message is used to indicate that
a network node is responsive and ready to handle
messages. When normal communications have
been established and no data messages are being
sent, this message is continuously being sent be
tween the master and the slaves.

Type 5 - The final message type is the type 5. It is
used by the slave to respond to the master's re
quest to synchronize. The receipt of this message
indicates that the .slave has performed all
necessary operations with its message counters
andis ready to. receive messages.

The next field is used to describe the number of mes
sages which contain data and have been received or sent
by each node. The first character is used to indicate the
number of messages which have been received from the
master node to that slave. The second character indi
cates the number of messages which have been sent
from the master to the node. Internal software protocol
enables the communications package to use these fields
to determine if a data message has been received cor
rectly by the target node. If a response message does not
contain the correct counts, the message can be retrans
mitted. Since only one character is used for each count,
the numbers are allowed to recycle each 15 messages.

The data field contains information which is to be sent
to the receiving node. Its exact content is discussed later
in the application note during the discussion of the
iRMX 80 message extensions.

A checksum .is included to guarantee the integrity of the
transmitted message. This . field contains the 8-bit
modulo 256 sum of all transmitted ASCII characters,
beginning with the line feed and continuing through the
last character of the data field. It is used to compare a
calculated checksum of received characters with that
transmitted by the sending node. If these two numbers
are in agreement, the message is considered to be valid
and can be used by the receiving node's application soft
ware.

The final field is the end of message character. A car
riage return is used and provides a unique indicator of
the end of a message packet.

The implementation of these communication concepts
into a functioning software package is illustrated later
during the discussion of the layering of the multipro
cessing communications package.

Multitasking Message Concepts
The design of systems which involve distributed pro
cessors strongly suggests that a multitasking environ
ment is also present. The ability to segregate an applica
tion into tasks allows a considerable simplification of
the design and implementation process. In reality, few
tasks represent completely isolated functions. Some
degree of communications is required between the tasks.
This may range from a simple synchronization of tasks
to a data transfer. Real-time executives simplify these
processes for the system designer. Intel's iRMX 80
nucleus is an excellent example of such an executive. It
provides low overhead, small physical size, and operates
on almost all 8-bit Intel single board computers. The
product has been thoroughly covered in several applica
tion notes and it is therefore not necessary to cover it
again in this note. However, certain features are useful
for developing a distributed processor extension of the
basic nucleus.

An iRMX 80 message is analogous to a letter which is
mailed to someone. It is senfvia a mailroom or post of
fice (called an exchange) and is then picked up by the
receiving party. Each part of the iRMX implementation
can be thought of in this manner. When a serial com
munications link is. used between the processors, the
analogy translates to that of sending a mailgram. The
following short discussion deals with the structure and
mechanism for sending messages between tasks which
reside on different single board computers. For clarity,
the mail analogy is used.

There are severnl distinct parts of a message. Each has a
function and a format within the message structure.
Before a message can be generated, a medium must be
procured to contain that message. In terms of a large
office, this medium is paper; in the multitasking system,
it is a block of RAM. In order to maintain a continuing
supply of memory, the iRMX executive provides the

2·182 AFN-01931A

AP·109

user with what is known as a free space manager. The
purpose of the free space manager is to recycle memory
blocks so that they can be again used for generation of
additional messages. This service is called each time the
sending task requires to generate a message. When the
communication programs have successfully transmitted
the message to the target node, the memory block is
again returned to the free space memory pool. As the
target node receives the message it must obtain a block
of memory from its free space manager to store the in
formation until it can be processed by the target task.
The target task returns the block to the pool when it has
taken the appropriate actions.

As with any type of message, the individual to whom the
message is to be delivered must be provided. Because the
iRMX 80. nucleus is designed to be used by multiple
tasks on the same processor, the target address mechan
ism is not included in the message header itself; instead,
the target is specified in the call to the iRMX procedure
as a parameter list component. When the target ex
change address is not known, which happens when mul
tiprocessor applications are created, it is necessary to
create an extension to the executive which allows the
assignment of a target exchange name to each message.
Fortunately, this is relatively easy to create.

iRMX 80™ Named Exchange Extension
The iRMX 80 nucleus uses a small block of RAM mem
ory to store data regarding the characteristics and status
of each exchange. This storage area normally occupies
10 bytes of memory. Its .layout is shown in Figure 16.
Except to note that a unique identification field does not
exist which sets each exchange descriptor apart, it is
beyond the scope of this application note to dwell on the
meanings of the fields. However, a method must be cre
ated which allows the extension of the field to include an
identification which is unique to that descriptor.

EXCHANGE LINK

MESSAGE HEAD j
MESSAGE TAIL

10 L _____ _!:'~K------~ } ~i~~~~l~N FOR
12 L _____ L~~T!!_ _____ ...J INTERRUPT EXCHANGES)

14 L __ ~i:: __ ..J

Figure 16. Exchange Descriptor

If one is not to rewrite the nucleus, the format of the ex
change descriptor must not be changed and the identifi
cation field should be added as additional bytes of the
memory block. Two features of the iRMX 80 nucleus
make the direct implementation of this concept impossi
ble. First, a special exchange descriptor already exists

within the standard real-time executive. This is the inter
rupt exchange which a.dds 5 bytes to the nucleus for use
as an interrupt message. Second, if an additional exten
sion were to be added, all exchanges would have to be
created as interrupt exchanges so that common software
could be used. While this would not in itself be prohibi
tive, the interactive configurator (ICU 80) does not
allow addition of fields to either the standard or to the
interrupt exchange descriptor. Another method is re
quired to add the extension.

Fortunately, another method exists to create an ex
change. The nucleus operation, RQCXCH, creates an
exchange at an address which is specified by a parameter
of the call instruction. If user software is created to
build the named exchanges, a name can be prefixed to
each desired name exchange.

In the standard iRMX 80 nucleus six characters are al
lowed to name each task. A logical extension of this
concept provides a six-character name for each named
exchange. The exchange descriptor is thus extended by
inserting 6 bytes before the basic format. In realty, this
is not sufficient because named exchanges are to be
created dynamically. The memory blocks representing
the set of named exchanges to not necessarily constitute
a contiguous block of RAM. This leads to the creation
of an additional word of memory to carry a pointer to
the next named exchange field. A value of zero in this
field indicates that no additional named exchanges exist.
If a non-zero value is placed into the field, it is a pointer
to the next named exchange. Figure 17 illustrates the
structure of the named exchange fields.

FIRST$PTR

+O

ASCII NAME ASCII NAME

+6

IRMX80Till IRMX80'™
EXCHANGE EXCHANGE

DESCRIPTOR DESCRIPTOR

+16
LINK LINK =0

FIRST NAMED EXCHANGE LAST NAMED EXCHANGE

Figure 17. Named Exchange Descriptors

The creation of the software to support the named ex
change extension is rather straightforward. Two func
tions are required; one which creates the named ex
changes, and a second which will return the address of
an exchange which matches a given name. A complete
listing of the software generated to perform these func
tions is shown in Appendix A. The services of the free
space manager are used to allocate the memory seg
ments which are used for the exchange descriptors. A

2-183 AFN-01931A

AP~109

quick examination of the program techniques provides
some insight ·into the · operatfons involved •in creating
extensions to the standard nucleus.

Examination of the listing at line 55 shows that a proce
dure is used to allow user code to determine the absolute
address of the iRMX exchange descriptor field from the
nam~d exchan~e lists. This address can in tum be used
with either the RQWAIT or the RQSEND instruction in
the user's code. If no corresponding name is found in
the table, a value of zero is returned by the procedure.
An address parameter is passed in the user call to the
FIND$EXCH subroutine which points to the 6 bytes
containing the ASCH name of the referenced exchange.

An internal· address value, identified as FIRST$PTR,
contains the address of the first named exchange de
scriptor. A simple DO loop sequence is used to locate a
matching name in the table lists. Either a zero or the
location of an actual l O·byte exchange descriptor within
the extended memory block is returned.

A task is used to provide the system capability of build
ing nanied exchanges. A task, rather than a procedure,
is included because a task allows the initialization of
system pointers such as FIRST$PTR. The named ex
change building task, · CREATE$COM, waits at its
input exchange, COM$CREATE$EXCH until a request
for creation of a named exchange is received from a user
task. The listing for this task is found in Appendix A,
beginning on line.78. ·

When a message is received, the task obt.!lins a 20-byte
block of memory from the free space manager. It then
moves the ASCII name from the requesting message
into the appropriate fields and uses the iRMX primitive
call, RQCXCH, to create an exchange descriptor within
the memory \?lock. The pointer field of the last named
exchange is updated to point to the new memory field
and the pointer field of the newly created named ex
change is set to zero.

Finally, the address of the actual exchange descriptor is
returned to the requesting program as an updated
parameter of the request message.

The creation of named exchanges greatly enhances the
capabilities of systems designed . around th.e iRMX 80
nucleus. This extension allows the generation of distrib
uted systems in which tasks may communicate with each
other regardless of their geographicaI locations so long
as some type of link exists.

Generation of Multiprocessing Serial
pomlTlunications Li.nk ·
The creation of software for a seri.al communications
link provides the capability of allowing true multitask~
ing, multiprocessor capabilities. The need for two types
ofcommunications packages, a sl!lve and a master, indi
cates that two separate. tasks are required. A compre-

hensive examination of the communication require
ments indicates that the system can be generated in three
layers. Figure 18 shows the layer relationships. The first
is defined as the protocol and consists of that ·code
which is required to implement the algorithms for either
the slave or the master network nodes. The second level
is known as the link level and contains that code which
is used to support common operations such as message
generation and data queue handling. The third provides
a specialized interface to the physical hardware which is
being used to generate the communications link. Thi~
level, called the physical level, is unique to each con
figuration.

2-184

PROTOCOL LAYER

MASTER SLAVE

Llf-:IK LEVEL LAY.ER

TAKE TEST ASCll·HEX CHECKSUM GENERATE READY

INITIALIZE HEX·ASCll MESSAGE OUT GENERATE MESSAGE

PHYSICAL LAYER

INITIALIZE GET CHARACTER SEND CHARACTER- START SEND

·Figure18.

PROTOCOL LEVEL COMMUNICATIONS
PACKAGE

Two protocol level communications packages are in
cluded in this application note. One implements the
master protocol and is reproduced in Appem;lix B. The
second, the·slave protocol, is found in Appendix' C.

No attempt is made to detail the operations which are
involved in the task generation. The code is commented
and is readily foilowed by the rea.der who has an under
standing of PL/M programming techniques. Some
facits relating to the implementation of the packages as
iRMX 80 tasks are in order. ·

The master communications package is designed to use
a USART device which is configured to provide inter
rupts at level7 each time a character is received. A phys
ical level interrupt handler supports the receipt of each
individual character, and, when an end of message char
acter (carria,ge return). is received, places an interrupt
message into t!ie interrupt exchange; RQL7EX. At this
point (Appendix B, line 244), the master protocol han
dler can begin processing the received message. Because
the task is associated with interrupt level 7, a task prior
ity inthe range between 113 and 128 mustbe assigned to
the task. The example used in this application note uses
a priority of 113.

AFN·01931A

AP·109

In a similar manner, the slave communications task uses
interrupt level 6 to receive messages (Appendix C, line
130). Its priority must lie in the range between 97 and
112.

LINK LEVEL COMMUNICATIONS PACKAGE

The link level communications package provides a com
mon set of procedures which can be used to support
both the protocol and the physical layers. Listings of
these support programs are found in Appendix D. The
programs which make up the package are defined in the
following discussion.

Several procedures support the maintenance of the data
queues. These are CQQINIT, CQ$NEXT$TAKE,
and CQ$NEXT$GIVE. The first, CQQ1NIT, is used
to clear space for a data queue. It sets up the length
parameter and the give and take pointers to their initial
values.

Data is placed onto the queue by calling the procedure,
CQ$NEXT$GIVE, and including the desired data in the
paramter list. Conversely, CQ$NEXT$T AKE is used to
take data from the queue. Both maintain the queue
pointers as data is inserted or removed. For further in
formation about data queues, the reader should refer to
AP-52, Using the iSBC 544™ Intelligent Communica
tions Controller. This document contains an extensive
discussion on the subject of data queues.

Two procedures deal with the transformation of data
between printable ASCII and the internal binary for
mat. CQASCHEX transfers data from the data queue
into a working buffer. In the process, it converts the
format from ASCII into a hex representation usable by
the target task. Likewise, CQHEXASC is used to
transform data in a user buffer into a transmittable for
mat. In both cases, appropriate start and stop charac
ters are added or deleted as necessary to create the cor
rect format.

One procedure deals with computing the checksum of a
message which is in ASCII format. This procedure,
CQ$CHECKSUM, returns a zero if the checksum
agrees with that in the message. If an error is indicated,
a value of - 1 (OFF hex) is returned.

Finally, two procedures support the generation of mes
sage packets. One, CQGENRDY, is used to build a
"ready" message by creating the appropriate data into
the fields. The second, CQGENMSG, generates a
data message containing an iRMX 80 message to be sent
to an exchange on another processor board.

PHYSICAL LEVEL COMMUNICATIONS PACKAGE

The physical level communications package provides
the customization for the unique configuration of host

processor and USART. Four procedures must be in
cluded with this level. These are:

• CQ$1NIT - This public procedure contains all
operations necessary to initialize the timers, counters
and USARTs associated with the communications
code. In addition, this procedure defines the inter
rupt service routines for the USART and enables the
corresponding interrupt levels.

• CQ$START$MSG - A public procedure which
places the USART into a mode in which the transmit
ter is enabled. The execution of this procedure should
result in an interrupt being generated by the USART
transmitter ready line.

• CQMIVT - This is an interrupt service routine asso
ciated with the USART receiver ready line. It is en
tered each time that a character has been received by
the communication node. In the case of a slave node,
this procedure is known as CQSIVT. The name is
unimportant because the location of the routine is
passed to the iRMX 80 nucleus at initialization by the
CQ$1NIT program. When a carriage return (end of
message) is encountered, a message is passed to the
protocol level task by passing a message to the inter
rupt exchange, RQL6EX, using the iRMX primitive,
RQISND.

• SEND$CHAR - Like the CQMIT routine, this is
an interrupt handler procedure. It is entered each
time the USART signals that it is ready to transmit a
character. A new character is obtained from the data
queue and it is transmitted to the receiving node. If
the character is the ·end of message, flags are set and
the USART transmitter is disabled.

The listing of a sample physical driver is provided in Ap
pendix E. This driver illustrates the use of the iSBX 351
Serial MUL TIMODULE Board placed into a socket of
an iSBC 80/24 Single Board Computer.

The example from the application implements a multi
drop slave node. The enabling of the tri-state drivers is
accomplished in line 138 by sending the USART a com
mand of 025H. When the message has been sent, the
driver is again placed into a high impedance mode by
sending a command of 026H (line 121). These com
mands control the driver by toggling the DTR or Data
Terminal Ready lines of the 8251A USART device.

APPLICATION EXAMPLE
The alarm and security system previously discussed pro
vides a perfect environment in which to use the concepts
developed in this application note.

To verify the functionality of the communications pack
age, the transmissions. between a master and a slave
were monitored using a CRT terminal. The terminal was

2-185 AFN·01931A

AP·109.

connected to one of the RS232 serial paths using a tee
network. This tee network is.shown in Figure J.9. Sev
eral scenarios were set up to test the effectiveness of the
communications protocol. The results of some of these
tests are recorded in the following discussion.

A test of normal communications was performed in
which one message is passed between th_e master and the
slave. A short time later, a message is passed to the
master from the slave. The CRT display for this action
displayed as:

(line 1) 0330000
(line 2) 00300FD _
(line 3) 03200091230900BF0000oooo9F
(line 4) 00310FE
(line 5) 0331001
(line 6) 002108247090087000000008A

· (line 7) 03 31102
(line 8) 00311FF

Line 1 is a "ready" (character 3) message from the
miister node to a slave addressed 03 hex (characters 1
ap.d 2). No messages have.been sent_in either direction at
the time this message was generate.d. On.line 2, the sla.ve
hasresponded indicating that itls present and ready to
receive messages. It also has not transmitted any mes
sages to the master nor has it received any.

The master. node sends the. slave. a message on line 3.
Note that the message count field (characters 4 and 5) is

T1

Vc1

2
+9 Vee.,

.

-9~ .·· -

@1_1
VEE

not changed until. after the message has been trans
mitted. The message sent.is a type BF and has ,a total
length of 9 bytes. On line 4, the slave acknowledges that
is has received one message and has sent none.

Lines 5, 6, and 7 illustrate a sequence in which the slave
sends a message to the master node .. Prior to the mes
sage being sent, the message count field shows that one
message has been received, After receiving the message,
the master node increments its received counter;

Tests JNith the alarm and security system verify that the
communication module fµnctions correctly. l)ata integ
rity is maintained even through intentional disruption of
the electrical link. Both the RS232 and RS422 communi
cation paths function as designed.

A detailed discussion of this application .and of the
multitasking capabilities of the iRMX 80 nucleus can be
found in AP-112, Simplifying Complex Designs Using
The iRMX 80™ Executive.

CONCLUSIONS
This application note illustrates the ease with which a
user can add extensions to the iRMX 80 executive to
support a distributed multiprocessing application. In
addition, {he user of standard "off the shelf" single
board computers and expansion modules to create a
hardware solution is explained.

T2

Figure 19. Communications Tee Schematic

AFN-01931A

AP·109

The ability to break applications into small tasks, either
functionally or geographically, aids the system designer
by allowing his concentration on each task. A message
transfer capability allows these tasks to again be tied
together to form a complete solution to the application.
Where the tasks reside on the same single board com
puter, the standard iRMX nucleus provides this ability.
When different host boards are used, extensions to the
nucleus allow the same functions to be performed. Both
multiple processors on the same MULTIBUS chassis
(refer to AP-88 and AP-112) and in different chassis
using the serial links described in this application note
can be supported with extensions to the nucleus.

Many concepts are used to create serial communication
networks. Intel's single board computer products
simplify the design process. Among these products,
several stand out in this application. For example:

• iRMX 80™ Executive - This outstanding product
simplifies the design of multitasking systems and pro
vides a foundation for the implementation of exten
sions to create many varied configurations. Such
things as task synchronization, interrupt handling,
and message transfers allow multitasking. The free
space manager allocates RAM and is an integral part
of the serial communicaitons link software. The ter
minal handler and the disk operating system simplify
the software design by providing ready to use I/O
drives which can be accessed by the user.

• iSBC 80/10B™ Single Board Computer - This
microcomputer allows a low cost solution to many
small to medium applications. The ability to operate
the board in an iRMX 80 environment enhances its
capabilities by allowing it to multiprocess. Its on
board serial communications link allows it to be used
as a slave node in either EIA or current loop com
munications networks. The iSBX MUL TIMODULE
connector further enhances its capabilities by allow
ing customization of 1/0 to meet a wide variety of
user applications.

2·187

• iSBC 544™ Intelligent Communications Board
- The use of this board allows much of the protocol
and physical drivers to be off-loaded from the host
processor. The board provides an ideal master com
municatons node for star type networks. By placing
the handshaking operations on the communication
board, the host is free to perform application
oriented functions with a much higher throughput
rate.

• iSBC 80/24™ Single Board Computer - This
powerful 8085A-2 based microcomputer board pro
vides the capability to implement most of the system
functions without the need to expand to additional
memory or I/O expansion MULTIBUS boards. It
fully supports the iRMX 80 executive. Its ability to
act as a full bus master allows even greater flexibility
through the implementation of MULTIBUS multi
processor solutions. The two iSBX MUL TIMOD
ULE expansion connectors provide the user with
considerable flexibility in the design of his system.
The use of one of these sockets as a carrier for the
serial communications MUL TIMODULE board
makes a multidrop serial communications link prac
tical.

• iSBX 351™ Serial MULTIMODULE Board - The
implementation of multidrop communications re
quires the .use of an electrical interface which sup
ports more than one communicaitons node to share
the link. The use of the RS422 operating mode of the
board easily impleinents this feature. A well-defined
hardware protocol also assists in the implementation

· of a serial multidrop communications link. Up to 11
slave nodes can be designed into a system using this
powerful board. In addition, the iSBX 351 board can
function in either the RS232C or the EIA mode for
linking into terminals or for creating a point to point
network.

The assistance of Judy McMillan in the implementation
and testing of the security system and its communica
tion links is greatly appreciated.

AFN-01931A

infer

APPENDIX A 2-189
APPENDIX B 2-193
AP PEN DIX C 2-205.
AP PEN DIX D 2-215
APPENDIX E 2-236

2-188 AFN-01931A

1

26
27

28
29
30
31
32

33

34

35

36

37

38

39
40
41

1
1

1
1
1
1
1

1

1

1

1

1

1

2
2
2

APPENDIX A

$title('RMX/80 EXTENSION TO NJl,ME EXCHANGES, VERSION 1.3')
create$comSexch:
do;

/***
CREAT$EXCHANGE creates a list of exchanges associating
the name of an exchange with its location, for the purpose
of other tasks wishing to find the location of an exchange.
FIND$EXCHANGE, when given the name of an exchange, polls
down the list and, when it finds a match, returns the
address to the requesting task.
/***
$nolist

/* declare exchanges used by the task */

declare CO~$CREATE$EXCH exchange$descriptor public;
declare CREATE$EXCH exchange$descriptor public;

;~ u,clare pointers and messagges used by the task */

declare first$ptr
declare last$ptr
declare msg$ptr
declare exch$ptr
declare n

address;
address;
address;
address;
byte;

declare request based msg$ptr structure(
msgShdr,
exch$name(6) byte);

declare fs$req structure(
msgShdr,
msg$length address);

. declare exch based exch$ptr structure(
name(6) byte,
exchange(l0) byte,
link address)J'

declare last$exch based last$ptr structure(
name(6) byte,
exchange(!~) byte,
link address);

declare response based msg$ptr structure (
msg$hdr,
exchange address);

NAMEX:
Procedure(exptr) address public;

~eclare addr address;
declare exptr address;
declare (ex based exptr) · (6) byte;

/* declare the returning message with the address */'

2-189 AFN·01931A

intef

4,2 .. 2

l! 3 . 2

41,

45

46
47
l! e
49
5C
51
52

53
54

55

51S
57
se

5~

q
I) 2
!, 3
(i 4
(15
hS

2 ..,
,:

2
2
2
2
2
2
2

2
?

1

2
2
2

2

2
3
3
4
4
5

APPENDIX A

c1 eclcirc· ret$"1sg hPsed addr structure{msghdr,
exchSadr ?dc1ress);

/* c1P.clcire nessc>ge· to senc to cre>i'!te e ncimed exchc:nge */

cie>cl?re rf>q. structure(msgShdr,
nome(n) byte);

/* create ?n exch?nqe to communicate with
the comr.i create exchcinge */

dec]?re fsx exch?ngedescriptor;
c2l} rqcxch(.fsx);

/* builc1 Pnd send the request messPge */

req.length:: 15;
cc:l I nove (n, .ex, • req .name);
req.type = 2C0;
req.response$exchange = .fsx;
cell rqsend(.comcreateSexch, .req);
?ddr rqw2it(.fsx, ~);

?dee = ret$r.isg.exch$adr;

/* return wi tr. the add.ress of the exchc>nge *I

return (cic1cr);
end;

FINDSEXC'H:
procedure (name$ptr) address public;

r***~***
Thi; ~ rocec~ure finds the e.-xchc.nge beving e n?me specified
by the passed poC:ometer pointer;. If a mcitch is founc the
exchange address is returned. If no match is found, a
zero is returned.
**/

declere nc:meSptr eddress;
cleclare mcitch byte;
cecl<"re (name bcised ncime$ptr.) (6) byte;

/11 te·st for no exchanges */
if firstSptr = f
then return 0;

/* test for a n?me mcitch */
else co;

exchSptr = firstSptr; ·
co while l;

Ml'!tch = ('!ffh;
(10 n = r to 5;

if nr.me(n) <> eYch.name(n)

2·190 AFN-01931A

intef

6!? 5
l>S L1

71 4
73 '!
74 4
75 3
7 r; 2
77 2

7R

79 7
8C 2

81 2
82 2

83 2

84 3

PS 3
8(. 3
87 3
8P 3
89 3
9C 3
91 3

92 3

93 3

94 3

96 4

end;
enc;

return C;
end;

APPENDIX A

then 111etch = 0;
end;
if MPtch then return .exch.exchenge;
if exch.link = 0 then return r;
exch$ptr = exch.Jink;

CREJl.TESCOJ'll:
procecure public;

/****************!**
This procedure creates exchange extensions when asked to
do so by e task that wants its exchange mede completely
eccessihle. It saves the namP of the exchenge then
creetes an exchange to save its address. It may he urdatea
at rny time.
**/

/* initialize exchanges */
call rqcxch(.com$create$exch);
call rqcxch(.createSexch);

/* initialize pointers */
1ast$ptr = 0;
first$ptr = 0;

do while l;

/* get e request for creation of an exchange */
msgSptr = rawait(.comScreateSexch, C);

/* get some memory for the exchenge */
fsSreo.length = 11;
fsSreq.type = 5;
fs$req.response$exchange = .create$exch;
fsSreq.111sgSlength = 20;
cell rosenrl(.rqfsax, .fs$rea);
exchSptr = rqwait(.createSexch, r);
exchSptr = fsSreq.msgSlength;

/* store name in the exchange structure */
call move(~, .request.exchSnrme(0),

.exch.namP(r));

/* create an exchange */
call rqcxch(.exch.exchange(r));

/* update the link field *I

if lC1stSptr > 0
then co;

lastSexch.link = exchSptr;

2-191 AFN-01931A

inter

97 ti

9? ~

99 4
ir.r 3
lrl 4
H2 I!
H3 4
].(' tl 4

H5 3

APPENQIXA

l~stSptr = exchSptr;
excP. J ink = r.;

end;
else do;

exch.link = r;
first$ptr = exchSpti;
l~st$ptr = exch$ptr;

/* return the exch?.nge pointer */
response.exchange = .exch.exchan9e;

H5 3 call rqsend(request.responseSexchange, m~aSptr);

1C7
108
109

3
2
1

enc1 i
enc;

end;

MODULE INFORMA'I'ION:
CODE AREA SIZE = ClD3H
V)\RIAPLE lREJ\ SIZF = !H14PH
MAXIMUM STACK SIZE 00C4H
244 LINES RE/>.D
r. PRCGRJ\M ERROR(S)

4117D
720

4D

2-192 AFN-01931A

inter APPENDIX B

Stitlr('r?ster Communic?tions Protocol triver, Version P.J')
1 ll'AFTERtD~JVER: do;

/*

2 1

=
3 1

=
=

=
=
=
=
=

1 =

T~e trsk cont?ined in this listing supports the nrster
connunicetions protocol for extabJishing network ron~un
icrtions.

The t2sl< must re confi~ured using thf' ICU/Pr <'S follov's:
TrSK NAME: MlfTER
TASK ENTRY POINT: MLINK
TASK PRIORITY: ll3
TfSK fTACK LENCTH: Jrr

EXCHANGE: RQL7FX
SCOPF.: FXTERl\'AL
INTERRl'PT: YF.S

EXCHHIGE: Till'EX
SCOPE: PUBLIC
INTERRUPT: NC

LINK: :Fn:CCMSTR.OBJ

LINK: : Fn: ('('CO~. LIB
LINK: :Fn:C('RSLV.LIB

Tasks desiring to senri ? mess?ge to a node should
send? mess?oe to the excrange C('MIFX(node).

Certain inrlude files ?re used by the trsk.
*I
Sin_!u~e (:f0:exch.elt)
rr"""TE EXCPANGE£DESCRIPTOR LITERALLY 'STRUCTURF (

MFGSHEAD ADPRFSS,
rSG$TAIL ADDRESS,
TASKSHEAD ADDRESS,
TAEKSTAIL ADDRESS,
NEXTSEXCR ADDRESS)';

$'include (:f0:ied.elt)
DECLARE INTSEXCBANGEtDFFCR!PTOR LITERALLY 'STRUCTURE (

MESSAGE$READ ADDRESS,
ll'ESSACESTAIL ADDRF.SS,
TASK$HEAD ADDRESS,
TASKSTAIL ADDRESS,
EXCHANGESLINK ADDRESS,
LINK P.DDRFSS,
LENGTH ADDREfS,
TYPE PYTE) ';

$include (:fC:msq.elt)
DECLARF ~SCSHDR LT~FRALLY I

2·193 AFN-01931A

5

6
7
8
9

10

11

12

13

14

15

16

17

18

19

20

=
=
=

=
l =

=
=

l =
l =
l =
l =

l =
=

2
=

2
=

l =
=

2 =
=

2 =
=

l =
=

2 =
=

2
=

l =
=

2 =
=

21 2

22 l =
=
=

23 2 =
=

24 l =
=

25 2
=

26 2
=

APPENDIXB

.LINK ADDRESS,
LENGTH ADDRESS,
TYPE BYTE,
HOME;$EXCHANGE ADDRESS,.
RESPONSE$EXCHANGE ADDRESS';

DECLARE MSG$DESCRIPTOR LITERALLY 'STRUCTURE(
MSG$HDR,
REMAINDER(l) BYTE)';

$include (:f0:common.elt)
DECLARE TRUE LITERALLY '0·FFH' ;
DECLARt: E'ALSE LITERALLY '00H';
DECLARE BOOLEAN LITERALLY 'BYTE';
DECLARE FOREVER LITERALLY 'WHILE l';
$include (:f0:synch.ext)
RQSEND:

PROCEDURE (EXCHANGE$POINTER,MESSAGE$POINTER) EXTERNAL;
DECLARE (EXCHANGE$POINTER,MESSAGE$POINTER) ADDRESS;

END RQSEND;

RQWAIT:
PROCEDURE (EXCHANGE$POINTER,DELAY) ADDRESS EXTERNAL;

DECLARE (EXCHANGE$POINTER,DELAY) ADDRESS;

END RQWAIT;

RQACPT:
PROCEDURE (EXCHANGE$POINTER) ADDRESS EXTERNAL;

DECLARE EXCHANGE$POINTER ADDRESS;

END RQACPT;

RQISND:
PROCEDURE (IED$PTR) EXTERNAL;

'DECLARE IEDSPTR ADDRESS;

END RQISND;
$inclu.JP (:fl:'l:intrpt.ext)
RQENDI:

PROCEDURE EXTERNAL;

ENO RQENDI;

RQELVL:
PROCEDURE (LEVEL) EXTERNAL;

DECLARE LEVEL BYTE;

END RQELVL;

27 l = RQDLVL:
= PROCEDURE (LEVEL) EXTERNA.L; i · •

28 2 = DECLARE LEVEL BYTE; . .
=

29 2 END RQDLVL;

AFN-01931A

'1 ,.~
~I.

'.l'
- _L 2
32 2

33 ;>

31' 1

") c:
..) ~ 2
3h 2

37 2

38 1
3 ~' l
4f' 1

4] l

42 1

113 1

44 1

45 2

4G 2

47 1

48 2

49 2

50 l

51 2
52 2

APPENDIX B

RQSFTV:
PROCEDURE fPROC,LFVEL) FXTERNJIL;

CECLP~E PROC ADDRESS;
DECLJIPE LEVEL BYTE;

END RQSFTV;

ROS FTP:
PRCCFDURE (PRCC,LEVFL) EXTERNAL;

DFCLARF PROC ADDRESS;
DECLARE LEVEL EYTF;

END RQSFTP;
Sinclu~e (:fr:fsmgr.ext)
DECLJIPE ROFSJIX EXCHJINGESDESCRIPTOP EXTERNJIL;
DECLJIRE RQFSRX EXCflP·NGESDESCRIPTOR EXTERNAL;
DECLARE RQFREE EXCHANGESDESCRIPTOR EXTERNAL;
Sinclude (:fl:m2smsa.elt)

~eclere msgSfor~et literally 'structure (
trgt byte,
cmnd byte,
seq$l2 byte,
seq$ne byte,
text (250} byte) ';

declare queueSformet liter~lly 'structure (
end$ptr byte,
give$ptr byte,
takeSptr byte,
dataSbyte(254) byte) ';

declare perSformat literally 'structure I
na byte,
l? byte,
run byte,
stop byte,
que$pt byte) ';

$include l:fr:objm?n.ext)
RQCTSK:

PROCEDURE (STATICSPTR) EXTERNAL;
DFCLJIRE STJITICSPTR PDDRESS;

END RQCTSK;

RQCXCH:
PROCEDURE (EXCHJINGESPTR) EXTERNAL;

DECLARE EXCHJINGESPTR lDDRESS;

END RQCXCH;
$include (:fl:concom.ext)
CQSNEXTSGIVE:

Procedure (q$ptr,givetbyte) byte external;
Declare qSptr address;
Declare giveSbyte byte;

2-195 AFN·01931A

intJ APPENDIX B

53 2 = end cq$next$give;
SA l = CQSTAKESTFST:

= Procedure (q$ptr) byte externel;
SS 2 DecJere qSptr eddress;
Sn 2 = end cqStakeStest;
57 l CQ$NEXT$TAKE:

= Procedure (q$ptr) hyte externel;
SB 2 Declere q$ptr address;
59 2 end cq$nextStake;
~r 1 CQQINIT:

= Procedure (q$ptr,q~size) extP.rnc.1;
61 2 reclere qSptr address;
h2 2 = Declere qSsize hyte;
r,3 2 end cq$qSinit;
h4 CQSASCSHEX:

Procedure (q$ptr,Msg~ptr) externel;
65 2 Declare (qSptr,msgSptr) eddress;
66 2 end cq$escShex;
~7 l = CQSCHECKSU~:

= Procedure (q$ptr) hyte external;
~e 2 PecJare qSptr address;
f>9 2 = enc cqSchecksum;
70 1 = CQSHF.XS~SC:

= Procedure (qptr,rexbyte) externel;
71 2 = reclare q$ptr address;
72 2 = Declare hexSbyte byte;
7? 2 = enc cqSrexSesc;
74 l = CQ$1V'SGSOUT:

Procedure <msg$size,a$pt.r,parSptr,msg$ptr) external;
75 2 = Decl?re rnsgSsize byte;
7F 2 Declere (qptr,parptr,rnsg$ptr) eddress;
77 2 end cqmsgout;
7P 1 = CQSGENSRDY:

= Procedure (trget,~sgSptr,qSptr,pPrSptr) external;
7S 2 = Declare trget byte;
er 2 = Declare (msgSptr,qSptr,pcrSptr) address;
Pl 2 = end caSgenSrdy;
82 1 CQCEN1V'SG:

= Procedure (rnsgSpointer,trget,rnsgtptr,q$ptr,
per$ptr,seveSfig) externai;

63 2 = Declare (trget,ssveSflg) byte;
84 2 = Declare (msg$pointer,nsgSptr,qSptr,par$ptr) ~c0ress;
85 2 = end cogenmsg;

P7
88

89
90
91

92
93

1

2
1

2
2
1

2
2

USRINT:
Procedure external;
f"nd usrint;

FJND$EXCH:
Procedure(n?me~ptr) ?ddress extern?!;
declare nametptr cddress;
end find$exd•;

t'-l/>MEX:
Procedure(exptr) ?ddress external;
declare exptr address;
ena nemex;

2-196 AFN·01931A

intJ

97
98

101
102
1('3

lCLI
](15

1

2
?

1

1

1

1
1
1
1
]

APPENDIX B

ret:urntu•rn:
procP<'lure(pointer) extPrnel;
declare pointer eddress;

end returns ram;

I*

*I

I*

*I

/*

*/

/*

*/

/*

*/

Certain literels ere used to dPfine the network's
physic2l characteristics. These ere:

Declere NtNODE literally •a•; /* numher of nodes */
rrclare NrD~S~RRAY literelly '5';

l structure provides the det2 aueues for the
transmission of det2 to eecr node. It is defined
2nd is av2ileble as a public

Declare CO~STQ aueueSformat public at (Rllcr);

A single dete queue is used to support the input of
dete fron a no<'le since only one sl2vc is given a
window et e ti~e:

Declare CQ~SIQ queueSformat public et (R0lbh);

Each node has an associeted set of flags which
indicate the operationel node of that node. The
function of each bit is defined as:

bit n - reauest synchronizati6n (synchtrequest)
bit 1 - request initialization (initSrequest)
bit 2 - repeat lest messeae (repeatSreouest)
bit 3 -
bit 4 -
bit 5 -
bit 6 -
bit 7 - error fleg (errorSflRg)

Declere COC~DF(nodeSarrey) byte public;
recl~re SYNC8SREOUEST literally '01H';
reclare INJTSREOUEST literelly 'r2H';
Declare REPE~TSREQUEST literally 'CdH';
Declare ERRORSFLAC literelly 'PCTH';

l counter is used to indicate the number of ettempts
to establish communications with a node. Vhen it
reectes a maximum v2lue, a synch will be sent to the
node. wr.en the maximum velue of synchs are sent to a
node with no effect, a reset will be sent to the node.

2-197 AFN-01931A

inter

1C9

llC

111

112

113
114
115
llf>
117

118

119

120
121
122

123
124

1
1
1

1

1

1

l

l
l
l
1
l

1

l

1
1
1

1
1

/*

*I

/'

*/.

/*

*I

/*

*/

APPENDIX B

Declare ERRORSCOUNT(nodeSarray) byte;
Dec li• re "11\XSCOUNT Ji te re 1 J y '5';
DeclarP 8YNCHSCOUNT(noeeScrrsy) byte;

/* a pointer is used to store the address of exch?nges
usec byincomming messages*/

Declare targettexch address;

~ set of exchanges is used to hold a messaae until it
has been acknowledged by the slave.

Declare HOLD$EXCH(node$array) exchangeSdescriptor;

A set of exchanges is provided to accept mPssages which
are to be sent to any of the nodes.

DeclareCQMIEX(nodeSarray) exchangeSdescriptor public;

The tas~ uses various sets of data structures

Declare reqSmsg structure (
msgShc'lr,
msg$length address);

Declare (m,n,nodeScnt,outmode,ram$size) byte;
Declare msg$ptr address;
b~clare msg msgSformat;
declare startS5l!4 byte public <'t (P00'1h);
Decfare dataSblock based msgSptr structure

msgShdr);
Declare CQMPAR(noce$arr~y) parSformat public
. at (Pi102h);
Declare RA"1S~SG based msgSptr structure (

msg$1'dr);
Declare CQSACTIVE$NODE byte public <'t (P00lh);

Declare freSmem address;
D~claie freS~sg based freSmem structure(msgS~dr):

·The task uses cert~in exchanges for internal
communici'ltions

De~lare CQMSEX exch~ngeSde~criptor;
Declare RQL7EX intSexchangeS2~scriptor public;

$eject
/***

errorStest
This shdrt procedure is used to i~crement the error
counters rnd to signal an initializntion or synch comm?nd
when required. It will orc~er a re-transndssion of tre
last.message eC'cr time an error is c'letectec.

**!

2-198 AFN-01931A

125 1

l 2G 7.

12F 3
17<:'' 3

1 31 4
1 32 I!

n::i /)

1 3Ll 3

1 ., c ..;_ 3
l?h 2
137 2
138 2

135' 1

1,;r 2
141 3
11! 2 3
143 3
l I\ 4 3
1" 5 3

14 i::; 2

147 2
it. e 3
111 <; 3
1 5r 3

151 2

152 /
153 2

15" 2

2

1 5 "; 2

157 3

APPENDIX B

errorStest: procec1ure;

If (errorScount(n) :=errorScount:(n)+l) > mr>xScount
then 0o;

errorScount(nJ=r;
if (synchScount (111): =synchScount (m) +l) > m?xScount
then c'!o;

en<';

synchScount Cm) = (';
cocmrf(n) cqcmrf(n) or errorSflaq

or initSrequest;

else cqcm0f(n) =cqcm0f(n)
.or error$fJ2g or synchSreouest;

enC!;
else cocm<'f(n)
return;

c-· -rrotStest;
Seject

cqcm<'f(n) or rcpeatSreouest;

~LINK: Procedure public;

/* Initialize the system enr the task */
Do n=r to N$NODE;

CQC~DFln)=synchSreouest or errorSfJag;
CQMPAR(n) .run,CQMPftR(n) .stop,C0MPARln) .aueSpt=r;
ERRCRSC0UNT(n)=O;
SYNCHSCOUNT(n)=n;

enc1;

/* Initialize the node pointer */
NODESCNT=f';

/* Initialize the input exchanges */
Do N=f' to nSnode;

end;

cell RQCXCH(.C0~IEX(n));
call RQCXCHl.HCLDSEXCH(n));

/* Initielize the oueues */
call cqSqSinit(.cqmstq, 251!);
cell caSaSinit(.cqmsia, 254);

/* Creetc the nemed exchr>nges en<' give rem to fsm*/
cell usrint;

/* initialize the level 7 interrupt exchange */
call rqelvl (7);

/* Begin main task Joor */
Do forever;

/* Begin support of one no~al channel */
Do n=l to nSno~e;

2-199 AFN·01931A

int:J

1 :: r

159

1 r;i
1G2

l Ft,

l (}5

Jr;;
Hf
HS

17C

171
1 77
1 7 :>

17f

175
l 7r-;

17f

1 ..,0 , _,

l PP

187.

l?t

lfS

lf(j

187

lPS

1 c;c

4

4

4 ,,
LI

4

5
e::

h

5

G
r
•)

5

t:

5
(,

7

7
7

8

8

f

8

8

8

8

APPENDIX B.·.

/* reset cueue pointers */
cqrnstq.giveSptr, canstq.takeSptr = C;

/* Compute nodr>l mode numher */
If (cccmdf(n) and synchSrequest)>C
then outmod~ = 1;
else outrnode = 0;
If (cqcmdf(n) r>nd initSrequest)>r
then outmoc:"e = 7;
cqSr>ctiveSnode = n;

/* if comm feilur~, kill 211 messaaes */
if (cqcmdf(n) r>ncl PrrorSfJ2g) > C
then do;

<'lo while (msg$rtr:=rqi'lcpt(.caJTdex(n))) > C;
call returnSrr>m(nsg$ptr);

enc";

do while (nsgSptr:~ra?cpt(.roldSexchfn)))

> r;

end;
end;

call returnSr?m(msgSptr);

/* Operate on nodal mode */
Do c?se outmoc'le;

/* cese 0, routine communicr>tion& */
Do;

If (cacmdf(n) r>nd repeetSrequestJ>n
then do;

/* support of retr?nsmission reauest */
cacmdf(n)=caccidf(n)

and not repeatSreauest;
ms9Sptr=raacpt(.holdSexchfn));
if msgSptr>C

/* retransmit old messr>ge */
then (10;

if carnpar (n) ·""' = r
tben canparfn) .n<" = J 5;
else cqrnp2r(n) .ni"=cql'lpcr(n) .na

-] i .
c?ll caSgenSmsq(msgSptr,n,.msg,

.cqmstq, .cqmpa r (n) , Ci);
c2.ll rqsend (.r.olc"Sexch (n),

msgSpt r) ;
if r:omp.=ir(n) .n<" = 15
th en c qn p 2 r (n) • n fl = r ;
else cqmpi>r(n) .na

=ccl!'lp<"r(n) .n?+1;
enrl;

2-200 AFN-01931A

1
1 2
1 3
] 4

1S5
Er;

JS7

JSS
1 S9

2Gl
2 (' 2

2Ct')

2(:5

2(',.
L- .o

2(7

21"9

:? 11
212

:? 1 J

214

21 r,

:? 17
2lf

219
22C
221

7
F
p
E

r
7

(-i

7
7

P.
8

p
r

7

7

P.

e
s

9

s

9
8

7
8
p

APPENDIX B

/* no oJd mess2ge, send reaay */
else <'o;

msq.trgt=n;
msg.cr:in0=3;
calJ cqSmsgSout(r,.cqmsto,

.• cqmp2 r (n) , • msg) ;
end;

end; /* end of retransmjssion */

/* support of next message */
else do;

/* clear hole exchange */
msgSptr=rqacpt (.hold$exch (n));
j f msgtptr>O
then do;

enr'l;

/* free srace return size */
ramsizr=c'2ta$bJock.length;
if (rnmsize mod t.) > r
then dat2Shlock.length

=dat2Sblock.length
+(L!-(ramSsize mor'l 4));

call RQSE~D(.rqfsrx,msgSptr);

/* test for ? message output */
msgSpt r=rqacpt (.cqmiex (n));

/* when a message exists */
if msgSptr>r
tren c'o;

end;
enc);

if (t2rget$exch
=find$exch(msg$ptr +9))> r

then cell
rqsend(targetSexch,msgSptr);

Plse <'o;
cell cq$genSmsg(msg$ptr,n,.nsg,

.cqmsto,.cqnp2r(n) ,C:);
ccil J rosend (.ho1c1 Sexch (n),

~sgSptr);

/* increase tre n2 flag */
ifcqmpar(n).n? 15
then cc:mparfn) .ne = I';
else camp2r(n) .n?

= compar(n).na + l;

/* when no mess2ge exists */
else do;

r.isg.trgt=n;
msg.cmnc=3;

2·201 AFN·01931A

2:?? e

223. p
2/1' 7

225 r;

22~ c,

227 5

222 c,
229 r,

2.3r: I')

2 21
,. ,,

232 r;
2 'l'.l. c,

23Ll 'i

235 5

23(, r,

237 r;

23P r,
2 3S r,
2/J c (i

2L' l f
2l' 2 r;

24 3 5

2114 LI

21! 5 4

2L1(; 4

247

24P

end;

APPENDIX B

E'n0;

enrl;

c?ll cq$ms9$out(r,.cqnsta,
.cqinp2r(n) ,.ms('f);

enc'; /* enc' of routine ness2ge */

/* st2rt the MPss2ae transMission */
startS54LI = n;

/* enc' of case r */

/*case 1, syncr request*/
c'o;

enc:;

cqmp2r(n) .n2,cqripcir(n) .12 r;
msg.trgt=n;
Msg. cmn(l=l;
ci'l l cqSmsg$out

(C, .cqmstq, .cqmpa r (n), .rnsg);
start$5L14 = n;
cocnc'f(n)= cqcnnf(n)

anc' not synch$request;

/* case 2, initialize requPst */
ao;

enc';

cqcmrf(n)=(racmc'f(n) ann
not initSrequest) or synrhSrequest;

cqmpar(n) .nr., cqripar(n) .Ji'l = r;
msg.trgt=n;
msg.cMnc'=0;
c211 roSMsaSout

(0, .comst0, .cqMpa r In), .msa);
sti'lrtS5L1LI = n;

/* 0nc' of c'o c2se blocks */

/* wi'lit for ? response from tre slave */
msgSptr rqw2it(.rq1~ex,25);

start$541l = r;

/* test for 2 Message or ? tirieout */
if r2mSmsg.type=3

/* support of no valic' response */
then

/* test for max number of errors to noc'e */
c?ll errorStest;

/* support of gooc response return */
else do;

1~ test for gooc' checksun */

AFN·01931A

intef

5

251 f,

252

2 51: 7
2s: 7
2 :,r, 7
257 7
2 c;p 7
259 7
2h0 7

2Sl 7

2G2 7

2 Ii ... 7
9))

2r:;: ..,
I

2r,r, 7
2 r,7 f
2 ~p f

27'1 f'
/71 f

272 ...,

27/i 7

275 7

2-:r;. r:

APPENDIX B

if caSchecksum(.cqmsia)=0
t.hen c1o;

/* convert message to hex form?t */
call caSascShex(.camsiq,.msg);

/* test for c1ata message receipt */
if ms(l. crnnci = 2

/* suprort receipt of d?t? message */
the!" <lo;

/* get rem from free sp2ce man?ger */
reaSmsg.length=ll;
rea$msg.type = 5;
req$msg.response$exchange=.caSmsSex;
reqSrnsg.rnsgSlength=rnsg.text(/);
c2lJ rqsend(.rqfsax,.reaSmsg);
msgSptr=rawaitl.caSrnsSex,r);
msgSptr=req$msg.msgSJength;

/* move mess2ge into memory */
cc: l l Move (msC) • text (2) , . m sg. text (r)

,msaSptr);

/* if target is another node •• */
if MSg.trgt) ('
then rall rcsendl.cqmiexlmsg.trgt)

,msgSptr);

/* if target is master hoard */

if (targetSexch:= findSexchlnsg$ptr +

> r
then

c2ll rqsel"c1(targetSexch, msgSptr);
else c'lo;

r2rsize = rns9.text(/l;
if (rrimsize moc' tl) > r
then msg.text(2)=msg.textl2)

+ (II -(r2nsizc mod II));
c.:>ll rqsen('(.rqfsrx, Ms9$ptr);

Pnc;

/* increment message counter */
if (' qm r i' r (n) • J ? =) c;
tren campar(n) .1<> = r;
else ccmr2r(n) .J2=campar(n) .l?+];

end;
/* respon~ to non-secuence "'cknow!er'gP */
if msg.cnnc1 "'

2-203 AFN·01931A

intJ

278 G

280 ~

" 2Pl ..,
I

2P3 7
28t. r
2P5 p

286 p

7f7 7
2P. p h

2!l9 5
290 5

291 4
292 3
293 2
294] end

APPEN'DIXB

then cqmt.per(n).Jci,cqm$pc-r(n).n"' = r;

/* test for ci good slcive L~ response */
if cqmpar(n).nC'I = msg.seqlP + 1
then cAll error$test;
else do;

encl;

if nsq.seqla <> cqmp?r(n).n"'
then cqcmcf(n) = cqcmaf (n)

or synctireque>st;
eJse co;

enc;

er rorS'count (n) = r;
cqcmcf(n) = cqcmcf(n)

end not error$flcig;

end; /* end of response return */
/* support of h?d checl<sum "/
else call error£test;
enc;

enc;
end;

end;

/* enc of mess?ge errived options */
/* end of one node */

/* end of task */

2-204 AFN·01931A

1

2 1

"f: l
=
=

APPENDIX C

$title('Slave Communicetions P2ck2ge Version 3.7')
CC~SLVSMOCULE: c'lo;

/*

*/

This is the sJ2ve communication mrin t2sk.
It should be configured into the system
having the following parameters:

T?s~ n2me- CQSL1'V
T?s~ entry point- CCSLPV
Tesk priority- as reauired
Task stack length- ire

The LINY and LOCl-TE commands of the us~r
m1. t include the folJot<.;ing stac:e!T'ients:

Link •••

: Fn :CQf'Ll-V. OBJ
:Fn:CCS35l,OBJ
:Fn:CQCOJ\1,LTB
:Fn:C'QRSLV.LIP

Several system parameters must be c'lefined
in the user code to c'lefine the mode
characteristics. These parameters are defined
as:

ca$slad- a byte value providing the
nodril adc'lress of the commun
ication node.

freSmem- ?n ac'ldress value which provides
a pointer to a block of PP~ to
he assigned via the free space
manager to the communic2tions.

ramSlen- an address value 0hich indicates
the size of the ahove block.

declare cqslad byte external;

Snolist
Sinclude(:fl:commsg.elt)

declare msgSformat literally 'structure (
trgt byte,
cinnd byte,
seaSlci hyte,
seciSna byte,
t·ext (2 Sr") by-tP -) ';

declare queueSformat literally 'structure (
endSptr byte,
giveSptr hyte,
takeSptr byte,

2'205 AFN·01931A

sr

51

52

53

55

57

5f
5~
fir
(i 1

62
"3
64

65
6 fi
fi7

l'i8
(,<'

7 ('
71

72
73
74

75
7fi
77

7P
71:
er
e1

82

1 =
=
=
=
=
=

1 =
=

2 =
=

2
=

1
=

2

=
2 =
1 =

2
2

=

2 =
1 =

=

2 =
l

2 =
2 =
1 =

=
2
2 =
2 =
1 =

=
2 =
2 =
1

=
2 =
2 =
1 =

=
2 =
2 =
2
l =

=
2 =

APPENDIXC

c"P.taSbyteC/511) t>yte) ';

declare pPrSformet JiterPlly 'structurA (
li! byte,
nc> byte,
run hyte-,
stop byte,
que$pt byte) ';

Sinclu0e(:fC:objrnen.ext)
RQC'TSK:

PROCEDURE fSTATICSPTR) EXTERNAL;
DECLARE STATIC$PTR ADDRESS;

nm ROCTSK;

RQCXCH:
PROCEDURE (EXCHANGESPTR) EXTERNAL;

DECLARE EXCHANGESPTR ADDRESS;

END RQCXCH;
$include{:fl:comcoM.ext)
CQSNEXTSGIVE:

Pcocec"ure (q$ptr,giveSbyte) byte externi!I;
DeclC1ce qSptr C1adress;
Declare give$byte byte;
end cq$next$9ive;

C-OSTP.KE$TEST:
Procedure (q$ptr) hyte externi'!l;
Declare oSptr P.ddress;
.,. r·q$teke$test;

CQSNEXTSTAKE:
Pr~cedure (q$ptr) byte extern~!;
Declare qSptr ad~ress;
enc cq$next$take;

CQSQS IN IT:.
Procedure (q$ptr ,qSsi ze) extflrni'll;
Declr.re qSptr address;
DeclPre q$size byte;
end cqSqSinit;

CQ$1'SC$HEX:
Procedure (q$ptr,rnsg$ptr) externi!l;
Declere (qSptr,~sgSptr) Pddress;
encl cqSi'!scShex;

CQSCHECKSUM:
Procedure (q$ptr) byte externel;
Declare q$ptr adaress;
end cq$checksum;

CQHEX/l.SC:
Procedure (q$ptr,hexSbyte) externi'!l;
Declc>re o.Sptr i!ddress;
Declare hexSbyte byte;
end cqShexSesc;

CQS!'-1SGSOUT:
Procedure (MsgSsize,qSptr,parSptr,msgSptr) external;
DeclPre msq~size byte;

2·206 AFN-01931A

83 2
f' .1 2
PS]

8 f. 2
87 ::>
po <.; 2
f Cl 1

c: 0 2
9] 2
92 2
93]

C:il]

95 1
9 r; 1
S7 J

SP 1

99 2

110 1

Hl 2

JC2 1

Jr3 2
JG 4 2

HS l

1 r r; 2

1(1'7

HF l
1 o~ 1
l Jr l
1 l] l
11 2 J

113 l

APPENDIX C

Dec 12 re (C!Sptr, p2rSptr ,msg$ptr) address;
end cqSmsgSout;

COSGENSRDY:
ProcPrure (t rget ,msgSpt r ,aSptr, p2 rSpt r) external;
Decl2re trget hyte;
Declare (msgptr,qptr,pi"lr$ptr) aclclre.ss;
enr' cq$genSrdy;

COSGENSMSG:
Procedure (msgSpointer,trget,msgSptr,qSptr,p2rSptr,s2v

e$f lg) t>xternaJ;
Declare (trget,save$fJg) byte;
Declare (msgSpointer,msgSptr,aSptr,parSptr) aclclressf
enc caSaenSmsa;

Decl2re RciL~FX infSexchange$rescriptor public;
Decl2re COSJEX exch2nge$clescriptor public;
Decl2re cmrqex exch2ngeSclescriptor;
ceclcit"._ "' Jcl$sJ2ve$ex exchange$clescriptor public;
Declare cqtime exchangeSdescriptor public;

cqSstartmsg351:
procedure external;
end cq$start$msg$351;

cq$initS351:
proceclure external;
encl cq$init$351;

finclSexch:
procecure(name$ptr) acdress external;
decl2re nameSptr 2cldress;

end find$exch;

cqSstartup:
procedure external;

enc cqSstartup;

declare caSinSsl queue$format public;
declare cqSoutSsl queueSformet public;
ceclare msg msgSform2t;
declare caSpars parSformat public;
derlare fre$mem address;
declare cqcmdf(5) byte external;

declare freSmsg based freSmem structure
msgShr r) ;

!"'
The mess2ge which is transmitted between nodes
follows the description below:

The complete message structure is define<' as:

STX T~RGFT co~~~ND sEr TEXT CHECKRU~ EOT

2-207 AFN·01931A

intJ APPENDIX C

---------~--
I LF J rO-FF I C-F J LA,NA In J.0ff-FF I CR I
--~-~~----

1 2 3 4 5 ~+n 7+n 8+n

With the exception of the start of text fa line
feed) Pni! the end of transmission (ci cPrriage
return), cill ch?racters transmitted in the mess.;ige
string will consist of print?ble ASCII riharncters.

The target field .. consists. of two frames. which
represent the hex address of the. device to which
the Message is cc~dressec. The.pr.ot.;>col allows for
up to.2~~ unique device ?ddresses.

The command field. indicates the type of message
which is being sent in the network. Jt consists
of a s~ngle· frame representing a hex number in
the ri"nge from C' to 0.FH. The current message
definitions ere:

commcind
l'I
1
2
3
4
5
fi

F

lebel
JNIT
SYNCH
Df.. Tl-.
REloDY
NOT READY
NON fF.0 !-.CK
reservP.c

II

"
II

II

This is the main link level RMX/P0.coMmunicetions
task which supports slave oper?tions of a single
boPrd computer. Sever<11 high levP.1 functions <'lre
supportec'l by this task.

Messages cont?ining cat? mr-y be sent or received
by this task. To s~nd ? message to ~not.her processor
on the communications loop, ~ message of the format
shown is placed inio the communications exchenge,
CQSIEX. When the message .~es been transmitted, the
RAM area in which the message was located wi11 be
returned to the free space manPg~r.

Messages may also be received by the board when they
are addressed to the comMunications address assianed
to this board. ~her a Messag~ tes been receive~,-it
will be transferred to P blo~k of RA~ obtained from
the free space m?lnPger cirid t}cn sE>nt to sn exchPnge
wti ich is, ~esignl'!ted in tre namE> fi eJ d. of the
message.

2-208 AFN-01931A

inter

11 <': 1

115 2

llG 2
] 17 2
l lP. 2

1] ~l 2

120 2

121 2
12? 2
123 2

] 2.11 2
125 2
l2G 2
l 2'7 2
12£' 2

129 2

13C 3

131 3

133 4

I 3 5 5

136 5

*/

APPENDIX C

The formPt for P c'!Pta MessPge is:
msgShdr t?rgetexchangename messPge

Data may he up to 25C bytes in length.

A special cornmAnc, I~IT, can be received by the
communications driver task wrich will cause a
software reset of the single board computer.

CCS~L~V: Procedure public;

declare targettexch address;
~cclare name address;

Declare rnsgSptr address;
declare ramsize address;

Declare RAMSmsg based msg~ptr structure (
msgShc'!r) ;·

Declare reqSmsg structure
msg$hc1r,
msgSlength address) ;

/* initialize the task at power up */
call cqSq$init(.cqSin$s1, 25C);
call cqSqSinitf.cqSoutSsl, 250);
cqSpars.run, cqSpars.stop, cqSpars.queSpt r;
/* build required exchanges */
call rqcxch(.rqlnex);
call rqcxch(.cqsiex);
call rqcxch(.crnrqex);
call rqcxch(.cqtime);
cc>ll cqinitS35J;

do forever;

/* wait for a window from the master */
msgSptr = rqwait (.ROL~EX, 4r0);

/*test for good communications with i~OS*/

if ramSmsg.type <> 3 tren ro;

/*test for the receipt of a valid message */
if caSchecksum(.cq$inSsl) = CT

then clo;

/* convert the messaae into hex format */
call cqSascShex(.cqSinSsJ,.msg);

/* see if message is for this slave board */
if msg.trgt = caslad
then co;

2·209 AFN·01931A

intJ

13P
139

1 "r.

141

1'12

ltJ 3

lLI 4
145

1'115
1.117
l 4P.

14S
150

151

152

15'1

155

157

159
HC

!')

(-;

(-;

7

7

r.

p.
e

8
8
e

8
8

7

8

9

9
9

ir.2 rn
1(-;3 1C

pe>rs,.msg);

x) ;

> 15

I

ge */

n~me = .msg.fext + 9;
cq6mdf(V) = cqrimdf(0) an~ 7fh;

/* ~andle eacr. nessPge type by ccse */
do cese msg.cmnd;

/* crSe r., !NIT comnClnd */
cell cqst?rtup;

/* crse i, fYNCH commend */
clo;

/* reset counters */
ctjSpClrs.Ja,cq~pClrs.na = 0;

/* initailize c'!C1t? queues*/
c~ll cq$qSinit (.cqSinSs1,25CT);
crll cqSqSinit (.cqSoutSsl,250);
/* return non sea ?ck message */
msg.tr'gt = C;
msg.cmnd = 5;
cBll cqS~sgSout (O,.cqSoutSsl,.cqS

d?ll cqSst?rt$msgJ51;
en<'!;

/* case 2, CATA comman~ */
.do;

2-210

/* tes~ for correct NA */
·if cqpc-rs.na = msg.seqSn?
then do;

/* clePr ol~ message~ */
msgSptr = rqacpt(.holdSsleveSe

H msgSptr > !l
then c?ll returnSrem(msgSptr);

/*. incre-nemt LA counter */
if (cqSpsrs.le:=cqSpers.la+l)

then caSpars.LA = 0;

/*verify th~t exchrnge eYists*

T~RGFTSEXCH = FINDSEXCH(neme);
if TARGETSexch > 0
then Clo;

/* get RA~ anr store mess?

reoSmsg.length = 11;
reqSmsg.type = 5;

AFN·D1931A

inter

l "'4 H

1(,5 Jr

1 Fi(H'

1"7 JC

Ht Jr

] ;,9 H

17f: JI'

] 71 H'

172 9
173 ('

·'

175 9
J 76 H

17P. lC
179 lJ

] f. (' 11

JF] 11

lP.2 l c;

] f' 3 9

]Pll ?
lfl5 9
lP"i 9

lP.7 9

189 Ir

BO lr

191 l r.
192 9

APPENDIX C

ext(2);

msg);

x, r) ;

th;

g.tPxt(r), rnsg$ptr);

msg$ptr);

I

c-q$..->Ut$sl, .ca$p2 rs);

h(Msgptr + 9)) > r

ch, msgSptr);

reaSrnsg.responseSexch2nge

reg$rnsg.rnsa$Jength = msg.t

cell RO~FND (.rcfsax,.reqS

msg$ptr

c2ll move (1"sg.text(2) ,.ms

cell RQSENC (t2rget$exch,

/* test for <"ata out reauest *

rnsg$ptr = RQ~CPT (.cqsiex);
if msgSptr = r
then crill cagenrcy rr,.msg,.

else <"o;
if (tArgetSexch:= finc$exc

then c?ll rqsend(tergetSex

else do;
cell cqgen$msg(msgptr,

r,.l"sg,.cqoutsl,.cq$pcrs,r);

e$ex, r.isgSptr);

MSg */

X) ;

call rasend(.holdSslav

enc;

enc;

enc;

/* if bad ne, then retransmit lest

elsf.' do;
cqpers.na = Msg.sf.'qSna;
rnsgSptr = rqacpt(.holcSsl2ve$e

if msg$ptr > r
then c'!o;

c-ell cqSgen$rnsg(rnsgtptr,r,
.rnsg,.cq$outSsl,.c-qSpars,r);

call rqsend(.holdSsJeveSex
, rnsgSptr);

2·211

enc;
en<";

AFN-01931A

intJ

193
19£1

]95

1S9

2CJ
202

2r~

205

2n
208

2CS'

21r
211

712

213
214
215

2H

21P

21~

22C
221

p
8

7

9

9
9

9
lC

lC
1 J

11

J J
JC

9

F
9
9

9

1 ('

1 (1

lC
9

APPENDIX C

X) ;

to be sent */

(msgSptr + 9) J > r

ch, msgSptr);

/* senc mess?ge */
cell co$strrt$msg$351;

en~;

/* c?se 3, RDY comm?nd */
do;

/* verify na is correct */
if cqSprrs.nr = msg.seqSnr
then ro;

/* cle?r old messages */
msgSptr = raacptf.holfSsl?veSe

if msgSptr > r·
then call returnSr2m(msgSptr);

/* test for ? message waiting

msgSptr = RQ~CPT r.cqsiex);
if msgSptr = (1

then call cqSgenSrdy (C,.msg,.

else 0o;
if (targetSexch:=findSexch

then call rqsenci(targetSex

else co;
call cqSgenSmsg(msgSpt

r,P,.msg,.cq$outSsl,.cq$p2rs,r);

PSex,msgSptr);

*/

x) ;

end;
end;

c?ll rqsend (.l1olc'!Sslev

/* if bee na, then retransmit l2st

else do;
capars.n? = msg.seqSna;
msgSptr = ra?cpt(.hold$sl?ve$e

if msgSptr > r
then co;

cell cqSgenSmsg(msgSptr,C,
.msg,.cqSoutSsl,.cqSpars,C);

, msg$pt r);
end;

end;

cell rqsendl.holdSsleveSex

/* st?rt tr2nsmission */

2-212 AFN-01931A

intef

222 f'
2 23 f'

224 7

22r. 7

2 2P 7

23r
...,
I

232 7

234 7

2 3 (. 7

2JP 7

21?0 7

242 7

2<':4 7

2 4 (j 7

2l1P 7
2 '-: ~) f.
2 SC 5
2 51 4

252 3
253 t
2 54 5
2 55 5

2 5r; 4
257 5
2 SC 5

APPENDIX C

c2Jl caSstartSmsgS351;

/* c2se ll, NONRrY cornm?nd */
ilo;end;

/* case 5, NONSEOACK command */
do;end;

/* case 6, reserved */
clo;end;

/* c2se 7, reserveil */
do;end;

/* case 8, reserved */
do;end;

/* case 9, reserved */
do;end;

/* c2se A, reserved */
do;end;

/* case B, reserved */
ilo;end;

/* c2se c, reserved */
do;end;

/* case D, reserved */
clo;end;

/* case E, reserved */
do;end;

/* case F, reserved */
c]o;enc1;

end; /* co case */
end; /* good target */

end; /* qood checksum */
end; /*good communications with i~OS*/

/* clear out messages if com failure exists */
else clo;

do while <msciSptr:=rq?cpt(.casiex)) > r;
call returnSram(msgSptr);

encl;

c1o while lmsg$ptr:=ra2cpt(.h0Jd$sl?\'eSPx)) > \,;
call returnSram(msgSptr);

end;

/* set failure indicator */

2-213 AFN-01931A

intef

259 4
2f.f' t

2()1 3
2f.2 2
21;3 l

APPENDIX C

cqcmdf(r) = cacmdf(C) or ?Ch;
E' nc1;

end; /* ~o for~ver */
enc1 rc$slrv;
end comslvSModule;

2-214 AFN-01931A

l

l

3 1

4 =

=
=

5
=

F l

7 2 =
=

8 2

~ l

H 2

ll 2

l 2 l

13 2

l l' 2

1 5 l

16 2

17 2 =

lf l

=
=

APPENDIX D

Stitle('QUEUE INITIJILJZATION PR0CFDURF')
OSINITSMODULE: Do;

clecl2re eom literally 'rDR';
Sinclude(:fl:comrnsg.elt)

cleclare msgSformat liter2lly 'structure (
trgt hyte,
crnncl byt£>,
scqSla hyte,
seqSna byte,
text (?.5C) byte) ';

cler.La, qu£>ue$formrit 1iterc'l11y 'structure (
en~$ptr byte,
giveSptr byte,
takeSptr byte,
clc?toSbyte(254) byte) ';

cleclare parSforrnat literally 'structure (
la byte,
ne byte,
run byte,
stop byte,
queSpt byte) ';

Sinclucle(:fO:synch.ext)
RQSEND:

PRCCEDURE (EXCHANGF$POINTFR,MESSAGESPOINTFR) EXTERNAL;
DECLARE (EXCHANGESPCINTER,MESSAGESPOJNTFR) ArDRESS;

END RQSEND;

RQWP IT:
PROCEDURE (EXCHANGESPOINTER,DELAY) ADDRESS EXTERNAL;

DECLARE (EXCRANGFSPOJNTER,DELAY) ADDRESS;

END RQWA.JT;

RQACPT:
PROCEDURE IEXCHANGESPOJNTER) ADDRESS E~TERNAL;

DECLARE EXCPANGE$POINTFR ADDRESS;

PCJSND:
PROCEDURE (IEDSPTR) EXTERNAL;

DECLARE JEDSPTR ADDRESS;

END RQISNI"';
Sincluclel:fCT:exch.elt)
DECLARE EXCHANGESDESCR!PTCR LJTERALLY 'STRUCTURE (

MSGSHEAD ADDRESS,
~SG$TAIL ADDRESS,
TASKSHEAD ADDRESS,
TAEKSTA!L ADDRESS,

2·215 AFN-01931A

lS

2r

21
22
23

24
25

27

29

3 [:
3l

1

1
l
1

2
2

2

2

2

2
1

=

=
=

=

=
=
=

·APPENDIXD

NEXTS EXCH Jlr'DRFSS) I;
Sinclude(:f0:msg.elt)
DF.CLARE ~SGSHDP LITERALLY I

LHlK l'DDRESS,
LENGTH lDDRESS,
TYPE BYTE,
HO~EtEXCHANGE ADDRESS,
RESPCNSESEXCHH'GE JIDDRESS.';

t'ECLflP.F. ~SGSDESCIUPTC'R U.'I'.ERfl.LLY 'STPUC'J'URE (
r-1sG$HDR,
REMJI I .~1F:1 (]) BYTE) I;

declare timex exchangeSc'escrlptor externPl;
c'eclare rqfsrx e.xchPngeSc'escriptor extern<11;

CQ$QSINIT: Procedure (queue$ptr, ~ueueSsize) reentrant pub
lie;

/*

*I

This procedure initializes the queue pointers to
indicat~ an empty queue.

Declare queueSptr address;
Declare aueueSsize byte;

Declare queue based queueSptr aueue$for~at;

/* set up the size of ~he queue intp the structure */

queue.FNDSPTR = queueSsize - J;

/* reset the queue offset pointers .*/

queue.GIVESPTR,queue.TJ\I<ESPTR = C';

/* return to calling program*/

return;

end cqSq,.,i.nit;
end q$init$moc'ule;

2-21($ AFN-01931A

3 1

ll.

5 l

l

7 2

8 2

9

H

] l 2

12 l

] 4

15 l

2

] 7 2

=

=

=

APPENDIX D

Stitle('NEXT GIVF. QUEUF. PROCEDURE, VERSION 2.1')
NEXTSGIVE$~0DULE: Do;

decli'lre eom liter2Jly 'nDH';
SincJuce(:fl:commsg.eJt)

decl?re nsg$fornat liter?lly 'structure (
trgt byte,
cr:inc byte,
seqSln hyte,
seq$n2 byte,
text (2C:.0) hyte) ';

declare queueSform2t liter2lly 'structure (
~ndSptr byte,
giveSptr hyte,
tekeSptr byte,
d?t?Sbyte(25·ll) byte)';

declare prrSformi'lt literaJJy 'structure (
la byte,
na byte,
t : byte,
stop byte,
queSpt byte) ';

Sinclude(:fr:synch.ext)
RQSEND:

PRCCEDURF (EXCHANGE$PCINTER,~ESSAGF$POINTER) EXTFRNAL;
DECLARE (EXCHANGE$POINTER,~ESSAGE$POINTER) ADDRESS;

E~'D RQS EN[';

R('v'.1'. IT:
PROCEDURE (EXCHANGESPOINTER,DEL1'Y) ADDRESS EXTERNAL;

DECLARE (EXCHANGESPOINTER,DELAY) AODRESS;

END R0\•1AIT;

ROP. CPT:
PROCFDURE (EXCHANGESPOINTER) ADDRESS EXTERNAL;

DECLARE EXCHANGESPOJNTER ADDRESS;

END RQ1'CPT;

RQISND:
PROCEDURE (IEDSPTR) EXTERNAL;

DECL1'RE IEDSPTR ADDRESS;

END RQJSND;
SincJude(:f0:exch.elt)
DECLARE EXCHANGFSDESCRJPTOR LITERALLY 'STRUCTURE I

rsGSHEAD ADDRESS,
~SGSTAIL ADDRESS,
TASKSHEAD ADDRESS,

= TISKSTAJL ADDRESS,

2-217 AFN-01931A

intJ

1 ~

2'' ..

21
22

/.3

24

25

2f
27

2~

30

32
33
311

35

30

37

1
1

l

2
2

/.
2

2

2
2

3
3 ., _,

2

3

=

=

=

=
=

=

APPENDIX D

NEXTFEXCH ADCRESS) ';
Finclucer:fC:msg.elt)
DECL!>RE MSGSHDR LTTER!>LLY '

LH1K l-DDRESS,
LENGTH l>DDFF.SS,
TYPE PYTE.,
H01'1FSEXCHANGE ADDRESS,
RESPONSF.SFXCPANGE l>DDRFSS';

DECLARE ~SGSDESCRJPTOR LITERALLY 'STRUCTURE(
1'1SGSPDR,
RE~l>INDER(l) BYTE)';

clecl?re timex exchangefcescriptor external;
cleclJrc rqfsrx exchangeScescriptor external;

CQSNEXTSGIVE: Procedure(OUEUESPTR,GIVF.SBYTE) byte reentran
t public;

I*

*I

*/

This proceclure places B byte into the cueue if room
exists in the queue for that byte of cata. If no room
exists, A queue full indicator will he returned by
the proceclure.

Declare OUEUESFULL literally '0FFH';
Declare QUEUESOK literally •cerH';

Declare QUEUESPTR ~cldress;
Declare (GJVE$PYTF,RSLT) byte;

ceclare queue based aDeueSptr qu~ueSfornat;

/* Test for cueue full condition ~ncl if it is full,
then insert enc of message */

RSLT = queueSok;
If lqueue.GIVF.SFTR+l > queue.FNDSPTR)
then ro;

rslt = oueueSfuJ1;
queue.d~teSbyte(queue.giveSptr) eon;

cnc1;

else clo;

/* Store the byte into tte next queue location

queue.DAT!>SRYTE(queue~GIVESPTP) = PIVESBYTE;

/* Increment the give rointer */

If ((oueue.CIVF.SPTR:=queue.GJVESPTP+l)

2·218 AFN-01931A

40

41
il 2

2

?
l

APPENDIX D

> oueue.EN['$P'J'P-)
then oueue.GTVE~P'J'R r;

I* Return to c2lling rrogrPm with 900~ COMplete */

Return rslt;

enc cq$nexttgive;
end next$aiveSMocule;

2-219 AFN-01931A

1

2

,,

5

()

7

p

9

H'

11

] 2

13

14

15

16

17

lP

1

1 =

=

=
1

=

=

1
=

=

l

2

2

1

7.
=

?

l

2

2

1

2

2

1

APPENDIX D

Stitle('GET CHJIRACTER FRC~ QUEUE PROCEDURE')
NEXTSTJIKESM0DULE: J':'o;

declare eom literally 'rDH';
S.include(:~l:conmsg.elt)

declare msgSformat literally 'structure (
trgt byte,
c:rinc• byt P,

,..,...,. t 1.2 byte:·,
seoSn? byte,
text (25C) byte) ';

declare aueueSfornat literally 'structure (
encSptr byte,
giveSptr byte,
takeSptr byte,
datc>$byte(2~4) byte) ';

declare par$fornat literally 'structure I
la byte,
ni'l byte,
run byte,
stop byte,
que$pt byte) ';

Sinclude(:fO:sync~.ext)

PCSEND:
PROCEDURE (EXCHA~GESPOINTER,MESSAGESPOINTER) EXTERNAL;

DECLJIRE (EXCHANGESPOINTER,MESSJIGESPOINTER) ADDRESS;

END PQSEND;

PQ\>'/'. IT:
PROCEDURE (EXCHANGFSPOINTEP,DELJIY) JIDDPESf EXTERNAL;

DECLARE (EXCHANGESPOINTER,DELJIY) JIDDRESS;

END RQWJIIT;

PQf>CPT:
PROCEDURE (EXCHANGESPOINTFR) JIDDRESS EXTERNAL;

DECLJIRE EXCHANGE$POINTER JIDDRESS;

END RQACPT;

RQISND:
PROCEDURE (IEDSPTR) EXTERNAL;

DECLARE IEDSPTR JIDORESS;

END RQISND;
$include(:f0:exch.elt)
DECLARE EXCHJINGESDESCRIPTCR LITERALLY 'STRUCTURE (

MSG$HEJID JIDDPESS,
MSGSTJIIL ~DDRESS,
TAEKSHEAD ~DDRESS,
T~EKSTAIL ~DDRESS,

2-220 AFN-01931A

intJ

21
n

2f

3 ('

31
32

1

2
2

2

l

=

APPENDIX D

NFXTSFXCH l"DDRFSSl 1 ;

$incluce(:fr:msg.elt)
DECLARE ~f'GSHDR LITERALLY '

LINK l"DDRF.SS,
LP.NGTfT /\DDRFf'f,
TYPE BYTE,
HC~ESEXCHANGP. /\DrRESS,
RESPONSFSFXClll'NGF JllJDRESf' I;

DECLARE MSGSDEFCRIPTOR LITERALLY 'fTPUCTURFI
MSGSHDR,
RFf\llJIH-.TDFR (1) BYTE) I;

fecl2re tinex exchPngeSrescriptor extern2l;
c'. ~L. i"rE' rqfsrx PXCr?ngeSrescriptor PXternPJ i

C('n.TX"" .• 'TJKF: Procec'ure (queueSptr) hyte recntrrnt puhJ ic';
/*

*I

This type<"! procerlure gets the next byte from the
inaic2tea queue anc-1 returns it to the celling
pro9r2m. The cueue t2k~ pointer is incrementef.

Declare cueueSptr ?rrress;
recl2re tekeShyte byte;

recl2re queue b2sra queucSptr oueueSforn2t;

/* store next data byte in queue */

t2keShyte = queue.D/\Tl'SPYTFfqueuc.Tl'KESPTR);

/* increment the t2ke pointer to next location */

If ((queue.T/\KESPTR:=oueue.TlKESPTR+l)
> queue.ENI"SPTR)

then queue.TJIKESPTR = 0;

/* return the r2t2 byte to c2ller *I

return takeShyte;

enc cqSnextSteke;
enc nextSt2keSmorulc;

2·221 AFN·01931A

l

2 J

3 l

=
=
=

1
::;

=

=

5 1

=

=

l =
=

7 2

8 2 =
=

9

/ =

11 2

12 1

l J 2 =
1.11 2

=
15 1 =

lG 2 =
=

17 2 =

1

=
=
=

APPENDIXD

$titlc('lSCII to HEX CONVERSION P~OCEDURE')

ASCS ""vtMorULE: Do;

~eclere eom litere1ly '0DH';
$incl uC! e (:fl : r.omJ11sg. e lt)

c>eclare msgSforn2t llterelly 'structure (
trgt byte>,
cmnr. byte,
seq!' Ji" byte,
seciSnc hyte,
text (/50) byte) ';

~eclere queueSformet literally 'structure (
encSptr byte,
giveSptr byte,
tekeSptr byte,
c>ateSbyte (/511) byte) ';

c>eclere perSform?t literally 'structure (
le byte,
ne byte,
run byte,
stop byte,
que$pt byte) ';

$include(:f0:syncr..ext)
ROSEND:

PROCEDURE (EXCHANGESPOINTER,MESSAGESPOINTER) EXTERNAL;
rECLARE (EXCH/l.NGESPOINTER,MESSAGESPOINTER) ADDRESS;

END RQSFND;

RQWA.IT:
PROCEDURE (EXCHANGESPOINTER,DELAY) ADDRESS EXTERNAL;

DECLARE (EXCHANGESPOINTER,DEL/l.Y) ADDRESS;

R('/l.CPT:
PROCEDURE (EXCHANGESPOINTER) ADDRESS EXTERNAL;

DECLARE EXC'llANGE$POINTER ADDRESS;

END RQ!-.CPT;

ROISND:
PROCEDURE (IEDSPTR) EXTERNAL;

DECLARE IEDSPTR ADDRESS;

END ROISND;
Sinclude(:fC:exch.elt)
DECLARE EXCHANGESDESCRIPTOR LITERALLY 'STRUCTURE (

MSG$HE/l.D ADDRESS,
MSG$TAIL ADDRESS,
TASKSHEAD ADDRESS,
T/l.SK$TAIL ADDRESS,

2·222 AFN-01931A

2C 1

21
2/ 1
2::: l

24 2

2= 2

20

27 2
28 2

2S' 2

3C 2

31 2
32 2·

1' 2

35 ;:>

3E 2

38 2

3S 2

4r 2
41 2

4::: 2

APPENDIX D

NEXTtEXCH ADDRESS)';
Sinclude(:fC:msq.elt)
DECLAPF ~~G$HDR.LJTFPALLY I

LJl\IK .ADnRFSS,
LENGTH l'DCRFSS,
TYPE PYTE,
HO~FSEXCHANGF ADDRES~,
RESP0NSE$EXCHANGE lDDRESS';

DECLARE MSG$f1ESCRIPTOR LJTER.11.LLY I fTRUCTURF. (
~1SC$HDR,

,<t.1 "JNCER (1) BYTE) I;

decl2re timex exch2nge$fescriptor rxtern?l;
decl2re rqfsrx exch2nge$descriptor extern2l;

cqSnext$take:
procec1ure (aSpt r) byte exterr>nl;
decl2re q$ptr ac1dress;

end cq$next$take;

CQSASC$HEX: Procec1ure(q$ptr,msg$ptr) reentrant public;

I*

*I

This procedure transforms ASCII d2t2 in the input
queue into 2 hex string in the system rness2ge stornge
a re2.

Decl2re (nchar,chrr,n) cyte;
Declare (qptr,msgptr) ac1dress;

Cecl2re msg based msg$ptr nsg$form2t;

/* throw aw2y the start of ness2ge */
rJ·.2r = cqSnextStcke lqSptr);

/* convert mess2ge target 2ddress */
char= cq$nextSt2ke(q$ptr);
nch2r = cqSnextStake(q$ptr);

if char > .i! Gh
then char char - 37h;
else char = chnr - ?Ch;

if nch0r > 40h
then nch2r nchar - 37h;
else nchar = nchar - ?rh;

msg.trgt = st>J (char,.i!) + nch2r;

/* convert command byte */
char= cqSnext$takela$ptr);
if ch2r > 4Ch
then ch2r cher - 37h;
else chAr = char - ~r.h;

2-223 AFN-01931A

intef

44

45

4 ')

L1f.

~ S'

5('

51

53

54

55
5A

57

58

(,(:

r, l

(; 3

Gt1
(;5
l)(.i

()7
fi8

2

2

2

?.

?.

2

2

2

2

2
2

3

"'J

3

3

3

3
3
3

2
l

APPENDIX D

Msg. crmc1 = chP r;

/* convert L~ sequence */
char= cqSnextStPke(qSptr);

if char > l1(1h
then chPr chAr - 37h;
else char = chPr - 3rh;

/* convert NA sequence */
char= cqSnextStPkP(q$p~r);

if rhAr > llf'h
then cl'<"r ch2r 37h;
else char = char - Jrh;

msg.seq$n? = char;

/* do oper?tions until enc of messe>ge */

n = C;
r.o while (char:=cc;SnextSteke(QSptr)) <> FOM;

/* get next ASCII chare>cter */

nchar = cq$nextStake(Q$ptr);

/* convert to hex format */

if cher > ilCH
then chc.r = char -
else char = char

if nchar > ilC'H

37H;
3CH;

then nchar nchPr - 37H;
else richar = nchar - 30H;

msg.text.(1") = shl(cr?r,4) + nchcir;
n = n + l;

enc' cqS?scShex;
end aschexmodule;

2-224 AFN-01931A

1

2

3 1

l
=

5 1

G l

=
7 2

8 2

~ 1

H 2

11 2

1 2 1

L? 2

111 2

l: 1

Hi 2 =
=

17 2

18 1
=

APPENDIX D

Stitlef'HEX TO ASCII CONVERSION PROCEDURE')
HEXSASCS~ODULE: Do;

•ecliHP E'Ol'l litPraJ1y '('DH';
$ i nc-l u<'1 e (:fl : C"ommsg. e Jt)

oeclare msgSformat liter2lly 'structure (
trgt hyte,
cmno hyte,
seqSlc bytf',
seq$na hyte,
text (25C) hytf') ';

declare queueSforrnat literally 'struC"ture (
enoSptr byte,
giveSptr byte,
takeSptr byte,
d2taSbyte (254) byte) ';

declare parSforrnat literally 'struC"ture (
la byte,
n2 byte,
run byte,
stop byte,
oue$pt byte) ';

Sinclude(:f0:synch.ext)
RQSEND:

PROCEDURE (EXCHANCESPOJNTER,MESSAGE$POJNTER) EXTERNAL;
DECLARE (EXCHANCESPOINTER,~ESSAGFSPOINTER) ADDRESS;

END RQSEND;

RO\,?,JT:
PROCEDURE (FXCHANGESPCINTFR,DELAY) ADDRESS EXTERNAL;

DECLARE (EXCHANGESPOINTER,DFLPY) ADDREFS;

END ROWAJT;

RQACPT:
PROCEDURE (EXCHANGESPOJNTER) ADDRESS EXTERNAL;

DECLARE EXCHANGE$POINTFR ADDRESS;

END B()ACPT;

RQISND:
PRCCEDURE IJEDSPTR) EXTERNAL;

DECLARE JEDSPTR ADDRESS;

END RQISND;
Sinclude(:fr:exch.elt)
DECLARE EXCHANGESDESCRIPTOR LITERALLY 'STRUCTURE (
~SCSHEAD ADDREPS,
~SGSTAJL ADDRESS,
TASKSHEAD ADDRESS,
TASKSTAJL ADDRESS,

2-225 AFN-01931A

lS

21
n

23

25
.., r:
"·"
27

28
29

3 (1

31

33

34

3 I)

37
3P

3S·
4('.
4 1

1

l

2
2
2

l

2
2

2

2

2

2
2

2
2
J.

=

=

APPENDIX D

NEXTSEXCH ArDRESS) ';
$includr(:f0:msg.elt)
DECLlRE MSG$HDR LITERALLY '

LINK ADDFlESS,
LENGTH J\DDRESS,
TYPE· BYTE,
HOME$EXCHANGE ADDRESS,
RESPONSESEXCHANGE ADDRESf';

DECL~RE MSG$DESCRIPTCR LITERALLY 'STRUCTURE(
MSG ,;J['R,
RC! ~---~-f I l) FYTE) I;

decJe"re t-inex exchrngeSc1escriptor f'xtern.,,1;
declare rqfsrx exchangeSdescriptor externeJ;

cqSnextSgive:
procedure(que$ptr,deteSbyte) byte external;
declare aue$ptr rddress;
declare datc>Sbyte byte;

end cqSnextSgive;

CQSHEXSA.SC: Procecure (qSptr, hex$byte) reentrent puhl ic;

I*

*I

This procec1ure is used to convert a hex byte into two
ASCII eharecters end store them into the next two loc
ations of the Q$out data area.

Declere (highSbyte,hexSbyte,lowSbyte,stetus) byte;
Declare q$ptr address;

Declare qSout b11sec1 a$ptr queue$forrn?.t;

/* separate low 11nd high order bits */

If (high$hyte:=(shr(hPxSbyte,I!) eno CFH)) >"
then highSbyte = highSbyte + 37H;
else highSbyte = highSbyte + 3CH;

If (low$byte:= (hf?xSbyte encl 0FH)) > ~
then low$byte = lowSbyte + 37H;
else lowSbyte = lowSbyte + 30H;

/*store ASCII' conversions into the aueue */

status
st?.tus

return;

= cqSnext$give(.Q$0UT, highSbyte);
cqSnext$give(.QSOUT, lowtbyt~);

end cqbexasc;
end hexS?scSmodule;

2-226 AFN-01931A

l

2

5

fi

7

p

s

H

11

l 2

13

14

15

16

17

] 8

1 =
=

=
l =

l
=

l

2

2

l

2

2
=

l

2 =

2

l

2

2

1

=
=
=

APPENDIX D

StltlE('CHECKSUM Cl'LCULJITT0N FROCEDURE')
CHECKSUMS~ODULE: ~o;

clecl<'rE' cor.i liter<lly '!'DI!';
Sinclude(:f]:rommsg.elt)

declPre MsgSformPt liter~lly 'structure (
trgt byte,
cmnc byte,
seqSl? '··tp,
SF>qSna byte,
tcxt(25r) byte) ';

declare queueSformat l~terPlly 'structure (
endSptr byte,
giveSptr byte,
tnke$ptr byte,
cnta$byte(254) bytP) ';

CEC!are p2r$formPt literally 'structure (
la byte,
n<" byte,
run byte,
stop byte,
queSpt byte) ';

Sinclude(:f0:synch.ext)
RQSEND:

PROCEDURE IEXCHJINGESPOINTER,~ESSAGESPOINTER) EXTERN}IL;
DECLJIRE I EXCH/,NGESPO INTER, MEfSf\GESPO INTER) JI DDRFSf.;

FND RQSEND;

RQI"/. IT:
PROCEDURE IEXCHJINGESPOINTER,DELJIY) JIDDRESS EXTERNl'L;

DECLARE (FXCHJINGESPOJNTFR,DELJIY) ADDRFff;

FND RQl,!i'· IT;

RQl'CPT:
PROCEDURE (EXCH}INGESPOJNTER) JIDDRESS EXTERN}IL;

DECLJIRE EXCHl'NGESPOINTFR l'DDRESS;

RQISt<'D:
PROCEDURE (IECSPTR) EXTERNAL;

DECLJIRE IECSPTR ADDRESS;

Et-1D RQ ISND;
Sincludel:f0:exch.elt)
DECLARE FXCHANGESDESCRIPTCR LITERJILLY 'STRUCTURE (

MSGSHEIC JIDDRESF,
~SGSTJIIL l'DDRESS,
T~EK$HE1'D ~DDREES,
TrfK$T~JL rDDRESS,

2·227 AFN.01931A

l~

21
22
23

24
25
26

27

22
2 S'

3 {'

31
32
33
31!

3 r,
":I"' ._;.I

3£'

=

l =
=
=
=
=
=

=
=
=

1
l
1

2
2
2

2

2
2

'2
2
3
3

3
3
3

APPIENDIXD

NEXTSEXCP ADDRESS)';
Sinclude(:ff':msq.elt)
DECL,.RE ~SGSHDR-LTTER~LLY I

LIN!< t-DDREPE,
LENGTH Jl.DDRESS,
TYPE PYTE,
HC~ESEXCHlNGF lDDRESS,
RESFO~EESEXCHANGE Jl.CDRESS';

DECLPRE ,...SGSDFSCRIPTOR LITER,.LLY 'STRUCTURE(
Tv"SCSHDP.,
RE,...lINDER(l) PYTE) '=

declare timex exchangeSdescriptor external;
declare rqfsrx exdhangeSdescriptor external;

COSCHECKSUM: Procedure(qSptr) byte reentrant public;

/*
This procedure is used to determine the checksum of
a message which has been received and stored into

*/

the QSin buffer. A checksun will be calculated on all
characters beginning at the start of text and
continuing until the checksum bytes are encountered.
This value will be tested with the value transmitted
and if they agree, a value of zero will be returned
to the calling program. If not in agreement, a
non-iero vilue will be feturned.

Declare (ptr,end$ptr,qSptr) address;
Declare (checksm,strin9$sum,char,n) byte;
Declare lastScharsf3) byte;

declare q$in based oSptr aueueSforreat;

/*get queue poin'~r values for refer~nce */

PTR = Q$IN.taYeSptr;
ENCS.PTR = Q~ H 1 • e nclS pt r;

/* initialize checksurn value */

crecksrn = (1;

/* cornpute ch~cksum of string */

char= OSTN.dataSryte(ptr);
~o while char <> FOM;

en(!;

checksm = checksm + char;
if pt.r = enc1Sptr
tren ptr = f:;
else ptr = ptr + 1;
char= O~IN.data$hyte(ptr);

2·228 AFN-01931A

39 2

L' l ?

I!/. ?
l!: :<

41! :
4 (, .., _,
47 3
4f 2

4S .,
<.

5r. 3

52 3
5:' ?
5'! 2

55 2

57 2
5P 2

59 2
~ r. l

APPENDIX D

/"' Jilst thref' ch;1r2cters in the mess?ge 2re
not includet" in the checksum, so they must
be subtractec' •••• "'/

/* first remember the lest aueue lociltion */
if ptr = Pnc'Spt.r
thf'n ("her r;
Plse ("h?r = ptr+l;

ro n = r: h1 2;

end;

checksm = checksm - llrstSchPrs!n) :=
OS IN .c12 t?Sbyte !pt r));

if ptr = r
then ptr endSptr;
else ptr - .tr - J;

checksm = checksn + J2stScherslO);

/"' convert transmitted checksum into e hex v2lue */

Do n = 1 to 2;
if 12stSchers(n) > L'0H
then l2stSch2rsln) 1astSch2rs(n) - 37H;
else lastSch2rs(n) = 1?stScr2rsln) - ?f'fl;

en<';
stringSsum = shl(le>stSch2rs(/),L') + l<'stSch?rs(l);

/* test for v2lic'ity of tr2nsmission */

if stringSsum = checksm
then return 0;

/* if bile' checksum, cle?r c1ilt? aueue of message*/

else QSTN.t2keSptr = ch2r;
return-J;

enc' cqSchFcksum;
enc' checksumSmodule;

AFN·01931A

1

2

3

=

l

r; 1 "'

7 :?

2 2 =

s 1

H 2

11 2

] 2 l

13 2
=

l L! 2 =

] : l

H 2

1 7 2

le l

=

=

APPENDIXD

$title('GENFRATF PFJIDY ~ESSAGF PROCEDURE')
GEN~RDYS~ODULE: Do;

clecl?re eom llter2lly 'ODH';
Sinclucle(:fl:commsq.elt)

clecl2re msg$fo~mAt literelJy 'structure (
trgt byte,
crrnci byte,
Sl"qSll' byte,
seqSnA byte,
text (/. 5 0) byte) ' ;

cleclere queue$form2t literally 'structure (
endSptr byte,
giveSptr byte,
trke$ptr byte,
clet?Sbyte (254) byte) ';

declare perSformat literally 'structure r
l (' bytE',
"'" byt!'.
run byt!',
stop byte,
que$pt byte) ';

Sinclucle(:fO:synch.ext)
RQSEND:

PROCEDUPE (EXCHANGESPOINTER,MESSAGFSPOINTER) EXTERNAL;
DECLARE fEXCHANGESPOINTER,MESSAGESPOINTER) ADDRESS;

E1'1D RQS Fl'"D;

ROl•'A TT:
PROCEDURE IEX~HANCESPCINTER,DELAY) ADDRESS EXTERNAL;

DECLARE (EXCH/>NGESPO INTER, DELAY) JI DDRESS;

END RQFAIT;

RQf,CPT:
PROCEDURF (EXCHANGESPOINTER) ADDRESS EXTEPNAL;

DECLARE EXCHANGESPOINTER ADDRESS;

RQISND:
PROCEDURE (IEDSPTR) EXTERNAL;

DECLARE IED$PTR JIDDRESS;

END RQISND;
Sinclude(:fO:exch.elt)
DECLARE EXCHANGESDESCRIPTOR LJTERJILLY 'STRUCTURE (

MSGSHEAD ADDRESS,
MSGST/>IL ADDRESS,
TASKSHEAD ADDRESS,
TASKSTJIIL ADDRESS,

2·230 AFN-01931A

inter

19

2C

21
22

"'., .(. -

24
25
2 (,

27

2P
29

3('.

31

l

1
l

2
2
2

1

2
2

2

2

APPENDIX D

NEXT$EXCH lDDRESS) ';
$inclure(:f0:mso.elt)
DECLARE ~fG$HDR.LITERALLY I

LINK JIDDRESS,
LENGTH ADDRESS,
TYPE BYTF,
HOME$EXCHANGE ADDRESS,
RESPONSESEXCHANCE ADDRESS';

DECLlRE MSG$DESCPTPTCP LITERALLY 'STRVCTUPEI
MSC:SPDR,
REMAINDER (1) BYTE)';

decl21re timex exchangeSdescriptor external;
declare rqfsrx exchangeSdescriptor external;

cqmsgout:
procedure (msgSsize,qptr,parptr,msgSptr) external;
declare msgSsize byte;
ceclare (qptr,parptr,msg$ptr) <idcress;

enc comsgout;

COGENRDY: Procedure (trget,msgSptr,qSptr,parSptr) reentr
21nt pub! ic;

I*

*I

This procedure·generates a "ready" message onto the
communicf,tion network. The tilrget 2<"'C!ress is p2ssec
as the parameter i~ the call.

On entry to ~he procedure:
trget is a byte which contains the address

of the taraet node.
msgSptr is 21n ;ddress which points to

the RAM work area.
qSptr is an address which points to

the output queue.
parSptr is an arcress which points to

the communication flags.

Declare trget byte;
Declare rcySmsg structure

Tl\RGET byte,
COJ11AND byte,
SEQSLJI byte,
SEQSN/, byte

cat.a (r,3,0,0);

declare (msgSptr,qSptr,parSptr) address;

decl~re msg b2se~ ~sgSptr msgSform~t;

/* move format into mess2ge block */

2·231 AFN-01931A

intef

32 2

33 2

34 2

35 2
3e.; 2 enc
37 1 e nc1

call rrove (ll,.rrlySl'.lsg,msgtptr};

/*insert currcot.par;ir.ieteq;. 'f!./

l'.lSg.tr~t = trgf't;

/* send */
(.··

Message
.

er> 11 cqSr.isg$out < r' cSptr, pci r$pt r,

r'eturn;
cqSgen$r0y;
gen$r~y$moc1ule;

2·232

, .
. 'r

msg$ptr);

AFN-01831A

l

2 l

., _, 1
=

l

5 1

h

7 2

8 2

9 l

H 2

11 2 =
12 1

13 /

l ll 2

15 l

10 2
=

17 2

lP 1

=

APPENDIX D

Stitle('DPTJI MESSJIGF GENERATOR PROCEDURE')
GENMSC~0DULE: Do;

recl?re eom literally •rnH';
Sinclude(:fl:commsg.elt)

cecJ2re msg$form2t literrlly 'structure (
trgt byte,
cmnr byte,
seo:Cla l:yte,
seq$n2 byte,
text (25'1) hyte) ';

declare queue$format literally 'structure (
endSptr hytr,
giveSptr hyte,
t2ke$ptr byte,
02t2$byte (254) byte) ';

decl2re p2r$form2t literally 'structure (
la byte,
n;o hyte,
run byte,
stop byte,
queSpt byte) ';

Sinclude(:f0:synch.ext)
R(lSEND:

PROCEDURE (EXCHJINGESPOJN1ER,MESSlGE$POINTER) EXTERNAL;
DECLARE (EXCHANGE$POINTER,~ESSJIGE$POJNTFR) lDDRESS;

F.ND RQSEND;

RQl,!AJT:
PROCEDURE (EXCHJINGESPOJNTER,DELAY) ADDRESS EXTERNAL;

DECLJIRF (EXCHANGFSPOTNTER,DF.LAY) ADDRESS;

END PQWJIIT;

RQ,l\CPT:
PROCEDURE (EXCHANGE$POTNTER) ADDRESS EXTERNAL;

DECLARE EXCHANGFSPOINTFR lDDREfS;

Et-m RQJICP'T';

RQifN[':
PROCEDURE (IFDSPTR) EXTERNAL;

DECLARE JFD$PTR ADDRESS;

END PQISND;
$include(:fr:exch.eltl
DECLARE EXCHJINGESDESCRIPTOR LITERALLY 'STRUCTURE (
~SC$HEAC ADDPESS,
~SGSTlIL ADDRESS,
TASKSHEAD lDCRESS,
TASK$TAIL ADrRESS,

2-233 AFN-01931A

intJ

l~

2C'

21
22

23

27

2P

29

3C

31

1

1
1

2
2
2

1

2

2

=

=
=
=

=
=

APPENDJX.·D

NEXTSEXCH ADDRESS) 'J
Sinclurel:fr:msg.elt)
rECLARE MSGSHDR LJTERALLY •

LINK J\DDRF.SS,
LENGTf-1 ADDRESS,
TYPE BYTE,
HO~ESEXCHJ\NCE J\DDRESS,
RESPCNSESEXCl!JINGF J\DDRESS';

DECLJ\RE ~SGSDE~CRIPTOR LITERJILLY 'STPUCTUPEI
l"ISG$f1DR,
REl"IJ\INDER(l) BYTE)';

declare timex exchr>ngeSrescriptor external;
c'cclr>re: rqfsrx exchange$descriptor external;

cqSmsgSout:
procedure (msg$size,a$ptr,perSptr,msgSptr) external;
declare nsg$size byte;
c"eclr.re (qSptr,pr.rSptr,msgSptr) 'f.'c'!dress;

end cqSmsgSout;

CQSGENSMSG: Procedure (~sgSpointer, trget, msg$ptr, qSptr,
parSptr,saveSfl~) reentrant puhlic;

/*

*I

This procedure generates a dr>te message r>nd places
i~ onto the system comnunicr.tions network.

On entry to the procedure:
msg$pointer is en ac"dress which points to

the r?ta to he trensmitted.
trget is an byte whic~ contains the

<"<'dress of the t<"raet node.
msgSptr is an address which points to

the RJ\l"I work area.
qSptr is an adc'ress which points to

t~e output queue.
parSptr is 2n address whic~ point& to

the ~onmunicr.tidns flags.

Declare (msgSpointer,msgSptr,qSptr,par$ptr,ramSsize) a
c1 d ress;

Declare (trg~t,save$flg) byte;

Declare msg based msgSptr msgSformr>t;

Declrre nataSmsg structure
target byte,
comi"nd byte,
seaSLA byte,
seq$NA byte,
text byte)
dcte. 1r:,2,0,c,r);

2-234 AFN·D1931A

intJ

32

'.'3

37

3?

4 c:

42
4 3

ll 4
45
4 (j

..., ,_

2

.,
L.

.,
L.

...,
L.

2

2

J

3
:
2
2
l

APPENDIX D

decl?re dat2Sblock based nsgSpointer structurr
nsgShd r) ;

/* move mess2ge forM?t into message buffer */

c<'ll move (5, .c'i'lte>Smsg, msqSptr);

/* insert target rc'c'ress */

msg.trgt = trget;

/* Append d?ti" to communic?tion mess?ge */

c<'11 riove (d?t?Shlock.length, msgSpointer, .risg.text((1
) ;

/* tr?nsmit mess?ge onto netuork */

r2mSsize = d?taShlock.length;
call cqSmsg$out (ri"mSsize,qSptr,p?rSptr,msgSptr);

/* return memory to free spece man?ger */

if S?ve$f Jg
then c"o;

if r2msize mod 4 > r
then d?t?Sblock.length = dat?Sblock.Jength + (4-(r

emSsize mo<" 4));
c?l J RQSEND (. rqfsrx, msg$pointer);

end;

return;
E'nc1 cqSgenSnsg;
encl gen$rasg$module;

2-235 AFN·01931A

intJ

1

2

3

4
5

6

7

1

1

]

1

1

J

=
=

=
=
.-
=

=

=

=

=
=
=
=

=
=
=
=

APPENDIX E

Stitle('iSEX 351 Communicetions Driver, Version 1.?')
$nointvector
CQf:351: Do;

!'**

This nodule contr.iins the physicel interf?ce for
support of t.hP I~tel iSBX 351 conmunicPtions expansion
hoerd. The boe>rrl is insertec'!.into socket J() cine~ ticis ;o
b;ose edc'!ress of F0H wit~ the interrupt from the
receiver strapped to thP interrupt level 6. The
trensnit.ter interrupt is wirec'! to interrupt level 5.

~uJti-drop communicetioP options ?re support.cc'! by
the physibal softwere p?ckPge.

***********************'********************************/

$include (:fO:exch.elt)
DFCLARE EXCHPNGESDESCRIPTOR LITERALLY 'STRUCTURE (
~SGSHEAD ADDRESS,
~SGtTAJL ADDRESS,
TASKSHEAD ADDRESS,
TASKSTAIL ADDRESS,
NEXTSEXrH ADDRESS)';

$include (:fr:ied.eJt)
DECLARE JNTSEXCRANGF.SDESCRIPTOR LITERALLY 'STRUCTURE (

MESSAGE$HEAD ADDRESS,
~ESSAGESTAIL ADDRESS,
TASKSHEAD ADDRESS,
TASKSTAIL ADDRESS,
EXCHANGF.SLJNK ADDRESS,
LINK .Z\DDRESS,
LENGTH J\DDRESS,
TYPE PYTF.) ';

Declere R0L'1EX intSexchengeSdescriptor externr.l;
Declere RQL7EX intSexc~ange$c"escriptor externel;

Sinclude (:fl:comms9.elt)
c"eclare msgSformet literelly 'structure (

trgt byte,
cmnc" bytP.,
seqSla byte,
SPqSn;:1 byte,
text (25'1) byte) ';

feclere queueSformPt liternlly 'structure (
enc$ptr bytP,
givP~ptr byte,
tPkeSptr byte,
cl<1te$byte (254) byte) ';

declerP p2r$form2t Jiterrlly 'structure (

2-236 AFN·01931A

inter APPENDIX E

(\ l
JC l
1l]

12

i:: 2
l /! 2
] t; 2
H l

J 7 2
IR 2
JS l =

2r 2
21 2
22]

23 2
2l! 2
25 2
2 :-; 1 =

2 '7 2
2P 2
2S]

:'.f' 2
'.) ' ~ J. 2
32]

33 2
31' 2
j>C, 2
?. ~

3? 2
:?P 2
'.) (\ .., ,
l1 r l

"1 2
42 2
43 2
l" 1

/! ~ 2

Jp byte,
nr byte,
ran bytf',
stop byte,
que~pt byt<>) ';

Decl2re CQTNSL queue$formrt cxternrl;
Decl?rP CQOUTSL queue$format extPrn?l;
Decl?rP COP~RS p?rSform?t externrl;

Sinclude (:fl:corncom.ext)
CQSN EXTSG JVF.:

Procec:'ure (a$ptr,giveSbyte) byte 0XternaJ;
DecJAre qSptr Eddress;
D0cl2re c;iveSbyte byte;
enc:' cqSnextSgive;

COST!-KESTEST:
Procedure (qSptr) byte extPrnal;
Declare a$ptr ?ndress;
end cq$t2keStest;

COSNEXTST!1KE:
Procedure (q$ptr) byte extern<>l;
Declare qSptr address;
end c0Snext$t2ke;

COSQSINIT;
Procec:'ure lq$ptr,qSsize) externaJ;
Declare qSptr ?0dress;
Declare qSsize byte;
end cqqinit;

CQSJISCSHEX: -
Procedure (q$ptr ,rnsgSptr) extern2l;
Declare (qSptr,msgSptr) <Hidress;
end ca$2sC"Shex;

CCSCHECKfoUM:
Procedure (qSptr) byte extern2l;
Declare qSptr ?c:'dress;
end caSchecksum;

CQSHEX$MC:
Proce('U re (qSpt r, hexShyt_e) exte rnril;
Declare aSptr Pc:'c:'ress;
DeC"larc hcxShytc hyte;
end C"qShexS?SC";

CQSJV'SCSt'lJT:
Procedure (msgSsi7e,qSrtr,p2rSptr,msgSptr) Pxternel;
neclere msqSsizc hyte;
Decle·rc (aSptr,p?rSptr,msgtptr) Pc:'rress;
encl cq$rnsg$out;

COSCENSRCY:
Pro cc cl u re (t r get , ms d, Sp t r , 0 $pt. r , pr r Sp t r) ext e r n <" l ;
Declare trget hytP;
reclere (msgSptr,o$ptr,p;:ir$ptr) cc'r'rE'ss;
rnrl cqgenrdy;

COSGENSMSG:
Procefure {nsgSpointer,trget,msgSptr~aSptr,parSptr,sev

eSfJq) externrl;
C-ecl<'rP (trget,sPveSfJg) byte;

2-237 AFN-01931A

intef

4 f'

5 (1

51

5?.

5?

55

57

SP

59

fi c

(; 1

fi2

63

(i5

71

73
7"'

/. =
2 =

1 =

2 =
=

l
=

2

=
2 =

1 =
2

=
2 =

=
=
=

2
=

2 =

l
=

2
=

l =
=

2 =
=

2 =

l
=

2
=

2 =
=

1 =
=

?
2 =

=
~ =

=
=

~ =
2

APPENDIXE

DecJ~r~ (msg$polnte~,rns~Pptr,qSptr,pPrSptr) Pdaress;
en0 cqSgen$nsg;

$inclu~e (:f0:synch.Pxt)
RQf-END:

PROCEDURE (EXC~~NGESPOTNTER,~EPSJIGF$POINTER) EXTERNAL;
DECLJIRE (EKCHJINGESPOINTFR,~EPSJIGFSPOJNT!R) JIDDRESS;

E1''D RQSEND;

PQ\''JI T 'I':
PROCEDURE (EXCH1\NGE$POJNTER;DELJIY) ltDDRESS EXTERNJl.L;

DECLJIRE (EXCHJINGFZPOINTER,DELAY) JIDDRESS;

END £l0\.'~ !- TT;

R(lJ\CPT:
PROCErURF (EXCHANGFSPOINTE~) JIDDREfS EXTERNAL;

DECLJIRE EXCNANGF.SPOINTFR JIDDRESS;

END RQ/lCPT;

RQISJ'.'D:
PROCEDURE (TEDSPTR) EXTERN/IL;

DECLARE IFDSPTP ADDRESS;

END ROISND;
$include (:fr:intrpt.ext)
ROENDI:

PROCEDURE EXTERNAL;

END RQFNDT;

R(lELVL:
PROCEDURE (LEVEL) EXTERN/IL;

DECLARE LEVEL BYTE;

END RQELVL;

RQDLVL:
PROCEDURE (LEVEL) EXTERNAL;

DECLARE LEVEL BYTE;

END RQDLVL;

RQSETV:
PROCEDURE (PROC,LEVEL) EXTERNAL;

DECLARE PROC ADDRESS;
DECL1'RF LEVEL BYTE;

END RQSETV;

RQSETP:
PROCEDURE f PROC,LEVEL) EXTERN/IL;

DECLJIRE PROC ADDRESS;
DECL~PE LEVEL PYTE;

2-238 AFN-01931A

intef

75 2

77

7f

l

r: r

82 l

P? 2

811 2
Fr; _, 2
8 r, ;i

87 2
88 2
pg 2
~r 2

~'] 2

O" -· ,. 2
93 2
9~ 2
95 2
96 2
('"" ..,
.J I "

APPENDIX E

EJ\ID PQSETP;

Df"clrirf" EOI"' Jiteri"lly 'CDH';
/* defines end of message */

Declare RTS liter2Ily •rrJrnrrrb';
/* reedy to send to US/\RT */

DecJ?re RXE Jiterelly •rrrrrlrrb';
/* ready to rec~ive to USART */

necJere DTR liter?lJy •rrrnrnlrb';
/* c<'t<> Sf"t re2dy to lJS/\RT *I

Declare TXEJ\I Jiter2Jly •rrr0rrr1~ 1 ;

/* tr2ns~it en2bJe to UE/\RT */
Decl2re bac1int byte;

/* flag for interrupt 5 */

Seject
/***

This procedure initializes the hardware required to
operate the iSPX 351 expansion bo2rc1.

**/

CO$JNI'I't35l:
Procedure public;
Declare n byte;

/* initialize the timer/counters */
output(Cfbh) rb6h; /* select counter 2 */
output (!Hat~) = 32; /* lsh for 2ll(1C bauc1 */
outputfrfah) = n; /* ~sb for 2110r baud */

/* initialize the US/\RT */
output ((lflh) f0H;
output(Cflh) r;
outputfC'flh) L'('!'i;
outputfrflh) rceh;

op */
outputfCflh) 2Gr;

/* clear out garbage */
/* ... more garbage */
/* reset the US/\RT */
/* P bi. t, no parity, 2 st

/* enable receive mode */

/*tell the nucleus tre vector location*/

C~LL rqsetv(.cqmivt$351, ~);

call rasetv(.senctchar$351, 5);
cell rqelvl(5);

call. rqelvl (l'i);
return;

enn cqSinitS351;
$eject
/***

This procedure stores i' character from the USfRT into
the receiver ~ata input queue.

2-239 AFN-01931A

intJ

9P

9 ~'

Hr
H'l
H2

11'.l

lr.5

] C'7

HP

11'1

ll 2
113
114

115

117
llP
ll 9
l 2Cl
171
127

123
124
125
i2r,
127

] :H'

J

2

2
2
2

2

2

l_

')

')

3

.IJ
f

b

3

ti
II

5
b

4
4

3
4

" 5
ti

4

' . '. -~

APPENDIX' E

~*****~*****/

CO~IVT$351: __ _
Procedure interrupt ~ puhJic;
CeclPre (GIVE$STlTUB,CH~~) byte;

/* get chAiPcter from U~ART */
chPr = input(FFOh) Pnf 07Fh;
give$status = cqSnextFgive(~cqinsl, hhPr);
if chPr =com .,. · .
then cPll rqisndC.rql~e~1;
else call rqendi; -

encl cqmivt$351;
$eject
/***********-************************************-********

This procedure sends out the n~xt ch?recter to the
selected US/I.RT c'J°evice. It will dis<"ble the interrupt
when Pll desired cheracters hAve been transmitted.

**********************i****~****************************/
SENDSCHAR$351: _

Pro~~<"~re interrupt 5 public;
Declare chPr byte;

/*testing if interrupt is re<"lly for 5 Pnrl not noise*/

if bPdint > Vi then do;

/* enRbla drivers at beginning of Mess~ge */
If not cqpPrs.run
then rlo;

cqpPrs.run = J;
cqpc.>rs.stop = C'-;

en·a;

/* diseble drivers at end of messnge */
If cqpars. stop
tren co;

enc~;

cqp;ors.run = r:;
Do while (input<C'!Flh) Pnc'l 4) = D;
end;
bpc'!Jnt = C;
output<r.Flh) = 2<'h;

/* if ness<"ge is in progress, se~d neit cheracter */
else do;

char= cq$nextStake(.cq6utsl);
do while (input(!"'flh) and 4) = C;
end; - c
output(OF0h) = ch;or;

/* test for end of messege */
if (cher end ~fh) = eom

2·240 AFN·01931A

intef

Dr 4
131 4
132 3

133 2

13~ 2

1?5 ;:>

ur. 1

1:?7 2
13f 2
129 2
1" r, 2

]./; 1 l

APPENDIX E

then cqp?rs.stop = l;
else cqpnrs.stop = r.;

encl;
enc;

/* rr-en?h]e interrupts */
cCJlJ rqen~i;

return;

enr sen~tcrC'rt351;
teject
/***

This proce~urr begjns the tr?nsrnission to ? selPctee no~e.

**/
CQtSTART$MSGt351:

Procedure public;

bC'nint = l'ffh;
output ((lFlh) = 25h;
return;

en~ cqSstartSmsgS351;

encl cqs351;

2·241 AFN411931A

APPLICATION
NOTE

2·243

AP-110

January 1981

AFN-01931A

Using the RMX 86™
Operating System
on iAPX86™
Component Designs

2-244

Contents

INTRODUCTION . 2-245

OPERATING SYSTEMS FUNCTIONAL
OVERVIEW. 2-246

Multiprogramming 2-246
Multitasking 2-246
Growth . 2-246
Scheduling 2-246
Communication and Synchronization . . . 2-247
Resource Management 2-247
Interrupt Management 2-247
Initialization . 2-248
Debugging. 2-248
Higher Level Functions 2-248
Extendibility . 2-248

iRMX 86 OPERATING SYSTEM
ARCHITECTURE . 2-248

Layers . 2-248
Configurability. 2-249
Support Functions . 2-249
Object Orientation. 2-249
Task Scheduling . 2-250
System Hardware Requirements 2-251

APPLICATION EXAMPLE 2-251

System Design 2-252
Jobs and Tasks . 2-253
Interfaces and Synchronization 2-254
Priority . 2-255

APPLICATION IMPLEMENTATION . . . 2-255

Display Functions . 2-255
Cataloging . 2-256
Application Code. 2-256

Supervisor Task . 2-256
Input Task . 2-256
FFT Task . 2-257
Output Task . 2-257
Terminal Handler 2-257

Nudeus Calls . 2-258
System Configuration 2-258

SUMMARY . 2-260

APPENDIX A - Supervisor Task
Listings 2-262

APPENDIX B ~ Input Task Listings 2-283

APPENDIX C - System Configuration . . . 2-300

AFN·01931A

AP·110

INTRODUCTION

An application system based on a custom hardware
design will typically perform faster and require less
hardware than if it were implemented with "off the
shelf" circuit boards. However, these advantages are
countered by the disadvantages of custom designs, with
one of the largest drawbacks being the custom software
required. This software is often unique to the applica
tion and specific to the hardware design, requiring a
significant and increasing percentage of the develop
ment schedule and expense. The cost is multiplied by the
need for software tools, standards, and maintenance
developed specifically for each application. In addition,
much of the application software cannot be used for
new applications or hardware. All of these disadvan
tages can be significantly reduced by using a modular,
standardized operating system.

The operating system provides a higher level interface to
the system hardware. The hardware characteristics com
mon to most applications, such as memory management
and interrupt handling, are handled by the operating
system rather than the application software. The
operating system provides scheduling and synchroniza
tion for multiple functions, allowing application code to
be written in independent pieces or modules. The
operating system interface can be more standardized
then the interface to the hardware components. This
allows the application software to be more independent
of changing hardware. The application code can be in
itially implemented and debugged on proven hardware.
The software is then easily moved to the final hardware
configuration for testing.

The operating system interfaces allow the use of stan
dard software tools, such as debuggers. Operating sys
tems also provide decreased debugging time and in
creased reliability through error checking and error
handling. Perhaps most important, the expertise gained
can be carried on to new designs based on the operating
system.

Operating systems have generally been described as
large and complex, with rigid system requirements.
Users have found it difficult to tailor a system to their
needs or to use the operating system on more than one
hardware configuration. System software has been ac
cepted in large pieces or as a whole, with few system
configuration choices in either hardware or software.
Those systems small enough to use on component de
signs have lacked extendibility to larger, more complex
designs.

The Intel iRMX 86 Operating System offers users of
component hardware all benefits of operating systems
while imposing few hardware restrietions. Minimum
hardware requirements include I.SK RAM memory,
enough RAM or EPROM memory to hold the Nucleus
and the application code, and a handful of integrated
circuits. The circuits are an Intel iAPX 86 or iAPX 88
Central Processing Unit, an Intel 8284 Clock Generator,
Intel 8282/83 Latches for bus address lines, an Intel
8253 Programmable Interval Timer, and an Intel 8259A
Programmable Interrupt Controller. Larger system
busses will also require an Intel 8288 Bus Controller and
Intel 8286/87 Transceivers for data lines. This basic
hardware system is shown in Figure 1.

8288 BUS
CONTROLLER

SYSTEM
BUS

8284
CLOCK

GENERATOR

8088/8086
CPU

8282/83
LATCHES

8286/87
TRANSCEIVERS

ADDRESS LINES

DATA LINES

Figure 1. Basic Hardware System for the iRMX 86™ Operating System

2·245 AFN·01931A

AP·110

Users with a wide range of applications will find the
iRMX 86 Operating System allows them to implement a
corresponding range of capabilities, from a minimum
iRMX 86 Nucleus to a high level human interface. A
complete iRMX 86 Operating System includes extensive
1/0 capabilities, debugger, application loader, boot
strap loader, and integrated user functions. This flexi
bility allows one operating system to be used for many
projects, minimizing software learning curves for new
applications.

This note discusses a relatively small standalone spec
trum analysis system based on a subset of the iRMX 86
Nucleus. The intent of the note is to demonstrate advan
tages of using operating systems in hardware compo
nent designs. An overview of operating system func
tions is given first as background information. Readers
familiar with operating systems may wish to skip this
section. The overview is followed by a summary of the
iRMX 86 Operating System. The summary is brief, as
only the iRMX 86 Nucleus is used in this application. A
detailed discussion may be found in Application Note
AP-86, "Using the iRMX 86 Operating System," and
iRMX 86 System Manuals.

The spectrum analysis system is described after the sum
mary. The system requirements, design and implemen
tation are detailed. The system software is discussed
next, followed by configuration and hardware imple
mentation. A summary completes the application note
text. Partial code listings of the system software are in
cluded in the appendices.

OPERATING SYSTEMS FUNCTIONAL
OVERVIEW

Operating system software manage initialization,
resources, scheduling, synchronization, and protection
of tasks or functions within the system, as well as pro
viding facilities for maintenance, debugging, and
growth. In general, operating systems support many of
the following:

Multiprogramming

Multiprogramming provides the capability for two or
more programs to share the system hardware, after
being developed and implemented independently.
Within the environment of an operating system, the
programs are called jobs. Jobs include system resources,
such as memory, in addition to the actual program
code. Multiprogramming allows jobs that are required
only during development, such as debuggers, to run in
the target system. When development is completed,
these jobs are removed from the final system without af
fecting the integrity of the remaining jobs.

Multitasking

Multitasking allows functions within a job to be han
dled by separate tasks. This is particularly valuable
when a job is responsible for multiple asynchronous
events or activities. One task can be assigned to each
event or activity. Tasks are the functional members of
the system, executing within the bounds of a job en
vironment. Program code for a multitasking system is
modular, with well-defined interfaces and communica
tion protocols. The modular boundaries serve several
important purposes. The code for each module can be
generated and tested independent of the other modules.
In addition, the boundaries confine errors, speeding
debugging and simplifying maintenance.

Growth

The modular independence that results from multipro
gramming and multitasking gives users the ability to ef
ficiently create new applications by adding functions to
old software. Applications can be tailored to specific
needs by integrating new modules with previously
written general support code. If care is taken in system
design, functions can be added in the field. Documenta
tion for the older software can be carried on to the new
applications. This growth path will save completely re
writing expensive custom software for each new applica
tion.

Scheduling

Even though a system has multiple jobs and tasks, only
one task is actually running on the central processor at
any single point in time. Scheduling provides a means of
predicting and controlling the selection of the running
task from the tasks that are ready to run. Basic sched
uling methods include preemptive priority, non-pre
emptive priority, time-slice, and round-robin. Batch
systems often use non-preemptive priority scheduling,
in which the highest priority job gets control of the cen
tral processor and runs to completion. Preemptive
scheduling is typically used in real-time or event-driven
systems, where dedicated, quick response is the main
concern. A higher-priority waiting task that becomes
ready to run will preempt the lower-priority running
task. Priority may be either set at task creation (static)
or modified during running of the task (dynamic).

Time-slice and round-robin scheduling are used in
multiuser or multitask systems that share processing
resources and have limits on maximum execution time.
Time-slice scheduling gives each task or job a fixed slice
of dedicated processor time. Round-robin gives each
task or job a turn at using the processor. The time avail
able during the turn depends on system load and task
priority.

2-246 AFN·01931A

AP-110

Communication and Synchronization
Jobs and tasks in a multiprogramming and multitasking
environment require a structured means of communica
tion. This communication may be necessary to syn
chronize processes or to pass data between processes.
Two means of providing communication are mailboxes
and semaphores. Mailboxes are an exchange place for
system messages. The messages may include data or
provide access to other system objects, including other
mailboxes. Tasks can send objects to a mailbox or wait
for objects from a mailbox. Generally, the task has the
option of waiting for a specified period of time for the
message. The wait time may range from zero for a task
that requires immediate response to infinite time for a
task that must have a message to continue processing.
Multiple mailboxes are used to synchronize multiple
tasks.

A communication flow using mailboxes is shown in Fig
ure 2. In this example, the sending task sends a message
to a mailbox and specifies a return mailbox. The send
ing task then waits at the return mailbox. The receiving
task obtains the message from the sending mailbox and
sends a message to the return mailbox. The first task
obtains the second message from the return mailbox,
synchronizing the two tasks and passing data.

SENDING
TASK

RECEIVING
TASK

Figure 2. Intertask Communications with
Mailboxes

If process synchronization is the only requirement, sem
aphores may be used. Semaphores function like mail
boxes except that no data is passed through the sema
phore. Instead, semaphores contain "units," with the
meaning of the units defined by the sending and receiv
ing tasks. A one unit semaphore may be used as a flag to
synchronize the tasks. Multiple unit semaphores can be
used for resource control. For example, if tasks require
reusable data buffers, a semaphore may be defined as
the allocator of the available data buffers. Each unit in
the semaphore will represent one available buffer.
When a task requires buffers to continue, the task will
wait at the semaphore until enough units (representing

buffers) are available. The waiting task will receive the
units, use the buffers, and return the units (still
representing buffers) to the semaphore. Other tasks that
require buffers will also have to wait at the semaphore
until enough buffers are available.

Resource Management
The operating system is the central guardian of system
resources, specifically read/write memory. The memory
is made known to the Nucleus at initialization. The
Nucleus then gives pieces or segments of the memory to
tasks as they request it. This allows the tasks to have no
initial knowledge of the actual location and size of sys
tem memory. Tasks can share memory if they desire,
but the Nucleus allocates memory to each task individ
ually, preventing the tasks from using each others mem
ory. In addition, tasks return memory to the Nucleus
when they are through with it, allowing memory to be
reused.

2·247

Other system resources, such as 1/0 devices, will also be
scheduled by the operating system. The operating sys
tem is responsible both for the efficient use of these
resources and for providing the tasks with a large mea
sure of independence from the actual 1/0 hardware re
quirements. The system may require many types of 1/0
devices, such as disk drives, tape drives, and printers.
1/0 is more efficiently accomplished if the operating
system provides both asynchronous and synchronous
1/0 operations. Synchronous operations are those the
task starts and waits for completion, doing no other
work until the 1/0 is complete. Asynchronous opera
tions are started by the task, but the actual 110 can take
place while the task is doing other work. The overlapped
operation of asynchronous 1/0 provides more user con
trol of the 1/0 operation at the expense of a more com
plicated user interface.

Interrupt Management
Real-time software is tightly coupled to hardware func
tions by interrupts. Interrupts provide rapid notification
that the hardware needs attention. The software must
respond quickly without corrupting the system environ
ment. System integrity is preserved by preempting the
lower priority operating task, saving the task environ
ment, processing the interrupt (including communicat
ing the results to other tasks if necessary), restoring the
environment of the operating task, and continuing. All
of this must occur in an orderly and efficient manner.
The interrupt management of the operating system is
responsible for directly interacting with the system hard
ware that detects interrupts. The interrupt tasks can be
ignorant of the detailed interrupt hardware, providing
only the system actions to service the event that caused
the interrupt.

AFN-01931A

AP·110

Initialization

Operating systems create and manage jobs and tas.ks at
initialization as well as run time. Initialization generally
must be done in a specific sequence which will depend
on the environment existing at that time. An abortive in
itialization environment may require an orderly shut
down of the system. The operating system has the
capability for managing these situations, including com
munications, access to system resource information,
and displaying status of the initialization actions.

Debugging

The system debugger is a window into the internal struc
tures of the operating system. Debuggers allow data
structures and memory to be examined, breakpoints to
be set, and the user to be notified of abnormal condi
tions. The debugger may have symbolic debugging, in
which system objects such as addresses, tasks, jobs,
mailboxes, and memory locations can be assigned
names. This gives greater flexibility and accuracy during
debugging. The debugger may not be necessary in the
final system, so the debugger is often a separate system
job. This allows removal of the debugger with no effect
on the remaining jobs.

Debugging will be aided if the operating system verifies
the parameters required by system actions and also re
turns status for the requested action. Parameter verifi
cation is particularly valuable for new program code in
a developing system. Status results other than success
are abnormal or exception conditions. Exception condi
tions may include insufficient memory for the request,
invalid input data, inoperative I/O devices, an invalid
request for an action, or a request for an· invalid action.
The operating system may have an exception handler
for these conditions and may allow the debugger to be
used as the exception handler. The development process
will be more efficient if detection of exception condi
tions takes place for all levels of system actions, from
initialization of jobs and tasks to requests for memory
or status.

Higher Level Functions

With the continuing increase in system complexity,
more operating systems are providing higher level func
tions. These functions may include advanced I/O file
management, operator console, spooling operations,
telecommunications support, multiuser support and ac
cess to system resources of increasing size and complex
ity. Only the largest operating systems provide all of
these capabilities, but users of component hardware
must be careful their system will integrate higher level
functions that may be required in future applications.

Extendibility

In order to provide general purpose support, operating
systems must be extendible. New applications may re
quire data structures or system actions not available
with the present operating system. The system must be
able to integrate these new structures and actions, sup
porting them in the same manner as existing functions.
Choosing an operating system requires a large commit
ment, both in initial expense and system architecture.
Extendibility provides assurance the operating system
chosen will not provide built-in obsolescence of that
commitment.

iRMX 86™ OPERATING SYSTEM
ARCHITECTURE

Layers

The iRMX 86 Operating System architecture is shown in
Figure 3. It includes the Nucleus, Basic I/O System, Ex
tended I/O System, Applications Loader, and Human
Interface. These major portions of the operating system
are designed as layers. Each layer may be added to
previous layers as application needs grow. Lower layers
may be used without upper layers. All layers may reside
in programmable read only memory. Applications have
access to all portions of the system, from the Nucleus to
all outer layers.

2-248

Figure 3. Architecture of the iRMX 86™
Operating System

The Nucleus is the heart of the system. It includes sup
port for multiprogramming, multitasking, communica
tions, synchronization, scheduling, resource manage
ment, extendibility, interrupt handling, and error detec
tion. The Nucleus may be considered as an extended
layer of the underlying hardware, giving the hardware
system management functions and making the software
independent of the detailed hardware. The system en
vironment, including resources, priorities, and place
ment of program code, is made known to the Nucleus at
system initialization. All requests for memory, com
munication, and creation of basic data structures must

AFN-01931A

AP-110

go through the Nucleus. These requests are made by
system calls, which are comparable to subroutine calls
for system actions.

All higher level functions of the iRMX 86 Operating
System are built around a core of the Nucleus. Although
outer layers may require a substantial number of the
system functions included in the Nucleus, the Nucleus
itself is configurable on a call-by-call basis. "Configu
rable" means the Nucleus may be altered so it contains
code only for those functions required by the applica
tion. Certain features, such as parameter validation and
exception handling, are also configurable. Features and
system calls may be included for development and ex
cluded from the final system, giving a Nucleus tailored
for each level of application development.

The Basic 1/0 System is the first layer above the
Nucleus. The Basic 1/0 System provides asynchronous
1/0 support and format independent manipulation of
data. Multiple file types are supported, including
Stream, Named, and Physical files. Stream files are in
ternal files for transferring large amounts of data be
tween jobs or tasks. Named files include data files of
varying sizes and directories for those files. Named files
are designed for random access disk storage. Physical
files consider the entire device to be one file. Physical
files are primarily used to transfer data to and from
printers, tape drivers, and terminals. Device drivers for
both floppy and hard disks are provided. Like the
Nucleus, the Basic I/O System provides system calls to
invoke 1/0 actions. These calls and the features of the
Basic 1/0 System are fully configurable.

The Application Loader provides the ability to load
code and data from mass storage devices into system
RAM memory. The Application Loader resides on the
Basic 1/0 System, allowing application code to be
loaded from any random access device supported by the
Basic 1/0 System. Application code can be loaded and
executed as needed rather than residing in dedicated
system memory.

The Extended 1/0 System supports synchronous 1/0,
automatic buffering, and logical names. Synchronous
1/0 provides a simplified user interface for 1/0 actions.
Automatic buffering improves 1/0 efficiency by over
lapping I/O and application operations wherever possi
ble. Logical name support allows applications to access
files with a user-selected name, aiding 1/0 device inde
pendence.

The Human Interface uses all lower layers, forming a
high level man-machine interface for user program in
vocation, command parsing, and file utilities. The
primary purpose of the Human Interface is to support
the addition of interactive commands. The Human In
terface is the basis for pass-through language support
and multiple user systems.

2-249

Configurability

Configurability means the iRMX 86 Operating System
can be changed to include only the system calls and
features pertinent to the system under development.
Smaller applications start with only the iRMX 86
Nucleus. A subset of Nucleus calls, described later in
this application note, provide the basis for management
of jobs, tasks, memory, interrupts, communication and
synchronization, and support for the Debugger and Ter
minal Handler.

All systems calls may also use parameter validation as a
configuration option. Parameter validation verifies that
system calls reference correct system objects before the
requested action is performed. During debugging and in
hostile environments, validation provides error detec
tion for each system call. This error detection does add
some overhead to the calls. Debugged application jobs
can perform more efficiently without the validation,
while new code can use parameter validation to speed
development.

Once errors are detected, there are two means available
to handle error recovery. The task can either use the
status information to perform error recovery actions or
the recovery actions may be performed by a specialized
error handling program called an exception handler.
Applications may use the Debugger as an exception
handler, or use one implemented by the application.
There are two classes of errors that may cause control to
be given to an exception handler; avoidable errors, such
as programmer errors, and unavoidable errors, such as
insufficient memory. Exception handlers can be selected
to receive control for either or both classes.

Support Functions

The iRMX 86 Operating System includes a Debugger, a
Terminal Handler, a Bootstrap Loader, and a Patch
Facility. The Debugger examines system objects, using
execution and exchange (mailbox and semaphore)
breakpoints, symbolic debugging, and exception han
dling. The Terminal Handler provides a line-editing,
mailbox-driven CRT communications capability. The
Bootstrap Loader is a fully configurable loader for
bootstrap loading on reset or command, from any spe
cific random access device. The Patch Facility gives the
capability of patching iRMX 86 Object Code in the
field.

Object Orientation

The iRMX 86 Operating System is based on a set of sys
tem data structures called objects. These objects include
jobs, tasks, mailboxes, semaphores, segments, and
regions. Users may also define application-specific ob
jects. Object architecture includes the objects, their
parameters, and the functions allowed with the objects.

AFN-01931A

AP-110

Object orientation is a formal, hardware-independent
definition of hardwarecdependent system structures that
are currently used by most applications. For example,
without object orientation, memory is reserved in ad
vance fot system buffers. The application code knows
buffer sizes and locations. If buffer requirements grow,
requiring a new memory layout, much of the applica
tion code will change to accommodate th« new buffer
sizes and locations. Using object orientation, the ap
plication requests a segment (buffer) of a particular size
when the buffer is needed. The Nucleus allocates the
memory and.returns a segment object to the applica
tion. If the application needs a larger buffer, it returns
the old segment and requests a new one of a larger size.
The application obtains more buffers by making re
quests for more segments. If the hardware changes, the
iRMX 86 Operating System is made aware of the
changes. The application code uses the same system
calls. to . request and return the segment objects
regardless of the hardware configuration.

Objects are provided for modular environments Uobs),
application code functions (tasks}, communication
(mailboxes), synchronization (semaphores}, memory
(segments}, and mutual exclusion (regions). Objects are
fundamentally a set of standard interfaces between ap
plication code and the iRMX 86 Operating System. The
standard interfaces have three primary benefits:

1) First, objects provide structures, such as tasks or segc
ments, that are common to all applications. The
structures form the basis for a standard set of system
calls that make the interface between the application
and the operating system more consistent and easier
to learn. These calls allow applications to create more
objects (segments for buffers, for example), delete
them, change them, and inspect them. Development
engineers can use their knowledge of the objects on
many applications, rather than just the one under
development. The common objects allow a common
system debugger to be used. The debugger will work
for all applications, letting engineers concentrate
their efforts on the application itself r:;ither than
designing and implementing custom debugging tools.

2) Second, the standard characteristics of the object
allow consistent error detection and handling. Re
quests to alter or use objects can be checked for
validity before the Nucleus actually performs the re
quest. Errors can be classed as common to all objects
or specific to certain objects, giving more precise
error information for effective error handling and
faster debugging.

3) Third, the object interface will be preserved on future
releases of the iRMX 86 Operating System. Current
application code .can be split into independent
modules. Future applications can use the modules for

common functions, preserving the investment in ape
plication software.

Task Scheduling

The Nucleus controls task scheduling by· task priority
and task state. Task priority is specified when the task is
created. The priority can be altered dynamically. Tasks
are classified into one of five classes: Running, Ready,
Asleep, Suspended, or Asleep-Suspended. Tasks that
have not been created are considered to be non-existent.
The State Transition Diagram is shown in Figure 4.

Figure 4. State Transition Diagram

Only one task is in the Running state. This task has con
trol of the central processor. The Ready state is occu
pied by those tasks that are ready to run but have lower
priority than the Running task. The Asleep state is occu
pied by tasks waiting for a message, semaphore units,
availability of a requested resource., an interrupt, or for
a requested amount of time to elapse. A task can specify
the amount of time it will allow itself to spend in the
Asleep state, but tasks in the Suspended state must be
"resumed" by other tasks. The Suspended state is use
ful when situations require firm scheduling beyond the
control provided by priority and system resource avail
ability. Examples of these situations are system emer
gencies, controlling tasks in the Ready state for applica
tion-dependent scheduling algorithms, and guarantee
ing a fixed initialization or shut-down sequence. If
another task "suspends" a task already in the Asleep
state,. the sleeping task goes to the Asleep-Suspended
state. This task will enter the Suspended state if the
sleep-causing condition is satisfied. The task will go to
the Asleep state from the Asleep-Suspended state if it is
resumed befo.re the sleep-causing condition is removed.
ff a task enters the Ready state and has higher priority
than the present Running task, the Ready task is given
control of the CPU .. Control is transferred to another
task only when:

1) The Running task makes a request that cannot im
mediately be filled. The Running task is moved to the

2-250 AFN-01931A

intel' AP-110

Asleep state. The highest-priority Ready task be
comes the Running task.

2) An interrupt occurs, causing a higher-priority task to
become Ready. The current Running task goes to the
Ready state, allowing the higher-priority task to
become the Running task.

3) The Running task causes a higher-priority task to
become Ready by releasing the resource for which the
higher-priority task is waiting. The current Running
task goes to the Ready state. The higher-priority task
becomes the Running task.

4) The Running task causes a higher-priority task to
become Ready by sending a message or semaphore
units to the mailbox or semaphore where the higher
priority task is waiting. The Running task is moved
to the Ready state. The higher-priority task becomes
the new Running task.

5) The Running task removes a higher-priority task
from the Suspended state by "resuming" it, placing
the higher-priority task in the Ready state. The cur
rent Running task is moved to the Ready state and
the higher-priority Ready task becomes the new Run
ning task.

6) The Running task creates a higher-priority task. The
new task goes to the Ready state. The current Run
ning task is moved to the Ready state and the higher
priority Ready task becomes the new Running task.

7) The Running task places itself in the Suspended state.
The highest-priority Ready task becomes the new
Running task.

8) The Running task places itself in the Asleep state.
The highest-priority Ready task becomes the new
Running Task.

9) The Running task deletes itself, becoming Non
existent. The highest-priority Ready task will be the
new Running task.

System Hardware Requirements

The iRMX 86 Operating System will run on any system
that meets the following minimum hardware require
ments:

1) An iAPX 86 or iAPX 88 Central Processing Unit.

2) An Intel 8253 Programmable Interval Timer to pro
vide the system clock.

3) An Intel 8259A Programmable Interrupt Controller.

4) Enough hardware to provide a system clock and bus
interfaces. This may be supplied by the Intel 8284
Clock Generator, Intel 8288 Bus Controller, Intel
8282/8283 Latches,· and Intel 8286/8287 Transceiv•
ers.

2-251

5) The following RAM:

a. 1024 bytes from 0 to 1024 for software interrupt
pointers (the interrupt vector).

b. 800 bytes for Nucleus data.

c. Enough RAM for the application data, code, and
system objects.

6) Enough EPROM or RAM to hold the required parts
of the iRMX 86 Operating System and the applica
tion code.

The Intel iSBC 86/12A Single Board Computer more
than meets these minimum requirements. A block dia
gram of the board is shown in Figure 5. Note in addition
to the timer and interrupt controller the board contains
an 8251A USART, an 8255 parallel 1/0 interface, a
MULTIBUS™ interface, four sockets for up to 16K
bytes of EPROM, and 32K bytes of dual-ported RAM.
Even though a user may be developing a custom board
for his application, it is recommended that initial system
development be accomplished using the iSBC 86/12A
Single Board Computer. This will provide a known
hardware environment to simplify debugging. In addi
tion, the development hardware system can be adapted
to changing application needs by adding Intel MULTI
BUS compatible boards to the iSBC 86/12A Single
Board Computer. After the software is fully debugged,
the application can be moved to the final custom hard
ware design.

APPLICATION EXAMPLE

A spectrum analyzer is the subject of this application.
The analyzer displays the frequency spectrum of an
analog signal on a general purpose CRT terminal. The
user has control over input signal bandwidth, averaging,
and continuous analysis. A fast Fourier transform
(FFT) program is used to obtain frequency data from
samples of analog data. Fourier transforms provide use
ful frequency analysis, but the large processing require
ments of Fourier transforms have restricted their use.
Fast Fourier transforms take advantage of the repetitive
nature of the Fourier calculations, allowing the Fourier
transforms to be completed significantly faster. The
FFT used in this application note is known as "time de
composition with input bit reversal." 1 Sixteen-bit inte
ger samples of the input signal are placed in frames,
with each frame holding 128 complex points. An aver
aged power spectrum is calculated to sum and square
the FFT values, yielding 64 32-bit power spectrum
values. These values are displayed on a standard CRT
terminal.

I. S. 0. Stearns, Digital Signal Analysis, Hayden Book Co., Rochelle
Park, NJ, 1975.

AFN·01931A

AP·110

r-------1

I 32K ~ 8 : I (ISBC 340) I
I I
I I

32K ~ B
RAM

DUAL·PORT
BUS

RS232C
COMPATABLE

DEVICE
24 PROGRAMMABLE
PARALLEL 110 LINES

PROGRAMMABLE
PERIPHERAL
INTERFACE

I I

(_IL ~.~---~-,-,--~~~-~----~,
Figure 5. iSBC 86/12A™ Single Board Computer Block Diagram

The FFT algorithm may be applied wherever frequency
analysis of an analog signal is required. Medical appli
cations for FFTs include EEG analysis, blood flow
analysis, and analysis of other low-frequency body sig
nals. Industrial uses are production line testing, wear
analysis, .frequency signature monitoring, analysis in
noisy or hostile environments, and vibration analysis.
Other applications could cover .remote reduction of
analog data, frequency correlation, and process control.
For this application note, the actual use of the FFT is
secondary to its existence.as a modular, CPU-intensive
task in a general purpose system.

The overall application system characteristics are the
following:

1) A user-selectable input signal bandwidth of 120 Hz,
600 Hz, 1200 Hz, 6000 Hz, or 12,000 Hz.

2) The option of averaging frames of samples. The
averaging is user selectable, with options of 1 (no
averaging), 2, 4, 8, 16, or 32 frames averaged per
CRT display.

3)The capability, also user selectable, of repeating the
analysis cycle continuously.

4) User capability to abort the analysis.

5) Twelve-bit input sample resolution.

6) A minimum of hardware requirements, including no
more th;m 32K bytes of EPROM memory and 16K
bytes of RAM memory.

7) A standard character screen CRT for output.

8) A multitasking structured design that will use a
subset of the iRMX 86 Nucleus and exhibit modular
application code, formal interfaces, and self
documentation.

System Design

To begin the design, the application is broken up into
functional modules, much the same as a hardware block
diagram. A SUPERVISOR TASK initializes the system,
accepts operator parameters, starts the analysis cycle,
and stops the processing upon cycle completion or
operator request. An INPUT TASK samples the data
and places it in a buffer. An FFT TASK receives the
buffer and processes the data. An OUTPUT TASK dis
plays the data received from the FFT TASK. This struc
ture is shown in Figure 6.

2-252 AFN-01931A

AP-110

INPUT
TASK

SUPERVISOR
TASK

FFT
TASK

OUTPUT
TASK

Figure 6. Basic Application Architecture

The general task functions are:

SUPERVISOR TASK: The SUPERVISOR TASK ini
tializes the system by creating the other tasks. The
SUPERVISOR TASK then obtains the analysis param
eters from the operator. Each parameter is verified as it
is received. When all of the parameters are accepted, the
operator is asked if they are satisfactory. If the operator
agrees, the SUPERVISOR TASK sends frame buffers
to the INPUT TASK to initialize the analysis. If not, the
operator is asked to input all of the parameters again.
During the FFT analysis, the SUPERVISOR TASK
waits for an abort request from the operator and for the
frame buffer from the OUTPUT TASK. If the abort re
quest is received, the SUPERVISOR TASK terminates
the analysis in an orderly fashion and asks the operator
for parameters for the next analysis cycle. If the frame
buffer is received from the OUTPUT TASK and con
tinuous analysis has been selected, the SUPERVISOR
TASK sends the frame buffer to the INPUT TASK to
start the next cycle. If the frame buffer is received from
the OUTPUT TASK and continuous analysis has not
been selected, the current analysis is complete and the
SUPERVISOR TASK asks for new parameters.

INPUT TASK: The INPUT TASK receives the frame
buffer from the SUPERVISOR TASK. The input signal
is sampled according to the analysis parameters. The
actual sample rates are calculated as follows:

1) Multiply the highest frequency of interest by two to
obtain the Nyquist sampling rate.

2) Invert this value to obtain time between samples.
3) Scale the value by 60/64. The CRT display is limited

to 64 columns. The scaling maps sample values to
columns 1 to 60 rather than 1 to 64, giving a more
readable x-axis label and display. This method yields
sample times of 3.9 milliseconds, 781 microseconds,
390 microseconds, 78 microseconds, and 39 micro
seconds for frequencies of 120 Hz, 600 Hz, 1200 Hz,
6000 Hz, and 12,000 Hz.

The INPUT TASK samples the data at the required
interval and places the samples in the frame buffer.
When the frame buffer is full, the INPUT TASK up-

2-253

dates the frame buffer number and sends the frame buf
fer to the FFT TASK. The INPUT TASK sends a status
message to the CRT terminal and waits for the next
frame buffer.

FFT TASK: The FFT TASK receives the frame buffer
from the INPUT TASK. A fast Fourier transform is
performed on the data contained in the buffer, the
power spectrum is calculated, and the data is averaged
with previous data if necessary. If the frame buffer is
the last one to be averaged prior to display of the fre
quency data, the frame buffer is filled with the averaged
data and sent to the OUTPUT TASK. If the buffer is
not the last one to be averaged, the FFT TASK returns
the buffer to the INPUT TASK for another frame of
data or to the SUPERVISOR TASK if the analysis cycle
is nearly complete. The FFT TASK sends status infor
mation to the CRT display and waits for the next frame
buffer fro!ll the INPUT TASK.

OUTPUT TASK: The OUTPUT TASK receives the
frame buffer from the FFT TASK. The data is format
ted and displayed. The OUTPUT TASK sends the
frame buffer to the SUPERVISOR TASK and waits for
the next frame buffer from the FFT TASK.

Terminal Handler: The Terminal Handler serves as the
basic I/O device for parameter requests, status data,
and frequency displays. The Terminal Handler accepts
display requests from all tasks and sends operator input
to the SUPERVISOR TASK.

The basic functions of the various tasks in the applica
tion have been defined, but system integration has not
been discussed. Synchronization of the tasks, schedul
ing, resource management, mapping to hardware, inter
rupt handling, and system interfaces have been omitted.
No debugging functions have been defined. It is clear
the system implementation is just started. The iRMX 86
Nucleus will provide all of the system integration
"glue" the application requires, allowing application
programmers to concentrate on the actual functional
code. In order to use this "glue," the application must
be divided into jobs and tasks.

Jobs and Tasks

The iRMX 86 Operating System architecture defines
jobs as separate environments within which tasks oper
ate. These separate environments allow each job to
function with no knowledge of other system jobs. There
are two jobs in this application, the Debugger job and
the Application job.

The jobs contain functional portions or working pro
grams called tasks. The Application job contains the
INIT TASK, SUPERVISOR TASK, INPUT TASK,
FFT TASK, OUTPUT TASK, and INTERRUPT
TASK. The Debugger job contains the Debugger task
and the Terminal Handler task. Tasks provide the ap-

AFN·01931A

AP-110

plication goals of modularity, resource constraint boun
daries, and functional independence. The structure of
the development system is.shown in Figure 7.

DEBUGGER
JOB

APPLICATION
JOB

Figure 7. Development System Job Structure

The Debugger job is included only for development.
When development is completed, the Debugger job is
removed from the system. A Terminal Handler job con
taining only the Terminal Handler task is substituted in
place of the Debugger job. The application code is not
changed. This structure is shown in Figure 8.

TERMINAL HANDLER
JOB

APPLICATION
JOB

Figure 8. Final System Job Structure

Interfaces and Synchronization
Now that the system is made of jobs and tasks, the
primary need is to synchronize the tasks and provide
communication interfaces. This will be handled by mail
boxes. The messages sent via the mailboxes will be seg
ments, which are pieces of memory allocated by the
Nucleus. The frame buffers sent from task to task are
these segments. The buffer segments contain all the
analysis parameters in addition to the data samples.
Communication with the Terminal Handler task is also
accomplished by mailboxes, but with a different buffer
format The Terminal Handler format has fields for the
operation requested (read or write), the number of
characters the task wishes to read or write, the number

of characters the Terminal Handler did read or write, a
status field for the operation, and the actual data. The
buffer format is shown in Figure 9. Figure 12 contains
the Terminal Handler segment format.

2-254

SAMPLES PER FRAME

SAMPLE INTERVAL

FRAMES TO AVERAGE

CONTINUOUS FLAG

THIS FRAME NUMBER

NUMBER SAMPLES MISSED

SAMPLE POINTER

RESET FLAG

DATA SAMPLES

DATA SAMPLES

Figure 9. Frame Buffer Format

Mailboxes are used to pass the buffer segment from task
to task. Tasks can send segments to mailboxes, or
receive segments from mailboxes. If there is no segment
at a mailbox, a task can elect to wait for the segment,
with the wait duration ranging from zero to forever.
This provides the simplest system synchronization -
each task, upon initialization, waits at its input mailbox
for a frame buffer segment. When the task receives the
segment, it processes the data, sends the segment on to
the mailbox for the next task, and returns to its own
mailbox to wait for the next frame buffer. The system is
synchronized and controlled by the availability of frame
buffers and task priority. It should be clear that multi
ple frame buffers segments provide overlapped process
ing, with the segments ultimately "piling up" at the
slowest task in the chain. This loose coupling arrange
ment allows tasks to have radically different execution .
times. For example, the INPUT TASK has an input
sampling time that ranges from 0.6 seconds to 6.3 milli
seconds, a range of WO to 1, and the system requires no
special synchronization or scheduling to accommodate
this range.

The mailbox interfaces, shown in Figure 10, serve
several other important purposes. First, they provide
the standardized interface that is a goal of this applica
tion. The set of mailboxes and the two buffer segments
form all inter-task interfaces. Each task uses only a few
mailboxes, making it easy to add or remove tasks by
adding or removing mailboxes. The system could easily
be expanded to include data reduction tasks, data cor
relation tasks, or to substitute different tasks for any of
the present ones. Dummy tasks were used for real tasks
during development to verify overall system execution
before the actual tasks were available.

AFN-01931A

AP-110

Figure 10. Application Architecture with
Mailboxes.

The mailboxes also provide a very convenient window
into the application system processing for both debugg
ing and aborting the current cycle. The Debugger can set
breakpoints at mailboxes to allow users to examine the
frame buffers as they progress from task to task. The
Debugger can examine buffer data and control the pro
cessing cycle. Tasks wait at the mailboxes in a queue
that is either priority or first-in-first-out (FIFO) based.
The inter-task mailbox queues are priority based, which
means the higher priority SUPERVISOR TASK can in
tercept segments at the mailboxes ahead of the lower
priority waiting tasks, and abort the analysis by remov
ing all of the buffer segments. This method of aborting
requires no knowledge of the internal processing of the
tasks, making it universally applicable to all the tasks.

A return mailbox may be specified when a segment is
sent to a mailbox. The receiving task may send status in
formation, a different segment, or the original segment
to the return mailbox. The Terminal Handler will return

LOG
AMPL

the buffer segment sent to it if a return mailbox is
specified. This is used to synchronize the tasks with the
Terminal Handler and to allow multiple tasks to use a
single display task. Each sending task waits at a separate
return mailbox for the Terminal Handler to return its
segment. Each task retains control over its buffer seg
ment and is synchronized with the slower data display
function.

Priority

In addition to the mailboxes, task execution is governed
by priority. In this system, the INPUT TASK has maxi
mum priority to guarantee it can sample the input signal
at the precise intervals required for the FFT. The
SUPERVISOR TASK, responsible for abort functions,
has the next level of priority, with the FFT TASK next,
and the OUTPUT TASK lowest.

APPLICATION IMPLEMENTATION

Display Functions

All application tasks use the iRMX 86 Terminal Han
dler as an output device. The Terminal Handler is
chosen because it provides a standard interface consis
tent with the application goals, it exists both in the De
bugger job and in an independent job, and it is easy to
integrate into the application system. The application
could also use the same interface with a user-written
Terminal Handler. In this application, the Terminal
Handler can have messages from four tasks on the
screen at one time. To allow this to occur in an orderly
fashion, lines on the screens are reserved for each of the
tasks. The screen format is shown in Figure 11. Each
message to the screen sends the cursor to the upper left
corner (the home position), then down to the proper line
to display the data.

OUTPUT
TASK

Current settings are the following: frequency range Oto 6000 Hz, } SUPERVISOR
16 frames to average per output display, and contirwous runs. TASK

The INPUT TASK has processed 16 frames out of 16 frames to average. - INPUT TASK
The FFT TASK has processed 16 frames out of 16 frames to average. - FFT TASK

Figure 11. CRT Screen Display Format

2-255 AFN-01931A

intJ AP·110

Cataloging

To aid the debugging process, all system objects, such as
mailboxes, segments, and tasks, are cataloged in the
directory of the SUPERVISOR TASK. The catalog en
tries are user-selected, 12-character names. The Debug
ger can display this directory, giving easy access to ob
jects to aid symbolic debugging. If other tasks know the
proper directory and the 12-character name, the tasks
can look up the objects in the directory and obtain ac
cess to them. This is the method used to find the Ter
minal Handler mailboxes. For objects that are cataloged
only to aid debugging, the system calls that catalog the
objects are removed from the code when debugging is
complete.

Application Code

The code listings for the SUPERVISOR TASK and the
INPUT TASK are included in appendices to this note.
Code listings for other tasks are not included, but they
are available from the Intel Insite software library. The
following discussions reference line numbers in the list
ings included in this note. The references begin with a
first letter for the appendix section (A or B), followed
by the actual line number (A.220, for example).

SUPERVISOR TASK

Code listings for the SUPERVISOR TASK are in Ap
pendix A. The actual SUPERVISOR TASK procedure
begins at line A.550. After initializing internal buffers
and mailboxes (A.551, A.518-A.549), the Supervisor
sends an initial screen, one line at a time, to the Termi
nal Handler (A.553, A.502-A.517). When the screen is
complete, the SUPERVISOR TASK creates the INPUT
TASK, FFT TASK, and OUTPUT TASK (A.554,
A.486-A501). The order of creation is not important
for this application, as each task begins by waiting at its
input mailbox for frame buffer segments. The SUPER
VISOR TASK requests input parameters from the oper
ator (A.556, A.305-A.485). The actual input parameter
loop is found at A.478. The loop consists of asking
questions (A.479, A.480) until all answers are satisfac
tory. The operator is asked to choose the highest fre
quency of interest, number of frames to average, and
single runs or continuous runs (A.331-A.353). If the
operator answers with an invalid input, the question is
repeated (A.365 and A.415). If the operator wishes to
abort the questioning by entering a 99, the questions
start over from the first question (A.409-A.413). When
all three questions have been answered, the operator is
asked to confirm his choice (A.482, A.418-A.467). If
the operator does not verify the answers, the question
number is set to 0 (A.463) and the parameters are re
quested again. If he confirms the answers as correct, the
SUPERVISOR TASK creates up to three frame buffer
segments (A.557, A.279-A.304). The SUPERVISOR

TASK places the binary equivalents of the operator
answers in the frame segments (A.284, A.292, A.300,
A.269-A.278), and sends the segments to the input
mailbox for the INPUT TASK (A.287, A.294, A.302).

The SUPERVISOR TASK's background duties are to
check its input mailbox for a segment from the OUT
PUT TASK and to check a return mailbox for an abort
request from the operator (A.558, A.225-A.268). If
segments are received at the SUPERVISORTASK mail
box, the SUPERVISOR TASK sends the segments on to
the INPUT TASK if the operator has chosen continuous
runs (A.258). Otherwise, the SUPERVISOR TASK de
letes the segments (A.242-A.250). When all the
segments have been deleted, which halts the FFT
analysis, the SUPERVISOR TASK asks for operator in
put again (A.556).

If an operator abort request is received, the SUPER
VISOR TASK, having higher priority than the FFT or
O(JTPUT TASKS, waits at their mailboxes to intercept
the frame segments (A.243, A.249, A.207-A.224).
When a segment is received it is deleted (A.219). The
SUPERVISOR TASK also checks the INPUT TASK
mailbox under abort conditions (A.244). This mailbox
is FIFO based to allow the SUPERVISOR TASK to in
tercept the buffer segment ahead of the higher-priority
INPUT TASK (A.523). The SUPERVISOR TASK in
put mailbox is also checked for frame buffer segments
that may have been sent there by the OUTPUT TASK
after the abort was requested (A.246). When all of the
frame buffer segments have been deleted, the SUPER
VISOR TASK asks for operator input (A.556).

INPUT TASK

Listings of the INPUT TASK are in Appendix B. After
initializing the buffer for Terminal Handler communi
cations and the. mailboxes for communicating with the
INTERRUPT TASK and the Terminal Handler (B.335,
B.302-B.333), the INPUT TASK waits at its input mail
box for a frame buffer segment (B.338).

When a frame segment is received, the INPUT TASK
updates the frame number counter kept by the INPUT
TASK (B.340, B.289-B.301), and samples the analog in
put (B.341, B.231-B.288). The INPUT TASK selects
one of two input driver routines, either a software poll
ing loop for faster sampling rates (B.277-B.281), or an
INTERRUPT TASK for slower sampling rates
(B.251-B.276). If the sampling is driven by interrupts
and a Nucleus system call is executing at the time of the
interrupt, the time required to respond to that interrupt
can vary from 100 to 350 microseconds, depending on
the Nucleus call in progress. For the sample rates of 391,
78, and 39 microseconds, corresponding to bandwidths
of 1200, 6000, and 12,000 Hz, the system interrupt
latency cannot guarantee the precise sampling interval

2-256 AFN-01931A

AP-110

required. A a simple software polling loop with a delay
between samples is used for these rates (assembler code
for this loop is included after the INPUT TASK listings
in Appendix 8). This loop operates at priority 0, the
highest priority, to guarantee the loop is not interrupted
(8.278, 8.280) while the sampling is in progress.

For the longer intervals of 3.9 milliseconds and 781
microseconds, corresponding to bandwidths of 120 and
600 Hz, an Interrupt Handler and and INTERRUPT
TASK are used (8.251-8.276). Under the iRMX 86
Operating System architecture, an Interrupt Handler is
defined as a short procedure with a primary goal of fast
interrupt response and limited Nucleus calls. All hard
ware interrupt levels are masked when an Interrupt
Handler is responding to an interrupt. If the interrupt
servicing requires higher-level system functions, the In
terrupt Handler notifies a waiting INTERRUPT TASK.
Higher-level interrupts are enabled when an INTER
RUPT TASK is executing. INTERRUPT TASKS can
make all system calls.

The INTERRUPT TASK (B.196-8.203) binds the In
terrupt Handler to the hardware interrupt level (8.197)
and waits for a signal from the Interrupt Handler
(8.199). The Interrupt Handler (8.164-8.195) verifies
the interval accuracy (8.166-8.173), samples the data
(which automatically starts the next sample) (8.175-
8.176), places the data in the frame buffer (8.181-
8.184), and notifies the INTERRUPT TASK when the
frame buffer is full (8.193). If the buffer is not full, the
Interrupt Handler resets the interrupt hardware (8.194).
The INTERRUPT TASK notifies the INPUT TASK
(8.200) and waits for a return message (8.201). The IN
PUT TASK disables interrupt level 3 (8.274) and re
turns the token to the INTERRUPT TASK (8.275). The
INTERRUPT TASK enables the Interrupt Handler
(8.199), but no interrupts will be received from the free
running 8253 Timer because hardware interrupt level 3
has been disabled. Sampling for the next buffer is in
itiated by simply enabling level 3 (8.272). The INPUT
TASK sends a status message to the Terminal Handler
(8.342, 8.219-8.230) and sends the filled frame buffer
to the FFT TASK (8.343). The INPUT TASK then
returns to the INPUT TASK input mailbox to wait for
the next frame segment (8.338).

FFT TASK

Listings for the FFT TASK are not included with this
application note. The FFT TASK is similar in overall
format to the INPUT TASK. The FFT TASK waits at
its input mailbox for a frame buffer segment from the
INPUT TASK. When one is received, the FFT TASK
computes the fast Fourier transform of the data. The
auto power spectrum is computed and averaged with
previous data .. The FFT TASK sends its status message
to the Terminal Handler for display. If the frame buffer

is the final one to be averaged, the FFT TASK sends the
frame buffer to the OUTPUT TASK. If the frame buf
fer is not the final one in this averaging series, the FFT
TASK checks to see if the sampling process is continu
ous. If so, the frame buffer is returned to the INPUT
TASK. If the sampling process is not continuous and
the buffer is within two frames of the final frame buf
fer, the buffer is returned to the SUPERVISOR TASK
to prevent unnecessary buffers from going to the IN
PUT TASK. The FFT TASK then returns to its input
mailbox to wait for the next frame buffer.

OUTPUT TASK

Listings for the OUTPUT TASK are not included in this
application note. The OUTPUT TASK, like the other
tasks, waits at its input mailbox for a buffer. When a
frame buffer is received from the FFT TASK, the OUT
PUT TASK stores the data in an internal buffer and
sends the frame buffer to the SUPERVISOR TASK.

The OUTPUT TASK converts each 32-bit frame buffer
value to one of 16 levels by taking the base 2 logarithm
of the significant 16 bits of sample value. The display
screen is sent to the Terminal Handler one line at a time.
Each line of the display is composed of 7 characters of
label and y-axis data and 64 characters of display data
(reference Figure 11). Each line of the display represents
a power of two (from 16 down to I). The character to be
displayed at each location is found by comparing the ap
propriate sample value against the current line value. If
the sample value is greater than the line number. a
pound sign is displayed at that location. Otherwise, a
space is displayed. The x-axis and labels are sent after
the data lines to complete the display. The OUTPUT
TASK then waits at its input mailbox for another frame
buffer.

TERMINAL HANDLER

The Terminal Handler interfaces to the application
tasks via the two mailboxes and buffer segment format
shown in Figure 12. If a task wishes to display data, a
segment containing the data is sent to the RQTH
NORM$0UT mailbox, specifying a return mailbox.
The Terminal Handler displays the data, updates the
status fields, and sends the segment to the return
mailbox.

Input proceeds in much the same fashion. A task
requesting data sends a segment to the
RQTHNORM$1N mailbox, again specifying a return
mailbox. When the operator terminates the input line
with a carriage return, the Terminal Handler puts the
data in the segment, updates the status fields, and sends
the segment to the return mailbox. This serves two
primary purposes: specifying return mailboxes allows
multiple tasks to share the display screen while retaining

2·257 AFN-01931A

AP·110

OUTPUT INPUT BUFFER SEGMENT

FUNCTION
(READ OR WRITE)

COUNT
(#CHARS. TO READ/WRITE)

EXCEPTION CODE
(STATUS)

ACTUAL
(#CHARS. READ/WRITTEN)

DATA
SAMPLES

Figure 12. Terminal Handler Interface

synchronization arid control over their data buffers; and
a user-written Terminal Handler using the same pro
tocol and mailbox names could easily be integrated into
the application. For this application, the INPUT TASK,
FFT TASI(, OUTPUT TASK, and SUPERVISOR
TASK all share the screen for output, but only the
SUPERVISOR TASK uses the Terminal Handler to ob
tain operator input.

Nucleus Calls
The iRMX 86 Nucleus provides a comprehensive set of
61 system calls. A complete description of these calls
may be found in the iRMX 86 Nucleus Reference
Manual. For most applications, only a subset of the 61
calls will be required. The iRMX 86 Nucleus is configur
able, whii:h means the final system Nucleus will contain
code only for the system calls required for the applica
tion. In this case, the following system calls were
required:

RQ$CREATE$MAILBOX, RQ$SEND$MESSAGE,
and RQ$RECEIVE$MESSAGE provide mailbox man-
agement.

RQ$CREATE$SEGMENT and RQ$DELETE$SEG
MENT are used to create and delete segments for the
frame buffers, internal bu.ffers, and.Terminal Handler.

RQSETINTERRUPT, RQ$EXIT$INTERRUPT,
RQ$SIGNAL$INTERRUPT, RQ$WAIT$INTER
RUPT, RQ$ENABLE, andRQ$DISABLE allow the
INPUT TASK 'to handle hardware interrupts knowing
only the hardware interrupt level (3).

RQ$CREATE$JOB, RQ$CREATE$T ASK, and
RQSETPRIORI'fY are used to create .the jobs and
tasks, and set the priority of the input polling loop. ·

RQGETTASK$TOKENS, RQ$LOOKUP$0BJECT,
RQ$CAT ALOG$0BJECT, RQ$DISABLE$DELE-

TION, RQ$ENABLE$DELETION, RQGETTYPE,
RQGETPRIORITY, RQGETSIZE, and RQ$SIG
NAL$EXCEPTION are system calls required by the
Debugger and the Terminal Handler. None of these
calls are necessary in this application if a user-written
Terminal Handler is used and debugging is completed.

System Configuration
System Configuration is the integration step in the
development process. It consists of selecting the por
tions· of the iRMX 86 Operating System required in the
application, mapping this code and the application code
to system memory, and creating a Root Job that will in
itialize the system. The overall configuration process is
shown in Figure 13. Configuratfon requires knowledge
of available memory, operating system and appiication
code entry points, priorities, exception handlers, and
other· system parameters. System Configuration consists
of the following steps:

1) Selecting the portions of the iRMX 86 Operating
System required by the application, including. the
layers and the specific system calls in each layer.

2) Linking and locating those portions.

3) Assembling or compiling, linking, and locating the
application code.

4) Creating a configuration file that will tell the Nucleus
the locations of available RAM memory, initial char
acteristics of each system job, and pertinent overall
system parameters. Each job in the system has an en
try in the configuration file. The order of the entries
is the order of initialization of the jobs.

5) Creating the Root Job by assembling, linking; and
locating the configuration file.

2-258 AFN·01931A

AP-110

LINKED &) LOCATED
IRMX 86

CODE

ASSEMBLED,

~
LINKED & DEDICATED
LOCATED SYSTEM

APPLICATION MEMORY
CODE

PARAMETERS --". 11JOB

JOB & NUCLEUS
PARAMETERS J:: ROOT ~ JOB

~
CODE i--v

L MEMORY AVAILABLE
LOCATIONS SYSTEM

MEMORY

Figure 13. System Configuration Process

During development of an EPROM-based application
such as this one, configuration is accomplished twice:
once for the RAM-based development system and once
for the final EPROM-based system. These configura
tions are detailed in Appendix C, System Configura
tion. In both cases, the Root Job that results from con
figuration initializes the system jobs. For development,
the system job structure is shown iii Figure 7. The Root
Job creates the Debugger Task in the Debugger Job,
which in turn creates the .Terminal Handler Task. The
Root Job then creates the SUPERVISOR TASK, which
creates the. INPUT TASK, FFT TASK, and OUTPUT
TASK. The INPUT TASK creates the INTERRUPT
TASK when necessary.

Software development is completed on the iSBC 86/12A
Single Board Computer discussed earlier in this note.
After application code is debugged and ready to be
placed in EPROM memory, the Debugger Job, which
contains both the Debugger and the Terminal Handler,
is removed and replaced with the Terminal Handler
Job, which contains only the Terminal Handler. This
job structure is shown in Figure 8. The Nucleus system
calls required only by the Debugger are removed from
the iRMX 86 Nucleus. The application code is not
changed. The application cOde and the iRMX 86
Nucleus is configured for the final system, put in
EPROM memory, and tested on the final hardware sys
tem. The final Nucleus and. application code required
30.5K bytes of EPROM, allowing room for future code

• changes and some expansion within the 32K system
limit.

The final application ·hardware is shown in Figure 14.
This system contains an iAPX 86/10 CPU, an 8259A
Programmable Interrupt· Controller,· and· an 8253 Pro-

grammable Timer. The three chips form the primary
hardware requirements for the iRMX 86 Operating Sys
tem. The system is assembled from Intel components,
using standard support circuits and system schematics
described in Intel documentation. The analog sampling
circuitry is a 12-bit analog to digital converter (ADC)
and a sample/hold circuit. Both the sample/hold circuit
and the ADC are driven from the on-board local bus.
The ADC has a conversion time of 35 microseconds,
limiting the overall cycle to approximately 39 micro
seconds per sample, or a maximum CRT display band
widUi of 12,000 hz.

The hardware system shown iii Figure 14 contains com
ponents not specifically required for the final configura
tion. The 8255A Programinable Peripheral Interface
and the MULTIBUS multimaster interface are not nec
essary for a system limited to just spectrum analysis and
display via the CRT. However, the flexibility advan
tages of the iRMX 86 Operating System are supported
by this hardware. For instance, the frequency spectrum
display is limited by the CRT to a J6-level logarithmic
approximation. Accuracy could be improved by using
the programmable peripheral interface to drive a plotter
or an analog CRT via a digital to analog converter.
Software drivers for the plotter or CRT could be new

. tasks, interfacing to the old tasks through the mail
boxes. or, the OUTPUT TASK could be simply re
placed with a new OUTPUT TASK for the plotter and

· analog CRT. The. inclusion of the MULTIBUS interface
allows this application to be integrated into a larger'
system of MULTIBUS-compatil;>le boards. MULTI
BUS-coinpatible memory boards will .also aid test and
debug: Users of hardware compommts can include these
modular Intel interfaces as required by their · applica
tion, giving growth and configurability in both hard-
ware and software. ·' · ' .

2-259 AFN-01931A

AP-110

ANALOG SIGNAL
IN

SIH DAC
(12·BIT)

Figure 14. Final Hardware System Block Diagram

SUMMARY

This application note discussed general operating sys
tem functions, the Intel iRMX 86 Operating System,
using the iRMX 86 Operating System on hardware com
ponent systems, and an example of an application im
plemented in a component environment. Users of the
iRMX 86 Operating System are able to simplify applica
tion code development through modularity, standard
interfaces, freedom from· l'igid hardware restrictions,
and advanced debugging techniques. The iRMX 86
Operating System can be applied to larger systems by
adding other iRMX 86 layers, making the software in
vestment beneficial over ii wide range of applications.

Operating systems provide many advantages for hard
ware component designs, but all of these benefits can be
utilized only if the operating system and the develop
ment environment are fully supported. Intel's support
for this application begins with an Intel MDS 230 Series
II Microcomputer Development System. The MDS 230
System interfaces with the development hardware
through the iSBC 957 A™ Monitor. The development
hardware is an Intel iSBC 86/12A Single Board Com
puter, an Intel iSBC 711 TM Analog Input Board, an Intel
iSBC 032™ 32K RAM Memory Board, an Intel iSBC
064™ 64K RAM Memory Board, and an Intel iSBC
660™ System Chassis. Final application hardware is de
bugged using Intel's ICE-86™ 8086 In-Circuit Emu
lator. Software support is provided by the ISIS-II

2·260

PL/M 86™ Compiler, MCS-86™ Macro Assembler,
and the MCS-86 Utilities LINK86, LOC86, and OH86.
The Intel UPP-103™ Universal PROM Programmer is
used to convert the final system to PROM memory.
This broad support allows expedient . development of
prototype and final systems based on the iRMX 86
Operating System.

The iRMX 86 Operating Systems and the Intel develop
ment tools are valuable only if they translate directly to
increased productivity and shortened time to market for
new products. This application has 1567 lines of appli
cation code. It was developed, from design to final im
plementation, in approximately 9 man-weeks of effort.
This high level of productivity was achieved with the
added benefits of modularity, standardization, and ease
of application growth.

Intel Corporation is committed to both the continued
integration of higher-level functions into hardware and
to maintaining compatibility of present software with
new hardware. One result of these commitments will be
the Intel iAPX86 and iAPX 286 Processors, which will
be compatible with the iRMX 86 Operating System.
Another result will. be the placement of the iRMX 86
Operating System Nucleus into hardware. This will
allow custom hardware applications to have higher-level
functions, simplified development, and decreased chip
count. Using the iRMX 86 Operating System today will
give hardware component users a headstart on Intel's
technological innovation for tomorrow.

AFN-01931A

AP PEN DIX A 2~262
APP EN DIX B 2-283
AP PEN DIX C 2-300

2-261 AFN-01931A

APPENDIX A

PL/M-86 COMPILER SUPERVISOR TASK FOR AP NOTE 110, OCTOBER 1980
ISIS-II PL/M-86 V2.0 COMPILATION OF MODULE SUPERVISOR MODULE
OBJECT MODULE PLACED IN :Fl:superv.OBJ
COMPILER INVOKED BY: plm86 :Fl:superv.p86

089

090
091
092
093
094
095

09!)
097
098
099
100
101
102
103

104
105

106

107
108
109
110

111
112
113
114

115

$title(' SUPERVISOR TASK FOR AP NOTE 110, OCTOBER 1980')
$large c1ebug
SUPERVISOR MODULE:
do;

1

1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1

1

1
1
1
1

1
1
1
1

1

Sinclude(:fl:nuclus.ext)
$SAVE NOLIST

declare token literally 'word';

/**/
/* The six mailboxes immediately following will */
/* form all of the inter-task communications */
/* interfaces for the five tasks that run in */
/* this system. */
/**/

declare th in mbx
declare th-out mbx
declare to-input mbx
declare to-fft mbx
declare to-output mbx
declare to=supervTsor_mbx

declare return th in mbx
declare return-th-out mbx
declare dummy ~bx-
declare frame-segment one
declare frame-segment-two
declare frame-segment-three
declare th in-segment-token
declare th=out_segment_token

token;
token;
token public;
token public;
token public;
token public;

token;
token;
token;
token;
token;
token;
token;
token;

declare general index byte;
declare number of fft data_segments byte;

declare insert_text_pointer pointer;

declare
declare
declare
declare

abort flag
status
segment deleted_tally
text_ length

declare root job token
declare input task token
declare fft task token
declare output_task_token

declare parameters
actual_samples

2-262

word;
word;
word;
word;

token;
token;
token;
token;

structure(
word,

AFN-01931A

intef

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135

136
137

138

139
140

1
1
1
1
1
1
1
1
1
1
1
1
l
1
1
1
1
1
1

1

1
1

1

1
1

declare
declare
declare
declare
declare
declare
declare
c'leclare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare

APPENDIX A

actual interval
frequency answer(5)
actual frames to average
frames-to average answer(5)
continuous flag -
continuous=flag_answer(5)

word,
byte,
word,
byte,
word,
byte) ;

abort
ascii 9
carriage return
forever -
line feed
new rft run
no abort
no response requested
null -
queue fife
queue-priority
root job
run conti.nuous
size 120_bytes
space
supervisor job
th read -
th-write
waTt forever

literally 'OFFH';
literally '039H';
literally 'ODH';
literally 'while l';
literally 'OAH';
literally 'OFFH';
literally 'OOH';
literally 'OOH';
literally 'OOH';
literally 'OOH';
literally 'OlH';
literally '03H';
literally 'OFFFFH';
literally '120';
literally '20H';
literally 'OOH';
literally 'OlH';
literally '05H';
literally 'OFFFFH';

/* The following declaration sets the characters */
/* to send the cursor home at the beginning of */
/* each message to the display screen. The */
/* seqeunce is tilde, DC2 (Hazel tine)). *I

declare cursor_home_chars(2) byte data (07EH,012H,);

declare
declare

frame pointer
frame-pointer values
offset word, -

pointer;
structure(

base word) at (@frame_pointer);

declare frame based frame pointer
samples per frame-

structure (
word,
word,
word,
word,
word,
word,
word,
word,
integer);

declare
declare

sample interval
frames-to average
continuous flag
this frame-number
number samples missed
sample-pointer-
reset flag
sample(256)

th in segment pointer
th-in-segment-pointer values
oftset word, - -

pointer;
structure(

base word) at (@th_in_segment_pointer);

2-263 AFN-01931A

141

142
143

144

145

146

147

148

149

150

151

1

1
1

1

1

1

1

1

1

1

1

APPENDIX A

r1eclare th in segment based th_in_segment_pointer
structure(
function
count
exception code
actual -
message (112)

word,
word,
word,
word,
byte) ;

declare th out segment pointer pointer;
declare th-out-segment-pointer values structure(

offset-word, - -
base word) at (@th_out_segment_pointer);

declare th out segment based th_out_segment_pointer
structure(
function
count
exception code
actual -
home chars(2)
line-index (24)
message(84)

word,
word,
word,
word,
byte,
byte,
byte);

declare frequency question(*} byte data ('Please'
' enter tlie highest frequency in Hz (120,
I h 0 0, 12 0 0, 6 0 0 0, OR 12 0 0 0) : I) ;

declare frequency answers data(*) byte data (05H,
03H,03H,04H,04H,OSH,OH,
• 120 noo i200 600012000
42H,OFH, OODH,03H, OR7H,01H,
4EH,OOH, 027H,OOH, OOH,OOOH);

declare average question(*) byte data ('Please'
' enter-the number of frames to average'

(1, 2, 4, 8, 16, OR 32): ');

declare average answers data{*) byte data (Ot'iH,
OlH,OlH~OlH,OlH~02H,02H,
I 1 2 4 8 16 32 1 t

OlH,OOH, 02H,OOH, 04H,OOH,
08H,OOH, lOH,OOH, 20H,00H);

declare continuous question(*) byte data ('Please'
' enter ''l'' for one sample run or ''C'''
' for continuous running:');

declare continuous answers data(*) byte data (03H,
OlH,OlH,OlH,OOH,OOH,OOH,
I 1 C C

OOH,OOH, OFFH,OFFH, OFFH,OFFH,
OOH,OOH, OOH,OOH, OOH,OOH);

declare reject messags(*) byte data ('I cannot'
' accept your answer. PLEASE TRY AGAIN.');

2-264 AFN-01931A

intef

152

153

154

155

156

157

158
159

l'iO
161

162
163

164

1'55

1

1

1

1

1

1

1
?.

1
2

1
2

1

2

APPENDIX A

declare status line one(*) byte data ('Current'
' settTngs are the following: frequency'
' range Oto Hz,');

declare status line two(*) byte data ('
' frames to-average per output display,'
' and ');

declare continuous runs(*) byte data
('continuous runs.');

declare single run(*) byte data
(I a Sing 1 e r Un• I) j

declare go ahead question(*) byte data ('If '
'these settings are correct, enter I 'G''
'to begin running.');

declare header line one(*) byte data (' INTEL'
' APNOTE 110--THE iRMX 86 OPERATING SYSTEM'
1 AND iAPX 86 COMPONENT DESIGNS.');

/**/
/* The following three procedure declarations */
/* link the tasks outside the SUPERVISOR MODULE */
/* with the supervisor task. */
/**/

INPUT TASK: PROCEDURE EXTERNAL;
END INPUT_TASK;

FFT TASK: PROCEDURE EXTERNAL;
END-FF'I'_TASK;

OUTPUT TASK: PROCEDURE EXTERNAL;
END OUTPUT_TASK;

/***/
/***/
/** The following five procedures are general **/
/** utility procedures called by the primary **/
/** working procedures. **/
/***/
/**************.********************************/

/**/
/* Blank line just fills the message buffer */
/* with blank characters. */
/**/

BLANK_LINE: PROCEDURE;

declare blank line index

2·265

word;

AFN-01931A

intef

168

169

170

171

172

173

174

175

176
177
178

179

180
181

182

183
184

185
186

187

188

2
3

3

2

2

1

2

2

1

2
2
2

2

2
3

3

2
3

3
3

2

2

APPENDIX A

do blank line index = 0 to 78;
th_ou£ segment.message (blank_line_index)

= space;
end;

th out_segment.message (79) carriage_return;

END BLANK_LINE;

/***/
/* DISPLAY LINE sends the message to the */
/* terminal handler output mailbox and */
/* waits for the segment to be returned. */
/***/

DISPLAY_LINE: PROCEDURE;

call rq$send$message (th out mbx,

th_out_segment_token

th-out-segment token,
re£urn-th out mbx, ~status);
rqSreceivesmessage
(return th out mbx,
wait forever,-@dummy mbx,
@sta£Us;) -

END DISPLAY_LINE;

/**/
/* INSERT TEXT. fills the output message segment */
/* with the chosen message and pads the rest of */
/* the line with blanks. */
/**/

INSERT_TEXT: PROCEDURE(TEXT_POINTER,HOW_MANY);

declare
declare
declare

declare

text pointer pointer;
how many word;
dummy based text pointer structure(
entries(80) bytef;
insert text index word;

do insert text index= Oto (how many - l);
th out-segment.message (inser£ text index)

- - dummy.entries (insert=text=index);
end;

do while insert text. index < 79;
th out_segmen£.message (insert_text_index)

= space;
insert text index

end;
insert text index + l;

th out_segment.message (79) carriage_return;

END INSERT_TEXT;

2-266 AFN·01931A

intef

189

190
191

192
193
194

195

196
197

198

199

200

201
202
203
204
205

206

1

2
2

2
2
3

3

2
3

3

2

1

2
2
2
2
2

2

APPENDIX A

/**/
/* Move down line puts the required number of */
/* line-feed-characters in the first ~th */
/* through 29th character of the output */
/* message. Each line is displayed on the */
/* screen in its proper location. This allows */
/* multiple tasks to access the screen */
/* without having to blank the line each */
/* time. This technique assumes each message */
/* sends the cursor home each time. */
/**/

MOVE_DOWN _LINE: PROCEDURE (SKIP_ LINES) ;

declare skip lines
declare move-down line index

if skip lines > O then

word;
word;

do move down line index = 0
th out segment.line ~ndex

- lTne_feed; -

to (skip lines - 1);
(move_down_line_index)

end;

do move down line index = skip lines to 23;
th out segment~line index (move down line index)

- null; - - -
end;

END MOVE_DOWN_LINE;

/***/
/* SEND REJECT MESSAGE is called by INPUT */
/* PARAMETERS.- It just sends a reject message */
/* to the CRT to inform the user that the */
/* answer the user gave was not valid. */
/***/

SEND_REJECT_MESSAGE: PROCEDURE;

call move down line (21);
text length = size(reject_message);
insert text pointer = @reject message;
call insert-text (insert text pointer, text_length);
call display_line; -

END SEND_REJECT_MESSAGE;

/***/
/***/
/** The following procedures are the primary **/
/** working procedures called by the supervisor **/
/** procedure and its called procedures. **/
/***/
/***/

2-267 AFN-01931A

intJ

207

208

209
210

211
212
213

214

215
216

217
218
219

220

221
222
223

224

225

1

2

2
/.

2
2
2

2

2
3

3
3
4

4

4
4
3

2

1

APPENDIX A

/**/
/* PURGE MAILBOX removes all tokens from */
/* a mailbox. The purpose is to remove segments */
/* waiting for processing by one of the tasks */
/* if the operator has specified an abort */
/* request. If the segment deletion was */
/* successful, PURGE MAILBOX updates the */
/* segment deleted tally. */
/*********~*******~******************************/

PURGE MAILBOX: PROCEDURE(MAILBOX_TO PURGE);

declare mailbox_to_purge

declare for 110 milliseconds
declare message_received

declare contents token
declare purge dummy mbx
declare purge=status

token;

1 i te r a 11 y ' OB H ' ;
literally 'OH';

token;
token;
token;

purge_status = message_received;

do while purge status = message received;
contents to~en = rqSreceiveSmessage

(mailbox to purge, for 110 milliseconds,
@purge_dummy_mbx, @purge_ status);

if purge status = message received then

end;

do; - -
call rqSdelete$segment

(contents token, @purge_status);
segment deleted tally =

- segment deleted tally + l;
purge status message=receive~;

end; -

END PURGE_MAILBOX;

/***/
/* MONITOR MAILBOXES polls the */
/* return th in mailbox and the */
/* to supervTsor mailbox for messages. The */
/* messages will-be abort (from the operator), */
/* and FFT done or OUTPUT done if the runs are */
/* not continuous. If the runs are not */
/* continuous and an FFT done message is */
/* received, MONITOR MAILBOXES will initialize */
/* the OUTPUT task. */
/***/

MONITOR MAILBOXES: PROCEDURE;

2-268 AFN-01931A

22n 2
227 2
228 2
229 2
230 2

231 2
232 2
233 2

234 2
235 2

236 2

237 2
238 2

239 2

240 3

241 3
242 3

243 4
244 4

245 4
2 4 f) 4

247 4
248 4

249 4
250 4
251 4

252 3
253 3
254 4

255 4
256 4
257 5

258 5

APPENDIX A

declare cannot wait literally I OOH I;
declare done 1 i terally I OFFH I;
declare for 400 milliseconds literally 1 28H 1 ;

declare - received literally I OOH I; message
declare not done 1 i terally I OOH I;

declare monitor dummy_ mbx token; -declare monitor token token;
declare monitor - status token;

declare done flag byte;
declare monitor index word;

done flag not done; -
segment deleted tally = 0;
call rq$sendSmessage

(th in mbx, th in segment token,
return th in mbx-; @status); - - -

do while done flag = not done;
/* Check for operator input here. */

monitor token = rq$receiveSmessage
(return th in mbx, for 400 milliseconds,
@monitor dummy mbx, r<1monitor status);

if monitor status = message received then
do while-segment deleted tally <

number of fft-data segments;
call purge mailbox (to fft mbx);
if segment-deleted tally <-

number of fft data segments then
call purge mailbox (to input mbx);

if segment deleted tally< -
number of fft data segments then
call purge mailbox (to supervisor mbx);

if segment deleted tally < -
number of fft data segments then
call purge maTlbox-(to output mbx);

done flag = done; - -
end; -

if done flag not done then
do;

monitor token = rq$receive$message
(to supervisor mbx, for 400 milliseconds,
@monitor dummy mbx, @monitor status);

if monitor status ~message receTved then
do; - -

if parameters.continuous flag
run continuous then -

call-rq$send$message

else

(to input mbx, monitor token,
no-response requested-;
@monitor_ status);

2-269 AFN-01931A

259
260

261

262

264
265
266
267

268

269

270
271

272

273

274
275
276
277

278

279

280

281

282

283
284

5
6

6

6
5
4
3

2

1

2
2

2

2

2
2
2
2

2

1

2

2

2

2
2

APPENDIX A

do;
call rq$delete$segment

(monitor token, @monitor status);

end;

end;
end;

segment deleted tally -
= segment deleted tally + l;

if segment deleted tally

end;

= number-of fft data segments
then done_flag ;;- done;

END MONITOR_MAILBOXES;

/**~*/
/* SET SEGMENT initializes the common parameter */
/* areas of the segment. The pointer to the */
/* proper segment is set up by */
/* INITIALIZE SEGMENTS. * /
/**/

SET_SEGMENT: PROCEDURE;

frame.samples per frame = 128;
frame.sample Tnterval

-= parameters.actual interval;
frame.frames to average

-= parameters.actual frames to average;
frame.continuous_flag = parameters.contTnuous_flag;

frame.this frame number
frame.number samples missed
frame.sample-pointer
frame.reset_flag

END SET_SEGMENT;

OOH;
OOH;
OOH;
OOH;

/**/
/* INITIALIZE SEGMENTS creates the three FFT */
/* data segments and calls SET SEGMENT for each */
/* segment to initialize the common parameter */
/* areas of the segments. */
/**/

Il\IITIALIZE_SEGMENTS: PROCEDURE;

declare size_528_bytes literally '528';

frame_pointer_values.offset = 0;

frame segment one = rq$create$segment
- -(size 528 bytes, @status);

frame pointer values.base frame segment one;
call set_segment; - -

2-270 AFN-01931A

285
286
287

288
289
290

291
292
293
294

295

296
297
298

299

300
301
302

303

304

305

30fi
307
308
309

310

311

2
2
2

2
2
3

3
3
3
3

3

2
2
3

3

3
3
3

3

2

1

2
2
2
2

2

2

APPENDIX A

frame. reset flag
number of fft data segments
call rqSsend$message

new fft run;
l; - -

(to input mbx, frame segment one,
no=response_requested, @status);

if parameters.actual frames to average > 1 then
do; -

frame segment two = rqScreateSsegment
- (size 528 bytes, @status);

frame pointer values.base = frame segment two;
call set segment; - -
number of fft data segments = 2;
call rqSsend$message

end;

(to input mbx, frame segment two,
no=response_requested, @status);

if parameters.actual frames_to average > 2 then
do;

frame segment three = rq$create$segment
- (size 528 bytes, @status);

frame pointer values.base
- - = frame_segment_three;

call set segment;
number of fft data segments = 3;
call rq$send$message

end;

(to input mbx, frame segment three,
no=response_requested, @status);

END INITIALIZE SEGMENTS;

/***/
/* INPUT PARAMETERS contains three procedures: */
/* set question pointers, get answer, */
/* and-verify answers. The INPUT PARAMETERS */
/* loop consists of calls to these three */
/* procedures and, as usual, exists at the end */
/* of the procedure. */
/***/

INPUT PARAMETERS: PROCEDURE; -
declare actual pointer pointer;
declare answer - pointer pointer; -declare answer display pointer pointer;
declare question pointer pointer; -

declare answer actual value based
actual pointer word; -

declare answer overlay based -
answer pointer structure(

number of answers byte,

2-271 AFN-01931A

312 2

313 2
314 2
315 2
3lfi 2
317 2
318 2
319 2
3'20 2

321 2
322 2
323 2
324 2
325 2
3 215 2
327 2
328 2
329 2

330 2

331 3

332 4
333 5
334 5
335 5
336 5
337 5

338 5

339 4
340 5
341 5
342 5
343 5

344 5

345 5

3 415 4
347 5
348 5
349 5
350 5

APPENDIX A

length of answer(6)
values-to-match(30)
really=ate(ll)

byte,
byte,
word);

declare answer display based
- answer display pointer structure(

characters(~) byte)T

declare answer byte index
declare answer-index
declare answer-match
declare byte match
declare input byte index
declare output byte index
declare question number
declare stop_byte

declare ascii small g

byte;
byte;
byte;
byte;
byte;
byte;
byte;
byte;

declare ascii-capital G
declare average entry-point
declare continuous entry point
declare frequency entry point

literally '067H';
literally '047H';
literally 'O';
literally '48';
literally '58';
literally 'OFFH';
literally 'OOH';
literally'< 255';
literally 'OOH';

declare match - -
declare no match
declare not negative
declare nothing_returned

set_question_pointers: procedure;

do case question_number;

do;
text length =size (frequency question);
question pointer = @frequency question;
answer pointer = t'lfrequency answers data;
actual-pointer = @parameters.actual-interval;
answer-display pointer -

- - = @parameters.frequency_answer;
end;

do;
text length size (average question);
question pointer = @average question;
answer pointer = @average answers data;
actual-pointer - -

-= @parameters.actual frames to average;
answer display pointer - - -

-= @parameters.frames_to_average_answer;
end;

do;
text length = size (continuous question);
question pointer = @continuous question;
answer pointer @continuous answers data;
actual=pointer = @parameters7continuous_flag;

2-272 AFN-01931A

351

352
353

354

355

35fi
357
358

359
360
31il

31i2

363

364

3fi5

367
368

369

5

5
4

3

2

3
3
3

3
3
3

3

3

3

3

3
4

4

APPENDIX A

answer display pointer

end;
end;

- @parameters.continuous_flag answer;

end set_question_pointers;

get_answer: procedure;

/* First display the question to be answered */
/* by the operator. */

call insert text (question pointer, text_length);
call move down line (19); -
call display_lTne;

/* Then blank the line below for an answer line. */

call blank line;
call move down line (20);
call display_lTne;

/* Now wait for a response from the operator. */

call rq$send$message
(th in mbx, th in segment token,
return th in mbx~ @status);

th in segment token = rq$receTveSmessage
- (return th in mbx, wait forever,

@dummy-mbx, ~status); -
th in segment pointer values.base

- - - th_Tn_segment_token;

/* If there is no message returned then send */
/* a reject message. */

if th in segment.actual = nothing_returned
then call send_reject_message;

/* Otherwise it is time to check the response */
/* against the possible answers. */

else
do;

answer_match = no_match;

/* Set the number of possible answers. */

answer index
= answer_overlay.number_of_answers;

/* Start a loop to check all of the */
/* possible answers. */

2·273 AFN-01931A

370

371

372

373

374

375

376

378

380
381
382

383
384
385

3811
387

4

5

5

5

5

5

6

7

7
7
6

I)

6
6

5
5.

APPENDIX A

do while (answer match = no match) and
(answer=index > o);

/* Set the starting point for the */
/* byte by byte compare. */

answer_byte_index = (answer_index * 5) - l;

/*· Set the stopping point for */
/* the compare. */

stop_byte = .answer byte index
- answer overlay.length of answer

(answe~ index - l); -

/* Start with a "match" so we can */
/* check until "no match" occurs. */

byte_match = match;

/* Set starting point at the
/* of the input data (allows
/* ignore leading blanks and
/*ending carriage return}.

right end */
us to */
the */

*I

input_byte_index = th_in_segment.actual-2;

/* Scan the bytes until all pertinent */
/* ones are checked or a "no match" */
/* occurs. */

do while (byte match = match) and
(answer byte index > stop byte);

if (input byte-index not negative)
then do;- -
if th in segment.message

(input-byte index) =
answer overlay.values to match

(answer byte index)- -
then byte match match;

else byte=match no_match;
end;

else byte_match = no_match;

answer byte index
input byte Tndex

end; - -

answer byte index-1;
input_byte_Tndex -1;

/* A "match" at this point means ALL */
/* bytes matched. */

if byte match = match then
do; -

/* Set real values via

2-274

*/

AFN-01931A

intJ

388

389

390
391

392
393

394

395

396

6

6

6
6

6
7

7

7

7

397 6
398 6
399 6
400. 6

401
402

403

405
406
407

1)

5
5

4

4
5
5

APPENDIX A

/* answer_actual_value overlay. */

answer actual value
; answer·overlay.really are

(answer index - l); -
answer_match = match;

/* Insert displayable values for */
/* later display. */

answer byte index = 4;
input_byte_Tndex = (answer_index*5)-l;

do while answer byte index not negative;
answer display.characters

-ianswer byte index)
= answer overlay:values to match

(input byte index);-
input byte index -

= Tnput-byte index - l;
answer byte index

answer=byte_index - l;
end;

/* We got a match, so be sure the */
/* reject message line is blanked. */

call move down line (21);
call blank line;
call display_line;

end;

/* If no match, then let's compare the */
/*"input with the next possible answer. */

else answer index·= answer index - l;
end;
/* If we got a match, then ,we can move on */
I* to the next question. */

if answer match = match
then question~number = question_number + l;

/* Otherwise we have to check for an */
/* abort request of '99'w *I

else
do;

input byte index ~ th in segment.actual-2;
if (th in segment.message(input byte index)

and
.,... ;;- ascii_9f :·· - -

(th_in_segment.message (input_byte_index -

ascii_9) then

2-275 AFN·01931A

intef

408
409
410
411
412
413

414
415
416

417

418

419
420

421
422
423

424

425
426

427
428

429
430

5
h
6
6
6
6

5
5
4

3

2

3
3

3
3
3

4

4
4

3
3

3
3

end;

APPENDIX A

/* Abort requests are valid, so blank */
/* the reject message line and reset */
/* the question number so we start */
/* asking all over. */

do;
question number = l;
call move down line (21);
call blank line;
call display_line;

end;
else

/* But if nothing matched and the */
/* answer was not an abort request, */
/* then we have to ask the operator */
/* to try again on this question. */

call send_reject_message;
end;

end get_answer;

verify_answers: procedure;

/* First put the output line in the buffer. */

text length = size (status line one);
call-insert text (@status_line_one, text_Iength);

/* Then insert the displayable frequency answer. */

input byte index = O;
stop byte - = frequency_entry point + 4;
do output byte index

~ frequency entry point to stop byte;
th out: segment.message (output byte index) =
parameters.frequency answer (input-byte index);

input byte index = Input byte index + T;
end; - - - -

call move down line(l9);
call display_lTne;

/* we have sent the first line, now it is time */
/* to get the second line. */

text length = size (status line two);
call-insert_text (@status_line_two, text_Iength);

/* We have to insert the displayable "frames */

2-276 AFN-01931A

intJ

431
432
433

434

435
436

437
438
439

440

441

442
443

444

445

446
447

448
449

450
451
452
453

454
455
45i;

457

458

3
3
3

4

4
4

3
3
3

3

4

4
4

3

4

4
4

3
3

3
3
3
3

3
3
3

3

3

APPENDIX A

/* to average" answer. *I

O; input byte index
stop byte -
do output byte index

average_entry point + 4;

; average entry point to stop byte;
th out segment.message (output byte-index) =

parameters.frames to average-answer
(input byte index); -

input byte-index = input byte index + l;
end; - - - -

/* The continuous answer is different--we have */
/* to decid~ if we have continuous runs or */
/* single runs, and insert those words in the */
/* display line. */

input byte index = O;
stop byte - = continuous entry point + 15;
if parameters.continuous flag run continuous

then -
do output byte index

; continuous entry point to stop byte;
th out segment.message (output byte index)

contTnuous runs (input byte Tndex);
input byte index input byte index + l;

end; - - - -
else

do output byte index
; continuous entry point to stop byte;

th out segment.message (output byte index)
single run (input byte index); -

input byte index =-input byte index + l;
end; - - - -

/* Then send the message and wait for a response */
/* from the operator. */

call move down line(20);
call dispTay_lTne;

text length = size (go ahead question);
call-insert text .(@go ahead question, text_length);
call move down line (21); -
call dispTay_lTne;

call blank line;
call move down line(22);
call dispTay_lTne;

call rq$send$message
(th in mbx, th in segment token,
return th in_mbx~ @status);

th in segment token
- - ; rq$receive$message

2-277 AFN-01931A

intJ

459

460

461

463

464
465
466

467

468

469
470
471
472
473
474
475
476
477

478
479
480

3

3

3

3

3
3
3

3

2

2
2
2
2
2
2
2
2
2

2
3
3

APPENDIX A

(return th in mbx, wa.it forever,
@dummy-mbx, @status); -

th in segment pointer values.base
- ;·th in segment token;

input~byte_index = th_in_segment.actual - 2;

/* Check for a "g" or "G" (~e aren't fussy). If */
/*we got it, let's quit asking the selection */
/* que~tions and go. If not, we have to start */
/* at question 1 again rather than try to find */
/* out which of his or her answers wasn't */
/* acceptable. */

if (th in segment.mes~~ge (input byte index)
- - = ascii small g"f or ..,..

(th in segment.message (input byte index)
- - = ascii capital-G) then;

else question_number =-0; -

call blank line;
call move down line (21); ·
call display_lTne;

end verify_answers;

I* *I
/* As usual, the actual INPUT PARAMETERS control */
/* loop is at the end. */
I* *I

question_number = O;

/* All we do is get the next question, ask the */
/* question until it is answered successfully~ */
/* ask all of the questions, then check all of */
/* the answers. 'If the operator doesn't like */
/* the set of answers, we loop through them */
/* again. First we make su~e the reject mess~ge */
/* line and other pertinent lines start out */
/* blanked. */

call blank line;
call move down line (18);
call display lTne;
call move down line (21);
call display lTne;
call move down line (22);
call display lTne;
call move down line (23);
call display_lTne;

input_loop: do while question number < 3;
call set questi;n pointers;
call get:=: answer; -

2-27'.8 AFN-01931A

inter

481

482
483

485

481'i

487
488
489
490
491
492
493
494

495

496

497

498

499

500

3

2
2

2

1

2
2
2
2
2
2
2
2

2

2

2

2

2

2

APPENDIX A

end;

call verify answers;
if question:number = 0 then goto input_loop;

END !NPUT_PARAMETERS;

/**/
/* INITIALIZE TASKS initializes the INPUT TASK */
/* and the FFT TASK. If the FFT runs are to be */
/* continuous, INITIALIZE TASK also initializes */
/* the OUTPUT TASK. If the runs are not */
/* continuous, the OUTPUT TASK is initialized */
/* by MONITOR MAILBOXES. */
/***/

INITIALIZE TASKS: PROCEDURE;

declare
declare
declare
declare
declare
declare
declare
declare

hardware interrupt level 3
no data segment - -
nucleus-allocated stack
software priority-level r:,1
software-priori ty-level-130
software-priority-level-131
stack size 512 - -
task_tlags

literally '038H';
literally 'OOH';
literally 'OOH';
literally 'f:o7';
literally '130';
literally '131';
literally '512';
literally 'OOH';

input task token = rqScreate$task
(software priority level 67, @input task,
no data segment, nucleus allocatecCstack,
stack_sTze_512, task_flags, @status);

call rqScatalog$object
(supervisor job, input task token,
@(10,'INPUT TASK'), @status);

fft task token = rqScreateStask
(software priority level 131, @fft task,
no data segment, nucleus allocatea stack,
stack_sTze_512, task__;flags, @status);

call rqScatalogSobject
(supervisor job, fft task token,
@(8,'FFT TASK'), @status);

output task token = rqScreateStask
-(software priority level 130, @output task,

no data segment, nucleus allocated stack,
stack sTze_512, task_flags, @status);

call rq$catalog$object
(supervisor job, output task token,
@(11,'0UTPUT TASK'), @status};

2·279 AFN-01931A

intef

501 2

APPENDIX A

END INITIALIZE_TASKS;

I**********************·"'** *·'ft********************* I
/* Initial screen displays the ini-t.ial two */
!* lines on the screen and sends blank lines */
/* for all the other lines •of. the first screen. */
/**/

502· h . . : . INITIAL_S.CREEN: :PROCEDURE;

503

504
505
506

:2·.':.: declare init'ial screen· .index word;

2
2
2

507 2
508 2
509 2

, ,.r,

c.all move .down '1ine(O)·;
call blan"K line;
call display_li'ne;

call move down line(l);
text length= size("header line one);
insert text pointer = @header Tine one;

510 2 call insert:-:tex:t (insert text-pointer, text_length);
call display_line; -;:. -511 2

51·2 ;,
513
514
515
516

517

518

519

520

521

522

2
2
3
3 '.
3

2

1

2'

2

2

2

call blank line;
do ini t·ial-:"°sc·reen .index = 2 to 23;

call moV:e down-line (ini.tial screen:.:_index);
call display lTne;

end; -

END INITIAL_SCREEN;

l******************"'*~ft**'ft****************I
/* INITIALIZE B.UFFERS t.a.kes care of the */
/* initialization required for general */
/* SUPERVISOR TASK start·. up. */
I*-1t.*****'"'****"!'****** **·**--'!<'**** **** *** ******I

INITIALIZE_BUFFERS: PROCEDURE;

retur;n th :in mbx ·= rq.Scr·ea-te$mailbox
, {queue fi_fo, @status).;

c.all rqScatalogSob]"ect ·
(supervisor job, return th in mbx,
@(9,'SUP TH IN'), @i;;ta'Busf;

return th .. out "rilbx = rq$create$mailbox
- · ;::., (queue fifo, .@status);

call rq$catalog$ob)ect
(su'pervisor1:.job, return th out mbx,

, .. , - ·· .@ (10, •sup TH ouT •) , @status) ;
523 ... :2, to_input_;mbx · = rq$create$mailbox

.. · .. : -. ·. (queue fi!o, @$tat us);
524 2 call rqScatalogSobject

(superv i·so r job,, to ,input mbx,
@ (12,- 'TO INPUT;<MBX1), @status);

525 2 to fft .mbx •. = rqSc:rea,teSmailbox
(queue_priority, @status);

2·280 AFN-01931A

526

527

528

529

530

531

532

533

534

535

536
537

538
539

540

541

542
543

544
545

546
547

548

549

2

2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2
2

2
2

2
3

3

2

APPENDIX A

call rq$catalog$object
(supervisor job, to fft mbx,
@(10,'TO FFT MBX')~ @status);

to_output_mbx = rqScreateSmailbox
(queue priority, tastatus);

call rq$catalog$object
(supervisor job, to output mbx,
@(10,'TO OUT MBX')~ @status);

to supervisor mbx = rq$creaEeSmai1box
- {queue priority, @status);

call rq$catalogSobject
(supervisor job, to supervisor_mbx,
@(10,'TO SUP MBX')~ @status);

root_job_token = rqgettaskStokens
(rootjob, @status);

th out mbx = rqSlookup$object
(root job token, @(11,'RQTHNORMOUT'),
wait-forever, @status);

th in mbx ~ rq$lookup$object
(root job token, ta(lO,'RQTHNORMIN'),
wait=forever, tas~atus);

th in segment token = rqScreateSsegment
- (size 120 bytes, @status);

call rq$catalog$ob]ect-
(supervisor job, th in segment token,
@(10,'S THIN SEG')~ @status);-

th in segment pointer values.offset = O;
th-in-segment-pointer-values.base

- - - = th in segment token;
th in segment.function - - = th read;
th=in=segment.count -= 82;

th_out_segment_token. ~ rq$create$segment
(size 120 bytes, @status);

call rq$catalog$ob]ect-
(supervisor job, th out segment_token,
@(11,'S THOUT SEG'), @status);

th out segment pointer values.offset = O;
th-out-segment-pointer-values.base

- - - = th-out segment token;
th out segment.function - th-write;
th=out=segrnent.count -= 111;

do general index = 0 to 2;
th out segment.home chars (general index)

- - cursor home-chars (general-index);
end;

END INITIALIZE_BUFFERS;

/***/
/* At last, the SUPERVISOR TASK! All it does is */

2-281 AFN-01931A

intef

550 1

551 2

552 2

553 2
554 :?.

555 2

556 3
557 3·
558 3

559 3

560 :?.

561 1

APPENDIX.A

/* call other procedures to initialize the */
/* screen, input thenparameters, clean up the */
/* old FFT•se~ments,from the mailboxes, set up */
/* new segments~ create the tas~s., and then wait */
/* for messag~s from the opefator (~bort) or */
/* other tasks (FFT or OUTPUT done). */
/**************-**~*******************************/

SUPERVISOR TASK; PROCEDURE PUBLIC.; ..

call initialize buffers; -
call rq~end$ih1t$task;

call initial screen;
call initialTze tasks; -
d.o forever;

call input pa.ram.eters;
call initialize segments;
call monitor_maTlboxes;

end;

END SUPERVISOR~TASK;

END SUPERVISOR _MOPULE;

MODULE INFORMATION;

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
1197 LINES REAP
0 PROGRAM ERROR(S)

1032H
OOOOH
0084H

.0024H

END OF PL/M-86 COMPILATION

414nD
op

132D
3@

2c282 AFN-01931A

intJ APPENDIX B

ISIS-II PL/M-86 V2.0 COMPILATION OF MODULE INPUT TASK MODULE
OBJECT MODULE PLACED IN :Fl:input.OBJ - -
COMPILER INVOKED BY: plm86 :Fl:input.p86

89

90
91

92
93
94
95
96
97
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

1

1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

$title('INPUT TASK FOR AP NOTE llO, OCTOBER 1980')
, $large debug

INPUT TASK MODULE:
,do.;
$include(:fl:nucptm.ext)
$SAVE NOLIST

d.eclare token literally •word';

I* The following two tokens, .the FFT sample */
/* segment format, and the root job directory */

./*form the entire interface for this task with*/
·/*.the rest of the system. */

d~clare to input mbx
declare to-fft mbx

declare ascii mask
declare carriage return
declar~ done -
declare first loop
.declare forever

token external;
token external;

literally '30H';
literally 'OOH';
literally 'OFFH';
literally 'OFFH';

literally 'while l';
literally '50'; declare frames to process entry

declare hardware Interrupt level 3
- - - literally '0038H';

.,declare .. interrupt task created literally 'OFFH';
de~lare interrupt-task-not created literally 'OOH';
declare latch the-data- - literally '040H';
declare line Yeed- literally 'OAH';
declare new Yft run literally 'OFFH';
declare no response requested literally 'OOH';
declare no-data segment literally 'OOH';
declare not done literally 'OOH';
declare not-first loop literally 'OOH';
declare not valid- literally 'OOH';
declare null literally 'OOH';
declare processed so far_entry literally '33';
declare queue fif:O - literally 'OOH';
declare root job 1 i terally 'o 3H';
declare run continuous literally 'OFFFFH'.;
declare sample LSB literally '0081H';
declare sample-MSB literally 'OOBOH';
declare size 2-bytes literally '2';
declare size;-i"2o bytes. literally '120';
declare supervisor job 1 i terally 'OOH';
declare th write - literally '05';
declare thTs is the interrupt task literally 'OlH';
declare timer one po,rt - literally '00028';
declare timer-mode control port literally 'OOD6H';
declar~ valid-. - - literally 'OFFH';

2·283 AFN-01931A

intJ

124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140

141

142

143

144
145
146
147
148
149

150

151

152

153

154

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

1

1

1

1
1
1
1
1
1

1

1

1

1

1

APP,ENDIXB

declare wait forever 'literally 'OFFFFH';

declare data s~gment token
declare dummy mbx -
declare from Interrupt task mbx
declare handler dummy mbx -
declare handler-status
declare interrupt status
declare interrupt-task token
declare interrupt-message token
declare output buffer token
declare return:-mbx -
declare root job token
declare signal interrupt token
declare status- -
declare to interrupt task mbx
declare th-out mbx - -

token;
token;
token;
token;
token;
token;
token;
token;
token;
token;
token;
token;
token;
token;
token;

declare sample_data integer;

declare sample input data structure(
LSB - byte,
MSB byte} at ((clsample_data);

declare current timer value word;

declare timer values structure(
LSB - byte,
MSB byte) at (@current_timer_value);

declare done flag
declare fi5s£ input loop flag
declare frames received
declare genera! index
declare interrupt task flag
declare sample_vaiid -

declare timer threshold

declare value to convert

byte;
byte;
byte;
byte;
byte;
byte i

word;

word;

declare converted value structure(
first digTt byte,
second_digit byte);

/* The following declare is for the home */
/* characters for the Hazeltine terminals. */
/* The sequence is tilde, DC2. */

declare cursor_home_chars(2) byte data (07EH,Ol2H);

declare output_buffer_pointer pointer;

2-284 AFN·01931A

inter

155

156

157

158

159

160

lfil

ln2
ln3

1

1

1

1

1

1

1

2
2

APPENDIX B

declare output buffer pointer values structure(
offsat - word-;-·
base word) at
(@output_buffer_pointer);

declare output buffer· based o'utput_buffer_pointer
structure(
function
count
exception· code
actual -
home chars.(2)
line-index (?.4)
character(SO)

word,
word,
word,
word,
byte,
byte,
byte);

declare data_segment_pointer pointer public;

declare data segment pointer values structure(
offset - word,
base word)' at
(@data_segment_pointer);

I* The following is the FFT data segment format. */

declare data segment based data segment pointer
structure (·...,.. -
samples per frame word,
sample Tnterval word,
frames-to average word,
continuous flag word,
this frame-number word,
number samples missed word,
sample-pointer word,
reset flag word,
sample(256) integer);

declare input status line(SO) byte data
(' - The INPUT TASK has processed '

' frames out of frames to'
' average. I) i

FAST INPUT HANDLER:
PROCEDURE (FFT SEGMENT POINTER) EXTERNAL;

DECLARE FFT SEGMENT POINTER POINTER;
END FAST~INPUT_HANDLER;-

/**/
/* SLOW INPUT HANDLER is an interrupt procedure */
/* that-receives·an interrupt when the 8253 */
/* interval timer counts to zero. The 8253 is */
/* free running, so it starts counting from the */
/* top again. The 8253 counter is tested */
/* in a polilng ·fashion to be sure it reads the */
/* sample, which resets the conversion, */
/* at a precise time. This aids in removing */

2·285 AFN-01931A

intJ

164

165
ln6

167
168

169
170
171
172
173

174
175
176

177
178

179
180

181

l

2
2

2
2

2
2
3
3
3

2
3
3

3
3

4
4

4

APPENDIX B

/* jitter from the sample intervals. When all */.
/~ of the samples have been taken, */
/* SLOW INPUT. HANDLER calls signal interrupt, */
I* whicn lets-the INTERRUPT TASK procedure know */
I* the buffer is full. - *I
/**/

SLOW_INPUT_HANDLER: PROCEDURE INTERRUPT 59 PUBLIC;

/* First set the sample to not valid (we have */
/*to be past 0 the timer threshold before the */
/* sample becomes :valid). *I

sample valid = not valid;
timer_Ioop: -

/* Make the timer value stable and read it. */

output (timer mode control port) = latch the data;
timer yalues.LSB =-input (timer one port); -
timer:values.MSB =input (timer:one:port);

/* If it is not past the threshold, then some */
/* future sample will be valid. */

if current timer value > timer threshold then
do;

sample valid = valid;
goto tTmer loop;

end; -

/* We get to the else only if we are past the */
/* timer threshold. */

else
do;

sample input data.LSB = input(sample LSB);
sample:input:data.MSB = input(sample:MSB);

/* If the sample is valid,
/* in before the threshold
/* sampled as close to the
/* possible.

we rnust have come */
so we know we */
right time as */

*I

if sample valid = valid then
do; -

/* However, we want to ignore the first */
/* sample (which was started a long */
/* time ago). *I

if first input loop flag = first loop then
first Tnput Toop tlag = not first loop;
else - - - - -

do;

2·286 AFN·01931A

182 5

183 5

184 5
185 4

186 3
187 4

188 4
189 4
190 3
191 3

192 2

193 2

194 2

195 2

l % 1

APPENDIX B

data segment.sample
(data segment.sample pointer)

= sample data; -
data segment.sample pointer

- data_segment:sample_pointer+l;

end;
else

do;

end;

data segment.number samples missed
~data segment.number samples missed+!;

data segment.sample pointer = O; -
end; -

sample valid not_valid;
end; -

I* If we are done, we have to let the */
I* INPUT TASK know the buffer is full. */
/* Otherwise, we wait for the next interrupt. */

if data segment.sample pointer

else

>= data segment:samples per frame then
call rqSsTgnalSinterrupt -

(hardware interrupt level 3,
@handler=status); - -

call rqSexit$interrupt
(hardware interrupt level 3,
@handler=status); -

END SLOW INPUT_HANDLER;

/***/
/* INTERRUPT TASK exists because if an interrupt */
/* task goes-to sleep, the level of the */
/* interrupt task, interrupt handler, and lower */
/* levels remain disabled. In order to prevent */
/* this from happening in this application, this */
/* task notifies the INPUT TASK that the buffer */
/* is full. INPUT TASK disables Level 3 and */
/* returns the token to INTERRUPT TASK. */
/* INTERRUPT TASK will then call wait interrupt, */
/* enabling Iower levels. Since INPUT TASK */
/* disabled Level 3, no Level 3 interrupts will */
/* be serviced until Level 3 is enabled by */
/* INPUT TASK. */
/* */
/* NOTE THAT PLM/8n REQUIRES THE USE OF THE */
/* BUILT IN INTERRUPTSPTR PROCEDURE TO OBTAIN */
/* THE PROPER INTERRUPT PROCEDURE ENTRY POINT. */
/* */
/***/

INTERRUPT TASK: PROCEDURE PUBLIC;

2-287 AFN-01931A

intJ

197

198

199

200

201

202

203

204

205
206

207
208
209

210
211

2

2

3

3

3

3

2

1

2
2

2
2

3

3
3

AP!>ENDIX B

call rqpetinterr.upt
(hardware f.nterrupt level 3,
this·. is the interrupt task,
INTERRUPTSPTR(SLOW INPUT HANDLER),

· no:.._data:.._segment, @Tnterrupt_status);

do forever;

call rq$wait$interrupt
(hardware interrupt l:evel 3,
@interrupt_statusJ7

call rq$send$message
(from interrupt task mbx,
interrupt message token,
to_interrupt_task=mbx, @interrupt_status);

interrupt message token ; rq$receive$message
(to interrupt task mbx, wait forever,
@dummy_mbx, @interrupt_status);

end;

END INTERRUPT_TASK;

/**/
/* CONVERT DIGITS is a small procedure for */
/* convertTng a hex number into an ASCII */
/* number, with the advance knowledge that the */
/* hex number will be less than 99 decimal (in */
/* this case, less than 32 decimal). */
/**/

CONVERT_DIGITS: PROC.EDURE.;

converted value.first digit = ascii mask;
converted:=value.secon(f_digit = ascii=mask;

don.e flag , = not done;
do while done:.._flag not=done;

value to convert value to convert - 10;

/* The problem here is we n.eed to check for */
/* a negative value when we have BYTE values */
/* which are, by definition, positive and */
/* mudulo 256. So we adapt by checking for */
/* > 200 decimal, which should mean the */
/* value has "wrapped" around zero. If it */
/* has, we can get our previous value back */
/* by adding 10. */

if value to convert < 200 then
converted=value.first_digit

2-288 AFN-01931A

intJ

212
213
214

215
216
217

218

219

220

221

222

223

224

225

226

227

228

229

230

3
4
4

4
4
3

2

1

2

2

2

2

2

2

2

2

2

2

2

APPENDIX B

else
converted_value.first_digit + l;

do;
value to convert = value to convert + 10;
converted value.second dTgit

= converted value.second digit +
value to convert; -

done flag = done;- -
end;

end;

END CONVERT_DIGITS;

/**/
/* SEND STATUS converts the current frame */
/* number into ASCII and stuffs it into the */
/* previously initialized status line. Then */
/* SEND STATUS sends the status line to the */
/* termTnal handler and waits for the segment */
/* to be returned. */
!**!

SEND_STATUS: PROCEDURE;

value to convert= data_segment.this_frame_number;

call convert_digits;

output buffer.character (processed so far entry)
- = converted value.fTrst-digit;

output buffer.character (processed so far-entry+l)
- converted_value.second_digit;

value to convert data_segment.frames_to_average;

call convert_digits;

output buffer.character (frames to process entry)
= converted value.first aigit;

output buffer.character (frames to process entry+l)
- = converted_value.second=digit;

call rq$send$message
(th out mbx, output_buffer_token,
return-mbx, @status);

output_buffer token - rqSreceiveSmessage

END SEND-'-STATUS;

(return mbx, wait forever,
@dummy:mbx, @status);

/***!
/* INPUT DATA selects the fast or slow input */
/* handler, initializes the 8253 timer as */
/* necessary, and calls the appropriate input */

2-289 AFN-01931A

231

232
233
234
235

236
237

238

239
240
241
242
243
244
245
2 4 6
247

248

249

250

1

2
2
2
2

2
2

2

2
2
2
2
2
2
2
2
2

2

2

2

· /* handler. Please· note the values of the */
/* intervals selected for sampling §re */
/* scaled by l'i0/64 so the actual ftequency *I
/* output of the 128 sample FFT algorithm will */
/* match. up with the• ba.se 10 x axis labels. */

·/* 'Base lO'doesn't map•too well to a binary */
/* x-axis that runs from 1 to 64. *I
!***!

INPUT_DATA: PROCEDURE;

declare
declare
declare
declare·

LSB 120Hz interval literally '058H';
MSB-120Hz-interval literally '002H';
LSB"""600Hz-intetva1 literally '078H';
MSB-600Hz-interval literally 'OOOH';

/* The 8253• timer is running at 143.f'i l<hz, or */
/* i:;·.s microseconds per count. We have to */
/* restart the sampling process precisely, so */
/*we count down after the•intertuptto be *I

. I* sure we are syhchtol11zed. In this case, */
/* we have a 300 microsecond window after the */
/* interrupt to get the sample. 300 */
/* microseconds is roughly ~2 times li.5 */
/* microseconds. *I

declare threshold for 12.0Hz
declare threshold-for-l'iOOHz

literally '022EH';
literally '0048H';

declare a 3906 microsecond interval
literally 'OF42H';

dec.;are five places literally '5';
declare nucleus allocated stack literally 'OOH';
declare shift_integer_right literally 'SAL';
declare software priority level O literally 'OOH';
declare software-priority-levecl,..,...66 literally 'l'i6';
declare stack size 512 - - literally '512';
declare task flags:- 1 i terally 'OOH';
declare this-task 1 i terally 'OOH';
declare timer tnode control-wo.rd literally '74H';

declare e~able conversion literally '00';

declare input_comrnand literally '0080H';

/* The first thing we db is start the conver- */
/* sions. We don't care about the first */
/* data since we are going to ignore it. Each */
/* time we read both bytes of the present */
/* converted value, we start the next */
/* conversion. This initialization will */
/* prepare for the real data· gathering. */

output.(input_ command) enable conversion;

2•290 AFN-01931A

inl:ef

251
252
253

254

255
256

257

258

259

260
2fil

262

263

2fi4
2fi5

266

267
2!)8

269

270

271
272

273

2
2
3

3

3
4

4

4

4

3
4

4

4

4
3

3

3
4

4

4

4
3

3

APPENDIX B

if data segment.sample interval > 391 then
do; -

output (timer mode control port\
= timer mode control word;

if data segment.sample interval
~ a 3906 microsecond interval then

do;
timer threshold

=threshold for 120Hz;
output (timer one port)

= LSB 120Hz interval;
output (timer one port)

MSB 120Hz interval;
end;

else
do;

timer threshold
= threshold for fiOOHz;

output (time~ one port)
= LSB. fiOOHz interval;

output (timer one port)
= MSB_600Hz interval;

end;
first_input_loop_flag = first loop;

if interrupt task flag

do;
= interrupt_task_not created then

interrupt task token = rqScreateStask
(software priority level 66,
@interrupt task, no data segment,
nucleus allocated stack,
stack_sTze_512, task_flags, 0status);

call rqScatalogSobject
(supervisor job, interrupt task token,
@(12,'INTERRUPTTSK'), @status);

interrupt task flag
interrupt_task_created;

end;
else call rq$enable

(hardware_interrupt level 3, @status);

/* Now we wait until the slow handler */
/* fills the buffer. */

signal interrupt_token rqSreceiveSmessage
(from interrupt task mbx, wait forever,
@dumiiiy_mbx, @status); -

/* If we get the token, we know the buffer */
/* is full, so we disable level 3 */

2-291 AFN-01931A

intJ

274

275

27<';

277

278

279
280

281

2.82.
283

284

285
286
287

288

289

290
291

3

3

3

2

3

3
3

3

2
3

3

2
3
3

2

1

2
2

APPENDIX B

call rq$disable
(hardware_interrupt level 3, @status);

/* And return the token so the */
/* INTERRUPT TASK can enable lower */
/* interrupt levels. */

call rq$send$message

end;
else
do;

(to interrupt task mbx,
signal interrupt token,
no_response_requested, tastatus);

/* The fast INPUT handler must sample at
/* precise intervals that do not allow
/* variable interrupt latency. Therefore
/* we raise the priority level to o--the
/* highest--and just sample in a polling
/* fashion until the buffer is filled.

'call rqSset$priority

*/
*/
*/
*I
*/
*/

(this task, software priority level O,
@status); -

call FAST INPUT HANDLER (data segment pointer);
call rqSsetSpriority - -

{this task, software priority level n1',
@status) ; - - -

end;

index)
do general index = O to 127;

data segment.sample (general
shift integer right

(data_segment.sample (general index),
five_places);

end;

do general index = 128 to 255;
data segment.sample {general index)

end; -

END INPUT _DATA;

OOOOH;

/* ** * *** *·* **********-Ir************************** I
/* UPDATE FRAME NUMBER just updates the frame */
/* number-parameter on the data segments. */
/**/

UPDATE_FRAME NUMBER: PROCEDURE;

data segment.number samples missed
data_segrnent.sarnple=pointer-

2-292

O;
O;

AFN-01931A

292 2

294 2
295 2
296 3
297 3
298 3

299 2
300 2

301 2

302 1

303 2

304 2

305 2

3011 2

307 2

308 2

309 2

310 2

311 2

312 2

313 2

APPENDIX B

if frames received = data segment.frames to average
then frames received - O; - -= -

if data segment.reset flag new fft run then -do;
frames received = O;
data segment.reset flag O; -end;

frames received frames received + 1;
data segment.this frame number frames received; - -
END UPDATE FRAME _NUMBER; -
/***!
/* INITIALIZE BUFFERS takes care of the usual */
/* trivia of setting up the pointers, creating */
/* the return mailbox, looking up the terminal */
/*handler, and all that other small garbage. */
!***/

INITIALIZE_BUFFERS: PROCEDURE;

return mbx = rq$create$mailbox
(queue fifo, (ilstatus);

call rqScatalogSobject
(supervisor job, return mbx,
@(9,'I RET-MBX'), (<1status);

from interrupt task mbx = rq$create$mailbox
(queue firo, @status);

call rq$catalog$object
(supervisor job, from interrupt task mbx,
@(12,'FM INTSK MBX')~ (ilstatus)7

to interrupt task mbx rq$create$mailbox
(queue fifo, @status);

call rqScatalogSobject
(supervisor job, to interrupt task mbx,
(il(l2,'TO INTSK MBX1), @status);

interrupt_message token = rqScreate$segment
(size 2-bytes, @status);

call rqScatalogSobject
(supervisor job, interrupt message token,
(<!(10,'INTTSK MSG'), @Status);

interrupt task flag
-= interrupt_task_not_created;

output_buffer token = rq$create$segment
(size 120 bytes, @status) ;

call rq$catalogSobject
(supervisor job, output buffer_token,
@(10,'I BUFF SEG'), @status);

2-293 AFN-01931A

intJ

314
315

31'5
317
318
319

320

321
322

323

324
325

326

327
328

329

330

331

332

333

334

335

336

337

2
2

2
2
2
3

3

2
3

3

2
3

3

2
3

3

2

2

2

2

1

2

2

2

APPENDIX B

output buffer pointer values.offset
output-buffer~pointer-values.base

- = output buffer token;
output buffer.functTon = tn write;
output buffer.count = 110;
do general index = o to '5;

O• I

output buffer.home chars (general index)
- =cursor nome chars (general_index);

end;

do general index = 0 to 21;
output buffer.line index (general_index)

- = line_feed;
end;

do general index = 22 to 23;
output buffer.line index (general_index)

- = null; -
end;

do general index = 0 to 78;
output buffer.character (general index)

- = input_status_line (general_index);
end;

root job token = rqSgetStaskStokens
- (rootjob, @status);

th out mbx = rqSlookup$object
(root job token, ~(11,'RQTHNORMOUT'),
wait=forever, @status);

frames_received = O;

END INITIALIZE_BUFFERS;

/**/
/* The actual INPUT TASK begins here. It */
/* initializes the buffers to begin things, */
/* then waits forever for the FFT sample */
/* segment. It then samples the data, fills */
/* the FFT data segment, and sends it to the */
/* FFT TASK. The INPUT TASK then updates its */
/* status line, sends it to the terminal */
/* handler, and returns to the mailbox to */
/* wait forever. */
/**/

INPUT TASK: PROCEDURE PUBLIC;

call initialize_buffers;

data_segment_pointer_values.offset

do forever;

2·294

O;

AFN-01931A

intJ APPENDIX B

/* Wait forever for an FFT data segment at */
/* the to_input_mbx. *I

338

339

340
341

342

343

344

345

346

3

3

3
3

3

3

3

2

1

data segment token = rqSreceiveSmessage
- (to input mbx, wait forever,

@dummy mbx, ~status);
data segment pointer values.base

- ~ data_segment_token;

call update frame number;
call input_data; -

call send_status;

call rqSsend$message

end;

(to_fft_mbx, data segment token,
no response_requested, @status);

END INPUT_TASK;

END INPUT_TASK_MODULE;

MODULE INFORMATION:

CODE AREA SIZE = 070BH
CONSTANT AREA SIZE = OOOOH
VARIABLE AREA SIZE = 0036H
MAXIMUM STACK SIZE = 002AH
754 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

2-295

1803D
OD

54D
42D

AFN-01931A

APPENDIX B

MCS-86 MACRO ASSEMBLER FSTINP
ISIS-II MCS-86 MACRO ASSEMBLER V2.l ASSEMBLY OF MODULE FSTINP
OBJECT MODULE PLACED IN :Fl:FSTINP.OBJ
ASSEMBLER INVOKED BY: asm8fi : fJ;: fstinp.a8fi

LOC OBJ LINE

l
2
3

4
5

fi

7

8

9

10

11
12

13

14

15

16

17

18

19

20
21
22
23
24
25
26
27
28
29
30
31
32

SOURCE

;******•***************************************

FAST .. IN PUT HANDLER for APNOTE 110,
OCTOBER 19BO

FAST INPUT HANQLER is an assembler routi~e
that-runs at priority
level O and simply ~rives an analog to
digital converter and
stuffs the samples into a data segment until
all of the samples
have been taken. FAST INPUT HANDLER has
passed to it the address
of the data segment 1 in which the offset is
known to be zero.
FAST INPUT HANDL~.R returns nothing to the
ca11Tng routine.

FAST INPUT HANDLER provides the proper timing
for sampling at a
39, 78, and 391 microsecond intervals using
timed loops of
software instructions. In order to provide
an FFT without large
amounts of jitter, the sample intervals must
be uniform in time.
iRMX Bo cannot guarantee this uniformity due
to its real time
design, so this routine takes complete
control of the processor
for the (39 times 128) 4.9 milliseconds or
(78 times 128) 9. 9
or (391 times 128) 50 milliseconds required
to complete a frame
of 128 samples.

iAPX 86 register useage is the following:

AX - general
ex - loop delay counter

BX - stack index
DX - sample value

BP - stack SP - stack
DI - offset index into FFT SI - not used

data segment

DS - base for FFT data
segment

2-296

ES - not used

AFN·01931A

intJ

0080
0081
OOOE
0002
0002
QlOE

33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49

50
0000 ???? 51

52
53
54
55
SE;

oopo (20
0000
)

0000

0000 lE
0001 55

57
58

59
60
61
62
fi 3

64
65
e;5
67
68

0002 8BEC 69

0004 8E5EOA 70

0007 BF0200 71

OOOA 8B05 72

OOOC BFOEOO 73

OOOF 302700 74

0012 740E 75

APPENDIX B

,
·**********************~*********************** ,

;
ASSUME DS:FAST INPUT DATA, SS:STACK,

CS:FAST=INPUT=CODE, ES:NOTHING
;
PUBLIC FAST INPUT HANDLER
,
SAMPLE LSB
SAMPLE-MSB
FIRST PASS
SAMPLE INCREMENT
SAMPLE-INTERVAL
SAMPLE-MAX

;
FAST INPUT DATA

EQU
EQU
EQU
EQU
EQU
EQU

OOBOH
0081H
14
2
2
270

SEGMENT WORD
PUBLIC 'DATA'

;
LOOP VALUE DW ?
;
FAST INPUT DATA ENDS

;
STACK SEGMENT STACK 'STACK'

;
STACK ENDS

;
FAST INPUT CODE

,
FAST INPUT HANDLER
I

PUSH OS
PUSH BP

; SAVE BP IN STACK
MOV BP, SP

DW 20

SEGMENT PARA
PUBLIC 'CODE'

PROC FAR

; SET BP TO STACK POINTER
MOV OS, rBp + 10]

; PUT BASE OF SAMPLE SEGMENT IN DS
MOV DI, SAMPLE INTERVA'L

DUP(O)

; DX IS USED TO INDEX INTO THE DATA SEGMENT
MOV AX, DS: [DI]

; SET AX TO SAMPLE INTERVAL PARAMETER
MOV DI, FIRST PASS

; RESET DI TO-FIRST SAMPLE - 14
CMP AX, 39

; IF AX = 39, SET LOOP VALUE TO 9--LOOP
JZ SET 39 US

2-297 AFN-01931A

0014 3D4EOO 76

0017 7412 77

0019 C70600007EOO

APPENDIX B.

; TAKES ABOUT 3 US PER DECREMENT
CMP AX,· 78

; IF AX = 78, SET LOOP VALUE TO 22-~BASIC
JZ SET 78 US

CYCLE IS-13 US, PLUS (22 X 3) = 79 US
R 78 MOV LOOP VALUE, 126

; 391 IS-ONLY ONE LEFT-13 + (126X3)
= 391

OOlF EB1090 79 JMP INPUT LOOP ;
0022 C70600000900 R 80 SET 39 US: MOV LOOP_VALUE, 9

;-TIMING IS BY SOFTWARE--SET
DELAY COUNT

0028 EB0790 JMP INPUT LOOP ;
SET 78 US: MOV LOOP_VALUE, 22

INPUT-LOOP: MOV ex, LOOP VALUE
; USE ex TO KEEP TRACK OF-DELAY

IN AL, SAMPLE LSB

002B C70600001600
0031 8BOEOOOO

81
R 82
R 83

0035 E480

0037 BADO

0039 E481

003B 8AFO

84

85

86

87
88

; SET AL TO LSB OF INPUT SAMPLE
MOV DL, AL

; PUT THE LSB IN DL (8 BIT XFERS ONLY)
IN AL, SAMPLE MSB

; SET AL TO MSB OF INPUT SAMPLE
; THIS RESTARTS SAMPLE PROCESS

MOV DH, AL

003D 83FFOE 89
; PUT AL IN DH TO COMPLETE THE VALUE

CMP DI, FIRST PASS

0040 7408 90
0042 83C702 91

; WE WANT TO SKIP THE FIRST SAMPLE
JZ SKIP INPUT
ADD DI, SAMPLE INCREMENT

; INCREMENT DI-BY 2
0045 8915 92 MOV DS: rDI], DX

0047 EB0990 93

004A 83C702 94

; PUT SAMPLE DATA IN SEGMENT
JMP DELAY

; AND JUMP TO SOFTWARE DELAY LOOP
SKIP INPUT: ADD DI, SAMPLE INCREMENT

004D 90

004E 90
004F 90
0050 90
0051 90
0052 90

; INCREMENT DI BY 2 -
95 NOP

; AND NOP FIVE TIMES FOR EVEN TIMING
911 NOP
97 NOP
98 NOP
99 NOP

100 DELAY: NOP
, THIS NOP ADDS 3 CLOCKS PER DECREMENT

0053 EOFD 101 LOOPNZ DELAY
; DEC ex AND LOOP--1.5 us PER DECREMENT

0055 81FFOEIT1 102 CMP DI, SAMPLE MAX
; COMPARE DI TO SEE IF WE ARE DONE

0059 75D6 103 JNE INPUT LOOP

OOSB SD
; IF NOT, GO BACK FOR ANOTHER SAMPLE

104 POP BP
; OTHERWISE POP BP, DS, AND RETURN

OOSC lF 105 POP DS
OOSD CA0400 106 RET 4H

107

2-298 . AFN·01931A

APPENDIX B

108 FAST INPUT HANDLER ENDP
109 ;
110 FAST INPUT CODE ENDS
111
112 END

ASSEMBLY COMPLETE, NO ERRORS FOUND

2-299 AFN-01931A

APPENDIX C

Both the RAM and ROM-based configuratiorts will be
discussed in this appendix. They are essentially identical
processes. In either case, the first step is to define a map
of system memory. Once the map is known, the follow
ing sequence is suggested for locating code in memory:

1) Reserve memory OH to 03FFH for the Nucleus in
terrupt vector.

2) If the system is RAM based and the code is loaded
by the iSBC 957 A Monitor, reserve locations
03FFH to 07FFH for the monitor's use.

3) Configure each of the necessary portions of the
iRMX 86 Operating System and locate them se
quentially in memory.

4) For a RAM-based development system, allow 2K of
RAM for the system Root Job. Placing the Root
Job after the portions of the iRMX 86 Operating
System, which are relatively fixed in size during
development, and before the development code will
give the Root Job a fixed address. This will prevent
having to move the Root Job and reconfigure the
system when the development code grows. For final
EPROM-based systems, the Root Job should be
placed after the development code.

5) Link and locate each of the application code mod
ules sequentially in memory.

6) Define the RAM available to the system.

7) Define memory NOT available to the system. This
includes application code, EPROM, and non
existent memory within the 1 megabyte address
space.

8) Create the configuration file using the address maps
produced by the locate steps and the memory map
defined in steps 6 and 7.

9) Create the Root Job from this configuration file.

10) Load and test the system in RAM.

11) If the system has been fully debugged, load the code
into EPROM and test the final system.

The above steps are necessary for both the RAM devel
opment system and the final EPROM system. Convert
ing this application from RAM to EPROM requires re
configuring the Nucleus to include only those systems
calls required by the application, substituting the Ter
minal Handler Job for the Debugger Job, removing any
remaining system calls to catalog objects for debugging,
and remapping the system to the EPROM address
space. The memory maps for the development and final
application are shown in Figures C-1 and C-2.

2-300

MODULE ADDRESS

_/

(RESERVED)
<

RESET VECTOR

iSBC 957A MONITOR EPROM
'-

<

FFFFFH

} EPROM
FFFFOH

FDOOOH

'-
_/

"'

"'

] '" EXISTENT

20000H
SYSTEM RAM

OFFFFH
EXPANSION

OED50H
APPLICATION DATA

_/ OEC10H
EXPANSION

"' OEB07H
APPLICATION CODE

ROOT JOB
OCOBOH RAM

OBACOH
DEBUGGER

05330H
NUCLEUS

_/ OOOOH
ISBC 957A MONITOR

INTERRUPT VECTOR
OOOH

OH

Figure C-1. Development System Memory Map

MODULE ADDRESS

...- FFFFFH
(RESERVED) ...-

RESET VECTOR
FFFFOH

UNUSED EPROM

ROOT JOB
/

APPLICATION CODE

FF5COH
EPROM

FD3DOH

TERMINAL HANDLER CODE
FCAOOH

...- FBOOOH
NUCLEUS CODE

'-
...-

<

} NON-
EXISTENT

04000H
SYSTEM RAM

<
ROOT JOB DATA

0890H

OBBOH
APPLICATION DATA ...- OA58H

TERMINAL HANDLER DATA RAM 0990H
NUCLEUS STACK

OBOOH
NUCLEUS DATA

400H
INTERRUPT VECTOR

OH

Figure C·2. Final System Memory Map

System configuration is a straightforward but exacting
process. As with any such processes, there are some
hints that can make development easier. In addition to
care in locating the Root Job in memory, users should
fix the initialization job entry point and the data RAM
addresses.

AFN-01931A

APPENDIX C

The Intel PL/M 86 programming language does not
allow a procedure to be used until after it has been de
clared. This requires the initialization procedure to be
declared after all the other procedures. Since the initial
ization is last, changing the other procedures will change
the location of the initialization procedure. If the system
entry point changes, the system must be reconfigured.
The moving entry point can be circumvented by writing
a separate initialization task. The Root Job will create
only the initialization task which will then initialize the
system jobs. The initialization task entry point is fixed
by linking it ahead of the other application tasks and by
not changing the initialization task during dvelopment.
The actual system entry points will be bound to the ini
tialization task during linking and locating. The linking
and locating steps are a natural consequence of chang-

ing the application code, so binding the fixed system en
try point is done automatically during development.
The fixed initialization task entry point is used in the
configuration file, giving the Root Job an unchanging
system entry point.

The remaining moving target during development is the
RAM area for data and stack use. If the data and stack
RAM is located before or after the application code,
with enough extra memory in between for growth dur
ing development, the data and stack locations can stay
constant. Fixing both the application entry point and
the locations of the stack and data segments will allow
development of the application code to proceed without
requiring frequent reconfigurations.

2-301 AFN·01931A

ARTICLE
REPRINT

AR•41

July 1977

L____---------·-·-···--·------'

2-303 AFN·01931A

Single-board microcomputers offer hardware cost-effectiveness tor

Implementing many real-time systems. A compatible, resident, reat

tlme executive program provides savings in software development

An Integral Real-Time Executive
For Microcomputers

Kenneth Burgett and Edward F. O'Neil

Intel Corporation
Santa Clara, California

Single-board computers, or microcomputers, that contain
central processor, read-write 'and programmable read
only memory, real-time clock, interrupts, and serial and
parallel input/ output all on one printed circuit board,
have made feasible a whole spectrum of applications
which previously could not be economically justified.
These microcomputers have also opened up a. range of
applications where the high functional density of large.
scale integration provides advantages over previous solu
tions such as hardwired logic or relatively expensive
minicomputers. While microcomputers readily solve hard
ware requirements, software for single-board computer
applications with real-time characteristics (which are
in the majority) has until now been generated individu
ally for each application.

The Intel RMX/80* Real-Time Multi-Tasking Execu
tive simplifies real-time application software development,
and at the same time furnishes capabilities optimized for
the microcomputer environment. It provides the means tci
concurrently monitor and control multiple external events
that occur asynchronously in real-time. The program
framework allows system builders to immediately imple
ment software for their particular applications, and to
avoid specific details of system interaction.

Major functions of the executive include system re
source access based on task priority, intertask communi ·
cation, interrupt driven device control, real-time clock
control, and interrupt handling. In combination, these
functions eliminate the need to implement detailed real
time coordination for specific applications.

Previously, two alternative software approaches were
used to solve microcomputer applications. First, many

designers created their own operating executive, indi
vidually tailored for each application. Obviously, this
approach was expensive and time-consuming. The second
approach was to use a minicomputer executive which had
been adapted to a microcomputer. Since this software
was designed for a different processing environment and
then "stripped down," it suffered from major inad
equacies when executed on microcomputers. The alterna
tive, RMX/80, has been designed specifically to provide
a general-purpose real-time executive tailored to Intel
SBC 80 and System 80 microcomputers.

Real· Time System Requirements

AU· s~ftware design approaches for use in real-time ap
plications include capability for concurrence, priority,
and synchronization/communication.

Concurrence-Real-time systems monitor and control
events which are occurring asynchronously in the physi
cal ·world. Microcomputer software does not know ex
actly :When external' events will occur; however, it must
be prepared to perform . the necessary processing upon
demand, whenever the events, actually do occur. Typical
ly, interrupts 'are used to inform the microcomputer that
an event has occurred. At interrupt time, system control
software determines what processing to perform, as well
as the relative sequence in which processing must take
place.

*RMX/80™ is a registered trademark of the .Intel Corp, Santa
Ciara, Calif.

Reprinted from COMPUTER DESIGN, July 1977. Copyright Cahners Publishing Co.,lnc. 1977. All rights reserved.

2-304 AFN·01931A

Programs related to external events are processed in
an interleaved manner based on interrupt occurrence
and priority. For instance, one routine is executing when
an interrupt activates, signaling that a higher priority
event has occurred. At this point, the routine related to
the priority interrupt is started, while execution of the
less important routine is discontinued temporarily. When
the more important routine is completed, or temporarily
halted for some other reason, execution of the less im·
portant routine is resumed. In this manner, multiple pro
grams execute concurrently in an interleaved fashion.
Priority-In a real-time environment, certain events re
quire more immediate attention than others because of
their significance within the physical world. Immediacy
is relative to other processing, and is determined by ap·
plication requirements. The concept of immediacy or pri
ority, however, is common throughout all real-time micro
computer applications. In priority-based systems, the most
important program (one that is not waiting for some
physical or logical reason) is the one executing.

A classic illustration of program priority in real-time
systems is found in the area of plant control. When the
plant begins to fail in a nonrecoverable manner, it is
imperative that the plant he shut down as quickly as
possible. For this reason, shutdown processing takes
priority over all other system demands. Software pri·
ority enforces this hardware concept of physical opera·
tional events.
Synchronization/Communication-Another common sim
ilarity in most real-time systems i~ the need for synchro·
nization between various events in the physical world
which are under microcomputer control. Synchroniza·
tion is defined as the process whereby one event may
cause one or more other events to occur. Communication
is the process through which data are sent between in
put/output (1/0) devices or programs and otl.ier pro
grams within the microcomputer system.

An example of the need for synchronization and com·
munication is a microcomputer system for weighing and
stamping packages. One part of the system weighs the
package, calculates pricing, and releases the package
onto a conveyor belt. Price and weight data are com
municated to another part of the system which stamps
the data onto the package after it arrives at a sensor
station. Synchronization is demonstrated by the occur
rence of one event-package arrival-causing another
event-package stamping-to occur.

Compatible Benefits
To satisfy real-time microcomputer software require·
ments, the RMX/80 Real-Time Executive software (Fig
1) was designed. This program differs from existing
software systems by offering capabilities directly re
lated to the single-board microcomputer environment
in which it operates. These capabilities have two major
bottom-line benefits compared with equivalent minicom
puter systems. First, the executive code is compact
enough to allow a large number of real-time applications
to be prpcessed on a single microcomputer board. To
accomplish this capability, its nucleus is optimized to
reside in less than 2k bytes [ie, in a single 16k program
mable read-only memory (p/ROM)], thereby allowing up
to lOK of onboard memory for application-related soft.
ware and storage.

2-305

Fig 1 A typical RMX/BO system. Mul
tiple tasks control a given application.
Nucleus controls execution of both
user and executive tasks through
task-to-task communication, real-time
clock, priority resolution, and inter·
rupt handling facilities. All tasks with
in an RMX/80-based application use
at least some of these capabilities;
other optional executive tasks include
debugger, free-space manager, and
device control for operator's console,
diskette file system, analog subsys
tems, and high speed mathematics
unit

Second, the executive may be p/ROM-resident. When
the microcomputer system is powered on, the software
system (executive plus application programs) is auto·
matically initialized and begins execution of the highest
priority application task. Typical major real-time execu·
tives, however, are totally random-access read-write semi
conductor memory (RAM)-resident, which means they
must be initialized (booted) from a peripheral device,
such as diskette, cass~tte, or communications line, into
microcomputer memory. The need for peripheral devices
significantly increases the total cost of traditional real.
time executive-based solutions. ·

Sample Application

Functioning as a real-time executive for microcomputers,
this software system provides facilities for orderly con
trol and monitoring of asynchronously occurring ex
ternal events. Although these events may differ widely
from application to application, facilities are adaptable
to nearly all processes where the microcomputers are
used, including process and machine control, test and
measurement, data communications, and specialized on
line data processing applications (where one or more
terminals access diskette-based data). The executive. is
particularly useful in dedicated low cost applications
which were not economically feasible before the advent
of microcomputers. For example, consider the require
ment of gas pump control in a service station (Fig 2).

In this station, a microcomputer system operating
with RMX/80 concurrently monitors and controls mul
tiple gas pumps, and sends price and volume informa-

COMPUTER DESIGN/JULY 1977
AFN-01931A

tion to one central location. Ai the same time, informa,
tion about station oper~tion is being transmitted over a
communications l.ine to ·a tegiQnal. computer.

Individual tasks arl;. · develoPe4.-iridependently to mea·
sure gas flow, calculate and ctfsplay price information,
transfer data .to the centralcofuputer,. and monitor levels
Qf gasoline in undergrqund st~r~ge. All, this processing
takes place concurrentlpim~er program control. (Credit
verification, charge slip. printing, and billing can also
he controlled by additional software tasks.)·

Efficient gas station operation. demands. that the hard
ware/software system be highlyteliable. The compatible
benefits of compact code, p/ROM residency, and self
initialization on a single-board microcomputer system all
combine to ensure functional integrity.

Software Structure·
RMX/80 simplifies the effort for deyeloping a real-time
system, first; by providing many cpmmonly required
software functions. Second, its software structure pro;
motes efficient program development Programmers who
are familiar with structured programming will find task
orientation both natural and easy to use.·

Tasking means that a larger program is divided into
a number of smaller, logically independent programs of
tasks. The key is to identify .functions that may occur
concurrently. For example, consider· the 'tasks required
for a terminal handler-real-time asynchronous I/O be
tween an· operator's CRT terminal and the· executive.

Input Handler Task-One task must be ready to accept
a data character from the terminal at any time. This is
done · by responding to · an interrupt signal from the
terminal and then accepting the data character. The task
irnrnediately passes the input character to a subsequent
faslt automatically and then 'goes back to wait for an
other interrupt.

Li~ Bulfer Task-As characters are received· from the
inJ)ut handler they must be placed int() a buffer to form
a .line. Eventually, the buffer will he filled Qr thelogi?~I
end-of:line. will be signaled by a carriag~ return char'.
acter. At thi; point, the line buffer must he. sent. to some
other task 'for processing.

Echo Driver Task-For a full-duplex terminal, it is
necessary to return each input character to the terminal
for display on the CRT screen. This. task waits foe a
character, which could be sent by either the line buffer
or· input handler task, and· then sends the character to
the terminal. It then· waits for the next character.

Note that input handler and echo driver are described
as waiting for an event. Within the RMX/80, that is
literally the case. While they wait, however, system re
sources are available for other tasks, such as that of the·
line buffer. Thus, effective processing may occur con
currently with necessary Waiting periods. Notice also
that a number ·of other tasks may also be active within
the system. In tact, the greater the number of tasks run
ning concurrently, the more effectively· system resources
are used. Concurrent operation eliminates many •time
wasting procedures from a• real-time system .. Fov• ex
ample, the· executive can eliminate the need for many
timing loops where the processor simply ·executes• a no
operation instruction repeatedly while waiting 'fi>r an
event to. occur.

Fig 2 Microcomputer control for g.is pump automa
tion. In this example, executive-based system simul
taneously controls two pumps; displays. information on
operator's COr\$,ole, and. cqmmunicates with regional
computer. At .a. given time,, more or fewer functions
could be operating concurrently. System . expansio'n
can be easily accomplished by adding tasks· and
modular hardware

Within the executive, tasks not only are logically in·
dependent, they, are alsp physically independent, actually
contending wit.h each other .for. the use of the processor
and other system resources. The executive re.solves this
contention .based on the .priority of each task.

In the terminal handler example, it is clear that the
input handler must have highest priority, since accept
able performance cannot tolerate the loss of data. Second
highest priority is given to the echo driver, so that data
appearing on the screen remain coordinated with the
input. Lowest priority goes to .the line buffer, since that
function .does not depend directly on an external asyn
chronous event. There. ~re. no .. particular real-time con:
strain ts on the line buffer as long as the. input char
acters are eventually processed.

2·306

Jt .is possibk to write the entire terminal handler as
a single large task instead of .as .several smaller tasks.
However, cOJ!sideration must be given other high priority
tasks , operating within the; system which may not J~e
able. to gain control while a low priqrity portion of the
terminal handler, such as .the .line buffer task, is execut
ing. Therefore,. tasks assigned as .high.,priority "'re g.en
erally kept as short as possible. If. the terminal handler
were written as one large task, it could tie up the entire
processing system for a relatively !rivial :fun,ction,

Task States

Two task states have been implied_:_running and wait
ing. A running task is always the task ·which currently
has the highest priority and is not suspended or waiting.
A waiting task remains in the wait state until it receives
a message or an interrupt for which it is waiting or until
a specified' time period has passed. The wait period can
he timed using the system clock.

A running ta·sk•may suspend Itself on some other task
in the system. A suspended task cannot begin execution
again. until some· running' 0task orders •it to resume. As
an example, a password routine might· temporarily ·sus
pend the echo driver of the terminal handler so that the
password is not displayed. (The password routine must

AFN-01931A

RMX/80

CHANGE

(a) (b)
INTERTASK COMMUNICATION INTERTASK CDMMUNICATtON WITH DELAY

Fig 3 System message exchanges.
In intertask communication (a) task
1 sends a message to an exchange,
where it is held until task 2 requests
message via accept. In intertask
communication with delay (b), task
2 waits for a message from task 1
until data are available or until a
certain time period has passed,
whichever occurs first. In task con
trol (c), any task may suspend or
resume any other task. In interrupt
processing (d), an 1/0 interrupt is
transformed into a message that task
1 receives via a wait command.
Task 1 then performs appropriate
interrupt processing

RMX/80

Id
TASK CONTROL

P/ROM-BASED SEGMENTS

· ·~ wito NllCLlius
:'· < •

CEVt¢E CONTll()L
·iiTA.5KS .

1JS£R. TASlC 1

. USER fASk ~ .•

SUSPEND
OR

RESUME

R:AM- BASED SEGMENTS:

S'IS~·~···

TASK l(lCAL STOllAGE

FREE SPAC.E

Fig 4 Memory utilization. RMX/80 nucleus, de
vice control task, and. free-s'pace allocation mod
ules are linked with user tasks to form a real-time
system. Although executive may be RAM-resident,
it is designed to reside in p/ROM and uses RAM
only for temporary storage and free space. User
tasks are provided by user at generation time.
RAM may be used by RMX/80 and all associated
tasks for temporary storage, including stack.

RMX/80

XCHAN

(d)

INTERRUPT PROCESSING

2-307

remove the password from the line buffer, or it will be
displayed as soon· as execution of the echo driver is
resumed.)

A task may also be in the ready state. A ready task is
one that would be running except that a task with higher
priority temporarily controls the system resources. The
executive maintains a list of all tasks that are ready to
run. The . next task to be run is always the task with
the highest priority in the ready list.

The running task relinquishes its control of the sys
tem by

(1) Putting itself into a wait state

(2) Suspending itself

(3) Sending a message to ·a higher priority task, which

if it has the highest current. priority' becomes the run
ning task

(4) Being pteempted by an interrupt to a higher pri
ority task

In the case of an interrupt, the executive saves the
status (contents of registers, etc) of the interrupted· task
so that it will be restarted correctly.

Message Exchanges

Tasks communicate with each other by sending messages
(Fig 3)'; The sending task constructs the message to be
sent in RAM or uses a previously assembled ·message.

COMPUTER DESIGN/JULY 1977
AFN-01931A

j TASK ENTRY POINT

I
I

'
: INITIALIZE TASK
I
I
I
I

r------i WAIT FOR REQUEST

I
I
I
I
I PERFOl'i!M ·FUNCTION
I
I
I
I I
J I
1.- - - - ~ - --' SEND RESPONSE

Fig 5 Consumer task flow.
Consumer task performs ini
tialization and then drops into
cyclic loop, alternately waiting
for messages, ·performing func
tions requested by message,
and sending an acknowledge
ment in form of a response
message

The sending task then issues a SEND command that posts
the address of the message at an exchange.

An exchange is simply a set of lists maintained by the
executive. The first list contains the addresses of messages
available. at that exchange. The second list consists of a
list of· tasks that are waiting for messages at that ex
·change. When a task enters a wait state, it specifies the
exchange where it expects eventually to find a message.
The task may wait indefinitely, or it may specify that it
will only wait a specific period of time before resuming
execution.

Messages, together with the exchange mechanism, pro
vide for automatic intertask comm~nication and also for
task synchronization. For example; a message. to ·a par
ticular task may specify that the task is to send a re
sponse to a certain exchange. Thus, the original task
may request an acknowledgement response to its mes
sage, or it may specify that a message is to be sent fo
a third task. RMX/80 treats interrupts like me.isages,
the only difference being that interrupts have their own
set of exchanges.

Note that the sending and receiving of messages cla~si
fies tasks into two types--message consumers and mes
sage producers. A consumer task waits for· a message,
performs an action based on the message, and then
returns to the wait state until another message is re
ceived. A producer task initiates its function by sending
a .me~sage to another taSk, waits for a response, and then
sends another message. Figs 5 and 6 graphically illustrate
the processing within these two tasks. The distinction be-

2-308

TASK ENTRY POINT

INITIALIZE TASK

~----- PERFORM FUNCTION

INITIALIZE OPERATION
(SEND MESSAGE)

..__ ___ __, WAIT FOR RESPONSE

Fig 6 Producer task flow.
Producer processing flow is
opposite to that of consumer
task. Instead of passively re
acting to requests from other
tasks, producer task issues re
quests to which other tasks
must respond

tween consumer and producer tasks is relative since many
tasks act as both consumer and producer.

Executive Modules

RMX/80 is supplied as a library of relocatable and link
able modules. These modules are added selectively as
required when the user-supplied tasks are passed through
the link program. Only modules actually requested by
the application are linked in. For example, if the appli
cation program does not specify use of the free-space
manager, that module is not linked into the system.

One module, the nucleus, ·provides basic capabilities
(concurrence, priority, and synchronization/communi
cation) found in all real-time systems. Additional, op
tional modules may be configured with user programs
(tasks) to form a complete application software system.
These modules include:
Terminal handler-Providing real-time asynchronous
1/0 between an operator's te'rminal and tasks running
under the RMX/80 executive, •the handler offers a line
edit feature similar to that of ISIS-II and an additional
type-ahead facility. (ISIS-II is the supervisory system
used on the lntellec Development System.)
Free-space manager-This module maintains a pool of
free RAM and allocates memory out of the pool upon
request from a taSk. In addition, the manager reclaims
memory and returns it to the pool when it is no longer
needed.

AFN·01931A

CONFIGURATION
PARAMETERS

Debugger---Designed specifically for debugging soft
ware running under the RMX/80 executive, the debugger
is used by linking it to an application program or task.
Thus, it can be run directly from the single-board com
puter's memory. In addition, an in-circuit emulator,
such as ICE-80, can be used to load and execute the
debugger, providing all resources of the lntellec de
velopment system to simplify debugging effort.

Analog interface handlers-Consisting of RMX/80 tasks,
these handlers provide real-time control for SBC 711,
724, and 732 systems.

Diskeue file systems-Giving RMX/80 users diskette
file management capabilities, the diskette driver allows
users to load tasks into the system and to create, access,
and delete files in a real-time environment without dis
rupting normal processing. All file formats are compatible
with ISIS-II for both single and double density systems.

In addition to application program module or task
requirements, the user also supplies a set of generation
parameters. These parameters are a set of tables that
inform the executive of the number of tasks and ex
changes in the system. Fig 7 illustrates the system gener
ation process.

Summary

The significance of RMX/80 to software design parallels
the significance of the single-board computer to hard
ware design. Microcomputers allow designers without ex
tensive experience in digital systems to bring computer
processing power into their applications. Similarly, the
executive relieves the hardware designer of much soft
ware design required for real-time applications. Designed
to facilitate growth, since new software needed to support
hardware expansions can be supported easily by the ad
dition of new tasks, this executive also substantially re-

Fig 7 Target microcomputer system.
Configuration parameters are linked
together with appropriate RMX/80 and
user task modules. Resulting program
is then transferred to Its target SBC
80 system via programmed p/ROMs
or is debugged using in-circuit emula
tion and then transferred

duces recurring costs because it requires a minimum of
memory and does not require peripheral bootstrap load
ing devices. RMX/80 results in economical, shorter, and
more flexible software development efforts when design
ing, building, and verifying real-time user applications.

Biblio9raphy

C. G. Bell, A. Newell, Computer Structures: Readings and E!iC·
amples, McGraw-Hill, New York, 1971

P. Brinch-Hansen, Operating Systems Principles, Prentice Hall,
1973

E. W. Dijkstra, "The Structure of the THE Multiprogramming
Systems," Communications of the ACM, May 1968, pp 341-
346

E. I. Organick, The Multics System: An E!iCamination of Its
Structure, MIT Press, Cambridge, Mass, 1972

D. M. Richie, K. Thompson, 0 The UNIX Time Sharing System,"
Communications of the ACM, July 1974, pp 135-143

2-309

Kenneth Burgett, currently software
project leader for OEM products and
project leader for RMX/80 at Intel Corp,
has been involved in system program
ming for a variety of computers. He
holds a BS degree in mechanical en
gineering from Marquette University.

Edward O'Neil received a BS degree
from Louisiana State University and an
MBA degree from California State Uni
versity. Currently software marketing
manager for the single-board computer
family at Intel Corp, his background in
cludes design and development of real
time operating systems.

COMPUTER DESIGN/JULY 1977
AFN-01931A

ARTICLE
REPRINT AR·124

August 1980

2-311 AFN-01931A

PRODUCT ANNOUNCEMENT

Introducing the RMX/86™ realtime,
multitasking, 16-bit operating system

"Now we have a situation in which electronic intelligence is spreading to more and more
places, and in addition, the application sophistication at each of these places is growing as well.
So, when we multiply what it takes to program all the new microcomputer products so that
they can be applied, and calculate what that means in terms of how many computer program
mer,s will be needed by 1990, we come out with a requirement for over one million computer
programmers!" Excerpted from a speech by Andrew S. Grove, President, Intel Corporation,
given before the New York Society of Security Analysts, fanuary 24, 1980.

As production teclJ.J:iolo. gie.·s such as. V ... L. SI (Ver.y
Large Scale Integration) proliferate- with
their greater levels of density~the use of
low-cost microcomputer hardware to solve

increasingly complex application problems has creat
ed a crisis in software. A partial solution to the pro
grammer shortage would be the creation of ''building
blocks" for system development. It is this modular,
building block concept upon which the RMX/86 Op-
erating System is constructed. ·

The RMX/86™ operating system

This modular operating system for Intel 16-bit
microcomputers allows custom operating systems to be
assembled largely from off-the-shelf software com-

ponents. Such systems when needed in OEM micro
computer applications, pose problems-rarely can an
OEM afford man-years of effort to develop the intimate
familiarity with the hardware that's needed to design
executive software. But with Intel's RMX/86 system he
won't have to.

In addition, this second-generation 16-bit system adds
error handling flexible command-line decode, and other
advanced OS capabilities to previous options available
on the mature RMX/80 package.

All real-time multitasking systems require executive
software to manage the resources shared by the pro
grams (CPU time, memory and I/OJ, respond to inter
rupts and then allocate the resources according to
established priorities. Normally, these functions are
intermingled in an OS with higher-level system func
tions that often prove superfluous in microcomputer ap
plications.

The RMX/ 86 package combines all those required
executive functions in a single module, called the
nucleus. Other modules in the package tailor the execu
tive system to its application by adding higher-level
operating system functions such as disk-file systems.
The application programs and optional modules con
nect to the nucleus with simple software interfaces.

Since the nucleus is essentially open-ended, it serves
. as the software foundation for expanding both higher
kvel operating system functions and varieties of appli
cation programs. Although most microcomputer appli
cations are dedicated, many do require such higher-level
capabilities.

The OEM way

The modular approach to system software fits in with
the way most OEMs (and high-volume end users) apply
.single-board computers. They generally start with a
minimum amount of hardware marketed at the lowest
cost possible. Then, when their users are fully utilizing
the original functions and are willing to buy more, the

2-312 AFN-01931A

The RMX/86 Nucleus is the heart of the operating system and is
surrounded by application, human interface and input/output
facilities.

OEM adds functionality by increasing the executive
facilities, application tasks and hardware-allowing the
fastest turnaround possible.

To see how the RMX/ 86 operating system works,
consider a typical example. Say an OEM develops a
factory heating and air-conditioning control system
with a single-board computer, analog I/O, special con
trol devices and operator terminal. He uses the nucleus,
and terminal handler modules, plus user tasks stored in
EPROM.

But suppose the OEM's customer wants to enhance
the system with, say, disk storage. He simply adds a
disk controller board and II 0 system software. The
original programs could also be made disk-resident. If
the original application had been based on a conven
tional executive, extensive redevelopment would have
been necessary.

If, on the other hand, the application had used the full
I/O system from the start, initial sales would have suf
fered because the OEM's system would have been more
costly. And if the software is not .extendible, future sales
are lost.

The historic problem with conventional "general
purpose" operating systems is that they usually depend
on hardware that the application would not otherwise
need-for example, large disk systems while a typical
OEM system uses no mass storage at all. Modular
operating systems are designed to accommodate a diver
sity of applications without undue hardware imposed
on them.

For an even closer fit with customers applications,

the RMX I 86 modules closely parallel hardware
modularity.

Corresponding to the hardware, the RMX I 86 nucleus
manages CPU, memory and I/O sources. When linked
to optional modules it can support standard iSBC
devices like consoles and disk controllers. Similarly,
users may add device driver software modules for their
custom peripherals. All software can reside in EPROM/
ROM if mass storage is not available.

The RMX I 86 operating system is designed for config
uration, to user specification, on an Intellec develop
ment system. The same system supports application
software development as well as linking and locating
both high-level and assembly language.

What does a nucleus do?

A real-time multitasking nucleus gives a program the
means to monitor and control external events. Tasks
running concurrently, using the services of the execu
tive are signaled with interrupts and the executive
schedules resources for the tasks on the basis of priority.
For example, a task trying to bring an oven's tem
perature under control should have a much higher pri
ority than a report generating task. The nucleus' sched
uler decides whether a running task should be inter
rupted to process data from an interrupting device.

The RMX/86 nucleus makes event-driven priority
scheduling possible by monitoring system states, deter
mining task requirements, allocating the resources and
gathering the resources for reallocation after use has
completed. Resources include CPU time, memory and
1/0.

As in most priority based systems, the highest-pri
ority task that's ready to run uses the CPU; others are
put on a ready list. After servicing an interrupt, the
nucleus returns the CPU to the highest-priority ready
task.

Managing memory space

A memory manager, built into the nucleus, handles
the 8086's megabyte addressing range, insuring that
memory is used efficiently. The memory manager or
ganizes memory into a tree-structured hierarchy of
pools according to each job's requirements, and pro
vides for allocation and deallocation of memory from
these pools. When the nucleus or application tasks re
quire memory, the memory manager allocates it on the
basis of segments that are multiples of 16-bytes (to
65,536 bytes) corresponding to the 8086's segmented
memory architecture.

The RMX/ 86 nucleus provides three sets of facilities
for tasks to communicate with one another. Each of the
three is optimized for either data transfer, synchroniza
tion or mutual exclusion.

Mailboxes are provided to allow tasks to send data, in
the form of segments, to one another. Since each seg-

2-313 AFN·01931A

ment is referenced by a description, of course, only
pointers are moved rather than massive blocks of data.

Semaphores.offer low overhead mechanisms for syn
chronization operations. For example, one task can
simply set a semaphore to tell another task that an
event has happened ("Analog data received").

The third communication facility offers a unique
mutual exclusion facility. Regions are defined as a body
of code which manipulates a shared resource. The
RMX I 86 nucleus insures that while one task is manip
ulating the resource others don't inadvertantly affect it.

All intertask communication functions are accessible
with simple calls to the nucleus. For example, to access
a mailbox the task simply names the mailbox desired.
The programmer has no need to know the internal
structure of the mailbox, since all functions are access
ible through easily programmed interfaces.

Fault tolerance

Another RMX/ 86 feature, exceptional-condition
handling makes error handling simple rather than
elusive. Programs can be designed to manage error con
ditions and take the appropriate corrective action.

First, there's an option to specify to the nucleus
whether or not there should be any error handling for a
particular task. A programmer can use a default handler
to abort a task or he may program a specific course of
action-for example, load a fresh copy of the program
and try again.

The exception-condition facilities also detect pro
gramming errors such as a wrong call to the nucleus and
system problems, like insufficient memory. All-in-all
the OEM will find that fault tolerance is no longer just a
buzzword.

Beyond the microprocessor

Most microcomputers are used with a range of pe
ripheral devices, from. serial lines to mass storage.

The RMX I 86 II 0 system provides the user with a
very general file concept; that of files as a data sink or
source. The characteristics of specific storage medium
dictate the access techniques for a given file. For exam
ple, .a disk file may be accessed either in sequential or
random fashion, while a file accessed over a serial link
(USART) must be processed serially.

Using the data sink/ source concept, the user can de
velop application programs without worrying about the
physical characteristics of the device.

Such device independence simplifies application pro
gramming and allows programs to be used with a vari
ety of devices.

The RMX/86 IIO system supports three types of
logical files:

Physical files represent the lowest interface level
which retains its device-independent characteristics.
Physical files provide a simple, consistent interface to
all device drivers. OPEN, CLOSE, READ, WRITE,

SEEK, and special instructions perform all desired II 0
operations.

Stream files provide a temporary data-transmission
path between tasks. One task may write data to the
stream file while another reads it. The I/O system pet'
forms the required synchronization and buffering.
Stream files offer the user a simple mechanism for pass
ing data between tasks-one that remains consistent
with other file options, thus allowing the user to
simulate an external device while waiting for hardware
to be built.

Named files are used for the conventional data storage
on mass-storage devices like floppy or hard disks for
later access. However the RMX/ 86 II 0 system goes
one step further by setting up a hierarchical directory of
files. This feature allows the user to organize hisfiles to
be consistent with his application.

The named-file system has another advantage: It per
mits file-access checking, so a user can decide which of
his files he wants to protect and which to share with
other users.

Each of the file options can be configured indepen
dently; so that the user may select only the features he
needs-nothing more.

Furthermore, the RMX/86 IIO system is designed to
allow the user to easily add his own device drivers to the
system as the need arises.

The RMX/86 operating system was designed to offer
the user a wide spectrum of convenient human inter
face functions. For example, the user of mass-storage
systems is provided display directory and copy file
utilities. Additionally, the OEM who needs his own
interactive capability can either use the standard
RMX/86 facilities or easily extend the system's human
interface routines to meet his specific application
requirements.

Summary

The software crisis can be overcome only by in
troducing a broad base of system software functionality
into the market, allowing OEMs to concentrate on their
area of expertise.

Intel's RMX I 86 operating system takes a major stride
forward in providing extendible, proven tools for OEMs
to use in creating custom operating systems for their
application.

The RMX/86 operating system thus provides the
OEM with a powerful new system building block, en
hancing the productivity of system generation. New
dynamic tools like the RMX/ 86 operating system allow
users to deliver their product into the marketplace
much earlier, thereby capturing an important com-
petitive advantage. ·

2-314 AFN-01931A

ARTICLE
REPRINT

"Reprinted with permission from Electronic Design, Vol. 28, No. 6, copyright Hayden Publishing Co., Inc., 1980."

AR-125

April 1980

2-315 AFN-01931A

Modular multitasking executive
cuts cost of 16-bit-OS design

A modular, real-time multitasking operating sys
tem for single-board computers allows custom

operating systems to be assembled largely from off
the-shelf software components. Such systems, when
needed in OEM single-board µC applications, pose
problems-rarely can an OEM afford man-years of
effort to develop the intimate familiarity with the
hardware that's needed to design executive software.
But with Intel's RMX/86 system for iSBC 86 single
board computers, he won't have to.

In addition, this second-generation, 16-bit system
added error-handling, flexible command-line decode,
and other advanced OS capabilities to previous options
available on the older RMX/80.

All real-time multitasking systems require ex
ecutive software not only to manage the resources
shared by the task programs (CPU time, memory and
1/0), but also respond to interrupts and then allocate
the resources. ac1;ording to established priorities. Nor
mally, these flinctions are intermingled in an OS with
higher~level system functions that often prove super
fluous in single-board computer applications.

The RMX/86. OS package combines all those re
quired executive functions -in a single module, called
the nucleus. Other modules in the pac~age tailor the
executive system tO its application by adding higher
level OS functions such as disk~file systems. The task
programs and optional modules· connect to.the nucleus
with simple software interfaces. Users cart also add
their own extensions. ·

Since the nucleus is essentially open-ended, it can
serve as the software foundation for expanding both
the operating system and the variety of task pro
grams. Although most single-board computer applica
tions are dedicated, many do require higher-level
capabilities.

The OEM way

The modular approach to system software fits in
with the way most OEMs (and high-volume end users)
apply single-board computers. They generally start
with a minimum amount of hardware (often, just a

Joseph Harakal, Software Product Manager, Intel Corp.,
5200 Elam Young Pkwy., Hillsboro, OR 97123.

A MULTIPLE EVENT I MIJLJIPLE
lllSK SYSTEM e

o~
llOUTINES

1. In a real-time multitasking system, task modules (A
through E) can often perform their functions only after
hardware-generated interrupts are serviced (highlighted).
The executive In such a system provides intertask
communications and synchronization.

RMX/80 vs RMX,186 features

RMX/80 l RMX/86

Nuclel Nuclel

For iSBC 80/10 One serves all iSBC

For iSBC 80/20
boards

For iSBC 80/30
Free-space manager

Optional modules
Exceptional-conditions
handler

Disk-file system Optlonal modules

Disk 1/0 1/0 system

Terminal handlen Hierarchical file system
· Free space manager Numbered file system

Analog 1/0 handlers
Internal file system

Bootstrap loader
Physical file system

Debuggers

Support packages ·interfaces for custom
files .and 1/0

Fortran-SO run-time Human interface system
Basic-80 interpreter

Command"line decoder
8080/8085 fundamental
support

ELECTRONIC DESIGN 6, March 15, 1980 2-3Hl .. AFN·01931A

single board) to begin an application at low cost. Then,
when users are satisfied with the original functions
and are willing to buy more, the OEM adds the
executive options, tasks and hardware-with as fast
a turnaround as possible.

The problem with conventional "general-purpose"
software systems is that they usually depend on
hardware that the application may not need-for
example, standard peripherals whereas a typical OEM
system uses special peripherals. Modular OSs are
designed to accommodate both.

What's more, a con.ventional system can make it
difficult and/ or awkward to use new peripherals ornew
technology, such as magnetic-bubble memory-most
command-line decoders, for instance, are not ac
cessible to the user. So, a user may discover that there
is no straightforward way of adding new facilities.

Call it foundation software

For an even closer fit with single-board computer
applications, the RMX/86 modules closely parallel
hardware modularity: Each computer board contains
program and data memory, serial and parallel I/O,
and other generally required functions in addition to
the CPU. Each user's system is expandable with
optional modules. Frequently used devices like disk
controllers and analog I/O are available. In addition,
the user can connect custom devices to his system via
the Multibus architecture.

Corresponding to the hardware, systems software
manages CPU, memory and I/O resources. Linked to
optional modules,. it can support standard iSBC de
vices like consoles and disk controllers. Similarly,
users may add device-driver software modules for
their custom peripherals. All software can reside in
EPROM/ROM if mass storage is not available; other
wise, most of the system can be disk-resident. The
disk-file module is suitable for such applications as
data logging.

The RMX/86 is designed for configuration on an
Intellec development system according to user re
quirements. The same system supports task-module
development as well as linking and locating in both
high-level and assembly languages. It also provides
libraries of frequently used program functions to
minimize the amount of code the system designer
must write and debug.

To see how the RMX/86 works, consider a typical
example. Say an OEM develops a factory heating and
air-conditioning control system having a single-board
computer, analog I/O, special control devices and an
operator terminal. He uses the nucleus, analog-han
dler and terminal-handler modules, plus user tasks
stored in EPROM.

But suppose the OEM's customer wants to enhance
the system with, say, disk storage. He simply adds
a disk controller board and uses I/O system software.
The original programs could also be made disk-resi
dent. If the original application had been based on a

ELECTRONIC DESIGN 6, March 15, 1980 2-317

PARAMETER
INTERFACE

2. The RMX/86 operating system treats all 1/0 as flles
a feature that makes It easy to add new peripherals and
special files.

3. A hierarchical file system eliminates the need for
scanning all the files on a disk. If Smith is working on
Project A, he only has to choose b.etween the files related
to his project.

AFN·01931A

conventional executive, extensive redevelopment
would have been necessary.

If, on the other hand, the application had used the
full I/O system from the start, initial sales would have
suffered because the OEM's system would have been
more costly. And if the software is not extensible,
future sales opportunities are lost.

A real-time multitasking executive gives a program
the means to monitor and control external events.
Tasks run concurrently, using communications and
synchronization services of the executive (Fig. 1).
Events are signaled with interrupts, and the executive
schedules resources on the basis of priority-for
example, a task trying to bring a factory under control
should have a very high priority. The executive decides
whether a running task should be interrupted to
process data from an interrupting device.

The RMX/86 nucleus makes such event-driven
priority scheduling happen through resource man
agement. It monitors system states, determines task
requirements, allocates resources and gathers them
for reallocation. Resources include CPU time, memory
and I/O.

As in other systems, the highest-priority task that's
ready to run uses the CPU; others are put on a read
list. Finishing the high interrupt, the nucleus returns
the CPU to the highest-priority ready task.

Managing inner space

A free-space manager, built into the nucleus, han
dles the 8086's megabyte addressing range, making
sure that memory is used efficiently. The manager
organizes memory into a tree-structured hierarchy of
pools according· to job requirements, and returns
memory to pools. When the nucleus requires memory
for a job, mailboxes or other functions, the manager

provides it. Or, when a task requests memory-for
example, to input data-the manager allocates it. This
is done in segments that are multiples of 16 bytes,
corresponding to the 8086's segmented memory.

Tasks send data to each other through mailboxes
which contain messages located in RAM. As in other
systems, separate mailboxes are used for receiving
and for responding.

In the RMX/86, however, mailboxes provide several
options, including synchronization, mutual exclusion
(which prevents one task from destroying another
task's data) and communications-for example, with
the outside world-through modules such as the
terminal handler.

The RMX/86 nucleus also provides other means for
communications. One example is semaphores-low
overhead mechanisms for synchronization operations,
resource allocation and mutual exclusion that require
a simple flag. For example, one task can simply set
a flag to tell another task that an event has happened
("Analog data received").

All these functions are accessible with simple calls
to the nucleus. For example, just two calls are needed
to use the free-space manager: CREATE-SEGMENT to
request memory and DELETE-SEGMENT to relinquish
memory. Likewise, to obtain an mailbox, the task
simply names the mailbox desired. The programmer
doesn't need to know the internal structure of the
executive, since the functions are accessible through
easily programmed interfaces.

Errors, big and small

Another RMX/86 feature, the exceptional-condition
handling, makes error handling selective rather than
all or nothing. Programs can be designed to manage
error conditions and take corrective action.

Modular multitasking comes on
Multitasking design is coming to the fore, especially

for single-board-µC applications that usually require
a lot more software than previous µCs-an advance
from simple foreground-background programs to
techniques based on event priorities.

Although single-board µCs started out in the
mid-1970s at the low end of the OEM performance
range, they have now reached the top in performance
and memory capacity. As more and more OEMs and
users take advantage of that increased capability, the
size of applications programs grows-and grows.

In the same period, the costs for developing software,
salaries and overhead have almost doubled. Moreover,
skilled programmers have become one of the
industry's most limited resources. No wonder that
software costs comprise up to 80% of system develop
ment costs today, and that the emphasis has shifted
from in-house software design to buying off-the-shelf
programs.

Because multitasking designs have to be highly
modular, time-saving tools such as high-level Ian-

ELECTRONIC DESIGN 6, March 15, 1980

guages, program libraries and off-the-shelf software
can be used freely to help keep development, main
tenance and expansion costs under control. Code
written in high-level languages is a bargain today,
compared to code written in assembly language:
around $2.50 a byte vs $10 for assembly language.
High-level code is not as compact, but it's far more
cost-effective for the 80% of the tasks that run only
about 20% of the time in typical applications.

Today, there's a growing choice of languages. Struc
tured languages like PL/M and Pascal fit well into
the "top-down" modular design technique used to
divide an application into tasks. Others, like Fortran
for mathematical applications and Basic for easy end
user programming, are also available.

In general, a real-time multitasking executive offers
a reasonable choice for the user who has a lot of
software to write, must meet special requirements,
and has no time to develop a custom operating system.
The RMX/86 system, with its modular design, fills
the bill to save development cost.

2-318 AFN·01931A

First, there's an option to specify to the nucleus
whether or not there should be any error handling
for a particular task. A programmer can write his own
handler either to abort a task or to program a specific
course of action-for example, report exceptional
conditions and continue with next instruction; load
copy of module and try again; start alarm program.

The exceptional-conditions support also detects pro
gramming errors such as a wrong call to the nucleus
and system problems like insufficient memory. Natu
rally, the RMX/86 provides all normal OS functions.
System options include a terminal handler for CRT
and TTY consoles device drivers for Intel's floppy and
hard-disk controllers and an integrated 1/0 system.
A subsystem of the 1/0 system supports tree-struc
tured directories hierarchical named files (Fig. 2).

1/0 features are vital

Most single-board computers are used with special
peripheral devices, and many with other kinds of files
and media. So, the 1/0 system is designed to make
it easier to add special files, new peripherals and
custom device drivers-the user need never feel locked
in.

The RMX/86 1/0 system provides the user with a
very general file concept-as a data sink or source.

The characteristics of a specific storage medium
dictate the access techniques for a given file. For
example, a disk file may be accessed either in sequen
tial or random fashion, while a file accessed over a
serial link (USART) must be processed serially.

Using the data sink/source concept, the user can
develop application programs without worrying about
the physical device where the data will be stored. Such
device independence simplifies application program
ming, and existing programs can be used with many
devices.

The RMX/86 1/0 system supports three types of
files.

Physical files represent the lowest interface level to
retain device-independent characteristics. They pro
vide a simple, consistent interface to all device drivers.
OPEN, CLOSE, READ, WRITE, SEEK and special instruc
tions perform all desired 1/0 operations.

Stream files provide a temporary data-transmission
path between tasks. One task may write data to the
stream file while another reads them. The 1/0 system
performs the required synchronization and buffering.
Stream files offer the user a simple mechanism for
passing data between tasks-one that remains consis
tent with other file options. The user can simulate an
external device while waiting for hardware to be built.

Named files are used for the conventional data
storage on mass-storage devices like floppy or hard

1 1ASKB1: ~~UC~DUkE P08L!C;

3

3
2

call rqendSinitStask;
CALL lNIT;
do forever;

msgStoken=rqreceivesmessaoec~~iltoxsx,
OFFFFh,@respSex,@exSVAl):

call rqSsend$message(rqSnormaJ$thsout,
msqStoKen,outsresp,@exsvalJ;

rnsg$token= rqsreceivesmessaqetoutsresr
,OFfF~H,irespsex,@exsvalJ:

call roSdeletessegment(~sgStoKen,iexsv
al);

end; 1• ot oo forever *I
ena;

4. RMX/86 can easily be expanded with user-coded tasks.
The one shown here initializes a user program by calling
the procedure INIT and helps display messages.
RQRECEIVE$MESSAGE is a system primitive that examines the
mailbox to be serviced and places the token for the first

message there (MSG$TOKEN). Another system primitive,
RQ$SENDMESSAGE, puts the token for the message Into the
terminal handler's output mailbox. The primitive
RQ$DELETE$SEGMENTclears the used memory and returns
it to the free-memory manager.

ELECTRONIC DESIGN 6, March 15, 1980 2-319 AFN·01931A

disks for later access by another system. However,
the RMX/86 goes one step farther by setting up a
hierarchical directory of files. This feature lets the
user organize his files to be consistent with his
application (Fig. 3).

The named-file system has another advantage: It
permits file-access checking, so a user can decide
which of his files he wants to protect and which to
share with other users.

Each of the file options can be configured independ
ently; the user may select the features he needs
neither more nor less. Furthermore, the user can add
his own device drivers to the I/O system.

The RMX/86 is designed· to offer the .user a wide
spectrum of convenient functions (Fig 4). For example;
the user of mass-storage systems has a display direc
tory and copy files available. Or, the OEM who needs
his own interactive capability can easily extend the
system's human interface routines to meet his require
ments.

As µP applications expand, so does the need for
loaders that allow parts of the applications software
to reside on disks. The RMX/86 package provides a
resident system loader that permits loading for either
absolute or relocatable format ...

How useful?
Immediate design applitati9n
Within the next year ·
Not applicable

ELECTRONIC DESIGN 6, March 15, 1980

Circle No.

541
542
543

2-320 AFN·01931A

PROCEEDINGS OF THE IEEE, VOL. 66, NO. 2, FEBRUARY 1978

A Small-Scale Operating System Foundation for
Microprocesor Applications

KEVIN C. KAHN

Abstract-Sound engineering methodology, which has long been val·
ued in hardware design, has been slower to develop in software design.
This paper nses a case study of a small real-time system to discuss soft·
ware design philosophies, with particuar emphasis on the abstract ma·
chine view of systems. It demonstrates how the currently popular soft·
ware design axioms of generality and modularity can be used to produce
a software system that meets severe space constraints while remaining
relatively portable across a family of microcomputers. These sorts of
constraints have often been used lo justify ad hoc design approaches in
the past. The results of the project suggest that the use of such tech·
niques actually make the meeting of many constraints easier than would
a less organized approach. In addition, the reliability and maintainability
of the resultant product is likely to be better.

I. INTRODUCTION

A PROCESSOR, as defined only by its hardware, is typi
cally not an adequate base upon which to build applica
tions software. Broad classes of applications can be ex

amined and found to share more than the hardware defined
instruction set. To avoid the reengineering of this common func
tionality, we would prefer to build such common parts once and
thereafter treat this base software as though it were part of the
machine. For example, a software system sometimes called an
operating system, an executive, a nucleus, a kernel, or some
similar term, is often supplied with a hardware product and can
be viewed in exactly this way. In this paper, we examine a small
scale system to demonstrate this approach to bridging the gap
between the hardware and the application. That is, we will view
the software as a direct extension of the hardware-a view which
may indicate future directions in microprocessor integration of
function.

This paper is meant as both a case study of a particular system
design and as a suggestion of the proper approach to such design
situations in general. We will first discuss the abstract machine
view of computer systems and attempt to demonstrate that this is
a useful philosophical approach for building systems. We will
then apply this approach to the discussion of a system to coor
dinate programs performing real-time control functions- RMX-
80™ [18]. The emphasis of the paper will be on techniques and
methodology rather than on the particular functionality of RMX.
Special attention will be given to such issues as the use of
modularity to enhance the adaptability of the system and the use
of design generality to achieve global rather than local optimiza
tions.

II. THE CONCEPT OF ABSTRACT MACHINE

What is a computing "machine" or processing unit? We gen
erally identify a processing unit as a particular collection of hard-

Manuscript received September 1, 1977; revised October 11, 1977.
The author is with the Intel Corporation, Aloha, OR 97005.

™Intel Corporation, Santa Clara, CA.

ware components that implement the instruction set of the
machine. This very physical definition of a computer dates from
mechanical processors. Even with modern computers, before
large-scale integration, it was easy to physically point at the proc
essing elements as distinct from memories, peripherals, and pro
grams. Continued integration of function has at least made this
physical distinction more difficult with single chips subsuming
processing, memory, and peripheral interface functions. Micro
programming (i.e., replacing hardwired instruction logic with a
more elementary programmed processor) as an implementation
strategy has logically blurred this distinction as well. That is,
when the basic visible instruction set of a processor is itself imple
mented in terms of more primitive instructions it is more difficult
to identify "the machine." It is clear that this narrow physical
definition of a processor is not adequate for current technology
levels and Is likely to become even less viable as the technology
continues to develop.

Actually we have been using alternative definitions of a proces
sor for some time. All of the theoretical work in finite state
machines, for example, deals with conceptual processors. Like
wise applications programmers seldom really regard the machine
they program as much more than collection of instructions found
in a reference manual-the physical implementation of the
machine is of little concern to them. Indeed, they may never come
physically near the hardware if they deal with a typical time
sharing system-rather, the terminal is the only physical manifes
tation of the computer such users may see.

More to point, perhaps, are the numerous interpreters that
have been written for languages such as Basic. Each such inter
preter actually produces a conceptual machine with one instruc
tion set targetted to a specific application. With standard com
piled languages such as Fortran, Algol, or Pascal, a higher level
source statement is translated into the instruction set of the
physical hardware. In contrast, interpreted language systems
translate the source into the instruction set of some conceptual
machine that is better suited to the running of programs written in
the language. For example, the hardware may not provide
floating-point instructions or define a floating-point data repre
sentation. In such a case it may be easier to define a machine that
recognizes a particular floating-point data format with an instruc
tion set that includes floating operations. These interpreters are
high-level machines that have usually been implemented in soft
ware. Likewise, it should be readily apparent that, just as these in
terpreters provide high-level machines to their associated trans
lators, any programming language, compiled or interpreted, pro
vides one to its users.

Interpreters of this sort typically may examine and decode a
stream of instruction values in a manner analogous to the hard
ware. Alternately, the new instructions may all be executed as
subroutine calls using the appropriate hardware instruction. That
is, the entire bit pattern for CALL X (where Xis the address of a

0018-9219178/0200-0209$00.75 © 1978 IEEE
Reprinted with permission.

2·321 AFN-01931A

COBOL

DATA
BASE

SYSTEM

USER
APPLICATION

SYSTEM

BASIC

OPERATIN'G SYSTEM

BASE HARDWARE

FORTRAN

FLOATING
POINT

PACKAGE

Fig. 1 .. Typical collection of abstract machines.

routine that implements a part of the new instruction set) can be
regarded as a new Operation code rather than as the hardware
operation CALL. In either case the programmer using these exten
sions can view the harware-software combination as though it
were a new machine with a more useful instruction set. Micropro
grammed machines such as the IBM 5100 or Burrough's 1700
have simply optimized the performance· of such interpreters or
subroutine packages by committing them to a faster storage
medium.

Viewed in this light we can identify any collection of hardware
and software that provide some well defined set of functions as
defining an abstract machine [10],[12]. This machine has an in
struction set that consists of the functions provided by the hard
ware-software combination. For a particular application it may
be possible to view multiple such abstract machines· by taking
various pieces of the whole. For example, the physical machine
provided by a set of components is just one abstract machine. It is
of particular interest since it is the greatest common abstract
machine that can be identified as being used by any application
running on that computer system. A Basic interpreter running on
this machine might then constitute a second virtual machine. A
Basic program runnirig on this interpreter that accepted high level
commands and performed according to them· might be a third
level machirie usable by people with no knowledge of either the
hardware or Bask. Whenever we can identify functions of suffi
cient commonality among a number of applications, it may be
worth viewing the software which provides these functions as ex
tensions of the base hardware machine which define some aug
mented or even different machines. Users programming such an
application can then view this abstract machine, rather than the
base machine as the vehicle that they are programming, and in
doing so avoid reengineering the functions that it provides. Fig. 1
illustrates an example of such machines. It is important to remem
ber that at any time, many abstract machines may be thought of
as existing on the same base hardware.

III. OPERATING SYSTEMS AS ABSTRACT MACHINES

The ternis operating system or executive have been used to
describe software systems of widely different functionality. These
machines generally provide for the management of some machine
resources such as input, output, memory space, memory access,
or processor execution time. We might then attempt to define an
operating system as some collection of software modules which
defines an abstract machine that includes resource management
functions as well as the hardware supplied computational func-

PROCEEDINGS OF THE IEEE, VOL. 66, NO. 2, FEBRUARY 1978

tions [2],[6],[8],[11]. With such a broad definition, however,
large-scale multi-user time-sharing systems and small single user
microprocessor ·development systems both . rriay claim to have
operating systems. Clearly, the range of software systems covered
by.this definition is large; encompassing products which differ by
orders of rriagnitude in complexity. Rather than become involved
in trying to resolve this disparity, we will qualify our use of the
term and refer to an operating system "foundation." That is, we
will describe a software system which provides a minimal base for
the construction of real-time applications. We will avoid the
somewhat .irrelevant question of whether the system comprises a
complete "operating system."

The important item to realize from the above discussion is that
any operating system functionally enlarges the processor seen by
the programmer. The functions that it provides become as rnuch a
part of the machine's functionality as jump instructions. Indeed,
it is functionally unimportant to the user desiring to read from a
file whether itrequires a single hardware instruction or a large
software routine. to accomplish it. In terms of the abstract
machine discussion above, we will examine a software package
which defines an abstract machine that includes functions re
quired to coordinate programs performing real-time control ap
plications [l],[9],[12].

The key overall requirement of the operating sytern foundation
that we discuss in this paper will be that it supply a minimal cover
ing set of functions to permit cc>0rdination of asynchronous
tasks. To determine this set we will need to further examine the
needs of its users and environment of its use. In describing this
foundation, we are defining an abstract machine that must be
programmed to be of use; that is, like the instruction set of the
base machine the foundation by itself performs no work but
rather provides an environment within which useful tasks can be
run.

We should note, here, some of the limitations of the system
which differentiate it from large-scale operating systems. First, it
is not primarily intended for a multi-user environment, particu
larly because the underlying hardware does not provide the neces
sary support to protect users from one another. Also, it will often
be used to control functions of specialized devices and therefore is
"close" to the 1/0 devices. That is, it does not supply the sort of
high level 1/0 control system which is often present in larger sys
tems for controlling more conveµtional 1/0 devices. Finally, it
does not assume a backing store from which program overlays
can be loaded (but it can easily support such an extension).

IV. DESIGN CONSIDERATIONS

A. Us<! Environment

The foundation system we will describe is RMX-80 [5] which
was designed to be used with members of Intel's Single Board
Computer (SBC) family of products. This family includes a wide
range of bus compatible processor, memory, and peripheral
boards. Of most interest to this discussion are the processor
boards which are based on the Intel 8080 or 8085 microprocessors
and include varying amounts of on-board ROM and RAM mem
ory and 1/0 interfaces. In addition, the boards vary inthe sophis
tication of their interrupt structures and timing facilities. In terms
of abstract machines we might characterize these computers as
essentially the same machine at the processor level but different
machines at the computer system level. It was desired that 'the
abstract machines defined by adding RMX to the underlying com
puters be as much the same as possible.

During the design of RMX, we expected that its users would
span the entire broad range of applications across which the SBC

2-322 AFN-01931A

KAHN: SMALL-SCALE OPERA TING SYSTEM FOUNDATION

hardware was being put to use. This implied that it might see uses
ranging from minimal single board systems that functioned. as
single device controllers to complex multiboard applications im
plementing involved real-time process or industrial control func
tions. In particular we expected that many user-built 1/0 boards
and peripherals would be used with the system. It was important
for us to allow full use of these unknown. devices with RMX while
still providing as much assistance as possible in the building of the
controlling software systems.

As is the case with most processors, the concrete (i.e., physical)
machines represented by the SBC family do not themselves in
clude any facilities to permit multiple asynchronous functions to
be programmed, to provide for the coordination of such func
tions, or to provide time information needed for real-time ap
plications. Typically, users of these products have directly pro
grammed these functions in an ad hoc manner within their ap
plications. An examination of the sorts of functions necessary to
such applications reveals that at the very least this reengineering is
a waste of resources. Worse is the high probability of error in pro
gramming such critical functions.

The SBC hardware products were designed to eliminate the
complexities of board engineering, particularly for those users
without the necessary expertise to handle the task, by functionally
integrating individual components into complete boards. The
programming ·of functions to coordinate parallel software activi
ties is, likewise, an area which should be carefully engineered in
order to avoid subtle errors. The development of RMX was there
fore viewed as a process of functional integration analogous to
the integration of LSI components into boards. That is, just as a
well designed board relieves the user of component level hardware
engineering, RMX relieves the users of low-level software engi
neering.

B. System Requirements

The hardware environments ·and anticipated uses of RMX de
fined a stringent set of requirements for it. Foremost among these
were its· memory constraints; indeed, f1>r the anticipated· uses,
memory size considerations dominated execution speed o·nes over
a considerable range. Since we expected applications that would
reside entirely on a single board with 4K bytes of PROM, the
maximum size of the RMX foundation code was set at half of this
or· 2K bytes. Further, unlike larger minicomputer systems, many,
if not most, applications of the SBC boards would not have avail
able any mass storage or other program loading device. It was
thus important that RMX be designed to be ROM (or PROM)
resident and capable of automatically initializing the system when
powered on. ' · ·

We also anticipated that the expertise of many RMX users
would be in areas other than programming systems; We therefore
felt that the RMX machine needed to provide a fairly simple set of
concepts, avoiding where possible those constructs most likely to
cause errors. For example, we felt that a very frequent source of
programming difficulty lay in dealing with interrupts. Many
latent errors in programming systems stem from the occurrence of
an interrupe at an unexpected time. We therefore decided to at
tempt to minimize the need for users to deal with hardware inter
rupts or with the interrupt-like occurrences found in many mini
computer operating systems. At the same time we had to accom
modate the n~eds of the sophisticated user who still desired t~
take advantage of RMX but had a specific need to directly control
the hardware via the intertupt facility.

Finally, to define the general functionality of RMX we exam
ilied its· anticipated applications. Real-time applications com
monly need to perform a number of tasks of differing importance

logically in parallel, with preference always being given. to execut
ing the most critical ones first. While these tasks may be relatively
independent, they may need to periodically synchronize them
selves with one or another distinct task or with the outside world.
For the latter, interrupts are the usual hardware supplied mecha
nism. Some tasks may also need to communicate data with one
another. For example, a task servicing a sensing device may take
readings from the device which need to be communicated to two
tasks: one task ,which reacts to the reading by controlling some
other device, and another task which logs or tabulates the read
ings. Ranked in order of importance these might be control, sens
ing, and logging. Finally, the tasks must have the ability to con
trol themselves relative to real-time, either by delaying their exe
cution for certain periods or by guaranteeing that they are not in
definitely delayed by, for example, a faulty devi~e.

Requirements on the system design were also generated by con
siderations internal to the design project. One of these was the
need to provide a single RMX abstract machine on a variety of
underlying SBC boards. While separate versions of RMX for each
board could have been designed with the same external appear
ance, this approach would have led to an unnecessary amount of
internal engineering. Additionally,. without careful initial desigl\,
the differences in the bas.e hardware would have had visible ef
fects on the RMX abstract machine for each of the boards. This
requirement demanded that we partition the structure of RMX
into two parts. One part would implement those aspects which
were independent of the particular hardware. The second 'part
would· interface the first part to the underlying hardware· of the
specific boards [7].

We also wished to minimize the software development costs by
applying the best available software engineering techniques. His
torically, tight space constraints have often led to a very ad hoc
approach to software design in the belief that. more generally
designed external . features or more modularly built internal
designs would lead to inherently larger systems. As a result of this
philosophy, each needed function is designed to be as small as
possible. Unfortunately, while each function may be locally opti
mized, it is possible that the overall design suffers from duplica
tion or overlap between such individual elements. Current work
in programming methodology stresses.modularity, generality, and
structure (most often for their side effects in producing m.ore
maintainable, less error prone system.s) ..

We felt that there was more to gain, both in develqpment cost
and space performance, by avoiding optimized specialization of
function in favor of more general designs (17). This reduced the
number of separate functions that RMX had to supply. The re:
suiting external design therefore has a single mechanism that pro
vides task communication, synchronization, time references, and
standard interrupt-like control. To do so it incorp()rates the
operating system design. approaches favored in much of the mod
ern computil\g literature. Likewise, the internal structures are
highly modular and designed to be as uniform as. possible so as to
avoid replicating similar, but nonidentical internal management
routines.

V. THE RMX MACHINE

B. General Concepts

The abstract machine defined by RMX augments the base
microprocessor by introducing some additional computational
concepts. We define a task to be an independently executable pro-·
gram segment. That is, a task embodies the concept of a progratn
in execution on the processor; RMX permits multiple tasks to be
defined which can nin in a parallel, or niultiprogran{med,

2-323 AFN-01931A

fashion. That is, RMX makes individual tasks running on one·
processor appear to be tunning on separate processors by manag·
ing the dispatching of the processor to particular tasks. The reg
isters on the processor reflect the activity or state of the running
task. ()ther tasks may be ready to execute but for some reason
"have not been selected to run yet and ~o have their processor
states saved elsewhere in the system. From the point of view of the
program that is a task, execution proceeds as though it were the

· only one being run by the processor. Only the apparent speed of
execution is affected by the multiprogramming. From the point of
view of the system, every task is always in one of three states: run
ning, ready, or waiting: The task actually in execution is running.
Any other task Which could be running but for the fact that the
system has selected some other task to actually use the processor,
is ready. Tasks which are dela:yed or stopped for some reason are -
waiting, as will be discussed below.

Each task is assigned a priority which determines its relative im
portance within the system. Whenever a decision must be made as
to which task of those that are ready should be run next, the one
with the highest priority is given preference. Furthermore, in the

. 'spiritof unifying mechanisms, the same priority scheme replaces a
separate meeharnsm for disabling interrupts. Interrupts from ex
tefual devices are logically given software priorities. If the ap
plications system designer deems a particular task as of more im·
portance than responding to certain interrupts, he can specify this
by simply setting the RMX priority of that task to be higher than
the RMX priority associated with those given hardware inter
rupts. It is thus possible to maintain a high degree of control over
the ·responsiveness required for various functions.
· As.mentioned above, tasks may desire to communicate infor
mation to ~ne another. To this end the RMX machine defines a
message to be some arbitrary data to be sent between tasks. To
m~iate the communication of messages it defines an exchange to
be -the conceptual link between tasks. An exchange functions
somewhat like a mailbox in that messages are deposited there by
m1e task and collected by another. Its function is complicated by
the" facf that a task may attempt to collect a message at an ex
change that is empty. In such a case the execution of that task
must, be delayed until a message arrives. Tasks that are so dela:yed
are 'fo the waiting state. We chose this indirect communication
mechanism over one which directly addresses tasks because it per
mits' gr~ater flexibility in the arrangement of receiver and sender
tasks . .The anonymity of the receiving task implies that the sender
neeq know only the interface specification for a function to be
i;>erformed via a message to a particular exchange. The task or
tllSli:~ which implement that function need not be known and
hence may be conviently changed if desired.
)be conventional mechanism used by programs to communi

cate. with external devices is the interrupt. Unfortunately, inter
rupts 'are by nature unexpected events and programming With
them tends to be error prone. -The essential characteristic of an in
terrupt is that a parallel, asynchronous activity (the device) wishes
to communicate with another activity (a program). Since this
communication is essentially the same as that desired between
separate software tasks it seems conceptually simpler to use the
siulie message and exchange mecharusm for it. The unification of
ail .;ommunications functions is analogous to the idea of stand·
ardized I/O found in systems such as UNIX .(17). The RMX
n.iaGhlne eliminates interrupts by translating them into messages
wbiCh indicate that an interrupt has occurred. These messages are
se11:t. t~ specific exchanges associated with particular interrupts.
T~ks.which "service interrupts" do so in RMX by attempting to
reciiive a message at the appropriate exchange. Thus,. prioritized
n;estcitl interrupts are easily handled, An advantage of this unfied

PROCEEDINGS OF THE IEEE, VOL. 66, NO. 2, FEBRUARY 1978

treatment ·or internal and external communication is that hard
ware interrupts can be completely simulated via another software
task. This facilitates debugging and permits easy modification of
a system by allowing rather arbitrary insertion of tasks into a net
work of communicating tasks and devices.

Note that with this scheme unexpected interrupts do not cause
particular difficulty. For example, if the servicing task is still busy
with some previous message, the interrupt message will be left at
the exchange and will not affect the task until it is ready for an
other interrupt; i.e., until it waits at the exchange. In an applica
tion designed to properly handle the actual interrupt rate, the task
will service interrupts quickly enough to always be waiting when
the next one occurs. In this case, response to an interrupt is im
mediate. Thus this mechanism provides no loss of facility relative
to the usual interrupt scheme but it does make the proper con
trolling of such events simpler. Multiple occurrences of the same
interrupt which indicate the processor has fallen behind in its ser
vicing are logged as such by a message which indicates that inter
rupts may have been lost. These interrupts do not, however, dis
rupt the running task or complicate programming .

The last concept embodied in the RMX abstract machine is that
of time. The RMX machine defines time in terms of system time
units. It then permits tasks to delay themselves for given periods
of time so that they can synchronize themselves with the outside
world. It also permits tasks to guard against unduly long dela:ys
caused by attempting to collect a message at an empty exchange
by limiting the length of time that they are willing to spend
waiting for some message to arrive.

B. Data Objects and Functions

These concepts are realized in RMX by introducing some new
data objects and instructions. Just as the base processor can deal
directly with such data objects as 8 bit bytes or· unsigned integers,
the RMX abstract machine can deal directly with the more com
plex data objects: task, message, and exchange. Each of these
data objects consists of a series of bytes with a well defined struc
ture and may be operated upon only by certain instructions. This
is completely analogous, for example, to a machine that permits
direct operations on floating-point data objects which consist of
four bytes with a particular internal structure to represent the
fraction, exponent, and signs. In each case there are only certain
instructions that can be used correctly with the object and the in
ternal structure of the object is not of particular interest .to the
programmer.

The new instructions provided by RMX are: SEND, WAIT, AC

CEPT, CREATE TASK, DELETE TASK, CREATE EXCHANGE, and
DELETE EXCHANGE. The create instructions accept blocks of free
memory and some creation information to format and initialize
the blocks with the appropriate structure. Each corresponding
delete instruction accepts one of the objects and logically removes
it from the system. The remaining operations are of more direct
interest to the operation of the RMX machine.

The WAIT instruction has two operands: the address of an ex
change from which a message is to be collected and the maximum
time (in system units) for which the task is to await the arrival of a
message. The result of the operation is the address of the message
which was received. A special message from the systein indicates
that the specified amount of time elapsed without the arrival of a
normal message. From the programmer's point of view this in
struction simply executes and returns the specified result. Actual
execution of the instruction will involve the delaying of task exe
cution if no message is availa:ble, by queueing it in a first-come
first-served manner at the exchange. Any such delay is not visible

2-324 AFN·01931A

KAHN: SMALL-SCALE OPERA TING SYSTEM FOUNDATION

to the programmer, however. This approach unifies the commun
ication and timing aspects of the design. It directly provides reli
ability in the face of lost events due to hardware or software fail
ure. Tasks can be guaranteed not to be indeterminately delayed
due to such failures and can thus attempt recovery from them. It
also permits tasks to use the same mechanism to delay themselves
for given time intervals by waiting at an exchange at which no
message will ever arrive.

The ACCEPT instruction is an alternate way to receive a mes
sage. It has a single operand specifying the exchange from which
the message is to be received and immediately returns either the
next message at the exchange or a flag indicating that no message
was available. The task is never delayed to await a message in the
ACCEPT operation.

SEND also has two operands: the address of a message and the
address of an exchange to which the message is to be sent. The in
struction queues the message in a first-come-first-served manner
at the exchange if there is no task already waiting there. If a task is
waiting at the exchange then the instruction binds the message to
the task and makes the task eligible to execute on the processor.
When the receiving task resumes actual execution the address of
the message will be returned to it as the result of its w AIT instruc
tion.

VI. THE RMX IMPLEMENTATION

A. Methodology

In this section and the next, we consider some (but certainly not
all) details of the actual implementation of the system as illustra
tions of the design of such software products. We turn first to the
methodology applied to the effort and then to some samples of
the mechanisms.

To provide the abstract machine just described and meet the
other requirements for the system, RMX was implemented as a
combination of ROM resident code and . some RAM resident
tables. Just as a hardware designer uses LSI devices in preference
to. more elementary TTL components, we chose to use the
leverage of a high level programming language rather than
elementary assembly code. The system was, therefore., designed
using PLM [14], Intel's high-level implementation language. The
operations described above appear as procedure calls using the
standard PLM calling sequence. The space constraints and a good
level of internal maintainability were achieved by maximizing the
modularity of. the design. The broad independent functions of
multiprogramming, communications and control were completely
isolated from the board dependent timing and interrupt handling
functions. As a result, movement of the system to a new member
of the SBC family requires only the reimplementation of these
board dependent functions. In addition, data structure of internal
and user visible objects were generalized so that single algorithms
could deal with any of them. Individual optimizations could have
been made in the local design of many parts of the data structures
to improve their space or time costs slightly. Such .optimizations,
however, would have cost considerably more. in code space· and
code complexity [3].

The module feature of PLM was used to.simulate the abstract
data type concept [4],[13) and enforce information hiding [15),
(16). That is, every data structure used by RMX is under the exc
elusive control of a single module. The mopules supply to each
other restricted sets.of public procedures and variables. It .is only
through these paths that agents outside a module may access the.
data structures maintained by the module. The only assumptions
that such outside agents may make about a module and its .data
stru.ctures are those. specified by the definition of the public paths.

SEND, WAIT. ACCEPT

COMMUNICATIONS
MODULE

HARDWARE LEVEL
INTERRUPT

MODULE

OBJECT
MANAGER

CREATE, DELETE

LOGICAL TIME
MODULE

HARDWARE LEVEL
TIME

MODULE

Fig. 2. Major modules (boxes) and data·structures (circles) of.RMX.

As a result, so long as these interface specifications are main
tained, any given data structure may be reorganized by redesign
ing its controlling module without affecting other parts of the sys
tem. This approach improves the understandability of the imple
mentation and facilitates the debugging and maintenance of the
system. Fig. 2 illustrates the general structure of the RMX imple
mentation.

Finally, the original version of RMX was completely coded in
PLM using· the resident PLM compiler. of the Intellec® · Micro
computer Development System. This version was functionally
complete but slightly exceeded the space constraints, occupying
about 2.5K bytes of program space. There were a couple of cases
where the language structure of PLM did. not permit the direct ex
pression .of the best way to compile the code. For these modules,
it was sufficient to hand optimize the code output by. the . com
piler. The original structure of the PLM program was maintained.
and the.majority of its generated code was used intact. The final
RMX system occupies less than 2K. bytes of program space. This
high level language approach coupled with selective manual opti
mization permitted far quicker and more error free development.
than could have been achieved using assembly language.

The approach to handling interrupts did introduce additional
software overhead. For a typical configuration of the hardware,
the realistic minimum interrupt latency would be about 200 µ.s.
Using the message mechanism it is about 800 µ.s. F<>r the targetted
process control applications, this is entirely accept11.ble .. RMX
does make provision, however, for direct handling of selective in
te.rrupts which require better response time without disturbing the
use of the message mechanism for the others. For normal task
communication, the performance is relatively better. For the typ
ical hardware configuration, the transmission of a message takes
about 800 µ.s, which is comparable to the time that would be re-

2-325 AFN·01931A

quired for any synchronization primitive (e.g., P and V or en
queue and dequeue) on such hardware.

B. Engineering for Hardware Dependencies

The two functions which vary most significantly across the SBC
product line are the timing and interrupt facilities. To accom
modate these variations, the implementation separates the logical
and physical parts of these functions.

The interrupt facilities are split between the module which im
plements the communications operations and· a hardware inter
rupt handler module. The communications module provides a
special "interrupt send" operation which performs the logical
translation of the interrupt event info a message. This facility is
independent of the interrupt structure of the processor board and
remains the same in any version of RMX. The hardware depend
ent interrupt module deals directly with the hardware interrupt
structure and invokes the send operation at the logical level. Only
this module need be redesigned when generating an RMX version
for a different SBC board. With this approach we take full advan
tage of the hardware vectored priority interrupt structure on high
performance products and can simulate this desirable structure at
slightly higher software cost on low performance products.

The same sorts of variations are faced in providing a source for
the system time unit. Again, one module provides all of the
logical time functions associated with providing time delays and
time limits to the user system. This module is independent of the
type, frequency, or location of the physical time source. A sep
arate module is responsible for clocking the logical level by invok
ing it once every system time unit. ·once again, this permits a con
sistent definition of time in RMX systems regardless of the sophis
tication of the available time source, and it limits the amount of
reimplementation that is needed to support new SBC products.

C. Example Data Objects

As an example of the complex data objects defined in the sys
tem we wiIJ.i:onsider the task and exchange objects illustrated in.
Fig. 3. The task object is 20 bytes long and embodies the execu
tion·state and status of a task. It consists of pointers used to link it
onto various lists of.tasks in the system. These lists· are used to·
queue a task at an exchange, link it to other ready tasks, or keep
track of its maximum delay when waiting. It also contains the
stack pointer of non-running tasks which is sufficient to supply
the remaining task register values when the task next executes.
Finally, the object contains· the task priority, some status infor
mation describing the state of the task; and a pointer to auxiliary,
information aboutthe task.

The exchange object is 10 bytes long and implements the mail
box concept described earlier; primarily by serving. as the· source
of header information for lists of messages and tasks. Each of
these singly linked lists is addressed with head and tail pointers
located in the exchange object. All exchanges in the system are
also linked together.

The exchange·objects are operated upon by the SEND, WAIT;

and ACCEPT instructions of the RMX abstract machine. These in
structions generally altet the "value" or contents of these com
plex data objects. The task object is not the direct operand of any
RMX iristructiori described above·. Rather it is indirectly altered as
a side effect of various instructions.· Just a:s'the user of floating
point objects on most machines needs to know the length and ex
istence of instances of the object, but riot itS internal structure, so
the internal structure of these objects is generally unimportant to
the users.

PROCEEDINGS OF THE IEEE, VOL. 66, NO. 2. FEBRUARY 1978

.TASK OBJECT

DELAY LINK FORWARD

DELAY LINK BACKWARD

THREAD

DELAY MESSAGE

EXCHANGE AODRESS

STACK POINTER

PRIORIT,Y I STATUS

NAME POINTER

MARKER

TASK LINK

EXCHANGE OBJECT

MESSAGE HEAD

MESSAGE TAIL

TASK HEAD

TASK TAIL

EXCHANGE LINK

~ ...,.
2 BYTES

Fig. 3. Example data objects in RMX.

D. Global Versus Local Optimizations

We have already discussed some aspects of global versus local
optimizations arthe overall design level in terms of avoidance of
redundant features. A good example of this tradeoff in the imple
mentation is provided by the linked list data structures within
RMX. Like many such systems there are a number of singly
linked lists which must be maintained to reflect the status of the
system. Loca:i optimizations on the placement of links within data
structures or in the form of the headers used for the lists would be
guaranteed to save a few bytes of data space across the various
lists. Further, the list insertion, scanning, and deletion algorithms
could be specially tailored to the individual list structures to save
microseconds of execution time for some· operations on some
lists. Indeed, any one such tailored algorithm might well use less
code space than a single more general one.

On the other hand, many of the list operations are in no sense
time critical. Generalizing all the list structures to use a: single
form replaces multiple algorithms with one, thus saving codil
space. The particular form can be chosen to favor those opera
tions that are frequent, thus limiting the impact of the generaliza
tion on the execution speed of the system. Perhaps most impor
tant, however, is· that, by reducing the number of algorithms and
structures used, we decrease the potential number of errors and
improve the maintainability of the resultant product. Since there
are, for example, at least six distinct singly linked structures in the
system, we reduce overall code size and engineering cost by sup
porting only a single mechanism. We improve product reliability
at the price ofa small increase in ·fixed data space and a small exe
cution speed penalty of infrequent and nontime'critical opera
tions.

It is interesting to note as an aside that this is really an example
of software engineering: that is, applying engineering discipline to
software development. Such discipline is highly valued and.under
stood in other engineering fields. Standardized mechanical or
electrical· components are virtually always preferred to special
designs; PLA's often replace random logic. Unfortunately, an ap
preciation of the overall benefits of such structure has been slow
to develop in software engineering. Too often, we· ·have seen
special purpose designs· and overly complex structure used in pro-

2·326 AFN·01931A

KAHN: SMALL-SCALE OPERATING SYSTEM FOUNDATION

grams supposedly to save space or improve speed. The true costs
in development time and reliability of such approaches have often
been underestimated; the true time savings attributed to them
often overestimated. The high percentage of end product cost due
to software is finally forcing a general awareness of these issues.

VII. LSI AND ABSTRACT MACHINES

It seems natural at this point to ask how the abstract machine
view of systems in general and our experience with RMX might be
affected by the continuing development of LSI technology. Once
we view any complex software system as defining a collection of
abstract machines, it becomes obvious that it is simply an engi
neering decision as to which machines should be committed to
hardware. We are constrained in this choice by the densities of
our solid-state technology, the performance we desire, the ap
plications that we are attacking, and perhaps most severely, by
our understanding of software systems and of the machine struc
tures that they require.

We might build an entire final application (e.g., a cash register)
as a very-high-level single-chip machine. The specialization of
such a design would, however, severely limit its application
beyond the one for which it was specifically meant. On the other
hand, we could build exclusively bit slice microprogrammable
machines with utmost generality but which, due to their very low
level of functional integration, would have no technological lever
age for attacking complex problems. Actually, both these ex
tremes have their well developed roles and will continue to be
reasonable approaches for high-volume low-cost, and special
purpose tailored systems, respectively. It is in the middle ground
-the area of the traditional computer-that directions are less
clear.

If the 8080 type processors are generally somewhat less power
ful than we actually need and as a result we always build operating
systems of some level to support them, perhaps some of these
functions can be integrated into the hardware. That is, if we can
identify a broad range of systems which include essentially the
same abstract machine implemented in software, then that
abstract machine is a good candidate for hardware integration.
The engineering difficulty is in understanding these software
structures well enough to confidently and correctly commit them
to hardware.

Attempting to build all of some very large and complex operat
ing system onto one or two chips is, no doubt, out of the question
with current technology. On the other hand, the final RMX sys
tem which we described resides in a small amount of ROM within
the 65K address space of the 8080 processor. Once we view RMX
as an abstract machine, the placement of the code which imple
ments its functionality becomes immaterial. In particular, we
could build an augmented 8080 type processor directly by defining
the additional instruction codes of RMX as hardware operations
and moving the RMX implementation into microcode on the
chip. The resultant component would indeed be an "RMX ma
chine" which dealt directly with the complex data objects and
tables described above. It would have the advantage of not using
any of the address space for operating system code. More impor
tantly, it would not waste bus cycles and memory access time
fetching operating system instructions. Such a machine would
have the same advantages over a conventional one that a machine
with floating-point hardware has over one without it.

Should we then try to build the RMX machine-ignoring for
the moment whether our hardware technology is capable of it
quite yet? Is the simple task model of RMX sufficiently general to
be of use over a wide class of applications? Is the RMX machine
the complete tool that we would like? Clearly, the answer is not a

wholehearted yes. For one example, RMX provides no isolation
or protection of one task from another. Indeed, no solely soft
ware system can provide such protection at any reasonable cost.
Such isolation would be desirable at the least because it would
limit the damage that one task could do to another due to errors.
The conclusion to be drawn, therefore, is not that this particular
abstract machine should be built in hardware, but rather that
some such machine would provide more of the facilities needed
for building microprocessor applications than do current proces
sors. Further, the design principles discussed above are the ones
that appear most likely to be fruitful in creating such a machine.

VIII. CONCLUSIONS

In this paper, we have attempted to use a case study of a partic
ular small operating system to illustrate both a philosophical ap
proach to viewing computer systems and some important aspects
of software development methodology. Many of the subtle as
pects of desiging software to control quasi-parallel activities have
not been discussed in detail, nor have we fully described the im
plementation. Nevertheless, we hope that this description suggests
the practicality and necessity of disciplined approaches to soft
ware system design. Until software implementation reaches a level
of engineering commensurate with that applied to other aspects of
computer system design, our products will be very much bound
by software costs. Only discipline and structure within our soft
ware efforts will ultimately permit microprocessor applications to
reach their full potential.

ACKNOWLEDGMENT

The author acknowledges the effort of codesigner K. Burgett in
the original development of the system. In addition, thanks are
due for the detailed suggestions received from J. Rattner, S.
Fuller, R. Swanson, G. Cox, and J. Crawford, which greatly im
proved the content and clarity of the paper. The author also
thanks his other colleagues at Intel and the reviewers who con
tributed to the final form of the paper.

REFERENCES

(1] P. Brinch Hansen, "The nucleus of a multiprogramming system," Commun.
ACM, vol. 13, no. 4, pp. 238-241, Apr. 1970.

(2] -, Operating System Principles. Englewood Cliffs, NJ: Prentice-Hall, 1973.
[3) F. P. Brooks, Jr., The Mythical Man-Month. Reading, MA: Addison-Wesley,

1975.
(41 W. L. Brown, "Modular programming in PL/M,'' in. Proc. IEEE Conj. Com

puter Software and Applications, Nov. 1977.
[51 K. Burgett and E. F. O'Neil, "An integral real-time executive for microproct:s

sors," Computer Design, vol. 16, no. 7, pp. 77-82, July 1977,
(6] E.G. Coffman, Jr., and P. J. Denning, Operating Systems Theory. Englewood

Cliffs, NJ: Prentice-Hall, 1973.
(7) G. W. Cox, ''Portability and adaptability in operating system design,'' Ph.D.

dissertation, Purdue Univ., Lafayette, IN, Dec. 1975.
[8] P. J. Denning, ''Third generation computer systenis,'' Computing Surveys, vol

3, no. 4, pp. 175-216, Dec. 1971.
(9) E. W. Dijkstra, "The structure of the 'THE'-multiprogramming system,"

Commun. ACM, vol. 11, no. 5, pp. 341-346, May 1968.
(10) J. H. Fasel, "Abstract machine hierarchies for programming language imple

mentation,"Ph.D. dissertation, Purdue Univ., Lafayette, IN, Dec. 1977.
(11) A. N. Habermann, Introduction to Operating System Design. Chicago, IL:

SRA, 1976.
{12] A. N. Habermann, L. Flon, and L. Cooprider, ''Modularization and hierarchy

in a family of operating systems," Commun. ACM, vol. 19, no. 5, pp. 266-272,
May 1976.

(13] 8. Liskov and S. Zilles, "Programming with abstract data types," SIGPLAN
Notices, vol. 9, no. 4, pp. 50-59, Apr. 1974.

(14] D. D. McCracken, A Guide to PL/M Programming for Microcomputer Appli
cations. New York: Wiley, 1977.

(15] D. Pam as, •'A technique for software module specification,'' Commun. A CM,
vol. 15, no. 5, pp. 330-336, May 1972.

[16) -, "On the criteria to be used in decomposing systems into modules," Com
mun. ACM, vol. 15, no. 12, pp. 1053-1058, Dec. 1972.

(17] D. M. Ritchie and K. Thompson, "The UNIX time-sharing system," Com
mun. ACM, vol. 17, no. 7, pp. 365-375, July 1974.

(181 RMX/80 System Users Guide. Santa Clara, CA: Intel Corp., 1977.

2-327 AFN·01931A

ARTICLE
REPRINT

"Reprinted with permission from Electronic Design, Vol. 29, No. 5, copyright Hayden Publishing Co., Inc. 1981"

2-329

AR-172

May 1981

AFN-01931A

Faster and smaller than its predecessor, the iRMX 88 real-time
modular operating system eases the transition from 8-bit to 16-bit
µCs, while supporting the 8087 arithmetic chip and other peripherals.

Multitasking executive
speeds 16-bit micros

Even while it eases the transition from an 8-bit
to a 16-bit world, a new operating system (OS) brings
thoroughbred performance to the stable of modular
systems software. The iRMX 88 multitasking ex
ecutive cuts both interrupt latency (the delay until
a random event gets a response) and context
switching time (the interval during which the proces
sor changes from one task to another). Its nucleus
is, therefore, faster-and smaller-than those of
preceding operating systems.

The iRMX 88 Executive provides fundamental
multimasking software and complements the full
featured, multiprogramming iRMX 86 OS (ELEC
TRONIC DESIGN, March 15, 1980, p. 245). Through
priority-based task scheduling, it concurrently
monitors and controls multiple events. It provides
real-time clock control, manages interrupts, and
dispatches tasks. As an upgraded version of the 8-
bit iRMX 80 Executive, iRMX 88 employs the same
concepts and most of the same modules. Thus, the
new OS offers field-proven and reliable interfaces.

Tasks share resources

The Executive will run with iAPX 88 or iAPX 86-
based boards and supports Intel's iSBC 86/12A, iSBC
88/ 40, and iSBC 86/05 single-board computers. Since
it is fully configurable-not only procedure-by-pro
cedure, but also for all hardware addresses and
interrupt levels-it also can be used with custom
designed boards that contain an iAPX 86 or iAPX 88
processor, an 8259A programmable-interrupt con
troller, and 8253 programmable-interval timer, an
optional 8251A programmable-communications in
terface, and-perhaps most important-an 8087
numeric-data processor.

In a multitasking system like the iRMX 88, several

Jess M. lrwln, Project Leader
Intel Corp.
5200 N.E. Elam Young Pkwy, Hillsboro, OR 97213

Electronic Design• March 5, 1981

tasks execute concurrently. A task is an independent
program that shares system resources and com
municates with other tasks. Each task has its own
stack, where the registers used by the task are saved
to shorten context-switching time.

A task communicates with other tasks via
messages, which convey data and synchronization
information. These messages are channeled through
data structures called exchanges. A task can send
messages to an exchange (using the RQSEND pro
cedure) or wait for messages at an exchange (using
the RQWAIT procedure). In the latter case, the task
does not execute until a message is available or until
a certain length of time has elapsed, specified in
terms of "system time units" (minimum interval of
real time recognized by the system). A task that is

Q
<.~'
··~

1: Task starts running beceu.ise it is currently the ready task with the highest priority.
2: Task is still reaay but stops running because it has no longer the highest priority.
3: Task waits for a message. ·, ·
4: Task receives a message or completes a delay.
5: Task is suspended.
6: Task is resumed.
7: Running task suspends itself.

1. Taake In the IRMX 88 Executive 01.;:upy o'le c;f ft'ur states.
Transitions are governed by the seven occurrencea llated at
the bottom of the figure.

2-330 AFN-01931A

IRMX 88 Executive

not willing to wait may accept any message from
an exchange (using the RQACPT procedure) if one is
available; otherwise, the task remains without a
message.

Each task exists in one of four states: running,
ready, waiting, and suspended (Fig. 1). A task is
running if the processor is executing instructions on
its behalf. It is considered ready if it is either running
or able to run. A task is waiting if it has requested
a message but has not received it. Finally, a task
is suspended if some other task has specifically
requested that it not be permitted to run.

Each task has a permanent priority, which in
dicates its importance relative to other tasks in the
system and to interrupts from peripherals. Priorities
range from 0 to 255, with 0 being the highest priority.
The "idle task" executes at priority 255 and prevents
any other task at that priority from running. The
ready task with the highest priority is the running
task. The software priorities correspond to eight
hardware interrupts (Fig. 2). When the running task
has a high priority, interrupt levels associated with
equal or lesser priorities are masked off.

Interrupts provide real-time access

An interrupt invokes an interrupt-service routine,
which either requests an end of interrupt (using the

Hardware Software

Level O Highest
1 priority

Lev~I 0

16
17

1

32
33

2

48
49

3

64
65

4

80
81

5

96
97

6

112
113

7

128
129

Lowest
255 priority

2. Of 256 Interrupt levels, the top 129 are associated with
hardware. The remainder can be assigned to software t_asks.

RQENDI procedure) or requests thata message be sent
(using the RQISND procedure) to an interrupt ex
change associated with the active interrupt's level
(Fig. 2). In the latter case, an interrupt task waiting
at the interrupt exchange would complete the inter
rupt servicing. The system can enable interrupts (via
the RQELVL procedure) and disable them (via the
RQDLVL procedure) and can set the interrupt vector
associated with a given priority level (using the
RQSETV procedure).

The iRMX 88 treats interrupts as messages. When
an interrupt occurs, the Executive creates a special
message and sends it to the exchange associated with
that particular interrupt. Should a previous inter
rupt message be at the exchange when the interrupt
occurs, the message is changed to indicate a missed
interrupt. Any task awaiting the interrupt exchange
receives the interrupt message and is readied for
execution. If the task has a priority corresponding
to the interrupt level, it will become the running task.
The task that was running when the interrupt
occurred is still ready to run, but is pre-empted.
When the running task relinquishes control by wait
ing at an exchange (possibly for another interrupt),
suspending itself (via the RQSUSP procedure), or
deleting itself (via the RQDTSK procedure), the
iRMX 88 dispatches the next ready task.

Interrupt-processing tasks are simply tasks that
wait at interrupt exchanges. They do not need to save
the interrupted task's state or control the interrupt
hardware. A task may simulate an interrupt by
sending a message to an interrupt exchange (using
the RQSEND procedure).

Because the iRMX 88 imposes some software
overhead, a direct interrupt-servicing facility is pro
vided for those cases where interrupt response time
is critical. The interrupt vector is set with a pointer
to an interrupt-service routine (using the RQSETV
procedure); then all interrupts occurring at that level
are handled by the interrupt-service routine, which
is also responsible for all interrupt-logic control and
state-saving. To complete the interrupt, the routine
must use the RQISND or RQENDI procedure.

Creating tasks and exchanges

The iRMX 88' supports the dynamic creation of
tasks and exchanges, as well as their deletion when
they are no longer needed. Creating a task (with the
RQCTSK procedure) places the new task on the
system's list of ready tasks, according to its priority.
The creation of an exchange (using the RQCXCH
procedure) results in the initialization of an "empty"
exchange-one that has no waiting messages or
tasks. The deletion of a task (via the RQDTSK pro
cedure) results in its removal from all system lists.
The deletion of an exchange (using the RQDXCH

Electronic Design • March 5, 1981 2-331 AFN-01931A

procedure) is only possible if no messages or tasks
are waiting at· the exchange.

Suspension of a ta!!k (using the RQSUSP procedure)
places the task on a list of suspended 'tasks and
removes it from the list of ready tasks; to return
the task to the ready state, the RQRESM procedure
must be used.

A coprocessor for number crunching

Unlike previous operating systems, the iRMX-88
can support the 8087 numeric-data processor (NDP)
in a way that is invisible to the user. When an NDP
task is created, the iRMX 88 initializes and maintains
the state of the 8087 in a save area. Should an

3. Interaction betWeen the terminal and a user task Involves
aeveral IRMX 88 exchanges (gray). Some serve !or Inputs from
the.keyboard (top); others, tor outputs to the CRT (bottom).

Electronic Design • March 5. 1981

4. When a user task needs a block ol RAM, exchangeRaFsAx
passes the requestto the tree-space.manager, which lends
an acknowledgment via RESPSEX. The ROFSRX exchange serves
to release the block.

DESTINATION:
l.0000 ME'l'ERS
4.0000 l!BTERS
5. 0000 ME'1'BRS

MAXIMUM 'VBLOCI'n'·I
0,0100 MBmS/SBCOND
0.1000 MB1'BRs/Sl!COlOD
0.0500 METERS/SBCO!OD

POSITIONr
x - 1.2000 JfBTBR8
y - 3. 4000 MB'l'BRS
Z • 2 .1000 METERS

VBLOCI'l'!'s
l!X •-C • 0050 MBTBRS/SBCOND
DY = o.oeoo MBTERS/SBCONi>
DZ • O. 0500 MBTBRS/SBCOllll

5. The arm ol an Industrial robot can move In three dlrectlan1:
X, Y, and z. The console display report• current position and
velocltll (left), as well a• the llmltlng values (right).

unmasked error occur in the 8087, an interrupt is
generated on a configurable level. Using the default
interrupt-service routine, the iRMX 88 sends an.
interrupt message to the interrupt exchange; the
.user can then supply his own error handler. The error
task must specify itself as a non-NDP task or the
system will deadlock. But the error interrupt, if used,
must not be masked off.

The Executive includes a terminal handler which
establishes real-time asynchronous serial com
munication between an operator's terminal and the
tasks running under the executive (Fig. 3). The
terminal handler provides a simple operator in
terface, which includes line-editing features, a 64-
byte type-ahead buffer, and control over the output.

Since all port addresses and interrupt levels for
the terminal handler are configurabl!l, it supports
any component configuration using an 8251A
programmable-communications interface with an
8253 programmable-interval timer for baud-rate
generation. A task interfaces with the terminal
handler through two exchanges, where messages are
sent to initiate read and write requests; they are
processed on a FIFO basis. Characters are read and
written in response to interrupts from the 8251
programmable-communications interface. Each re
quest results in the transmission of one line to or
from the terminal. Read requests are· sent· to the
RQINPX exchange, and write requests to the RQOUTX

2-332 AFN-01931A

IRMX 88 Executive

exchange. When a request has been serviced, its
message is sent to the specified response exchange.

The iRMX 88 also contains a free-space manager,
which maintains a pool of free RAM memory (Fig.
4). Tasks request blocks of memory from the pool
and return blocks to the pool. The request is made
by sending a message to the manager's allocation
exchange, RQFSAX, specifying the length of the
needed block. If sufficient contiguous free RAM is
available, the requesting task receives a message
acknowledging the request and supplying the ad
dress of the block in the form of a message. Other
wise, the requesting task receives a message indicat
ing how much free RAM can be allocated. The
requesting task may then ask for a smaller block.
In either case, the response from the free-space
manager is returned in the same message that was
used for the request. If the task must have the block
of memory, it makes an unconditional request; the

$title {'display al9ortihm 1 }

dis):) lay:
00;
$i~clude(:fl: <ed. lit)
$include(: fl :rqisnd.ext)
$include(:fl :rqendi .ext)
$include\ :fl :rqwait .ext)
$1nc luoe{: fl :rqsetv .ext)
$include(:Tl :rqelvl .ext)

DECLARE display'Sied int$exchange$descriotor P!JBUC;

/* display interrupt service routine*/
display$1sr: .PROCEOIJRE INTERRIJPT 63;

/* check for proper interrupt *I
OUTPUT (ro$8259•) 0 Ubn;
IF NOT ((INPUT(rq$8259a) AND 80n) 0 OJ THEN
00;

/"' output next character */
OUTPUT.(rqth8251} = output$buff er(output$ index};
outoutSindex = output$index + 1;
output$count "' output$count ~ l;
IF output$count = 0 THEN

CALL rq$1snd(.displaySexchange);
ELSE

CALL rq$endi(.display$exchange);
ENO display$isr;

display: PROCEnlJRt;
OE CLARE message$address ADORE SS;
CALL ·rq$setv·{ .disp l ay$isr ,display$ l eve 1);
00 FOREVER;

/* copy monitor and control information into the display
buffer with tne template of tne display*/

output$irtdex = l;
output$count = LENGTH(output$buff er);
I* el'lable the .display interrupt and wait untl 1 the
buffer has been output * /
CALL rq$elvl(.display$ied);
rnessage$address "' rq$wa it(. display$ ied.O);

ENO display;

6. The PROCEDUREDISPLAY(bottom half) Illustrates how the
IRMX 88 operating system deals with random events. Here,
Interrupt level 63 has been chosen by the user.

Electronic Design • March 5, 1981

free-space manager then lets the requesting task
wait until sufficient memory is available. When a
block of RAM is no longer needed, it may be sent
to the reclamation exchange (RQFSRX) where it is
merged into the free-space pool.

The bulldlng-block approach

The iRMX 88 Executive is completely configurable.
The minimum "nucleus" consists of the following
procedures: RQSTRT (initialization), RQCTSK (task
creation), RQCXCH (exchange-creation), RQSEND, and
RQWAIT. Any of the remaining procedures are auto
matically included when they are referenced. Inter
rupt support and the system clock are separately
configurable. The port addresses used for the 8259A
programmable-interrupt controller, the 8251A pro
grammable-communications interface, and the as
sociated 8253 programmable-interval timer are con
figurable to any iAPX 86 or iAPX 88 port address.
The transmission rate of the terminal handler is
configurable from 150 to 19,200 baud. The interrupt
levels for the system-clock and terminal-handler
interrupts are configurable to any level of the 8259A
programmable-interrupt controller. Any unused
level is configured to its default interrupt-service
routines. The base of the interrupt vector used by
the 8259A programmable-interrupt controller can be
selected from interrupt levels 8 to 248. The smallest
system time unit is 1 ms.

An "interactive configuration utility" (ICU 88)
simplifies the configuration process. This utility,
which executes on the Intellec microcomputer-de
velopment system, asks the user a series of ques
tions, allowing him to specify his own board con
figuration or to use a default that corresponds to the
iSBC 86/12A, iSBC 86/05, or iSBC 88/40 boards.

To transfer an application from the iRMX 80 to
the iRMX 88 Executive, the user must change the
parameter for the create-task (RQCTSK) procedure
from a 16-bit address to a 32-bit pointer. The descrip
tion of the task can then be placed in random-access
or read-only memory. In the iRMX 88, the definition
of task has been expanded to incorporate a flag that
indicates whether or not the 8087 numeric-data
processor will be used. If that flag is set, an additional
94 bytes must be reserved for the task. Furthermore,
the first parameter of the set-vector (RQSETV) pro
cedure must be changed to a 32-bit pointer.

A robot demonstrates Implementation

The iRMX 88 Executive demonstrates its value in
a typical application: controlling an industrial robot's
arm. The position of the arm in each of three
dimensions is measured by an analog voltage on
three input lines. The speed and direction of move
ment in each dimension is controlled with an analog

2-333 AFN·01931A

input: PROCEOURE;
/* initialize */

00 FOREVER;
00 CASE field + l;
/* next x position */
00;

END;

/* convert the character string in the input buffer
into a rea 1 nulftber *I

CALL rq$send(.control$x$ed,
.dpos ition$rnessage);

ENO input;
ENO input;

7. An endless loop Is a typlcal method for capturing Input.
Th• skeleton code for PROCEDURE INPUTshowa the Interface with
the executive via a CALLIO an OS procedure.

·~~{,
"" ..eHage$a<ldre .. AOORESS;
CA!.l. rq$cxch(.•aitin9$ed); OOf11· .. ~:JMi.11~1. IMllll&IZl.l!lr•114•9ll•IW•IP•••--·-·---... -.....

· · ~:.~m~:::: ~:'Jrr~~~<!~~!:1~;4}.
SHL(INPUT(adc$high), 4);

x$11lonitorSPosftion • dcontrolS1nPut '* x.SinouUsc.ele;
xSra~e • (xSPosltlon • xSmon1tor$Po51t1on) • 10; .,. --·-<UOunon•X$iiiOnitorTi>Osm~o;----........................... - .. .

. t.11.L 1'<1$send(.x$actlon$ed,.xSPoS1t1onSmessage);
ENO;
EMO monitor$x;

8. PROCEDURE MONITORtXI& a task that has to run evary 16 ma.
Tha IRMX 88 procedure ROWAIT&Ccepts the daslred time delay
as an argument.

$title ('control algorithm').
control:
00;
I* control x· task */
contra 1$x: PROCEDURE;

DECLARE rnessage$address ADDRESS;
00 FORE VER; .

ENO;

message$address • rqSwait(.x$actionSed,0);
x$contro1$curreot = maxSxSrate *

(next$xSpos1tion - xSpos1tlon) I ABS(next$xSposition
- last$xSP0$1t1on) ;

xScontrolSoutput • SHL(FIX (
xScontrol$current * xSscale >~ 4) + doutpuUselect;

OUTPUT(dac$hi9h) = HIGH(dcontro1$output);
OUTPUT(dac$ low) = LOW(x$contro lSoutput);

ENO controlSx;

ENO control;

9. This control algorlthm sends data to Iha robot arm's X
axla through ad-a converter. Tha task remains dormant untll
the INPUT procedure from Fig. 7 mllkas It up.

Electronic Design • March 5, 1981

current on three output lines.
The hardware consists.of an iSBC 88/ 40 board with

an iSBC 337 high-speed math multimodule, an iSBX
328 analog-output multimodule, and a CRT terminal
with an RS-232 serial interface. The position of the
arm in any dimension is read from the a-d converter
on the iSBC 88/ 40; the converter is multiplexed over
the three analog inputs. The d-a converter on the
iSBX 328 analog-output multimodule is multiplexed
to control the current to three stepper motors, which
in turn control the arm's motion. A display (Fig. 5)
is maintained on the CRT terminal and gives the
robot's current position in three dimensions, the rate
of change in each direction, and updatable fields for
the desired position, as well as the maximum rate
of change in each direction.

The display algorithm (Fig. 6) continuously up
dates the display from the control and monitor data
bases. The monitor and control data bases update
the display buffer. The display task initializes the
display index and display count, enables the display
interrupt, and waits at the display-interrupt ex
change. The display-interrupt service routine re
sponds to display interrupts by outputting the next
character from the display buffer. When the last
character in the display buffer has been output, a
message is sent to the interrupt exchange; otherwise
an end-of-interrupt is sent.

The input algorithm (Fig. 7) accepts digits as they
are typed on the CRT terminal and enters them into
the control field being updated. The fields on the
right-hand side of the display are updated, starting
with the top field and progre~sing to the bottom.
Entry of a carriage return causes the values in the
updated field to update the control-data base; the
input algorithm then proceeds to the next field.
Backspace discards the last digit typed. All other
characters are ignored, and the user cannot type
outside the defined fields. The input-interrupt rou
tine receives a character with each interrupt and
copies it into the display and input buffers.

The monitor algorithm (Fig. 8) samples the posi
tion of the robot's arm 60 times per second. It updates
the monitor data base and then signals the control
program through the appropriate exchange.

The control algorithm (Fig. 9) waits at the proper
exchanges for a message from the input or the
monitor algorithms. It then outputs a control current
to the d-a converter based on the relative position
of the robot's arm.D

2-334 AFN-01931A

iCS™ Products 3

© Intel Corporation, 1979

APPLICATION
NOTE

3.3

AP-52

March 1979

AFN·01931A

Using Intel's Industrial
Control Series In
Control Applications

3.4

Contents

INTRODUCTION . 3-5

System Description . 3-5
Control Algorithm. 3-5
Basic System Configuration 3-6

WIRING INTERFACES 3-7

Analog Termination Panels 3-8
Low Voltage Digital Termination
Panels 3-10

High Voltage Digital Termination
Panels . 3-13

Final Channel Assignments 3-16

SELECTING THE COMPUTER
BOARDS 3-16

The Industrial Chassis 3-19

DETERMINATION OF SOFTWARE
APPROACH . 3-21

Assembler . 3-22
PL/M 3-22
FORTRAN 3-23
BASIC 3-23
Final Selection of Language 3-23

DEFINING SOFTWARE TASKS. 3-23

Oven Control Task . 3-24
CRT Update Task Development 3-27
Parameter Update Task 3-28
Support Programs . 3-29

FINAL IMPLEMENTATION 3-29

CONCLUSION . 3-29

APPENDIX A- Selected Data Sheets 3-31

APPENDIX B - Ladder Diagram of
System 3-38

APPENDIX C - Program Source Listings . . 3-39

AFN-01931A

,_

I. INTRODUCTION

The introduction of the single board computer as a
tool for the system designer has opened the way for
many varied application areas to benefit from the
advantages of computer utilization. A problem still
exists, however, because the available 1/0 con
figurations have been largely incompatible with the
wiring and packaging techniquet> required in indus
trial environments. This problem is overcome by
the utilization of the Intel® iCS'M product family.
The purpose of this application note is to provide a
representative approach to the implementation of a
computerized solution to an industrial control
system.

System Description

This application note will deal with a control
system which will regulate the temperature in each
of four ovens. Each oven will be defined as u tiliz
ing a light bulb for heating. Normal convection will
be used to provide cooling. The internal tempera
ture will be measured by means of a thermistor in
stalled in each oven. We will assume that we will be
required to implement some type of operator panel
near the ovens which will allow the status of each
oven to be monitored. This approach is similar to
many common industrial applications which re
quire a supervisory control station in one area and
a separate operator interaction panel near the

3-5

equipment being controlled. The setpoint and tol
erances should be input from an external location.

With these facts about our system defined, we can
begin a step by step solution to providing a com
puterized control system to operate the ovens. We
will discuss the various equipment trade-offs and
the decisions which will be used to define the hard
ware/software designs.

Control Algorithm

Before we can begin the design of our system, we
must have a clear idea of the technique we will use
to control the system. Our control system must
maintain the oven temperature within a predefined
and fairly narrow range of the setpoint. Let us
make an assumption that the light bulb will be con
trolled digitally, meaning that the bulb must either
be turned fully on or it must be turned fully off.
The obvious control technique then becomes turn
ing the bulb on when the temperature of the oven is
below our lower limit and turning the bulb off
when the temperature is above the higher limit. It
seems reasonable to assume that this technique will
provide a temperature in the oven which varies
sinusoidally with time. This is true because even
though the lamp is turned off, it will continue to
generate heat for a short period of time. Likewise,
when the bulb is turned on, it will not instantly be
able to provide heat to raise the temperature of the

AFN-01931A

chamber. We would expect to have a system re
sponse such as is shown in Figure L A better
method of control can be devised if we provide
some type of temperature prediction into our con
trol algorithm. Since this utilizes the rate of
temperature increase or decrease, it will involve a
type of derivative control system. This derivative
control action will tend to dampen the temperature
oscillations which might be encountered if only an
instantaneous on-off control system were utilized.
Figure 2 shows the response with time that we
might expect with this type of control system.

ON-OFF CONTROL

TIME

Figure 1. Maximum Effort Current Temperature

T

DERIVATIVE CONTROL

w1--~~~~~~~~~~~~~~~~~

a:

"
a:
w ..
::;;
~

TIME

Figure 2. Maximum Efiort Projected Temperature

3-6

The second approach is superior to the first
because the control will provide a much smaller
oscillation of the oven temperature. Other solu
ti~ns are possible, such as providing a modulated
output to the lamp. However, in an attempt to pro
vide a simple model upon which to expand our
system solution, we will assume that the second ap
proach will provide us with an accurate enough
control of the oven temperature.

Having made the decision as to the control tech
nique, we can proceed with the task of determining
the general system configuration. That is, we can
define the physical system characteristics and the
components to which we must interface the com
puter system. This approach is identical to that
which would be used in a conventional control
system design.

Basic System Configuration

Based upon the data which we have provided so
far, it is possible to build a block diagram of the
system's major components. The system consists
of four ovens, an operator's panel, a data entry
panel, and the actual control logic. A block dia
gram for the system is shown in Figure 3. We must
now further define the elements which make up
each of these blocks.

B
Figure 3. Application Block Diagram

OPERATOR
PANEL

Each oven must consist of a heating element, which
we have already defined as being a light bulb, and a
temperature sensing element which we have said
will be a thermistor. Each heating element will be
switched on or off by applying or removing a
source of 115 V AC. The thermistor temperature
can be sensed by using the thermistor in a voltage

divider circuit. We can then measure the voltage
across a fixed resistor to obtain an analog signal
which is proportional to the oven temperature. We
will determine the required value of the fixed
resistor at a later time.

The operator's panel should be designed to provide
the workfloor operator with basic information as
to the status of each oven. It should also allow
some method by which he can inhibit the operation
of any oven should it become necessary for charg
ing or servicing the oven. We can then define the
basic elements which should make up the opera
tor's control panel. Each oven should have associ
ated with it the following controls and indicators:

1. Oven ON/OFF Switch - This switch will allow
the operator to inhibit the oven operation by
turning the appropriate oven switch to OFF.

2. Oven RUNNING Indicator - This indicator
will provide a visual indication that the oven is
activated and that the temperature is being con
trolled.

3. Oven IN TOLERANCE Indicator - This indi
cator will turn on when the oven temperature
falls within the allowable bandwidth around the
setpoint for that oven.

4. Oven ALARM Indicator - This indicator is the
complement of the in tolerance lamp. It will be
turned on when the oven is activated and the
temperature does not lie within the desired
bandwidth.

5. Oven CAUTION Indicator - It may be neces
sary to alert the operator to a potential oven
temperature control problem before it actually
occurs and sets off the alarm indicator. Since we
have defined our control algorithm as utilizing a
type of derivative control, we can project the
oven temperature ahead in time. We will turn
the oven caution indicator on when we predict
that the oven temperature will lie outside of the
desired bandwidth in a predetermined future
time period. ·

We have now defined the operator interface which.
we will utilize to control and monitor the oven
processes.

At this point, we will make a decision that the in
terface used to input the setpoints will utilize a
CRT terminal. Though the decision may seem to be
completely arbitrary, we will see later that CRT ter
minals provide an extremely useful device for
allowing an operator to communicate with the sys
tem. Once the decision has been made, we have no ..

3.7

further requirements to consider hardware design
for this terminal, as the entire operation can be
handled in the software development which will be
considered later.

A common technique for documenting a system is
the ladder diagram. At this time, we can construct
a ladder for our control system. Unlike conven
tional design techniques, our ladder diagram need
only be concerned with the actual drive and sensing
circuits since the logic required to drive the various
outputs will be defined using software. This results
in a considerable simplification of the design pro
cess .. A ladder diagram for a typical oven is shown
in Figure 4. We can defer the implementation of
the control algorithm until we begin to develop the
software portion of our control system. It is no.w
possible to complete the .external hardware design
and to implement the system wiring package.

15

+SV

HEATER

ANALOG
TO

DIGITAL
CONVERTER

N

N

COM

Figure 4. Ladder Diagram of One Oven

II. WIRING INTERFACES

A major pitfall in utilizing a computer for control
systems has traditionally been the requirement for
the design engineer to expend a considerable
amount of his time in designing interfaces to con
nect the physical wiring to the computer system.
The introduction of Intel's product line of termina
tion panels has essentially eliminated the require~

AFN·01931A

ment of designing i(lt(!rfaces and.allows more engi
neering time to be spent providing a solution to the
application. Before we continue with the specific
design, we should spend some time discussing the
various types of termination panels available and
the general characteristics of each panel.

Analog Termination Panels

The Intel® iCS 9io™ Analog Termination Panel
has been designed to provide a simple means ofter
minating the analog wiring and of providing an
interface to the control system input/output. All
wiring is terminated utilizing pressure type screw
barrier blocks. Termination blocks have been pro
vided to allow the termination of up to 32 single
ended .or 16 differential channels of analog input.
For use in a differential input environment, such as
we will be using, the terminator blocks provide wir
ing terminations compatible with shielded cable in
puts iit that provision has been made to accept the
shield of each input signal. The shield is then car
ried through the on-board circuits to the analog-to
digital converter. Provision has been made on the
board for the mounting of commonly used circuits
for signal conditioning. The available signal condi-

' I- I- I- t-+ I +.I + I + I ~ W ~ w
>>>>>>>>22:9:!
C':l·eo:iNN-.-00.--00
0 CJ 0 .(.) CJ u (.) u 0 (.) u 0
<C <C <Cc cc <Cc <C <C <[<C
OCOCOOOOQCQC

tioning circuits provide for installation of current
termination resistors and the installation of a single
pole low pass filter network. The basic barrier
assignments for the iCS 9io termination panel are
shown in Figure 5. The possible circuit networks
for this ·panel are illustrated in "Figure 6. A· com
plete description of the analog termination panel
can be found in the iCS 910 Analog Signal Condi
tioning/Termination Panel Hardware Reference
Manual (manual order number 9800800A).

The functions of the analog termination panel will
become more clear as'we develop the actual config
uration required to support our oven application.
Referring to the ladder diagram (Figure 4) we see
that a fixed resistor is necessary to provide the volte
age divider network to sense the oven temperature.
The current termination resistor (Re) on the
iCS 9io board can be used to provide a convenient
mounting location for this component (refer to
iCS 9io cir~uit schematic, Figure 6). At this point,
we must make a design decision regardi(lg the uti
lization of a low pass filter for our analog circuits.
Since the oven temperatures are not expected to ex
hibit rapid fluctuations with time, the use of a low
pass filter will not adversely effect the temperature

I- I- I- 1-
W co~W lt)Wc:ocoW
~ .- N ~ .- N ~ .- N ~ .- N

I !@!@!@!@!@!@jij jij jij jij jij !zj 11 i !@jij f1l !@jij ij !?41 !?41 jij !@fll I
._....___,____...__,,_, ~.._.__..~.....__,_.;....

8 9 10 11 12 13 14 15

J1 g p J2 CJ p J3

Figure 5. iCS 910™ Analog Terminator Panel Assignments

DIFFERENTIAL
CHANNEL

SINGLE
ENDED

A

SINGLE
ENDED

B

RET

Figure 6. Typical Circui.ton Analo~ Terminator

+V

-v

3·8

Ro

Cc
Re·

We

Re

Ce

AFN·01931A

sensing. Indeed, the use of a low pass filter should
contribute to spurious signal rejection should the
analog cables pick up external noise signals. Calcu
lations will show that the use of a filter network
consisting of 11 K ohm series resistors and a 2.2 µF
capacitor will provide the filter characteristics
shown in Figure 7.

0.8
'%'
;?:
~ 0.6
>

0.4

0.2

0.1 10

FREQUENCY (Hz)

100

Figure 7. Single Pole Filter Characteristics

1000

Based upon our requirements and using the circuit
schematic of Figure 6, we can provide the circuit
interfaces required by our ladder diagram (Figure
4) by configuring the channels of the iCS 910 ter
minator as shown in Figure 8. This results in a sim
ple two-wire per oven analog interface. The termi
nator board is designed to connect to the various
analog l/O boards by means of a standard ribbon

;;; "'
.., .,

"' "' "' a: a: a: a:
0 0 0

~ ti Cl) Cl)

i i i i a: a: a: a:
w w w w
:i: :i: :i: :i:
0 0 0 0

I- I- t- I
+ I + I + I + I ~ W ~ W
>>>>>>>>Q~Q!!:
MMNN.-T""OO.-..-oo
uouuououooou
<C <(<C <(<(<(< <(<(<(<(<(
oooocooooooc

Figure 9. Analog Terminator Wiring

J1

cable which is supplied with the terminator panel.
The actual selection of the appropriate analog
board will be deferred until later. We will define
that oven number l will correspond to the differen
tial analog channel O; oven 2 will correspond with
channel 1; oven 3 will correspond with channel 2;
and oven 4 will use channel 3. This leaves 12 analog
differential channels available for future expan
sion. The channel selection just made was a purely
arbitrary choice.

+5V

c.
2.2µF

Figure 8. Analog Circuit for Oven Application

TOAID
BOARD

The wiring to the iCS 910 terminator panel can
then be made essentially as shown in Figure 9.
Clearly, the use of the terminator panel greatly
simplified the connection between the control sys-

l~~~~~W?11@1@ir@W?l~l liifzjiiiiiiii~I
.._._.., ..____...,,--.,......_. '--v--' -----.___.,.__.....___,--.....-....

8 9 10 11 12 13 14 15

Cl p J2 gp J3

3.9 AFN·01931A

tem andthe physical devices which, are ro 'be moni
tored or controlled. Figure 10 shows the placement
of the components onto the board.

Figure 10. Analog Terminator Component Locations

Low Voltage Digital Termination Panels

Looking again at our ladder diagram for an oven
control system (Figure 4), we see the need to pro
vide a second type of interface signal. This is to
provide the switching for the various indicator
lamps used on the operator's control panel. Tradi
tionally, this interface has .been handled by using
electromechanical relays. The coils would be driven
by the low voltage control system and the re.lay
contacts were used to drive the external indicators.
Modern technology provides us with a solid state
device to perform the same function, the optical
isolator. We can use these devices to provide a
highly reliably and low cost alternative to the relay
interface. The Intel® iCS 920'M Digital Signal Con
ditioning/Terminator Panel provides us with a
convenient vehicle for mounting the optical
isolator circuits and for terminating the wiring
associated with the indicator devices.

The. iCS 920 panel is designed to. be used by those
interface circuits which incorporate operating volt
ages less than 50 volts and which generally use cur
rents which are smaller than 300 mA. These limits
are given only for a general guideline since a wide
variety of optical isolators and drivers are available
for use on the board. Some of the devices are
capable of handling greater voltages or currents. A
representative list of available devices and com
plete details of the termination panel. ate. available
in the iCS 920 Digital Signal Conditioning/Termi
nation Panel Hardware Reference Manual (manual
order number 9800801A).

The. digital panel provides terminations for up to
24 'digital channels, each of which can be con
figured as either an input or an output channel ac~
cording to the ~pecific application requirements.
As with the analog termination panel, all wire ter
minations are made using pressure type barrier
strips which will accept up to 16 gauge wire. The 24
digital channels correspond with those input/out
put channels assigned to the standard Intel 1/0
configurations used on the single board computers
and 1/0 expansion boards. We will dwell more on
this subject later when we define the addresses
associated with each circuit which we desire to in
corporate into the termination panel.

Since the digital channels can be configured into
either an input or an output mode, it is wise to dis
cuss each configuration so that a clear understand
ing of the board can be obtained, even though our
application example will only use the output mode
with this board.

Figure 11 provides a schemati<; of the panel when it
is configured for a digital input mode. To set up a
channel to operate as an, input, it is necessary to
add at least two jumpers 'to the wire-wrap jumper
posts. As can be seen, pins 6 and 4 must be con
nected together as well as pins 3 and 5. If the board
is tO provide a visual LED indication of the channel
status, an additional jumper should be installed
between pins 1 and 2 of the jumper posts. If this is
done, be certain to take into account the additional
current requirements when calculating the required
input resistors. Two resistor mounting locations
are provided to allow installation of selected com
ponents to handle the current limit through the
optical isolator (Rx) and the threshold voltage for
turn-on of the device (Ry). A complete and de
tailed procedure for selecting these resistors based
upon the input voltages is provided in the iCS 920
hardware reference manual mentioned earlier. Pro
vision has also been made on the termination panel
for the installation of a diode (CR) to protect
against reverse bias application.

The components have been placed on the board ar
ranged in groups of two channels. This eases the
task of finding various components or of locating
the holes for installing the required components.
This layout is illustrated in Figure 12. It is impor
tant to take note of the physical placement of the
optical isolator chips in the 20~pin socket. This in
stallation location must be followed rigorously
when using a channel in an input mode. Also take
note that provisions are provided for mounting two
sizes of resistors in location (Rx). This will accom-

AFN-01931A

modate the power dissipation requirements which
will be encountered in various application situa
tions. Referring again to Figure 12, note that the
upper half of the layout represents odd channels
and the lower portion of the layout is used for even
channel component mounting.

+sv

560 kll

Figure 11. iCS 920™ Digital Terminator Input
Configuration

1K

CPU
INPUT
PORT

When the iCS 920 panel is used in this input mode,
it corresponds to. the utilization of a relay coil to
sense some external contact closure. The resistors
can be thought of as selecting the coil's operating
voltage and the diode provides the same transient

0 0

0 0

0 0

0 0

0 0

0 0

0 0
0 0

Figure 12. Digital Terminator Input Parts Layout

3-11

protection function as when installed on an electro
mechanical relay. Finally, the optical isolator out
put corresponds to the contacts associated with the
relay coil. As we will see later, this approach pro
vides us with an unlimited number of contacts per
relay coil.

The oven application requires a contact for driving
the indicator lamps associated with each oven. If
we define the driving voltage to be 24 volts DC, we
will find that the voltage and current requirements
fall within the limits specified for using the iCS 920
Digital Signal Conditioning/Termination Panel.
Let us examine in more detail how this can be ac
complished.

We will select an industrial indicator assembly
which utilizes a full voltage 24-volt lamp. Typical
lamps would be type 387. This will require a drive
of 40 mA at 28 volts. Our switching device must be
capable of driving this load. The analogy used
earlier to compare the optical isolator with a relay
in an input mode holds true when we utilize the
devices in an output configuration. If we examine
the data sheet for the current switching character
istics of a typical optical isolator, say the TIL 113
(Appendix A), we can see that the current and volt
age requirements fall well within the allowable
ratings of the device. We have selected the relay
contact characteristics! We need not concern our
selves with the selection of current limitation
resistors (coil voltage ratings) since this circuitry is
provided on the terminator panel when a circuit is

AFN·01931A

configured in an output mode. If we refer to Figure
13, we can see the on-board schematic for the out"
put drive mode ofoperation. Two jumpers must be
installed for each output channel. The first, be
tween pins 1and2, is used to enable the LED chan
nel status indicator. The second, between pins 3
and 4, actually connects the computer generated
drive signal to the input of the optical isolator
(analogous to connecting the relay coil to the driv
ing line). Provision has been made on the circuit
board for only one optional component in the out,
put mode; this is the resistor (Rz). This component
has the effect of increasing the response time of the
switching device. Because our indicator lamps are
not time critical, we will choose to omit the instal·
lation of this component.

CPU OUTPUT
PORT

Figure 13. iCS 920™ Digital Terminator Output Circuit

Figure 14 provides a drawing showing the location
of the components on the iCS 920 panel when it is
utilized as an output switch. Again note the place-

ment. of the optical isol<1.tors in the 20-pin sockets.
Also note the jumper arrangement used to provide
the required output circuitry.

Again referring to Figure 13,. we see that an alter~
native to using the optical isolator for a switch
exists. Provision has. been made on the panel ·for
the installation of high power buffer/driver chips
such as the TI 75462. This device provides the same
coil/ contact characteristics as our optical isolator;
however, no isolation between the input and out
put is provided. In certain applications, this con
figuration may be desirable and can be imple
mented by connecting jumpers 1 and 3 together,
then placing a jumper block in the isolator socket
location. The oven application will not use this
mode because of the many advantages which iso~a
tion c.an provide.

Prior to actually installing the components .onto
the iCS 920 panel, it is necessary to assign the
lamps to definite channel addresses. This involves
making some additional assumptions and design
configuration decisions. If we consider the total
number of digital inputs and outputs which are re
quired to handle all four ovens (including the as yet
unconsidered switch and heater sigm1ls), we see
that a total of 24 channels will be required. These
will be broken out as shown below:

No. of
Channels

0

0

0

16
4
4

Type

DC
AC
AC

Function

Oven indicator lamps
Oven heaters
Oven RUN switches

"'0-~0"" 0 0

Figure 14. Digital Terminator Output Configuration

3-12 AFN-01931A

We have indicated that the 16 indicator lamps can
be handled using the iCS 920 panel. An examina
tion of the data sheets for the various Intel single
board computers and expansion boards provides us
with the fact that a common characteristic of most
boards is the use of at least one Intel 8255 Pro
grammable Peripheral Interface. This provides us
with at least 24 1/0 lines with which to work on
each single board computer. We can then assume
that we will not require an 1/0 expansion board to
implement our application. Ideally, we can handle
our total requirements with one parallel interface.

The various Intel parallel ports are brought off of
the computer and expansion boards. using edge
connectors. These edge connectors are then con
nected to the termination panels using a standrd
ribbon cable assembly, ef[ectively providing an ex
tension of the 1/0 ports out to the termination
panels. The 24 channels are grouped into three 1/0
ports (each consisting of 8 channels or bits) which
are then called port A, port B, and port C. When
connected to the iCS 920 panel, these ports and
their bit assignments will be as shown in Figure 15.

At this point, we seem to be in a dilemma since we
would like to use all 24 channels and we have used
only 16 of them on our panel while we have utilized
the edge connector of the interface. It would be
desirable to have some technique to extend the
other 8 channels to a high voltage terminator
panel. It might be well to interrupt our channel
assignments at this time to jump ahead and con
sider the features of the iCS product line which will
enable us to accomplish our interface desires. We
will then consider the interface of the high voltage
signals to our control system before returning to
the problern of assigning 'port locations to our
lines.

+ + +

High Voltage Digital Termination Panels

The Inte!'"J iCS 9301" AC Signal Conditioning/
Termination Panel is designed to interface up to 16
AC signals (up to 280 volts at 3 amps) or high cur
rent DC signals (up to 50 volts at 3 amps) to the
parallel ports of the Intel single board computers
or 1/0 expansion modules. The barrier strip termi
nations on this panel are designed to easily handle
the 14 gauge wire commonly found in applications
requiring the use of the AC terminator.

Solid state relays are used to provide the interface
between the computer 1/0 ports and the physical
plant devices. These devices make the utilization of
the panel a simple task once a ladder diagram of
the required circuits has been drawn. As we have
previously mentioned and as is clear from looking
at Figure 4, we shall need to utilize eight of the
available circuits, four for input and four for out
put. The implementation of each signal type re
quires only that we insert the correct type of solid
state relay into the appropriate socket.

First, consider the input configuration which is
required to sense the position of the oven RUN
switches. Figure 16 shows the circuit schematic
when used in the input mode. We can see that the
output signal will turn on when the input power is
applied. Like the digital termination panel, each
circuit's status is indicated by means of an LED in
dicator installed on the board. The input circuit is
protected by a socketed 3-amp fuse which may be
replaced without the need to solder any compo
nents. The solid state relay used for this configura
tion shollld be a type !ACS which is available from
either Opto-22 or Motorola. Complete details of
available relays and their uses on the board are
available in the iCS 930 AC Signal Conditioning/

+ + +

~~~~~~ 
7 6 $' 4 3 2 1 0 7 6 5 4 

'PORT B PORTC 

Figure 15. iCS 920™ Digital Terminator Port Assignment 

3-13. 

PORTA 

- + 

EXTSV 
POWER 

AFN·01931A 



Termination Panel Hardware Reference Manual 
(manual order number 9800802A). Keep in mind 
the fact that although this application note repre
sents the solid state relays as being actual .relays and 
contacts, they in fact are solid state and contain no 
moving parts. 

+5V 

SOLID STATE 
RELAY ~+--++.+----+ 

3.3K 

Figure 16. iCS 930™ AC Terminator Input Circuit 

The output configuration is utilized to turn the 
heater elements (the light bulbs) on and off. Figure 
17 provides us with a schematic of the output cir
cuitry. In this case, we will insert a solid state relay 
of type OAC5 which will handle up to 140 volts 
RMS at 3 amps. In some cases, it might be desir
able to add certain components to the terminator 
panel when using it in the output mode.Two possi
ble circuit configurations are possible. The first 
and perhaps the most common will consist of in
staUing a MOY (metal oxide varistor) across the 
solid state relay contacts. This will be required 
when the load being driven is inductive in order to 
prevent the transients generated by the load from 
damaging the triac in the SSR (soljd state relay). 
Since the SSRs utilize zero voltage switching and 
the load in our ovens is resistive rather than induc
tive, our application will not necessitate the instal
lation of this device. The second possibility for ad
ditional circuitry also involves driving inductive 
loads. When the load is highly inductive, a possi
bility exists that reliable operation of the SSR may 
not occur because of incorrect values for the dv/dt 
(a complete description of this phenomenon is 
available in various publications available from the 
manufacturers of the solid state relay devices). 
Provision has been made for installation of an ex
ternal snubber network should this be required. 
Again, our oven control system will not require this 
type of circuitry. Figure 18 is provided for refer
ence should the reader desire to see the location of 
the additional components on the panel. It should 
be noted that the component placement does not 

3-14 

allow the installation of the MOY and the snubber 
simultaneously. 

+5V 

Figure 17. iCS 930™ AC Terminator Output Circuit 

+ 

~ 

~ MDV Rs 

SOLID 
STATE 

2'""" 
RELAY 

@ 

0 ~ 
Figure 18. AC Terminator Component Locations 

We can now get back to the task of assigning ad
dresses to the various digital channels. The iCS 930 
panel has three connector options for connecting it 
to the computer's 1/0 ports. The standard con
figuration utilizes connector J2 to attach the rib
bon cable assembly. When this is done, the com
puter ports A and B will correspond to the 16 chan
nels on the terminator panel (Figure 19). lf we look 
at the termination panel, we will see that there is a 
provision for the user installation of two additional 
ribbon connector sockets onto the board, These 
are used in order to utilize the computer port C. If 
connector J3 is installed and utilized instead of J2, 
the channel assignments will be as shown in Figure 
20. In a similar manner, connector JI can be in
stalled and utilized to provide connections between 
the computer port C and the other eight SSR posi
tions. If we choose the 16 lines required for driving 

AFN·01931A 



the indicator lamps from the iCS 920 panel to be 
ports A and B; then it seems reasonable to.assign 
tl}e eight remaining lines required on the iCS 930 to· 
port C. A feature of utilizing standard ribbon cable 
assemblies is the ability to easily add ribbon plug 
con11!!ctors to. tqe. cable, . This will F.esult i.n an · 
assembly transferring ports A, B and C to the iCS 
920 panel (however, portC is not,used) and which 
continues the port C signals to the iCS 930 panel. 

PORTS 

Figure 19. iCS 930™ AC Terminator Port Assignments 

AVAILABLE FOR 
J1 CONNECTOR 

Figure 20. iCS 930™ AC Terminator Port Assignments 

... .. .. - ... .. 
a: a: a: a: :i: :i: w w w w " " :c :c :c :c i !::: 
w w w w ~ :i: :i: :i: :i: "' 

N{NEUTRAL) 

,!O(POWl;R) 

PORTC 

J2 

Individual channel assignments can now be made, 
grouping the .inputs and outputs together in groups . 
of four (this is .done because of a requirement of 
the single board computers to share terminator and 
driver component packages in groups of fouF). Fig
ure 21. provides a drawing showing the channel 
assignments: .and the physical wiring locations 
which wiH be used t.o connect the oven heaters and 
switches, 

PORTA 

PORTC 

.J3 

AVAILABLE FOR 
J3 CONNECTOR 

~ 

EXT5V 
POWER 

~ 

EXT5V 
POWER 

~ 
EXT5V 
POWER 

Figure 21. iCS 930™ AC Terminator Application Configuration 

AFN·D1931A 



Final Channel A&signments 

The onlytask remaining before we have completed 
our task of assigning channel numbers:and physical 
wire and component locations is to assign these ' 
channels on the iCS 920 digital termination panel. 
Since we have already determined that we will uti• 
lize-'ports A and B, this becomes a simple matter, 
requiring only an arbitrary assignment of lamp 
locations using these port bits. The assignments 
made for one oven can be seen in Figure 22. The 
entire ladder diagram of the system can now be 
completed along with port assignments for all sig
nals used. The completed diagram can be found in 
Appendix B. Note how the port assignments have 
been shown to the side of the ladder element repre
senting that interface device. 

The method used to define a port assignments 
needs to be clarified since it may not be apparent 
why a channel of port.A was given the address of 
E80. To· begin, we have already indicated that each 
port consisted of eight channels or bits. We will 
number these bits from 0 to 7. Since it is possible to 
have many input/output devices connected to the 
computer, th.e possibility exists of having multiple 
devices which Incorporate internally ports A, B, 
and C. The computer has been designed to support 
up.to 256 ofthese ports so we have numbered them 
using the hexidecimal numbering system. The pos
sible port numbers can then range from 00 to FF. It 
will be found that a common characteristic of most 
single board computers is the use of assigning the 
port addresses of E8, E9, and EA to the on-board 
8255 parallel peripheral interface. Therefore, the 

Q. 
I! s .. 

I! :I! s .. 
z .. ... 
0 .. 
e 0 ... 

WIRE#15 l 
l:l..+L 

E~ 
l:l..+L :::!: 

first channel of port.A would be c;lefined as having · 
an address .of E80; the second channel of port B 
woukl be E9 l , a{ld so foi:th, 

' < 

Ill. SELECTING THE COMPUTER BOARDS 

To this polnt we h~ve delayed the selection of the 
boards which will be required to provide the com
puterized control system. The Intel OEM Micro
computer Systems Configuration Guide has been 
designed to simplify the task of selecting the re- ' 
quired system. Our first task is to enter all known 
information describing our desired system into the 
project configuration worksheets. These work
sheets can then be used to actually select a board .· 
configuration which meets our particular require
ments. The effort required to accomplish the entry 
of data is reduced to a minimum through the use of 
predefined digital and analog configuration work
sheets. Our requirement of having a total of 24 
parallel data lines, c()nsisting of a mix of high and 
low level interfaces, can be met by the 24-bit 
AC/DC combination. Our assignments of re
quirements for the terminator panels can be made 
and is shown in Figure 23. It can clearly be seen 
from the worksheets, that our required interface · 
with the computer digital data will consist of one 
24-bit wide connector (had we not used port C 
assignments, the use of 16-bit wide connectors . 
would have sufficed). This means that our selected 
single board computer or 1/0 expansion board 
must provide at least one edge connector having 24 
1/0 bits on it. · 

.. 
I! .. .. ... I! 
z .. 
0 ... 
;::: ... 

0 :::> ... .. 
u :!! 
0 e ... 

:::!: 
l 

l:l..+L 
~ + 

Z!ll!lll llJ l7lll7l ~-~· Ir l!lll !Ill 
... ~- . ±-

i 7 6 5 A 3 2 1 0 7 6 5 4 3 

PORTB PORTC 

§ 

Figure 22. Digitsl Panel Application Configuration 

3-16 

2 1 0 7 6 5 4 

§ 
·-

3 .. . 2 1 

PORTA 

0 

!i 
~-
EXTSV 
POWER 

AFN-01931A 



DIGITAL CONFIGURATION WORKSHEET 
PROJECT~~~~~~~ 

This worksheet will provide the required digital interface configuration 
data which is required to complete the Project Configuration Worksheet. 

Enter Number of Channels 

Enter# of Discrete AC Outputs (115-230 VAC) .................................. _Ii_ (A) 
Enter# of Discrete AC Inputs (115-230 VAC) .................................... _.!:i___ (B) 
Enter# of Discrete DC Outputs (Current > 300 MA).. . .. __O__ (C) 
Enter# of Discrete DC Outputs (Current < 300 MA) ............................. _1.{Q_ (D) 
Enter# of Discrete DC Inputs .................................................. __Q_ (E) 

Compute the Number of iCS 920'" and iCS 930'" Termination Panels 

First compute the number of Parallel 1/0 ports (8-bits each port) required 
on your iSBC'" board. Round all computations up to the nearest whole 
integer unless instructed otherwise! 

Compute# of iCS 930 Interface Output Ports ((A+C)/8) ......................... __L_ (F) 
Compute# of iCS 930 Interface Input Ports (B/8) ................................ _ _l_ (G) 
Compute# of iCS 930 Termination Panels ((F+G)/2) ............................ __L_ (H) 
Compute# of iCS 920 Interface Output Ports (D/8) .............................. --2.._ (J) 
Compute# of iCS 920 Interface Input Ports (E/8) ................................ __Q_ (K) 
Compute# of iCS 920 Termination Panels ((J + K)/3) . . . . . . . . . . . . . . . . . . . . . . . . __l_ (L) 

Optimization of Digital 1/0 Port Usage for Minimum 1/0 Configuration 

Compute# of iCS 930 Output "Overflow Channels" DO NOT ROUND OFF) 
(A+C)/8 ........................................... QUOTIENT ............... _Q__(M) 

(Overflow Channels) REMAINDER ............. _!I._ (N) 
Compute# of ICS 930 Input Overflow Channels (DO NOT ROUND OFF) 
(B/8) ................................................ QUOTIENT ............... ---$.-- (P) 

REMAINDER ............. __:i_ (R) 
Compute# of iCS 920 Output Overflow Channels (DO NOT ROUND OFF) 
(D/8) .............................................. QUOTIENT ............... ___1.__ (S) 

_REMAINDER ............. _Q_ (T) 
Compute# of iCS 920 Input Overflow Channels (DO NOT ROUND OFF) 
(E/8) ............................................... QUOTIENT ............... __Q_ (V) 

REMAINDER ............. __Q_(W) 
Compute 8-Bit Input Ports Required (P+V) ...................................... __Q_ (X) 
Compute 8-Bit Output Ports Required (M +S) .................................... ...:.2,_ (Y) 
Compute 4-Bit Output Ports Required ((N+T)/4) (ROUND UP) ................... __l_ (Z) 
Compute 4-Bit Input Ports Required ((R +W)/4) (ROUND UP) .................... __l_ (AA) 
Compute 8-Bit PortC Requirements ((Z+AA)/2) (ROUND UP) .............. , .... _I_ (BB) 
Total 1/0 Parallel Ports Required (X +Y +BB) ..................................... ~(CC) 
Total # of 24 Channel Parallel 1/0 iSBC Board Edge Connectors 
(CC/3) (ROUND UP TO INTEGER) ............................................. _j___ (DD) 

Compute Power Requirements for the Termination Boards 
(DO NOT ROUND OFF) 

Compute +5V for iCS 920 Board Outputs (.061 x D) .............................. ..9M (EE) 
Compute +SV for iCS 920 Board Inputs (.023 x E) ................................ __.o_ (FF) 
Compute +SV for iCS 930 Board Outputs ((.020 x (A+ C)) ......................... .:C!!iQ. (GG) 
Compute +5V for iCS 930 Boa'd Inputs (.012xB) ................................ ~(HH) 
Compute iCS 920 Power Requirements (EE+FF) ................................. ~ (JJ) 
Compute iCS 930 Power Requirements (GG+HH) ............................... ~ (KK) 

Enter the appropriate data into the Project Configuration Worksheet as shown 
below: 

PROJECT CONFIGURATION WORKSHEET 
EQUIPMENT PARAM.ETERS: 

L !llU~ 
REfUIRUlllRIS 

Figure 23. Digital Configuration Works.heet 

3·17 AFN-01931A 



The required power requirements of· the termina
tion panels can be calculated using the data pro
vided in the digital configuration worksheet. The 
information regarding the necessary connectors 
and the power requirements should then be 
transferred to the project configuration worksheet 
(Figure 24). 

Figure 24. 

A similar technique is used to configure the analog 
signals using the standard analog configuration 
worksheet as shown in Figure 25. It can be seen 
that our application will require a single cable con
nection to a differential input edge connector of an 
analog input board. The power requirements can 
be calculated from the current requirements to 
drive the thermistors and the sensing resistors. The 
data is entered into the appropriate columns of the 
configuration tables and then transferred to the 
project configuration worksheet. 

ANALOG CONFIGURATION WORKSHEET 
PROJECT ~ CO\l!POkl.EI'-

Thia worksheet wiU provide the required analog interlace ·configuration 
data whoch os requ1rnd 10 complete the Project Configuration Worksheet 

Enter Number of Channel• , 

Enter # of Single Ended High Level Analdg Channels .. 
Enter# o!Oifferantial High Le>1el Analog Channels 
Enter#ofOif!erential Low level Analog Channels ... 
Enter#ofAnalog0u1pu1Vol1ageChannels .. 
Enter#ofAnalogOutpu1CurrentChannets 

..... ±;~; 
...... _D_(C) 

. __o_(O) 

.. ___Q_._.(f) 

Compula the Number ol ISBC'" Board Edge Connec.tors 

Unlessotherwiseno1ed,roundallcompu1a1ionstothenex11argastonteger! 

Compute # o! High Level Single Ended Analog Connectors (A/16) ... 
Compute# o! High Level D_i!ferential Conn?<:1ors (818) 
Compu1e # of Low Level D11fei:en1ial Connectors (C/8) ........ . 
Compu1e #of Anelog Interface lnpu1'Cbnneciors JF•G•H) 

Compute the N1,1mber of i~·S-910'" Termination Panels 

Enter Analog Out Connec16rs lD/4•~(.!) · 
Enter# of Analog In Connectors (J/2) 
Enter Larger of (K) or (L) .. 

... ..JJ_{F) 
___L_(G) 

..... _Q_(H) 
. ___L_ (J) 

Place lhe appr,oprlate data ln_to the Project Configuration Worksheet as shown 
below: 

Figure 25. 

The only remaining physical element qf our control 
system which we have not defined is the CRT ter
minal which will be used for setpoint entry and 
modification. Communications with a terminal re
quires that we provide a serial RS232C port in our 
control system. This port requirement is entered 

onto the worksheet and the system requirements 
are totaled as shown in Figure 26. 

EQUAIENT PARAMETERS: 

-=~ FiTi I in=:t I ff.':"'MS I • I i 177:'3 ~I ·i I::-;--:• I •~ I 
1\00001~ 

• 

Figure 26. 

We must now choose the Intel iSBC boards which 
will provide a solution to our system requirements. 
This is done by referencing the summary of key 
iSBC configuration parameters to find boards 
which provide the necessary characteristics. Our 
first task is to choose a single board computer 
which meets as many of our needs as is practical, 
while providing performance characteristics ade
quate to our needs. 

Our first requirement for having support for a 
single RS232C serial communications channel can 
be seen to be met by a variety of possible boards. 
Among the possible boards meeting this require
ment are: 

iSBC 86/12™ iSBC 80/lOA™ 
iSBC 80/20™ iSBC 80/20-4™ 
iSBC 80/30™ 

We must look further before a final choice can be 
made. Again, it can be seen that all candidates also 
meet the requirement of providing a minimum of 
one 24-bit wide digital 1/0 connector. Our decision 
must be based upon parameters which are not 
necessarily related to the input or output capabili
ties. Even though we have not yet developed our 
software package for our control system, we can 
safely make some assumptions regarding the com
pleted software package and thus define additional 
requirements which will enable us to select our 
desired computer board. The software task will be 

. considerably simplified if we write our programs in 
a high level language and if we use available drivers 
for our input and output where they are available. 
As we will see, .. the utilization of PL/M and 
RMX/80™ realctime executive and drivers will 
make this programming task much less demanding 
of our time. The trade-off is that these software 
tools take· 1arger amounts of memory than if we 
were to write our entire application program in 
assembly language. Let us make an initial estimate 
that our system will require about 8K of EPROM 
and in the neighborhood of 2K of RAM. 

3-18 AFN-01931A 



Entering this data on the configuration worksheet 
(Figure 27) enables us to narrow our choice by 
eliminating the iSBC 80/IOA since it does not have 
sufficient RAM on board. 

PROJECT CONFKll.JRATION WORKSHEET 

Figure 27. 

Since our application is not likely to require exten
sive math handling capabilities or high speed capa
bilities, we probably do not need the power found 
in the iSBC 86/12; so we will remove this product 
from consideration. 

We are now faced with selecting either the iSBC 
80/20 board or the 80/30 board for our processor. 
Each has certain advantages and disadvantages for 
use in our application. Let's compare these two 
boards, considering first the iSBC 80/20, then the 
iSBC 80/30. 

iSBC 80/20 board advantages - Slightly lower 
cost, greater number of 1/0 lines available. 

iSBC 80/30 board advantages - Faster proces
sor, dual ported memory, able to utilize UPI 
modules. 

If the system were to operate in a stand-alone en
vironment and we could be certain that significant 
expansion would not take place, we would prob
ably choose the iSBC 80/20 computer for our ap
plication. If we consider that the system might 
become a part of a much larger system by future 
expansions and additions, we should remember 
that the use of the UPI modules on the iSBC 80/30 
computer provides considerable power through 
multiprocessing capabilities. The dual ported 
memory can also provide us with the ability to use 
more sophisticated inter-board communication 
protocol should the need arise. For the purposes of 
this application note, we will assume the system is 
being designed for expansion and we will select the 
iSBC 80/30 computer. 

A good design practice is to provide an extra mar
gin of available memory in the hardware design. 
Our anticipated RAM memory will use about 2K 
bytes. The computer will provide us with 4K bytes 
so we have a considerable margin. This is not true 
when we look at the amount of EPROM available 
on the board. Our SK requirement is identical to 

3-19 

the amount of memory available to us on the 
board. We should consider the use of an expansion 
EPROM board or the prospect of having to spend 
a considerable amount of time reworking our pro
gram to get it to fit if we find that we have exceeded 
our estimates. We will select the option of adding a 
memory expansion board (it can be deleted if we 
find that our software requirements are less than 
estimated). 

The computer selection and the memory expansion 
board data can now be entered onto the configura
tion worksheet as shown in Figure 28. If needed, 
the addition of the memory expansion board will 
allow our EPROM requirPf!lents to grow up to 16K 
bytes. 

PROJECT CONFIGURATION WORKStEET 

Figure 28. 

The only requirement which we have not met is to 
assign a board to handle the analog input needs of 
our temperature sensing circuit. The analog voltage 
can be calculated and will be found to lie in the 
neighborhood of 4.6 volts at room temperature. 
This value will increase toward 5 volts as the 
temperature of the oven increases. Since we have 
no requirement for any analog output capabilities, 
we will choose the Intel® iSBC 711 ™Analog Input 
Board to sense the voltage level. This board can be 
configured to handle a 5-volt full scale input and 
will provide a resolution of 12 bits. (If an oven re
quiring a wide range of temperatures and greater 
resolution were required, we would have to recon
figure our temperature sensor to provide a wider 
voltage spread over operating temperatures. For 
purposes of simplicity and clarity we will assume 
that our temperature resolution is adequate.) 

The configuration worksheet can be filled in to 
reflect the selection of the analog converter and the 
total power requirements for the system can be 
computed as has been done in Figure 29. We now 
need to select a chassis and power supply in order 
to complete the application hardware design phase. 

The Industrial Chassis 

Before the boards can be operated together to fo· ,.,,. 
a control system, a means of allowing communica-

AFN·01931A 



SH INSTftUCTIO~ ~Hm PROJECT CONFIGURATION WORKSHEET 
EQUIPMENT PARAMETERS: 

Figure 29. 

tion between the boards and of distributing power 
among the boards must be found. This require
ment is met by specifying a chassis into which the 
boards will be mounted. The Intel® iCS 801 M In
dustrial Chassis provides an environment for oper
ating the boards which is specifically designed to 
operate in an industrial area. 

The chassis has been designed to facilitate mount
ing into either a standard 19-inch RETMA cabinet 
or it may be rear-panel mounted into an enclosure 
such as may be found in applications requiring the 
use of a NEMA electrical enclosure. The card chas
sis has been mounted in such a manner as to hold 
the single board computers and expansion modules 
vertically, facilitating maximum cooling of the 
boards. Fans are provided to aid the normal con
vection cooling process. Card racks may be in
stalled into the iCS 80 chassis to expand the card 
support capability to a maximum of 12 card slots in 
groups of four. Either an iSBC 635 or 640 power 
supply can be mounted into the industrial chassis 
to provide power up to 4 or 12 boards capability, 
respectively. 

Liii Qly 0!1 Qty_ 

Ll_ I I I I li.r.r.t. 1.i20 [002s 1.050 I 
r- SYSHM I SLOTS ---C-~ mmm1LmE 
~t~~ AVAllABL!_~ce·l2V~"",o-, ~=--1 

3·20 

TllTAl I I I SYSTEM COST 
~~--

Our application design requires the installation of a 
three board solution, so we will choose the iCS 80 
chassis with one iSBC 635™ power supply. We will 
choose to mount our control system in a standard 
NEMA 12 enclosure to protect the unit from the 
industrial environment. We should refer to the iCS 
80 Industrial System Site Planning and Installation 
Guide (manual order number 9800798) for com
plete details for selecting appropriate enclosures 
and installation instructions. 

The + 5 volt power needed to support the various 
termination panels and to supply a reference volt
age for the thermistors is available from a barrier 
strip located on the lower front of the iCS 80 
chassis (Figure 30). Our wiring cart be routed to 
this barrier strip for those circuits requiring either 
5-volt DC or the system logic common. A fuse 
holder is provided and a fuse should be installed 
for system protection. We will install a 2-amp fuse 
into the holder (our maximum power requirement 
for external circuitry should be 1.22 amps accord
ing to Figure 26). 

AFN·01931A 



CUT JUMPER TO ENABLE FUSE 

,OE1 
1'0E2 

Figure 30. Industrial Chassis DC Power Strip 

The remaining terms required in our ladder dia
gram (Appendix B) consist of a high voltage 
neutral and a source of switched high voltage 
power for the heater lamps. Both of these terms are 
available from the iCS 80 industrial chassis. It is 
desirable to utilize the same switched power for 
both the computer system and our external signals, 
so that we can provide protection to operators 
when one portion of the system is shut down. A 
common source will insure that all portions of the 
system are inactivated if repair is being done. The 
iCS 80 chassis incorporates a heavy duty industrial 
key-lock switch for its power switching. The out
puts of this switch are available to the user at a ter
minal barrier strip located on a fold-out panel on 
the rear of the chassis assembly (refer to Figure 31 ). 
We can see that our neutral wire should be con
nected to terminal 5 (filtered AC low) and the wire 
for the AC high, wire #10 on the ladder diagram, 
should be connected to terminal 9. This will pro
vide us.with a switched, fused, and filtered power 
source for our external wiring. 

0 
z 

" :i: :i: "' ;:: 
" " iii 
i: i: "' g .. 
0 0 :i: 0 .. .. 0 .. 

;:: 
g 
0 .. 

As we will be installing the chassis into a NEMA 
enclosure, we will not want to use a standard power 
cord since this would involve the additional ex
pense of installing a duplex outlet in the cabinet. 
The power wiring can be installed directly onto the 
power barrier strip by placing the AC hot wire on 
barrier number I, the neutral wire onto barrier 
number 4, and the ground onto barrier number 3. 

The hardware implementation of the system can 
now be considered to be complete. Before the sys
tem can function as a control for the oven temper
atures, we must define the relationships between 
the various pieces of the oven system and we must 
also define the operator interface with the CRT ter
minal. Thus, we begin the software phase of our 
design. 

IV. DETERMINATION m· SOFTWARE 
APPROACH 

The task of providing the relationships between the 
various system components falls into the category 
of writing the software. Before we actually begin to 
develop this software, we will define certain guide
lines which can be used to organize and simplify 
the task. 

Let us consider the general environment under 
which our programs will operate. We find that we 
have essentially two choices in this area. First, we 
can consider the entire process as a sequential set of 
predefined operations in which we must perform 
each operation before moving to the next until 
finally we complete the sequence and begin again. 
(This is analogous to using a single stepper switch 
to design our control system.) Since each oven is in
dependent of the others, we can not afford to use 

• 0 

~~~~ 
~~g:x:
:::!::::>~O
LLLL.<I)<[

iCS-80 AC POWER PICKUPS
(115 VAC CONFIGURATION)

;'« ,j

Figure 31. Industrial Chassis AC Power Strip

3-21 AFN·01931A

this approach since we could get tied up waiting for
something to happen in a particular oven and
would have to ignore the other ovens. The designer
familiar with relay design will probably be think
ing, at this point, that we should use a separate
sequential operation for each oven or device to be
controlled. Indeed, this is exactly what we can do
with our software by using what is known as a real
time executive. This tool will allocate the com
puter's resources in such a manner as to provide us
with the capability of having independent software
programs or tasks operating at what appears to be
the same time. We will make our first assumption
that our software will be written using such a tool
and we will specify that we will operate under
Intel's RMX/80 Real-Time Multi-Tasking Execu
tive. We will discuss more detail of this software
tool as we develop our programs.

Next, we must consider the language which we will
use to actually define our required operation. We
have many alternatives from which to choose. Let
us look at several of the alternatives in some detail.

Assembler

Assembler language is probably the most basic tool
with which we can program a computer. It is con
sidered to be the most efficient user of program
memory and processor time. These features are
made possible because each assembler instruction
line is converted directly into a corresponding
machine instruction. From a programming stand
point, assembler language is the most difficult to
use since any task must be defined by subdividing
that task into a multitude of smaller. operations
compatible with the available instructions of the
computer. To use this language, we must be famil
iar with the architecture of each computer with
which we desire to operate. The use of the language
is somewhat simplified through the use of an Intel
supplied assembler which converts the assembler
code into machine instructions and provides list
ings of the operations which have been entered. A
complete description of the Intel 8080/8085 As
sembler Language is available in the 808018085
Assembly Language Programming Manual (man
ual order number 9800301B).

The user should consider this programming tool
when his application requires the minimum
amount of memory (such as might be required for
very large volume designs where memory cost is a
factor) or where a highly time dependent routine

3-22

must be defined. Our oven application does not fall
into either of these categories, so we will choose
not to use this language in our instance.

PL/M

Intel's PL/M language offers an efficient, struc
tured, high level systems programming language.
Before proceeding, let us be clear on the benefits of
using a high level language. First, the use of high
level languages results in reduced development time
and cost. High level languages provide the ability
to program in a natural algorithmic language. In
addition, they eliminate the need to manage regis
ter usage or to allocate memory. Second, high level
languages provide improved product reliability
because programs tend to be written in structured
formats and result in a minimum of extraneous
branches which might cause testing problems.
Finally, their use produces programs which are bet
ter documented and are easier to maintain.

On the other hand, high level languages do not op
timize the code segments as well as can be done by
an experienced assembly language programmer. As
a result, most compilers (routines which convert
the high level languages into machine executable
code) use more program storage than those written
by the assembly language programmer. Different
languages and compilers require different amounts
of memory for the same task.

PL/M-80 is probably one of the most efficient high
level languages for use on microcomputers. It has
been determined. that PL/M-80 users can expect to
use between I. I to slightly more than 2 times as
much program memory as would be used for the
same task written in assembly language. For this
reason, we must place the use of this language high
upon our list of possible languages in this applica
tion.

A glance at the PLIM-80 Programming Manual
(manual order number 98-268B) indicates that the
language is highly structured and seems to lend
itself very well to handle logical type operations. It
seems to have the greatest weakness in its math
handling capabilities in that it does not support
negative numbers or fractions. It is reasonable to
assume that the oven application can be handled
entirely with positive integer numbers so this
limitation will not unduly hamper our use of this
language. We will keep these features in mind when
making a final decision.

AFN-01931A

FORTRAN

Intel's FORTRAN-SO provides the full subset of
ANSI FORTRAN 77. In many cases FORTRAN-
80 has features that exceed the specifications for
both the subset and the full versions of FORTRAN
77. Most of the power of this language lies in its
ability to easily handle complex mathematical ex
pressions. Obviously, it does not have any limita
tions regarding fractions or sign of the numbers in
volved. It should be used when the application re
quires the use of mathematical computations. The
power of the language, however, means that the
use of the language will take a heavy toll of mem
ory allocation. A complete description of the FOR
TRAN version supported by Intel and its use on the
iSBC computers can be found in the FORTRAN-
80 Programming Manual (order number 9800481 A)
and in the ISIS-JI FORTRAN-80 Compiler Opera
tor's Manual (order number 9800480).

It is unlikely that the magnitude of mathematical
routines required to control the temperature of our
ovens will be complex enough to justify the use of
FORTRAN. Keep in mind that, if such a situation
were encountered, it is feasible .to use a combina
tion of programming languages to create our final
module.

BASIC

Certaintly the most well known high level program
ming language today is BASIC. It offers a quick
way of applying the computational capabilities of
the computer to a wide range of applications. The
Intel RMX/80 BASIC-80 is an interpreter designed
to operate with Intel's single board computers and
contains extended disk handling capabilities. As an
interpreter, it differs from other high level lan
guages in that it results in a relatively slower oper
ating solution to an application. It is also not possi
ble to use BASIC to generate multiple independent
tasks which can compete for computer resources.

For these reasons, we cannot consider the use of
BASIC for a solution to our application.

Final Selection of Language

From the above discussion, it seems clear that our
choice for the application being demonstrated is to
use PL/M-80 as our programming language.

With this in mind, we can begin the task of actually
generating the code which will complte our applica
tion and provide an operating control system.

3-23

V. DEHN ING SOFTWARE TASKS

The software implementation can begin as soon as
we have broken our control functions into inde
pendent "tasks". We can then handle each task
separately as though it were the only thing which
had to be done by the control system. In the event
that we find that one of our tasks must communi
cate with or be interlocked with another, we will
handle this need through the use of "exchanges".
The "exchange" can be thought of as a mailbox in
to which messages are deposited and picked up by
the various tasks. These messages convey the neces
sary information between the otherwise independ
ent programs. When all tasks have been coded, we
will combine them using the facilities of RMX/80.

Our oven application can be broken down into
three functional areas or tasks. These are:

1. The Control Task which will be used to actually
sense the oven temperature and to provide the
required responses to the heaters and the indi
cator lamps.

2. The CRT Update Task will be used to provide a
"snapshot" of the system operations to a per
son viewing the CRT terminal.

3. The Parameter Update Task will be used to ex
amine and update the oven setpoints and toler
ances.

The choice of these three tasks has been essentially
arbitrary in nature. Certainly, other choices and
groupings of functions could easily have been
made. We will use these choices for our example
and will proceed with our development accord
ingly.

We have two other supporting tasks which must be
included in our system. Fortunately, these tasks are
predefined and fully supported within RMX/80's
libraries; thus we need not write these functions.
The two supporting tasks are:

4. A Terminal Handler Task to support the actual
interface to the CRT terminal. It provides echo
of input characters and signals when data is
ready to be read. It will output messages to the
terminal and signal when all characters re
quested have been sent.

5. An Analog l/O Driver Task to request and han
dle the handshaking which is required to
communicate with the analog input board. It
will signal us when data has been input and is
available for use by our user written tasks.

AFN-01931A

We can proceed with the implementation of each
of our three tasks which we have defined. The first
step with each will be to develop a flowchart which
shows the required operations to implement that
task. This flowchart will show any intertask com
munications or exchanges that may be required
with other tasks. The flowchart can then be coded
using the facilities provided by our programming
language.

Oven Control Task

The sequence of operations required to perform
the control task can be defined using the flowchart
shown in Figure 32. Let us examine the required
steps in more detail.

An arbitrary decision has been made to only sam
ple and control the ovens once each second. This
willallow some time for the system to respond once
a heater output has been s.et. The first step in our
control task is to wait for one second to elapse.

Our next subtask should be to read the status of the
various oven control switches on the operator's
control panel. This item could wait until a later
time, but there is no harm in handling it at this
time.

Next, we see a block indicating the input of data
regarding the current oven temperatures. This oven
temperature data will certainly be used by the task
handling the snapshot display on the CRT so we
must give some consideration to the validity of the
data. While we are in the process of getting the
data and converting it to engineering units (next
step), there will be periods during which the stored
temperature data does not reflect the actual oven
temperature. An example might be when we are ac
tually moving the 16 bits of the temperature since
we can only move data 8 bits at a time. During this
pefiod, we would not want another task to use the
data and since each task is going to operate inde
pendent cif others, we must provide some type of
lockout of the data while we are operating on the
temperatures (an alternative would be to have each
task get its own temperature from the AID con
verter and convert it to engineering units, but this
would seem to waste memory and computer time).
We can provide this. lockoutby creating an ex
change to communicate with other tasks. If we
make a message available in this exchange when the
data .is valid and cause no messages to be available
when the data is nonvalid, we can effectively lock
out tasks from using the data when it is in the pro
cess of being updated. This is done by requiring

3-24

those tasks to test for the presence of a message at
the exchange before they get the temperature data ..
If no message is present, they must wait until .one is
placed into the exchange before proceeding. Just
before we update the temperatures we will fetch the
message from the exchange, leaving it empty while
we work on the data. later we will again restore the
message when the update is complete.

CONTROL
TASK

NO

Figure 32. Control Task Flowchart

SHUT ALL
. OFF

AFN·01931A

The number obtained from the analog converter
provides us with a value which is proportional to
the temperature of the oven. Our next step is to
convert this number into engineering units. Unfor
tunately, the voltage and temperature are not
related in a linear fashion since the thermistor is a
nonlinear device. We will have to develop a tech
nique to obtain a corrected value. For the purposes
of this application note and in an attempt to keep
the application as simple as possible, we have
chosen to utilize a single table look-up to perform
this conversion. Alternatives might have been to
utilize FORTRAN routines to mathematically per
form the conversion or to have separate tables for
each oven. Once the conversion has been made, we
must return a message to the data lockout exchange
to allow other tasks access to the data.

Because we must deal with four ovens, the opera
tions related to each individual oven must be per
formed four times, once for each. This is easily
handled as we will see, since PL/M is a block struc
tured language. Our flowchart need only remind us
that the operations need be done four times.

The next step has been defined as performing some
digital filtering of the temperature by averaging the
current temperature with the temperature of one
second ago. This filtered value will be used to per
form subsequent computations and to make future
decisions. ·

We have defined earlier in our definition of the
control algorithm that we would use a derivative
control. We have chosen to project the tempera
ture ahead for a period of 10 and 30 seconds. We
must calculate the rate of change and the
temperatures in 10 and 30 seconds so that this data
will be available when needed.

Now that the calculations have been made to deter
mine numeric values required for the decision mak
ing process, we must begin the process of determin
ing the status of each indicator and oven heater. A
test will be made of the oven run switch and if it is
found to be turned off, we will turn off all indi
cators and the oven heater associated with that
oven. If the switch is found to be turned on, we will
set the status of the "in tolerance", "caution";
and "alarm" indicators according to our oven con
trol algorithm. The oven heater will be turned on
or off according to 'the projected temperature in 30
seconds. · ·

Rather than o~tput the individual oven indicator
and heater .data four times (once for each oven), we

will perform the computations associated with
making the decision four times (this saves code
since we can use the same program steps with only
pointers being exchanged). At the end of this time,
a single operation will output the data to all ovens
and indicators at the same time. Outputting to a
computer port will actually cause the device to turn
on or off according to whether the output bit is a
one or zero.

We will then return to the beginning of our task to
wait until another second elapses before we again
perform the indicated functions.

Control Task Source Coding - The coding of our
tasks is a straightforward procedure once we have
prepared a flowchart. Since we are using PL/M-80
and RMX/80, the coding sequence for a task will
be as follows:

1. Define any variables or structures which will be
used in the module. This involves providing in
formation defining variables as being either an 8
or 16-bit variable and declaring if that variable
is to be a part of the task being coded or is to be
found in some other task. If any arrays or struc
tures are to be used, they must also be defined.
Finally, if any program locations are to be used,
they must be declared.

2. The task must be initialized. That is to say that
any assumptions which will be made as to initial
data values in subsequent instructions must be
initially forced to this initial value.

3. The actual task must be coded to match the
operations called out in the flowchart.

We will look at some examples of this coding pro
cess using the control task flowchart. The complete
listing of this module and all modules actually used
to provide the o.ven control system can be found in
Appendix C.

At first glance, it would seem that the listing is ex
tremely complex, but as we will see it is made up of
straightforward pieces. The listing is made up of
three parts as we have mentioned· above when de
fining the steps required to generate a program.
The first part(line numbers 1 through 50) is use.ct to
define parameters, variables, and external ele
ments. The general types of elements making up
this portion fall into typical categories. The first
general category consists of DECLARE .state
ments. Examples of typical lines will help explain
their meanings (when actually developing the pro
gram, this first section was created piecemeal by

3-25 AFN°01931A

making·an entry when it was foundthat·a need for
that term· existed as the execution code in sections•
two and three were written),

Examples Of the "declate" statement are shown
below. For example, ori;line 11 we firid:

II .1 Declare (n,k) bytei

This meaIJ.s· thatthe .variables ''n": and "k'.'. are be-.
ing defined as terms which represent numbers or
data which is one byte or 8 bits wide. The ''.11" is
the program lilie nv.mber, and the "1" indicates
that we are in the t'frst level. ofnesting. .· : .

We can also see the use of the "literal" expressions
such as used in line 4. The dpressi·on: · •··

4 I DECLARE FA,LSE LiTERALLY 'OOH';
. '

means that we.are.creating-a new instruction called
"false" and that its meaning is to be interpreted by
the compiler as being equivalent to the value of
zero.

Rather than dweli on the decl~ration, let us move
op to the .coding process w~ich was used to g~1,1er
ate the actu!ll program. Keep in mind that the use
of. PL/M-80 requires that all terms used be. de
claredin the pn;>gra,m module. Refer to th.e PLIM-
80 Progra,m17Jing Manual (order number 9S()()268B)
for a full description of the PL/M language.

Pi:ogram lnitializati9n - The .initialization portion
of 1the, program can be found., on lines 51 tjuough 59
of the control task program tis.ting. This sectiQn is
used to initialize data ai:td to proviqe known entry
conditi6ris before we enter the repetitiye program
loop. This code.is only executed when the system is
reset or when the pow'er is t\Jriied on. The control
task requires two types of initializations; onet0 in
itialize the computer's o\itput portanct•the other to
set up the AID converter, The ·requirements 'for
each can be found in the RMX/80 User's Guide
and the .iSB.C 801~0 Single Board Computer Hard:
wareRef,erence.Manual (oroer•number 980061 JA).
ActU<itl instruction examples .are given jn. these
manual~ for the initializ<itticm opera,tions,

Program Bridy - The prbgrairi'which act\Jally'pro
vides the control operations can. be found on lines
60through 126 of the program listfog for the con- .
troltask. It has been divided irito sections which'
correspond directly to the flowchart that. was
prepared earlier. Most: instructions 'in PL/M~80
language follow closely~he English strut:ture which
desctrbes what is being d6rie. The exceptions gener~
ally follow definite predefined formats. The for-

:3·26

mat such as used on line 61· to wait for one second
to·elapse is an example of one such exception. Any·
time we desire to wait for a definite time.period, we.
use ari instruction of .the form:

MSG$PTR=RQ~AiT (:DUMMY$EXCH, TIME DELAY);

Whatever dine delay we wish to use is expresse.d in
increments. of SO msec time petfo.d,s: .Our example
requires a Jiroe delay oCpne ~eco.~.d SQ we will use
the delay notatjori of 1.6/0.050 = 20 time units (thi~
command.is actually calling upon the RMXi80 ex
ecutive .to handle th~ d~lay):: . · . · .·· · ·

' ,·. ·. ·-

The oven enable switch data has been defined by us
t<:> be.routed by the hardware.to th.e computer port
"EA" which converts to a decimal number, 234; If
we define an internal memory location for this <la.ta
and call it BLOCKO, then we can get the oven
switch data by using an input statement. Since the.
data sense is inverted throµgh the hardware, we cari
provide meaningful internal data if the sign~! is re
in~erted as it is loaded 1into memory. The. instr~c
tion on line 62 of the .control task listing performs
thistask. · · · ·

We. are now ready to get the analog .data from the
A/D. converter. Ou!' flowctlart shows that we ml.1st
lock out the ot,her tasks from acces.s to the temper~~·
ture data during this time period, so we inustfirst
remove the enable message from the exchange in
which it is stored. Messages are removed from an
exchange by using an instruction of the form:

. STORAGE= i{QW AIT (EXCHANGE NAME,O)
' . . . " '

Line 63 of the program .listing means that we will
geta''me~sage from .ou~ storage exchange which is
called "Temp$lockout$exch". and store ii in a
memory storag~ area called "Lockout". Now,.~~.
other task can get a message from' this exchange
since it is empty, so it is permissible to operate on
the te'mperatrtte data'. (Note how similar this com~
mand is to the one used to wait for a defay. Indeed,
this :is the silme request 'for RMX/SO, but it re
quests a time deiay' of zero.) ·

During th~ i~itia)izatio~. we built a 'message defin
ing the: characteris~ics of the. a!lalog signals and of
the. analog conversion board. which. we are. using.
Reme~ber that wehave indicated thatJhe tas.k of
getting ~his data from, th~ 1?.oard .is provided ,to us by
one ofRMX/80's predefined dJiver~. A,11 .. that is
necessary at t,his time is toi,nform that driver ofour
desi~e to get data; then wait until it has done its job
and the data is available for us. The actuai com
munication between 6ur applications task: and' the
analog dI'iVer is done using the idea' of an exchange
similar to that we have used to lockout the data.

AFN-01931A

We will send a message to the analog driver telling
it what we want it to do, then we will wait until it
sends a message back to one of our exchanges tell
ing us that it is done. The format for sending a
message to an exchange always follows the form:

CALL RQSEND (EXCHANGE NAME, MESSAGE NAME);

Line 64 of the listing shows that we have requested
the input of the analog data since we have sent our
message, Convert, to the analog driver's exchange
which is called RQAIEX. We will wait until the
operation is complete by using the line of code
shown on the listing line 65. This is the same opera
tion type that we used to get our message back pro
viding a lockout earlier. The program will wait un
til a message is available before continuing.

The data must now be converted into engineering
units. We earlier indicated that we would use a
table lookup to perform the linearization, so we
have included this table as a part of our program at
line 50. The offset into the table corresponding to
our temperature must be determined so that the
correct value can be stored. Because we have four
ovens, we will perform the operation four times
with the data each time corresponding to the ap
propriate oven. These operations can be followed
on lines 77 through 81 of the listing.

Lines 67 through 76 are used to establish an offset
to be applied to the analog temperature data when
the system is running. This program is only de
signed to be used during the start-up operations
and is activated when a message containing a cali
bration request and current temperature is sent to
its exchange.

The temperature lockout must be removed to
enable other tasks to use this data. This is done on
line 82 by sending the message back to the ex
change used for intertask lockout communications.

The remainder of the program follows the flow
chart and the operations can be followed using a
flowchart and the listing. Each element of the flow
chart corresponds to a block of code on the listing.

CRT Update Task Development

Earlier, we stated that the CRT update task would
be used to allow the operator to view a "snapshot"
of the four ovens. Let us turn our attention to
developing the software which is required to ac
complish this. We can begin by defining the ele
ments which we feel should be displayed, then
defining the format to actually be used with the
CRT terminal.

3-27

Obviously, we need to provide the current tempera
ture of each oven on our display screen. If we dis
play the actual temperature, it seems reasonable to
assume that we should also show the setpoint so
that a determination can be made as to how well
the system is performing. The control algorithm
has been defined to use an allowable range to deter
mine system outputs, so it would seen wise to also
show this parameter. Finally, we should inform the
viewer of the status of the oven so that he will real
ize that the reason an oven temperature is low is
because the oven is off rather than an oven mal
function. Other items could be added if desired by
the system designer, depending upon the total sys
tem requirements or the characteristics of the
users.

We can now prepare a drawing of the CRT display
to generate a layout of our desired characters and
to generate an aesthetic display for viewing during
operation. This drawing can be found in Figure 33.

Several techniques are available to output the re
quired displays to the terminal. A decision must be
made as to the frequency of screen updates; will we
constantly refresh the data or do it only at certain
intervals of time? If the terminal has the ability to
disable the cursor, it makes sense to update data
continuously. If the cursor cannot be disabled, its
movement tends to be distracting, so the updates
should be kept to a minimum. The terminal used
for the application note did not have a disable
feature, so we will make the decision to only up
date the screen once each second.

OVEN STATUS DISPLAY

OVEN-1 OVEN-2 OVEN-3 OVEN·4

TEMPERATURE XXX.X XXX.X XXX.X XXX.X DEGREES

SETPOINT XXX.X XXX.X XXX.X XXX.X DEGREES

TOLERANCE XXX.X XXX.X XXX.X DEGREES

STATUS XXXXXXX XXXXXXX XXXXXXX XXXXXXX

TYPE ESCAPE TO ADJUST SETPOINTS.

Figure 33. CRT Status Display Layout

The decision to delay updates leads us to make
another decision regarding the screen updates. If
we only update a line which has data which has
changed since the last update, the cursor move
ments will be kept at a minimum since it is unlikely
that all parameters will ever change each second.

AFN-01931A

A flowchart can now be prepared showing the steps
required to implement the CRT update task. This
flowchart is shown in Figure 34. The coding of the •
program to support this task can be found in Ap
pendix C. The development is identical with that
which we described in the sections regarding the
control task. Again, the software is divided into
three parts, the declaration statements from lines 1
to 81, the initialization on lines 82 to 87, and the
actual task code on lines 88 to 207.

REQUEST
UppATE

NO

. CRT UPDATE

UPDATE
TEMPERATURE

IF CHANGED
OR NEW

UPDATE
SETPOINTS

IF CHANGED
OR NEW

UPDATE
TOLERANCE
IF CH.ANGED

OR NEW

UPDATE
STATUS

IF CHANGED
OR NEW

Figure 34. CRT Status Flowchart

A technique to exit from the:dn update mode
and to get into a mode which will allow modifica
tion of the parameters has been introduced into the
program· and the display format. This is in the
form of a message on the botton of the screen re
questing the entry of an escape character to adjust
setpoints. The software has been written in such a

3-28

manner as to test for a character inut from the key~·
board and 'if· one· is found corresponding to that
character, the update task will allow the parameter·
update task· to take control of the terminal (lines
190 to 204 of the listing).

Parameter Update Task

The parameter update task is used to actually allow.
the modification of the set points and the tolerances
associated with each oven. A second use of the. task
is to provide a tool for establishing the zero offset
associated with each analog channel so that an off"
set into the temperature linearization table can be
computed' by the control task.

Figure 35 shows the flowchart which describes the
steps required to perform these operations. When
the task has been completed, we will re.turn to the
CRT update task.

PARAMETER
. UPDATE

TASK

:· ..

Figure 35. Parameter Update Flowchart

AFN·01931A

The program code for this task can be found in Ap
pendix C and again follows the formats which we
have discussed earlier. No attempt will be made in
this document to provide a narrative of the listing
since it follows the flowchart in development.

Support Programs

Three subprograms (procedures) have been written
which provide functions which are common to the
three tasks. This has been done to minimize repeat
ing code segments thus saving as much memory as
possible. These three subprograms support:

I. Conversion of a decimal string from the termi
nal into a binary number. This program is called
ASC2BlNARY and can be found in Appen
dix C.

2. Storage for common variables used by more
than one task. These variables could easily have
been included in other tasks but a purely arbi
trary decision was made to include them in a
separate module.

3. Conversion of binary numbers into a decimal
string suitable for output to the terminal. This
program is called DEC$REP and is found in
Appendix C.

We now have completed the coding of the software
to support our oven application. We must finish by
combining all the software together to form a
single loadable module.

3-29

VI. :FINAL IMPLEMENTATION

When all code was linked and loaded to form an
executable program module, it was found that the
system required 9,041 bytes of EPROM and I, 735
bytes of RAM. These values fall within our hard
ware capabilities and will rquire that we program
and insert nine EPROMs into the EPROM expan
sion card.

The system can now be tested and installed to con
trol the ovens of our application. The actual system
described in this application note has been con
structed and tested. It has been found to control
the oven temperatures of four ovens and performs
as we anticipated when we developed our control
strategy earlier in this application note.

VII. CONCLUSION

We have shown how Intel's single board com
puters, industrial chassis, termination panels, and
software can be configured to provide a solution to
a typical control application. We have seen how the
development of a solution to a control problem can
proceed along a predetermined and logical path.
Truly, the utilization of the microprocessors can
lead to optimum and cost effective solutions to
control applications.

AFN·01931A

APPENDIX A
SELECTED DAT A SHEETS

3-31 AFN-01931A

TYPES TIL113, TIL119
OPTO-COUPLERS

BULLETIN NO. DL-S 7312032, NOVEMBER 1973

mechanical data

• Gallium Arsenide Diode Infrared Source Optically Coupled
to a Silicon N-P-N Darlington-Connected Phototransistor

• High Direct-Current Tran~fer Ratio ... 300% Minimum at 10 mA

• Base Lead Provided for Conventional Transistor Biasing

• High-Voltage Electrical Isolation ... 1500-Volt Rating

• Plastic Dual-In-Line Package

• Typical Applications Include Remote Terminal Isolation,
SCR and Triac Triggers, Mechanical Relays, and
Pulse Transformers

The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon darlington-connected
phototransistor mounted on a 6-lead frame encapsulated within an electrically nonconductive plastic compound. The
case will withstand soldering temperature with no deformation and device performance characteristics remain stable
when operated in high humidity conditions. Unit weight is approximately 0.52 grams.

·~··~r0-~;;1
"""~'~
·-~"''''~

000

NOTES:

a. Leads are within 0.005 radius of true position
(TP) at the gauge plane with maximum material
condition and unit installed.

b. All dimensions are in inches unless otherwise
noted.

c. Pin 1 Identified by index dot.
d. Terminal connections:

1. Anode } lnfrared..emittlng
2. Cathode diode
3 .. No internal connection

4. Emitter }
5. Collector
6. Base (For TIL 119, make Phototransistor

no external connection)

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Input-to-Output Voltage
Collector-Base Voltage (Tl L 113) . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Collector Voltage
Emitter-Base Voltage (Tl L 113)
Input-Diode Reverse Voltage
Input-Diode Continuous Forward Current at (or below) 25°C Free-Air Temperature (See Note 21
Continuous Power Dissipation at (or below) 25°C Free-Air Temperature:

Infrared-Emitting Diode (See Note 3)
Phototransistor (See Note 4)
Total (Infrared-Emitting Diode plus Phototransistor, See Note 5)

Storage Temperature Range
Lead Temperature 1/16 Inch from Case for 10 Seconds .

NOTES: 1. This val~e applies whe~ the ba~e-emitter diode is open-circuited.
0

2. Oerate !'.nearly to 100
0

C free·a'.r temperature at the rate of 1.33 m
0
A/ C.

3. Oerate II nearly to 100 C free-arr temperature at the rate of 2 mW/ C,

4. Cerate l~nearly to 1oo:c free-a~r temperature at the rate of 2 mWl°C.
0

5. Oerate linearly to 100 C free-air temperature at the rate of 3.33 mW/ C.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 • CALL.AS, TEXAS 75222

Reprinted with permission from Texas Instruments, March, 1979. All rights reserved.

3-32

±1.5 kV
30 v
30 v
7V
7V
3V

100mA

150mW
1WmW
250mW

-55°C to 150°C
260°C

AFN-01931A

TYPES TIL113, TIL119
OPTO-COUPLERS

electrical characteristics at 25° C free-air temperature

PARAMETER TEST CONDITIONSt

Collector-Base
V(BR)eBO

Breakdown Voltage
le=10µA, ie = o, IF= 0

Collector-Emitter
VIBR)eEO

Breakdown Voltage
le= 1 mA, Is= 0, IF= 0

Emitter-Base
V(BRIEBO

Breakdown Voltage
le=10µA, ie = o, IF = 0

Emitter-Collector
V(SRJEeO

Breakdown Voltage
IE= 10µA, IF= 0

On-State VeE = 1 V, Is= 0, IF=10mA
le(onl

Collector Current VeE = 2 V, IF= 10 mA

Off-State
le(off I

Collector Current
VeE = 10V, 19 = 0, IF= 0

Transistor Static

hFE Forward Current VeE = 1 V, le=10mA, IF= 0

Transfer Ratio

VF
Input Diode Static

IF= 10 mA
Forward Voltage

Collector-Emitter le= 125mA, Is= 0, IF= 50 mA
VeElsatl

Saturation Voltage le= 10mA, IF=10mA

1 nput-to-Output
Vin-out= ±1.5 kV, See Note 6 '10 Internal Resistance

Cio
1 nput-to-Output

Vin-out= 0, f = 1 MHz, See Note 6
Capacitance

TIL 113 TIL119

MIN TYP MAX MIN
UNIT

TYP MAX

30 v

30 30 v

7 v

7 v

30 100
mA

30 160

100 100 nA

15,000

1.5 1.5 v

1 v
1

1011 1011 n

1 1.3 1 1.3 pF

NOTE 6; These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.

tReferences to the base are not applicable to the TIL 119.

switching characteristics at 25° C free-air temperature

t,

If

t,

If

PARAMETER TEST CONDITIONS
TIL113 TIL 119

MIN TYP MAX MIN TYP MAX

Rise Time Vee= 15 v, le(on) = 125 mA, 50

Fall Time RL=1oon, See Figure 1 50

Rise Time Vee - 10 v, le(onl - 2.5 mA, 50

Fall Time RL=100S1, See Figure 1 50

PARAMETER MEASUREMENT INFORMATION
,---l4rn
~INPUT

-= I // I
I I

I

I ~1 --<-<->OUTPUT
- L ___ __J

TEST CIRCUIT

Adjust amplitude of input pulse for:

le(on) = 125 mA ITIL 113)
le(on) = 2.5 mA (TIL119).

INPUT O _j L

90%

OUTPUT

VOLTAGE WAVEFORMS

UNIT

µs

µs

NOTES: a. The input waveform is supplied by a generator with the following characteristics: Zout""' 50 fl, tr< 15 ns, duty cycle;::::: 1%,

tw = 100 µs.
b. The output waveform is monitored on an oscilloscope with the following characteristics: tr~ 12 ns, Rin # 1 M!l, Cin < 20 pF.

FIGURE 1-SWITCHING TIMES

TEXAS INSTRUMENTS
INCORPORA·TED

POST OFFICE BOX 5012 • OALLAS. TEXAS 75222

3-33 AFN-01931A

TYPES TIL113, '"fll119
OPTO-COUPLE,RS

TYPICAL CHARACTERISTICS

TIL113 .

COLLECTOR CURRENT
VS

COLLECTOR-EMITTER VOLTAGE

le =O
TA= 25°C

100 See Note 7

0 0.4 0.8 1.2 1.6 2.0

Vee-Collector-Emitter Voltage-V

FIGURE 2

Tll113

COLLECTOR CURRENT
vs

INPUT-DIODE FORWARD CURRENT

2.4

400~-~~~~~,..,.,--,-~~~........,,..,..,

Vce~1v-1--1-H++1---+--+-~f-+-H-H
le =O

<
E
I ... c
~.
:i u

~
.!!
0 u
I

S!

200

180

160

140

120

100

80

60

40

20

0

r

TIL119

COLLECTOR CURRENT
vs

COLLECTOR-EMITTER VOLTAGE

1 ~~tE I rt r\~Jf""+/{ -iol 51. ~.Cl'\ ~~
1IF=30 mAz ,'9<'.) 01' * ,o,_;'

J. ..J. ~ ~-~ -'~::1
IF = 40 mA ~ ', ~~./1'v0[

T !?': ~-~-+-IF =50 mA L '~-i-

i
.... ~

........
b..-;;;

] le =O
TA= 25°C , Sej_ Not_E 7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Vce-Collector-Emitter·voltage-V

FIGURE 3

OFF-STATE COLLECTOR CURRENT
vs

FREE-AIR TEMPERAT.URE

1000 ~--~--~--~--~--~

< 200 t- TA= 25° C -1---1--1--1-1-.i.+---+-+-+-1-+-H-H

E vr 100

Vee= 10 v
le= o
IF= 0

.. : .. ~ L 100 l---+--+--+-+-+-++++--+-1--il-+++++I
:i
u 701---+--+--+-+-+++++---+-l--il-+++++I

401----+--+-ll'-+-+++++--+--t--t--+-i-+i-+t
lL

0.001 ~~~~-~~-~--~--~

2 4 1 10 20 40 70 100 0 25 50 75 100 125

IF-Forward Current-mA TA-Free-Air Temperature-°C

FIGURE 4 FIGURE 5

NOTE-.7: Pulse operation of Input diode is required for operatlon.be.yond.Hmltl shown by dotted I.Ina •.

TEXAS INSTRUMENTS
INCORPORA,TED .

POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

3-34 AFN-019a1A

TYPES TIL113. TIL119
OPTO-COUPLERS

Q)
01

.fl
0

>
c u
.2 OL.n
\i; N

:J II

::;; <t:
Cf) I-

.~
E

LU

LU
u
>

~

"' Q)

:l
-ro
>
8

TYPICAL CHARACTERISTICS

TIL 113 TIL 113

RELATIVE COLLECTOR-EMITTER

SATURATION VOLTAGE
TRANSISTOR STATIC FORWARD

CURRENT TRANSFER RATIO
VS VS

FREE AIR TEMPERATURE COLLECTOR CURRENT

25,000

2
~

"' a:

~
20,000

c
"' i=
~ 15,000 c

VcE = 1 V
I- IF= 0

~ r- TA= 25°C

~ \

V1

1
.
6

,..-;c: 125 mA T--f
1.4 1--- I B - 0 ~- -+--+--+-__,

IF=50mA

1 .2 -----+---+---+---+---+

~
:l 0.8 I----.
u
"E 10,000 J' I

"' ;:
0 v 0.6

LL
(.) . .,

5,000 e
Cf)

I l 0.2 1------r-·---+---+---+-·--+---+--+---i
LU
LL

0 ~-~-~-~-~--~-~-~~ .r: 0
-75 -50 -25 0 25 50 75 100 125 0.1 0.4 4 10 40 100 400 1000

TA-Free-Air Temperature-°C le-Collector Current-mA

FIGURE 6

160

140

<t: 120
E
.I, 100 c

t
:l 80 u
"E

~ 60
0

LL
I 40 LL

20

0

INPUT DIODE FORWARD
CONDUCTION CHARACTERISTICS

I I
See Note 8

f T 1
TA= 25 C -

f ~
I 1 1 TA= 70°C1 v Vl w TA= -55°C

l l
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

VF-Forward Voltage-V

FIGURE 8

FIGURE 7

NOTE 8: This parameter was measured using pulse techniques. tw ~ 1 ms, duty cycle~ 2%.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 • DALLAS. TEXAS 75222

3.35

P~INTED IN US A

T: <onriol a\Sume any respon11bi!ily for ony circuits 1hown
or repre1en! t'1ot they art fr" from patent infrinqtm11mt

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY 1
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSI

AFN·01931A

OPT022

1/0 Module Detail
Electrical Specifications
AC INPUT MODEL MODEL MODEL MODEL MODEL MODEL DC INPUT MODEL MODEL
MODULES IACS IAC15 IAC24 IACS·A IAC15·A IAC24-A MODULES IDCS IDC15
AC INPUT LINE 95to 180to INPUT LINE

10-32 VDC
VOLTAGE 130VAC 280 VAC VOLTAGE

INPUT CURRENT
10ma INPUT CURRENT 32 ma at32V

AT RATED LINE

ISOLATION
2500 Volt RMS

ISOLATION INPUT
2500 Volt RMS

INPUT TO OUTPUT TO OUTPUT

INPUT ALLOWED
1.5ma

CAPACITANCE
FOR NO OUTPUT INPUT TO OUTPUT B Pf

TURN ON TIME 20 Millisecond Maximum
INPUT ALLOWED

2ma FOR NO OUTPUT

TURN OFF TIME 20 Millisecond Maximum TURN ON TIME 5 Millisecond Max

OUTPUT TRANST.
30 Volts DC TURN OFF TIME 5 Millisecond Max

BREAKDOWN

OUTPUT CURRENT 25 ma OUTPUT TRANST. 30 Volts DC
BREAKDOWN

OUTPUT LEAKAGE
100 Microamp Maximum OUTPUT CURRENT 25 ma

30VDC, NO. INPUT

OUTPUT VOLTAGE .4 Volts at 25 ma Load
OUTPUT LEAKAGE

100 Microamps Max
DROP 30 VDC NO INPUT

LOGIC SUPPLY 4.5to 12to 20to 4.5to 12to 20to OUTPUT VOLTAGE .4 Volt at 25 ma
VOLTAGE DC 6V 18V 30V 6V 18V 30 v DROP

LOGIC SUPPLY 12ma 15ma 18ma 12 ma 15 ma 18ma
LOGIC SUPPLY 4.5to 12to

CURRENT VOLTAGE 6V 18V

LOGIC SUPPLY 12 ma AC OUTPUT MODEL MODEL MODEL MODEL MPDEL MODEL CURRENT
15ma

MODULES OACS OAC15 OAC24 OACS·A OAC15·A OAC24·A

LINE VOLTAGE 12to 24to DC OUTPUT MODEL MODEL
140VAC 280 VAC MODULES ODCS ODC15

CURRENT RATING 3 Amps<D LOAD VOLTAGE 60V
RATING DC

1-CYCLE SURGE 55 Amps Peak OUTPUT CURRENT 3 Amps<D
RATING

SIGNAL INPUT 220 1K 2.2K 220 1K 2.2K OFF STATE
RESISTANCE Ohm Ohm Ohm Ohm Ohm Ohm LEAKAGE

1 ma Max

SIGNAL PICKUP 3V 9V 18V 3V 9V 18V ISOLATION
VOLTS DC av Aid: 16V Aid: 32V Aid: BVAld: 16V Aid: 32V Aid: INPUT TO OUTPUT

2500V RMS

SIGNAL DROPOUT
1 Volt SIGNAL PICK UP 3V 9V

VOLTS DC VOLTAGE BVAld: 18VAld:
PEAK REPETITIVE

400V 500 Volts SIGNAL DROP
VOLTAGE OUT VOLTAGE

1Volt

MAXIMUM
1.6V SIGNAL INPUT 220 1K

CONTACT DROP RESISTANCE Ohm Ohm
OFF STATE

5maRMS
LEAKAGE 1 SECOND SURGE 5Amps

MINIMUM
20ma LOAD CURRENT TURN ON TIME 500 Microsecond

ISOLATION
2500 Volts RMS

INPUT TO OUTPUT TURN OFF TIME 2.5 Millisecond

CAPACITANCE •Allowed

MODEL
IDC24

20to
30V

18ma

MODEL
ODC24

18V
28V Aid:

2.2K
Ohm

iNPUT TO OUTPUT B Pf G)Derate .033 Amps per degree C from 20° C

STATIC
200 Volts/Microsecond Min

DV/DT

COMMUTATING Built in snubber (will commutate
DV/DT .5 power factor loads)

*Allowed --.i.- -----!! • :e ; i 1 • rr .tlf".~aa5s --
5842 Research Drive, Huntington Beach, California 92649 (714) 892-3313

Reprinted with permission from OPTO 22, March, 1979. All rights reserved.

3-36 AFN-01931A

High Voltage DC Output Modules Fast Switching DC Input Modules
DC OUTPUT MODEL MODEL MODEL DC INPUT MODEL MODEL MODEL
MODULES ODC5-A ODC15-A ODC24-A MODULES IDC5-B IDC15-B IDC24-B
LOAD VOLTAGE 200V INPUT LINE

4-16 VDC RATING DC VOLTAGE
OUTPUT CURRENT

1 Amps INPUT CURRENT 14 ma at 5V RATING

OFF STATE
2 ma Max

ISOLATION INPUT
2500 Volt RMS LEAKAGE TO OUTPUT

ISOLATION
2500 V RMS

CAPACITANCE
8 Pf INPUT TO OUTPUT INPUT TO OUTPUT

SIGNAL PICK UP 3V 9V 18V INPUT ALLOWED
1 Volt VOLTAGE SV Aid: 18V Aid: 28V Aid: FOR NO OUTPUT

SIGNAL DROP
1Volt TURN ON TIME 50 Microsecond Max

OUT VOLTAGE

SIGNAL INPUT 220 1K 2.2K
TURN OFF TIME 100 Microsecond Max RESISTANCE Ohm Ohm Ohm

1 SECOND SURGE 5 Amps OUT TRANSISTOR 30 Volts DC
BREAKDOWN

TURN ON TIME 500 Microsecond OUTPUT CURRENT 25 ma

TURN OFF TIME 2.5 Millisecond OUTPUT LEAKAGE
100 Microamps Max

30 VDC NO INPUT
•Allowed OUTPUT VOLTAGE

.4 Volt at 25 ma
DROP

LOGIC SUPPLY 4.5 to 12to 20to
VOLTAGE 6V 18V 30V

LOGIC SUPPLY
12ma

CURRENT

Data Sheet 778

3-37 AFN-01931A

4 I l ·1 * 2 I_,;, _- ,·_, .
CHK DATE)l\PPllOV[I)

D '-'0•5 c '"

I t'' JH Jl E .. o'• l 115 VA(,,,. VAC f--o---7>---'7.'- n_J I
nN 1 ID

I 9

In .. o f--o--7~

IJZ b

JH lJz .. ;
'§8 , r· ~'1 J3W JZW .,;:, : "'~~- I~ : f--o--7~ JH JB-A : : I 30K J<-H.~
: [[• : B0 Jl F JZ F 1'1DL'' ~ ;>--jgD c I : !-;""' : f-o-7>--7 TIT ,, ... JB<r/7 ' ~ .. JJ1l)_,c .. 5_s• __ ~ 2 >--7 t'"'

Bl Jll J2L lijTOl AID CH 1 > ..
'-n..->.'>----4'>--- ~ c 0 r~µ• 0

]OK JH J9~ 1:-:i

!ii -.I 1111, "'"" _±_,jt;~ ~ > 'W~}_ Jz..v JH ·1vrnc· ~'"Cl o-----7>--..c;~ '"Cl ~· ~~ "' }_ ~ J<·A Jl0-A ~ z
o o--....:';~~~ 30K JoG~c: > ~

OVEN 3 ~ ~)---7>-, T ..,,, -"" °" m Jrrs 1•""-m ... ~
B I I I I I '-o-'Jl-'J' >--> 0 " t,;;;;°N " AIQ CH .. 3 "rj

OHM ~ [lj
}_ 12 0 JH :n-A Jll-A B ~

·--o o~>--..c;>~ ,.K.---3.'>;:f,;£ID, ~
'"~ ' •• "'~w ' '"' " ' '" "' " ' ch .;.';;;,~ ' ~ ~~~~ f--o--7~ I >--7 ...

0\!EN I EA~·O I9·0 HEATER 2 J9·E J5 E E9• frH rz..H 'AcARH" >~>---1\.-----<f--< f--o--7~>-------0---t ,,.,, c 2<

Efl6 J(,·0 JI0-0 H£~~:~ 3 JtO-t J E~I J3-N J2 "1

~~~~· ~>---7 
Al I I I I OVEN E_~7 :n-D Jll-0 HrnTER 'f Jl!-E ES2. :B-U. JZ-ll f-a~ >--..c; >---1\,.-----< ~, .. , ~)---') >----U--t 

'!.-'J3-B 
> I 

1 

r -1''' J3 .. , JZ, ... ,,,~M' 1 A 
..,, I ' ' ' YJZ..S l......n____-. >----7>------0-1 
' -~CM I~' 
O N ~ 9300020 xi• .,, c 2'I 

~ 4 I l t 2 



APPENDIX C 
PROGRAM SOURCE LISTINGS 

USING INTEL'S lNDUETRJAL CONTROL SERIES IN CONTROL APPLICATIONS 

2 

3 
I! 
5 
f) 

7 

9 

1 r 

1 1 
l? 
I? 
1" 
1 ~ 
1 r.; 
17 
If! 
19 
21 
21 
2/. 
23 

l 

1 
1 
1 
] 

l 

l 

1 

l 
I 
1 
] 

l 
l 
l 
] 

J 
1 
l 
.1 
l 

$'l'I'rLE (I CONTROL '!'ASK I) 
/*******************'*****'*************************** 
* This task hanf11es the control ;mcl monitoring of * 
* four oven chambers. * 
********************************'*************'******/ 
C OWl'ROL$Tl\S Kt MODULE: 
Do; 
DECLJ\RE F.XCH!•NGE$DE~iCR T PTCH LT 'l'lm/\ LLY 'S1HUC'iUHE ( 

MESSAGESHEAD ADDRESS, 
MESSAGESTAIL ADDRESS, 
TASK$HEAD ADDRESS, 
TASXtTAIL ~DDRFSS, 
EXCHANGE$LINK ADDRESS)'; 

DECLl'\RF THUL Ll'l'E!:ALLY I f)Ff'[-j I; 
DECLARE FALSE LITERALLY '~0H'; 
DECLARE BOOLEAN LITERALLY 'BYTE'; 
DECLARE FOREVER LITERALLY 'WBILE l'; 
DE:CURE MSG$HDH LJ 'l'EIU>.LLY I 

LINK ADDRESf1, 
LENGTH l1DDRESS, 
TYPE BYTE, 
HW~E$EX ADDRESS, 
RESP$EX ADDRESS'; 

DECLARE MSGSDESrRIPTOR LJTERALLY 'STRUCTURE( 
MSG$HDR, 
R~MAINDER(l) BYTE)'; 

/* AIMSG,ELT - ANALOG INPUT REQUEST MESSAGE FORMAT */ 
DECLARE ATMSG LITERALLY 'STRUCTURE( 

MSG$HDR, 
STllTIJS r-DDRESS, 
BASE$PTR ADDRESS, 
CHANNEL$GAIN ADDRESS, 
ARRAY$PTR ADDRESS, 
COUN'l' l1DDHESS, 
ACTUALSCOUNT ADDRESS)'; 

/* ATTYP.ELT - ANALOG INPU? MESSAGE TYPES */ 
DECLARE AIREP LITERALLY '30', 

AIS0S LITERALLY '31', 
AISQV LITERALLY '32', 
ATRAN Ll~ERALLY 'Jl'; 

D<?c1ar(> (n,k) byte; 
Di c.lari~ (l"':CG~P'1'H,LOCKOUT) edclress; 

Declare (BLOCKC,RLOCK1,BLOCK2,BLOCK3) byte external; 
Declar~ TOLERANCE(4) address external; 
D0clare TEMP(4) 2daress external; 
Dr·c1.;;re ~;ETPOit\l'.1' ( 4) ,•Hklress cxter n<>l; 
Declare T$AVERAGE(4) address; 
Declare T~;LJ\ST(4) <-:<ldress; 
Declare T$LAST$AVERAGE(4) address; 
DH:late T~'t5(4) .;ddress; 
Declare TStlP(f) 2ddress; 
Dec!are FTATUS(1) byte 0xternfi1; 

Declare CRT$D1SPLAY$LOCK(5) address external; 

3-39 AFN·01931A 



2LI 1 
25 1 
2h 1 
2·1 . ' 1 
2~ 1 
29 J 
30 J 
31 1 
~2 1 

:n 

3•1 

35 2 
30 ') 

17 1 

?8 2 
39 2 
40 l 

II l 2 
/'. 2 / 
,, "l ] 

4 LI 1 

/I c 
-' 1 

4fi ]. 

47 

48 

119 1. 
sr 1 

D(JCJ,·Hc: 'J'EMP$CALTBH/.l'l'E(~·,) ?c1r:l1oss ;cxtr,!tn<;l; 
Declare DllMfllY$EXOl(!i) addtt!SS extern,;;1; 
D0rlare TE~P$LCC'KOUT$PXCH(5) ~ddress externnl; 
Declare RQAIEX(S) address extcrnB1; 
D~clare A$D$EXCH(5) address external; 
Decl~re CONSTAN~$LOCKOUT$EXCH(5) ~ddreus external; 
Declare CH'i'$STA'l ui;SEXCH ( ')) ,c(]<'·rE'SS i•xter nil J; 

Decl2te ALAR~SMSG structure (MSG$HDR); 
Declare CONVERT Pi$ms0; 
/* 'I'his term is used to convey iniU.til temperntures */ 
Declare CAL¢TEMP b?sed MSG$PTR structure ( 

MSG$HDR, 
Cl\L c'ddress ) ; 

RQWAIT: 
Proce~ure CEXCH,MESSAGE) addtess ~xterna1; 
Declare (EXCH,MESSAGE) ad~ress; 

end R('\.\'/\.IT; 
HOSEND: 

Proc2~ure IEXCH,MESSAGP) external; 
Ded?L' (EXCH,MESSACE) nc:dress; 

enc1 RQSEND; 
RQACP'i': 

Proceduie (EXCH) 2ddr~ss ext0rn2l; 
DH~lare 8XCH Rd~ress; 

enc'! f\QACP'I'; 
DPc]Rrr OVEN$IN$TOLCLI) byte d~ta ( 

MlH,P2H,EtH,fB~ ); 
Decl2re OVEN$CAUTION(4) byte Cat~ ( 

lr'r·:,2ru,t:n:,rrt-1 J; 
Declare OVEN~DANGER(4) byte ~at~ ( 

~J1li,<'2H,04H,GPH ); 
Declare OVEN~ONSMASKl'1) byte clat2 ( 

0rn,02u,e11H,r~rr1 ); 
Veclare OVEN$HEATER(4) byte ~ata 

H'lt,?fH,'1C'H, 0 fM ); 
Dec]RrR OVEN$RUN(4) byte ~at0 

JrH,20H,4VH,BC'H ); 
Declnre OFFSET(d) a~dress; 

Declare 'll\i~LE(25S) d1drcss (',.t:;i ( 
20r,2r1,202~2r?,2C4,2V5,2F~,207,20P,209, 

2 n si , 21 r , 2 J 1 , 21 ::> , 21 3 , ? l 4 , ;· J s , 2 1 '~ , 2 1 7 , 2 1 e , 
2JS,220,27l,222,223,224,225,226,277,22B, 
220,23f,231,232,?1J,?35,23G,237,23P,239, 
2L1r,2111,2t3,24t,245,207,2(~,249,25r,2s1, 

7c7, ?'i4, 2•;;., 2i:;·;, 2'08, 2'>9, ?()P, ?'il, 2'\:J, /(,'), 
26r,,7r,7,2G8,269,27~,77l,/73,274,275,27R, 

27'!, 28!0 , 28? I ?f'tl, 285, ?f'7' ;:>.~f', 211~ , 7(1C'' ?<'1' 
/Cl:? 1 29 r:;, 2 9 I), 29 fl 1 29 (1 , 3('. e, ., L 2, 3 ,; 4, 3 ~ 5, 'C 7, 
3 (' () I :'G ~ f :'. 1 0 I : 1 2 I .., 11': I ::; } <;I :' 1 f'. f 32 0 I :>?/I -, 24 I 

326,328,!3V,J32,..,11':,JJl), 7 3B,34C,~t2,3'11':, 

~11 ~, :,t R, ?sr., ?52, "5t, ::.s~, ~ 5P, :0r:, .362 ,, .:G11, 
35r,,3~~ 1 37V,?72,374,~76,~7P,380,38/,3B"i, 
~rn r , ., ~\ n , :: r 2 , 3 9 :. , :: Q" , " r· c· , " v? , t c ~· , d v "' , 4 1 1: , 
l'J?,t15,l'l~,t2f,t/?,n?~,t/R,t1G,t33,~3G, 
1'39,~'1],l'l':l',l'l'·',!~l ,1'5t,t57,I'~[ ,t~..,,t~~. 

3·40 AFN·01931A 



5] 

52 2 
s =~ 2 
5/1 7 
5'i 2 
5 r, 2 
57 2 
58 ?. 
59 2 
6C .•: 

G J 

G2 -, 

h~ -, 

()/I ., 

!) s 3 

GG 3 
6., 
) ' -:) 

r; c; 4 
·,:r.. 4 

71 5 
7?. 5 
-n '1 
71: 5 
75 5 
7F. ,~ 

77 3 
78 /'. 

sr /'. 

8] /I 

82 .., 

I: 7 r I /!: 3 , /J; r; I I; f c I t 2'1' , ~ [; (~ I ·1 ~~ 7 , II 9;,:; , .r·: c ~- I ~·- ( /' , 

5 C •7 I S 1 1 I ~~, 1 5 I ~ l S I r ~ .. ~ ,. ~-~- 2-, I t: ~: t I 5 :.~: 5 I ~- f C I ~- /1 5 t 

5 5 r , r.: ~-; ~· , ~J; e , 5 G ~' , ~ 7 r; , ~:, .. 1 r::I , 5· P e , ~; p, ~; , ~-. ~~ c , ~ ,., ~, , 
r; ('; c , c: ,,~ ~-j I r. ~ c t r-; 1 5 , ~ 2 c ' () 7 =· , ~ 3 (/ I fl:~ 5 I r.; t'.! v I G c 5 , 
G50,G55,6~0,G65,G70,~75,68r,r;r5,r;gc,r;95, 

7" r , 7 [, ~-~ I ~/ J r , 7.1 5 I 7 2 ~~·- , 7 / 5 , 7 1 ~~ I "7 :~: 5 I '7 4 c ' "/ 4 ~. , 
75r,rrr,Brr,r~r,00r,00r,rrr,rrv,rrr,n00, 

0 v: C' , f' 0 f , c· I C'· , r r (' , (: r\' , C n: , f C f , ,. r C , n.T , '' V (1 , 

or~,0r0,v00,rer,00r,rrr,r0r,nrr,rr0,r00, 
0ro,rrr,rr0,rrr,rrv,rr0 ); 

/* Jnltializ2tion of control task */ 
CON"1'RCJL~~·rASK: 

Prore~ure public; 
Output:l235)=81H; 
CONVFRT.BASE$PTR=EF70VH; 
CONVERT.1ENGTH=21; 
CONVERT.TYPE=AISQS; 
CONVER~.RtSP~EX=.aSD$EXCH; 
CONVERT.CHANNELSG~JN=0; 
CONVERT. AHR.llYSP'fH=. 'l'EMP; 
CON\'ER'r. COUNT=/;; 
Do f:or E:Vc'l; 

/* \'121it for one sccon<l to f:J<1pse */ 
~SGSPTR=RC~AlT (.DUMMY~EXCH,2f); 

/* Brin') in rlrtn from swltdws */ 
BLOCK0=N0T 1NPUTl2Jll); 

/* Lockout tcmpervture storAgc crees for upd~te */ 
LDCl\OU'l'=IH;,o'Wl IT I. T'E/\'1PSLCCKCU 0i $EXCH, c·); 

/* Get r£w ~&ta from ~nalog converter */ 
Ci1ll ROSEND l.RQAIEX,.CONVERT); 
MSC SP'rR=RQWI'. IT (. /\SD$EXCH, !.)) ; 

j• Tcrnpernture cPlibrite procedu10 •/ 
MSGSPTR=RQACPT(.TEMP$CALIBRATE); 
T f M~;G$P'I'R <> 0 
then clo; 

k=r; 
Do \,h.i!: IT/\BU,('()<>Cl\L'n:f't1P.CAL i'l.ND 

k<255); 
k=k+l; 

PnG; 
Do n=0 to 7; 

OFFSET(n)=(TEMP(n)/lS)-k; 
end; 

en co; 
/*Convert dcitr int:o enginc:ering units */ 

Do n=~J I: o J; 
J f ( (TEMP(n)/J 1))-0FFSE'f(n)) >255 
thfm TEMPln)=P; 
~lsc TEMP(n)=TABLE((1~MP(n)/JC)-OfFSET(n)); 

r~nd; 

i* Relefsc lockout of tFmr0ratures */ 
Cc' 1 J RQSEND (. 'l'E~'P$LOCKOU'f'$EXC!I, U>CKOU'I'); 

/* Compute avcrvge tcm~orrturE */ 

3-41 AFN·01931A 



8:?. 3 
8'1 I! 

8~ ,, 

i17 r· 
,) 

88 ~., 

89 5 
9(' 4 
91 'i 

92 5 

93 5 

9 il ;1 

95 4 

91i 4 
97 4 

gc; 5 
10('. 5 

J r1 5 

Ir-~' 15 
] 04 t'.\ 

Ul5 5 
mi:; 5 

107 5 

J C'9 " 1 1 (". ., 
1 Ll (i 

1 I;? ~I 

113 5 

115 () 

J.Ui 
"' 1 .17 I) 

1 li' 5 

119 ". 

, .,, 
-· ~~ ... 5 
1/? 5 
; /'." ,, 
1'.' I; 5 
125 5 
.1 26 5 

Do n=r to 1; 
T$AVFHACE(n)=(T$LAfTln)+~EMP(n)l/2; 

/* Proje~t tempcr~tures into th2 future */ 
If T$AVEMAGE(n)\=TSLAST$AVERACE(n) 

then do; 
T8t5(nl=l(T$AV8RAGVlnl-TSLAST$AVERAGEln))*5) 

+T$LASTSAVERAGE(n); 
TStl0(n)=((TSAVERAGEln)-TSLASTSAVERACEln))*lr) 

+T$LAST~AVERAGE(n); 
(·' n~.1; 

81sc clo; 
TSt5(n)=TSLASTSAVER~GE(n)-((T$LASTSAVERAGE(n) 

-TSAVERACEln))*5); 

end; 

T $ tJ ~; ( n) =T ~'LAST$·/' VE RAGE In) - ( ('l $LJ.ISTS/IVl::H1\GE ( n) 
-TtAVERAGE(n))*lC); 

/1. !Jp0cite stored (1 i\L<J -1.; 
TtLASTSAVERAGE(n)=TtAV~RAGE(n); 
TSLAST(n)=TEMP(n); 

/* 1est for 2~tive oven */ 
MSC$PTR=RQWAIT (.CONSTANT$LOCKOUT$EXCH,0); 
IE (llLLDCK0 !'.ND OVENSONSMASK(n))<>r) 
AND (TEMP(n)<>0)) 
th~'.11 <10; 

~~'I'A'1'US In) =7; 
RLOCK7=BLnC'K'."' OH OVCN$lWN (n); 

/* Test for 2n intoler2nce conrlition */ 
If SETPOTNT(n)-TOLER/INCE(n) < TEMP(n) PND 

SETPOiNT(n)+TOLERANCE(n) ) TEMP(n) 
then c:o; 

STA'l'US ( n) =7; 
BLOtKJ=bLOC'Kl nR 0VEN~IN$TOL(n}; 

en<'; 
c]st BLOCIO=f,LOCKJ AND NOT OVEN~Il-!$TOL(n); 

/* T0st for a c~ution connition */ 
If ~TlPOINT(n)...:TOLF.H/'.NCE(n) ) Ttr5(n) OR 

SETPCIN'I'(n)+'fOLERANCE(n) < '1'$t5(n) 
tnt'.·n c1o; 

STft.'i'US (n) =14; 
BLOC'Kl=PLOCK.1 OH l1VEN$C/\U'J.'ION In); 

enc1 ; 

els<, ELOC!<J=BLOCK1 At-JD 1·~()'1' OVF:l\JSC/l.U';'H'N(n); 
;-1. 'lest for 2 ~rngcr con<1itlon */ 

If i31!:'J'POIN'l'(n)-'J'OLFl\/1 NCEln) > 'lEl'iP(n) Gk 
SETPOINT(n)+TOLERANCE(n) < TEMP(n) 

then cto; 
S'NTUS ( n) =::'l; 
BLOCK7=ELOCK7 UR \tVEN$Dl\NGEk In); 

c~nr]. 

;Js~ RLOCK7=PLOCK7 AND NOT OVEN~DANCER!n); 
/* fian~le controJ of hc~t0r ~lements */ 

Tf SF.TPCfN7(n) > T$tJ0(n) 
t.hen BLOCKJ=Bf,OCK::'. OR OVENSHEATF.R{n); 
c1 sc: t.LOCK"=PLOCJ~1 AND NO'f OVF::NSHEATFR In); 

oJst: do; 
/* Turn (;veryth.ino, off wlwn operator shuts off ov<)n */ 

BLOCK) =BLOC!< 1 AND NO'l' CVEN$IN$'l'OL (n); 
BLOC!'.] =flU)Cl\J AND NO'l.' OVEN~CMJTION In); 
BLOCK~=RLOCK3 AND NOT OVEN$HCATER(n); 

3-42 AFN-01931A 



l 27 5 
128 5 
1?9 5 
13(' s 
131 ll 

132 ll 

133 3 
13" ~ 

135 3 
J:ln 1 
.l 37 2 
l ?!1 1 

?. 1 
3 l 
.!l 

5 

I) 1 

end; 

BLOCK2=BLOCK2 AND NOT OVEN$DANGER(n); 
BLOCK2=BLOCK/. AND NOT OVEN$HUN(n); 
STli'l'lJS (n) =r; 

Cnll RQSEND(.CONSTANT$LOCKOUT$EXCH,MSG$P'lH); 

= 
-· 

--

enc; 

/* Output data to real world */ 
OUTPUT(73?)=BLOCK1; 
OU~PUT(233)=PLOCR2; 
OUTPUT(234)=RLOCK?; 

enc; 
end CONTROL$TASK; 
end C0NTR0L$TASKeMCDULE; 

MODULE INFORMATION: 

conE AHEA SIZE i'.'.941'ill 
VARIABLE ARE/\ SIZE = 0C'54H 
MAXIMUM STACK SJZE = 0HE6H 
235 LINES RE!\D 
0 PROGRAM ERHOR(S\ 

END OF PL/M-8P COMPTLATION 

237L!D 
1?4D 

liD 

;·1·I ·rLF. < • CH'J' PA.RAME'l'ER 'I'ASI< •) 
/********************************************** 
* 'l'iii s t°'"sk is 1rnr>d to •'Xi'lmint~ nnc1 update tbr * 
* t~mpcratur" setpoints anC tole1An~es for * 
* each of the four ovens. * 
***********************'**********************/ 
UP J)fl. n; t'l'AS I\: 
Do; 

$Include (:Fr:COMMCN.ELt) 
DECLARE TRUE LITERALLY 1 0FFH'; 
DECLARE ~ALBE LITER~LLY 'r0H'; 
DECLARE BOOLBAN LITEHALLY 'BYTE'; 
DECL/\Rf. FCREVER Ll'I'l::R.Z\LLY 'WliILE ] I; 
~Include (:F0:MSGTYP.ELT) 
DECLARE DATP$TYPE LITERALLY '~', 

INTSTYPE LITERALLY 'l', 
MIS5ED$INT$TYPE LITERALLY '2', 
TIME$0UT~TYPE LITERALLY '3', 
FSSREQ~TYPE LITERALLY ~t', 

= UC$REQSTYPE LITERALLY '5', 
FS$NAgfTYPE LITERALLY '6', 

= CNTRL$CSTYPE LITERALLY '7', 
READSTYPF LfTERALLY '8', 

= CLR$RD$tYPE LITERALLY '9', 
LAST$RDSTYPE LITERALLY '1~', 

= ALARMSTYPE LITERALLY '11', 
= WPITE$TYPE LITERALLY '12'; 

$Jnr::lude, (:n~:!'llSG.ELT) . 

3-43 AFN-01931A 



7 
= 
= 
::;:_ 

= 
= 

8 1 
= 

9 
= 
= 

= 
= 

10 1 

= 
11 

= 

= 

= 

= 
= 
= 

= 

12 
= 

13 2 

2 = 
= 

] s l 

1 (j 2 = 

DECLAkE MSd$Hri~ LJT~RAL(Y ., 
LINK ADDRESS, 
LENG'l'H A.DDRESS, 
TYPE .BY•J'E1 
HOME$'EX ',\DDREss; 
RESPSEX ADDRESS'; 

DECLARE MSGSDESCRJP'l'Of~ LI'fER/\LLY 'S'lRlJCTUHE ( 
MSG~HDR, 
REMATlllDER(l) BYTE) 1 ; 

SJncluRe (:fP:THMSG.ELT} 
DECLARE TH~MSG LJ~EhALLY 'STRUCTURE ( 

MSGHDR, 
S'l'll.'l'US l\DDF\ESS I 

BllFFER$A,DR ADDRESS, 
cou111•r ADDREr~r~, 

Ji.CTUAL ADDHESS, 
REMAINDEH(l2B) BYTE)'; 

DECLARE MIN$TH$MSCSLENGTH LITERALLY !J7'; 
$Include (:F0:CH~R.ELT) 

/* SPECIAL 1\SCf l CHARACTERS */ 

DECLJ'·Rr; 
NULL 
CCt-J'l'ROLSC 
CONTROLtE 
BELL 
TAB 
LF 
VT 
FF 
CR 
CONTROL$P 
C0N'l'ROL$Q 
CONTROL$R 
CONTROL$S 
CONTROL$X 
CON'l'ROLS'I: 
ESC 
(HIOTE 
LCI\ 
LC? 
RUBOUT 

LITEHALLY '0C'll', 
LIT~RALLY i£3H'~ 

.LITERALLY '05ij', 
LI'rERALLY • 'nH •, 
LITE~ALL~ '09~ 1 ; 
LITERAtLY i0AH', 
LIT~RAi.LY 'PB~~t .. 
L l'fER/1.Li.Y. I CCH I I 

Ll'fEHALLY ; rbl-1', 
LITERALLY 'rnn •, 
Ll'i'l:;HP..LLY I] HI I I 

LI'I'ERAl;LY I] 2H I, 
L1TERALLY •1j~•;~ 
.LI~ERALriY '12~'~ 
. LITERALLY 'fAH', 

LITERALLY 'll\H I I 

LT'T''ErlALLY I 22H', 
Lr'rBRALLY • !1H1', 
LITEHALLY '7AH', 
LI'l'ERALLY I 7FH I; 

~ : . 

$Incluch' !;Ff':SYNCH.EX'l') 
RQSEND: 

PRC!CEbUtU: ( txc:Hl\NGtSPCIWr'EB, MESSAGE $POil\T'l'ER) EX'fERN/\L; 
DECLARE rnxtHANGE ~ POIN'fER ~ M~;SSJ\GE~PCIN'I'ER) l.DDHES3; 

END RQSEND; 

RQW!-.IT: 
PROCEDURE IEXC~ANGES~01NTER,Di:;LAY) ADDRESS EXTERNAL; 

DECLARE (EXCHANGE$POINTER,DELAY} ADDRESS; 

3-44 AFN-01931A 



1 7 

J fl 

19 

2r 

21. 

..,.., 
"-, 

2.? 
24 
75 
2~ 

'}7 

2C 
/9 
3(1 
:n 
:2 
32 
3" 
.: s 
Vi 

'37 

311 
39 

ll () 

11 l 

I.! 2 
I' J 

4 t1 
45 
It·~ 

~7 

.t1.::t 

49 
5yi; 

;; 

.., ,, 

;:> 

;:> 

.., 
' 

l 

1 

l 
l 
J 
] 

] 

l 

l 

2 
2 

2 
/ 
2 
1 

END HCWtIT; 

HQl\CPT: 
PROCfGUHE (EXO!l\NGE~PC'IN'.C•.R) !d>DP.ESS EXTERNAL; 

DECLJ\R.E EXCHANGESPOI/\l'I'ER l\DDirnss; 

END HQ.i\CP'l'; 

R(H;;ND: 
PROCEDURE (IED$P'I'R) EX'i'ERNAL; 

DECL~RE IED~PTR ~DDRESS; 

El\ID R('TSND; 
Derl?r; TEMPSC~LIHRATEIS) af~ress 2xtern2J; 
Deel i're UPDA'fEtEXCH 15) <'<dc1 ress PXtc~rnnl; 

Deel. 2re CRTtSTl'.TUfl~~F:.XCH (':·) c('<'r.;ss cxterr1iil; 
Dec)Fre COMPSEXCH(5) a0drcss uxtern~l; 
Dec] ·"re: COr'l~)'l'1\Wf!~L<'CKOU'rtEXCH (~) t1c1c'r2ss externi'J; 
Cecl2re RQOUTXl5) ?~c1r0ss 2xl~rn2l; 
Decli'rP RrINPX(5) ;(10ress cxte1nal; 
Dcrl0rc WORDS$EXCU(5) address ex~~rn2l; 
Decl2re SETPOIN~l4) address external; 
Dec] 2 re T0LERl\J\ICE (I') i'(l<' r L"Ss e;xt(!r r.<1}; 
Occl.arP l:OUFFEH/ <•dcln·ss; 
Declare MSG$PTR addr2ss; 
Dc>clarr: M~)G str uctL!tf: ( 

MSG$HDH, 
S'l'A'fUS t·>dc:lrPSL', 

BUFFER$PTR D~aress, 
r'CUN'I' ;\dclress, 
ACTUAL ~ddress ); 

Decl2re CAL$TEMP strurture 
MSC~:HDR, 

Cll.L adrress ) ; 
T)(,Clare UPD$MSG cdc1 re~JS; 
DecJ2re ENERGIZE basGd UPDS~SG structure ( 

MSG$~1IJH, 

S'fATUS Pc1clr0s''' 
BUFFERSPTR ~cldress, 
COUNT adc1 ress, 
ACTUAL address ); 

Declare ENARLE$MSG structure 
MSG$HDR ); 

Decl2c2 PUFFER(Br) byte; 
Decl0re OVEN byte; 

DEC$HEP: 
Proc~dure (SOURCE,~~RGET) externrl; 
DecJ~re ISOURCE,TARGET) address; 

end f!EC'':HE P; 
M'C$2 $8 INAHY: 

Proce~ure (SOURC~,TARGET,SIZE) byte external; 
Declare (SOURCE,TARGET) address; 
Declare SIZE byte; 

ena ASC$2~8INARY; 
Dec] arc i"SG$l (2f') byt(:' data ( 

ESC,'E','ENTER CVEN NUMBER-'); 

3-45 AFN·01931A 



51 

53 

54 

55 1 
s I) l 
57 1 
58 l 
S9 ] 

r;r ? 
S.l 3 

"i2 3 

r)~ 3 

"itl 3 
GS 3 
61) 1 

'07 1 

08 1 

1;0 3 
?0 
71 3 
72 3 
·n ~ 

·' 
74 3 

?6 3 

77 ., 
7fl 3 
79 3 
8 (1 1 

PJ .1 

82 ' 
PJ : 
84 j 

BS J 

87 3 

p ~' 4 

98 I! 
91 4 

Decltre ~SG$2(?P) hyte dtta 
CH,LF, 
• i·'NTFE NE'tJ sr:·rpoJN'r-', 
'XXXX.X-' ) ; 

Dec·~re MSG$312S) byte a2ta 
CR I LF I 

'ENTER NEW TOLER~NCE-', 
•xxxx.x-• J; 

Declere CALMfC(l?) byte datA 
I TEMPEHATU!H:- I ) ; 

D('cl<n•' J1'1SC:$L' (n?) hyte (<~tn ( 
CH,LF, 
I (ST/\'I'US- 1:;), PllRM'lE'l'ERS- (P), Cl\L[hRNJ'E- (C)) I I 

CH,LF, 
'ENTER REQUES1-' ); 

Declare WAI~ liter2lly 'MSG$PTR='; 
D<~clare F:lR Ji.h:uilly 'RC\.l'l·IT'; 
Declare START litara 1 ly 'CALL'; 
Decl~re TASK lite~~Jly 'RCSf:ND'; 

UPDN!'E: 
Procuhire pub] .i c; 

/* Initialize task i1t stvrt-up time */ 
Do forevct; 
MSG. HESP~EX= ,.COMP".: EXCll; 

/* W<.d t for requ<est t0 ent:er t,·:sk */ 
UPD$MSG=RQWAIT (. UPDATE!'.'EXCH I('.); 

/ 1 Get c1esirer1 oven number rrorr: op;rc;tor */ 
RQST::ovEN: 
MSG.HUFfER$PTR=.MSC$1; 
MSG.TYPE=WRITESTYPE; 
Mf~G. r.OUNT=2V; 
Start tnsk (.RQOUTX,.MSG); 
W;·it for (.COMPSEXC'H,C'); 

/* .•. Inpu1: ne1v number. */ 
Mr:G. BIJFF'ERSPTR=. BUFFER; 
MSG. COUN'I'=? S 5; 
MSG.TYPE=CLRSRDSTYPE; 
~t?rt t2sk ( .RC,lINPX, .MSG); 
l•!t.i t [or ( ,COMP~EXCH, r); 
OVEN=(BUFFFR(f) AND 07~)-1; 
If PVEN >3 th~n 90Sto RQf1$0VEN; 

/* Cispl?y requost ~nf cu1rent s~tpolnt */ 
GET$'rEMP: 
CtiJJ move (28,.t'!SG$2,.BUFFER); 
C' <: J 1 f;EC~~RE:P (. SETPOTN'1' ( ov<'n) , • PUFFER+21) ; 

MSG.TYPE=WRlTESTYPE; 
MSG.COUN'l'=?.R; 
St~rt task (.ROOUTX,.MSG); 
W<;it for (.COMPSEXCH,f); 

/* ... Input· n•~;; set:roint */ 
MSG.TYPE=CLRSRD$TYPE; 
St~rt task (.RQINPX,.MSG); 
\Al;it for (.COMPSEXCH,[); 
If ASC$2SBINARY(.~UFFER,.BUFFEH2,l)=r OR BUFFER2 > 7rr 
tbt7TI go:;to G~~'\'$'I'EMP; 

If BUFFER2 <> 'I 
then do; 

Wi'i t for ( .CON~3'I'ld~'1"$LOCKOU"1'$EXCH, ('); 
SETPOINT(oven)=BUFFEH?; 
Start Ush ( .C'ONSTllW>$LOCKCIJ'l'$EXCH,M8G$PTH); 

3-46 AFN-01931A 



92 4 

93 3 

9.1 3 
95 ., 
% ] 

97 ., 
9n 3 

99 3 
170 3 
l f'l J 
HP 3 

J 04 3 

l rr, /I 

.1 en 4 
108 /I 

l (' 9 4 

1 HJ 3 

Jl 1 3 
112 

., 
,) 

l13 3 
lJ 4 3 

115 J 
llh 3 
l] 7 3 
.118 3 
119 3 

J/1 3 

123 3 

125 4 

126 4 
127 l'.l 
12[' 4 
1/9 '! 
130 4 
131 4 
132 ,, 
133 4 
l 3" " 
136 " ]'.17 4 
138 4 

ena; 
/* Displ~y request and rurrent tolerance */ 

GET$TOL: 
Call move (?9,.MSG$?.,.BUI•FER); 
Call DEC$REP (.'I'OLERANCElovPn),.BUFFER~n); 

MSG.TYPE=WRITE$TYPE; 
IVISG.C0UNT=29; 
St?rt trisk (.RQOUTX,.MHG); 
\~<;it for (.COMP$EXCH,f1); 

/* ... Input fll'\• t:o1er?nre */ 
MSG.TYPE=CLR$RDSTYPE; 
Sti"rt task ( .RQINPX, .MSC); 
\.l•rii.t for (.COMPSEXCh,0); 
If ASCS2$BINARYl.BUfFER,.BUFFER2,l)=i OR BUFfER2 > 700 
thPn goSto GETSTOL; 
If BUFFEH2 <> f1 
then do; 

·~nr'!; 

IN<:•it for ( .CONS'l'At~T$LOCKOU'1'~EXCH,~); 
TOLERANCE(ovcn)=BUFFER2; 
Start t~sk (.CONSTPNTSLOCKCU~SEXCH,~SGSPTR); 

/*Ask oper~tor if he is finished*/ 
F:EQSNEX'I': 
MSG.TYPE=WRITE$TYPE; 
MSG. COUN'f= '12; 
MSG.BU~FER~PTR=.MSG$4; 

Start task (.R()OUTX,.MSG); 
W0it for (.rOMP$EXCH,V); 

/* ••• Get his r~sponse */ 
MSG.1YPE=CLR$nD$TYPE; 
MSG.BUFFER$PTR=.BUFFER; 
Str:irt tf,sk ( .RQINPX, .MSG); 
Wait for (.COr-1P$EXCH,0); 
If (EUFFER((') <>'S' /IND BUf'FEH(~1 ) <>'P' 

AND BUFFER(0) <> 'C') 
then go$to REQ$NEX'l'; 
If BUFFER(0)='P' 

then go$to RQSTtOVEN; 
If BUFFER(e)='C' 
then do; 

GETSCAL: 
MSG.TYPE=~RITESTYPE; 

MSG. COUN'J'=l 2; 
MSG.BUFFERSPTR=.CALMSG; 
Stc.rt ti'1Sk (.RQOUTX,.MSG); 
Wo lt for ( .COMP$EXCH, f); 
MSG.TYPE=CLRSRDSTYPE; 
MSG.PUFFER$PTR=.bUFFER; 
Str:rt task (.RQINPX,.MSG); 
W,1H for (.COMP~~EXCH,C'); 
tf ASC$2SRJNARYl.BUFFER,.BUFFER2,l) =E 

OR BUFFER?>JSD OR BUFFER2<2rE 
then go$to GET$CAL; 
CAL$TEMP.CAL~BUFFFR2; 

C<il 1 ROSEND ( .TEMP$CALIBRl.'l'E, .C'Jl.L$'!EMP); 
encl; 

3.47 AFN-01931A 



139 
14C 

]41 
1 t1 /. 
]1!3 

1 

3 

7 

8 

9 

10 

ll 

12 

13 

11! 

1 

2 

2 

2 

2 

2 

2 

1 

2 

2 

l 

3 

., 
2 
1 

enc1 ; 

MODULE INFORMATION: 
CODE AREA SIZE V3C3H 
VARIABLE AREA SIZE = 007CH 
MAXIMUM STACK SIZE = 0004H 
264 LINES READ 
P PROGRAM ERROR(S) 

Ef\ID OF' PL/M-fH~ COMPILA'fION 

ENERGIZE.TYPE=10B; 

9f13D 
l2"D 

t.D 

Start task (.CR'l'$ST.1\'l'UESEXCll,UPDtMSG); 

end UPDATE; 
t'nc UPDATESTl\SK; 

= 
= 
= 

= 
= 
= 
= 
= 

= 

= 
= 
= 
= 

= 

= 

$TITLE('CHT UPDATE TASK') 
/************************************************ 
* This task is utilize~ to upeete th0 CRT ter- * 
* minal ~isplay with the current -0per2ting p~r- * 
* amcters. It will be entered upon sytera start- * 
* up, upon operator request, or when a problem * 
* exists with any of the activated ovens. * 
************************************************/ 
CR'I'SDJ\TA$MODULE: 
Do; 
$INCLUDE(:F0:SYNCH.EXT) 
RQSEND: 

PROCEDURE (EXCHANGE$POINTER,MESSAGESPOINTER) EXTERNAL; 
DECLARE fEXCHANGE$POINTER,MESSAGE$POINTER) ADDRESS; 

END RQSEND; 

RQ~adT: 

PROCEDURE (EXCHANGE$POINTER,DELAY) ADDRESS EXTERNAL; 
DECLARE (EXCHANGF~POIN'l'EH, DELAY) /,DDRESS; 

END n(MJ\l'J'; 

RQ.l\CP'l': 
PROCEDURE (F.XCHAllJGESPOJN'l'ER) .l\DDRESS EX'l'ERNAL; 

DECLARE EXCHANGESPOINTER ADDRESS; 

END RCJ\CP'l'; 

RQISND: 
PROCEDURE (IEDSPTR) EXTERNAL; 

DFCLARE IEDSPTR ADDRESS; 

END R('I::'.ND; 
SINCLUDE (:Fe:MSGTYP.ELT) 
DECLARE rATA~TYPE LITERALLY 1 0 1 , 

3-48 AFN·01931A 



15 

Fi 1 
17 1 
rn l 
19 1 

20 1 

21 l 

22 l 

= INT$TYPE LITERALLY '1', 
MISSFDSINTSTYPE LITERALLY '2', 
TIMESOUTSTYPE LITERALLY '3', 

= FS$REQSTYPE LITERALLY '4', 
UC$REQSTYPE LITERALLY '5', 
FSSN~KSTYPE LJTER~LLY '6', 
CNTRLSC$TYPE LITERALLY '7', 
READSTYPE LITEHALLY 'P', 

= CLRSRDSTYPE LITERALLY '9', 
LASTSRDtTYPE LITERALLY 'lP', 
ALARMSTYPE LITERALLY '11', 
WRITE$TYPE LITERALLY '12'; 

$INCLUDE (:FP:EXCH.ELT) 
DECLARE EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE ( 

MESSAGE$HEAD ADDRESS, 

= 

= 

= 

= 

= 
= 

= 

= 

= 
= 

MESSAGE$TA!L ADDRESS, 
TASK$HEAD ADDRESS, 
TASKSTAIL ADDRESS, 
EXCHANGESLINK ADDRESS)'; 

Sit\ICLUDr (:F0:COMMCN.ELT) 
DECLARE TRUE LITERALLY '0FFH'; 
DECLARF FALSE LITERALLY '00H'; 
DECLARE BOOLEAN LITERALLY 'BYTE'; 
DECLPRE FOREVER LITERALLY '~HlLE l'; 
SINCLUDE (:F0:MSG.ELT) 
DECLARE MSGSHDR LITERALLY ' 

LINK ADDRESS / 
LENGTH ADDRESS, 
TYPE BYTE, 
HOME$EX ADDRESS, 
RESP$EX ADDRESS'; 

DECLARE MSG$DESCRIPTOR LITERALLY 'STRUCTURE( 
MSG$HDR, 
REMAINDERll) BYTE)'; 
~INCLUDE (:F0:CHAR.ELT) 

/* SPECIAL ~SCII CHARACTERS */ 

DECLAIH: 
NULL 
CONTROL SC 
CONTROL$E 
BELL 
TAB 
LF 
VT 
FF 
CR 
CONTROL$P 
CONTfWL$Q 
CONTROL$R 
CONTROL$S 
CON'fROL$X 
CON'l'ROLSZ 
ESC 
QUOTE 

LI'rERALLY '17.0H', 
LITERALLY '03H', 
LITERALLY '05H', 
LITERALLY '07H', 
LTTERALLY '09H I' 
LITERALLY 'rAH', 
LITERALLY '0BH I' 
LI'l'ER.ALLY I lilCH I' 
LITER~.LLY '0DH' I 

LITERALLY I H'H I ' 

LI'l'ERALLY I l lH I, 
LI'rERALLY • 1 2H •, 
LITERALLY I l 3H I, 
LI'rERALLY • l8H •, 
LT'lERALLY I lAH I' 
LITERALLY 'lBH I' 
LITERALLY '22H', 

AFN-01931A 



23 

2 '7 

28 

29 

30 

l 

l 
1 
1 

1 

= 

= 

LCA 
LCZ 
RUBOUT 

LI'fERALLY '.t;lH', 
LI'f'ERALLY '7AH I, 
LITER.aLLY 1 7FH'; 

$INCLUDE (:FP:THMSG.ELT) 
DECLARE THSMSG LITERALLY 'STRUCTURE ( 

MSGHDR, 
ST,\TUS ADDHESS, 
BUtFER$ADR ADDRESS, 
COUNT ADDRESS, 
AC'.PUJ\ L l\DDREf;s, 
REMA IN DER ( 128) BYTE) ' ; 

DECLARE MIN$THSMSG$LENGTH LITERALLY '17'; 
De~lare HOME literaJ~y '1BH,4PH'; 
DeclarA L1$IMAGE(9?) byte aata ( 
Home,Lf,Lf,Lf,Lf,Lf, 
''l'EMPERA'l'UHE 

I DECHEES c. I ) ; 

Declare L2$IMAGE(92) byte ~2ta 
Home,Lf,Lf,Lf,Lf,Lf,Lf,Lf, 
'SETPOINT I 

'DEGREES C,' ) ; 
Declare L3$fMAGE(94) byte data ( 

Home,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf, 
'TOLERANCE ' 

'DEGREES C.' ) ; 
Declare L~SIMACE(75) byte d~ta ( 

Home,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf, 
'STA.'l'lJS ' 

OFF 
OFF 
OFF 
OFF ' ) ; 

Declare CHTSBDR(Hi8) byte elate 
1BH,1!5H,' 
'OVEN STATUS DISPLAY', 
Cr,Lf,Lf,' 

'OVEN-1 
'OVEN-/ 
'OVEN-3 
I OVEN-4' , 

3·50 AFN-01931A 



31 

32 

33 

34 

37 
:rn 

39 

41 

42 

4 3 

l 

1 

l 

l 

l 

l 

l 
1 

1 

1 

Cr,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf 1 Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf, 
Lf, 

•·rYPE EBC,11Pf~ TO 7\D,JUST SE'rPOIN'1's' J; 
Declare BRLLS(/J) hytc data ( 

Bell,BeJJ,Bel.l,B•.:d1 ); 
Declare MESSAGES(35) byte d?te 

OFF 
OK 

'CJl.U'i'ION I I 

• ALARM I, 
I I ) ; 

Declare DISPLAY$PTR1 r•J adarcss data ( 
.WOHKSBUFF+23, 
.WORK$BUFP+3G, 
.WOIU<$BUF'F+4S', 
.l•IORK$BUFF+52 ) ; 

Declare DISPLAY$PTR2(4) zddress data ( 
.WORK$BUFF+?5, 
.WORK$BUFF+38, 
.WORKtBUFF+Sl, 
.l"IOR!'-tBUFF+64 ) ; 

Declare DISPLAY$PTR1(4) address data ( 
• i'iORK$BUFF'+27 I 
.WORI<$BUFF+HJ I 

• WORKSBUFF-1 53 I 

.WORKSBlJl''I:'+l56 ) ; 
Declare DISPLAY$PTR~(A) PddrtSS data ( 

.WORKBUFF+3(', 

.WORI<bllFF+43, 
• l•10RKBUFF+S 5, 
.WORT\BUFF+l'i9 ); 

Declare MSG$PTR address; 
DPclare MSC baseJ MSG$PTR structure ( 

MSGtHDR, 
COUNT ?dc'ress ) ; 

DecJare STARTER(3) structure 
MSGSBDH ); 

Declare READ structure ( 
MSG$HDR, 
STA'i'US ;idd ress, 
BUFFER$PTR ~d~rPss, 
COUNT odc'lress, 
ACTUAL ~~dress ); 

Declare DISPLAYSTEMP(4) structure ( 
UPPER e0dress, 
LOWER ?.C"ldress ); 

Decl~re DISPLAY$SET(4) structure ( 
LOWER ad<'lress, 
UPPER C!C.dress ); 

Decl2re DISPLAY$TOL(4) stru~ture ( 
LOWER <H~c1rcss, 
lJPPF.R address); 

3-51 AFN·01931A 



.44 

45 

46 

47 
48 
'!9 
50 
51 
52 
53 
54 
55 
5Fi 
5'.7 
58 
59 
60 
61 
62 
63 
64 
65 
6 fi 
6'.7 
68 
6~ 
7(,, 
7] 
72 
73 
7/J,. 

75 
76 
7"7 
78 
79 

80 
81 

1 

l 
l 
l 
1 
l 
1 
1 
1 
l 
1 
l 
1 
.1 
1 
1 
1 
1 
l 
1 
1 
1 
1 

1 
1 
1 
l 
1 
1 
l 
1 
J 
l 

2 
2 

Decla~e OVEN$0N(t'J) byte d~ta ( 
r1H,02H,r4e;0ee J; 

Declare OVE;NSCAUTION (II)·. byte c1r:ta ( . 
l0H,2CH,4rH,80H ); 

Declare CRT structure 
MSG$HDR, . 
STATUS i'cldress, 
BUFFERSPTR address, 
COUllfT ad<lress, 
ACTUAL address); 

Declare CRTLOCK structure (MSG$HDH); 
Df~clrire CR.T$DISPLAY$LOCK (5) address ext:·ern.:l; 

Declare TEMP$iOCKOUT$EXCH(5) address ext~rnaJ; 
Declare CONSTANT$LCCKOUT$EXCH(5) ~~dress external; 
Declare CR'i'$EXCH ( 5) address ex1:ernal; 
Declare CRT$STATUSSEXCH(5) address external; 
Decla~e DUMMY$EXCB(5) address external; 
Declare READ$BUFFERSEXCH(5) address external; 
Declare UPDATESEXCH(5) address external; 
Declare RQINPX(5) address external; 
Declare RQOUTX(5) 2dclress external; 
Dt>c]are RQWAKEC5) address external; 
D~clare ROL7EX(S) address e~ternal; 
Declare RQL~EX(5) address external; 
Declare RQDBUG(5) ~dfress exter~al; 
Declare RQALRM(5) address ~xter~~l; 

Declare TEMP(4) Address external; 
Declare DISPSTEMP(t) e~dress; 
Declare SETPOINT(4) ~ddress external; 
Declare DISP$SETPNT(4) addrd$s; 
Declare TOLERANCE(4) address ~xternal; 
Declare DISP$TOL!4) atjdress; 
Declare STATUS(4) byte external; 
Declare DISP$STAT(4) byte; 
DecJare (BLOCK1,BLOCK2) byte external; 
Declare WORK$8UFF(l70) byte; 
Declare BUFFERSA(70) byte; 
Decl2re (CHANGE,n,ALAR~,NEW,BLAN~ER) byte; 

DeclAre START literally 'call'; 
Declare TASK literally 'rqsend'; 
Declcire l\iAI'I' literally 'msgSptr=c'; 
Declare For literally 'rqwait'; 

DEC~HEP: 
Pr oced Ltr E:· (f:.QURCE, TARGET) ext.er na 1; 
Declare (SOURCE,TARGET) address; 

end DEC$REP; 

3-52' AFN-01931A 



82 l 

R3 2 
8'1 2 
P5 2 
gr; 2. 
B7 2 

88 2 
89 J. 
9 r J 
91 3 

93 3 

94 3 

9fi 4 

98 4 

99 4 

Hr 4 
101 4 
10? 4 

103 4 
] 011 4 
lC~ 5 II 

1 (1 '7 11 

108 4 
H19 4 
11 (' 4 

l 11 4 
112 /J 

11 3 3 
lJ 4 3 
115 3 
11 r, 4 

118 4 
119 3 
120 3 

121 3 

1/3 4 
12'1 4 
125 5 
I 2 ll s 

J.27 4 
12fl 4 

CR'l'$DATA$TASK: 
Proce~ure public; 
/* InitinlizP system ~t start-up time*/ 

Start task (.TEMPSLQCKOUT$EXCH,.STfRTER(~)); 

Start task ( • CONSTAN'l' SLOC KC'llTSE:XCH, • S'f .ll RTER ( 1) ) ; 
STAHTER(2).TYPE=l00; 
St2rt tRsk (.rRT$STATUS$EXCH,.STARt~R(?)); 

CRT.RERP$EX=.CRTSF.XCH; 
/* Perform main CRT ~~it */ 

Do foreV<~r; 

W?it for (.DU~MYSEXCH,10); 
~~it for (.CR~SSTATUSSEXCH,A); 
If M~:C.TYPE=?5.5 
then ALl\RM=l; 
e.lse /ILJ\RM=C; 

/* Output hea~lng */ 
If (MSG.TYPE=l00 OR MSC.TYPE=255) 
then do; 

If ALARl"'.=0 
th0n ceJl RQSEND(.CRTSDlSPLAY$LOC~,.CRTLOCK); 

CR'l'. 'l'YPF.=lf.RI'fES'I'YPE; 

end; 

CRT.COUNT=l67; 
CRT.BUFEERSPTR=~WORK$HUFF; 
READ.TYPF.=CLR$RDSTYPE; 
nEAD.COUNT=2"i5; 
READ.RESP~EX=.READ$BUFFER$EXCH; 
n EAD. B lJF FER $PTR=. B-UFFEHi\; 
If Jl.Ll-1RM=C: 
then start task (.RQINPX,.READ); 
C~ll move (P?,.CRT$HDR,.~ORK$BUFF); 

Call move IB6,.CRT~HDR+r2,.woRK$BUFF+82); 
St<•rt tf1sk ( .RQOU'l'X, .CHT}; 
Wait for (.CRTSEXl.H,0); 
NEW= l; 

/* Test for change in temperature of any oven */ 
CHANGE=0; 
Wcii t for (. TF.MN'LOCKOIJTSEXCH, r); 
Do n=0 to 3; , 

end; 

If TEMP(n)<>DISPSTE~P(n) 
then CHANGE=l; 

Call move (8~.TEMP,~DISP$TF~P); 

Start task (.TEMP$LOCKOUTSEXCH,MSG$PTR); 
/*When a change exists build qew line */ 

If l.HANGE OR NEW 
then clo; 

C~ll move (90,.LlSI~AGE,.WORKSBUFF); 
Do n=r to 3; 

Call DEC$REP(.DISP$TEMP(n) ,DISPLAY$PTRl(n)); 
end; · 

/* Output ne•1 temperature line to CHT */ 
CRT.TYPE=WRITE$TYPE; 

CRT.COUN'r=$7; 

3.53 AFN·01931A 



129 4 

110 4 
Ji] 4 

1 J 2 "1 
13] J 
1 34 J 
135 4 

137 4 
1:13 3 
139 J 

1'10 3 

.111 2 A 

143 4 

.14 4 5 
] I' 5 5 

pr, 4 

V7 4 
11! 8 4 
JI! 9 4 
p)(' 4 
151 I! 

157 1 
.1 5' 3 
E4 3 
1 55 4 

J 57 A 

158 3 
159 3 

16C '.l 

102 4 
Hi3 4 
1 54 5 
l fi 5 5 

JJiG 4 
1 'i7 4 
Hi8 4 
169 II 
170 4 
1 71 4 

172 3 
173 3 
174 3 
175 /I 

Start task (.RQOUTX,.CRT): 
Wait for (.CRTSEXCH,V); 

end; 
;~ Test for chnnge ih ov0n setpoints */ 

CHANGE=V; 
Wait for (.CONRTANT$LOCKOUT$EXCH,~); 
Do n:;0 to 3; 

end; 

If SETPOINT(n)<>DISP$SETPNT(n) 
then CHANGE=1; 

Call move (8,.SETPOINT,.DlSPSSETPNT); 
Start task (.CONSTANTSLOCK0UT$EXCH,MSG$PTR); 

/* Bui]d ne1,; line \d1frn ;9 change \·.as detected*/ 
If CHl\NGE OR NEIAI 
then do; 

Call move (92,.L2$IMAGE,.~ORKBUFF); 
Do n=0 to :1; 

Call OECSREP(.DTSP$SETPNT(n),DISPLAYSPTR2(n)); 
('nfl; 

1~ Output s0tpoint Jinc' */ 
CRT.TYPE=WRITESTYPE; 
CRT.COUNT=8<.l; 
CRT~BUFFER~PTR=.WCRKBUFf; 
St2rt tc!sl< ( .RCOUTX, .CRT); 
Wcdt for (.CR'l'SEXCH,f1); 

~rnd; 

/*Test for change 5n tolerance line*/ 
CHANGE=~; 

W2it for (.CONSTANT$LOCKOUTSEXCH,0); 
Do n=C to 3; 

encl; 

If TOLERANCE(n)<>DJSP$TOL(n) 
tl'wn CHANGE=l; 

Call move (8,.TCLEHll.NCE,.l'ISP$TOL); 
Start task (.CONSTANTSLCCKO~rSEXCH,MSG$PTR); 

/* When change is found, build new line ~; 
If CHANGE OR NEW 
then do; 

CaJ l move (9LI,. L<$IMAGI<:, .WORK$8UFF); 
Do n=0 to 3; 

Cf!J.l DEC~REP( .DISP$'l'OL(n) ,DJSPLAY$PTR2 (:1)); 
end; 

/* Output tolerance line */ 
CRT.TYPE=WRITESTYPE; 
CR'I'.COUNT=91; 
CRT.BUFFER$PTR=.WORKBUFf; 
St2rt t2sk (.RQOUTX,.CRT); 
h'ait fo1 (.CRT$F:xct1,e); 

c ncl; 
/* Build stAtus m~ssage */ 

CHl1NG8=0; 
Wait for (,CONS'I'ANT$LOCKOUT$EXCH,01; 
Do n=O to 3; 

If STATUS(n)<>DISPS~TAT(n) 
then CllANGE=J.; 

3-54 AFN·01931A 



177 4 
178 3 
179 3 

18'11 3 

182 4 
1 P3 4 
18.'l 5 

lP.5 5 
186 4 
187 4 
188 II 

189 4 

190 3 
191 3 

193 4 

195 5 
196 5 
197 5 
19P 4 
199 5 

2r1 5 
202 5 
2~13 5 
204 5 
2 c~s 4 
~f' I> 3 
2'li7 2 

2" fl l 

end; 
Call move (4,.STATUS,.DISP$STAT); 
Start task (.CONSTANT$LOCKOUT$EXCH,MSC$PTR); 

/* Output to displ0y */ 

n)); 

If CHANGE OR NEW 
then cio; 

encl; 

Ca 11 movt' (7 S,. LI' IMAG~;, .WORK$BUF F); 

no n=V to 2; 
Call move (7, .MESf~J\GE~;+DISP$STA'l'(n) ,DISPLl\Y$PTHL! ( 

eno; 
CRT.COUN'J'=71':; 
Statt tLlsk (.ROOUTX,.CR'J'); 
~ait for (.CRT$EXCH,0); 

/* test for request to exit this mode */ 
MRG$PTR=RQACPT (.READ$BUFFER$EXCH); 
If ALJIRM=0 
then do; 

If (MSG$P'l'R <> 0 iH1d 1:3UFFERl\(0) = lPH) 
then co; 

MSCSPTR=RQ~AJT(.CRT$DISPLJIYSLOCK,0); 
sta1t task (.UPDATESEXCN,MRGSPTR); 

E!nd; 
else clo; 

If MSCSP'l'R=0 
then STARTER(2).TYPE=20P; 
else STARTER(2).TYPE=lV0; 
St2rt task (.CRT$STATUSSEXCH,.STARTERf2)); 
NF:lll/=0; 

end; 
enc'!; 

1~na; 

encl CRT$DATA$TASK; 
end CRT$DATA$MODULE; 

MODULE INFORMATION: 
CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
3P8 LINES READ 
0 PROGRAM ERROR(S) 

END OF PL/M-80 COMPILATION 

072CH 
0189H 
000'1H 

1821'!0 
3"3D 

tiD 

3-55 AFN·01931A 



1 

2 l 

? 

ti 2 
5 2 
G 2 
7 7 
8 2 

s 2 
10 2 

l] 3 
1?. 3 
1: 7 

1 t1 ?. 
15 3 
lG < 

18 I! 
lS /<. 

$TITLE('ASCII STRING TO FIXED DTNARY') 
/************************'*************************** 
* This program converts an ASCII string into a fix- * 
* ed point binary number. The fixed decimal point * 
* is det.ermined by the paramE>t.er passed in SIZE. * 
****************************************************/ 
ASC$2$BINARYS~ODULE: 
Do; 
/1- SPECIM, 
DECLARE 

ASCII CHARACTERS */ 

NULL 
CONTROL$C 
CONTROL$E 
BELL 
TilP 
LF 
V1.' 
FF 
CR 
CON'J'ROLSP 
CONTROLSQ 
CONTROL$R 
COW2RCLtS 
CONTROL$X 
CONTROL$7 
ESC 
QUOTE 
LCA 
TJ:Z 
RUi301JT 

ASC~~ ?SB IN1'.RY: 

LJTERALLY 'PCH', 
LITERALLY '0311', 
LJTEH/\LLY 1 (15H I I 

LI'rERALLY • 07H •, 
LITERALLY 'P9H', 
LI'J'ERALLY I 0AH I, 
LITERALLY 1 (1BH', 
L TTERALLY I C1CH I I 

LI'l'EHALLY '0DH I I 

LITERALLY I HH I, 
LITERALLY 'llH', 
LI'l'ERAL.LY I 1 /HI, 
LITERALLY, I I "'H', 
LT'l'ERl\LLY '18H', 
LI'fERALLV I 1/\H I, 
LI'fERALLY 'lBH', 
LITERALLY '22H', 
LITERALLY '>1.lH', 
LITERALLY '7A!J', 
LITERALLY '7FH'; 

Procedure (SRC$PTR,TRGT$PTR,ST7E) byte public; 
Declare (SRCSPTR,TRGT$PTR) address; 
Dec.lare (SCURCE ba.sed :O'-:flC$PTR) (3f') byte; 
Declare RESULT b2sed TRGT$PTR address; 
Declare (N,SI7E,K,DP,DIGJ'rS,VllLID) byte; 
Decl2re POWER(6) address data ( 

0, 1, 10, 100, 1N'0, JC'LOC~ ) ; 
/* Find location of de~imal point */ 

n=C·; 
Do while SOURCE(n)<>' .' AND fOURCE(n)<>CR 

AND SOURCE(n)<>LF; 
n=n+l; 

end; 
DP=n; 

/* Provide correct number of digits to right of decim~l */ 
Do n=0 to SIZE; 

SOURCE(DP+n)=SOURCE(DP+n+l); 
If SOURCE(DP+n)>J9H OR SOURCE(DP+n)<30H 
then do k=n to SIZE; 

SOURCE(DP+k)='0'; 
end; 

3-56 AFN·01931A 



20 3 

21 2 

22 2 
23 2 
24 3 

26 3 
n 2 

29 2 
]0 2 

'2 3 
13 3 
]II 4 

encl; 
/* Mark end of string */ 

Dre I'r~: =DP+S I z E; 
/* Test for all valid ch2r2cters */ 

VALID=l; 
Do n=r to DIGITS; 

1 f SOUHCE (n) >3~·H OR SOURCE In) <Jrll 
then Vf1LID=0; 

end; 
If DIGITS>5 
then V.l\LID=0; 

/* Convert data to binary anrl store */ 
n=0; 
If VALID=l 
then do; 

RESULT=tl,; 
Do while DIGITS > 0; 

RESULT=HESULT t- ( ( 
SOURCE(n) AND rFH) * POWER(DIGIT2)); 

75 4 
3 ') 4 
'37 4 
3 i\ 3 

39 2 
40 2 
41 ] 

end; 
end; 

n=n+ 1; 
DIGITS=DICI'I'S-1; 

/* R0turn to calling progra~ */ 
Return VALID; 

end ASC$2SBINARY; 
end ASC$2$BINARY$MODULE; 

MGDULE INFORMATION: 

CODE AREA SIZE 
V~RIABLE AREA SIZE 
MAXfMUM STACK SIZE 
8C' LINES READ 
0 PROGRAM ERROR(S) 

END OF PL/M-PC' COMPILATJON 

0178H 
00f'JIH 
00Cl4H 

3760 
HD 

110 

3-57 AFN·01931A 



1 

2 
3 
4 
5 

" 7 
8 
9 

1'1 

1 
1 
1 
l 
] 

1 
] 

l 
1 

STITLE('COMMON VARIABLE STORAGE') 
/************************~************************* 
* This mor1uJ0 contnins those vc1ricihles common to * 
* multiple tasks in the oven cohtr61 application. * 
**************************************************/ 
VARIARLE$S'l'ORAGE: 
Do;-
Declare SETPOINT(4) aadress public; 
DecJare TOLERANCE(~) address public; 
Declare TEMP(4) address public; 
Declare STATUS(4) byte public; 
Declare BLOCKf hyt~ public; 
Declare BLOCK! byte public; 
Declare BLOCK2 byte pub~ic; 
Declare 8LOCK3 byte public; 
end VARIABLESSTORAGE; 

MdDULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
ln LINES READ 
P PROGRAM EHROR(S) 

END OF PL/M-8r COMPILATION 

0~WPP 

Pr'20H 
rrcrtt 

3-58 

PID 
320 

0D 

AFN-01931A 



1 

2 l 

3 2 
4 2 
5 2 
Ii 2 

7 2 
8 2 

Cl 2 
H' 1 
11 3 
12 2 

13 2 
14 3 
15 3 
l f) 'l 

17 2 
18 "'.! 

2r 3 
21 1 

22 2 
23 2 
24 2 
25 '2 
26 l 

~TTTLEl'WORD TO ASCII CONVERSION') 
/**************************************************** 
* This routine converts a fixed point word in mem- * 
* ory into a 4 digit plus l decimal ASCCI display- * 
* able number. Zero blanking is in~luded. * 
****************************************************/ 
DEC$REP~'MODULE: 
Do; 

lJEC'$HEP: 
Procedur<" (SOUHCB,TARGE'l') publ.ir ; 

Declare (SOURCE,TARGET) address; 
neclare ANSWRl5) byte; 
Declare (DISPLAY baser' 'fAHGET) (5) byte; 
D0clare NUMBER basod SOURCE structure ( 

ELEMENT 2fdress ); 
Decl?rt': N byte; 
De~)are CALC(5) address; 

/* Initialize */ 
Do 11=0 to 4; 

ANSWR(n)='0'; 
end; 
CALC(~)=NUMBER.ELEMENT; 

/* Convert to ASCII */ 
Do n=l to 5; 

CALC(n)=CALt(n-1)/Ie; 
ANSWR(5-n)=(CALC(n-1) mod 10) + 3eH; 

end; 
/* Perform zero blanking */ 

Do n=~l to 3; 
If ANSWRln)<>'0' 
then n=4; 
else ANSWR(n)=' '; 

end; 
/* Format with decimal point */ 

Call move (4,.ANSWR,TARGET}; 
OISPLAY{4)='.'; 
DISPLAY(~)=ANSWRl4); 

end DEC$HEP; 
end DEC$REP$MODULE; 

MODULE INFORMATION: 

CODE AREA SIZE = 00EP.H 
VARIABLE AREA SIZE C014H 
MAXIMUM S1'ACK SIZE 00V4H 
40 LINES REJ'.\D 
0 PROGRAM ERROR(S) 

END OF PL/M-80 COMPILA'l'ION 

3-59 

2380 
200 

llD 

AFN-01931A 





©Intel Corporation 1979 

APPLICATION 
NOTE 

3-61 

AP-60 

November 1979 

AFN-01931A 



Closed Loop Control 
Using the iSBC 569/941 
Intelligent Digital 
Processors 

3-62 

Contents 

I. INTRODUCTION .........••....... 3-63 

Reasons for Intelligent Boards ......... 3-63 
The On-Board Slave Concept ......... 3-63 

II. BASIC UNIVERSAL PERIPHERAL 
INTERFACE DISCUSSIONS ........ 3-64 

Hardware Features .................. 3-64 
Software Interface ................... 3-64 
Standard Universal Peripheral 

Controllers ....................... 3-65 
Industrial Digital Processor ........... 3-66 

III. FUNCTIONS OF THE 
INTELLIGENT DIGITAL 
CONTROLLER .................... 3-66 

Input/Output Functions .............. 3-66 

IV. APPLICATION EXAMPLE ......... 3-67 

Mechanical Specifications ............ 3-69 
Interface Requirements ............... 3-70 

W eightbelt Weight. ................ 3-70 
Weightbelt Motor Control .......... 3-71 
W eightbelt Speed Measurement ..... 3-72 
Liquid Flow Control ............... 3-72 
Liquid Flow Measurement .......... 3-73 
Operator Interface ................. 3-74 

Interface Summary .................. 3-74 

V. HARDWARE CONFIGURATION .... 3-74 

Controller Interface ................. 3-75 

VI. SOFTWARE CONFIGURATION ..... 3-79 

High Level Programming Languages ... 3-80 
Fundamental Support Packages ..... 3-80 

Host/Slave Relationship .............. 3-80 
RMX/80 BASI C-80 Interpreter ........ 3-81 
Software Tasks ..................... 3-81 

VII. SOFTWARE DRIVERS .............. 3-81 

Motor Speed Control Processor ....... 3-81 
Weight Input Processor .............. 3-85 
Stepper Motor Control Processor ...... 3-87 

VIII. APPLICATION SOFTWARE ........ 3-90 

Initialization Programs ............... 3-90 
Control Algorithm Programs .......... 3-91 
Master Processor .. , ................. 3-91 

IX. CQNCLUSION ...... ;; ............. 3-92 

APPENDiX A .......••...... ; . : ......... 3-95 

AFN-01931A 



I. INTRODUCTION 

The utilization of computers to provide control or 
monitoring functions for industrial processes 
frequently results in complex computer systems. 
Distributing the control and processing intelli
gence throughout the control network reduces 
significantly the complexity of the system while 
increasing the reliability. The physical areas 
being controlled or monitored by each portion of 
the distributed system will generally consist of a 
relatively small number of 1/0 functions which 
are related by some control algorithm. 

The Intel iSBC 569 Intelligent Digital Controller 
(IDC) and the iSBC 941 Industrial Digital 
Processor (IDP) are a part of the expanding. line of 
Intel products which are oriented toward filling 
the requirements of these systems. This applica
tion note deals with the use of these devices to 
provide control of a closed .loop system using a 
version of the PID control algorithm. 

It is assumed that the reader is familiar with the 
basic concepts required to generate software and 
has had some experience with using a computer. 
This application note will then guide the reader 
through a typical application, explaining in detail 
the decisions which must be made in order to 
effectively utilize a microcomputer to. provide a 
control solution. 

The application which has been chosen is 
considered to be typical of the type which lends 
itself to control. The mechanical aspects of the 
application will be explained so that the user not 
familiar with the particular machinery will be able 
to understand the development. It will be seen 
that the techniques used will apply to any other 
specific application. 

The emphasis of the note will be on the use and 
implementation of the hardware and software 
features of the digital processor and controller. 
The actual PID control algorithm will not be 
developed in this application note. 

Reasons for Intelligent Boards 

The advent of microcomputers and the resulting 
trend toward utilizing these devices to control 
processes has resulted in many cases where the 
overall system performance has deteriorated 
because of the demands placed on the processor. 

3•63 

In these applications, the computer has become 
overburdened with control algorithms, alarm 
detection, communications, and the many other 
tasks required of it. The processor can be inter
rupted by time dependent tasks to the point where 
other processing tasks can not be completed. 

Presently, Intel provides two I/O expansion 
boards which are capable of handling portions of 
the processing load which formally required 
processor time. These two devices are the iSBC 
544 Intelligent Communications Controller and 
the iSBC 569 Intelligent Digital Controller. Tasks 
which involve communications or parallel digital 
1/0 can now be offloaded without requiring 
valuable processor time. These boards can issue 
interrupts to the master or host processor if 
interaction with other processes or devices is 
required. This technique greatly increases system 
throughput by offloading the other bus master 
processors and by minimizing traffic on the 
Multibus system bus. 

In some cases, it will be found that the intelligent 
controller can function to control the process in a 
stand-alone environment, providing a more 
functional, low cost control system. 

The concept of offloading the processor of its 
input/output tasks can be developed on the iSBC 
569 controller through the use of slave processors 
which may be installed on the board to assist the 
host. The result is the ability to provide up to four 
processors on a single intelligent slave 1/0 board 
by using the concept of slave processors. 

The On-Board Slave Concept 

The utilization of the iSBC 569 controller is 
enhanced through the use of On Board Slave 
processors (OBS). These devices distribute the 
system intelligence and offload the processor on 
the intelligent controller. They can provide 
custom digital interfaces with the various devices 
which may be connected to the 1/0 ports of the 
controller. The OBS device allows a designer to 
fully specify his control/interface algorithm in the 
peripheral chip without relying on the master 
processor. Three types of OBS compatible devices 
are available from Intel. These are: 1) Industrial 
Processors, 2) Standard UPI devices, and 3) UPI 
8741A for custom applications. By combining the 

AFN·01931A 



devices in various combinations, optimum solu
tions can be generated for different control 
applications. 

Before proceeding, we should cover the general 
characteristics of the OBS devices available for 
use in conjunction with the iSBC 569 controller. It 
will be seen that careful selection of the proper I/O 
controller chip can reduce significantly the design 
effort required to provide a control solution. 

II. BASIC UNIVERSAL. PERIPHERAL 
INTERFACE DISCUSSION 

With the introduction of the Universal Peripheral 
Interface, Intel has expanded the intelligent 
peripheral concept by providing an intelligent 
controller that is fully user programmable. The 
8741A is a complete single-chip microcomputer 
which connects directly to a master processor data 
bus. 

To fully understand the techniques used by the 
UPI 8741A devices, we must have a general 
knowledge of.their characteristics. Only then will 
we feel comfortable in implementing a design 
which uses the components. 

Hardware Features 

Each Universal Peripheral Interface has lK bytes 
of program storage plus 64 bytes of RAM memory 
for data storage. It has a powerful, 8-bit CPU with 
a 2.5 µsec cycle time and two interrupts. Over 90 
instructions are provided in its instruction 
set. Most instructions are single byte and single 
cycle and none are more than two bytes long. 
These instructions are optimized for bit manipula
tion and I/O operations. Special instructions are 
included to allow binary or BCD arithmetic 
operations, table lookup routines, loop counters, 
and N-way branch routines. 

The chip's 8-bit interval timer/event counter can 
be used to generate complex timing sequences for 
control applications or it can count external events 
such as switch closures and position encoder 
pulses. Software timing loops can be simplified or 
eliminated by the interval timer. If enabled, an 
interrupt to the CPU can occur when the timer 
overflows. 

Two 8-bit bidirectional 1/0 ports are included 
which are TTL compatible. Each of the 16 port 

3-64 

lines can individually function as either input or 
output under software control. 

The UPI microcomputer is fully supported with 
development tools. The combination of device 
features and Intel development support makethe 
8741A an ideal component for low-speed periph
eral control applications. 

Software Interface 

The OBS communicates with' the processor on the 
host board by means of data transfers between its 
registers and the host board's data bus. A 
communication protocol has been defined which 
provides a set ofrules by which the processors may 
interact with each other. Two types of software 
protocol are currently defined. These are the 
"simple" and the "extended" protocol. .Before 
attempting to utilize the OBS devices in an 
application, the concepts used for the communica
tions must be fully understood. 

When used on one of Intel's single board compu
ters, the communication path is by means of the 
I/O ports on the host board. This means that two 
port addresses, an odd and an even location, are 
assigned to each OBS device. The even numbered 
port is used to transfer "data" between the 
processors. The odd numbered port is used to write 
commands into the OBS and to read its status. 
Each transfer between the host and the slave 
device consists of the movement of eight bits of 
information. 

Four of the eight bits available in the status 
message have been given predefined functions. 
The bit will be set (logical 1) when the correspond
ing condition exists within the OBS device and 
will be reset (logicalO) when the condition does not 
exist. The functions of the four bits are: 

Bit-0, Output Buffer Full (OBF). 
This bit indicates that the OBS has placed 
information into the transfer register and 
that the information is available to the host 
processor. It can be read by performing an 
input operation from the even numbered port 
assigned to the particular OBS. When the 
data has been read, the bit will automatically 
be reset to indicate that no data is available. 
As we will see, this is one of the key features 
enabling efficient utilization of the host/ 

AFN-01931A 



slave relationships on single board compu
ters. 

Bit-1. Input Buffer Full (IBF). 
This bit is used to indicate that data has been 
placed into the input transfer register by the 
host device and that it has not yet been read 
by the slave. Data is transferred into the 
input register by means. of the host perform
ing an output to the even numbered port of the 
OBS. The bit will be reset when the device 
reads the data from the input transfer 
register into its accumulator. Data should 
only be output to the OBS when the IBF bit is 
reset! 

Bit-2. FO Flag. 
Unlike the IBF and.the OBF bits which are 
controlled by hardware, the FO bit is control
led by the device software. The normal 
function of the flag is to provide a lockout to 
prevent the host from sending more data 

· until the previous data has been processed or 
the operation is complete. 

Bit-3. Fl is the Command/Data Flag. 
It is automatically set when the host sends 
either a command (odd numbered port) or 
data (even numbered port). A logical 1 
indicates that a command has been sent and 
a logical· 0 indicates that data has been 
sent. This bit may also be cleared or toggled 
by the UPI software. 

These bits will provide normal communications 
between the master and slave processors. 

Figure 1 shows the sequence of operations which 
can be used by the host processor to establish 
communications with an OBS using the simple 
protocol. In Figure la, we see that all operations 
are initiated by the host. It will first verify that the 
IBF flag indicates that the input register is empty 
and available for receiving a command. The 
command is then sent to the odd numbered 
port. This command will inform the OBS that is to 
perform some task. The task may involve a 
requirement for more information to be sent to the 
controller and it may involve the controller 
returning some data to the host. Figure lb shows 
the operations required for receiving data from the 
OBS. 

3-65 

WRITE 
DATA 

DONE 

HOST TO SLAVE 

BEGIN 

~ y 
DONE 

SLAVE TO HOST 

Figure 1. Simple Protocol 

With these ideas in mind, we can move to a 
discussion of representative versions of the 
devices available for use on the IDC boards. We 
will then look at a typical application to see how 
they can actually be applied to solve a problem. 

Standard Universal Peripheral Controllers 

Intel presently manufactures three UPI control
lers for non-industrial applications. These are: 

1. 8278 Programmable Keyboard Interface 
2. 8294 Data Encryption Unit 
3. 8295 Dot Matrix Printer Controller 

These devices offer an "off the shelf' solution to 
many applications which might be encountered. 

The Intel 8278 is a general purpose programmable 
keyboard and display interface device. The 
keyboard portion can provide a scanned interface 
to 128-key ·contact or capacitive-coupled key
boards. The keys are fully debounced with N-key 
rollover and programmable error generation on 
multiple new key closures. Keyboard entries are 
stored in an 8-character FIFO with overrun status 
indication when more than 8-characters have been 
entered. Key entries set an interrupt request 
output to the master CPU. The display portion of 
the 8278 provides a scanned display interface for 
LED, incandescent, and other popular display 
technologies. Both numeric displays and simple 
indicators may be used. The 8278 has a 16 x 4 

AFN-01931A 



display RAM which can be loaded or interrogated 
by the CPU. Both right entry calculator and left 
entry typewriter display. formats are possible. 
Read and write of the display RAM can be done 
with auto-increment of the display RAM address. 

The Intel 8294 Data Encryption Unit is designed to 
encode and decode 64-bit blocks of data using the 
algorithm specified in the Federal Information 
Processing Data Encryption Standard. The DEU 
operates on ·64-bit test words using. a 56~bit user 
specified key to produce 64-bit cipher words. The 
operation is reversible; if the cipher word is 
operated upon, the original test word is produced. 
Because the 8294 is compatible with the NBS 
encryption standard, it can be used in a variety of 
electronic funds transfer applications as well as 
other electronic banking and data handling 
applications where data must be encrypted. 

Finally, the Intel 8295. Dot Matrix Prin.ter 
Controller provides an interface to.the LRC 7040 
Series dot matrix impact printers. 1t may also be 
used a11 an interface to other similar printers. The 
chip may be used in a serial or parallel communica
tion mode with the host processor. Furthermore, it 
provides internal buffering of up to 40 characters 
and contains a 7 x 7 matrix character gen~rator 
which aceommodates 64 ASCII characters. 

Industrial Digital Processor 
Intel produces the iSBC 941 Industrial Digital 
Processor (IDP) which is programmed to handle 
an assortment of typical industrial digital 
interfaces and transducers. The controller can 
function to provide any of the foUowing;. 

1. Scan up to 16 inputs for a change of state. 
2. Provide up to 8 gated one-shot outputs. 
3. Provide eight gated outputs with program

mable pulse Widths and periods. 
4. Provide monitoring ofup to 8 input lines for 

event sensing or as a programmable divider. 
5. Provide the period measurement of up to 

eight inputs. 
6. Provide a frequency to count conversion of 

one input. 
7. Provide for the control of a stepper motor 

having up to eight phases. 
8. Provide a. simplex asynchronous· serial 

input,· 

.3-66 

9. Provide ·a simplex asynchronous· serial 
output. 

In addition to p-roviding one of the above 
functions, the IDP can also handle.simple parallel 
1/0 through the unused port inputs or outputs. 

III. FUNCTIONS OF THE INTELLIGENT 
DIGITAL CONTROLLER 

TheiSBC 569 Intelligent Digital Controller (!DC) 
is a .versatile digital 1/0 processor. The IDC is 
designed to operate in a system using any one oi 
the following three modes: 

1. Intelligent Slave 
2. Stand-alone System 
3. Limited Bus Master 

Additional· power is obtained by the utilization of 
three OBS's to generate up to 48 parallel input/ 
output data lines. 

In the intelligent slave mode, the controller's RAM 
is shared between the on-board 8085A and the 
Multibus users via a dual-port controller. Thus, a 
single bus master can control several intelligent 
slaves using the dual-port RAM as the major 
communications path. Switches are provided on 
the board to allow the user to reserve lK bytes of 
RAM for use by the 569's processor only. This 
reserved memory is not accessible via the Multibus 
system interface and does not occupy any bus 
address space. 

In the stand-alone mode, the. entire system can 
consist of a single IDQ, with cables, power supply 
and enclosure. An IDC can be installed at a 
remote site as a complettilY autonomous system. 

The IDC may also be operated as a limited bus 
master when it is the only bus master in the 
system. Expansion memory and 1/0 boards may 
be connected to the IDC via the Multibus system 
bus to increase the input/output capabilities. This 
mode could be used to configure one !DC as a bus 
master with additional IDC's as intelligent 
slaves. This mode is not available with any other 
bus masters such as iSBC single boardcompute-rs, 
disk controllers, or DMA devices. 

Input/Output Functions 

The 1/0 interface between the iSBC 569Intelligent 
Digital Controller and the external devices to 

AFN-01931A 



J1 

8253-5 
PROGRAMMABLE 

INTERVAL 
TIMER 

2K RAM 

TO J3 

J2 

CLOCK 
CIRCUITS 

DUAL 
PORT 

CONTROL 

MULTIBUS SYSTEM BUS 

8259A 
PROGRAMMABLE 

INTERRUPT 
CONTROLLER 

8085A 
CPU 

16K 
ROM/PROM 

Figure 2. IDC Functional Block Diagram 

which it is to be connected normally consists of 
various OBS devices. Each of these slaves has the 
ability to provide sixteen individual input and/or 
output lines. In addition, each provides two 
specialized input lines. The IDC is designed to 
accommodate up to three slave devices, so the 
normal 110 configuration of the board will consist 
of 48 digital data lines. If the specialized lines are 
considered, this number could be raised to 
54. Sockets are provided for the insertion of 
drivers or terminators for use on the 48 digital 
lines. The 6 special purpose lines can only be used 
as inputs and are provided with pull-up resistors to 
terminate the input signals. 

The driver/termination socket configuration 
limits the grouping of the 1/0 lines to be in groups 
of four. Any slave data line being used for an input 
must have its output latch placed into a logical 1 
state so as to allow the input line to be controlled 
by the external signal. 

3-67 

IV. APPLICATION EXAMPLE 

An example of the iSBC 569 controller in an 
application will help to explain the techniques 
used to implement a control system and to 
interface between the various functional units. 
The application chosen will consist of a typical use 
but will be simple enough to allow the design 
operations to be easily followed. 

Suppose we choose to design a control system 
which will be produced as a subsystem to interface 
with and control a liquid applicator. As we go 
through the steps required to design and imple
ment such a control system, we will see how the 
various hardware and software tools which are 
available from Intel can be utilized to allow easy 
implementation of the task. 

Before proceeding, we will spend some time to 
insure there is a clear understanding about the 
definition of the liquid applicator. When this 
definition is complete, the design of the control 
subsystem can begin. 

AFN·01931A 



A liquid applicator consists of two functional 
parts: a device! to. coqtrol the ;now of a solid 
material, and a device to control the flow of a lic:ttiid 
onto the material. We will actually b~ controlling 
two continuous process loops which are related by 
an input parameter whic;h specifies the percentage · · 
of liquid to be applied to the dry material. 

Figure 3. shows the components making up a 
typical weighbelt feeder. The Operation of the 
feeder is straightforward. The vertical gate is 
adjusted manU:ally to provide a: desir.ed g.ap 
between the con-teyor belt and the lower portion of 
the gate·. This will result in a nearly level 
distribution of material on the belt when: it is 
moving. The weighbelt is connected to a load cell 
to provide information back to the control system 
giving the amount of weight on the belt at any 
instant. Ifwe know the speed of the conveyor, it is 
simple to compute the amount of material flowing 
through the Jeeder during any time period. This 

.flow rate is known as the Mass Flow and:is usua:Ily 
· expre~sed as pounds per minute. The control of 
· the feeder system can be provided by varying the 
belt speed until the desired ... flow rate has been 
obtained. 

Our control system will be designed to control the 
belt speed and to monitor the weighbelt weight and 
any other parameters which we determine will be 
necessary to control the flQw of material.·. A typical 
contr()l process will require an optimum flow rate 
be· established for each material of a· different 
density. With a known material flow through the 
feeder, we can go about th.e process of applying the 
liquid flow to.the material·in order to complete our 
application example. 

The second loop of the example will involve adding 
the liquid to the material coming from the feeder 
mechanism .. described above. Normally, the 
percentage of material to be applied is fixed by the 

Figure 3. A Weighbelt FeJder 
~ .. , . . 

3-68 AFN-01931A 



formula or mix design of the product which we are 
manufacturing. However, since the flow rate 
through the weighbelt feeder can and does vary 
(our first control loop will not always be able to 
exactly control the flow due to many conditions 
beyond our control), the liquid setpoint will 
constantly be changing as a function of the actual 
mass flow and the liquid percentage. 

Figure 4 shows the liquid application piping 
diagram for the liquid portion of the control 
system. The items with which we will be directly 
concerned are the liquid flow meter and the control 
valve. The other components, while requiring 
consideration in an actual implementation, will be 
ignored in this aplication note for the sake of 
clarity. Let us consider the details of each control 
loop in more depth before we attempt to design the 
control system. 

Mechanical Specifications 

In subsequent portions involving development of 
the control system, we will be constantly referring 
to data regarding the mechanical specifications of 
the liquid applicator system. Therefore, we will 

establish a set of theoretical technical specifica
tions for our system. Later, we will see how close 
the control system can come to providing a control 
which meets or exceeds these parameters. These 
specifications will be broken down into two sets of 
data, one for physical parameters over which we 
have no control, and a second for the desired 
control characteristics. 

The physical data provides information on the 
mechanical design and will be used for guidelines 
in selecting interface equipment and in preparing 
software algorithms. The physical data is: 

Operating Belt Speed -
1.1 to 180 feet per minute. Adjusted by a 
variable speed motor directly coupled to the 
belt pulley mechanism. 

Feed Output Rates -
Adjustable over a 10:1 range with a maxi
mum output of 960 pounds per minute. 

Feeder Belt Characteristics -
The belt will be 9 inches· wide by 2 feet in 
length when installed. The belt pulley rollers 
will have a radius of 4.5 inches. 

FLOW 
VALVE FLOW CONTROL 

THRE~ 

.--~~~-FR_O_M~~~~~-r Tl. 
WEIGHBELT 

FEEDER t t 

LIQUID 
SUPPLY 

TANK 

MAIN .....-----'----. r-----. AUXILIARY 
STRAINER STRAINER 

PRESSURE RELIEF 
VALVE 

Figure 4. Liquid Flow Diagram 

3-69 

CHECK 
VALVE 

AFN·01931A 



Feeder Weight Sensor -
The weigh belt feeder will incorporate a strain 
gauge load cell to measure the weight on the 
belt .. Its linearity shall provide 0.1 % of full 
scale range. 

Liquid Flow Rates -
The liquid flow rates shall vary between 10.0 
and 120.0 pounds per minute. 

The desired operating characteristics of our 
control system will provide the following general 
responses; 

Feeder Accuracy -
1 % of full scale over a 10: 1 range. The feeder 
will maintain the set feed rate within 1 % of 
full scale over any one minute period. The 
minimum sample must be at least one pound. 

Liquid Accuracy -
1 % of full .scale over the operating range. 
Must be able to track mass flow variations 
within the above limits. 

These specifications will provide guidelines for 
the decisions which we will later make in 
providing a micro-computer control solution to the 
weighbelt feeder application. 

Interface Requirements 

A logical place to begin the consideration of the 
control system design is to examine the interface 
requirements and define the characteristics of the 
interfaces which will be required to implement the 
control. We will consider each element of the 
physical system separately. 

Weighbelt Weight 

The weigh belt weight will be sensed using a lever 
system connected to a load cell integral to the 
mechanical unit. The output of a strain gauge 
load cell is a low level (approximately 20 millivolts 
at full scale) analog output. Obviously, this signal 
must be somehow converted into a digital level 
before we can use its information to compute the 
actual mass flow across our weigh belt feeder. Our 
design process must define the characteristics of 
the digital signal so that the appropriate analog to 
digital converter system can be chosen. The 
design path can take any of several equally valid 
approaches, any of which will provide a func
tional control system. For the purposes of this 

application note, we will assume that the design 
path will utilize the Intel iSBC 569 Intelligent 
Digital Processor. 

This assumption requires us to utilize only signals 
which can be generated or interpreted using the 
computer board and its associated OBS's. We will 
not be capable of handling an analog signal. 
Since some type of signal conditioning would be 
required of the low level analog voltage anyway, 
this does not impose any serious restrictions on 
our design. Indeed, it will cause us to consider a 
technique which proviqes excellent noise rejection 
characteristics. We will assume that a voltage to 
frequency converter (V /F) will be installed near 
the load cell and the frequency will then be 
transmited over a pair of wires to our digital 
interface. Commercially available converters 
provide a frequency output which varies between 0 
and 10 kilohertz. With this in mind, we can 
continue with the development of the interfaces 
required in the application. 

The load cell transducer will incorporate a local 
unit which generates a pulse train whose fre
quency is proportional to the weight upon the load 
cell. This mechanical arrangement is typical of 
many gravimetric feeder systems in use today. 

For purposes of this application, it will be assumed 
that the system will be calibrated such that a 
weight of 10.00 pounds on the weighbelt will 
produce a pulse train frequency of 10 khz. No 
weight on the belt will generate a frequency ofless 
than 30 hertz. The accuracy of the pulse output 
will be guaranteed to be proportional to the weight 
within 0.05%. Again, this is typical of devices 
available and in general use in similar applica
tions. 

3-70 

The characteristics we have described above fall 
within the performance range of the iSBC 941 
processor when operated in its frequency to count 
mode. If we assume a sample rate of 200 msec 
(this value should provide an adequate control 
characteristic since it is unlikely that the 
mechanical equipment can respond rapidly 
enough to warrant a faster control and sample 
time), the frequency count read by the iSBC 941 
counter will range between 6 and 2000. System 
accuracy of reading the belt weight will thus 
exceed 0.1 % of the full scale weight reading. 

AFN-01931A 



We will discuss the electrical 'and programming 
interfaces in subsequent sections of the applica
tion note. 

Weighbelt Motor Control 

The flow on the weighbelt will be controlled by 
changing the speed of the belt movement. Since 
the weighbelt is mechanically designed to main
tain a constant bed level, the amount of material 
flowing will thus be adjusted. 

The belt speed has traditionally be~n adjusted 
using either SCR controllers or by using variable 
transmissions between the motor and the con
veyor belt. The increased utilization and develop
ment of stepper motors. is leading toward greater 
use of direct stepper motor drives. This is the mode 
which wi11 be utilized for this application. 

The manufacturer's specifications for the weigh
belt indicate that the following requirements exist 
for driving the device: 

REQUIRED TORQUE - 149 LB-IN-IN 
REQUIRED MAX SPEED - 2.54 REV /SEC. 

Referring to typical manufacturer specification 
sheets for stepper motors, we find the torque vs. 
speed characteristics shown in Figure 5. Our 
application requires 2.54 revolutions/sec which 
translates to 508 steps per second when the 
stepper is used in a 1.8 degree per step mode. ·we 
can see that the requirements fall well within the 
capabilities of the particular moto.r. 

100 200 300 400. 500 

SPEED (STEPS. PER SEC) 

600 

Figure 5. Stepper Motor Torque/Speed 

700 

3-71 

At this point, we have four routes which may be 
pursued to actually interface with the motor. These 
are: 

1. Utilize the iSBC 941 stepper mode to drive 
the stepper motor directly. 

2. Utilize the iSBC 941 frequency generation 
niode to drive a standard stepper translator. 

· 3. Utilize parallel outputs to provide a digital 
output to a stepper translater. 

·. 4. Utilize a 4-20 ma. current signal to a stepper 
translator. 

Three of the above modes use a translator to drive 
the motor. If possible, we should strive to 
eliminate the cost of this intermediate device. 

Again, we will refer. to the published motor 
specification sheets. For our typical motor, the 
data is shown in Figure 6. The requirement for 
providing in excess of six amperes per winding 
exceeds the capabilities of the output drivers 
which can be installed on the iC.S 930 termination 
board. We will be forced to either design a custom 
high power driver board or to use a translator 
module. To keep the application as simple. as 
possible, we will choose the latter. 

ELECTRICAL RATINGS 1.8 DEGREE STEPPING MOTOR 

Motor Time·for DC Amperes Resistance Inductance 
Type One .step Volts Per Winding Ohms Millihenries 

Ourtype 1.7 msec 2.3 6.1 0.3i 2.4 

Figure 6 .• Stepper Electrical Ratings 

We have three choices left when the decision has 
been made to use a translator module. The use of a 
current output mode will necessitate the use of.an. 
external analog board. This is undesirable, both 
from the standpoint of interboard communication 
requirements, and from a cost effective basis. . 

The use of a parallel output would commit many of 
our output data ports and would require the 
installation of UPI modules or iSBC 941 modules 
to get the parallel output drivers. In addition, 
parallel digital input is not a common option of 
commercially available translators. 

AFN·01931A 



This leaves. us with the use of a variable frequency 
output to provide stepping information to the 
translator module. This is a normal operational 
mode of the iSBC. 941 processor and the required 
508 hertz is within the normal output range of the 
device. 

A definite advantage of our decision to use a 
stepper motor drive for the weigh belt is that we do 
not have to maintain accurate feedback and 
control algorithms to maintain the conveyor 
speed. Only a simple check need be made to verify 
that the conveyor has not stalled. The stepper 
motor will inherently maintain a speed propor
tional to the frequency rate. 

The actual electrical and programming interfaces 
will be discussed in subsequent sections of this 
application note. 

Weighbelt Speed Measurement 

We have mentioned that a control system using a 
stepper motor for speed control can operate 
effectively in an open loop configuration. How
ever, since a faulty component could result in 
failure of the motor to run, we must verify that the 
belt is indeed moving. This is easily accomplished 
by adding a magnetic sensor to the weighbelt 
rollers and counting the pulses generated as the 
device operates. 

Typical magnetic sensors and ring magnets for 
installation on the weighbelt will provide us with 
ten pulses per revolution of a belt pulley. Since the 
pulley is operating at a maximum speed of 2.54 
revolutions per second, we will receive between O 
and 25.4 counts per second. Using our sample 
period of200 milliseconds, this means that we will 
count between 0 and 5 counts during each time 
interval. Our decision to use a stepper control loop 
rather than a conventional closed loop seems 
justified as we would obtain rather poor control 
with feedback having this poor of resolution. 

We must make a decision to determine how the 
speed will be sensed by the control board. An 
obvious choice would be the use of an iSBC 941 
processor operating in the period measurement 
mode. This would require using our third socket 
on the iSBC 569 host board and would leave us 
without the ability to use an additional device to 
support the liquid control loop. We should seek an 
alternative solution. 

The iSBC 569 controller board provides an 8253 
programmable interval timer. A first approach 
might be to attempt to configure one of these 
counters to provide an event counting mode and 
read the belt speed from the counter. However, 
this is not possible since we would be required to 
zero the counter after each reading and the 
counter does not load the preset count until a clock 
pulse is present. We would have no ability to 
distinguish between no belt motion and the belt 
motion which is the same as the previous reading! 

An alternative approach is to create a software 
counter by routing the belt movement pulse to one 
of our interrupts and creating a program which 
will increment a counter. Each time a count is 
sensed, the software will increment a memory 
location by an increment which corresponds to the 
speed represented by one count. 

Again, we will delay the discussion of the 
electrical and programming interfaces until 
subsequent sections of this application note. 

Liquid Flow Control 

The design of a control system to provide control 
of flow through a liquid valve is an integral part of 
the liquid pipe and plumbing design. To optimize 
the system operation and provide a system at the 
minimum cost, the integration of control and 
mechanical design must be made. 

Several possibilities exist when making a decision 
as to which control va.lve to use in adjusting the 
liquid flow rate. The actual selection of the 
physical valve mechanism should be based upon 
the characteristics of the liquid flow. This 
decision is outside of the scope of this application 
note and will not be pursued. However, the valve 
actuator is a device which becomes an integral 
part of the control system and its selection is a 
function of the control system design. 

Figure 7 shows the common control valve types 
which are used to vary the flow rate of liquids. 
The automatic control system we are designing 
precludes the use of a manual valve, so we must 
make our selection between the air actuated and 
the motorized control valve. 

Classical control design has utilized air actuated 
valves almost exclusive~y. This type of actuator 
incorporates an intermediate transducer to 

3-72 AFN·01931A 



PROPORTIONAL CONTROL VALVES 

AIR ACTUATED VALVES MANUAL MOTORIZED VALVES 

FLOW 

4-20 MA 

CONTROL 
+--- AIR 

0-10 KHZ 

FLOW 

I 
SYNCHRONOUS STEPPER 

Figure 7. Control Valve Family 

convert the signal generated by the control system of the control valve to provide a simple and 
into a variable air pressure. This air is used to economical control path. The control outputs 
drive a pneumatic control actuator. Two types of from the PID control loop can be sent to the iSBC 
electrical to pneumatic transducers are in com- 941 processor's command queue and the controller 
mon use. The most prevalent converts a 4 to 20 will handle the motor movements. 
milliampere control signal into a proportional air 
signal. The second type will accept a 0 to 10 khz 
pulse train and convert this to an air output. 

Both of the above systems provide excellent 
electrical noise immunity and give reliable 
operation in industrial environments. They do, 
however, have disadvantages. A supply of air 
must be present at the control devices and this air 
must be maintained such that it is free from water 
and oil. In many cases, this presents costly 
installation and maintenance considerations. 
The use of computerized control systems has led to 
a recent concept of eliminating the intermediate 
conversion and using instead a digitally control
led actuator. 

A stepper motor can be connected to the actuator 

The electrical and programming interfaces of this 
interface will be fully discussed in subsequent 
sections. 

Liquid Flow Measurement 

The use of a liquid control valve to vary the liquid 
flow cannot in itself provide an accurate control 
loop. Because the flow rate through a fixed valve 
will vary with material densities, temperatures, 
and pressures, we must provide some type of 
feedback into our control algorithm. Thus, a 
flowmeter must be inserted into the liquid flow 
and its output returned to the system. 

The control system designer can choose from 
several types of flow meters depending upon his 
requirements. Figure 8 shows many of the more 

MAGNETIC OVAL FLOWMETER 
WOBBLE METER 

TURBINE 

4-20 MA 
0.5% ACCURACY 

0-500 PPS 
3% ACCURACY 

Figure 8. Flow Meter Classifications 

3-73 

30-1000 PPS PULSE 
0.5 % ACCURACY 

AFN-01931A 



standard classifications of flow meters. Our 
selection of the meter must take into account the 
type of electrical interface available from the 
meters. In our attempt to maintain a digital 
system which does. not require additional support 
boards, we will reject the use of a magnetic 
flowmeter because this type of meter provides an 
analog type of output which would require the 
addition of another board into our control 
system. The wobble meter provides a digital pulse 
type output but its accuracy tends to discourage its 
use in a refined control loop. We will utilize the 
turbine meter for our liquid flow application. 

The output of a turbine meter is a low voltage, low 
current AC signal whose frequency is proportion
al to the liquid flow rate. The manufacturers of 
the meters provide pre-amplifiers which convert 
the signal into 10 volt peak to peak square waves 
which>are equivalent in frequenacy to the AC 
pulses. The operating frequency ranges typically 
from 100 to 1200 pulses per second. 

It is desirable to measure the flow rate using a 
single iSBC 569 controller. If we consider that a 
200 millisecond control interval will be used, the 
flow will result in a reading of between 20 and 240 
pulses per sample period. These readings could be 
performed using an iSBC 941 processor, but we do 
not have the socket available for a fourth module, 
so we must consider utilizing another interrupt 
driven software counter as was done with the belt 
speed. 

All control and monitoring equipment for our 
liquid control application has now been defined in 
such a manner as to be compatible with the 
utilization of a single iSBC 569 controller 
board. The actual interfaces to perform the 
interconnections and to provide control instruc
tions can soon be considered. 

Operator Interface 

Finally, we must define the data communications 
which must take place between the controller, 
other system tasks, and the operator. Let us first 
consider the system control variables and the data 
which, if generated by the control process, might 
be useful to the remainder of the control system. 

The first variable which comes to mind is the 
liquid flow setpoint. If we consider the entire 

3-74 

control system, this parameter will be found to be 
actually expressed as a percentage of the total 
output material. For example, if we assume the 
recipe required the finalproduct to consist of 5% 
liquid by weight, we would require that our control 
system add the correct amount of liquid to perform 
this task. 

To allow maximum flexibility of the control 
system, we should allow selection of various 
density materials onto the weighbelt. A host 
processor with computational capabilities can 
calculate the optimum gravimetric feeder flow rate 
for the materials being combined. 

The control system can provide an integration 
function to allow totalization of the amount of 
material which has been transferred through the 
system. A capability of outputting the amount of 
material which has passed over the weigh belt and 
the amount of liquid added will be included. 

The implications of the parameter storage and 
generation will be dealt with later when the 
host/slave relationships of the iSBC 569 controller 
are discussed. 

Interface Sµmmary 

We have defined the required interfaces which will 
be needed to perform our control task. These can 
be grouped into external and internal interfaces. 
The external interfaces are those which connect to 
physical pieces of external equipment. 

These are summarized in Figure 9. The internal 
interface relates to the data which is to be passed 
between the iSBC 569 Intelligent Slave board and 
other boards which may be present on the 
MULTIBUS system bu1>. These data areas are 
shown in Figure 10. 

V. HARDWARE CONFIGURATION 

We have now defined the various components 
which we will utilize on the controller board to 
support the physical control and monitor hard
ware. Our next task is to provide an interface 
between the controllers and the equipment which 
we are to control. In so doing, we will define the 
hardware 1/0 assignments for the iSBC 941 
processors and for the counters which we will be 
utilizing. The following paragraphs will deal 
with the optimization of this configuration. 

AFN-01931A 



• • • • DEVICE••••••••• 
WEIGHBEL T MOTOR 
WEIGH BELT WEIGHT 
WEIGHBEL T SPEED 
LIQUID VALVE 
LIQUID FLOW 

• • • • SIGNAL TYPE • • • • • • • 
10 VDC PULSE 

• • • • BOARD ELEMENT•••••••• 
iSBC 941 

10 VDC PULSE iSBC 941 
110 VAC PULSE 
5 VDC MUL Tl PHASE 
10 VDC PULSE 

8259A INTERRUPT 
iSBC 941 
8259A tNTERRUPT 

Figure 9. Control/Monitor Signals 

• • • INPUTS • • • • • • • • • • • • • • • • • • • • OUTPUTS • • • • 
GRAVIMETRIC FLOW ACCUMULATED SOLIDS 
LIQUID PERCENTAGE ACCUMULATED LIQUJO 

Figure 10. Communication Signals 

Controller Interface 

Good design practice dictates that we should 
provide optical isolation between the controller 
and the external equipment when designing for an 
industrial environment. The optical isolation is 
included if we utilize the Intel iCS series of signal 
conditioning/termination boards. We find that 
we have two types of digital termination panels 
available, one for low current, low voltage 
applications and second for higher current and 
voltage uses. If we base our choice on the data 
provided by Figure 8, we will lean toward using the 
iCS 930 panel for our interface. This board can 
handle a mixture of signal levels and will support 
up to sixteen individual lines, providing almost 
double our needs. 

Even a cursory glance at the iSBC 569 controller 
will provide the knowledge that three edge 
connectors are utilized to bring the OBS signals 
from the board. This would indicate that the 
simplest (and most costly) solution is to use three 
termination panels. Obviously, we should investi
gate further before making such a decision. Three 
possibilities are readily apparent.' First, we might 

Socket 1 Socket 2 

Port 

10 Weight In 
11 
12 
13 
14 
15 
16 
17 
20 Conv. Mtr. 
21 
22 
23 
24 
25 
26 
27 

perform some type of re-routing of data lines on 
the board so as to use only one connector. Second, 
we can use more than one connector on the ribbon 
cable and perform a parallel. connection of the 
various lines and choose them so that no 
duplication of lines results. Finally, we can use 
some scheme of connecting three cables to the 
board and use the optional Port C connectors on 
the termination panel. 

The schematic drawings of the IDC indicate that 
only six of the OBS I/O lines of each processor 
socket are broken by wire wrap jumper posts. All 
of the lines so configured are on the Port 2 data 
lines. Unless we decide to cut etch and add 
soldered wires, we will not be able to configure our 
board with this technique. Some further investi
gation is in order before we can make a decision. 
The use of a parallel output technique using 
multiple connectors on a single cable seems to 
present a feasible approach if we can work out an 
assignment of 110 which will not cause conflicts. 
We will begin by building a trial port assignment 
table in which we will assign the required 
functions to input/ output ports. We will group the 
inputs and outputs into groups of four to handle 
the terminator/driver arrangement which is built 
into the board. This table is shown in Figure 
11. We obviously have a small problem. We have 

Socket 3 Direction 

In 
In 
In 
In 

Out 
Out 
Out 
Out 

Valve Ph. 1 Out 
Valve Ph. 2 Out 
Valve Ph. 3 Out 
Valve Ph. 4 Out 

Figure 11. UPI'" Socket to Terminator lnltlal Assignments 

3-75 AFN·01931A 



not yet shown the signals from the· conveyor speed 
and the liquid flow into .the on"board interrupt 
counters. The schematics show that these signals 
are brought ont.o the board on the edge connectors 
but the locations correspond to Port C lines which 
do not exist on the iCS 930! We have available 
input lines on. the Port 1 connectors but there is no 
provision to break the signal on the board to route 
it to the counter interrupts. 

Ifwe move on to the third alternative, we find that 
the interconnection paths caused by tieing 
various lines together cause even greater prob
lems. Either some fact must have been over
looked, or we must consider the use of more than 

MUST BE 
LOW TO ALLOW 
USE AS INPUTS 

AVAILABLE AS 
OUTPUT 

THESE SIGNALS 

FREQUENCY OUT 
TO WEIGHBEL T MOTOR 

.--------, A3 I 

IN~~~.t~it"isE~5~ J~LT .l----+-="-0 
SPEED AND LIQUID 

FLOW RATE 

one terminator board. 

Figure 11 indicates that three lines are available 
on the Port 2 data lines which go to jumper posts 
and which could be used if they were not part of an 
output driver of Port 20. If some technique can be 
found to use these "output" lines as inputs, our 
problem will be solved .. The use of an open 
collector driver can provide us with the ability to 
use the line as an input so long asthe drivers are 
turned offl This should be no problem as we can 
force the outputs to this state either through the 
appropriate jumpering .of inputs or by outputting 
data to the O.BS 1 ports corresponding to these 
bits. The resulting electrical configuration can be 
seen in Figure 12. 

J1 

RIBBON CABLE 

________.....,_ P2 80 

OUTPUT ~ BELT 
·~MOTOR 

OUTPUT ~-!!!!-.., 
'--~_,__ _ ___.. __ ..__ __ _,·~L---J. SPARE 

ICS 930 
TERMINATOR 

Figure 12. Port Assignments 20-23 

3-76 AFN-01931A 



Let us examine the implications of performing 
this interconnection. The physical layout of the 
board and the use of the terminator/ driver sockets 
causes the 110 lines to be grouped into sets of four 
data lines.We must choose which of the three iSBC 
941 modules will be responsible for supporting 
each of the lines. In Figure 12, we can see that the 
belt motor is driven by OBS Socket 1, Bit 20. This 
requirement has placed output drivers onto data 
Bits 21, 22 and 23. Our requirement is to provide 
two signals which can be routed to the counter 
inputs so we must place a terminator into either 
socket AlO or A16. We have arbitrarily chosen to 
use socket AlO. The use of the terminators in 
parallel with the drivers will not create a problem 
so long as those lines which are used as inputs 

have the driver in the high impedence state. This 
is done by requiring that the output Bits 21 and 22 
of the device placed into socket 1 are driven 
low. Finally, we see that theremaining Bit 23 may 
be used as a general purpose output line if it 
becomes required. 

The wiring configurations for the remammg 
connector groupings are shown in Figures 13, 14 
and 15. In Figure 13, we see the assignments 
which can be used for Bits 10, 11, 12 and 13. We 
have earlier defined that an iSBC 941 processor 
would be used in a high speed frequency counting 
mode to determine the weighbelt weight. This 
device will be placed into socket 2. The use of this 
mode precludes the use of any general purpose 

RIBBON CABLE 

r 
10 : 

n ~ ~ -----,I \, IN~ ~~WEIGHBELT --!----7-7 >-~...--------7/L...:.:::.J WEIGHT 

SLAVE 
0 

11 

12 

13 

FREQUENCY 10 

TO WEIGHT +5 
CONVERTER 

MUST BE 
HIGH TO 

ALLOW INPUTS 

13 

MUST BE 
LOW IF A14 

IS USED 10 

SLAVE 
2 

SPARE 
OUTPUTS 

I 
I 
I 

: 
I "" OUTPUT "' !"'_!:!_, -+I ---7~ >--+----.------~/' .. ___ J SPARE 

I 
I 
I 
I 
I 

M I ~ 

-+-:, ___ '\ .... >---+---+--o_uT_,P,_U_T _____ "-----r ___ ~SPARE 7 ·r-L. ___ _, 
I 

I -:1----"'-7 ).--+----+---+-o_u_T_PU_,T,_.."------!"-A;_ 1 SPARE 

-----.J 7 r°L----' L 
J2 r------, 

ISBC 902 

r--:.-:-:--;.141 J3 

I ' 'r. I 1 ' ___ ,oc I 
I 
I I--... , 
I 1 I t 

---'OC I 
7438 I 

I ---.,t'J I 

1 I • ___ ,oc 
I 
I 
I 1 

Figure 13. Port Assignments 10-13 

3-77 

ICS 930 
TERMINATOR 

AFN-01931A 



input/output operations of the processor if we 
desire to maintain maximum accuracy of the 
frequency measurement. We will arbitrarily 
choose to use Bit 10 as the location of the 
frequency count input. This will necessitate 
installing a terminator in to the socket correspond
ing to the processor input. If required, we can 
install open collector drivers into socket A14 and 
use the remaining three bits for general purpose 
outputs. If this. is done, care must be taken to 
assure that BitlO of the device which is placed into 
socket 3 is placed into a low state as was done in 
the preceding example. 

The interconnection scheme for Ports 14 through 
17 can be seen in Figure 14, Note that no ports of 
this group are dedicated to our defined control 

functions. These four bits may be used as inputs 
or outputs as required by the application. For 
example, we have ignored the fact that actual 
control loops incorporate solenoids for flow 
control routing. The unused bits can be used to 
perform these tasks. 

Figure 15 shows the interconnections for the 
remaining group of bits. There are several 
features shown o.n this drawing which should be 
discussed in some detaiL Let us first consider the 
remaining function which we must implement. 
This is the control for the liquid valve stepper 
motor. An iSBC 941 IDP operating in the st~pper 
mode will provide the necessary control functions 
to drive the motor. Since all four of this group's 

RIBBON CABLE 

J1 ~P2 A4 

- - - - - ---1
1
,__ __ "\_, >------,.----------7~---i SPARE 

7 ~L----' 

r 
14 

I 

AVAILABLE 
FOR 

INPUT OR OUTPUT 

SLAVE 
0 

SLAVE 
1 

SLAVE 
2 

I 

15 l 
I 
I 
I 

16 I 

l 
I 
I 

17 1: 

14 
r 
: 

15 l 
I 
I 
I 

16 

I 
I 
I 

17 

l 

I 

I 1 r.r-~-, --111-----> .,_ _ __,t----+-------> I SPARE 
L----' 

A2 I 

--:,__ __ \,.., >--+------+-------,.------7\,___;-~-1 SPARE 

I 7 ~•---~ 
I 

--- - - _J > >----+---t----+------,~>--r~~ J SPARE 

------: 5 
I 

! > >----+------<! 
A9 I 

l > >----+---t---~ 
I 

------! 1 >----+--+-----+-----< 
J3 

iCS 930 
TERMINATOR 

141-----'-r------1 > 
I 

151-----'- i > 
AvAf(XBLE I 

161-----1-1 oRj~ER i ) 
I TERMINATOR I 

171-----.... 1 -+l ----)7 >-----------' 
,___ __ _. L------J 

Figure 14. Port Assignments 14-17 

3-78 AFN-01931A 



data lines are committed to drive the four phases of 
the stepper motor, there are no other functions 
available. 

An important feature of the iSBC 941 processor is 
illustrated in Figure 12. This is the ability to 
enable the processor to generate an interrupt at 
some point in its operation. We have earlier 
indicated that we will use the processor in socket 2 
(the frequency counter) to provide us with a 200 
msec time reference. When the iSBC 941 proces
sor is enabled with an ENFLAG command and is 
operating in the frequency count mode, it will 
generate an interrupt on its output line, Port 
25. Figure 15 shows how this interrupt can be 
connected to the host board's internal interrupt 
input structures. 

The hardware configuration has been defined 
through Figure 14. The actual implementation 
can be handled through the use of the various 
wire-wrap jumpers on the IDC. Drivers and 
terminators can be installed as indicated in the 
preceding discussion. 

VI. SOFTWARE CONFIGURATION 

As with most computer controlled systems, the 
actual implementation of the task is handled with 
software. In older designs and in many mini
computer systems, this task has become formid
able and has resulted in cost over-runs and 
schedule delays. Intel provides many tools for use 
by the designer to prevent this type of problem and 
to assist him in easily creating a workable and well 

RIBBON CABLE 

J1 ~-p2 04 

SLAVE 
0 

~r------,1 ) OUTPUT ~VALVE 
>-----.----------7 PHASE1 

12 I 
I I BS 

I I ) OUTPUT ~ VALVE o---+- ~-----> >--+-----.---------> PHASE 2 
19 1a I I 

I A4 I B6 
I I ~ OUTPUT ~ r:==-i 

26 t-+---,;- -~1---7--> >---+-----+----.~----.·~ p~~~~E3 
I I 

24 

25 

17 

I I 01 

-+I ---"'---. >---+-----+--____,r-o_u_T_PU_,T.--.~ VALVE 

-~==2=7i~---tL-------~ 7 /L::'.'.'..:::J PHASE4 
IUPIO J2 

3
0---+--

7 
r------,

1 
~ ICS930 

;:: I . 7 TERMINATOR 

I I 

I I ) a---+- I 
43 I I 

I A11 I 

>-+---~I --+-I ----->~ >----+---+----<t 
I I 7 
I I 

-;.:::==:=:;~+--~---i~~------J ) r--~-+-~-+--~--+-~_. 
~~1 n 

STEP SWITCH 
CONTROLLER 

70 

/ 
7438 

Figure 15. Port Assignments 24-27 

3-79 AFN·01931A 



documented software configuration. Let us look at 
some of these tools in more detail and consider how 
their use will help us to write our programs easily 
and quickly. 

High Level Programming Languages 

A valuable tool, which Intel provides the designer 
of small control systems, is the ability to program 
even the smallest systems using a high level 
programming language, PL/M-80. This language 
offers relatively efficient and structured, program
ming capabilities. It has been determined that 
PL/M-80 users can expect to use between 1.1 to 
slightly more than 2 times as much program 
memory as would be used for the same task written 
in assembly language. At the same time, the 
programmer's time to code a task will be consider
ably less than ifhe were to use assembly language. 

The PL/M-80 Programming Manual indicates 
that the language is highly structured and lends 
itself very well to handle logical type operations. 
Its weakness in handling complex mathematical 
computations is compensated by the ability to 
combine the user application software with 
packaged Intel support software. 

Fundamental Support Packages 

The Intel 8080/8085 Fundamental Support Pack
age (FSP) provides a package of application 
subroutines and functions which can be called 
from programs written in either assembly lan
guage, PL/M-80, or in FORTRAN-80. It uses a 
standard set of data structures and a unified status 
and error reporting scheme. Nine major groups of 
operations are fully supported by this package. 
These are: 

1. A primitive fast string handling and integer 
arithmetic capability without error report
ing. 

2. A binary integer arithmetic package which 
performs operations on both signed and 
unsigned integers of various lengths in 
binary representation. 

3. The floating-point arithmetic package 
which provides operations on floating point 
numbers in four formats: single precision, 
single-precision extended, double precision, 
and double-precision extended. 

4. The decimal arithmetic routines which 
perform integer and fixed point computa
tions on numbers which are stored as 
strings of ASCII characters. 

5. A string handling section which contains 
routines to transform strings and to extract 
and insert substrings. A routine for scan
ning of general in put and one for formatting 
of general output are included. 

6. Routines for number conversion, for numer
ic 1/0 transformation of data from one 
format to another, input scanning of 
numeric strings, and formatting of numeric 
strings for output are also available. 

7. The floating point transcendental function 
section provides trigonometric, exponential, 
and other transcendental functions. 

8. The statistics routines compute the mean, 
variance, and standard deviation of one 
group of statistical data, and the covariance 
and correlation factor of two groups of data. 

9. Finally, the PID procedures provide the user 
with a version of the classical Proportional, 
Integral, Derivative control algorithm. 

Clearly, the use of the FSP support programs 
enhance the logical PL/M-80 program operations. 

Host/Slave Relationship 

Before we proceed with our development, we 
should take some time to examine the relationship 
between our iSBC 569 IDC and other controllers 
which may be installed in the system. The 
utilization of intelligent slave boards provides the 
capability to develop control concepts to an 
extremely high level if certain guidelines are 
followed. We will therefore assume that the 
control solution which we are developing will be 
but a part of an over all control concept which 
utilizes multiple controllers sharing common 
resources. 

This concept allows us to develop control algo
rithms for each sub-process within our overall 
control system. This development can provide 
independent design and implementation of each 
process. A host processor can be used to provide 
any required inter-process communication tasks 
and to provide the operator interface. We have 
previously indicated that the operator interface 
will provide some means to adjust the weighbelt 

3-80 AFN·01931A 



feeder setpoints and the liquid ratio. It should also 
allow the operator to display the current status of 
the process. Since these operator interface func
tions are but a part of the overall control functions, 
the interface should be programmed such that 
maximum flexibility can be gained through its 
use. Fortunately, such an interface is available 
using Intel's RMX/80 BASIC-80. 

RMX/80 BASIC-80 Interpreter 

The RMX/80 BASIC-80 Interpreter is a high level 
language interpreter with extended disk capabili
ties. It operates on iSBC 80 Single Board Compu
ters and allows the interpretation of BASIC-80 
source code into an internally executable form. 
Many other features are available and many 
configurations are possible depending upon the 
exact system requirements (refer to the BASIC-80 
Reference Manual, 9800758). 

Maximum utilization of the operator interface 
with a minimum of development time can be 
achieved with the preconfigured version of the 
software/hardware package. This will provide us 
with complete disk I/O capabilities and the ability 
to easily program and maintain any programs 
which may become necessary to implement the 
interface. The actual implementation of the 
interface will be done later, after we have defined 
the control task. 

Software Tasks 

The task of preparing the software can be broken 
down into three major groupings or tasks. These 
are defined to be: 

Prepare the Software Drivers. 
This involves defining the relationships 
between the control algorithm parameters 
and the input/output hardware devices and 
creating software to implement these defini
tions. 

Prepare the Control Algorithm. 
This will involve developing a control 
algorithm which defines the relationships 
between the various system parameters. This 

3-81 

algorithm will draw heavily upon the re
sources of the FSP programs and the soft
ware drivers which relate the parameters to 
the physical hardware. 

Finally, the operator interface must be defined 
which will relate the parameters used in the 
control scheme to other controllers and to the 
operator. This will allow the control task to 
interact in such a manner as to provide a 
meaningful element of the overall control 
concept. 

VII. SOFTWARE DRIVERS 

Before developing the actual control algorithm, we 
must create the drivers which communicate with 
the three iSBC 941 processors in their assigned 
operating modes. We will define two driver 
sections for each processor, one to handle the 
initialization, and a second to provide the ongoing 
communications as required by the control 
algorithm program. 

Motor Speed Control Processor 

The first processor which we will discuss is to be 
located in slave socket number 0 and will be used to 
produce a variable frequency output. Let us 
consider in some detail how this can be accom
plished using an iSBC 941 Processor. First, 
consider the task of initializing the device to the 
primary function operating mode, FREQ. 

Referring to the iSBC 941 Industrial Digital 
Processor User's Guide, we find that the initializa
tion requires the sequence of commands and data 
shown in Figure 16. We will identify the meaning 
of each of these terms and create a software 

Description Command/Data 

Request INIT c 
FREQ Select D 
Scale Factor D 
Output Enable D 
Initial State D 
P20 Delay D 
P20 Period D 
Request PAUSE c 

Figure 16. FREQ Initialization 

AFN·01931A 



program which will handle the required initializa
tion of the processor. The purpose and use of the 
various commands to the processor are well 
defined in the user's guide and will notberepeated 
here. 

The first byte of data, which must be sent 
following the initialization command, is the data 
byte signifying that thll operational mode is to be 
the frequency output .. This is defined in the 
manual as being equal to the data byte "OB5H" or 
"035H" as expressed in the hexadecimal number
ing system. The choice of values to be sent is 
dependent upon our desire to utilize the internal or 
external time reference period for the operations. 
If we utilize the internal time reference,. our 
minimum increment or resolution of operations 
will be 86. 72 microseconds. 

To determine if this . speed is adequate for our 
frequency generator, we must consider the impact 
that this resolution has on the output. A 550 hertz 
signal has a period of 1.82 milliseconds. If we 
increase this period by the 86. 72 microsecond time 
reference, we find that the next increment in the 
frequency generators output will be approximately 
372 hertz. This resolution is certainly not ade
quate to meet the motor control requirements! ·We 
should consider using the external clock to provide 
the time reference. One of the 8253 Interval 
Timers on the iSBC 569 board can be used to 
generate a reference time. Ifwe arbitrarily choose 
to use a 10 microsecond reference to theIDP, we 
find that the worst case resolution for the 550 hertz 
signal becomes about 4 hertz. This is certainly 
within our requirements of motor control. The 
primary function signal should then be sent as a 
"OB5H". 

The second byte is used to establish a scale factor 
for the processor. This scale factor is used to 
generate the basic time increment which can be 
used to establish the frequency output; that is, the 
minimum time increment which can be used to 
establish a period or pulse width will be the scale 
factor times the reference time period. 

In our case, because of the wide frequency output 
range, we cannot specify the scale factor at 
initialization (later data will show the need for 

multiple scale factor· ranges). We will then only 
need to send some arbitrary value at initialization 
to allow the processor to complete its initialization 
sequence; 

The Output Enable data byte is used to. select 
which of the Port 2 output bits are to be used to 
generate the output signals. The hardware 
configuration established earlier placed the output 
onto Bit 0 of the port, so this data byte shall be 
specified as a byte haying only Bit 0 set to a logical 
one or equal to Olli. 

The Initial Output parameter specifies whether 
each bit selected as an output by the output enable 
byte is to be initially set to a logical one or zero 
when the processor is first enabled. For this 
application, it really does not matter, but we will 
arbitrarily pick the.state to be equal to zero. The 
byte will.be defined as being set to.OOH. 

The Delay parameter is used to define the 
waveform which will be generated and specifies 
the number of time increments which must elapse 
before the waveform will change states. Rather 
than to constantly vary the delay to maintain a 
square wave output, we can choose an arbitrary 
value of one time increment before changing 
state. The output will have a varying duty cycle as 
the frequency changes. This should cause no 
problems for the translator driving the weighbelt 
motor. The byte will be defined as being set to a 
value of Olli. 

Finally, the Period of the waveform must be 
chosen. Again, this parameter will be changed 
according to the desired frequency, so only an 
arbitrary value need be sent. Indeed, since this is 
the last parameter, the value could be omitted 
entirely by sending the PAUSE command in its 
place. 

The initial data definition can be defined using 
PL/M-80 language conventions as a block of six 
bytes as shown in Figure l 7. 

The actual communications between the host 
processor on the iSBC 569 board and the IDP 
utilizes the protocol explained in previous sections 
of this note. The status register of the IDP will be 
tested for the bit signifying that the input buffer 

3-82 AFN-01931A 



22 
23 
24 
25 
26 
27 

34 

I* DECLARATION OF iSBC 941 #0 INITIALIZATION DATA *I 
DECLARE FREQ LITERALLY 'OB5H'; 
DECLARE SF LITERALLY 'OOOH'; 
DECLARE OUTPUT$ENABLEO LITERALLY '001 H'; 
DECLARE INITIAL$STATE LITERALLY 'OOOH'; 
DECLARE DELAY LITERALLY '001H'; 
DECLARE PERIOD LITERALLY 'OOOH'; 

I* DECLARATION OF iSBC 941 PRIMARY DATA *I 
DECLARE INIT$0$TABLE(6) BYTE DATA ( 

FREQ, 
SF, 
OUTPUT$ENABLEO, 
INITIAL$STATE, 
DELAY, 
PERIOD ); 

Figure 17. Initial FREQ Data Field 

full is n~t set. This will indicate that the device is 
ready to accept either a command or a data 
byte. The command to request a primary function 
will be sent. At this point, the processor will be 
expecting a series of data bytes as specified by the 

function being selected. A "Do Loop" can be used 
to effectively transmit this data to the device. The 
program to perform this function is illustrated in 
Figure 18. 

I* REQUEST PRIMARY FUNCTION *I 
44 2 DO WHILE ((INPUT (UPl$0$STATUS) AND IBF) < > O); 
45 3 END; 
46 2 OUTPUT (UPl$0$COMMAND) = INITPF; 

I* LOAD INITIAL PARAMETERS */ 
47 2 DO l=O TO 5; 
48 3 DO WHILE ((INPUT (UPl$0$STATUS) AND IBF) < > O); 
49 4 END; 
50 3 OUTPUT (UPl$0$DATA)=INIT$0$TABLE(I); 
51 3 END; 

I* TERMINATE PARAMETER LOADING *I 
52 2 DO WHILE ((INPUT (UPl$0$STATUS) AND IBF) < > O); 
53 3 END; 
54 2 OUTPUT (UPl$0$COMMAND)=PAUSE; 

I* START FREQUENCY FUNCTION */ 
55 2 DO WHILE ((INPUT UPl$0$STATUS) AND IBF) < > O); 
56 3 END; 
57 2 OUTPUT (UPl$0$COMMAND)=LOOP; 

Figure 18. IDP Initialization 

3-83 AFN-01931A 



When all required data parameters have been sent, 
the data portion of the initialization.is terminated 
by sending a PAUSE command as shown in 
Figure 18. Note how, in each case before.data or a 
command is sent, we wait until the input buffer is 
empty. Finally, the initialization is completed 
when we have sent the LOOP command. The 
processor will now be generating an output 
frequency as specified by the parameters. 

Remember that, according to our earlier discus
sion and as we have shown in Figure 12, the 
unused output ports should be set to a logical low 
condition to allow the use of those lines as inputs to 
carry additional data into the controller. This 
should be done as a part of the initialization 
process. The secondary utility command, CLRP2 
is used for this purpose. This process is illustrated 
in Figure 19. 

We should next direct our attention to establishing 
a software interface which will take the desired 

weigh belt speed term and convert it to a frequency 
output suitable to drive the motor translator. We 
know that this will involve selecting a particular 
scale factor and period term which will generate 
the correct waveform. Previously, we established 
that, for a maximum frequency of 550 hertz, we 
need to establish a period of 1.82 milliseconds. 
Many combinations of Scale Factor and Period 
parameter will generate this time interval. Ideally, 
the smallest increment of change can be estab
lished by setting a constant period and modifying 
the scale factor. If we make some calculations, we 
will find that the fact that the scale factor is a byte 
value (giving us a range of between 0 and 255) 
limits the frequency range which can be produced 
using any one value for a period. It seems that we 
will be forced to vary both the period and the scale 
factor as a function of the desired frequency. 

In Figure 20, we have plotted the frequency output 
for various values of Scale Factor and Period. Our 

I* SET UNUSED BITS TO ALLOW EXPANSION */ 

220 

210 

190 

180 

170 

160 

150 

~ 140 

130 

120 

110 

90 

80 

70 

59 2 
59 3 
60 2 

61 2 
62 3 
63 2 

100 

DO WHILE ((INPUT UPl$0$STATUS) AND IBF) < > O); 
END; 
OUTPUT (UPl$0$COMMAND)=CLRP2; 

DO WHILE ( (INPUT (UPl$0$STATUS) AND IBF) < > O); 
END 
OUTPUT (UP1$0$DATA)=INITIAL$0UTPUT; 

Figure 19. Secondary Utility Command 

CLOCK -1011sec 

200 300 400 500 

FREQ.-(H:) 

Figure 20. Frequency Vs. Parameters 

3·84 AFN-01931A 



intent is to maintain the highest resolution 
possible for the desired output range of 50 to 550 
hertz. Choosing four period base parameters will 
provide us with acceptable waveform generation 
characteristics. We will choose the data sets of 
Figure 21 based upon the data shown in Figure 20. 

the mathematical calculations required to deter
mine the corresponding scale factor. 

The Period can be determined by examining the 
desired frequency range. The scale factor can be 
calculated from the equation: 

The principles above can be expanded into a 
complete interface package to offload the host 
processor of the need to generate the frequency 
waveform to the translator of the weighbelt 
motor. The complete program for the processor 
can be found in Appendix A. 

Weight Input Processor 
SF = 10,000 I ( (FREQUENCY) x (PERIOD) ) 

Again, the PL/M-80 language program to imple
ment the interface between the host and the IDP is 
easily constructed. For example, Figure 22 
provides the· code which will be required to 
determine the appropriate Period parameter and 
also illustrates the use ofFSP programs to handle 

The second use of an iSBC 941 Processor is to 
provide the capability of converting the high 
frequency inputs from the weight sensor of the 
weighbelt into a digital value equivalent to the 
actual weight on the belt. This frequency to digital 
conversion' can be easily accomplished by the use 
of the Primary Function, FCOUNT. 

Frequency Period Scale Factor Resolution 

50 to 165 Hz. 9 221 to 67 3 Hz. 
166 to 225 Hz 5 121 to 89 3 Hz. 
226 to 285 Hz. 3 147 to 117 3 Hz. 
286 to 550 Hz. 2 175 to 91 6 Hz. 

Figure 21. FREQ Output Ranges 

I* COMPUTATION OF FREQUENCY RANGE */ 
57 3 IF FREQ< 285 

THEN DO; 
59 4 IF FREQ < 226 

THEN DO; 
61 5 IF FREQ< 166 

THEN RANGE= 9; 
63 5 ELSE RANGE= 5; 
64 5 END; 
65 4 ELSE RANGE = 3; 

66 4 END; 
67 3 ELSE RANGE= 2; 

I* LOAD MATH ACCUMULATOR WITH 100,000 *I 
68 3 CALL MQULD4 (.IR,.HUNDRED$K); 

I* TEST FOR MOTOR SHUTDOWN *I 
69 3 IF FREQ >1 

THEN DO; 

I* DIVIDE BY FREQUENCY *f 
71 4 CALL MQUDV2 (.IR,.FREQ); 

I* DIVIDE BY RANGE FACTOR *I 
72 4 CALL MQUDV1 (.IR,.RANGE); 

I* GET TWO'S COMPLEMENT FOR iSBC 941 SCALE FACTOR *I 
73 4 CALL MQUST1 (.IR,.FREQA); 
74 4 FREQA=NOT (FREQA + 1); 
75 4 END; 

Figure 22. Period and Scale Factor Computations 

3-85 AFN·01931A 



The· FCOUNT Primary Function is selected· by· 
sending the INITPF command followed by four· 
paraiJleters. The process is identical to that which 
was used in the previous. exa,mple when we 
established the FREQ function. In this case, the 
sequence is described in the manual as is shown in 
Figure 23. 

Description Command/Data 

Request INIT c 
Select FCOUNT D 
Input ~elect D 
Output Enable D 
Sampling Interval D 
Request PAUSE c 

Figure 23. FCOUNT lnltlalization 

Let us examine the derivation of the terms which 
must make up the data table which will be 
transmitted to the processor in order to initialize 
it. The FCOUNT function does not allow the use 
of an external clock so we have no option as to 
which command will be sent to select this 
function. It is defined to be equal to 33H. This 
become11 the :Qrst element of the byte array used to · 
contain the initial data. 

The Input Select parameter describes which of the 
Port 1 inputs are to be measured. If we refer to 
Figure 13, we can see that a hardware assignment 
of Port 10 has been made for this function. This 
assignment corresponds to bit 0 of the parameter 
being set to a value of 1. The byte value for this 
parameter then becomes OlH. 

The Output Enable byte is used to enable an output 
port corresponding with the input to change states 
when the Sampling Interval time has elapsed. Our 
system has a requirement to operate the control 
algorithm once each 200 milliseconds and we have 
previously indicated that the frequency counter 
would be used to establish this time interval. If the 
output is enabled and connected to an interrupt 
line, it will provide our system with the required. 
pacer clock. The output bit from Port 20 will then 
be enabled to provide the interrupt .. The para
llleter for t.his byte will be set to the same value as 
the Input Select and becomes OlH. 

The Sampling Interval will establish the time 
interval to be used when sampling the input 
frequency. This time interval should be set to 200 

milliseconds for our application. The parameter is 
then calculated from the equation: 

INTERVAL = (SAMPLE PERIOD) I (0.02222) 
OR 

INTERVAL = (0.200) I (0.02222) = 9 

The correct sampling interval for our control 
system should be set to a value of 09H. 

A similar procedure can be used to send this data 
to the processor. The actual .code use!! to imple
ment the system can be. foµnd in Appendix 
A. Note that theunused bits of the device have 
been set to a predetermined value as was indicated 
by our hardware design of Figure 13. 

Once the processor has been initiated and is 
performing its function, we need only wait until 
the device signals us that the 200 millisecond time 
interval has passed and that it is ready with the 
belt weight. When this interrilpt occurs, we will 
read the data and perform our control functions. 
An interface must be established between the 
control algorithm and the processor which 
enables it to receive a value which represents the 
actual weight. 

The total count received by the processor is 
available as a sixteen bit count made up of two 
eight bit bytes. The use of the Secondary Utility 
Commands, Read FCOUNT Measurements 
(RDFCO-RDFCF) allow the two bytes to be 
transferred into the host processor. We are using 
the first counter so we will use the corresponding 
commands, RDFCO and RDFCl. An example of 
the procedure to read one of the count bytes can be 
seen in Figure 24. 

The counter can be commanded to begin its next 
sample period by issuing a LOOP command to the 
processor. The two data bytes can be combined to 
form a 16-bit word and the resultant value divided 
by 2 to form a weight value. The division by two to 
obtain weight is required since the count range 
from 0 to 2000 corresponds to a weight of between 0 
and :1.0.00 pounds; thus, each count has a value of 
0.005 pounds. The integer numbers used in the 
control algorithm are fixed point with an implied 
scale factor of 100. The division by two provides a 
result which meets the criteria. 

3-86 AFN-01931A 



I* GET INPUT COUNT LOW BYTE *I 
106 2 
107 3 

DO WHILE ((INPUT (UPl$1$STATUS) AND IBF) < > O); 
END· 
OUT0PUT (UPl$1$COMMAND) = RDFCO; 108 2 

109 2 
110 3 

DO WHILE ( (INPUT$1$STATUS) AND OBF) = O); 
END; 

111 2 LCOUNT =INPUT (UPl$1$DATA); 

Figure 24. FCOUNT Read Procedure 

Appendix A provides the complete listing of the 
code which was used to interface with the 
processor assigned to the primary function, 
FCOUNT. 

Stepper Motor Control Processor 

The third example of utilizing the iSBC 941 
Processor in an industrial application is provided 
by the processor installed into OBS socket 2. This 
device is used to drive a stepper motor which, in 
turn, controls the liquid valve position. Again, we 
will break the discussion into an initialization and 
an interface operational mode. 

We find that the User's Guide indicates that 
initialization to the STEPPER Primary Function 
is performed by sending the INIT command 
followed by up to 21 data bytes. Figure 25 
provides the table which shows the necessary 
parameters for this mode. 

The technique used to place the processor into the 
desired function is the same aswe have seen with 
the two other processors so we will not spend time 
dealing with the communications sequence. In
stead, we will examine the techniques which can 
be used to determine the values of the initializa-
tion parameter bytes; 

STEPPER is requested by sending a data byte of 
either 1 7H or 97H following the INIT command. 
Remember that the significance of setting bit 7 of 
the data high is to request that an external clock 
be used by the processor. There is no reason to use 
an external clock for our application, so we can 
choose a function request byte of 17H. 

The remainder of the data is used to define the 
waveforms which are necessary to drive the 
stepper motor. We will derive the values for these 
parameters by beginning with the manufacturer's 
data sheet andmoving until we have determined 
the correct vafo:e for each byte of data. 

The motor chosen for this application utilizes four 
phases .to drive the shaft. The data sheet provided 

3-87 

Description Command/Data 

Request INIT c 
Select STEPPER D 
Select Scale Factor D 
Output Enable D 
Output Polarity D 
Common Period D 
P20TRAN1 D 
P20TRAN2 D 
P21TRAN1 D 
P21TRAN2 D 
P22TRAN1 D 
P22TRAN2 D 
P23TRAN1 D 
P23TRAN2 D 
P24TRAN1 D 
P24TRAN2 D 
P25TRAN1 D 
P25TRAN2 D 
P26TRAN1 D 
P26TRAN2 D 
P27TRAN1 D 
P27TRAN2 D 
Request PAUSE c 

Figure 25. STEPPER Function lnitlallzation 

information for both a Four-Step Input Sequence 
(1.8 degrees per step) and for an Eight-Step Input 
Sequence (0.9 degrees per step). We will use the 1.8 
degree step angles for our example and applica
tion. The data provided by the manufacturer is 
shown in Figure 26. The first task is to convert the 
switch state diagram into a desired waveform for 
each of the four phases: This has been done in 
Figure 27. 

Beginning with Scale Factor, let tis determinethe 
required data parameters which. will'yield a 
stepper controller compatible with our motor. The 
Scale Factor will provide the minimum time 
period for one step to take place. The minimum 
time which we can specify is a function of both the 
motor characteristics and of the TRP for the 
primary function, STEPPER. The minimum TRP 
is determined by referencing the IDP User's Guide 
for the desired function. In this case, it is found to 
be 325 + (13 x B) where B is the number of phases 

AFN·01931A 



DC STEPPING CIRCUIT 

EIGHT-STEP INPUT SEQUENCE 

STEP SW1 SW2 SW3 SW4 

1 ON OFF ON OFF 

2 ON OFF OFF OFF 

FOUR·STEP INPUT SEQUENCE 3 ON OFF OFF ON 

STEP SW1 SW2 SW3 SW4 4 OFF OFF OFF ON 

1 ON OFF ON OFF 5 OFF ON OFF ON 

2 ON OFF OFF ON 6 OFF ON OFF OFF 

3 OFF ON OFF ON 7 OFF ON ON OFF 

4 OFF ON ON OFF 8 OFF OFF ON OFF 

5 ON OFF ON OFF 1 ON OFF ON OFF 

Figure 26. ST.EPPER Motor Input Sequence 

STEP 
0 

STEP 
1 

STEP STEP 
2 3 

STEP 
0 

STEP 
1 

__________ , ,.----------
PHASE 1 ' I I I ~...; _______ - _, 

,..---------, 
PHASE 2 

I I 
I I _________ .. ----------

--.--.., r--------, 
PHASE 3 

I I I 
I I I ... ________ .. "'----
r--------., r----

PHASE 4 1 I I 
I I I ____ ... ~-------~ 

Figure 27. ST.EPPER Mo.tor Waveforms 

which are used. The result will be expressed in 
terms of processor cycles and can be converted 
into time by multiplying by 2. 71 microseconds per 
cycle. This works out to be: 

325 + (13 x 4) = 377 PROCESSOR CYCLES 
OR 

377 x 2.71=1.021 MILLISECONDS 

Now, let's examine the minimum time which can 
be utilized by the stepper motor. This is given in 
the manufactuer's data sheets as being 2.86 milli
seconds for the motor which we have chosen to 

3-88 

use. This value must be used to compute the Scale 
Factor for this application; The Scale Factor is 
computed by dividing the minimum step time by 
86. 72 microseconds or: 

SF=2.86 MILLISECONDS/86.72 MICROSECONDS=33 

This number is entered into the processor using 
two's complement which becomes equal to ODFH. 

The Output Enable is used to specify which of the 
eight possible control outputs are to be used to 
control the motor phases. The motor phase 
assignments to I/O ports was made in Figure 15 
and indicates that Ports 24 through 27 will be 
enabled for the primary function. Setting the 
corresponding bits provides a parameter to be sent 
to the processor of OFOH. 

The rest of the parameters deal with providing a 
definition of the waveforms generated in Figure 26 
to the processor. The following paragraphs deal 
with the operations required to convert the 
graphic representation into data parameters. 

Each phase must be initialized to an initial output 
state which corresponds to the signal level shown 
for Step 0 of Figure 27. A "1" will be placed into 
the bit corresponding to each of the port's output 
bits which are to be in a logical one state upon 

AFN·01931A 



reaching step 0. We see that Bits 24 and 26 are set 
corresponding to phase 1 and 3. The data byte for 
Initial Output is thus defined to be 050H. 

The Period parameter for a stepper motor function 
corresponds to the number of steps which are 
defined in the motor's step sequence. Our example 
uses a four step sequence so the Common Period 
will be set to a value of 04H. 

The remainder of the initialization parameters 
define the transitions of each of the phases. This 
involves the examination of the waveform and 
noting the points at which the output level 
changes. This data can be input to allow the 
device to accurately produce the control wave
forms for any stepper motor control mode. We are 
not using the first four output bits so the transition 
definitions for these outputs is meaningless and 
will be output as zeroes. The waveform for output 
Port 24 shows a transition at steps 1 and 3. The 
parameter for the first transition of Port 24, 
P24TRAN1 is defined to be OOH. Likewise, the 
second transition, P24TRAN2 is set to a value of 
02H. 

The technique used above can be continued to 
define the constants, P25TRAN1 and P25TRAN2 
as being the same as for Port 24 or OOH and 02H 
respectively. 

The transitions for the phases driven from Port 26 
and 27 can be seen to occur at steps 1 and 3 so the 
data for those parameters can easily be seen to be 
set to OlH and 03H for each port. 

The initialization table can be sent to the 
processor using the same techniques as were used 

for the processors discussed previously. The 
complete program for the initialization can be 
found in Appendix A. 

A driver must next be prepared which will be used 
to provide the interface between the control 
algorithm and the IDP processor which supports 
the stepper motor. When the STEPPER primary 
function is used, a queue is utilized for supporting 
the step commands to the motor. Each command 
to the stepper consists of a data byte signifying the 
step rate to be used and a data byte which provides 
the signed magnitude of the number of steps to be 
moved. Using the motor to control a flow control 
valve allows us to use a constant step rate, but 
some type of program must be prepared which will 
convert the signed two's complement representa
tion of the position from the control algorithm to a 
signed magnitude format. 

The number conversion is easily done and the 
PL/M-80 programming code to perform the format 
change is shown in Figure 28. 

The data queue allows up to six movement 
commands to be present and waiting to be 
serviced by the IDP. If the processor is behind in 
its operations and cannot accept a seventh 
request, the host must wait until one of the 
requests in the queue has been serviced. The 
queue status bits can be tested to determine if room 
exists for another command and the "queue not 
empty" bit can be tested to verify that all 
requested movements have been completed. 
Normal operation of our motor should be such that 
the queue is not allowed to fill to its maximum 
capacity. 

141 3 
I* SUPPORT CONVERSION TO SIGNED MAGNITUDE NUMBER */ 

IF POSITION > 127 

143 4 

144 4 
145 4 

THEN DO; 

I* GET MAGNITUDE OF MOVEMENT */ 
POSITION = 256 - POSITION; 

I* SET SIGN FOR CCW ROTATION */ 
POSITION = POSITION OR REVERSE; 

END; 

Figure 28. Number Format Conversion 

3-89 AFN·01931A 



The code which is required to test the queue and to 
send a stepper movement request is shown in 
Figure 29. The complete code can be seen in 
Appendix A. 

VIII. APPLICATION SOFTWARE 
Having developed the software which is required 
to support the Industrial Digital Processors, we 
can now devote our time to the task of implement
ing the application software and of handling any 
programs which are required to support functions 
unique to the host iSBG 569 board. This software 
can be grouped into two general categories, 
initialization programs, ·and control algorithm 
programs. 

Initialization Programs 

The initialization of the iSBC 569 involves setting 
up the required configuration of interrupt hand
ling and of the devices which are installed into the 
slave sockets. For the purposes of this applica
tion, we will include some system diagnostic 
capabilities within the process. These routines 
will be executed each time a RESET or a POWER
UP occurs. Only the highlights of the code used 
will be presented in detail; however, the complete 
listings of the initialization programs can be 
found in Appendix A by referring to the BC KG ND 
Program listing. 

A unique feature of using the iSBC 941 processors 
is their ability to provide, upon request, an 

identification code. The. initiation diagnostic 
program takes advantage of this fact by interro
gating each processor and verifying that the 
correct ID code is returned. If any of the proces
sors have failed catastrophically or ifthe internal 
data bus of the host board has failed, the program 
will provide an indication of this fact. 

Each of the slave processors has, associated with 
it, an individual hardware reset line which is 
under the control of the host. Aresetor power up 
condition will cause the control lines to reset to the 
state which hold each slave in a reset state. Before 
any slave can be used, it's associated reset line 
must be de-activated. This is done by sending a 
logical one to the corresponding bit of the Reset 
Latch. Other bits of the Reset Latch can be used to 
illuminate the on-board LED or to generate an 
interrupt to another board on the Multibus data 
bus. 

A special PL/M-80 command is utilized to disable 
the reset interrupts of the 8085A host processor. 
Execution of this command will allow all servic
able interrupts to enter via the 8259A Interrupt 
Controller. The command which will mask off the 
unused interrupt structure is shown in Figure 30. 

The initialization process must also initialize the 
FSP Integer Record. This will allow the use of the 
math support routines which will be required to 
support the control algorithm. 

I* VERIFY THAT QUEUE SPACE IS AVAILABLE *I 
146 3 
147 4 

148 3 
149 4 
150 3 

151 3 
152 4 
153 3 

34 

DOWHILE ((INPUT (UPl$2$STATUS) AND QF) < > O); 
END; 

I* REQUEST DESIRED STEP RATE */ 
DO WHILE ((INPUT (UPl$2$STATUS) AND IBF) < > O); 
END; 
OUTPUT (UPl$2$DATA) = STEP$RATE; 

I* REQUEST STEPPER MOVEMENT *I 
DO WHILE ((INPUT (UPl$2$STATUS) AND IBF) < > O); 
END; 
OUTPUl' (UPl$DATA) =POSITION; 

Figure 29. STEPPER Movement Request 

I* MASK OUT THE RESET INTERRUPTS OF THE PROCESSOR */ 
CALL S$MASK (MASKS); 

Figure 30. PL/M-80 Sim lnstr,uction 

3-90 AFN-01931A 



Control Algorithm Programs 

The program which actually handles the control 
algorithm for the two loops can be found in 
Appendix A, MAIN$CONTROL. The flow of the 
program is straightforward and can easily be 
followed by reading the listing. The operations 
are primarily handled by the use ofrepeated calls 
to the FSP integer math routines and to the 
processor interface modules which we have 
previously generated. 

It is beyond the scope of this application note to 
dwell upon the techniques which were used to 
generate the PID control routine; this aspect will 
be covered in a future application note. 

Limits were placed upon the control outputs so 
that the signals to the processors would not exceed 
the physical limits of the external devices. For 
example, the frequency range is limited to range 
between 0 and 550 to correspond with the 
operating range of the weighbelt as we have 
defined it. The limits upon the liquid control valve 
have been set at plus and minus 10 steps since this 
is the maximum distance which the stepper motor 
can travel in any one 200 millisecond time period; 
increasing the possible count could result in filling 
the queue. This could cause the 200 millisecond 
time to be extended if we had to wait for the queue 
to empty. 

Master Processor 

A complete control solution to the weigh belt feeder 
and the liquid applicator has now been developed. 
The process is stand alone and resides entirely 
upon a single board. It can operate without 
requiring any access from the MULTIBUS bus, 
thus freeing the bus for other control, monitoring 
or supervisory duties. 

The system developed for this application note 
requires a setpoint for the mass flow and a liquid 
ratio be provided to the control system. This 
information would normally be supplied by some 
type of bus master device. We have chosen to use 
the pre-configured RMX/80 BASIC-80 Interpreter 
to perform this task. A simple program needs to 
be prepared which will allow adjustment of the 
setpoints and monitoring of the operation of the 
control system. 

Using BASIC will provide full disk 1/0 capabil
ities to the operator. Communicating with the 

system through a CRT terminal, he can write and 
execute programs which use the resources of the 
system disk or of any of the controllers which may 
be present on the bus. 

Two programs are required to perform this 
task. Since they are written in BASIC, they may 
easily be modified or expanded if the need should 
ever arise. Indeed, other programs could be 
written to perform other tasks, such as optimizing 
the control parameters. 

In both programs, the parameters involved with 
the control operation are accessed by using the 
PEEK and POKE instructions. Remember that 
the iSBC 569 controller allows the on-board 
memory to be made available to other devices on 
the bus through the dual port mechanism. In our 
application, this has been done by jumpering the 
board such that the on-board memory beginning 
at location 8000H can be accessed on the bus at 
location 2000H. This mapping was done since the 
memory locations at 2000H are not used by BASIC 
unless requested to do so. A byte of data which is 
at location 827EH on the controller can be read by 
performing a PEEK of location 227EH. Some of 
the memory assignments for the controller have 
been shown in Figure 31. 

3-91 

MOD MAINCONTROLMODULE 

82 9 F H 
823 3 H 
825 F H 
OODCH 
OOE 6H 
827 AH 
OOE 8H 
828 OH 
82 8 5 H 
828 8H 
OOE F H 
01ADH 
81 F 7 H 
825 DH 
826 8H 
OOE 4H 
827 7H 
827CH 
OOE 9H 
828 2H 
828 7H 
828AH 
3FO OH 
820 9H 
825 EH 
OOD 4H 
OOE 5 H 
827 8 H 
827 EH 
OOEAH 
828 4H 
OOEBH 
OOEDH 
OOF 1 H 

SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 

MEMORY 
PRLQ 
CONSTANT$1 
BOUNDS2 
TIMEINTERVAL 
LIOUIDFLOW 
DISTREV 
MASS FLOW 
LIOUIDVALVE 
DUMMY 
ZERO 
PIDRUN 
IR 
LIQCOUNT 
CONSTANTS2 
CONTROL1 
BELTSPEED 
MASSSETPOINT 
CONVLENGTH 
BEL TCONTROL 
SYSTEMRUNNING 
ICW 
JUMPTABLE 
PRCV 
BELTCOUNT 
BOUNDS1 
CONTROL2 
BELTWEIGHT 
SETPOINT 
SIX 
LIQUIDRATIO 
ERRORFIELD 
THOUSAND 
INITIATION 

Figure 31. Selected Memory location Assignments 

AFN-01931A 



The first program involves setting up the two 
control parameters and handling the control flag 
which causes the process to start and to stop. This 
program can be found in Figure 32. 

10 REM THIS PROGRAM IS USED TO INPUT SETPOINTS 
15 REM TO THE LIQUID CONTROL SYSTEM. 
20 POKE 02287H,O 
25 INPUT "ENTER MASS SETPOINT-";MS 
26 IF MS> 1200 THEN 25 
30 MS=CINT(MSx10/60) 
35 H=INT(MS/256) 
40 L=CINT(MS-Hx256) 
45 POKE 0227EH,L 
50 POKE 0227FH,H 
55 INPUT "PERCENT LIQUID-";LR 
60 LR=CINT(LR) 
65 IF LR> 127 THEN 55 
70 POKE 02284H,LR 
75 POKE 02287H, 1 
80 RUN "STATUS" 

Figure 32. Basic Program for Parameter Initialization 

PROGRAM NAME: STATUS 

10 l=PEEK(0227EH) 
20 H=PEEK(0227FH) 
30 MS=( (256xH) +L) xS0/10 
40 L=PEEK(02278H) 
50 H=PEEK(02279H) 
60 WT=((256xH)+L)/100 
70 L=PEEK(022890H) 
80 H=PEEK(02281H) 
90 AM=((256xH)+L)x60/10 

100 MT=PEEK(02294H) 
110 LR=(PEEK(02284H) )/100 
120 LS=AMxLR 
130 L=PEEK(0227AH) 
140 H=PEEK(0227BH) 
150 LF=((256xH)+L)/100 

Upon completion of the initialization program, a 
second program provides a display of the system 
operation. This program could have been an 
optional program which is only called when the 
operator desires to view the system operation. A 
program which provides a snapshot of the system 
operation is shown in Figure 33. Again, the 
program is interactive with the operator and can 
easily be modified at any time to reformat or 
display additional information. 

IX. CONCLUSION 

The purpose of this application note has been to 
demonstrate some of the techniques which can be 
used to provide a control system design solution 
using an intelligent slave concept. This has been 
done and the system has been constructed and has 
been found to operate.as the design specified. The 
Intelligent Slave Concept does provide a single 
board solution to distributed control and certainly 
off-loads the master processor of control duties. 

160 PRINT "MASS SETPOINT","WEIGHT","ACTUAL MASS","MOTION" 
170 PAINT MS,WT,AM,MT 
180 PAINT "LIQUID RATIO","LIQUID SET","LIQUID FLOW" 
190 PRINT LR,LS,LF 
200 Z=PEEK(02285H) 
210 IF Z < 128 THEN 230 
220 Z=256-Z 
225 Z=O-Z 
230 L=PEEK(02282H) 
231 H=PEEK(02283H) 
232 BS=((256xH)+L)x60/200 
239 PRINT "STEPPER";Z, "BEL T";BS 
240 PRINT"" 
250 PRINT"" 
260 FOR N=O to 1000 
270 NEXT N 
280 GO TO 10 

Figure 33. Basic Snapshot Program 

3·92 AFN·01931A 



This frees the master to provide supervisory 
control and human interface duties. 

Certainly, this concept can be expanded to 
encompass a broad variety of complex control 

situations. At the same time, there is no reason 
why the Intelligent Slave board could not be used 
to provide a single board solution to a simple 
control application where no interaction with 
other processes is required. 

3-93 AFN-01931A 





APPENDIX A 

3.95 AFN-01931A 



ISIS-II PL/M-80 V3.l COMPILATION OF MODULE BACKGROUNDMODULE 
OBJECT MODULE PLACED IN :Fl:BCKGND.OBJ 
COMPILER INVOKED BY: PLM80 :Fl:BCKGND.PLM DEBUG PAGEWIDTH(72) TITLE('BA 

-CKGROUND PROGRAM') 

1 

2 
3 
4 

5 
6 
7 

8 
9 

10 

11 

12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 

23 

24 

25 
26 

1 
1 
1 

1 
l 
1 

1 
1 
1 

l 

l 
1 
1 
1 

1 
1 
1 
1 
1 

1 
1 

l 

1 

J 
1 

/****************************************** 
* THIS rs THE MAIN BACKGROUND OPERATING * 
* PROGRAM FOR THE PID CONTROL SYSTEM. * 
******************************************/ 

BACKGROUND$MODULE: DO; 

/* DECLARATION OF BOARD I/O 
DECLARE UPI$0$STATUS 
DECLARE UPI$1$STATUS 
DECLARE UPI$2$STATUS 

DECLJl.RE UPI$0$COMMAND 
DECLARE UPI$1$COMMAND 
DECLARE UPI$2$COMMAND 

DECLARE UPI$0$DATA 
DECLARE UPI$1$DATA 
DECLARE UPI$2$DATA 

DECLARE RESET$LATCH$ADR 

ASSIGNMENTS */ 
LITERALLY 
LITERALLY 
LITERALLY 

'0E5H'; 
'0E7H'; 
'0E9H'; 

LITERALLY '0E5H'; 
LITERALLY '0E7H'; 
LITERALLY '0E9H'; 

LITERALLY '0E4H'; 
LITERALLY '0E6H'; 
LITERALLY '0E8H'; 

LITERALLY '0EAH'; 

/* DECLARATION OF RAM TEST PARAMETERS */ 
DECLARE BEGIN$RAM LITERALLY 
DECLARE END$RAM 
DECLARE ZEROSPATTERN 
DECLARE ONES$PATTERN 

LITERALLY 
LITERALLY 
LITERALLY 

'8000H'; 
'8500H'; 
'000H'; 
I 0FFH I ; 

/* DECLARATION OF RESET 
DECLARE RESET$UPI$0 
DECLARE RESET$UPI$1 
DECLARE RESET$UPI$2 
DECLARE LIGHT$LED 
DECLARE MULTI$INTR 

LATCH BIT ASSIGNMENTS */ 
LITERALLY '00000001B'; 
LITERALLY '000000108'; 
LITERALLY '00000100B'; 
LITERALLY '00001000B'; 
LITERALLY '00010000B I; 

/*· DECLARATION OF !SBC 941 STATUS BITS */ 
DECLARE IBF LITERALLY '00000010B'; 
DECLARE OBF LITERALLY '000000018'; 

/* DECLARATION OF ISBC 941 COMMANDS */ 
DECLARE IDEN LITERALLY '000H'; 

/* DECLARATION OF !SBC 941 IDENTIFICATION CODE */ 
DECLARE SBC941 LITERALLY '41H'; 

/* DECLARATION OF MEMORY TEST ADDRESS REGISTER */ 
DECLARE I ADDRESS AT (87FEH); 
DECLARE MEMLOC BASED I BYTE; 

/* DECLARATION OF RESET MASKS FOR 8085 PROCESSOR */ 

3-96 AFN·01931A 



27 

28 
29 
30 

31 

32 

33 

34 

35 
36 
37 
38 

39 
40 
41 
42 

43 

44 
45 
46 
47 
48 
49 
50 

Si 
52 
53 
54 
55 
56 
57 

1 

1 
2 
2 

1 

2 

1 

1 

1 
2 
2 
3 

2 
2 
3 
2 

1 

1 
2 
1 
1 
2 
1 
2 

1 
2 
1 
1 
2 
1 
2 

DECLARE MASKS BYTE DATA (00FH); 

/* DECLARATION OF PL/M-80 SIM INSTRUCTION */ 
S$MASK: PROCEDURE (MASK) EXTERNAL; 

DECLARE MASK BYTE; 
END S$MASK; 

/* DECLARATION OF INITIATION TASK */ 
INITIATION: 

PROCEDURE EXTERNAL; 
END INITIATION; 

/* CLEAR !SBC 941 DEVICES USING ON-BOARD RESET */ 
OUTPUT (RESET$LATCH$ADR) = 0; 

/* MASK OUT THE RESET INTERRUPTS OF THE PROCESSOR */ 
CALL S$MASK (MASKS); 

/* TEST MEMORY RAM LOCATIONS */ 
DO I = BEGIN$RAM TO END$RAM; 

MEMLOC = ZERO$PATTERN; 

END; 

DO WHILE MEMLOC <> ZERO$PATTERN; 
END; 

MEMLOC = ONES$PATTERN; 
DO WHILE MEMLOC <> ONES$PATTERN; 
END; 

/* RELEASE 941 LOCKOUT/RESET BITS */ 
OUTPUT (RESET$LATCH$ADR) RESET$UPI$0 OR 

RESET$UPI$1 OR 
RESET$UPI$2 OR 
MULTI$INTR; 

/* VERIFY THAT SBC941 PROCESSOR IS IN SOCKET 0 */ 
DO WHILE ((INPUT (UPI$0$S'rA'l'US) AND !BF) <> 0); 
END; 
OU'l'PUT (UPI $0$COMMAND) = IDEN; 
DO WHILE ((INPUT (UPI$0$STATUS) AND OBF) = 0); 
END; 
DO WHILE (INPUT (UPI$0$DATA) <> SBC941); 
END; 

/* VERIFY THAT SBC941 PROCESSOR IS IN SOCKET 1 */ 
DO WHILE ((INPUT (UPI$1$STATUS) AND !BF) <> 0); 
END; 
OUTPUT (UPI$1$COMMAND) = IDEN; 
DO WHILE ((INPUT (UPI$1$STATUS) AND OBF) = 0); 
END; 
DO WHILE (INPUT (UPI$1$DATA) <> SBC941); 
END; 

3.97 AFN-01931A 



58 
59 
60 
61 
62 
63 
64 

65 

66 

67 
68 
69 

70 

1 
2 
1 
1 
2 
1 
2 

1 

1 

1 
2 
2 

1 

/* VERIFY THAT SBC941 PROCESSOR IS IN SOCKE'l' 2 */ . 
DO WHILE ((INPUT (UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$2$COMMAND) = IDEN; 
DO WHILE ((INPUT (UPI$2$STATUS) AND OBF) 0); 
END; 
DO WHILE (INPUT (UPI$2$DATA) <> SBC941); 
END; 

/* START-UP TEST OK~ TURN OFF LED */ 
OUTPUT (RESET$LATCH$ADR) = RESET$UPI$0 OR 

RESET$UPI$1 OR 
RESE'l'$UPI$2 OR 
LIGHT$LED OR 
MULTI$INTR; 

/* INITIATE THE CONTROL DEVICES */ 
CALL INITIATION; 

/* PERFORM BACKGROUND TASKS */ 
DO WHILE 1; 

HALT; 
END; 

END BACKGROUND$MODULE; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
128 LINES READ 
0 PROGRAM ERROR(S) 

= 00D4H 
0000H 
0002H 

END OF PL/M-80 COMPILATION 

3-98 

212D 
0D 
2D 

AFN-01931A 



1 

2 

3 
4 

5 

6 
7 

8 

9 
10 

11 

12 
1 3 

14 

15 
16 

17 

18 
19 

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE MAINCONTROLMODULE 
OBJECT MODULE PLACED IN :Fl:CNTTSK.OBJ 
COMPILER INVOKED BY: PLM80 :Fl:CNTTSK.PLM DEBUG 

1 

2 
2 

1 

2 
2 

1 

2 
2 

1 

2 
2 

1 

2 
2 

1 

2 
2 

$INTVECT0~(4,3F00H) 
$PAGEWIDTH (72) 
$TITLE('MAIN CONTROL') 
/**************************************************** 
* MAIN$CONTROL$TASK * 
* THIS TASK IS USED TO CONTROL THE TWO PID CONTROL * 
* LOOPS. ONE LOOP CONTROLS THE SPEED OF A CONVEYOR * 
* WHILE THE SECOND CONTROLS THE FLOW OF A LIQUID. * 
* THE TASK OPERATES EACH 200 MSEC. * 

* * 
********VERSION 1.1 *******************************/ 

MAIN$CONTROL$MODULE: DO; 

/* DECLARATION OF PID RECORD SET-UP TASK */ 
UQPSET: 

PROCEDURE (PR$PTR,ERROR$FLD$PTR,PRIV$PTR) EXTERNAL 

DECLARE (PR$PTR,ERROR$FLD$PTR,PRIV$PTR) ADDRESS; 
END UQPSET; 

/* DECLARATION OF PID CONTROL BITS */ 
UQPSCT: 

PROCEDURE (PR$PTR,CONTROL$PTR) EXTERNAL; 
DECLARE (PR$PTR,CONTROL$PTR) ADDRESS; 
END UQPSCT; 

/* PROCEDURE TO SET UP PID CONSTANTS */ 
UQPSCN: 

PROCEDURE (PR$PTR,CONSTANT$PTR) EXTERNAL; 
DECLARE (PR$PTR,CONSTANT$PTR) ADDRESS; 
END UQPSCN; 

/* DEFINE THE DEFAULT ERROR HANDLER */ 
UQPSBD: 

PROCEDURE (PR$PTR,BOUND$PTR) EXTERNAL; 
DECLARE (PR$PTR,BOUND$PTR) ADDRESS; 
END UQPSBD; 

/* PROCEDURE TO CHANGE THE TIME INTERVAL */ 
UQPSTI: 

PROCEDURE (PR$PTR,TIME$INTERVAL$PTR) EXTERNAL; 
DECLARE (PR$PTR,TIME$INTERVAL$PTR) ADDRESS; 
END UQPSTI; 

/* DECLARATION OF THE PID CONTROL PROGRAM */ 
UQPPID: 

PROCEDURE (PR$PTR,IR$PTR) EXTERNAL; 
DECLARE (PR$PTR,IR$PTR) ADDRESS; 
END UQPPID; 

3-99 AFN·01931A 



20 

21 

22 

23 

24 

25 

26 

27 
28 

29 

30 
31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

1 

2 

1 

2 

1 

2 

1 

2 
2 

l 

2 
2 

l 

2 

1 

2 

1 

2 

1 

2 

1 

2 

/* DECLARATION OF WEIGHBELT SPEED INTERFACE */ 
WEIGHBELT$SPEED: 

PROCEDURE BYTE EXTERNAL; 
END WEIGHBELT$SPEED; 

/* DECLARATION OF WEIGHBELT WEIGHT INTERFACE */ 
WEIGHBELT$WEIGHT: 

PROCEDURE ADDRESS EXTERNAL; 
END WEIGHBELT$WEIGHT; 

/* DECLARATION 01'' LIQUID FLOW RATE INTERFACE * / 
LIQUID$FLOW$RATE: . 

PROCEDURE ADDRESS EXTERNAL; 
END LIQUID$FLOW$RATE; 

/* DECLARATION OF WEIGHBELT MOTOR DRIVE INTERFACE */ 
WEIGHBELT$MOTOR$DRIVE: 

PROCEDURE (SPEED) EXTERNAL; 
DECLARE SPEED ADDRESS; 
END WEIGHBELT$MOTOR$DRIVE; 

/* DECLARATION OF LIQUID VALVE INTERFACE */ 
LIQUID$VALVE$POSITION: 

PROCEDURE (POSITION) EXTERNAL; 
DECLARE POSITION BYTE; 
END LIQUID$VALVE$POSITION; 

/* DECLARATION OF PROCESSOR 0 INITIALIZATION MODULE */ 
PROCESSOR$0$INITIALIZATION: 

PROCEDURE EXTERNAL; 
END PROCESSOR$0$INITIALIZATION; 

/* DECLARATION OF PROCESSOR 1 INITIALIZATION MODULE */ 
PROCESSOR$1$INITIALIZATION: 

PROCEDURE EXTERNAL; 
END PROCESSOR$1$INITIALIZATION; 

/* DECLARATION OF PROCESSOR 2 INITIALIZATION MODULE */ 
PROCESSOR$2$INITIALIZATION: 

PROCEDURE EXTERNAL; 
END PROCESSOR$2 $INITIALIZATION; 

/* DECLARATION OF PIT COUNTER 1 INITIALIZATION */ 
COUNTER$1$INITIALIZATION: 

PROCEDURE EXTERNAL; 
END COUNTER$1$INITIALIZATION; 

/* DECLARATION OF PIT COUNTER 2 INITIALIZATION */ 
COUNTER$2$INITIALIZATION: 

PROCEDURE EXTERNAL; 
END COUNTER$2$INITIALIZATION; 

3-100 AFN-01931A 



/* DEC~ARATION OF FSP UNSIGNED LOAD PROCEDURES *I 
42 1 MQULDl: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
43 2 DECLARE (IR$PTR, VALUE$PTR) ADDRESS; 
44 2 END MQULDl; 
45 1 MQULD2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

46 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
47 2 END MQULD2; 

/* DECLARATION OF FSP UNSIGNED MULTIPLY PROCEDURE */ 
48 1 MQUMLl: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
49 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
511l 2 END MQUMLl; 
51 1 MQUML2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
52 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
53 2 END MQUML2; 

/* DECLARATION OF FSP UNSIGNED DIVIDE PROCEDURE */ 
54 1 MQUDVl: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
55 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
56 2 END MQUDVl; 
57 1 MQUDV2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
58 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
59 2 END MQUDV2; 

/* DECLARATION OF FSP SIGNED DIVIDE PROCEDURE */ 
611l 1 MQSDVl: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
61 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
62 2 END MQSDVl; 
63 1 MQSDV2: PROCEDURE ( IR$PTR, VALUE$P'I'R) EXTERNAL; 
64 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
65 2 END MQSDV2; 

/* DECLARTATION OF FSP SIGNED STORE PROCEDURE *I 
66 1 MQSST2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
67 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
68 2 END MQSST2; 

I* DECLARATION OF FSP SIGNED LOAD PROCEDURE */ 
69 1 MQSLD2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
70 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
71 2 END MQSLD2; 

/* DECLARATION OF FSP SIGNED SUBTRACT PROCEDURE */ 
72 1 MQSSB2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
73 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
74. 2 END MQSSB2; 

/* DECLARATION OF FSP UNSIGNED STORE PROCEDURE */ 
75 1 MQUSTl: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
76 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
77 2 END MQUSTl; 
78 1 MQUST2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
79 2 DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
80 2 END MQUST2; 

3-101 AFN-01931A 



81 
82 
83 

84 
85 
86 
87 

88 
89 
90 
91 
92 
93 

94 
95 
96 
97 
98 
99 

100 
101 
102 

103 

104 
105 

106 

107 

l 
2 
2 

l 
l 
l 
l 

l 
l 
l 
l 
l 
l 

l 
1 
l 
l 
1 
l 

l 
l 
l 

l 

l 
l 

l 

l 

/* DECLARATION OF FSP SIGNED MULTIPLY PROCEDURE */ 
MQSMLl: PROCEDURE (IR$PTR, VALUE$P'l'R) EXTERNAL; 

DECLARE ( IR$PTR, VALUE$PTR) ADDRESS; 
END MQSMLl; 

$EJECT 
/****************************************** 
* DATA STORAGE AREAS FOR THE PID CONTROL * 
******************************************/ 

/* DEFINITION OF LIMITATION CONSTANTS */ 
DECLARE MAX$MOTOR$SPEED LITERALLY '550'; 
DECLARE MIN$MOTOR$SPEED LITERALLY '0'; 
DECLARE MAX$VALVE$MOVEMENT LITERALLY '10'; 
DECLARE MIN$VALVE$MOVEMENT LITERALLY '-10'; 

/* DEFINITION OF PID PARAMETER 
DECLARE FEEDER$C0 
DECLARE FEEDER$Cl 
DECLARE FEEDER$C2 
DECLARE FEEDER$C3 
DECLARE FEEDER$TIME$INTERVAL 
DECLARE FEEDER$SCALE$F'ACTOR 

DECLARE LIQUID$C0 
DECLARE LIQUID$Cl 
DECLARE LIQUID$C2 
DECLARE LIQUID$C3 
DECLARE LIQUID$TIME$INTERVAL 
DECLARE LIQUID$SCALE$FACTOR 

COEFFICIENTS */ 
LITERALLY 'l'; 
LITERALLY '1'; 
LITERALLY I l' ; 
LITERALLY 'l I; 
LITERALLY '1'; 
LITERALLY 'l'; 

LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LI'l'ERALLY 

I 11 i 

I 1' i 
I 1 Ii 
I 1 'i 
I 11 i 
I 10 Ii 

/* DEFINITION OF RESET LATCH 
DECLARE RESET$LATCH$ADR 
DECLARE INDICATOR$0N 
DECLARE INDICATOR$0FF 

PARAMETERS */ 
LITERALLY '0EAH'; 
LITERALLY '07H'; 
LITERALLY '0FH'; 

/* RESERVE 18 BYTES FOR THE INTEGER RECORD */ 
DECLARE IR (18) BYTE PUBLIC; 

/* RESERVE 42 BYTES FOR EACH PID RECORD */ 
DECLARE PRCV (42) BYTE; 
DECLARE PRLQ (42) BYTE; 

/* RESERVE SPACE FOR COUNTER DATA */ 
DECLARE (LIQ$COUNT,BELT$COUNT) BYTE PUBLIC; 

/* RESERVE 
DECLARE 

C0 
Cl 
C2 
C3 
DT 
s 

12 BYTES FOR EACH CONSTANT ARRAY */ 
CONSTANTSl STRUCTURE ( 
ADDRESS, 
ADDRESS, 
ADDRESS, 
ADDRESS, 
ADDRESS, 
ADDRESS); 

3-102 AFN-01931A 



108 

109 

110 

111 
112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

1 

1 

1 

1 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

DECLARE CONSTANTS2 STRUCTURE ( 
C0 ADDRESS, 
Cl ADDRESS, 
C2 ADDRESS, 
C3 ADDRESS, 
DT ADDRESS, 
S ADDRESS ) ; 

/* RESERVE 8 BYTES FOR EACH BOUNDS ARRAY */ 
DECLARE BOUNDSl (4) ADDRESS DATA ( 

000H, 
000H, 
MAX$MOTOR$SPEED, 
MIN$MOTOR$SPEED ); 

DECLARE BOUNDS2 (4) ADDRESS DATA ( 
000D, 
0000, 
MAX$VALVE$MOVEMENT, 
MIN$VALVE$MOVEMENT ); 

/* RESERVE 1 BYTE FOR EACH CONTROL BYTE */ 
DECLARE CONTROLl BYTE DATA (073H); 
DECLARE CONTROL2 BYTE DATA (053H); 

/* DECLARE TIME INTERVAL */ 
DECLARE TIME$INTERVAL ADDRESS DATA (l); 

/* RESERVE SPACE FOR THE CURRENT BELT SPEED */ 
DECLARE BELT$SPEED BYTE; 

/* RESERVE SPACE FOR THE CURRENT BELT WEIGHT */ 
DECLARE BELT$WEIGHT ADDRESS; 

/* RESERVE SPACE FOR THE LIQUID FLOW */ 
DECLARE LIQUID$FLOW ADDRESS; 

/* RESERVE SPACE FOR THE EFFEC'rIVE SETPOINT * / 
DECLARE MASS$SETPOINT ADDRESS; 

/* RESERVE SPACE FOR THE DESIRED SETPOINT */ 
DECLARE SET$POINT ADDRESS; 

/* RESERVE SPACE FOR THE DISTANCE OF BELT PER REVOLUTION 
*/ 

DECLARE DIST$REV BYTE DATA (100); 

/* DEF'INE THE CONVEYOR LENGTH * / 
DECLARE CONV$LENGTH BYTE DATA (200); 

/* DEFINE THE CONSTANT SIX */ 
DECLARE SIX BYTE DATA (6); 

/* RESERVE STORAGE FOR ACTUAL CURRENT MASS FLOW */ 
DECLARE MASS$FLOW ADDRESS; 

3-103 AFN-01931A 



123 

124 

125 

126 

127 
128 

129 

130 

131 

132 

133 
134 
135 

136 
137 
138 

139 

140 

141 
142 

l 

l 

l 

l 

l 
l 

l 

l 

l 

l 

l 
l 
l 

l 
l 
l 

l 

2 

2 
2 

/*RESERVE SPACE FOR BELT CONTROL OUTPUT*/ 
DECLARE BELT$CONTROLADDRESS; 

/* RESERVE SPACE FOR LIQUID RATIO * / 
DECLARE LIQUID$RATIO BYTE; 

/* RESERVE SPACE FOR LIQUID CONTROL OUTPUT */ 
DECLARE LIQUID$VALVE ADDRESS; 

/* RESERVE SPACE FOR RUN/HALT CONTROL */ 
DECLARE SYSTEM$RUNNING S~TE PUBLIC; 

/* RESERVE SPACE FOR ERROR FIELD •/ 
DECLARE ERROR$FIELD ADDRESS DATA (0F800H); 
DECLARE DUMMY ADDRESS; 

/* RESERVE SPACE FOR PIC !CW BYTE */ 
DECLARE ICW BYTE; 

/* DEFINE CONSTANT 1000 */ 
DECLARE THOUSAND ADDRESS DATA (1000); 

/* DEFINE CONSTANT 0 */ 
DECLARE ZERO ADDRESS DATA ( 0); 

/* DEFINE INTERRUPT JUMP TABLE */ 
DECLARE JUMP$TABLE BYTE AT (3P00H); 

/* DECLARATION OF PIC ADDRESSES ON !SBC 569 BOARD */ 
DECLARE PIC$ICW1$PTR LITERALLY '0ECH'; 
DECLARE PIC$ICW2$PTR LITERALLY '0EDH'; 
DECLARE PIC$INT$MASK$PTR LI'rERALLY I 0EDH I; 

/* DECLARATION OF PIC CONSTANTS */ 
DECLARE CLR$LOW$BITS LITERALLY I 0E0H I; 
DECLARE INTERVAL$4 LITERALLY '0l 6H'; 
DECLARE INTERRUPT$MASK LITERALLY '0F4H'; 

$EJECT 
/******************************************* 
* INITIALIZE PROGRAM AT START-UP OF SYSTEM * 
* THIS PROCEDURE IS CALLED AT START-UP * 
*******************************************/ 

INITIATION: PROCEDURE PUBLIC; 

/* DISABLE THE INTERRUPTS */ 
DISABLE; 

/* INITIALIZE PID RECORD */ 
CALL UQPSET (.PRCV,.ERROR$FI)!:LD,.DUMMY); 
CALL UQPSET (.PRLQ,.ERROR$FIELD,.DUMMY); 

3-104 AFN·01931A 



143 
144 

145 
146 
147 
148 
149 
150 

151 
152 
153 
154 
155 
156 

157 
158 
159 

160 
161 

162 
163 

164 
165 

166 

167 

168 

169 

170 

171 

172 

2 
2 

2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 

2 
2 
2 

2 
2 

2 
2 

2 
2 

2 

2 

2 

2 

2 

2 

2 

/* INITIALIZE THE CONTROL BITS */ 
CALL UQPSCT (.PRCV,.CONTROLl); 
CALL UQPSCT (.PRLQ,.CONTROL2); 

/* SET UP THE PIO CONSTANTS .*/ 
CONSTANTS1.C0 FEEDER$C0; 
CONSTANTSl.Cl FEEDER$Cl; 
CONSTANTS1.C2 FEEDER$C2; 
CONSTANTS1.C3 FEEDER$C3; 
CONSTANTSl.DT FEEDER$TIME$INTERVAL; 
CONSTANTSl.S FEEDER$SCALE$FACTOR; 

CONSTANTS2.C0 
CONS'l'ANTS2.Cl 
CONSTANTS2.C2 
CONSTANTS2.C3 
CONSTANTS2.DT 
CONSTANTS2.S 

LIQUID$C0; 
LIQUID$Cl; 
LIQUID$C2; 
.LIQUID$C3; 

= LIQUID$TIME$INTERVAL; 
LIQUID$SCALE$FACTOR; 

/* CLEAR SETPOINTS */ 
SETPOINT = 0; 
LIQUID$RATIO = 0; 
SYSTEM$RUNNING = 0; 

/* INITIALIZE THE CONSTANTS */ 
CALL UQPSCN (.PRCV,.CONSTANTSl); 
CALL UQPSCN (.PRLQ,.CONSTANTS2); 

/* INITIALIZE THE BOUNDS */ 
CALL UQPSBD (.PRCV,.BOUNDSl); 
CALL UQPSBD (.PRLa,.BOUNDS2); 

/* SET THE TIME INTERVAL */ 
CALL UQPSTI (.PR.CV,. TIME$INTERVAL); 
CALL UQPSTI (.PRLQ,.TIME$INTERVAL); 

/* INITIALIZE PROCESSOR 0 */ 
CALL PROCESSOR$0$INITIALIZATION; 

/* INITIALIZE PROCESSOR 1 */ 
CALL PROCESSOR$1$INITIALIZATION; 

/* INITIALIZE PROCESSOR 2 */ 
CALL PROCESSOR$2$INITIALIZATION; 

/* INITIALIZE COUNTER 1 */ 
CALL COUNTER$1$INITIALIZATION; 

/* INITIALIZE COUNTER 2 */ 
CALL COUNTER$2$INITIALIZATION; 

/* INITIALIZE INTERRUPT CONTROLLER */ 
ICW = (LOW ( .JUMP$TABLE) AND 

CLR$LOW$BITS ) OR 
INTERVAL$4 ; 

OUTPUT·(PIC$ICW1$PTR) = ICW; 

3-105 AFN-01931A 



173 
174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

185 

186 
187 
188 
189 
190 
191 

192 
193 

194 

195 

2 
2 

2 

2 

2 

2 

1 

2 

2 

2 

2 

2 

2 
2 
2 
2 
2 
2 

2 
2 

2 

2 

ICW =HIGH (~JUMP$TABLE); 
OUTPUT (PIC$ICW2$PTR) = !CW; 

/* SET INTERRUPT MASKS */ 
OUTPUT (PIC$INT$MASK$PTR) = INTERRUPT$MASK; 

/* ENABLE INTERRUPTS */ 
ENABLE; 

/* .RETURN TO MAIN PROGRAM * / 
RETURN; 

END INITIATI.ON; 
$EJECT 
/**********************************************~**** 
* THIS IS THE PID CONTROL ROUTINE. IT IS ENTERED* 
* EACH 200 MILLISECONDS THROUGH AN INTERRUPT GEN- * 
* ERATED BY THE FRE.QUENCY COUNTER UPI AND SENT TO * 
* INTERHUPT 3. * 
***************************************************/ 

PIDRUN: PROCEDURE INTERRUPT 3 PUBLIC; 

/* TURN THE LED INDICATOR ON */ 
OUTPUT(RESET$LATCH$ADR) = INDICATOR$0N; 

/* GET WEIGHBELT WEIGHT */ 
BELT$WEIGHT=WEIGHBELT$WEIGHT; 

/* GET LIQUID FLOW RATE */ 
LIQUID$FLOW=LIQUID$FLOW$RATE; 

/* CONTROL START-STOP RAMP */ 
lF SYSTEM$RUNNING 

THEN MASS$SETPOINT=SETPOINT; 
ELSE MASS$SETPOINT=0; 

/* DETERMINE ACTUAL MASS FLOW ON WEIGHBELT */ 
CALL MQULD2(.IR,.BELT$CONTROL); 
CALL MQUML2(.IR,.BELT$WEIGHT); 
CALL MQUML1(.IR,.DIST$REV); 
CALL MQUDVl (.IR, .CONV$LENGTH); 
CALL MQSDV2(.IR,.THOUSAND); 
CALL MQSST2(.IR,.MASS$FLOW); 

/* COMPUTE ERROR SIGNAL ON WEIGHBELT */ 
CALL MQSLD2(.IR,.MASS$SETPOINT); 
CALL MQSSB2(.IR,.MASS$FLOW); 

/* HANDLE PID BELT CONTROL ALGORITHM */ 
CALL UQPPID(.PRCV,.IR); 

/* STORE OUTPUT SIGNAL */ 
CALL MQUST2(.IR,.BELT$CONTROL); 

3-106 AFN·01931A 



/* COMPUTE LIQUID SETPOINT */ 
196 2 CALL MQSLD2{.IR,.MASS$FLOW); 
197 2 CALL MQSML1(.IR,.LIQUID$RATIO); 
198 2 CALL MQSMLl(.IR,.SIX); 

/* VERIFY THAT WEIGHBELT IS MOVING */ 
199 2 IF WEIGHBELT$SPEED = 0 

THEN CALL MQULD2{.IR,.ZERO); 

/* COMPUTE LIQUID ERROR */ 
201 2 CALL MQSSB2(.IR,.LIQUID$FLOW); 

/* HANDLE PID LIQUID CONTROL */ 
202 2 CALL UQPPID(.PRLQ,.IR); 

/* STORE OUTPUT SIGNAL */ 
203 2 CALL MQUST1(.IR,.LIQUID$VALVE); 

/* OUTPUT WEIGHBELT CONTROL SIGNAL */ 
204 2 CALL WEIGHBELT$MOTOR$DRIVE (BELT$CONTROL); 

I* OUTPUT FLOW CONTROL SIGNAL */ 
205 2 CALL LIQUID$VALVE$POSITION (LIQUID$VALVE); 

/* SEND END OF INTERRUPT TO 8259 CONTROLLER */ 
206 2 OUTPUT(0ECH)=020H; 

/* TURN THE LED INDICATOR OFF */ 
207 2 OUTPUT (RESET$LATCH$ADR) INDICATOR$0FF; 

/* RETURN FROM CONTROL TASK */ 
208 2 RETURN; 
209 2 END PIDRUN; 
2lf/l l END; · 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
465 LINES READ 
0 PROGRAM ERROR(S) 

END OF PL/M-80 COMPILATION 

01ClH 
0094H 
000AH 

3-107 

4.49D 
148D 

10D 

AFN-01931A 



ISIS-II PL/M-80 V3.l COMPILATION OF MODULE PROCESSORINITIALIZATIONMODULE 
OBJECT MODULE PLACED IN : F 1 :SBC.9Al. OBJ · · 
COMPILER INVOKED BY: . PLM80 : F 1: SBC94l.PLM DE.BUG PAGEWIDTH (72) TITLE ('PR 

.-OCESSOR INITIALIZA'l'ION 1 ) .. 

1 

2 
3 
4 

5 
6 
7 

8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 

19 
20 
21 

22 
23 
24 
25 
26 
27 
28 

1 
1 
1 

1 
1 
l 

1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 

1 
1 
1 
1 
1 
1 
1 

/********************************************** 
* THIS PROGRAM IS USED TO INITIALIZE THE !SBC * 
* 941 PROCESSOR INSTALLED IN SOCKET 0. THE * 
* DEVICE WILL OPERATE IN THE FREQUENCY OUTPUT * 
* MOD.E. * 
**********************************************/ 

PROCESSOR$INITIALIZATION$MOOULE: DO; 

/* DECLARATION OF ADDRESSES */ 
DECLARE UPI$0$STATUS LITERALLY '0E5H'; 
OECLARE UPI$0$COMMAND LITERALLY '0E5H'; 
DECLAR,E OPI$0$DATA . LITERALLY '0E4H'; 

DECLARE UPI$1$STATUS 
DECLARE UPI$1$COMMAND 
DECLARE u·PI $1 $DATA 

DECLARE UPI$2$STATUS 
DECLARE UPI$2$COMMAND 
DECLARE UPI$2$DATA 

/* DECLARATION OF ISBC 941 
DECLARE SETPl 
DECLARE CLRPl 
DECLARE CLRP2 
DECLARE PAUSE 
DECLARE LOOP 
DECLARE INITPF 
DECLARE PACIFY 
DECLARE ENFLAG 

LITERALLY '0E7H'; 
LITERALLY '0E7H'; 
LITERALLY '0E6H'; 

LITERALLY '0E9H'; 
LITERALLY '0E9H'; 
LITERALLY '0E8H'; 

COMMANDS */ 
LITERALLY '00BH'; 
L!TERALLY '00DH'; 
LITERALLY 1 00EH 1 ; 

LITERALLY '005H'; 
LITERALLY '004H'; 
LITERALLY '002H'; 
LITERALLY '001H'; 
LITERALLY '006H'; 

/* DECLARATION OF 
DECLARE RFC 
DECLARE IBF 
DECLARE QF 

!SBC 941 STATUS BITS */ 
LITERALLY 1 080H'; 
LITERALLY '002H'; 
LITERALLY '010H'; 

/* DECLARATION OF !SBC 941 
DECLARE FREQ 
DECLARE SF 
DECLARE OUTPUT$ENABLE0 
DECLARE INITIAL$STATE 
DECLARE DELAY 
DECLARE PERIOD 
DECLARE INITIAL$0UTPUT 

ft0 INITIALIZATION DATA * / 
LITERALLY '085H'; 
LITERALLY '000H'; 
LITERALLY '001H'; 
LITERALLY '000H'; 
LITERALLY '001H'; 
LITERALLY '000H'; 
LITERALLY '00EH'; 

3·108 AFN-01931A 



29 
30 
31 
32 

33 

34 

35 

36 

37 
38 

39 
40 
41 
42 
43 

44 
45 
46 

47 
48 
49 
50 
51 

52 
53 
54 

1 
1 
1 

1 

1 

1 

1 

1 

2 
2 

2 
3 
4 
3 
3 

2 
3 
2 

2 
3 
4 
3 
3 

2 
3 
2 

/* DECLARATION OF INTERVAL 
DECLARE PIT$0$MODE 
DECLARE PIT$0$INTERVAL 
DECLARE PIT$0$MODE$WRD 
DECLARE PIT$0$COUNT 

TIMER PARAMETERS */ 
LITERALLY '016H'; 
LITERALLY '00EH'; 
LITERALLY '0E3H'; 

LITERALLY '0E0H'; 

/* DECLARATION OF COUNTER LOCATIONS */ 
DECLARE (LIQ$COUNT,BELT$COUNT) BYTE EXTERNAL; 

/* DECLARATION OF !SBC 941 PRIMARY DATA */ 
DECLARE INIT$0$TABLE (6) BYTE DA'rA ( 

FREQ, 
SF, 
OUTPUT$ENABLE0, 
INITIAL$STATE, 
DELAY, 
PERIOD ) ; 

/* DECLARATION OF MtSC PARAMETERS */ 
DECLARE I BYTE; 

/*********************************************** 
* INITIALIZATION PROGRAM BODY * 
***********************************************/ 

PROCESSOR$0$INITIALIZATION: PROC~DURE PUBLIC; 

/* INITIALIZE COUNTER 0 FOR 10 MICROSECONDS */ 
OUTPUT(PIT$0$MODE$WRD)=PtT$0$MODE; 
OUTPUT(PIT$0$COUNT)=PIT$0$INTERVAL; 

/* VERIFY THAT PROCESSOR IS RESET */ 
DO WHILE ((INPUT(UPI$0$STATUS) AND RFC) = 0); 

DO WHILE ( (INPUT (UPI$0 $STATUS) AND !BF) <> 0); 
END; 
OUTPUT(UPI$0$COMMAND)=PACIFY; 

END; 

/* REQUEST PRIMARY FUNCTION */ 
DO WHILE ((INPUT(UPI$0$STATUS) AND !BF) <> 0); 
END; 
OUTPUT(UPI$0$COMMAND)= INITPF; 

/* LOAD INITIAL PARAMETERS */ 
DO !=0 TO 5; · 

DO WHILE ((INPUT(UPI$0$$TATUS) AND !BF) <> 0); 
END; 
OUTPUT(UPI$0$DATA)=INIT$0$TABLE(I); 

END; 

/* TERMINATE PARAMETER LOADING */ 
DO WHILE ((INPUT(UPI$0$STATUS) AND !BF) <> 0); 
END; 
OUTPUT(UPI$0$COMMAND)=PAUSE; 

3-109 AFN-01931A 



55 
56 
57 

58 
59 
60 

61 
62 
63 

64 

65 

66 
67 
68 
69 
70 

71 

72 

73 
74 
75 
76 
77 

2 
3 
2 

2 
3 
2 

2 
3 
2 

2 

2 

1 
1 
1 
1 
1 

1 

1 

2 
3 
4 
3 
3 

/* START FREQUENCY FUNCTION */ 
DO WHILE ((INPUT(UPI$0$STATUS) AND !BF) <>0); 
END; 
OUTPUT(UPI$0$COMMAND)=LOOP; 

/* SET UNUSED BITS TO ALLOW EXPANSION */ 

DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI $0$COMMAND) =CLRP2; 

DO WHILE ( (INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$0$DATA)=INITIAL$0UTPUT; 

/* RETURN TO CALLING PROGRAM */ 
RETURN; 

END PROCESSOR$0$INITIALIZATION; 
$EJECT 
/************************************************ 
* THIS PROCEDURE IS USED TO INITIALIZE THE ISBC * 
* 941 PROCESSOR INSTALLED IN SOCKET 1. 'l'HE DE- * 
* VICE WILL OPERATE IN THE FCOUNT, HIGH FRE- * 
* QUENCY INPUT MODE. * 
************************************************/ 

/* DEFINE INITIALIZATION .PARAMETERS */ 
DECLARE FCOUNT LITERALLY '033H'; 
DECLARE INPUT$SELECT LITERALLY '001H'; 
DECLARE OUTPUT$ENABLE$1 LI'l'ERALLY '001H'; 
DECLARE SAMPLING$INTERVAL LITERALLY '009H'; 
DECLARE INITIAL$STATE$1 LITERALLY '0ElH'; 

/* DECLARE PARAMETER INITIALIZATION TABLE */ 
DECLARE INIT$1 $TABLE ( 4) BY'rE DATA ( 

FCOUNT, 
INPUT$SELECT, 
OUTPUT$ENABLE$1, 
SAMPLING$INTERVAL ); 

/************************************************ 
* INITIALIZATION BODY * 
************************************************/ 

PROCESSOR$1$INITIALIZATION: PROCEDURE PUBLIC; 

/* VERIFY THAT PROCESSOR IS RESET */ 
DO WHILE ((INPUT(UPI$1$STATUS) AND RFC) = 0); 

DO WHILE ((INPUT{UPI$1$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$1$COMMAND)=PACIFY; 

END; 

3-110 AFN-01931A 



78 
79 
80 

81 
82 
83 
84 
85 

86 
87 
88 

89 
90 
91 
92 
93 
94 

95 
96 
97 

98 

99 

2 
3 
2 

2 
3 
4 
3 
3 

2 
3 
2 

2 
3 
2 
2 
3 
2 

2 
3 
2 

2 

2 

urn 1 
101 .1 
llil2 1 
103 1 
104 1 
105 1 
106 1 
107 1 
108 1 
lt/J9 1 
110 1 

/* REQUEST PRIMARY FUNCTION */ 
DO WHILE ((INPU'f(UPI$1$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$1$COMMAND)=INITPF; 

/* LOAD INITIAL PARAMETERS * / 
DO I=0 TO 3; 

DO WHILE ((INPUT(UPI$1$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$1$DATA)=INIT$1$TABLE(I); 

END; 

/* TERMINATE PARAMETER LOADING */ 
DO WHILE ((INPUT(UPI$1$STATUS) AND IBF) <> 0); 
END; . 
OUTPUT(UPI$1$COMMAND)=PAUSE; 

/* SET UNUSED BITS HIGH FOR SPARE ENABLES */ 
DO WHILE ((INPUT(UPI$1$STATUS) AND IBF) <> 0); 
END; .. 

OUTPUT(UPI$1$COMMAND)=SETP1; 
DO WHILE ((INPUT(UPI$1$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$1$DATA)=INtTIAL$STATE$1; 

/* START FREQUENCY COUNT OPERATION */ 
DO WHILE ((INPUT(UPI$1$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$1$COMMAND)=LOOP; 

/* RETURN TO CALLING PROGRAM */ 
RETURN; 

END PROCESSOR$1$INITIALIZATION; 

$EJECT 
/************************************************ 
* THIS PROCEDURE rs USED TO INITIALIZE THE !SBC * 
* 941 INSTALLED IN SOCKET 2. THE DEVICE WILL BE * 
* OPERATED AS A STEPPER MOTOR DRIVER. * 
************************************************/ 

/* DEFINE INITIALIZATION PARAMETERS */ 
DECLARE STEPPER LITERALLY '017H'; 
DECLARE SCALE$FACTOR LITERALLY '0DFH 1 ; 

DECLARE OUTPUT$ENABLE$2 LITERALLY '0F0H'; 
DECLARE OUTPUT$POLARITY LITERALLY '050H'; 
DECLARE COMMON$PERIOD LITERALLY '004H'; 
DECLARE P20$TRAN1 LITERALLY '000H'; 
DECLARE P20$TRAN2 LITERALLY '000H'; 
DECLARE P21$TRAN1 LITERALLY '000H'; 
DECLARE P21$TRAN2 LITERALLY '000H'; 
DECLARE P22$TRAN1 LITERALLY '000H'; 
DECLARE P22$TRAN2 LITERALLY 1 000H'; 

3-111 AFN-01931A 



111 
112 
113 
114 
115 
116 
117 
118 
119 
120 

121 

122 

123 

124 
125 
126 
127 
128 

129 
130 
131 

1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

1 

2 
3 
4 
3 
3 

2 
3. 
2 

DEC LARE P 2}.$T~AN1 .• 
DEC LARE. P:2:3 $TRAN2 
DECLARE P24$TRAN1 

g~gt~~~ ;~:g~~~"f'' 
DECLARE P25$TRAN2. 
DECLARE P26$TRAN1 
DECLARE P;2.p$TRAN2 
DECLARE P27$TRAN1 .. 
DECLARE P2]$TRAN2 

LITERALLY 
. LITERALLY 

LITERALLY 
LITERALLY 
LITERALLY 
LIT.ERALLY 
LITERALLY 
LITERALLY 

·LITERALLY 
LI'rERALLY 

I 000H I; 
'000H,'; 
1 llJ(IJflJff 1 ; 

'002H I; 
I 000H I; 
'002H'; 
I flJflJlH Ii 
'flJ03H I; 
I llJflJlH I; 
'llJ03H I; 

DECLARE CLR$LOW$PORT LITERALLY 'llJllJFH'; 

/* DECLARE PARAMETER INITIALIZATION TABLE */ 
DECLARE .INIT$2.$TABLE (21) BYTE DA.TA ( 

STEPPER,' ' ' ' ' 

SCALE $FACTOR,·.: 
OUTPUT$ENABLE$2, 
OUTPUT$POLARITY, 
COMMON$PEIU OD, 
P20 $'J'RAN i'; . 
P20$TRAN2,. 
P21$TRAN1, 
P21$TRAN2, ·. 
P 22 $TRAN l, . 
P22$TRA~2,. 
P23$TRAN1, 
P23$TRAN2,. 
P24$TRAN 1, 
P24$TRAN2, . 
P25$TRAN1 ~ ·.·. 
P25$TRAN2, 
P26 $TRAN l, 
P26$TRAN2, 
P27$TRAN1, 
P27$TRAN2· ); 

/***************~******************************** 
* INITIALIZATION BODY * 
* ** ** *** **'** * *•*'*** * *** ** ** * ** *·*** ** *·* *** ********I 

PROCESSOR$2$INITIALIZATION: PROCEDURE PUBLIC; 

/* VERIFY THAT PROCESSOR IS RESET */ 
DO w:HILE ( (INPUT(UPI$2$STATUS) AND RFC) = flJ); 

,\;, 

DO WHILE ((INf!U'l'(UPI$2$STA·TUS') AND IBF) <> 0); 
·END; 
OUTPUT(UPI$2$COMMAND)=PACIFYi 

END;. 

/*REQUEST PRIMARY FUNCTION·*/ 
DO WHILE ( (INPUT(lJPI$2$STATUS) AND IBF) <> 0); 
END; ·.·, · 

• OUTPUT (UPI $2$COMMAND).=INITPF ;'. 

AFN-01931A 



132 
133 
134 
135 
136 

137 
138 
139 

140 
141 
142 

143 
144 
145 
146 
147 
148 

149 

150 

151 

152 

153 

154 

2 
3 
4 
3 
3 

2 
3 
2 

2 
3 
2 

2 
3 
2 
2 
3 
2 

2 

2 

1 

2 

2 

2 

/* LOAD INITIAL PARAMETERS */ 
DO !=0 TO 20;, 

DO WHILE {{INPUT{UPI$2$STATUS) AND !BF) <> rll); 
END; 
OUTPUT{UPI$2$DATA)=INIT$2$TABLE{I); 

END; 

/* TERMINATE PARAMETER LOADING */ 
DO WHILE {{INPUT{UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT{UPI$2$COMMAND)=PAUSE; 

/* START STEPPER CONTROLLER OPERATION */ 
DO WHILE {{INPUT{UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT{UPI$2SCOMMAND)=LOOP; 

/* SET UNUSED BITS LOW TO ENABLE GENERAL FUNCTIONS */ 
DO WHILE {{INPUT (UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT{UPI$2$COMMAND)=CLRP1; 
DO WHILE {{INPUT{UPI$2$STATUS} AND IB•) <> 0); 
END; 
OUTPUT{UPI$2$DATA)=CLR$LOW$PORT; 

/* RETURN TO CALLING PROGRAM */ 
RETURN; 

END PROCESSOR$2$INITIALIZATION; 

$EJECT 
/*********************************************** 
* THIS PROCEDURE IS USED TO INITIALIZE COUNTER * 
* 1 TO PERFORM AS AN EIGHT BIT BINARY COUNTER * 
* WHICH WILL BE USED TO MEASURE THE BELT SPEED.* 
***********************************************/ 

COUNTER$1$INITIALIZATION: PROCEDURE PUBLIC; 

/* INITIALIZE COUNTER 1 FOR EIGHT BIT COUNTING */ 
LIQ$COUNT = 0; 

/* RETURN TO CALLING PROGRAM */ 
RETURN; 

END COUNTER$1$INITIALIZATION; 

$EJECT 
/*********************************************** 
* THIS PROCEDURE IS USED TO INITIALIZE COUNTER * 
* 2 TO PERFORM AS AN EIGHT BIT BINARY COUNTER * 
* WHICH WILL BE USED TO MEASURE THE LIQUID * 
* FLOW THROUGH THE METER. * 
***********************************************/ 

1-113 AFN-01931A 



155 l COUNTER$2$INITIALIZATION: PROCEDURE PUBLIC; 

/* INITIALIZE COUNTER 2 FOR EIGHT BIT 
156 2 BELT.$COUNT = 0 ; 

/* RETURN TO CALLING PROGRAM */ 
157 2 RET.URN; 

158 2 END COUNTER$2$INITIALIZATION; 
159 l END PROCESSOR$INITIALIZATION$MODULE; 

$EJECT 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
329 LINES READ 
0 PROGRAM ERROR(S) 

END OF PL/M-80 COMPILATION 

0201H 
0001H 
0000H 

3·114 

513D 
lD 
0D 

COUNTING */ 

AFN·01931A 



ISIS-II PL/M-80 V3.l COMPILATION OF MODULE PROCESSORINTERFACEMODULE 
OBJECT MODULE PLACED IN :Fl:OPR941.0BJ 
COMPILER INVOKED BY: PLM80 :Fl:OPR941.PLM DEBUG 

1 

2 1 
3 1 
4 1 

5 1 
6 1 
7 1 

8 1 
9 1 

10 1 

11 1 
12 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 1 
20 1 
21 1 

22 1 
23 1 
24 1 
25 1 
26 1 

27 1 
28 2 
29 2 
30 1 
31 2 
32 2 

$INTVECTOR(4,3F00H) 
$PAGEWIDTH (72) 
$TITLE('PROCESSOR INTERFACE') 
/********************************************** 
* THESE PROGRAMS PROVIDE THE OPERATING INTER- * 
* F'ACE BETWEEN 'l'HE APPLICATION PROGRAM AND * 
* THE ISBC 941 PROCESSORS OR COUNTERS. * 
**********************************************/ 

PROCESSOR$INTERFACE$MODULE: DO; 

/* DECLARATION OF ADDRESSES */ 
DECLARE UPI$0$STATUS LITERALLY '0E5H'; 
DECLARE UPI$0$COMMAND LITERALLY '0E5H'; 
DECLARE UPI$0$DATA LITERALLY '0E4H'; 

DECLARE UPI$1 $STATUS LITERALLY '0E7H'; 
DECLARE UPI$1$COMMAND LITERALLY I 0E 7H I; 
DECLARE UP1$1$DATA LITERALLY '0E6H'; 

DECLARE UPI$2$STA'I'US LITERALLY '0E9H'; 
DE.CLARE UPI$2$COMMAND LITERALLY '0E9H'; 
DECLARE UPI$2$DATA LITERALLY '0E8H'; 

/* DECLARATION OF !SBC 941 COMMANDS */ 
DECLARE SETPl LITERALLY '00BH'; 
DECLARE CLRPl LITERALLY I 00DH I; 
DECLARE CLRP2 LITERALLY '00EH'; 
DECLARE RDF(/P LITERALLY '042H'; 
DEC LARE RDFCi LITERALLY '043H'; 
DECLARE PAUSE LITERALLY '005H'; 
DECLARE LOOP LITERALLY '004H'; 
DECLARE INITPF LITERALLY '002H'; 
DECLARE PACIFY LITERALLY '001H'; 
DECLARE ENFLAG LITERALLY I 00 6H I; 
DECLARE SE TOE LITERALLY '071H'; 

I* DECLARATION OF !SBC 941 STATUS BITS */ 
DECLARE RFC LITERALLY '080H'; 
DECLARE IBF LITERALLY I 00 2H I; 
DECLARE OBF LITERALLY '001H'; 
DECLARE QF LITERALLY '010H I; 
DECLARE QNE LITERALLY '020H'; 

/* DEFINE THE MATH ROUTINES USED BY MODULES */ 
MQULD4: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQULD4; 

MQUDV2: PROCEDURE ( IR$PTR, VALUE $P'rR) EXTERNAL; 
DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQUDV2; 

3·115 AFN·01931A 



33 
34 
35 
36 
37 
38 

39 

40 

41 

42 

43 
44 

45 
46 

47 
48 

49 

51 
52 
53 

'' 
1 
2 
2 
1 
2 
2 

1 

1 

1 

2 

2 
2 

2 
2 

2 
2 

2 

3 
4 
3 

MQUOVi: PROCEOURE (IR$PTR'/VALUE$PTR) EXTERNAL; 
DECLARE (IR$PTR,VAL0E$PTR} ADDRESS;' : 
END''MQUDVT; . ·:.. . 

MQUSTl: PROCEDURE (IR$PTR,VALUE$P'rR) EXTERNAL; 
DECLARE (IR$PTR, VALUE$PTR)' ADDRESS; 
END MQUSTl; . . . · 

/* DEFINE' .THE MATH ACClJMOLATOR STORAGE 'AREA *I 
.DECLARE IR(l8) BYTE EXTERNAL; 

/* DEFINE THE COUNTER LOCATIONS */ 
DECLARE (LIQ$COUNT;BELT$COUNT) BYTE EXTERNAL; 

$EJECT 
/************************************************ 
* T.HIS PROGRAM IS USED TO GENERATE A FREQUENCY * 
* bqT~UT USING THE ~SBC 941 MODULE INSTALLED IN * 
* SOCKET NUMBER 0. TO PROVIDE MAXIMUM RESOLU- * 
* TION, FOUR PERIODS Wlt.L BE USED. THE FREQUEN-* 
* CY RANGES CORRESPONDING TO EACH PERIOD ARE: * 
* RANGE FREQ RESOLUTION * 
* . 1 5 0 TO 16 5 HZ 2 . HZ * 
* 2 166 TO 225 HZ 3• ·HZ * 
~ 3 226 TO 285 HZ 3 HZ * 
* 4 286 TO 550 HZ . '6 HZ * 
* THE SCALE FACTOR IS COMPUTED BY TEi'E FORMULA: * 
* SF=l00000/((FREQ)*(RANGE FACTOR)) * 
************************************************/ 

WEIGH~ELT$MOTOR$DRIVE: PROCEDURE ( F'REQ) PUBLIC; 

/* DECLARATION OF CONSTANT, 100,000 */ 
DECLARE HlJNDRED$K(4) 8¥TE DATA ( 

0A0H,086H,001H,000H ); 

/* DECLARATION OF ISBC941 PORT ENABLES */ 
DECLARE ENABLE$FREQ LITERALLY '01H'; 
DECLARE DISABLE$FRE,Q LITERALLY 1 00H'; 

/* DECLARATION OF ISBC 941 MEMORY LOCATION COMMANDS */ 
DECLARE WRRM$55 LITERALLY '055H '; 
DECLARE WRRM$74 LITERALLY '074H'; 

/* DECLARATION OF VARIABLES USED IN COMPUTATIONS */ 
DECLARE (RANGE,FREQA) BYTE; 
DEC LARE FREQ ADDRESS; . 

/* BEGIN COMPUTATION OF OUTPUT FOR FREQ > 48 HZ. */ 
IF FREQ > 49 
THEN DO; 

/* ENABLE FREQUENCY OUTPUT */ 
DO WHILE ((INPUT (UPI$0$STATUS) AND IBF) <> 0); 
~ND; . . 

OUTPUT(UPI$0$COMMAND) = 'SETOE; 

3·116 AFN-01931A 



54 3 
55 4 
56 3 

57 3 

59 4 

61 5 

63 5 
64 5 
65 4 

66 4 
67 3 

68 3 

69 3 

71 4 

72 4 

73 
74 
75 

76 
77 
78 
79 

80 
81 
82 

83 
84 
85 

86 
87 
88 

4 
4 
4 

3 
4 
4 
4 

3 
4 
3 

3 
4 
3 

3 
4 
3 

DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$0$DATA) = ENABLE$FREQ; 

/* COMPUTATION OF FREQUENCY RANGE */ 
IF FREQ < 285 
THEN DO; 

END; 

IF FREQ < 226 
THEN DO; 

END; 

IF FREQ < 166 
THEN RANGE = 9; 
ELSE RANGE = 5; 

ELSE RANGE = 3; 

ELSE RANGE = 2; 

/* LOAD MATH ACCUMULATOR WITH 10 0, 000 * / 
CALL MQULD4 (.IR,.HUNDRED$K); 

/* TEST FOR MOTOR SHUTDOWN */ 
IF FREQ > l 
THEN DO; 

/* DIVIDE BY FREQUENCY */ 
CALL MQUDV2 (.IR,.FREQ); 

/* DIVIDE BY RNAGE FACTOR */ 
CALL MQUDVl (.IR,.RANGE); 

/* GET TWO'S COMPLEMEN'l' FOR !SBC 941 SCALE FACTOR * / 
CALL MQUSTl (.IR,.FREQA); 
FREQA =NOT (FREQA + l); 

END; 

/* ADJUST FOR MOTOR STOP SIGNAL */ 
ELSE DO; 

END; 

FREQA 000H; 
RANGE 0FFH; 

/* SEND NEW SCALE FACTOR TO DEVICE */ 
DO WHILE ( (INPUT(UPI$0$STATUS) AND IBF) <> 0.); 
END; 
OUTPUT(UPI$0$COMMAND) = WRRM$55; 

DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPU.T(UPI$0$DATA) = FREQA; 

/* SEND NEW PERIOD TO DEVICE */ 
DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$0$COMMAND) = WRRM$74; 

3-117 AFN-01931A 



89 
90 
91 

92 

93 

94 
95 
96 

97 

98 
99 

100 

101 

102 

103 

104 
105 

106 
107 
108 

109 
110 
111 

3 
4 
3 

3 

2 

3 
4 
3 

3 

4 
3 

3 

2 

2 

1 

2 
2 

2 
3 
2 

2 
3 
2 

DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
0UTPUT(UPI$0$DATA) = RANGE; 

/* END OF FREQUENCY OUTPUT MODE */ 
END; 

/* HANDLE FREQUENCIES < 50 HZ. */ 
ELSE DO; 

/* DISABLE FREQUENCY OUTPUT GENERATION */ 
DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPU'r(UPI$0$COMMAND) = SETOE; 

DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0); 

END; 
OUTPUT(UPI$0$DATA) = DISABLE$FREQ; 

/* END OF ALTERNATE FREQUENCY OUTPUT */ 
END; 

/* RETURN TO CALLING PROGRAM */ 
RETURN; 

END WEIGHBELT$MO'r0R$DRIVE; 

$EJECT 
/***************************************************** 
* THIS PROGRAM GETS THE WEIGHBELT WEIGH'I' FROM THE * 
* NUMBER 1 !SBC 941 PROCESSOR. THE WEIGHT WILL BE * 
* RECEIVED AS A COUNT WHICH RANGES BETWEEN 0 AND * 
* 2000, CORRESPONDING TO A WEIGHT BETWEEN 0.0 AND * 
* 10.00 POUNDS. EACH COUNT RECEIVED HAS A VALUE * 
*OF 0.005 POUNDS. * 
*****************************************************/ 

WEIGHBELT$WEIGHT: PROCEDURE ADDRESS PUBLIC; 

/* DECLARATIONS OF VARIABLES USED IN THE PROCEDURE * / 
DECLARE (LCOUNT,HCOUNT) BYTE; 
DECLARE WEIGHT ADDRESS; 

/* GET INPUT COUNT LOW BYTE */ 
DO WHILE ( (INPUT(UPI$1$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$1$COMMAND) = RDFC0'; 

DO WHILE ((INPUT(UPI$1$STATUS) AND OBF) 
END; 
LCOUNT = INPUT(UPI$1$DATA); 

3-118 

0) i 

AFN·01931A 



112 
113 
114 

115 
116 
117 

118 
119 
120 

121 
122 
123 

124 

125 

126 

2 
3 
2 

2 
3 
2 

2 
3 
2 

2 
2 
2 

2 

2 

2 

127 1 

128 2 

129 2 

130 2 

131 2 
132 2 

133 2 

134 2 

/* GET INPUT COUNT HIGH BYTE */ 
DO WHILE ((INPUT (UPI$1$STATUS) AND !BF) <> 0); 
END; 
OUTPUT(UPI$1$COMMAND) = RDFC1; 

DO WHILE ((INPUT(UPI$1$STATUS) AND OBF) 
END; 
HCOUNT = INPUT(UPI$1$DATA); 

/* START NEXT WEIGHT SAMPLE PERIOD */ 

0) ; 

DO WHILE ((INPUT(UPI$1$STATUS) AND !BF) <> 0); 
END; 
OUTPUT(UPI$1$COMMAND) =LOOP; 

/* CONVERT WEIGHT TO AN ADDRESS VALUE */ 
WEIGHT = HCOUNT; 
WEIGHT= SHL(WEIGHT,8); 
WEIGHT WEIGHT + LCOUNT; 

/* DIVIDE BY TWO TO CONVERT TO POUNDS */ 
WEIGHT= SHR(WEIGHT,l); 

/* RETURN THE WEIGHTBELT WEIGHT */ 
RETURN WEIGHT; 

END WEIGHBELT$WEIGHT; 

$EJECT 
/************************************************** 
* THIS PROCEDURE TRANFERS THE WEIGHBELT SPEED TO * 
* THE CALLING PROGRAM AND CLEARS THE COUNTER FOR * 
* THE NEXT TEST. THE SPEED' RESOLUTION PROVIDES * 
* ONLY FIVE SPEED RANGES. * 
**************************************************/ 

WEIGHBELT$SPEED: PROCEDURE BYTE PUBLIC; 

/* DECLARATIONS OF VARIABLES USED BY THE PROCEDURE * / 
DECLARE SPEED BYTE; 

/* LATCH COUNTER BEFORE READING SPEED */ 
DISABLE; 

/* GET COUNTER VALUE FROM COUNTER */ 
SPEED = BELT$COUNT; 

/* CLEAR COUNTER FOR NEXT OPERATION */ 
BELT$COUNT 0; 
ENABLE; 

/* RE'I'URN DATA TO' CALLING ROUTINE */ 
RETURN SPEED; 

END WEIGHBELT$SPEED; 

3-119 AFN·01931A 



135 

136 

137 
138 

139 

141 

143 

144 
145 

146 
147 

148 
149 
150 

151 
152 
153 
154 

155 

156 

l 

2 

2 
2 

2 

3 

4 

4 
4 

3 
4 

3 
4 
3 

3 
4 
3 
3 

2 

2 

$EJECT 
/*************************************************** 
* THIS PROCEDURE PROVIDES COMMANDS TO THE STEPPER * 
* MOTOR TO OPERATE THE CONTROL VALVE. IT WILL COM-* 
* PUTE THE SIGNED MAGNITUDE REPRESENTATION FROM * 
* THE TWO'S COMPLIMENT INPUT AND WILL ISSUE THE * 
* APPROPRIATE STEP INCREMENT AND DIRECTION. A * 
* FIXED STEP RATE OF 100 STEPS PER SECOND WILL BE * 
* USED BY THE CONTROL DEVICE. * 
***************************************************/ 

LIQUID$VALVE$POSITION: PROCEDURE (POSITION) PUBLIC; 

/* DECLARATIONS OF VARIABLES USED BY THE PROCEDURE */ 
DECLARE POSITION BYTE; 

/* DEFINITIONS OF TERMS USED IN COMPUTATIONS */ 
DECLARE STEP$RATE LITERALLY '005H'; 
DECLARE REVERSE LITERALLY '080H'; 

/* IF NO MOVEMENT, SKIP OPERATIONS */ 
IF POSI'rION <> 0 
THEN DO; 

/* SUPPORT CONVERSION TO SIGNED MAGNITUDE NUMBER */ 
IF POSITION > 127 
THEN DO; 

/* GET MAGNITUDE OF MOVEMENT */ 
POSITION = 256 - POSITION; 

/* SET SIGN FOR CCW ROTATION */ 
POSITION = POSITION OR REVERSE; 

END; 

/* VERIFY THAT QUEUE SPACE IS AVAILABLE */ 
DO WHILE ((INPUT(UPI$2$STATUS) AND QF) <> 0); 
END; 

/* REQUEST DESIRED STEP RATE */ 
DO WHILE ((INPUT(UPI$2$STATUS) AND !BF')<> 0); 
END; 
OUTPUT(UPI$2$DATA) = STEP$RATE; 

/* REQUEST STEPPER MOVEMENT */ 
DO WHILE ((INPUT(UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$2$DATA) =POSITION; 

END; 

/* RETURN TO CALLING PROGRAM */ 
RETURN; 

END LIQUID$VALVE$POSITION; 

3-120 AFN-01931A 



157 1 

158 2 
159 2 

160 2 

161 2 

162 2 
163 2 

164 2 
165 2 
166 2 
167 2 
168 2 

169 2 

170 2 

171 1 

172 2 

173 2 

$EJECT 
/***************************************************** 
* THIS PROCEDURE TRANSFERS THE LIQUID FLOW RATE FROM * 
* THE FLOW COUNTER TO THE CALLING PROGRAM. AFTER * 
* READING, THE FLOW COUNTER WILL BE RESET TO FACILI- * 
* TATE 'l'HE NEXT READING. THE LIQUID FLOW COUNT WILL * 
* VARY BETWEEN 20 AND 240 PULSES IN EACH 200 MILLI- * 
* SECOND SAMPLE INTERVAL. THIS WILL CORRESPOND TO * 
* THE ACTUAL LIQUID FLOW RATE OF 10 TO 120 POUNDS * 
* PER MINUTE. * 
*****************************************************/ 

LIQUID$FLOW$RATE: PROCEDURE ADDRESS PUBLIC; 

/* DECLARATION OF VARIABLES USED BY THE PROGRAM */ 
DECLARE TEMP BYTE; 
DECLARE {FLOW,T$TWO,T$SXTN,T$THRTWO) ADDRESS; 

/* LATCH COUNTER BEFORE READING FLOW */ 
DISABLE; 

/* GET FLOW RATE VALUE FROM COUNTER */ 
TEMP = LIQ$COUNT; 

/* CLEAR COUNTER FOR NEXT OPERATION */ 
LIQ$COUNT = 0; 
ENABLE; 

/* CONVERT TO POUNDS PER MINUTE */ 
FLOW = TEMP; 
T$TWO = SHL(FLOW,l); 
T$SXTN = SHL{T$TW0,3); 
T$THRTWO = SHL(T$SXTN,l); 
FLOW = T$'l'WO + T$SXTN + T$THRTWO; 

/* RETURN FLOW RATE TO CALLING PROGRAM */ 
RETURN FLOW; 

END LIQUID$FLOW$RATE; 

$EJECT 
/******************************************** 
* COUNTER FOR LIQUID FLOW RATE FROM LIQUID * 
* FLOW METER. COUNT PULSE WILL GENERATE AN * 
* INTERRUPT AT LEVEL 1. * 
********************************************/ 

LIQ$CNT: PROCEDURE INTERRUPT 1 PUBLIC; 

/* INCREMENT FLOW COUNT */ 
LIQ$COUNT = LIQ$COUNT + l; 

/* SEND END OF INTERRUPT */ 
OUTPUT {0ECH) = 020H; 

3-121 AFN-01931A 



174 

175 

1 76 

177 

1 78 

179 

180 
181 

2 

2 

1 

2 

2 

2 

2 
1 

/* RETURN */ 
RETURN; 

END LIQ$CNT; 

$EJECT 
/******************************************** 
* THIS PROCEDURE WILL PROVIDE AN EVENT COUN-* 
* TER TO HANDLE THE BELT MOTION DETECTOR. . * 
* IT WILL OPERATE BY DIRECTING THE MOTION * 
* PULSE TO INTERRUPT 2. * 
********************************************/ 

BEL'l'$CN'r: PROCEDURE INTERRUPT 0 PUBLIC; 

/* INCREMENT BELT MOVEMENT */ 
BELT$COUNT = BELT$COUNT + l; 

/* SEND END OF INTERRUPT */ 
OUTPUT (0ECH) = 020H; 

/* RETURN */ 
RETURN; 

END BELT$CNT; 
END PROCESSOR$INTERFACE$MODULE; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE = 
MAXIMUM STACK SIZE 
400 LINES READ 
0 PROGRAM ERROR(S) 

END OF PL/M-80 COMPILATION 

0251H 
0013H 
0008H 

3-122 

593D 
19D 

8D 

AFN-01931A 



ARTICLE 
REPRINT 

3-123 

AR-91 

AFN-01931A 



Designing and Assem,bl.ing 
Microcomputer Systems Grows Easier 
Although a single data bus standard yet eludes the microcomputer industry, numer
ous manufacturers of single-board computer and supplementary boards have cast a 
hardware vote for the Multibus, Intel's microcomputer backplane which they origina
ted in 1976. With a steady eye on the control industry market, Intel has designed a 
home to accommodate Multibus compatible equipment, the iCS-80 industrial chas
sis. It promises to significantly reduce the time and cost of assembling the housing 
and interface parts of a microcomputer-based control system. In this article, besides 
taking the first look at Intel's new chassis and signal conditioning panels, we've put 
together a comprehensive list of Multibus compatible equipment. 

MICHAEL J. McGOWAN, Control Engineering 

After the development of single-board 
computers nearly three years ago, ven
dors moved quickly to seize a fraction of 
the market. It seemed at first that every
thing from memories to analog 1/0 
boards had become available. With an 
astonishing suddenness, companies 
sprang up in Silicon Valley, Texas, New 
Jersey, and along the forested roadside 
of Rt. 128 outside of Boston. Late that 
year, we counted well over a hundred 
companies anxious to make their for
tune selling the control engineer every
thing from one or two interface boards 
to complete microprocessor systems. 

Then the pleasant dream became a 
nightmare. From power supply require
ments to backplane pinouts, little was 
compatible. Even such an obvious thing 
as board size differed from vendor to 
vendor and many a hope for an ideal 
system was crushed in a pragmatic 
search for whatever would fit together. 

Seven months ago in our June 1978 
issue we noted that the number of mi
crocomputer system manufacturers 
had dwindled to about 60 and since 
then, we find still fewer. Some, no doubt, 
were forced out for lack of reliability, 
though most, despite remarkably ta
lented engineering, starved as the mar
ket saturated. 

Large scale integration of microcom
puter components has more than 
doubled the memory size of single
board computers. Sixteen bit word 
lengths will become commonplace in 
the next year as microcomputer perfor
mance begins to rival the mini
computer's and the lines· of distinc
tion between micros and minis lades. 

The light for a standard data bus 
drags on with leaders inthe struggle-but 
no winner. On the offensive, Pro-Log. 
and Mostek jointly introduced the STD 
bus last autumn in an attempt to gain a 
greater market share by espousing de
centralized system architectures. Their 
philosophy argues economics: the user 
should pay only for essential functions 
by.selecting small, specialized boards 

and not squander funds on a general 
purpose board with extra features. 

Still, Intel, favoring more densely 
packed and versatile boards, continues 
to dominate the market while the Multi
bus retains its popularity. Today more 
30 manufacturers produce over one 
hundred different boards based on that 
bus structure alone. Not that Intel enjoys 
the strict fidelity of its outside vendors; 
Digital Equipment Corporation. for in
stance. boasts some 17 companies 
providing boards to mate with the 
LSl-11 and LSl-112. 

FOUR 
FANS 
TO 
IMPROVE 
COOLING .. 

MOUNTING 
SPACE FOR 
SIGNAL 
CONDITIONING 
TERMINATION 
PANELS 

3-124 

But perhaps alone among its compet
itors, Intel has recognized that the ma' 
jority of its boards are being used in 
industrial applications and that the con
trol system designer needs more than 
components. 

An industrial chassis 
A microcomputer system designer must 
choose components that are electro
mechanically compatible. To that end, 
Intel is introducing the iCS-80 industrial 
chassis and termination panels. It 
makes all Multibus-compatible CPU 

SPACE FOR 
TWO iSBC 614 
EXPANSION 

8ACKPLANES 

,,, : 

SLIDE IN/OUT 
MOUNTING FOR 
iSBC 635 (14 AMP) 
or 640 (30 AMP) 
POWER SUPPLIES 

:4 
~w 

.-Yf.L--aoTH 
.>~1 RETMA 19" 
: 2'f (FRONT) 
-(1'- ANO 

: .. % ~~~~) 
MOUNTING 
KITS 

AFN·01931A 



MULTIBUS Compatible 
Boards and Vendors 

ADAC Corp. 

Advanced Micro Computers 

Ampex 

Analog Devices 

Augat 

Burr-Brown 

Cornpu ter Marketing 

Data Translation 

Datacube 

Date! Systems 

Electronic Solutions 

Garry Manufacturing 

HT Instruments 

Hal Communications 

Heurikon 

IDEAS 

Intel 

I nterphase 

Matrox Electronic Systems 

Mega logic 

Micro Memories 

Micro Networks 

Micro Tee 

Micro/Tel 

Monolithic Systems 

Motorola 

MUPRO 

National Semiconductor 

North Star Computers 

Pertee (ICOMI 

Relatiunal Memory Systems 

Systems, Computers and Interfaces 

1 homas Engineering Co. 

Vector Electronic 

XE DAX 

ZIA Tech 

• 

• 

• 
• 
• 

• 

• 
• 

\'. 
"' 0 

Cl) ~ 
~ ~ ~ ~ 
c 0 :; 0 

~ 

\'. 
"' 0 

Cl) 

.Q ~ Q OJ 

i'.l 0 :; ~ ~ 
·c E ~ a:c.i ~ o 
~ ru o 
E2ro-.i'?_mu 
E ru o <t 
oOOJOJn_d: 
u u 0 0 u 0 

• 
• 

• 

• 

• • • • • • 
• 

• • 

• 

• • • • • 

• 
• 

3-125 

•• 

• 
• 
• 
•• 

• 
• 

• 

• 

• 

~ \'. 
~ "' Ill 0 

Ill 
ro ru 
ro u 
"" "' w-::_ 
w'" 
w := 

• 

• 

~ 

\'. 
"' 0 

Cl) 

g 
c 
0 
u \'. 

~ 0 
0 Cl) 

D .c 
~ ~ ~ 

• 

• 
• • 

• 
• 

• 

• 

• 

• 

• 
• • • • 

• • • • 

• • 
• 

• 
• 

• • • • 
• 

• • • • • 
• 
• 

• • • • 

• 

• • 
• 
• 

• •• • • 

• • • 

• 
• 

AFN-01931A 



and peripheral boards readily usable. 
The advantage of the ICS-80. is that 

most of the interconnection and me" 
chanical details for. assembling a 
microcomputer-based control system 
have already been worked out. 

The iCS-80 siands 15. 75 inches high 
arid can be mounted in a stardard 
RETMA 19 inch rack, or in a NEMA cabi
net secure from the industrial environ
ment. The minimum layout consists of a 
four-slot Multibus card cage with provi
sions for adding two more cages to a 
maximum of twelve cards. The cages fit 
vertically, like records in a rack. to aid 
convection cooling and permit front ac
cess for insertion and maintenance. 

On the right side of the chassis is 
room for either a 14 or 30 ampere power 
supply, the choice dictated by the ap
plication. The system will operate on 
either 115 or 230 volts with a range of 4 7 
to 63 Hertz.specified in anticipation of 
international service. 

Cooling is assisted by four fans
three for the card cages and one for the 
power supply section. The intention 
here is to make the installation of addi
tional fans unnecessary even after the 
system has expanded. The fans are ex
pected to provide adequate cooling for 
most applications so supplementary air 
conditioning can be eliminated or at 
least minimized. 

Signal conditioning 
Three signal conditioning panels have 
been developed by Intel to simplify con
nections between the processing cards 
and the outside world. The principle is 
neatness, and with that follows reliabil
ity. Flat ribbon cables connect the sig
nal conditioners to the processor cards, 
a safeguard from ''which wire is which" 
and screwdriver slips in the vicinity of 
expensive boards. Field connections to 
the external inputs and outputs are 
made (presumably py electricians with 
big hands and reputations for being 
less than delicate) through rugged, 
screw-type barrier strips that accept 
wire as heavy as 14 AWG. The panels 
can mount either on RETMA cabinet 
brackets. NEMA wall spacers, or on the 
iCS-80 chassis itself. 

Each signal conditioning card gives 
the user a variety of options. The iCS-910 
analog signal conditioning/termination 
panel accepts up to 16 differential or 32 
single ended input channels. The four 
2-wire analog output channels might be 
connected to 4 to 20 mA current loops. 

The digital signal conditioning termi
nation panel, iCS-920, handles 24 two
wire input or output channels with sig
nals up to 55 V, 300 mA. Inputs can be 
diode protected, and pads are pro
vided for current limiters or voltage di
viders. Optoisolators may be inserted in 

Vendors of Multlcompatlble Boards 

ADAC Corp. 
Woburn, MA 
617/935-6668 

Advanced Micro Computers 
Santa Clara, CA 
408/732-2400 

Ampex 
El Segundo, CA 
714/973-2970 

Analog Devices 
Norwood, MA 
617/329-4700 

Aug at 
Attleboro, MA 
617/222-2202 

Burr-Brown 
Tucson, AZ 
602/655-8000 

Computer Marketing 
Waltham, MA 
617/894-7000 

Data Translation 
Natick, MA 
617/655-5300 

Datacube 
Reading, MA 
617/944-4600 

Datel Systems 
Canton, MA 
617/828-8000 

Electronic Solutions 
San Diego, CA 
714/292-0242 

Garry Manufacturing 
New Brunswick, NJ 
212/267-6844 

HT Instruments 
Marina Del Rey, CA 
312/822-4296 

Hal Communications 
Urbana, IL 
217/367-7373 

Heurikon 
Madison, WI 
608/255-9075 

IDEAS 
Belisville, MD 
301/937-3600 

Intel 
Aloha, OR 
503/642-2563 

lnterphase 
Dallas, TX 
214/238-0971 

the DIP sockets for high voltage isola
tion or jumpers may be used instead 
when the input is TTL. Similarly, output 
sockets accept jumpers for direct TTL 
output, DIP optoisolators for transient 
suppression, or integrated circuit (open 
collector) drivers for high voltage· to 
high current outputs. Activity on each 
channel is indicated by LEDs. 

The ac signal conditioning/(solidas) 
termination panel, iCS-930, will actually 
work with ac or de on its 16 channels. 
The user supplies optoisolatorn for input 
isolation and optically-isolated solid 

3-126 

Matrox Electronic Systems 
Montreal, Quebec 
514/735-1182 

Mega logic 
Brookville, OH 
513/833-5222 

Micro Memories 
Chatsworth, CA 
213/998-0070 

· Micro Networks 
Worcester, MA 
617/852-5400 

Micro Tee 
Sunnyvale, CA 
408/733-2919 

Micro/Tel 
St. Louis, MO 
314/569-3450 

Monolithic Systems 
Englewood, CO 
303/770-7 400 

Motorola 
Austin, TX 
512/928-6572 

MU PRO 
Sunnyvale, CA 
4081737-0500 

National Semiconductor 
Santa Clara, CA 
408/737-5262 

North Star Computers 
Berkeley, CA 
415/549-0858 

Pertee (ICOM) 
Chatsworth, CA 
213/998-1800 

Relational Memory Systems 
San Jose, CA 
408/248-6356 

Systems; Computers and Interfaces 
Waltham, MA 
617/899-2359 

Thomas Engineering Co. 
Concord, CA 
415/686-3041 

Vector Elecironic 
Sylmar, CA 
213/365-9661 

XEDAX 
Alameda, CA 
415/521-6600 

ZIA Tech 
Cupertino, CA 
408/996-7082 

state relays for output isolation. Mount
ing pads for customer-supplied MOVs 
or snubber networks are included. As 
before, a fuse gives overload protection 
and LEDs indicate channel activity. 

The advantage of all this is that by 
plugging in some components and per~ 
haps inserting a few resistors and capa
citors, the interface units can be tailored 
to a particular application. Since many 
mechanical and electrical connection 
problems have already been solved, a 
customized unit can be built with mini
mum effort. D 

AFN-01931A 



DOCUMENTATION 

AFN-01931A 





RELATED INTEL PUBLICATIONS 

System 80/10 Microcomputer Hardware Reference Manual, 98-00316B 

iSBC 80/10 and iSBC 80/10A Single Board Computer Hardware Reference Manual, 9800230F 

iSBC 80P and iSBC 80P10 Prototyping Package User's Guide, 9800223D 

iSBC 80/20 and iSBC 80/20·4 Single Board Computer Hardware Reference Manual, 98·317C 

iSBC 80/30 Hardware Reference Manual, 9800611A 

iSBC 86/12 Single Board Computer Hardware Reference Manual, 9800645A 

iSBC 544 Intelligent Communications Controller Board Hardware Reference Manual, 9800616B 

iSBC 569 Intelligent Digital Controller Board Hardware Reference Manual, 9800845 

iSBC 941 Industrial Digital Processor User's Guide, 9803077-02 

iCS 80 Industrial Chassis Hardware Reference Manual, 9800799A 

iSBC 310 High Speed Mathematics Unit Hardware Reference Manual, 9800410A 

iSBC 957 lntellec-iSBC 86/12 Interface and Execution Package User's Guide, 9800743A 

Intel MULTIBUS Specification, 9800683 

MCS-80 User's Manual, 98-153D 

MCS-85 User's Manual, 98-366C 

The 8086 Family User's Manual, 9800722 

UPl-41 User's Manual, 9800504 

Introduction to the UPl-41A, AP-41 

RMX/80 User's Guide, 9800522C 

ISIS-11 User's Guide, 9800306D 

8080/8085 Assembly Language Programming Manual, 9800301C 

PUM-80 Programming Manual, 9800268B 

ISIS-11 PUM-80 Compiler Operator's Manual, 9800300 

FORTRAN-80 Programming Manual, 9800481A 

ISIS-11 FORTRAN-80 Compiler Operator's Manual, 9800480B 

"How to use FORTRAN with other Intel Languages", AP-44 

BASIC-80 Reference Manual, 9800758 

A Guide to lntellec Microcomputer Development Systems by Daniel D. McCracken, 9800558B 

8080/8085 Fundamental Support Package (FSP) Reference and Operating Instructions for ISIS-11 Users, 9800887-01 

8086 Assembly Language Reference Manual, 9800640A 

MCS-86 Assembler Operator's Instructions for ISIS-11 Users, 9800641A 

PUM-86 Programming Manual, 9800466A 

ISIS-11 PUM-86 Compiler Operator's Manual, 9800478A 

ISIS-11 8086 Cross Development Utilities Operator's Manual, 9800639A 

Intel iSBX Bus Specification, 142686-001 

iSBC 80/10B Single Board Computer Hardware Reference Manual, 9803119-01 

iSBC 80/24 Single Board Computer Hardware Reference Manual, 142648-001 

iSBX 350 Parallel MULTIMODULE Board Hardware Reference Manual, 9803191-01 

iSBX 351 Serial MULTIMODULE Board Hardware Reference Manual, 9803190-01 

iSBX 331 Fixed/Floating Point Math MULTIMODULE Board Hardware Reference Manual, 142668-001 

4.3 AFN·01931A 



iSBX 332 Floating Point Math MULTIMODULEJBoard Hardw~re Reference ManJa1, 9803204-01 

Intel iSBX MULTIMODULE Boards and the iSBC 80/10B Single Board Computer Reliability Report, RR-29, 142986-001_ 

Introduction to the iRMX 86 Operating System, S803124 

iRMX 86 Nucleus, Terminal'. Handler, a~d OebU.Qg8r ·Reterencie ·M~nu·a1, 9803122·.. ·· 

iRMX 86 1/0 System Reference Manual, 9803123 

iRMX 86 System Programmer's Reference Manual, 142721 

iRMX 86 Installation Guide for ISIS-11 Users, 9803125 

iRMX 86 Configuration Guide for ISIS·ll Users, 9803126 

iSBC 534 Four Channel Communications Expansion Board Hardware Reference Manual, 9800450 

RMX/80 Interactive Configuration Utility User's Guide, 142603 

Simplifying Complex Designs Using the iRMX 80 Nucleus, AP-112, 143349 

iSBC 86/12A Single Board Computer Hardware Reference Manual, 9803074 · 

8086 Family Utilities User's Guide, 980639 

iSBC 88/40 Hardware Reference Manual 

4.4 

; ·.' 

-.... ·• 

AFN-01931A 



TECHNICAL LITERATURE LIST 

4.5 AFN-01931A 



MEMORY COMPONENTS 

Memory Design Handbook - 1979 
Growing Static RAM Family Album 
2115A/2125A Brochure 
RR 7 - 2107A/2107B Reliability 
RR 8 - Polysilicon fuse Bipolar PROM 
RR 11 - 241616K CCD Memory 
RR 12 - 2708 BK Erasable PROM 
RR 14 - 2115/2125 MOS Static RAMS 
RR 15 - 2104A 
RR16-2116 
RR 18 - HMOS Reliability Update 
RR 19·2716 - UV Erasable PROM 
RR 20·2117 - Reliabilty 
AR 20 - 16K RAM 

Tiiie 

AR 35-2716 - Erasable PROM-16,384 Bits On·Chip 
AR 44 - Speedy RAM Runs Cool - 2147 
AR 46 - HMOS Scales Traditional Devices 
AR 78 - ISSCC Reprint on Static RAMS 
AP 22 - Which Way for 16K 
AP 23 - 2104A 4K RAM 
AP 30 - Applications of 5 Volt EPROM & ROM Family 
AP 46 - Error Detecting and Correcting Codes 

TELECOM 

AR 79 - ISSCC Reprint - 2920 
AR 80 - ISSCC Reprint - 2912 
AR 81 - Single Chip NMOS Micro-process Signals 
AR 88 - First Monolithic PCM Filter 

MAGNETICS 

Bubble Memory Design Handbook 
AR 92 - Megabit Bubble Memory Chip Gets Support from LSI 
AR 96 - Here Comes A Million Bit Chip 
A Total System Solution to Magnetics Applications (Technical Paper) 

MICROCOMPUTER COMPONENTS 

MCS 48 User's Manual 
MCS 48 Product Description (98·615) 
MCS 48 Applications Handbook 
MCS 48 Reference Card (98-412) 
AP 24 - MCS 48 Family (98-413) 
AP 40 - Keyboard/Display Scanning ... MCS 48 (98·755) 
AP 49 - Serial 1/0 and Math Utilities ... 8049 (98-904) 
AP 55A - High Speed Emulator for MCS 48 
AP 56 - Designing With Intel's 8022 Micro (98·954) 
AR 58 - Mlcrocontroller Includes A-D Converter (98-718) 
AR 63 - Microcomputer's On-Chip Functions - 8022 (98-780) 
AR 102 - Designing Reliable Software for Auto Applications 
AR 107 - Use EPROM 1·Chip µCs as Effective 1-Shot Lab Aids 
UPl-41 User's Manual 
UPl-41 Reference Card (98-671) 
MCS-48 and UPl-41 Assembly Language Programming Manual 
MCS-80 User's Manual 
RR 10 - 8080/BOBOA Microcomputer 
MCS-85 User's Manual 
MCS-85 Product Description (98-365) 
8080/8085 Reference Card (98-438) 
AP 29 - Using the Intel 8085 Serial 110 Lines (98·684) 
8080/8085 Assembly Language Programming Manual 
8080/8085 Floating Point Arithmetic Library User's Manual 

4·6 

Part No. 

011100 
010100 
001710 
006540 
006560 
006700 
006720 
006740 
006750 
006760 
006771 
006775 
006780 
006900 
007300 
007320 
007330 
007370 
008300 
008500 
008550 
008560 

007375 
007380 
007385 
007400 

900020 
900500 
900515 
900520 

98·270 
201710 
121511 
202300 
203800 
203805 
203810 
203815 
203820 
203605 
203610 
207350 
207355 
98-504 
203100 
98-255 
98-153 
207100 
98-366 
205770 
205785 
207715 
98-940 
98·452 

AFN·01931A 



Title 

MCS-86 User's Manual 
MCS-86 Product Description (98-723) 
AR 74 - Get Minicomputer Features at 10 x Speed with 8086 (98-921) 
AR 82 - CPU Brings 6-Bit Performance (98-957) 
AP 50 - Debug Strategies for 8089 
AP 51 - Design 8086/8088/8089 with 8289 
MCS-86 Assembly Macro Language Reference Manual 
MCS-86 Assembly Language Reference Guide (98-749) 
Peripheral Design Handbook 
Peripherals Product Description 
Microcomputers and Peripherals Pocket Guide (98-843) 
AR 53 - Micro Interfacing Characteristics (8253) - (98-647) 
AR 89 - Powerful 1/0 Processor Unloads CPU (8089) 
AP 15 - 8255 Programmable Peripheral Interface (98-333) 
AP 16 - Using the 8251 (98-334) 
AP 31 - Using the 8259 (98-658) 
AP 32 - 8275 and 8279 (98-576) 
AP 35 - Crystals Specifications (98-652) 
AP 45 - Using the 8202 Dynamic RAM Controller (98-809) 
AP 48 - Direct Memory Access w/8257 DMA Controller 
AP 54 - Dot Matrix Printer Controller Using the 8295 (98-816) 
AP 59 - Using 8259A Programmable Interrupt Controller 

INDUSTRIAL GRADE PRODUCTS 

Industrial Environment Brochure 
Industrial Grade Product Book 

MILITARY COMPONENTS 

Military Products Data Catalog 

GENERAL DATA CATALOGS 

1979 Components Data Catalog 
1979 Systems Data Catalog 

PROTOTYPE MICROCOMPUTER KITS 

SDK-85 User's Manual 
SDK-86 Assembly Manual 
SDK-86 User's Guide 

iCS INDUSTRIAL CONTROL SERIES 

iCS 920 Digital Signal Hardware Reference Manual 
iCS 80 Industrial System Site Planning Guide 
iCS 80 Industrial Chassis Hardware Reference Manual 
iSBC 711 Analog Input Board Reference Manual 
iSBC 724 Analog Output Board Reference Manual 
iSBC 732 Combination Analog Input/Output Board Hardware Reference Manual 
iSBC 941 Industrial Digital Processor User's Guide 
iCS Product Description (881-02) 
iCS Brochure 
AP 52 - Intel's Industrial Control Series in Control Applications (98-932) 

SYSTEMS SOFTWARE 

RMX180 User's Guide 
AP 33 - RMX/80 (98-577) 
AP 47 - Using FORTRAN-80 for iSBC Applications (98-836) 

OEM MICROCOMPUTER SYSTEMS 

iSBC 80/04 Hardware Reference Manual 
iSBC 80/05 Hardware Reference Manual 
iSBC 80/10 and iSBC 80/10A Hardware Reference Manual 

4-7 

Part No. 

98-722 
205880 
207310 
207320 
207755 
207760 
98-640 
205900 
98-676 
205600 
205615 
207305 
207330 
207700 
207705 
207720 
207725 
207730 
207745 
207750 
207765 
207770 

206000 
206005 

004150 

010200 
506000 

98-451 
98-697 
98-698 

98-801 
98-798 
98-799 
98-485 
98-486 
98-487 

98-3077 
500115 
500110 
511040 

98-522 
511020 
452015 

98-482 
98-483 
98-230 

AFN-01931A 



AP 26 - iSBC 80/10-System 80/10 
RR 17 - iSBC 80/10 Reliability 

Title 

iSBC 80/20 and iSBC 80/20A Hardware Reference Manual 
AR 28 - Control Engineering iSBC 80/20 Description 
iSBC 80/30 Hardware Reference Manual 
AR 65 - Triple Bus Architecture (iSBC 80/30) 
iSBC 957 lntellec iSBC 86/12 User's Guide 
AP 43 - Using the iSBC 957 (98-816) 
iSBC 86/12 Hardware Reference Manual 
AR 72 - 16·Bit Single Board Computer 
AR 69 - Dual-Port RAM Hikes Throughput (iSBC 80/30) 
iSBC 016 16K RAM Expansion Board Hardware Reference Manual 
iSBC 032/048/064 Random Access Memory Boards Hardware Reference Manual 
iSBC 094 4K·Byte CMOS RAM/Battery Backup Board Hardware Reference Manual 
iSBC 104/108/116 Combination Memory and 1/0 Expansion Boards Hardware Reference Manual 
iSBC 202 Double Density Diskette Controller Hardware Reference Manual 
iSBC 204 Flexible Disk Hardware Reference Manual 
iSBC 206 Disk Controller Hardware Reference Manual 
iSBC 310 High-Speed Mathematics Unit Hardware Reference Manual 
iSBC 416 16K PROM/ROM Expansion Board Hardware Reference Manual 
iSBC 464 PROM/ROM Board Hardware Reference Manual 
iSBC 501 Direct Memory Access Controller Hardware Reference Manual 
iSBC 508 1/0 Expansion Board Hardware Reference Manual 
iSBC 517 Combination 1/0 Expansion Board Hardware Reference Manual 
iSBC 519 Programmable 1/0 Expansion Board Hardware Reference Manual 
iSBC 534 Four-Port Communications Expansion Board Hardware Reference Manual 
iSBC 544 Intelligent Communications Controller Board Hardware Reference Manual 
iSBC 556 Optically Isolated Programmable 1/0 Board Hardware Reference Manual 
iSBC 569 Intelligent Digital Controller Hardware Reference Manual 
iSBC 604/614 Cardcage Hardware Reference Manual 
iSBC 635 Power Supply User's Manual 
iSBC 640 Power Supply Hardware Reference Manual 
iSBC 660 System Chassis Hardware Reference Manual 
iSBC 915 GO-NO-GO Diskette Diagnostic and Monitor Program User's Manual 
System 80/10 Microcomputer Hardware Reference Manual 
System 80/20·4 Microcomputer Hardware Reference Manual 
System 80/30 User's Guide 
AR 48 - Reduce your Micro-based system design time 
AR 55 - Design Motivations for Multiple Processor Micro Systems 
AR 64 - Microcomputers - Single Chip or Single Board 
AP 28A - MULTIBUS Interfacing (98·587) 
Intel Delivers 8·bit/16·bit BM Configuration Envelopes 

INTELLEC MICROCOMPUTER DEVELOPMENT SYSTEM 

lntellec 800 Operator's Manual 
lntellec Reference Manual 
lntellec Diagnostic Confidence Test Operator's Manual 
lntellec Double Density DOS Hardware Reference Manual 
ISIS I DOS Operator's Manual 
Diskette Operating System Manual 
Paper Tape Reader Guide 
Series II Hardware Reference Manual 
Series II Model 210 User's Guide 
lntellec Series II Functional Description and Specifications (98·606) 
lntellec Series II Installation and Service Manual 
lntellec Series Hardware Interface Manual 
Success Manual for Single-Chip Microcomputer Users 
Success Manual for 8086 Users 
Microcomputer Development Package Booklet 
AR 97 - Minimizing Risk Through Use of Micro Development Systems 

4·8 

Part No. 

511000 
509000 
98-317 

510100 
98·611 

510140 
98-743 

511030 
98·3075 
510160 
510150 
98·279 
98-488 
98·449 
98·277 
98·420 
98·568 
98·567 
98·410 
98·265 
98-643 
98-294 
98·278 
98·388 
98-385 
98·450 
98-616 
98·489 
98·845 
98-708 
98·298 
98-803 
98·505 
98-350 
98-316 
98·484 
98·710 

510110 
510120 
510130 
511010 
501100 

98·129 
98-132 
98·386 
98·422 
98·206 
98·212 
98-016 
98·556 
98·557 
404010 
98·559 
98·555 
402050 
402100 
404000 
451130 

AFN-01931A 



SOFTWARE 

ICIS Cobol Language Reference Manual 
iCIS Cobol Packet Reference Card (9B·929) 
2920 Assembly Language Manual 
2920 Simulator User's Guide 
FORTRAN-BO Programming Manual 
FORTRAN-BO Reference Card (9B-547) 

Title 

AR 73 - BOBO gets a "full blown" FORTRAN (9B-B44) 
PUM Programming Manual 
AR 59 - Modular Programming in PUM 
PUM B6 Programming Manual 
BASIC-BO Reference Manual 
BASIC-BO Reference Guide (9B-774) 
AR 61 - Microprocessor Software Development Tools 
AR 9B - Software Development Package for B086 System Designers 
!SIS II FORTRAN-80 Compiler Operator's Manual 
ISIS II PUM Compiler Operator's Manual 
!SIS II PUM B6 Compiler Operator's Manual 
!SIS II BOB5 Macro Assembler Operator's Manual 
!SIS II System User's Guide 
!SIS II Reference Card (9B-B41) 
ISIS II CREDIT.User's Guide 
CREDIT CRT-Based Text Editor Pocket Reference (9B-903) 
MCS-86 Assembly Language Converter Operating Instructions for !SIS II Users 
MCS-86 Assembly Operation Instructions for !SIS II Users 
MCS-86 Software Development Utilities Operating Instructions for !SIS II Users 
ICE-86 Operating Instructions for !SIS II Users 
ICE-49 Operating Instructions for !SIS II Users 
Multi-ICE Operating Instructions for !SIS II Users 
iCIS-COBOL Compiler Operator's Instructions for ISIS II Users 
BOB9 Assembler User's Manual 

EMULATORS 

ICE-30 Reference Manual 
ICE-41 Operator's Manual 
ICE-41 Reference Card (98-766) 
ICE-4B Operator's Manual 
MCS-4B ICE Reference Card (98-653) 
ICE-80 Reference Manual 
ICE-80 Operator's Manual 
ICE-85 Operating Instructions 
ICE-85 Brochure 
ICE-86 Pocket Reference (98-838) 
Multi-ICE Reference Card (9B-B10) 

PROM PROGRAMMERS 

Universal PROM Programmer User's Manual 
Universal PROM Programmer Reference Manual 

PROMPT 

PROMPT 4B Microcomputer User's Manual 
PROMPT 48 Reference Card (98-404) 
PROMPT BO/B5 User's Manual 

,.SCOPE 

,.scope B20 Operator's Handbook 
,.scope Reference Card (9B-5B2) 
,.scope BOBOA Probe Service Manual 
,.scope BOB5 Probe Service Manual 
,.scope Console Service Manual 

4.9·· 

Part No. 

9B-927 
409100 
9B-9B7 
9B-9BB 
9B-4B1 
400600 
451125 
9B-26B 
451115 
9B-466 
9B-758 
400705 
451120 
451135 
9B-4BO 
9B-300 
9B-47B 
9B-292 
9B-306 
403350 
98-902 
407700 
98-642 
9B-641 
9B-639 
9B-714 
9B-632 
98-672 
9B-92B 
9B-93B 

9B-220 
9B-465 
305075 
98-464 
303925 
98-167 
98-1B5 
98-463 

406215 
406310 
406505 

9B-B19 
9B-133 

9B-402 
304B50 
9B-307 

9B-526 
40B150 
9B-592 
98-72B 
98-593 

AFN-01931A 



Tltle 

"Scope 820 Micro-Console Key Sequence Guide 
AP 4.2 - Writing Diagnostics for the !'Scope (98-753) 

ADD-INIADD-ON MEMORY SYSTEMS 

in-7000/in-7001 Product Description 
in-1670 Product Description 
in-4011 Product Description 
in-5034 Product Description 
Series 90 Product Description - CM90 
Series 90 Product Description - CM92 
Series 90 Configuration Gulde 
AP 63 - Control and Interleaving BXP Standard Memory Bus 

4-10 

Part No. 

98-826 
452005 

888200 
888210 
888220 
888230 
888240 
888250 
888790 
888510 

AFN-01931A 



intef 
3065 Bowers Avenue 
Santa Clara, Catilornla 95051 
Tel: (408) 9~7.·8080 
TWX: 910·338·0026 
TELEX: 34·6372 

ALABAMA 

Intel Corp. 
303 Williama Avenue, S. W. 
Suite 1422 
Huntsville 35801 
Tel: (205) 533·9353 

ARIZONA 
Intel Corp. 
10210 N. 25th Avenue, Suite 11 
Phoenix 85021 
Tel: (602) 869·4980 

CALIFORNIA 

Intel Corp. 
7670 Opportunity Rd. 
Suite 135 
San Diego 92111 
Tel: (714) 268-3563 
Intel Corp.• 
2000 East 4th Street 
Suite 100 
Santa Ana 92705 
Tel: (714) 835-9642 
TWX: 910-595-1114 

Intel Corp.• 
5530 Corbin Ave. 
Suite 120 
Tarzana 91356 
Tel: (213) 708-0333 
TWX: 910·495-2045 

Intel Corp.• 
3375 Scott Blvd. 
Santa Clara 95051 
Tel: (408) 987·8088 
TWX: 910-339-9279 
910-338-0255 
Earle Associates, Inc. 
4617 Ruffner Street 
Suite 202 
San Diego 92111 
Tel: (714) 278-5441 

Mac-I 
2576 Shattuck Ave. 
Suite 4B 
Berkeley, CA 94704 

Mac-I 
558 Valley Way 
Calaveras Business Park 
Milpitas 95035 
Tel: (408) 946-8885 

Mac-I 
P.O. Box 8763 
Fountain Valley 92708 
Tel: (714) 839-3341 

Mac-I 
25 Village Parkway 
Santa Monica 90409 
Tel: (213) 452-7611 

Mac-I 
20121 Ventura Blvd., Suite 240E 
Woodland Hills 91364 
Tel: {213) 347-5900 

COLORADO 

Intel Corp.' 
650 S. Cherry Street 
Suite 720 
Denver 80222 
Tel: (303) 321·8086 
TWX: 910·931-2289 

CONNECTICUT 

Intel Corp. 
36 Padanaram Road 
Danbury 06810 
Tel: (203) 792·8366 
TWX: 710-456·1199 

EMC Corp 
48 Purnell Place 
Manchester 06040 
Tel: (203) 646·8085 

U.S. AND CANADIAN SALES OFFICES 

FLORIDA 

Intel Corp. 
1500 N.W. 62nd Street, Suite 104 
Ft. Lauderdale 33309 
Tel: (305) 771-0600 
TWX: 510-956·9407 

Intel Corp. 
500 N. Maitland, Suite 205 
Maitland 32751 
Tel: (305) 628·2393 
TWX: 810·853-9219 

GEORGIA 

Intel Corp. 
3300 Holcomb Bridge Rd. 
Norcroae 30092 
Tel: (404) 449·0541 

ILLINOIS 
Intel Corp.• 
2550 Golf Road, Suite 815 
Rolling Meadows 60008 
Tel: (312) 981·7200 
TWX: 910·651·5881 

INDIANA 

tntet Corp. 
9101 Wesleyan Road 
Suite 204 
Indianapolis 46268 
Tel: (317) 875-0623 

IOWA 

Intel Corp. 
St. Andrews Building 
1930 St. Andrews Drive N.E. 
Cedar Rapids 52402 
Tel: (319) 393·5510 

KANSAS 

Intel Corp. 
9393 W. 110th St., Ste. 265 
Overland Park 66210 
Tel: (913) 642-6080 

MARYLAND 
Intel Corp.• 
7257 Parkway Drive 
Hanover 21076 
Tel: (301) 796-7500 
TWX: 710-862-1944 

MASSACHUSETTS 

Intel Corp.• 
27 Industrial Ave. 
Chelmsford 01824 
Tel: (617) 256-1800 
TWX: 710·343-6333 

EMC Corp. 
381 Elliot Street 
Newton 02164 
Tel: (617) 244-4740 
TWX: 922531 

MICHIGAN 

Intel Corp.• 
26500 Northwestern Hwy. 
Suite 401 
Southfield 48075 
Tel: (313) 353-0920 
TWX: 810-244-4915 

MINNESOTA 

Intel Corp. 
7401 Metro Blvd. 
Suite 355 
Edina 55435 
Tel: (612).835-6722 
TWX: 910·576-2867 

MISSOURI 

Intel Corp. 
502 Earth City Plaza 
Suite 121 
Earth City 83045 
Tel: (314) 291-1990 

NEW JERSEY 
Intel Corp.• 
Raritan Plaza 
2nd Floor 
Raritan Center 
Edison 08837 
Tel: (201) 225·3000 
TWX: 710·480·6238 

M. T. I. 
383 Route 46 West 
Fairfield, NJ 07006 

NEW MEXICO 

BFA Corporation 
P.O. Box 1237 
Les Cruces 88001 
Tel: (505) 523-0601 
TWX: 910-983·0543 

BFA Corporation 
3705 Westerfield, N.E. 
Albuquerque 87 1 11 
Tel: (505) 292-1212 
TWX: 910-989-1157 

NEWVORK 

Intel Corp.' 
300 Motor Pkwy. 
Hauppsuge 11787 
Tel: (516) 231-3300 
TWX: 510·227·6236 

Intel Corp. 
80 Washington St. 
Poughkeepsie 12601 
Tel: (914) 473·2303 
TWX: 510-248·0060 

Intel Corp.· 
2255 Lyell Avenue 
Lower Floor East Suite 
Rochester 14606 
Tel: (716) 254·6120 
TWX: 510-253-7391 

T·Squared 
4054 Newcourt Avenue 
Syracuse 13206 
Tel: (315) 463·8592 
TWX: 710-541-0554 

T-Squsred 
7353 Pittsburgh 
Victor Road 
Victor 14564 
Tel: (716) 924·9101 
TWX: 510·254·8542 

NORTH CAROLINA 

Intel Corp. 
2306 W. Meadowvi'ew Rd. 
Suite 206 
Greensboro 27 407 
Tel: (919) 294-1541 

OHIO 

Intel Corp.• 
6500 Poe Avenue 
Dayton 45414 
Tel: (513) 890-5350 
TWX: 810-450·2528 

Intel Corp. • , 
Chagrin-Brainard Bldg , No. 300 
28001 Chagrin Blvd 
Cleveland 44122 
Tel: (216) 464-2736 
TWX: 810·427-9298 

OREGON 

Intel Corp. 
10700 S.W. Beaverton 
Hillsdale Highway 
Suite 324 
Beaverton 97005 
Tel: (503) 641-8086 
TWX: 910-467-8741 

PENNSYLVANIA 

Intel Corp.' 
510 Pennsylvania Avenue 
Fort Washington 19034 
Tel: (215) 641·1000 
TWX: 510·661·2077 

Intel Corp.' 
201 Penn Center Boulevard 
Suite 301W 
Pittsburgh 15235 
Tel: (412) 823-4970 

Q.E.D. Electronics 
300 N. York Road 
Hatboro 19040 
Tel: (215) 674-9600 

TEXAS 
Intel Corp.• 
2925 L.B.J. Freeway 
Suite 175 
Dallas 75234 
Tel: (214) 241-9521 
TWX: 910·860-5617 

Intel Corp.' 
6420 Richmond Ave. 
Suite 280 
Houston 77057 
Tel: (713) 784·3400 
TWX: 910·881·2490 

August 1981 

Industrial Digital Systems Corp. 
5925 Sovereign 
Suite 101 
Houston 77036 
Tel: (713) 988-9421 

Intel Corp. 
313 E. Anderson Lane 
Suite 314 
Austin 78752 
Tel: (512) 454-3628 

UTAH 

Intel Corp. (temporary) 
3519 Lexington Dr. 
Bountiful, UT 84010 
Tel: (801) 292-2164 

VIRGINIA 

Intel Corp 
1501 Santa Rosa Road 
Suite C-7 
Richmond, VA 23288 
Tel: (804) 262·5668 

WASHINGTON 

Intel Corp 
Suite 114, Bldg. 3 
1603 116th Ave. N.E. 
Bellevue 98005 
Tel: (206) 453·8086 
TWX: 910·443·3002 

WISCONSIN 

Intel Corp 
150 S. Sunnyslope Rd 
Brookfield 53005 
Tel: (414) 784-9060 

CANADA 

Intel Semiconductor Corp.~ 
Suite 233, Bell Mews 
39 Highway 7, Bells Corners 
Ottawa, Ontario K2H 8R2 
Tel: (613) 829-9714 
TELEX: 053·4115 

Intel Semiconductor Corp. 
50 Galaxy Blvd. 
Unit 12 
Rexdsle, Ontario 
M9W 4Y5 
Tel: (416) 675·2105 
TELEX: 06983574 

Multilek, Inc.• 
15 Grenfell Crescent 
Ottawa, Ontario K2G OG3 
Tel: (613) 226-2365 
TELEX: 053-4585 

Multilek, Inc.• 
Toronto 
Tel: 1-800-267-1070 

Mullilek, Inc. 
Montreal 
Tel: 1·800·267·1070 

•Field Application Location 



intef 
3065 Bowers Avenue 
Santa Clara, California 95051 
Tel: (408) 987-8080 
TWX: 910-338-0026 
TELEX: 34-6372 

ALABAMA 

Arrow Electronics 
4717 University Or. 
Suite 102 1/2 D. 
Huntsville 35405 
Tel: (205) 830-1103 

tHamilton/Avnet Electronics 
4812 Commercial Drive N. W. 
Huntsville 35805 
Tel: (205) 837-7210 
TWX: 810·726-2162 

tP1oneer I Huntsville 
1207 Putnam Drive N.W. 
l-luntsv1Ue 35805 
Tel: (205) 837-9300 
TWX: 810·726-2197 

ARIZONA 

tHamilton/Avnet Electronics 
505 $. Madison Drive 
Tempe, AZ 85281 
Tel: (602) 231-5140 
TWX: 910-950-0077 

tWyle Distribution Group 
8155 N. 24th Street 
Phoenix 85021 
Tel: (602) 995-9185 
TWX: 910-951-4282 

CALIFORNIA 

Arrow Electronics, tnc. 
521 Weddell Dr. 
Sunnyvale 94086 
Tel: (408) 745-6600 
TWX: 910-339·9371 

tAvnet Electronics 
350 McCormick Avenue 
Costa Mesa 92626 
Tel: (714) 754-6051 
TWX: 910·595-1928 

Hamilton/Avnet Electronics 
1175 Bordeaux Dr. 
Sunnyvale 94086 
Tel: (408) 743-3300 
TWX: 910-339·9332 

tHamilton/Avnel Electronics 
4545 Viewridge Ave 
San Diego 92123 
Tel: (714) 563-1969 
TWX: 910-335-1216 

tHamilton/Avnet Electronics 
10912 W. Washington Blvd. 
Culver City 90230 
Tel: (213) 558-2193 
TWX: 910·340-6364 or 7073 

tHamilton Electro Sales 
3170 Pullman Street 
Costa Mesa 92626 
Tel: (714) 641-4109 
TWX: 910-595-2638 

tWyle Distribution Group 
124 Maryland Street 
El Segundo 90245 
Tel: (213) 322·8100 
TWX: 910-348-7140 or 7111 

tWyle Distribution Group 
9525 Chesapeake Dr. 
San Diego 92123 
Tel: (714) 565-9171 
TWX: 910-335-1590 

tWyle Distribution Group 
3000 Bowers Avenue 
Santa Clara 95052 
Tel: (408) 727-2500 
TWX: 910·338·0451 or 0296 

Wyle Distribution Group 
17872 Cowan Avenue 
lrvme 92713 
Tel: (714) 641-1600 
TWX: 910-595-1572 

COLORADO 

tWyle Distribution Group 
451 E 124th Avenue 
Thornton, CO 80241 
Tel: (303) 457-9953 
TWX: 910-936-0770 

tHamilton I Avnet Electronics 
8765 E. Orchard Road 
Suite 708 
Englewood 80111 
Tel: (303) 740·1017 
TWX: 910-935-0787 

U.S. AND CANADIAN DISTRIBUTORS 

CONNECTICUT 

tArrow Electonics 
12 Beaumont Road 
Wallingford 06512 
Tel: (203) 265-7741 
TWX: 710-476·0162 

tHamilton I Avnet Electronics 
Commerce Industrial Park 
Commerce Drive 
Danbury 06810 
Tel: (203) 797-2800 
TWX: 710-456-9974 

tHarvey Electronics 
112 Main Street 
Norwalk 06851 
Tel: (203) 853-1515 
TWX: 710-468·3373 

FLORIDA 

tArrow Electronics 
1001 N.W. 62nd Street 
Suite 108 
Ft. Lauderdale 33309 
Tel: (305) 776-7790 
TWX: 510-955·9456 

t Arrow Electronics 
115 Palm Bay Road, N.W. 
Suite 10, Bldg. 200 
Palm Bay 32905 
Tel: (305) 725·1480 
TWX: 510-959-6337 

tHamilton/ Avnet Electronics 
6800 Northwest 20th Ave 
Ft. Lauderdale 33309 
Tel: (305) 971 ·2900 
TWX: 510-956-3097 

Hamilton I Avnet Electronics 
3197 Tech. Drive North 
St. Petersburg 33702 
Tel: (813) 576-3930 
TWX: 810-863·0374 

tPioneer/Orlando 
6220 S. Orange Blossom Trail 
Suite 412 
Orlando 32809 
Tel: (305) 859-3600 
TWX: 810·850-0177 

GEORGIA 

Arrow Electronics 
2979 Pacific Drive 
Norcross 30071 
Tel: (404) 449-8252 
TWX: 810-766-0439 

tHamilton/ Avnet Electronics 
5825 D. Peachtree Corners 
Norcross 30092 
Tel: (404) 447-7500 
TWX: 810-766-0432 

Pioneer/Georgia 
5835 B Peachtree Corners E 
Norcross 30092 
Tel: (404) 448-1711 
TWX: 810-766-4515 

ILLINOIS 

Arrow Electronics 
492 Lunt Avenue 
P.O. Box 94248 
Schaumburg 60172 
Tel: (312) 893-9420 
TWX: 910-291-3544 

tHamilton/ Avnet Electronics 
3901 No. 25th Avenue 
Schiller Park 60176 
Tel: (312) 678·6310 
TWX: 910·227·0060 

Pioneer/Chicago 
1551 Carmen Drive 
Elk Grove 60007 
Tel: (312) 437·9680 
TWX: 910·222·1834 

INDIANA 

Arrow Electronics 
2718 Rand Road 
Indianapolis 46241 
(317) 243-9353 
TWX: 810-341·3119 

tHamilton/ Avnet Electronics 
485 Gradle Drive 
Carmel 46032 
Tel: (317) 844·9333 
TWX: 810-260·3966 

INDIANA (Cont.) 

Pioneer/ Indiana 
6408 Castleplace Drive 
Indianapolis 46250 
Tel: (317) 849-7300 
TWX: 810-260-1794 

KANSAS 

tHamilton I Avnet Electronics 
9219 Quivera Road 
Overland Park 66215 
Tel: (913) 888-8900 
TWX: 910-743-0005 

tComponent Specialties, Inc. 
8369 Nieman Road 
Lenexa 66214 
Tel: (913) 492-3555 

MARYLAND 

tHamilton/Avnet Electronics 
6822 Oak Hall lane 
Columbia, MD 21045 
Tel: (301) 995-3500 
TWX: 710·862·1861 

Mesa 
16021 Industrial Dr. 
Gaithersburg 20760 
Tel: (301) 948-4350 

tPioneerlWashington 
9100 Gaither Road 
Gaithersburg 20780 
Tel: (301) 948-0710 
TWX: 710-828-0545 

MASSACHUSETTS 

tHamilton/ Avnet Electronics 
50 Tower Office Park 
Woburn 01801 
Tel: (617) 935·9700 
TWX: 710·393·0382 

tArrow Electronics 
Arrow Dr. 
Woburn 01801 
Tel: (617) 933-8130 
TWX: 710-393-6770 

Harvey I Boston 
44 Hartwell Ave. 
Lexmgton 02173 
Tel: (617) 863-1200 
TWX: 710-326-6617 

MICHIGAN 

tArrow Electronics 
3810 Varsity Drive 
Ann Arbor 48104 
Tel: (313) 971-8220 
TWX: 810·223·6020 

tPioneer /Michigan 
13485 Stamford 
Livonia 48150 
Tel: (313) 525-1800 
TWX. 810·242·3271 

tHamilton I Avnet Electronics 
32487 Schoolcraft Road 
Livonia 48150 
Tel: (313) 522-4700 
TWX: 810-242-8775 

MINNESOTA 

tArrow Electronics 
5230 W. 73rd Street 
Edina 55435 
Tel: (612) 830·1800 
TWX: 910-576-3125 

tlndustrial Components 
5229 Edina Industrial Blvd. 
Minneapolis 55435 
Tet: (612) 831-2666 
TWX: 910-516-3153 

Hamilton I Avnet Electronics 
10300 Bren Rd. East 
Minnetonka 55343 
Tel: (612) 932·0666 
TWX: (910) 576-2720 

tHamilton I Avnet Electronics 
7449 Cahill Road 
Edina 55435 
Tel: (612) 941-3801 
TWX: 910-576-2720 

MISSOURI 

tArrow Electronics 
2380 Schuetz 
St. Louis, MO 63141 
Tel: (314) 567·6888 

tHamillon I Avnet Electronics 
137 43 Sharline Cl. 
Earth City 63045 
Tel: (314) 344-1200 
TWX: 910-762-0684 

NEW HAMPSHIRE 

tArrow Electronics 
1 Perimeter Drive 
Manchester 03103 
Tel: (603) 668·6968 
TWX: 710·220· 1684 

NEW JERSEY 

t Arrow Electronics 

August 1981 

Pleasant Valley Avenue 
Moorestown 0805 7 
Tel: (215) 928·1800 
TWX: 710·897·0829 

tArrow Electronics 
285 Midland Avenue 
Saddle Brook 07662 
Tel: (201) 797-5800 
TWX: 710-998-2206 

tHamilton I Avnet Electronics 
1 Keystone Ave. 
Bldg. 36 
Cherry Hill 08003 
Tel: (609) 424-0100 
TWX: 710-940-0262 

Hamilton/ Avnet Electronics 
10 Industrial Road 
Fairfield 07006 
Tel: (201) 575-3390 
TWX: 710-734-4388 

tHarvey Electronics 
45 Route 46 
Pinebrook 07058 
Tel: (201) 227·1262 
TWX: 710·734·4382 

Measurement Technology Sales Corp. 
383 Route 46 W 
Fairfield, NJ 07006 
Tel· (201) 227·5552 

NEW MEXICO 

tAltiance Electronics Inc. 
11030 Coch!ti S.E. 
Albuquerque 87123 
Tel: (505) 292-3360 
TWX: 910·989·1151 

tHamilton/Avnet Electronics 
2524 Baylor Drive S.E. 
Albuquerque 87119 
Tel: (505) 765·1500 
TWX: 910·989·0614 

NEW YORK 

tArrow Electronics 
900 Broad Hollow Ad. 
Farmingdale, NY 11735 
Tel: (516) 694·6800 
TWX: 510-224·6494 

tArrow Electronics 
3000 South Winton Road 
Rochester 14623 
Tel: (716) 275·0300 
TWX: 510-253·4766 

t Arrow Electronics 
7705 Maltage Drive 
Liverpool 13088 
Tel: (315) 652·1000 
TWX: 710·545·0230 

Arrow Electronics 
20 Oser Avenue 
Hauppauge 11787 
Tel: (516) 23HOOO 
TWX: 510-227-6623 

tHamlltontAvnet Electronics 
333 Metro Park 
Rochester 14623 
Tel: (716) 475-9130 
TWX: 510·253·5470 

tHamilton/ Avnet Electronics 
16 Corporate Circle 
E. Syracuse 13057 
Tel: (315) 437-2641 
TWX: 710-541·1560 

tHamilton I Avnet Electronics 
5 Hub Drive 
Melville, long Island 11746 
Tel: (516) 454-6000 
TWX: 510-224·6166 

Harvey Electronics 
P.O. Box 1208 
Binghampton 13902 
Tel: (607) 748·8211 
TWX: 510-252-0893 

tMicrocomputer System Technical Demonstrator Centers 



intJ 
3065 Bowers Avenue 
Santa Clara, Califomia 96061 
Tai: (408) 987·8080 
TWX: 910·338-0026 
TELEX: 34·8372 

NEW YORK (Cont.) 

tHarvey Electronics 
80 Crossways Park Weal 
Woodbury, Long Island 11797 
Tel: (516) 921-8920 
TWX: 510-221-2184 

Harvey/Rochester 
840 Fairport Park 
Fairport 14450 
Tel: (716) 381·7070 
TWX: 510·253-7001 

Measurement Technology Salee Corp. 
169 Northern Blvd. 
Greatneck 11021 
Tel: (516) 482·3500 
TWX: 510·223·0846 

NORTH CAROLINA 
Arrow Electronics 
938 Burke Street 
Winston-Salem 27102 
Tel: (919) 725-8711 
TWX: 510·931-3169 

tHamilton/Avnet Electronics 
2803 Industrial Drive 
Raleigh 27609 
Tel: (919) 829-8030 
TWX: 510.928-1836 

Pioneer I Carolina 
106 Industrial Ave. 
Greensboro 27406 
Tel: (919) 273·4441 
TWX: 510·925·1114 

OHIO 
Arrow Electronics 
10 Knolkrest Or. 
Reading, OH 45237 

. Tel: (513) 761·5432 
TWX: 810·461·2670 

Arrow Electronics 
7620 McEwen Road 
Centerville 45459 
Tel: (513) 435·6563 
TWX: 810·459-1611 

Arrow Electronics 
6238 Cochran Ad. 
Solon 44139 
Tel: (216) 248·3990 
TWX: 810·427·9409 

tHamilton/ Avnet Electronics 
954 Senate Drive 
Dayton 45459 
Tel: (513) 433·0610 
TWX: 910·460·2531 

tHamilton t Avnet Electronics 
4588 Emery Industrial Parkway 
Warrensville Heights 44128 
Tel: (218) 831·3600 
TWX: 810·427·9452 

tPioneertOayton 
4433 lnterpoint Blvd. 
Dayton 45424 
Tel: (513) 236·9900 
TWX: 810-459·1622 

tPioneertCleveland 
4800 E. 131at Street 
Cleveland 44105 
Tel: (216) 587-3600 
TWX: 810·422·2211 

OKLAHOMA 

tComponents Specialties, Inc. 
7920 E. 40th Street 
Tulsa 74145 
Tel: (918} 664·2820 
TWX: 910·845·2215 

U.S. AND CANADIAN DISTRIBUTORS 

OREGON 
tAlmaclStroum Electronic• 
8022 S.W. Nimbus, Bldg. 7 
Beaverton 97005 
Tel: (503) 641·9070 
TWX: 910·467·8743 

tHamilton/ Avnet Electronic• 
6024 S. W. Jean Rd. 
Bldg. C, Suite 10 
Lake Oawego 97034 
Tel: (503) 835·7848 
TWX: 910·465·8179 

PENNS't'LVANIA 

Arrow Electronics 
650 Seco Rd. 
Monroeville, PA 15148 
Tai: (412) 858·7000 

tArrow Electronics 
860 Saco Rd. 
Monroeville 15148 
Tel: (412) 858·7000 

Pioneer t Pittsburgti 
259 Kappa Drive 
Pittsburgh 15238 
Tel: (412) 782·2300 
TWX: 710-795·3122 

Pioneer/Delaware Valley 
28 t Gibralter Road 
Horsham 19044 
Tel: (215) 674·4000 
TWX: 510·865·8778 

TEXAS 
Arrow Electronics 
13715 Gama Road 
Dallas 75234 
Tel: (214) 388·7500 
TWX: 910·860·5377 

Arrow Electronics, Inc. 
10700 Corporate Drive, Suite 100 
Stafford 77477 
Tel: (713) 491·4100 
TWX: 910-880-4439 

Component Specialties, Inc. 
8222 Jamestown Drive 
Suite 116 
Austin 78758 
Tel: (512) 837·8922 
TWX: 910-874·1320 

tComponent Specialties, Inc. 
10907 Shady Trail, Suite 101 
Oallas 75220 
Tel: (214) 357·8611 
TWX: 910-861·4999 

tComponent Specialties, Inc. 
8181 Commerce Park Drive, Suite 700 
Houaton 77038 
Tai: (713) 771-7237 
TWX: 910·881·2422 

Hamilton I Avnet Electronics 
10608A Boyer Blvd. 
Aualin 78757 
Tel: (512) 837-8911 
TWX: 910·874·1319 

tHamilton I Avnet Electronics 
2111 W. Walnut Hill Lane 
lving 75062 
Tel: (214) 859·4100 
TWX: 910·860·6929 

tHamilton/Avnet Electronics 
3939 Ann Arbor Drive 
Houaton 77063 
Tel: (713) 780-1771 
TWX: 910·881·5623 

UTAH 
tHamilton f Avnet Electronica 
1586 West 2100 South 
Salt Lake City 84119 
Tel: (801) 972·2800 
TWX: 910·925·4018 

WASHINGTON 
tAlmac/Stroum Electronlca 
5811 Slxtti AH. South 
Seattle 98108 
Tel: (206) 783·2300 
TWX: 910·444·2067 

tHamillon I Avnet Eleclronics 
14212 N.E. 21st Street 
Bellevue 98005 
Tel: (206) 453·5844 
TWX: 910·443·2469 

tWyle Distribution Group 
1750 132nd Avenue N.E. 
Bellevue 98005 
Tel: (206) 453·8300 
TWX: 910·443·2528 

WISCONSIN 

tArrow Electronics 
430 W. Rauaaon Avenue 
Oakcreek 53154 
Tel: (414) 784·8600 
TWX: 910·282·1193 

tHamilton/ Avnet Electronics 
2975 Moorland Road 
New Berlin 53151 
Tel: (414) 784·4510 
TWX: 910-282·1182 

CANADA 

ALBERTA 

tL.A. Varah Ltd. 
4742 14th Street NJ:. 
Calgary T2D 8L7 
Tel: (403) 230·1235 
TWX: 038·268·97 

Zentronics 
9224 27tti Avenue 
Edmonton TON 182 
Tel: (403) 483-3014 
Telex: 03742841 

Zentronics 
3851 21st N.E. 
Calgary T2E 8T5 
Tel: (403) 230-1422 

BRITISH COLUMBIA 

tL.A. Varati Ltd. 
2077 Alberta Street 
Vancouver V5Y 1C4 
Tel: (804) 873·3211 
TWX: 610·929~1068 
Zentronics 
550 Cambia St. 
Vancouver V6B 2N7 
Telo (604) 668·2633 
TWX: 04·5077 ·89 

MANITOBA 

L.A. Varah 
1· 1832 King Edward Streat 
Winnipeg R2R ON 1 
Tel: (204) 633·6190 
TWX: 07·55·365 

Zentronica 
590 Berry St. 
Winnipeg R3H OS 1 
Tel: (204) 775-8881 

NOYA SCOTIA 

Zentronics 
30 Simmonds Or., Unit B 
Dartmouth, 838 1R3 

August 1981 

ONTARIO 
tHamiltontAvnat Electronic• 
8846 Re.11.wood Road, Units G & H 
Mlaaiaaauga L4V 1M6 
Tel: (416) 877·4732 
TWX: 810-492·8887 

tHamilton I Avnet Electronics 
1736 Courtwood Creaent 
Ottawa K2C 3J2 
Tel: (813) 226·1700 
TWX: 063·4971 

tL.A. Varah, Ltd. 
505 Kenora Avenue 
Hamilton L8E 3P2 
Tel: (416) 561·9311 
TWX: 061·8349 

tZentronica 
141 Catherine Street 
Ottawa K2P 1C3 
Tel: (613) 238·8411 
TWX: 053·3636 

tZantronics 
8 Kilbury Cl. 
Brampton, Ontario 
Toronto, LOT 3T4 
Tel: (416) 451·9600 
Telex: 06·976·78 

Zentronica 
564/ 10 Weber St., N. 
Waterloo, NAL 5C6 
Tel: (619) 884·5700 

QUEBEC 
tHamilton/ Avnet Electronics 
2870 Sabourin Street 
St. Laurent H4S 1M2 
Tel: (514) 331·8643 
TWX: 810·421·3731 

Zentronica 
5010 Rue Pare Street 
Montreal H4P 1 P3 
Tel: (514) 735·5361 
TWX: 05·827·535 

tMlcr~computer System Technical Demonstrator Centers 



intef 
3086 Bowers Avenue 
San.ta Clt!!r•. ·C.IJforni;a 98051 
Toi: 14081 o8ioJ108o · · ·' 
TWX: 910-338-0028 
TELEX: 3-4·8372 

CALIFORNIA 
Intel Corp. 
1801 Old Bayehore Hwy. 
Suite 346 
Burlingame M010 
Tel: (416) 892·4782 
TWX: 810·3715·3310 
Intel Corp. 
2000 E. 4th Street 
Suite 110 
Santa Ana 92705 
Tai: (714) 836·2870 
TWX: 810·6915·24715 
Intel Corp. 
7870 Opportunity Rad 
San Diego 92111 
Toi: (714) 288-3883 
Intel Corp. 
15630 N. Corbin Ave. 
Suite 120 
Tarzana 81358 
Tai: (213) 708-()333 

COLORADO 
Intel Corp. 
850 South Cherry 
Suite 720 
Denver 80222 
Tel: (303) 321·8088 
TWX: 910·831·2288 

CONNECTICUT 
Intel Corp. 
38 Padanaram Rd. 
Danbury, CT 08810 
Tel: (203) 792·8388 

FLORIDA 
Intel Corp. 
1500 N.W. 82nd Street 
Suite 104 
Ft. Lauderdale 33309 
Tel: (3015) 771·0800 
TWX: 610·89·9407 

Intel Corp. 
600 N. Maitland Ave. 
Suite 2015 
Maitland, FL 32751 
Tel: (305) 828-2303 
TWX: 810-853-9218 

Intel Corp. 
! 151 Adanson St. 
Orlando 32804 
Tel: (305) 828·2393 
GEORGIA 
Intel Corp. 
3300 Holcomb Bridge Rd. #226 
NorcroH, GA 30092 
Tel: (404) 449·0641 

ILLINOIS 
Intel Corp. 
2650 Golf Road 
Suite 815 
Rolling Meadows 80008 
Tel: (312) 981-7230 
TWX: 910-263-1826 

KANSAS 
Intel Corp. 
9393 w. 110th Street 
Suite 266 
Overland P1rk 88210 
Tel: (013) 842-8080 

MARYLAND 
Intel Corp. 
7257 Parkway Drive 
Hanover 21078 
Toi: (301) 706-7800 
TWX: 710-882· 1944 

U.S.· AND,CANADtAN SERVICE .OFFICES 

MASSACHUSETTS 
Intel Corp. 
27 Industrial Avenue 
Chelmsford 01824 
Toi: (817) 256-1800 
TWX: 710·343-8333 

.MICHIGAN 
Intel Corp. 
28500 Northwestern Hwy. 
Suite 401 

. Southfield 48076 
Toi: (313) 353-01120 
TWX: 810·244-49115 

MINNESOTA 
Intel Corp. 
7401 Matro Blvd. 
Suite 38! 
Edina 15643! 
Tel: (812) 835·8722 
TWX: 910·678·2887 

MISSOURI 
Intel Corp. 
602 Earth City Plau 
Suite 121 

· Earth City B:W.6 
Tel: (314) 291-1990 

NIWJIASEY 
Intel Corp. 
2480 Lemoine Avenue 
1st Floor 
Ft. Lee 07024 
Tel: (201) 947-6267 
TWX: 710·991·8693 

NEW YORK 
Intel Corp. 
2266 Lyall Avenue 
Rochester, NY 14808 
Tel: (716) 264-8120 

NORTH CAROLINA 
Intel Corp. 
2306 W. Meadowview Rd. 
Suite 208 
Greensboro, NC 27 407 
Tel: (919) 294·1541 

OHIO 
Intel Corp. 
Chagrin-Brainard Bldg. Sult& 300 . 
28001 Chagrin Blvd. 
Cleveland 44122 
Tel: (216) 464·2738 
TWX: 810-427-9298 

Intel Corp. 
8600 Poe Avenue 
Dayton 46414 
Tel: (513) 890·5350 
TWX: 810-460.2528. 

OREGON 
Intel Corp. 
10700 S.W. Baaverton·Hllladale Hwy. , 
Suite 22 
Beaverton 97005 
Toi• (503) 841·8088 
TWX: 810·487-8741 

PENNSYLVANIA 
Intel C01p. 
600 Pennaylvanla Avenuei . 
Fort Waehington 19034 
Tel: (216) 841-1000 
TWX: 610·881-2077 

Intel Corp. 
201 Penn Center Blvd. 
Suite 301 W. 
Plttaburgh, PA 16236 
Tel: (412) 823·4970 

TEXAS 
Intel Corp. 
313 E. Anderson Lane 
Suite 314 
Auatin 78752 
Tel: (512) 454·8477 
TWX: 910-874·1347.: 
Intel Corp. 
2926 L.B.J. Freeway 
Suite 176 
Dallas 75234 
Tel: (214) 241·2820 
TWX: 910·880·6817 
Intel Corp. 
8420 Richmond Avenue 
Suite 280 
Houston 77067 
Tel: (713) 784·1300 
TWX: 910·881·2490 

VIRGINIA 
Intel Corp. 
7700 Leeaburg Pike 
Sulte412 
Falla Church 22043 

· ·Tel: (703) 734-9707 
TWX: 710·931·0626 

WASHINGTON 
Intel Corp. 
1803 118th Ave. N.E. 
Suite 114 
Bellevue 98006 
Tel: (208) 232-7823 
TWX: 910·443-3002 

'WISCONSIN 
Intel Corp. 
160 S. Sunnyalope Road 
Suite 148 
Brookfield 53005 
Tel: (414) 784·8080 

CANADA 
Intel Corp. 
60 Galaxy Blvd. 
Unit 12 
Rexdale, Ontario 
M9W4Y6 
Tel: (418) 676·2105 
Telex: 089·89278 
Intel Corp. 
39 Bella Comera 
Ottawa, Ontario 
K2H 8R2 
Tel: (613) 829·9714 
Telex: 063-4115 

] (, 
11 

August1981 



intJ 
INTERNATIONAL SALES AND MARKETING. OFFICES 

3086 Bowera Avenue 
Santa Clara, California 96051 
Tel: (408) 987·8080 
TWX: 910·338·0028 
TELEX: 34·6372 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
AUSTRALIA 

A.J.F. Systems & Components Pty. Ltd. 
310 Queen Street 
Melbourne 
Victoria 3000 
Tel: 679-702 
TELEX: AA 31261 

Warburton Franki 
Corporate Headquarters 
372 Eastern Valley Way 
Chatswood, New South Walea 2067 
Tel: 407·3261 
TELEX: AA 21299 

AUSTRIA 
Bacher Elektroniache Garaete GmbH 
Rotanmulgaaae 26 
A 1120 Vienna 
Tel: (222) 836846 
TELEX: 131532 
Aaklrach Elektronik Geraate GmbH 
Lichtenateinatraaae 9718 
A 1090 Vienna 
Tel: (222) 347846 
TELEX: 134769 

BELGIUM 
lnelco Belgium S.A. 
Ave. des Croix de Guerra 94 
81120 Bruseela 
Tel: (02) 218 01 60 
TELEX: 26441 

BRAZIL 
lcotron S.A. 
0511 Av. Mutinga 3660 
6 Ander 
Pirituba Sao Paulo 
Tel: 261·0211 
TELEX: 1122274/ICOTBR 

CHILE 
DIN 
Av. Vic. MacKenna 204 
Casilla 6065 
Santiago 
Tel: 227 584 
TELEX: 3620003 

CHINA 

C.M. Technologie• 
625 University Avenue 
Suite A·40 
Palo Alto, CA 94301 
Tel: (415) 328·9150 
Schmidt & Co. Ltd. 
Wing On Centre, 28th Ftoor 
Connaught Road 
Hong Kong 
Tel: 011·852·5·456·644 
TELEX: 74788 SCHMC HX 

COLOMBIA 

International Computer Machines 
Carrera 7 No. 72·34 
Apdo. Aereo 19403 
Bogota 1 
Tel: 211·7282 
TELEX: 44495 TOYOCO 
CYPRUS 
Cyprus Eltrom Electronics 
P .0. Box 5393 
Nicosia 
Tel: 21·27982 

DENMARK 

ITI Multi Komponent 
Fabrysparhn 31 
DK·2800 GloU.rup 
Tel: (02) 45 88 45 
TX: 33355 
Scandinavian Semiconductor 
Supply AIS 
Nannasgade 18 
OK-2200 Copenhagen 
Tel: (01) 83 50 90 
TELEX: 19037 

FINLAND 
Oy Fintronic AB 
Melkonkatu 24 A 
SF·0021,0 
Helsinki 21 
Tel: (0) 892 80 22 
TELEX: 124 224 Ftron SF 

FRANCE 
Celdis S.A. • 
53, Rue Charles Frerot 
F-94260 Gentilly 
Tel: (01) 648 13 13 
TELEX: 200 485 
Feutrier 
Rue das Troia Giorieuses 
F·42270 St. Prieat·en·Jarez 
Tel: 33 (77) 74 87 33 
TELEX: 300 0 21 
Metrologle" 
la Tour d' Asnieres 
1, Avenue Laurent Cely 
92806-Aanieres 
Tel: (1) 791 44 44 
TELEX: 611 448 
Tekelec Airtronic" 
Cite des Bruyere• 
Rue Carle Vernet 
F-92310 Sevrea 
Tel: (01) 534 75 35 
TELEX: 204552 

GERMANY 

Electronic 2000 Vertrlebs GmbH 
Neumarkter Straase 75 
0·8000 Munich BO 
Tel: (89) 43 40 81 
TELEX: 522561 
Jermyn GmbH 
Postfach 1180 
Schulstrasae 48 
0·8277 Gamberg 
Tel: (8343) 4231 
TELEX: 484426 
Kontron Elektronik GmbH 
Breslaueratraaae 2 
8057 Echlng B 
0·8000 Munich 
Tel: (89) 319 011 
TELEX: 522122 
Neye Enatechnlk GmbH 
Schillerstraase 14 
0·2085 Quickbom·Hamburg 
Tel: (4108) 8121 
TELEX: 213690 

GREECE 
American Technical Enterprises 
P.O. Box 158 
Athens 
Tel: 30-1-8811271 
TX: 30-1-8219470 

HONGKONG 

Schmidt & Co. 
Wing on Center, 28th Floor 
Connaught Road 
Hong Kong 
Tel: 5·455·644 
TELEX: 74788 Schmc Hx 

INDIA 
Mlcronic Devices 
104/ 109C, Nirmal Industrial Estate 
Sion (E) 
Bombay 400022, India 
Tel: 488·170 
TELEX: 011·5947 MDEV IN 

ISRAEL 

Eaatronica Ltd.• 
11 Rozanla Str8et 
P .0. Box 39300 
Tel Aviv 81390 
Tel: (3) 47 61 61 
TELEX: 33638 

ITALY 

Etedra 3S S.P.A. • 
Viale Elvezla, 18 
I 20164 Milano 
Tel: (2) 34 97 61 
TELEX: 332332 

JAPAN 

Aaahl Electronics Co. Ltd. 
KMM Btdg, Room 407 
2·14·1 Aaano, Kokura 
Kita-Ku, Kitakyushu City 802 
Tel: (093) 511·8471 
TELEX: AECKY 7126·16 
Hamilton-Avnet Electronics Japan Ltd. 
YU and YOU Bldg. 1·4 Horidome-Cho 
Nihonbaahi Chuo-Ku, Tokyo 103 
Tel: (03) 682·9911 
TELEX: 2623774 
Ryoyo Electric Corp. 
Konwa Bldg. 
1·12·22, Taukiji 
Chuo-Ku, Tokyo 104 
Tel: (03) 643·7711 
Tokyo Electron Ltd. 
Shin Juku, Nomura Bldg. 
26·2 Nishl·Shln Juku·lchome 
Shin Juku·Ku, Tokyo 160 
Tel. (03) 343-4411 
TELEX: 232·2220 LABTEL J 

KOREA 
Koram Digital 
Room 909 Woonam Bldg. 
7, 1 ·KA Bongre-Dong 
Chung-Ku Seoul 
Tel: 238·123 
TELEX: K23642 HANSINT 

MEXICO 

Proveedora Electronica, S.A. (Proesa) 
Prol. Moctezuma Ota. 24 
Col. Romero de Terreros 
Apdo. Postal 21·139 
Mexico 21, D.F. 
Tel: 564·8300 
TELEX: 017·72402 SAULME 

NETHERLANDS 

lnelco Nether. Comp. Sys. BV 
Turfatekeratraat 63 
P.O. Box 380 
NL Aalsmeer 1430 
Tel: (2977) 28855 
TELEX: 14893 
Koning & Hartman 
Koperwerr 30 
P.O. Box 43220 
2544 EN's Gravenhage 
Tel: 31 (70) 210.101 
TELEX: 31528 

NEW ZEALAND 

Mclean Information Technology Ltd. 
P.O. Box 18·065 
Glenn Innes, Auckland, 8 
Tel: 687·037 
TELEX: NZ2763 KOSFY 

NORWAY 

Nordisk Elektronic (Norge) A/S 
Postofflce Box 122 
Smedsvingen 4 
1364 Hvalstad 
Tel: (2) 786 210 
TELEX: 16963 

PORTUGAL 

Ditram 
Componentes E Electronlca LOA 
Av. Miguel Bombarda, 133 
P1000 Lisboa 
Tel: (19) 546 313 
TELEX: 14182 Brieks·P 

SINGAPORE. 
General Engineers Corporation Pte. Ltd. 
Blk 3, Units 1003-1008, 1oth Floor 
P.S.A. Multl·Storey Complex 
Pasir Paniang Road 
Singapore 0511 
Tel: 271·3163 
TELEX: RS23987 GENERCO 

August 1981 

SOUTH AFRICA 
Electronic Building Elements 
P .0. Box 4809 
Hazelwood, Pretoria 0001 
Tel: 011·27· 12·48·9221 
TELEX: 30181SA 

SPAIN 
Interface S.A. 
Ronda San Pedro 22, 3" 
Barcelona 10 
Tel: (3) 301 78 51 
TWX: 61508 
ITI SESA 
Miguel Angel 16·8 
Madrid 10 
Tel: (t) 410.23.64 
TELEX: 27707127461 

SWEDEN 

AB Gosta Backstrom 
Box 12009 
Alstrliher9atan 22 
S·10221 Stockholm 12 
Tel: (8) 541 080 
TELEX: 10135 

Nordisk Electronik AB 
Box 27301 
8·10264 Stockholm 
Tel: (B) 836 040 
TELEX: 10547 

SWITZERLAND 

lndustrade AG 
Gemsenstrasse 2 
Postcheck 80 · 21190 
CH-8021 Zurich 
Tel: (1) 363 22 30 
TELEX: 56788 

TAIWAN 

Taiwan Automation Co.• 
3d Floor #75, Section 4 
Nanking East Road 
Taipei 
Tel: 771·0940 
TELEX: 11942 TAIAUTO 

TURKEY 
Turkelek Electronics 
Apapurtt Boulevard 189 
Ankara 
Tel: 189483 

UNITED KINGDOM 
Comway Microsystems Ltd. 
Market Street 
UK·Bracknell, Berkshire 
Tel: 44 (344) 51654 
TELEX: 647201 
M.E.D.L 
East Lane Road 
North Wembley 
Middleeex HA9 7PP 
Tel: 44 (01) 904·9303/906·411 t 
TELEX: 28817 

Jermyn Industries (Mogul) 
Vestry Estate 
Sevenoaks, Kent 
Tel: (0732) 501.44 
TELEX: 95142 
Rapid Recall, Ltd. 
Rapid House/Denmark St 
High Wycombe 
Bucks, England HP11 2E~ 
Tel: 44 494 28 271 
TELEX: 849439 
Bytech Ltd. 
Sutton Park Avenue 
Reading, Berkshire 81A2 
Tel: (0734) 81 031 
TELEX: 848215 

"Field Application Location 



intJ 
INTERNATIONAL ·SALES AND MARKETING OFFICES 

3065 Bowers Avenue 
Santa Clara,_California 95051 
Tel: (408) 987-8080 
TWX: 910-338-0026 
TELEX: 34-6372 

INTEL® MARKETING OFFICES 
AUSTRALIA 

Intel Semiconductor Ply. Ltd. 
Suite 2, Level 15, North Point 
100 Miller Street 
North Sydney, NSW, 2060 
Tel: 450-847 
TELEX: AA 20097 

BELGIUM 
Intel Corporation S.A. 
Rue du Moulin a Papier 51 
Boite 1 
B· 1160 Brussels 
Tel: (02) 660 30 10 
TELEX: 24814 

DENMARK 

Intel Denmark A1s• 
Lyngbyvej 32F 2nd Floor 
DK-2100 Copenhagen East 
Tel: (01) 18 20 00 
TELEX: 19567 

FINLAND 

Intel Finland OY 
Sentnerikuja 3 
SF - 00400 Helsinki 40 
Tel: (O) 56244 55 
TELEX: 123 332 

FRANCE 

Intel Corporation, S.A.R.l.' 
5 Place de la Balance 
Silic 223 
94528 Rungis Cedex 
Tel: (01) 687 22 21 
TELEX: 270475 

GERMANY 

Intel Semiconductor GmbH" 
Seidlatrasa_e 27 
0·8000 Muenchen 2 
Tel: (89) 53891 
TELEX: 523 177 

Intel Semiconductor GmbH 
Malnzer Strasse 75 
0·6200 Wiesbaden 1 
Tel: (8121) 70 OB 74 
TELEX: 04186183 

Jntel Semiconductor GmbH 
Wernerstraaae 67 
P.O. Box 1460 
D· 7012 Fellbech 
Tel: (711) 58 00 82 
TELEX: 7254826 

Intel Semiconductor GmbH 
Hohenzollern Strasae 5 
3000 Hannover 1 
Tel: (511) 32 70 61 
TELEX: 923625 

Intel Semiconductor GmbH 
Vertriebaburo Dusseldorl 
Ober·Ratherstrasse 2 
4000 Dusseldorl 30 
Tel: (all) 65 to 54 
TELEX: 8586977 

HONG KONG 

Intel Semiconductor Ltd. 
99· 105 Des Voeux Rd., Central 
18F,Unit8 
Hong Kong 
Tel: 5·450·847 
TELEX: 83869 

I SRA EL 

Intel Semiconductor Lid.• 
P.O. Box 1659 
Haifa 
Tel: 41524 261 
TELEX: 46511 

ITALY 

Intel Corporation Italia Spa 
Milanofiori, Palazzo E 
20094 Assago {Milano) 
Tel: (02) 824 00 06 
TELEX: 315183 INTMIL 

JAPAN 

Intel Japan K.K. • 
Flower Hill·Shinmachi East Bldg. 
1·23·9 Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: (03) 426-9261 
TELEX: 781·28426 

NETHERLANDS 

Intel Semiconductor Nederland B.V. 
Oranjestraat 1 
3441 Ax Woerden 
Netherlands 
Tel: 31-3480·112-64 
TELEX: 47970 

Intel Semiconductor B.V. 
Cometongebouw 
Westblaak 106 
3012 Km Rotterdam 
Tel: (10) 149122 
TELEX: 22283 

NORWAY 

Intel Norway A/S 
P.O. Box 92 
Hvamveien 4 
N-2013 
Skjetten 
Tel: (2) 742 420 
TELEX: 18018 

SWEDEN 

Intel Sweden AB.• 
Box 20092 
Enighetsvagen 5 
8·16120 Bromma 
Tel: (08) 98 53 85 
TELEX: 12261 

SWITZERLAND 

August 1981 

Intel Semiconductor A.G. 
Forchstrasse 95 
CH 8032 Zurich 
Tel: (01) 55 45 02 
TELEX: 557 89 ich ch 

UNITED KINGDOM 

Intel Corporation (U.K.) Ltd.' 
5 Hospital Street 
Nantwich, Cheshire CWS SAE 
Tel: (0270) 626 560 
TELEX: 36620 
Intel Corporation (U.K.) Ltd. 
Dorcan House 
Eldene Drive 
Swindon, Wiltshire SN3 310 
Tel: (0793) 26 101 
TELEX: 444447 JNT SWN 

'Field Application Location 




