
inter

iMMX™ 800
MUL TIBUS®- MESSAGE EXCHANGE

REFERENCE MANUAL

Copyright © 1982 I ntel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Order Number: 144912-001

iMMXTM 800
MULTIBUS® MESSAGE EXCHANGE

REFERENCE MANUAL
Order Number: 144912-001

I Copyright© 1982 Intel Corporation I
Intel CorporatIon, 3065 Bowers Avenue, Santa Clara, CalIfornIa 95051

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
cqmmitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

BXP
CREDIT
i
ICE
iCS
im
iMMX
Insite

Intel
Intel
Intelevision
Intellec
Intellink
iOSP
iPDS
iRMX

iSBC
iSBX
iSXM
Library Manager
MCS
Megachassis
Micromainframe
Micromap

Multibus
Multichannel
Multimodule
Plug-A-Bubble
PROMPT
RMXj80
System 2000
UPI

A 702/882/3K

PREFACE

This manual describes how to use iMMX 800 software to augment iRMX 80-,
iRMX 88-, or iRMX 86-based application systems to allow tasks on
different iSBC boards to communicate over the Multibus system bus.

It is assumed that readers of this manual already are familiar with
either the iRMX 80 or iRMX 88 Executive or the iRMX 86 Operating System.

The manuals listed below provide reference information concerning Intel
hardware and software products with which the iMMX 800 modules may be
used:

• Introduction to the iRMXm 80/88 Real-Time Multitasking Executives,
Order Number: 143238

• iRMXm 80 User's Guide, Order Number: 9800522

• iRMXm 80 Installation Instructions, Order Number: 9803087

• iRMXm 80/88 Interactive Configuration Utility User's Guide,
Order Number: 142603

• iRMXm 88 Reference Manual, Order Number: 143232

• iRMXm 88 Installation Instructions, Order Number: 143241

• Guide to Writing Device Drivers for the iRMXm 86 and iRMXm 88 I/O
Systems, Order Number: 142926

• Introduction to the iRMXm 86 Operating System,
Order Number: 9803124

• iRMXm 86 Nucleus Reference Manual, Order Number:

• iRMXm 86 Terminal Handler Reference Manual, Order

• iRMXm 86 Debugger Reference Manual, Order Number:

• iRMXm 86 Basic I/O System Reference Manual, Order

• iRMXm 86 Extended I/O System Reference Manual,
Order Number: 143308

• iRMXm 86 System Programmer's Reference Manual,
Order Number: 142721

9803122

Number:

143324

Number:

• iRMXm 86 Configuration Guide, Order Number: 9803126

• iRMXm 86 Installation Guide, Order Number: 9803125

iii

143323

9803123

I

I

PREFACE (continued)

• PL/M-80 Programming Manual, Order Number: 9800268

• PL/M-86 Programming Manual for 8080/8085-Based Development
Systems, Order Number: 9800466

• PL/M-86 Compiler Operating Instructions for 8080/8085-Based
Development Systems, Order Number: 9800478

• PL/M-86 User's Guide for 8086-Based Development Systems,
Order Number: 121636

• ISIS-II User's Guide, Order Number: 9800306

• User's Guide for the iSBC® 957B iAPX 86, 88 Interface and
Execution Package, Order Number: 143979

• iSBC® 80/24 Hardware Reference Manual, Order Number: 142648

• iSBC® 80/30 Hardware Reference Manual, Order Number: 9800611

• iSBC® 86/05 Hardware Reference Manual, Order Number: 143153

• iSBC® 86/12A Hardware Reference Manual, Order Number: 9803074

• iSBC® 86/14 and iSBC® 86/30 Single Board Computer Hardware
Reference Manual, Order Number: 144044

• iSBC® 88/25 Single Board Computer Hardware Reference Manual,
Order Number: 143825

• iSBC® 88/40 Measurement and Control Computer Hardware Reference
Manual, Order Number: 142978

• iSBC® 88/45 Advanced Data Communications Processor Board
Hardware Reference Manual, Order Number: 143824

• iSBC® 544 Intelligent Communications Controller Board Hardware
Reference Manual, Order Number: 9800616

• iSBC® 550 Ethernet* Communications Controller Hardware
Reference Manual, Order Number: 121746

• Ethernet Communications Controller Programmer's Reference Manual,
Order Number: 121769

• iSBC® 569 Intelligent Digital Controller Board Hardware
Reference Manual, Order Number: 9800845

* Ethernet is a trademark of the Xerox Corporation.

iv

CONTENTS

CHAPTER 1
INTRODUCTION TO THE iMMX 800 SOFTWARE
iMMX 800 Application Example ••••••••••••••••••••••••••••••••••••
Hardware Environment •••••••••••••••••••••••••••.•••••••••••••••••••
Software Requirements for iMMX 800-Based Systems •••••••••••••••••••
How This Manual is Organized •••••••••••••••••••••••••••••••••••••••

CHAPTER 2
The iMMX 800 INTERDEVICE COMMUNICATION MODEL
Intertask Message Sender/Receiver Model ••••••••••••••••••••••••••••
Interdevice Message Transfers ••••••••••••••••••••••••••••••••••••••

System and Local Ports •••
Channels••....•..........••....................•....

iMMX 800 Message Exchange Services •••••••••••••••••••••••••••••••••
Message-Transfer Protocol ••

The Find Port (CQFIND) Service •••••••••••••••••••••••••••••••••
The Transfer Message (CQXFER) Service ••••••••••••••••••••••••••
The Lose Port (CQLOSE) Service •••••••••••••••••••••••••••••••••

Message-Reception Protocol •••••••••••••••••••••••••••••••••••••••
The Activate Port (CQACTV) Service •••••••••••••••••••••••••••••
Standard Message-Reception Calls •••••••••••••••••••••••••••••••
The Deactivate Port (CQDACT) Service ••••••••••••••••••••••••••

Interdevice Message-Exchange Protocol ••••••••••••••••••••••••••••••
Intertask Message Exchanges on a Single Device •••••••••••••••••••••
iMMX 800 Memory Configuration and Management •••••••••••••••••••••••
The Mechanics of Message Transfers •••••••••••••••••••••••••••••••••

CHAPTER 3
MMX 80 PROCEDURE CALLS
PL/M-80 Language Interface.
iRMX 80 Message Structure ••
Condition Codes ••
MMX 80 Procedure Summary •••

Find Port•............•......................................
Transfer Message •••
Lose Port .•..•...•......•............•........................•..
Activate Port
Message Reception ••
Deactivate Port ••
MMX 80 Usage Examples ••

CHAPTER 4
MMX 88 PROCEDURE CALLS
P'L/M-86 Language Interface •••
A Notational Convention for MMX 88 Discussions •••••••••••••••••••••
iRMX 88 Message Structure ••
Condition Codes ••

v

PAGE

1-1
1-3
1-4
1-4

2-1
2-2
2-2
2-3
2-3
2-4
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-7
2-7
2-8

3-1
3-1
3-1
3-1
3-3
3-5
3-9
3-10
3-12
3-13
3-14

4-1
4-1
4-2
4-2

CONTENTS (continued)

CHAPTER 4 (continued)
MMX 88 Procedure Summary •••

Find Port•....•.........•..•.•........•.....
Transfer Message •••
Lose Port •......• e· •••

Activate Port ••
Message Reception ••
Deactivate Port ••
~1X 88 Usage Examples ••

CHAPTER 5
MMX 86 PROCEDURE CALLS
PL/M-86 Language Interface •••
Condition Codes ••
MMX 86 Procedure Summary •••

Find Port•.•................•..•.....••..•••...........•....
Transfer Message •••
Lose Port •........•••..••.•..••..•.•...•.••........•..••.•..•....
Activate Port ••
Message Reception ••
Deactivate Port ••
MMX 86 Usage Examples ••

CHAPTER 6
PARTITIONED MEMORY MANAGER
Memory Pools •••••••••••••••••••
Using the Free Space Pool ••
Using Pools 0 Through N ••

Reques t ing Memory ••
Returning Allocated Memory •••••••••••••••••••••••••••••••••••••••

Creating Memory Pools Dynamically ••••••••••••••••••••••••••••••••••

CHAPTER 7
CONFIGURING YOUR APPLICATION SYSTEM
Software Configuration •••

Decisions that Provide Information Needed for Configuration ••••••
System-Level Decisions •••
Device-Level Decisions •••
Port-Level Decision ••

Variables and Data Structures That Must Be Assigned Values •••••••
Device Description (CQDVCS) ••••••••••••••••••••••••••••••••••••
Channel Description (DCMROM, DCMRAM) •••••••••••••••••••••••••
Port Descriptions (CQPRTS, LPTROM, LPTRAM) •••••••••••••••••••
Address Description (CQSKTS, DSDT) •••••••••••••••••••••••••••••
Attribute Description (SFT, CQITWT, CQMDLY, CQIDPD, CQSGLV,

CQL}.\fEX, MCB I) ••

vi

PAGE

4-2
4-4
4-6
4-11
4-12
4-14
4-15
4-16

5-1
5-1
5-1
5-3
5-5
5-9
5-10
5-12
5-14
5-15

6-1
6-2
6-3
6-3
6-5
6-6

7-1
7-1
7-1
7-2
7-4
7-4
7-4
7-4
7-6
7-7

7-8

CONTENTS (continued)

CHAPTER 7 (continued)
Memory Description (CQIDSS, IDST) ••••••••••.•••••••••••••••••••
Memory Assignment (CQPLHS, PLHTBL, CQBLKS, BKLTBL) •••••••••••••

A Comprehensive View of the System Data Structures •••••••••••••••
An Example of iMMX 800 Configuration •••••••••••••••••••••••••••••

Making the Decisions •••
Filling the Structures •••

Linking and Locating iMMX 800 Application Systems ••••••••••••••••
Linking and Locating for MMX 80 ••••••••••••••••••••••••••••••••
Linking and Locating for MMX 88 ••••••••••••••••••••••••••••••••
Linking and Locating for MMX 86 ••••••••••••••••••••••••••••••••

Hardware Configuration •••
iSBC 544 Device Interrupt Generation •••••••••••••••••••••••••••••
iSBC 544 Device Interrupt Reception ••••••••••••••••••••••••••••••
iSBC 569 Device Interrupt Generation •••••••••••••••••••••••••••••
iSBC 569 Device Interrupt Reception ••••••••••••••••••••••••••••••
iSBC 80/24 Device Interrupt Generation •••••••••••••••••••••••••••
iSBC 80/24 Device Interrupt Reception ••••••••••••••••••••••••••••
iSBC 80/30 Device Interrupt Generation •••••••••••••••••••••••••••
iSBC 80/30 Device Interrupt Reception ••••••••••••••••••••••••••••
iSBC 86/05 Device Interrupt Generation •••••••••••••••••••••••••••
iSBC 86/05 Device Interrupt Reception ••••••••••••••••••••••••••••
iSBC 86/12A Device Interrupt Generation ••••••••••••••••••••••••••
iSBC 86/12A Device Interrupt Reception •••••••••••••••••••••••••••
iSBC 86/14 and iSBC 86/30 Device Interrupt Generation ••••••••••••
iSBC 86/14 and iSBC 86/30 Device Interrupt Reception •••••••••••••
iSBC 88/25 Device Interrupt Generation •••••••••••••••••••••••••••
iSBC 88/25 Device Interrupt Reception ••••••••••••••••••••••••••••
iSBC 88/40 Device Interrupt Generation •••••••••••••••••••••••••••
iSBC 88/40 Device Interrupt Reception ••••••••••••••••••••••••••••
iSBC 88/45 Device Interrupt Generation •••••••••••••••••••••••••••
iSBC 88/45 Device Interrupt Reception ••••••••••••••••••••••••••••

CHAPTER 8
PERFORMANCE CONSIDERATIONS

PAGE

7-13
7-14
7-15
7-15
7-15
7-20
7-33
7-34
7-36
7-38
7-42
7-42
7-42
7-42
7-42
7-42
7-43
7-43
7-43
7-43
7-43
7-43
7-44
7-44
7-44
7-44
7-44
7-45
7-45
7-45
7-45

Avoid Unnecessary Traffic on the Multibus Interface................ 8-1
Minimize the Number of Times that Messages Must be Copied.......... 8-1
Distribute the Workload Among the Boards in Your System............ 8-2
Minimize the Number of Message Transfers by Using Large Messages... 8-2
Experiment with Various Interrupt Mechanisms and Polling Periods... 8-2
Experiment with Various Hardware and Software Configurations....... 8-2

APPENDIX A
MULTIBUS INTERPROCESSOR PROTOCOL (MIP)
Wha tis MIP.. A-I
Implementing MIP... A-2
The MIP Mode 1. • • • • • . . • • • . • • • • • • • • • . • • • . • . • • • • • • • • . • • . • . • • • • . . • • • • . • A-2

vii

CONTENTS (continued)

APPENDIX A (continued)
Three-Level Interface Structure •••••••

Physical Level •••
Logical Level ••
Virtual Level ••

Memory Management ••
Buffer Movement ••
Signalling .. .
Error Handling •••
MIP Functional Specification •••••••••••••••••••••••••••••••••••••••
Procedural Specification •••

Da ta Types •••••••••••••••••••••••••••••••••• , ••••••••••••••••••••
Processor-Dependent Subroutines ••••••••••••••••••••••••••••••••••
PTR$ADD ••
CONVERT$LOCAL $ADR ••
CONVERT$SYSTEM$ADR •••
TIME$WAIT ••

Physical Level Specification •••••••••••••••••••••••••••••••••••••••
Request Queue Descriptor •••
Request Queue Entry ••
Queue Procedure Returns ••
INIT$REQUEST$QUEUE •••
TERM$REQUEST$QUEUE •••
QUEUE$GIVE$STATUS ••
REQUEST$GIVE$POINTER •••
RELEASE$GIVE$POINTER •••
REQUEST$TAKE$POINTER •••
RELEASE $ T AKE$ PO INTER •••

Logical Level Database •••
Configuration Constants ••
Destination Socket Descriptor Table (DSDT) •••••••••••••••••••••••
Local Port Table (LPT) •••
Device to Channel Map (DCM) ••••••••••••••••••••••••••••••••••••••
Inter-Device Segment Table (IDST) ••••••••••••••••••••••••••••••••
Response Queue List (RQL) ••

Logical Level Algorithms •••
DYING$CHANNEL ••
SERVE$TURNAROUND$QUEUE •••
SERVE$COMMAND$QUEUE ••
OUT$TASK •••
RECEIVE $COMMAND ••
RECEIVE$RESPONSE .•.••..••.••.••...•••.••.•.•...•••••.•••••••.•••.
IN$TASK ••

Virtual Level•..................................
Status Constants •••
FIND$SYSTEM$PORT •••
T~SFER$BUFFER ••
ACTIVATE$SYSTEM$PORT •••
DEACTIVATE$SYSTEM$PORT •••
RECEIVE$BUFFER .•.••••••.•.••.••••.•••••...•.•••..••••••••••••••.•

viii

PAGE

A-4
A-5
A-7
A-7
A-8
A-IO
A-IO
A-I0
A-II
A-II
A-II
A-II
A-II
A-12
A-12
A-13
A-14
A-14
A-15
A-16
A-16
A-16
A-17
A-18
A-19
A-20
A-2I
A-22
A-22
A-23
A-23
A-23
A-24
A-25
A-25
A-25
A-26
A-27
A-28
A-30
A-32
A-33
A-35
A-35
A-35
A-36
A-38
A-39
A-40

CONTENTS (continued)

PAGE

APPENDIX B
COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER
Ethernet-Related Intel Hardware and Software Products.............. B-1
Putting the Hardware Together...................................... B-3
Writing Tasks that Communicate on an Ethernet Network............... B-4

Building and iSBC 550 Request Block.............................. B-5
Sending the Request Block to the iSBC 550 Controller............. B-5
The Ethernet Tasks o Environment and Duties....................... B-6

Using the iRMX 86 Basic I/O System............................. B-6
Using the iRMX 86 Extended I/O System.......................... B-9
Using the iRMX 88 I/O System................................... B-ll

Configuring, Linking, and Locating an iRMX 86 or 88 I/O System
for Use with iSBC 550 Controllers.............................. B-14

Configuring an iRMX 86 I/O System for Use with iSBC 550 Controllers B-14
A Sample Basic I/O System Configuration File................... B-17
A Sample MMX 86 Configuration File for the Host Device......... B-21

Linking and Locating the Configured iRMX 86 I/O System........... B-25
Configuring the iRMX 88 I/O System for Use with

iSBC 550 Controllers... B-26
Responding to ICU Prompts...................................... B-27
Modifying Files Produced by the ICU............................ B-28

A Sample MMX 88 Configuration File for the Host Device........... B-30

APPENDIX C
MMX 80 DIAGNOSTICS
RQPBHX Port Diagnostic... c-f
MEM$INIT$STATUS Diagnostic... C-l

APPENDIX D
iMMX 800 CONDITION CODES •• D-l

ix

1-1.
2-1.
2-2.
2-3.
2-4.
3-1.
3-2.
4-1.
4-2.
5-1.
5-2.
7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
A-I.
A-2.
A-3.
A-4.
A-5.
A-6.
B-1.
B-2.
C-l.

3-1.
4-1.
5-1.
A-I.
D-l.

FIGURES

iMMX 800-Based Application Example ••••••••••••••••••••••••••
Sending and Receiving Task Models •••••••••••••••••••••••••••
Dedicated Channel Example •••••••••••••••••••••••••••••••••••
iMMX 800 Message Exchange Calls •••••••••••••••••••••••••••••
Message Transfer Diagram ••••••••••••••••••••••••••••••••••••
Sending Task Program Example ••••••••••••••••••••••••••••••••
Receiving Task Program Example ••••••••••••••••••••••••••••••
Sending Task Program Example ••••••••••••••••••••••••••••••••
Receiving Task Program Example ••••••••••••••••••••••••••••••
Sending Task Program Example ••••••••••••••••••••••••••••••••
Receiving Task Program Example ••••••••••••••••••••••••••••••
A Level-Oriented Representation of Configuration Structures.
The Principal iMMX 800 Configuration Data Structures ••••••••
Example Target System •••••••••••••••••••••••••••••••••••••••
Example Target System with Channels •••••••••••••••••••••••••
Initial Allocation of Memory ••••••••••••••••••••••••••••••••
Memory Map for the Example ••••••••••••••••••••••••••••••••••
MIP System Example ••
System Port Configuration Example •••••••••••••••••••••••••••
MIP Model Data Flow Example •••••••••••••••••••••••••••••••••
Request Queue Format ••
Conceptual Structure of a Channel •••••••••••••••••••••••••••
Example of Inter-Device Memory Segments •••••••••••••••••••••
Hardware for a System Communicating with Ethernet •••••••••••
Software for a System Communicating with Ethernet •••••••••••
MEM$INIT$STATUS Diagnostic Example ••••••••••••••••••••••••••

TABLES

MMX 80 Procedures Summary •••••••••••••••••••••••••••••••••••
MMX 88 Procedures Summary •••••••••••••••••••••••••••••••••••
MMX 86 Procedures Summary •••••••••••••••••••••••••••••••••••
System Inter-Device Segment Table •••••••••••••••••••••••••••
iMMX 800 Condition Codes ••••••••••••••••••••••••••••••••••••

x

PAGE

1-2
2-2
2-3
2-6
2-8
3-14
3-15
4-16
4-17
5-15
5-16
7-5
7-15
7-16
7-17
7-18
7-19
A-I
A-4
A-5
A-6
A-6
A-8
B-2
B-2
C-2

3-2
4-3
5-2
A-9
D-l

CHAPTER 1. INTRODUCTION TO THE iMMXm 800 SOFTWARE

The iMMX 800 software extends the communications capabilities normally
available to iRMX 80-, iRMX 88-, or iRMX 86-based applications. In these
applications, tasks reside on the same iSBC board and communicate with
the assistance of a single operating system. The iMMX 800 software
provides communication capabilities between tasks residing on different
iSBC boards. The only restriction is that the boards must all have
access to the same Multibus system bus. The boards can be of different
types and the tasks on the boards can be executing under different
operating systems. For example, with the aid of iMMX 800 software, tasks
running on an iSBC 80/30 board under the supervision of the iRMX 80
Executive can communicate with tasks running on an iSBC 86/12A board
under the supervision of the iRMX 86 Operating System.

Tasks executing in the iMMX 800 environment communicate by means of
messages, and the format requirements (if any) of the messages are
identical to those of the iRMX operating system supporting the iMMX 800
software.

There are three implementations of the iMMX 800 software and each is
fully compatible with one of the iRMX 80, iRMX 88, and iRMX 86 operating
systems. The three implementations are called MMX 80, MMX 88, and
MMX 86, respectively. With them, you can design powerful systems that
take advantage of the differing capabilities of the various iSBC boards
and iRMX operating systems.

For convenience, an iSBC board with an iRMX operating system and iMMX 800
software is known as a device.

iMMX 800 APPLICATION EXAMPLE

Some of the design flexibility provided by iMMX 800 software can be seen
in the example illustrated in Figure 1-1. The example shows that
application tasks on each device are serviced by device-resident i~rnx 800
software for interdevice message transfers.

For purposes of the example, assume you are designing a database
application that allows operators at two terminals to access and modify
data files.

The terminals are under the control of iRMX 80 Executives residing on
their respective iSBC 80/24 processor boards, along with MMX 80 software
for interdevice message transfers.

1-1

iSBC·· 80/24

INTRODUCTION TO THE iMMX~ 800 SOFTWARE

8 8
MULTIBUS

r
: r-e-M-M""'"X-a&-'" iSBC·· 86/12A

I
I
I
L

Figure 1-1. iMMX~ 800-Based Application Example

x-124

The operators have access to files on a Winchester disk, with the iRMX 86
I/O System handling requests from the terminals and performing the
necessary I/O.

When an operator enters a request at a terminal, the following sequence
of events occurs:

1. A task on the iSBC 80/24 board in the terminal builds a message
that meets iRMX 80 message-format requirements and issues a
CQXFER call to the device-resident copy of MMX 80. (CQXFER is
the name of the iMMX 800 transfer procedure.)

2. MMX 80 transfers the message to MMX 86 on the iSBC 86/12A board.

3. MMX 86 reformats the message and passes it to an iRMX 86 task.

1-2

INTRODUCTION TO THE iMMxm 800 SOFTWARE

4. The I/O System performs the necessary I/O operations for the
iRMX 86 task.

5. The iRMX 86 task puts the data in a message that satisfies format
conventions and issues a CQXFER call to MMX 86.

6. M11X 86 transfers the message to MMX 80 on the iSBC 80/24 board.

7. MMX 80 reformats the message to meet iRMX 80 format requirements
and passes it to the iRMX 80 task.

8. The iRMX 80 task extracts the data from the message and sends it
to the terminal.

For a more detailed description and also for configuration procedures for
this example, refer to Chapter 7.

HARDWARE ENVIRONMENT

Hardware systems supporting the iMMX 800 software are limited to three
bus masters with serial bus arbitration, or 16 bus masters with parallel
bus arbitration. An iMMX 800-based hardware system can employ a
combination of any of the following processor and intelligent slave
boards:

•
•

•
•
•
•
•
•

iSBC 80/24 processor board, which must be a Multibus master.

iSBC 80/30 processor board, which can be either a Multibusmaster
or a Multibus slave.

iSBC 86/05 processor board, which must be a Multibus master.

iSBC 86/12A processor board, which must be a Multibus master.

iSBC 86/14 processor board, which must be a Multibus master.

iSBC 86/30 processor board, which must be a Multibus master.

iSBC 88/25 processor board, which must be a Multibus master.

iSBC 88/40 processor board, which can be either a Multibus master
or a Multibus slave.

I

I

I
iSBC 88/45 processor board, which can be either a Multibus master · I or a Multibus slave.

• iSBC 544 Intelligent Communications Controller, which can be a
Multibus unimaster or slave but not a multimaster.

• iSBC 550 Ethernet* Communications Controller, which must be a
Multibus master.

* Ethernet is a trademark of the Xerox Corporation.

1-3

INTRODUCTION TO THE iMMXm 800 SOFTWARE

• iSBC 569 Intelligent Digital Controller, which can be a Multibus
unimaster or slave but not a multimaster.

The terms "slave," "unimaster," and "multimaster" are defined in the
hardware reference manuals for the various boards.

SOFTWARE REQUIREMENTS FOR iMMX 800-BASED SYSTEMS

For each device serviced by an iMMX 800 implementation, the required
software modules are as follows:

• One copy of iRMX 80 or iRMX 88 Executive software without the
Free Space Manager -- the FSM is replaced by the Partitioned
Memory Manager that is supplied with the iMMX 800 software -- or
one copy of the iRMX 86 Operating System, depending upon the
device and the application requirements.

• One copy of the MMX 80, MMX 88, or MMX 86 software.

• Any desired application tasks.

HOW THIS MANUAL IS ORGANIZED

Chapter 2 of this manual contains general descriptions of the procedure
calls that are part of each implementation of the iMMX 800 software.

Chapters 3, 4, and 5 give the specific descriptions and calling sequences
for the procedures as they are implemented in MMX 80, MMX 88, and MMX 86,
respectively. The semantics of the procedures in the different
implementations are very similar, but the syntax requirements are
somewhat diverse, due to the differences among the iRMX operating systems.

Chapter 6 discusses the Partitioned Memory Manager, which is part of each
implementation of the iMMX 800 software. The Partitioned Memory Manager
is much like the iRMX 80 and iRMX 88 Free Space Managers, and, in fact,
replaces the FSM in applications using MMX 80 or MMX 88.

Chapter 7 explains how to configure your hardware and software for
iMMX 800 applications. It also expands upon the example of this chapter,
giving the example's configuration files for MMX 80 and MMX 86.

Appendix A describes the MIP (Multibus Interprocessor Protocol) that the
iMMX 800 services follow.

Appendix B discusses using the iMMX 800 software to build a Multibus
based system that can communicate with an Ethernet controller.

Appendix C describes two diagnostic tools for debugging MMX 80-based
applications.

Appendix D gives the mnemonics and numeric values of the condition
(status) codes that the iMMX 800 procedure calls can return.

1-4

CHAPTER 2. THE iMMXm 800 INTERDEVICE COMMUNICATION MODEL

This chapter introduces you to the intertask message-exchange model,
protocols, and memory structures for interdevice message transfers. You
need a good understanding of this architecture before you can design and
create an iMMX 800-based application system.

In the iMMX 800 context, a "device" refers to a single iSBC board that
contains its own copy of the iMMX 800 software, an iRMX operating system
that controls the device, and application tasks. In an interdevice
message transfer, an application task on one device sends a message to an
application task on another device.

INTERTASK MESSAGE SENDER/RECEIVER MODEL

The message sender/receiver model should be familiar to most iRMX
operating system users. It defines a simple system that consists of two
types of tasks: those that receive data, and those that transfer data.

A message-receiving task waits for a message to be posted at a particular
exchange or mailbox and takes control of the processor only when it has
received a message. This task performs an action that might be based on
the content of the message and then waits until it receives another
message. Usually, the receiving task acknowledges completion of its
function by returning the message to an exchange or mailbox where the
sending task is waiting for a response.

A message-sending task initiates its function by transferring a message
to an exchange or mailbox. The task can wait until it receives a
response to its message, or it can continue to run while the receiving
task processes the message.

Generally, the distinction between message-sending and message-receiving
tasks is not absolute, because many tasks both send and receive
messages. However, the sender/receiver concept presented in Figure 2-1
helps clarify the general interaction of tasks.

Because intertask communication is through an exchange or mailbox,
messages containing data are queued automatically. Thus, a sending task
can be allowed to "get ahead" of a receiving task without loss of data.

The iRMX software supports the sender/receiver communication model on a
single device. The iMMX 800 software services generalize the model,
supporting it for communication between devices.

2-1

THE iMMX 800 m INTERDEVICE COMMUNICATION MODEL

SENDING TASK RECEIVING TASK

TASK ENTRY POINT

'----+-- WAIT FOR RESPONSE SEND RESPONSE

X-U9

Figure 2-1. Sending and Receiving Task Models

INTERDEVICE MESSAGE TRANSFERS

Tasks using the iMMX 800 services to transfer and receive messages see
those services as procedures that are associated with ports. The link
between the port known to the sending tasks and the port known by the
receiving task is a channel.

SYSTEM AND LOCAL PORTS

In iRMX-based applications t tasks send and receive messages through
exchanges or mailboxes. In iMMX 800-based systems t a task might not know
which operating system supports the task with which it is communicating,
so the iMMX 800 software provides ports t which are similar to exchanges
and mailboxes.

A port can be viewed by a task in two wayst depending upon the task's
intentions. A task intending to transfer a message to another task by
means of iMMX 800 services views a message's destination as a system
port. On the other hand t a task jntending to receive a message views the
same port as a local port that resides on the same device as does the
task. On devices controlled by iRMX 80 or iRMX 88 Executives, local
ports are exchanges. On devices controlled by iRMX 86 Operating Systems,

2-2

THE iMMX 800~ INTERDEVICE COMMUNICATION MODEL

local ports are mailboxes. In either case, the resident operating system
provides the software support for the local port, so tasks on a device
receive all messages, regardless of their origin, by using the
message-reception system call provided by the operating system on the
device.

CHANNELS

The iMMX 800 software supports the association between system and local
ports by providing a channel. Although a channel can be thought of as an
interdevice pipeline through which messages can be transferred (see
Figure 2-2), it is actually a pair of single-direction request queues in
memory shared by the two devices. See Appendix A for a more detailed
description of request queues.

The concept of "channel" is used to emphasize that the request-queue pair
is dedicated to the exclusive use of these two devices for interdevice
message transfers. No other device in an application has access to that
channel. If one of the devices also communicates with another device in
the system, the two devices use another channel for message transfers.

iMMX 800 MESSAGE EXCHANGE SERVICES

The iMMX 800 software provides services that application tasks see as
procedures for transferring and receiving messages.

The following sections provide a general description of the services, and
describe how they are used in combination to accomplish message transfer
and reception.

Device n

Channel in Public
Memory Partition

~--~ ~--~

MULTIaus

Figure 2-2. Dedicated Channel Example

2-3

Device m

x-125

THE iMMX 800· INTERDEVICE COMMUNICATION MODEL

MESSAGE TRANSFER PROTOCOL

The following sections discuss the services that the sending task uses.

The FIND PORT (CQFIND) Service

When an application task wishes to send a message to a task on another
device, it must first "locate" the destination system port. The task
does this by invoking the FIND PORT service (CQFIND procedure). The task
identifies the system port by its system-port name. This system-port
name, which is defined during software configuration (see Chapter 7),
distinguishes the system port from all other system ports in the entire
application.

The call to CQFIND causes the iMMX 800 software to return a unique
connection to the calling task. The sending task uses the connection as
a parameter when it subsequently calls the CQXFER procedure to send
messages.

Each task wanting to send a message to the same system port must invoke
CQFIND in order to get its own connection to that port.

The TRANSFER MESSAGE (CQXFER) Service

If the call to CQFIND is successful, the sending task calls the TRANSFER
MESSAGE service (CQXFER procedure) to transfer messages, using the
connection returned by CQFIND as a parameter. The task can use the
connection to send as many messages as it wants to send.

The LOSE PORT (CQLOSE) Service

If and when a task has no further messages to transfer to the system port
by means of CQXFER calls, it invokes the CQLOSE procedure to release the
system resources that have been used to support the task's message
transfers. After the call to CQLOSE, the connection no longer refers to
the associated system port and cannot be used again by the sending task.

If the task later wishes to transfer more messages to that system port,
it must again invoke the CQFIND procedure to obtain a new connection to
the port.

MESSAGE-RECEPTION PROTOCOL

The following sections discuss the services that the receiving task uses.

2-4

THE iMMX 800 m INTERDEVICE COMMUNICATION MODEL

The ACTIVATE PORT (CQACTV) Service

Until a port is activated by some task resident on a device, tasks cannot
receive messages at that system port. Activating a port enables iMMX 800
services to deliver messages to the local exchange or mailbox associated
with that port.

Some device-resident task initially activates the local port by invoking
the CQACTV procedure. A parameter in the call to CQACTV identifies the
port by means of its system-port name. Once the port is activated,
iMMX 800 services deliver all messages sent to that port to the
associated exchange or mailbox.

The CQACTV procedure returns an exchange address or a mailbox token,
depending upon which iRMX operating system is resident on the device.
The requesting task uses the returned address or token as input in
subsequent iRMX calls for message reception.

Standard Message-Reception Calls

Receiving tasks invoke the standard message-reception calls provided by
the device-resident operating system: RQWAIT and RQACPT for iRMX 80 and
iRMX 88 Executives, and RQ$RECEIVE$MESSAGE for iR}~ 86 Operating Systems.

Once a device-resident task has activated a local port, all other tasks
on that device can receive messages at that port. Note, however, that
receiving tasks cannot distinguish between messages that come from
device-resident tasks and those that come from tasks on other devices,
unless the application has made special provisions that make this
distinction for the receiving tasks.

The DEACTIVATE PORT (CQDACT) Service

If and when it is appropriate, a task on the same device as a system port
deactivates (CQDACT) that port. The task identifies the port by means of
that port's system-port name. Once the port is deactivated, no further
messages can be sent to it. Thereafter, any task attempting to receive a
message at that port receives an exceptional condition. However,
transferred messages that are already queued at the exchange or mailbox
when the call to CQDACT is made are not affected, and these messages can
be received by tasks.

INTERDEVICE MESSAGE-EXCHANGE PROTOCOL

The flow diagram illustrated in Figure 2-3 shows the various interfaces
used in the interdevice message-exchange protocol. Note that the message
travels only one way, and that the receiving task on device B does not
return a reply to the sending task. If the sending task on device A
expects a reply, it must invoke (prior to its first CQXFER call) a call
to CQACTV to activate a system port on its own device for a reply

2-5

I

THE iMMX 800~ INTERDEVICE COMMUNICATION MODEL

message. Similarly, the receiving task on device B must invoke the
CQFIND and CQXFER calls to send a reply to device A before waiting for
further messages.

Exception
Handler

Exception
Handler

DEVICE A

Find Port
(CQFIND)

Transfer Msg.
(CaXFER

(Connection))

Lose Port
(CQLOSE)

S
y
S
T
E
M

DEVICE B

Activate
Port

(CQACTV)

Deactivate
Port

(CQDACT)

Figure 2-3. iMMX~ 800 Message Exchange Calls

2-6

x-126

THE iMMX 800 m INTERDEVICE COMMUNICATION MODEL

INTERTASK MESSAGE EXCHANGES ON A SINGLE DEVICE

The iMMX 800 message-exchange services can optionally be used for local
intertask message transfers on a single device. One possible reason for
doing so is on-board emulation of an entire application during system
development. That is, the total application is resident on a single
processor board for testing and debugging and, once debugged, is
off-loaded to its intended devices.

iMMX 800 MEMORY CONFIGURATION AND MANAGEMENT

In any system that employs the iMMX 800 services, some of the RAM on or
accessible by each device must be managed by the Partitioned Memory
Manager that resides on that device. Memory that must be managed is
divided into pools, where a pool is a contiguous area of RAM. If a pool
is to be shared between devices, it must lie in an interdevice segment,
which is a contiguous area of RAM with the following characteristics:

• It consists entirely of non-overlapping pools.

• All of it must be addressable by both devices. An example of
such memory is the dual-port RAM on an iSBC 80/30 board.

This means that there are two kinds of pools that the Partitioned Memory
Manager on a device manages: pools that lie entirely inside an
interdevice segment and are used for message-passing between devices or
occasionally between tasks on the device; and pools that lie entirely
outside of all interdevice segments and are used for message-passing
between tasks on the device.

The Partitioned Memory Manager on a device can manage up to 255 memory
pools. Each of those pools is identified by a pool id that you specify
during configuration. Each pool's id must be in the range 0 through
254. The pool denoted by the zero (0) pool id is defined as the "Free
Space Pool." The PMM supports allocation and reclamation of memory from
this Free Space Pool in a manner that is compatible with the iRMX 80 and
iRMX 88 Free Space Managers. Existing iRMX 80- or iRMX 88-based
applications designed to use the Free Space Manager can use the PMM
without requiring any chan~es.

The iSBC 80/30, iSBC 86/12A, iSBC 86/14, iSBC 86/30, iSBC 88/40,
iSBC 544, and iSBC 569 boards each contain dual-port RAM. This memory is
accessible through both the processor's local bus and the Multibus system
bus. When two or more devices access a given memory location they need
not do so by using the same address. Instead, they can use "alias
addressing," where an on-board processor accesses a range of dual-port
memory locations by one set of addresses, and other processors access the
same range of dual-port memory locations by a different set of
addresses. You define alias addresses at iMMX 800 configuration time.

2-7

I

I

I

THE i~1MX 800 m INTERDEVICE COMMUNICATION MODEL

THE MECHANICS OF MESSAGE TRANSFERS

If special arrangements were not provided, a message created by a sending
task might be inaccessible by the intended receiving task. Of course,
this would prevent the message transfer from being successful. And this
is not the only possible obstacle to a successful message transfer.
Because the receiving task does not know which operating system
controlled activities on the sending device, it cannot know whether the
sending task put header information at the beginning of the message, nor
can it know how much header information there is. Because of these
potential obstacles to message transfers, every message transfer must
have the following properties:

• At some stage of the transfer process, the message must be in
memory that is accessible by both the sending and receiving
devices.

• When the message is accessible by both devices, it must have a
(generic) form that is completely independent of both the sending
and receiving operating systems.

To ensure that these properties are always in evidence, the iMMX 800
software requires that every message be copied into shared memory and
that all header information be stripped in the process. This is the
first copy operation required by the iMMX 800 software, and it can be
performed in either of two ways. If the task requests in its call to
CQXFER that the iMMX 800 software perform the copy operation, the
transfer is called transparent; otherwise, it is non-transparent.

The second copy operation is always performed by the iMMX 800 software,
and it always copies the message from shared memory into memory that is
accessible only by the receiving device. If the receiving device is
controlled by iRMX 80 or iRMX 88 executive, then the required header
information is added on during the second copy operation.

Figure 2-4 illustrates a typical message transfer from a task on an
iSBC 80/30 board to a task on an iSBC 86/l2A board.

co
(
\.

iSBC® 80/30 ADDRESSES

iRMX™ 80 MESSAGE

GENERIC MESSAGE

~PRIVATE

>- PRIVATE

r
MULTIBUS®
ADDRESSES

CO

iSBC® 86/12A ADDRESSES

L GENERIC MESSAGE

(
PY ---------

\
iRMX™ 86 SEGMENT

X-120

Figure 2-4. Message Transfer Diagram

2-8

> PRIVATE

> SHARED

> PRIVATE

CHAPTER 3. MMX 80 PROCEDURE CALLS

The procedure calls described in this chapter apply only to tasks running
under the supervision of the iRMX 80 Executive. Although the iMMX 800
software is a single product, in the MMX 80 implementation, the syntax
requirements of procedure calls are different than the syntax
requirements of corresponding calls in the MMX 88 and MMX 86
implementations.

PL/M-80 LANGUAGE INTERFACE

The MMX 80 procedures described in this chapter are defined in PL/M-80.
See the section of Chapter 7 entitled "Linking and Locating iMMX 800
Application Systems" for the names of files containing EXTERNAL
declarations of the procedures.

iRMX 80 MESSAGE STRUCTURE

The iRMX 80 message structure has the following fields in the following
order:

LINK
LENGTH
TYPE
HOME$EX
RESP$EX
MSG$AREA(*)

CONDITION CODES

ADDRESS
ADDRESS
BYTE
ADDRESS
ADDRESS
BYTE

After each call to an MMX 80 procedure, MMX 80 returns to the calling
task a status value called a condition code. The condition code reflects
the success or failure of the call. In case of failure, the code
indicates the reason for the failure. Consequently, tasks should always
check the condition code immediately-after issuing an MMX 80 call.

MMX 80 PROCEDURE SUMMARY

Table 3-1 provides a summary description of the MMX 80 procedures for
fast reference.

3-1

I

Procedure

FIND
PORT

CQFIND

TRANSFER
MESSAGE

CQXFER

LOSE
PORT

CQLOSE

ACTIVATE
PORT

CQACTV

WAIT FOR
MESSAGE

RQWAIT

ACCEPT
MESSAGE

RQACPT

DEACTIVATE
PORT

CQDACT

MMX 80 PROCEDURE CALLS

Table 3-1. MMX 80 Procedures Summary

Parameters

Input Values:
sys$port$name
condition$ptr

Returned Value:
connection

Input Values:
connection
message$ptr
condition$ptr

Input Value:
' connection

Input Values:
sys$port$name
condition$ptr

Returned Value:
exchange$ptr

Input Values:
exchange$ptr
time$limit

Returned Value:
message$ptr

Inpu t Value:
exchange$ptr

Returned Value:
message$ptr

Input Values:
sys$port$name
condition$ptr

Description

Furnishes a connection for sending
messages to the system port
represented by the specified system
port name.

Delivers the iRMX 80 message to the
system port associated with the
connection.

Releases the memory and connection
previously acquired through a call to
CQFIND. The task can no longer use the
connection for message transfers to the
system port.

Activates a local iRMX 80 exchange that
serves as the system port represented
by the specified system-port name.
Messages transferred to the system port
are delivered to this exchange by the
MMX 80 software.

Standard iRMX 80 operation that tasks
use to receive messages at exchanges
representing system ports. If desired,
tasks can specify a waiting period.

Standard iRMX 80 operation that tasks
use to receive messages at exchanges
representing system ports. Tasks
cannot specify a waiting period.

Deactivates a system port that had been
activated earlier by a call to CQACTV.
Messages from another device can no
longer be transferred to that system
port. Messages still queued there can
still be received by local tasks.

3-2

FIND PORT

The CQFIND procedure returns a connection for a system port. The calling
task can use the connection to transfer messages to tasks on another (or
the same) device.

connection = CQFIND (sys$port$name, condition$ptr);

sys$port$name

condition$ptr

connection

DESCRIPTION

An ADDRESS containing the two-byte ASCII name of
a system port. You assign names to system ports
during iMMX 800 configuration.

The ADDRESS of a BYTE where MMX 80 returns the
condition code for the call.

An ADDRESS whose value is returned for use only
by the calling task. The task uses the
connection when invoking CQXFER to transfer
messages to the specified system port.

When configuring MMX 80 for this device, you specify the name and
location of every system port to which tasks on this device transfer
messages. CQFIND returns to the calling task a connection that
identifies the system port whose name is specified in the call. The task
can use the connection in calling CQXFER. If and when the task is
finished making CQXFER calls with the connection, the task can call
CQLOSE to return the connection to the system.

CQFIND initiates the allocation of a 32-byte block of memory from the
Free Space Pool for internal needs, and also creates an exchange for
MMX 80 use·. The resources allocated to the calling task by means of the
CQFIND .procedure are returned to the system if and when the task calls
the CQLOSE procedure.

The connection returned by CQFIND should be used by the task to which it
is issued. If more than one iRMX 80 task on the same device needs to
send messages to the same system port, each task should invoke the CQFIND
procedure to obtain its own connection.

3-3

FI"JD PORT

INDPORT

CONDITION CODES

SYSTEM$SERVICE$READY

INSUFFICIENT$MEMORY

UNKNOWN$SYSTEM$PORT

CQFIND executed without error.

"There is insufficient memory in the Free
Space Pool to meet the requirements of
CQFIND.

The iMMX 800 software did not recognize the
system-port name that the calling task
supplied.

3-4

TRANSFER MESSAGE

TRANSFER MESSAGE

The CQXFER procedure transfers an iRMX 80 message to the system port
associated with the specified connection.

CALL CQXFER (connection, message$ptr, condition$ptr);

connection

message$ptr

condition$ptr

DESCRIPTION

An ADDRESS whose value identifies the system port
where the specified message is to be transferred.

The ADDRESS of an iRMX 80 message that is to be
sent to the specified system port.

The ADDRESS of a BYTE where MMX 80 returns the
condition code for the call.

The TRANSFER MESSAGE service transfers a message to the system port
specified by the connection. The task with the connection must invoke
CQXFER for each message sent to the system port.

An application task invoking the CQXFER procedure is suspended until the
message is delivered and queued at the destination port, or until the
MMX 80 software detects an error while attempting to deliver the message.

The LENGTH field of the message specifies the size of the message block
that was allocated by the PMM. The number of bytes actually transferred by
CQXFER equals the number specified in the LENGTH field in the header of the
message being transferred, minus the nine bytes of the header itself.

Do not send a zero-length message to a system port. Doing so causes
unpredictable results in the device-resident iRMX 80 Executive.

The TYPE field should normally be set to MMXANYTYPE (=0) or to
MMXPRELOC$TYPE (=48). Setting the TYPE field to MMXANYTYPE causes the
source message's contents to be copied into a buffer that can be accessed
by the destination device. Setting the TYPE field to MMXPRELOC$TYPE
prevents the message from being copied. Use of MMXPRELOC$TYPE assumes
that the message contents are accessible by the destination device. The
following table summarizes the effects of TYPE field options for each kind
of device. In the table, these statements apply:

(1) "Peer Device" refers to a device characteristic that is defined for
each device during configuration for that device.

(2) Names of returned condition codes assume that no other errors
occurred in the call.

(3) "A copy" is shorthand for "A copy of the message.

3-5

IlANSFER MESSAGE

Destination
Device

Peer
device
with the
ability
to make
copies

Peer
device
without
the
ability
to make
copies

MMXANYTYPE

MMX 80 makes a copy in
memory that is accessible
by the destination device
and returns the
system$message$copy$delivered
condition code to the calling
task. Because MMX 80 returns
the message to the PMM, the
message area is not free for
reuse.

MMX 80 makes a copy in memory
that is accessible by the
destination device and returns
the system$message$delivered
condition code to the calling
task. Because MMX 80 returns
the message to the PMM, the
message area is not free for
reuse.

MMXPRELOC$TYPE

MMX 80 doesn't make a copy
and returns the
system$message$copy$delivered
condition code to the calling
task. When control returns
to the calling task, the
message area is not free for
reuse.

MMX 80 doesn't make a copy
and returns the
system$message$delivered
condition code to the
calling task. When control
returns to the calling task,
the message area is not free
for reuse.

When the message block was allocated, the PMM set the HOME$EX field of
the message. When the message is successfully delivered, the original
copy of the message is sent for reclamation to the specified home
exchange, so the task must not alter this field. If an exceptional
condition arises during the transfer process, CQXFER returns an
exceptional condition and MMX 80 does not send the original message to
the home exchange.

The RESP$EX field is undefined for use with messages passed via the
CQXFER procedure. That is, the sending task cannot use this field to
tell the receiving task where to return a response.

All other fields within the message are as defined by the iRMX 80
Executive. See Chapter 6 for a more detailed description of the message
fields.

If it is necessary for communicating tasks to pass additional information
concerning a message block, then some user-defined convention can be
adopted that utilizes a "subheader" within the message itself for
conveying such information. This subheader is considered part of the
message's data and will be transferred by CQXFER.

3-6

CONDITION CODES

When you CQXFER a message from an
iRMX 80-based system to an iRMX 88- or
iRMX 86-based system, the MMX 88 or
MMX 86 facility at the receiving end
increases the size of the message in
order to meet local iRMX 88 or iRMX 86
requirements. Consequently, if you use
the iMMX 800 software to shuttle
information back and forth between such
systems many times, as in a "do
forever" loop, and the task at each end
always "sends" the same buffer that it
just "received", then the buffers -
there are at least two, because the
iMMX 800 software always make a copy on
the destination device -- will grow
beyond the limits of your system's
memory. To prevent this from
happening, one or more of the tasks
should take responsibility for
controlling the size of the buffers. A
task using MMX 80 can exercise this
control by always doing the following:
(a) obtain a new memory block of the
required size; (b) copy the data into
this new block; (c) dispose of
(reclaim) the old block; and (d) use
the new block for the message transfer.

TRANSFER MESSAG1

SYSTEM$PORT$DEAD MMX 80 has concluded that the indicated
destination device is dead and
therefore cannot receive transferred
messages. The message$ptr remains
valid.

SYSTEM$MESSAGE$COPY$DELIVERED The destination device copied the
message before it was successfully
delivered. The message$ptr is no
longer valid.

SYSTEM$MESSAGE$DELIVERED

INSUFFICIENT$MEMORY

The message was successfully delivered
to the destination system port without
being copied by the destination
device. The message$ptr is no longer
valid.

Not enough memory was available for
local or destination buffers. The
message$ptr remains valid.

3-7

~RANSFER MESSAGE

SYSTEM$PORT$INACTIVE

UNKNOWN$SYSTEM$PORT

The destination port currently is not
active, so the message is not
deliverable. The message$ptr remains
valid.

The specified connection is not valid,
so the CQXFER call was not successful.
The message$ptr remains valid.

3-8

LOSE PORT

The CQLOSE procedure allows a task to release resources that were
previously allocated by the CQFIND procedure. After the CQLOSE call, the
connection can no longer be used to transfer messages.

CALL CQLOSE (connection);

connection

DESCRIPTION

An ADDRESS whose value was returned by CQFIND to
the calling task, for the purpose of using CQXFER
to transfer messages.

When an iRMX 80 task no longer wishes to send messages to a specified
system port, the LOSE PORT service lets the task return to the system the
resources previously allocated for message transfers. The calling task
surrenders the following resources when it invokes the CQLOSE call:

• Connection - the calling task can no longer use the connection to
transfer messages to the system port.

• Free Space memory - the 32-byte memory block previously allocated
for system use is returned to the Free Space Pool.

• An exchange - the exchange previously created by CQFIND is
deleted.

I~I
The MMX 80 software does no validity
checking when the CQLOSE procedure is
called. Consequently, specifying an
improper connection, or one that was
invalidated by a previous CQLOSE call,
causes unpredictable results in the
device-resident iRMX 80 Executive.

3-9

LOSE PORT

(,TIV ATE PORT

ACTIVATE PORT

The CQACTV procedure activates a system port and creates a device
resident iRMX 80 exchange for message reception at the specified system
port.

exchange$ptr = CQACTV (sys$port$name, condition$ptr);

sys$port$name An ADDRESS containing the two-byte ASCII name of
a system port. You assign names to system ports
during iMMX 800 configuration.

condition$ptr The ADDRESS of a BYTE where MMX 80 returns the
condition code for the call.

exchange$ptr

DESCRIPTION

The ADDRESS of the iRMX 80 exchange that MMX 80
creates. Local tasks, including the calling
task, use exchange$ptr in calls to RQWAIT and
RQACPT in order to receive messages.

The MMX 80 services do not deliver messages to a system port until that
port has been activated by a call to CQACTV. When called, the CQACTV
procedure attempts to associate the specified system-port name with a
device-resident system port. If the system port is defined for this
device and the port is not already activated, CQACTV activates the port
and returns an exchange$ptr for the associated iRMX 80-exchange address.

If other device-resident tasks are to receive messages at this iRMX 80
exchange, the task calling CQACTV must pass the iRMX 80 exchange address
to those other tasks.

An activated system port remains active (that is, able to receive
messages) until it is deactivated by a call to the CQDACT procedure.

Although an application task can invoke the iRMX 80 system call RQCXCH,
to dynamically create exchanges for communication between tasks residing
on the same device, application tasks cannot call RQCXCH to create
exchanges for interdevice communication. Only the system ports (which
you define at iMMX 800 configuration time) can be used as exchanges for
interdevice communication and each must be activated by a call to CQACTV.

3-10

CONDITION CODES

SYSTEM$SERVICE$READY

SYSTEM$PORT$ACTIVE

UNKNOWN$SYSTEM$PORT

ACTIVATEPORl

Service completed without error.

The indicated port is already activated.

MMX 80 did not find the specified system
port name when it searched the local system
port table.

3-11

MESSAGE RECEPTION

RQWAIT and RQACPT are standard iRMX 80 system calls that tasks use to
receive messages at exchanges. In particular, tasks use RQWAIT and RQACPT
to receive messages at exchanges representing activated system ports.

message$ptr = RQWAIT (exchange$ptr, time$limit);
or

message$ptr = RQACPT (exchange$ptr);

exchange$ptr

time$limit

message$ptr

DESCRIPTION

The ADDRESS of an iRMX 80 exchange previously
created by the CQACTV procedure.

An ADDRESS (used in calls to RQWAIT only) whose
value is the length of time (in iRMX 80 system time
units) that the calling task is willing to wait for
a message to arrive.

Normally the ADDRESS of the message at the front of
the exchange's message queue. However, if the task
called RQWAIT and then "timed out", message$ptr
contans the address of a five-byte message of type
TIMEOUTTYPE (=3).

An application task receives messages sent to an iRMX 80 exchange by
invoking the iRMX 80 system calls RQWAIT and RQACPT. The exchange is
identified in the calls by exchange$ptr. If the exchange represents a
system port, the exchange pointer was previously returned to an application
task by the CQACTV procedure.

After a task calls RQWAIT or RQACPT, it must ascertain whether the call was
successful. If it calls RQWAIT, the task receives the address of a
message. The task must check the TYPE field of that message to learn
whether the message is what the task was waiting for. If the value in that
field is three (3), the message is from the iRMX 80 Executive and indicates
that the specified time limit expired before a message from another task
arrived at the exchange. Otherwise, the message is from another task.

If the task calls RQACPT, and the returned message$ptr value is zero (0),
then no message was queued at the exchange. Otherwise, the value is the
address of a message.

NOTE

The resp$ex field is undefined in
iRMX 80 messages delivered to a system
port by MMX 80 services. This field
should not be used by receiving tasks.

~-12

\

DEACTIVATE POR
I

DEACTIVATE PORT

The CQDACT procedure deactivates the specified system port. Messages are
no longer delivered to that port by the device-resident MMX 80 software.

CALL CQDACT (sys$port$name, condition$ptr)j

sys$port$name

condition$ptr

DESCRIPTION

An ADDRESS containing the two-byte ASCII name of
a system port. You assign names to system ports
during iMMX 800 configuration.

The ADDRESS of a BYTE where MMX 80 returns the
condition code for the call.

The DEACTIVATE PORT service allows an application task to deactivate a
system port. After the port is deactivated, messages can no longer be
sent to that port until it is re-activated by the same or another
device-resident task. A SYSTEM$PORT$INACTIVE exceptional condition is
returned to tasks attempting to send further messages to the deactivated
port.

CQDACT does not affect messages already queued at the iRMX 80 exchange
representing the system port when the CQDACT request is made. Such
messages remain available to tasks on the device. MMX 80 deletes the
exchange when the last remaining message is received by a task.

CONDITION CODES

SYSTEM$SERVICE$READY

UNKNOWN$SYSTEM$PORT

Service completed without error.

The iMMX 800 software did not recognize the
system port name supplied by the calling
task.

3-13

I

I

MMX 80 PROCEDURE CALLS

MMX 80 USAGE EXAMPLES

The program examples in Figures 3-1 and 3-2 show typical usage of the
MMX 80 interdevice message-transfer services. The program given- in
Figure 3-1 represents portions of a task that sends messages to a task on
another device. The task that sends messages is called the
MMX$producer$task. The task to which it sends messages is similarly
portrayed in Figure 3-2 and is called the MMX$consumer$task.

In the examples, the data types of the variables can be derived from
context.

MMX$producer$task:
DO;

DECLARE condition$code BYTE;
DECLARE consumer$connection ADDRESS;
DECLARE (consumersysport$name,

producersysport$name) ADDRESS EXTERNAL;

consumer$connection = CQFIND (consumersysport$name,
.condition$code);

IF NOT (condition$code = SYSTEM$SERVICE$READY)
THEN CALL problem$handler;

producer$exch = CQACTV (producer$sys$port$name,
.condition$code);

IF NOT (condition$code = SYSTEM$SERVICE$READY)
THEN CALL problem$handler;

CALL generate (.producer$message); /* generate a message */

producer$message.type = MMX$ANY$TYPE;

CALL CQXFER(consumer$connection,
.producer$message,
.condition$code);

IF NOT (condition$code = (SYSTEM$MESSAGE$DELIVERED OR
SYSTEM$MESSAGE$COPY$DELIVERED»

THEN CALL problem$handler;

consumer$reply$message$ptr = RQWAIT (producer$exch,
some$delay);

CALL CQDACT(producersysport$name,
.condition$code);

END MMX$producer$task;

Figure 3-1. Sending Task Program Example

3-14

MMX 80 PROCEDURE CALLS

MMX$consumer$task:
DOj

DECLARE condition$code BYTEj
DECLARE producer$connection ADDRESSj
DECLARE (consumersysport$name,

producersysport$name) ADDRESS EXTERNALj

consumer$exch = CQACTV (consumer$sys$port$name,
.condition$code)j

IF NOT (condition$code = SYSTEM$SERVICE$READY)
THEN CALL ·problem$handlerj

producer$message$ptr = RQWAIT (consumer$exch, some$delay)j

IF producer$message.type = TIME$OUT$TYPE
THEN CALL problem$handlerj

producer$connection = CQFIND (producersysport$name,
.condition$code)j

IF NOT (condition$code = SYSTEM$SERVICE$READY)
THEN CALL problem$handlerj

CALL generate (.reply$message)j I*generate a reply*1

producer$msg.type = MMX$ANY$TYPEj

CALL CQXFER (producer$connection,
• reply$message ,
.condition$code)j

IF NOT (condition$code = SYSTEM$MESSAGE$DELIVERED OR
SYSTEM$MESSAGE$COPY$DELIVERED)

THEN CALL problem$handlerj

CALL CQDACT (consumersysport$name,
.condition$code)j

END MMX$consumer$taskj

Figure 3-2. Receiving Task Program Example

3-15

I

I

CHAPTER 4. MMX 88 PROCEDURE CALLS

The procedure calls described in this chapter apply only to tasks running
under the supervision of the iRMX 88 Executive. Although the iMMX 800
software is a single product, in the MMX 88 implementation the syntax
requirements of procedure calls are different than the syntax
requirements of corresponding calls in the MMX 80 and MMX 86
implementations.

PL/M-86 LANGUAGE INTERFACE

The MMX 88 procedures described in this chapter are defined in PL/M-86.
See the section of Chapter 7 entitled "Linking and Locating iMMX 800
Application Systems" for the names of files containing EXTERNAL
declarations of the procedures.

A NOTATIONAL CONVENTION FOR MMX 88 DISCUSSIONS

Because two addressing modes -- megabyte and non-megabyte -- are
available to iRMX 88 Executive users, and these modes affect MMX 88
differently, this manual uses the convention stated as follows at the
beginning of the iRMX 88 REFERENCE MANUAL:

The addressing mode for a module is determined conditionally when you
compile the module. You can inform the compiler of your intentions
by inserting two statements at the beginning of your source module.
First, insert either

$SET megabyte

or

$RESET megabyte

depending upon whether you want megabyte or non-megabyte addressing,
respectively. Then insert

$IF megabyte
DECLARE LOCATION$OF LITERALLY '@';
DECLARE LOCATION LITERALLY 'POINTER';

$ELSE
DECLARE LOCATION$OF LITERALLY'.';
DECLARE LOCATION LITERALLY 'ADDRESS';

$ENDIF

4-1

MMX 88 PROCEDURE CALLS

The last of these instructions can be found in the INCLUDE file named
LOCATE.LIT, which is on your Nucleus diskette. Place the directive
$INCLUDE(:Fn:LOCATE.LIT) at the beginning of each task's module,
where n is the number of the disk drive with the LOCATE.LIT file.

This combination of instructions to the compiler enables you to use
the designations "location$of" and "location" in your code to achieve
the intended mode of addressing. For example, assuming that the
appropriate INCLUDE files have been specified and the structure
EXCHANGE has been declared, the following code will correctly invoke
the RQCXCH procedure.

CALL RQCXCH(LOCATION$OF EXCHANGE)

This procedure requires an argument that is either an address or a
pointer, depending upon whether non-megabyte or megabyte addressing
is being used, respectively.

Throughout this chapter, the generic term LOCATION is used in place
of ADDRESS and POINTER, except in those few instances where ADDRESS
or POINTER applies independently of the addressing mode.

In later chapters, this manual occasionally deviates from this
convention, because some discussions of MMX 88 are combined with
discussions of MMX 80, to which the convention does not apply. Such
deviations should not cause you any misunderstanding.

iRMX 88 MESSAGE STRUCTURE

The iRMX 88 message structure has the following fields in the following
order:

LINK
LENGTH
TYPE
HOME$EX
RESP$EX
MSG$AREA(*)

CONDITION CODES

LOCATION
WORD
BYTE
LOCATION
LOCATION
BYTE

After each call to an MMX 88 procedure, MMX 88 returns to the calling
task a status value called a condition code. The condition code reflects
the success or failure of the call. In case of failure, the code
indicates the reason for the failure. Consequently, tasks should always
check the condition code immediately after issuing an MMX 88 call.

MMX 88 PROCEDURE SUMMARY

Table 4-1 provides a summary description of the MMX 88 procedures for
fast reference.

4-2

MMX 88 PROCEDURE CALLS

Table 4-1. MMX 88 Procedures Summary

Procedure

FIND
PORT

CQFIND

TRANSFER
MESSAGE

CQXFER

LOSE
PORT

CQLOSE

ACTIVATE
PORT

CQACTV

WAIT FOR
MESSAGE

RQWAIT

Parameters

Input Values:
sys$port$name
condition$ptr

Returned Value:
connection

Input Values:
connection
message$ptr
xfer$flag
xfer$length
condition$ptr

Input Value:
connection

Input Values:
sys$port$name
condition$ptr

Returned Value:
exchange$ptr

Input Values:
exchange$ptr
time$limit

Returned Value:
message$ptr

ACCEPT Input Value:
MESSAGE exchange$ptr

RQACPT Returned Value:
message$ptr

DEACTIVATE Input Values:
PORT sys$port$name

condition$ptr
CQDACT

Description

Furnishes a connection for sending
messages to the system port
represented by the specified systemport
name.

Delivers the iRMX 88 message to the
system port associated with the
connection.

Releases the memory and connection previously
acquired through a call to CQFIND. The task
can no longer use the connection for message
transfers to the system port.

Activates a local iRMX 88 exchange that
serves as the system port represented
by the specified system-port name.
Messages transferred to the system port
are delivered to this exchange by the
MMX 88 software.

Standard iRMX 88 operation that tasks
use to receive messages at exchanges
representing system ports. If desired,
tasks can specify a waiting period.

Standard iRMX 88 operation that tasks
use to receive messages at exchanges
representing system ports. Tasks
cannot specify a waiting period.

Deactivates a system port that had been
activated earlier by a call to CQACTV.
Messages from another device can no
longer be transferred to that system port.
Messages still queued there can still be
received by local tasks.

4-3

NDPORT

I

I

I

I

I

FIND PORT

The CQFIND procedure returns a connection for a system port. The calling
task can use the connection to transfer messages to tasks on another (or
the same) device.

connection = CQFIND (sys$port$name, condition$ptr);

sys$port$name

condition$ptr

connection

DESCRIPTION

A WORD containing the two-byte ASCII name of
a system port. You assign names to system
ports during iMMX 800 configuration.

The LOCATION of a BYTE where MMX 88 returns
the condition code for the call.

The LOCATION of a WORD where a connection is
returned. The task uses the connection when
invoking CQXFER to transfer messages to the
specified system port. No other task should
use this connection.

When configuring MMX 88 for this device, you specify the name and location
of every system port to which tasks on this device transfer messages.
CQFIND returns to the calling task a connection that identifies the system
port whose name is specified in the call. The task can use the connection
in calling CQXFER. If and when the task is finished making CQXFER calls
with the connection, the task can call CQLOSE to return the connection to
the system.

CQFIND allocates a block of memory (32 bytes in the non-megabyte version;
48 bytes in the megabyte version) from the Free Space Pool for internal
needs, and also creates an exchange for MMX 88 use. The resources
allocated to the calling task by means of the CQFIND procedure are returned
to the system if and when the task calls the CQLOSE procedure.

The connection returned by CQFIND should be used by the task to which it is
issued. If more than one iRMX 88 task on the same device needs to send
messages to the same system port, each task should invoke the CQFIND
procedure to obtain its own connection.

4-4

CONDITION CODES

SYSTEM$SERVICE$READY

INSUFFICIENT$MEMORY

UNKNOWN$ SYSTEM$ PORT

CQFIND executed without error.

There is insufficient memory in the Fr~e
Space Pool to meet the requirements of
CQFIND.

The iMMX 800 software did not recognize the
system-port name that the calling task
supplied.

4-5

FINDPORr

I

I

TRANSFER MESSAGE

The CQXFER procedure transfers an iRMX 88 message to the system port
associated with the specified connection.

CALL CQXFER (connection, message$ptr, xfer$flag, xfer$length,
condition$ptr);

connection

message$ptr

xfer$flag

The LOCATION of the system port to which the
specified message is to be transferred.

The LOCATION of an iRMX 88 message that is to be sent
to the specified port.

A BYTE that specifies the transmission mode for the
message transfer. The possible values and their
mnemonics are as follows:

Numeric Code Mnemonic

OH (OOOB) nloc$full$delivery
IH (OOlB) nloc$full$transfer
2H (OlOB) nloc$partial$delivery
3H (OllB) nloc$partial$transfer

4H (lOOB) ploc$full$delivery
5H (lOlB) ploc$full$transfer
6H (llOB) ploc$partial$delivery
7H (lllB) ploc$partial$transfer

The general meanings of the mnemonics follow. Much
more detailed explanations of nloc, ploc, delivery,
and transfer are in the description portion of this
section.

• nloc and ploc - determine whether or not MMX 88
is to obtain a buffer (in an area that is
accessible by the destination device) and place a
copy of the message in the buffer. If MMX 88 is
not directed to do this, the calling task must
already have done so by the time it issues the
CQXFER call, and message$ptr must point to the
copy. "nloc" means MMX 88 should make a copy,
and "ploc" means the task has already made a copy.

• full and partial - determine whether the entire
message block or only the message portion
(without the header) is to be transmitted.
"full" means the entire block, and "partial"
means only the first n bytes of the message
portion, where n is the value specified in the
message header or the value of xfer$length,
whichever is smaller.

4-6

TRANSFER MESSAC

xfer$flag (continued)

xfer$length

condition$ptr

DESCRIPTION

• transfer and delivery - determine whether the
calling task plans to reuse the memory, perhaps
to broadcast the message to several devices.
"transfer" means the task plans to reuse the
memory, and "delivery" means the task does not
intend to use the memory again.

A WORD whose value specifies the length, in bytes,
of the message to be delivered by MMX 88. If bit 1
of the xfer$flag is zero (meaning the entire
message block is sent), the xfer$length parameter
is ignored by CQXFER. (See the CAUTION in the
following DESCRIPTION section.) Otherwise, the
length of the message to be sent is equal to
xfer$lenth or to the length of the entire message
block, whichever is smaller.

A LOCATION of a BYTE where MMX 88 returns the
condition code for the call.

The TRANSFER MESSAGE service transfers a message to the system port
specified by the connection. The task with the connection must invoke a
separate call to CQXFER for each message sent to the system port.

An application task invoking the CQXFER procedure is suspended until the
message is delivered and queued at the destination port, or until the
MMX 88 software detects an error while attempting to deliver the message.

The xfer$flag parameter specifies how the calling task wants the message
transmission to be handled. A table describing the full effects of the
options (except for "partial" and "full"), with some preliminary notes,
is as follows:

• "Message area" is the area defined by message$ptr and xfer$length.

• "Peer device" and "slave device" refer to device characteristics
that you define for each device during iMMX 800 configuration for
that device.

• Names of returned condition codes assume that no other errors
occurred in the call.

• "A copy" is shorthand for "a copy of the message. Where the
copy is made (locally or remotely) is either stated or is clear
from context.

• "When control returns" is shorthand for "when control returns to
the calling task."

4-7

rRANSFER MESSAGE

Destination
Device Transfer Deliver

Peer
device
with
the
ability
to make
copies

Slave
device

MMX 88 makes a copy in
memory accessible by the
destination device and re
turns the system$message$-

nloc copy$delivered condition
code. The message area is
free for reuse.

MMX 88 doesn't make a copy
and returns the system$
message$copy$delivered con
dition code. When control
returns, a copy has been

ploc queued at the appropriate
exchange or mailbox on the
desination device, and the
message area is free for
reuse.

nloc

ploc

This is an error condition
because MMX 88 does not make
copies when transmitting
messages to slave devices.
MMX 88 returns the xfer$
flag$error condition code.
This is an error condition
because a task that elects
to transfer a message ex
pects to be able to use the
message area immediately
upon regaining control.
MMX 88 returns the xfer$
flag$error condition code.

MMX 88 makes a copy in memory
accessible by the destination
device and returns the system$
message$copy$delivered con
dition code. Because MMX re
turns the message area to the
PMM, the message area is not
free for reuse.
MMX 88 doesn't make a copy and
returns the system$message$
copy$delivered condition code.
When control returns, the
message area is not free
for reuse.

This is an error condition
because MMX 88 does not make
copies when transmitting
messages to slave devices.
MMX 88 returns the xfer$
flag$error condition code.
MMX doesn't make a copy
and returns the system$
message$delivered condition
code. When control re
turns, the message area is
not free for reuse.

MMX 88 makes a copy in mem- MMX 88 makes a copy in memory
ory accessible by the desti- accessible by the destination
nation device and returns device, returns the message
the system$message$delivered area to the PMM, and returns

nloc condition code. When con- the system$message$delivered
Peer trol returns, the message condition code. When control
device area is free for reuse. returns, the message area is
without not free for reuse.

~----~~~~~----~--~-----------+~~~~~--~----~------------~ the MMX 88 doesn't make a copy MMX 88 doesn't make a copy
ability and returns the system$mes- and returns the system$mes-
to make sage$delivered condition sage$delivered condition
copies code. When control returns, code. When control returns,

ploc a copy has been queued at the message area is not
the appropriate exchange or free for reuse.
mailbox on the destination
device, but the message area
is not free for reuse.

4-8

TRANSFER MESSAG1

In the event that a task chooses to let MMX 88 return the message block
to PMM (that is, if it selects the "delivery" option in the xfer$flag
parameter), the task must not alter the HOME$EX field of the message.

The RESP$EX field of the message is undefined for use with messages
passed by means of the CQXFER procedure. That is, the sending task
cannot use this field to signify to the receiving task where to return a
response.

All other fields within the message are as defined by the iRMX 88
Executive. See Chapter 6 for a more detailed description of the message
fields.

If it is necessary for communicating tasks to pass additional information
concerning a message block, then some convention can be adopted that
utilizes a "subheader" within the message itself for conveying such
information. This subheader is considered part of the message's data and
will be transferred by CQXFER.

When you use the full delivery mode to
CQXFER a message from an iRMX 88-based
system to an iRMX 80- or iRMX 86-based
system, the MMX 80 or MMX 86 facility
at the receiving end increases the size
of the message in order to meet local
iRMX 80 or iRMX 86 requirements.
Consequently, if you use the iMMX 800
software to shuttle information back
and forth between such systems many
times, as in a "do forever" loop, and
the task at each end always "sends" the
same buffer that it just "received",
then the buffers -- there are at least
two, because the iMMX 800 software
always make a copy on the destination
device -- will grow beyond the limits
of your system's memory. To prevent
this from happening, one or more of the
tasks should take responsibility for
controlling the size of the buffers. A
task using MMX 88 can exercise this
control by using the partial$delivery
mode, with the xfer$length field set to
the appropriate value.

4-9

rRANSFER MESSAGE

CONDITION CODES

SYSTEM$MESSAGE$COPY$DELIVERED The destination device copied the message
before it was successfully delivered.

SYSTEM$MESSAGE$DELIVERED

INSUFFICIENT$MEMORY

SYSTEM$PORT$DEAD

SYSTEM$PORT$INACTIVE

UNKNOWN$SYSTEM$PORT

XFER$FLAG$ERROR

The message$ptr mayor may not be valid.

The message was successfully delivered to
the destination system port without being
copied by the destination device. The
message$ptr mayor may not be valid.

Not enough memory was available for local
or destination buffers. The message$ptr
remains valid.

MMX 80 has concluded that the indicated
destination device is dead and therefore
cannot receive transferred messages. The
message$ptr remains valid.

The destination port currently is not
active, so the message is not
deliverable. The message$ptr remains
valid.

The specified connection is not valid, so
the CQXFER call was not successful. The
message$ptr remains valid.

The value of xfer$flag was not in the
range 0 through 7, or an incorrect value
was specified for the destination device.

4-10

LOSE PORT

The CQLOSE procedure allows a task to release resources that were
previously allocated by the CQFIND procedure. After the CQLOSE call, the
connection can no longer be used to transfer messages.

CALL CQLOSE (connection);

connection

DESCRIPTION

The LOCATION of a WORD containing a connection
that was previously returned to the calling task
by the CQFIND service, for the purpose of using
CQXFER to transfer messages.

When an iRMX 88 task no longer wishes to send messages to a specified
system port, the LOSE PORT service lets the task return to the system the
resources previously allocated for message transfers. The calling task
surrenders the following resources when it invokes the CQLOSE call:

• Connection - the calling task can no longer use the connection to
transfer messages to the system port.

• Free Space memory - the memory block (32 bytes in the
non-megabyte version; 48 bytes in the megabyte version)
previously allocated for system use is returned to the Free Space
Pool.

• An exchange - the exchange previously created by CQFIND is
deleted.

The MMX 88 software does no validity
checking when the CQLOSE procedure is
called. Consequently, specifying an
improper connection, or one that was
invalidated by a previous CQLOSE call,
causes unpredictable results in the
device-resident iRMX 88 Executive.

4-11

I

CTI" TE PORT

I

I

ACTIVATE PORT

The CQACTV procedure activates the specified system port and creates a
device-resident iRMX 88 exchange for message reception at the specified
system port.

exchange$ptr CQACTV (sys$port$name, condition$ptr);

sys$port$name A WORD containing the two-byte ASCII name of a
system port. You assign names to system ports
during iMMX 800 configuration.

condition$ptr

exchange$ptr

DESCRIPTION

The LOCATION of a BYTE where MMX 88 returns the
condition code for the call.

The LOCATION of the iRMX 88 exchange that MMX 88
creates. Local tasks, including the calling
task, use exchange$ptr in calls to RQWAIT and
RQACPT in order to receive messages from a task
on another device.

The MMX 88 services do not deliver messages to a system port until that
port has been activated by a call to CQACTV. When called, the CQACTV
procedure attempts to associate the specified system-port name with a
device-resident system port. If the system port is defined for this
device and the port is not already activated, CQACTV activates the port
and returns an exchange$ptr for the associated iRMX 88-exchange address.

If other device-resident tasks are to receive messages at this iRMX 88
exchange, the task calling CQACTV must pass the iRMX 88 exchange address
to those other tasks.

An activated system port remains active (that is, able to receive
messages) until it is deactivated by a call to the CQDACT procedure.

Although an application task can invoke the iRMX 88 system call RXCXCH,
to dynamically create exchanges for communication between tasks residing
on the same device, application tasks cannot call CQCXCH to create
exchanges for interdevice communication. Only the system ports (which
you define at iMMX 800 configuration time) can be used as exchanges for
interdevice communication, and each must be activated by a call to CQACTV.

4-12

CONDITION CODES

SYSTEM$SERVICE$READY

SYSTEM$PORT$ACTIVE

UNKNOWN$SYSTEM$PORT

ACTIVATEPOR1

Service completed without error.

The indicated port is already activated.

MMX 88 did not find the specified system
port name when it searched the local system
port table.

4-13

I

I

I

MESSAGE RECEPTION

RQWAIT and RQACPT are standard iRMX 88 system calls that tasks use to
receive messages at exchanges. In particular, tasks use RQWAIT and RQACPT
to receive messages at exchanges representing activated system ports.

message$ptr = RQWAIT (exchange$ptr, time$limit);
or

message$ptr = RQACPT (exchange$ptr)j

exchange$ptr

time$limit

message$ptr

DESCRIPTION

The LOCATION of an iRMX 88 exchange previously
created by the CQACTV procedure.

A WORD (used in calls to RQWAIT only) whose value
is the length of time (in iRMX 88 system time
units) that the calling task is willing to wait for
a message to arrive.

Normally the LOCATION of the message at the front
of the exchange's message queue. However, if the
task called RQWAIT and then "timed out",
message$ptr contains the address of a five-byte
(non-megabyte version) or seven-byte (megabyte
version) message of type TIMEOUTTYPE (=3).

An application task receives messages sent to an iRMX 88 exchange by
invoking the iRMX 88 system calls RQWAIT and RQACPT. The exchange is
identified in the calls by exchange$ptr. If the exchange represents a
system port, the exchange location was previously returned to an
application task by the CQACTV procedure.

After a task calls RQWAIT or RQACPT, it must ascertain whether the call was
successful. If it calls RQWAIT, the task receives the location of a
message. The task must check the TYPE field of that message to learn
whether the message is what the task was waiting for. If the value in that
field is three (3), the message is from the iRMX 88 Executive and indicates
that the specified time limit expired before a message from another task
arrived at the exchange. Otherwise, the message is from another task.

If the task calls RQACPT, and the returned message$ptr value is zero (0),
then no message was queued at the exchange. Otherwise, the value is the
location of a message from another task.

NOTE
The resp$ex field is undefined in
iRMX 88 messages delivered to a system
port by MMX 88 services. This field
should not be used by receiving tasks.

4-14

DEACTIVATE PORT

The CQDACT procedure deactivates the specified system port. Messages are
no longer delivered to that port by the device-resident MMX 88 software.

CALL CQDACT (sys$port$name, condition$ptr);

sys$port$name

condition$ptr

DESCRIPTION

A WORD containing the two-byte ASCII name of a
system port. You assign names to system ports
during iMMX 800 configuration.

The LOCATION of a BYTE where MMX 88 returns the
condition code for the call.

The DEACTIVATE PORT service allows an application task to deactivate the
specified system port. After the port is deactivated, messages can no
longer be sent to that port until it is re-activated by the same or
another device-resident task. A SYSTEM$PORT$INACTIVE exceptional
condition is returned to tasks attempting to send further messages to the
deactivated port.

CQDACT does not affect messages already queued at the iRMX 88 exchange
representing the system port when the CQDACT request is made. Such
messages remain available to tasks on the device. MMX 88 deletes the
exchange when the last remaining message is received by a task.

CONDITION CODES

SYSTEM$SERVICE$READY

UNKNOWN$SYSTEM$PORT

Service completed without error.

The iMMX 800 software did not recognize the
system port name supplied by the calling
task.

4-15

I

I

I

I

I

I

I

I
I

I

MMX 88 PROCEDURE CALLS

MMX 88 USAGE EXAMPLES

The program examples in Figures 4-1 and 4-2 show typical usage of the
MMX 88 interdevice message-transfer services. The program given in
Figure 4-1 represents portions of a task that sends messages to a task on
another device. The task that sends messages is called the
MMX$producer$task. The task to which it sends messages is similarly
portrayed in Figure 4-2 and is called the MMX$consumer$task.

In the examples, the data types of the variables can be derived from
context.

MMX$producer$task:
DO;

DECLARE condition$code BYTE;
DECLARE consumer$connection LOCATION;
DECLARE (consumersysport$name,

producersysport$name) WORD EXTERNAL;

consumer$connection = CQFIND (consumersysport$name,
LOCATION$OF condition$code);

IF NOT (condition$code = SYSTEM$SERVICE$READY)
THEN CALL problem$handler;

producer$exch = CQACTV (producer$sys$port$name,
LOCATION$OF condition$code);

IF NOT (condition$code = SYSTEM$SERVICE$READY)
THEN CALL problem$handler;

CALL generate (LOCATION$OF producer$message); 1* generate a message *1

CALL CQXFER(consumer$connection,
LOCATION$OF producer$message,
nloc$partial$deliver,
xfer$length,
LOCATION$OFcondition$code);

IF NOT «condition$code = SYSTEM$MESSAGE$COPY$DELIVERED) OR
(condition$code = SYSTEM$MESSAGE$DELIVERED))

THEN CALL problem$handler;

consumer$reply$message$ptr = RQWAIT (LOCATION$OF producer$exch,
some$delay);

CALL CQDACT(producersysport$name,
LOCATION$OF condition$code);

END MMX$producer$task;

Figure 4-1. Sending Task Program Example

4-16

MMX 88 PROCEDURE CALLS

MMX$consumer$task:
DO;

DECLARE condition$code BYTE;
DECLARE producer$connection LOCATION;
DECLARE (consumersysport$name,

producersysport$name) WORD EXTERNAL;

consumer$exch = CQACTV (consumer$sys$port$name,
LOCATION$OF condition$code);

IF NOT (condition$code = SYSTEM$SERVICE$READY)
THEN CALL problem$handler;

producer$message$ptr = RQWAIT (consumer$exch,
some$delay);

IF producer$message.type = TIME$OUT$TYPE
THEN CALL problem$handler;

producer$connection = CQFIND (producersysport$name,
LOCATION$OF condition$code);

IF NOT (condition$code = SYSTEM$SERVICE$READY)
THEN CALL problem$handler;

CALL generate (LOCATION$OF reply$message); I*generate a reply*1

CALL CQXFER (producer$connection,
LOCATION$OF reply$message,
nloc$partial$delivery,
xfer$length,
LOCATION$OF condition$code);

IF NOT «condition$code = SYSTEM$MESSAGE$COPY$DELIVERED) OR
(condition$code = SYSTEM$MESSAGE$DELIVERED»

THEN CALL problem$handler;

CALL CQDACT (consumersysport$name,
LOCATION$OF condition$code);

END MMX$consumer$task;

Figure 4-2. Receiving Task Program Example

4-17

I

I

I

I

I
I

I

I
I

CHAPTER 5. MMX 86 PROCEDURE CALLS

The procedure calls described in this chapter apply only to tasks running
under the supervision of the iRMX 86 Operating System. Although the
iMMX 800 software is a single product, in the MMX 86 implementation, the
syntax requirements of procedure calls are different than the syntax
requirements of corresponding calls in the MMX 80 and MMX 88
implementations.

For iRMX 86 tasks, having different iMMX 800 implementations on the
various devices in an application has the following implications:

• Except for CQXFER calls, an iRMX 86 task calling an iMMX 800
procedure is serviced only by the MMX 86 software resident on its
own device. (CQXFER calls require interaction between iMMX 800
implementations residing on the source and destination devices.)

• An iRMX 86 task that sends messages to other devices need not
concern itself with which iMMX 800 implementation provides
services at the receiving devices.

• An iRMX 86 task that receives messages from another device need
not concern itself with the origin of those messages; the
receiving task's message-reception calls are serviced by MMX 86
and iRMX 86 software residing on its own device.

PL/M-86 LANGUAGE INTERFACE

The MMX 86 procedures described in this chapter are defined in PL/M-86.
See the section of Chapter 7 entitled "Linking and Locating iMMX 800
Application Systems" for the names of files containing EXTERNAL
declarations of the procedures.

CONDITION CODES

After each call to an MMX 86 procedure, MMX 86 returns to the calling
task a status value called a condition code. The condition code reflects
the success or failure of the call. In case of failure, the code
indicates the reason for the failure. Consequently, tasks should always
check the condition code immediately after issuing an MMX 86 call.

MMX 86 PROCEDURE SUMMARY

Table 5-1 provides a summary description of the MMX 86 procedures for
fast reference.

5-1

Procedure

FIND
PORT

CQFIND

TRANSFER
MESSAGE

CQXFER

LOSE
PORT

CQLOSE

ACTIVATE
PORT

CQACTV

RECEIVE
MESSAGE

RQ$-
RECEIVE$-
MESSAGE

DEACTIVATE
PORT

CQDACT

Table 5-1. MMX 86 Procedures Summary

Parameters

Input Values:
sys$port$name
condition$ptr

Returned Value:
connection

Input Values:
connection
msg$token
xfer$flag
msg$length
condition$ptr

Input Value:
connection

Input Values:
sys$port$name
condition$ptr

Returned Value:
exchange$ptr

Input Values:
mailbox$token
time$limit
response$ptr
condition$ptr

Returned Value:
msg$token

Input Values:
sys$port$name
condition$ptr

Description

Furnishes a connection for sending
messages to the system port
represented by the specified system
port name.

Delivers the iRMX 86 message to the
system port associated with the
connection.

Releases the memory and connection
previously acquired through a call to
CQFIND. The task can no longer use the
connection for message transfers to the
system port.

Activates a local iRMX 86 exchange that
serves as the system port represented
by the specified system-port name.
Messages transferred to the system port
are delivered to this exchange by the
MMX 86 software.

Standard iRMX 86 operation that tasks
use to receive objects at mailboxes
representing system ports. If desired,
tasks can specify a waiting period.

Deactivates a system port that had been
activated earlier by a call to CQACTV.
Messages from another device can no
longer be transferred to that system
port. Messages still queued there can
still be received by local tasks.

5-2

FIND PORT

The CQFIND procedure returns a connection for a system port. The calling
task can use the connection to transfer messages to tasks on another (or
the same) device.

connection = CQFIND (sys$port$name, condition$ptr);

sys$port$name

condition$ptr

connection

DESCRIPTION

A WORD containing the two-byte ASCII name of a
system port. You assign names to system ports
during iMMX 800 configuration.

The POINTER to a WORD where MMX 86 returns the
condition code for the call.

A TOKEN whose value is returned for use only by
the calling task. The task uses the connection
when invoking CQXFER to transfer messages to the
specified system port.

When configuring MMX 86 for this device, you specify the name and address
of every system port to which tasks on this device transfer messages.
CQFIND returns to the calling task a connection that identifies the
system port whose name is specified in the call. The task can use the
connection in calling CQXFER. If and when the task is finished making
CQXFER calls with the connection, the task can call CQLOSE to return the
connection to the system.

CQFIND initiates the allocation of a 32-byte segment from the Free Space
Pool for internal needs, and also creates a mailbox for MMX 86 use. The
resources allocated to the calling task by means of the CQFIND procedure
are returned to the system if and when the task calls the CQLOSE
procedure.

The connection returned by CQFIND should be used by the task to which it
is issued. If more than one iRMX 86 task on the same device needs to
send messages to the same system port, each task should invoke the CQFIND
procedure to obtain its own connection.

Each call to CQFIND increases the object count for the task's job by 2.

5-3

FIND P{)RT

'INDPORT

CONDITION CODES

E$OK

E$LIMIT

E$MEM

E$UNKNOWN$SYSTEM$PORT

The CQFIND call was successful and the
returned connection is valid.

The CQFIND call was unsuccessful because to
complete the call would have exceeded the
object limit for the calling task's job.

The CQFIND call was unsuccessful because
there is insufficient free space in the job
containing the calling task.

The CQFIND call was unsuccessful because the
iMMX 800 software did not recognize the
system-port name that the calling task
supplied.

5-4

TRANSFER MESSAGE

TRANSFER MESSAGE

The CQXFER procedure transfers a message to the system port associated
with the specified connection.

CALL CQXFER (connection, msg$token, xfer$flag, xfer$length,
condition$ptr);

connection

msg$token

xfer$flag

xfer$length

condition$ptr

A TOKEN whose value identifies the system port
where the specified message is to be transferred.

A TOKEN for the segment containing the message
that is to be sent to the specified port.

A WORD that specifies the transmission mode for
the message transfer. The two low-order bits
determine the mode, as follows:

Bit 0 - Specifies whether the calling task
expects to reuse the message segment.
The value 1 means that the task does
expect to reuse the segment, and 0
means that it does not. See the
description section below for more
detail on this.

Bit 1 - Specifies the amount of data to be
transmitted. 0 means transmit the
entire segment, and 1 means transmit n
bytes, where n is the size of the
segment or the value of xfer$length,
whichever is smaller.

A WORD whose value specifies the length, in
bytes, of the message to be delivered by MMX 86.
If bit 1 of the xfer$flag is zero (meaning the
entire segment is sent), the xfer$length
parameter is ignored by CQXFER. (See the CAUTION
in the following DESCRIPTION section.)
Otherwise, the length of the message to be sent
is equal to xfer$length or to the length of the
entire segment, whichever is smaller.

A POINTER to a WORn where MMX 86 returns the
condition code for the call.

5-5

I

I

I

I

l'RANSFER MESSAGE

DESCRIPTION

The TRANSFER MESSAGE service transfers a message to the system port
identified by the connection. The task with the connection must issue a
separate call to CQXFER for each message sent to the system port.

An application task invoking the CQXFER procedure is suspended until the
message is delivered and queued at the destination port, or until an
exceptional condition is detected during the execution of the call.

The xfer$flag parameter specifies the mode of the message transmission.
The following table, which is preceded by some preliminary notes,
describes the full significance of bit 0 of xfer$flag. In that table,

• "Peer device" and "Slave device" refer to device characteristics
that are defined for each device during iMMX 800 configuration
for the device.

• Names of returned condition codes assume that no other errors
occurred in the call.

• "Message segment" is the segment whose token is msg$token.

Peer
device

Slave
device

Transfer

MMX 86 makes a copy of the
message in memory accessible
by the destination device and
returns the E$OK condition
code. When control returns to I

the calling task, the message
segment is free for reuse.

This is an error condition,
because MMX 86 does not make
copies when transmitting to
slave devices. MMX 86 returns
the E$CONTEXT exceptional con
dition to the calling task.

5-6

Deliver

MMX 86 makes a copy of the
message in memory accessible
by the destination device,
deletes the memory segment,
and returns the E$OK condition
code. When control returns to
the calling task, the message
segment is not free for reuse.

MMX 86 doesn't make a copy of
the message, and returns the
E$OK condition code to the
calling task. When control
returns to the calling task,
the message segment is not
free for reuse.

CONDITION CODES

E$OK

E$CONTEXT

When you CQXFER a message from an
iRMX 86-based system to an iRMX 80- or
iRMX 88-based system, the MMX 80 or
MMX 88 facility at the receiving end
increases the size of the message in
order to meet local iRMX 80 or iRMX 88
requirements. Consequently, if you use
the iMMX 800 software to shuttle
information back and forth between such
systems many times, as in a "do
forever" loop, and the task at each end
always "sends" the same buffer that it
just "received", then the buffers -
there are at least two, because the
iMMX 800 software always make a copy on
the destination device -- will grow
beyond the limits of your system's
memory. To prevent this from
happening, one or more of the tasks
should take responsibility for
controlling the size of the buffers. A
task using MMX 86 can exercise this
control by setting the xfer$flag
parameter to 2 and the xfer$length
parameter to the appropriate value.

The CQXFER call was successful. If bit 0
of xfer$flag was 1, msg$token is still a
valid token for the message segment;
otherwise msg$token is not valid.

The CQXFER call was unsuccessful and the
message was not delivered. The call
attempted to transfer a segment to a
"slave"-type device. Msg$token remains
valid.

E$DESTINATION$CHANNEL$MEM The CQXFER call was not successful because
there was insufficient memory space on the
destination device to make a copy of the
message. Msg$token remains valid.

E$EXIST The CQXFER call was unsuccessful because
either connection or msg$token is not a
token for an existing object. Msg$token
remains valid.

5-7

E$LIMIT

E$MEM

E$SOURCE$CHANNEL$MEM

E$SYSTEM$PORT$DEAD

E$SYSTEM$PORT$INACTIVE

E$TYPE

E$UNDEFlNED$POOL

E$UNKNOWN$SYSTEM$PORT

The CQXFER call was unsuccessful because
completing the call would have exceeded the
object limit for the calling task's job.
Msg$token remains valid.

The CQXFER call was unsuccessful because
there is not sufficient free space in the
calling task's job to provide the work
space that MMX 86 requires. Msg$token
remains valid.

The CQXFER call was unsuccessful because
there is not sufficient free space in the
shared memory space to make a local copy of
the message. Msg$token remains valid.

The CQXFER call was unsuccessful because
the destination device failed to respond to
a signal within a time period that was
specified during configuration and
consequently was declared dead. Subsequent
attempts to communicate with that device
are blocked. Msg$token remains valid.

The CQXFER call was unsuccessful because
the destination system port was not
activated (via a CQACTV call) by some task
on the destination device prior to the
attempted message transfer. Msg$token
remains valid.

The specified connection is a valid token
for an object that is not a segment.

The CQXFER call was unsuccessful because
the pool specified for the destination
device was incorrectly specified during
configuration (of the DSDT table for source
device.) Msg$token remains valid.

The CQXFER call was unsuccessful because
the specified connection does not refer to
a valid system port on the destination
device. Msg$token remains valid.

5-8

LOSE PORT

The CQLOSE procedure allows an iRMX 86 task to release resources that
were previously allocated by the CQFIND procedure. After the CQLOSE
call, the connection can no longer be used to transfer messages.

CALL CQLOSE (connection, condition$ptr);

connection

condition$ptr

DESCRIPTION

A TOKEN whose value was returned by CQFIND to the
calling task, for the purpose of using CQXFER to
transfer messages.

A POINTER to a WORD where MMX 86 returns the
condition code for the call.

When an iRMX 86 task no longer wishes to send messages to a system port,
the LOSE PORT service lets the task return to the system the resources
previously allocated for message transfers. The calling task surrenders
the following resources when it invokes the CQLOSE call:

• Connection - the calling task can no longer use the connection to
transfer messages to the system port.

• Free space memory - the 32-byte segment previously allocated for
system use is returned to the Free Space Pool.

• A mailbox - the mailbox previously created by CQFIND is deleted.

CONDITION CODES

E$OK

E$EXIST

E$TYPE

The call to CQLOSE was successful and the
connection is valid.

The call to CQLOSE was unsuccessful because the
specified connection is not a token for an
existing object.

The call to CQLOSE was unsuccessful because the
specified connection is a token for an object
that is not a connection object.

5-9

LOSE POR

CTIVATE PORT

ACTIVATE PORT

The CQACTV procedure activates the specified system port and creates a
device-resident iRMX 86 mailbox for message reception at the specified
system port.

mailbox$token = CQACTV (sys$port$name, condition$ptr);

sys$port$name A WORD containing the two-byte ASCII name of a
system port. You assign names to system ports
during iMMX 800 configuration.

condition$ptr A POINTER to a WORD where MMX 86 returns the
condition code for the call.

mailbox$token

DESCRIPTION

A TOKEN to which MMX 86 returns a token for an
iRMX 86 mailbox. This mailbox is used by the
calling task (and all other device-resident tasks
that access the same mailbox for message
reception) in subsequent RQ$RECEIVE$MESSAGE calls.

The MMX 86 services do not deliver messages to a system port until that
system port has been activated by a call to CQACTV. When called, the
CQACTV procedure attempts to associate the specified system-port name
with a device-resident system port. If the system port is defined for
this device and the port is not already activated, CQACTV activates the
port and returns a token for the associated iRMX 86 mailbox.

If other device-resident tasks are to receive messages at this mailbox,
the task calling CQACTV must pass the token for the mailbox to those
other tasks.

An activated system port remains active (that is, able to receive
messages) until it is deactivated by a call to the CQDACT procedure.

Although an application task can invoke the iRMX 86 system call
RQ$CREATE $MAILBOX , to dynamically create mailboxes for communication
between tasks residing on the same device, application tasks cannot call
RQ$CREATE$MAILBOX to create mailboxes for interdevice communication.
Only the system ports (which you define at iMMX 800 configuration time)
can be used as mailboxes for interdevice communication and each must be
activated by a call to CQACTV.

5-10

CONDITION CODES

E$OK

//

E$SYSTEM$PORT$ACTIVE

E$UNKNOWN$SYSTEM$PORT

The CQACTV call was successful and the
returned mailbox$token is valid.

ACTIVATE PORT

The CQACTV call was unsuccessful because the
indicated port is already activated.

The CQACTV call was unsuccessful because MMX
did not recognize the specified system port
name when it searched the local system port
table.

5-11

ESSAGE RECEPTION

MESSAGE RECEPTION

RQ$RECElVE$MESSAGE is a standard iRMX 86 system call that tasks use to
receive objects at mailboxes. In particular, tasks use
RQ$RECElVE$MESSAGE to receive messages at mailboxes representing
activated system ports.

msg$token = RQ$RECElVE$MESSAGE (mailbox$token, time$limit,
response$ptr, condition$ptr);

mailbox$token

time$limit

response$ptr

condition$ptr

msg$token

DESCRIPTION

A TOKEN containing a token for a mailbox
previously created by the CQACTV procedure.

A WORD which,

• if zero, indicates the calling task is not
willing to wait.

• if OFFFFH, indicates the task will wait as
long as is necessary.

• if between 0 and OFFFFH, is the number of
clock intervals the task is willing to wait.
The length of the clock interval is
configurable. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

A POINTER to a WORD in which the system always
returns a value of zero, since response$ptr is
not supported in MMX 86 implementations.

A POINTER to a WORD where MMX 86 returns the
condition code for the call.

A TOKEN containing the token for the message
segment being received.

An application task receives messages sent to an iRMX 86 mailbox by
invoking the RQ$RECEIVE$MESSAGE system call. The mailbox is identified
in the call by mailbox$token. If the mailbox represents a system port,
the mailbox token was previously returned to an application task by a
call to the CQACTV procedure.

When used in conjunction with MMX 86 software, the RQ$RECEIVE$MESSAGE
system call behaves as expected, except that the value returned to the
WORD pointed to by the response$ptr is always O. This is because MMX 86
does not know where the message came from.

5-12

CONDITION CODES

E$OK

E$EXIST

ENOTCONFIGURED

E$TIME

E$TYPE

MESSAGE RECEPTION

The RQ$RECEIVE$MESSAGE call was successful and
the message has been received.

The RQ$RECEIVE$MESSAGE call was unsuccessful
because either:

• mailbox$token was not a token for an existing
object or

• the local iRMX 86 Operating System deleted the
MMX 86 job on the device while the requesting
task was waiting.

The RQ$RECEIVE$MESSAGE call was unsuccessful
because RQ$RECEIVE$MESSAGE was excluded during
iRMX 86 configuration.

The RQ$RECEIVE$MESSAGE call was unsuccessful
because the calling task either:

• specified a time$limit of 0 and no messages
were queued at the mailbox or

• specified a non-zero time$limit that was less
than OFFFFH and then "timed out".

The RQ$RECEIVE$MESSAGE call was unsuccessful
because mailbox$token is a token for an object
that is not a mailbox.

5-13

EACTIV A TE PORT

DEACTIVATE PORT

The CQDACT procedure deactivates the specified system port. Messages are
no longer delivered to that port by the device-resident MMX 86 software.

CALL CQDACT (sys$port$name, condition$ptr);

sys$port$name

condition$ptr

DESCRIPTION

A WORD containing the two-byte ASCII name of a
system port. You assign names to system ports
during iMMX 800 configuration.

A POINTER to a WORD where MMX 86 returns the
condition code for the call.

The DEACTIVATE PORT service allows an application task to deactivate the
specified system port. After the port is deactivated, messages can no
longer be sent to that port until it is re-activated by the same or
another device-resident task calling the CQACTV procedure. An
exceptional condition 1s returned to tasks attempting to send further
messages to the port.

CQDACT does not affect messages already enqueued at the iRMX 86 mailbox
representing the system port when the CQDACT request is made. Such
messages remain available to tasks on the device. MMX 86 deletes the
mailbox when the last remaining message is received by a task.

CONDITION CODES

E$OK

E$UNKNOWN$SYSTEM$PORT

The call to CQDACT was successful.

The CQACTV call was unsuccessful because
MMX 86 did not recognize the specified
system port name when it searched the local
system port table.

5-14

MMX 86 PROCEDURE CALLS

MMX 86 USAGE EXAMPLES

The program examples in Figures 5-1 and 5-2 show typical usage of the
MMX 88 interdevice message-transfer services. The program given in
Figure 5-1 represents portions of a task that sends messages to a task on
another device. The task that sends messages is called the
MMX$producer$task. The task to which it sends messages is similarly
portrayed in Figure 5-2 and is called the MMX$consumer$task.

In the examples, the data types of the variables can be derived from
context.

MMX$producer$task:
DO;

DECLARE condition$code WORD;
DECLARE consumer$connection TOKEN;
DECLARE (consumersysport$name,

producersysport$name) WORD EXTERNAL;

consumer$connection = CQFIND (consumersysport$name,
@condition$code);

IF NOT (condition$code = E$OK)
THEN CALL problem$handler;

producer$mbox = CQACTV (producer$sys$port$name,
@condition$code);

IF NOT (condition$code = E$OK)
THEN CALL problem$handler;

CALL generate (@producer$message);

CALL CQXFER(consumer$connection,
producer$message,
full$deliver, /* transfer and delete whole segment */
OFFFFH,
@condition$code);

IF NOT (condition$code = E$OK)
THEN CALL problem$handler;

msg$token = RQ$RECEIVE$MESSAGE (producer$mbox,
some$delay,
@response,
@condition$code);

CALL CQDACT(producersysport$name,
@condition$code);

END MMX$producer$task;

Figure 5-1. Sending Task Program Example

5-15

I

MMX 86 PROCEDURE CALLS

MMX$consumer$task:
DO;

DECLARE condition$code WORD;
DECLARE producer$connection TOKEN;
DECLARE (consumersysport$name,

producersysport$name) WORD EXTERNAL;

consumer$mbox = CQACTV (consumer$sys$port$name,
@condition$code);

IF NOT (condition$code = E$OK)
THEN CALL problem$handler;

msg$token = RQ$RECEIVE$MESSAGE{consumer$mbox,
some$delay,
@response
@condition$code);

IF NOT (condition$code = E$OK)
THEN CALL problem$handler;

producer$connection = CQFIND (producersysport$name,
@condition$code);

IF NOT (condition$code = E$OK)
THEN CALL problem$handler;

CALL generate (@reply$message);

CALL CQXFER (producer$connection,
reply$message,
full$deliver, /* transfer and delete whole segment */
OFFFFH,
@condition$code);

IF NOT (condition$code = E$OK)
THEN CALL problem$handler;

CALL CQDACT (consumersysport$name,
@condition$code);

END MMX$consumer$task;

Figure 5-2. Receiving Task Program Example

5-16

CHAPTER 6 • PARTITIONED MEMORY MANAGER

The Partitioned Memory Manager (PMM) is provided to manage one or more
contiguous blocks of RAM. The PMM allocates memory to tasks on request
and accepts memory from tasks if and when the tasks no longer need the
memory. In systems that use it, the PMM replaces the Free Space Manager
(FSM).

MEMORY POOLS

NOTE

In iRMX 86-based applications, tasks
obtain memory for local needs by
calling RQ$CREATE$SEGMENT, and they
return memory by calling
RQ$DELETE$SEGMENT, so FSM-like features
are not needed. Furthermore, MMX 86
manages all pools on behalf of tasks
that communicate with other devices.
Consequently, MMX 86 users do not
explicitly use the PMM and need not
read this chapter.

The contiguous blocks of memory that the PMM manages are called pools.
You define the pools for each MMX80- or MMX88-based device during the
configuration process for the device. You also assign numbers called
pool id's to the pools during configuration. The pool id's for each
device usually start with 0 and continue upward sequentially, such as 0
through 10. For convenience, we refer to the pools by their id numbers 0
through N. There can be up to 255 pools per device, and pool id's can
range from 0 to 254.

There can be many reasons for separating memory into pools. What the
reasons are and how you do the separating depend upon the requirements of
your application. How your tasks use the PMM also depends upon your
application and its requirements. The iMMX 800 software, like your
application tasks, is a PMM user; the primary use it has for the PMM is
to transfer messages between devices.

Memory pools are important when transferring messages between devices.
Suppose there is a channel for communication between task A on device A
and task B on device B. To support message transfers from task A to task
B, there must be a memory pool (pool A), managed by the PMM on device A,
that is accessible by both devices. Messages from task A to task B must
be put into pool A. Similarly, to support message transfers from taskB
to task A, there must be a pool (pool B),managed by the PMM on device B,
and it too must be accessible by both devices. And, similarly, messages
from task B to task A must be put into pool B.

6-1

I

I

PARTITIONED MEMORY MANAGER

When task A sends a message to task B, task A has two choices as to how
the message is put into pool A. Task A can itself put the message into
pool A and then call CQXFER in such a way that the iMMX 800 software does
not make a separate copy of the message. Or task A can request that
CQXFER make a copy in pool A before transferring the message. Therefore,
one of the benefits of having the PMM procedures available to application
tasks is that the tasks can prevent the PMM from making the extra copy of
messages and using the extra 'memory that doing so entails.

In iRMX 80- and iRMX 88-based applications, pool 0 on each device is the
Free Space Pool for the device. Memory in a device's Free Space Pool is
usually dedicated to on-board needs, but, if desired, it can also be used
to transfer messages between the device and other devices, provided that
all of the memory in the Free Space Pool is accessible by all of those
devices.

In contrast, the memory in the other pools for the device is reserved for
transferring messages between the device and other devices. Each channel
between the device and another device uses one or more pools on the
device for transferring messages through that channel, provided that all
of the memory in each of the pools is accessible by the other device.
The other device also uses one or more pools for transferring messages
through the channel. If desired, the memory in a single pool on a device
can be used for transferring messages through more than one channel.

USING THE FREE SPACE POOL

In iRMX 80- and iRMX 88-based applications, the PMM manages the Free
Space Pool in the same way that the iRMX 80 and iRMX 88 Free Space
Managers (FSM) manage their respective pools of memory. That is, tasks
obtain memory by sending request messages to the RQFSAX exchange, and
they return memory by sending it to the RQFSRX exchange. Consequently,
on iRMX 80- and iRMX 88-based devices, the PMM replaces the FSM.
Reference material describing the FSM's can be found in the iRMX 80
USER'S GUIDE and the iRMX 88 REFERENCE MANUAL. If you are planning to
use only FSM functions, you can read about them in the appropriate
manual, instead of reading the remainder of this chapter.

PMM management of the Free Space Pool on a device differs from FSM memory
management in the following ways:

• A PMM memory block must always begin on a paragraph boundary
(that is, its starting address must be a multiple of 16), and its
length, in bytes, is always a multiple of 16. If a task sends a
memory request to the RQFSAX exchange with the LENGTH field set
to a value that is not a multiple of 16, the PMM will round that
value upward to the nearest mUltiple of 16 before acting on the
request. Therefore, a task that always requests memory in
multiples of 16 bytes can see no difference between the
allocation algorithms of the PMM and the FSM.

6-2

PARTITIONED MEMORY MANAGER

• The memory for the Free Space Pool is normally defined during
configuration. When the application system begins to run, the
PMM automatically initializes the Free Space Pool. In contrast,
the FSM does not establish its own pool of memory, but requires
that some task give it memory that has been reserved by some
method, such as by being declared an array.

Tasks in the PMM environment must not send memory to the RQFSRX
exchange when that memory had not been obtained through the
RQFSAX exchange. This is because there is no way to guarantee
that such memory begins on a paragraph boundary. The rounding
process that takes place can cause up to 15 bytes to be chopped
off each end of such a memory block. For the same reason, tasks
normally should not return part of a memory block to the RQFSRX
exchange, even when the memory was obtained through the RQFSAX
exchange. However, if a task makes certain that the part of a
block being returned starts on a paragraph boundary and has a
length that is a mUltiple of 16, there should not be any problems.

NOTE

Memory sent to the RQFSRX exchange in
the MMX 88 environment will not be
reclaimed unless it starts on a
paragraph boundary and has a length
that is a multiple of 16. Instead,
the memory is "lost."

In the MMX 88 environment, memory must
~ be sent to RQFSRX exchange unless
it had previously been allocated from
the RQFSAX exchange.

USING POOLS 0 THROUGH N

Tasks needing memory for interdevice message transfers obtain memory
through the RQFLMX exchange. When the memory is no longer needed, it is
usually returned to the appropriate pool, either by an application task
or by MMX 80 or MMX 88.

REQUESTING MEMORY

The RQFLMX exchange has slightly different format requirements than do
the RQFSAX and RQFSRX exchanges. The message structures associated with
requesting memory from the RQFLMX exchange are as follows:

6-3

I

I

I

I

I

PARTITIONED MEMORY MANAGER

DECLARE MSG$HEADER LITERALLY
'LINK ADDRESS,
LENGTH WORD,
TYPE BYTE,
HOME$EX ADDRESS,
RESP$EX ADDRESS';

DECLARE PMMREQSTRUC LITERALLY
'(MSG$HEADER,

NEEDED$SIZE

/* LOCATION if MMX 88 */

/* LOCATION if MMX 88 */
/* LOCATION if MMX 88 */

/* FILLER
MEMORY$POOL

WORD,
WORD,
BYTE)';

if megabyte MMX 88 */

DECLARE PMMGOTBLK$STRUC LITERALLY
'(MSG$HEADER,

BLK$PTR
MEMORY$POOL

ADDRESS,
BYTE)';

/* LOCATION if MMX 88 */

DECLARE PMMNOTALLOC$STRUC LITERALLY
'(MSG$HEADER,

BIGGEST$BLK WORD)';

Messages of the form PMMREQSTRUC are sent to the RQFLMX exchange in
order to request memory. The fields that the requesting task must fill in
are the following:

TYPE must be either PMMGETBLK$TYPE (=4H) or PMM$UCGETBLK$TYPE
(=5H). PMMGETBLK$TYPE signifies a conditional request, which means
that the task wants the requested memory but is not willing to wait
if a sufficiently large block is not available. PMMUCGETBLKTYPE,
on the other hand, signifies that the task must have the memory and
will wait indefinitely for it.

RESP$EX must contain the address of the exchange where the requesting
task will wait for a response to its request.

NEEDED$SIZE must contain the number of bytes being requested. This
value must be large enough to accommodate both the body of the
message and the message header (12 bytes in MMX 80 and the
non-megabyte version of MMX 88; 20 bytes in the megabyte version of
MMX 88) that the PMM places at the beginning of the allocated memory.

MEMORY$POOL must contain the pool id of the memory pool that is
dedicated to the channel that the requesting task is planning to
use. If the task doesn't know the number of the pool, it can obtain
that value by means of the CQGDPA procedure, as follows:

MEMORY$POOL = CQGDPA(CONNECTION);

where CONNECTION is the connection previously obtained for the
channel by a call to CQFIND.

6-4

PARTITIONED MEMORY MANAGER

After the requesting task sends the request message, it must wait at the
response exchange indicated in the request. When the task receives the
response message, the TYPE field reveals the disposition of the request,
as follows:

• If the value in the TYPE field is PMM$ERROR$TYPE (=6H), the
response message is of the PMMNOTALLOC$STRUC type and the
MEMORY$POOL field of the request message did not contain a valid
pool id value, so the request is denied.

• If the value in the TYPE field is PMMNOSPACE$TYPE (=2BH), there
was not sufficient memory at the time of the request, so the
request is denied. In this case, the response message is of the
PMMNOTALLOC$STRUC type and the BIGGEST$BLK field contains the
number of bytes in the largest block that could have been
allocated. Note that there is no guarantee that a block of that
size still remains in the pool.

• Otherwise, the value in the TYPE field is the same as the value
in the TYPE field of the request message, and the request is
granted. In this case, the response message is of the
PMMGOTBLK$STRUC type, the BLK$PTR field contains the address of
the allocated memory block, and the LENGTH and HOME$EX fields
should not be altered.

RETURNING ALLOCATED MEMORY

If and when a block of memory is no longer needed, a task can return the
memory to the PMM by sending the memory to the exchange whose address is
in the HOME$EX field of the memory block's message header.

If, for some reason, the task wants to return the memory to a different
pool than the pool from which the memory was allocated, the task can
easily do so, although this practice is not recommended in the MMX 80
environment and is absolutely forbidden in the MMX 88 environment. The
task must first put the appropriate pool id in the MEMORY$POOL field of
the memory block and the PMM$FREE$BLK$TYPE (=28H) in the TYPE field.
Then the task sends the memory block (as a message) to the RQFLMX
exchange.

When a block is sent to the RQFLMX exchange, the RESP$EX field is ignored
by the PMM, so if an error occurs, the task does not learn of it. In
iRMX 80-based applications, if the error is that a non-existent pool was
specified, the PMM has sent the memory to an exchange called RQPBHX.
Application tasks can do an RQACPT operation at that exchange to see
whether any blocks have been improperly reclaimed. In iRMX 88-based
applications, memory that is sent to the RQFLMX exchange with an invalid
pool id is "lost".

6-5

I

PARTITIONED MEMORY MANAGER

CREATING MEMORY POOLS DYNAMICALLY

For iRMX 80 applications, it is not necessary for all pools to be defined
during configuration. A task can request that a pool be created
dynamically by a process similar to that used for requesting memory from
an existing pool.

First, the task prepares a message of the PMMREQSTRUC type. The TYPE
field of the message must contain the value PMM$CREATE$POOL$TYPE (=29H).
The RESP$EX field must contain the address of the exchange where the task
will wait for a response to its request. The MEMORY$POOL field must
contain the pool id of the pool that is to be created.

After preparing the message, the task must send it to the PMM exchange
RQPMX, and then the task must wait at the specified response exchange.

When the task receives the response message, the TYPE field reveals the
disposition of the request, as follows:

• If the value in the TYPE field is PMM$ERROR$TYPE (=6H), there is
already a pool with the specified pool id, so the request is
denied.

• If the value in the TYPE field is PMMNOSPACE$TYPE (=2BH),
either there was not sufficient memory available to form a pool
or the required 32 bytes of work area was not available in the
Free Space Pool, so the request is denied.

• Otherwise, the value in the TYPE field is the same as that in the
request, namely PMM$CREATE$POOL$TYPE (=29H), and the request is
granted.

Once the task has confirmed that the pool has been created, it must give
memory to the new pool. It prepares to do so by obtaining the memory
from the Free Space Pool. Then the task sends the memory to the RQFLMX
exchange with the TYPE field set to PMM$FREE$BLK$TYPE (=28H) and the
MEMORY$POOL field set to the pool id of the new pool.

6-6

CHAPTER 7. CONFIGURING YOUR APPLICATION SYSTEM

After you have done high-level design of your hardware and written and
compiled your tasks, it is time for you to configure your system.
Configuring your hardware consists of making the final adjustments, such
as jumpering, that prepare your hardware for use with both the iRMX
operating system(s) and the iMMX 800 software. Configuring your software
involves describing the resources, including the hardware and memory
partitions, that the iMMX 800 services have at their disposal. These
descriptions take the form of files of PL/M declarations, and most of
this chapter is concerned with the process of declaring the appropriate
variables and data structures and assigning values to them. The
remainder of the chapter describes how to compile the iMMX 800
configuration file, how to link it to the iMMX 800 software and to the
iRMX tasks, and how to configure your hardware for the use of the
iMMX 800 services.

SOFTWARE CONFIGURATION

The hard part of software configuration consists of making a number of
decisions concerning the requirements of your application system. The
easy part consists of translating these decisions into the variables and
data structures that support the iMMX 800 internal control structures.

DECISIONS THAT PROVIDE INFORMATION NEEDED FOR CONFIGURATION

The decisions that you must make fall into three categories, depending
upon their scope: system-level decisions, device-level decisions, and
port-level decisions. So that you can use the following lists of
decisions as convieniently as possible, the name(s) of the variables and
data structures that are affected by each decision are listed immediately
after the description of the issue requiring the decision.

System-Level Decisions

(1) What types of devices make up the system, and how many are there of
each type? (CQDVCS)

(2) What pairs of devices require interdevice communication? (CQPRTS,
LPT$ROM, CQSKTS, DSDT)

7-1

CONFIGURING YOUR APPLICATION SYSTEM

(3) What are the ID's for the devices and interdevice segments (IDS's)
that are involved in iMMX 800-supported interdevice communication?
An ID is a non-negative integer that identifies the device or IDS.
More important, the iMMX 800 software uses the ID's as indexes for
arrays of data structures pertaining to devices or IDS's. Both sets
of ID's must begin with zero and must increase sequentially. The
ID's in each set can be assigned in any order. (DSDT.DESTDEVID
and DSDT.SRCDEVID)

(4) What are the addresses of the request queue descriptiors and how
many entries can each queue accommodate? Each request queue
descriptor is eight bytes long and is followed immediately by the
memory that is reserved for the queued entries. Each queued entry
occupies 16 bytes. If you decide to place all of your request
queues consecutively in the same area of memory, you might want to
skip the next eight bytes after each queue so that each request
queue descriptor can start on a paragraph boundary.
(DCM$ROM.RQD$OUT$PTR and DCM$ROM.RQDINPTR)

(5) What do you want to call the ports in the system? Each port must
have a two-character name that uniquely represents it throughout the
whole system. (LPT$ROM)

(6) How many interdevice segments are there in the system, and where are
they? (CQIDSS, IDST)

Device-Level Decisions

(7) For how long a time period will the iMMX 800 software on the device
wait before beginning to communicate? (CQITWT)

(8) For how long a time period will the device wait for a response from
other devices? (CQMDLY)

(9) For each device, which of the following schemes is used to alert the
device to the occurrence of an external event: Multibus interrupt,
I/O-mapped interrupt, memory-mapped interrupt, or polling? A
Multibus interrupt travels to its destination along the Multibus
interface and has the disadvantage that it can interrupt every
device in the system. An I/O-mapped interrupt arrives at a device
through an I/O port. A memory-mapped interrupt arrives at a device

I in the device's memory. (SFT.INTR$TYPE)

(10) For devices that are interrupted through the Multibus interface:

(a) To which bit (0-7) of port C of an 8255 Programmable Peripheral
Interface should a value be written to generate an interrupt?
(SFT.INTR$VALUE)

(b) What I/O control port generates a Multibus interrupt for the
device? (SFT.INTR$LOCATION)

7-2

CONFIGURING YOUR APPLICATION SYSTEM

(11) For devices that receive I/O-mapped interrupts:

(a) Which I/O port receives interrupts? (SFT.INTR$LOCATION)

(b) What value is sent to the port to generate an interrupt?
(SFT.INTR$VALUE)

(12) For devices that receive memory-mapped interrupts:

(a) What memory location receives the interrupt? (SFT.INTR$LOCATION)

(b) What value will be written to that memory location to generate
an interrupt? (SFT.INTR$VALUE)

(13) For each (MMX 86) device, what method does the device use to clear
interrupts that it has generated? (SFT.CLROUTTYPE)

(14) For each (MMX 86) device that is responsible for clearing interrupts
that it has generated:

(a) Which I/O port or memory location is associated with interrupt
clearance? (SFT.CLROUTINTR$LOCATION)

(b) What value is sent to the I/O port or memory location to clear
the interrupt? (SFT.CLROUTINTR$VALUE)

(15) For devices that are responsible for clearing interrupts that they
have received:

(a) What method does the device use to clear interrupts that it has
received? (SFT.CLR$INTR$TYPE for MMX 88; SFT.CLRINTYPE for
MMX 86)

(b) Which I/O port or memory location is associated with interrupt
clearance? (SFT.CLR$INTR$LOCATION for MMX 88;
SFT.CLRININTR$LOCATION for MMX 86)

(c) What value is sent to the I/O port or memory location to clear
the interrupt? (SFT.CLR$INTR$VALUE for ~rnx 88;
SFT.CLRININTR$VALUE for MMX 86)

(16) What is the device's polling period? (CQIDPD)

(17) What is the interrupt level, if any, that the iMMX 800 software uses
to interrupt the device? (CQSGLV)

(18) For iRMX 80- and iRMX 88-based devices, what is the address of the
interrupt exchange for the interrupt level that the iMMX 800
software uses? (CQLMEX)

(19) What are the ID's for the device's ports and memory pools? As is
the case for device and interdevice segment ID's, port and pool ID's
are used as indexes into arrays of data structures pertaining to
ports and memory pools. For each device in the system, its set of
port and pool ID's each begin with zero and increase sequentially.
(DSDT.DEST$PORT$ID, DSDT.POOLID, LPTROM, BLKTBL)

7-3

I

CONFIGURING YOUR APPLICATION SYSTEM

(20) What are the addresses of the interdevice segments as they would be
addressed by the device? (IDST)

(21) What are the locations and sizes of memory pools on the device?
(BLKTBL)

Port-Level Decision

(22) For each port on iRMX 80- and iRMX 88-based devices, what is the ID
of the pool into which messages destined for that port are to be
copied? (LPT$ROM)

VARIABLES AND DATA STRUCTURES THAT MUST BE ASSIGNED VALUES

After you have made all of the necessary decisions, it is time to place
the appropriate values in the variables and data structures that describe
the system for the iMMX 800 software. Figure 7-1 shows the most
important of these data structures and some of the relationships among
them. The placement of the structures in the figure reflects a top-down
approach to configuration.

In the paragraphs that follow, the numbers of the decisions previously
listed are referenced to help you see more clearly the relationship
between the decision-making phase of configuration and the structure
filling phase. As you read these paragraphs, remember that we are
discussing the configuration of software that will run on a particular
system device. Similar configuration has to be done for every other
device in the system.

Device Description (CQDVCS)

The number of devices in the entire system (decision 1) must be assigned
to the variable CQDVCS, which is of the BYTE data type.

Channel Description (DCMROM, DCMRAM)

The DCM$ROM (Device-to-Channel Map) array of structures has an entry for
each device in the system. The array is indexed by the device ID's.
Each entry represents the channel (or lack of a channel -- decision 2)
between the device for which this configuration is being done and another
(or the same) device in the system. In the case of an entry that
represents a channel, the entry contains the locations and sizes of the
request queues (decision 4) associated with the channel. Each entry in
this table has the following format:

7-4

0
4
5
6

10
11

CONFIGURING YOUR APPLICATION SYSTEM

RQOUTSIZE
RQEOUTSIZE

RQINSIZE
RQEINSIZE

MODEL

DEVICES,
TASKS

CHANNEL

PORTS

ADDRESS

ATTRIBUTES

MEMORY

MEMORY
ASSIGNMENT

RQDOUTPOINTER
I
I

RQDINPOINTER
I
I

DEVICE, DEVICE, DEVICEk

IMPLEMENTATION

DEVICES,
TASKS

DCM

LPT

DSDT

SFT

lOST

BLKTBL

x-127

Figure 7-1. A Level-Oriented Representation of Configuration Structures

7-5

I

I

I

I

CONFIGURING YOUR APPLICATION SYSTEM

where:

RQDOUTPOINTER and RQDINPOINTER are POINTERs (ADDRESSes in MMX 80)
to the outbound and inbound request queue descriptors, respectively.
If the entry is for the device for which this configuration is being
done, and this device will use an iMMX 800 channel to communicate
with itself, these two pointers should contain the same address.
This is because a channel between a device and itself requires only
one queue. In case the entry represents the lack of a channel
between the two devices, these fields must each contain the value
OFFFFH.

RQOUTSIZE and RQINSIZE are BYTEs containing the maximum allowable
numbers of entries in the outbound and inbound request queues,
respectively. Each of these values must be a power of two. In
addition, in systems that intermix Release 2.0 and Release 3.0
versions of the iMMX 800 software, RQOUTSIZE and RQINSIZE should
each be greater than the total number of tasks (on both devices) that
will be using the channel corresponding to this DCM$ROM array entry.

RQEOUTSIZE and RQEINSIZE are BYTEs containing the value 4. This
signifies that the entries in each of the queues are 16 bytes long.
The value 4 is used because it is the base 2 logarithm of 16.

When the iMMX 800 software goes through its initialization phase, it
builds a number of data structures in RAM. One of these is DCM$RAM, an
array of areas (20 bytes for each device in configurations of MMX 80, MMX
86, or the non-megabyte version of MMX 88; 24 bytes for each device in
configurations of the megabyte version of MMX 88) for which you must
provide space in storage. The number of areas in the array is the number
of devices in the system.

Port Descriptions (CQPRTS, LPTROM, LPTRAM)

The variable CQPRTS, which is of the BTYE data type, contains the number
of ports (decision 2) resident on the device for which this configuration
is being performed.

The array LPT$ROM of structures has an entry for each port on the device
being configured. Each entry contains the unique name (decision 5) of
one of the ports on the device. The array is indexed by the port ID's
(decision 19) for the device. In MMX 86 systems, each entry has the
following format:

OI~ ______ S_Y_S_TE_M~$_P_OR_T~$_N_AME ________ ~

and in MMX 80 and MMX 88 systems, each entry has the following format:

O
2

I~ __ ~~~S~Y~ST_E_M~$_PO~R_T~$_NAME ________ ~
. POOL$ID I

7-6

CONFIGURING YOUR APPLICATION SYSTEM

where:

SYSTEM$PORT$NAME is a WORD containing the unique two-character name of
the port that the entry represents.

POOL$ID is a BYTE containing the ID of the pool (decision 22) into
which messages destined for the port are copied.

Another of the data structures that the iMMX 800 software builds during
its initialization phase is an array called LPT$RAM, and you must provide
room for it in storage. In MMX 86 applications, each entry in the array
consists of a BYTE followed by a WORD, in MMX 80 and MMX 88 (non-megabyte
version) applications each entry consists of 11 BYTEs, and in MMX 88
(megabyte version), each entry consists of 21 BYTEs. As in the case of
LPT$ROM, the array is indexed by the port ID's for the device.

Address Description (CQSKTS, DSDT)

The variable CQSKTS, which is of type BYTE, contains the number of system
ports (decision 2) to which the device being configured sends messages.

The DSDT (Destination System Port Descriptor Table) array of structures
has an entry for each port to which the device being configured sends
messages. Each entry in this table associates a system port with the
device where it resides. Each entry has the following format:

o
2
3
4
5
6
7

where:

SYSTEM$PORT$NAME I
DESTDEVID

DEST$PORT$ID
SRCDEVID

RESERVED
POOL$ID
IDS$ID

SYSTEM$PORT$NAME is a WORD containing the unique, two-character name
of the port (decision 5) to which this DSDT array entry corresponds.

SRCDEVID and DESTDEVID are BYTEs containing the device ID's
(decision 3) of the source and destination devices, respectively. The
source device is the device for which this configuration is being done.

DEST$PORT$ID is a BYTE containing the port ID (decision 19) of the
destination port.

POOL$ID is a BYTE containing the ID of the pool (decision 19) into
which the iMMX 800 software will copy messages in preparation for
transferring messages between the specified source and destination
devices.

IDS$ID is a BYTE containing the ID of the interdevice segment
(decision 3) that contains the pool specified by POOL$ID.

7-7

I

I

I

I

CONFIGURING YOUR APPLICATION SYSTEM

Attribute Description (SFT, CQITWT, CQMDLY, CQIDPD, CQSGLV, CQLMEX, MCBI)

The array SFT of structures has an entry for each device in the system
and is indexed by device ID's. Each entry describes the physical
characteristics of a device and how to generate an interrupt to that
device. The form of the structure depends upon whether the device is
being configured for MMX 80, MMX 88, or MMX 86.

If the device is being configured for MMX 80, each SFT entry has the
following format:

0~1 ________ IN_T_R~$_L_OC_A_T_I_O_N ________ ~

where INTR$LOCATION is a word whose meaning depends upon whether the
device corresponding to this array entry has memory-mapped interrupts.
If it does have memory-mapped interrupts, INTR$LOCATION contains the
device's wake-up address (decision 12). Otherwise, INTR$LOCATION should
contain OFFFFH.

If the device is being configured for MMX 88, each SFT entry has the
following form:

o
1
2
4
6
7
9

where:

DEVICE$MODE I
INTR$TYPE I

INTR$LOCATION
INTR$VALUE

CLR$INTR$TYPE I
CLR$LOCATION

CLR$VALUE

I
I

I
I

DEVICE$MODE is a BYTE containing a code that defines a characteristic
of a device in the system. The possible code values and their
literal equivalents are:

o -- NO$DEVICE

1 -- SLAVE$DEVICE

2 -- PEER$DEVICE

The device being configured will not
communicate with the device corresponding to
this array entry.

The device corresponding to this array entry
either is an iSBC 550 ethernet controller or
sends messages to itself.

The device corresponding to this entry is
not an iSBC 550 Ethernet controller.

INTR$TYPE is a BYTE containing a code for the interrupt scheme
(decision 9) that the device being configured will use to interrupt
the device corresponding to this array entry. The possible code
values and literal equivalents of them are:

7-8

CONFIGURING YOUR APPLICATION SYSTEM

o -- NO$INTERRUPT

1 -- MB$INTERRUPT

2 -- MM$INTERRUPT

3 -- IO$INTERRUPT

The device corresponding to this array
entry uses polling and cannot be
interrupted.

Multibus interrupts.

Memory-mapped interrupts.

I/O-mapped interrupts.

INTR$LOCATION is an ADDRESS containing the location where interrupts
are to be generated. For Multibus interrupts (decision 10), this is
the address of the I/O control port on the 8255 Programmable
Peripheral Interface that is to generate an interrupt through the
Multibus. For I/O-mapped interrupts (decision 11), this is the
address of the I/O port that is to generate interrupts. For
memory-mapped interrupts (decision 12), this is the base address of
the memory location that is to generate interrupts.

INTR$VALUE is a WORD containing the value that is to be used to
interrupt the device corresponding to this array entry. For Multibus
interrupts (decision 10), the value (0 through 7) specifies which bit
of Port C of an 8255 Prog~ammable Peripheral Interface will generate
interrupts onto the Multibus interface. For memory-mapped interrupts
(decision 12), the value is to be written to the device's memory.
For I/O-mapped interrupts (decision 11) the value is to be written to
an I/O port.

CLR$INTR$TYPE is a BYTE containing a code indicating the manner
(decision 13) in which interrupts generated by the device are to be
cleared. The possible code values and their literal equivalents are:

a -- NO$INTR$CLEARED It is not necessary to clear received
interrupts.

1 -- MEMORY$READ$CLR By reading from the memory location
specified in the SFT structure.

2 -- MEMORY$WRITE$CLR By writing to a memory location.

3 -- IO$READ$CLR

4 -- IO$WRITE$CLR

By reading from the I/O port specified in
the SFT structure.

By writing to an I/O port.

CLR$LOCATION is an ADDRESS containing the base address (decision 14)
of the memory location or the I/O port address to which the specified
value is to be written, in order to clear interrupts.

CLR$VALUE is a WORD containing the value that is to be written to the
specified I/O port or memory location, in order to clear interrupts.

7-9

I

CONFIGURING YOUR APPLICATION SYSTEM

If the device is being configured for MMX 86, each SFT entry has the
following form:

o
1
2
4
6
7
9

11
12
14

where:

OP$MODE I
INTR$TYPE I

INTR$LOCATION I
INTR$VALUE I

CLROUTTYPE I
CLROUTINTR$LOCATION I

CLROUTINTR$VALUE I
CLRINTYPE I

CLRININTR$LOCATION I
CLRININTR$VALUE I

OP$MODE is a BYTE containing a code that defines a characteristic of
a device in the system. The possible code values and their literal
equivalents are:

o -- NO$DEVICE

1 -- SLAVE$DEVICE

2 -- PEER$DEVICE

The device being configured will not
communicate with the device corresponding
to this array entry.

The device corresponding to this array
entry either is an iSBC 550 ethernet
controller or sends messages to itself.

The device corresponding to this entry is
not an iSBC 550 Ethernet controller.

INTR$TYPE is an encoded BYTE indicating the manner (decision 9) in
which the device being configured will interrupt the device
corresponding to this array entry. The bit-level fields and their
meanings are:

Bits 0-3 specify the type of interrupt, as follows:

o No interrupts

1 -- Multibus interrupts through port C of the 8255
Programmable Peripheral Interface.

2 I/O-mapped interrupts by writing.

3 -- Memory-mapped interrupts by writing.

4 -- I/O-mapped interrupts by reading.

5 -- Memory-mapped interrupts by reading.

7-10

CONFIGURING YOUR APPLICATION SYSTEM

Bit 4 is reserved.

Bit 5 specifies whether the value in the INTR$VALUE field is to
be written into INTR$LOCATION as a BYTE of data or as a WORD of
data.

o -- BYTE

1 -- WORD

Bits 6-7 are reserved.

INTR$LOCATION is a WORD containing the location where interrupts are
to be generated. For Multibus interrupts (decision 10), this is the
address of the I/O control port on the 8255 Programmable Peripheral
Interface that is to generate an interrupt through the Multibus. For
I/O-mapped interrupts (decision 11), this is the address of the I/O
port that is to generate interrupts. For memory-mapped interrupts
(decision 12), this is the base address of the memory location that
is to generate interrupts.

INTR$VALUE is a WORD containing the value that is to be used to
interrupt the device corresponding to this array entry. For Multibus
interrupts (decision 10), the value (0 through 7) specifies which bit
of Port C of an 8255 Programmable Peripheral Interface will generate
interrupts onto the Multibus interface. For memory-mapped interrupts
(decision 12), the value is to be written to the device's memory.
For I/O-mapped interrupts (decision 11) the value is to be written to
an I/O port.

CLROUTTYPE is an encoded BYTE indicating the manner (decision 13)
in which interrupts generated by the device are to be cleared. The
bit-level fields and their meanings are:

Bits 0-3 indicate the method of clearing the interrupts, as
follows:

o It is not necessary to clear generated interrupts.

1 -- By writing to an I/O port.

2 -- By writing to a memory location.

3 -- By reading from the I/O port specified in the SFT
structure.

4 -- By reading from the memory location specified in the SFT
structure.

Bit 4 is reserved.

Bit 5 specifies whether the value in the CLROUTINTR$VALUE field
is to be written into CLROUTINTR$LOCATION as a BYTE of data or
as a WORD of data. (0 means BYTE; 1 means WORD)

Bits 6-7 are reserved.

7-11

CONFIGURING YOUR APPLICATION SYSTEM

CLROUTINTR$LOCATION is a WORD that specifies the location to which
the value in the CLROUTINTR$VALUE is to be written, in order to
clear interrupts generated by the device. If the interrupt was
I/O-mapped, this value is an I/O port address. If the interrupt was
memory-mapped, this value is a base address.

CLROUTINTR$VALUE is a WORD containing the value that is to be
written to the specified I/O port or memory location, in order to
clear interrupts generated by the device.

CLRINTYPE is an encoded BYTE indicating the manner (decision 15) in
which interrupts received by the device are to be cleared. The
bit-level fields and their meanings are:

Bits 0-3 indicate the method of clearing the interrupts, as
follows:

o -- It is not necessary to clear received interrupts.

1 -- By writing to an I/O port.

2 -- By writing to a memory location.

3 -- By reading from the I/O port specified in the SFT
structure.

4 -- By reading from the memory location specified in the SFT
structure.

Bit 4 is reserved.

Bit 5 specifies whether the value in the CLRININTR$VALUE field
is to be written into CLRININTR$LOCATION as a BYTE of data or
as a WORD of data. (0 means BYTE; 1 means WORD)

Bits 6-7 are reserved.

CLRININTR$LOCATION is a WORD that specifies the location to which
the value in the CLRININTR$VALUE is to be written, in order to
clear interrupts received by the device. If the interrupt was
I/O-mapped, this value is an I/O port address. If the interrupt was
memory-mapped, this value is a base address.

CLRININTR$VALUE is a WORD containing the value that is to be
written to the specified I/O port or memory location, in order to
clear interrupts received by the device.

The variable CQITWT, which is of type WORD, contains the number of system
time units (decision 7) that the device being configured will wait before
beginning to communicate.

The variable CQMDLY, which is of type WORD, contains the number of system
time units (decision 8) that the device being configured will wait for a
response from another device.

7-12

CONFIGURING YOUR APPLICATION SYSTEM

The variable CQIDPD, which is of type WORD, specifies the device's
polling period (decision 16).

The variable CQSGLV, which is of type BYTE (WORD in MMX 86), contains the
interrupt level (decision 17), if any, that the iMMX 800 software uses to
interrupt the device being configured. In iRMX 80- and iRMX 88-based
applications, CQSGLV can be any value from 0 to 7 (0 to OAH if the device
is an iSBC 544 or 569 board, where 9, OAH, and OBH correspond to INT 7.5,
6.5, and 5.5, respectively), whereas in iRMX 86-based applications, it
can range from 0 to 63. In the latter case, you must encode the level by
first expressing it in octal, then using the following encoding scheme
(bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 First octal digit (0-7) of the interrupt level

3 If 1, the level is a master level and bits 6-4
specify the entire level number

If 0, the level is a slave level (refer to the
iRMX 86 NUCLEUS REFERENCE MANUAL) a~d bits 2-0
specify the second octal digit

2-0 Second digit (0-7) of the interrupt level if bit
3 is 0; ignored otherwise

The variable CQLMEX is used only by MMX 80 and MMX 88 devices. In MMX 80
it is of type ADDRESS; in MMX 88 it is of type LOCATION. When used, it
contains the address (decision 18) of the interrupt exchange for the
interrupt level that the iMMX 800 software uses.

The array MCBI of structures has an entry for every iRMX 80-based device
in the system. Each entry is 23 bytes in length. This array is used by
the iMMX 800 software for internal communication between its tasks, so it
does not need to be filled in during configuration.

Memory Description (CQIDSS, IDST)

The variable CQIDSS, which is of type BYTE, contains the number of
interdevice segments (decision 6) in the system.

The array IDST of structures has an entry for each interdevice segment in
the system and is indexed by the interdevice segment ID's. Each entry
contains the location of an interdevice segment (decision 6) and has the
following format:

01 OFFSET 1
2~-----------P-A~G-E----------~'

where:

7-13

I

I

I

CONFIGURING YOUR APPLICATION SYSTEM

OFFSET is a WORD containing the offset of an interdevice segment.

PAGE is a WORD containing the page address of a 64K-byte page
containing the interdevice segment whose IDST entry this is.

NOTE

If the device cannot address the IDS, the
values of OFFSET and PAGE are each OFFFFH.

Memory Assignment (CQPLHS, PLHTBL, CQBLKS, BKLTBL)

The variable CQPLHS, which is of type BYTE, contains the number of memory
pools available to the Partitioned Memory Manager residing on the device
being configured.

The array PLHTBL of structures has an entry for every memory pool that is
available to the Partitioned Memory Manager residing on the device being
configured. The structures are filled in by the iMMX 800 software, but
space for them must be declared during configuration. The structures
vary in size, depending upon the operating system. For MMX 80, each
structure is one byte in length; for MMX 86, each structure is two bytes
in length; for the non-megabyte version of MMX 88, each structure is 29
bytes in length; and for the megabyte version of MMX 88, each structure
is 53 bytes in length.

Each memory pool that is available to the Partitioned Memory Manager that
resides on the device being configured consists of one or more contiguous
blocks of memory. The variable CQBLKS, which is of type BYTE, contains
the total number of such blocks in all such pools.

Each of the contiguous blocks (decision 21) just discussed is represented
by an entry in an array of structures called BLKTBL. The entries each
have the following format:

o POOL$ID I
1 I-----=-S T-AR-T-$'"""A--D-D-RE-S-S-----I
3 LENGTH I
~----------------------------~

where:

POOL$ID is a BYTE containing the ID of the memory pool of which the
block is a part.

START$ADDRESS is an ADDRESS in MMX 80 and a SELECTOR in both MMX 88
and MMX 86, and contains the address of the first byte of the block.
(All blocks begin on paragraph boundaries.)

LENGTH is a WORD (ADDRESS in MMX 80) containing the length of the
block. This length is expressed as a number of bytes in MMX 80 and
as a number of (16-byte) paragraphs in MMX 88 and MMX 86.

7-14

CONFIGURING YOUR APPLICATION SYSTEM

A COMPREHENSIVE VIEW OF THE SYSTEM DATA STRUCTURES

The various data structures are interrelated in ways that are easy to
understand but fairly hard to visualize. Figure 7-2 is provided to help
you form a complete mental picture of these structures.

MCBI ""'1 ______

:
PHl TBl SFT REQUEST QUEUE

I e
OCMSROM

BlK TBl OSOT V--....
D ROD OUT PTR

POOL 10 I-----' RO OUT SIZE

c e
MEMORY '-{ START AOOR SYSTEM PORT NAME BLOCK ROE OUT SIZE

lENGTH OEST oEV 10 f----' ROD IN PTR STATE

OEST PORT 10 RO IN SIZE SOURCE REQ 10

SOURCE OEV 10 r------ ROE IN SIZE oEST oEV 10
lOST RESERVED oEST PORT 10

OFFSET

I~
POOL 10

PAGE IDS 10 "Mm'MM '---....
PMM FUNCTIONS

SOURCE OEV 10

DATA PTR

DATA lENGTH

IDS 10

OWNER oEV 10

lPTSROM I I REOUEST QUEUE ENTRY

'---.... SYSTEM PORT NAME 1-
r . 1

lPTSRAM STATE I •

MAil BOX PTR

X-12l

Figure 7-2. The Principal iMMX- 800 Configuration Data Structures

AN EXAMPLE OF iMMX 800 CONFIGURATION

The example of this section shows the process of creating a configuration
file for a small iMMX 800 application.

Making the Decisions

As is shown in Figure 7-3, the intended hardware configuration has a pair
of iSBC 80/24 devices each communicating with an iSBC 86/12A device
through the Multibus interface.

7-15

~

iSBC·· 80/24

8

CONFIGURING YOUR APPLICATION SYSTEM

r
_-oilo.....

I
I
I
I
I
L

8

8
MULTIBUS

iSBC·· 86/12A

Figure 7-3. Example Target System

x-128

A terminal is connected to each of the iSBC 80/24 devices, with a
supporting software interface. The iSBC 86/12A device is connected to an
iSBC 215 Winchester Disk Controller that it uses for file access.

In order to support the desired interdevice communication, we need two
channels, each connecting one of the iSBC 80/24 devices with the
iSBC 86/12A device. Figure 7-4 shows this arrangement schematically.

Tasks in the iSBC 80/24 devices receive requests from the terminals and,
with the support of MMX 80, pass the requests to a task on the
iSBC 86/12A device. That task uses the requests to update files on the
Winchester disk or to obtain information from the disk. The task on the
iSBC 86/12A device then uses MMX 86 either to return a message of
acknowledgment or to pass data back to a task on the iSBC 80/24 devices.

7-16

iSBC'·
80/24

MMX 80

TERMINAL

TERMINAL
HANDLER

CONFIGURING YOUR APPLICATION SYSTEM

FILE
HANDLER

ISBC'·
215

ISBC'·
80/24

MMX 80

TERMINAL
HANDLER

8 ~ REQUEST QUEUE

--~X~--.. ~· iMMX'· PORT

x-139

Figure 7-4. Example Target System with Channels

Information from both Terminal Handlers is delivered to the same system
port on the iSBC 86/12A device. A user-defined message protocol
identifies both the originator and the type of each message. Even though
there is no direct connection between the iSBC 80/24 devices, the tasks
on the two iSBC 80/24 devices can communicate with each other by way of
the iSBC 86/12A device.

7-17

CONFIGURING YOUR APPLICATION SYSTEM

All three devices are interrupted by means of Multibus interrupts. Each
device uses level 4 interrupts, so more devices can easily be added
later, if necessary.

On each iSBC 80/24 device, we dedicate 16K of ROM to code for user tasks,
the iRMx 80 software to support them, and the Terminal Handler. In
addition, we set aside 8K of RAM for task stacks and tables, as well as
for other dynamic needs, such as messages.

The iSBC 86/12A device (with an iSBC 300 RAM expansion module) has 64K of
RAM and 16K of ROM. The 16K of ROM is for user tasks and the iRMX 86 and
MMX 86 software that supports those tasks. Of the 64K of RAM, 44K is for
the iRMX 86 I/O System interface with the iSBC 215 controller, 16K is for
local use by the I/O System and other on-board tasks, and 4K is to be
shared by all devices for communicating by means of the iMMX 800
services. Off-board ROM and RAM is used to meet local memory
requirements where on-board memory does not suffice.

Figure 7-5 illustrates the allocation of these sections of memory and
gives their addresses.

DEVICE 0 DEVICE 1 DEVICE 2

iSBC" 86/12A

~ ~ ROM RAM

~ ~ FOOO:O FFFF:F 5000 FFFF
RAM

EOOO FFFF ~MEMORV POOLS EOOO FFFF

4K
RAM

4000 4FFF m ~ ROM ROM

~ o 3FFF ROM 0 3FFF

o 3FFF

Figure 7-5. Initial Allocation of Memory

The 4K of shared RAM includes space for the two pairs of request queues
and three pools of memory. Even though this memory is resident on the
iSBC 86/12A device, two of the pools are each managed by one of the
iSBC 80/24 devices, while the iSBC 86/12A device manages the other pool.
The pools managed by the iSBC 80/24 devices are used for communication
from the iSBC 80/24 devices to the iSBC 86/12A device, whereas the pool
managed by the iSBC 86/12A device is used for communication in the other
direction.

7-18

x-140

CONFIGURING YOUR APPLICATION SYSTEM

Figure 7-6 shows the final layout of memory for the three boards. It
also shows the device and pool ID's for the example. Notice that each of
the iSBC 80/24 devices has a private memory pool in addition to the pool
in shared memory. These private pools are used by the MMX 80 Partitioned
Memory Managers to allocate local memory to tasks.

DEVICE 0
iSBC'· 80/24

FFFF

RAM
(PRIVATE)

DEVICE 0 POOL 0

EOOO

4FFF

4000

ROM

0 _______ -'

FFFF

4FFF

4000

DEVICE 1
ISBC'· 86/12A

I/O SYSTEM
RAM

LOCAL RAM

o ~_IN_TE_R_R_U_PT_VE_C_TO_R_S__'

DEVICE 2
ISBC'· 80/24

PFFF

RAM
(PRIVATE)

DEVICE 2 POOL 0

EOOO

4FFF

4000

ROM

0 _______ ...

Figure 7-6. Memory Map for the Example

7-19

} IDSO

x-131

CONFIGURING YOUR APPLICATION SYSTEM

Notice that Figure 7-6 shows two interdevice segments and that their ID's
are defined, as well. One IDS contains the two shared pools that are
managed by the iSBC 80/24 devices, and the other contains the shared pool
managed by the iSBC 86/12A device. Because the two IDS's are adjacent,
they could be one IDS; we chose to use two IDS's for purposes of
illustration.

Each request queue has an eight-byte descriptor followed by eight 16-byte
slots for request queue entries, making 136 bytes in all. Rounding this
up to 144 bytes so that each queue can start on a paragraph boundary, the
addresses of the request queues are 4000H, 4090H, 4120H, and 4IBOH. This
leaves addresses 4240H through 4FFFH, a total of 3520 bytes, for the
three shared pools. These three pools can then be 1168 bytes long, with
16 bytes being unused. Consequently, the pools begin at address 4240H,
46DOH, and 4B60H, and the IDS's begin at addresses 4240H and 46DOH.

The local pools on the iSBC 80/24 devices are each IK bytes in length.

Filling the Structures

Having gotten this far, we have only minor decisions to make, so we can
begin to fill in the data structures and provide declarations for the
areas of RAM needed by the iMMX 800 software.

Before actually filling in the configuration structures, however it is to
our advantage to prepare a list of literal declarations containing all
the data that is to go into those structures. The benefit of this
approach is that, if any of the data change in the future, only the
literal statements need to be changed.

/* DEVICE DESCRIPTION */

/* Three devices are present in the system. */

DECLARE MMX$DEVICES LITERALLY '3';

/* Each of the three devices requires an ID. */

DECLARE MMX$DEVICE$O LITERALLY '0';
DECLARE MMX$DEVICE$1 LITERALLY '1';
DECLARE MMX$DEVICE$2 LITERALLY '2';

/* CHANNEL DESCRIPTION */

/* The DCM$ROM table for each device's configuration has an
entry for each device in the system. Each entry contains
the addresses of the inbound and outbound queues, the size
of each queue, and the size of the entry slots in each
queue. We define four request queues with a single entry
size for all queues. */

7-20

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE REQUEST$QUEUE$ENTRY$SIZE LITERALLY '04H';
DECLARE RQ$ADDR$DEVICEOTO$DEVICE$1 LITERALLY '4000H';
DECLARE RQ$SIZE$DEVICEOTO$DEVICE$1 LITERALLY '08H';

DECLARE RQ$ADDR$DEVICEITO$DEVICE$O LITERALLY '4090H;
DECLARE RQ$SIZE$DEVICEITO$DEVICE$O LITERALLY '08H';

DECLARE RQ$ADDR$DEVICEITO$DEVICE$2 LITERALLY '4120H';
DECLARE RQ$SIZE$DEVICEITO$DEVICE$2 LITERALLY '08H';

DECLARE RQ$ADDR$DEVICE2TO$DEVICE$1 LITERALLY '41BOH';
DECLARE RQ$SIZE$DEVICE2TO$DEVICE$1 LITERALLY '08H';

1* PORT DESCRIPTION *1

1* Each device has one local port and therefore one entry in each
LPT$ROM table. *1

DECLARE PORTODEVICE$O LITERALLY 'OOH';
DECLARE PORTODEVICE$1 LITERALLY 'OOH';
DECLARE PORTODEVICE$2 LITERALLY 'OOH';

1* The following specify that there is one port on each device. *1

DECLARE SOURCE$PORTS$DEVICE$O LITERALLY '1';
DECLARE SOURCE$PORTS$DEVICE$1 LITERALLY '1';
DECLARE SOURCE$PORTS$DEVICE$2 LITERALLY '1';

1* There is one system port on each device and each needs a
unique name. *1

DECLARE SYSTEM$PORT$NAME$DEVICE$O LITERALLY '5030H';
DECLARE SYSTEM$PORT$NAME$DEVICE$1 LITERALLY '5031H';
DECLARE SYSTEM$PORT$NAME$DEVICE$2 LITERALLY '5032H';

1* ADDRESS DESCRIPTION *1

1* PO *1
1* PI *1
1* P2 *1

1* Devices 0 and 2 each communicate with a single system port
(the one on device 1), while device 1 communicates with two
ports. *1

DECLARE DESTINATION$PORT$DEVICE$O LITERALLY '1';
DECLARE DESTINATION$PORT$DEVICE$1 LITERALLY '2';
DECLARE DESTINATION$PORT$DEVICE$2 LITERALLY '1';

1* No literals are shown here for the DSDT entries, because all
of the information for them either has already been declared
(system port names, device and port ID's) or will be declared
later (pool and interdevice segment ID's). *1

7-21

I

CONFIGURING YOUR APPLICATION SYSTEM

/* ATTRIBUTE DESCRIPTIONS */

/* Each entry in an MMX 86 SFT table requires ten values to
describe the interrupt characteristics of a device. The
following declare these values for each of the iSBC 80/24
devices. Because the iSBC 86/12A device does not interrupt
itself, we don't need to define values for its en'try. */

DECLARE OP$MODE$DEVICE$O LITERALLY 'PEER$DEVICE';
DECLARE INTR$TYPE$DEVICE$O LITERALLY '00000001B';
DECLARE INTR$LOCATION$DEVICE$O LITERALLY 'OOCEH';
DECLARE INTR$VALUE$DEVICE$O LITERALLY '0005H';
DECLARE CLROUTTYPE$DEVICE$O LITERALLY 'OOH';
DECLARE CLROUTINTR$LOCATION$DEVICE$O LITERALLY 'OOOOH';
DECLARE CLROUTINTR$VALUE$DEVICE$O LITERALLY 'OOOOH';
DECLARE CLRINTYPE$DEVICE$O LITERALLY 'OOH';
DECLARE CLRININTR$LOCATION$DEVICE$O LITERALLY 'OOOOH';
DECLARE CLRININTR$VALUE$DEVICE$O LITERALLY 'OOOOH;

DECLARE OP$MODE$DEVICE$2 LITERALLY 'PEER$DEVICE';
DECLARE INTR$TYPE$DEVICE$2 LITERALLY '00000001B';
DECLARE INTR$LOCATION$DEVICE$2 LITERALLY 'OOCEH';
DECLARE INTR$VALUE$DEVICE$2 LITERALLY '0005H';
DECLARE CLROUTTYPE$DEVICE$2 LITERALLY 'OOH';
DECLARE CLROUTINTR$LOCATION$DEVICE$2 LITERALLY 'OOOOH';
DECLARE CLROUTINTR$VALUE$DEVICE$2 LITERALLY 'OOOOH';
DECLARE CLRINTYPE$DEVICE$2 LITERALLY 'OOH';
DECLARE CLRININTR$LOCATION$DEVICE$2 LITERALLY 'OOOOH';
DECLARE CLRININTR$VALUE$DEVICE$2 LITERALLY 'OOOOH;

/* Each entry in an MMX 80 SFT table requires only one value.
The following define that value for the devices. */

DECLARE MM$INTERRUPT$ADDRESS$DEVICE$O LITERALLY 'OFFFFH';
DECLARE MM$INTERRUPT$ADDRESS$DEVICE$1 LITERALLY 'OFFFFH';
DECLARE MM$INTERRUPT$ADDRESS$DEVICE$2 LITERALLY 'OFFFFH';

/* CQITWT defines the initial time period a device waits
before beginning interdevice communications. The following
specify 2.56 seconds for each device, assuming that the
system time unit is 10 milliseconds. */

DECLARE INITIAL$DELAY$DEVICE$O LITERALLY '0100H';
DECLARE INITIAL$DELAY$DEVICE$l LITERALLY '0100H'j
DECLARE INITIAL$DELAY$DEVICE$2 LITERALLY '0100H'j

/* CQMDLY defines the amount of time a device waits for a
response from another device before timing out and
declaring the other device dead. This value must be larger
than the initial delay value for CQITWT. The following
specify a 40.96-second time period for the devices. */

7-22

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE DEAD$DELAY$PERIOD$DEVICE$O LITERALLY 'lOOOH';
DECLARE DEAD$DELAY$PERIOD$DEVICE$l LITERALLY 'lOOOH'j
DECLARE DEAD$DELAY$PERIOD$DEVICE$2 LITERALLY 'lOOOH'j

/* On interruptible devices CQIDPD is an interrupt timeout
period. On polling devices it is a polling period. The
following specify .16 seconds for each device. */

DECLARE POLLING$PERION$DEVICE$O LITERALLY 'OOlOH';
DECLARE POLLINR$PERION$DEVICE$l LITERALLY 'OOlOH';
DECLARE POLLING$PERIOD$DEVICE$2 LITERALLY 'OOlOH';

/* CQSGLV defines the interrupt level that the iMMX BOO
software uses to interrupt each device. The following
define interrupt level 4 for each device. */

DECLARE INTERRUPT$LEVEL$DEVICE$O LITERALLY '4H'j
DECLARE INTERRUPT$LEVEL$DEVICE$l LITERALLY '4BH';
DECLARE INTERRUPT$LEVEL$DEVICE$2 LITERALLY '4H'j

/* CQLMEX, which does not apply to MMX B6, contains the
address of the interrupt exchange for the device for which
it is defined. The following establish the level 4
interrupt exchange addresses for the iSBC 80/24 devices. */

DECLARE RQL4EX ADDRESS EXTERNAL:

DECLARE EXCHANGE$ADDRESS$DEVICE$O LITERALLY '.RQL4EX';
DECLARE EXCHANGE$ADDRESS$DEVICE$2 LITERALLY '.RQL4EX'j

/* MEMORY DESCRIPTION */

/* The number of interdevice segments is a global value in any
iMMX BOO-based system. There are two in the example. */

DECLARE MMX$INTERDEVICE$SEGMENTS LITERALLY '2';

/* There are two IDS's in the example and no alias
addressing. For each device the IDST is the same. */

DECLARE IDSOID LITERALLY '0';
DECLARE IDSOOFFSET LITERALLY '46DOH'j
DECLARE IDSOPAGE LITERALLY 'OOOOH';
DECLARE IDSlID LITERALLY '1';
DECLARE IDSlOFFSET LITERALLY '4240H';
DECLARE IDSlPAGE LITERALLY 'OOOOH'j

7-23

I

I

CONFIGURING YOUR APPLICATION SYSTEM

/* MEMORY ASSIGNMENT */

/* There are five pools in the example. One is for MMX 86 to
manage and there are two for each copy of MMX 80. Of the
two pools that each MMX 80 manages, one is for private use
on the iSBC 80/24 device and is managed by the PMM, while
the other is for shared use on the iSBC 86/12A device. The
following values are used in CQPLHS */

DECLARE POOLS$DEVICE$O LITERALLY '2';
DECLARE POOLS$DEVICE$l LITERALLY '1';
DECLARE POOLS$DEVICE$2 LITERALLY '2';

/* There is one block of memory for each pool. The following
values are used in CQBLKS. */

DECLARE BLOCKS$DEVICE$O LITERALLY '2';
DECLARE BLOCKS$DEVICE$l LITERALLY '1';
DECLARE BLOCKS$DEVICE$2 LITERALLY '2';

/* The BLKTBL table for each copy of MMX 80 has two entries,
while for MMX 86 there is one entry. The values for those
entries are defined as follows. */

DECLARE POOLOID$DEVICE$O LITERALLY '0';
DECLARE ADDRBLKO$DEVICE$O LITERALLY 'EOOOH';
DECLARE LNGTHBLKO$DEVICE$O LITERALLY '0400H';

DECLARE POOLlID$DEVICE$O LITERALLY '1';
DECLARE ADDRBLKl$DEVICE$O LITERALLY '4B60H';
DECLARE LNGTHBLKl$DEVICE$O LITERALLY '0490H';

DECLARE POOLOID$DEVICE$l LITERALLY '0';
DECLARE ADDRBLKO$DEVICE$l LITERALLY '424H';
DECLARE LNGTHBLKO$DEVICE$l LITERALLY '049H';

DECLARE POOL0ID$DEVICE$2 LITERALLY '0';
DECLARE ADDRBLK0$DEVICE$2 LITERALLY 'EOOOH';
DECLARE LNGTHBLKO$DEVICE$2 LITERALLY '0400H';

DECLARE POOL1ID$DEVICE$2 LITERALLY '1';
DECLARE ADDRBLK1$DEVICE$2 LITERALLY '46DOH'j
DECLARE LNGTHBLK1$DEVICE$2 LITERALLY '0490H'j

That completes the declarations of the literals. Now we can begin the
actual process of configuring each of the three portions of the overall
system.

7-24

CONFIGURING YOUR APPLICATION SYSTEM

1* DEVICE 0 CONFIGURATION DECLARATIONS -- MMX 80 DEVICE *1

DECLARE CQDVCS BYTE PUBLIC DATA (MMX$DEVICES);

DECLARE DMROMENTRY$TYPE LITERALLY 'STRUCTURE(
RQD$OUT ADDRESS,
RQOUTSIZE BYTE,
RQEOUTSIZE BYTE,
RQD$IN ADDRESS,
RQINSIZE BYTE,
RQEINSIZE BYTE)';

DECLARE NO$SYSTEM$CHANNEL LITERALLY ,
OFFFFH,
OOH,
OOH,
OFFFFH,
OOH,
OOH' ;

DECLARE DCM$ROM (MMX$DEVICES) DMROMENTRY$TYPE PUBLIC DATA (
NO$SYSTEM$CHANNEL, 1* No path between dev 0 and dev 0 *1
RQ$ADDR$DEVICE$.O$TO$DEVICE$l,

RQ$SIZE$DEVICEOTO$DEVICE$l,
REQUEST$QUEUE$ENTRY$SIZE,
RQ$ADDR$DEVICElTO$DEVICE$O,
RQ$SIZE$DEVICElTO$DEVICE$O,
REQUEST$QUEUE$ENTRY$SIZE,

NO$SYSTEM$CHANNEL); 1* No path between dev 0 and dev 2 *1

DECLARE DMRAMENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(20) BYTE)';

DECLARE DCM$RAM(MMX$DEVICES) DMRAMENTRY$TYPE PUBLIC;

DECLARE CQPRTS BYTE PUBLIC DATA (SOURCE$PORT$DEVICE$O);

DECLARE LPTROMENTRY$TYPE LITERALLY 'STRUCTURE(
SYSTEM$PORT$NAME ADDRESS,
POOL$ID BYTE)';

DECLARE LPT$ROM(SOURCE$PORT$DEVICE$O) LPTROMENTRY$TYPE PUBLIC
DATA (

SYSTEM$PORT$NAME$DEVICE$O,
POOLlID$DEVICE$O);

DECLARE LPTRAMENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(ll) BYTE)';

DECLARE LPT$RAM(SOURCE$PORT$DEVICE$O) LPTRAMENTRY$TYPE PUBLIC;

DECLARE CQSKTS BYTE PUBLIC DATA (DESTINATION$PORT$DEVICE$O);

7-25

I

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE DSD$ENTRY$TYPE LITERALLY 'STRUCTURE(
SYSTEM$PORT$NAME ADDRESS,
DESTDEVID BYTE,
DEST$PORT$ID BYTE,
SRCDEVID BYTE,
RESERVED BYTE,
POOL$ID BYTE,
IDS$ID BYTE)';

DECLARE DSDT(DESTINATION$PORT$DEVICE$O) DSD$ENTRY$TYPE PUBLIC
DATA (

SYSTEM$PORT$NAME$DEVICE$l,
MMX$DEVICE$l,
PORTODEVICE$l,
MMX$DEVICE$O,
0,
POOLlID$DEVICE$O,
IDSOID);

DECLARE CQITWT WORD PUBLIC DATA (INITIAL$DELAY$DEVICE$O);

DECLARE CQMDLY WORD PUBLIC DATA (
DEAD$DELAY$PERIOD$DEVICE$O);

DECLARE MCBI$ENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(23) BYTE)';

DECLARE MCBIT(MMX$DEVICES) MCBI$ENTRY$TYPE PUBLIC;

DECLARE SFT$ENTRY$TYPE LITERALLY 'ADDRESS';

DECLARE SFT(MMX$DEVICES) SFT$ENTRY$TYPE PUBLIC DATA (
MM$INTERRUPT$ADDRESS$DEVICE$O,
MM$INTERRUPT$ADDRESS$DEVICE$l,
MM$INTERRUPT$ADDRESS$DEVICE$2);

DECLARE CQIDPD WORD PUBLIC DATA (POLLING$PERIOD$DEVICE$O);

DECLARE CQSGLV BYTE PUBLIC DATA (INTERRUPT$LEVEL$DEVICE$O);

DECLARE CQLMEX ADDRESS PUBLIC DATA (EXCHANGE$ADDRESS$DEVICE$O);

DECLARE CQIDSS BYTE PUBLIC DATA (MMX$INTERDEVICE$SEGMENTS);

DECLARE IDS$ENTRY$TYPE LITERALLY 'STRUCTURE{
OFFSET ADDRESS,
PAGE ADDRESS)';

DECLARE IDST{M~~$INTERDEVICE$SEGMENTS) IDST$ENTRY$TYPE PUBLIC
DATA(

IDSOOFFSET,
IDSOPAGE,

IDSlOFFSET,
IDSlPAGE),

DECLARE CQPLHS BYTE PUBLIC DATA (POOLS$DEVICE$O);

7-26

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE PLHTBL$ENTRY$TYPE LITERALLY 'BYTE';

DECLARE PLHTBL(POOLS$DEVICE$O) PLHTBL$ENTRY$TYPE PUBLIC;

DECLARE CQBLKS BYTE PUBLIC DATA (BLOCKS$DEVICE$O);

DECLARE BLKTBL$ENTRY$TYPE LITERALLY 'STRUCTURE(
POOL$ID BYTE,
START$ADDRESS ADDRESS,
LENGTH ADDRESS)';

DECLARE BLKTBL(BLOCKS$DEVICE$O) BLKTBL$ENTRY$TYPE PUBLIC DATA (
POOLOID$DEVICE$O,

ADDRBLKO$DEVICE$O,
LNGTHBLKO$DEVICE$O,

POOLlID$DEVICE$O,
ADDRBLKl$DEVICE$O,
LNGTHBLKl$DEVICE$O);

/* DEVICE 1 CONFIGURATION DECLARATIONS -- MMX 86 DEVICE */

DECLARE CQDVCS BYTE PUBLIC DATA (MMX$DEVICES);

DECLARE DMROMENTRY$TYPE LITERALLY 'STRUCTURE(
RQD$OUT POINTER,
RQOUTSIZE BYTE,
RQEOUTSIZE BYTE,
RQD$IN POINTER,
RQINSIZE BYTE,
RQEINSIZE BYTE)';

DECLARE NO$SYSTEM$CHANNEL LITERALLY ,
OFFFFH,
OOH,
OOH,
OFFFFH,
OOH,
OOH';

DECLARE DCM$ROM (MMX$DEVICES) DMROMENTRY$TYPE PUBLIC DATA (
RQ$ADDR$DEVICElTO$DEVICE$O,

RQ$SIZE$DEVICElTO$DEVICE$O,
REQUEST$QUEUE$ENTRY$SIZE,
RQ$ADDR$DEVICEOTO$DEVICE$l,
RQ$SIZE$DEVICEOTO$DEVICE$l,
REQUEST$QUEUE$ENTRY$SIZE,

NO$SYSTEM$CHANNEL,
RQ$ADDR$DEVICE1TO$DEVICE$2,

RQ$SIZE$DEVICE1TO$DEVICE$2,
REQUEST$QUEUE$ENTRY$SIZE,
RQ$ADDR$DEVICE2TO$DEVICE$1,
RQ$SIZE$DEVICE2TO$DEVICE$1,
REQUEST$QUEUE$ENTRY$SIZE);

DECLARE DMRAMENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(20) BYTE)';

7-27

/

I

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE DCM$RAM(MMX$DEVICES) DMRAMENTRY$TYPE PUBLIC;

DECLARE CQPRTS BYTE PUBLIC DATA (SOURCE$PORT$DEVICE$O);

DECLARE LPTROMENTRY$TYPE LITERALLY 'STRUCTURE(
SYSTEM$PORT$NAME WORD)';

DECLARE LPT$ROM(SOURCE$PORT$DEVICE$l) LPTROMENTRY$TYPE PUBLIC DATA (
SYSTEM$PORT$NAME$DEVICE$l);

DECLARE LPTRAMENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(3) BYTE)';

DECLARE LPT$RAM(SOURCE$PORT$DEVICE$l) LPTRAMENTRY$TYPE PUBLIC;

DECLARE CQSKTS BYTE PUBLIC DATA (DESTINATION$PORT$DEVICE$l);

DECLARE DSD$ENTRY$TYPE LITERALLY
SYSTEM$PORT$NAME
DESTDEVID
DEST$PORT$ID
SRCDEVID
RESERVED
POOL$ID
IDS$ID

'STRUCTURE(
WORD,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE)';

DECLARE DSDT(DESTINATION$PORT$DEVICE$l) DSD$ENTRY$TYPE PUBLIC
DATA(

SYSTEM$PORT$NAME$DEVICE$O,
MMX$DEVICE$O,
PORTODEVICE$O,
MMX$DEVICE$l,
0,
POOLOID$DEVICE$l,
IDSlID,

SYSTEM$PORT$NAME$DEVICE$2,
MMX$DEVICE$2,
PORTODEVICE$2,
MMX$DEVICE$l,
0,
POOLOID$DEVICE$l,
IDSlID);

DECLARE CQITWT WORD PUBLIC DATA (INITIAL$DELAY$DEVICE$l);

DECLARE CQMDLY WORD PUBLIC DATA (
DEAD$DELAY$PERIOD$DEVICE$l);

7-28

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE SFT$ENTRY$TYPE LITERALLY
OP$MODE
INTR$TYPE
INTR$LOCATION
INTR$VALUE
CLROUTTYPE
CLROUTINTR$LOCATION
CLROUTINTR$VALUE
CLRINTYPE
CLRININTR$LOCATION
CLRININTR$VALUE

'STRUCTURE(
BYTE,
BYTE,
WORD,
WORD,
BYTE,
WORD,
WORD,
BYTE,
WORD,
WORD)' ;

DECLARE NOT$INTERRUPTED LITERALLY ,
OOH,
OOH,
OOOOH,
OOOOH,
OOH,
OOOOH,
OOOOH.
OOH,
OOOOH,
OOOOH' ;

DECLARE SFT(MMX$DEVICES) SFT$ENTRY$TYPE PUBLIC DATA (
OP$MODE$DEVICE$O,

INTR$TYPE$DEVICE$O,
INTR$LOCATION$DEVICE$O,
INTR$VALUE$DEVICE$O,
CLROUTTYPE$DEVICE$O,
CLROUT INTR$LOCATION$DEVICE$ 0 ,
CLROUTINTR$VALUE$DEVICE$O,
CLRINTYPE$DEVICE$O,
CLRININTR$LOCATION$DEVICE$O,
CLRININTR$VALUE$DEVICE$O,

NOT $ INTERRUPTED , 1* Device 1 doesn't interrupt itself *1
OP$MODE$DEVICE$2,

INTR$TYPE$DEVICE$2,
INTR$LOCATION$DEVICE$2,
INTR$VALUE$DEVICE$2,
CLROUTTYPE$DEVICE$2,
CLROUTINTR$LOCATION$DEVICE$2,
CLROUT INTR$VALUE$DEVICE$ 2 ,
CLRINTYPE$DEVICE$2,
CLR$ IN$INTR$LOCATION$DEVICE$ 2 ,
CLRININTR$VALUE$DEVICE$2);

DECLARE CQIDPD WORD PUBLIC DATA (POLLING$PERIOD$DEVICE$l);

DECLARE CQSGLV WORD PUBLIC DATA (INTERRUPT$LEVEL$DEVICE$l);

DECLARE CQIDSS BYTE PUBLIC DATA (MMX$INTERDEVICE$SEGMENTS);

DECLARE IDS$ENTRY$TYPE LITERALLY 'STRUCTURE(
OFFSET WORD,
PAGE WORD) ';

7-29

I

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE IDST(MMX$INTERDEVICE$SEGMENTS) IDST$ENTRY$TYPE punLIC
DATA(

IDSOOFFSET,
IDSOPAGE,

IDSlOFFSET,
IDSlPAGE);

DECLARE CQPLHS BYTE PUBLIC DATA (POOL$DEVICE$l);

DECLARE PLHTBL$ENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(2) BYTE)';

DECLARE PtHTBL(POOL$DEVICE$l) PHLTBL$ENTRY$TYPE PunLIC;

DECLARE CQBLKS BYTE PUBLIC DATA (BLOCKS$DEVICE$l);

DECLARE BLKTBL$ENTRY$TYPE LITERALLY 'STRUCTURE(
POOL$ID BYTE,
START$ADDRESS WORD,
LENGTH WORD) , ;

DECLARE BLKTBL(BLOCKS$DEVICE$l) BLKTBL$ENTRY$TYPE PUBLIC DATA(
POOLOID$DEVICE$l,

ADDRBLKO$DEVICE$l,
LNGTHBLKO$DEVICE$l);

1* DEVICE 2 CONFIGURATION DECLARATIONS -- MMX 80 DEVICE *1

DECLARE CQDVCS BYTE PUBLIC DATA (MMX$DEVICES);

DECLARE DMROMENTRY$TYPE LITERALLY 'STRUCTURE(
RQD$OUT ADDRESS,
RQOUTSIZE BYTE,
RQEOUTSIZE BYTE,
RQD$IN ADDRESS,
RQINSIZE BYTE,
RQEINSIZE BYTE)';

DECLARE NO$SYSTEM$CHANNEL LITERALLY ,
OFFFFH,
OOH,
OOH,
OFFFFH,
OOH,
OOH' ;

7-30

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE DCM$ROM (MMX$DEVICES) DMROMENTRY$TYPE PUBLIC DATA (
NO$SYSTEM$CHANNEL, 1* No path between dev 0 and dev 2 *1
RQ$ADDR$DEVICE2TO$DEVICE$1,

RQ$SIZE$DEVICE$2 TODEVICE$ 1 ,
REQUEST$QUEUE$ENTRY$SIZE,
RQ$ADDR$DEVICE1TO$DEVICE$2,
RQ$SIZE$DEVICE1TO$DEVICE$2,
REQUEST$QUEUE$ENTRY$SIZE,

NO$SYSTEM$CHANNEL); 1* No path between dev 2 and dev 2 *1

DECLARE DMRAMENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(20) BYTE)';

DECLARE DCM$RAM(MMX$DEVICES) DMRAMENTRY$TYPE PUBLIC;

DECLARE CQPRTS BYTE PUBLIC DATA (SOURCE$PORT$DEVICE$2);

DECLARE LPTROMENTRY$TYPE LITERALLY 'STRUCTURE(
SYSTEM$PORT$NAME ADDRESS,
POOL$ID BYTE)';

DECLARE LPT$ROM(SOURCE$PORT$DEVICE$2) LPTROMENTRY$TYPE PUBLIC
DATA (

SYSTEM$PORT$NAME$DEVICE$2,
POOL1ID$DEVICE$2);

DECLARE LPTRAMENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(11) BYTE)';

DECLARE LPT$RAM(SOURCE$PORT$DEVICE$2) LPTRAMENTRY$TYPE PUBLIC;

DECLARE CQSKTS BYTE PUBLIC DATA (DESTINATION$PORT$DEVICE$2);

DECLARE DSD$ENTRY$TYPE LITERALLY 'STRUCTURE(
SYSTEM$PORT$NAME ADDRESS,
DEST$DEVICE$ID BYTE,
DEST$PORT$ID BYTE,
SRCDEVID BYTE,
RESERVED BYTE,
POOL$ID BYTE,
IDS$ID BYTE)';

DECLARE DSDT(DESTINATION$PORT$DEVICE$O) DSD$ENTRY$TYPE PUBLIC
DATA (

SYSTEM$PORT $NAMEDEVICE $ 1,
MMX$DEVICE$1,
PORT$1 $DEVICE$ 1 ,
MMX$DEVICE$2,
0,
POOL1ID$DEVICE$2,
IDSOID);

DECLARE CQITWT WORD PUBLIC DATA (INITIAL$DELAY$DEVICE$2);

DECLARE CQMDLY WORD PUBLIC DATA (
DEAD$DELAY$PERIOD$DEVICE$2);

7-31

I

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE MCBI$ENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(23) BYTE)';

DECLARE MCBIT(MMX$DEVICES) MCBI$ENTRY$TYPE;

DECLARE SFT$ENTRY$TYPE LITERALLY 'ADDRESS';

DECLARE SFT(MMX$DEVICES) SFT$ENTRY$TYPE PUBLIC DATA (
MM$INTERRUPT$ADDRESS$DEVICE$O,
MM$INTERRUPT$ADDRESS$DEVICE$l,
MM$INTERRUPT$ADDRESS$DEVICE$2);

DECLARE CQIDPD WORD PUBLIC DATA (POLLING$PERIOD$DEVICE$2);

DECLARE CQSGLV BYTE PUBLIC DATA (INTERRUPT$LEVEL$DEVICE$2);

DECLARE CQLMEX ADDRESS PUBLIC DATA (EXCHANGE$ADDRESS$DEVICE$2);

DECLARE CQIDSS BYTE PUBLIC DATA (MMX$INTERDEVICE$SEGMENTS);

DECLARE IDS$ENTRY$TYPE LITERALLY 'STRUCTURE(
OFFSET ADDRESS,
PAGE ADDRESS)';

DECLARE IDST(MMX$INTERDEVICE$SEGMENTS) IDST$ENTRY$TYPE PUBLIC
DATA(

IDSOOFFSET,
IDSOPAGE,

IDSlOFFSET,
IDSlPAGE),

DECLARE CQPLHS BYTE PUBLIC DATA (POOLS$DEVICE$2);

DECLARE PLHTBL$ENTRY$TYPE LITERALLY 'BYTE';

DECLARE PLHTBL(POOLS$DEVICE$2) PLHTBL$ENTRY$TYPE PUBLIC;

DECLARE CQBLKS BYTE PUBLIC DATA (BLOCKS$DEVICE$2);

DECLARE BLKTBL$ENTRY$TYPE LITERALLY 'STRUCTURE(
POOL$ID BYTE,
START$ADDRESS ADDRESS,
LENGTH ADDRESS)';

DECLARE BLKTBL(BLOCKS$DEVICE$2) BLKTBL$ENTRY$TYPE PUBLIC DATA (
POOLOID$DEVICE$2,

ADDRBLKO$DEVICE$2,
LNGTHBLKO$DEVICE$2,

POOL1ID$DEVICE$2,
ADDRBLK1$DEVICE$2,
LNGTHBLK1$DEVICE$2);

7-32

CONFIGURING YOUR APPLICATION SYSTEM

This completes the example of how to create a configuration file. Note
that the literal file RICNFG.LIT could have been INCLUDEd at the beginning
of the MMX 80 files. This would have eliminated the need to write out
each literal declaration explicitly. Similarly, R4CNFG.LIT could have
been INCLUDEd at the beginning of the MMX 86 files. If there had been
MMX 88 files, R2CNFG.LIT (for non-megabyte), R3CNFG.LIT (for megabyte, I
COMPACT size control), or R5CNFG.LIT (for megabyte, LARGE size control)
could have been INCLUDEd at the beginning of them.

Another aid that we could have used (but didn't, for purposes of
illustration) is files of non-literal declarations with the data missing.
These files are RICNFG.P80 (for MMX 80), R2CNFG.P86 (for MMX 88
non-megabyte), R3CNFG.P86 (for MMX 88 megabyte, COMPACT size control), I
R4CNFG.P86 (for MMX 86), and R5CNFG.P86 (for MMX 88 megabyte, LARGE size
control), and they contain such things as

DECLARE BLKTBL() BLKTBL$ENTRY$TYPE PUBLIC DATA(

Typical usage of these files is as follows:

1. Place the instruction $INCLUDE (RnCNFG.LIT) at the beginning of
the RnCNFG.P8x file (where n = 1, 2, 3, 4, or 5, and x = 0 or 6.)

2. Fill in the data that is missing from the RnCNFG.P8x file.

3. Compile the file by entering either

PLM80 RICNFG.P80 (cr) (for MMX 80)
or

or
PLM86 RnCNFG.P86 COMPACT ROM (cr) (for MMX 86 or MMX 88)

PLM86 RnCNFG.P86 LARGE ROM (cr) (for MMX 86 or MMX 88)

The result is the file RnCNFG.OBJ. We will say more about this file later.

LINKING AND LOCATING iMMX 800 APPLICATION SYSTEMS

This section assumes that you have compiled or assembled those tasks (or
jobs) that will run on the device for which this configuration is being
performed. In addition, it is assumed that you have compiled your
configuration module. If you have not yet done these things, the
following INCLUDE files can help you to save time and code space:

RIXMGR.LIT
R2XMGR.LIT
R3XMGR.LIT
R4COM.LIT
R5XMGR.LIT

RIXMGR.EXT
R2XMGR.EXT
R3XMGR.EXT
R4XINF.EXT
R5XMGR.EXT

INCLUDE files containing declarations of
constants that pertain to MMX 80, non-megabyte
MMX 88, megabyte MMX 88 with the COMPACT size
control, MMX 86, and megabyte MMX 88 with the LARGE size
control, respectively.

INCLUDE files containing external declarations
of the procedures in MMX 80, non-megabyte MMX 88,
megabyte MMX 88 with the COMPACT size control,
MMX 86, and megabyte MMX 88 with the LARGE size
control, respectively.

7-33

I

I

CONFIGURING YOUR APPLICATION SYSTEM

Rl PMM. EXT
R2PMM.EXT
R3PMM.EXT
R5PMM.EXT

INCLUDE files containing external declarations of the
PMM exchanges for MMX 80, non-megabyte MMX 88, megabyte
MMX 88 with the COMPACT size control, and megabyte
MMX 88 with the LARGE size control, respectively.

RIPMM.LIT
R2PMM.LIT
R3PMM.LIT
R5PMM.LIT

PMM INCLUDE files containing message structure
literals for MMX 80, non-megabyte MMX 88,
megabyte MMX 88 with the COMPACT size control,
and megabyte MMX 88 with the LARGE size control,
respectively.

If you INCLUDE any of these files and your version of the PL/M-86
compiler does not recognize the SELECTOR data type, you should INCLUDE
the file R4SELC.LIT (from the iMMX 800 diskette) ahead of the other
INCLUDEs in every module in which the other INCLUDEs appear.

Linking and Locating for MMX 80

The linking and locating operations that relate to MMX 80 usage involve
using the Interactive Configuration Utility (ICU80) for the iRMX 80
Executive. You respond to ICU80 prompts by entering descriptive
information about your hardware and software. The result of doing this
is a submit file that you SUBMIT to produce a linked and located system.

When you use ICU80 to accomplish linking and locating for an MMX 80-based
device, you must respond to certain prompts in certain ways. This
section explains the special actions that you must perform. One of these
is that, when you are prompted for the data concerning your tasks, you
must enter certain tasks in a particular order. The following excerpts
from an ICU80 dialogue illustrate this and the other requirements:

FSM: NO

[other prompts and responses here]

TASK NAME: CQDRVR
ENTRY POINT:
STK LENGTH:
PRIORITY:
DFLT EXCHG:

CQDRVR
150
129

TASK DESCRIPTOR: [your choice]
EXTRA: 0

TASK NAME: CQINTM
ENTRY POINT:
STK LENGTH:
PRIORITY:
DFLT EXCHG:

CQINTM
75
[determined by interrupt level used by MMX 80]

TASK DESCRIPTOR: [your choice]
EXTRA: 0

7-34

CONFIGURING YOUR APPLICATION SYSTEM

TASK NAME: RQPMT
ENTRY POINT: RQPMT
STK LENGTH: 40
PRIORITY: 131
DFLT EXCHG: RQPMX

[or whatever; must be same as priority
of RQFLMT]

TASK DESCRIPTOR: [your choice]
EXTRA: 0

TASK NAME: RQFLMT
ENTRY POINT: RQFLMT
STK LENGTH: 40
PRIORITY: 131 [or whatever; must be same as priority
DFLT EXCHG: RQFLMX of RQPMT] I
TASK DESCRIPTOR: [your choice]
EXTRA: 0

[user tasks here]

EXCHANGE: RQFSAX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE: RQFSRX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE: RQPMX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE: RQFLMX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE: CQMXIX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE: CQMXRX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE: RQLnEX
SCOPE: PUBLIC
INTERRUPT: YES

[n = 0-7, 9, OAH, OBH, depending on interrupt
level]

[user exchanges here or mixed with the other exchanges]

LINK:
LINK:
LINK:
LINK:
LINK:
LINK:

[other prompts and responses here]

[user modules]
[compiled configuration module -- probably R1CNFG.OBJ]
: Fn:R1XMGR.LIB
:Fn:R1DRVR.LIB
: Fn:R1PMM.LIB
:Fn:R1????LIB

7-35

I

CONFIGURING YOUR APPLICATION SYSTEM

where ???? is 8024 (for an iSBC 80/24 board), 8030 (for an iSBC 80/30
board), 544 (for an iSBC 544 board), or 569 (for an iSBC 569 board),
depending upon the type of device on which the located code will run.

Note that the Partitioned Memory Manager can be configured into an
application independently of the rest of MMX 80. To accomplish this,
follow the procedure just described, except omit the definitions of the
CQDRVR and CQINTM tasks, the CQMXIX, CQMXRX, and RQLnEX exchanges, and the
R1XMGR, R1DRVR, and R1???? links.

Linking and Locating for MMX 88

The linking and locating operations that relate to MMX 88 usage involve
using the Interactive Configuration Utility (ICU88) for the iRMX 88
Executive. You respond to ICU88 prompts by entering descriptive
information about your hardware and software. The result of doing this is
a submit file that you SUBMIT to produce a linked and located system.

When you use ICU88 to accomplish linking and locating for an MMX 88-based
device, you must respond to certain prompts in certain ways. This section
explains the special actions that you must perform. One of these is that,
when you are prompted for the data concerning your tasks, you must enter
certain tasks in a particular order. The following excerpts from an-ICU88
dialogue illustrate this and the other requirements:

FSM: NO

[other prompts and responses here]

TASK NAME: CQDRVR
ENTRY POINT: CQDRVR
STK LENGTH: 200
PRIORITY: 131
DFLT EXCHG:
TASK DESCRIPTOR NAME:
8087 NDP: [yes/no]

TASK NAME: CQINTM
ENTRY POINT: CQINTM
STK LENGTH: 200
PRIORITY:
DFLT EXCHG:
TASK DESCRIPTOR NAME:
8087 NDP: [yes/no]

TASK NAME: RQFLMT
ENTRY POINT: RQFLMT
STK LENGTH: 160
PRIORITY: 131
DFLT EXCHG:
TASK DESCRIPTOR NAME:
8087 NDP: [yes/no]

[your choice]

[depends upon the interrupt level used
by MMX 88]

[your choice]

[your choice]

7-36

CONFIGURING YOUR APPLICATION SYSTEM

TASK NAME: RQFSAT
ENTRY POINT: RQFSAT
STK LENGTH: 160
PRIORITY: 131
DFLT EXCHG: [your choice]
TASK DESCRIPTOR NAME: [your choice]
8087 NDP: [yes/no]

TASK NAME: RQFSRT
ENTRY POINT: RQFSRT
STK LENGTH: 160
PRIORITY: 131
DFLT EXCHG: [your choice]
TASK DESCRIPTOR NAME: [your choice]
8087 NDP: [yes/no]

[user tasks here]

EXCHANGE: RQFSAX
EXTERNAL SCOPE:

INTERRUPT LEVEL: NONE

EXCHANGE: RQFSRX
SCOPE: EXTERNAL
INTERRUPT LEVEL: NONE

EXCHANGE: RQFLMX
SCOPE: EXTERNAL
INTERRUPT LEVEL: NONE

EXCHANGE: CQMXIX
SCOPE: EXTERNAL
INTERRUPT LEVEL: NONE

EXCHANGE: CQMXRX
SCOPE: EXTERNAL
INTERRUPT LEVEL: NONE

[user exchanges here or mixed with the other exchanges]

LINK:
LINK:
LINK:
LINK:
LINK:
LINK:
LINK:

[other prompts and responses here]

[user modules]
[compiled configuration module -- probably RxCNFG.OBJ]
: Fn:RxXMGR.LIB
:Fn:RxDRVR.LIB
: Fn:RxPMM.LIB
:Fn:RxUTIL.LIB
:Fn:Rx????LIB

7-37

I

where:

x

CONFIGURING YOUR APPLICATION SYSTEM

A decimal digit that specifies the addressing mode for the
application being linked and, if the addressing mode is
megabyte, the compiler size control used, as follows:

2 Non-megabyte addressing.

3 Megabyte addressing and COMPACT.

5 Megabyte addressing and LARGE.

???? An identifier for the class of the device, as follows:

957B You are going to use the iSBC 957B package
to execute the module on the device using
the parallel interface.

INTR You are going to use some other execution
vehicle instead.

If you do not specify the NOTYPE SWitch, TYPE MISMATCH warning messages
will appear, but you can ignore them.

Note that the Partitioned Memory Manager can be configured into an
application independently of the rest of MMX 88. To accomplish this, do
the above, except omit the definitions of the CQDRVR and CQINTM tasks, the
CQMXIX, and CQMXRX exchanges, and the RxXMGR, RxDRVR, RxUTIL, and Rx????
links.

Linking and Locating for MMX 86

The linking and locating process for MMX 86 is done in the same way as any
other iRMX 86 application, except that certain extra things have to be
done to accommodate the MMX 86 software. This section assumes that you
are familiar with the iRMX 86 configuration process, so that we can focus
on the aspects of configuration that are peculiar to configuring an MMX 86
application. We will discuss linking and locating four kinds of modules:
root job configuration file; the iRMX 86 Nucleus; the user configuration
file and the MMX 86 job; and user code files.

ROOT JOB CONFIGURATION FILE. The root job configuration file (for which
the supplied default version is called R4ROOT.A86) must have a %JOB macro
for the MMX 86 job, and this macro must be the first one, other than
macros for iRMX 86 system jobs, in the file. This ensures that the MMX 86
job will be the first user job (from the standpoint of the iRMX 86
software) to be initialized. The %JOB macro for the MMX 86 job is as
follows:

7-38

CONFIGURING YOUR APPLICATION SYSTEM

%JOB(OBJDIRSIZE,

where:

MIN$POOL$SIZE, MAX$POOL$SIZE,
MAXNBROBJ, MAXNBRTASKS,
MAXJOBPRIORITY,
EXCP$HNDLR$ADDR, EXCP$HNDLR$MODE,
JOB $ FLAGS ,
INIT$TASK$PRIORITY, INIT$TASK$START,
DATA$SEG,
INIT$TASK$STACK, INIT$TASK$STACK$SIZE,
INIT$TASK$FLAGS)

OBJDIRSIZE is the maximum number of objects that can be cataloged
in the MMX 86 job object directory. MMX 86 does not catalog objects,
so this value is O.

MIN$POOL$SIZE is the minimum allowable size of the memory pool of the
MMX 86 job. This value is the initial size of the pool and therefore
must be sufficient for the start-up phase of the MMX 86 job. If
memory space is at a premium, this value can be calculated from the
number of local ports, the number of devices in the system, and the
stack requirements of the tasks in the MMX 86 job. A recommended
value is OFFFFH.

MAX$POOL$SIZE is the maximum allowable· size of the memory pool of the
MMX 86 job. It must at least as large as MIN$POOL$SIZE. Because all
messages received at MMX 86 ports on the device being configured are
allocated from the MMX 86 job, this value is at least the minimum
initial pool size plus the space necessary to hold a maximum load of
concurrent incoming messages. A recommended value is OFFFFH.

MAXNBROBJ is the maximum number of objects that can exist
concurrently in the MMX 86 job. It can be calculated from the number
of MMX 86 tasks, the number of local ports, the maximum number of
incoming messages that can exist concurrently, and the number of
other objects that the MMX 86 job requires. A recommended value is
OFFFFH.

MAXNBRTASKS is the number of tasks in the MMX 86 job. Its value is
3.

MAXJOBPRIORITY is the maximum allowable priority for tasks in the
MMX 86 job. This priority must be greater than or equal to the
interrupt priority being used by the signalling task in the MMX 86
job. A recommended value is O.

EXCP$HNDLR$ADDR is the entry point for the MMX 86 job's exception
handler. Because MMX 86 passes all exceptions back to the calling
function, this value is 0:0.

EXCP$HNDLR$MODE is the exception handler mode. For the MMX 86 job,
this mode is O.

7-39

CONFIGURING YOUR APPLICATION SYSTEM

JOB$FLAGS defines the characteristics of the MMX 86 job. During
system debugging, parameter validation should be used, so this value
should be 0 until the system is debugged. At that time, this value
can become 2.

INIT$TASK$PRIORITY is the priority of the initialization task and
should be set to the priority of the message-handling function in the
MMX 86 job. As a rule, this priority should be the highest among all
non-interrupt tasks in the system.

INIT$TASK$START is the start address of the initialization task in
the MMX 86 job. This address (which can be found on the LOCATE map
of the MMX 86 job) is at the beginning of the MMX 86 job's code area,
because the first byte there (normally in an area containing
constants) contains a jump instruction to the actual start address.

DATA$SEG is the address of the data segment of the MMX 86 job.
Because the MMX 86 job sets its own data segment dynamically, set
this value to O.

INIT$TASK$STACK is the address of the stack segment for the
initialization task of the MMX 86 job. Because the iRMX 86 Operating
System allocates this stack dynamically, set this value to 0:0.

INIT$TASK$STACK$SIZE is the size of the MMX 86 job's stack. While
debugging, set this value to I80H. After debugging, you will have a
better idea of the optimum value for this parameter.

INIT$TASK$FLAGS defines properties of the MMX 86 job's initialization
task. Because this task does not use floating point instructions,
this value can be set to O.

In the root job configuration file (R4ROOT.A86), you must also use %SAB
macros to delineate areas of memory that are to be used for the following:

• Code and data space for the MMX 86 job

• Local memory pool areas for the PMM to manage

• Request queues

• Any other space that is dedicated to other devices in the system

After the R4ROOT.A86 configuration file is complete, SUBMIT the file
named CROOT.CSD. This will assemble the configuration module, producing
a located file named R4ROOT.

NUCLEUS. To produce a located iRMX 86 Nucleus, you must specify two
kinds of information:

• The Nucleus system calls that are used by the jobs that will run
on this device.

• A description of this device.

7-40

CONFIGURING YOUR APPLICATION SYSTEM

Information of the first type is contained in a file called R4NUCL.A86,
while information of the second type is contained in a file called
NDEVCF.A86. NDEVCF.A86 is found on the iRMX 86 Nucleus diskette and
R4NUCL.A86 is found on the iMMX 800 diskette. Copy these files, as well
as a file named NUCLUS.CSD, to another diskette, maintaining the same
names except that R4NUCL.A86 should be renamed NTABLE.A86. Then edit the
copied NTABLE.A86 and NDEVCF.A86 files as described in the iRMX 86
CONFIGURATION GUIDE. After that is done, SUBMIT the file NUCLUC.CSD.
This produces a located Nucleus.

THE USER CONFIGURATION FILE AND THE MMX 86 JOB. After you have compiled
your configuration module (we will assume that the compiled module has the
name R4CNFG.OBJ), you must link it to several MMX 86 modules. The link
statement that accomplishes this is:

LINK86 R4DRVR.LIB(MBEGIN), &
R4CNFG.OBJ, &
R4DRVR.LIB, &
R4XMGR.LIB, &
R4????LIB, &
R4PMM.LIB, &
R4UTIL.LIB &
RPIFC.LIB &

TO R4CNFG.LNK

where:

• R4DRVR.LIB, R4XMGR.LIB, R4????LIB, R4PMM.LIB, and R4UTIL.LIB are
included on the iMMX 800 product diskettes

• ???? defines the device type for which this configuration is
being performed. Possible values are 957P, for any board using
the iSBC 957B monitor with the parallel port, and INTR, for any
other board.

• RPIFC.LIB is an iRMX 86 library for the PL/M-86 COMPACT model of
segmentation.

If you do not specify the NOTYPE switch, TYPE MISMATCH warning messages
will appear, but you can ignore them.

After linking, use the LOC86 command with the NO~NITCODE control. The
address specified in the INIT$TASK$START field of the first %JOB macro of
the root job configuration file and the address specified when locating
the R4NFG.LNK module must be the same. The NOINITCODE control prevents
the locator from inserting several commands, beginning at location 200H.

USER CODE. Two interface libraries are available to use when you link
your compiled code to MMX 86. They are R4CINF.LIB and R4LINF.LIB, for
the COMPACT AND LARGE models of segmentation, respectively.

7-41

I

I

CONFIGURING YOUR APPLICATION SYSTEM

Before you compile your code, however, you might want to INCLUDE
R4SELC.LIT or R4COM.LIT (both discussed earlier) or R4XINF.EXT in your
source code. R4XINF.EXT contains external declarations of the MMX 86
system calls.

HARDWARE CONFIGURATION

If your system uses interrupts, you must jumper your hardware to provide
for interrupt reception and generation. The required changes are
described in the following paragraphs.

iSBC 544 DEVICE INTERRUPT GENERATION

The iSBC 544 device generates Multibus interrupts by means of its SOD
output. Jumper the SOD output (post 80) to one of the Multibus interrupt
lines INTO/-INT7/ (posts 82-89, respectively).

iSBC 544 DEVICE INTERRUPT RECEPTION

The iSBC 544 device is interrupted by means of its wake-up byte. Jumper
the wake-up byte RST 5.5 (post 81) to one of the Multibus interrupt lines
INTO/-INT7/ (posts 82-89, respectively).

iSBC 569 DEVICE INTERRUPT GENERATION

The iSBC 569 device generates Multibus interrupts by means of its
programmable reset latch A7. Connect BUSINT to one of the Multibus
interrupt lines INTO/-INT7/ (connection 138-139, 135-136, 132-133,
129-130, 126-127, 123-124, 120-121, or 117-118, respectively).

iSBC 569 DEVICE INTERRUPT RECEPTION

The iSBC 569 device is interrupted by means of its wake-up byte. No
jumpering is required to support this arrangement, as it is hard-wired
into the device.

iSBC 80/24 DEVICE INTERRUPT GENERATION

The iSBC 80/24 device generates Multibus interrupts through one of its
I/O ports. To enable the iMMX800 interface procedures to utilize I/O
port E6, bit 7 to generate interrupts, disconnect jumper connection 35-50
and install connection 39-50. To select the correct interrupt line,
connect INTO/-INT7/ (post 168, 169, 171, 173, 170, 172, 174, or 175) to
INTROUT (post 166).

7-42

CONFIGURING YOUR APPLICATION SYSTEM

iSBC 80/24 DEVICE INTERRUPT RECEPTION

To receive interrupts from the Multibus interface, connect the Multibus
interrupt line INTO/-INT7/ (post 108, 107, 106, 105, 109, 110, 111, or
112, respectively) to the local interrupt line IRO-IR6 of the on-board
8259A P.I.C. (post 102, 101, 100, 99, 98, 97, or 96, respectively) or to
the local interrupt line on the 8259A P.I.C. (any post in the range 83-86).

iSBC 80/30 DEVICE INTERRUPT GENERATION

The iSBC 80/30 board generates Multibus interrupts through one of its I/O
ports. To support this, jumper post 1 (INTROUT) to I/O post 9, and jumper
one of INTO/-INT7/ (posts 181, 182, 183, 184, 187, 188, 189, or 190,
respectively) to post 185 (INTROUT).

iSBC 80/30 DEVICE INTERRUPT RECEPTION

To receive interrupts from the Multibus interface, connect the Multibus
interrupt line INTO/-INT7/ (post 148, 147, 152, 151, 150, 149, 146, or
136, respectively) to the local interrupt line IRO-IR7 of the on-board
8259A P.I.C. (post 133, 132, 131, 130, 129, 128, 127, or 126,
respectively) or to the RST 5.5 or 6.5 interrupt line on the 8085 (post"
140 or 139, respectively).

iSBC 86/05 DEVICE INTERRUPT GENERATION

The iSBC 86/05 device generates Multibus interrupts through port C of the
8255 P.P.I. Connect BUS INTR OUT (post 31) to one of the bits PCO-PC7
(post 50, 51, 52, 53, 45, 42, 43, or 44, respectively) of port C. Also
connect the Multibus interrupt level INTO/-INT7 (post 199, 201, 195, 197,
194, 196, 200, or 198, respectively) to BUS INTR OUT (post 193).

iSBC 86/05 DEVICE INTERRUPT RECEPTION

For the iSBC 86/05 device to receive interrupts from the Multibus
interface, one of the Multibus interrupt lines INTO/-INT7 (post 144, 136, I
142, 143, 147, 146, 149, or 148, respectively) must be connected to one of
the 8259A P.I.C. input lines IRO-IR7 (post 132, 133, 124, 131, 130, 145,
128, or 127, respectively).

iSBC 86/12A DEVICE INTERRUPT GENERATION

The iSBC 86/12A device generates Multibus interrupts through port C of the
8255 P.P.I. Connect BUS INTR OUT (post 9) to one of the bits PCO-PC7
(post 26, 28, 30, 32, 15, 19, 17, or 13, respectively) of port C. Also
connect the Multibus interrupt level INTO/-INT7/ (post 141, 140, 139, 138,
137, 136, 135, or 134, respectively) to BUS INTR OUT (post 142).

7-43

I

CONFIGURING YOUR APPLICATION SYSTEM

iSBC 86/12A DEVICE INTERRUPT RECEPTION

For the iSBC 86/12A device to receive interrupts from the Multibus
interface, one of the Multibus interrupt lines INTO/-INT7/ (post 73, 72,
71, 70, 69, 68, 66, or 65, respectively) must be connected to one of the
8259A P.I.C. input lines IRO-IR7 (post 81, 80, 79, 78, 77, 76, 75, 74,
respectively).

iSBC 86/14 AND iSBC 86/30 DEVICE INTERRUPT GENERATION

The iSBC 86/14 and iSBC 86/30 devices generate interrupts through port C
of the 8255 P.P.I. Connect BUS INTR OUT 1 (post 24) to one of the bits
PCO-PC7 (post 57, 58, 59, 60, 56, 55, 54, or 53, respectively) of port
C. Also, connect the Multibus interrupt level INTO/-INT7/ (post 253,
252, 251, 250, 249, 248, 247, or 246, respectively) to the buffered BUS
INTR OUT 1 (post 244).

iSBC 86/14 AND iSBC 86/30 DEVICE INTERRUPT RECEPTION

For the iSBC 86/14 or iSBC 86/30 device to receive interrupts from the
Multibus interface, one of the Multibus interrupt lines INTO/-INT7/ (post
160, 149, 148, 159, 162, 151, 150, or 161, respectively) must be
connected to one of the 8259A P.I.C. interrupt lines IRO/-IR7/ (post 165,
164, 147, 136, 157, 152, 155, or 134, respectively).

iSBC 88/25 DEVICE INTERRUPT GENERATION

The iSBC 88/25 device generates Multibus interrupts through port C of the
3255 P.P.I. Connect BUS INTR OUT (post 29) to one of the bits PCO-PC7
(post 47, 48~ 49, 50, 42, 39, 40, or 41, respectively) of port C. Also
connect the Multibus interrupt level INTO/-INT7/ (post 178, 180, 174,
176, 173, 17~, 179, or 177, respectively) to BUS INTR OUT (post 172).

iSBC 88/25 DEVICE INTERRUPT RECEPTION

For the iSBC 88/25 device to receive interrupts from the Multibus
interface, one of the Multibus interrupt lines INTO/-INT7/ (post 132,
124, 130, 131, 135, 134, 137, or 136, respectively) must be connected to
one of the 8259A P.I.C. input lines IRO-IR7 (post 116, 117, 133, 119,
120, 113, 122, or 121, respectively).

7-44

CONFIGURING YOUR APPLICATION SYSTEM

iSBC 88/40 DEVICE INTERRUPT GENERATION

The iSBC 88/40 device generates Multibus interrupts through port C of the
8255 P.P.I. Connect AUX INT (post 49) to one of the bits PCO-PC7 (post
60, 62, 64, 66, 58, 56, 54, or 52, respectively) of port C. Also connect
the Multibus interrupt level INTO/-INT7/ (post 253, 252, 250, 249, 248,
246, 244, or 245, respectively) to AUX INT (post 247).

The iSBC 88/40 device generates memory-mapped interrupts by writing the
value 01H into the first byte of dual-port memory on the iSBC 88/40
device. The interrupted device must clear the interrupt and does so by
writing the value OOH via the system bus to that same byte. Connect
INTERRUPT MASTER (post 251) to a Multibus interrupt line INTO/-INT7/
(post 253, 252, 250, 249, 248, 246, 244, or 245, respectively).

iSBC 88/40 DEVICE INTERRUPT RECEPTION

The iSBC 88/40 device receives interrupts when data (OlH) is written from
the Multibus interface into the first location in dual-port memory. The
interrupt is cleared when data (OOH) is written from the on-board CPU to
the same location. One of the 8259A P.I.C. input lines IRO-IR7 (post
161, 157, 153, 149, 145, 141, 137, or 133, respectively) must be
connected to INTERRUPT MASTER (post 251).

iSBC 88/45 DEVICE INTERRUPT GENERATION

The iSBC 88/45 device generates memory-mapped interrupts by writing the
value 01H into the first byte of dual-port memory on the iSBC 88/45
device. The interrupted device must clear the interrupt and does so by
writing the value OOH via the system bus to that same byte. Connect BUS
FLAG INT (post 86) to a Multibus interrupt line INTO/-INT7/ (post 179,
180, 181, 182, 183, 184, 185, or 186, respectively).

iSBC 88/45 DEVICE INTERRUPT RECEPTION

The iSBC 88/45 device receives interrupts when data (OlH) is written from
the Multibus interface into the first location in dual-port memory.
Interrupts are cleared when data (OOH) is written to the same location.
The FLAG INTERRUPT line is hard-wired to the 8259A P.I~C. interrupt line
IR4, so no jumpering is required.

7-45

I

CHAPTER 8. PERFORMANCE CONSIDERATIONS

The purpose of this chapter is to suggest some basic principles that you
can use to improve the performance of your iMMX 800-based application
system. Because the iMMX 800 software operates in a multi-board
environment, you have considerable freedom and can apply these principles
in various combinations. To find the approach that works best for you,
you will probably have to do some experimenting.

Remember that the goal is to improve overall system performance. Perhaps
you will have to sacrifice efficiency in one part of your system in order
to attain even greater efficiency in another part. Try to approach the
task of maximizing your system's efficiency thoughtfully and with an open
mind.

AVOID UNNECESSARY TRAFFIC ON THE MULTIBUS INTERFACE

Indiscriminant use of the Mu1tibus interface can seriously degrade a
system. You should be mindful of the ways in which the Mu1tibus
interface is being used in your application system. For example, suppose
that a processor on one board is executing instructions that reside on
another board. In this case, the required instruction fetches can place
enormous demands on the system bus. To avoid this problem, try to design
your system so that each processor executes only instructions that are
local to that processor. If that is not possible, locate your code so
that each processor uses local memory for its most-used routines or for
routines that are most in need of speedy execution.

By designing your system with such matters in mind, you can make large
strides toward the goal of optimum performance. Perhaps you can even
achieve the ultimate in reduced Mu1tibus traffic: a system that uses the
Mu1tibus interface only for message transfers.

MINIMIZE THE NUMBER OF TIMES THAT MESSAGES MUST BE COPIED

Whenever you use MMX 80 or MMX 88, you have, in theory at least, the
option of building a message in memory that is accessible by the
destination device. Then, when you invoke the CQXFER service, you can
specify that the local iMMX 800 software should not make a copy when
transferring the message. By doing this whenever possible, you can save
processor time by eliminating unnecessary message copying operations.

8-1

PERFORMANCE CONSIDERATIONS

DISTRIBUTE THE WORKLOAD AMONG THE BOARDS IN YOUR SYSTEM

A key to performance is the extent to which processors are kept busy. At
the board level, the iRMX operating system assures this by providing
logical concurrency. This means that, as long as at least one task on
the board is in the ready state, some task will be executing.

In systems that are linked together by means of the iMMX 800 software, it
is possible to achieve actual concurrency. This means that tasks on
different boards can be executing at the same time.

By judiciously distributing the workload among the boards in your system,
you can exploit the concurrency principle and work toward the goal of
keeping all of your processors busy all of the time.

MINIMIZE THE NUMBER OF MESSAGE TRANSFERS BY USING LARGE MESSAGES

Because the overhead (aside from making copies) of a message transfer is
the same for large messages as it is for small messages, one way of
improving the performance of your system is to use a few large messages
instead of many small messages.

EXPERIMENT WITH VARIOUS INTERRUPT MECHANISMS AND POLLING PERIODS

As you perform configuration, you must specify for each board the kind of
interrupt mechanism that is to be used to interrupt the processor on that
board. The possibilities include Multibus interrupts, I/O-mapped
interrupts, and memory-mapped interrupts. You must also specify the
length of the polling period for each board. By trying different
interrupt mechanisms and by varying the length of the polling periods,
you can experimentally find the optimum combination for your system.

EXPERIMENT WITH VARIOUS HARDWARE AND SOFTWARE CONFIGURATIONS

The iMMX 800 software is very flexible, so you can use it with many
combinations of iSBC boards and iRMX operating systems. Because
different boards have different capabilities and strengths, and because
the same is true of operating systems, the optimum combination of boards
and operating systems might not be obvious. Even though it seems drastic
to do so, you might be able to improve the performance of your
application system by making a change at the hardware or operating system
level.

8-2

APPENDIX A. MULTIBUS® INTERPROCESSOR PROTOCOL (MIP)

WHAT IS MIP?

The Multibus Interprocessor Protocol (MIP) defines a set of mechanisms
and protocols that provide a reliable and efficient exchange of data
among tasks executing on various single-board computers connected to a
common Multibus system bus. See Figure A-I for an example of how MIP
facilities are used in a Multibus configuration of single-board computers.

Figure A-I. MIP System Example

MIP facilities isolate user tasks from the complexities of communicating
across the Multibus system bus. Without these services, tasks trying to
communicate across the bus would have to resolve one or more of the
following conditions:

1. Tasks may be running on different kinds of processors.

2. Tasks may be running under different kinds of operating systems.

3. Different boards have different Multibus signalling mechanisms.

4. Not all boards share the same memory space.

A-I

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

5. Boards sometimes share memory but reference it by different
addresses.

6. Tasks sharing areas of memory may interfere with one another if
not correctly coordinated.

MIP facilities hide these details from user tasks, thereby making it
easier to develop programs for Multibus configurations that include
several intelligent boards.

MIP supports communication among intelligent devices such as single-board
computers (iSBC's) and intelligent device controllers. MIP can be used
by any device on which a MIP implementation can be programmed. The MIP
design does not limit the kinds of processors or operating systems that
can execute MIP services.

MIP can be used by the MCS-85 or the iAPX-86 families of processors. The
iMMX 800 Message Exchange, which is a MIP implementation, can run under
the iRMX 80, iRMX 86, or iRMX 88 Operating Systems. You can also
implement MIP facilities to run on other processors or under other
operating systems.

IMPLEMENTING MIP

When using this specification as a guide for implementing MIP, be aware
that it deals only with global concerns. Implementation details such as
initialization or memory management are not addressed. You can add
features that provide your implementation with a better interface with
its local environment; for example, the processor, the operating system,
or application tasks.

The MIP specification assumes a general processing environment. For
example, the algorithms in the specification are designed to work in a
multitasking environment. If your environment is simpler, you may
streamline your implementation, provided that you retain the basic
protocol needed to communicate with other versions of MIP.

When implementing MIP using the MIP model, follow these guidelines:

• If an element or structure is never shared with another MIP
facility, its function in the model is merely descriptive.

• If an algorithm requires the cooperation of another communicating
MIP facility, the algorithm must conform to the model.

THE MIP MODEL

The MIP specification defines several components that are required in all
MIP implementations. This section describes these components.

A-2

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

A software application consists of several functional units called
tasks. A task may be a program, a part of a program, or a system of
related programs.

A MIP facility is an implementation of MIP. MIP facilities support
communication among tasks executing on different iSBC devices that are
attached to a common Multibus system bus. The set of intercommunicating
tasks, along with associated iSBC devices, operating systems, and MIP
facilities, is called a MIP system. Each MIP facility may be a different
implementation of MIP, but adherence to this specification ensures
compatibility among them.

The term device is used for each iSBC device in a MIP system. Each
device has a device-ID, which is a' number ranging from zero to the number
of devices communicating in one MIP system (less 1).

Any two tasks can communicate with each other by passing data in an area
of memory that is accessible by both of the devices on which the tasks
execute. A contiguous block of memory through which data is passed under
control of MIP facilities is called a buffer. The content of buffers is
not interpreted by MIP facilities.

Communications are delivered to tasks at system ports. A system port is
a logical delivery mechanism that enables delivery in "first-in,
first-out" (FIFO) order. In the MIP model, a system port is represented
as a queue. In some operating systems, system ports are called
"mailboxes" or "exchanges".

Each system port on a given device is identified by a port id, which is a
number in the range zero to the number of ports (less 1) on the device.
To provide system-wide addressability, a system port is also identified
by a socket, which is an ordered pair (d,p), where "d" is the device-ID
and "p" is the system-port-ID. Refer to Figure A-2 for a typical system
port configuration.

In Figure A-2, Task B on device 0 is receiving communications at port 1,
also known as socket (0,1). Task C is active at socket (1,0). Socket
(1,1) is not active (no task is receiving messages). Socket (2,1) is not
defined. Each port is also known by a function-name. Function names
identify system ports symbolically, so tasks that identify ports by their
function-names are independent of changes in configuration.

A-3

where:

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

IoEVICEO - - -- - - - l IoEvlcE-1 - - - -- - -l
I II I
I II I
I II I
I I I POORT

I~--~--------~II~~--~------~
I II

MULTIBUS

MIP facility

I------~~------
I PORT

o

Local Port 0

I
I
I DeviceO ~~

Device 1 I Active I Inactive I Active I
Device 2 I Active I ~E_VI_CE_2 ___________ ~

Figure A-2. System Port Configuration Example

THREE-LEVEL INTERFACE STRUCTURE

The MIP model is composed of three levels of interface:

x-133

1. The virtual level, by which user tasks interact with the MIP
facility.

2. The physical level, by which the MIP facilities on different
devices interact with each other.

3. The logical level, which associates the virtual level with the
physical level.

At the physical level, a MIP implementation must adhere to the specified
functions, structures, and constants. Any implementation that deviates
from this requirement is not compatible with the MIP architecture, and
might not be able to communicate with other MIP facilities.

At the logical level, however, the specified algorithms and data
structures merely impose a logical framework. Implementations need only
satisfy the relationships between events and actions, and need not
duplicate either the algorithms or the data structures.

A-4

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

The virtual level of the model simply suggests one way for tasks to view
the MIP system. Any other viewpoint will work as well, provided the
information passed through the virtual level is sufficient to accomplish
the desired results. You may wish to create an interface that is more
consistent with the interfaces to the operating system you are using.
Figure A-3 illustrates the three-level structure. Refer to this figure
during the following discussion of all three levels.

VIRTUAL LEVEL

Interface
Procedures

ACTIVATE

Receiving RECEIVE
.¥
III
IV
t-

DEACTIVATE
t
III
::J

FIND
Sending

TRANSFER

LOGICAL LEVEL I PHYSICAL LEVEL

Port
Queue

Response
Queue

Command
I

Ready I

Q~

I Incoming
Request

I Queues

,....--_~ Device 0

IN
TASK : [J] Device 1

I

I
Response

Turnaround
Queue I

OUT
TASK

Device n

Outoing
Request
Queues

ill Device 0

Device 1

ill Device n

Figure A-3. MIP Model Data Flow Structure

PHYSICAL LEVEL

x-134

The physical communication mechanism between devices is a fixed size,
one-direction, FIFO queue called a Request Queue. An element in a
Request Queue is known as a Request Queue Entry (RQE). An RQE is added
to a Request Queue at the "give" end of the queue and removed from the
"take" end. Each Request Queue is managed by a Request Queue Descriptor
(RQD). An RQD and associated RQE's forming one queue occupy a contiguous
block of memory, as illustrated in Figure A-4. The RQD keeps track of
the "give" and "take" locations as well as other information about the
queue.

A-5

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

8 bytes
/' A ,

Request Queue { RQD I Descriptor
RQE

RQE

Request Queue I I
Entries I I

I RQE I RQE
....... va ?"

16 bytes x-135

Figure A-4. Request Queue Format

Each Request Queue contains at least two RQE's, and each queue is
accessed at the "give" end by only one device and at the "take" end by
only one device. This helps to avoid memory contention between devices
using the same queue.

Two-way communication between two devices is implemented by a pair of
Request Queues, known collectively as a channel. The device that uses
the "give" end of a request queue is the owner of the queue. The owner
is responsible for initializing the queue. See Figure A-5 for a
conceptual diagram of a channel.

Enqueue 8: Dequeue
(owner) I ~---~----t .. ROD •

r-- - -"""\
give I I take , ,

Source Request Oueue
-~~----~ROE ROE ROE ROEI----~~I

DEVICE DEVICE

..... -----4 ROE ROE ROE
Request Oueue Source

ROE~~-------+---

K + .
ta eL _ -8-- j give

..... ------=-----'----. ROD ---",.-------t~~1 (owner))-136 1.-___ Dequeue Enqueue

Figure A-5. Conceptual Structure of a Channel

A-6

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

LOGICAL LEVEL

The logical level of the MIP model uses Request Queues to transfer
requests between source and destination MIP facilities. A request is
either a command or a response. A command is an order sent from a source
MIP facility to a destination facility. A response is returned from the
destination facility to the source facility and indicates the results of
an attempt to deliver a command. The Request Queues carry these requests
and their associated parameters between MIP facilities.

The primary procedures of the logical level are IN$TASK and OUT$TASK. In
the MIP model, these are viewed as asynchronous tasks, thereby giving the
flexibility needed to service several user tasks simultaneously in a
multi-tasking environment. Since they are asynchronous, all
communication with IN$TASK and OUT$TASK is through queues. There is one
Port Queue for each destination task and one Response Queue for each
source task. For each channel, there is one Command Ready Queue, one
Response Turnaround Queue, and one incoming and one outgoing Request
Queue. (See Figure A-3.)

In the MIP model, the Port Queue may contain entire buffers, for reasons
discussed under the "Buffer Movement" section of this appendix. The
other queues contain only buffer descriptors, thereby minimizing movement
of data in memory.

IN$TASK is driven by its incoming Request Queues. Requests in these
queues may be either commands or responses. Commands are routed to the
Port Queue of the destination port. A response is then generated and
queued in the Response Turnaround Queue to be sent back to the source MIP
facility by OUT$TASK. Responses from the incoming Request Queues are
routed to the Response Queue of the originating task.

OUT$TASK is driven by the Command Ready Queues and Response Turnaround
Queues. When OUT$TASK finds a command in one of its Command Ready
Queues, it routes it to the destination device's Request Queue. (When a
destination device is not functioning, OUT$TASK sends a response directly
back to the sending task's Response Queue.) When OUT$TASK finds a
response in one of the Response Turnaround Queues, it routes it to the
Request Queue of the source task's device.

VIRTUAL LEVEL

User tasks interact with the MIP facility by use of five procedures:

For sending buffers:

1. FIND--Iocates a port, given its function-name.

2. TRANSFER--initiates transfer of a buffer to a given port by
placing a command in the destination device's Command Ready
Queue. TRANSFER then waits for a response before allowing the
sending task to continue.

For receiving buffers:

A-7

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

3. ACTIVATE--attaches a task to a port and enables reception of
messages at that port.

4. RECEIVE--completes transfer of a buffer by taking a command from
the task's Port Queue.

5. DEACTIVATE--disconnects a task from its port and terminates
reception of commands at that port.

MEMORY MANAGEMENT

Devices in a MIP system communicate via shared memory. The abilities of
the devices to access the memory available on the Multibus system bus can
be used to define a partition of that memory. The MIP model partitions
all of memory into non-overlapping segments such that, for any segment
and any device, one of the following conditions is operative:

• The entire segment is continuously addressable within the address
space of the device.

• The device cannot address any of the segment.

Each segment that can be shared among devices is called an inter-device
segment (IDS) and is identified by an IDS-ID, which is a number in the
range zero to the number of IDS's (less 1) in the MIP system.

Figure A-6 presents a hypothetical memory configuration and shows how the
address space is partitioned.

I Global :;:'Ory boa~ - - ---,

I 1FFFFH I
I I~S I

I • 17FFFH l :
10000H 10000H) I

L ~

r. -- - - - iDeviceO
iSBC with private memory

I 7FFFH r---__ I
I

Segment I
B

I
OH __ __ I

_J

< MULTIBU' ~----------------------------~ :~ ___ M_U_U_IB_U_S ____ :>

PROC
B

---I
FFFFH r---__ 2FFFFH l

28000H J

OH

I
I
I

I
I
I
I
I
I

I De~ice

7FFFH ,------, I
I

Segment I
C

I
OH __ --.. I

x-137

Figure A-6. Example of Inter-Device Memory Segments

A-8

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

In Figure A-6, processors A and C can communicate through IDS 1.
Processors Band C can communicate through IDS's 0, 1, and 2. However,
IDS 3 is a segment of dual-ported memory and is accessed by processor B
by u~ing a different range of addresses than those used by processor C.
Memory segments A, B, and C cannot be used for inter-device communication.

Table A-I summarizes the memory configuration shown in Figure A-6. The
table shows the lowest address (the base address) by which each device
can access each IDS.

Table A-I. System Inter-Device Segment Table

Base Addresses
IDS Length

Device 0 Device 1 Device 2

0 8000H --- 18000H 18000H

1 8000H 10000H 10000H 10000H

2 8000H --- 8000H 20000H
x-138

The MIP model contains special features for handling the "alias
addressing" situation posed by dual-port memory. Dual-port memory may be
addressed differently from the Multibus system bus than from its local
processor.

The only case of a shared memory address in a MIP system is the buffer
pointer in the RQE. This pointer is stored in a special format, called
an IDS pointer, which is independent of the addressing peculiarities of
the different devices in a MIP system. The MIP pointer is 32 bits wide,
permitting an addressing range of 4 gigabytes. The high-order word (16
bits) of the pointer stores the low-order word of the address, and the
low-order word of the pointer stores the high-order word of the address.
Within each word, the low-order byte is stored before the high-order byte.

When a buffer is transferred, the sending MIP facility converts the local
buffer pointer to the MIP pointer format and normalizes it by subtracting
the IDS base address of the sending device. Upon receiving the RQE, the
receiving MIP facility adds the IDS base address of the receiving device
and converts to the format required by the receiving device's processor.
User tasks therefore need not be concerned with these addressing
considerations.

A-9

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

BUFFER MOVEMENT

Generally, buffers are not physically moved from one memory location to
another unless moving them is necessary. Instead, buffers are referenced
by descriptors in the RQE's. However, the MIP model provides for
operating systems whose memory management policies forbid introduction of
new objects (buffers) into their memory spaces. When delivering a
buffer, the MIP model copies the buffer from the space managed by the
sending operating system into the space managed by the receiving
operating system.

SIGNALLING

MIP uses a signalling mechanism for efficient utilization of the
inter-device request queues. The mechanism employed is a software
handshake that uses flags in the signal bytes of the RQD's. This
mechanism permits MIP facilities to decrease their activity when queue
activity decreases.

IN$TASK does not examine incoming request queues that are known to be
empty. When the OUT$TASK of a sending facility puts a request in an
outgoing queue that was previously empty, it also sets a flag to signal
the IN$TASK of the receiving facility that the queue is no longer empty.

Similarly, OUT$TASK does not poll outgoing request queues that are known
to be full. When the IN$TASK of a receiving facility removes a request
from an incoming queue that was previously full, it also sets a flag to
signal the OUT$TASK of the sending facility that the queue is no longer
full.

IN$TASK and OUT$TASK poll their signal flags to detect c'hanges in the
states of their queues. Interrupts may be implemented to effect greater
efficiency in polling the signals.

ERROR HANDLING

The MIP architecture provides for device failure. A device is assumed to
have failed if it does not return a response to a command within a
certain time. The timeout period is implementation-dependent.

When a MIP facility determines that a destination device has failed, it
takes three actions:

1. Sets flags to prevent any further activity on the channel.

2. Discards any responses destined for the dead device.

3. Returns all commands for the dead device to the tasks that
invoked them (along with an appropriate error indication).

Any further recovery actions are application-dependent.

A-IO

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

MIP FUNCTIONAL SPECIFICATION

The databases and algorithms described in the rest of this appendix
define the attributes of the Multibus Interprocessor Protocol.
Logically, the functional specification consists of the three levels
described previously in this appendix.

PROCEDURAL SPECIFICATION

DATA TYPES

The following data types are used in the algorithmic specification of MIP:

BYTE: Standard 8-bit variable.

WORD: Two-BYTE variable.

IDENTIFIER: BYTE variable generally used as an index into an array.

STATE: BYTE variable restricted to state constants.

POINTER: Device-dependent address reference.

IDS$PTR: Two-WORD, device-independent address reference.

PROCESSOR-DEPENDENT SUBROUTINES

All machine-dependent logic in the algorithmic specification is isolated
in the following procedures. In addition to these procedures, the value
NULL$PTR is used for some unique pointer value to indicate a null value.
For example:

DECLARE NULL$PTR LITERALLY 'OOOOH';

PTR$ADD

Any implementation of MIP must handle pointer arithmetic according to the
requirements of the processor that executes that implementation. Pointer
arithmetic is used to calculate the addresses of Request Queue elements.

A-II

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

PTR$ADD: PROCEDURE (PTR,
SCALAR) POINTER;

DECLARE PTR
SCALAR

DECLARE NEW$PTR

/*

POINTER,
BYTE;

POINTER;

/* Input. */

/* Local. */

Using knowledge of processor-dependent POINTER
implementation, add PTR to SCALAR giving NEW$PTR.

*/

RETURN NEW$PTR;

END PTR$ADD;

CONVERT$LOCAL$ADR

This routine converts from an address pointer in the local address space
to an IDS-relative pOinter in the IDS$PTR format. The details of this
conversion depend upon the pointer format dictated by the local processor.

CONVERT$LOCAL$ADR: PROCEDURE (IDS$ID,
BUFFER$PTR,
MIP$PTR) ;

DECLARE IDS$ID IDENTIFIER,
BUFFER$PTR POINTER;

DECLARE MIP$PTR
/*

IDS$PTR;

/* Input. */

/* Output. */

Get base address for IDS$ID from IDST.
Subtract from BUFFER$PTR.

*/

END CONVERT$LOCAL$ADR;

A-12

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

CONVERT$SYSTEM$ADR

This routine converts from an IDS-relative pointer in the IDS$PTR format
to an address pointer in the local address space. The details of this
conversion depend upon the pointer format dictated by the local processor.

CONVERT$SYSTEM$ADR: PROCEDURE (IDS$ID,
MIP$PTR,
BUFFER$PTR) ;

DECLARE IDS$ID
MIP$PTR

IDENTIFIER,
IDS$PTR;

DECLARE BUFFER$PTR POINTER;

/*

/* Input. */

/* Output. */

Get base address for IDS$ID from IDST.
Add to BUFFER$PTR.

*/

END CONVERT$SYSTEM$ADR;

TIME$WAIT

A destination device is assumed to be dead if it does not respond to a
command within a reasonable period of time. How you detect a timeout
depends upon the local processor's timing features

TIME$WAIT: PROCEDURE (TIME$OUT, RQL$ID);

DECLARE TlME$OUT WORD,
RQL$ID IDENTIFIER;

/*

/* Input. */

Wait for TlME$OUT period or until something is placed in the
response queue identified by RQL$ID.

*/

END TlME$WAIT;

A-13

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

PHYSICAL LEVEL SPECIFICATION

This level defines the structure and function of Request Queues. To
ensure compatibility with the MIP architecture, an application must not
deviate from the functions, structures, and constants presented in the
Request Queue element descriptions provided under this heading.

REQUEST QUEUE DESCRIPTOR

A Request Queue Descriptor controls a Request Queue. It is physically
located before and adjacent to the associated Request Queue entries.

DECLARE RQD$STRUCTURE
(EMPTY$SIGNAL
FULL$SIGNAL
RQ$SIZE
RQE$LENGTH
GIVE$INDEX
GIVE$STATE
TAKE$INDEX
TAKE $ STATE

'LITERALLY 'STRUCTURE
STATE,
STATE,
BYTE,
BYTE,
BYTE,
STATE,
BYTE,
STATE)' ;

EMPTY$SIGNAL and FULL$SIGNAL are used by the two devices sharing a
channel to signal each other when there has been some activity on the
channel. Signals are written in the RQD of the outgoing queue and read
from the RQD of the incoming queue. The signal values are defined as
follows (unused bits are reserved for future expansion):

DECLARE FULLNOLONGER
EMPTYNOLONGER
NO$CHANGE

LITERALLY
LITERALLY
LITERALLY

'BOH' ,
'01H' ,
'OOH' ;

RQ$SIZE defines the number of elements in the Request Queue. RQ$SIZE
must be a power of 2 and must have a value of 2 or greater.

RQE$LENGTH defines the number of bytes in a Request Queue Element (RQE).
The number of elements is 2 to the power of RQE$LENGTH. For all queues
shared between MIP facilities, RQE$LENGTH is 4 (that is, each entry is 16
bytes long).

GIVE$INDEX identifies the Request Queue Element available for enqueuing
data.

TAKE$INDEX identifies the Request Queue Element available for dequeuing
data.

GIVE$STATE and TAKE$STATE contain the boo leans defined as follows (unused
bits are reserved for future expansion):

DECLARE GIVE$HALT
. GIVE$FACTOR

DECLARE TAKE$HALT
TAKE$FACTOR

LITERALLY
LITERALLY

LITERALLY
LITERALLY

A-14

'40H' ,
'BOH' ;

'40H' ,
'BOH' ;

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

GlVE$FACTOR and TAKE$FACTOR together distinguish between the full state
and the empty state when GIVE$INDEX and TAKE$INDEX are equal.

GIVE$HALT and TAKE $ HALT prevent further activity in the queue when a
device failure is detected.

For making comparisons between GIVE$INDEX and TAKE$INDEX, the following
declaration is required:

DECLARE POINTER$MASK LITERALLY '7FH';

REQUEST QUEUE ENTRY

A Request Queue Entry is an element of a Request Queue.

DECLARE RQE$STRUCTURE
(REQUEST
SRCREQID
DESTDEVID
DEST$PORT$ID
SRCDEVID
DATA$PTR
DATA$LENGTH
IDS$ID
OWNERDEVID
RSRVD (3)

LITERALLY 'STRUCTURE
STATE,
IDENTIFIER,
IDENTIFIER,
IDENTIFIER,
IDENTIFIER,
IDS$PTR,
WORD,
IDENTIFIER,
IDENTIFIER,
BYTE)';

REQUEST identifies the RQE as a command or a response, using one of:

DECLARE SEND$COMMAND
MSG$DELIVERED$NO$COPY
MSG$DELIVERED$COPY
SYSTEM$MEMORY$NAK
DEAD$DEVICE

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

'70H' ,
'80H' ,
'82H' ,
'85H' ,
'89H' ;

SRCREQID identifies the sending task so that responses can be returned.
The meaning of this identifier is defined by the local MIP implementation.

DESTDEVID is the device identifier part of the destination socket.

DEST$PORT$ID is the port identifier part of the destination socket.

SRCDEVID identifies the device from which a request is issued.

DATA$PTR contains the IDS-relative address of a buffer to be delivered or
returned by a MIP facility.

DATA$LENGTH specifies the number of bytes in a buffer.

IDS$ID defines which inter-device segment contains the buffer.

OWNER$DEVICE$ID identifies the device that manages or "owns" the buffer.

RSVRD is undefined space reserved for future expansion.

A-I5

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

QUEUE PROCEDURE RETURNS

The following constants are used to return the results of procedures
associated with the Request Queues:

DECLARE READY
FULL
EMPTY
FIRST$GIVE
FIRST$TAKE
HALTED
GIVE$DISABLED
TAKE$DISABLED

INIT$REQUEST$QUEUE

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

'OOH' ,
'OFFH' ,
'OFFH' ,
'20H' ,
'20H' ,
'40H' ,
'lOH' ,
'lOH' ;

This procedure enters a Request Queue Descriptor in memory, thereby
initializing a Request Queue.

INIT$REQUEST$QUEUE: PROCEDURE (RQD$PTR,
RQ$LEN) ;

DECLARE RQ$LEN BYTE,
RQD$PTR POINTER,
RQD BASED RQD$PTR RQD$STRUCTURE;

RQD.EMPTY$SIGNAL = NO$CHANGE;
RQD.FULL$SIGNAL = NO$CHANGE;
RQD.RQ$SIZE = RQ$LEN;
RQD.RQE$LENGTH = 4;
RQD.GIVE$INDEX = 0;
RQD.TAKE$INDEX = 0;
RQD.GIVE$STATE = 0;
RQD.TAKE$STATE = 0;

END INIT$REQUEST$QUEUE;

TERM$RE QUEST $QUEUE

/* Input. */

This procedure sets the Request Queue flags to prevent subsequent
activity on a channel.

TERM$REQUEST$QUEUE: PROCEDURE (RQDINPTR,
RQDOUTPTR);

DECLARE RQDINPTR POINTER, /* Input */
RQDOUTPTR POINTER,
IN$RQD BASED RQD$IN$PTR RQD$STRUCTURE,
OUT$RQD BASED RQD$OUT$PTR RQD$STRUCTURE;

IN$RQD.TAKE$STATE = IN$RQD.TAKE$STATE OR TAKE$HALT;
OUT$RQD.GIVE$STATE = OUT$RQD.GIVE$STATE OR GIVE$HALT;

END TERM$REQUEST$QUEUE;

A-16

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

QUEUE$GIVE$STATUS

This procedure returns the status of a Request Queue without affecting
the queue.

QUEUE$GIVE$STATUS: PROCEDURE (RQD$PTR,
STATUS);

DECLARE RQD$PTR POINTER,
RQD BASED RQD$PTR RQD$STRUCTURE;

DECLARE STATUS BYTE;

/* Input. */

/* Output. */

IF (RQD.TAKE$STATE AND TAKE$HALT) = TAKE$HALT
THEN DO;

RQD.GIVE$STATE = RQD.GIVE$STATE OR GIVE$DISABLED;
STATUS = HALTED;

END /* THEN */;
ELSE IF (RQD.GIVE$INDEX = RQD.TAKE$INDEX) AND

«RQD.GIVE$STATE AND GIVE$FACTOR) <>
(RQD.TAKE$STATE AND TAKE$FACTOR»

THEN STATUS = FULL;
ELSE STATUS = READY;

RETURN;

END QUEUE$GIVE$STATUS;

A-17

I

I

I
I

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

REQUEST$GIVE$POINTER

This algorithm returns the address of a Request Queue element (if one is
not in use) from the "send" or "give" side of the queue.

REQUEST$GIVE$POINTER: PROCEDURE (RQD$PTR,
RQEPTRLOC,
STATUS);

DECLARE RQD$PTR POINTER, /* Input. */
RQD BASED RQD$PTR RQD$STRUCTURE;

DECLARE RQEPTRLOC POINTER, /* Output. */
RQE$PTR BASED RQE$PTR$LOC POINTER,
STATUS BYTE;

IF (RQD.TAKE$STATE AND TAKE $ HALT) = TAKE $ HALT
THEN DO;

RQD.GIVE$STATE = GIVE$DISABLED;
STATUS = HALTED;
RETURN;

END /* THEN */;
IF «RQD.GIVE$INDEX AND POINTER$MASK)

(RQD.TAKE$INDEX AND POINTER$MASK» AND
«RQD.GIVE$INDEX AND GIVE$FACTOR) <>

(RQD.TAKE$INDEX AND TAKE$FACTOR»
THEN DO;

STATUS = FULL;
RETURN;

END /* THEN */;
STATUS = READY;
RQE$PTR = SHL(DOUBLE(RQD.GIVE$INDEX AND POINTER$MASK),

RQD.RQE$LENGTH)
+ 8 + RQD$PTR;

RETURN;

END REQUEST$GIVE$POINTER;

A-18

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RELEASE$GIVE$POINTER

This algorithm is always executed after a successful
REQUEST$GIVE$POINTER. It actually enters the element in the Request
Queue, thus making it available for taking.

RELEASE$GIVE$POINTER: PROCEDURE (RQD$PTR,
STATUS);

DECLARE RQD$PTR POINTER,
RQD BASED RQD$PTR RQD$STRUCTURE;

DECLARE STATUS
GIVE$INDEX

BYTE,
BYTE;

/* Input. */

/* Output. */

GIVE$INDEX = «RQD.GIVE$INDEX AND POINTER$MASK) + 1) AND
(RQD.RQ$SIZE - 1)

IF (RQD.TAKE$INDEX AND POINTER$MASK) = GIVE$INDEX
THEN /* GIVE$FACTOR bit = NOT TAKE$FACTOR bit. */

RQD.GIVE$INDEX = (GIVE$INDEX OR GIVE$FACTOR) AND
(NOT (RQD.TAKE$INDEX AND TAKE$FACTOR»;

ELSE
RQD.GIVE$INDEX = «RQD.GIVE$INDEX AND POINTER$MASK) + 1) AND

(RQD.RQ$SIZE - 1);

IF (RQD.GIVE$INDEX AND POINTER$MASK) =
«(RQD.TAKE$INDEX AND POINTER$MASK) + 1) AND (RQD.RQ$SIZE - 1»

THEN STATUS = FIRST$GIVE; /* Gave to an empty queue. */
ELSE STATUS = READY;

RETURN;

END RELEASE$GIVE$POINTER;

A-19

I

I

I

I

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

REQUEST$TAKE$POINTER

This algorithm returns the address of a Request Queue element (if one is
available) from the "receive" or "take" side of a Request Queue.

REQUEST$TAKE$POINTER: PROCEDURE (RQD$PTR,
RQEPTRLOC,
STATUS);

DECLARE RQD$PTR POINTER, /* Input. */
RQD BASED RQD$PTR RQD$STRUCTURE;

DECLARE RQEPTRLOC POINTER, /* Output. */
RQE$PTR BASED RQE$PTR$LOC POINTER,
STATUS BYTE;

IF (RQD.GIVE$STATE AND GIVE$HALT) = GIVE$HALT
THEN DO;

RQD.TAKE$STATE = TAKE$DISABLED;
STATUS = HALTED;
RETURN;

END / * THEN * / ;
IF RQD.GIVE$INDEX = RQD.TAKE$INDEX

THEN DO;
STATUS = EMPTY;
RETURN;

END /* THEN */;

STATUS = READY;
RQE$PTR = SHL(DOUBLE(RQD.TAKE$INDEX AND POINTER$MASK),

RQD.RQE$LENGTH)
+ 8 + RQD$PTR;

RETURN;

END REQUEST$TAKE$POINTER;

A-20

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RELEASE$TAKE$POINTER

This algorithm is always executed after a successful
REQUEST$TAKE$POINTER. It actually purges the element from the Reqt~est
Queue, thus making the space available for a subsequent "give" op~ration.

RELEASE$TAKE$POINTER: PROCEDURE (RQD$PTR,
STATUS) ;

DECLARE RQD$PTR POINTER, /* Input. */
RQD BASED RQD$PTR RQD$STRUCTURE;

DECLARE STATUS
MSB

BYTE,
BYTE;

/* Output. */

IF (RQD.GIVE$INDEX AND POINTER$MASK) =
«(RQD.TAKE$INDEX AND POINTER$MASK) + 1) AND

(RQD.RQ$SIZE - 1»

THEN /* TAKE$FACTOR bit = GIVE$FACTOR bit. */
MSB = RQD.GIVE$STATE AND GIVE$FACTOR

ELSE MSB = 0;

RQD.TAKE$INDEX = «(RQD.TAKE$INDEX AND POINTER$MASK) + 1) AND
(RQD.RQ$SIZE - 1» OR MSB;

IF (RQD.TAKE$INDEX AND POINTER$MASK =
«RQD.GIVE$INDEX AND POINTER$MASK)+ 1) AND (RQD.RQ$SIZE - 1)

THEN STATUS = FIRST$TAKE; /* Took from a full queue. */
ELSE STATUS = READY;

RETURN;

END RELEASE$TAKE$POINTER;

A-21

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

LOGICAL LEVEL DATABASE

CONFIGURATION CONSTANTS

The following constants define the system configuration. In place of the
descriptions printed in lower case, substitute the numbers that apply to
your configuration.

DECLARE DEVICES LITERALLY

SOCKETS LITERALLY

PORTS LITERALLY

HOME$DEVICE LITERALLY

TIME$DELAY LITERALLY

IDS$S LITERALLY

RQL$S LITERALLY

A-22

'the number of devices in the MIP
system' ,

'the number of destination ports',

'the number of local ports',

'the identifier of this device',

'maximum time to wait for a
response before a destination
device is considered dead',

'the number of entries in the IDS
table' ,

'the number of local response
queues';

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

DESTINATION SOCKET DESCRIPTOR TABLE (DSDT)

The DSDT contains information for locating sockets in a MIP system. Each
entry associates a socket with a unique function-name. The MIP facility
on each device has a DSDT containing entries for all sockets to which
tasks on that device send messages.

DECLARE DSDT (SOCKETS) STRUCTURE
(FUNCTION$NAME
DESTDEVID
DEST$PORT$ID

WORD,
IDENTIFIER,
IDENTIFIER);

FUNCTION$NAME is a system-wide name for identifying the socket.

DESTDEVID is the device identifier of the device on which the socket
resides.

DEST$PORT$ID is the local port identifier for the socket on the
destination device. For the purposes of this algorithmic specification,
DEST$PORT$ID is the index of the port in the Local Port Table on the
destination device.

LOCAL PORT TABLE (LPT)

The Local Port Table is the list of ports and their parameters that are
managed by a device. For the purposes of this algorithmic specification,
the index of a port in the LPT is the port's identifier.

DECLARE LPT (PORTS) STRUCTURE
(FUNCTION$NAME
PORT$QUEUE$PTR
PORT$STATE

WORD,
POINTER,
STATE);

FUNCTION$NAME is the system-wide name for identifying the port.

PORT$QUEUE$PTR is the address of the queue in which messages addressed to
this port are delivered.

PORT$STATE tells whether a task is receiving messages at this port.
Messages sent to the port are accepted if the port is active; they are
rejected (returned) if the port is inactive. Values associated with this
item are:

DECLARE INACTIVE
ACTIVE

DEVICE TO CHANNEL MAP (DCM)

LITERALLY
LITERALLY

'OOH',
'OlH';

The DCM table is used to route messages among inter-task and inter-device
Request Queues and to manage the flow of messages into and out of the
queues. Each MIP facility has one entry in its DCM for every device in
the MIP system, including the device on which the MIP facility resides.

A-23

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

The device identifier of a device is its index into the DCM. Each entry
in a DCM represents a possible link between the home device and the
device associated with that entry. If no such link exists, CHANNEL$STATE
contains IDLE.

DECLARE DCM (DEVICES) STRUCTURE
(CHANNEL$STATE
RQDOUTPTR
RQDOUTSIZE
RQDINPTR
RQDINSIZE
COMRDYQUEUE$PTR
RSP$TRNRND$QUEUE$PTR

STATE,
POINTER,
BYTE,
POINTER,
BYTE,
POINTER,
POINTER);

CHANNEL$STATE is a local management variable in which the run-time state
of a channel is maintained. This variable contains the booleans defined
below:

DECLARE SEND$ACTIVE LITERALLY 'BOH' ,
SEND$FULL LITERALLY , 7FH' ,
RECEIVE$ACTIVE LITERALLY 'OlH' ,
RECEIVE$EMPTY LITERALLY 'OFEH' ,
DYING LITERALLY '04H' ,
IDLE LITERALLY 'OBH' ;

RQDOUTPTR is the local address of the RQD of the interprocessor queue
through which commands and responses are sent to the associated device.

RQDOUTSIZE is the number of entries in this queue.

RQDINPTR is the local address of the RQD of the interprocessor Request
Queue through which commands and responses are received from the
associated device.

COMRDYQUEUE$PTR is the address of the local queue of commands waiting
to be sent to the associated device.

RSP$TRNRND$QUEUE$PTR is the address of the local queue of responses
waiting to be sent to the associated device.

INTER-DEVICE SEGMENT TABLE (IDST)

The IDST defines the attributes of Inter-Device Segments (IDS's). There
is one entry for each IDS in the MIP system. The entries are indexed by
the IDS identifier.

DECLARE IDST (IDS$S) STRUCTURE
(LO$PART
HI $ PART

WORD,
WORD) ;

Note that the low-order portion of the IDS base address is stored first,
followed by the high-order portion.

A-24

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RESPONSE QUEUE LIST (RQL)

The RQL is a table of pointers to the Request Queues used to return the
results of a buffer delivery attempt. Each entry is assigned to a task
for use with the TRANSFER function. The entries are indexed by RQL$ID.

DECLARE RQL (RQL$S) STRUCTURE
(RSP$QUEUE$PTR

LOGICAL LEVEL ALGORITHMS

DYING$CHANNEL

POINTER);

OUT$TASK invokes this subroutine when a device failure is detected. The
routine disposes of any commands that may be waiting to be sent to the
dead device.

DYING$CHANNEL: PROCEDURE (DEVICE$INDEX);

DECLARE DEVICE$INDEX BYTE; /* Input. */

DECLARE STATUS BYTE, /* Local. */
RQECOMPTR POINTER,
COM$RQE BASED RQE$COM$PTR RQE$STRUCTURE,
RQERSPPTR POINTER,
RSP$RQE BASED RQE$RSP$PTR RQE$STRUCTURE;

CALL REQUEST$TAKE$POINTER
(DCM(DEVICE$INDEX).COM$RDY$QUEUE$PTR,
RQECOMPTR,
STATUS);

IF STATUS <> EMPTY
THEN DO; /* Send back DEAD$DEVICE response. */

CALL REQUEST$GIVE$POINTER
(RQL(COM$RQE.SRC$REQ$ID).RSP$QUEUE$PTR,

@RQERSPPTR,
STATUS);

CALL MOVE (16, RQECOMPTR, RQERSPPTR);
RSP$RQE.REQUEST = DEAD$DEVICE;
CALL RELEASE$GIVE$POINTER

(RQL(COM$RQE.SRC$REQ$ID).RSP$QUEUE$PTR,
STATUS);

CALL RELEASE$TAKE$POINTER
(DCM(DEVICE$INDEX).COM$RDY$QUEUE$PTR,
STATUS);

END /* THEN */;
ELSE /* No more outstanding commands. */ DO;

DCM(DEVICE$INDEX).CHANNEL$STATE = IDLE;
CALL TERM$REQUEST$QUEUE

(DCM(DEVICE$INDEX).RQD$IN$PTR,
DCM(DEVICE$INDEX).RQD$OUT$PTR);

END /* ELSE */;
RETURN;

END DYING$CHANNELj

A-25

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

SERVE$TURNAROUND$QUEUE

This subroutine of OUT$TASK transfers a response from the Response
Turnaround Queue to the output queue of the sending device.

SERVE$TURNAROUND$QUEUE: PROCEDURE (DEVICE$INDEX,
STATUS);

DECLARE DEVICE$INDEX BYTE; /* Input. */

DECLARE STATUS BYTE; 1* Output. */
DECLARE RQD$PTR POINTER, / * Local. * /

RQD BASED RQD$PTR RQD$STRUCTURE,
RQETRNPTR POINTER,
TRN$RQE BASED RQE$TRN$PTR RQE$STRUCTURE,
RQEOUTPTR POINTER,
OUT$RQE BASED RQE$OUT$PTR RQE$STRUCTUREj

CALL REQUEST$TAKE$POINTER
(DCM(DEVICE$INDEX).RSP$TRNRND$QUEUE$PTR,

@RQETRNPTR,
STATUS);

IF STATUS = READY
THEN DO;

RQD$PTR = DCM(DEVICE$INDEX).RQDOUTPTR;
CALL REQUEST$GIVE$POINTER (RQD$PTR,

@RQEOUTPTR,
STATUS) ;

CALL MOVE (16, RQETRNPTR, RQEOUTPTR);
CALL RELEASE$GIVE$POINTER (RQD$PTR,

STATUS);
IF STATUS = FIRST$GIVE

THEN /* Gave to an empty queue, so ••• */
RQD.EMPTY$SIGNAL = EMPTY$NO$LONGER;

CALL RELEASE$TAKE$POINTER
(DCM(DEVICE$INDEX).RSP$TRNRND$QUEUE$PTR,
STATUS);

END / * THEN * I;
RETURN;

END SERVE$TURNAROUND$QUEUE;

A-26

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

SERVE$COMMAND$QUEUE

This subroutine of OUT$TASK transfers a command from the Command Wait
Queue to the output queue of the destination device.

SERVE$COMMAND$QUEUE: PROCEDURE (DEVICE$INDEX,
STATUS) ;

DECLARE DEVICE$INDEX BYTE;

DECLARE STATUS BYTE;

1* Input. *1

1* Output. *1

DECLARE RQD$PTR POINTER, 1* Local. *1
RQD BASED RQD$PTR RQD$STRUCTURE,
RQECOMPTR POINTER,
COM$RQE BASED RQE$COM$PTR RQE$STRUCTURE,
RQEOUTPTR POINTER,
OUT$RQE BASED RQE$OUT$PTR RQE$STRUCTURE;

CALL REQUEST$TAKE$POINTER
(DCM(DEVICE$INDEX).COM$RDY$QUEUE$PTR,

@RQECOMPTR,
STATUS) ;

IF STATUS = READY
THEN DO;

RQD$PTR = DCM(DEVICE$INDEX).RQDOUTPTR;
CALL REQUEST$GIVE$POINTER (RQD$PTR,

@RQEOUTPTR,
STATUS);

CALL MOVE (16, RQECOMPTR, RQEOUTPTR);
CALL RELEASE$GIVE$POINTER (RQD$PTR,

STATUS);
IF STATUS = FIRST$GIVE

THEN 1* Gave to an empty queue, so ••• *1
RQD.EMPTY$SIGNAL = EMPTY$NO$LONGER;

CALL RELEASE$GIVE$POINTER
(DCM(DEVICE$INDEX).COM$RDY$QUEUE$PTR,
STATUS);

END 1* THEN *1;
RETURN;

END SERVE$COMMAND$QUEUE;

A-27

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

OUT$TASK

This algorithm manages activity in the output request queues.

OUT$TASK: PROCEDURE;

DECLARE DEVICE$INDEX
STATUS
RQD$PTR
RQD BASED RQD$PTR

/* Initialization. */

BYTE, /* Local. */
BYTE,
POINTER,
RQD$STRUCTURE;

DO DEVICE$INDEX = 0 TO DEVICES - 1;
IF DCM(DEVICE$INDEX).CHANNEL$STATE <> IDLE

THEN DO;
CALL INIT$REQUEST$QUEUE(DCM(DEVICE$INDEX).RQD$OUT$PTR,

DCM(DEVICE$INDEX).RQD$OUT$SIZE);
DCM(DEVICE$INDEX).CHANNEL$STATE =

END /* THEN */;
END /* DO */j

SEND$ACTIVE;

/* Transfer request loop. */

DO FOREVER;
DO DEVICE$INDEX = 0 TO DEVICES - 1;

RQD$PTR = DCM(DEVICE$INDEX).RQDINPTR;
/* Read signal from in-RQD. */
IF RQD.FULL$SIGNAL = FULL$NO$LONGER

THEN DO;
DCM(DEVICE$INDEX).CHANNEL$STATE =

DCM(DEVICE$INDEX).CHANNEL$STATE OR RQD.FULL$SIGNAL;
RQD.FULL$SIGNAL = NO$CHANGE;

END /* THEN */;
IF (DCM(DEVICE$INDEX).CHANNEL$STATE AND DYING) <> 0

THEN CALL DYING$CHANNEL (DEVICE$INDEX);

ELSE DO;
IF DCM(DEVICE$INDEX).CHANNEL$STATE AND SEND$ACTIVE <> 0

THEN DO; /* Look more closely at this channel. */
RQD$PTR = DCM(DEVICE$INDEX).RQDOUTPTR;
CALL QUEUE$GIVE$STATUS(RQD$PTR,

STATUS) ;
IF STATUS = HALTED

THEN DCM(DEVICE$INDEX).CHANNEL$STATE = DYING;
IF STATUS = FULL

THEN DCM(DEVICE$INDEX).CHANNEL$STATE =
DCM(DEVICE$INDEX).CHANNEL$STATE AND SEND$FULL
/* Don't bother with trying to send on this

channel until it is no longer full. */;

IF STATUS = READY
THEN DO;

CALL SERVE$TURNAROUND$QUEUE (DEVICE$INDEX, STATUS);
IF STATUS = EMPTY

A-28

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

OUT$TASK (continued)

THEN CALL SERVE$COMMAND$QUEUE (DEVICE$INDEX, STATUS);
END /* THEN */;

END /* THEN */;
END /* ELSE */;

END /* DO */;
END /* FOREVER */;

END OUT$TASK;

A-29

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RECEIVE$COMMAND

This IN$TASK subroutine transfers a command from an incoming Request
Queue to the port queue associated with the socket specified in the
command, first checking to make sure that the port is active. The
routine then generates an appropriate response and enters it in the
Response Turnaround Queue associated with the sending device.

RECEIVE$COMMAND: PROCEDURE (RQE$IN$PTR);

DECLARE RQEINPTR POINTER, /* Input. */
IN$RQE BASED RQE$IN$PTR RQE$STRUCTURE;

DECLARE RQEMSGPTR POINTER, /* Local. */
MSG$RQE BASED RQE$MSG$PTR RQE$STRUCTURE,
LOCAL$DATA$PTR POINTER,
STATUS BYTE;

IF LPT (IN$RQE.DEST$PORT$ID).PORT$STATE <> ACTIVE
THEN IN$RQE .REQUEST = SYSTEM~I?ORT$INACTIVE;
ELSE DO; /* Deliver command. */

CALL REQUEST$GIVE$POINTER
(LPT(IN$RQE.DEST$PORT$ID).PORT$QUEUE$PTR,

@RQEMSGPTR, .
STATUS);

IF STATUS = FULL
THEN IN$RQE.REQUEST = SYSTEM$MEMORY$NAK;
ELSE DO;

CALL CONVERT$SYSTEM$ADR (IN$RQE.IDS$ID,
IN$RQE.DATA$PTR,
LOCAL$DATA$PTR);

CALL MOVE (IN$RQE.DATA$LENGTH, /* Copies the whole */
RQEMSGPTR, /* buffer into the */
LOCAL$DATA$PTR); /* port queue. */

CALL RELEASE$GIVE$POINTER
(LPT(IN$RQE.DEST$PORT$ID).PORT$QUEUE$PTR,
STATUS);

IN$RQE.REQUEST = MSG$DELIVERED$COPY;

/* NOTE

Instead of copying the whole buffer, you may copy
only IN$RQE.DATA$PTR and IN$RQE.DATA$LENGTH. In this
case, IN$RQE.REQUEST is set to MSG$DELlVERED$NO$COPY.

*/
END /* ELSE */;

END /* ELSE */;

/* Create response. */
CALL REQUEST$GIVE$POINTER

(DCM(IN$RQE.SRC$DEV$ID).RSP$TRNRND$QUEUE$PTR,
@RQEMSGPTR,
STATUS);

CALL MOVE (16, RQEINPTR, RQEMSGPTR);

A-30

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RECEIVE$COMMAND (continued)

MSG$RQE.DEST$DEV$ID = IN$RQE.SRCDEVID;
MSG$RQE.SRC$DEV$ID = IN$RQE.DESTDEVID;
CALL RELEASE$GIVE$POINTER

(DCM(IN$RQE.SRC$DEV$ID).RSP$TRNRND$QUEUE$PTR,
STATUS);

RETURN;

END RECElVE$COMMAND;

A-31

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RECEIVE$RESPONSE

This IN$TASK subroutine transfers a response from an incoming Request
Queue to the response queue of the initiating task.

RECEIVE$RESPONSE: PROCEDURE (RQE$IN$PTR);

DECLARE RQEINPTR POINTER, /* Input. */
IN$RQE BASED RQE$IN$PTR RQE$STRUCTURE;

DECLARE RQERSPPTR
STATUS

POINTER,
BYTE;

CALL REQUEST$GIVE$POINTER
(RQL(IN$RQE.SRC$REQ$ID).RSP$QUEUE$PTR,

@RQERSPPTR,
STATUS);

CALL MOVE (16, RQEINPTR, RQERSPPTR);
CALL RELEASE$GIVE$POINTER

(RQL(IN$RQE.SRC$REQ$ID).RSP$QUEUE$PTR,
STATUS);

RETURN;

END RECEIVE$RESPONSE;

A-32

/* Local. */

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

IN$TASK

This algorithm manages activity in the incoming Request Queues.

IN$TASK: PROCEDURE;

DECLARE DEVICE$INDEX BYTE, /* Local. */
RQD$PTR POINTER,
RQD BASED RQD$PTR RQD$STRUCTURE,
RQEINPTR POINTER,
IN$RQE BASED RQE$IN$PTR RQE$STRUCTURE,
STATUS BYTE;

DO FOREVER;
DO DEVICE$INDEX = 0 TO DEVICES - 1;

RQD$PTR = DCM(DEVICE$INDEX).RQDINPTR;
IF RQD.EMPTY$SIGNAL = EMPTY$NO$LONGER

THEN DO;
DCM(DEVICE$INDEX).CHANNEL$STATE =

DCM(DEVICE$INDEX).CHANNEL$STATE OR RQD.EMPTY$SIGNAL;
RQD.EMPTY$SIGNAL = NO$CHANGE;

END /* THEN */;
IF (DCM(DEVICE$INDEX).CHANNEL$STATE AND

(DYING OR IDLE) = 0)
AND (DCM(DEVICE$INDEX).CHANNEL$STATE AND

RECEIVE$ACl'IVE <> 0)
THEN DO; /* serve the input request queue. */

CALL REQUEST$TAKE$POINTER
(DCM(DEVICE$INDEX).RQD$IN$PTR,
@RQEINPTR,
STATUS);

IF STATUS = HALTED
THEN DCM(DEVICE$INDEX).CHANNEL$STATE = DYING;

IF STATUS = EMPTY
THEN DCM(DEVICE$INDEX).CHANNEL$STATE =

DCM(DEVICE$INDEX).CHANNEL$STATE AND RECEIVE$EMPTY
/* Don't bother with looking for input on this

channel until it becomes active again. */;

IF STATUS = READY
THEN DO;

IF IN$RQE.REQUEST = SEND$COMMAND
THEN CALL RECEIVE$COMMAND (RQE$IN$PTR);
ELSE CALL RECEIVE$RESPONSE (RQE$IN$PTR);

CALL RELEASE$TAKE$POINTER
(DCM(DEVICE$INDEX).RQD$IN$PTR,
STATUS);

IF STATUS = FIRST$TAKE
THEN /* Took from a full queue, so ••• */ DO;

RQD$PTR = DCM(DEVICE$INDEX).RQDOUTPTR;
/* Post signal in out-RQD. */
RQD.FULL$SIGNAL = FULL$NO$LONGER;

A-33

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

IN$TASK (continued)

END 1* THEN *1;
END 1* THEN *1;

END 1* THEN *1;
END 1* DO *1;

END 1* FOREVER *1;

END IN$TASK;

A-34

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

VIRTUAL LEVEL

STATUS CONSTANTS

The following values, along with values associated with RQE$REQUEST, are
returned by the virtual level procedures to indicate the results of the
procedures.

DECLARE SYSTEM$PORT$AVAILABLE
SYSTEM$PORT$UNKNOWN
SYSTEM$PORT$ACTIVE
SYSTEM$PORT$INACTIVE

FIND$SYSTEM$PORT

LITERALLY
LITERALLY
LITERALLY
LITERALLY

'84H' ,
'8IH' ,
'83H' ,
'87H' ;

This function provides you with the means to locate a socket by its
function-name.

FIND$SYSTEM$PORT: PROCEDURE (FUNCTION$NAME,
SOCKET$DEVICE,
SOCKET$PORT,
STATUS);

DECLARE FUNCTION$NAME WORD; /* Input. */

DECLARE SOCKET$DEVICE IDENTIFIER, /* Output. */
SOCKET$PORT IDENTIFIER,
STATUS BYTE;

DECLARE SOCKET$INDEX BYTE; /* Local. */

DO SOCKET$INDEX = 0 TO SOCKETS - 1;
IF (FUNCTION$NAME = DSDT(SOCKET$INDEX).FUNCTION$NAME)
THEN DO;

STATUS = SYSTEM$PORT$AVAILABLE;
SOCKET$DEVICE = DSDT(SOCKET$INDEX).DESTDEVID;
SOCKET$PORT = DSDT(SOCKET$INDEX).DEST$PORT$ID;
RETURN;

END /* THEN */;
END /* DO */;
STATUS = SYSTEM$PORT$UNKNOWN;
RETURN;

END FIND$SYSTEM$PORT;

A-35

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

TRANSFER$BUFFER

This function causes generation of a command to transfer a buffer to a
destination device and port. The command is queued in the Command Wait
Queue of the destination device. The procedure waits for a reply before
relinquishing control.

TRANSFER$BUFFER: PROCEDURE (BUFFER$PTR,
BUFFER$LENGTH,
IDS$ID,
SOCKET$DEVICE,
SOCKET$PORT,
RQL$ID,
STATUS) ;

DECLARE BUFFER$PTR
BUFFER$LENGTH
IDS$ID
SOCKET$DEVICE
SOCKET$PORT
RQL$ID

DECLARE STATUS

DECLARE RQE$PTR
RQE BASED RQE$PTR
CALL$STATUS

POINTER,
WORD,
IDENTIFIER,
IDENTIFIER,
IDENTIFIER,
IDENTIFIER;

BYTE;

POINTER,
RQE$STRUCTURE,
BYTE;

CALL REQUEST$GIVE$POINTER
(DCM(SOCKET$DEVICE).COM$RDY$QUEUE$PTR,
RQE$PTR,
CALL$STATUS);

RQE.REQUEST = SEND$COMMAND;
RQE.SRCREQID = RQL$ID;
RQE.DESTDEVID = SOCKET$DEVICE;
RQE.DEST$PORT$ID = SOCKET$PORT;
RQE.SRCDEVID = HOME$DEVICE;
RQE.IDS$ID = IDS$ID;
RQE.OWNERDEVID = HOME$DEVICE;

CALL CONVERT$LOCAL$ADR (IDS$ID,
BUFFER$PTR,
RQE • DATA$PTR) ;

RQE.DATA$LENGTH = BUFFER$LENGTH;
CALL RELEASE$GIVE$POINTER

(DCM(SOCKET$DEVICE).COM$RDY$QUEUE$PTR,
CALL$STATUS);

CALL TIME$WAIT (TIME$DELAY, RQL$ID);

1* Input. *1

1* Output. *1

1* Local. *1

CALL REQUEST$TAKE$POINTER (RQL(RQL$ID).RSP$QUEUE$PTR,
RQE$PTR,
CALL$STATUS);

IF CALL$STATUS = EMPTY

A-36

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

TRANSFER$BUFFER (continued)

THEN 1* No response came back within TIME$DELAY period. *1
DO;
DCM(SOCKET$DEVICE).CHANNEL$STATE = DYING;
STATUS = DEAD$DEVICE;

END 1* THEN *1;
ELSE DO;

STATUS = RQE.REQUESTj
CALL RELEASE $ TAKE $ POINTER (RQL(RQL$ID).RSP$QUEUE$PTR,

CALL$STATUS);
END 1* ELSE *1;

RETURN;
END TRANSFER$BUFFER;

A-37

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

ACTIVATE$SYSTEM$PORT

This function enables receipt of messages at a local port. If the port
is not currently active, the address of the port queue is returned.

ACTIVATE$SYSTEM$PORT: PROCEDURE (FUNCTION$NAME,
PORT$QUEUE$PTR,
STATUS);

DECLARE FUNCTION$NAME WORD,
PORT$QUEUE$PTR POINTER;

DECLARE STATUS BYTE;

DECLARE PORT$INDEX BYTE;

DO PORT$INDEX = 0 TO PORTS - 1;

1* Input. *1

1* Output. *1

1* Local. *1

IF FUNCTION$NAME = LPT(PORT$INDEX).FUNCTION$NAME
THEN IF LPT(PORT$INDEX).PORT$STATE = ACTIVE

THEN DO;
STATUS = SYSTEM$PORT$ACTlVE;
RETURN;

END 1* THEN *1;
ELSE DO;

STATUS = SYSTEM$PORT$AVAlLABLE;
PORT$QUEUE$PTR = LPT(PORT$INDEX).PORT$QUEUE$PTR;
LPT(PORT$INDEX).PORT$STATE = ACTIVE;
RETURN;

END 1* ELSE *1;
END 1* DO *1;
STATUS = SYSTEM$PORT$UNKNOWN;
RETURN;

END ACTIVATE$SYSTEM$PORT;

A-38

MULTI BUS INTERPROCESSOR PROTOCOL (MIP)

DEACTIVATE$SYSTEM$PORT

This function terminates reception of messages at a port.

DEACTIVATE$SYSTEM$PORT: PROCEDURE (FUNCTION$NAME,
STATUS);

DECLARE FUNCTION$NAME WORD; /* Input. */

DECLARE STATUS BYTE; /* Output. */

DECLARE PORT$INDEX BYTE;

DO PORT$INDEX = 0 TO PORTS - 1;
IF FUNCTION$NAME = LPT(PORT$INDEX).FUNCTION$NAME

THEN IF LPT(PORT$INDEX).PORT$STATE = INACTIVE
THEN DO;

STATUS = SYSTEM$PORT$INACTIVE;
RETURN;

END /* THEN */;
ELSE DO;

STATUS = SYSTEM$PORT$AVAILABLE;
LPT(PORT$INDEX).PORT$STATE = INACTIVE;
RETURN;

END /* ELSE */;
END /* DO */;
STATUS = SYSTEM$PORT$UNKNOWNj
RETURN;

END DEACTIVATE$SYSTEM$PORT;

A-39

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RECEIVE$BUFFER

This function retrieves a buffer from a port queue if there is a buffer
in the queue.

RECEIVE$BUFFER: PROCEDURE (PORT$QUEUE$PTR,
USER$BUFFER$PTR,
STATUS);

DECLARE PORT$QUEUE$PTR POINTER, /* Input. */
· RQD BASED PORT$QUEUE$PTR RQD$STRUCTURE;

DECLARE USER$BUFFER$PTR
STATUS

DECLARE RQE$PTR

POINTER,
BYTE;

POINTER;

CALL REQUEST$TAKE$POINTER (PORT$QUEUE$PTR,
RQE$PTR,
STATUS);

IF STATUS = READY
THEN DO;

CALL MOVE (RQD.RQE$LENGTH,
RQE$PTR,
USER$BUFFER$PTR);

CALL RELEASE$TAKE$POINTER (PORT$QUEUE$PTR,
STATUS);

END /* THEN */;

RETURN;

END RECEIVE$BUFFER;

A-40

/* Output. */

/* Local. */

APPENDIX B. COMMUNICATION WITH AN iSBC@ 550 ETHERNET*
COMMUNICATIONS CONTROLLLER

The MMX 86 and MMX 88 software each allow your application system to
communicate with an iSBC 550 Ethernet controller. The purpose of this
appendix is to provide you with instructions for building an application
system that communicates with an iSBC 550 Ethernet controller. This
information falls into the following categories:

• A list of the Intel hardware and software products that you can
use to build the application system.

• High-level directions for assembling the hardware.

•

•

Special instructions for writing iRMX 86 and iRMX 88 tasks that
can communicate with an iSBC 550 Ethernet Communications
Controller.

How to configure either the iRMX86 Operating System or the
iRMX 88 Executive and either MMX 86 or MMX 88, respectively, for
communication with an Ethernet controller.

This appendix is designed to serve primarily as an overview. Although it
contains some detailed information, when feasible it refers to other
manuals rather than repeating information described elsewhere.

ETHERNET-RELATED INTEL HARDWARE AND SOFTWARE PRODUCTS

Figure B-1 shows the hardware of a system that communicates with the
Ethernet network. In the figure and throughout the remainder of this
appendix, assume, for simplicity, that the primary hardware elements of
this system are an iSBC 86/12A or iSBC 86/30 computer (the host
computer), an iSBC 550 Ethernet communications controller, and an ICS 80
system chassis. Note, however, that you can use any iAPX 86- or
iAPX 88-based microcomputer as the host computer, and you can use any
chassis that incorporates the Multibus interface.

The primary software elements of the system are your application tasks,
the iRMX 86 Operating System or iRMX 88 Executive, and the MMX 86 or
MMX 88 software. These are shown in Figure B-2.

The hardware and software interact as follows:

• The Multibus interface is the hardware link between the iSBC 550
Ethernet communications controller and the iSBC 86/12A or
iSBC 86/30 single board computer.

*Ethernet is a trademark of the Xerox Corporation.

B-1

I
I

I

I

I

I

I

I
I

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

iSBC® 86/12A
or

iSBC® 86/30
Board

MUL TIBUS® Interface
iSBC® 550
Processor

Board

X-122

iSBC® 550 SerDes Board

Ethernet
Coaxial
Cable

Figure B-1. Hardware for a System Communicating with Ethernet

iSBC® 86/12A
or

iSBC® 86/30
Board

iSBC® 550
Boards

Application Task

iRM)(TM 86 or iRM)(TM 881/0 System
with the iSBC ® 550 device driver

X-123

Ethernet
network

Figure B-2. Software for a System Communicating with Ethernet

·B-2

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

• The iRMX 86 Basic or Extended I/O System or the iRMX 88 I/O
System is the software interface between the tasks of your
application system and the Ethernet network. Tasks communicate
through the Ethernet network by:

1. Explicitly formatting a message in an iRMX 86 segment or
iRMX 88 memory block. This message tells the iSBC 550
Ethernet communications controller what actions to
perform.

2. Using the system calls of the iRMX 86 Basic or Extended
I/O Systems (your choice) or the iRMX 88 I/O System to
read information from or write information to the iSBC
550 Ethernet controller board, which then communicates
with the network.

The interaction between the host computer and the communications
controller is different than the interaction between a host computer and
a non-intelligent controller in several respects:

• All the information sent between the host computer and the
communications controller is passed via MMX 86 or MMX 88
software. However, your application tasks do not explicitly
invoke MMX 86 or MMX 88 system calls. Instead, your tasks invoke
only iRMX 86 or iRMX 88 I/O system calls that, in turn, use MMX
86 or MMX 88, respectively, to pass information.

• Your tasks can pass only information that is formatted for the
iSBC 550 controller. The formats for the various iSBC 550
commands (CONNECT, DISCONNECT, ADDMCID, DELETEMCID, TRANSMIT,
SUPPLYBUF, READ, and READC) are defined in the ETHERNET
COMMUNICATIONS CONTROLLER PROGRAMMER'S REFERENCE MANUAL.

• Your application system must include either the iRMX 86 Operating
System and MMX 86 or the iRMX 88 Executive and MMX 88. This
appendix provides a sample configuration of each. These samples,
which appear in the section entitled "Configuring, Linking, and
Locating an I/O System for use with iSBC 550 Controllers," will
simplify your configuration process.

PUTTING THE HARDWARE TOGETHER

There are several sources of information about assembling your hardware.
The principal sources are:

• iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER HARDWARE REFERENCE
MANUAL

•

•

iSBC 86/12A HARDWARE REFERENCE MANUAL or iSBC 86/14 AND
iSBC 86/30 SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL

iRMX 86 INSTALLATION GUIDE or iRMX 88 INSTALLATION INSTRUCTIONS

• The configuration chapter (Chapter 7) of this manual.

B-3

I

I

I

I

I

I

I
I

I

I

I

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

You should also consult the hardware reference manuals for any other
Intel hardware products that you are using.

WRITING TASKS THAT COMMUNICATE WITH AN ETHERNET NETWORK

The iSBC 550 Ethernet communications controller provides only basic
services. It transmits information to the Ethernet network, and it
receives information from the Ethernet network. It also does some
message filtering by accepting from the network only messages of the
requested Ethernet TYPE code.

Although the iSBC 550 controller does transmit, receive, and filter
messages, there are many services that it does not perform. For example,
it does not:

• Decide which task in your system is to receive a particular
message.

• Add or remove header information that is required in each
iSBC 550 request.

If your application system requires either of these or other similar
high-level services, your tasks must explicitly provide the services.

For this reason, the remainder of this appendix utilizes a collection of
three tasks to manage the iSBC 550 controller. The three tasks are an
Initialization Task, a Reader Task, and a Writer Task. These tasks will
be called Ethernet tasks, to distinguish them from the other tasks of an
application system. After presenting some background information, this
appendix describes the duties of each of the Ethernet tasks.

The Ethernet tasks insulate the rest of your application system from the
details of the iSBC 550 controller. For example, the other tasks of your
application system can send and receive (via iRMX 86 mailboxes or iRMX 88
exchanges) messages from the Ethernet network without having to add or
remove the special header information required by the iSBC 550 Ethernet
controller.

Another benefit of using Ethernet tasks is that you can implement
high-level features on top of the Ethernet protocol. For example, you
can design the Reader Task to examine a particular field of a received
message and then route the message to the proper task within your
application. If desired, you can also build special protocols to perform
other duties.

The Ethernet tasks of your iRMX 86- or iRMX 88-based application system
can communicate with an Ethernet network by using the system calls of the
iRMX 86 Basic I/O System, the iRMX 86 Extended I/O System, or the iRMX 88
I/O System. Whenever one of your tasks uses an I/O System call to read
or write to an Ethernet network, the following events occur:

B-4

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

• The I/O System uses MMX 86 or MMX 88 to communicate with the
iSBC 550 communications controller.

• The iSBC 550 communications controller communicates directly with
the Ethernet network.

Although the process requires MMX 86 or MMX 88, your Ethernet tasks do
not explicitly invoke any MMX 86 or MMX 88 procedure calls. The I/O
System that you have chosen will invoke any ~cr 86 or MMX 88 procedure
calls that are required. Of course, MMX 86 or MMX 88 services are still
available to your application tasks.

However, whenever one of your Ethernet tasks communicates with the
iSBC 550 communications controller by making calls to the I/O System,
your task must explicitly set up an iSBC 550 request block that tells the
iSBC 550 controller what to do.

BUILDING AN iSBC 550 REQUEST BLOCK

Whenever one of your Ethernet tasks sends information to (or receives
information from) the iSBC 550 communications controller, the task must
use an I/O System call to pass an iSBC 550 request block to the iSBC 550
controller. This request block is subject to two constraints:

1. With one exception, the request block must adhere to the format
described in the ETHERNET COMMUNICATIONS CONTROLLER PROGRAMMER'S
REFERENCE MANUAL. The exception is that your task need not fill
in the RESPONSE SOCKET and PROCESSOR ID fields. The I/O System
fills in these fields.

2. The iSBC 550 request block must be embedded in an iRMX 86
segment, with the first byte of the request block being the first
byte of the segment or block. This means that your task cannot
use an arbitrary block of memory as an iSBC 550 request block.
Instead, the task must first create an iRMX 86 segment or
allocate an iRMX 88 memory block and then construct the request
block within the segment.

SENDING THE REQUEST BLOCK TO THE iSBC 550 CONTROLLER

Once your task has built the request block, it must send the block to the
iSBC 550 controller. It does so by means of the RQAWRITE system call
(of the iRMX 86 Basic I/O System), the RQSWRITE$MOVE system call (of
the iRMX 86 Extended I/O System), or the DQ$WRITE system call (of the
iRMX 88 I/O System), regardless of which iSBC 550 command is indicated in
the request block. (Eight iSBC 550 commands are available. They are
CONNECT, DISCONNECT, ADDMCID, DELETEMCID, TRANSMIT, SUPPLYBUF, READ, and
READC.)

B-5

I

I
I

I

I

I

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

For any command that requires a response from the iSBC 550 controller,
your task can find the response embedded in the same request block that
was sent to the controller. If you have selected the iRMX 86 Basic I/O
System, and the Writer Task is handling many write requests, the IORS's
that are returned to the task might be returned in a different order than
the order in which the corresponding RQAWRITE calls were issued. In
this case, the Writer Task can find the correct token for each request
block segment it has sent by looking in the BUFF$P field of the IORS that
is returned in the designated response mailbox. The address of the
segment is IORS.BUFF$P. If you have selected the iRMX 86 Extended I/O
System or the iRMX 88 I/O System, the request blocks are returned in the
same order in which they were sent, so it is not necessary for the
requesting task to identify the request blocks that are returned.

When your Reader or Writer Task uses a writing system call to transfer a
request block to the iSBC 550 controller, the task can receive exception
codes other than those returned by the I/O System. The iRMX 86 tasks can
receive MMX 86 exception codes and the iRMX 88 tasks can receive MMX 88
exception codes.

THE ETHERNET TASKS' ENVIRONMENT AND DUTIES

The three subsections of this section describe, separately for each of
the I/O Systems of the iRMX 86 Operating System and iRMX 88 Executive,
both the structure of the Ethernet tasks and special use restrictions
regarding the sysyem calls of that I/O System. Many readers will need to
read only one of these sections. Note that, in each high-level task
description, some important elements, such as exception handling, have
been omitted. This is intentional, so that you can more easily see the
structure of the Ethernet tasks.

Using the iRMX 86 Basic I/O System

The following sections describe the Ethernet tasks and use restrictions
pertaining to the iRMX 86 Basic I/O System.

The Ethernet Tasks. Ethernet Tasks that use the Basic I/O System have
the following structures:

• Initialization Task

1. Attach the iSBC 550 controller.

2. Create the appropriate file on the device, using the
device token obtained in step 1.

3. Open the file for reading and writing, using the
connection obtained in step 2.

B-6

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

•

4. Create a segment, build an iSBC 550 CONNECT request block
in the segment, and use the RQAWRITE system call to
send the segment to the iSBC 550 controller.

5. Create the Reader Task. Pass the connection to the
Reader Task.

6. Create the Writer Task. Pass the connection to the
Writer Task.

7. Suspend or delete itself.

Reader Task

1. Create several segments containing iSBC 550 SUPPLYBUF
request blocks and use the RQAWRITE system call to send
them to the iSBC 550 controller, with the same response
mailbox indicated in each call.

2. Wait at the response mailbox.

3. When a request block segment arrives at the response
mailbox, the Reader Task creates a segment, copies the
information from the block into the new segment, and
sends the new segment to the appropriate application
mailbox.

4. Call RQAWRITE to send the SUPPLYBUF request block back
to the iSBC 550 controller, again indicating the same
response mailbox.

5. Go to step 2.

• Writer Task

1. Wait at a previously-designated reception mailbox for
write requests from application tasks and for returned
iSBC 550 request block segments.

2. If a write request from an application task arrives at
the mailbox, go to step 3. If an IORS arrives at the
mailbox, go to step 5.

3. Create a segment, and build an iSBC 550 TRANSMIT request
block with the data that is to be written. Specify that
the segment is to be returned to the reception mailbox,
and call RQAWRITE to send the segment to the iSBC 550
controller.

4. Go to step 1.

5. Delete the IORS and write request segment, and go to step 1.

Assume, when reading the following section about using the Basic I/O
System, that we are referring to a system in which Ethernet tasks are being
utilized as just outlined.

B-7

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

Use Restrictions. This section of the appendix assumes that you are
already familiar with the iRMX 86 Basic I/O System. Consequently, rather
than providing a tutorial on the Basic I/O System, this section of the
appendix discusses only matters relating directly to using the iSBC 550
Ethernet controller. Reference material concerning the Basic I/O System
is divided between the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL and the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

The Basic I/O System, when used for communication with an iSBC 550
controller, has different restrictions or behaves differently than it
does in systems that do not support such communication. The differences
fall into three areas.

First, the software link between the Basic I/O System and the iSBC 550
controller is implemented as a physical file. This means that your task
should not use any of the system calls reserved for use only with stream
files and/or named files. For example, if your task invokes the
RQAGET$PATH$COMPONENT system call for this file, the Basic I/O System
returns an E$SUPPORT exception code.

Second, even among the system calls that generally are useful for
physical files, a few behave differently when used with the Ethernet
controller. These are RQAREAD, RQASPECIAL, RQASEEK, RQATRUNCATE,
RQAGET$CONNECTION$STATUS, and RQAGET$FILE$STATUS. The behavioral
differences are as follows:

• If your task attempts to use the RQAREAD system call, the Basic
I/O System responds as if the task had issued an RQAWRITE
system call. The only prerequisite of the RQAREAD system call
is that the connection be open for reading before your task
invokes RQAREAD.

• If your task attempts to use the RQASPECIAL, RQASEEK, or
RQATRUNCATE system call, the Basic I/O System returns an E$IDDR
exception code, indicating that these system calls are not
supported on the Ethernet controller.

• If your task invokes the RQAGET$FILE$STATUS or the
RQAGET$CONNECTION$STATUS system call, some of the returned
information is undefined. For the RQAGET$FILE$STATUS system
call, the following fields are undefined:

flags
dev$gran
dev$size

For the RQAGET$CONNECTION$STATUS system call, the following
fields are undefined:

flags
file$ptr
access

B-8

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

Third, among the system calls that behave as expected, some of the input
parameters have special restrictions:

• RQAATTACH$FILE -- The user and subpath parameters are ignored.

• RQACREATE$FILE -- The user, subpath, access, granularity, size,
and must$create parameters are ignored. The prefix parameter
must be a token for the device connection for the iSBC 550
controller.

• RQAREAD and RQAWRITE -- The buffer pointer must be a token
for an iRMX 86 segment containing the request block. The count
parameter is ignored, because the iSBC 550 controller ascertains
the count from the request block.

All other Basic I/O System calls work exactly as expected.

Using the iRMX 86 Extended I/O System

The following sections describe the Ethernet tasks and use restrictions
pertaining to the iRMX 86 Extended I/O System.

The Ethernet Tasks. Ethernet Tasks that use the Extended I/O System have
the following structures:

• Initialization Task

•

1. Attach the iSBC 550 controller.

2. Create the appropriate file on the device, using the
device token obtained in step 1.

3. Open the file for reading and writing, using the
connection obtained in step 2.

4. Create a segment, build an iSBC 550 CONNECT request block
in the segment, and use the RQSWRITE$MOVE system call
to send the segment to the iSBC 550 controller.

5. Create the Reader Task. Pass the connection to the
Reader Task.

6. Create the Writer Task. Pass the connection to the
Writer Task.

7. Suspend or delete itself.

Reader Task

1. Create a segment. (This is segment A.)

B-9

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

2. Build an iSBC SUPPLYBUF request block in segment A, and
call RQSWRITE$MOVE to send it to the iSBC 550
controller.

3. (When control returns,) create another segment -
segment B -- of the required size, copy the data from
segment A into segment B, and call RQ$SEND$MESSAGE to
send segment B to the appropriate mailbox.

4. Go to step 2.

• Writer Task

1. Wait at a previously-designated reception mailbox for
write requests from application tasks.

2. When a write request arrives, create a segment of the
appropriate size, build an iSBC 550 TRANSMIT request
block there with the data that is to be written, and call
RQSWRITE$MOVE to send the segment to the iSBC 550
controller.

3. Go to step 1.

Assume, when reading the following section about using the Extended I/O
System, that we are referring to a system in which Ethernet tasks are
being utilized as just outlined.

Use Restrictions. This section of the appendix assumes that you are
already familiar with the iRMX 86 Extended I/O System. Consequently,
rather than providing a tutorial on the Extended I/O System, this section
of the appendix only discusses matters relating directly to using the
iSBC 550 Ethernet controller. Reference material concerning the Extended
I/O System is contained in the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL.

The Extended I/O System, when used for communication with an iSBC 550
controller, has different restrictions or behaves differently than it
does in systems that do not support such communication. The differences
fall into three areas.

First, the software link between the Extended I/O System and the iSBC 550
controller is implemented as a physical file. This means that your task
should not use any of the system calls reserved for use only with stream
files and/or named files. For example, if your task invokes the
RQSCHANGE$ACCESS system call for this file, the Extended I/O System
returns an E$SUPPORT exception code.

Second, even among the system calls that generally are useful for
physical files, a few behave differently when used with the Ethernet
controller. These are RQSREAD$MOVE, RQ$S$SPECIAL, RQ$S$SEEK,
RQSTRUNCATE, RQSGET$CONNECTION$STATUS, RQSGET$FILE$STATUS. The
behavioral differences are as follows:

B-IO

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

• If your task attempts to use the RQSREAD$MOVE system call, the
Extended I/O System responds as if the task had issued an
RQSWRITE$MOVE system call. The only prerequisite of the
RQSREAD$MOVE system call is that the connection be open for
reading before your task invokes RQSREAD$MOVE.

• If your task attempts to use the RQSSPECIAL, RQSSEEK, or
RQSTRUNCATE$FILE system call, the Extended I/O System returns
an E$IDDR exception code, indicating that these system calls are
not supported on the Ethernet controller.

• If your task invokes the RQSGET$FILE$STATUS or the
RQSGET$CONNECTION$STATUS system call, some of the returned
information is undefined. For the RQSGET$FILE$STATUS system
call, the following fields are undefined:

dev$gran
dev$size
file$gran
owner$id

file$blocks
vol$name
vol$gran

vol$size
accessor$count
owner$access

For the RQSGET$CONNECTION$STATUS system call, the following
fields are undefined:

flags
file$ptr
access

num$buf
buf$size

Third, among the system calls that behave as expected, some of the input
parameters have special restrictions:

• RQSREAD$MOVE -- The buf$ptr parameter must be a token for an
iRMX 86 segment containing the request block. The bytes$desired
parameter is ignored because the iSBC 550 controller ascertains
the number of bytes desired from the request block. For similar
reasons, the bytes$read output parameter is undefined.

• RQSWRITE$MOVE -- The buf$ptr parameter must be a token for an
iRMX 86 segment containing the request block. The count
parameter is ignored because the iSBC 550 controller ascertains
the count from the request block. For similar reasons, the
bytes$read output parameter is undefined.

All other Extended I/O System calls work exactly as expected.

Using the iRMX 88 I/O System

The following sections describe the Ethernet tasks and use restrictions
pertaining to the iRMX 88 I/O System.

B-11

COMMUNICATION WITH AN iSBC@ 550 ETHERNET COMMUNICATIONS CONTROLLER

The Ethernet Tasks. Ethernet Tasks that use the iRMX 88 I/O System have
the following structures:

• Initialization Task

1. Obtain a connection to the appropriate file by calling
DQ$CREATE or DQ$ATTACH.

2. Open the file for reading and writing, using the
connection obtained in step 1.

3. Obtain a memory block by calling DQ$ALLOCATE, build an
iSBC 550 CONNECT request block in the memory, and call
DQ$WRITE to send the request block to the iSBC 550
controller.

4. Create the Reader Task.

5. Create the Writer Task.

6. Suspend or delete itself.

• Reader Task

1. Call DQ$ALLOCATE to obtain a block of memory. (This is
memory block A.)

2. Build an iSBC 550 SUPPLYBUF request block in memory block
A, and call DQ$WRITE to send it to the iSBC 550
controller. Reserve 15 bytes for the message header at
the beginning of memory block A, in addition to the 12
bytes that are reserved in any SUPPLY$BUF request. When
calling DQ$WRITE, set the length parameter to reflect the
size of the entire message, including headers.

3. (When control returns,) call DQ$ALLOCATE to obtain a
block of memory -- memory block B -- of the required
size, build an iRMX 88 message in memory block B, copy
the data from memory block A to memory block B, and call
RQSEND to send memory block B to the appropriate e~change.

4. Go to step 2.

• Writer Task

1. Wait at a previously-designated exchange for write
requests from application tasks.

B-12

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

2. When a write request arrives, call DQ$ALLOCATE to obtain a
block of the appropriate size, build an iSBC 550 TRANSMIT
request block there with the data that is to be written,
and call DQ$WRITE to send the request to the iSBC 550
controller. Reserve 15 bytes for the message header at
the beginning of the memory block, in addition to the 12
bytes that are reserved in any TRANSMIT request. When
calling DQ$WRITE, set the length parameter to reflect the
size of the entire message, including headers.

3. Go to step 1.

Use Restrictions. This section of the appendix assumes that you are
already familiar with the iRMX 88 I/O System. Consequently, rather than
providing a tutorial on the iRMX 88 I/O System, this section of the
appendix only discusses matters relating directly to using the iSBC 550
Ethernet controller. Reference material concerning the iRMX 88 I/O System
is contained in the iRMX 88 REFERENCE MANUAL.

The iRMX 88 I/O System, when used for communication with an iSBC 550
controller, has different restrictions or behaves differently than it does
in systems that do not support such communication. The differences fall
into three areas.

First, the software link between the iRMX 88 I/O System and the iSBC 550
controller is implemented as a physical file. This means that your task
should not use any of the system calls reserved for use only with named
files. For example, if your task invokes the DQ$RENAME system call for
this file, the iRMX 88 I/O System returns an E$SUPPORT exception code.

Second, even among the system calls that generally are useful for physical
files, a few behave differently when used with the Ethernet controller.
These are DQ$READ, DQ$SPECIAL, and DQ$SEEK. The behavioral differences
are as follows:

• If your task attempts to use the DQ$READ system call, the iRMX 88
I/O System responds as if the task had issued an DQ$WRITE system
call. The only prerequisite of the DQ$READ system call is that
the connection be open for reading before your task invokes
DQ$READ.

• If your task attempts to use the DQ$SPECIAL or DQ$SEEK system
call, the iRMX 88 I/O System returns an E$IDDR exception code,
indicating that these system calls are not supported on the
Ethernet controller.

• If your task invokes the DQGETCONNECTION$STATUS system call, the
following fields are undefined:

access file$ptr seek

All other iRMX 88 I/O System calls work exactly as expected.

Third, RQFORMAT is not supported.

B-13

COMMUNICATION WITH AN iSBC@ 550 ETHERNET COMMUNICATIONS CONTROLLER

CONFIGURING, LINKING, AND LOCATING AN iRMX 86 OR 88 I/O SYSTEM FOR USE
WITH iSBC 550 CONTROLLERS

The remainder of this appendix is devoted to describing the
configuration, linking, and locating processes required to prepare an
iRMX 86 or 88 I/O System for use with iSBC 550 controllers. Each of the
following sections on configuring an iRMX 86 or 88 I/O System assumes
that you are familiar with the general configuration process for that
operating system. Consequently, these sections focus on Ethernet-related
matters, insofar as such matters can be separated from other
configuration issues. If you need to learn more about configuring an
iRMX 86 or 88 system, refer to the iRMX 86 CONFIGURATION GUIDE or the
iRMX 80/88 INTERACTIVE CONFIGURATION UTILITY USER'S GUIDE.

In the remainder of this appendix, there are several references to
device-unit information blocks and device information tables. You don't
necessarily have to know the meanings of these terms, but if you do need
to, descriptions of them and other matters pertaining to device drivers
can be found in the GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 and
iRMX 88 I/O SYSTEMS.

I CONFIGURING AN iRMX 86 I/O SYSTEM FOR USE WITH iSBC 550 CONTROLLERS

I Whether you are planning to use the Extended I/O System or not, you must
configure the Basic I/O System. And it is in the configuration module
for the Basic I/O System that you put the descriptive information about
the iSBC 550 device. All that is needed in the configuration of the
Extended I/O System, assuming that you have chosen to use it, is a
%DEV INFO BLOCK macro for the iSBC 550 device.

Four INCLUDE files are used for adding configuration information
concerning the iSBC 550 Ethernet controller to the Basic I/O System's
standard device configuration file IDEVCF.A86. They are:

1550.EXT

IEDUIB.LIT

IEDINF.INC

IEDINF.LIT

External declarations of the names of the device
driver routines that appear in the DUIB (device-unit
information block) for the iSBC 550 device.

A sample DUIB for an iSBC 550 device-unit.

A declaration of the device information table
structure for the iSBC 550 device.

A sample device information table for the iSBC 550
device.

The data in both IEDUIB.LIT and IEDINF.LIT can be modified to fit your
special needs.

The DUIB for the iSBC 550 device is as follows:

B-14

COMMUNICATION WITH AN iSBC@ 550 ETHERNET COMMUNICATIONS CONTROLLER

define duib
& device name,
& file drivers,
& functions,
& flags,
& device gran,
& low device size,
& high device size,
& device number,
& unit number,
& device unit number,
& i550$init,
& i550$finish,
& i550$queue,
& i550$cancel,
& device info,
& unit info,
& update timeout,
& number buffers,
& priority
&

where the fields that you mayor must change are:

device name A one- to fourteen-character name that is unique
among all device names in the system. This name,
which must be preceded and followed by single
quotes, is used in the call to
RQAPHYSICAL$ATTACH$DEVICE, in order to identify
the device to be attached.

device number A BYTE containing the number of the device
associated with this DUIB.

device unit number A BYTE containing the number of the device-unit
associated with this DUIB.

i550$init A WORD containing the base address of the init$io
routine that the I/O System calls.

i550$finish A WORD containing the base address of the
finish$io routine that the I/O System calls.

i550$queue A WORD containing the base address of the queue$io
routine that the I/O System calls.

i550$cancel A WORD containing the base address of the
cancel$io routine that the I/O System calls.

device info A POINTER to the device information table for the
iSBC 550 device.

The device information table has the following format:

B-15

I
I /

I
I
I

COMMUNICATION WITH AN iSBC@ 550 ETHERNET COMMUNICATIONS CONTROLLER

define devinf
& init start addr
& host device id
& 550 device id
& RQ to 550
& RQ from 550
& IDS base strt addr
& IDS base length
& 550 interrupt port
& 550 port name
& host port info
& timeout
& priority
& 550 interrupt type

where the fields that you mayor must change are as follows. An asterisk
(*) indicates that the same value must also appear in the iMMX 800
configuration file for the "host device", that is, the device with which
the iSBC 550 device communicates.

init start addr

host device id*

550 device id*

RQ to 550*

RQ from 550*

A POINTER to the start address of the iSBC 550
communication area that is used for
initialization. This address is a hardware
configuration option on the iSBC 550 controller.
See the ETHERNET COMMUNICATIONS CONTROLLER
PROGRAMMER'S REFERENCE MANUAL for details
concerning this address.

A BYTE containing the device ID for the host
(iSBC 86/12A or 86/30) device. This ID value goes
into DSDT arrays.

A BYTE containing the device ID for the iSBC 550
device. This ID value goes into DSDT arrays.

A POINTER to the request queue for communication
from the host device to the iSBC 550 device. This
pointer goes into the DCM$ROM array.

A POINTER to the request queue for communication
from the iSBC 550 device to the host device. This
pointer goes into the DCM$ROM array.

IDS base strt addr* A BYTE containing the start address of the IDS
managed by the host device, as a multiple of 4K.
This value goes into the IDST array.

IDS base length* A BYTE specifying the size of the IDS managed by
the host device, as a multiple of 4K.

B-16

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

550 interrupt port A WORD containing the I/O port address used for
waking up the iSBC 550 device during
initialization. This port is a hardware
configuration option on the iSBC 550 controller.
See the iSBC 550 ETHERNET COMMUNICATIONS
CONTROLLER HARDWARE REFERENCE MANUAL for details
concerning this port. This value goes into the
SFT array.

550 port name*

host port info*

timeout

priority

A WORD containing the system port name of the
iSBC 550 port to which the iMMX 800 software will
deliver messages. This name goes into the DSDT
arrays.

A WORD containing the socket on the host computer
to which the iSBC 550 device will send messages.
A socket consists of a device 10, port IO pair.
For example, if the host device's 10 were 1 and
the port 10 on the host device were 2, the socket
would be 0102H. These device 10 and port 10
values go into an entry in the DSOT array.

A BYTE containing the time, in 52-millisecond
units, that the iSBC 550 controller will wait for
a response from MMX 86 before declaring the host
device dead. The recommended value of OFFH
indicates that the iSBC 550 device will wait
forever.

A BYTE containing the priority of the Ethernet
driver task that receives messages from MMX 86. A
value of 129 is recommended.

550 interrupt type A BYTE containing a code for the method used by
the iSBC 550 device to interrupt the host device.
The values for this field are defined in the
ETHERNET COMMUNICATIONS CONTROLLER PROGRAMMER'S
REFERENCE MANUAL.

I

I

I

A Sample Basic I/O System Configuration File I
The following is a sample configuration file for the Basic I/O System. It
also specifies a device driver for the iSBC 550 device.

B-17

I

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

1 $title(idevcf: I/O System Device-Driver Configuration Module)
;;

Note:
The I/O System has two configuration files: the itable.a86
for various interfaces and file-driver configurations; the
idevcf.a86 for device-driver configuration.

idevcf.a86
Sample I/O System Device-Driver Configuration Module.

Configures:

iSBC 550 Device Driver (using MMX 86)

Byte-Bucket Driver

;;

name

1 $include(:fl:idevcf.inc)
1 $save nolist
1 $nogen

$include(:fl:iedinf.inc)

idevcf

specify iSBC 550 Ethernet custom device driver information

i550 dev info struc
-dw 0 550 comm area offset

dw 0 550 comm area base
db 0 host device id
db 0 550 device id
dw 0 host rqd offset
dw 0 host rqd base
dw 0 550 rqd offset
dw 0 550 rqd base
db 0 ids base start addr
db 0 ids base length
dw 0 550 interrupt port
dw 0 550 port name
dw 0 host port name
db 0 timeout
db 0 priority
db 0 550 interrupt type

i550 dev info ends

;;

; Define Device Driver External Procedures.

;;
code segment

assume cs: cgroup

B-18

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

$include(:f1:i550.ext)
extrn
extrn
extrn
extrn

i550init: near
i550finish: near
i550queue: near
i550cancel: near

extrn
extrn
extrn
extrn

bytebucketinitio: near
bytebucketfinishio: near
bytebucketqueueio: near
bytebucketcancelio: near

code ends
assume cs: nothing

;;;
,
; Define Device-Unit Information Blocks (DUIB's).

;;;

code segment

duibtable label byte
public duibtable

$include(:f1:ieduib.lit)
,
; Ethernet iSBC 550 device, unit °
define duib
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&)

<
'EO' ,
001H,
033H,
OOH,
00,
OH,OH,
0,
0,
0,
i550init,
i550finish,
i550queue,
i550cancel,
dinfo 550,
0, -
Offffh,
0,
129

B-19

name (14)
file$drivers
functs
flags
dev$gran
dev$size = °
device
unit
dev$unit
init$io
finish$io
queue$io
cancel$io
device$info
unit$info
update$timeout
num$buffers
priority

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

Byte-Bucket

define duib
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&)

<
'BB' ,
03H,
OF3H,
OOH,
0,
0,0,
2,
0,
2,
bytebucketinitio,
bytebucketfinishio,
bytebucketqueueio,
bytebucketcancelio,
0,
0,
OFFFFH,
0,
129

name(14)
file$drivers
functs
flags
dev$gran
dev$size
device
unit
dev$unit
init$io
finish$io
queue$io
cancel$io
device$info
unit$info
update$timeout
num$buffers
priority

Now is an appropriate time to define the number of DUIB's

NUM DUIB equ (this byte - duibtable) / size define duib

code ends
;; . ,
; Define parameters and device tables.

;;

NUM DEV UNIT - -NUM DEVICES
equ
equ

2 + 1
2 + 1

Max{dev$units in duib's), + 1
Max(device #'s in duib's) + 1

;;

define device information

;;
code segment
$include(:f1:iedinf.lit)

iSBC 550 device information . ,

B-20

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

dinfo 550 i550 dev info <
& Oh, comm area start address offset
& 2000h, comm area start address base
& Oh, host device id
& 01h, 550 device id
& Oh, rqd to 550 offset
& 2010h, rqd to 550 base
& Oh, rqd from 550 offset
& 2020h, rqd from 550 base
& Oh, ids base start addr
& 4fh, ids length
& Oa4h, 550 interrupt port
& 0101h, 550 port name
& OOOOh, host port name
& Offh, timeout
& 129, priority
& 03h 550 interrupt type
&)

code ends

end

A Sample MMX 86 Configuration File for the Host Device

This section contains a sample MMX 86 configuration file for the (host)
device that communicates with the iSBC 550 device. Note that this example
exhibits the following properties, which are required of every MMX 86
configuration:

• The depth (RQINSIZE in DCM$ROM) of the request queue, for
requests from the iSBC 550 device to the host device, must be 4.

• The system port name (SYSTEM$PORT$NAME in LPT$ROM) that the
iSBC 550 device uses to reference the system port on the host
device must be the same as that specified in the device
information table for the host device.

• The device id (DEST$PORT$ID in DSDT) for the iSBC 550 device must
not be zero. Port zero has special meaning to the iSBC 550 device
and cannot be used by MMX 86.

• In the SFT structure corresponding to the iSBC 550 device, OP$MODE
must be SLAVE$DEVICE (=OlH), INTR$TYPE must be IO$INTERRUPT
(=03H), and INTR$VALUE must be 02H.

• If the interrupt type field in the iSBC 550 Start Command request
block for the iSBC 550 device is 3 or 4 -- where 3 is the
recommended value if the iSBC 550 device is to interrupt the host
device, and 0 is recommended otherwise -- the CLRINTYPE field in
the SFT should be 01H and the INTR$VALUE field should be 02H.
Moreover, the values for the INTR$LOCATION and
CLRININTR$LOCATION fields of the SFT should correspond to the
values for which the iSBC 550 device is jumpered.

B-21

I

I

I

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

• Memory on the host device must be mapped so that all of the
iRMX 86 free space is addressable by the iSBC 550 device.

R4CNFG:
DO;

$INCLUDE(:Fl:R4CNFG.LIT)
DECLARE DSD$ENTRY$TYPE LITERALLY 'STRUCTURE(

SYSTEM$PORT$NAME WORD,
DESTDEVID BYTE,
DEST$PORT$ID BYTE,
SRCDEVID BYTE,
RESERVED BYTE,
POOL$ID BYTE,
IDS$ID BYTE)';

DECLARE LPTROMENTRY$TYPE LITERALLY 'STRUCTURE(
SYSTEM$PORT$NAME WORD)';

DECLARE LPTRAMENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(3) BYTE)';

DECLARE DMROMENTRY$TYPE LITERALLY 'STRUCTURE(
RQD$OUT POINTER,
RQOUTSIZE BYTE,
RQEOUTSIZE BYTE,
RQD$IN POINTER,
RQINSIZE BYTE,
RQEINSIZE BYTE)';

DECLARE NO$SYSTEM$CHANNEL LITERALLY 'OFFFFH,
OOH,
OOH,

OFFFFH,
OOH,
OOH)';

DECLARE DMRAMENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(20) BYTE)';

DECLARE SFT$ENTRY$TYPE LITERALLY 'STRUCTURE(
OP$MODE BYTE,
INTR$TYPE BYTE,
INTR$LOCATION WORD,
INTR$VALUE WORD,
CLROUTTYPE BYTE,
CLROUTINTR$LOCATION WORD,
CLROUT I NTR$ VALUE WORD,
CLRINTYPE BYTE,
CLRININTR$LOCATION WORD,
CLRININTR$VALUE WORD)';

B-22

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

DECLARE NO$DEVICE
DECLARE SLAVE$DEVICE
DECLARE PEER$DEVICE

LITERALL Y 'OOH';
LITERALLY 'OIH';
LITERALLY '02H';

DECLARE NO$SYSTEM$SERVICE LITERALLY 'OOH,
OOH,

OOOOH
OOOOH,

OOH,
OOOOH,
OOOOH,

OOH,
OOOOH,
OOOOH' ;

DECLARE IDS$ENTRY$TYPE LITERALLY 'STRUCTURE(
OFFSET WORD,
PAGE WORD) , ;

DECLARE POOL$ENTRY$TYPE LITERALLY 'STRUCTURE(
ENTRY(2) BYTE)' ;

DECLARE BLOCK$ENTRY$TYPE LITERALLY 'STRUCTURE(
POOL$ID BYTE,
START$ADR SELECTOR,
LENGTH WORD) , ;

DECLARE MMX$DEVICES LITERALLY
DECLARE DEVOPORTS LITERALLY
DECLARE DEVOPORTONAME LITERALLY
DECLARE OUT$QUEUE$ADDRESS LITERALLY
DECLARE OUT$QUEUE$SIZE LITERALLY
DECLARE OUT$QUEUE$ENTRY$SIZE LITERALLY
DECLARE IN$QUEUE$ADDRESS LITERALLY
DECLARE IN$QUEUE$SIZE LITERALLY
DECLARE IN$QUEUE$ENTRY$SIZE LITERALLY
DECLARE DEVODEST$PORTS LITERALLY
DECLARE DEVIPORTINAME LITERALLY
DECLARE DEVIID LITERALLY
DECLARE DEVIPORTIID LITERALLY
DECLARE DEVOID LITERALLY
DECLARE DEVOPOOLOID LITERALLY
DECLARE IDSOID LITERALLY
DECLARE COMMUNICATE$WAIT$TIME LITERALLY

, 2 ' ;
'I ' ;
'OOOOH' ;
'20100H' ;
t 04H' ;
'04H' ;
'20200H' ;
'04H' ;
'04H' ;
, I ' ;
'OIOIH' ;
, I ' ;
, I ' ;
'0' ;
'0' ;
'0' ;
'OOOOH' ;

DECLARE RESPONSE$WAIT$TIME LITERALLY 'OIOOH';
DECLARE DEVIOP$MODE SLAVE$DEVICE;
DECLARE DEVIINTR$TYPE LITERALLY , 2 ' ;
DECLARE DEVIINTR$LOCATION LITERALLY 'OA4H' ;
DECLARE DEVIINTR$VALUE LITERALLY '02H' ;
DECLARE DEVICLROUTTYPE LITERALLY '0' ;
DECLARE DEVlCLROUTINTR$LOCATION LITERALLY '0' ;
DECLARE DEVICLROUTINTR$VALUE LITERALLY , 0' ;
DECLARE DEVICLRINTYPE LITERALLY , I ' ;
DECLARE DEVICLRININTR$LOCATION LITERALLY 'OA4H' ;
DECLARE DEVICLRININTR$VALUE LITERALLY '04H' ;

B-23

I

I
COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

DECLARE DEVOINT$LEVEL
DECLARE DEVOPOLLING$PERIOD
DECLARE MMX$INTERDEVICE$SEGMENTS
DECLARE DEVOIDSOOFFSET
DECLARE DEVOIDSOPAGE
DECLARE DEVOPOOLS
DECLARE DEVOBLOCKS
DECLARE DEVOPOOLOADDR
DECLARE DEVOPOOLOLENGTH

DECLARE CQDVCS BYTE PUBLIC DATA(
MMX$DEVICES) ;

LITERALLY '0048H';
LITERALLY '200';
LITERALLY 'OlH';
LITERALLY 'OOOOH';
LITERALLY 'OOOOH';
LITERALLY '1';
LITERALLY '1';
LITERALLY '2030H';
LITERALLY '0020H';

DECLARE DCM$RAM(MMX$DEVICES) DMRAMENTRY$TYPE PUBLIC;

DECLARE DCM$ROM(MMX$DEVICES) DMROMENTRY$TYPE PUBLIC DATA(
NO$SYSTEM$CHANNEL,
OUT$QUEUE$ADDRESS,

OUT$QUEUE$SIZE,
OUT$QUEUE$ENTRY$SIZE,
IN$QUEUE$ADDRESS,
IN$QUEUE$SIZE,
IN$QUEUE$ENTRY$SIZE);

DECLARE CQPRTS BYTE PUBLIC DATA(
DEVOPORTS);

DECLARE LPT$RAM(DEV$O$PORTS) LPT$RAM$ENTRY$TYPE PUBLIC;

DECLARE LPT$ROM(DEV$O$PORTS) LPT$ROM$ENTRY TYPE PUBLIC DATA(
DEVOPORTONAME);

DECLARE CQSKTS BYTE PUBLIC DATA(
DEVODEST$PORTS);

DECLARE DSDT(DEVODEST$PORTS) DSD$ENTRY$TYPE PUBLIC DATA(
DEVlPORTlNAME,
DEVlID,
DEVlPORTlID,
DEVOID,
0,
DEVOPOOLOID,
IDSOID);

DECLARE CQITWT WORD PUBLIC DATA(
COMMUNICATE$WAIT$TIME);

DECLARE CQMDLY WORD PUBLIC DATA(
RESPONSE$WAIT$TIME);

B-24

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

DECLARE SFT(MMX$DEVICES) SFT$ENTRY$TYPE PUBLIC DATA(
NO$SYSTEM$SERVICE,
DEVlOP$MODE,

DEVlINTR$TYPE,
DEV$l $INTR$LOCATION ,
DEVlINTR$VALUE,
DEVlCLROUTTYPE,
DEV$ 1 CLROUT$ INTR$ LOCATI ON ,
DEVlCLROUTINTR$VALUE,
DEV$l CLRIN$TYPE ,
DEVlCLRININTR$LOCATION,
DEVlCLRININTR$VALUE);

DECLARE CQSGLV WORD PUBLIC DATA(
DEVOINT$LEVEL);

DECLARE CQIDPD BYTE PUBLIC DATA(
DEVOPOLLING$PERIOD);

DECLARE CQIDSS BYTE PUBLIC DATA(
MMX$INTERDEVICE$SEGMENTS);

DECLARE IDST(MMX$INTERDEVICE$SEGMENTS) IDS$ENTRY$TYPE PUBLIC DATA(
DEVOIDSOOFFSET,
DEVOIDSOPAGE);

DECLARE CQPLHS BYTE PUBLIC DATA(
DEVOPOOLS);

DECLARE PLHTBL(DEVOPOOLS) POOL$ENTRY$TYPE PUBLIC;

DECLARE CQBLKS BYTE PUBLIC DATA(
DEVOBLOCKS);

DECLARE BLKTBL(DEVOBLOCKS) BLOCK$ENTRY$TYPE PUBLIC DATA(
DEVOPOOLOID,
DEVOPOOLOADDR,
DEVOPOOLOLENGTH);

LINKING AND LOCATING THE CONFIGURED iRMX 86 I/O SYSTEM

In order to link and locate the configured I/O System with the iSBC 550
device driver, you must make some modifications to the sample submit file
IOS.CSD, which is provided with the iRMX 86 Operating System for linking
and locating the I/O System. The modifications are the following:

1550.LIB, which contains the iSBC 550 device driver object code, must
be linked after IDEVCF.OBJ.

R4CINF.LIB, which is the MMX 86 compact interface library, gets linked
after IOS.LIB.

Here is a sample of IOS.CSD after it has been edited:

B-25

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

LINK AND LOCATE THE I/O SYSTEM

SUBMIT :fx:ios(date, loc adrH)

where:
date = the date
loc adr = address where the lOS will be located

File-Drivers

ASM86 :fl:itable.a86 DATE(%O) PRINT(:fl:itable.lst) &
WORKFILES(:fl:,:fl:) OBJECT(:f1:itable.obj)

Device-Drivers

ASM86 :fl:idevcf.a86 DATE(%O) PRINT(:fl:idevcf.lst) &
WORKFILES(:fl:,:fl:) OBJECT(:fl:idevcf.obj) . ,

LINK86 &
:fl:ios.lib(istart), &
:fl:itable.obj, &
:fl:idevcf.obj, &
:f1:i550.lib, &
:fl:ioopti.lib, &
:fl:ios.lib, &
:fl:r4cinf.lib, &
:fl:rpifc.lib, &
TO :fl:ios.lnk &
MAP PRINT(:fl:ios.mpl)

,
LOC86 &

:f1:ios.lnk TO :f1:ios &
MAP PRINT(:fl:ios.mp2) &
OBJECTCONTROLS(NOLINES,NOCOMMENTS,NOPUBLICS,NOSYMBOLS) &
SEGSIZE(stack(O» &
ORDER(classes(code, data» &
ADDRESSES(classes(code(0%1»

CONFIGURING THE iRMX 88 I/O SYSTEM FOR USE WITH iSBC 550 CONTROLLERS

Configuring the iRMX 88 I/O System for use with an iSBC 550 controller is
a three-stage process, which assumes that you have compiled your
application code and your MMX 88 configuration module. (A discussion of
the MMX 88 configuration module is at the end of this appendix.) In the
first stage, you carryon a dialogue with the iRMX 88 Interactive
Configuration Utility (the ICU). This stage produces several files,
including a SUBMIT file. In the second stage, you modify some of these
files, including the SUBMIT file. The third stage consists only of
executing the SUBMIT file. The result of the third stage is a
ready-to-test application system.

B-26

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

Responding to ICU Prompts

This section provides you with the answers, in the order in which they are
requested, to ICU questions that pertain to an application system that
communicates with an Ethernet network. The following list, which contains
those answers, makes sense only in the context of an ICU session. Keep it
handy while you are carrying on your ICU dialogue.

• Double buffering is not used.

• The named file driver is not used.

• RQ$FORMAT is not used.

• The physical file driver is used.

• Whole-sector I/O is not used.

• DQ$READ is used.

• DQ$WRITE is used.

• DQ$SEEK is not used.

• When prompted with "DEVICE TYPE
provide answers as follows:

For Level, specify 0

-***" , answer "CUSTOM" and then

For Interrupt Task Priority, specify O.

For Interrupt Task Stack Size, specify O.

For Data Size, use the default value of 256.

For Number of Units, specify 1.

For each of Device Initialization, Device Finish, Device
Start, Device Stop, and Device Interrupt, use the default
value.

• The prompt "ADDITIONAL DEVICE INFORMATION TYPE -***" marks the
beginning of a series of questions that the ICU uses to fill in a
device information table for the iSBC 550 device. The fields of
this table are defined earlier in this appendix under the heading
"Configuring an iRMX 86 I/O System for Use w,ith iSBC 550
Controllers". The questions in this series are asked in pairs,
one pair per field. First, you are asked for the data type of the
field, and then you are asked for the numerical value that is to
go into that field. A summary of the requested information is as
follows:

B-27

COMMUNICATION WITH AN .. iSBd~ 550 ETHERNET COMMUNICATIONS CONTROLLER

Data Type of Field Name of Field

WORD init start addr offset
WORD init start addr base
BYTE host device id
BYTE 550 device id
WORD RQ to 550 offset
WORD RQ to 550 base
WORD RQ from 550 offset
WORD RQ from 550 base
BYTE IDS base strt addr
BYTE IDS length
WORD 550 interrupt port
WORD 550 port name
WORD host port info
BYTE timeout
BYTE priority
BYTE 550 interrupt type

• Next, you are prompted for some procedure names that will go into
the unit information table for the iSBC 550 device. Proceed
according to:

Prompt Response

INIT 10 i550INIT
FINISH 10 i550FINISH
QUEUE 10 i550QUEUE
CANCEL 10 i550CANCEL

• When the ICU prompts you for timer data, specify the default
values.

• When the ICU prompts you for information about the Free Space
Manager, specify the default values and names. Later, you will
remove this information, because the Partitioned Memory Manager is
used in place of the Free Space Manager. (Note that you can't
convince the ICU that you don't need the FSM. It assumes that you
do need the FSM, because the I/O System is part of your system.)

• When the ICU prompts you for information about tasks and
exchanges, supply the information that is given under the heading
"Linking and Locating for MMX 88" in Chapter 7 of this manual.

This ends the ICU session and completes the first stage of the
configuration process. The result is a collection of files, some of which
you will modify in the second stage of configuration.

Modifying Files Produced by the ICU

In this, the second stage of the configuration process, you modify the
following files, where this appendix assumes that MYSUB is the name you
supplied to the ICU as the name of your SUBMIT file and configuration file:

B-28

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

• :Fx:DEVICE.A86, where DEVICE is the default name. This is the
file that describes the I/O devices that the I/O System will be
communicating with.

• : Fx:MYSUB.A86. This is the file that specifies which iRMX 88
modules are required by your application.

• :Fx:MYSUB.CSD. This is the SUBMIT file that links together all of
the modules that you have specified during and after your ICU
session, and then produces a located system, ready for testing.

Modifying the Device File. You must make the following changes to the
:Fx:DEVICE.A86 file:

• Insert the following lines immediately after the line that reads
"extrn radcancelio: near":

extrn i550INIT: near
extrn i550FINISH: near
extrn i550QUEUE: near
extrn i550CANCEL: near

• Substitute "0" for each of "defaultstart" and "defaultinterrupt".

• At the end of the file, remove the line "dd ***" •

Modifying the Configuration File. In order to remove the Free Space
Manager and all references to it, you must make the following changes:

• Remove all references to each of the following:

RQFSMSTACKSIZE
RQFSMPRIORITY

RQFMGR
RQFMGRTD
RQFMGRSTACK

RQFSAX
RQFSRX

RQRECLAIM
RQRECLAIMTD
RQRECLAIMSTACK

The only exception is that references to RQFSAX and RQFSRX should
not be deleted from the Initial Exchange Table (lET).

• Decrement by two the number of tasks in the Create Table RQCRTB.

Modifying the SUBMIT File. Before executing the :Fn:MYSUB.CSD SUBMIT
file, you must make the following changes to it:

B-29

COMMUNICATION WITH AN iSBC@ 550 ETHERNET COMMUNICATIONS CONTROLLER

• Add the line ":Fn:I88ios.LIB(isleep), &" to the first list of
modules that are to be linked together. If you are compiling your
PL/M-86 modules using the COMPACT size control, put this line
immediately after the line ":Fn:I88COM.LIB, &". If you are
compiling your PL/M-86 modules using the LARGE size control, put
this line immediately after the line ":Fn:I88LAR.LIB, &".

• If you are using the LARGE size control, add the line
":Fn:i5588L.LIB(i550II, i550FC, i550QI), &" immediately after the
line ":Fn:I88IOS.LIB, &" in the first list of modules that are to
be linked together.

• Add the following lines to the "no publics except" portion of the
second list of modules that are to be linked together:

II rqdeletetask, &
rqdeletesegment, &
rqdeleteregion, &

iosdataseg, &
rqcreatesegment, &
rqcreateregion, &
rqcreatetask, &
rqsendcontrol, &
rqreceivecontrol, &
rqsendmessage, &
rqsleep, &
iors enqueue, &
iors-dequeue, &
rqreceivemessage, &

psadd, &
gettaskparms, &"

• Add the Ethernet device driver library (either i5588L.LIB or
i5588C.LIB, depending upon whether your are using the LARGE or
COMPACT size control, respectively) to the last list of modules
that are to be linked together. The order of this list should be
as follows:

Configuration object module
Your application object modules
The link module produced by the second LINK86 command
The appropriate Ethernet device driver library
The MMX 88 configuration module
The appropriate MMX 88 libraries
The remaining libraries produced by the ICU

When this is done, you are ready to run your SUBMIT file :Fn:MYSUB.CSD.

A SAMPLE MMX 88 CONFIGURATION FILE FOR THE HOST DEVICE

This section contains a sample MMX 88 configuration file for the (host)
device that communicates with the iSBC 550 device. Note that this example
exhibits the following properties, which are required of every MMX 88
configuration:

B-30

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

• The depth (RQINSIZE in DCM$ROM) of the request queue, for
requests from the iSBC 550 device to the host device, must be 4.

• The system port name (SYSTEM$PORT$NAME in LPT$ROM) that the
iSBC 550 device uses to reference the system port on the host
device must be the same as that specified in the device
information table for the host device.

• The device id (DEST$PORT$ID in DSDT) for the iSBC 550 device must
not be zero. Port zero has special meaning to the iSBC 550 device
and cannot be used by MMX 88.

• In the SFT structure corresponding to the iSBC 550 device,
DEVICE$MODE must be SLAVE$DEVICE (=OIH), INTR$TYPE must be
IO$INTERRUPT (=03H), and INTR$VALUE must be 02H.

• If the interrupt type field in the iSBC 550 Start Command request
block for the iSBC 550 device is 3 or 4 -- where 3 is the
recommended value if the iSBC 550 device is to interrupt the host
device, and 0 is recommended otherwise -- the CLR$INTR$TYPE field
in the SFT should be 04H. Further, the values for the
INTR$LOCATION and CLR$LOCATION fields of the SFT should corrspond
to the values for which the iSBC 550 device is jumpered.

• Memory on the host device must be mapped so that all of the
iRMX 88 free space is addressable by the iSBC 550 device.

The following example of an iMMX 88 configuration file utilizes two files
(R3XMGR.LIT and R3CNFG.LIT) that are included with iMMX 88 and are not
listed here. This configuration applies whether the COMPACT or LARGE size
control is used to compile this configuration file.

R3CNFG:
DO;

$INCLUDE(:FI:R3XMGR.LIT)

$INCLUDE(:fI:R3CNFG.LIT)

/***

SAMPLE iMMX 88 CONFIGURATION

***/

DECLARE

MMX$DEVICES
DEVODEST$PORTS
DEVOPORTS

B-31

LITERALLY '2',
LITERALLY '1',
LITERALLY '1',

COMMUNICATION WITH ANiSBC@ 550 ETHERNET COMMUNICATIONS CONTROLLER

/* The following values are used for the DCM$ROM table */

OUTPUT$QUEUE$ADDRESS
OUTPUT$QUEUE$SIZE
OUTPUT$QUEUE$ENTRY$SIZE
INPUT$QUEUE$ADDRESS
INPUT$QUEUE$SIZE
INPUT$QUEUE$ENTRY$SIZE

LITERALLY '2FI50H',
LITERALLY '04H',
LI TERALL Y '04H',
LITERALLY '2F040H',
LITERALLY '04H',
LITERALLY '04H',

/* The following values are used in the DSDT and LPT$ROM tables */

DEVIPORT$NAME LITERALLY 'OI0IH' ,
DEVIDEV$ID LITERALLY , 1 ' ,
DEVIPORT$ID LITERALLY , 1 ' ,
DEVOPORT$NAME LITERALLY 'OOOOH' ,
DEVODEV$ID LITERALLY '0' ,
DEVOPOOL$ID LITERALLY '0' ,
DEVOIDS$ID LITERALLY '0' ,

/* The following are used for CQMDLY and CQITWT */

COMMUNICATE$WAIT$TIME
RESPONSE$WAIT$TIME

LITERALLY '400',
LITERALLY 'OI00H',

/* The following values are used in the SFT table */

DEVIMODE
DEVIINTR$TYPE
DEVIINTR$LOCATION
DEVIINTR$VALUE
DEVICLR$INTR$TYPE
DEVICLR$INTR$LOCATION
DEVICLR$INTR$VALUE

SLAVE$DEVICE,
IO$MAPPED$INTR,
LITERALLY 'OA4H',
LITERALLY '02H, ,
IO$WRITE$CLR,
LITERALLY'OA4H',
LI TERALLY '04H',

/* The following are used for CQSGLV and CQIDPD */

DEVOINT$LEVEL LITERALLY , 4' ,
DEVOPOLLING$PERIOD LITERALLY '200' ,

/* the following are used for CQIDSS and the IDST table */

MMX$INTER$DEVICE$SEGMENTS LITERALLY , 1 ' ,
DEVOIDSOOFFSET LITERALLY 'OOOOH' ,
DEVOIDSOBASE LITERALLY 'OOOOH' ,

/* The following fields are used for CQPLHS, CQBLKS, and the
PHLTBL and BLKTBL tables. /*

DEVOPOOLS
DEVOBLOCKS
DEVOPOOLOADDR
DEVOPOOLOLENGTH

B-32

LITERALLY '1',
LITERALLY '1',
LITERALLY '1000H',
LITERALLY 'IFOOH';

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

DECLARE CQDVCS BYTE PUBLIC DATA (MMX$DEVICES);

DECLARE CQSKTS BYTE PUBLIC DATA (DEVODEST$PORTS);

DECLARE CQPRTS BYTE PUBLIC DATA (DEVOPORTS);

DECLARE CQMDLY WORD PUBLIC DATA (RESPONSE$WAIT$TIME);

DECLARE CQITWT WORD PUBLIC DATA (COMMUNICATE$WAIT$TIME);

DECLARE DSDT (DEVODEST$PORTS) DSDT$TYPE PUBLIC
DATA (DEVlPORT$NAME,

DEVlDEV$ID,
DEVlPORT$ID,
DEVODEV$ID,
0,
DEVOPOOL$ID,
DEVOIDS$ID);

DECLARE LPT$ROM (DEV$O$PORTS) LPT$ROM$TYPE PUBLIC
DATA (DEVOPORT$NAME,

DEVOPOOL$ID);

DECLARE LPT$RAM (dev$O$ports) LPT$RAM$TYPE PUBLIC;

DECLARE DCM$ROM (MMX$DEVICES) DCMROMTYPE PUBLIC
DATA (0,

0,
0,
0,
0,
0,
OUTPUT$QUEUE$ADDRESS,
OUTPUT$QUEUE$SIZE,
OUTPUT$QUEUE$ENTRY$SIZE,
INPUT$QUEUE$ADDRESS,
INPUT$QUEUE$SIZE,
INPUT$QUEUE$ENTRY$SIZE);

DECLARE DCM$RAM (MMX$DEVICES) DCMRAMTYPE PUBLIC:

DECLARE CQSGLV BYTE PUBLIC DATA (DEVOINT$LEVEL);

DECLARE RQL4EX (28) BYTE EXTERNAL;

DECLARE CQLMEX POINTER PUBLIC DATA (@RQL4EX);

DECLARE CQIDPD WORD PUBLIC DATA (DEVOPOLLING$PERIOD);

B-33

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

DECLARE SFT (MMX$DEVICES) SFT$TYPE PUBLIC
DATA (0,

0,
0,
0,
0,
0,
0,

DEVlMODE,
DEVlINTR$TYPE,
DEVlINTR$LOC,
DEV$1 $INTR$VAL,
DEVlCLR$INTR$TYPE,
DEVlCLR$INTR$LOC,
DEVlCLR$INTR$VAL);

DECLARE CQIDSS BYTE PUBLIC DATA (MMX$INTER$DEVICE$SEGMENTS);

DECLARE IDST (MMX$INTER$DEVICE$SEGMENTS) IDS$TYPE PUBLIC
DATA (DEVOIDSOOFFSET,

DEVOIDSOBASE);

DECLARE CQPLHS BYTE PUBLIC DATA (DEVOPOOLS);

DECLARE PHLTBL (DEVOPOOLS) POOL$TABLE$TYPE PUBLIC;

DECLARE CQBLKS BYTE PUBLIC DATA (DEVOBLOCKS);

DECLARE BLKTBL (DEVOBLOCKS) BLOCK$TABLE$TYPE PUBLIC
DATA (DEVOPOOL$ID,

DEVOPOOL$ O$ADDR ,
DEVOPOOLOLENGTH);

END R3CNFG;

B-34

APPENDIX C. MMX 80 DIAGNOSTICS

Two MMX 80 diagnostics are provided for trouble-shooting during the
development process.

RQPBHX PORT DIAGNOSTIC

The RQPBHX diagnostic provides you with a method of determining whether
memory is being improperly sent for reclamation by application tasks.
The RQPBHX port is an iRMX 80 exchange dedicated to use by the
Partitioned Memory Manager (PMM).

If an application task attempts to use a PMM request of type
PMM$FREE$BLK$TYPE and specifies a memory$pool identifier for a pool not
previously created, the PMM sends the message block to the RQPBHX port.

In order to check whether a message block has been sent to the RQPBHX
port, use the statement

IF NOT(RQACPT(.RQPBHX) = 0) THEN •••

and put an error-handling block of code after "THEN".

MEM$INIT$STATUS DIAGNOSTIC

The mem$init$status diagnostic allows you to determine whether the PMM
successfully allocated its initial memory blocks, as defined in the
configuration table PHLTBL.

Use the following code outline as an example of using the mem$init$status
diagnostic:

$include(:fl:RlPMM.LIT)
$include(:fl:RlPMM.EXT)
$include(:fl:RlDIAG.EXT)

DECLARE
dummy
status
bad$block

ADDRESS;
BYTE;
BYTE;

C-l

MMX 80 DIAGNOSTICS

DO WHILE (status := mem$init$status(.bad$block» = 0;
dummy = RQWAIT(some$exchange$ptr, one$clock$tick);
END;

IF status = PMMnospace$type
THEN DO

/*At this point, the bad$block variable contains the index into
the PHLTBL table of the next initial block that would have been
processed if no error had occurred. The problem was that there
was not enough memory allocated to the Free Space Pool (pool 0)
to process the remaining initial block declaration(s).

Note that if an initial block declaration specifies a
non-existent memory pool, that pool is automatically created and
the initial memory block is allocated to it. However, to create
the new pool, a message block of at least 32 bytes must be
available in the Free Space Pool for PMM overhead. This is the
reason the PMMnospace$type error is returned.*/
END;

ELSE /* status = PMMoktype */ DO;

END;

Figure C-l. MEM$INIT$STATUS Diagnostic Example

C-2

APPENDIX D. iMMX~ 800 CONDITION CODES

When an application task calls an iMMX 800 procedure, status information
is returned to the calling task in the form of a condition code that
indicates the successful or unsuccessful completion of the service. In
the case of unsuccessful completion, the code indicates the nature of the
problem.

The condition code mnemonics and their hexadecimal values are listed in
Table D-l. For the mnemonics and values of other condition codes that
can be returned to an executing task, refer to the appropriate iRMX
operating system manuals.

Table D-l. iMMX~ 800 Condition Codes

MMX 80 and MMX 88 Condition Codes:

Message

SYSTEM$SERVICE$READY
SYSTEM$MESSAGE$DELIVERED
UNKNOWN$SYSTEM$PORT
SYSTEM$MESSAGE$COPY$DELIVERED
SYSTEM$PORT$ACTIVE
XFLAG$ERROR
INSUFFICIENT$MEMORY
SYSTEM$PORT$INACTIVE
SYSTEM$PORT$DEAD

MMX 86 Condition Codes:

Message

E$SYSTEM$MESSAGE$DELIVERED
E$UNKNOWN$SYSTEM$PORT
E$SYSTEM$MESSAGE$COPY$DELIVERED
E$SYSTEM$PORT$ACTIVE
E$ DE STINAT ION$ CHANNED$MEMORY
E$SYSTEM$PORT$INACTIVE
E$SYSTEM$PORT$DEAD
E$SOURCE$CHANNEL$MEMORY
E$UNDEFINED$POOL

D-l

Value

DOH
30H
31H
32H
33H
34H
35H
37H
39H

Value

130H
131H
132H
133H
135H
137H
139H
141H
143H

INDEX

Underscored entries are primary references.

8255 Programmable Peripheral Interface 7-2, 7-9

Activate Port service 2-5, 3-10, 4-10, 5-10
ACTIVATE$SYSTEM$PORT A-38
alias addressing 2-8, A-9
asynchronous tasks A-7

BLKTBL 7-3, 7-4 7-14 , --
buffer A-3

channel 2-2, 2-3, 6-2, 7-4, A-6
clearing interrupts 7-3, 7-9, 7-42
Command Ready Queue A-7
concurrency 8-2
condition code 3-1, 4-2, 5-1, D-1
configuration 6-1, 7-1, B-14
connection 2-4, 3-3~-4, 5-3, 6-4
CONVERT$LOCAL$ADR A-12
CONVERT$SYSTEM$ADR A-12
CQACTV 2-5, 3-10, 4-12, 5-10
CQBLKS 7-4
CQDACT 2-5, 3-14, 4-15, 5-14
CQDVCS 7-1, 7-4
CQFIND 2-4, 3-3, 4-4, 5-3
CQGDPA 6-4
CQIDPD 7-3, 7-13
CQIDSS 7-2, 7-13
CQITWT 7-2, 7-12
CQLMEX 7-3, 7-13
CQLOSE 2-4, 3-9, 4-11, 5-9
CQMDLY 7-2, 7-12
CQPLHS 7-14
CQPRTS 7-1, 7-6
CQSGLV 7-3 7-13 , --
CQSKTS 7-1, 7-7
CQXFER 2-4, 3-5, 4-6, 5-5
creating memory pools 6-6

data structures 7-4, 7-15
data types A-11
DCM$RAM 7-4
DCM$ROM 7-2, 7-4
Deactivate Port service 2-5, 3-14, 4-15, 5-14
DEACTIVATE$SYSTEM$PORT A-39
device 1-1, 7-2, 7-7, A-3
device id 7-3
diagnostics C-1
DSDT 7-1, 7-2, 7-7
dual-port memory 2-7, A-9
DYING$CHANNEL A-25

Index-1

INDEX (continued)

Ethernet 1-3, B-1
Ethernet tasks B-4
example 1-1, 3-14, 3-15, 4-16, 4-17, 5-15, 5-16, 7-15, B-17
exchange 2-1, 3-12, 4-14

Find Port service 2-4, 3-3, 4-4, 5-3
FIND$SYSTEM$PORT A-35
Free Space Manager 1-4, 6-1
Free Space Pool 2-7, 6-2

generating interrupts 7-42

hardware configuration 7-42

I/O port 7-2, 7-3, 7-9
I/O-mapped interrupt 7-2, 7-3, 7-9, 8-2
ICU 7-34, 7-36, B-26
IDS base address A-9
IDS pointer A-9
IDST 7-2, 7-4, 7-13, A-24
iMMX 800 1-1
IN$TASK A-7, A-10, A-30, A-33
INCLUDE files 7-33
INIT$REQUEST$QUEUE A-16
interdevice message transfer 2-2, 2-4, 3-5, 4-6, 5-5
interdevice segment 2-7, 7-2, 7-4, 7-13, A-8, A-9, A-24
interrupt exchange 7-3, 7-13
interrupt level 7-3, 7-13
interrupts 7-2, 7-8, 7-42, 8-2
iRMX 80 1-1, 3-1, 7-34
iRMX 86 1-1, 5-1, 7-38
iRMX 86 Basic I/O System B-6, B-14
iRMX 86 Extended I/O System B-9
iRMX 88 1-1, 4-1, 7-36
iRMX 88 I/O System B-ll, B-26
iSBC 544 board 1-3, 2-7, 7-42
iSBC 550 board 1-3, B-1
iSBC 550 request bloc~B-5
iSBC 569 board 1-3, 2-7, 7-42
iSBC 80/24 board 1-3, 7-42
iSBC 80/30 board 1-3, 2-7, 7-43
iSBC 86/05 board 1-3, 7-43
iSBC 86/12A board 1-3, 2-7, 7-43, B-1
iSBC 86/14 board 1-3, 2-7, 7-44
iSBC 86/30 board 1-3, 2-7, 7-44, B-1
iSBC 88/25 board 1-3, 7-44
iSBC 88/40 board 1-3, 2-7, 7-45
iSBC 88/45 board 1-3, 7-45
iSBC board 1-1

linking 7-34, 7-36, 7-38, B-25
local port 2-2, 3-10, 3-14, 4-12, 4-15~ 5-10, 5-14, 7-6
locating 7-34, 7-36, 7-38, B-25
LOCATION 4-1
LOCATION$OF 4-1

Index-2

INDEX (continued)

Lose Port service 2-5, 3-9, 4-11, 5-9
LPT$RAM 7-6
LPT$ROM 7-1, 7-2, 7-3, 7-4

mailbox 2-1, 5-12
MCBI 7-13
megabyte addressing 4-1
MEM$INIT$STATUS C-l
memory allocation 6-3
memory management 6-1, 7-14
memory pool 2-7, 6-1, 7-14, 7-39
memory pool creation- 6-6
memory-mapped interrupt 7-2, 7-3, 7-8, 8-2
memory reclamation 6-5
message copying 2-8, 8-1
message reception 2-4, 3-12, 4-14, 5-12
message reception protocol 2-5
message sender/receiver model 2-1
message structure 3-1, 4-2, 6-3
message transfer 2-2, 2-4, 3-5, 4-6, 5-5
message transfer mechanics 2-8, 8-1
message transfer protocol 2-2
MIP A-I
MIP pointer A-9
MMX 80 1-1, 3-1, 7-34
MMX 86 1-1, 5-1, 7-38, B-1
MMX 88 1-1, 4-1, 7-36, B-1
Multibus Interprocessor Protocol A-I
Multibus interrup~ 7-2, 7-9, 8-2
Multibus system bus 1-1, 8-1, B-1

Nucleus configuration 7-40

obtaining memory 6-1, 6-3
OUT$TASK A-7, A-10, A-25, A-28

Partitioned Memory Manager 2-7, 6-1, 7-14
peer device 3-6, 4-7, 5-6, 7-8, 7-10
performance 8-1
PL/M-80 3-1
PL/M-86 4-1, 5-1
PHLTBL 7-14
polling period 7-2, 7-3, 7-13, 8-2
pool 2-7, 6-1, 7-14, 7-39
pool id 6-1, 7-3
port 2-2, 7-2
Port Queue A-7
PTR$ADD A-II

QUEUE$GIVE$STATUS A-40

RECEIVE$BUFFER A-40
RECEIVE$COMMAND A-30
RECEIVE$RESPONSE A-32
reclaiming memory 6-5

Index-3

INDEX (continued)

RELEASE$GIVE$POINTER A-19
RELEASE$TAKE$POINTER A-21
request queue 2-3, 7-2, A-5, A-6, A-7
REQUEST$GIVE$POINTER A-18
REQUEST$TAKE$POINTER A-20
requesting memory 6-3
response queue A-7, A-25
response turnaround queue A-7
returning allocated memory 6-1, 6-5
root job configuration 7-38
RQ$CREATE$SEGMENT 6-1
RQ$DELETE$SEGMENT 6-1
RQ$RECEIVE$MESSAGE 2-4, 5-12
RQACPT 2-5,3-12, 4-14
RQCXCH 3-10, 4-11
RQFLMX 6-3
RQFSAX 6-2, 6-3
RQFSRX 6-2, 6-3
RQPBHX 6-5, C-1
RQWAIT 2-5, 3-12, 4-14

SERVE $ COMMAND $ QUEUE A-27
SERVE$TURNAROUND$QUEUE A-26
service 2-3
SFT 7-2, 7-8
slave device 4-7, 5-6, 7-8, 7-10
socket A-3, A-23
software configuration 7-1
software requirements 1-4
status constants A-35
system port 2-2, 3-3, 3-9, 4-4, 4-11, 5-3, 5-9, 7-7, A-3
system time unit 7-12

TERM$REQUEST$QUEUE A-16
TIME$WAIT A-13
Transfer Message service 2-4, 3-5, 4-6, 5-5
TRANSFER$BUFFER A-36
transparent message transfers 2-8, 6-2

virtual interface A-4, A-7, A-35

wake-up address 7-3, 7-8

Index-4

iMMX™800
MUL TIBUS® MESSAGE EXCHANGE REFERENCE MANUAL

144912·001

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your com ments wilJ help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

I 2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

I 3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

: 4. Did you have any difficulty understanding descriptions or wording? Where?

i 5~ Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ____________ ~-------------------------------------- DATE ______________ _

i TITLE --

COMPANY NAME/ DEPARTMENT _____________________________ _

i ADDRESS ___ __

I CITY ___________________________ _ STATE _______ __ ZIP CODE _________ ---'--__ _

(COUNTRY)

I Please check here if you require a written reply. D

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing I ntel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

OMO Technical Publications

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

intJ
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

