intel

iRMX™ 86 RELEASE 6
DOCUMENTATION CHANGE PACKAGE:
" UPDATE 3

C Order Number: 147540-001

iRMX™ 86 RELEASE 6
DOCUMENTATION CHANGE PACKAGE:
UPDATE 3

Order Number: 147540-001

Copyright 1985, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no respon-
sibility for any errors that may appear in this document. Intel Corporation makes no commitment to update nor
to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel
product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication
or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained herein.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BITBUS im iRMX Plug-A-Bubble
COMMputer iMDDX iSBC PROMPT
CREDIT iMMX iSBX Promware
Data Pipeline Insite iSDM QueX
Genius Intel iSXM QUEST

l} intel KEPROM Ripplemode
i intelBOS Library Manager RMX/80
12ICE Intelevision MCS RUPI
ICE inteligent Identifier Megachassis Seamless
ics inteligent Programming MICROMAINFRAME SLD
iDBP Intellec MULTIBUS SYSTEM 2000
iDIS Intellink MULTICHANNEL UPI
iLBX iOSP MULTIMODULE

iPDS OpenNET

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trade-
mark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Copyright 1985, Intel Corporation

iRMX™ 86 OPERATING SYSTEM RELEASE 6 CHANGE PACKAGE: UPDATE 3
147540-901

Purpose

The change pages in this package correct technical errors identified in the
current version of the iRMX™ 86 Release 6 documentation.

Scope
The following manuals are affected by this change package:

Introduction and Operator's Reference Manual (146194-¢@1)
Programmer's Reference Manual, Part I (146195-¢¢1)
Programmer's Reference Manual, Part 1I (146196-g@1)

iRMX™ 86 Installation and Configuration Guide (146197-@¢1)

iRMX™ 86 Update Change Package Description

The iRMX™ 86 OPERATING SYSTEM RELEASE 6 CHANGE PACKAGE: UPDATE 3 consists of a
series of corrected pages that replace the corresponding pages in your
documentation. A change package for iRMX™ 86 Release 6 documentation is
issued each quarter in conjunction with the iRMX™ 86 Release 6 Update

Package. In addition to the change pages issued for the current update, each
change package also contains an accumulation of the change pages from all
previous updates.

The change pages in this package are organized into sections according to the
update in which they were issued. All change pages for the current update are
in a section at the front of the package. Change pages from previous updates
are in succeeding sections.

Each update section begins with a blue cover and is subdivided into four
segments, one for each of the iIRMX™ 86 Release 6.8 documentation volumes.

Each of these volume segments is identified by a yellow, pink, green, or
orange cover sheet. Within each volume segment the change pages are organized
in the sequence in which they occur in the volume.

The Update Revision History pages—-located immediately behind the sheet you
are now reading--maintains a history of all changes distributed through the
iRMX™ 86 Release 6.¢ Updates. This page indicates the product enhancement or
the software problem report (SPR) that initiated each change. There is one
Update Revision History page for each of the four iRMX™ 86 documentation
volumes.

Installation Instructions

Change pages in the Update Package are accumulated from quarter to quarter.
The change pages for each successive update are separated in this package by a
blue cover page (similar to the sheet you are now reading). Within each
update section, yellow, pink, green, and orange cover sheets segregate the
change pages according to volume.

The change pages in this package are installed by removing a page from your
documentation and replacing it with the corresponding page from the change
package.

If this is the first iRMX™ 86 Release 6.¢ Update to be installed in your
documentation:

1. Immediately behind the change package cover sheet (the sheet you are
now reading) are four Update Revision History pages--one for each of
the four volumes of iRMX 86™ Operating System documentation. Install
each Update Revision History page in the front of the appropriate
volume.

2, Install all of the change pages in the package. Begin with the
change pages issued for Update Z. (The Update 2 change pages are
located in the bottom half of the package, behind the second blue
cover sheet.) After installing the Update 2 change package, install
the change pages for Update 3. (The Update 3 change pages are
located immediately behind the cheet you are now reading.) You must
install the Update 2 change package before installing the Update 3
change package. If you were to install Update 2 last, you would risk
replacing a current (Update 3) version of a page with an Update 2
version of the same page.

3. Fill out the Reader Comment Card--located at the bottom of the
package--and mail it to Intel Corporation.

If you have installed previous iRMX™ 86 Felease 6.8 Updates in your
documentation:

1. Immediately behind the change package cover sheet (the sheet you are
reading) are four Update Revision History pages--one for each of the
four volumes of iRMX 86™ Operating System documentation. In the
front of each of your volumes, replace the Update History Pages from
the previous update with the Update History Pages for Update 3.

2. Install only the change pages for Update 3. These change pages are
in the first section at the top of the package.

3. Discard the remainder of the change pages in the change package.
(These pages should already be in your documentaion if you installed
the previous update.)

4, Fill out the Reader Comment Card--located at the bottom of the
package--and mail it to Intel Corporation.

UPDATE REVISION HISTORY

Introduction and Operator's Reference Manual (146194-@g@1)

Manual Page Initiated By Distribution
oP 2-11/12 SPR{## 182943 Update 2 (12/84)
oP 3-15/16 SPR# 143257,193133
oP 3-83/86 SPR{## 1@29¢5
opP 3-97/108 SPR# 143155
OP 3-113/115 Addition of ZSCAN
DV 2-7/8 SPR## 163153
DV A-7/8 SPR# 1¢3151,1¢3152,
143154
DV Ind-1/3 SPR# 183149,1¢3148,
163147,103150
oP 3-7/8 SPR# 163345 Update 3 (3/85)
oP 3-81/82 SPR{## 193239
op A-9/1¢ SPR{# 1¢3387
DV iii/iv SPR{} 183353
DV 1-1/74 SPR{## 163354,16337¢
DV 2-45/46 SPR# 1¢3355
DV A-7/8 SPR{# 193252

IN=Introduction to iRMX™ 86,

OP=0Operator's Manual,

DV=Disk Verification

UPDATE REVISION HISTORY

Programmer's Reference Manual, Part I (146195-0¢1)

Manual Page Initiated By Distribution
NU 7-13/14 SPR# 103174 Update 2, (12/84)
NU 8-3/4 SPR# 1@2927

NU 12-131/132 SPR# 103173

NU 12-149/159 SPR# 143175

NU 12-153/154 SPR# 143051

BI 8-99/19¢ SPR# 182979

BI 8-1¢43/106 SPR# 1¢297¢

BI F-9/19 SPR# 103858

MI Ind 15/16 Addition of 188/48 Driver
MI Ind 17.1 Addition of 188/48 Driver
MI Ind 29/39 Addition of 188/48 Driver
NU 5-3/4 SPR# 1¢330¢ Update 3, (3/85)
NU 12-9/1¢ SPR# 13323

NU 12-21/722 SPR{} 183294

NU 12-37/49 SPR## 143385

NU 12-43/44 SPR## 193324

NU 12-59/60 SPR{## 183326

NU 12-81/82 SPR## 193328

NU 12-95/96 SPR{## 183384

NU 12-137/138 SPR# 13299

BI 8-11/14 SPR## 1¢3329,1¢3382

BI 8-15/16 SPR# 1¢3331

BI 8-29/3¢ SPR#} 183389

BI 8-87/88 SPR## 143383

BI 8-97/1¢0 SPR# 1¢3332, 103333, 183334
BI 8-1¢3/106 SPR# 103335, 143336, 183337
BI 8-1¢9/11¢@ SPR{## 193338

BI 8-127/128 SPR# 103339

BI 8-135/136 SPR{# 193340,183386

EI 7-7/8 SPR{## 103398

EI c-1/2 SPR{## 163352

EI Ind-3/4 SPR## 143348

NU=Nucleus, BI=BIOS, EI=EIOS

UPDATE REVISION HISTORY

Programmer's Reference Manual, Part II (146196-9@1)

Manual Page Initiated By Distribution

HI 8-45/48 SPR{#} 143171,1¢3172 Update 2, (12/84)
UDI 2-41/42 SPR{## 183859

UDI 2-53/54 SPRi} 143069

DD 6-3/6 SPRi} 183054

PT 3-7/8 SPR# 1¢3121

TH 3-1/72 SPR{## 1¢3121

BL 2-9/1¢ SPR## 1¢3@81

AL 2-11/14 SPR# 1¢3342,1¢3351 Update 3, (3/85)
AL 2-21/22 SPR# 183343

AL 2-29/39 SPR# 183344

HI 5-3/4 SPR## 1¢3212

HI B-9/1¢ SPR{## 1433¢4

up 2-5/8 SPR## 1¢332¢

uD 2-53/54 Fix Update 2 Error

DD Ind-3/4 SPR{## 13349, 183359

PT 6-1 SPR{} 143176

TH 2-1/2 SPR{} 143368

TH 3-1/2 SPR{# 103369

AL=Application Loader, HI=Human Interface, UD=UDI, DD=Device Drivers
PT=Programming Techniques, TH=Terminal Handler, DB=Debugger,
CA=Crash Analyzer, SD=System Debugger, BT=Bootstrap Loader

UPDATE REVISION HISTORY

iRMX™ 86 Installation and Configuration Guide (146197-¢g@l)
Manual Page Initiated By Distribution
I1G 6~-9/19 SPR# 102944 Update 2, (12/84)
IG 6-15/16 SPR{## 193050
IG 8-1/2 Addition of 188/48 Driver
16 1¢-5/12 SPR# 1¢3¢07¢,143211,183255
163085,1¢63169

1G D-3/6 SPR# 162959,182958
16 E-1 SPR## 102945
16 F-1/2 Addition of 188/48 Driver
IG Ind-1/2 Addition of 188/48 Driver
cG 2-15/16 Addition of 188/48 Driver
CG 4-1/2 Addition of 188/48 Driver
CcG 16-1/2 Addition of 188/48 Driver,

SPR## 142969
CcG 16-152.1/ Addition of 188/48 Driver

152.12

CG 15-7/1¢ SPR{# 103074
CG 18-3/4 Addition of 188/48 Driver
CG B-3/4 Addition of 188/48 Driver
CG B-11/14 Addition of 188/48 Driver
IG 6-15/18 SPR# 103272,1¢3372 Update 3, (3/85)
CG 16-1/2 Fix Update 2 Error
CG 19-33/34 SPR#} 1943363
CG XXv/xxviii Addition of 217 Driver,

Addition of 226 Driver
CG E-1/20 Addition of 217 Driver
CcG F-1/1¢ Addition of 226 Driver

IG=Installation, CG=Configuration, MI=Master Index

iRMX™ 86 Release 6.8 Change Package: Update 3
Change Pages for:

iRMX™ 86 Introduction and Operator's Reference Manual (146194-¢@1)

ATTACHDEVICE

ATTACHDEVICE

This command attaches a physical device to the Operating System and
associates a logical name with the device. The command catalogs the
logical name in the root object directory, making the 1logical name
accessible to all users. The format of the command is as follows:

|
I\
|

=

x 192

INPUT PARAMETERS

physical name Physical device name of the device to be attached
to the system. This name must be the name used in
one of the Basic I/0 System's Device Unit
Information Blocks (DUIB), as defined at system
configuration time (see Table 3-2).

AS Preposition; required for the command.
:logical name: A 1-1¢ character string that represents the l
logical name to be associated with the device.

Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons.

NAMED Specifies that the volume mounted on the device is
already formatted for NAMED files. Examples of
volumes that can contain named files are diskettes
or hard disk platters. If neither NAMED nor
PHYSICAL are specified, NAMED is the default. See
the FORMAT command in this chapter for a further
description of NAMED files.

PHYSICAL Specifies that the volume mounted on the logical
device is considered to be a single, large file.
Examples include line printers and terminals. See
the FORMAT command in this chapter for a further
description of PHYSICAL volumes.

REPLACE Operator 3-7 UPDATE 3, 3/85

ATTACHDEVICE

WORLD Specifies that user ID WORLD (65535 decimal) is the
owner of the device. This implies that any user can
detach the device. 1f you omit this parameter, your
user ID is listed as the owner of the device. 1In this
case, only you and the system manager can detach the
device.

DESCRIPTION

ATTACHDEVICE attaches a device to the system and catalogs a logical name
for it in the root job's object directory. The logical name is the means
by which all wusers cain access the device. Devices must have their
characteristics listed in the Basic I/0 System's Device Unit Information
Block (DUIB) at configuration time before they can be attached with the
ATTACHDEVICE command.

Table 3-2 and Table 3-3 list the physical device names normally used with
the Basic I/0 System. Your system might support a subset of these
devices or it might support devices not listed. If it supports the
devices listed, it might support them under different names. Therefore,
consult the person who configured your system to determine the correct
device names for your system.

One frequent use of the ATTACHDEVICE command is to attach a new device,
such as a new disk drive or a line printer, without having to reconfigure
portions of the Operating System. (See the DETACHDEVICE command in this
chapter for a description of how to detach a device from the system
without reconfiguring.)

Unless you have a user ID of WORLD (65535) or specify the WORLD
parameter, once you attach a device, only you and the system manager can
detach the device. This limitation prevents users from detaching devices
belonging to other users and prevents you from accidentally detaching
system volumes. However, if you have a user ID of WORLD or specify the
WORLD parameter, any device that you attach can be detached by any other
user. Refer to the DETACHDEVICE command for more information.

When the device attachment is completed, the ATTACHDEVICE -command
displays the following message:

<physical name>, attached as <logical name>, id = <user id>
where <physical name> and <logical name> are as specified in the

ATTACHDEVICE command and <user id> is your user ID (or WORLD, if you
specify the WORLD parameter).

REPLACE Operator 3-8 UPDATE 3, 3785

PATH

This command lists the pathname of a data file or directory.

@
It

inpath—list

outpath—list

X-941
INPUT PARAMETERS
inpath-list The list of files whose pathnames you want to know.
The default inpath-list file directory 1is the
current working directory (:$:).

ROOT Specifies that the pathname should start from the
root directory of whatever device holds the file
or directory.

OUTPUT PARAMETERS

specified output files. The specified output file
or files should not already exist. If they do,
PATH displays the following message:

TO Writes the pathnames of the input files to the I

<pathname>, already exists, OVERWRITE?

Enter ¥, y, R, or r if you wish to write over the
existing file. Enter an N (upper or lower case)
or a carriage return alone if you do not wish to
overwrite the existing file. 1In the latter case,
the PATH command will pass over the corresponding
input file, and will attempt to write the pathname
of the next input file to the corresponding output
file.

output file, PATH appends the remaining input file

If you specify multiple input files and a single I
pathnames to the end of the output file.

REPLACE Operator 3-81 UPDATE 3, 3/85

PATH

OVER Writes the input file pathname over (replaces) the
existing output files on a one-for-one basis,
regardless of file size. If an output file does
not already exist, the corresponding input file
pathname 1is written to a new file with the
corresponding output file name. If you specify
multiple input files and a single output file,
PATH appends the remaining input file pathnames to
the end of the output file.

AFTER Appends the input file pathname(s) to the current
data in the existing output file or files. If the
output file does not already exist, all listed
input file pathnemes will be concatenated into a
new file with the listed output file name.

outpath-list One or more pathnames for the output files.

DESCRIPTION

This command is useful for finding where you may be located within the
file structure. The command gives the following listing when it is
invoked with no input file listing:

—~—-PATH
:sd:user/world

REPLACE Operator 3-82 UPDATE 3, 3/85

CONDITION CODE SUMMARY

Table A-1. iRMX! 86 Condition Codes (continued)
Hex. Mnemonic Manuals Meaning
Value NBELH
Programmer Errors (continued)
80@04H | E$PARAM * X X % % A parameter which is neither a token
nor an offset has an invalid value.
8¢@5H | EBADCALL x X The I/0 System code has been damaged,
probably due to a bug in an
application task. Recovery 1is not
possible.
80@6H E$ARRAYS$- * Hardware or software has detected an
BOUNDS array overflow.
8037H | ENDP- * An 8¢87 Numeric Processor Extension
STATUS error has been detected; Operating
System extensions can return the
status of the 8@87 to the exception
handler.
8¢@8H | E$ILLEGALS$- |* The iAPX 186 or 286 processor tried
OPCODE to execute an invalid instruction.
(Software interrupt 6)
8@@9H | E$EMULATORS- |* The iAPX 186 or 286 processor tried
TRAP to execute an ESC instruction with
the "emulator" bit set in the
relocation register (iAPX 186) or the
machine status word (iAPX 286).
80PAH | E$INTERRUPT$-|* An iAPX 286 LIDT instruction changed
TABLE$LIMIT the interrupt table limit to a value
between 2¢H and 42H.
8¢0@BH | E$CPUXFER$- |* For an iAPX 286 processor, the
DATA$SLIMIT processor extension data transfer
exceeded the offset of @FFFFH in a
segment.
80GCH | E$SEGSWRAPS-- |* For an iAPX 286 processor, either a
AROUND word operation attempted a segment
wraparound at offset @FFFFH; or a
PUSH, CALL, or INT instruction

attempted to execute while SP=l.

N Nucleus Reference Manual
B Basic I/0 System Ref Manual
Extended I/0 Sys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

REPLACE

Operator A-9

UPDATE 3, 3/85

CONDITION CODE SUMMARY

Table A-1. iRMX!| 86 Condition Codes (continued)
Hex. Mnemonic Manuals Meaning
Value NBELH
Programmer Errors (continued)
8017H E$CHECK$EX- | * A Pascal task has exceeded the bounds
CEPTION of a CASE statement.
8@21H E$NOUSER * %X % No default user.
8@22H E$NOPREFIX * %X % No default prefix.
8@40H ENOTLOGS- *x % Specified object is not a device
NAME connection or file connection.
8@41H E$NOTS$- * A token parameter referred to an
DEVICE existing object that is not, but
should be, a device connection.
8042H ENOTCON- * A token parameter referred to an
NECTION existing object that is not, but
should be, a file connection.
8@6@gH EJOBPARAM * % The maximum job-size specified is
less than the minimum job-size.
8@8@H E$PARSES$- * There is an error in the internal
TABLES parse tables.
8¢81H E$JOBS$- * An internal Human Interface table was
TABLES overwritten, causing it to contain an
invalid value.
8@85H E$ERRORS$- * The command invoked by C$SEND$COMMAND
OUTPUT includes a call to C$SEND$EO$RESPONSE,

but the command connection does not
permit C$SEND$EO$RESPONSE calls.

N Nucleus Reference Manual
B Basic I/0 System Ref Manual
E Extended I/0 Sys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

REPLACE

Operator A-1¢

UPDATE 3, 3/85

PREFACE

This manual documents the Disk Verification Utility, a software tool that
runs as a Human Interface command, verifying and modifying the data
structures of iRMX 86 named and physical volumes. The manual describes
the utility invocation and contains detailed descriptions of all utility
commands. Also, because users must be familiar with the structure of
iRMX 86 volumes to wuse the Disk Verification Utility features
intelligently, the manual contains an appendix that describes the
structure of iRMX 86 named volumes.

READER LEVEL

This manual is intended for system programmers who have had experience in
examining actual volume information. It does not attempt to teach the
user the proper procedures for examining and editing volume information.

NOTATIONAL CONVENTIONS

This manual uses the following conventions to illustrate syntax.

UPPERCASE Uppercase information must be entered exactly as
shown. You can, however, enter this information in
uppercase or lowercase.

lowercase Lowercase fields contain variable information. You
must enter the appropriate value or symbol for
variable fields.

underscore In examples of dialog at the terminal, user input is
underscored to distinguish it from system output.

<variable> Whenever an error message or the output resulting
from a DISKVERIFY command contains a variable part,
that variable part is enclosed in angle brackets < »>.

Also, this manual uses the "railroad track" schematic to illustrate the
syntax of the disk verification commands. This syntax consists of what
looks like an aerial view of a model railroad setup, with syntactic
elements scattered along the track. To interpret the command syntax, you
start at the left side of the schematic, follow the track through all the
syntactic elements you desire (sharp turns and backing up are not
allowed), and exit at the right side of the schematic. The syntactic
elements that you encounter, separated by spaces, comprise a valid
command. For example, a command that consists of a command name and two
optional parameters would have the following schematic representation:

REPLACE Disk Verify iii UPDATE 3, 3/85

PREFACE (continued)

py f

COMMAND > >

x-285

You could enter this command in any of the following forms:

COMMAND

COMMAND paraml
COMMAND param2
COMMAND paraml param2

The arrows indicate the possible flow through the tracks; they are
omitted in the remainder of the manual.

REPLACE Disk Verify iv UPDATE 3, 3/85

CHAPTER 1
INVOKING THE DISK VERIFICATION UTILITY

In the process of using an iRMX 86 application system, you may have
occasion to store data on secondary storage devices, sometimes large
amounts of data. Due to the nature of secondary storage devices,
unforseen circumstances such as power irregularities or accidental reset
may destroy information on these devices, causing them to be inaccessible
to your iRMX 86 system. In some cases, the loss of only a small amount
of data can render an entire volume, such as a disk, useless.

In such cases, it is desirable to have a mechanism to examine and modify
the damaged volume. This mechanism would allow you to determine how much
of the information on the volume was damaged. It would also allow you to
recreate file structures on the damaged volume so that you could salvage
some of the valid data. The iRMX 86 disk verification utility is a tool
that allows you to perform these functions.

The disk verification utility verifies the data structures of iRMX 86
physical and named volumes. It can also be used to reconstruct the free
fnodes map, the volume free space map, and the bad blocks map of the
volume and perform absolute editing.

You can use the disk verification utility in one of two ways:

o As a single command which verifies the structures of a volume and
returns control to the Human Interface.

o As an interactive program which allows you to check and modify
information on the volume by entering individual disk
verification commands.

To take full advantage of the capabilities of the disk verification
utility, you must be familiar with the structure of iRMX 86 named
volumes. Appendix A contains detailed information about the volume
structure. If you are unfamiliar with the iRMX 86 volume structure, you
should avoid using the individual disk verification commands. When used
carelessly, these commands can make your volumes unusable.

However, even if you know nothing about iRMX 86 volume structures, you

can still use the utility as a single command to verify that the data
structures on an iRMX 86 volume are valid.

REPLACE Disk Verify 1-1 UPDATE 3,

3/85

INVOCATTION

The format of the Human Interfaceé command used to invoke the disk

INVOKING THE DISK VERIFICATION UTILITY

verification utility is as follows:

:logicalname:

where:

:logical-name:

TO

OVER

AFTER

outpath

REPLACE

Logical name of +the secondary storage device
containing the volume.

Copies the output from the disk verification
utility to the specified file. 1If no preposition
is specified, TO :C0: is the default.

Copies the output from the disk verification
utility over the specified file.

Appends the output from the disk verification
utility to the end of the specified file.

Pathname of the file to receive the output from the
disk verification wutility. If you omit this
parameter and the TO/OVER/AFTER preposition, the
utility copies the output to the console screen (TO
:C0:). You cannot direct the output to a file on
the volume being verified. If you attempt this,
the utility returns an E$NOT_CONNECTION error
message.

Disk Verify 1-2 UPDATE 3,

— DISK r
‘{‘ a
= L@J
Q>
| (@AMEDDA
X-939

3/85

DISK

VERIFY or V

NAMED1 or N1

NAMED or N

ALL

NAMED2 or N2
REPLACE

INVOKING THE DISK VERIFICATION UTILITY

Displays the attributes of the volume being verified.

If you specify this parameter, the utility performs
the disk function and returns control to you at the
Human Interface level. You can then enter any Human
Interface command provided that the device verified
is not the system device. Refer to the description
of the DISK command in Chapter 2 for more

information. Any parameter after this one 1is
ignored.
Performs a verification of the volume. This

verification function and the associated options are
described in detail in the "VERIFY Command" section
of Chapter 2. If you specify this parameter and
omit the options, the utility performs the NAMED
verification.

If you specify this parameter, the utility performs
the verification function and returns control to you
at the Human Interface level. You can then enter
any Human Interface command if the device is not the
system device (:sd:).

If you omit this parameter and the DISK parameter,
the wutility displays a header message and the
utility prompt (*). You can then enter any of the
disk verification commands listed in Chapter 2.

VERIFY option that applies to named volumes only.
This option checks the fnodes of the volume to
ensure that they match the directories in terms of
file type and file heirarchy. This option also
checks the information in each fnode to ensure that
it is consistent. Refer to the description of the
VERIFY command in Chapter 2 for more information.

VERIFY option that performs both the NAMED1 and
NAMED2 verification functions on a named volume. If
you omit the VERIFY option, NAMED is the default
option.

VERIFY option that applies to both named and

physical volumes. For named volumes, this option
performs both the NAMED and PHYSICAL verification
functions. For physical volumes, this option

performs the PHYSICAL verification function.

VERIFY option that applies to named volumes only.
This option checks the allocation of fnodes on the
volume, checks the allocation of space on the
volume, and verifies that the fnodes point to the

correct locations on the volume. Refer to the
description of the VERIFY command in Chapter 2 for
more information.

Disk Verify 1-3 UPDATE 3,

3/85

INVOKING THE DISK VERIFICATION UTILITY

PHYSICAL VERIFY option that applies to both named and
physical volumes. This option reads all blocks on
the volume and checks for I/0 errors.

LIST VERIFY option that you can use with those VERIFY
parameters that, either explicitly or implicitly,
specify the NAMEDl1 parameter. When you use this
option, the file information generated by VERIFY is
displayed for every file on the volume, even if the
file contains no errors. Refer to the description
of the VERIFY command in Chapter 2 for more
information.

OUTPUT

When you enter the DISKVERIFY command, the utility responds by displaying
the following line:

iRMX 86 DISK VERIFY UTILITY, Vx.x
Copyright <year> Intel Corporation

where Vx.x is the version number of the utility. If you specify the
VERIFY or V parameter in the DISKVERIFY command, the utility performs a
verification of the volume and copies the verification information to the
console (or to the file specified by the outpath parameter). The
verification information is the same as that produced by the VERIFY
utility command. Refer to the description of the VERIFY command in
Chapter 2 for a description of the verification output. After generating
the verification output, the wutility returns control to the Human
Interface, which prompts you for more Human Interface commands. The
following is an example of such a DISKVERIFY command:

~DISKVERIFY :Fl: VERIFY NAMED2
iRMX 86 DISK VERIFY UTILITY , Vx.x
Copyright <year> Intel Corporation

DEVICE NAME = wfdg : DEVICE SIZE = @@@3E90@ : BLOCK SIZE = (@8¢

'NAMED2' VERIFICATION
BIT MAPS O.K.

However, if you omit the VERIFY (or V) parameter from the DISKVERIFY
command, the utility does not return control to the Human Interface.
Instead, it issues an asterisk (*) as a prompt and waits for you to enter
individual DISKVERIFY commands. The following is an example of such a
DISKVERIFY command:

-DISKVERIFY :F1:

iRMX 86 DISK VERIFY UTILITY , Vx.x
Copyright <year> Intel Corporation
%

REPLACE Disk Verify 1-4 UPDATE 3, 3/85

SUBSTITUTEWORD

EXAMPLE (continued)

*SUBSTITUTEWORD<cCI>

g0p3: APBY - @@@gd<cr>
poB2: 8478 - <cr>
@@g4: ES11 - <cr>
#@P6: FFFF — 31ll<cr>
#@@8: FFFF ~ .<cr>

*SUBSTITUTEWORD 35<cr>
#0935: 00P8 - E6FF<cr>

@037: @3¢ — E6AB<cr>
#039: 0296 — .<cr>

*

REPLACE Disk Verify 2-45 UPDATE 3, 3/85

VERIFY

VERIFY COMMAND

This command checks the structures on the volume to determine whether the
volume is properly formatted. You can abort this command by typing a
CONTROL-C (press the CONTROL key, and while holding it down, press the C
key). The format of the VERIFY command is:

) r

(o)

Y

-

b 00000

X-940

éI%

INPUT PARAMETERS

NAMED1 or N1 Checks named volumes to ensure that the information
recorded in the fnodes is consistent and matches
the information obtained from the directories
themselves. VERIFY performs the following
operations during a NAMED1 verification:

® Checks fnode numbers in the directories to see
if they correspond to allocated fnodes.

@ Checks the parent fnode numbers recorded in the
fnodes to see if they match with the information
recorded in the directories.

® Checks the fnodes against the files to determine
if the fnodes specify the proper file type.

® Checks the POINTER(n) structures of long files
to see if the indirect blocks accurately reflect
the number of blocks used by the file.

® Checks each fnode to see if the TOTAL SIZE,
TOTAL BLKS, and THIS SIZE fields are consistent.

® Checks the bad blocks file to see if the blocks

in the file correspond to the blocks marked as
"bad" on the volume.

REPLACE Disk Verify 2-46 UPDATE 3, 3/85

STRUCTURE OF iRMX! 86 NAMED VOLUMES

If the formatting program is unable to provide this
information, it places an ASCII space in this field.

The next two bytes contain a two-digit ASCII
sequence number which is incremented by the
formatting program each time the formatting
program changes in a way that affects the volume
format. The Release 4 FORMAT Human Interface
command places the characters "@@g" in this field.

The right-most three bytes of the field contain
a three-digit ASCII number specifying the
version of the Basic I/0 System that was used in
formatting the volume (for example, the
characters "¢3¢" would indicate version 3.4).
If the formatting program is unable to obtain
this information, it places ASCII spaces in this
field.

DEVICE$SPECIAL(8) Reserved for special device-specific information.
When no device-specific information exists, this

field must contain zeros. If the device is a

Winchester disk with an iSBC 215 controller or if

the device is a disk with an iSBC 224 controller,
the iRMX 86 Operating System imposes a structure on
this field and supplies the following information:

SPECIAL STRUCTURE (
CYLINDERS WORD,
FIXED BYTE,
REMOVABLE BYTE,
SECTORS BYTE,
SECTOR_SIZE WORD,
ALTERNATES BYTE) ;
where:
CYLINDERS Total number of cylinders on the
drive.
FIXED Number of heads on the fixed

disk or Winchester disk.

REMOVABLE Number of heads on the removable
disk cartridge.

SECTORS Number of sectors in a track.
SECTOR_SIZE Sector size, in bytes.

ALTERNATES Number of alternate cylinders.

The remainder of the Volume Label (bytes 448 through 511) is reserved and

must be set to zero.

REPLACE

Disk Verify A-7 UPDATE 3, 3/85

STRUCTURE OF iRMX! 86 NAMED VOLUMES

INITIAL FILES

Any mechanism that formats iRMX 86 named volumes must place seven files
on the volume during the format process. These seven files are the fnode
file, the volume label file, the volume free space map file, the free
fnodes map file, the bad blocks file, the root directory, and the space
accounting file. The first of these files, the fnode file, contains
information about all of the files on the volume. The general structure
of the fnode file is discussed first. Then all of the files are
discussed in terms of their fnode entries and their functions.

FNODE FILE

A data structure called a file descriptor node (or fnode) describes each
file in a named file volume. All the fnodes for the entire volume are
grouped together in a file called the fnode file. When the I/0 System
accesses a file on a named volume, it examines the iRMX 86 Volume Label
(described in the previous section) to determine the location of the
fnode file, and then examines the appropriate fnode to determine the
actual location of the file.

When a volume is formatted, the fnode file contains seven allocated
fnodes and any number of un-allocated fnodes. The original number of
un-allocated fnodes depends on the FILES parameter of the FORMAT
command. These allocated fnodes represent the fnode file, the volume
label file, the volume free space map file, the free fnodes map file, the
bad blocks file, the root directory, and the space accounting file.
Later sections of this chapter describe these files. The size of the
fnode file is determined by the number of fnodes that it contains. The
number of fnodes in the fnode file also determines the number of files
that can be created on the volume. The number of files is set when you
format the storage medium.

The structure of an individual fnode in a named file volume is as follows:

DECLARE
FNODE STRUCTURE(
FLAGS WORD,
TYPE BYTE,
GRAN BYTE,
OWNER WORD,
CR$TIME DWORD,
ACCESS$TIME DWORD,
MOD$TIME DWORD,
TOTAL$SIZE DWORD,
TOTAL$BLKS DWORD,
POINTR(4%) BYTE,
THIS$SIZE DWORD,
RESERVED$A WORD,
RESERVED$B WORD,
ID$COUNT WORD,
ACC(9) BYTE,
PARENT WORD,
AUX(*) BYTE) ;

REPLACE Disk Verify A-8 UPDATE 3, 3/85

iRMX™ 86 Release 6.8 Change Package: Update 3
Change Pages for:

iRMX™ 86 Programmer's Reference Manual, Part I (146195-@@1)

MEMORY MANAGEMENT

MOVEMENT OF MEMORY BETIWEEN JOBS

When a task tries to create a segment (or an object of any other type),
and the unallocated part of its job's pool is not sufficient to satisfy
the request, the Nucleus tries to borrow more memory from the job's
parent (and then, if necessary, from its parent's parent, and so on).
Such borrowing increases the pool size of the borrowing job and is thus
restricted by the pool maximum attribute of the borrowing job.

When a job is deleted, the memory in its pool becomes unallocated, and
access to it is given back to the parent job. The smallest contiguous
piece of memory that a job may borrow from its parent is a configuration
parameter. The subject of configuration is covered in the iRMX 86
CONFIGURATION GUIDE.

Observe that, if a job has equal pool minimum and pool maximum
attributes, then its pool is fixed al that common value. This means
that, once it has this amount, the job may not borrow memory from its
parent.

MEMORY ALLOCATION

The memory pool of a job consists of two classes of memory: allocated
and unallocated. Memory in a job is unallocated unless it has been
requested, either explicitly or implicitly, by tasks in the job or unless
it is on loan to a child job. A task's request for memory is explicit
when it calls the CREATE$SEGMENT system call. A request is implicit when
the task attempts to create any type of object other than a segment.

The Nucleus borrows small amounts of memory from a job's pool each time a
task in that job creates an object. This memory is needed for bookkeeping
purposes. When the object is deleted, the borrowed memory is returned to
the pool. Appendix B lists these memory requirements.

When a task no longer needs a segment, it can return the segment to the

unallocated part of the job's pool by using the DELETE$SEGMENT system
call. Figure 5-2 shows how memory "moves".

REPLACE Nucleus 5-3 UPDATE 3,

3/85

MEMORY MANAGEMENT

(PARENT JOB'S POOL

CREATES- \ DELETES$JOB CREATES- ADELETES-A DELETESSEGMENT
Jos SEGMENT JoB (BORROWING)

(BORROWING)

B
Y CREATESSEGMENT Y
(NORMAL)
UNALLOCATED ALLOCATED
MEMORY DELETESSEGMENT MEMORY

CHILD JOB'S POOL

x-145

Figure 5-2. Memory Movement Diagram

SYSTEM CALLS FOR SEGMENTS

The following system calls manipulate segments:

REPLACE

CREATE$SEGMENT ——- creates a segment and returns a token for it.
DELETE$SEGMENT —-~ returns a segment to the pool from which it
was allocated.

GET$SIZE ——- returns the size, in bytes, of a segment.
SET$POOL$SMIN --—- enables a task to change the pool minimum

attribute of its job's pool.

GET$POOLS$ATTRIB --- returns the following memory pool attributes
of the calling task's job: pocl minimum, pool maximum, initial
size, number of allocated paragraphs, and number of available
paragraphs.

Nucleus 5-4 UPDATE 3,

3/85

CONDITION CODES
E$0K

E$BUSY

E$CONTEXT

E$EXIST

ENOTCONFIGURED

E$TYPE

REPLACE

ACCEPT$SCONTROL

No exceptional conditions.

Another task currently has access to the protected
data.

The calling task currently has access to the region
in question.

The region parameter is not a token for an existing
object.

This system call is not part of the present
configuration.

The region parameter is a token for an object that
is not a region.

Nucleus 12-9 UPDATE 3, 3/85

ALTERSCOMPOSITE

ALTER$COMPOSITE

The ALTER$COMPOSITE system call replaces components of composite objects.

CAUTION

Composite objects require the creation
of extension objects. Jobs that create
extension objects cannot be deleted
until all the extension objects are
deleted. Therefore you should avoid
creating composite objects in Human
Interface applications. If a Human
Interface application creates extension
objects, the application cannot be
deleted asynchronously (via a CTRL/c
entered at a terminal).

CALL RQ$ALTER$COMPOSITE(extension, composite, component$index,
replacing$obj, exceptdptr);

INPUT PARAMETERS

extension A TOKEN for the extension type object corresponding
to the composite ohbject being altered.

composite A TOKEN for the composite object being altered.
componentfindex A WORD whose value specifies the location (starting
at 1) in the component list of the component to be

replaced.

replacing$obj A TOKEN for the replacement component object or
zero, which represents no object.

OUTPUT PARAMETER
exceptiptr A POINTER to a WORD to which the iRMX 86 Operating

System will return the condition code generated by
this system call.

REPLACE Nucleus 12-1¢ UPDATE 3, 3/85

CREATE$JOB

max$tasks A WORD that specifies the maximum number of tasks
that can exist simultaneously in the new job.

e If not @FFFFH, it contains the maximum number of
tasks that can exist simultaneously in the new
job.

e If OFFFFH, it indicates that there is no limit
to the number of tasks that tasks in the new job
can create.

® It cannot be zero. A value of @H will produce I
the E$LIMIT exception.

max$priority A BYTE that sets an upper limit on the priority of
the tasks created in the new job.

® If not zero, it contains the maximum allowable
priority of tasks in the new job. If
max$priority exceeds the maximum priority of the
parent job, an E$LIMIT error occurs.

® If zero, it indicates that the new job is to
inherit the maximum priority attribute of its
parent job.

except$handler A POINTER to a structure of the following form:

STRUCTURE(
EXCEPTION$HANDLER$PTR POINTER,
EXCEPTION$MODE BYTE);

If exception$handler$ptr is not zero, then it is a
POINTER to the first instruction of the new job's
own exception handler. If exceptionf$handler$ptr is
zero, the new job's exception handler is the system
default exception handler. In both cases, the
exception handler for the new task becomes the
default exception handler for the job. The
exception$mode indicates when control is to be
passed to the exception handler. It is encoded as

follows:
When Control Passes
Value To_Exception Handler
@ Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

REPLACE : Nucleus 12-21 UPDATE 3, 3/85

CREATESJOB

job$flags

task$priority

start$address

data$seg

REPLACE

A WORD containing information that the Nucleus
needs to create and maintain the job. The bits
(where bit 15 is the high-order bit) have the
following meanings:

bit meaning
15-2 reserved.

1 If @, then whenever a task in the new job
or any of its descendent jobs makes a
Nucleus system call, the WNucleus will
check the parameters for validity.

If 1, the Nucleus will not check the
parameters of Nucleus system calls made
by tasks in the new job. However, if any
ancestor of the new job has been created
with this bit set to @, there will be
parameter checking for the new job.

@ reserved.

A BYTE that controls the priority of the new job's
initial task.

® If not zero, it contains the priority of the new
job's initial task. If the task$priority
parameter is greater (numerically smaller) than
the new job's maximum priority attribute, an
E$PARAM error occurs.

® If zero, it indicates that the new job's initial
task is to have a priority equal to the new
job's maximum priority attribute.

A POINTER to the first instruction of the new job's
initial task (the task created with the job).

A WORD or SELECTOR that specifies which data
segment the new job's initial task is to use.

® If not zero, it contains the base address of the
data segment of the new job's initial task.

® If zero, it indicates that the new job's initial
task assigns its own data segment. Refer to the
iRMX 86 CONFIGURATION GUIDE for more information
about data segment allocation.

Nucleus 12-22 UPDATE 3, 3/85

CREATE$SEMAPHORE

CONDITION CODES

E$0K No exceptional conditions.

ESLIMIT The calling task's job has already reached its
object limit.

E$MEM The memory available to the calling task's job is
not sufficient to create a semaphore.

ENOTCON- This system call is not part of the present

FIGURED configuration.
E$PARAM At least one of the following is true:

® The initial$value parameter is larger than the
maximum$value parameter.

¢ The maximum$value parameter is @.

REPLACE Nucleus 12-37 UPDATE 3, 3/85

CREATE$TASK

CREATE$TASK creates a task.

task = RQ$CREATE$TASK (priority, start$address, dataf$seg, stack$ptr,

stack$size, task$flags, except$ptr);

INPUT PARAMETERS

priority

start$address

data$seg

stack$ptr

REPLACE

A

A

BYTE that specifies the priority of the new task.

If not zero, it contains the priority of the new
task. The priority parameter must not exceed
the maximum allowable priority of the calling
task’'s job. If it does, an E$PARAM error occurs.

If zero, it indicates that the new task’'s
priority is to equal the maximum allowable
priority of the calling task's job.
POINTER to the first instruction of the new task.

WORD or SELECTOR that specifies the new task's

data segment.

A

If not zero, the WORD contains the base address
of the new task's data segment.

If zero, the WORD indicates that the new task
assigns its own data segment. Refer to the iRMX
86 CONFIGURATION GUIDE for further information
on data segment allocation.

POINTER that specifies the location of the stack

for the new task.

If the base portion is not zero, the Nucleus
uses the sum of the offset portion and the
stacksize parameter (declared during the call to
CREATE$TASK) as the value of the SP register
(the stackpointer).

If the base portion is zero, the Nucleus
allocates a stack to the new task. The length
of the stack is equal to the value of the
stack$size parameter.

Nucleus 12-38 UPDATE 3,

3/85

CREATESTASK

stack$size A WORD containing the size, in bytes, of the new
task's stack segment. The stack size must be at
least 16 DbDytes. The Nucleus increases specified
values that are not multiples of 16 up to the next
higher multiple of 16.

The stack size should be at least 3¢@ bytes if the
new task is going to make Nucleus system calls.
Refer to the iRMX 86 PROGRAMMING TECHNIQUES manual
for further information on assigning stack sizes.

If you set the stack$ptr parameter to indicate a
user-provided stack, setting the stack$size
parameter causes the Nucleus to fill the
user-provided stack with special characters which
the iRMX 86 Debugger wuses to detect stack
overflow. Because of this situation, never specify
a stack$size value that is larger than size of the
user-provided stack.

task$flags A WORD containing information that the Nucleus
needs to create and maintain the task. The bits
(where bit 15 1is the high-order bit) have the
following meanings:

Bits Meaning
15-1 Reserved bits which should be set to
zZero
¢ 1f one, the task contains
floating-point instructions. These

instructions require the NPX component
for execution

If 2zero, the task does not contain
floating-point instructions

OUTPUT PARAMETERS

task A TOKEN to which the Operating System will return a
token for the new task.

except$ptr A POINTER to a WORD to which the iRMX 86 Operating

System will return the condition code generated by
this system call.

REPLACE Nucleus 12-39 UPDATE 3, 3/85

CREATES$TASK

DESCRIPTION
The CREATE$TASK system call creates a task and returns a token for it.
The new task counts as one against the object and task limits of the
calling task's job, Attributes of the new task are initialized upon
creation as follows:

® priority: as specified in the call.

[execution state: ready.

® suspension depth: @.

® containing job: the job which contains the calling task.

® exception handler: the exception handler of the containing job.

® exception mode: the exception mode of the containing job.

EXAMPLE

73K F K IR K AR K I K KKK T e KK I K 53K K ok ok e KK ek sk KRk sk ok sk R ok ok ek Rk ok ek
* This example illustrates how the CREATE$TASK system call can be *
X used. *

2 3K e 2k 3k S 3K 9k 2K ke ok ok e 9k 3 9k 3k koK 3k e ok Sl 3k e 3K e S 3¢ 9 3k e 5K 3R 9k e K 3 9k k5K 9 e sk ok 9K A SR Sk 3K K9 R ol ke R ok ke ek sk e ek e e ik /

$INCLUDE(:F1:SAMPLE.EXT); /* Declares all system calls */

TASK_CODE: PROCEDURE EXTERNAL;
END TASK_CODE;

DECLARE TOKEN LITERALLY ‘'SELECTOR';
/* if your PL/M compiler does not
support this variable type,
declare TOKEN a WORD */

DECLARE task$token TOKEN;

DECLARE priority$level$s6 LITERALLY '66°';

DECLARE start$address POINTEK;

DECLARE data$seg WORD;

DECLARE stack$pointer POINTER;

DECLARE stack$size$512 LITERALLY '512'; /* new task's stack
size is 512 bytes */

DECLARE task$flags WORD;

DECLARE status WORD;

SAMPLE_PROCEDURE:

PROCEDURE ;

start$address = @TASK_CODE; /* first instruction of the new task */

data$seg = ¢; /* task sets up own data segment */

stack$pointer = @; /* automatic stack allocation */

task$flags = @; /* designates no floating-point

instructions */
o
o Typical PL/M-86 Statements
o
REPLACE Nucleus 12-4¢ UPDATE 3, 3/85

DELETE$SCOMPOSITE

EXAMPLE

See the example in section "The Initialization Part" of Chapter 11.

CONDITION CODES
E$OK No exceptional conditions.
E$CONTEXT At least one of the following is true:

® The extension type does not match the
composite parameter.

e One or both of the extension or composite
parameters is not a token for an existing
object.

® One or both of the extension or composite
parameters is a token for an object that is
not of the correct type.

E$MEM The memory available to the calling task's job is
not sufficient to complete this operation.

ENOTCONFIGURED This system call is not part of the present
configuration.

REPLACE Nucleus 12-43 UPDATE 3, 3/85

DELETESEXTENSION

DELETE$EXTENSION

The DELETE$EXTENSION system call deletes an extension object and all
composites of that type.

CAUTION

Jobs that create extension objects
cannot be deleted until the extension
object is deleted. Therefore, you
should avoid creating extension objects
in Human Interface applications. 1If a
Human Interface application creates
extension objects, the application
cannot be deleted asynchronously (via a
CTRL/c entered at a terminal).

CALL RQ$DELETE$EXTENSION(extension, except$ptr);

INPUT PARAMETER

extension A TOKEN for the extension object to be deleted.

OUTPUT PARAMETER

except$ptr A POINTER to a WORED to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

DESCRIPTION

The DELETE$EXTENSION system call deletes the specified extension object
type and all composite objects of that type. This makes the
corresponding type code available for reuse.

If a deletion mailbox was specified when the extension type was created,
then all of the composite objects created by the extension type to be
deleted are sent to that deletion mailbox. 1In this case, this call will
not be completed until all of the composite objects have been deleted.

If the extension type has no deletion mailbox, the composite objects
created by the extension type to be deleted are deleted without informing
the type manager.

REPLACE Nucleus 12-44 UPDATE 3, 3/85

DELETESTASK

o
o Typical PL/M-86 Statements
o

73Kk oK A I K F K KA KKK FR AR KRR RIS K KKK K KKK KKK KRKRKKRA KK KKK KKK KKK KK KK
* The calling task has created a task (whose code is labeled *
* TASK_CODE) which is not an interrupt task. When this task is no *

* longer needed, it may be deleted by any task that knows its token. X
ORI KRR K K KKK KR KKK e H KK KKK KKK KK KKK KKK A KKK KKK KKK KKK KKK KKK /

CALL RQ$DELETE$TASK (task$token,
@status);
o
o Typical PL/M-86 Statements
o

END SAMPLE_PROCEDURE;

CONDITION CODES

E$0K No exceptional conditions.
E$CONTEXT The task parameter is a token for an interrupt task.
E$EXIST One of the following conditions has occurred:

® The task parameter is not a token for an
existing object.

® The task parameter represents a task whose job
is being deleted.

® More than one task is trying to delete a task
which is in a region.

ENOTCON- This system call is not part of the present
FIGURED configuration.
E$TYPE The task parameter is a token for an object which

is not a task.

REPLACE Nucleus 12-59 UPDATE 3, 3/85

A

DISABLE

DISABLE disables an interrupt level.

CALL RQ$DISABLE (level, except$ptr);

INPUT PARAMETER

level A WORD that specifies an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 [/
6-4 First digit of the interrupt level (@g-7)

3 If one, the level is a master level and
bits 6--4 specify the entire level number

If zero, the level is a slave level and
bits 2--@ specify the second digit

2-¢ Second digit of the interrupt level
(8-7), if bit 3 is zero

OUTPUT PARAMETER

except$ptr A POINTER to a WOED to which the iRMX 86 Operating
System will return the condition code generated by
this system call. All exceptional conditions must
be processed in-line. Control does not pass to an
exception handler.

DESCRIPTION

The DISABLE system call disables the specified interrupt level. It has
no effect on other levels. To be disabled, a 1level must have an
interrupt handler assigned to it. Otherwise, the Nucleus returns an
exception code.

You must not disable the level reserved for the system clock. You

determine this level during system configuration (refer to the iRMX 86
CONFIGURATION GUIDE).

REPLACE Nucleus 12-60 UPDATE 3, 3/85

FORCESDELETE

DESCRIPTION

The FORCE$DELETE system call deletes objects whose disabling depths are
zero or one. If an object has a deletion depth of two or more, the
calling task is put to sleep until the deletion depth is decreased to
one. At that time, the object is deleted and the task is awakened. If
the wrong extension type is specified, FORCE$DELETE issues and E$CONTEXT
error and returns without deleting the composite.

CONDITION CODES
E$0K No exceptional conditions.

E$CONTEXT The wrong extension type was used in the extension
parameter of the FORCE$DELETE system call.

E$EXIST One or both of the object or extension parameters
is not a token for an existing object.

E$MEM The memory available to the calling task's job is
not sufficient to complete this call.

ENOTCONFIGURED This system call is not part of the present
configuration.

E$TYPE The extension parameter is a token for an object
that is not an extension object.

REPLACE Nucleus 12-81 UPDATE 3,

3/85

XCEPTTIONSHANDLER

GET$EXCEPTION$HANDLER

GET$EXCEPTION$HANDLER returns information about the calling task's
exception handler.

CALL RQGETEXCEPTION$HANDLER (exception$info$ptr, exceptfptr);

OUTPUT PARAMETERS
exception$info$ptr A POINTER to a structure of the following form:

STRUCTURE (
EXCEPTION$HANDLER$OFFSET WORD,
EXCEPTION$HANDLER$BASE WORD,
EXCEPTION$MCDE BYTE);

where, after the call,

e exceptionf$handlerfoffset contains the offset of
the first instruction of the exception handler.

e exceptionf$handler$base contains a base for the
segment containing the first instruction of the
exception handler. If exception$handler$base
and exceptionf$handler$offset are both zero, the
calling task's exception handler is the system
default exception handler.

® exception$mode contains an encoded indication
of the calling task's current exception mode.
The value is interpreted as follows:

When to Pass Control

Value to Exception Handler
g Never
1 On. programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

except$ptr A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

DESCRIPTION

The GET$EXCEPTION$HANDLER system call returns both the address of the
calling task's exception handler and the current value of the task's
exception mode.

REPLACE Nucleus 12-82 UPDATE 3, 3/85

GETSTYPE

GET$TYPE

GET$TYPE returns the encoded type of an object.

type$code = RQ$GET$TYPE (object, exceptf$ptr);

INPUT PARAMETER

object A TOKEN for an object.

OUTPUT PARAMETERS

type$code A WORD which contains the encoded type of the
specified object. The types for iRMX 86 objects
are encoded as follows:

Value Type

1 job

2 task

3 mailbox

4 semaphore

5 region

6 segment

7 extension
19¢H composite (user)
161H composite (connection)
3¢gH composite (I/0 job)
301H composite (logical device)

80¢¢H -~ @GFFFFH user-created composites

Users and connections are described in the iRMX 86
BASIC I/0 SYSTEM REFERENCE MANUAL. I1/0 jobs and
logical devices are described in the iRMX 86
EXTENDED I/0 SYSTEM REFERENCE MANUAL.

except$ptr A POINTER to a WORD to which the condition code for
the call is returned.

DESCRIPTION

The GET$TYPE system call returns the type code for an object.

REPLACE Nucleus 12-95 UPDATE 3, 3785

GE1$1 YPE

EXAMPLE

/1 Fe 33 K3k 3K 3K 3 3k ok 3K 3k e ok ok 3 e ok ke s st ok s dke ok SR ok XSRS 55RO SRR SR SR DI SR SRR R AR RO OR R AR ROR R R R Xk

* This example illustrates how the GET$TYPE system call can be used %

* to return the encoded type of an object. *
KK K KK K KK K KRR KK IR KKK KRR A KKK KKK F KA KKK KKK KKK KK KKK KKK XKK KKK /

$INCLUDE(:F1:SAMPLE.EXT); /% Declares all system calls */

DECLARE TOKEN LITERALLY 'SELECTOR';
/% if your PL/M compiler does not
support this variable type,
declare TOKEN a WORD */

DECLARE type$code WORD;

DECLARE mbx$token TOKEN;

DECLARE calling$tasks$job LITERALLY '@';
DECLARE wait$forever LITERALLY '@FFFFH';
DECLARE object$token TOKEN;

DECLARE response TOKEN;

DECLARE status WORD;

SAMPLE_PROCEDURE:
PROCEDURE;

°
° Typical PL/M-86 Statements
[

/3% 3 3 3 3k Dk s 3k 3k sk sk sk ok 3k 3k sk 3¢ 3k dhe s s sk ok 6 oKk ok ok T 0k 3R sk ke ok ot sk st v ok D SR e o s SR R R SRR RO R KSR R R sk ok

* In order to invoke the GET$TYPE system call, the calling task must *
have the token for an object. In this example, the calling task *
invokes the LOOKUP$OBJECT system call and then the RECEIVE$MESSAGE *
system call to receive the token for an object of unknown type *

(object$token). X
FK IR KA K HHK IR KKK KK KK F KK KK IR KKK KK I KKK KKK IR I K LK K HK IR KKK K KKK XK KKK IKIKX KKK KKKK /

% % % %

mbx$token = RQ$LOOKUP$OBJIECT (calling$tasks$job,
Q(3,'MBX'),
wait$forever,

@status);
)
o Typical PL/M-86 Statementsg
°

793 R KK K ek ke k3o s e ke 3k 3K 3K i e ok sk SRk s sl e 3k sk sk stk st s sk sk sk sk ok sk ok sk sk sk sk ok ok sk sk ks st sk sk ok sk sk e ek
* The RECEIVE$MESSAGE system call returns object$token to the calling *
* task after the calling task invoked LOOKUP$OBJECT to receive the *
* token for the mailbox named 'MBX'. 'MBX' had been predesignated *x

* as the mailbox another task would use to send an object. *
33 3 ok SRR K 3k 3K 3K 33k e 33K ok ke 3K ok 3K 3 ok 3k SRR ok 3 3 e 5K 5Kk ok 33k e SRk 3k ok o SR ok Rk Kk R Rk /

object$token = RQ$RECEIVE$SMESSAGE (mbx$token,
wait$forever,
@response,
@status);

REPLACE Nucleus 12-96 UPDATE 3, 3/85

SETSINTERRUPT

® if unequal to =zero, indicates that the calling
task is to be the interrupt task that will be
invoked by the interrupt handler being set. The
priority of the calling task is adjusted by the
Nucleus according to the interrupt level being I
serviced. Table 8-4 lists the levels and the
corresponding interrupt task priorities. Be
certain that priorities set in this manner do
not violate the max$priority attribute of the
containing job.

The value of this parameter indicates the number of
outstanding SIGNAL$SINTERRUPT requests that can
exist. When this limit is reached, the associated
interrupt level is disabled. The maximum value for
this parameter is 255 decimal. Chapter 8 describes
this feature in more detail.

interrupt$handler A POINTER to the first instruction of the interrupt
handler. To obtain the proper start address for
interrupt handlers written in PL/M-86, place the
following instruction before the call to
SET$INTERRUPT:

interrupt$handler
= interrupt$ptr (inter);

where interrupt$ptr is a PL/M-86 built-in
procedure and inter 1is the mname of your
interrupt handling procedure.

interrupt$handler$ds A WORD which specifies the interrupt handler's data
segment.

e If not zero, contains the base address of the
interrupt handler's data segment. See the
description of ENTER$INTERRUPT in this chapter
for information concerning the significance of
this parameter.

It is often desirable for an interrupt handler
to pass information to the interrupt task that
it calls. The following PL/M-86 statements, when
included in the interrupt task's code (with the
first statement listed here being the first
statement in the task's code), will extract the
DS register value used by the interrupt task and
make it available to the interrupt handler,
which in turn can access it by «calling
ENTER$INTERRUPT:

REPLACE Nucleus 12-137 UPDATE 3, 3/85

SETSINTERRUPT

DECLARE BEGIN WORD; /* A DUMMY VARIABLE */
DECLARE DATA$PTR POINTER;
DECLARE DATA$ADDRESS STRUCTURE (

OFFSET WCRD,

BASE WORD) AT (@DATA$PTR); /* THIS MAKES
ACCESSIBLE THE TWO HALVES OF THE
POINTER DATA$PTR */

DATA$PTR = @BEGIN; /* PUTS THE WHOLE
ADDRESS OF THE DATA SEGMENT INTO
DATA$PTR AND DATA$ADDRESS */

DS$BASE = DATA$ADDRESS.BASE;
CALL RQSETINTERRUPT (...,DS$BASE);

® if zero, indicates that the interrupt handler
will 1load its own data segment and may not
invoke ENTER$INTERRUPT.

OUTPUT PARAMETER

exceptiptr A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

DESCRIPTION

The SET$INTERRUPT system call is used to inform the Nucleus that the
specified interrupt handler is to service interrupts which come in at the
specified level. In a call to SET$INTERRUPT, a task must indicate
whether the interrupt handler will invoke an interrupt task and whether
the interrupt handler has its own data segment. If the handler is to
invoke an interrupt task, the call to SET$INTERRUPT also specifies the
number of outstanding SIGNAL$INTERRUPT requests that the handler can make
before the associated interrupt level is disabled. This number generally
corresponds to the number of buffers used by the handler and interrupt
task. Refer to Chapter 8 for further information.

If there is to be an interrupt task, the calling task is that interrupt

task. If there is no interrupt task, SET$INTERRUPT also enables the
specified level, which must be disabled at the time of the call.

REPLACE Nucleus 12-138 UPDATE 3, 3/85

ASAT TACHSFILE

A$ATTACH$FILE

ASATTACH$FILE creates a connection to an existing file.

CALL RQ$ASATTACH$FILE(user, prefix, subpath$ptr, resp$mbox,

except$ptr);
INPUT PARAMETERS
user A TOKEN for the user object to be inspected in any
access checking that takes ©place. A zero
specifies the default user for the calling task's
job. This parameter is ignored when attaching

physical or stream files. Access checking does
occur for named files.

prefix A TOKEN for the connection object to be used as
the path prefix. A zero specifies the default
prefix for the calling task's job.

subpath$ptr A POINTER to a STRING containing the subpath of
the file to be attached. A null string indicates
that the new connection is to the file designated
by the prefix. The new connection will not be
open, regardless of the open mode of the prefix.

(This parameter is ignored for physical and stream
files.)
OUTPUT PARAMETERS
resp$mbox A TOKEN for the mailbox into which the Basic I/0

System places a token for the result object of the
call. This result object is a new file connection
if the call succeeds or an I/0 result segment
otherwise (see Appendix C). To ascertain the type
of object returned, use the Nucleus system call
GET$TYPE.

If the object received is an I/0 result segment,
the calling task should call DELETE$SEGMENT to
delete the segment after examining it.

except$ptr A POINTER to a WORD where the sequential condition
code will be returned.

REPLACE BIOS 8-11 UPDATE 3, 3/85

ASAT TACHSFILE

DESCRIPTION

A$ATTACH$FILE creates a connection to an existing file. Once the
connection is established, it remains in effect until the connection
object is deleted, or until the creating job is deleted. Once attached,
the file may be opened, closed, read, written, etc., as many times as

desired. A$ATTACH$FILE has no effect on the owner ID or the access list
for the file.

CONDITION CODES

A$SATTACH$FILE returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

E$0K No exceptional conditions.
E$DEVSOFFS$LINE The prefix parameter in this system call refers to
a logical connection. One of the following is true

of the device associated with the connection:

e It has been physically attached but is now
off-line.

° It has never been physically attached. (See
Appendix E for a more detailed explanation.)

E$EXIST One of the following is true:

® One or more of the following parameters is not
a token for an existing object:

— The user parameter
— The prefix parameter
- The resp$mbox parameter

® The prefix connection is being deleted.

REPLACE BIOS 8-12 UPDATE 3, 3/85

ASATTACHSFILE

E$LIMIT Processing this call would cause one or more of
these limits to be exceeded:

® The object limit for this job.

® The number of I/0 operations that can be
outstanding at one time for the user object
specified in the call (255 decimal).

° The number of 1I/0 -operations that can be
outstanding at one time for the caller's job
(255 decimal).

E$MEM The memory available to the calling task's job is
not sufficient to complete the call.

ENOPREFIX The calling task specified a default prefix
(prefix argument equals zero), but no default
prefix can be found because of one of the
following reasons:

® When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

@ The job's directory can have entries but a
default prefix is not cataloged there.

ENOUSER If the user parameter in this call is not zero,
the parameter is not a token for a user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because of one of the following reasons:

® When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

@ The job's directory can have entries but a
default user is not cataloged there.

@ The object that is cataloged with the name
R?IOUSER is not a wuser object. The name
R?IOUSER should be treated as a reserved word.

ENOTCONFIGURED This system call is not part of the present
configuration.

REPLACE BIOS 8-13 UPDATE 3, 3/85

ASAT TACHSFILE

E$TYPE

One of more of the following conditions caused
this exception:

® The prefix parameter is a token for an object
that is not of the correct type. It must be
either a connection object or a logical device
object. (Logical device objects are created
by the Extended I/0 System.)

° The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

E$0K

EDEVDETATCHING

E$FNEXIST

E$FTYPE

E$INVALID$FNODE

E$IO

EIOMEM

REPLACE

No exceptional conditions.

The file specified is on a device that the system
is detaching.

A file in the specified path, or the target file
itself, does not exist or is marked for deletion.

The string pointed to by the subpath$ptr parameter
contains a filename that should be the name of a
directory, but is not. (Except for the last file,
each file in a path must be a named directory.)

The fnode for the specified file is invalid. The
file cannot be accessed; you should delete it.

An I/0 error occurred, which might have prevented
the operation from completing. Examine the
unit$status field of the I/0 result segment for
more information.

The memory available to the Basic I/0 System job
is not sufficient to complete the call.

BIOS 8-14 UPDATE 3, 3/85

ASCHANGESACCESS

A$CHANGES$ACCESS

A$CHANGE$ACCESS changes the access rights to a named data or directory
file.

CALL RQACHANGE$ACCESS(user, prefix, subpath$ptr, id, access,
resp$mbox, except$ptr);

INPUT PARAMETERS

user A TOKEN for the user object to be inspected in
access checking. A value of zero specifies the
default user for the calling task's job.

prefix A TOKEN for the connection object to be used as
the path prefix. A zero specifies the default
prefix for the calling task's job.

subpath$ptr A POINTER to a STRING giving the subpath of the
file whose access is to be changed. A null string
indicates that the prefix itself designates the
desired file.

id A WORD containing the ID number of the user whose
access 1is to be changed. If this ID does not
already exist in the ID-access mask list, it is
added. This list may contain a total of three
ID-access pairs.

access A BYTE mask giving the new access rights for the
ID. For each bit, a one grants access, and a zero
denies it. (Bit @ is the low-order bit.) For a
named data file, the possible bit settings are:

o
e

t Meaning
Delete

Read

Append

Update

4-7 Reserved (set to @)

w N rlG%

REPLACE BIOS 8-15 UPDATE 3, 3/85

ASCHANGESACCESS

For a named directory file, the possible bit
settings are:

o
e
cr

Meaning
Delete

Display

Add Entry

Change Entry

4-7 Reserved (set to @)

UJNH"Q.I

If zero 1is specified for the access parameter
(that is, no access), the ID specified in the id
parameter is deleted from the file's 1ID-access
list.

OUTPUT PARAMETERS

resp$mbox A TOKEN for the mailbox that receives an 1I/0
result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETE$SEGMENT to delete the
segment after examining it.

except$ptr A POINTER to a WORD where the sequential condition
code will be returned.

DESCRIPTION

no effect on existing connections to the file. It is called to change
the access rights to a named data or directory file. Depending on the
contents of the "id" and "access" parameters specified in the system
call, users may be added to or deleted from the file's ID-access mask
list, or the access privileges granted to a particular user may be
changed.

I ASCHANGE$ACCESS system call applies to named files only. This call has

NOTE

The caller must be the owner of the
file or must have change entry access
to the file's parent directory.
However, if the owner is "WORLD", that
is, @JFFFFH, then any task may change
the access mask of the file.

REPLACE BIOS 8-16 UPDATE 3, 3/85

ASCREATESFILE

granularity A WORD giving the granularity of the file being
created. This 1is the size (in bytes) of each
logical block to be allocated to the file. The
value specified in this parameter is rounded up,
if necessary, to a multiple of the volume
granularity. Note that a contiguous file can
become noncontiguous when it is extended.

The granularity parameter can have the following

values:
/] Same as volume granularity
FFFF The file must be contiguous

Other Number of bytes per allocation

When a contiguous file is extended, space is
allocated in volume-granularity units. If "Other"
is specified, a multiple of 1624 bytes is
recommended.

This parameter is ignored for physical and stream

files.
size A DWORD giving the number of bytes initially
reserved for the file, For stream files, this

value must equal zero. For physical files, this
parameter is ignored.

must$create A BYTE whose value (@FFH for TRUE or @ for FALSE)
determines the handling of input paths designating
an existing file (see following DESCRIPTION).
This parameter applies only to named files.

OUTPUT PARAMETERS

resp$mbox A TOKEN for the mailbox that receives the result
object of this call. This result object is a new
file connection if the call succeeded or an 1/0
result segment otherwise (see Appendix C). To
ascertain the type of object returned, use the
Nucleus system call GET$TYPE.

If the object received is an I/0 result segment,
the calling task should call DELETE$SEGMENT to
delete the segment after examining it.

except$ptr A POINTER to a WORD where the sequential condition
code will be returned.

REPLACE BIOS 8-29 UPDATE 3, 3/85

ASCREATESFILE

DESCRIPTION

The A$CREATE$FILE system call creates a physical, stream, or named data
file and returns a token for the new file connection. If a named file
designated by the prefix and subpath parameters already exists, one of
the following occurs:

® Error: If the "must$create" parameter is TRUE (@FFH), an error
condition code (E$FEXIST) is returned.

® Truncate File: If the "must$create” parameter is FALSE (@) and
the path designates an existing data file, a new connection to
that file is returned (that is, A$CREATE$FILE acts like
ASATTACH$FILE). 1In this case, the file is truncated or expanded
according to the "size" parameter, so data in the file might be
lost. As in the case of A$ATTACH$FILE, the file's owner ID and
access list are unchanged.

® Temporary File Created: If the "must$create" parameter is FALSE
(@), and the path designates an existing directory file or
device, an unnamed temporary file is created on the corresponding
device. This file is deleted automatically when the last
connection to it is deleted. Because this file is created
without a path, it can be accessed only through a connection.

Any task can create a temporary file by referring to any
directory. This is true because temporary files are not listed
as ordinary entries in the directory, so no add-entry access is
required.

Many of the parameters specified in the A$CREATE$SFILE call do not apply
to physical and stream files. 1In these cases, the parameter is ignored.

NOTE

The caller must have add-entry access
to the parent directory of the new
named file.

CONDITION CODES

A$CREATE$FILE returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent exception code. A
complete explanation of sequential and concurrent parts of system calls is
in Chapter 7 of this manual.

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

REPLACE BIOS 8-30 UPDATE 3, 3/85

A$SPECIAL

ASSPECIAL

A$SPECIAL enables tasks to perform a variety of special functions.

CALL RQASPECIAL(connection, spec$func, ioparm$ptr, resp$mbox,

exceptfptr);
INPUT PARAMETERS
connection A TOKEN for a connection to the file or device for
which the special function is to be performed.
spec$func An encoded WORD that, with the connection argument,
specifies the function Dbeing requested. The
functions are described under the heading
DESCRIPTION and are summarized as follows:
File driver Spec$func
for connection value Function
Physical] Format track
Stream @ Query
Stream 1 Satisfy
Physical or Named 2 Notify
Physical 3 Get disk/tape
data
Physical 4 Get terminal data
Physical 5 Set terminal data
Physical 6 Set signal
Physical 7 Rewind tape
Physical 8 Read tape file
mark
Physical 9 Write tape file
mark
Physical 19 Retention tape
11-32767 Reserved for
other Intel
products
ioparm$ptr A POINTER to a parameter block. The contents of
the parameter block depends upon the requirements
of the special function being requested and are
described fully wunder the heading DESCRIPTION.
Enter a zero value if the special function you
request does not require a parameter block.
REPLACE BIOS 8-87 UPDATE 3, 3/85

ASSPECIAL

OUTPUT PARAMETERS

resp$mbox A TOKEN for the mailbox that receives an I/0 result
segment indicating the result of the call (see
Appendix C). A value of zero means that you do not
want to receive an I/0 result segment.

If it receives an 1/0 result segment, the calling
task should call DELETE$SEGMENT to delete the
segment.

except$ptr A POINTER to a WORD where the sequential condition
code will be returned.

DESCRIPTION

The A$SPECIAL system call enables tasks to perform a variety of special
functions.

Tasks define their requests by means of the spec$func and ioparm$ptr
parameters. Spec$func is a code which, when combined with the file
driver associated with the connection argument, specifies the function
the Basic I/0 System is to perform. When more information is needed to
define a request, ioparm$ptr points to a parameter block containing the
additional data. Descriptions of the available functions follow.

Formatting a Track. This function applies to physical files only. To
format a track on a mass storage device, call A$SPECIAL with an open file
connection, with spec$func equal to @, and with ioparm$ptr pointing to a
structure of the form:

DECLARE format$track STRUCTURE(
track$number WORD,

interleave WORD,
track$offset WORD,
fill$char WORD) ;

In this structure, the fields are defined as follows:

track$number The number of the track to be formatted.
Acceptable values are @ to one less than the
number of tracks on the volume. Other values
cause an E$SPACE exceptional condition. When

formatting a RAM-disk or a tape, you must place a
zero value in this field.

interleave The interleave factor for the track. (That is,
the number of physical sectors to advance when
locating the next logical sector.) An interleave
factor of zero or one skips no physical sectors
between logical sectors. If the specified

REPLACE BIOS 8-88 UPDATE 3, 3/85

REPLACE

ASSPECIAL

Bits Value and Meaning

2

4-5

Output medium (corresponds to 0sc
characters T:H).

@ = Video display terminal (VDT).

1 = Printed (Hard copy).

Modem indicator (corresponds to 0SC
characters T:M).

il

@

Not used with a modem.

1 Used with a modem.

Input parity control (corresponds to 0SC
characters T:R). The parity bit (bit 7)
of each input byte can be used in a
variety of ways. A byte has even parity
if the sum of its bits 1is an even
number. Otherwise, the byte has odd
parity.

¥ = Always set parity bit to &.

1 = Never alter the parity bit.

2 = Bven parity 1is expected on input.
Use the parity bit to indicate the
presence (1) or absence (@) of an
error on input. That is, set the
parity bit to @ unless the received
byte has odd parity or there is some
other error, such as (a) the received
stop bit has a value of @ (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

3 = 0dd parity is expected in input. Use
the parity bit to indicate the
presence (1) or absence (@) of an
error on input. That is, set the
parity bit to @ unless the received
byte has even parity or there is some
other error, such as (a) the received
stop bit has a value of @ (framing
error) or (b) the previous character
receiived has not yet been fully
processed (overrun error.)

BIOS 8-97 UPDATE 3, 3/85

v

T

ASSPECIAL

REPLACE

19

11

Value and Meaning

Qutput parity control (corresponds to 0SC
characters T:W). The parity bit (bit 7)
of each output byte can be used in a
variety of ways. A byte has even parity
if the sum of its bits is an even
number. Otherwise, the byte has odd
parity.

@ = Always set parity bit to 4.

1 = Always set parity bit to 1.

2 = Set parity bit to give the byte even
parity.

3 = Set parity bit to give the byte odd

parity.
4-7 = Do not alter parity bit.

Translation control (corresponds to OSC
characters T:T). Translation refers to
the ability to define certain control
characters S0 that whenever these
characters are entered at or written to a
terminal, certain actions, usually cursor
movements, take place automatically.
Translation is described in Appendix F of
this manual.

@ = Do not enable translation.
1 = Enable translation.
Terminal axes sequence control

(corresponds to O0SC characters T:F).
This specifies the order in which
Cartesian-like coordinates of elements on
a terminal's screen are to be listed or
entered.

@ = List or enter the horizontal
coordinate first.
1 = List or enter the vertical coordinate

first.

Horizontal axis orientation control
(corresponds to OSC characters T:F).
This specifies whether the coordinates on
the terminal's horizontal axis increase
or decrease as you move from left to
right across the screen.

BIOS 8-98 UPDATE 3, 3/85

in$baud$rate

out$baud$rate

REPLACE

ASSPECIAL

Bits Value and Meaning

|

@ = Coordinates increase from left to
right.

1 = Coordinates decrease from left to
right.

12 Vertical axis orientation control

(corresponds to O0SC characters T:F).
This specifies whether the coordinates on
the terminal's vertical axis increase or
decrease as you move from top to bottom
across the screen.

= Coordinates increase from top to
bottom.
1 = Coordinates decrease from top to
bottom.
13-15 Reserved bits. For future compatibility,
set to g.
NOTE

If bits 4-5 contain 2 or 3, and bits
6-8 also contain 2 or 3, then they must
both contain the same value. That is,
they must both reflect the same parity
convention (even or odd).

The input baud rate indicator (corresponds to 0SC
characters T:I). If you attempt to set this field
to zero, the Basic I/0 System ignores your entry
and leaves the field set to its previous value.
The word is encoded as follows:

¢ = Invalid.
1l = Perform an automatic baud rate search.
Other = Actual input baud rate, such as 96¢@.

The output baud rate indicator (corresponds to 0SC
characters T:0). If you attempt to set this field
to zero, the Basic I/0 System ignores your entry
and leaves the field set to its previous value.
The word is encoded as follows:

2

Leave field set to previous value

1

Use the input baud rate for output.

BIOS 8-99 UPDATE 3, 3/85

ASSPECIAL

Other = Actual output baud rate, such as 9600.

Most applications require the input and output
baud rates to be equal. In such cases, wuse
in$baud$rate to set the baud rate and specify a
one for out$baud$rate.

scrollflines An operator at a terminal can enter a control
character (default is Control-W) when he/she 1is
ready for data tc appear on the terminal's display
screen. The scrollflines value (corresponding to
0SC characters T:S8) specifies the maximum number
of lines that are to be sent to the terminal each
time the operator enters the control character.
If you attempt to set this
field to zero, the Basic I/0 System ignores your
entry and leaves the field set to its previous
value.

xysize The low-order byte of this word specifies the
number of character positions on each line of the
terminal's screen (and corresponds to 0sc
characters T:X). The high-order byte specifies
the number of lines on the terminal's screen (and
corresponds to 0SC characters T:Y).

x$yfoffset The low-order byte of this word specifies the
value that starts the numbering sequence of both
the X and Y axes (and corresponds to O0OSC
characters T:U). The high-order byte specifies
the value to which the numbering of the axes must
"fall back" after reaching 127 (and corresponds to
0SC characters T:V).

The remaining fields apply only for intelligent communications boards
(such as the iSBC 544 board) that maintain their own input and output
buffers separately from the ones managed by the Basic I/0 System's
Terminal Support Code. If you aren't sure whether you can set these
fields, invoke A$SPECIAL with function code 4 to get the terminal
attributes. If bit 15 of the flow$control field (the next one described)
is set, your board is a buffered device and you can set the following
fields. (1f your board is not a buffered device, setting any of the
following fields will cause the terminal support code to return an
E$PARAM Condition Code.)

flow$control Specifies whether the communications board sends
flow control characters (selected by the
fconfchar and fcoffchar fields, but usually XON
and XOFF) to turn input on and off (corresponds to
the OSC characters T:G). The low-order bit (bit
@) controls this option, as follows:

1] Disable flow control.
1 Enable flow control.

REPLACE BIOS 8-100 UPDATE 3, 3/85

AS$SPECIAL

DELCLARE read$file$mark STRUCTURE(

search BYTE);
Where:
search A value indicating the direction of the search, as
follows:
o0 Search forward

@FFH Search backward (for start/stop drives
only)

When your task issues the A$SPECIAL system call with spec$func set to 9,
the tape drive writes a file mark at the current position on the tape.
This function also terminates tape write operations.

When your task issues the A$SPECIAL system call with spec$func set to 16,
the tape drive fast-forwards the tape to the end and then rewinds it to
the load point.

CONDITION CODES

A$SPECIAL return condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

E$0K No exceptional conditions.

E$BUFFERED$CONN The connection parameter is a connection produced
by the Extended 1/0 System. You cannot use it
with Basic I/0 System calls.

E$EXIST At least one of the following is true:

® One or more of the following parameters or
fields is not a token for an existing object:

REPLACE BIOS 8-1@3 UPDATE 3, 3/85

ASSPECIAL

E$IFDR

E$LIMIT

E$MEM

ENOTCONFIGURED

E$PARAM

E$SUPPORT

REPLACE

—~ The connection parameter
— The resp$mbox parameter

— The mailbox field in the notify structure.
(Spec$func = 2.)

-~ The object field in the notify structure.
(Spec$func = 2.)

- The semaphore field in the signal$pair
structure. (Spec$func = 6.)

e The connection is being deleted.
The function requested (spec$func) is not valid
for the type of file specified by the connection

parameter.

The calling task's job has already reached its
object limit.

The memory available to the calling task's job is
not sufficient to complete the call.

This system call is not part of the present
configuration.

At least one of the following is true:

@ The spec$func parameter was 6, and the
character field was greater than 1FH.

® The spec$func parameter was greater than 1.

® One or more of the fields related to buffered
devices (high$water$mark, low$water$mark,
fconchar, fcfoff$char) was set while bit 15
of the flow$control field was reset to zero
(specifying an unbuffered device).

The specified comnnection was not created by this
job.

BIOS 8-104 UPDATE 3, 3/85

ASSPECIAL

E$TYPE One or more of the following parameters or fields
is a token for an existing object of the wrong
type:

® The connection parameter.
® The resp$mbox parameter.

® The mailbox field of the notify structure.
(Spec$func = 2.)

® The semaphore field of the signal$pair
structure. (Spec$func = 6.)

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

E$O0K No exceptional conditions.

E$CONN$NOTSOPEN The specified connection is not open. This
applies only to stream and physical files.

E$FLUSHING The specified connection was closed before the
function could be completed.

E$IDDR The specified function is not supported by the
device containing the file. l

E$I0 An I/0 error occurred which might have prevented
the operation from completing. Examine the

unit$status field of the I/0 result segment for
more information.

ENOTDEVICE$CONN The function code is 'notify', but the specified
connection is not a device connection. This
applies only to named and physical files.

E$PARAM The spec$func parameter was 5 while bits @-1 of
the connection$flags field was equal to @.

E$SPACE One of the following is true:
e This call attempted to format a track of a
physical file that is beyond the end of the

volume.

® This call attempted to format a track of a RAM
disk other than track @.

REPLACE BIOS 8-1¢5 UPDATE 3, 3/85

ASSPECIAL

E$STREAM$SPECIAL

REPLACE

One of the following is true:

® This is a "query" request, but another query is

already queued. This applies only to stream
files.

This is a "satisfy" request, but either a query
request is queued, or no requests are queued.
This applies only to stream files. (See
Artificially Satisfying a Stream File I/O0
Request in the DESCRIPTION.)

BIOS 8-1¢6 UPDATE 3, 3/85

ASTRUNCATE

E$TYPE At least one of the following is true:

° The connection parameter is a token for an
object that is not a connection.

® The resp$mbox parameter is a token for an
object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

E$0K No exceptional conditions.

E$CONN$NOTSOPEN The specified file is not open for writing or

updating. I
E$I0 An I/0 error occurred which might have prevented
the operation from completing. Examine the

unit$status field of the I/0 result segment for
more information.

REPLACE BIOS 8-1¢9 UPDATE 3, 3/85

ASUPDATE

ASUPDATE

A$UPDATE updates a device by writing all partial sectors that remain in
the Basic I/0 System's buffers after the most recent A$WRITE call.

CALL RQ$ASUPDATE(connection, resp$mbox, except$ptr);

INPUT PARAMETERS

connection A TOKEN for a file or device connection. A$UPDATE
updates all files on the device.

resp$mbox A TOKEN for the mailbox that receives an 1I/0
result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETE$SEGMENT to delete the
segment after examining it.

OUTPUT PARAMETER

exceptéptr A POINTER to a WORD where the sequential condition
code will be returned.

DESCRIPTION

When the I/0 System performs an A$WRITE operation, it writes only entire
sectors. If part of a sector remains to be written, the I/0 System,
unless requested to finish the writing operation (that is, to "update the
file"), leaves the data for a partial sector in an output buffer. The
next time A$WRITE is called on behalf of that file, the I/0O System
combines the leftover data in the buffer with the data in the new request
and again begins writing entire sectors.

The A$UPDATE system call forces the Basic I/0 System to finish the
writing operation for a device; that is, it writes all partial buffers
pertaining to files on a particular device. This ensures that files on
removable volumes (such as diskettes) are updated before the operator
removes the volume. However, the AS$UPDATE system call has no effect on
buffers that the Extended I/0 System manages.

REPLACE BIOS 8-11¢ UPDATE 3, 3/85

INSPECTSUSER

CONDITION CODES

E$0K No exceptional conditions.

E$EXIST The user parameter is not a token for an existing
object.

ESNOT$CONFIGURED This system call is not part of the present
configuration.

E$PARAM The length field contains a zero value.

E$TYPE The user parameter is a token for an object of the

wrong type.

REPLACE BIOS 8-127 UPDATE 3, 3/85

SETSDEFAULT$PREFIX

SET$DEFAULT$PREFIX

SET$DEFAULT$PREFIX sets the default prefix for an existing job.

CALL RQSETDEFAULT$PREFIX(job, prefix, except$ptr);

INPUT PARAMETERS

job A TOKEN for the job whose default prefix is to be
set. A zero specifies the current job.

prefix A TOKEN for the connection that is to become the
default prefix.

OUTPUT PARAMETERS

exceptiptr A POINTER to a WORD where the condition code will
be returned.

DESCRIPTION

The SET$DEFAULT$PREFIX system call sets the default prefix for an
existing job. It does this by cataloging the connection (supplied as the
prefix parameter) in the object directory of the job (supplied as the job
parameter). The Basic I/0 System catalogs the prefix under the name
"$". If an object is already cataloged under the name "$", the Basic I/0
System uncatalogs that object before cataloging the new prefix.

CONDITION CODES
E$0OK No exceptional conditions.
E$CONTEXT When this job was created, a size of zero was
specified for the object directory, so a default

prefix cannot be cataloged

E$EXIST One or more of the following parameters is not a
token for an existing object:

o The job parameter

® The prefix parameter

REPLACE BIOS 8-128 UPDATE 3, 3/85

WAITSIO

create a segment every time an I/0 result segment is needed. This
provides a significant advantage because A$READ, A$WRITE, and A$SEEK are
typically the most commonly invoked Basic I/0 System calls.

CONDITION CODES
E$0K No exceptional conditions.
E$EXIST At least one of the following is true:
[The connection parameter or the resp$mbox
parameter (or both) did not contain a token

for an existing object.

® The specified connection or response mailbox
(or both) was deleted.

° The token returned to the specified mailbox
was for an object that had been deleted.

EIOHARD A hard 1I/0 error occurred. Another retry is
probably useless.

E$I0$MODE At least one of the following is true:
° A tape drive attempted to perform a read
operation before the previous write operation

completed.

® A tape drive attempted to perform a write
operation before the previous read operation

completed.
ETIONOSDATA A tape drive attempted to read the next record,
but it found no data.
E$I0$OPRINT The device was off-line. Operator intervention is
required.
E$I0$SOFT A soft I/0 error occurred. The Basic I/0 System

tried to perform the operation a number of times
(the number is configurable for each device). All
attempts failed. If the configurable value
specifying the number of retries is a reasonable
value (for example, 9), another retry probably
won't be successful either.

E$I0$UNCLASS An unknown type of I/0 error occurred.

EIOWRPROT The asynchronous operation was A$WRITE and the
volume was write-protected.

ENOTCONFIGURED This system call is not part of the present
configuration.

REPLACE BIOS 8-135 UPDATE 3, 3/85

WAITSI0

E$TIME

E$TYPE

REPLACE

One of the following is true:

The calling task was not willing to wait, and
there was no I/0 result segment at the
specified mailbox.

The specified waiting period elapsed before
the response mailbox received an I/0 result
segment.

At least one of the following is true:

The connection parameter is a token for an
object that is not a file connection.

The resp$mbox parameter is a token for an
object that is not a mailbox.

The object received at the response mailbox is

not a segment or is a segment that is not an
I/0 result segment.

Hkk

BIOS 8-136 UPDATE 3, 3/85

CREATESIOSJOB

® If equal to zero, specifies that the new job's
initial task is to have a priority equal to the the
maximum priority of the initial job of the Extended
I/0 System. For more information about the initial
job of the Extended 1I/0 System, refer to the
chapter of the iRMX CONFIGURATION GUIDE relating to
the Extended 1/0 System.

® If not equal to zero, contains the priority of the
initial task of the new job. If this priority is
higher than (numerically less than) the maximum
priority of the initial job of the Extended I1/0
System, an E$PARAM error occurs.

start$address A POINTER to the first instruction of the code
segment for the new job's initial task. This code
segment can be, but is not required to be, an iRMX 86
segment.

data$seg A WORD which,

® if zero, indicates one of two things. Either the
new job's initial task uses no data segment, or it
creates one for itself. Tasks can create their own
data segments only under special circumstances. To
find out more about the circumstances, refer to the
iRMX 86 CONFIGURATION GUIDE.

® if not zero, contains the base address of the data
segment of the new job's initial task. This data
segment can be, but is not required to be, an
iRMX 86 segment.

stack$ptr A POINTER which,

e if the base portion 1is zero, specifies that the
Nucleus should allocate a stack for the new job's
initial task. The length of the allocated stack is
determined by the stack$size parameter of this
system call. Be aware that this stack is not an
iRMX 86 segment.

o if the base portion is not equal to zero, points to
the base of the stack for the new job's initial
task. Because the Nucleus does not allocate this
stack, you must allocate it during the
configuration process, or your application code
must allocate it while the system is running.

stack$size A WORD containing the size, in bytes, of the stack
for the new job's initial task. If you specify less
than 2¢@, the Extended I/0 System will increase the
size to 2¢@. For information regarding the amount of
stack to allocate, refer to the chapter of the
iRMX 86 PROGRAMMING TECHNIQUES manual that discusses
stack sizes.

REPLACE EIOS 7-7 UPDATE 3, 3/85

CREATESIOSJUB

task$flags

msg$mbox

REPLACE

If you are allocating the stack during configuration,
or if the application code is allocating the stack
while the system is running, the value of this
parameter will be the precise amount of stack that
the system can use. However, if the WNucleus is
allocating the stack for you, it might allocate as
many as 15 additional bytes in order to make the
stack occupy whole 1l6-byte paragraphs.

A WORD in which all bits except the two low-order
bits are set to zero.

Bit Zero: Use the low-order bit (bit @) to tell the
Operating System whether the new job's initial task
uses floating-point instructions. A value of 1
indicates the presence of floating-point
instructions, while a zero indicates the absence of
floating-point instructions.

Bit One: Bit 1 indicates whether the initial task in
the job should run immediately, or whether it should
wait until a STARTIOJOB system call is issued to
start it. Set bit 1 to zero if the task is to be
made ready to run; set bit 1 to one if the task is to
wait until the START$I0$JOB call is issued.

A TOKEN for a mailbox. When a task exits (by
invoking EXIT$I0$JOB), the Extended I/0 System sends
a message to this mailbox. If you desire no such
message, assign msg$mbox a value of zero.

The format of the message is as follows:

DECLARE message STRUCTURE(
terminationf$code WORD,
user$faultfcode WORD,
job$token WORD,
returnfdata$len BYTE,
return$data () BYTE)

where:

termina- A WORD that indicates why an I/0

tion$code job terminated, as follows:

CODE MEANING

@ Some task within the job -- the terminating

task ~~ invcked the EXITIOJOB system call,
and indicated with this code that no problem
caused the fermination. The job has not yet
been deleted, and some of its tasks might still
be ready.

EIOS 7-8 UPDATE 3, 3/85

APPENDIX C.
CONDITION CODES

The iRMX 86 Extended 1/0 System uses condition codes to inform your tasks
of any problems that occur during the execution of a system call. If no
problems occur and the system call runs to completion, the Extended I/0
System returns an E$OK condition code. Otherwise, the Extended 1/0
System returns an exceptional condition code.

The meaning of a specific exceptional condition code depends upon the
system call that returns the code. For this reason, this appendix does
not list any interpretations.

This appendix provides you with the numeric value associated with each
condition code that the Extended I/0 System can return. To use the
exception code values in a symbolic manner, you can assign (using the
PL/M-86 "literally"” statement) a meaningful name to each of the codes.

The following 1list correlates the name of the condition code (as
described in Chapter 7 of this manual) to the value that the Extended I/0
System actually returns. The list is divided into three parts; one for
the normal condition code, one for exception codes that indicate a
programming error, and one for exception codes that indicate an
environmental condition.

NORMAL CONDITION CODE

NAME OF CONDITION DECIMAL HEXADECIMAL

E$0K @ gH

PROGRAMMING ERRORS

NAME OF CONDITION DECIMAL HEXADECIMAL
E$ZERO$SDIVIDE 32768 8@@OH
E$OVERFLOW 32769 8¢@¢1H
E$TYPE 32779 8@@2H
E$PARAM 32772 80@4H
ENOTSUPPORTED 32773 8¢@5H
E$NOUSER 32801 821H
E$NOSPREFIX 328¢2 8@22H
ENOTLOGENAME 32832 8@40H
ENOTDEVICE 32833 8@41H
ENOTCONNECTION 32834 8G42H

REPLACE EIOS C-1 UPDATE 3, 3/85

ENVIRONMENTAL CONDITIONS

REPLACE

CONDITION CODES

NAME OF CONDITION DECIMAL
E$TIME 1
E$MEM 2
E$LIMIT 4
E$CONTEXT 5
E$EXIST 6
ENOTCONFIGURED 8
E$FEXIST 32
E$FNEXIST 33
E$DEVFD 34
E$SUPPORT 35
E$FACCESS 38
E$FTYPE 39
E$SHARE 40
E$SPACE 41
E$IDDR 42
E$FLUSHING 44
E$ILLVOL 45
E$IFDR 47
E$FRAGMENTATION 48
EDIRSNOTSEMPTY 49
E$NOTS$FILE$CONN 50
E$CONN$NOT$OPEN 52
E$CONN$OPEN 53
E$ALREADY$ATTACHED 56
EDEVDETACHING 57
ENOTSAMESDEV 58
E$ILLOGICAL$RENAME 59
E$STREAM$SPECIAL 6%
E$INVALID$FNODE 61
E$PATHNAME$SYNTAX 62
E$FNODESLIMIT 63
ELOGNAMESSYNTAX 64
E$TOMEM 66
E$MEDIA 68
E$LOGSNAME$SNEXIST 69
ENOTOWNER 70
E$I0$J0B 71
EIOUNCLASS 89
E$I0$SOFT 81
EIOHARD 82
E$I0$OPRINT 83
EIOWRPROT 84
EIONOSDATA 85
EIOMODE 86
EIOS C-2

HEXADECIMAL

1H

2H

4H

SH

6H

8H
2¢H
21H
22H
23H
26H
27H
28H
29H
2AH
2CH
2DH
2FH
3¢H
31H
32H
34H
35H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
42H
44H
45H
46H
47TH
S@H
51H
52H
S53H
S4H
55H
56H

UPDATE

3,

3/85

INDEX (continued)

local object directory 3-8
logical device object 7-19, B-1
logical names 3-7, 7-165
devices 2-6, 3-4, 7-18, 7-29
deletion of 7-145
files 2-6, 4-5, 4-16
LOGICALSATTACH$DEVICE system call 3-4, 4-14, 7-18, 7-43

LOGICAL$DETACH$DEVICE system call 4-14, 7-19, 7-2¢

magnetic tape drive 7-99

mailbox 7-9

marking files for deletion 7-48
maximum buffer size 2-6, 8-1

maximum number of buffers 2-6

memory pool 7-5

memory requirements of I/0 systems 1-3
modem 7-93

multiple connection to same file 3-5
multiple files on same device 4-1

named files 2-2, 4-1

null string, pathname 3-9, 4-5
nunber of buffers 2-5, 7-53, 7-66
number of bytes read 7-7¢

number of bytes written 7-1¢8

object directories 3-7, 7-1¢8, D-1

objects, types B-1

odd parity 7-93

OFFSET data type A-1

opening files 2-3, 7-53

Operating System Control sequences (0SC) 7-92
order of search for logical names 3-7
overlapped I/0 operations 1-2, 2-5

owner ID 4-1¢

parent directory 7-37, 7-75

parity control, terminals 7-91

path$ptr 3-9, 4-5, 7-37, 7-41, 7-48, 7-56, 7-74
performance of I/0 systems 1-3

physical device 7-19

physical files 2-2, 5-1

POINTER data type A-

pool, memory 7-5

prefixes 4-4

protocol: stream files 6-1

R?I0OJOB D-1

R?IOUSER 3-9, 4-8

R?MESSAGE D-1

RAM disk 7-84

random access memory (RAM) B-1
random I/0 1-4

EIOS Index-3

INDEX (continued)

re-attachment of devices 2-7

Read (access control) 4-9, 7-29

reading beyond end-of-file 7-79

renaming directories 7-74

renaming files 4-15, 7-74

root named file directory 4-2

root object directory 3-8

RQGLOBAL D-1, see also: global object directory

S$ATTACH$FILE system call 4-3, 4-11, 4-13, 7-23, 7-41
S$CATALOG$CONNECTION system call 4-16, 7-26
S$CHANGE$ACCESS system call 4-4, 4-1¢, 4-12, 7-29
S$CLOSE system call 4-3, 4-14, 7-34
S$CREATE$DIRECTORY system call 4-4, 4-11, 4-13, 7-37
S$CREATE$FILE system call 4-4, 4-11, 4-13, 7-41
S$DELETE$CONNECTION system call 4-3, 4-13, 7-46
S$DELETE$FILE system call 4-4, 4-15, 7-48
SGETCONNECTION$STATUS system call 4-3, 7-52
SGETFILE$STATUS system call 4-4, 7-56
S$LOOK$UP$CONNECTION system call 4-16, 7-64
S$OPEN system call 3-5, 4-3, 4-14, 7-66
S$READ$MOVE system call 4-3, 4-14, 7-7¢
S$RENAME$FILE system call 4-4, 4-15, 7-74
S$SEEK system call 4-3, 4-14, 7-78, 7-1¢8
S$SPECIAL system call 4-3, 4-16, 7-82
S$TRUNCATES$FILE system call 4-3, 4-14, 7-41, 7-1@2
S$UNCATALOG$CONNECTION system call 4-16, 7-1¢5
S$WRITE$MOVE system call 4-3, 4-15, 7-1¢7
satisfying stream files 7-87
scrolling 7-96
SELECTOR data type 7-1, A-1
semaphore 7-98
sequence of named file calls 4-18
sequential I/0 2-6
setting terminal characteristics 7-89
signal characters at terminal 7-98
special users 4-12
stack 7-7
start address for I/0 job 7-7
START$I0$JOB system call 4-17, 7-22
status, connection 7-52
status, file 7-56
status, obtaining of 4-15, 7-14
stream files 2-3, 6-1, 7-84

satisfaction 7-87
STRING data type A-1
subpath 4-4
synchronous I/0 system calls 1-2
syntax (path) 4-5
system calls 7-1

asynchronous 1-2

Basic I/0 System 4-17

dictionary 7-2

Nucleus 4-17

synchronous 1-2

EIOS Index-4

iRMX™ 86 Release 6.8 Change Package: Update 3
Change Pages for:

iRMX™ 86 Programmer's Reference Manual, Part II (146196-@@l)

CONDITION CODES

The A$LOAD system call can return condition codes at two different
times. Codes returned to the calling task immediately after invocation
of the system call are sequential condition codes. Codes returned after
the concurrent part of the system call has finished running are
concurrent condition codes. The following list is divided into two parts
—— one for sequential codes and one for concurrent codes:

Sequential Condition Codes

The Loader can return any of the following condition codes to the WORD
pointed to by the except$ptr parameter of this system call.

E$OK No exceptional conditions.

EBADHEADER The target file does not begin with a valid header
record for a loadable object module. Possibly the
file is a directory.

E$CHECKSUM The header record of the target file contains a
checksum error.

E$CONN$NOT$OPEN The Loader opened the connection but some other
task closed the connection before the loading
operation was begun.

E$CONNS$OPEN The calling task specified a connection that was
already open.

E$EXIST At least one of the following is true:

® The connection parameter is not a token for an
existing object.

e The msg$mbox parameter did not refer to an
existing object.

e The mailbox specified in the response$mbox
parameter was deleted Dbefore the loading
operation was completed.

E$FACCESS The specified connection did not have 'read" access
to the file.

E$FLUSHING The device containing the target file is being
detached.

EIOHARD A hard I/0 error occurred. This means that another

try is probably useless.

EIOOPRINT The device <containing the target file was
off-line. Operator intervention is required.

REPLACE Application Loader 2-11 UPDATE 3, 3/85

ASLOAD

ASLUAD

E10SOFT

EIOUNCLASS

EIOWRPROT

E$LIMIT

E$LOADER$SUPPORT

E$MEM

E$NOTS$FILE$CONN

E$SHARE

E$SUPPORT

E$TYPE

A soft 1/0 error occurred. This means that the I/0
System tried to perform the operation and failed,
but another try might still be successful.

An unknown type of I/0 error occurred.
The volume is write-protected.
At least one of the following is true:

® The calling task's job has already reached its
object limit.

e Either the calling task's job, or the job's
default user object, is already involved in 255
(decimal) I/0 operations.

To load the target file requires capabilities not
configured into the Loader. For example, it might
be attempting to load PIC when configured to load
only absolute code.

The memory available to the calling task's job or
the Basic I/0 System is not sufficient to complete
the call.

The calling task specified a connection to a device
rather than to a named file.

The calling task tried to open a connection to a
file already being used by some other task, and the
file's sharing attribute is not compatible with the
open request.

The specified connection was not created by the
calling task's job.

The connection parameter is a token for an object
that is not a connection.

Concurrent Condition Codes

After the Loader attempts the loading operation, it returns a condition
code in the except$code field of the Loader Result Segment. The Loader
can return the following condition codes in this manner.

E$0K

EBADGROUP

EBADSEGMENT

REPLACE

No exceptional conditions.

The target file contains an invalid group
definition record.

The target file contains an invalid segment
definition record.

Application Loader 2-12 UPDATE 3, 3785

E$CHECKSUM

E$EOF

E$EXIST

E$FIXUP

E$FLUSHING

ETOHARD

EIOOPRINT

E$I0$SOFT

ETOUNCLASS

ETOWRPROT

E$LIMIT

E$NOSLOADERSMEM

ENOMEM

E$NOSTART

E$PARAM

ERECFORMAT

ERECLENGTH

REPLACE

At least one record of the target file contains a
checksum error.

The call encountered an unexpected end-of-file.

The device containing the file to be loaded was
detached before the loading operation was completed.

The target file contains an invalid fixup record.

The device containing the target file 1is being
detached.

A hard I/0 error occurred. This means that another
try is probably useless.

The device containing the target file was
off-line. Operator intervention is required.

A soft I/0 error occurred. This means that the I/0
System tried to perform the operation and failed,
but another try might still be successful.

An unknown type of I/0 error occurred.
The volume is write-protected.

The calling task's job has already reached its
object limit.

The memory pool of the calling task does not
currently have a block of memory large enough to
allow the Loader to run.

The Loader attempted to load PIC or LTL groups or
segments, but the memory pool of the calling task's
job does not currently contain a block of memory
large enough to accommodate these groups or
segments.

The target file does not specify the entry point
for the program being loaded.

The target file has a stack smaller than 16 bytes.

At least one record in the target file contains a
format error.

The target file contains a record longer than the

Loader's internal buffer. The Loader's buffer
length is specified during the configuration of the
Loader. See Chapter 3 and the iRMX 86

CONFIGURATION GUIDE for information about
configuring the Loader.

Application Loader 2-13 UPDATE 3, 3/85

ASLOAD

It

ASLOAD

ERECTYPE

ESEGBOUNDS

REPLACE

At least one of the following is true:

® At least one record in the target file is of a
type that the Loader cannot process.

® The Loader encountered records in a sequence
that it cannot process.

The Loader created a segment into which to load

code. One of the data records specified a load
address outside of that segment.

Application Loader 2-14 UPDATE 3, 3/85

ASLOADS$I0$JOB

CONDITION CODES

This system call can return condition codes at two different times.
Codes returned to the calling task immediately after the invocation of
the system call are considered sequential condition codes. Codes
returned after the concurrent part of the system call has finished
running are considered concurrent condition codes. The following list is
divided into two parts -- one for sequential codes and one for concurrent
codes.

Sequential Condition Codes

The Loader returns one of the following condition codes to the WORD
pointed to by the exceptfptr parameter:

E$0K No exceptional conditions.

E$BADSHEADER The target file does not begin with a wvalid
header record for a loadable object module.
Possibly the file is a directory.

E$CHECKSUM The header record of the target file contains a
‘ checksum error.

E$CONNSNOT$OPEN The Loader opened the connection, but some other
task closed the connection before the loading
operation was begun.

E$CONN$SOPEN The specified connection was already open.
E$CONTEXT The calling task's job is not an I/0 job.
E$EXIST At least one of the following is true:

) The connection parameter is not a token for

an existing object.
) The calling task's job has no global job.

° The msg$mbox parameter does not refer to an
existing object.

E$FACCESS The specified connection does not have "read”
access to the file.

E$FLUSHING The device containing the target file is being
detached.
EIOHARD A hard I/0 error occurred. This means that

another try is probably useless.

ETOOPRINT The device containing the tafget file is
off-line. Operator intervention is required.

REPLACE Application Loader 2-21 UPDATE 3, 3-85

ASLOADS$I0$JOB

E$I0$SOFT

E$I0$UNCLASS
EIOWRPROT

EJOBPARAM

EJOBSIZE

E$LOADER$SUPPORT

E$MEM

ENOSLOADER$MEM

ENOTCONFIGURED

ENOTFILE$CONN

E$NOUSER

E$PARAM

E$SHARE

E$SUPPORT

E$TIME

E$TYPE

REPLACE

A soft I/0 error occurred. This means that the
I/0 System tried to perform the operation and
failed, but another try might still be successful.

An unknown type of I/0 error occurred.
The volume is write-protected.

The pool$upper$bound parameter is both non-zero
and smaller than the poolflowerf$bound parameter.

The poolf$upper$bound parameter is non-@ and too
small for the target file.

The target file requires <capabilities not
configured into the Loader. For example, the
loader might be attempting to load PIC code when
configured to load only absolute code.

The memory available to the calling task's job or
the Basic I/0 System is not sufficient to
complete the call.

The memory pool of the newly created I/0 job does
not currently have a block of memory large enough
to allow the Loader to run.

This system call is not part of the present
configuration.

The specified connection is to a device rather
than to a named file.

The calling task's job does not have a default
user, or the object cataloged under the logical
name R?IOUSER is not a user object.

The value of the except$mode field within the
except$handler structure lies outside the range ¢
through 3.

The calling task tried to open a connection to a
file already being used by some other task, and
the file's sharing attribute is not compatible
with the open recquest.

The specified connection was not created in this
job. :

The calling task's job is not an I/0 job.

The connection parameter is a token for an object
that is not a cornection.

Application Loader 2-22 UPDATE 3, 3-85

SSLOADSIO$JOB

E$EXIST At least one of the following is true:

o The msg$mbox parameter is not a token for an
existing object.

o The calling task's job has no global job. l
o The device containing the target file was
detached.

E$FACCESS The default user object for the new I/0 job does
not have "read" access to the specified file.

ESFIXUP The target file contains an invalid fixup record.

E$FNEXIST The specified target file, or some file in the
specified path, does not exist or is marked for
deletion.

E$FLUSHING The device containing the target file is being
detached.

E$INVALID$FNODE The fnode for the specified file is invalid, so the
file must be deleted.

EIOHARD A hard I/0 error occurred. This means that another
try is probably useless. :

E10J0B The calling task's job is not an I/0 job.

EIOOPRINT The device containing the target file is off-line.

Operator intervention is required.

E$I0$SOFT A soft I/0 error occurred. This means that the I/0
System tried to perform the operation and failed,
but another try might still be successful.

E$IO0$UNCLASS An unknown type of I/0 error occurred.

ETOWRPROT The volume is write-protected.

EJOBPARAM The poolfupper$bound parameter is nonzero and
smaller than the pool$lower$bound parameter.

EJOBSIZE The pool$upper$bound parameter is nonzero and too
small for the target file.

E$LIMIT At least one of the following is true:
o The task$priority parameter is higher

(numerically lower) than the newly-created I/O
job's maximum priority. This maximum priority
is specified during the configuration of the
Extended I/0 System (if the job is a descendant
of the Extended I1I/0 System) or of the Human
Interface (if the job is a descendant of the
Human Interface).

REPLACE Application Loader 2-29 UPDATE 3, 3-85

SSLOADSI0S$JOB

E$LOADER$SUPPORT

E$MEM

ENOLOADERSMEM

E$NOMEM

E$NOSTART

ENOTCONFIGURED

E$NOUSER

E$PARAM

E$PATHNAMES—
SYNTAX

ERECFORMAT

REPLACE

® Either the newly created I/0 job or its default
user object is already involved in 255
(decimal) I/0 cperations.

The target file requires capabilities not
configured into the Loader. For example, it might
be attempting to load PIC when configured to load
only absolute code.

The memory available to the calling task's job is
not sufficient to complete the call.

The memory pool of the newly created I/0 job does
not currently have a block of memory large enough
to allow the Loader to run.

The target file contains either PIC segments or
groups, or LTL segments or groups. In any case,
the memory pool of the new I/0 job does not have a
block of memory large enough to allow the Loader to
load these records.

The target file does not specify the entry point
for the program being loaded.

This system call is not part of the present
configuration.

The calling task's job does not have a default

user, or the object cataloged under the logical

name R?IOUSER is not a user object.

At least one of the following is true:

® The value of the except$mode field within the
except$handler structure lies outside the range

@ through 3.

® The target file requested a stack smaller than
16 bytes.

The specified pathname contains one or more invalid
characters.

At least one record in the target file contains a
format error.

Application Loader 2-3¢ UPDATE 3, 3-85

COMMAND PROCESSING

DELETING THE COMMAND CONNECTION

After you have finished invoking commnands programmatically, you must
delete the command connection. The C$DELETE$COMMAND$CONNECTION system
call performs this operation. You do not need to delete the command
connection after each command invocation, because the command connection
is re-usable. However, you should delete the command connection after
performing all C$SEND$COMMAND operations. This frees the memory used by
the data structures of the command connection.

EXAMPLE

Figure 5-1 contains an example of a program that uses
C$CREATE$COMMAND$CONNECTION, SEND$COMMAND, and
DELETE$COMMAND$CONNECTION. It invokes the Human Interface COPY command
programmatically.

/3R PR K P KK e e KK A e K 6 K e T e K R e 3K e SR T 3 e 3k e Ik DK 3k S 9K Tk kK 9K 9k ¢ oK 9k ok 6 3K 3K K ¢ 3K 3k 5k 3K K K 9k 6 3k ke ok ok X kK ok

This example demonstrates the use of the following Human Interface
advanced standard functions:

rqCscreate$command$connection
rqcCsend$command
rqcsdelete$command$connection

This program uses the previous system calls to invoke the command
COPY :F1:0LD to :F1l:NEW from within and then continue normal
processing. The program is invoked with the command line:

% % % M % % % % X% % X X% %
% % % X O % % A A % % %

PROG2 *
PP 3K 3 ¢ K 3 e I 3 3K e K 3K ke I K e sk 3k e e Tk ke 3K 9k 9k e 3K 3K 9k Sk K e ke Sk 3K S ok k3K 9k 9k 3K 3K 9K 3K ¢ S 3k 3 ¢ 3K 9k 3k K 3K ok 3k K 9k ok 3K 3K ke e ke Sk ke ke ko /

prog2: DO;

$include (hexcep.lit)
$include (hcrcen.ext)
$include (hsndemd.ext)
$include (hdlcen.ext)
$include (iexioj.ext)
$include (hgtincn.ext)
 $include (hgtocn.ext)

DECLARE (ci$token, co$token, command$connection$token) WORD,

(excep, comexcep, exexcep) WORD;
DECLARE output$prep BYTE;

Figure 5-1. Command Connection Example

REPLACE Human Interface 5-3 UPDATE 3, 3-85

COMMAND PROCESSING

/* Invoke utility to copy file OLD to file NEW */

/* Get tokens for CI and CO */
ci$token = rq$cCsgetinput$connection(@(4,':CI:'), @excep);
IF excep <> E$0K THEN
CALL rqfexitiojob (excep, @, exexcep);
co$token = rq$cgetoutput$connection(@(4,':C0:'), output$prep, @excep);
IF excep <> E$0K THEN
CALL rq$exit$io$job (excep, &, exexcep);

/* Create command connection */

command$connection$tok = rq$Clcreatefcommand$connection (ci$token,
co$token, 4,
@excep);

/* Send command to copy files */
CALL rqCsend$command (command$connection$tok,
@(23,'COPY :F1:0LD TO :F1l:NEW'),
@comexcep, @excep);
IF excep <> E$0K THEN
CALL rqfexitiojob (excep, &, exexcep);

/* Delete command connection */
CALL rgCdelete$command$connection (command$connection$tok, @excep);
IF excep <> E$0K THEN

CALL rq$exit$io$job (excep, &, exexcep);

. Rest of program

/* Finish I/0 processing */
CALL rq$exit$io$job (excep, @, @exexcep);

END prog2;

Figure 5-1. Command Connection Example (continued)

AKX

REPLACE Human Interface 5-4 UPDATE 3, 3-85

Table B-3.

HUMAN INTERFACE EXCEPTION CODES

Conditions And Their Codes (continued)

Numeric Code

Category/
Mnemonic Meaning Hex Decimal
Human Interface Environmental Conditions (continued)
E$CONTINUED The parse buffer contains a continuation
character. 83H 131
E$INVALIDS- A numeric value contains invalid
NUMERIC characters. 84H 132
E$LIST A value in the value list is missing. 85H 133
E$WILDCARD A wild-card character appears in an
invalid context, such as in an inter-
mediate component of a pathname. 86H 134
E$PREPOSITION | The command line contains an invalid
preposition. 87H 135
E$PATH The command line contains an invalid
pathname. 88H 136
E$CONTROLS$C The user typed a CONTROL-C to abort the
command, 89H 137
E$CONTROL The command line contains an invalid
control. 8AH 138
E$UNMATCHED$- | The number of files in the input and
LISTS output pathname lists is not the same. 8BH 139
E$DATE The operator entered an invalid date. 8CH 140
ENOPARAM- A command expected parameters, but
ETERS the operator didn't supply any. 8DH 141
E$VERSION The Human Interface is not compatible
with the version of the command the
operator invoked. 8EH 142
EGETPATHS- A command called CGETOUTPUT$PATHNAME
ORDER before calling CGETINPUT$PATHNAME 8FH 143
UDI Environmental Conditions
E$UNKNOWNSEXIT| The program exited normally. @CgH 192
REPLACE Human Interface B-9 Update 3, 3/85

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)
Numeric Code
Category/
Mnemonic Meaning Hex Decimal
UDI Environmental Conditions (continued)
E$WARNINGSEXIT| The program issued warning messages. @C1H 193
E$ERROR$EXIT The program detected errors. @C2H 194
E$FATALS$EXIT A fatal error occurred in the program.| @C3H 195
E$ABORT$EXIT The Operating System aborted the @C4H 196
program.
ESUDI$INTERNAL| A UDI internal error occurred. @CSH 197
Nucleus Programmer Errors
* E$ZEROS- A task attempted a divide in which
DIVIDE the quotient was larger than 16 bits. 80@¢H 32768
* E$OVERFLOW An overflow interrupt occurred. 8001H 32769
E$TYPE A token parameter referred to an
existing object that is not of the
required type. 8002H 32779
E$PARAM A parameter that is neither a token
nor an offset has an invalid value. 80@4H 32772
E$BADS$CALL An 0S extension received an invalid
function code. 80@5H 32773
* E$ARRAYS$- Hardware or software has detected an
BOUNDS array overflow. 80P6H 32774
* ENDPERROR | A Numeric Processor Extension (NPX)
error has occurred. O0S extensions
can return the status of the NPX to
the exception handler. 8@@7H 32775
% E$ILLEGAL$- | The iAPX 186 or 286 processor tried 8¢@8H 32776
OPCODE to execute an invalid instruction
* For iAPX 286-based systems, a CPU trap caused this exceptional
condition.
REPLACE Human Interface B-1¢ Update 3, 3/85

UDI SYSTEM CALLS IN THE iRMX! 86 ENVIRONMENT

The key to using iRMX 86 files is the connection. A program wanting to
use a file first obtains (a token for) a connection to the file and then
uses the connection to perform operations on the file. Other programs
can simultaneously have their own connections to the same file. Each
program having a connection to a file uses its connection as if it has
exclusive access to the file.

A program obtains a connection by calling DQ$ATTACH (if the file already
exists) or DQ$CREATE (to create a new file). When the program no longer
needs the connection, it can call DQ$DETACH to delete the connection. To
delete both the connection and the file, the program calls DQ$DELETE.

Once a program has a connection, it can call DQ$OPEN to prepare the
connection for input/output operations. The program performs input or
output operations by calling DQ$READ and DQ$WRITE. It can move the file
pointer associated with the connection by calling DQ$SEEK. When the
program has finished doing input and output to the file, it can close the
connection by calling DQ$CLOSE. Note that the program opens and closes
the connection, not the file. Unless the program deletes the connection,
it can continue to open and close the connection as necessary.

If a program calls DQ$DELETE to delete a file, the file cannot be deleted
while other connections to the file exist. In that case, the file is
marked for deletion and is not actually deleted until the last of the
connections is deleted. During the time that a file is marked for
deletion, no new connections to it may be created.

CONDITION CODES AND EXCEPTION HANDLING CALLS

Every UDI call except DQ$EXIT returns a numeric condition code specifying
the result of the call. Each condition code has a unique mnemonic name
by which it is known. For example, the code @, indicating that there
were no errors or unusual conditions, has the name E$0K. Any other
condition means there was a problem, so these conditions are called
exceptions.

Exception conditions are classified as:

° Environmental Conditions. These are generally caused by

conditions outside the control of a program; for example, device
errors or insufficient memory.

e Programmer Errors. These are typically caused by mistakes in
programming (for example, "bad parameter"), but "divide-by-zero",
“overflow", "range check", and errors detected by the 8@87 8@287
Numeric Processor Extension (hereafter referred to generically as
the NPX) are also classified as programmer errors.

The iRMX 86 NUCLEUS REFERENCE MANUAL contains a list of condition codes

that the iRMX 86 Operating System can return, with the mnemonic and
meaning of each code.

REPLACE UDI 2-5 UPDATE 3, 3/85

UDI SYSTEM CALLS IN THE iRMX{ 86 ENVIRONMENT

If the default value (NEVER) for the EM parameter in the Nucleus ICU
screen is in effect when a system call generates an exception condition,
the system simply returns the error code through the appropriate system
call parameter. If you have specified YES as the value of the EM
parameter in the Nucleus ICU screen, the default system exception handler
(DEF .EXCEPTIONHANDLER) displays the appropriate error message at the
console and terminates the program. However, your program can establish
its own exception handler by calling DQ$TRAP$EXCEPTION. The exception
handler can interpret condition codes that are returned by calling
DQ$DECODE$EXCEPTION. The rest of this section provides some facts that
you need in order to write your own exception handler.

After an exception condition occurs and before your exception handler gets
control, the iRMX 86 Operating System does the following:

1. Pushes the condition code onto the stack of the program that made
the system call having the except.ion condition.

2. Pushes the number of the parameter that caused the exception onto
the stack (1 for the first parameter, 2 for the second, etc.).

3. Pushes a word onto the stack (reserved for future use).

4. Pushes a word for the NPX onto the stack.

5. 1Initiates a long call to the exception handler.
If the condition was not caused by an erroneous parameter, the responsible
parameter number is zero. If the exception code is E$NDP, the fourth item

pushed onto the stack is the NPX status word, and the NPX exceptions have
been cleared.

Programs compiled under the SMALL model of segmentation cannot have an
alternate exception handler, but must use the default system exception
handler. This is because alternate exception handlers must have a LONG
POINTER, which is not available in the SMALL model.

MAKING UDI CALLS FROM PL/M-86 AND ASM86 FROGRAMS

This section describes how to make UDI calls from a program, using the
DQ$ALLOCATE system call as an example. You can easily generalize from
this example to see how to make the other UDI calls. There are two
examples: one for a call from a PL/M-86 program and one for a call from
an ASM86 program.

The way this chapter shows the DQ$ALLOCATE system call syntax is the
following:

base$addr = DQ$ALLOCATE (size, exceptfptr);
There are three parameters: size (which has the WORD data type),
except$ptr (which has the POINTER data type), and base$addr (which has
WORD data type or the SELECTOR data type, depending on the version of
PL/M-86).

REPLACE UDI 2-6 UPDATE 3, 3/85

UDI SYSTEM CALLS IN THE iRMX! 86 ENVIRONMENT

Each of the examples that follow request 128 bytes of memory and point to
a WORD named "ERR" where the condition code is to be returned.
EXAMPLE PL/M-86 CALLING SEQUENCE

DECLARE ARRAY BASE WORD, (or SELECTOR)
ERR WORD;

ARRAYBASE = DQ$ALLOCATE (128, @ERR);

EXAMPLE ASM86 CALLING SEQUENCE

MOV AX,128

PUSH AX ; first parameter
LEA AX,ERR

PUSH DS s+ second parameter
PUSH AX H

CALL DQALLOCATE

MOV ARRAYBASE,AX ; returned value

This example is applicable to programs assembled according to the COMPACT,
MEDIUM, and LARGE models of segmentation. For the SMALL model, omit
pushing the DS segment register.

DESCRIPTIONS OF SYSTEM CALLS

This section contains descriptions of the UDI system calls, which are
arranged alphabetically. Every system call description contains the
following information in this order:

® The name of the system call.

® A brief summary of the function of the call.

) The form of the call as it is invoked from a PL/M-86 program, with
symbolic names for each parameter.

o Definition of input and output parameters.

° A complete explanation of the system call, including any
information you will need to use the system call.

REPLACE UDI 2-7 UPDATE 3, 3/85

DQSALLOCATE

UDI SYSTEM CALLS IN THE iRMX! 86 ENVIRONMENT

DQ$ALLOCATE

DQ$ALLOCATE requests a memory segment from the free memory pool.

base$addr = DQ$ALLOCATE (size, excepi$ptr);

INPUT PARAMETER

size

OUTPUT PARAMETERS

base$addr

except$ptr

DESCRIPTION

A WORD which,

if not zero, contains the size, in bytes, of
the requested segment. If the size parameter
is not a multiple of 16, it will be rounded up
to the nearest multiple of 16 before the
allocation request is processed.

if zero, indicates that the size of the request
is 65536 (64K) bytes.

A SELECTOR, into which the Operating System places
the base address of the memory segment. If the
request fails because the memory requested is not
available, this value will be @FFFFH, and the
system will return an E$MEM exception code.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

The DQ$ALLOCATE system call is used to request additional memory from the
free space pool of the program. Tasks may use the additional memory for

any desired purpose.

REPLACE

UDI 2-8 UPDATE 3, 3/85

UDI SYSTEM CALLS IN THE iRMX! 86 ENVIRONMENT

DQ$TRUNCATE

DQ$TRUNCATE moves the end-of-file to the current position of a named file
connection's file pointer, thereby freeing the portion of the file lying
beyond the file pointer.

CALL DQ$TRUNCATE (connection, except$ptr);

INPUT PARAMETER

connection A TOKEN for a connection to the named data file
that is to be truncated. The file pointer of this
connection marks the place where truncation is to
occur. The byte indicated by the pointer is the
first byte to be dropped from the file.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.
DESCRIPTION

This system call truncates a file at the current setting of the file
pointer and releases all file space beyond the pointer for reallocation
to other files. If the pointer is at or beyond the end of file, no
truncation is performed. Unless the file pointer is already at the
proper location, your program should use the DQ$SEEK system call to
position the pointer before calling DQ$TRUNCATE.

The connection should have write, or read and write access rights,
established when the connection was opened.

REPLACE UDI 2-53 UPDATE 3, 3/85

UDI SYSTEM CALLS IN THE iFMX! 86 ENVIRONMENT

DQ$SWRITE

The DQ$WRITE system call copies a collection of bytes from a buffer into
a file.

CALL DQS$WRITE (connection, buff$ptr, count, except$ptr;

INPUT PARAMETERS

connection A TOKEN for the connection to the file into which
the information is to be written.

buff$ptr A POINTER to a buffer containing the data to be
written to the specified file.

count A WORD containing the number of bytes to be
written from the buffer to the file.

OUTPUT PARAMETER

except$ptr A POINTER to a WCRD where the system places the
condition code. Condition codes are described in
Appendix B.
DESCRIPTION

This system call causes the Operating System to write the specified
number of bytes from the buffer to the file.

Connection Requirements

If the connection is not open for writing or updating, DQ$WRITE returns
an exception code.

REPLACE UDI 2-54 UPDATE 3, 3/85

INDEX (continued)

long-term operations 5-8
modem 7-8

name of device-unit 2-2
notify procedure 2-14, 5-6
numbering of devices 1-2

open requests 4-2

parity 7-7

PL/M-86 1iii, 5-11, 8-1
portable device drivers 3-14
priority 3-9

QUEUE$IO procedure 2-5, 3-3, 6-3, A-5

RAD$ procedure-name prefix (iRMX 88 systems only) 3-2, A-1
random access device drivers 1-3, 5-1

random access devices 3-1

random access driver example B-8

read requests 4-2

request queue 6-5

requests 1-3, 4-1

requirements for using the common device driver 3-1

retry limit 3-11

RQ$ASPHYSICALSATTACHSDEVICE system call 2-3, 3-4, 3-5, 6-4, A-1
RQ$ELVL system call A-9

RQ$FORMAT system call 5-11

RQSETINTERRUPT system call A-9

SEEK$COMPLETE procedure 3-11, 5-7

seek requests 4-2

set output waiting (XTSSETOUTPUTSWAITING) procedure 7-18, 7-24
signal character 2-15

source files, device drivers B-1

special requests 4-2

stack size 3-9

support (INCUDE) files B-55

tape drives 2-14, 5-8
rewinding of 5-8
terminal
attributes 2-15
baud rate 7-16, 7-19
Device Information Table 2-5, 7-3, 7-27
devices 3-3
driver example B-29
drivers 7-1
flags 7-8, 7-14
modem 7-8
parity 7-7
Unit Information Table 7-6
terminal answer (TERM$ANSWER) procedure 7-17, 7-2¢, 7-27
terminal check (TERM$CHECK) procedure 7-17, 7-22, 7-27

REPLACE Device Drivers Index-3 UPDATE 3,

3/85

INDEX (continued)

terminal controller data 7-14, 7-27

terminal finish (TERM$FINISH) procedure 7-17, 7-19, 7-27
terminal hangup (TERM$HANGUP) procedure 7-17, 7-21, 7-27
terminal initialization (TERM$INIT) procedure 7-17, 7-18, 7-27
terminal output (TERM$OUT) procedure 7-17, 7-24, 7-27

terminal setup (TERM$SETUP) procedure 7-17, 7-19, 7-27
Terminal Support Code 7-11

terminal unit data 7-4, 7-14, 7-27

track size 3-11

types of device drivers 1-3

Unit Information Table 2-5, 3-18, 7-6
unit number 1-2, 2-5, 2-11

unit status codes 2-1¢

updating output to a device 2-6
using DUIBs 2-7

volume granularity 2-7

write requests 4-2

X8274.P86 terminal driver source file B-29
XTSSETOUTPUTSWAITING procedure 7-24

AKXk

REPLACE Device Drivers Index-4 UPDATE 3, 3/85

CHAPTER 6
SIMPLIFYING CONFIGURATION
DURING DEVELOPMENT

For your convenience, the configuration information found in this chapter
has been added to the iRMX 86 CONFIGURATION GUIDE. For any information
that you might need concerning the following topics, refer to the iRMX 86
CONFIGURATION GUIDE.

[) Data segments

® Configuration

) Freezing locations of entry points

® The Interactive Configuration Utility (ICU)

o The LOC86 command

® Freezing the Base of the Data Segment

KKX

REPLACE Programming Techniques 6-1 UPDATE 3, 3/85

"CHAPTER 2
USING A TERMINAL WITH THE iRMX™ 86
OPERATING SYSTEM

When you are using a terminal with the iRMX 86 Operating System, you must
limit the maximum priority of your tasks or they could interfere with the
proper functioning of your terminal. High priority processor-bound tasks can
cause the Terminal Handler to drop input characters.

While using a terminal that is wunder control of the Terminal Handler, an
operator either reads an output message from the terminal's display or enters
characters by striking %keys on the terminal's keyboard. Normal input
characters are those destined for input messages that are sent to tasks.
Special input characters direct the Terminal Handler to take special actions.
The special characters are RUBOUT, Carriage Return, Line Feed, ESCape,
control-C, control-0, control-Q, control-R, control-S, control-X, and
control-Z. The output-only version of the Terminal Handler does not support
any of the special characters. 1In the remainder of this chapter, the handling
of these two types is discussed, and the significance of each of the special
characters is explained.

NOTE

This chapter contains several references
to mailboxes and request messages used
by tasks to communicate with the
terminal. If you are puzzled by such a
reference, look in Chapter 3 for an
explanation.

HOW NORMAL CHARACTERS ARE HANDLED

The destination of a normal character, when entered, depends on whether
there is an input request message at the Terminal Handler's input request
mailbox. If there is an input request message, the character is echoed
to the terminal's display and goes into the input request message. If
there is not an input request message, the character is deleted.

HOW SPECTAL CHARACTERS ARE HANDLED

Table 2-1 lists the special characters and summarizes the effects of each
of them. The following text comprises complete descriptions of the
effects of the special characters. In these descriptions, there are
several references to "the current line." The current line consists of
the data, with editing, that has been entered since the last end-of-line
character.

REPLACE Terminal Handler 2-1 UPDATE 3, 3/85

USING A TERMINAL WITH THE iRMX! 86 OPERATING SYSTEM

Table 2-1. Special Character Summary

Special

Character Effect

RUBOUT Deletes previously entered character.
Carriage

Return Signals end of line.

Line Feed Signals end of line.

ESCape Signals end of line.

control-C Calls an application program.
control-0 Kills or restarts output.

control-Q Resumes suspended output.

control-R Displays current line with editing.
control-S Suspends output.

control-X Deletes the current line.

control-Z Sends empty message.

The following descriptions concern the special characters needed when
entering data at the terminal. Most. of these characters are for
line-editing. Each description is divided into two parts: internal
effects and external effects. The difference is that internal effects are
those that are not directly visible, whereas external effects are
immediately shown on the terminal's display.

RUBBING OUT A PREVIOUSLY-TYPED CHARACTER (RUBOUT)
Internal Effects: Causes the most recently entered but not yet deleted

character to be deleted from the current line. If the
current line is empty, there is no internal effect.

REPLACE Terminal Handler 2-2 UPDATE 3, 3/85

CHAPTER 3
PROGRAMMING CONSIDERATIONS

The iRMX 86 Terminal Handler supports terminal input and output by
providing mailbox interfaces. Figure 3-1 shows the wuse of these
mailboxes. 1In the figure, an arrow pointing from a task to a mailbox
represents an RQ$SENDSMESSAGE system call. An arrow pointing from a
mailbox to a task indicates an RQSJRECEIVE$MESSAGE system call.

PROVIDED PROVIDED
BY USER BY USER
USER . USER

TASKS

INPUT RESPONSE
MAILBOX MAILBOX

QUTPUT
MAILBOX

RESPONSE
MAILBOX

TERMINAL

—T TERMINAL
HANDLER

HANDLER

IN iRMX 86 IN iRMX 86

x-601

Figure 3-1. Input and Output Mailbox Interfaces

The protocol that tasks observe is much the same for input and output.
In each case, the task initiates I/0 by sending a request message to a
mailbox. An input request mailbox (default name RQTHNORMIN) and an
output request mailbox (default name RQTHNORMOUT) are provided. These
mailboxes are cataloged in the root job directory. 1In the case of
multiple terminals, one input and one output mailbox will be cataloged
for each Terminal Handler. (See Chapter 4 for more information about
multiple versions of the Terminal Handler.) Figure 3-2 illustrates the
protocol for finding the root job token and for obtaining the input and
output mailbox tokens.

REPLACE Terminal Handler 3-1 Update 3, 3/85

PROGRAMMING CONSIDERATIONS

77K 3K K e 3K 3K K K K K 5K 3k s 3K R 3 SR K TR 9K SR K 9k 3k S 9k ok ok 3K ke o SR 9 9 9K 3K 3k oK dke o K ok oKk ok 3K oK oK ok kSl ok ok ek ok ok

* This example illustrates the protocol for finding the root job token *

* and for obtaining the input and output mailbox tokens. *
FERR K A KRR K KK KK I K K KKK KKK K 3k e R o ok ke KRR 3k 3K 3k ook ok kR ok ok R ok kX ko ek

DECLARE rtjb$token WORD;

DECLARE root$job LITERALLY '3';
DECLARE status WORD;

DECLARE inputmbxtoken WORD;

DECLARE wait$forever LITERALLY '@FFFFH';

/*By setting the input parameter to thres, the GET$TASK$TOKEN primitive
will return the root job's TOKEN.*/

rtjb$token = RQ$GET$TASK$TOKENS (root$job,
@status);

/*The following LOOKUP$OBJECT primitives use the default mailbox names.X/

inputmbxtoken = RQ$LOOKUP$OBJECT (rtjb$token,
@(1%, 'RQTHNORMIN'),
wait$forever,
@status);

outputmbxtoken = RQ$LOOKUP$OBJECT (rtjb$token,
@(ll, 'RQTHNORMOUT'),
wait$forever,
@status);

Figure 3-2. Protocol for Obtaining Root Job and Mailbox Tokens

Refer to the iRMX 86 NUCLEUS REFERENCE MANUAL for more information
concerning the individual primitives used in the previous example. When
a task sends a message to the Terminal Handler mailbox, the Terminal
Handler processes the request and then sends a response message back to
the requesting task. The task waits at a response mailbox for the
message. Thus, whether a task does input or output, it first sends and
then receives. The full details of the input and output protocols are
described later in this chapter. Output is discussed first because it is
somewhat easier to understand.

For both input and output, a task sends a message segment to the Terminal
Handler. The format of a request message is depicted in Figure 3-3. The
numbers in that figure are offsets, in bytes, from the beginning of the
segment. The field names have different meanings for input and for
output. For both input and output, the first four fields are WORD
values. The MESSAGE CONTENT field can be up to 132 bytes in length for
input and up to 65527 bytes in length for output.

REPLACE Terminal Handler 3-2 Update 3, 3/85

SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS

Table 6-7. Controller Board Switch Settings (continued)
Intel Board Switch Setting Description/Function
iSBC 22¢ sl, 1-7 OFF Selects port address 1¢@H.
(DIP Switches) 8 ON
s2, 1-2 ON Selects a 1l6-bit bus and
16-bit address decoding.
3-1¢ OFF Selects port address 1@gh.
iSBC 22¢ El6 - E15 Selects port address 1@gH
(Wire Wraps)
El8 - El17 Selects a 16-bit bus and
E2¢ - El9 16-bit address decoding
iSBX 251 Not applicable.
iSBC 254 Not applicable.
iSBC 2548 Not applicable.
iSBX 27¢ Not applicable.
iSBX 351 Not applicable.
iSBC 534 Not applicable.
iSBC 544 If your board does not
have a switch SWl, then
refer to Table 6-3.
SWl, 1-4 ON Selects Dual-Port RAM
address. Also refer to
Table 6-4.
SWl, 5 ON Selects Dual-Port RAM size
of 16K.
SwWl, 6 OFF
SwW1, 7 ON Selects 2732A EPROMS.
Swil, 8 OFF Configures board for slave
mode.
REPLACE Installation 6-15 UPDATE 3, 3/85

SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS

DIP HEADER CONFIGURATIONS FOR THE RS232C PROTOCOL

Table 6-8 lists the DIP-header configurations you need to supply to
configuration process
solder style header or inserting

implement the RS232C serial This
involves either soldering wires on a

wires into a pin-and-socket style header.

protocol.

Table 6-8. DIP Header Configurations for the RS232C Protocol
DIP Header
Intel Board Jumpers Description/Function
iSBX 351 3-13 Board RxD to Terminal TxD.
4-14 Board TxD to Terminal RxD.
7-8 Board DSR to Board DTR.
5-6 Board RTS to Board CTS.
11-12 Terminal RTS to Terminal CTS.
9--1¢ Terminal DSR to Terminal DTR.
iSBC 534 4--5 Board DSR to Board DTR.
6-7 Board RTS to Board CTS.
8-10 Board RxD to Terminal TxD.
9-11 Board TxD to Terminal RxD.
12-13 Terminal RTS to Terminal CTS.
14-15 Terminal DSR to Terminal DTR.
iSBC 544 2-3% Board DSR to Board DTR.
4-5 Board RTS to Board CTS.
6-12 Board RxD to Terminal TxD.
7-13 Board TxD to Terminal RxD.
14-15 Terminal RTS to Terminal CTS.
16-17% Terminal DSR to Terminal DTR
Notes: Signal Names:
TxD: Transmit Data RxD: Receive Data
DIR: Data Terminal Ready DSR: Data Set Ready
RTS: Request To Send CTS: Clear To Send

* TIf your terminal does not produce DSR but receives DTR, replace

with the following: 2-16; 3-17

MISCELLANEOUS JUMPERS

Table 6-9 1lists jumpering information not covered in the previous
sections. The 1list of jumpers change different functional areas.
Perform the changes to use default valueg established by Intel.

REPLACE Installation 6-16 UPDATE 3, 3/85

SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS

Table 6-9. Miscellaneous Jumpers
Remove Add
Intel Board Jumper Jumper Description/Function
iSBC 204 E75-E76 Use if iSBC 2@4 has two 8271
E77-E78 devices installed.
iSBC 2g6 None.
iSBC 2¢8 None.
isBC 215 W4, 1-2 Remove only if installing an
iSBX 218A in iSBX socket 1
(J4).
iSBC 215G W4, 1-2 Remove only if installing an
iSBX 218A in iSBX socket 1
(J4).
W24, 1-2 Use if installing an iSBX
218(A) in iSBX socket 1 (J4).
w2g, 1-2 Connects -12 volts from the
MULTIBUS to the iSBC 215G.
iSBX 218 Wl, A-B Wi, A-C Disables iSBX 218 DMA lines.
iSBX 218A This board may require some
special jumper changes
depending on the require-
ments of your application.
Consult the iSBX 218A|
Hardware Reference Manual for
special considerations.
iSBC 22¢ None.
iSBX 251 None.
iSBC 254 None.
iSBC 2548 None.
REPLACE Installation 6-17 UPDATE 3, 3/85

SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS

Table 6-9. Miscellaneous Jumpers (continued)
Remove Add
Intel Board Jumper Jumper Description/Function
iSBX 27¢ E11-E12 Sets up your terminal screen
E16-E17 output.
E21-E22
E23-E24
iSBX 351 None.
iSBC 534 None.
iSBC 544 None.
Kk
REPLACE Installation 6-18 UPDATE 3, 3/85

CHAPTER 10
DEVICE DRIVER PARAMETERS

This chapter discusses how to respond to the prompts that appear on the Intel
Device Driver screens.

particular parameter line,

If you are wusing this

chapter to understand a
search Table 16-1 for the device driver that

interests you and then turn to the page indicated to the right of the device

driver.

Table 1¢-1. Intel-Supplied Device Drivers
Device Driver Page Number

i8SBC 204 16-@2
iSBC 206 1¢-12
isBC 208 1¢-21
iSBC 215 16-34
isBX 218 19-50¢
iSBC 22¢ 14-62
iSBC 254 18--76
iSBX 27¢ 106-86
iSBC 534 16-95
iSBC 544 19-106
8251A Terminal Driver 1¢-118
Line Printer 19-13¢
USART Terminal Handler Driver 1¢-133
8274 Terminal Driver 1¢-135
Line Printer for iSBC 286/1¢ 1¢-152
iSBC 188/48 14-152.1
iSBX 251 16-156
SCSI Driver for iSBC 186/@3 14-164
iSBX 218A 18-179
RAM Driver 1¢-191
iSBC 216 19-200¢
82530 Terminal Driver 10-2¢1

If you are adding a user-supplied device driver, refer to page 1¢-214.

REPLACE

Configuration 1¢-1

UPDATE

3,

3/85

iSBC! 2@¢4 DRIVER PARAMETERS

The iSBC 2¢4 flexible disk driver:
® Supports 8-inch, single-sided, single-density diskettes.

[Supports the READ, WRITE, SEEK, SPECIAL, ATTACH$DEVICE, and
DETACH$DEVICE functions.

® Accepts functions OPEN and CLOSE but performs no operations for
them.

Track formatting and volume change notification are supported via the
SPECIAL function. Refer to the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL
for further information about these special functions.

The iSBC 24 driver supports up to four units per controller, two for
each 8271 flexible disk controller component. The typical controller has
one 8271 component. This component supports two single-sided units.

There are three screens that define the interface between the iSBC 284
random access device driver and the I/0 system. These screens relate to
the three device configuration tables: the device information table, the
unit information table, and the device unit information block (DUIB).
Refer to Appendix D for further information about these tables.

The values shown on the screens in this section are the same as values
you would see if you choose option "@g" from the Intel-supplied device
driver screen.

iSBC! 2¢4 DRIVER SCREEN

The ICU uses the information from the following screen to create a device
information table for the iSBC 2¢4 driver. If your system includes more
than one iSBC 2¢4 controller, you must specify a unique interrupt level
and port address for each controller.

KKk KKK
XXk XXk
xxx ok
**% iSBC 204 Driver fateded
X%% (IL) Interrupt Level [Encoded Level] @@18H fatatad
**%% (ITP) Interrupt Task Priority [@-@FFH] P982H *xk
*X%x (PA) Port Address [@-@FFFFH] @BAGH XXX
ok *xk
*%X, Enter Changes [Abbreviation ?/= new_value] fadedad
X%x%x! Do you have any units for this device? Ratatatal
° XXX | 1 XKk ©

Fe 3 T3k 3k 2 K ek ok ke ke 3k e 9Kk 3K 3K ke ok 3 ke ke ke ke 2 ¢ 2k 3k 3k ke ke 2k e ke ok ¢ S ok ok ok ok ok 3K Sk oK R R R R R A R K AR R AR KAk
© 3 3K 3 3K KKk 3K 9k oK 9 ke Sk K Sk 3¢ 3K 3k 6 3k 3k 5k e 3k 3K 3k 9K 5k 9k 3 ¢ ok 5 oK ok oK 3k ol 3k ok ok 3R R SRR OR K R Xk k ok ©

REPLACE Configuration 1@-2 UPDATE 3,

3/85

iSBC® 208

pool, so by setting this parameter to @FFH you allow the calling job to
select the number of buffers based on its own memory pool size. It is
recommended that you use the default value.

A 999 3 DK 9 D oK e D 3K 9K R S 3¢ SR 9k D e e 3 s 3R T 9 k3K 3K e 3 oK ok ke 3t 9 e 9K 9K 3 SR 3K 3 K 9K S K K ST R KR Rk Xk

* Do you have any more DUIBs for this device? x
FoR A K KKK R KK KKK KK IR K KRR KKK KRR KKK KKK KK AKIK KKK KKK KKK KKKKK KK KKK

Respond "Yes"” to this prompt "Do you have any more device-unit
information blocks for this device?" if you plan to use the iSBC 2@8
controller with two devices that have different characteristics.

While developing your initial systems, you can create as many device-unit
information blocks as you want. The number of DUIBs can exceed the
number of devices on your system. The particular DUIB associated with
the device depends on the physical name you use when attaching it. Once
you know that you will never need a particular DUIB, save memory by
deleting it from your description file before you generate your
configuration files (refer to Chapter 17 for additional information on
generating configuration files).

REPLACE Configuration 1¢-33 UPDATE 3, 3/85

iSBC" 215

iSBC! 215 DRIVER PARAMETERS

The iSBC 215 Winchester disk driver:

® Supports the READ, WRITE, SEEK, SPECIAL, ATTACH$DEVICE, and
DETACH$DEVICE functions.

® Accepts the OPEN and CLOSE functions but performs no operations
for it.

Track formatting and volume change notification are supported via the
SPECIAL function. Refer to the iRMX 86 BASIC I1I/0 SYSTEM REFERENCE MANUAL
for further information about these special functions.

There are three screens that define the interface between the iSBC 215
random access device driver and the I/0 system. These screens relate to
the three device configuration tables: the device information table, the
unit information table, and the device unit information block (DUIB)
Refer to Appendix D for further information about these tables.

The three screens that are described in this section are 1labeled
"iSBC 215/218". This means that the screen supports both the iSBC 215
and the iSBX 218 controllers. This section describes only the
iSBC 215-related parameter lines. Refer to the section of this chapter
labeled "iSBX™ 218 DRIVER PROMPTS" for information on how to respond to
iSBX 218-related parameter lines.

The values shown on the screens in this section are the same as values
you would see if you use the rmx86.def file when you invoke the ICU.

iSBC! 215 DRIVER SCREEN

The ICU uses the information from the following screen to create a device
information table for the iSBC 215 driver. If your system includes more
than one iSBC 215 controller, you must specify a unique interrupt level
and wakeup I/0 port address for each controller.

KK KKK
XXk XX
o ok
] iSBC 215/iSBX 218 Driver
(IL) Interrupt Level [Encoded Level] @@58H
(ITP) Interrupt Task Priority [@-@FFH] @@82H
(IP) Wakeup I/0 Port [@-@FFFFH] @100H
= uiata
I *%%, Enter Changes [Abbreviation ?/= new_valuel] o tated
KKK) ? KKKk
XKk K 1 1 KKK O

FR R S R 3K 5K 9k 3k 3 S 2 A 9 9 3 oK ok ok Sk e o e e ko 3K e ok 3k 3K ke e e s 0 R 3k SR 9 0K oK 9 K 0 K K AR KRR R S R R R R kX okok
3 3% 2R 3 3K KSR DK K A o s sk ok ok v oK e Dk s 3 ok s ot 3K e 9 SR SRS S KSR R R R R R R ek e Kk ok ©

REPLACE Configuration 1¢J-34 UPDATE 3, 3/85

iRMX™ 86 OPERATING SYSTEM RELEASE 6 CHANGE PACKAGE: UPDATE 2

Purpose

The change pages in this package correct technical errors identified in the
current version of the iRMX™ 86 Release 6 documentation.

Scope
The following manuals are affected by this change package:

Introduction and Operator's Reference Manual (146194-¢@1)
Programmer's Reference Manual, Part I (146195-@@1)
Programmer's Reference Manual, Part II (146196-0@1)
iRMX™ 86 Installation and Configuration Guide (146197-¢¢g1)

Installation Instructions

Change pages in the Update Package are accumulated from quarter to quarter.
The change pages for each successive update are separated in this package by a
blue cover page (similar to the sheet you are now reading). Within each
update section, yellow, pink, green, and orange cover sheets segregate the
change pages according to volume.

The change pages in this package are installed by removing a page from your
documentation and replacing it with the corresponding page from the change
package.

If this is the first iRMX™ 86 Release 6.8 Update to be installed in your
documentation:

1. Install the change pages in this section before installing the change
pages for Update 3.

If you have installed previous iRMX™ 86 Release 6.8 Updates in your
documentation: :

1. Discard this section.

iRMX™ 86 Release 6.8 Change Package: Update 2
Change Pages for:

iﬁuxm 86 Introduction and Operator's Reference Manual (146194-¢g@1)

USING THE HUMAN INTERFACE

Another advantage of hierarchical file structure is that duplicate file
names are permitted unless the files reside in the same directory.
Notice in Figure 2-2 that the file tree contains two directories named
BILL. (These directories are on the extreme left and extreme right of
the figure.) However, the Operating System recognizes them as unique
files because each resides in a different directory.

Each file tree resides on a secondary storage volume —— the storage
medium that contains the data. Examples of volumes include flexible
diskettes, hard disks, and bubble memories. Before you can place named
files on a volume, you must format the volume to accept named files. The
formatting process writes a number of data structures on the volume to
aid the Operating System in creating and maintaining files. You can use
the FORMAT command (described in Chapter 3) to format your volumes,

The uppermost point of each file tree is a directory called the root
directory. When formatted for named files, each secondary storage volume
has one and only one root directory. For these reasons:

° There can be only one file tree per secondary storage volume.

° A file tree cannot extend to more than one volume.

PATHNAMES

This section describes how to specify a particular file in a named-file
tree. For simplification, it assumes that all files reside in the same
file tree, and thus in the same volume. To identify the volume as well
as the file, you must include a logical name for the device as the first
portion of the file specification., Refer to the "Logical Names"” section,
later in this chapter, for more information about logical names.

In a file tree, each file (data or directory) has a unique shortest path
connecting it to the root directory. For example, in Figure 2-2, the
shortest path from the root directory to file BATCH-2 goes through
directory DEPT1, through directory TOM, through directory TEST-DATA, and
finally stops at data file BATCH-2., When you want to perform an
operation on a file (for example, using the COPY command to copy one file
to another), you must specify not only the file's name, but the path
through the file tree to the file. This description is called the file's
pathname. For file BATCH-2 in Figure 2-2, the pathname is:

DEPT1/TOM/TES T-DATA/BATCH-2

REPLACE Operator 2-11 UPDATE 2, 12/84

USING THE HUMAN INTERFACE

0= Attaching User
(0 = owner)

'WORLD = L
:SD:
B0OT SYSTEM uTILS LANG Shxas WORK CONFIG USER
0 = OWNER 0 = owner 0 = awner ower 0 = owner (=owner e 0 = owner 0 = owner (0 = owner)
WORLD =L WORLD =L WORLD =L WORLD =L WORLD = L WORLD = L woRB =L WORLD = DLAC WORLD = L WORLD = L
RMX88 I
0 = owner
. WORLD =L cMD USER
(Ouewnar) 0 = owner
Human Interface Language Utllitles WORLD= L WORLD = L
Commands V?O‘ROL\;"MH
= owner -
Wons
- WORLD = n)
ohmxee mgx"'ea Libraries »
WORLD = N and Con '%‘x::,,“") tles Ingluds Files
WORLD = R = owner .
WORLD 2 Configuration ° WORLD WORLD
| | I —I Submit Files, © = owner (WORLD = owner)
= owner .
WORLD =R WORLD =R
NDPB7 AMxes PASCB6 PLMB FORTS6 l
(O = owner 0 = ownes 0 = owner = owner 0 = owner
WORLD =L WORLD =L WORLD =1 woRtb =L WORLD =L
PROG
(WORLD = owner)
IRMX"86 Intertace Libraries and Language Librarios A?LOGON
(WORLD = owner)
WORLD =R
1350
[= directory
/\ =datatile

L =listaccess
R =read access
N =no access

DLAC = allaccess

Figure 2-3.

File Structure on an Intel Supplied Start-Up System

REPLACE

Operator 2-12

UPDATE 2,

12/84

ATTACH DEVIC

° A task deletes the connection to the file via a Basic I/0 System
or Extended I/0 System call (refer to the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL or the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL for more information about connections). In
this instance, the logical name remalns cataloged in the global
directory, but the comnection to which it refers does not exist.

. A user forcibly detaches the volume containing the file via the
DETACHDEVICE command (described later in this chapter).

° A user removes the volume from the drive.

ERROR MESSAGES
o <logical name>, list of logical names not allowed

You entered more than one logical name as input to ATTACHFILE.

. <pathname>, list of pathnames not allowed

You entered more than one pathname as input to ATTACHFILE.

. <logical name>, logical name not allowed
You attempted to attach a file using a logical name :HOME:, :CI:,
or :CO0:., You cannot change the meaning of these logical names.

° <logical name>, not a file connection
The logical name you specified, <logical name>, is already
cataloged in object directory of the session and does not
represent a connection object.

° <pathname>, not allowed as default prefix
You attempted to attach a physical or stream file as your default
prefix (:$:). Only named files are valid.

° <logical name>, too many logical names

Your global object directory is full. Therefore ATTACHFILE is
unable to catalog the file's name in the object directory.

REPLACE Operator 3-15 UPDATE 2, 12/84

BACKUP

This command saves files on a named volume by copying them to a physical
volume which serves as a backup storage device. This command provides a
way of saving a large volume (a Winchester disk, for example) onto a
number of smaller volumes such as diskettes or onto another mass storage
device such as a tape drive. Later, you can use the RESTORE command
(described later in this chapter) to retrieve these files and copy them
to a named volume.

BACKUP

pathname

INPUT PARAMETERS

pathname Pathname of a file on the source volume. BACKUP
saves all the files starting from this point on
the file tree. T[f you specify the logical name of
the device only, BACKUP saves all files in the
volume, beginning with the root directory. If you
specify a file and not a directory, then only the
specified file is saved.

DATE BACKUP saves all files created or modified on or
after the date and time specified with the
DATE/TIME parameters. If the DATE parameter is
omitted, the date defaults to the current system
date. If both date and time parameters are
omitted (DATE/TIME), then the date and time
default to 1/1/78 and 00:00:00.

mm/dd /yy Form used to specify the DATE.
mm Numerical designation for the month. (For
example: 1 represents January, 2 represents

February, etc.). Must be a digit.

dd Numerical designation for the day of the
month. Value must be in digits.

vy Designation for the year. You enter this
as a two digit number, as follows:

REPLACE Operator 3-16 UPDATE 2, 12/84

PERMIT

This command allows you to grant or revoke user access to files that you
own. The format of this command is as follows:

@ pathnam

USER=userlist

L]
AR
_/

C

INPUT PARAMETERS

pathname-list One or more pathnames, separated by commas, of the
files that are to have their access rights or list
of accessors changed.

access Access characters that grant or rescind the
corresponding access to the file, depending on the
value parameter that follows. The possible values

include:

Value Access

D Delete

L or R List (for directories) and
read (for data files)

A Add entry (for directories)
and append (for data files)

Cor U Change (for directories) and
Update (for data files)

N Rescinds all access not

explicitly granted (used
without an accompanying value)

If specified without an accompanying value, each

access character grants the specified access.
Specifying N alone rescinds all

REPLACE Operator 3-83 UPDATE 2, 12/84

'ERMIT

value

user-list

DATA

DIRECTORY

MAP

REPLACE

access and removes the users specified with the
USER parameter from the file's access list.,
Specifying N with other characters grants the
access specified by those characters and rescinds
all other access., You can use L and R
interchangeably for both data files and
directories; likewise C and U.

Value which specifies whether to grant or rescind
the associated access right, Possible values
include:

Value Meaning
0 Ressicind the access right
1 Grant the access right

The default value is 1. That is, specifying an
access character without a value grants the
corresponding access,

User IDs for whom the previously-specified access
rights apply. Two special values are also
acceptable for this parameter. They are:

WORLD Special user ID (OFFFFh) giving all
users access to the file.

* Designator indicating that the
access rights apply to all users
currently in the file's access list.

The Operating System limits each file to three
user IDs in the access list. If you omit this
parameter, PERMIT assumes the user ID associated
with your interactive job.

Specifies that the access information applies to
the data files in the pathname list. If you omit
both the DATA and DIRECTORY parameters, PERMIT
assumes both.

Specifies that the access information applies to
the directories in the pathname list. If you omit
both the DATA and DIRECTORY parameters, PERMIT
assumes both.

Specifies that access information also applies to
the map and volume label files in the pathname
list. If you use the MAP parameter, you must
specify the full pathname of any map files or
volume label files in the pathname list. For,
example PERMIT :£f(0:R?* DLAU MAP will change the
access rights for all map files and volume label

Operator 3-84 UPDATE 2, 12/84

files on the volume (with the exception of R?SAVE
which is unaffected by the MAP parameter). Notice
that, in this instance, the Human Interface does
not interpret the "?" as a wild card character.

QUERY Causes PERMIT to prompt for permission to modify
the access rights assocliated with each file. It
does this prompting by displaying the following
message:

<pathname>,
accessor = <new 1id>, <new access>, PERMIT?--

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Yory Change the access.

E or e Exit from the PERMIT command.,
Ror r Change the access and continue

with the command without
further query.

Any other Do not change access; continue

character with PERMIT command and query
for next access change, if any.

DESCRIPTION

You can use the PERMIT command to update the access information for the
following files:

° Files for which you are listed as the owner.

e Files for which you have change-entry access to the file's parent
directory.

You cannot change the access information for other files. PERMIT can
perform the following functions:

® Adding or subtracting users from a file's list of accessors.
This list determines which users have access to the file.

° Setting the type of access (access rights) granted to the users
in the accessor list.

Currently the Operating System allows only three user IDs in the 1list of

accessors, but one of these IDs can be the special ID WORLD, which grants
access to all users,

REPLACE Operator 3-85 UPDATE 2, 12/84

PERMI

ERMIT

You specify the type of access to be granted or rescinded by means of

access characters and values. You can concatenate access characters and
values together or you can separate the individual access specifications
with commas. For example, if you want to grant delete access and rescind
add and update access, you could enter any of the following combinations:

AODUO
AO0,D,UO
AOD1UO
AO0,D1,U0

As you can see from the previous lines, D is equivalent to Dl. Also, the
order in which you specify access characters is not important.

If there are multiple occurrences of an access character in the PERMIT
command, PERMIT uses the last such character to determine the access.
For example, the combination:

D0, Al,R1,D1
is the same as the combination:
Al,R1,D1
In the first combination, the D1 overrides the DO.

You can use the N character to rescind all access to the file, If
specified alone, it removes user IDs from the accessor list. However,
the N character can also be useful when changing access rights, if you
don't remember the specified user's current access rights, In this case
you can specify the N character first, to clear all the access rights,
and follow it with other characters to grant the desired access. For
example, if you want to grant list access only, you could specify "NL"
instead of "DOAOCOL".

After changing the access information for a file, PERMIT displays the
following information:

<{pathname)>,
accessor = <Laccessor ID>, <access>

where <{pathname> is the pathname of the specified file, <accessor ID> is
the user ID of one of the files accessors, and <access> indicates the
access rights that the corresponding user has., PERMIT displays the
access rights as access characters: DLAC for directories and DRAU for
data files., 1If a particular access right is not allowed, the display
replaces the corresponding character with a dash (-). For example, the
display:

-L-C

indicates that the corresponding user has list and change access.

REPLACE Operator 3-86 UPDATE 2, 12/84

RESTOI

) output specification missing

You did not specify a pathname to indicate the destination of the
restored files.

° <pathname>, READ access required
You do not have read access tc a file on the backup volume;
therefore RESTORE cannot restore the file.

° <pathname>, too many input pathnames

You attempted to enter a list of logical names for the backup
devices, You can enter only one input logical name per
invocation of RESTORE.

REPLACE Operator 3-97 UPDATE 2, 12/84

SUBMIT

This command reads and executes a set of commands from a file in
secondary storage instead of from the console keyboard.

=

X-205A

out-pathname

INPUT PARAMETERS

pathname Name of the file from which the commands will be
read. This file may contain nested SUBMIT
commands .

parameter-list Actual parameters that are to replace the formal
parameters in the SUBMIT file. You must surround
this parameter list with parentheses. You can
specify as many as 10 parameters, separated by
commas, in the SUBMIT command. If you omit a
parameter, you mist reserve its position by
entering a comma., If a parameter contains a
comma, space, or parenthesis, you must enclose the
parameter in single quotes. The sum of all
characters in the parameter list must not exceed
512 characters,

OUTPUT PARAMETERS

TO Causes the output from each command in the SUBMIT
file to be written to the specified new file
instead of the console screen. If the output file
already exists, the SUBMIT command displays the
following message:

<pathname>, already exists OVERWRITE?

REPLACE Operator 3-98 UPDATE 2, 12/84

Enter Y, vy, R, or r if you wish the existing
output file to be deleted. Enter any other
character if you do not wish the existing file to
be deleted. A response other than Y or y causes
the SUBMIT command to be terminated and you will
be prompted for a new command entry.

OVER Causes the output for each command in the SUBMIT
file to be written over the specified existing
file instead of the console screen.

AFTER Causes the output from each command in the SUBMIT
file to be written to the end of an existing file
instead of the console screen.

out—-pathname Pathname of the file to receive the processed
output from each command executed from the SUBMIT
file. 1If no preposition or output file is
specified, TO :CO: is the default.

ECHO ECHO causes the a copy of the data read from the
first level of a SUBMIT file to be sent to the
CRT. This parameter lets you know which action
specified within a SUBMIT file is currently
executing. Nested SUBMIT commands do not have
their contents sent to the console.

DESCRIPTION

To use the SUBMIT command you must first create a data file that defines
the command sequence and formal parameters (if any). The Operating
System first looks for the pathname ending in "CSD". If no such file is
found, then the Operating System looks for the specified file in the
pathname.

Any program that reads its commands from the console input (:CI:) can be
executed from a SUBMIT file. If another SUBMIT command is itself used in
a SUBMIT file, it causes another SUBMIT file to be invoked. You can nest
SUBMIT files to any level of nesting until memory is exhausted (each
level of SUBMIT requires approximately 10K of dynamic memory). When one
nested SUBMIT file completes execution, it returns control to the next
higher level of SUBMIT file.

If, during the execution of SUBMIT (or any nested SUBMIT), you enter the
CTRL/c character to abort processing, all SUBMIT processing exits and
control returns to your user session.

When you create a SUBMIT file, you indicate formal parameters by
specifying the characters 7%n, where n ranges from 0 through 9. When
SUBMIT executes the file, it replaces the formal parameters with the
actual parameters listed in the SUBMIT command (the first parameter
replaces all instances of %0, the second parameter replaces all instances
of %1, and so forth)., If the actual parameter is surrounded by quotes,
SUBMIT removes the quotes before performing the substitution. If there

REPLACE Operator 3-99 UPDATE 2, 12/84

SUBM

SUBMIT

is no actual parameter that corresponds to a formal parameter, SUBMIT
replaces the formal parameter with a null string.,

When you specify a preposition and output file (other than :C0:) in a
SUBMIT command, only your SUBMIT command entry will be echoed on the
console screen; the individual command entries in the submit file are not
displayed on the screen as they are loaded and executed.

The SUBMIT command will display the following message when all commands
in the submit file have been executed:

END SUBMIT <pathname>
You may use SUPER sub—commands (such as CHANGEID) within a SUBMIT file.
To do so, you must include a SUPER command in the SUBMIT file. The SUPER
command must precede any of the sub-commands in the file. When the
SUBMIT file encounters the SUPER command, you are prompted for a
password. Execution of the remainder of the file does not resume until
you respond. You can avoid interrupting execution of the SUBMIT file by
invoking the file while you are in the SUPER mode. In this case, the
SUBMIT file still requires an embedded SUPER command. However, you are
not prompted to re-enter the password when the SUBMIT file executes.
ERROR MESSAGES
° <pathname>, end of file reached before end of command
The last command in the input file was not specified completely.
For example, the last line might contain a continuation character.
° <{parameter>, incorrectly formed parameter
You separated the individual parameters in the parameter list
with a separator character other than a comma.

™ <pathname>, output file same as input file

You attempted to place the output from SUBMIT into the input file.
° <pathname>, too many input files

You specified more than one pathname as input to SUBMIT. SUBMIT

can process only one file per inwvocation.

) <{parameter>, too many parameters

REPLACE Operator 3-100 UPDATE 2, 12/84

ZSCAN

This command reads an object file or an object library and displays the
Identification Number of all ZAPs that have been applied to that file.

—— zscaN inputq@——

X905

INPUT PARAMETER

input-path The pathname of the object file or object
library to be scanned. The pathname
cannot contain wildcard characters. The
pathname must specify a file, not a
directory.

DESCRIPTION

Fixes for problems discovered in the operation system software are
distributed through the iRMX 86 Update Service. Intel refers to these
fixes as "ZAPs", ZAPs are patched modules that replace the corresponding
module in the operation system.

Each update diskette contains an accumulation of all ZAPs assured during
the current release of the operating system. When you install the latest
update, all ZAPs (from the current update and from previous updates) are
automatically applied to your system.

The ZSCAN command allows you to check which ZAPs have been applied to an
object file or an object library. Beginning with iRMX 86, Release 6.0,
Update 2.0 all ZAPs (including all ZAPs from previous Release 6 updates)
are marked by a unique identifier string. Installing Update 2 —-- or any
later update -- asgsures that ZAP identifier strings are affixed to all
ZAPs currently applied to iRMX 86 Release 6.0. ZSCAN finds occurrences
of there strings and returns information about the associated ZAPs.

When you invoke ZSCAN, you must specify an object file or an object
library. You can not invoke the command to find all of the ZAPs applied
within a specified directory. Furthermore, you cannot use wildcard
characters in the pathname of the file to be scanned.

Output from ZSCAN is automatically directed to your terminal. To
re-direct output to any other destination, place the ZSCAN command line
in a SUBMIT file. Then invoke the SUBMIT file specifying the desired
output destination.

INSERT Operator 3-113 UPDATE 2, 12/84

ISCAN

By default, the iRMX 86 system object files are not accessible to user
WORLD. Therefore, 1f you intend to use ZSCAN on a bootable system object
file, you must grant user WORLD read access rights to that file (using
the Human Interface PERMIT command) or invoke ZSCAN from the SUPER mode.

OUTPUT DISPLAY

Upon successful execution, the ZSCAN ccmmand displays one of the two
following messages.

When ZSCAN encounters ZAPs:

< filename > , has the following ZAP(s) applied:
< zap id > , < class > : for iRMX 86 R6.0, < layer > < version >

< zap id > , < class > : for iRMX 86 R6.0, < layer > < version >

where:
<filename> the name of the file being scanned.
<zap 1d> the identification code for the ZAP:
Z BR Alxx
B
where:
BR = a IRMX 86 Release 6.0 ZAP;
A = a Class A ZAP
B = a Class B ZAP
XX = a unique ID number from O to 99
<{class> the class of the ZAP. Class A indicates a
supported ZAP distributed through the iRMX 86
update service. Class B indicates an
un-supported ZAP with limited distribution,
<{layer> the layer of the operating system (e.g. NMucleus,
BIOS, etc.) that the ZAP pertains to.
<{version)> the version of the operating system layer that

the ZAP pertains to.

INSERT Operator 3-114 UPDATE 2, 12/84

ZSCA|

When ZSCAN encounters no ZAPs:
< filename > , No ZAPs applied
where:

< filename > the name of the file bing scanned.

ERROR MESSAGES
° { filename > file does not exist.
There is no file with the pathname specified in the command.
e < filename > 1s not an object module.

The file specified in the command is not an object module and
thus cannot be scanned for ZAPs,

INSERT Operator 3-115 UPDATE 2, 12/84

ALLOCAT

<fnodenum>, fnode out of range The fnode number that you specified
was larger than the largest fnode
number in the volume,

no badblocks file Your system does not have a bad
blocks file. This message could
appear because you used a Release 4
or earlier version of the Human
Interface command, FORMAT, when you
formatted your disk.

REPLACE Disk Verify 2--7 UPDATE 2, 12/84

DISK COMMAND

This command displays the attributes of the volume being verified. You
can abort this command by typing a CONTROL-C (press the CONTROL key, and
while holding it down, press the C key). The format of the DISK command
is as follows:

~ o

x-225

OUTPUT

The output of the DISK command depends on whether the volume is formatted
as a physical or named volume. For a physical volume, the DISK command
displays the following information:

Device name = <devname>
Physical disk
Device gran = <devgran>
Block size = <devgran)>
No of blocks = <numblocks>
Volume size = <size)>
where:
<devname> Name of the device containing the volume. This is
the physical name of the device, as specified in the
ATTACHDEVICE Human Interface command.
<devgran> Granularity of the device, as defined in the device
unit information block (DUIB) for the device. Refer
to the iRMX 86 CONFIGURATION GUIDE for more
information about DUIBs. For physical devices, this
is also the volume block size.
<numhlocks> Number of volume blocks in the volume.
{size> Size of the volume, in bytes.

For a named volume, the DISK command displays the following information:

Device name = <devname)
Named disk, Volume name = <volname)
Device gran = <devgran>
Block size = <{volgran>
No of blocks <numblock s>
No of Free blocks = <numfreeblocks)>
Volume size <size>
Interleave <{inleave>
Extension Size = <xsize)>
No of fnodes = <numfnodes>
No of Free fnodes = <numfreefnodes>
REPLACE Disk Verify 2-8 UPDATE 2, 12/84

STRUCTURE OF iRMX" 86 NAMED VOLUMES

If the formatting program is unable to provide this
information, it places an ASCII space in this field.

The next two bytes contain a two-digit ASCII
sequence number which is incremented by the
formatting program each time the formatting
program changes in a way that affects the volume
format. The Release 4 FORMAT Human Interface
command places the characters "00" in this field.

The right-most three bytes of the field contain
a three-digit ASCII number specifying the
version of the Basic I/0 System that was used in
formatting the volume (for example, the
characters "030" would indicate version 3.0).

If the formatting program is unable to obtain
this information, it places ASCII spaces in this
field.

DEVICESSPECIAL(8) Reserved for special device-specific information.

When no device-specific information exists, this
field must contain zeros. If the device is a
Winchester disk with an iSBC 215 controller or if
the device is a disk with an 1iSBC 220 controller,
the iRMX 86 Operating System imposes a structure on
this field and supplies the following information:

SPECIAL STRUCTURE(
CYLINDERS WORD,
FIXED BYTE,
REMOVABLE BYTE,
SECTORS BYTE,
SECTOR SIZE WORD,
ALTERNATES BYTE) ;
where:
CYLINDERS Total number of cylinders on the
drive,
FIXED Number of heads on the fixed

disk or Winchester disk.

REMOVABLE Number of heads on the removable
disk cartridge.

SECTORS Number of sectors in a track.
SECTOR SIZE Sector size, in bytes.

ALTERNATES Number of alternate cylinders.

The remainder of the Volume Label (bytes 430 through 511) is reserved and

must be set to zero.

REPLACE

Disk Verify A-7 UPDATE 2, 12/84

STRUCTURE OF iRMX™ 86 NAMED VOLUMES

INITIAL FILES

Any mechanism that formats 1IRMX 86 named volumes must place seven files
on the volume during the format process. These seven files are the fnode
file, the volume label file, the volume free space map file, the free
fnodes map file, the bad blocks file, the root directory, and the space
accounting file. The first of these files, the fnode file, contains
information about all of the files on the volume. The general structure
of the fnode file is discussed first. Then all of the files are
discussed in terms of their fnode entries and their functions.

FNODE FILE

A data structure called a file descriptor node (or fnode) describes each
file in a named file volume. All the fnodes for the entire volume are
grouped together in a file called the fnode file. When the I/0 System
accesses a file on a named volume, it examines the iRMX 86 Volume Label
(described in the previous section) to determine the location of the
fnode file, and then examines the appropriate fnode to determine the
actual location of the file.

When a volume is formatted, the fnode file contains seven allocated
fnodes and any number of un-allocated fnodes. The original number of
un-allocated fnodes depends on the FILES parameter of the FORMAT
command. These allocated fnodes represent the fnode file, the volume
label file, the volume free space map file, the free fnodes map file, the
bad blocks file, the root directory, and the space accounting file.
Later sections of this chapter describe these files. The size of the
fnode file is determined by the number of fnodes that it contains. The
number of fnodes in the fnode file also determines the number of files
that can be created on the volume. The number of files is set when you
format the storage medium.

The structure of an individual fnode in a named file volume is as follows:

DECLARE
FNODE STRUCTURE(
FLAGS WORD,
TYPE BYTE,
GRAN BYTE,
OWNER WORD,
CRSTIME DWORD,
ACCESSST IME DWORD,
MODSTIME DWORD,
TOTAL$SIZE DWORD,
TOTALSBLKS DWORD,
POINTR(40) BYTE,
THIS$SIZE DWORD,
RESERVEDSA WORD,
RESERVEDS$B WORD,
ID$SCOUNT WORD,
ACC(9) BYTE ,
PARENT WORD,
AUX(*) BYTE) ;
REPLACE Disk Verify A--8 UPDATE 2, 12/84

INDEX

Underscored entries are primary references.

aborting DISKVERIFY commands 2-2
ALL option 2-47

ALLOCATE command 2-5

automatic device recognition A-4
auxiliary bytes A-13

bad blocks file A-15
bad blocks
in FREE command 2-27
map 2-38

command dictionary 2-4
command error messages 2-3
CONTROL~C 2-2

density A-4
device granularity A-5
device recognition A-4
directory A-16
DISK command 1-3
DISK command 2-8
DISKVERIFY command 1-
error messages 1-
output 1-4
DISPLAYBYTE command 2-10
DISPLAYDIRECTORY command 2-13
DISPLAYFNODE command 2-15
DISPLAYNEXTBLOCK command 2-20
DISPLAYPREVIOUSBLOCK command 2-21
DISPLAYWORD command 2-22

2
5

example volume A-22

EXIT command 2-25

file
driver A-5
granularity 2-15, A-10
owner 2-15, A-11
type 2-15, A-10

fnode file A-8, A-14, A-24
fnodes 2-15, A-5, A-7

FREE command 2-26

free fnodes map 2-38, 2-39, A-15
free space map 2-38, 2-39, A-14

REPLACE Disk Verify Index-1 UPDATE 2, 12/84

INDEX (contiaued)

granularity 2-15, A-5, A-10
HELP command 2-28

initial files A-8

input radices 2-2

interleave factor A-3, A-5
invoking 1-1

iRMX 86 volume label A-4, A-23
ISO information A-1 ~

ISO label A-2, A-22

keyword 2-1

LIST option 2-47
LISTBADBLOCKS command 2-29
long files 2-15, A-9, A-12, A-18

miscellaneous commands 2-30
ADD 2-30
ADDRESS 2-30
BLOCK 2-31
DEC 2-32
DIV 2-32
HEX 2-32
MOD 2-33
MUL 2-33
SUB 2-34
error messages 2-34
examples 2-35

named disk fields 2-9
NAMED verification 1-3
NAMED verification 2-47

named volume structure A-1
NAMED1 verification 1-3
NAMED1 verification 2-46
output 2-48
errors 2-51
NAMED2 verification 1-3

NAMED2 verification 2-47
output 2-49

errors 2-52
notational conventions diii

owner 2-15, A-11

parameters 2-1
parent directory A-13
PHYSICAL verification 1-3
PHYSICAL verification 2-47
output 2-49
errors 2-54

REPLACE Disk Verify Index-2

UPDATE 2, 12/84

INDEX (continued)

QUIT command 2-36

railroad track schematic diii
READ command 2-37
reader level iii
recording
density A-4
sides A-5
size A-5
related publications iv
root directory A-5, A-16

SAVE command 2-38

short files 2-15, A-9, A-12, A-17

size A-5

structure of iRMX 86 named volumes A-1
SUBSTITUTEBYTE command 2-40
SUBSTITUTEWORD command 2-43

syntax iii

track skew A-6
variable 1iii

VERIFY command 1
VERIFY command 2-

working buffer 2-37
WRITE command 2-55

REPLACE Disk Verify Index-3 UPDATE 2, 12/84

iRMX™ 86 Release 6.8 Change Package: Update 2
Change Pages for:

iRMX™ 86 Programmer's Reference Manual, Part I (146195-¢@l)

EXCEPTIONAL CONDITION MANAGEMENT

° A reserved (WORD) parameter.

e A (WORD) parameter containing the Numeric Processor Extension
(NPX) status word. This parameter is valid only if the condition
code is ESNDPSERROR.

ASSIGNING AN EXCEPTION HANDLER

A task may use the SETSEXCEPTIONSHANDLER system call to declare its own
exception handler. Otherwise, the task inherits the exception handler of
its job. A job can receive its own exception handler at the time of its
creation. If it doesn't, the job inherits the system exception handler.
Thus, the Nucleus can always find an exception handler for the running
task.

A system exception handler is provided as part of the iRMX 86 Operating
System. Depending on a configuration option, it either deletes or
suspends any task on whose behalf it is invoked. The iRMX 86
CONFIGURATION GUIDE describes this configuration option.

Users wanting to write their own exception handlers should compile them
under the PL/M-86 LARGE control, specifying the PUBLIC attribute.

Any task can have the Debugger as its exception handler; see the
description in Chapter 12 of the SETSEXCEPTIONSHANDLER system call for
instructions on how to dynamically make such an assignment.
Alternatively, the Debugger or any other routine can be made the system
exception handler statically; see the iRMX 86 CONFIGURATION GUIDE for
information on how to do this,

INVOKING AN EXCEPTION HANDLER

An exception handler normally receives control when an exceptional
condition occurs., However, when a task encounters an exceptional
condition, it need not always have control passed to its exception
handler. The factor that determines whether control passes to the
exception handler is the task's exception mode., This attribute has four
possible values, each of which specifies the circumstances under which
the exception handler is to get control in the event of an exceptional
condition. These circumstances are:

° Programmer errors only.
. Environmental conditions only,
e All exceptional conditions.

° No exceptional conditions.

REPLACE Nucleus 7-13 UPDATE 2, 12/84

EXCEPTIONAL CONDITION MANAGEMENT

When the Nucleus detects that a task has caused an exceptional condition
in making a system call, it compares the type of the condition with the
calling task's exception mode. If a transfer of control is indicated,
the Nucleus passes control to the exception handler on behalf of the
task. The exception handler then deals with the problem, after which
control returns to the task, unless the exception handler deleted the
task. When the exception handler returns, the task can also detect that
an error occurred, because the system call's except$ptr parameter points
to a word containing the condition code. While the exception handler is
executing, the errant task is still regarded by the Nucleus to be the
running task.

When a task is created, its exception mode is set to its job's default

exception mode. The task can change its exception handler and exception
mode attributes by using the SETSEXCEPTIONSHANDLER system call.

HANDLING EXCEPTIONS IN-LINE

If a task's exception mode attribute does not direct the Nucleus to
transfer control to the task's exception handler, the responsibility for
dealing with an error falls upon the task.

Each system call has as its last parameter a POINTER to a WORD. After a
system call, the Nucleus returns the resulting condition code to this
WORD. By checking this WORD after each system call, a task can ascertain
whether the call was successful. (See Table 7-1 for condition codes.)

If the call was not successful, the task can learn which exceptional
condition it caused. This information can sometimes enable the task to
recover. In other cases more information is needed.

If a system call returns an exception code to indicate an unsuccessful
call, all other output parameters of that system call are undefined.

NOTE

If an exceptional condition is caused
by an invalid parameter, an exception
handler, which is passed the parameter
number of the first invalid parameter,
should handle the condition,

HANDLING EXCEPTIONS IN iAPX 286-BASED SYSTEMS

The Operating System software catches and returns most of the exceptional
conditions listed in Table 7-1. However, a few conditions (those noted
with asterisks in the table) occur because the microprocessor catches (or
traps) an invalid condition.

REPLACE Nucleus 7-14 UPDATE 2, 12/84

INTERRUPT MANAGEMENT

e USUALLY
/ HERE
/
: SLAVE 1 PIC
I 11—
| 12—}
I 13—
14—}
" 154
16—}
/
M0 —
M1—
M2—
iAPX 86, 88 MASTER M3
cPU PIC mMa——
M5 —
M6 —
M7 —

SLAVE2 PIC

30—}
31—
32—
33—~
34—
35—~
36—
371

SLAVE 6 PIC

70—

71—

\ 72—

73—

74 —

75—

76 —
77

FrTT

[

I

x-642

Figure 8-1. 1APX 86, 88 Interrupt Lines

REPLACE Nucleus 8-3 UPDATE 2, 12/84

INTERRUPT MANAGEMENT

i1APX 286 Configurations

An iAPX 286 environment is similar to an iAPX 86, 88 environment in all
ways but one. If your iAPX 286-based system includes an 80287 NPX, you
do not have to connect the NPX to a PIC, Instead of using the PIC, the
NPX uses CPU interrupt traps 7 and 16 to communicate directly with the
iAPX 286 component. This setup results in an extra interrupt level for
you to use any way you wish, Figure 8-2 illustrates this situation.

System
Clock is

—
Ve usually
{ here
|
|
; SLAVE 1 PIC
/ 01—
Mo-}-——7 21T
M1-}- ~
ol 04—
IAPX 286 MASTER ~ M3-1- 4
CPU PIC mg* — 074
| \ M7—1— .
cPU SLAVE 7 PIC
TRAPS 704
L 711
| A 72 —
73—
80287 T
NPX 5~
76—
71

X-644A

Figure 8-2. 1APX 286 Interrupt Lines

REPLACE Nucleus 8-4 UPDATE 2, 12/84

SENDSUNI

/**

* The calling task invokes the SENDSUNITS system call to send the *
* units to the semaphore just created (sem$token,) *
Fkkkkkkkkdkddoddokkdokdodok ke dokddok dedok dedskdesskde ok sk ok kR et ek ok ek k ek koo /

CALL RQSSENDSUNITS (sem$token,
three$units$sent,
@status);

Typical PL/M-86 Statements

END SAMPLE PROCEDURE;

CONDITION CODES
ESOK No exceptional conditions.,

ESEXIST The semaphore parameter is not a token for an
existing object.

ESLIMIT The number of units that the calling task is trying

to send would cause the semaphore's supply of units
to exceed its maximum allowable supply.

ES$SNOTSCON- This system call is not part of the present
FIGURED configuration.
ESTYPE The semaphore parameter is a token for an object

that is not a semaphore.

REPLACE Nucleus 12-131 UPDATE 2, 12/84

SETSEXCEPTIONSHANDLER

SETSEXCEPTIONSHANDLER

SETSEXCEPTIONSHANDLER assigns an exception handler to the calling task.

CALL RQSSETSEXCEPTIONSHANDLER (exception$infoS$ptr, exceptSptr);

INPUT PARAMETER

exception$infol$ptr A POINTER to a structure of the following form:

STRUCTUR E(
EXCEPTIONSHANDLERSOFFSET WORD,
EXCEPTIONSHANDLE RSBASE SELECTOR ,
I EXCEPTIONSMODE BYTE) ;
where:

e exception$handler$offset contains the offset
of the first instruction of the exception
handler.

e exception$handlerS$base contains the base of
the CPU segment containing the first
instruction of the exception handler.

e exception$mode contains an encoded indication
of the calling task's intended exception
mode. The value is interpreted as follows:

When to Pass Control

Value to Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

If exception$handlerS$offset and
exception$handler$base both contain zeros, the
exception handler of the calling task's parent
job is assigned.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the iRMX 86
Operating System will return the condition code
generated by this system call.

REPLACE Nucleus 12-132 UPDATE 2, 12/84

SIGNALSSEXCEPTIO

SIGNALSEXCEPTION

The SIGNALSEXCEPTION system call is invoked by 0S extensions to signal
the occurrence of an exceptional condition.

CALL RQSSIGNALSEXCEPTION(exceptionScode, param$num, stack$pointer,
reserved, npx$statusSword, exceptSptr);

INPUT PARAMETERS

exception$code A WORD containing the code (see list in Chapter 7) I
for the exceptional condition detected.

param$num A BYTE containing the number of the parameter which
caused the exceptional condition. If no parameter
is at fault, param$num equals zero.

stack$pointer A WORD which, if not zero, must contain the value
of the stack pointer saved on entry to the
operating system extension (see the entry procedure

in Chapter 10 for an example). The top five words
in the stack (where BP is at the top of the stack)
must be as follows:

FLAGS Saved by software interrupt
CS to 0S extension

Ip

DS Saved by 0S extension

BP on entry

Upon completion of SIGNALSEXCEPTION, control is
returned to either of two instructions. If
stackSpointer contains a zero, control returns to
the instruction following the call to
SIGNALSEXCEPTION. Otherwise, control returns to
the instruction identified in CS and IP.

reserved A WORD reserved for Intel use. Set this parameter
to zero.

npx$status$word A WORD containing the status of the NPX,

OUTPUT PARAMETER
except$ptr A POINTER to a WORD to which the iRMX 86 Operating

System will return the condition code generated by
this system call.

REPLACE Nucleus 12-149 UPDATE 2, 12/84

JIGNALSSEXCEPTION

DESCRIPTION

Operating system extensions use the SIGNALSEXCEPTION system call to
signal the occurrence of exceptional conditions. Depending on the
exceptional condition and the calling task's exception mode, control may
or may not pass directly to the task's exception handler.

If the exception handler does not get control, the exceptional condition
code is returned to the calling task. The task can then access the code
by checking the contents of the word pointed to by the exceptS$ptr
parameter for its call (not for the call to SIGNALSEXCEPTION).

EXAMPLE

[ke dedkdse ok ek ded e ek dodk dededed deok ook ek ek ek ok ok e ok ook e e dek ok ek ok ok ok o
* This example 1llustrates how the SIGNALSEXCEPTION system call can *
* be used to signal the occurrence of the exceptional condition *

* ESCONTEXT. *
k dekkkedokd dedd ok hdkkkk Rk kdokkhdk sk khh ko ddodddddhdotdok kot ok ok ok ok ko /

SINCLUDE(: F1:SAMPLE .EXT); /* Declares all system calls */
DECLARE eS$Scontext LITERALLY '5H';
DECLARE param$num BYTE;
DECLARE stack$pointer WORD;
DECLARE reservedS$word LITERALLY '0';
DECLARE status WORD;
SAMPLE PROCEDURE:
PROCEDURE ;
param$num = 0; /* no parameter at fault */
stack$pointer = 0; /* return control to instruction
following call #*/
°
° Typical PL/M-86 Statements
°

REPLACE Nucleus 12-150 UPDATE 2, 12/84

EXAMPLE

SIGNALSINTERRUP

[Tk dedekdokekdokk ded s sk dodododode dedosedede o ook deok oo o ok ok ok s o ok sk e ok ok o ook e e s ok sk sk e ke sk o e e ko ok
* This example illustrates how the SIGNALSINTERRUPT system call can *

* be used to actlvate an interrupt task.

*

$INCLUDE(:Fl:SAMPLE.EXT); /* Declares all system calls */
DECLARE theS$firstS$word WORD;
DECLARE interrupt$level$7 LITERALLY '0000 0000 0111 1000B';

/* specifies master interrupt level 7 */

DECLARE interrupt$task$flag BYTE;

DECLARE interruptS$handler POINTER;

DECLARE data$segment WORD;

DECLARE status WORD ;

DECLARE interrupt$status WORD;

DECLARE ds$pointer POINTER;

DECLARE PTR$SOVERLAY LITERALLY 'STRUCTURE (offset WORD,

base WORD) ';

/* establishes a structure for

overlays */

DECLARE dsS$pointer$ovly PTRSOVERLAY AT (@dsSpointer);
/* using the overlay structure, the
base address of the interrupt
handler's data segment is

identified */

IINTERRUPI_EANDLER: PROCEDURE INTERRUPT 59 PUBLIC;

° Typical P1L/M~86 Statements
°

/* 59 is meaningless
value. ENTERSINTER-
RUPT establishes
actual level */

T e e T T E e
* The calling interrupt handler invokes the ENTERSINTERRUPT system

% % ¥ ¥ ¥*

system call,

*
call which loads a base address value (defined by *
ds$pointer$ovly.base) into the data segment register. This *
register provides a mechanism for the interrupt handler to pass *
data to the interrupt task to be started up by the SIGNALSINTERRUPT *

*

%

khkhhkhhrhhhhhhhhhhhhhhhhhhddrhrhhbrhrdrdhrhrhrhhhhddhhhhhrdbbhhihhhrhikd /

CALL RQSENTERS INTERRUPT (interrupt$level$?7,
@interrupt$status);
CALL INLINE ERROR PROCESS (interrupt$status);

° Typical PL/M-86 Statements
.

REPLACE Nucleus 12-153

UPDATE 2, 12/84

IGNALSINTERRUPT

/**************************************‘k*********************************

* The interrupt handler uses SIGNALSINTERRUPT to start up its *

* associated interrupt task. *
Jedede otk dede e ke et e ek de e e ek ks ek sk e ok ek ko ek ek ok e ek okoke [

CALL RQSSIGNALSINTERRUPT (interruptSlevel$7,
@nterruptS$status);
CALL INLINE ERROR PROCESS (interrupt$status);

END INTERRUPT HANDLER;

INLINE ERROR PROCESS: PROCEDURE;
IF interrupt$status <> E$OK THEN
DO;
.
o In-line Error Processing PL/M-86 Statements

[]
END;

END INLINE ERROR PROCESS;

SAMPLE PROCEDURE :
PROCEDURE ;

ds$pointer = @the$firstSword; /* a dummy identifier used to point to
interrupt handler's data segment */
data$segment = ds$pointerSovly.base;
/* identifies the base address of the
interrupt handler's data segment */
I interrupt$handler = INTERRUPTSPTR (INTERRUPI_ﬂANDLER);
/* points to the first instruction of
the interrupt handler */
interrupt$task$flag = OlH; /* indicates that calling task is to be
interrupt task */
°
° Typical PL/M-86 Statement:s
°

PR T T T T T T T TP P P e R T PP P T T P P)
* By first invoking the SETSINTERRUPT system call, the calling task *
* sets up an interrupt level and becomes the interrupted task for *

* level 7. *
Fededkdededskdok ek deo ko ko ko dededkodeok dede e e dr ook ook ek o e de ek ek ek e ke /

CALL RQSSETSINTERRUPT (interrupt$level$7,
interrupt$tasksflag,
interruptS$handler,
dataSsegment ,
@status);

.
° Typical PL/M-86 Statements
.

END SAMPLE PROCEDURE;

REPLACE Nucleus 12-154 UPDATE 2, 12/84

ASPHYSICALSDETACHSDEVIC

Note that, whether you specify a hard detach or not, there will be no
attached files on the device after the device is detached.

CONDITION CODES

ASPHYSICALSDETACHSDEVICE can return condition codes at two different
times. The code returned to the calling task immediately after
invocation of the system call is considered a sequential code. A code
returned as a result of asynchronous processing is a concurrent exception
code. A complete explanation of sequential and concurrent parts of
system calls is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes
and one for concurrent codes,

Sequential Condition Codes

The Basic I/0 System can return the following exception codes to the word
specified by the exceptSptr parameter of this system call.

ESOK No exceptional conditions.

ESEXIST One or more of the following parameters is not a
token for an existing object:

e The connection parameter
. The resp$mbox parameter

ESLIMIT The calling task's job has already reached its
object limit.

E$MEM The memory available to the calling task's job is
not sufficient to complete the call.

ESNOTSCONFIGURED This system call is not part of the present
configuration.

ESNOTSDEVICESCONN The specified connection parameter is not a device

connection,

ESSUPPORT The specified connection was not created by this
job.

ESTYPE At least one of the following is true:

° The connection parameter is a token for an
object that is not a connection.

° The respSmbox parameter is a token for an
object that is not a mailbox.

REPLACE BIOS 8-71 UPDATE 2, 12/84

ASPHYSICALSDETACHSDEVICE

Concurrent Exception Codes

The Basic I/0 System will return the following codes in an I/O0 result
segment at the mailbox specified by respSmbox. After examining the
segment, you should delete it.

ESOK No exceptional conditions.

ESFNEXIST The device specified by the connection parameter
is already being detached.

ESIO An I/0 error occurred during the operation, but
the operation was successful anyway.

ESOUTSTANDINGS - The call attempted a soft detach, but connections
CONNS to the device still existed.

REPLACE BIOS 8-72 UPDATE 2, 12/84

in$baudSrate

out$haudSrate

REPLACE

ASSPECIA

Bits Value and Meaning
0 = Coordinates increase from left to
right,
1 = Coordinates decrease from left to
right.
12 Vertical axis orientation control

(corresponds to 0SC characters T:F).

This specifies whether the coordinates on
the terminal's vertical axis increase or
decrease as you move from top to bottom
across the screen.

0 = Coordinates increase from top to
bottom.
1 = Coordinates decrease from top to

bottom.

13-15 Reserved bits. For future compatibility,
set to 0.

NOTE

If bits 4-5 contain 2 or 3, and bits
6-8 also contain 2 or 3, then they must
both contain the same value. That is,
they must both reflect the same parity
convention (even or odd).

The input baud rate indicator (corresponds to 0SC
characters T:I). If you attempt to set this field
to zero, the Basic I/0 System ignores your entry
and leaves the field set to 1ts previous value.
The word is encoded as follows:

0 = Invalid.
1 = Perform an automatic baud rate search.
Other = Actual input baud rate, such as 9600.

The output baud rate indicator (corresponds to 0SC
characters T:0). If you attempt to set this field
to zero, the Basic I/O System ignores your entry
and leaves the field set to its previous value.
The word is encoded as follows:

0 = Invalid.
1 = Use the input baud rate for output.
BIOS 8-99 UPDATE 2, 12/84

ASSPECIAL

Other = Actual output baud rate, such as 9600.

Most applications require the input and output
baud rates to be equal. In such cases, use
in$baudS$rate to set the baud rate and specify a
one for out$baud$rate.

scroll$lines An operator at a terminal can enter a control
character (default is Control-W) when he/she is
ready for data to appear on the terminal's display
screen. The scroll$lines value (corresponding to
0SC characters T:5) specifies the maximum number
of lines that are to be sent to the terminal each
time the operator enters the control character.
If you attempt to set this field to zero, the
Basic I/0 System ignores your entry and leaves the
field set to its previous value,

x8y$size The low-order byte of this word specifies the
number of character positions on each line of the
terminal's screen (and corresponds to 0SC
characters T:X). The high-order byte specifies
the number of lines on the terminal's screen (and
corresponds to 0SC characters T:Y).

x$ySoffset The-low—order byte of this word specifies the
value that starts the numbering sequence of both
the X and Y axes (and corresponds to 0SC
characters T:U). The high-order byte specifies
the value to which the numbering of the axes must
"fall back"” after reaching 127 (and corresponds to
0SC characters T:V).

The remaining fields apply only for intelligent communications boards
(such as the iSBC 544 board) that maintain their own input and output
buffers separately from the ones managed by the Basic I/O System's
Terminal Support Code. If you aren't sure whether you can set these
fields, invoke ASSPECIAL with function code 4 to get the terminal
attributes. If bit 15 of the flowS$Scontrcl field (the next one described)
is set, your board is a buffered device and you can set the following
fields. (If your board is not a buffered device, setting any of the
following fields will cause the terminal support code to return an
ESPARAM Condition Code.)

flow$control Specifies whether the communications board sends
flow control characters (selected by the
fcSonSchar and fc$offSchar fields, but usually XON
and XOFF) to turn input on and off (corresponds to
the 0SC characters T:G). The low-order bit (bit
0) controls this option, as follows:

0 Disable flow control.
1 Enable flow control.

REPLACE BIOS 8-100 UPDATE 2, 12/84

ASSPECIA

DELCLARE read$file$mark STRUCTURE(

search BYTE) ;
where:
search A value indicating the direction of the search, as
follows:
00 Search forward

OFFH Search backward (for start/stop drives
only)

When your task issues the ASSPECIAL system call with spec$func set to 9,
the tape drive writes a file mark at the current position on the tape.
This function also terminates tape write operations.

When your task issues the A$SPECIAL system call with spec$func set to 10,
the tape drive fast-forwards the tape to the end and then rewinds it to
the load point.

CONDITION CODES

ASSPECIAL return condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual,

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0O System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

ESOK No exceptional conditions,

ESBUFFEREDSCONN The connection parameter is a connection produced
by the Extended I/0 System. You cannot use it
with Basic I/0 System calls.

ESEXIST At least one of the following is true:

e One or more of the following parameters or
fields is not a token for an existing object:

REPLACE BIOS 8-103 UPDATE 2, 12/84

\SSPECIAL

ESIFDR

ESLIMIT

ESMEM

ESNOT$CONFIGURED

ESPARAM

ESSUPPORT

REPLACE

- The connection parameter
~ The resp$mbox parameter

~ The mailbox field in the notify structure.
(Spec$func = 2.)

— The object field in the notify structure.
(SpecS$func = 2,)

- The semaphore field in the signalS$pair
structure. (Spec$func = 6.)

e The connection is being deleted.

The function requested (spec$func) is not valid
for the type of file specified by the connection
parameter,

The calling task's job has already reached its
object limit,

The memory available to the calling task's job is
not sufficient to complete the call.

This system call is not part of the present
configuration.

At least one of the following is true:

e The specS$func parameter was 5, and one or more
of the following is true:

- Bits 0-1 of the connection$flags field was
equal to O,

— Bits 6-8 of the terminal$flags field was
greater thamn 4.

e The spec$func parameter was 6, and the
character fielcd was greater than 1FH.

e The specS$func parameter was greater than 10.

@ One or more of the fields related to buffered
devices (high$water$mark, low$SwaterS$mark,
fc$onSchar, fc$offSchar) was set while bit 15
of the flowScoritrol field was reset to zero
(specifying an un-buffered device).

The specified conriection was not created by this
job.

BIOS 8-104 UPDATE 2, 12/84

ESTYPE

One or more of the following parameters or fields
is a token for an existing object of the wrong
type:

e The connection parameter.,
e The respS$mbox parameter.

e The mailbox field of the notify structure,
(Spec$func = 2.)

® The semaphore field of the signal$pair
structure. (SpecS$func = 6.)

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by respSmbox. After examining
the segment, you should delete it.

ESOK

ESCONNSNOT$SOPEN

ESFLUSHING

ESIDDR

ESIFDR

ESTO

ESNOTSDEVICESCONN

ESSPACE

REPLACE

No exceptional conditions.

The specified connection is not open. This
applies only to stream and physical files.

The specified connection was closed before the
function could be completed.

The specified function is not supported by the
device containing the file.

The connection refers to a named file, but the
function is not "notify”.

An I/0 error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the I/0 result segment for
more information.

The function code is 'notify', but the specified
connection is not a device connection. This
applies only to named and physical files.

One of the following is true:
e This call attempted to format a track of a
physical file that is beyond the end of the

volume.

e This call attempted to format a track of a RAM
disk other than track O.

BIOS 8-105 ' UPDATE 2, 12/84

ASSPECI,

\SSPECIAL

E$STREAM$SPECIAL

REPLACE

One of the following is true:

This is a "query" request, but another query is

already queued. This applies only to stream
files.

This is a "satisfy" request, but either a query
request is queued, or no requests are queued.
This applies only to stream files. (See
Artificially Satisfying a Stream File I/0
Request in the DESCRIPTION.)

BIOS 8-106 UPDATE 2, 12/84

USING THE iRMX™ TERMINAL SUPPORT CODE

©

decimal number

~_{:>_________4*<:>_<::::::>

éé
DEHEHE

58

Figure F-1,

0995

Composite 0SC Sequence Diagram

REPLACE

BIOS F-9

UPDATE 2, 12/84

USING THE iRMX" TERMINAL SUPPORT CODE

MODES THAT A TERMINAL INHERITS FROM A CONNECTION

This section describes the modes that depend on the connection to the
terminal, rather than on the terminal itself, With these modes, when
multiple connections to a terminal exist, the terminal might operate one
way when communicating via the first connection and a different way when
communicating via the second connection.

Each of these modes relates directly to one or more bits in the
connection$flags word for the connection (as defined in the Chapter 8
description of the A$SPECIAL system call). The names of the modes, the
single-letter identification codes for the modes, the bits of the

connection$flags word to which they correspond, and a brief description
of their functions are given in Table F-2.

Assuming that the 0SC control mode is sef: appropriately, the modes that a
terminal inherits from a connection can be altered. The syntax of an 0SC
sequence that will change one or more of these modes is as follows:

T\
‘K_’/
CL O EP o O S G
where: 0997
C: Indicates that this sequence applies to a
connection. The Terminal Support Code ignores all
but the first letter, so you can supply any group
of characters that begins with "C". However, you
must include the colon (:) at the end.
mode id An ID letter from the list of modes given in
Table F-2,
decimal number The value to which you want to set the mode. This

number must be of the character data type.

Table F-2 contains a brief description of the modes and values. For a
more complete description, refer to the description of AS$SPECIAL in
Chapter 8.

REPLACE BIOS F-10 UPDATE 2, 12/84

iRHX“ 86 Release 6.¢ Change Package: Update 2
Change Pages for:

iRMX™ 86 Programmer's Reference Manual, Part II (146196-@@1)

C$SEND$¢O$RESPONS

C$SENDSCOSRESPONSE

CSSEND$SCOSRESPONSE, a message processing call, sends a message to :CO:
and reads a response from :CI:.

CALL RQCSENDSCOSRESPONSE(response$p, responseSmax, messageSp,
exceptdptr);

INPUT PARAMETERS

messageSp A POINTER to a STRING containing the message to be
sent to :C0:. If zero, no message is sent.

responseS$max A WORD whose value specifies the length in bytes of
the string pointed to by the response$p parameter.
The value in responseS$max must equal the length of
the string plus one (stringlength + 1). If
response$max 1s zero or one, no response from :CI:
will be requested; control returns to the calling
task immediately,

OUTPUT PARAMETERS

response$p A POINTER to a STRING that receives the operator's
response from :CI:.

except$ptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

When used with all its features, C$SENDSCOSRESPONSE sends the string
pointed to by messageS$p to :CO: and waits for a response from :CI:. It
places this response in the string pointed to by response$Sp. However, If
messageS$p 1s zero, CSSENDSCOSRESPONSE omits sending the message to :CO:;
if either response$max or response$p is zero, it does not wait for a
response from :CI:. Therefore, the operations performed by

C$SENDSCOSRESPONSE depend on the values of the message$p and response$max
parameters, as follows:

messageS$Sp response$max Action

zero Zero Perform no I/0

zero non-zero Send no message, wait for input
non-zero non-zero Send message, wait for input
non-zero zero Send message, don't wait

REPLACE Human Interface 8-45 UPDATE 2, 12/84

If C$SENDSCOSRESPONSE requests a response from :CI:, output from other
tasks can be displayed at :CO: while the system waits for a response from

:CI:.

The main distinction between C$SSENDSCOSRESPONSE and CSSENDSEOSRESPONSE
calls is that CS$SENDSEOSRESPONSE always sends messages to and receives
messages from the operator's terminal; input and output cannot be
redirected to another device. In contrast, C$SENDSCOSRESPONSE sends
messages to :C0: and receives messages from :CI:; therefore, programs
such as SUBMIT can redirect this input and output.

EXCEPTION CODES
ESOK

ESCONTEXT

ESCONNECTIONS-
OPEN

ESEXIST

ESFLUSHING

ESIOSHARD

E$IOSOPRINT

REPLACE

No exceptional conditions were encountered.

The calling task's job was not created by the Human
Interface.

At least one of the following is true:

e The connection to :CI: was not open for reading
or the connection to :CO: was not open for
writing.

e The connection to :CI: or :CO: was not open.

e The connection to :CI: or :CO: was opened with
ASOPEN rather than S$OPEN.

The token value for :CI: or :CO: is not a token for
an existing object.

The device containing the :CI: and :CO: files was
being detached.

While attempting tc access the :CI: or :CO: file,
the Operating System detected a hard I/0 error.

While attempting tc access the :CI: or :C0: file,
this call found that the device was off-line.
Operator intervention is required.
CSFORMATSEXCEPTION returns the value ESIOSNOTSREADY
for this code.

Human Interface 8-46 UPDATE 2, 12/84

C$SEND$COSRESPONS

ESIOSSOFT While attempting to access the :CI: or :C0: file,

this call detected a soft I/0 error. It tried
again, but was umnsuccessful. Another try might be

successful,

ESIOSUNCLASS An unknown type of I/0 error occurred while this
call tried to access the :CI: or :C0: file.

ESIO$SWRPROT While attempting to obtain a connection to the :CO:
file, this call found that the volume containing
the file is write—protected.

ESLIMIT At least one of the following is true:

e The calling task's job has already reached its
object limit.

o The calling task's job, or the job's default
user object, is already involved in 255
(decimal) I/0 operations.

o The calling task's job was not created by the
Human Interface.

ESMEM The memory available to the calling task's job is
not sufficient to complete the call.

ESNOTSCONNECTION The call obtained a token for an object that should

have been a connection to :CI: or :CO: but was not
a file connection.

ESPARAM The call attempted to write beyond the end of a
physical file.,

ESSPACE One of the following is true:
® The output volume is full.

o The call attempted to write beyond the end of a
physical file.

E$STREAMSSPECIAL When attempting to read or write to :CI: or :CO:,
the Extended I/O System issued an invalid stream
file request.

ES$SSUPPORT The connection to :CI: or :CO: was not created by
this job.

ESTIME The calling task's job was not created by the Human
Interface.

REPLACE Human Interface 8-47 UPDATE 2, 12/84

C$SENDSEOSRESPONSE

CSSENDSEOSRESPONSE, a message processing call, sends a message to and
reads a response from the operator's terminal.

CALL RQSCSSENDSEOSRESPONSE(response$p, responseSmax, messageSp,
except$ptr);

INPUT PARAMETERS

messageS$p A POINTER to a STRING containing the message to be
sent to the operator's terminal. If zero, no
message is sent.

responseSmax A WORD whose value specifies the length in bytes of
the string pointed to by the response$p parameter.
The value in response$max must equal the length of
the string plus one (stringlength + 1). If
response$max 1s zero or one, no response from the
operator's terminal will be requested; control
returns to the calling task immediately.

OUTPUT PARAMETERS

response$p A POINTER to a STRING that receives the operator's
response from the terminal.

except$ptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

When used with all its features, C$SENDSEOSRESPONSE sends the string
pointed to by message$p to the operator's terminal and waits for a
response from the operator. It places this response in the string
pointed to by response$p. However, 1f message$p is zero,
CSSENDSEOSRESPONSE omits sending the message to the operator; if either
response$max or response$p is zero, it does not wait for a response.
Therefore, the operations performed by C$SENDSEOSRESPONSE depend on the
values of the message$p and responseS$max parameters, as follows:

message$p response$max Action

zero zero Perform no I/0

zero non-zero Send no message, walt for input
non-zero non-zero Y%end message, wait for input
non-zero zero Send message, don't wait

REPLACE Human Interface 8-48 UPDATE 2, 12/84

DQSRENA

DQSRENAME

The DQSRENAME system call changes the pathname of a file.

CALL DQSRENAME (path$ptr, newSpathS$ptr, exceptS$ptr);

INPUT PARAMETERS

path$ptr A POINTER to a STRING that specifies the pathname
for the file to be renamed.

new$Spath$ptr A POINTER to a STRING that specifies the new
pathname for the file. This path must not refer
to an existing file.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code, Condition codes are described in
Appendix B.

DESCRIPTION

This system call allows your programs to change the pathname of a data
file or a directory. Be aware that when you rename a directory, you are
changing the pathnames of all files contained in the directory. When you
rename a file to which a connection exists —— this is permitted -- the
connection to the renamed file remains established.

A file's pathname may be changed in any way, provided that the file or
directory remains on the same volume.

REPLACE UDI 2-41 UPDATE 2, 12/84

QSRESERVESIOSMEMORY

DQSRESERVESIOSMEMORY

The DQSRESERVESIOSMEMORY lets your program reserve enough memory to
ensure that it can open and attach the files it will be using.

CALL DQSRESERVESIOSMEMORY (numberS$files, numberS$buffers, except$ptr);

INPUT PARAMETERS

number$files A WORD whose value indicates the maximum number of
files the program will have attached
simultaneously. This value must not be greater
than 12. Moreover, no more than 6 of these files
may be open simultaneously.

number$buffers A WORD whose value indicates the total number of
buffers (up to a maximum of 12) that will be
needed at one time. For example, if your program
will have two files open at the same time, and
each of them has two buffers (specified when they
are opened), number$files should be two and
number$buffers four.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

DQSRESERVESIOSMEMORY sets aside memory on behalf of the calling program,
guaranteeing that it will be available when needed later for attaching

and opening files. This memory is used for internal UDI data structures
when the program requests file connections via DQSATTACH and for buffers
when the program opens file connections via DQSOPEN. Memory reserved in
this way is not eligible to be allocated by DQSALLOCATE. Your program

should call DQSRESERVE$SIOSMEMORY before making any calls to DQS$SALLOCATE.

In the call to DQSRESERVESIOSMEMORY, you may specify as many as 12 files

(that can be attached using the reserved memory) and as many as 12
buffers (that can be requested when opening files).

REPLACE UDI 2-42 UPDATE 2, 12/84

WRITING A CUSTOM DEVICE DRIVER

The format of the call to the Finish I/O procedure is as follows:

CALL finish$io(duib$p, ddataSt);

where:

finishS$io

duib$p

ddata$t

QUEUE I/0 PROCEDURE

Name of the Finish I/0 procedure. You can specify
any name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address in the DUIBs
of all device-units that it services.

POINTER to the DUIB of the device-unit of the
device being detached. The finish$io procedure
needs this DUIB in order to determine the device
on which to perform the final processing.

SELECTOR containing the location of the data
storage area originally created by the init$io
procedure. The finish$io procedure must delete
this resource and any others created by driver
routines.

The I/0 System calls the Queue I/0 procedure to place an I/0 request on a
queue, so that it can be processed when the device is not busy. The
Queue I/0 procedure must actually start the processing of the next I/O
request on the queue if the device is not busy. The format of the call
to the Queue I/0 procedure is as follows:

CALL queue$io(iors$t, duib$p, ddata$t);

where:

queue$io

iorss$t

REPLACE

Name of the Queue I/O procedure. You can use any
name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address for the
DUIBs of all device-units that it services.

SELECTOR containing the location of an IORS. This
IORS describes the request. When the request is
processed, the driver (though not necessarily the
queue$io procedure) must £ill in the status fields
and send the IORS to the response mailbox
(exchange) indicated in the I0RS. Chapter 2
describes the format of the IORS., It lists the
information that the I/0 System supplies when it
passes the IORS to the queue$io procedure and
indicates the fields of the IORS that the device
driver must fill in,

Device Drivers 6-3 UPDATE 2, 12/84

WRITING A CUSTOM DEVICE DRIVER

duib$p POINTER to the DUIB of the device-unit for which
the request is intended.

ddataSt SELECTOR containing the location of the data
storage area originally created by the initS$io
procedure. The queue$io procedure can place any
necessary informat:ion in this area in order to
update the requesi: queue or status fields.

CANCEL I/0 PROCEDURE

The I/0 System can call the Cancel I/0 procedure in order to cancel one
or more previously queued I/0 requests. The iRMX 88 I/O System does not
call Cancel I/0, but in the iRMX 86 environment Cancel I/0 is called
under either of the following two conditions:

° If the user makes an RQSASPHYSICALSDETACHSDEVICE system call and
specifies the hard detach option (refer to the iRMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL for a description of this call)., This
system call forcibly detaches all objects associated with a
device-unit,

° If the job containing the task which made an I/0 request is
deleted. The I/O System calls the Cancel I/0 procedure to remove
any requests that tasks in the deleted job might have made.

° If the user deletes a connection to a device. The I/0 system
calls Cancel I/0 to remove any I/0 requests pending for that
device.

If the device cannot guarantee that a request will be finished within a
fixed amount of time (such as waiting for input from a terminal
keyboard), the Cancel I/0 procedure must actually stop the device from
processing the request. If the device guarantees that all requests
finish in an acceptable amount of time, the Cancel I/0 procedure does not
have to stop the device itself, but only removes requests from the queue.

The format of the call to the Cancel I/0 procedure is as follows:

CALL cancel$io(cancel$id, duib$p, ddataSt);

where:
cancel$id Name of the Cancel I/0 procedure. You can use any
name for this procedure as long as it doesn't
conflict with other procedure names. You must,
however, provide its starting address in the DUIBs
of all device-units that it services.
cancel$id WORD containing the id value for the I/0 requests

that are are to be cancelled. Any pending
requests with this value in the cancel$id field of

their IORS's must be removed from the queue of

REPLACE Device Drivers 6-4 UPDATE 2, 12/84

WRITING A CUSTOM DEVICE DRIVER

requests by the Cancel I/0 procedure. Moreover,
the I/0 System places a CLOSE request with the
same cancel$id value in the queue. The CLOSE
request must not be processed until all other
requests with that cancel$id value have been
returned to the I/0 System.

duib$p POINTER to the DUIB of the device-unit for which
the request cancellation is intended.

ddata$t SELECTOR containing the location of the data
storage area originally created by the init$io
procedure., This area may contain the request
queue.,

IMPLEMENTING A REQUEST QUEUE

Making I/0 requests via system calls and the actual processing of these
requests by I/0 devices are asynchronous activities. When a device is
processing one request, many more can be accumulating. Unless the device
driver has a mechanism for placing I/0 requests on a queue of some sort,
these requests will become lost. The common and random access device
drivers form this queue by creating a doubly linked list. The list is
used by the QUEUESIO and CANCEL$IO procedures, as well as by
INTERRUPTSTASK.

Using this mechanism of the doubly linked list, common and random access
device drivers implement a FIFO queue for I/0 requests. If you are
writing a custom device driver, you might want to take advantage of the
LINKSFOR and LINKSBACK fields that are provided in the IORS and implement
a scheme similar to the following for queuing I/0 requests.

Each time a user makes an I/0 request, the I/0O System passes an IORS for
this request to the device driver, in particular to the Queue I/0
procedure of the device driver. The common and random access driver
Queue I/0 procedures make use of the LINKSFOR and LINKSBACK fields of the
IORS to link this IORS together with IORSs for other requests that have
not yet been processed.

This queue is set up in the following manner. The device driver routine
that is actually sending data to the controller accesses the first IORS
on the queue. The LINKSFOR field in this IORS points to the next IORS on
the queue. The LINKSFOR field in the second IORS points to the third
IORS on the queue, and so forth until, in the last IORS on the queue, the
LINKSFOR field points back to the first IORS on the queue. The LINKS$BACK
fields operate in the same manner. The LINKSBACK field of the last IORS
on the queue points to the previous IORS, The LINKS$BACK field of the
second to last IORS points to the third to last IORS on the queue, and so
forth, until, in the first IORS on the queue, the LINKS$BACK field points
back to the last IORS in the queue. A queue of this sort is illustrated
in Figure 6-1.

REPLACE Device Drivers 6-5 UPDATE 2, 12/84

WRITING A CUSTOM DEVICE DRIVER

The device driver can add or remove requests from the queue by adjusting
LINKSFOR and LINKSBACK pointers in the IORSs.

First \ORS Second IORS Third ORS Last IORS
on queue on nueus on gueus on queue

link$tor link$tor link44or ® o o link$tor 1

l— link$Sback linkSback

link$back linkShack

Figure 6-1. Request Queue

x-679

To handle the dual problems of locating the queue and ascertaining
whether the queue is empty, you can use a variable such as head$queue.
If the queue is empty, head$queue contains the value O, Otherwise,
head$queue contains the address of the first IORS in the queue.

*k%k

REPLACE Device Drivers 6-6 UPDATE 2, 12/84

TIMER ROUTINES

Ssubtitle('Initialize Time')
[FR R RRk Rk kR Rk Rk kR kR kR kRkkkdkdddokddokdok ok kot dok ok ko ko ok ok ook ok

* init_time

This procedure zeros the timer, creates a task to
maintain the timer, and a region to ensure exclusive
access to the timer. This procedure must be called
before the first time that get time or set time is
called. Also, this procedure should be called only
once. The easiest way to make sure this happens is to
call init time from your initialization task.

procedure is called.

If your application experiences a lot of interrupts,
the timer may run slow. You can rectify this
problem by raising the priority of the timer

task., To do this, change the 128 in the
rq$Screate$task system call to a smaller number.

This change may slow the processing of your

interrupts.
T L r L R L L L T R T T P T T P T T r TS

BN ¥ %k % % ¥ N b ¥ ¥ ¥ ¥ ¥ ¥ F X ¥ ¥

*
%*
%*
%
*
*
*
*
*
*

The timer task will run in the job from which this *
*
*
%*
*
*
%*
%
*
*
/

init time: PROCEDURE(ret status p) REENTRANT PUBLIC;

DECLARE ret status p POINTER,
ret status BASED ret status p WORD,
timer task t TASK,
local status WORD;
time in sec = 0;
time region = rq$create$region /* Create a region. */

(PRIORITY QUEUE, ret_status p);

IF (ret status <> ESOK) THEN

RETURN ; /%* Return with error. */
data seg p = @data seg p; /* Get contents of
- - DS register. */

timer task t = rq$create$task /* Create timer task. */

(128, /* priority */

@maintain time, /* start addr */

data seg p o.base, /* data seg base */

o, /* stack ptr */

512, /* stack size */

0, /* task flags * /

ret status_p);

REPLACE Programming Techniques 3-7 UPDATE 2, 12/84

TIMER ROUTINES

IF (ret status <> E$OK) THEN

CALL rq$delete$region /* Since could not */
(time region, @local status); /* create task, */

/* must delete */

/* region. */

END init time;

END timer;

kkk

REPLACE Programming Techniques 3-8 UPDATE 2, 12/84

CHAPTER 3
PROGRAMMING CONSIDERATIONS

The iRMX 86 Terminal Handler supports terminal input and output by
providing mailbox interfaces. Figure 3-1 shows the use of these
mailboxes. In the figure, an arrow pointing from a task to a mailbox
represents an RQSSENDSMESSAGE system call. An arrow pointing from a
mailbox to a task indicates an RQSRECEIVESMESSAGE system call.

PROVIDED PROVIDED
BY USER BY USER
USER USER

TASKS

INPUT 1 RESPONSE
MAILBOX MAILBOX

OUTPUT
MAILBOX

RESPONSE
MAILBOX

TERMINAL

> - TERMINAL
HANDLER

HANDLER

IN iRMX 86 IN iRMX 86

x-601

Figure 3-1. Input and Output Mailbox Interfaces

The protocol that tasks observe is much the same for input and output.
In each case, the task initiates I/0 by sending a request message to a
mailbox. An input request mailbox (default name RQTHNORMIN) and an
output request mailbox (default name RQTHNORMOUT) are provided. These
mallboxes are cataloged in the root job directory. 1In the case of
multiple terminals, one input and one output mailbox will be cataloged
for each Terminal Handler. (See Chapter 4 for more information about
multiple versions of the Terminal Handler.) Figure 3-2 illustrates the
protocol for finding the root job token and for obtaining the input and
output mailbox tokens.

REPLACE Terminal Handler 3-1 UPDATE 2, 12/84

PROGRAMMING CONSIDERATIONS

/**

* This example illustrates the protocol for finding the root job token *

* and for obtaining the input and output mailbox tokens. *
e dodededodke dodo oo dedke o oo ok oo ook e s e e o ok sk o ok ok oo ook e ok o o ke ke o ok ok ok ok e e ok o e s e e sk ook ok s e sk ek

DECLARE rtjbStoken WORD;

DECLARE root$job LITERALLY '3';
DECLARE status WORD;

DECLARE input$mbxS$token WORD;

DECLARE waitS$forever LITERALLY 'OFFFFH';

/*By setting the input parameter to three, the GET$TASKSTOKEN primitive
will return the root job's TOKEN.*/

rtjb$token = RQSGETSTASKSTOKENS (root$job,
@status);

/*The following LOOKUPS$OBJECT primitives use the default mailbox names.*/

inputmbxtoken = RQSLOOKUPSOBJECT (rtjbStoken,
@(10, 'RQTHNORMIN'),
waltS$forever,
@status);

outputmbxtoken = RQSLOOKUPSOBJECT (rtjbStoken,
@(11, 'RQTHNORMOUT'),
waitS$forever,
@status);

Figure 3-2. Protocol for Obtaining Root Job and Mailbox Tokens

Refer to the iRMX 86 NUCLEUS REFERENCE MANUAL for more information
concerning the individual primitives used in the previous example. When
a task sends a message to the Terminal Handler mailbox, the Terminal
Handler processes the request and then sends a response message back to
the requesting task., The task waits at a response mailbox for the
message. Thus, whether a task does input or output, it first sends and
then receives, The full details of the input and output protocols are
described later in this chapter. Output is discussed first because it is
somewhat easier to understand.

For both input and output, a task sends a message segment to the Terminal
Handler. The format of a request message is depicted in Figure 3-2. The
numbers in that figure are offsets, in bytes, from the beginning of the
segment. The field names have different meanings for input and for
output., For both input and output, the first four fields are WORD
values. The MESSAGE CONTENT field can be up to 132 bytes in length for
input and up to 65527 bytes in length for output.

REPLACE Terminal Handler 3-2 UPDATE 2, 12/84

CONFIGURATION

H
T
b

>

5

b

H

run

b

asm86 :fl:
asm86 :fl:
asm86 :fl:
asm86 :fl:
asm86 :fl:
asm86 :fl:
asm86 :fl:
asm86 :fl:
asm86 :fl:
asm86 :fl:
asm86

.
’

1ink86

Invocation:

BS1.CSD

bsl.a86
bserr.a86
b204.a86
b206.a86
b208.a86
b215.a86
b218a.a86
b251.a86
b254.a86
bsasi.a86

:f1:bsl.obj,
:fl:bserr.obj,
& :fl:bcico.obj,

:£1:5204.0bj,
:£1:206.0bj,

:f1:b2

08.0bj,

:f1:b215.0bj,
:f1:b218.0bj,
:f1:b251.0bj,
:£1:b254.0bj,
:fl:bsasi.obj,

:fl:bs

csi.obj,

:fl:bsl.lib
to :fl:bsl.lnk print(:£1:bsl.mpl) &
nopublics except(firstustage,booq_l86,bootstrap_¢ntry)

loc86 :fl:

h—h =k

macro(90)
macro(50)
macro(50)
macro(50)
macro(50)
macro(50)
macro(50)
macro(50)
macro(50)
macro(50)

:f1:bscsi.a86 macro(50)

object(:fl:bsl.obj)
object(:fl:bserr.obj)
object(:£1:b204.0bj)
object(:£1:b206.,0bj)
object(:£1:b208.0bj)
object(:£1:b215.0bj)
object(:£1:b218.0bj)
object(:£f1:b251.0bj)
object(:f1:b254.0bj)
object(:fl1:bsasi.obj)
object(:fl:bscsi.obj)

ssupport

RRARR RO R

print(:fl:
print(:£f1:
print(:fl:
:b206.1st)
:b208.1st)
:b215.1st)
:b218.1st)
:b251.1st)
:b254.1st)
:bsasi.lst)
tbscsi.lst)

print(:£f1l
print(:fl
print(:£f1
print(:fl
print(:£f1
print(:£f1
print(:fl
print(:fl

Generate the i1APX 86, 88 Bootstrap Loader V5.0 first stage.

submit bsl(first stage location, second stage location)

bsl.lst)
bserr.lst)
b204.1st)

;for stand—alone serial channel

bsl.lnk &
addresses(classes(code(%0),stack(%1))) &
order(classes(code,code error,stack,data,boot)) &
noinitcode &
start(first-stage) &

& ; change above line to start(boot 186) if i1APX 186_INIT is invoked &

segsize(boot(1800H)) - &
map print(:£fl:bsl.mp2) &

5 Add "bootstrap” to loc86 when locating the first stage in ROM

Figure 2-2, First Stage Configuration File BS1.CSD

REPLACE Bootstrap Loader 2-9 UPDATE 2, 12/84

CONFIGURATION

Xit

M e

we we we

Bootstrap Loader first stage generation complete.

Figure 2-2. First Stage Configuration File BS1.CSD (continued)

counter_base port

counter_port delta

baud counter

count

flags

REPLACE

The 16-bit address of the base port used by the
baud rate timer. This port varies according to
the type of the device and, if applicable, the
channel used on the device, as follows:

8253 Counter 0 Count Register Port
8254 Counter 0 Count Register Port
80130 ICW1 Register Port

80186 Use OFFOOH on all Intel boards

82530 Channel A Channel A Command Register Port
82530 Channel B Channel B Command Register Port

The number of bytes between consecutive ports
used by the timer.

The baud rate-generating counter on the timer.
The devices and the counters you can specify for
them are as follcws:

8253 0, 1, and 2
8254 0, 1, and 2
80130 2

80186 0, 1

82530 0

A value that, when loaded into the timer
register, generates the desired baud rate. The
method of calculating this value is described in
the paragraphs fcllowing these parameter
definitions,

A value that, when present, specifies which
channel of an 82530 Serial Communications
Controller will serve as your serial controller.
If you give any value except 82530 for the
serial type parameter, omit this parameter; that
is, write the macro as if the count parameter is
the last parameter. If you give 82530 as the
value of the serial type parameter, specify A
(for Channel A) or B (for Channel B) for this
parameter.

Bootstrap Loader 2-10 UPDATE 2, 12/84

SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS

L

Table 6-4. MULTIBUS® Priority Selection Jumpers (continued)

Remove Add

Intel Board Jumper Jumper Description/Function

iSBC 254S Default setting selects serial

priority.

E130-131 Selects parallel priority.

iSBX 270 Not applicable.

1SBX 351 Not applicable.

1SBC 534 Not applicable.

iSBC 544 Not applicable.

5 1/4-INCH DRIVE SELECTION JUMPERS

Table 6-5 lists the jumpers you must change to incorporate a 5 1/4-inch
flexible diskette into your system.

Table 6-5. 5 1/4-Inch Drive Selection Jumpers
Remove Add
Intel Board Jumper Jumper Description/Function
iSBC 204 Use of 5 1/4-inch diskette
drives controlled by the
iSBC 204 is not supported
by iRMX 86.
iSBC 206 Not applicable.
iSBC 208 E18-E19 E4-E5 Selects 5 1/4-inch drives.
E6-El1
E17-E19
REPLACE Installation 6-9 UPDATE 2, 12/84

SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOQARDS

Table 6-5. 5 1/4-Inch Drive Selection Jumpers (continued)

Remove Add
Intel Board Jumper Jumper Description/Function
iSBC 208 E21-E22 E17-E22 Install only if using
(continued) double sided 5 1/4-inch
diskette drives that do
not supply a double-sided
signal.
iSBC 215 Intel recommends that you
use the iSBC 215G for
controlling 5 1/4-inch
winchester drives.
iSBC 215G W1, 1-2 wl, 1-3 Selects 5 1/4-inch
W2, 1-2 CMI, model 5412,
W5, 1-2 W5, 1-3 winchester drives.
W6, 1-2 w6, 1-3
w7, 1-2 w7, 1-3
w8, 1-2 w8, 1-3
w9, 1-2
w13, 1-3 w13, 1-2
Wl4, 1-3 Wla, 1-2
W15, 1-2
Wil6e, 1-3 wi6e, 1-2
w22, 1-3 w22, 1-2
w27, 1-2
w33, 1-3 w33, 1-2
W34, 1-2 w37, 1-2
w35, 1-2 w38, 1-2
iSBX 218 Use of 5 1/4~inch diskette
drives controlled by the
iSBC 218 is not supported
by iRMX 86.
iSBX 218A Default configuration
selects 5 1/4-inch
diskette drives.
iSBC 220 Not applicable.
iSBX 251 Not applicable.
REPLACE Installation 6-10 UPDATE 2, 12/84

SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS

Table 6-7.

Controller Board Switch Settings (continued)

Intel Board

Switch Setting

Description/Function

iSBC 220 S1, 1-7 OFF Selects port address 100H.
(DIP switches) 8 ON
s2, 1-2 ON Selects a 16-bit bus and
16-bit address decoding.
3-10 OFF Selects port address 100H.
1SBC 220 El6 - E15 Selects port address 100H
(Wire Wraps)
E18 - E17 Selects a 16-bit bus and
E20 - E19 16-bit address decoding
iSBX 251 Not applicable.
iSBC 254 Not applicable.
iSBC 2548 Not applicable.
iSBX 270 Not applicable.
iSBX 351 Not applicable.
iSBC 534 Not applicable.
iSBC 544 If your board does not
have a switch SW1, then
refer to Table 6-3.
SwWl, 1-4 ON Selects Dual-Port RAM
address. Also refer to
Table 6-4.
SwWl1, 5 ON Selects Dual-Port RAM
size of 16K.
SWl, 6 OFF
SwWi, 7 ON Selects 2732A EPROMS.
SwWi, 8 OFF Configures board for slave
mode.,
REPLACE Installation 6-15 UPDATE 2, 12/84

SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS

DIP HEADER CONFIGURATIONS FOR THE RS232C PROTOCOL

Table 6-8 lists the DIP-header configurations you need to supply to
implement the RS232C serial protocol. This configuration process
involves either soldering wires on a solder style header or inserting
wires into a pin-and-socket style header.

Table 6-8. DIP Header Configurations for the RS232C Protocol

DIP Header
Intel Board Jumpers Description/Function
iSBX 351 3-13 Board RxD to Terminal TxD.
4-~14 Board TxD to Terminal RxD.
7-8 Board DSR to Board DIR.
5-6 Board RTS to Board CTS.
11-12 Terminal RTS to Terminal CTS.
9-10 Terminal DSR to Terminal DTR.
iSBC 534 4-5 Board DSR to Board DTR.
6-7 Board RTS to Board CTS.
8-10 Board RxD to Terminal TxD.
9-11 Board TxD to Terminal RxD.
12-13 Terminal RTS to Terminal CTS.
14-15 Terminal DSR to Terminal DTR.,
iSBC 544 2-3 Board DSR to Board DTR.
4-5 Board RTS to Board CTS.
6-12 Board RxD to Terminal TxD.
7-13 Board TxD to Terminal RxD.
14-15 Terminal RTS to Terminal CTS.
16-17 Terminal DSR to Terminal DTR.
Notes: Signal Names:
TxD: Transmit Data RxD: Receive Data
DTR: Data Terminal Ready DSR: Data Set Ready
RTS: Request To Send CTS: Clear To Send

MISCELLANEOUS JUMPERS

Table 6-9 lists jumpering information not covered in the previous
sections. The list of jumpers change different functional areas.
Perform the changes to use default values established by Intel.

REPLACE Installation 6-16 UPDATE 2, 12/84

SOFTWARE INSTALLATION

FIRST-TIME INSTALLATION OF THE OPERATING SYSTEM

This section details the steps that you must take to install the iRMX 86
Operating System. Before you begin, make certain that you know which Intel
microprocessor runs your system; the installation procedure is changes
slightly depending on the processor in your system. If at any time you see an
error massage, stop the installation procedure and correct the problem.

THE INSTALLATION PROCEDURE DESCRIBED
HERE AUTOMATICALLY RE-FORMATS THE
WINCHESTER DISK DRIVE. Therefore, back
up any files you wish to save before
you begin the installation procedure.

STEP 1: RUNNING THE SYSTEM CONFIDENCE TEST (SCT)

If you are using your own custom iRMX 86 development system, you should now
turn on the power to your system. If you have built an iAPX 86-based
development system, you will see a series of asterisks. If you have built an
iAPX 286-based development system, you will see no display. In either case

you should then type in an uppercase "U". Typing in an uppercase "U"
initializes the Monitor and causes it to sign-on. Once you see the monitor

"o

prompt—-a period (".")--go to Step 2.

If you are using a System 300 product, turn on the power for your system. In
about 5 seconds you will see a display. If you have a System 86/300 Series
microcomputer, the display will be a series of asterisks. If you have a System

286/300 Series microcomputer, the display will be a single asterisk, In
either case, type in an uppercase "U". This will cause the System Confidence

Test (SCT) to execute. The SCT is only provided on System 300 Series
Microcomputers.

After you type in an uppercase "U", you will see on the CRT display status
reports from the SCT. For specific information on the meaning of the reports
consult the SYSTEM 86/300 SERIES DIAGNOSTIC MAINTENANCE MANUAL or the SYSTEM
286/300 SERIES DIAGNOSTIC MAINTENANCE MANUAL.

Shortly after beginning the display on systems based on the iAPX 86
microprocessor, the SCT on System 86/300 products requests you to enter an
uppercase "I" in response to the "PIC" test. At this point you have three
options: 1) do nothing; 2) type in an uppercase "I"; or 3) press the front
panel interrupt button. On a system with an un—-formatted Winchester disk, all
three actions have the same result--you exit the SCT and enter the monitor.

The system should respond by displaying:

BREAK at <XXXX:yyyy>

The period (".") is the monitor prompt, and <xxxx:yyyy> is the address where

the entry into the monitor occurred. At this point you are ready to go on to
the next step.

REPLACE Installation 10-5 UPDATE 2, 12/84

SOFTWARE INSTALLATION

Once the execution of the SCT on a System 286/300 product begins, the
terminal requests you to enter a response to the 8274 MPSC test., After
displaying the test prompt, the SCT waits for your response, Respond
with a period (".") if you want to enter the monitor at the end of the
execution of the SCT rather than boot the iRMX 86 system. If you do not
enter a period within six seconds, the test times out and responds with
the message "Chb Interrupt Timeout". Normally in the enhanced mode, you
may enter any character at the 8274 MPSC prompt and the bootstrap loader
boots the operating system after the SCT executes. However, when
installing the Operating System, you need to return to the monitor after
running the SCT. Entering a period at the 8274 MPSC test prompt signals
the SCT to do this. The system should respond by displaying:

BREAK at <{xXXXX:yyyy>

The period (".") is the monitor prompt, and <xxxx:yyyy> is the address
where the entry into the monitor occurred. At this point you are ready
to go on to the next step.

NOTE

If you are installing the Release 6
version of the Operating System on
hardware that is already running the
Release 5 version of the iRMX 86
Operating System, do not let the SCT
run to completion. When the SCT
requests that you input the uppercase
"I", you must press the front panel
interrupt button. If you do not press
the interrupt button, you won't enter
the monitor.

STEP 2: INSTALLING THE FIRST DISKETTE

Place the diskette with the label INSTALLATION DISKETTE in the flexible
diskette drive. If you have a system based on the iAPX 86
microprocessor, place the diskette with the label iRMX 86 INSTALLATION
DISKETTE FOR iAPX 86-BASED SYSTEMS into the flexible diskette drive. If
you have a system based on the iAPX 286 microprocessor, place the
diskette with the label iRMX 86 INSTALLATION DISKETTE FOR iAPX 286-BASED
SYSTEMS into the flexible diskette drive,

REPLACE Installation 10-6 UPDATE 2, 12/84

SOFTWARE INSTALLATION

Enter the following monitor command depending on the hardware in your
system:

HARDWARE IN YOUR SYSTEM ENTER

iSBC 218A Board mounted on
any iSBC 215 that controls either
a 5 1/4 or 8~Inch Flexible Disk Drive .b :wfO:

iSBX 208 Controller .b :af0:
If you have any SYSTEM 300 Series Microcomputer, use the command b :wf0:.

The Monitor command boots the file "/system/rmx86" from the INSTALLATION
DISKETTE so that the INSTALLATION DISKETTE is the system device. The
INSTALLATION DISKETTE only contains those Human Interface commands
required to initiate the installation process.

Upon completion of the bootstrap load process, the terminal displays the
following message:

iRMX 86 HI CLI, Vx.y: USER=65535
Copyright <years> Intel Corporation

Next, the system prompts you for the correct date and time. You may
enter the date in any one of the following three formats:

month/date/year (11/29/1984)
date month year (29 NOV 1984)
date month year (29 NOVEMBER 1984)

After you have entered the date, the system echoes the information and
prompts you for the time. Enter the time in the format

HOURS :MINUTES:SECONDS. You may omit the minutes and seconds fields if
you desire; the system sets them to zero. When you have completed
entering the time, the system responds by echoing the entered time.
After the date and time are entered and echoed, the system displays the
line:

END SUBMIT :PROG:R?LOGON

STEP 3: BECOME THE SYSTEM MANAGER

To continue the installation process, you need to gain access to the
system manager privileges. Enter the command SUPER to gain the power of
system manager. In response to the password prompt, enter in a carriage
return. The system responds with the prompt "SUPER-". You now have
access to the system manager privileges and you may continue with the
installation process.,

REPLACE Installation 10-7 UPDATE 2, 12/84

SOFTWARE INSTALLATION

STEP 4: INSTALLING iRMX" 86 FILES ON A WINCHESTER DISK

During this phase of the installation process you will be formatting your
Winchester drive and copying the iRMX 86 files from the Installation
Diskette to your formatted Winchester disk. Only those files necessary
for booting the operating system from ycur Winchester disk are copied at
this time., To install these essential files, enter the command:

SUBMIT /INSTAL(device name, interleave, files)

"Device name" is the physical name of the device that boots the operating
system after installation (this device is also known as the system
device). Refer to Table 10-1 for the ccrrect device names. Do not use
the generic name for the device. You must use the name corresponding to
the actual device. For example, if you have an 8-inch 30MB Priam
Winchester in your system, you must use the device name "iw0" or "iwl".

"Interleave” is "4" for 5 1/4-inch Winchesters and "3" for 8-inch
Winchesters.,

"Files" is the number of files you want to be able to create on your
Winchester disk. A number between 3000 and 6000 should be selected.
This number i1s dependant on your application. Generally, if you have a
10MB or 15MB Winchester drive, create 3000 files. If you have a larger
Winchester drive, create 4000 files. If you have purchased the source
code from Intel for the iRMX 86 Operating System, you must specify
exactly 5000 files.

Table 10-1. Start-Up System Device Names of Winchester Drives

Device Device Name
CMI 5 1/4" 10 MB Winchester cm0, cml
(formatted)
CMI 5 1/4" 15 MB Winchester cmb0, cmbl
(formatted)
Quantum 5 1/4" 40MB Winchester qma0, qmal
(un-formatted)
8" 30MB Priam Winchester iw0, iwl
(formatted)
8" 70MB Priam Winichester iwb0, iwbl

(un~formatted)

REPLACE Installation 10-8 UPDATE 2, 12/84

SOFTWARE INSTALLATION

STEP 5: BOOTING THE OPERATING SYSTEM FROM A WINCHESTER DISK

After the system has executed the submit command described in Step 4, the
Winchester disk contains enough iRMX files to boot the Operating System
and to use selected Human Interface commands. However, before you can
boot the Operating System from the Winchester disk, you must remove the
INSTALLATION DISKETTE and reset the system. Reset the system by pressing
the front panel RESET button or by whatever means you have designed into
the system.

If you have a System 300 Series Microcomputer, you will see the display
described in Step 1 in about 6 seconds. This time do not type an
uppercase "U” in response to the asterisk(s). After about 12 seconds,
the SCT will time out and the Terse mode of the SCT will execute., Allow
the SCT to run (this verifies that all your hardware is operating
correctly). After the SCT successfully executes, the bootstrap loader
automatically boots the iRMX 86 Operating System that you copied to the
Winchester disk in Step 4.

If you are using a custom built iRMX 86 development system, you must type
in an uppercase "U" in response to the Monitor's display described in
Step l. You will then see the Monitor's prompt ("."). At this point,
type "b" to boot the iRMX 86 Operating System that you copied to the
Winchester disk in Step 4.

Once the operating system loads, the system again prompts you for the
date and time. Enter the correct date and time according to the
instructions given In Step 2.

To complete the Operating System installation, you need privileges of the
system manager. Enter the SUPER command; the system prompts you for the
correct password. In response to the password prompt, enter a carriage
return. The system responds with the prompt "super-". Now you have the
privileges of the system manager and may complete the iRMX 86 Operating
System installation.

STEP 6: INSTALLING THE REMAINING iRMX" 86 FILES

Now that you have successfully booted the operating system from the
Winchester disk, install the iRMX 86 files from the remaining seven
iRMX 86 Operating System diskettes.

If you are using a system equipped with 5 1/4-inch
flexible diskette drives, YOU MUST REMEMBER TO
PERFORM THE FOLLOWING STEPS FOR EACH DISKETTE USED:

(1) Insert the diskette into the diskette drive,

(2) Attach the device using the ATTACHDEVICE command.
(3) Use the diskette.

(4) Detach the device using the DETACHDEVICE command.
(5) Remove the diskette from the diskette drive,

REPLACE Installation 10-9 UPDATE 2, 12/84

SOFTWARE INSTALLATION

You must detach and re-attach the 5 1/4-inch flexible diskette drives
with each diskette installation because the I/0 System cannot detect the
"door open" condition and does not know when the I/0 System buffers
contain invalid data from a previous diskette. You do not need to detach
and re-attach the device for each 8-inch diskette installation.

A,

Before installing the remaining iRMX files, you must "attach" the
flexible diskette drive to the system by using the following command:

super~ ATTACHDEVICE device name AS :logical name:

The physical name of the flexible diskette drive is "device name" and
":logical name:" is the name the system uses to address the flexible
diskette drive. Attach a 5 1/4-inch diskette drive in a System 300
Series Microcomputer using the command:

super— ATTACHDEVICE wmfdx0 AS :£d0:

Attach an 8-inch flexible diskette drive in a System 300 Series
Microcomputer using the command:

super— ATTACHDEVICE wfd0 AS :£d0:

To copy the remaining iRMX 86 files from diskettes number 1 through 7
(listed in Table 1-2), insert the next diskette into the flexible
diskette drive and enter the following command:

super— SUBMIT :logical name:INSTAL(:logical name:)

Both logical names in the preceding SUBMIT command are the same: the
system uses these names to address the device as specified in the
preceding ATTACHDEVICE command (typically :£fd0:). Each diskette has
a file named INSTAL.CSD which, when executed, will copy the contents
of that diskette into the correct directory on the Winchester disk.

Remember, if you have 5 1/4-inch flexible disk drives, you must
detach the device using the DETACHDEVICE command. The DETACHDEVICE
command has the syntax "DETACHDEVICE :logical name:".

Repeat steps A through C for all of the remaining Release Diskettes.

As the SUBMIT command installs the Operating System files, a series of
messages appear. If the system encounters an error during the process,
it displays an error message but does not stop: the system continues
executing the SUBMIT command until it reaches the end of the process.
Watch these messages and be alert for error messages. When the system
displays an error message, stop the system and correct the fault.

REPLACE Installation 10-10 UPDATE 2, 12/84

SOFTWARE INSTALLATION

STEP 7: INSTALLING THE LANGUAGE UTILITIES

The next step is to install the language utilities. If you do not have a
System 300 Series Microcomputer from Intel, you must purchase the
language products in addition to the iRMX 86 Operating System.

At this point you must still have system manager privileges. (You must
still be in SUPER.)

Detach the flexible disk drive before installing the Language Utilities.
To do this, use the DETACHDEVICE command.

Before beginning the installation of the language utilities, check that
you have the proper diskettes. You should have the following diskettes:

e 1RMX 860 ASM86 AND NUMERICS LIBRARIES
° iRMX 860 UTILITIES PACKAGE
. iRMX 863 PL/M-86

The order that you install the diskettes is important. You must install
the diskettes in the order they are presented in the list above.

First, place the diskette with the label iRMX 860 ASM86 AND NUMERICS
LIBRARIES into the flexible disk drive. Enter in the following SUBMIT
command to install the diskette:

SUBMIT /CONFIG/CMD/INSTAL860(<devicename>)

<{devicename> is the physical device name for the flexible disk drive.
The device name for 8-inch diskettes is wfd0 and the device name for

5 1/4-inch diskettes is wmfdx0., Note, the device name is not a logical
name so it does not have colons surrounding it.

Second, take out the first diskette (iRMX 860 ASM86 AND NUMERICS
LIBRARIES) and place into the flexible disk drive the diskette with the
label iRMX 860 UTILITIES PACKAGE. Next, enter in the following SUBMIT
command to install the diskette:

SUBMIT /CONFIG/CMD/INSTAL860u(<devicename)>)

{devicename> is the physical device name for the flexible disk drive.

Third, take the second diskette (iRMX 860 UTILITIES PACKAGE) out of the
disk drive and place into the drive the diskette with the label iRMX 863
PL/M-86. Next, enter in the following SUBMIT command to install the last
diskette:

SUBMIT /CONFIG/CMD/INSTAL863(<devicename))

<devicename> is the physical device name for the flexible disk drive.

REPLACE Installation 10-11 UPDATE 2, 12/84

SOFTWARE INSTALLATION

STEP 8: INSTALLING THE UPDATE PACKAGE

The final phase of installing the iRMX 86 Operating System is the
installation of the current iRMX 86 Release 6 update package. You must
perform this step even if you are installing a new system. Applying the
update package is Intel's mechanism for fixing problems identified in the
current version of the software. Failure to apply the update results in
the installation of an un-fixed version ¢f the iRMX 86 Operating System.

The update package accompanies all shipments of the iRMX 86 Operating
System. (The update package is shipped in a separate box.) Each update
package contains one or more update diskettes, one or more shrinkwrapped
packets of documentation change pages, a customer letter, and an update
installation guide. (Occasionally, additional documentation may be
supplied in response to special circumstances.)

The Update Diskettes contain all of the fixes (ZAP's) that are to be
applied to the iRMX 86 Operating System. The diskettes are labelled:

"RMX86w Rx.y UP z"

where: w is the media type (B, E, or J),
x is the release level of the Operating System,
Yy is the revision level of the Operating System,

|~

is the release level of the Update Package.

The update installation guide contains both detailed descriptions of each
ZAP and detailed instructions on installing the Update Package.

To install the Update to your system, find the Update Package and follow
the instructions in the update installation guide.

REFERRING TO OTHER MANUALS BEFORE RUNNING YOUR SYSTEM

Once you have completed the eight steps listed in the previous section
you are ready to use your iRMX 86 Operating System. Refer to the
following manuals for additional help:

e For basic information about your system and the manuals in your
Release 6 documentation set, refer to the INTRODUCTION TO THE
iRMX 86 OPERATING SYSTEM.

° For information about memory partition sizes and further insights

into your Start-up System (including information on how to

generate a custom Operating System), refer to the iRMX 86
CONFIGURATION GUIDE.

*ekk

REPLACE Installation 10-12 UPDATE 2, 12/84

4)

5)

FILES CONTAINED ON THE RELEASE DISKETTES

Bootstrap Loader

Libraries
bsl.lib

System Debugger

Libraries
sdb.lib

Includes

bsl.inc

b204.inc
b206.inc
b208.inc
b215.inc
b218a.inc
b251.inc
b254.inc
bsasi.inc
bscsi.inc
bsldev.inc
bserr.inc
bcico.inc

Includes

Other
boot .060
b204.a86
b206.a86
b208.a86
b215.a86
b218a.a86
b251.a86
b254.a86
bsasi.a86
bscsi.a86
beico.obj
bsl.a86
bserr.a86
bcsdm.a86
bsl.csd
bsl.mp2
bsl

Other
sdb.030

DISKETTE 4: iRMX 86 HUMAN INTERFACE COMMANDS

D

REPLACE

instal.csd

had.r86
hcopy.r86
hdcopy.r86
hdelet.r86
hform.r86
hlocdt .r86
hmem.r86
hrest .r86
hsuper.r86
hvers.r86
hupcpy.csd

hatach.r86
herdir.r86
hdd.r86
hdir.r86
histat.r86
hlock.r86
hpath.r86
hrname.r86
htime.r86
hdvfy.r86
hi.030

hback.r86
hdate,.r86
hdeb.r86
hdtach.r86
hjobdl.r86
hlogs .r86
hprmt.r86
hsbmt .r86
hucopy.r86
hwhoam,.r86

Installation D-3

UPDATE 2, 12/84

FILES CONTAINED ON THE RELEASE DISKETTES

DISKETTE 5: iRMX 86 ICU (part 1 of 2), FILES UTILITY AND PATCH UTILITY

1) instal,csd
2) ICU (Part 1 of 2)

icu86.020
icu86.86
rmx86.def

3) Files Utility

files.041
files
files.lnk
floc.csd
fs86.def
fs186.def

4) Patch Utility

ptch86.023
ptch86.86
patch.csd
patch.cmd
patch.a86

DISKETTE 6: iRMX 86 ICU (Part 2 of 2), UDI AND CRASH ANALYZER DISKETTE

1) instal.csd
2) ICU
icu86.020
icu86.862
icu86.hlp
rmx286.def
3) UDI

Libraries Includes Other
udi.lib udi.030

4) Crash Analyzer

Libraries Includes Other
sdumpr.lib scrs86.011
scrs86.86

REPLACE Installation D-4 UPDATE 2, 12/84

DISKETTE 7: iRMX 86 Include Files, Interface Libraries and ICU System

FILES CONTAINED ON THE RELEASE DISKETTES

Definition Files

1)
2)

3)

4)

REPLACE

instal.csd

All the iRMX 86 Interface Libraries are on this diskette.,

rpifc.lib
ipifc.lib
epifc.lib
lpifc.lib
hpifc.lib
compac.lib

All the iRMX 86

nexcep.lit
iexcep.lit
eexcep.lit
lexcep.lit
hexcep.lit
uexcep.lit

All the iRMX 86

rpifl.lib
ipifl.1lib
epifl.lib
1pifl.1lib
hpifl.lib
large.lib

exception code literal files are on this diskette.

ldwptr.lit
ltksel.lit
ltkwrd.lit

System Call External Declaration Include files are

on this diskette:

hereen.ext
hgtemd.ext
hgtopn.ext
hsneor.ext
iaclos.ext
iadlfl.ext
iagtfs.ext
iarnfl.ext
iatrun.ext
idlusr.ext
igttim.ext
ilatdv.ext
isatfl.ext
iscrfl.ext
isgtcs.ext
isrdmv.ext
istioj.ext
istusr.ext
iwtio.ext

lsovly.ext
ncrext.ext
ncrseg.ext
ndlcmp .ext
ndlreg.ext
ndsabl.ext
nendln.ext
ngtexh.ext
ngtsiz.ext
nluobj.ext
nrcuni ,ext

hdlccn.ext
hgticn.ext
hgtpar.ext
hstpbf.ext
iacrdr.ext
iagtcs.ext
iagtpc.ext
iaseek,.ext
iawrit.ext
iexioj.ext
igtusr.ext
ildtdv.ext
ischac.ext
isctcn.ext
isgtfs.ext
isrnfl.ext
istpfx.ext
isuncn.ext
lalioje.ext
nacctl.ext
ncrjob.ext
ncrsem.ext
ndlext.ext
ndlseg.ext
ndsdln.ext
nenint.ext
ngtlev.ext
ngttok.ext
noffsp.ext
nrsint.ext

small.lib

hfmtex.ext
hgtipn.ext
hsncmd.ext
iaatfl.ext
iacrfl.ext
iagtde.ext
iaopen.ext
iaspec.ext
icrioj.ext
igtlds.ext
ihdtdv.ext
ipatdv.ext
isclos.ext
isdlcn.ext
islucn.ext
1sseek.ext
istrun.ext
iswrmv.ext
laload.ext
nalcmp.ext
ncrmbx.ext
ncrtsk.ext
ndljob.ext
ndlsem.ext
neinit.ext
nexint .ext
ngtpat.ext
ngttyp.ext
nrcctl.ext
nrstsk.ext

Installation D-5

hgtchr.ext
hgtocn.ext
hsncor.ext
lachac.ext
iadlcn.ext
iagted.ext
iaread.ext
iasted.ext
icrusr.ext
igtpfx.ext
iinusr.ext
ipdtdv.ext
iscrdr.ext
isdlfl.ext
isopen.ext
isspec.ext
isttim.ext
iupdat.ext
1slioj.ext
ncremp .ext
ncrreg.ext
nctobj.ext
ndlmbx,.ext
ndltsk.ext
nenabl.ext
nfrecdl.ext
ngtpri.ext
nincmp.ext
nrcmes.ext
nsgex.ext

UPDATE 2 12/84

5)

REPLACE

FILES CONTAINED ON THE RELEASE DISKETTES

nsgint.ext
nsnuni,ext
nstpmn.ext
nwtint.ext
uchext .ext
udctim,ext
uflinf.ext
ugtexh,ext
uopen.ext
ursiom.ext
utrapc.ext

Three of the iRMX 86 R6.0 ICU System definition files are on this

diskette.

rl18603.def
r18651.def
r18848.def

nsleep.ext
nstexh.ext
nstpri.ext
ualloc.ext
uclose.ext
udelet.ext
ufree.ext

ugtsid.ext
uovly.ext

useek.ext

utrpex.ext

*k%k

nsnctl.ext
nstint.ext
nsutsk.ext
uatach.ext
ucreat .ext
udetac.ext
ugtarg.ext
ugtsiz.ext
uread.ext
uspecl.ext
utrunc.ext

Installation D-6

nsnmes ,.ext
nstosx.ext
nucobj.ext
uchac.ext

udcex.ext

uexit.ext
ugtcs.ext
ugttim.ext
urenam.ext
uswbf .ext
uwrite.ext

UPDATE 2 12/84

APPENDIX E
DIRECTORY STRUCTURE

OF THE START-UP SYSTEM

This section shows you the Start-Up system directory structure that
exists after you have successfully installed the operating system. This

Start-Up directory is in Figure E-1.

0 = owner
WORLD =L

8D

0 = Attaching User)

]

8007 SYSTEM Lis LANG RMX86 INC WORK CONFIG USER
(o = OWNER 0 = owner) (0 = owner 0 = owner 0 = owner (0 = owner) 0 = owner) (0 = owner (0 = owner)
WORLD = L WORLD = L WORLD = L WORLD =L WORLD = L WORLD =L WORLD = DLAC WORLD = L WORLD = L
RMX86 [
0 = owner)
WORLD =L cMD USER
(o=ownm) (o=ownev)
Human Interface Language Utilit] WORLD = L WORLD = L
%ommands ‘:;"t\;narn
= owner =
WORLD = R ng’f}":‘r“‘;s)
WORLD =R
RMX86 IRMX“86 Libraries
(v?;nﬁ;“’u and Conﬂguralion)Fllan P
= = owner
ORLD = R = owne
WORLD = “) Contiguration [WORLD WORLD
| I Submit Files (0 - owner (WORLD = owner)
= owner e
(WORLD=R WORLD = R
NDP87 PASC86 PLMB6 FORT86]
(0 = owner) 0 = owner 0 = owner 0 = owner)
WORLD = L WORLD = L WORLD = L WORLD = L
PROG
(WORLD = owner)

[] - directory
[\ =datatie
L =listaccess
R =read access
N = noaccess

DLAC = all access

Figure E-1.

IRMX*“86 Interface Llbraries and Language Libraries
0 = owner
WORLD =R

R?LOGON
(WORLD = owner)

© 450

Start-Up System Directory Structure

REPLACE

*h%k

Installation E-1

UPDATE 2, 12/84

HARDWARE-RELATED PARAMETERS

] %
%l ¥
*| %
*| ¥
%] *
| %

|
|

*%% Interrupts *k %
Fkdk (MPS) Master PIC Port Separation [O0-OFFH] 00024 ETE
EEE (SIL) Slave Interrupt Levels [0-7/None] None FhE
*%% (LSS) Level Sensitive Slaves [0-7/None] None * ik
——=> *%% (PLI) 80186 Level Sensitive Ints [4-5/None] None EEE
o K1)
*%%%| Enter Changes [Abbreviation ?/= new value] : [Rkkk
THAH ok | | KAFE T
I T I R R R L R R R R R R R R R R R XXX

B L L L T T T T P P T T I T I T T A

iAPX 186 INITIALIZATION SCREEN

This screen allows you to configure the iAPX 186 or iAPX 188 logic that
provides programmable chip-select generation for memories and
peripherals., Refer to the 1iAPX 186 HIGH INTEGRATION 16-BIT
MICROPROCESSOR Data Sheet for information about these parameters.

R Tt R e e R L P L L e T T e P LT P S T T T T T O
LR e R L e T R T R L L DT R T T S T

BT TRARE |
*%%%' {APX 186 Initialization Tk k
*%%' (UCS) Upper CS Size [0400H-040000H] 00000400H '***

(UCW) Upper CS Wait States [0,1,2,3] 0000H

(UCR) Upper CS Wait for Ready [Yes/No] Yes

(LCS) Lower CS Size [0,0400H-04000H] 0000000 0H

(LCW) Lower CS Wait States [0,1,2,3] 0000H

(LCR) Lower CS Wait for Ready [Yes/No] No

(MCS) Midrange CS Size [0,0200H-080000H] 000000001

(MCA) Midrange CS Base Address [0-0FEOQOOH] 00000000H

(MCW) Midrange CS Wait States [0,1,2,3] 0000H

(MCR) Midrange CS Wait for Ready [Yes/No] No

(PCS) Peripheral CS Active [Yes/No] Yes

(PCA) Peripheral CS Base Address [0~OFCOOH] 0000H

(PCM) Peripheral CS Mapped to Memory [Yes/No] . No

(LPW) Lower Peripheral CS Wait States [0,1,2,3] 0002H
(LPR) Lower Peripheral CS Wait for Ready [Yes/No] Yes
(UPW) Upper Peripheral CS Wait States [0,1,2,3] 0002H
(UPR) Upper Peripheral CS Wait for Ready [Yes/No] Yes

(PLA) Peripheral CS 5,6 Latch Al,A2 [Yes/No] No
% Kk JRAK
*%%%| Enter Changes [Abbreviation ?/= new value] : 1 &dk %
TR*x% | - ETITE

R R R R T T e D o T T
LRI R R R E E R R R R R R R E R L E T T

REPLACE Configuration 3-17 UPDATE 2, 12/84

HARDWARE-RELATED PARAMETERS

KxFrhkkhhrhhrbhrhohirrhrrhhhhhhhhhriirdhrihhdhhihrdirhrrhhrhhiirdhrdhiiidrs

* (UCS) Upper CS Size [0400H-040000H] 000004004 *
T T T R T P T T T

You must specify the size of the upper memory chip select line. The
value you specify must be 1K (400H), 2K (800H), 4K (1000H), 8K (2000H),
16K (4000H), 32K (8000H), 64K (10000H), 128K (20000H), or 256K (40000H).
If you are using the iSBC 186/03 or the i1SBC 186/51 processor board, it
is recommended that you use the default value. If you are using the
iSBC 188/48 processor board, change the default value to 10000H.

The upper limit defined by this chip select line is always FFFFFH. The
lower limit is ascertained by the ICU as the upper limit less the value
specified for this parameter line.

khkkhhhhhhdhhhhrrhhrhdhhhhrhhbdhhbhrhrhhtrbrkrhhbhrhikdrhhhhhitihhhhhhrr

% (UCW) Upper CS Wait States [0,1,2,3] 0000H *
Y LT T T TP R N R P R R R PR S R P P R R P T R PP RS P L P PP T TR R L P

You must specify the number of wait states for all accesses to the upper
memory chip select line. The value you select can be from zero to
three. If you are using the iSBC 186/03, the iSBC 186/51, or the

iSBC 188/48 processor board, it is recommended that you use the default
value,

hxddhdhhhdhiddhhrdhdhhhhrdhrhhddhrdbhdddddAirdddbrddhrdhrhrdbrdioddrdhdrits

* (UCR) .Upper CS Wait for Ready [Yes/No] Yes *
de e de dek o sk e vk ok o o e e sk o ok o ko o sl sk e ok sk ok ok ok ook ek ok e sk ok ok sk ok ok ko ok ok ok ok ok ok ok

You must select whether or not the iAPX 186 should ignore external READY
for the upper memory chip select line. If you specify "Yes", the

iAPX 186 will wait for the number of wait states specified or will wait
for an external READY condition. If you specify "No", the iAPX 186 will
wait for the number of wait states specified but will not wait for an
external READY condition. If you are using the 1SBC 186/03, the

iSBC 186/51, or the iSBC 188/48 processor board, it is recommended that
you use the default value.

LR e T R T e T T T T T L T T

* (LCS) lLower CS Size [0,0400H-040000] 00000000H *
T T T L T T e T

In response to the "Lower CS Size" parameter line you must specify a
value of zero or the size of the lower memory chip select line. The
value of zero indicates that you do not intend to program the lower
memory chip select line. Any non-zero value you specify must be 1K
(400H), 2K (800H), 4K (1000H), 8K (2000H), 16K (4000H), 32K (8000H), 64K
(10000H), 128K (20000H), or 256K (40000H). If you are using the

iSBC 186/03, the iSBC 186/51, or the iSBC 188/48 processor

REPLACE Configuration 3-18 UPDATE 2, 12/84

HARDWARE-RELATED PARAMETERS

board, it is recommended that you use the default value. The lower limit
defined by this chip select line is always O000OOOH. The upper limit is
ascertained by the ICU as the lower limit plus the value specified for
this parameter line.

khkhhhhhhhhhhhhhhhhhhhhhhhhrhhhhhrhhhhhrhhdhihhhbiibdhridrdibrdihihibrdd

* (LCW) Lower CS Wait States [0,1,2,3] 0000H *
hkhkhhhhhhhdhhhhhhhhhhhkhhhihdhhhhhohhhhdhhhtihhhrhhhhhihhhhhhhhhhihhiink

If you specified a non-zero value for the "Lower CS Size" parameter line,
you must specify the number of wait states for all accesses to the lower
memory chip select line. The value you select can be from zero to

three. If you are using the iSBC 186/03, the iSBC 186/51, or the

iSBC 188/48 processor board, it is recommended that you use the default
value,

khkkhhkhhhhhhdhhhhrhrhidhhhhhhhrhrbhhihrhbhhbhbbbbhhrdihibibrhihrhihhhins

* (LCR) Lower CS Wait for Ready [Yes/No] No *
% dede e e o ook sk o e o e s o vl ke o o ok ok ok ool ok o s e v ok e ek ks e e e e e ek sk kb bk ko ok ko ok

If you specified a non-zero value for the "Lower CS Size" parameter line,
you must select whether or not the 1APX 186 should ignore external READY
for the lower memory chip select line. If you specify "Yes", the

iAPX 186 will wait for the number of wait states specified or will wait
for an external READY condition. If you specify "No", the iAPX 186 will
wait for the number of wait states specified but will not wait for an
external READY condition. If you are using the iSBC 186/03, the

iSBC 186/51, or the iSBC 188/48 processor board, it is recommended that
you use the default value,

R g e T T T T e T T T T P T T T P PR T T

* (MCS) Midrange CS Size [0,02000H-080000H] 00000000H *
T T T R T T R P P L P PP PP T

In response to the "Midrange CS Size" parameter line you must specify a
value of zero or the size of the midrange memory chip select line. The
value of zero indicates that you do not intend on programming the
midrange memory chip select line. Any non-zero value you specify must be
8K (2000H), 16K (4000H), 32K (8000H), 64K (10000H), 128K (20000H), 256K
(40000H), or 512K (80000H)., If you are using the iSBC 186/03, the

iSBC 186/51, or the iSBC 188/48 processor board, it is recommended that
you use the default value.

The iAPX 186 provides four midrange memory chip select lines. Your:
response to this parameter sets the total size of the memory block
defined by the four midrange select lines. The size of any one midrange
memory chip select line is one-fourth of the total. The lower limit
defined by this chip select line is defined by the "Midrange Chip Select

Base Address". The upper limit is ascertained by the ICU as the lower
limit plus the value specified for this parameter line.

REPLACE Configuration 3-19 UPDATE 2, 12/84

HARDWARE-RELATED PARAMETERS

kxhhhhkhkhhhhhhhirhihhhhhdhhhrbhihihhhhdhhhhhrdrdiobhrrhhrhhrbihdhihirdrdd

* (MCA) Midrange CS Base Address [0-OFEQOQOH] 00000000H *
B T L L LD A R S A R T T T T SRR R A SR S SRR RO

If you specify a non-zero value for the "Midrange CS Size" parameter
line, you must specify the base address of the midrange memory chip
select lines, Otherwise, specify a value of zero. If you are using the
iSBC 186/03, the iSBC 186/51, or the iSBC 188/48 processor board, it is
recommended that you use the default value.

You must set the base address at any integer multiple of the size of the
total memory block selected. For example, if you specified a total block
size of 32K for the previous parameter (MCS), you must select a base
address of 10000H or 18000H but not 14000H.

If you specify MCS=080000H for the previous parameter line, you must also
specify the base address to be 0000OH and the "Lower CS Size" parameter
to be zero.

KRk hkdhhdhddhddhhhrdhhbhidhrhkrhrdhrdirhddihrhhidhhhhhbrrhribrhhrbhhiin

* (MCW) Midrange CS Wait States [0,1,2,3] 0000H *
HRARRRRAARKAAARAAAR IR I KRR RARRAIRARA A A AR A AL T AAT AT AR ARAR AR AARARAAARAA A ALK

If you specified a non-zero value for the "Midrange CS Size™ parameter
line, you must specify the number of wait states for all accesses to the
midrange memory chip select lines. Otherwise, specify a value of zero.
The value you select can be from zero to three. If you are using the
iSBC 186/03, the iSBC 186/51, or the iSBC 188/48 processor board, it is
recommended that you use the default value.

RERAAIKARAXRIIAKR AT XTI KA AARIRRIRXAA XA A A LR AR AR IR AA R A TR AR AR A A b Ak hhhhdhhhhditd

* (MCR) Midrange CS Wait for Ready [Yes/No] No *
Thkhkhhhkhkhhhhhhkhhkhhhihkhhhhhhhhhhkhhhhkhhhhrhhhhhhhhhhhdihhhhhhhhhdkt

If you specified a non-zero value for the "Midrange CS Size" parameter
line, you must select whether or not the iAPX 186 should ignore external
READY for the midrange memory chip select lines. Otherwise, specify a
value of zero, If you specify "Yes”, the 1APX 186 will wait for the
number of wait states specified or will wait for an external READY
condition. If you specify "No", the i1APX 186 will wait for the number of
wait states specified but will not wait for an external READY condition.
If you are using the iSBC 186/03, the iSBC 186/51, or the iSBC 188/48
processor board, it is recommended that you use the default value,

REPLACE Configuration 3-20 UPDATE 2, 12/84

ROM CODE PARAMETERS

The module with the highest address. Since the Root Job module is always
the last module the second stage of the ICU locates, the information we
need to complete this table must come from the ROOT.MP2 file. The
contents from a sample ROOT.MP2 file is shown in Figure 15-2.

INPUT FILE: CROOT.LNK
OUTPUT FILE: ROOT
CONTROLS SPECIFIED IN INVOCATION COMMAND:

TO ROOT SEGSIZE(STACK(0)) ORDER(CLASSES(DATA,STACK))
PRINT(ROOT.MP2) ADDRESSES(CLASSES(CODE(029FFOH) ,DATA(02A4BOH)))
INITCODE(029FFOH) OC(NOCM,NOSB) PC(NLOI,PL,NOXM,NOSB) 00D

®
[J
[]
MEMORY MAP OF MODULE RBEGIN

MODULE START ADDRESS PARAGRAPH = 29FFH OFFSET = 0000H
SEGMENT MAP

START STOP LENGTH ALIGN NAME CLASS
-->29FFOH 2A2F3H 03044 W CODE CODE
2A2F4H 2A2FFH 0012H W SAB DESCRIPTOR CODE

-S
-->2A3000 2A3CS5H 00C6H W U J DESCRIPTOR CODE
-S
-->2A4BOH 2A4ClH 0012H W DATA DATA
2A4C2H 2A5EDH 012CH W INIT STACK STACK
2ASEEH 2ASEEH 0000H W STACK STACK
2A5FOH 2A5FOH 0000H G ??SEG
2A5FOH 2ASFOH 0000H W MEMORY MEMORY
GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
2A4BOH DGROUP
DATA
29FFOH CGROUP
CODE
SAB_DESCRIPTORS
U_J_DESCRIPTORS

Figure 15-2. ROOT.MP2 File

REPLACE Configuration 15-7 UPDATE 2, 12/84

ROM CODE PARAMETERS

The lines marked with arrows in Figure 15-2 contain the sample
information we need to complete the table. Since the ICU has organized
the modules in the order shown in Figure 15-3, we can also estimate the
other needed stop addresses. (Note that the Root Job's data and stack
segments should be treated as one block of RAM.)

2A5EDH
Root Job Data and Stack
2A4BOH
2A3C5H
Root Job Code
29FFQH
?
Other Operating System Data
29BA0H
?
Other Operating System Code
1040H

Figure 15-3. A Sample RAM-Based System

The following start addresses summarize this sample information.

System Module Code Locations Data Locations
I10S 001040H~ ? 029F30H- ?

HI 011620H- ? 029EBOH- ?
NUCLEUS 0177COH- ? 029FCOH- ?

SDB 01D7A0H- ? 029BAOH- ?

EIOS 022740H~ ? 029FEOQOH- ?
LOADER 025AA0H~ ? 029FAQH- ?

UDIL 028030H~029B9FH 029F8 OH-029FEFH
ROOT 029FFOH-02A3C5H 02A4BOH-02A4C1H

Having determined the basic size requirements of the system's code and
data segments, we can approximate the RAM and ROM requirements of this
sample ROM-based system. Figure 15-4 shows how we can configure our
sample ROM-based system.

NOTE
All data segments must be in RAM., All

RAM and ROM code must start on a 16
byte boundaries.

REPLACE Configuration 15-8 UPDATE 2, 12/84

ROM CODE PARAMETERS

Boundary +28F35H
Root Job Code

Boundary +28B5FH
Other Operating System Code
16K byte Boundary

15CDH
Root Job Data

1490H

148FH
Other Operating System Data

1040H

Figure 15-4. A Sample ROM-Based System

Before the system code is burned into ROM, it is recommended that you
test your ROM-based system in RAM. To do this, invoke the ICU and
respond to the "ROM" prompt with a RAM address in the "Memory" screen.
The following screen shows the changes in our sample configuration.

JHEEAIARIAARI kA A Ak bbb hhdhhhhdhbddhhdbhhrhr bbb hddhdhhdrhhrhhdhd
LR L L L o L T T T

| Rkded? Uk kk |
Py ThE K%
oy THK %
T T}
ETI) £
" Memory -

Type : RAM = low, high

Type : ROM = low, high

First define your RAM blocks in paragraphs
Type : RAM = 0104H, DFFFH

4d

Type : RAM

0104h, Offfh

Type : RAM
Now define your ROM blocks in paragraphs

Type : ROM = 1000h, 38F5h

Type : ROM =
*kk JEEE
*hkk | | KKK %
Thxdk | | hkdk !

I IR E R EE R XX R
B T L LI L R R R L TS

REPLACE Configuration 15-9 UPDATE 2, 12/84

ROM CODE PARAMETERS

Running the second stage of the ICU reveals that our sample ROM-based
system would have the following RAM addresses:

System Module Code Locations Data Locations

108 010000H~ ? 0013DOH- ?

HI 0205E0QH- ? 001350H~- ?

NUCLEUS 026780H~ ? 001460H- ?

SDB 02C760H- ? 001040H- ?

EIOS 031700H~ ? 001480H- ?

LOADER 034A60H~ 7 001440H- ?

UDI 036FFOH~- ? 001420H- ?

ROOT 038B60H-038F35H 0014908~-001 5CDH

The last steps you need to take to create a ROM-based system include:

° Use LIB86 to put all generated system modules into the system
library for boot loading or down-loading.

o Load and test your ROM-based system in RAM.

° Invoke the ICU to give the "Memory” screen actual ROM addresses.

o Generate your configuration files to link and locate your new
system.

° Record the Start and Stop addresses of each module to be burned
into ROM. This information is found in the memory maps LOC86
generates for each module.

° Burn your code into ROM.

Appendix C illustrates how to burn your Nucleus code into ROM. Refer to
this appendix for more information.

REPLACE

kkk

Configuration 15-10 UPDATE 2, 12/84

- ® _ iRMX™ 86 RELEASE 6
l DOCUMENTATION CHANGE PACKAGE:
UPDATE 3
147540-001

REQUEST FOR READER’S COMMENTS

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

~ 3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1to 5 (5 being the best rating).

NAME DATE
TITLE : —
COMPANY NAME/DEPARTMENT
ADDRESS
CITY STATE ZIP CODE
(COUNTRY)

Please check here if you require a written reply. L]

WE'D LIKE YOUR COMMENTS . ..

This document is one of aseries describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

, " " l NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.79 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

OMO Technical Publications

