FORMAT Command and Disk Verification Utility Enhancements

iRMX™ 86 Release 6.8, Update 1

Part Number: 147155-@g@1



CONTENTS
PAGE

Section One
Backing Up and Restoring Fnodes., . . ..o vvvevvvvvrrsrrereeresssroevesass 1=1
B O 0 - o T I 1-1
1.2 Using Fnode Backup and Restore......cvviirersotnerrecreronneses 1-5
.2.1 Creating the R?SAVE Fille....vvviervrievrernoviarssnssoasansea 1-6
«2.2 Backing Up Fnodes. .. .voevevievrioronnsrevnsssnsscsnsssenssnse  1=7
.2.3 Backing Up the Volume Label.....cvvtvrrverrsrrnveroerasnersne 1-8
2.4 Restoring Fnodes.....viveeestertrtsortotveseerrsssrssssssosssenns 1-8
2.5 Restoring the Volume Label.....vvvvirtreerronosssorosrsosonss 1-11
2.6 Displaying R?SAVE PnodesS. ..o vereernssrroenssornossrassssne 1-13

Section Two

Adding the Second Stage of the Release 6.0

Bootstrap Loader toa Formatted DisK.......covvvvvrrrovovrnnerreovsess 2=1
b T )7 - T - 2-1
2.2 Using the FORMAT Bootstrap Loader Switch......vvvevvvevrnvnaens 2-1

Section Three

Re N, . . v vttt ottt it ien it teestonetosoronossoossnsssssoansssas
BACKUPFNODES . « + v 0t v et ot ovnnosotoononsossssonsensosoesensossssoes
DISK . v ittt sttt eorasessnosssoeensoseseassssseasossssasssssnaasesons
DISPLAYSAVEEFNODE . o v v v vt vetsooosoronnsoooeoserassosssssassnstoses
1] 19 -0
RESTOREFNODE . 4 ot e vt vsseverrsresoststosesosrsososrnsosssosssossoossssss
RESTOREVOLUMELABEL . ¢ ¢« v o v v vt evrevoonosovseosoorsrsorsonossosssosacnsns

Fom’r.c000000000000000000|00qt000u'.to.cononohocooobo.onog..oouo

CEELTLLY
NNHEOOVWH
WK ~NWU



Introduction

Update 1 offers two new iRMX 86 capabilities--the capability of backing up and
restoring volume fnodes, and the capability of adding the second stage of the
Bootstrap Loader to a volume without re-formatting the volume. These features
have been implemented by adding two switches to the FORMAT system command and
by creating four new Disk Verification Utility commands.

The fnode backup and restore feature offers a minimum level of protection for
the volume label and the fnode file of a named volume. This feature is not
intended to provide extensive fnode backup capabilities for the volume.
However, it does offer a limited mechanism for attempting to recover data when
the volume label or the fnode file has been damaged.

The Bootstrap Loader feature allows you to take advantage of the Release 6.0
Bootstrap Loader capabilities (such as the "debug switch") without having to
back up and re-format volumes created under earlier releases of the iRMX 86
Operating System.

This write up is intended to serve as stand alone documentation for these
enhancements. It is available only through the iRMX 86 Release 6.0 update
service. The write-up is not intended to replace pages in the existing
documentation. However, it can be included in the same binders as the rest of
the documentation. For instance, the pages in the Reference section can
easily be inserted in the appropriate section of the iRMX 86 DISK VERIFICATION
REFERENCE MANUAL or the iRMX 86 OPERATOR'S MANUAL.

In this write-up, Section One is devoted to the fnode backup and restore
feature. Section Two covers the Bootstrap Loader feature. Within each
section a general overview of the feature is presented, followed by a brief
explanation of how that feature is used. In addition, Section 3 of the
write-up contains a reference section that describes the modified FORMAT
gystem command, the four new Disk Verification Utility commands, and two
existing Disk Verification Utility commands (DISK and HELP) that have been
changed to reflect the addition of the new commands.



Section One

Backing Up and Restoring Fnodes

1.1 Overview

To access data on a named volume (such as a disk), the iRMX 86 Operating
System uses a mechanism common to virtually all operating systems. This
approach entails maintaining an index to every file on the disk. The index is
created when the disk is formatted and thereafter it remains as a permanent
structure at a dedicated location on the disk. The index consists of a system
of pointers that indicate the location of the data files on the disk. Thus,
when data must be stored or retrieved from the disk, the operating system can
find the exact location of the appropriate file by looking up the filename in
the index.

In the iRMX 86 Operating System, the index consists of a volume label and an
fnode file. The volume label resides at the same location in all devices and
serves as the initial entry point into the device. The fnode file contains a
series of individual structures called file descriptor nodes or "fnodes".
There is one fnode for each file on the disk. The fnode contains information
essential to accessing and maintaining the respective file.

The iRMX 86 file structure for a named volume is organized as a hierarchical
tree. That is, there is a root directory with branches to other directories
and ultimately, to files. The organization of the fnode file reflects this
hierarchical structure. The volume label contains a pointer to the fnode of
the file structure's root directory. The root directory points to blocks on
the volume. These blocks may represent a first level data file or a first
-level directory file. '

A block that represents a data file contains data. A block that represents a
directory file contains a data structure which provides the names of all of
that directory's files and identifies the fnodes associated with those files.

The Operating System creates the volume label and the fnode file when the disk
is formatted. The number of un-allocated fnodes in the file is controlled by
the FILES parameter of the FORMAT command. 1In addition to the un-allocated
fnodes, seven allocated fnodes are established when the fnode file is

created. These allocated fnodes represent the fnode file, the volume free
space map file, the free fnodes map file, the bad blocks file, the volume
label file, the root directory, and an accounting file. (For a full
description of these files, see the Disk Verification Utility section of the
"iRMX 86 Introduction and Operator's Reference Manual for Release 6".)

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-1 147155-¢01



Thereafter, when files or directories are created directly subordinate to the
root, the Operating System must adjust a pointer in the root fnode to indicate
the fnode number of the new data file or directory file. Subsequently,
directories subordinate to the root must also have their pointers adjusted
when they become parents to a new data file or directory.

This method of storing and retrieving data on a disk has one major drawback.
All access to files on the disk is through the volume label and the fnode
file. 1If either the volume label file or the fnode file are damaged or
destroyed, there is no practical way to recover data on the disk.

The backup and restore fnodes feature prcocvides a means of attempting to
recover data lost as a result of catastrcphic damage to the fnode file or the
volume label. This feature allows you tc create a backup version of the
volume label and all the fnodes on the disk. The backup version is stored in
one of the innermost tracks of the disk where the chance of accidental loss of
data is minimal. (In normal usage, the disk heads do not extend to the
innermost tracks.)

To implement this feature, Intel has modified the Human Interface FORMAT
system command. A new optional parameter--RESERVE--has been added to the
command. This version of the FORMAT command creates a new file named R?SAVE
in the innermost track of the volume. A copy of the volume label is placed in
the front of the file (that is, at the physical end of the volume) and an
fnode is allocated for R?SAVE in the fnode file. (The fnode for the R?SAVE
file is allocated out of the fnodes reserved through the FILES parameter of
the FORMAT command. Thus, if you specify "FILES = 3@0¢@" when you format, only
2999 of those fnodes will remain available after the R?SAVE fnode has been
allocated.) Finally, FORMAT copies the fnode file into R?SAVE.

Notice that the new FORMAT command creates a backup of the fnode file in its
initialized state. R?SAVE is not subsequently updated as files are written to
or deleted from the volume. Therefore, you will have to use the new
BACKUPFNODES Disk Verification Utility command to backup the fnode file when
the volume has been modified. If the volume label or the fnode file become
damaged, you can attempt to recover files on the volume by using the new Disk
Verification Utility commands (RESTOREFNODES and RESTOREVOLUMELABEL) to
rebuild the index. To assist in this process, the new DISPLAYSAVEFNODE Disk
Verification Utility command allows you to look at individual fnodes stored in
the R?SAVE file.

Since the contents of the volume label do not change, the copy of the volume
label in R?SAVE is always valid. Therefore, you can restore the volume label
at any time regardless of when the R?SAVE file was last updated. (When the
Disk Verification Utility encounters a damaged volume label, it now
automatically uses the backup volume label if the R?SAVE file is present.)

iRMX 86 Release 6.8 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-2 147155-¢d@1



One note of caution: The fnode file is changed each time a volume is modified
(that is each time a file is created, written to, or deleted from the

volume). Therefore, valid restoration can be assured only if the fnode file
is backed up each time the volume is modified. If the fnodes are not backed
up after each modification, the structure of the R?SAVE file will differ from
that of the fnode file. That is, some fnodes in R?SAVE may not be associated
with the same files as the corresponding fnodes in the fnode file. Attempting
to recover fnodes under these conditions is dangerous because the
RESTOREFNODES command will overwrite what may be a valid fnode in the fnode
file.

While the backup and restore fnodes feature is a useful aid in attempting to
recover data on a volume, this capability is limited in scope. If you are
troubleshooting your system, you may want to back up the fnodes on the system
disk before taking any action that may risk the disk's integrity. You may
also decide to back up the fnodes on a routine basis (before each system
shutdown, for instance) so that the R?SAVE file is always relatively current.
However, under normal circumstances, where a volume is accessed and modified
frequently, backing up the fnodes after each modification is not practical.

Therefore, the limited capability of the fnode backup and restore feature must
be clearly understood. This feature is not intended to provide comprehensive
protection from the loss of data associated with damaged volume labels or
fnode files. Rather, the purpose is to offer a tool that, when properly
applied, can be useful in maintaining volume integrity in certain situations.

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-3 147155-¢@1



iRMX 86 Release 6.8 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-4 147155991



1.2 Using Fnode Backup and Restore

The fnode backup and restore feature requires the use of Version 3.1 of the
Release 6.0 Human Interface FORMAT command and the Version 3.1 of the Release
6.0 Disk Verification Utility. Both of these items are distributed in the
iRMX 86 Update Package (Update 1.4 and later).

Used together, the new versions of the FORMAT command and the Disk
Verification Utility allow you to (1) format a volume to create the backup
file (R?SAVE), (2) backup the fnodes of any files that are written to the
volume (3) examine the contents of the backup file (R?SAVE), (4) restore
damaged fnodes, and (5) restore the volume label.

This section describes how to perform each of these operations. A brief
overview of the operation is followed by one or more examples of a typical
implementation. 1In the examples, boldface type (this is boldface type) is
used to indicate an entry made from your terminal. Standard type (this is
standard type) is used to indicate system output to your terminal.

This section is organized as follows:

1.2.1 Creating the R?SAVE File
1.2.2 Backing Up Fnodes
1.2.3 Backing Up the Volume Label
1.2.4 Restoring Fnodes
1.2.5 Restoring the Volume Label
1.2.6 Displaying R?SAVE Fnodes
iRMX 86 Release 6.9 FORMAT/Digk Verify

Update 1 SEP 84 ‘ Page 1-5 147155-9¢1



1.2.1 Creating the R?SAVE Fnode Backup File

Description

If you intend to backup the volume label and the fnodes on a volume, you must
first create the R?SAVE backup file on the innermost track of the volume. To
do so you must invoke Release 6.8, Version 3.1 of the Human Interface FORMAT
command, specifying the RESERVE option. NOTICE THAT THE FORMAT COMMAND
OVERWRITES ALL OF THE DATA CURRENTLY ON THE DISK. Therefore, make a backup
copy of any files you wish to save.

Once the volume has been formatted, the R?SAVE file will contain a copy of the
fnode file including the allocated fnodes (R?SPACEMAP, R?FNODEMAP, etc.).
Therefore, you need not backup the fnode file immediately after formatting the
volume.

Procedure

1. From the Human Interface, invoke the FORMAT command, specifying the
RESERVE parameter.

Example

Assume that you have booted your system from a floppy diskette in order to
format the winchester disk. The disk is attached as logical device :se:. The
command listed below formats the disk and creates the R?SAVE backup file. The
initialized fnode file is copied into R?SAVE.

—format :se: il = 4 files = 3000 reserve <CR>

volume ( ) will be formatted as a NAMED volume

granularity = 1,824 map start = 7,859
interleave = 4

files = 3099

extensionsize = 3

save area reserved = yes

volume size = 15,984K

L1111 1111110 111141
volume formatted

The disk has now been formatted. A file named R?SAVE has been reserved in one
of the innermost tracks of the disk. (If you use the Disk Verification
Utility DISPLAYDIRECTORY command on the volume root fnode (fnode 6), you will
find an fnode listed for R?SAVE.) R?SAVE contains a duplicate copy of the
fnodes in the fnode file. That is, R?SAVE contains eight allocated fnodes
(R?SAVE, R?SPACEMAP, R?FNODEMAP, etc.) and 2,999 un-allocated fnodes.
(Remember, the R?SAVE fnode is allocated out of the 3,000 fnodes specified
through the FILES parameter.)

iRMX 86 Release 6.9 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-6 147155-¢@1



1.2.2 Backing Up Fnodes on a Volume

Description

To back up the fnodes on a volume, you must have previously reserved the bhack
up file R?SAVE when the volume was formatted. Thereafter, any modification to
the volume (creating, writing to, or deleting a file) requires that the fnodes
be backed up if the R?SAVE file is to contain an accurate copy of the fnode
file. :

To back up the fnode file on a volume, you must invoke the Disk Verification
Utility using the logical device name of the volume to be backed up. When the
Disk Verification Utility is activated, enter the Disk Verification Utility
BACKUPFNODES command. A duplicate copy of all the fnodes in the fnode file
will be written to the R?SAVE file.

Procedure

1. Invoke the Disk Verification Utility using the logical device name of the
device containing the volume to be bhacked up.

2. When you receive the Disk Verification Utility prompt (*), enter the
BACKUPFNODES command.

3. When the fnodes have been backed up, the Disk Verification Utility returns
the message “"fnode file backed up to save area".

Example

Assume that the system disk is attached as logical device :sd:. The initial
contents of the :sd: fnode file were copied to R?SAVE by the FORMAT command.

A file has just been written to the volume. An fnode for this file is entered
in the fnode file. However, no corresponding entry has been made in R?SAVE.
The following sequence of commands will copy all fnodes in the fnode file into
the R?SAVE file.

~diskverify :sd: <CR>

iRMX 86 Disk Verifiy Utility, V3.1

Copyright 1981, 1982, 1984 Intel Corporation
*backupfnodes <CR> or bf <CR>

fnode file backed up to save area
%

R?SAVE now contains a duplicate copy of all fnodes (allocated and
un-allocated) in the fnode file.

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-7 147155-¢¢1



1.2.3 Backing Up the Volume Label

Description

The volume label is initially copied to R?SAVE when the volume is formatted.
Since the contents of the volume label do not change, there are no other
volume label backup procedures required.

1.2.4 Restoring Fnodes

Description

To restore fnodes on a volume, you must have previously reserved the backup
file R?SAVE when the volume was formatted. If damage has occured to the fnode
file, you can attempt to rebuild the file (or portions of it) by using the
Disk Verification Utility RESTOREFNODE command.

RESTOREFNODE allows you to restore a single fnode or a range of fnodes. You
designate the fnodes to be restored by entering the fnode numbers. The
specified fnodes in R?SAVE are copied into the corresponding fnodes in the
fnode file.

Prior to restoring each fnode, RESTOREFNCDE prompts you with the message
"restore fnode <fnode number>?". To restore the fnode, you must enter a
letter "y" (either Y or y). If you enter any other response, the fnode
will not be restored.

When restoring fnodes, you must be very careful to assure that you are not
overwriting a valid fnode in the fnode file with an invalid fnode from
R?SAVE. You are assured that this will not happen only if the volume has not
been modified since the fnodes were last backed up.

Procedure

1. Invoke the Disk Verification Utility, using the logical device name of the
volume to be backed up.

2. When you receive the Disk Verification Utility prompt (*), enter the
appropriate Disk Verification Utility commands (VERIFY, DISPLAYFNODE,
etc.) to examine the fnodes file and determine which fnode must be
restored.

3. 1Invoke the Disk Verification Utility RESTOREFNODE command to replace the
damaged fnodes. The Disk Verification Utility prompts you to confirm that
the proper fnode is being restored. Check to assure that you have
specified the correct hexadecimal number for the fnode, then enter the
letter "y" in response to the prompt.

iRMX 86 Release 6.8 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-8 147155-901



4. RESTOREFNODE returns the message "restored fnode < fnode number >" after
the fnode in the R?SAVE file has been written over the corresponding fnode
in the fnode file.

Example 1

Assume that a disk drive is attached as logical device :sd:. The volume :sd:
contains the R?SAVE fnode backup file. You have not modified the disk since
the fnodes were last backed up. Subsequently, you have reason to suspect that
the fnode file has been damaged. You use the Disk Verification Utility
utility to confirm your suspicions:

-diskverify :sd: <CR»>

iRMX 86 Disk Verify Utility, V3.1

Copyright 1981, 1982, 1984 Intel Corporation
xverify

.

After using the Disk Verification Utility to examine the structure of the
disk, you find that fnodes 9 through @#C have probably been destroyed. You
decide to use the RESTOREFNODE command to recover these fnodes.

*restorefnode 9, 0C <CR> or rf9,0C<CR>
restore fnode 9?2 Y <CR>

restored fnode number: 9

restore fnode ga? Y <CR»>

restored fnode number: gA

restore fnode #B? Y <CR>

restored fnode number: @B

restore fnode gc? Y <CR>

restored fnode number: gc

Fnodes @9 through ¢C in the R?SAVE file have been copied into fnode @9 through
@C in the fnode file. Since the disk has not been modified since the last
fnode backup, restoring the damaged fnodes should now enable you to recover
the data on the disk.

iRMX 86 Release 6.9 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-9 147155-¢41



Example 2

Assume the same initial conditions as example 1 with the following exception:
two files have been modified since the last time the fnodes were backed up.
In the fnode file, the new files are represented by fnodes @D and @E. Again,
you suspect that the fnode file has been damaged. You use the Disk
Verification Utility to check the condition of data on the disk:

~diskverify :sd: <CR>

iRMX 86 Disk Verify Utility, V3.1

Copyright 1981, 1982, 1984 Intel Corporation
xverify

.

After using the Disk Verification Utility to examine the structure of the
disk, you find that fnodes 9 through 1¢ have probably been destroyed. You
decide to use the RESTOREFNODE command to recover these fnodes. You do not
wish to restore fnodes @D and @E because these fnodes were uot backed up.
Since the data fields of fnodes @D and #E in R?SAVE contain all zeros, you
would be destroying possibly useful data in the corresponding fnodes. You
decide to use RESTOREFNODE to restore a range of fnodes that includes @D and
@E. However, you intend to pass over the restoration of these two fnodes by
responding to the confirmation prompt with some character other than 'y'.

xrestorefnode 9,10 <CR> or rf9,10 <CR>
restore fnode 9?2 Y <CR>

restored fnode number: 9

restore fnode gA? Y <CR»>

restored fnode number: gA

restore fnode #B? Y <CR>

restored fnode number: B

restore fnode gc? Y <CR»>

restored fnode number: @gc

Notice, that because fnodes @D and @GE were never backed up, those fnodes in
R?SAVE are un-allocated. Therefore the Disk Verification Utility returns the
"allocation bit not set for saved fnode" message. Since you do not wish to
restore this fnode, you respond to the confirmation prompt with a 'non-y'
character.

allocation bit not set for saved fnode
restore fnode gp? <CR>
allocation bit not set for saved fnode
restore fnode ¢gE? n<CR>

restore fnode gr? Y <CR>

restored fnode number: oF
restore fnode 18?2 Y <CR>
restored fnode number: 18

The R?SAVE fnodes @9 through #C and fnodes @F through 1¢ have been copied over
the corresponding fnodes in the fnode file. Fnodes @D and $E were not
restored.

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-19¢ 147155-941



1.2.5 Restoring the Volume Label

Description

To restore the volume label, you must have previously reserved the backup file
R?SAVE when you formatted the volume. If the volume contains the R?SAVE file,
a backup copy of the volume label already exists. The FORMAT command
automatically places a copy of the volume label into R?SAVE when the file is
created. Thereafter, the contents of the volume label do not change.
Therefore, you can restore the label without fear of destroying data in the
existing label.

To restore the volume label, you must invoke the Disk Verification Utility
using the logical device name of the appropriate volume. If the volume label
is corrupted, the Disk Verification Utility attempts to use the backup copy of
the volume label in R?SAVE. When the backup label is used, the Disk
Verification Utility issues a message that reads "DUPLICATE VOLUME LABEL
USED". If this message appears when the Disk Verification Utility is
activated, then the volume label is damaged. To restore the volume label,
enter the Disk Verification Utility RESTOREVOLUMELABEL command. The current
volume label will be overwritten with the volume label copy from R?SAVE.

Procedure

1. 1Invoke the Disk Verification Utility, using the logical device name of the
volume to be backed up.

2. If the "DUPLICATE VOLUME LABEL USED" message appears when the utility is
activated, the volume label must be restored. Enter the Disk Verification
Utility RESTOREVOLUMELABEL command.

3. When the volume label has been restored, the Disk Verification Utility
returns the message "volume label restored".

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-11 147155-¢91



Example

Assume that a disk drive is attached as logical device :sd:. The volume :sd:
contains the R?SAVE fnode backup file. When you attempt to access files on
:sd:, the system returns and E$ILLEGAL_VOLUME message. You suspect that the
volume label may be damaged. You decide to check your suspicions using the
Disk Verification Utility.

~diskverify :sd: <CR>
iRMX 86 Disk Verify Utility, V3.1
Copyright 1981, 1982, 1984 Intel Corporation

DUPLICATE VOLUME LABEL USED
*

The "DUPLICATE VOLUME LABEL USED" message confirms that the volume label has
been damaged. You restore the volume label using the RESTOREVOLUMELABEL
command.

xrestorevolumelabel <CR> or rvl<CR> or rv <CR>

volume label restored
*

The original volume label has been overwritten with the duplicate copy from
the R?SAVE file. Attempts to access files on volume :sd: should now be
successful,

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-12 147155-¢01



1.2.6 Displaying R?SAVE Fnodes

Description

Any fnode (both allocated and un-allocated) in the R?SAVE file can be examined
by using the Disk Verification Utility DISPLAYSAVEFNODE command. The Disk
Verification Utility will display vital information about the fnode (total
blocks, total size, block pointers, parent node, etc.). The fnode will be
displayed in the same format used by the Disk Verification Utility
DISPLAYFNODE command.

To display an R?SAVE fnode, enter the Disk Verification Utility
DISPLAYSAVEFNODE command and specify the hexadecimal number of the fnode to be
displayed.

Procedure

1. 1Invoke the Disk Verification Utility using the logical device name of the
appropriate volume.

2. When you receive the Disk Verification Utility prompt (*), enter the Disk
Verification Utility DISPLAYSAVEFNODE command. Specify the hexadecimal
nunber of the frniode to be displayed. ‘

3. The Disk Verification Utility will return with an fnode display.

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 1-13 147155-¢01



Example

Assume that you can not access a file on a disk attached as :sd:. You suspect

that the fnode file may be damaged.

By entering the Disk Verification Utility

and displaying the file's directory, you find that the file you were unable to

access is represented by fnode 3C8.
but you are not confident of the data you see.

You use DISPLAYFNODE to display fnode 3C8
Since the fnode for the file

has been backed up since the file was last modified, you decide to use data in
the R?SAVE fnode to examine the fnode file.
the data for fnode 3C8 in R?SAVE.

—-diskverify :sd: <CR>

iRMX 86 Disk Verify Utility, V3.1

Copyright 1981, 1982, 1984 Intel Corporation

*displaysavefnode 3C8 <CR>

Fnode number = 3C8 (saved)
flags :

or

type :
file gran/vol gran :

T 3001

owner
create,access,mod times

total blocks
block pointer(l)
block pointer(2)
block pointer(3)
block pointer(4)
block pointer(S)
block pointer(6)
block pointer(7)
block pointer(8)

this size :

T POPO0000, BOGBOODE, PDPPBPPP

total size :

dsf 3C8 <CR>

@@25 => short file
@¢8 => data file

g1

2303201

: PPPPPsPC

: @9@C, @94910
: 9000, PO0PI0
1 9000, G000PP
: 9000, Po0PIP
: 9900, POPPPP
1 9000, PP00DP
: OPP0, PPP0DP
1 9000, CO00BY

id count :
: OF, 99¢1
T 90, 9000
: 98, 9099

accessor(l)
accessor(2)
accessor(3)

parent :

aux (%)

iRMX 86 Release 6.¢
Update 1 SEP 84

20033000
2991

#3C4

1 PPPPes

Page 1-14

The following command displays

FORMAT/Disk Verify
147155--08¢1



Section Two

Adding the Second Stage of the New Bootstrap Loader
to a Formatted Disk

2.1 Overview

The Bootstrap Loader operates in two stages. The first stage establishes a
location in RAM for the second stage, names the load file, loads part of the
second stage and transfers control to the second stage. The second stage
finishes loading itself, transfers the load file into memory and passes
control to the load file.

The first stage resides on ROM or is stored on a secondary storage device.
The second stage always resides on track @ of every (Standard format) named
volume. The Human Interface FORMAT system command automatically places the
second stage of the Bootstrap Loader in track @ of every named volume it
formats.

The iRMX 86 Release 6.0 version of the Bootstrap Loader provides a new feature
called the "Debug Switch". The Debug Switch allows you to use the monitor
during the initialization of application jobs. Thus, you can single step
through the initialization process, establishing breakpoints, examining
register contents, ete.

In order to use this feature, you will need the first stage of the Release 6.0
Bootstrap Loader in your system. You will also need the second stage of the
Release 6.4 Bootstrap Loader on track ¢ of any named volumes used to load
applications. To avoid forcing you to re-format application diskettes that do
not contain the Release 6.8 version, Intel has added a new parameter--the
BOOTSTRAP parameter—-to the FORMAT system command. When the BOOTSTRAP
parameter is specified, FORMAT writes the second stage of the Release 6
Bootstrap Loader onto track @ without re-formatting the rest of the volume.

2.2 Using the FORMAT Bootstrap Loader Switch

Description

To install the second stage of the Release 6.0 Bootstrap Loader on a named
volume, invoke the FORMAT command, indicating the logical name of the
appropriate volume and specifying the BOOTSTRAP parameter. When the BOOTSTRAP
parameter is specified, any other parameters entered with the command are
disregarded. FORMAT writes the second stage of the Release 6.8 Bootstrap
Loader onto track @ without re-formatting the volume.

iRMX 86 Release 6.9 FORMAT/Disk Verify
Update 1 SEP 84 Page 2-1 147155-9¢1



Procedure

1. Invoke the FORMAT command using the logical device name of the volume to
which the second stage of the Bootstrap Loader is to be added. Specify
the BOOTSTRAP parameter by entering "B", "BS", or "BOOTSTRAP" on the same
logical line as the FORMAT command. (Remember, if you fail to specify the
BOOTSTRAP parameter, FORMAT will format the volume.)

Example

Assume that you have a number of diskettes formatted by the Release 5.9
version of FORMAT command (V2.8). You plan to use the Release 6.8 version of
the Bootstrap Loader with some of the files on these diskettes. However, you
do not want to undergo the time consuming process of copying all of these
files onto newly formatted diskettes. Therefore, you are using the FORMAT
command with the BOOTSTRAP switch set to copy the second stage of the
Bootstrap Loader onto track @ of the Release 5.8 diskettes.

In this example, assume that the logical name :f@: applies to a floppy disk
drive containing a diskette formatted under iRMX 86 Release 5.¢. On the
diskette are files containing application programs. Any of the following
commands will copy the second stage of the Release 6.8 Bootstrap Loader onto
track @ of the diskette without re-formatting the volume.

-FORMAT :fO: BS <CR>

~-FORMAT :fO0: BOOTSTRAP <CR>

~-FORMAT :fO: B <CR>

-FORMAT :£0: FILES= 300 GRANULARITY =200 FORCE BOOTSTRAP <CR>

Bootstrap Loader written

When the FORMAT command has completed executing, track @ of the diskette
contains the Release 6.9 version of the Bootstrap Loader's second stage. The
remainder of the files on the diskette are unaffected. (Notice, in the fourth
example, the FILES, GRANULARITY, and FORCE switches are ignored since the
BOOTSTRAP switch has precedence over any cother FORMAT switch).

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 2-2 147155-¢d1



Section Three

Reference

The following section provides reference material on (1) the four new Disk
Verification Utility commands, (2) the two modified Disk Verification Utility
commands, and (3) the modified FORMAT command.

The section begins with the following Disk Verification Utility commands

presented in alphabetical order:

The modified FORMAT command is at the end of the section.

iRMX 86
Update 1

BACKUPFNODES

DISK
DISPLAYSAVEFNODE
HELP

RESTOREFNODE
RESTOREVOLUMELABEL

Release 6.0
SEP 84

Page 3-1

FORMAT/Disk Verify
147155-9@1



iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-2 147155-¢@1



BACKUPFNODES

This command copies the current fnode file into a designated fnode backup file
named R?SAVE. R?SAVE must have been reserved when the volume was formatted.
(That is, the RESERVE option of the FORMAT command must have been specified.)
The format of the BACKUPFNODES command is as follows:

T—GCKUPFNODES

2017

INPUT PARAMETERS

None.

OUTPUT
BACKUPFNODES displays the following message:

fnode file backed up to save area

DESCRIPTION

The BACKUPFNODES command provides a means of avoiding the loss of data that
occurs when the fnode file is damaged or destroyed. To use this command, you
must have formatted the volume using Version 3.1 (or later) of the FORMAT
command to create a special reserve area (R?SAVE). A switch in the FORMAT
command (the RESERVE switch) controls the creation of R?SAVE. If you did not
specify the RESERVE parameter when the volume was formatted, the BACKUPFNODES
command will be unable to copy the fnode file to R?SAVE. An error message
will be returned indicating that no save area has been reserved. (In this
case, the volume must be reformatted if you wish to use the BACKUPFNODES
command. )

The FORMAT system command writes the initialized copy of the fnode file into
R?SAVE. Therefore you do not have to use BACKUPFNODES to back up a newly
formatted volume. Subsequently, anytime a file is created, modified, or
deleted, you will have to back up the fnodes to assure that the data in R?SAVE
matches the data in the fnode file.

When the BACKUPFNODES command is invoked, all of the fnodes currently in the
fnode file are copied to the R?SAVE file. Any fnodes currently saved in
R?SAVE are overwritten.

iRMX 86 Release 6.9 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-3 147155-991



ERROR MESSAGES

Message Description

argument error When you entered the command, you supplied an
argument. BACKUPFNODES does not accept an
argunment .,

no save area reserved The volume has not been formatted to support

when volume was fnode backup. Re-format the volume using

formatted Version 3.1 (or later) of the FORMAT command

with the RESERVE parameter specified.

not a named disk The volume you specified when you invoked the
Disk Verification Utility is a physical
volume not a named volume.

EXAMPLE

-diskverify :sd: <CR>

iRMX 86 Disk Verify Utility, V3.1

Copyright 1981, 1982, 1984 Intel Corporation
xbackupfnodes <CR> or bf <CR>

fnode file backed up to save area
%

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-4 147155-9891



DISK

This command displays the attributes of the volume being verified. You can
abort this command by typing a CONTROL-C (press the CONTROL key, and while
holding it down, press the C key). The format of the DISK command is as
follows:

_

2018
OUTPUT

The output of the DISK command depends on whether the volume is formatted as a
physical or named volume. For a physical volume, the DISK command displays
the following information:

Device name = <dewvname>
Physical disk

Device gran = <devgran>
Block size = <devgran>
No of blocks = <numblocks>
Volume size = <size>
where:
<devname> Name of the device containing the volume. This is
the physical name of the device, as specified in the
ATTACHDEVICE Human Interface command.
<devgran> Granularity of the device, as defined in the device
unit information block (DUIB) for the device. Refer
to the iRMX 86 CONFIGURATION GUIDE for more
information about DUIBs. For physical devices, this
is also the volume block size.
<numblocks> Number of volume blocks in the volume.
<size> Size of the volume, in bytes.
iRMX 86 Release 6.0 FORMAT/Disk Verify

Update 1 SEP 84 Page 3-5 147155-941



For a named volume, the DISK command displays the following information:

device name = <devname:
named disk, volume name = <volname:
device granularity = <devgran:»
block size = <volgran:»
number of blocks = <numblocks>
number of free blocks = <numfreeblocks>
volume size = <size>
interleave = <inleave:
extension size = <xsize>
number of fnodes = <numfnodes>
number of free fnodes = <numfreefnodes>
save area reserved = (yes/no)

The <devname>, <devgran>, <numblocks>, and <size> fields are the same as for

physical volumes. The remaining fields are as follows:

<volname> Name of the volume, as specified when the volume
was formatted.

<volgran> Volume granularity, as specified when the volume
was formatted.

<numfreeblocks> Number of available volume blocks in the volume.

<inleave> The interleave factor for a named volume.

<xsize> Size, in bytes, of the extension data portion of
each file descriptor node (fnode).

<numfnodes> Number of fnodes in the volume. The fnodes were
created when the volume was formatted.

<numfreefnodes> Number of available fnodes in the named volume.

Indicates whether the R?SAVE file is reserved for
volume label and fnode file backups.

save area reserved

Refer to THE iRMX DISK VERIFICATION UTILITY REFERENCE MANUAL, Appendix A or to
the description of the FORMAT command in the iRMX 86 OPERATOR'S MANUAL for
more information about the named disk fields.

FORMAT/Disk Verify
147155-¢@1

iRMX 86 Release 6.0

Update 1 SEP 84 Page 3-6



DESCRIPTION

The DISK command displays the attributes of the volume.

The format of the

output from DISK depends on whether the volume is formatted as a named or

physical volume.

ERROR MESSAGES

None

EXAMPLE

~diskverify :f0: <CR>

iRMX 86 Disk Verify Utility, v3.1

Copyright 1981, 1982, 1984 Intel Corporation

*disk

device name

named disk, volume name
device granularity
block size

number of blocks
number of free blocks
volume size
interleave

extension size

number of fnodes
number of free fnodes
save area reserved

iRMX 86 Release 6.0
Update 1 SEP 84

Wowonouonoun uonononnn

wfdg

FLPG
@100
PBBBB7C5
PPPPP6C3
@BBTC5P%
@o05

@3

@OCF
pec2

yes

Page 3-7

FORMAT/Disk Verify
147155-¢91



iRMX 86 Release 6.8 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-8 147155-¢41



DISPLAYSAVEFNODE

This command displays the fields associated with a single fnode in the R?SAVE
file. R?SAVE must have been reserved when the volume was formatted. (That
is, the RESERVE option in the FORMAT command must have been specified.) The
format of the DISPLAYSAVEFNODE command is as follows:

DISPLAYSAVEFNODE '—— w

2013

INPUT PARAMETER

fnodenum The Hexadecimal number of the fnode to be
displayed. This number can range from @ through
(maxfnodes - 1), where maxfnodes is the maximum
number of fnodes defined when the volume was
originally formatted.

OUTPUT

In response to this command, DISPLAYSAVEFNODE displays the fields of the
specified fnode. The format of the display is as follows:

Fnode number = <fnodenum»(saved)
flags : <flgs>

type : <typ>
file gran/vol gran : <gran>
owner : <own>
create,access,mod times : <crtime>, <acctime>, <modtime>
total size : <totsize>

total blocks : <totblks>
block pointer(l) <blks>, <blkptr>
block pointer(2) <blks>, <blkptr>
block pointer(3) <blks>, <blkptr>
block pointer(4) <blks>, <blkptrs>
block pointer(5) <blks>, <blkptr>
block pointer(6) <blks>, <blkptr>
block pointer(7) <blks>, <blkptr>
block pointer(8) <blks>, <blkptr>
this size : <thissize>
id count : <count>
accessor(l) : <access>, <id>
accessor(2) <access>», <id>
accessor(3) : <access>», <id>
parent : <prnt>
aux(*) : <auxbytes>

28 a8 e+ ae se se es e ee

os

.

ae

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-9 147155-¢d1



where:
<fnodenum> The Hexadecimal nunmber of the fnode being displayed.
If the fnode does not describe an actual file (that is,
if it is not allocated), the following message appears
next to this field:
*%% ALLOCATION STATUS BIT IN THIS FNODE NOT SET **x*

In this case, the fnode fields are normally set to zero.

<flgs> A word defining the attributes of the file.
Significant bits of this word are:
Bit Meaning
'] Allocation status. This bit is set to 1

for allocated fnodes and set to @ for
free fnodes.

1 Long or short file attribute. This bit
is set to 1 for long files and set to @
for short files.

5 Modification attribute. This bit is set
to 1 whenever a file is modified.

6 Deletion attribute. This bit is set to
1 to indicate a temporary file or a file
that is going to be deleted.

The DISPLAYSAVEFNOLE command displays a message next to
this field to indicate whether the file is a long or
short file.

<typ> Type of file. This field contains a value and a
message. The possible values and messages are:

Value Message

29 fnode file
g1 volume map file
92 fnode map file
@3 account file
B4 bad block file
@6 directory file
@8 data file
29 volume label file

<gran> File granularity, specified as a multiple of the volume

granularity.
<own> User ID of the owner of the file.
iRMX 86 Release 6.9 FORMAT/Disk Verify

Update 1 SEP 84 Page 3-1¢ 147155-¢91



<crtime> Time and date of file creation, last access, and

<acctime> last modification. These values are expressed as
<modtime> the time since January 1, 1978.

<totsize> Total size, in bytes, of the actual data in the file.
<totblks> Total number of volume blocks used by the file,

including indirect block overhead.

<blks>, <blkptr> Values which identify the data blocks of the file. For
short files, each <blks> parameter indicates the number
of volume blocks in the data block and each <blkptr> is
the number of the first such volume block. For long
files, each <blks> parameter indicates the number of
volume blocks pointed to by an indirect block and each
<blkptr> is the block number of the indirect block.

<thissize> Size in bytes of the total data space allocated to the
file, minus any space used for indirect blocks.

<count> Number of user IDs associated with the file.

<access>, <id> Each pair of fields indicate the access rights for the
file (access) and the ID of the user who has that
access ID. Bits in the <access> field are set to
indicate the following access rights:

Data File Directory
Bit Operation Operation
@ delete delete
1 read display
2 append add entry
3 update change entry

The first ID listed is the owning user's ID.

<prnt> Fnode number of the directory file which contains
the file.
<auxbytes> Auxiliary bytes associated with the file.
iRMX 86 Release 6.0 FORMAT/Disk Verify

Update 1 SEP 84 Page 3-11 147155-¢¢1



DESCRIPTION

The DISPLAYSAVEFNODE command provides a means of examining a single fnode in
the R?SAVE file that serves as a backup for the fnode file. Since
DISPLAYSAVEFNODE operates on the R?SAVE file, you must have reserved this file

when the volume was formatted.

(You reserve R?SAVE by specifying the RESERVE

parameter when you invoke the FORMAT command.) If the R?SAVE file was not
reserved when the volume was formatted, DISPLAYSAVEFNODE will return an error

message.

ERROR MESSAGES

Message

argument error

no save area reserved
when volume was
formatted

not a named disk

iRMX 86 Release 6.9
Update 1 SEP 84

Description

When you entered the command, you did not
supply an argument. DISPLAYSAVEFNODE
requires an argument.

The volume has not been formatted to support
fnode backup. Format the volume using the
Release 6.8, Version 3.1 (or later) FORMAT
command with the RESERVE parameter specified.

The volume you specified when you invoked the
Disk Verification Utility is a physical
volume not a named volume.

FORMAT/Disk Verify
Page 3-12 147155-901



EXAMPLE

-diskverify :sd: <CR>
iRMX 86 Disk Verify Utility, V3.1
Copyright 1981, 1982, 1984 Intel Corporation

*displaysavefnode 3

Fnode number = 3C8 (saved)
flags :
type :
an/vol gran :

file gr
create,acces

t
block
block
block
block
block
block
block
block

iRMX 86 Release 6
Update 1

C8 <CR>

owner
s,mod times

total size :

otal blocks
pointer(l)
pointer(2)
pointer(3)
pointer(4)
pointer(5)
pointer(6)
pointer(7)
pointer(8)

this size :
id count :

accessor(l)
accessor(2)
accessor(3)

parent :

aux (%)

N/

SEP 84

or

dsf 3C8 <CR>

short file
data file

#2825 =>
g8 =>
g1

: 9@l
: POOOO000, SO0, SOIOBBBD

283@2D@1

e

1 @9@C, PP4919
1 0008, PO0PPP
1 PO08, PO0000
L
1 9000, 990000
: 9900, GOPPDP
1 9900, PPP00P
: PP00, PP0000

Po333000
o001

: 9F, 9991
1 99, 0099
: 00, 9000

@3C4

2 PoP000

Page 3-13

FORMAT/Disk Verify

147155-9¢1



iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-14 147155991



HELP

This command lists all available Disk Verification Utility commands and

provides a short description of each command.

OUTPUT

The format of this command is:

HELP }—7—
(v)
-/

2014

In response to this command, HELP displays the following information:

allocate/free :

backup/restore fnodes (bf/rf)

display byte/word (d,db/dw)
display directory (dd)

display fnode (df)

display next block (>,dnb)
display previous block (<,dpb)
display save fnode (dsf)

exit,quit :
: list bad blocks on the volume

: read a disk block into the buffer
: copy volume label from save area
save :
: modify the buffer (byte/word format)

list bad blocks (1lbb)
read (r)
restore volume label (rvl)

substitute byte/word (s,sb/sw)

verify :
: write to the disk block from the buffer

write (w)
miscellaneous command-

address :

block :

hex/dec :
add,+,sub,~-,mul,*,div,/mod :

iRMX 86 Release 6.0
Update 1 SEP 84

allocate/free fnodes, space blocks, bad blocks

: backup/restore fnode file to/from save area
Control-C :
disk :

abort the command in progress
display disk attributes

: display the buffer in (byte/word format)
: display the directory contents

: display fnode information

: read and display 'next' volume block

: read and display 'previous' volume block
: display saved fnode information

quit disk verify

save free fnodes, free space & bad block maps

verify the disk

convert block number to absolute address
convert absolute address to block number
display number as hexadecimal/decimal number
arithmetic operations on unsigned numbers

FORMAT/Disk Verify

Page 3-15 147155-¢91



iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-16 147155-@@1



RESTOREFNODE

This command copies an fnode or a range of fnodes from the R?SAVE file to the
fnode file. Before changing the fnode file, RESTOREFNODE displays the fnode

number to be changed and prompts you to confirm (by entering a 'y') that the

fnode is to be restored. R?SAVE must have been reserved when the volume was

formatted. (That is, the RESERVE option of the FORMAT command must have been
specified.) The format of the RESTOREFNODE command is as follows:

—r—@memoos } J ( tnod :)
@ fnodenum ‘

2016

INPUT PARAMETER

fnodenum The Hexadecimal number of the fnode to be
restored. This number must be greater than or
equal to zero and less than the maximum number of
fnodes defined when the volume was formatted.

fnodenuml The initial Hexadecimal fnode number in a range of
fnodes to be restored. This number must be
greater than or equal to zero and less than or
equal to the final fnode number in the range
(fnodenum2) .

fnodenum2 The final Hexadecimal fnode number in a range of
fnodes to be restored. This number must be
greater than or equal to the initial fnode number
in the range (fnodenuml) and less than the maximum
number of fnodes defined when the volume was
formatted.

OUTPUT

When the fnode is restored (the response to the confirmation query is °'Y'):

restore fnode (fnodenum)? Y <CR>
restored fnode number: (fnodenum)
*

When the fnode is not restored (the response to the confirmation query is not
’YQ):

restore fnode (fnodenum)? <CR>
*
iRMX 86 Release 6.0 FORMAT/Disk Verify

Update 1 SEP 84 Page 3-17 147155991



DESCRIPTION

The RESTOREFNODE command allows you to re-build a damaged fnode file, thereby
re-establishing links to data that would ctherwise be lost. RESTOREFNODE
copys an fnode or a range of fnodes from the R?SAVE file (the fnode backup
file) to the fnode file. Before each of the specified fnodes is copied,
RESTOREFNODE displays a query prompting ycu to confirm that the indicated
fnode is to be restored. You must reply to this query with the letter 'y'
(either 'Y' or 'y') to restore the fnode. If you enter any other response,
RESTOREFNODE will not restore the fnode and will pass on to the next fnode in
the range.

Since RESTOREFNODE operates on the R?SAVE file, you must have reserved this
file when the volume was formatted. (You reserve R?SAVE by specifying the
RESERVE parameter when you invoke the FORMAT command to format the volume.)
If the R?SAVE file was not reserved when the volume was formatted,
RESTOREFNODE will return an error message.

WARNING: When using this command, be sure that any fnode you restore represents a
file that has not been modified since the last fnode backup. RESTOREFNODE overwrites
the specified fnode in the fnode file with the corresponding fnode in the R?SAVE file. If
that fnode has not been backed up since the last file modification, a valid fnode may be
overwritten with invalid data. Thus, all links to the associated file will be destroyed, and
YOU WILL LOSE ALL OF THE DATA IN THE FILE.

ERROR MESSAGES

Message Description

argument error When you entered the command, you failed to
supply an argument. This command requires an
argument.

no save area reserved The volume has not been formatted to

when volume was support fnode backup. Format the volume

formatted using Version 3.1 (or later) of the FORMAT

command with the RESERVE parameter specified.

not a named disk The volume you specified when you invoked the
Disk Verification Utility is a physical
volume not a named volume.

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-18 147155-¢@1



<fnode {#>, fnode out (1) The fnode number specified in the
of range command is greater than or equal to the
maximum number of fnodes defined when the

volume was formatted;

(2) The fnode number

specified in the command is less than zero;
or (3) the number specified for the initial
fnode in the range is greater than the number
specified for the final fnode.

allocation bit not The fnode you specified has not been
set for saved fnode backed up in the R?SAVE file. If you respond
restore fnode <fnode #>? to the query with a 'Y', THE DATA IN THE

ASSOCIATED FILE WILL BE LOST.

EXAMPLE

—diskverify :sd: <CR>

iRMX 86 Disk Verify Utility, V3.1
Copyright 1981, 1982, 1984 Intel Corporation
xrestorefnode 9,0E <CR> or rf9,0E <CR>
restore fnode 9? Y <CR>

restored fnode number: 9

restore fnode ga? y <CR>

restored fnode number: @A

restore fnode #B? Y <CR>

restored fnode number: @B

restore fnode gc? Y <CR»>

restored fnode number: @gc

allocation bit not set for saved fnode
restore fnode #D? <CR>

allocation bit not set for saved fnode

restore fnode gE? n <CR>
*

iRMX 86 Release 6.9
Update 1 SEP 84 Page 3-19

FORMAT/Disk Verify
147155-901



iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-20 147155-991



RESTOREVOLUMELABEL

This command copies the volume label from the R?SAVE file to the volume label
offset on track @. R?SAVE must have been reserved when the volume was
formatted. (That is, the RESERVE option of the FORMAT command must have been
specified when the volume was formatted.) The format of the
RESTOREVOLUMELABEL command is as follows:

— GESTOREVOLUMELABEL

( rVL )

2015

INPUT PARAMETERS

None

OUTPUT

volume label restored

DESCRIPTION

The RESTOREVOLUMELABEL command allows you to re-build a damaged volume label,
thereby re-establishing links to data that would otherwise be lost.
RESTOREVOLUMELABEL copies the volume label stored in the R?SAVE file to the
volume label offset on track zero. When you use the Human Interface FORMAT
command to create R?SAVE (by specifying the RESERVE parameter) the volume
label is automatically copied to the file. Because the contents of the volume
label do not change there is no other volume label backup required.

If an R?SAVE file has been reserved on a volume, the Disk Verification Utility
can access that volume as a Named volume even if the volume label is damaged.
When the original volume label is corrupted, the Disk Verification Utility
attempts to use the backup copy in R?SAVE. If the backup label is used, a
"DUPLICATE VOLUME LABEL USED" message appears when the utility is activated.

Since RESTOREVOLUMELABEL operates on the R?SAVE file, you must have reserved
this file when the volume was formatted. (You reserve R?SAVE by specifying
the RESERVE parameter when you invoked the FORMAT command.) If the R?SAVE
file was not reserved when the volume was formatted, RESTOREVOLUMELABEL will
return an error message.

iRMX 86 Release 6.9 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-21 147155-¢@1



ERROR MESSAGES

Message

argument error

no save area reserved
when volume was
formatted

not a named disk

EXAMPLE

~diskverify :sd: <CR>

iRMX 86 Disk Verify Utility, V3.1

Description

When you entered the command, you supplied an
argument. This command does not accept an
argument.

The volume has not been formatted to

support volume label backup. Format

the volume using the Release 6.8, Version 3.1
FORMAT command with the RESERVE parameter
specified.

The volume you specified when you invoked the
Disk Verification Utility utility is a
physical volume not a named volume.

Copyright 1981, 1982, 1984 Intel Corporation

DUPLICATE VOLUME LABEL USED

*restorevolumelabel <CR>

volume label restored
*

iRMX 86 Release 6.9
Update 1 SEP 84

vl <CR> or rv <CR>

FORMAT/Disk Verify
Page 3-22 147155-¢@1



FORMAT

This command formats or re-formats a volume on an iRMX 86 secondary storage

device, such as a diskette, tape drive, hard disk, or bubble memory. The
format is as follows:

-/

\
_j MAPSTART= GRANULARITY=
—G— T

J

\
G —
LG@—»j BOOTSTRAP .
(s9) (?)
\—/ o/
| O}

(

2012

INPUT PARAMETERS

:logical-name: Logical name of the physical device-unit to be
formatted. You must surround the logical name with
colons. Also, you must not leave space between the
logical name and the succeeding volume name parameter.

iRMX 86 Release 6.9 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-23 147155-¢@1



volume-name Six-character, alphanumeric ASCII name, without
embedded blanks, to be assigned to the volume. If you
include this parameter, you must not leave spaces
between the logical name and the volume name.

FILES=num Defines the maximum decimal number of user files that
can be created on a NAMED volume. (This parameter is
not meaningful when formatting a PHYSICAL volume and is
ignored if specified for such volumes.) FORMAT uses
the information specified in this parameter to
determine how many structures (called fnodes) to create
on the NAMED volume. The range for the FILES parameter
is 1 through 32,761, although the maximum number of
user files you can define depends on the settings of
the GRANULARITY and EXTENSIONSIZE parameters (See the
description of the FORMAT command in the iRMX 86
Operator's Manual). If no value is specified, FORMAT
uses a default value of 2¢0@ user files. When you use
this parameter, FORMAT creates seven additional fnodes
for internal system files. When the RESERVE parameter
is used (setting aside the R?SAVE fnode backup file),
the fnode for the R?SAVE file is allocated out of the
fnodes reserved through the FILES parameter. (Thus, if
you specify "FILES=30@@", only 2999 fnodes remain
available after the R?SAVE fnode has been allocated.)

FORCE Forcibly deletes any existing connections to files on
the volume before formatting the volume. If you do not
specify FORCE, you cannot format the volume if any
connections to files on the volume still exist.

MAPSTART=num Gives the volume block number where the fnode file, bit
map files, and the root directory should start. The
size of the block is set by the GRANULARITY parameter.
If no number is given, the Operating System puts the
fnode file in the center of the volume. If the number
is too low, the Operating System places the map files
at the lowest available space on the volume.

iRMX 86 Release 6.9 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-24 147155-9@1



GRANULARITY=num

EXTENSIONSIZE=num

INTERLEAVE=num

iRMX 86 Release 6.0

Update 1

SEP 84

Volume granularity; the minimum number of bytes to be
allocated for each increment of file size on a NAMED
volume. (This parameter is not meaningful for PHYSICAL
volumes, and is ignored if specified for such

volumes.) FORMAT rounds the value you specify up to
the next multiple of the device granularity. Then it
places the decimal number in the header of the volume,
where it becomes the default file granularity when a
file is created on the volume. The range is 1 through
65,535 (decimal) bytes, although the maximum allowable
volume granularity depends on the settings of the FILES
and EXTENSIONSIZE parameters. If not specified, the
default granularity is the device granularity. Once
the volume granularity is defined, it applies to every
file created on that volume.

NOTE

Using a large volume granularity (in
excess of 124), might cause users to
exceed their memory limits when

executing programs that reside on the
volume. This error can occur because
the Operating System uses the volume
granularity as a minimum buffer size
when reading and writing files.

Size, in bytes, of the extension data portion of each
file. (This parameter is not meaningful for PHYSICAL
volumes, and is ignored if specified for such
volumes.) The range is ¢ through 255 (decimal),
although the maximum allowable extension size depends
on the settings of the FILES and GRANULARITY
parameters. If not specified, the default extension
size is 3 bytes.

Interleave factor for a NAMED or PHYSICAL volume.
Acceptable values are 1 through 255 decimal. If not
specified, the default value is 5.

FORMAT/Disk Verify
Page 3--25 147155-901



NAMED The volume can stcre only named files; that is, the
volume can hold many files (up to the number of fnodes
allocated), each ¢f which can be accessed by its
pathname. A diskette or hard disk surface are examples
of devices that wculd be formatted as named files. 1If
neither NAMED nor PHYSICAL is specified, the volume is
formatted for the file specified when you attached the
device (with the ATTACHDEVICE command).

PHYSICAL The volume can be used only as a single, physical
file. The GRANULARITY and FILES parameters are not
meaningful when PHYSICAL is specified for the volume.
If neither NAMED nor PHYSICAL is specified, the volume
is formatted as the file type specified when you
attached the device (with the ATTACHDEVICE command).

QUERY Prompts the user for permission to format the volume.
The Human Interface displays the
following:

<volume name>, FORMAT?

If the user replies with a '¥Y', 'y', 'R', or 'r', then
the volume is formatted. Any other response is
considered by the Human Interface to be a 'no’'.

BOOTSTRAP Writes the second stage of the bootstrap loader onto
track ¢ without formatting the volume. When this
parameter is specified, all other parameters are
ignored.

RESERVE Creates the special file R?SAVE at the end of a volume
after the volume has been initialized. The volume
label file and the fnode file are then copied to
R?SAVE. Later this file may be used in conjunction
with the Disk Verification Utility to back up the fnode
file on the volume.

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-26 147155-¢01



DESCRIPTION

Every physical device-unit used for secondary storage must be formatted before
it can be used for storing and then accessing its files. For example, every
time you mount a previously unused diskette into a drive, you must enter the
FORMAT command to format that diskette as a new volume before you can create,
store and access files on it.

FORMAT provides a number of optional parameters that control the structure of

the formatted volume (e.g. Files=, Interleave=, etc.) or dictate the method of
formatting the volume (e.g. FORCE, QUERY, RESERVE, etc.) These parameters are
optional and may be entered in any order.

Once a volume is formatted, its name becomes a volume identifier when you
display any directory of the volume, and the name appears in the directory's
heading. Although the Human Interface uses the volume name in its own
internal processing when you access the volume, you need not specify the
volume name in any subsequent command after the volume is formatted. You must
specify only the logical name of the secondary storage device that contains
the volume.

Internal Files

When you format a named volume, FORMAT creates either seven or eight
(depending on whether the RESERVE option is set) internal system files. It
places the names of four (or five) of these files in the root directory of the
volume. The remaining files are not listed in the root directory. Unless you
specify the INVISIBLE option, none of these files appear when the DIR command
is invoked. The files are:

File Description
R?SPACEMAP Volume free space map
R?FNODEMAP . Free fnodes map
R?BADBLOCKMAP Bad blocks map
R?VOLUMELABEL Volume label

R?SAVE Save area for fnodes

The Operating System grants the user WORLD read access to these files.
Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for more
information about these files.

iRMX 86 Release 6.9 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-27 147155-¢¢1



Root Directory

FORMAT also uses one of the fnodes for the root directory. It lists the user
who formats the volume as the owner, giving that user all access rights. No
other user has access to the root directory until the owner explicitly grants
access. The owner can grant other users access to the volume via the PERMIT
command. However, because the owner has all access rights to the root
directory, the owner can obtain exclusive access to the volume, and can obtain
delete access to any file created on the volume, even files created by other
users.

Extension Data

Each fnode contains a field that stores extension data for its associated
file. An operating system extension can access and modify this extension data
by invoking the A$GET$EXTENSIONSDATA and A$SETSEXTENSION$DATA system calls
(refer to the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL for more

information). When you format a volume, you can use the EXTENSIONSIZE
parameter to set the size of the extension data field in each fnode. Although
you can specify any size from @# to 255 bytes, the Human Interface requires all
fnodes to have at least 3 bytes of extension data.

Output Display

The FORMAT command displays one of the following messages when volume
formatting is completed. For physical volumes:

volume (<volume name>) will be formatted as a PHYSICAL volume
device gran. <number>
interleave <number>
volume size <k-number> K (or M)

B A Nl A Dt N A e et A At et A A et D e i I IR
volume formatted

While the storage device is being formatted, FORMAT displays on the console
the letter "T" for every 10¢ tracks formatted. (This does not occur if the
storage device is a floppy diskette.) For example, if you see three T's on
the screen, the Operating System has finished formatting at least 30¢ tracks.
Displaying the T's on the screen is useful when you format large capacity
disks. A continuous stream of T's lets you know that the system hasn't failed
during the FORMAT operation.

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-28 147155-@@1



For named volumes:

volume (<volume name>) will be formatted as a NAMED volume

granularity = <number> map start = <number>
interleave = <number> sides = <sides>
files = <number> density = <density>
extensionsize = <number> disk size = <d-size>
save area reserved = (yes/no)

volume size <k-number> K (or M)

LLLLLALLLLilY. ..

volume formatted

where:

<nunmber:> Position where the fnodes start.

<volume name> Volume name specified in the FORMAT command.

<number> Decimal number as specified in the command (or the
default).

<k-number> Volume size in K (1@#24-byte units) or M
(1948576-byte units). FORMAT displays the volume
size in Kbyte units unless the size is greater
than 25 Mbytes.

<sides> Number of sides of the volume that will be
formatted (1 or 2). This field is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

<density> Density at which the volume will be formatted
(single or double). This field is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

<d-size> S8ize of the volume (8 or 5.25). This field is

displayed only for flexible diskettes in which
FORMAT can recognize this characteristic.

save area reserved Indicates whether the R?SAVE file has been
reserved for backing up the volume label and the
fnode file. (Reserving the R?SAVE file is
controlled by the RESERVE parameter.)
When the BOOTSTRAP parameter is specified:

Bootstrap Loader written

iRMX 86 Release 6.0 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-29 147155-991



ERROR MESSAGES

<logical name>, can't attach device
<logical name>, <exception value> : <exception mnemonic>

FORMAT cannot attach the device for formatting, or it cannot re-attach
the device (that is, restore it to its original condition) after
formatting takes place.

<logical name>, can't detach device
<logical name>, <exception value> : <exception mnemonic>

FORMAT cannot detach the device for formatting, which means that the
volume does not exist, the volume is busy, or the device on which the
volume is mounted is not currently attached to the system.

<logical name>, device is in use

You cannot format the volume because there are outstanding connections
to files on the volume and you did not specify the FORCE parameter.

map files do not fit with save area

The volume is too small for both map files and save area, or the map
start block is too high to allow room for map files and the save area.

<vol-name>, fnode file size exceeds 65535 volume blocks

The values you specified for fnode size, granularity, and extension
data size is too large.

<number>, invalid number

You specified an out-of-range number for any of the FILES,
GRANULARITY, EXTENSIONSIZE, or INTERLEAVE parameters.
<logical-name>, map files do not fit

The volume is too small for the map files or the map start block
is too high to allow room for the map files.

iRMX 86 Release 6.9 FORMAT/Disk Verify

Update 1

SEP 84 Page 3-3¢ 147155941



e <logical name>», outstanding connections to device have been deleted
There were outstanding connections to files on the volume. However,
because you specified the FORCE parameter, FORMAT deleted those
connections. This is a warning message that does not prevent FORMAT
from formatting the volume.

e (@85 : E$LIST, too many values

You entered multiple logical-name/volume-name combinations separated
by commas. FORMAT can format only one volume per invocation.

. <logical-name>»: <exception code> unit status <xx>
An I/0 error occurred while physically formatting the volume.
<exception code> informs you of the type of error.

. <volume name>», volume name is too long

FORMAT requires the volume name you specify to be 6 characters or less.

iRMX 86 Release 6.9 FORMAT/Disk Verify
Update 1 SEP 84 Page 3-31 147155-¢81



0204/1.3K/0235/0SPS/AD



