intal

iIRMX ™86
INTRODUCTION AND OPERATOR’S
REFERENCE MANUAL

For Release 6

Copyright © 1984 , Intel Corporation .
Intel Corporation, 3065 Bowers Avenue, $anta Clara, California 95051 Order Number: 146194-001

ASSEMBLY INSTRUCTIONS

Volume: iRMX™ 86 INTRODUCTION AND OPERATOR'S REFERENCE MANUAL
Order No: 146194

INTRODUCTION

This sheet describes how to assemble this iRMX 86 literature packet. The
assembly is simple and takes less than 5 minutes.

This literature packet contains:

. The literature in the volume, including this instruction sheet
and these manuals:

— INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM

- iRMX 86 OPERATOR'S MANUAL

- iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL
° The first of two cardboard separators.
° Three divider tabs, one for each manual.

e The bottom cardboard separator.

If your literature packet is missing one or more of these items, contact
Intel immediately.

ASSEMBLY

Assembling the volume involves inserting the literature packet into a
three-ring binder and placing an appropriately labeled divider tab at the
front of each manual in the volume.

At this point you have torn open the shrink wrapping, removed the entire
literature packet, and extracted this sheet from the packet. Set this
sheet aside. You will be referring to it as you go.

To put the volume together, follow these steps:

1. Separate the divider tabs from the rest of the literature packet.
Tear off the shrink wrapping. Discard the cardboard. The divider
tabs have these labels and match these manuals:

Label Manual

Introduction INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM
Operator iRMX 86 OPERATOR'S MANUAL
Disk Verify iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL

(over)

ASSEMBLY INSTRUCTIONS (continued)

Find Page ix, which is at the end of the Volume Contents. Open the
binder rings and insert the Front Cover up to and including Page ix
into the left side of the open rings. The top page of the literature
packet is now the "Introduction” title page, which looks like this:

INTRODUCTION 1O THE
MX"™ 86
OPERATING SYSTEM

L]

Insert the divider tab labeled "Intrcduction" into the left side of
the open rings.

Insert the text of the Introduction manual into the left side of the
binder rings. The last page of the Introduction manual is
“Introduction Index-4." The top page of the literature packet should
now be the title page of the Operator's manual.

Repeat the process for the remaining manuals, matching divider tabs
with manuals.

Close the binder rings. Discard the shrink wrapping and this
instruction sheet.

Fekk

iIRMX™ 86
INTRODUCTION AND OPERATOR’S
REFERENCE MANUAL
For Release 6

Order Number: 146194-001

Copyright © 1984, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

ii

Additional copies of this manual or other Intet literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limit-
ed to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes
no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in
ASPR 7-104.9(a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior writ-
ten consent of Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

BITBUS iLBX iPDS Plug-A-Bubble
COMMputer im iRMX PROMPT
CREDIT iMMX iSBC Promware
Data Pipeline Insite iSBX QUEX
GENIUS Intel iSDM QUEST

& intel iSXM Ripplemode
i integlBOS Library Manager RMX/80
RICE Intelevision MCS RUPI
ICE intgligent Identifier Megachassis Seamless
iCcs inteligent Programming MICROMAINFRAME SOLO
iDBP Intellec MULTIBUS SYSTEM 2000
iDIS Intellink MULTICHANNEL UPI

iOSP MULTIMODULE

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Copyright © 1983, Intel Corporation

REYV.

REVISION HISTORY

DATE

Original Issue. Supplies and updates information
formerly contained in the Introduction to the
iRMX 86 Operating System, the iRMX 86 Opera-

tor’s Manual, and the iRMX 86 Disk Verification
Reference Manual,

3/84

iii/iv

VOLUME PREFACE

This volume, the iRMX 86 INTRODUCTION AND OPERATOR'S REFERENCE MANUAL,

contains introductory and operating information about the iRMX 86
Operating System.

MANUALS IN THIS VOLUME

This section briefly describes each iRMX 86 manual in the order they
appear in this volume.
INTRODUCTION TO THE iRMX™ 86 OPERATING SYSTEM

Tab Label: Introduction
This manual is designed to introduce engineers and managers to the
iRMX 86 Operating System. This manual describes in general terms the
most important characteristics of the iRMX 86 Operating System.
iRMX™ 86 OPERATOR'S MANUAL

Tab Label: Operator
This manual describes the iRMX 86 Operating System commands.
Introductory material discusses command line editing, iRMX 86 pathnames,
wild cards, and other material necessary to use commands from a keyboard
terminal. Also, the manual describes how to use the Files Utility.
1RMX™ DISK VERIFICATION UTILITY REFERENCE MANUAL

Tab Label: Disk Verify
This manual documents the iRMX 86 Disk Verification Utility, which can be

used to check the file structure of an iRMX 86 volume. The manual also
contains a detailed description of the iRMX 86 file structure.

iRMX™ 86 PUBLICATIONS

Because the iRMX 86 documentation set is packaged in bound volumes, you
can no longer order manuals individually. Instead, you must order a
complete volume of text to get a manual contained in that volume.
(Individual manuals no longer have order numbers.)

VOLUME PREFACE
(continued)

When ordering individual volumes, you can order the binder, spine card,
and literature packet together as a unit or separately. If you wish to
order a volume as a unit, use the "order” number that appears on the
spine of the binder. This number is also provided in the following
liste If you wish to order separate pieces of the volume (e.g., the
literature packet only), use the "part” number as labeled on the piece.
If you don't know the part number, consult the Intel Literature Guide.

The following list shows volume titles, order numbers, and individual
manuals in each of the volumes. Manuals are listed in the order they

appear in the volumes. This volume is indicated by boldface type.

l. 1iRMX™ 86 INTRODUCTION AND OPERATOR'S REFERENCE MANUAL
Order Number: 146545

e Introduction to the iRMX™ 86 Operating System
e iRMX™ 86 Operator's Manual
e IRMX™ 86 Disk Verification Utility Reference Manual

2. iRMX™ 86 PROGRAMMER'S REFERENCE MANUAL, PART I
Order Number: 146546

e iRMX™ 86 Nucleus Reference Manual
e 1RMX™ 86 Basic I/0 System Reference .Manual
° iRMX™ 86 Extended I/0 System Reference Manual

3. 1iRMX™ 86 PROGRAMMER'S REFERENCE MANUAL, PART II
Order Number: 146547

iRMX™ 86 Application Loader Reference Manual

iRMX™ 86 Human Interface Reference Manual

iRMX™ 86 Universal Development Interface Reference Manual

Guide to Writing Device Drivers for the iRMX™ 86 and
iRMX™ 88 I/0 Systems

iRMX™ 86 Programming Techniques

iRMX™ 86 Terminal Handler Reference Manual

iRMX™ 86 Debugger Reference Manual

iRMX™ 86 Crash Analyzer Reference Manual

iRMX™ 86 System Debugger Reference Manual

iRMX™ 86 Bootstrap Loader Reference Manual

4, 41RMX™ 86 INSTALLATION AND CONFIGURATION GUIDE
Order Number: 146548

° iRMX™ 86 Installation Guide
° iRMX™ 86 Configuration Guide
e Master Index for Release 6 of the iRMX™ 86 Operating System

vi

VOLUME PREFACE
(continued)

RELATED PUBLICATIONS

° iAPX 86,88 Family Utilities User's Guide, Order Number: 121616

e iMMX™ 800 MULTIBUS® Message Exchange Reference Manual, Order
Number: 144912

viil

viii

VOLUME CONTENTS

INTRODUCTION: INTRODUCTION TO THE iRMX"™ 86 OPERATING SYSTEM

CHAPTER 1: Overview of the iRMX"™ 86 Operating System
CHAPTER 2: Considerations Relating to Real-Time Sof tware
CHAPTER 3: Benefits of the iRMX™ 86 Operating System
CHAPTER 4: Features of the iRMX™ 86 Operating System
CHAPTER 5: A Hypothetical System
CHAPTER 6: iRMX™ 86 Literature

OPERATOR: iRMX"™ 86 OPERATOR'S REFERENCE MANUAL
CHAPTER Line Editing and Control Characters

1:
CHAPTER 2: Using the Human Interface
CHAPTER 3: Human Interface Commands
CHAPTER 4: Human Interface Examples
CHAPTER 5: Patching Utility

CHAPTER 6: Files Utility System
APPENDIX A: Condition Codes Summary

DISK VERIFY: 1iRMX™ 86 DISK VERIFICATION UTILITY REFERENCE MANUAL

CHAPTER 1: Invoking the Disk Verification Utility

CHAPTER 2: DISKVERIFY Commands
APPENDIX A: Structure of iRMX" 86 Named Volumes

*khk

ix

INTRODUCTION TO THE
iRMX™ 86
OPERATING SYSTEM

- PREFACE

If you are looking for a high-level introduction to the iRMX 86 Operating
System, this manual will satisfy you. By reading this manual, you will
acquire sufficient knowledge of the iRMX 86 Operating System to:

[See how the iRMX 86 Operating System can help you develop your
application system in less time and at less expense.

. Begin reading the more detailed iRMX 86 manuals.

This manual, which is written for engineers and managers, is designed to
be read completely in one or two sittings. It presents information
starting with the most general and familiar terms, then uses these terms
to define specific and new terms.

Throughout this manual, the expression "iAPX 86,88,186,183,286-based
microcomputer" is used to refer to any microcomputer that uses the Intel
iAPX 86, 38, 186, 188, or 286 microprocessor as its central processing
unit.

ORGANIZATION OF THLIS MANUAL

This manual is divided into six chapters. Some of the chapters are
designed for managers, some for engineers, and others for both. The
following paragraphs identify the audience and purpose of each chapter.

° Chapter 1 - Overview of the iRMX 86 Operating System
Chapter 1 provides managers and engineers with a very brief
introduction to the iRMX 86 Operating System, and defines terms
used in later chapters.

° Chapter 2 ~ Considerations Relating to Real-Time Software
Chapter 2 introduces engineers to some of the obstacles that the
iRMX 86 Operating System can eliminate. Managers who have had
programming experience may want to read this short chapter.

e Chapter 3 - Benefits of the iRMX 86 Operating System
Chapter 3 provides managers with a discussion of the economic

benefits of using the iRMX 86 Operating System. Interested
engineers may also want to read this short chapter.

Introduction iii

PREFACE
(continued)

° Chapter 4 - Features of the iRMX 86 Operating System

Chapter 4 is a tutorial for engineers. It discusses the features
of the iRMX 86 Operating System and, at the same time, it defines
the vocabulary used in the other IRMX 86 manuals. Engineers who
are already proficient at real-time, multitasking programming

need only skim this chapter to ascertain the features of the
iRMX 86 Operating System.

° Chapter 5 - A Hypothetical System
Chapter 5 is designed primarily for engineers. It describes a
relatively simple application system. The purpose of this
chapter is to illustrate the use of the features discussed in
Chapter 4.

e Chapter 6 — iRMX 86 Literature

Chapter 6 contains a description of the other manuals assoclated
with the iRMX 86 Operating System.

Introduction iv

CONTENTS

CHAPTER 1

OVERVIEW OF THE iRMX™ 86 OPERATING SYSTEM
Major Characteristics of the iRMX™ 86 SySteM.eeceeeecececsssessaass 1
Customers of the IRMX™ 86 Operating SYStemM..eeecececesocoscscsnsose 1-
Commonly Used iRMX"™ 86 TerminologYy..scecesscescsesccsssscssscsscsces 1
Purpose of the 1RMX"™ 86 Operating SYStemM..eeeeeeeccecscccscacscsons 1

CHAPTER 2
CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

Event Detection.ceceeeeeceessesceecccscccsccccosesocsscsccsscscscnsns
Scheduling of Processing...cceeeeeeceecrcocsacccoccsssssosnsssncenson
Error ProcesSSinge.ccececcecscessscsossssocssessscscssoasoscscsssssscsssssss
Device SensSitivity.ceceseessccoesesosscssssscsssosssossssssccsscssas
Mass Storage File Allocation TradeoffS...ceeeececcsccecsscacsssacssns
Unneeded FeatUreS..ceeeseessosssesssacsccscscssssssssssassosnanssne
Multiple ApplicAtionNSeceecencecosccsecsscsosossssoseasssnsosssssonsss
Memory RequirementS.eeseeeesossssccsssscescosssssssscssnsoscsoscnsansns
Files and Multiple USerSecevoesocssosecsccsssosssssssssossessnsscscsass
Human Engineering.scececsccsccscecseccsscsesasssssssscssessssssanasns
Application Developmente.scensceeceessssscscsscscsssscccsososssssansess
DebUZEIiNg.cseesseacasosesassenosssasssssessccssascscsossasassssssasssaas

Chapter PerspectivVe.cescccescscssessonssosssscscsssscssssnasosscsscss

CHAPTER 3
BENEFITS OF THE iRMX"™ 86 OPERATING SYSTEM

Development Time.eeeeeceeetoccoscscsccssasscsasoososssssosnsosossnssccss 3
Cost of Implementation.ceeencscseesscsscasaesensssscssssssosscssasnnse 3~
Costs After Development.s.esesccesesccsssossscccsosssssssosccovscnosness 3
Chapter PerspectivVe..ccecscoscecsescsscrecsasscsssssscssasssscssssans 3

CHAPTER 4
FEATURES OF THE iRMX" 86 OPERATING SYSTEM

Architectural FeatUreS.cecessescssecesesssssscssossosscssssnssssscscsse
Object-Oriented ArchiteCtUrCeeeeececeressccscsossssssssscssesesse
MUltitasKing.eeoeosoceosesosessssossscassassesasscssossscnscssscscess
Interrupt ProcCesSSing.ceeeoscecssscscoscscessscsccssoscssssosssscssocss
Preemptive Priority—-Based Scheduling...ecceceeceseccccccocscenccene
Multiprogramming...ceeeeevssceescssossssossosossoosossssoscecscsassssss
Intertask Coordination..scseasessescsceccscssssscscssasescssssssas

Exchanging Information.sececesccecsasccessososesscsssssscccsacscsns
Mutual EXCluSiOm.eseeseccesessscasescasssssscsessscnsasssssossse
SYNCRroNiZAation e eeeeessscscocesscsccscossscsosssccsscsconssossse
Extendibilityeeeeeeececesnesscscsecsessesecssoscccasccssosssassoscsns

Introduction v

PAGE

NNNNNNI}JNNNNNN
SEWWWWININNNN MR-

-bJ-\J-\b-l-\-li\J-\-l—\-l-\b-l-\
HFROONOWUEDWN

= O

CONTENTS
(continued)

PAGE

CHAPTER 4 (continued)
Debugging SUPPOTLeeeessceccccssesssossoseseosssassosssscssnsscnses 4-11
Processor Selectivityeeeesessosorsesescscscssssscsccsssscsssssccnsesne 4-12
Input/OUtpPUt FEatUTeS.eesessessscsssssosnsssssssesssscsassasosaccnses 4-12
Choice Of I/O SYSTEMSeececoosesossscssasssosasssasesassasssnsasss 4-13
Basic I/O SYSteMeeseeceocoosoesesssscsssossssssnssscosssscsnees 4=13
Extended I/0 SySteMeeceecesssccossoscssssssssssssssssscnscncesns 4-14
Device—Independent Input and OUtPUt.ccceceversesssnnsonascncscossse 4-15
Hierarchical Naming of Mass Storage FileS.eeceetcccccassococenane 4-16
File Access ContrOol.ceeceeesscsvsessososcsascscsossssssassssonosons 4-19
Control Over File Fragmentation..ecceeecovecsocsscasscssssscccsncse 4-19
Selection of Device DriverS.i.icceeecceeccscssoosessoscssesosscoscsasasnsse 4-20
Terminal Support Code..seesecceccvosessoscsesssosssascscncossscecse 4-21
Editing and Controlling Input to a Terminal......ceveecesccccss 4-21
Type=Ahead..eceseececsoocsorsossosssasassscssssosacssssssrsconnsse 4-21
Controlling Output to a Terminal...ccceceoceasccssccccnssccscns 4-22
TranSlation..eececceecovssosecscssssosssssssscsososssssssnssssosnsss 4-22
Customizing FeatUreS.eeeescesoscoscccscsascssossssecnssssasssccssenos 4-23
Custom Interactive COmmMANAS..eceeescoccssosscscosocsssssscsscnscsss 4-23
Custom Commands = ProgramS..cceccecescscsccscsscsccscscsossoscssncs 4-23
Command Line Parsing..cccesceescesscscccsosccesssosrsoccsosccsccccns 4-24
Application Loading...cceseeccocscsescroossacssssscssscssrsssssscns 4-24
Load=Time LOCAtION.ceseeeesoeoosecsocsssssssasssssseascsnssscsss 425
Overlay Loading..eeeeeeceeoeesscsssosososcscsscsccccossossssoosncas 4-25
Simultaneous Multiple Terminal SUPPOrL...ccececcsvccsnsccsascnscnns 4-25
Multi—-Access Human Interfac@.ceeececessssocsscsossscssoscasocsns 4-26
Multiple Terminal Support with I/O Programs.....eeeeececesceess 4726
Run-Time Binding..ceeceeeseecccecccocacsosssorsososvsssscacsasnssssse 4-27
Binding Objects to TaskSseeseeseeceseseccccscosnsssssseasssoncs 4-28
Binding of Files and Devices to TaskS.eseeeeeorseeocsooscasosnsns 4-28
Binding of Application Software to Operating SystemMiseeecsceess 4-29
Error Handling..eeeeoeeoeecosocesesscsscsoccsasrscovscscosccsosesosnsascs 4~29
Dynamic Memory AllocCatioN.eeeeceeeeccccoscsosrscascsnscossososnsconccccsoss 4-30
Software INterfacC@eeeccessscsseessccosestososcssosssossscssosscncnsas 4-31
Bootstrap Loadingeeceeesseeseesesosscasasscsessacscsssssosscnonocasse 4-31
TOO01Seeeoeeeosonsososcasossssasecsenossscssosstosescssncsensosssosssassanes 4-32
Object—-Oriented Dynamic Debugger..eeeeiececesscscssaccscscesecens 4-32
System DebUZEeresssaeescssseescccssscscansoascscssssossnssssssssass 4-33
Crash ANALYZEer..eeeeeeesesecoosscscssscssscsssancssscnssassascess 4—34
Installation SYSLEemMS.ceseccesecsesosconsssossssscsassoscscsascsccassas 4-35
On—-Target Program Development....c.veecesocssccosccosscsroscsccsons 4-35
Interactive Configurability.eeeeeesesocosssoccooncsossssssccsnnnas 4-36
Configuration is Making CholceS..eceieeceesovovososrscecccncancns 4-37
Configuration 1s Interactive..ceceeevescssccscecssssscoscsascas 4-37
Parts of the iRMX™ 86 Operating SySteM..eeceecscascscossssccass 4=37
File Maintenance ProgramS.ccesssscasssnossssssssscscssossscsssssocsne 4-40
Chapter Perspective..c.ceceecesssessscseececsossssscssossossocsassncs 4-41

Introduction vi

CHAPTER

CONTENTS
(continued)

5

A HYPOTHETICAL SYSTEM

Interrupt Processing.ecceceecececcscccescocccscetossscssssescssosssnsossnas
Human InterfacCeececeeecescoscacsesssossososessscscsssssssssssscsascnsss
MultitasKing. eeeceeeoessesassssesosssscescccscossssscsosssonssnssnnses
Intertask CoordinationNeessececsccecscscscsoscescssocsssossssssssnesnces
Multiprogramming..cceecossseecsscocsocssesssscosscsccsscsnnsssccscasss
Run~Time Bindingeeeecccesssscccsccososcocoosscsscsssssscssssscscscscsnse
Mass Storage FileS.ecoesceessccscescscocsccscncssosscsssosososcscsasns
Device IndependenCe.iseeesssssesoscecasosscessssssossescssossssosnocss
Chapter PerspectiVe..osceeecocssesccssosesscscssssssssscnscancssans

CHAPTER 6

iRMX 86

Reading TipPSeeessesesocsceseccstssssssoscssscsascssossssssssancssssascs
iRMX™ 86 Introduction and Operator's Reference Manual For Release 6
Introduction to the iRMX™ 86 Operating SySteM..ececsssceccssososss
iRMX™ 86 Operator's ManUal..eecescceseosscosossosscssccsoascssons
iRMX™ 86 Disk Verification Utility Reference Manual....eoeoescces
iRMX™ 86 Programmer's Reference Manual For Release 6, Part I.......
iRMX™ 86 Nucleus Reference Manual....escecesssesessosssesascaossse
iRMX™ 86 Basic I/0 System Reference Manual...ceeececococsscscsass
iRMX™ 86 Extended I/0 System Reference Manual...eceeeesocccccccss
iRMX"™ 86 Programmer's Reference Manual For Release 6, Part Il......
86 Application Loader Reference Manual.....ceeeecceccncenes
86 Human Interface Reference Manual....eccevececcccsassansse
86 Universal Development Interface Reference Manual....ee.e

iRMX™
iRMX™
iRMX™
Guide

iRMX™
iRMX™
iRMX™
iRMX™
iRMX™
iRMX™

6-1.

LITERATURE

to Writing Device Drivers for the iRMX™ 86 and iRMX" 88

I/0 SYStemMSeeeoecersesssosssssecossnssossasssssocanasasocssns
86 Programming TechniqueS..ceeceecececersccsssscssscccsssans
86 Terminal Handler Reference Manual....ecececcecescecccsense
86 Debugger Reference Manual...cececoscecosccsssssasscscsns
86 System Debugger Reference Manual..ccecsecoccccccsssnonss
86 Crash Analyzer Reference Manual.ceeessscsscccocoosccrans
86 Bootstrap Loader Reference Manual..e.cecececscccccscconns
iRMX™ 86 Installation and Configuration Guide For Release 6..ececs.

iRMX™ 86 Installation GUide..eeeescescescnesscsscoscosscssssscsnne

iRMX™ 86 Configuration GUide..seeseessescocsscesscscsossscssessans

Master Index For Release 6 of the iRMX™ 86 Operating System......

TABLE

PAGE

[N W RV, P L S A R Y

NoOoouvuuubhbbhbbwwWWLWwwWw

0\0\0\0\0\?0\0\0\0\0\
WO N NNNN

Correlation of Manuals and FeatUreS..cesesecessssccssccsacss 0-10

Introduction vii

FIGURES

FIGURES

The iRMX™ 86 Foundation For Application SyStemS..eeceeesces
The iRMX" 86 System Provides Economic BenefitS.ceeeesescecss
Features of the iRMX™ 86 Operating SySteM....eeesescescacns
An Engineering DirectorYeeecescscsoecsccsescesscccscssscansnse
A Marketing DireClOrY.eeeeeeesessensessssssccssossssssvssons
Hierarchical Naming of FileS.eeeeuecccccsssovescsotsosscsncne
Configuration of an IRMX™ 86 SYSteM..eeeesecsesccosaccncsos
The Hardware of the Dialysis Application System.c.ccececces

Fkk

Introduction viii

PAGE

11
LN

kﬂ-l-\-l-\.li\l-\-l-\ W =
NOW e s = N

CHAPTER 1
- OVERVIEW OF THE iRMX™ 86

OPERATING SYSTEM

The iRMX 86 Operating System is a software package designed for use with
Intel's iSBC 86,88,186,188,286 Single Board Computers and with other
iAPX 86,88,186,188,286-based microcomputers. The Operating System is
different from many other operating systems in that it is specifically
designed to be incorporated in the products that you build.

The iRMX 86 Operating System consists of a collection of subsystems, each
of which provides one or more features that can be used in your product.
Based on the features that you need to build your product, you decide
which subsystems you want. You then combine these subsystems to form a
tailored operating system that precisely meets your needs.

MAJOR CHARACTERISTICS OF THE iRMX™ 86 SYSTEM

The iRMX 86 Operating System exhibits the following characteristics:

. It can simultaneously monitor and control unrelated events
occurring outside the single board computer.

o It can communicate with a wide variety of input, output, and mass
storage devices.

° It can execute on all members of the iAPX 86,88,186,188,286
microprocessor family.

° It provides a powerful and flexible means for an operator to
observe and modify the behavior of the system.

° It provides a base upon which to run a number of languages and
other software tools.

These characteristics (especially when combined with features discussed

in Chapter 4) make the iRMX 86 Operating System an excellent foundation
for your software—based products (Figure 1-1).

CUSTOMERS OF THE iRMX™ 86 OPERATING SYSTEM

The iRMX 86 Operating System is designed for two types of customers:
Original Equipment Manufacturers (OEMs) and Volume End Users (VEUs).
OEMs are companies that build products for resale. VEUs are companies
that build products for use within their organization. Both types of

customers can produce products more quickly and at less expense by using
the iRMX 86 Operating System.

Introduction 1-1

OVERVIEW OF THE iRMX™ 86 CPERATING SYSTEM

IRMX 86 OPERATING $SYSTEM ;

APPLICATION SOFTWARE

Application System
N\ J

x-180

Figure 1-1. The iRMX™ 86 Foundation for Application Systems

COMMONLY USED iRMX™ 86 TERMINOLOGY

The following terms are used frequently in this book:

Application An application is the problem that you solve
with your product.

Application System An applicaticn system is the product that
satisfies the requirements of the
application (Figure 1-1).

Application Software The application software is all the software
you must add to the iRMX 86 Operating System
in order to complete your application system
(Figure 1-1).

User The user is the individual or organization
who uses your application system.

Introduction 1-2

OVERVIEW OF THE iRMX™ 86 OPERATING SYSTEM

PURPOSE OF THE iRMX™ 86 OPERATING SYSTEM

The iRMX 86 Operating System is your shortcut to the marketplace. By
supplying you with features that can be used in a large number of
application systems, the iRMX 86 Operating System allows you to focus

your attention on the specialized application software. Since you spend
less time and effort developing sophisticated system software, you can

bring your application system to market faster and at a lower price.

k%

Introduction 1-3

CHAPTER 2
CONSIDERATIONS RELATING TO
REAL-TIME SOFTWARE

The difficulties encountered in real-time programming differ from those
found in other types of programming. This chapter briefly introduces
some of the problems that face designers of real—-time systems.

This chapter only poses questions —— it provides no answers. You can

find the answers in the discussion of iRMX 86 features in Chapter 4 of
this manual.

EVENT DETECTION

Real-time application systems monitor events in the real world. These
events occur asynchronously, that is, at seemingly random intervals.
When an event occurs, the system could be in the midst of processing
information associated with a previous event. Even so, the system must
be able to detect and record the occurrence of the second event without
affecting the previous event.

SCHEDULING OF PROCESSING

Assuming that the system can detect and record the occurrence of an
event, it still must decide in what order to process recorded events.

For that matter, when the system is processing a relatively unimportant
event and a critical event occurs, the system must be able to respond
correctly. It must be able to postpone processing of the less
significant event until the more important one has been processed. Then,
after the higher-priority processing, the system must resume where it
left off.

ERROR PROCESSING

Suppose that during the processing of real-time events, an error is
detected. How can the error be corrected, or how can its impact be
limited, without adversely affecting the system? The whole system, for
instance, should not be shut down merely because an error is detected;
it should be able to recover from these errors and continue processing.

Introduction 2-1

CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

DEVICE SENSITIVITY

Many real-time applications use one or more input or output devices. And
sometimes the devices associated with an application system must be
changed. By allowing devices to be changed without requiring
recompilation, the operating system can save much time and effort.

MASS STORAGE FILE ALLOCATION TRADEOFFS

In any real-time system, file allocation performance is an important
consideration. One factor that relates directly to mass storage file
allocation performance is the size of each contiguous chunk of data
written to and read from a file (the file's "granularity"). In some
applications, large granularity results in much faster retrieval. 1In
other applications, large granularity does not improve performance, but
does waste space on the device. The operating system must contend with
the trade-off between performance and optimal use of space on the device.

UNNEEDED FEATURES

Some OEM and VEU applications require features that other applications do
not. An operating system should provide z means of selecting required
features and eliminating unneeded features. Because operating systems
are complex, the method used to select features should be "human
engineered,” so that the process is efficient and relatively easy to
understand.

MULTIPLE APPLICATIONS

Sometimes there is a need to run more than one application on the same

computer. Several applications might need to share some resources, such
as hardware and perhaps some files, while reserving other resources for
themselves.

MEMORY REQUIREMENTS

The memory requirements of some applications change according to the
events that occur in the real world. If a system can share memory
between applications, then the total amount of memory required for the
system might be less than the sum of the maximum amounts required by each
application.

Introduction 2-2

CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

FILES AND MULTIPLE USERS

Some applications, such as data-entry and database-management systems,
support more than one user at a time. In such systems, three major
problems must be dealt with.

The first problem pertains to file naming. Users must be able to name
files without concern for duplicate names. If they cannot, each user may
be forced to guess at names that have not yet been coined by other users.

The second problem deals with selective sharing of files. Multi-user
systems often must be able to share and protect files. For instance, in
a data—entry system, one operator may be entering data while another
simultaneously verifies the entered data. This illustrates the need for
file sharing. Now suppose that the file contains confidential
information. Once verified, the file must be protected against
unauthorized reading and writing. This illustrates the need for
restricting access. The system must provide for both sharing and
restricted access.

The third problem is that the Operating System must be able to respond
simultaneously to more than one terminal. The system must respond
quickly to each terminal, and must be able to keep track of tasks and
other resources associated with a particular terminal.

HUMAN ENGINEERING

Applications must be controlled by people. Systems often contain
critical processes that operators must control with a minimum chance of
error. An application system should provide an easily-understood set of
interactive commands and messages by which operators may use the system.

APPLICATION DEVELOPMENT

Frequently the hardware on which an application system will be installed
includes mass storage devices and file structures. If possible, the
operating system should allow application system development using
existing hardware. This means that you should be able to use language
processors (such as assemblers, compilers, and run—time support systems),
linking utilities, editors, and file maintenance utilities. Programmers
should be able to install such development tools on the operating system
quickly and easily.

DEBUGGING

Real-time application systems require real—-time debugging support.
Often, logic errors or "bugs” in real-time systems are dependent upon
events in the real world (outside of the computer). In order to detect
some real-time logic errors, the system should continue to run while you
debug it. This type of debugging is called "dynamic" debugging.

Introduction 2-3

CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

If the system crashes, programmers must be able to gather enough
information to analyze the cause of the crash. In addition, sometimes it
is useful for programmers to "freeze” the system and examine its state.
This type of debugging is called "static™ debugging.

CHAPTER PERSPECTIVE

If the foregoing considerations pertain to your application, then the
iRMX 86 Operating System can save you an enormous amount of effort. To

see how the iRMX 86 System resolves these and other similar problems,
read Chapter 4.

k%

Introduction 2-4

CHAPTER 3
BENEFITS OF THE iRMX™ 86
OPERATING SYSTEM

You are reading this manual because you are planning to develop a
real-time application system. As an OEM manager, you are interested in
developing your application system quickly using the latest Very Large
Scale Integration (VLSI) technology, while still holding down the cost of
development. Furthermore, you want to minimize your costs after
development. By serving as a foundation for your application software

(Figure 3-1), the iRMX 86 Operating System can help you meet your
objectives.

iRMX 86 OPERATING SYSTEM
— T~ ~
Z -~ LESS COSTLY ~
MAINTENANCE h
-7 N

SHORTER DEVELOPMENT

REDUCED DEVELOPMENT
COSTS CYCLE

APPLICATION SOFTWARE
~ -~
\\\\ /// x-181

—_—— e —

Figure 3-1. The iRMX™ 86 System Provides Economic Benefits

DEVELOPMENT TIME

The iRMX 86 Operating System helps you develop real-time application
systems quickly. Acting as the foundation for your specialized
application software, the iRMX 86 Operating System provides services that
are required by many real-time applications. Since these services are
supplied by the iRMX 86 Operating System, your application engineers
spend no time writing software to manage multitasking, dynamic memory
allocation, and other functions vital to many real-time applications.
Rather, your engineers concentrate their efforts on the software that
relates specifically to the application being solved. This greatly
reduces the time needed to develop your application system.

Introduction 3-1

BENEFITS OF THE iRMX™ 86 OPERATING SYSTEM

COST OF IMPLEMENTATION

The iRMX 86 Operating System helps reduce the cost of implementation in
the following ways:

By supplying the general services required by many real-time
applications, the iRMX 86 System reduces your manpower
requirements.

Industry-standard languages are available for use with the
iRMX 86 Operating System. These languages are the same ones used
on your Intellec Microcomputer Development System.

The features of the Operating System simplify the process of
development. These features, such as object—oriented
architecture and device independence, are discussed in Chapter 4.

Support for VLSI devices is available now, which results in
immediate improvements in speed and performance.

COSTS AFTER DEVELOPMENT

After your application system is developed, your major expense is
maintenance —— the process of correcting logic errors, making changes,
and adding features. The iRMX 86 Operating System helps minimize these
costs in the following ways:

A number of features of the iRMX 86 Operating System smooth the
process of system design, reducing the probability of major
design errors. These features, which include multitasking and
multiprogramming, are described in Chapter 4.

When errors do reveal the presence of bugs in your application
software, the iRMX 86 System provides tools to help find the
errors. These tools include error handlers, an on—line dynamic
debugger, a static system debugger, and a crash analyzer. These
tools are described in Chapter 4.

The modularity provided by multiple jobs and tasks lets you make
changes and additions without severely affecting the system's
overall design.

CHAPTER PERSPECTIVE

The iRMX 86 Operating System is your economic ally. It helps you put
your real-time application system in the hands of your users in less time
and at less expense. It also allows you to use the latest improvements
in VLSI technology while reducing your maintenance costs after your
system is developed.

k%

Introduction 3-2

CHAPTER 4
FEATURES OF THE iRMX™ 86
OPERATING SYSTEM

This chapter provides you with moderately detailed descriptions of the
features of the iRMX 86 Operating System (see Figure 4-1).

CUSTOMIZING

INPUT/OUTPUT

ARCHITECTURE

|
iRMX 86 OPERATING SYSTEM

Wl

~ o APPLICATION SOFTWARE >

~ //
—~ —

—_—— e —

x-182

Figure 4-1. Features of the iRMX™ 86 Operating System

The features described in this chapter are:
ARCHITECTURAL FEATURES

Object-Oriented Architecture
Multitasking

Interrupt Processing

Preemptive Priority-Based Scheduling
Multiprogramming

Intertask Coordination
Extendibility

Debugging Support

Processor Selectivity

Introduction 4-1

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

INPUT/OUTPUT FEATURES

Choice of I/0 Systems

Device—Independent Input and Output
Hierarchical Naming of Mass Storage Files
File Access Control

Control over File Fragmentation
Selection of Device Drivers

Terminal Support Code

CUSTOMIZING FEATURES

Custom Interactive Commands
Application Loading

Run—-Time Binding

Simultaneous Multiple Terminal Support
Error Handling

Dynamic Memory Allocation

Software Interface

Bootstrap Loading

TOOLS

Object-Oriented Dynamic Debugger
System Debugger

Crash Analyzer

Installation Systems

On—-Target Development

Interactive Configuration Utility (ICU)
File Maintenance Programs

Because you may be familiar with some features, each section is organized
for easy skimming as follows:

1. A brief introduction to the feature (in this typeface).
2. A detailed and more technical explanation of the feature.

3. The advantages of the feature (in this typeface).

ARCHITECTURAL FEATURES

When Intel software engineers designed the iRMX 86 Operating System, they
specified the basic processes and data structures of the system,
including such characteristics as the partitioning of programs into
“"tasks,” task scheduling, and task communication. These characteristics
are referred to as the "architecture” of the system. The important
architectural features of the Operating System are described here.

Introduction 4-2

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

OBJECT-ORIENTED ARCHITECTURE

The iRMX 86 Operating System uses an object—oriented architecture
because it makes the Operating System easy to understand and use.

An operating system is a collection of software that is meant to be used
by software engineers. Many non-object—oriented operating systems are
overly complex and difficult to understand. In contrast, systems
exhibiting object—oriented architectures are easier to understand. Their
mechanisms are well defined, and they demonstrate a consistency that
makes the operating system less intimidating.

In other words, an object—-oriented architecture is a means of humanizing
an operating system. It uses a collection of building blocks that are
manipulated by operators. Let's look at a "typed" architecture that you
might be familiar with —-- FORTRAN.

FORTRAN exhibits a typed architecture. Its building blocks are variables
of several types. For instance, it has integers, real numbers,
double-precision real numbers, etc. It also has operators (+, -, *, /,
*#% and others) that act on variables to produce understandable results.

The building blocks of the iRMX 86 Operating System are called objects
and, as with FORTRAN variables, objects are of several types. There are
tasks, jobs, mailboxes, semaphores, segments, and connections. There are
also other types of objects, but we already have enough for an
introduction.

Just as the variables in a FORTRAN program are acted upon by operators,
the objects in an iRMX 86-based application system are acted upon by
system calls. In other words, your application software uses system
calls to manipulate the objects in your application system. For
instance, the CREATE MAILBOX and DELETE MAILBOX system calls do precisely
what their names suggest.

How does an object-oriented architecture make a system easier to learn
and use? By taking advantage of useful classification. To illustrate
this, let's return to FORTRAN. The variables of FORTRAN are classified
into types because each type exhibits certain characteristics. For
instance, all integer variables are somewhat similar, even though they
can take on different values. Once you learn the characteristics of an
integer variable, you feel comfortable with every integer variable. This
similarity makes FORTRAN easy to master.

For the same reasons, the objects of the iRMX 86 Operating System are
classified into types. Each object type (such as a semaphore) has a
specific set of attributes. Once you become familiar with the attributes
of a semaphore, you are familiar with all semaphores. There are no
special cases. Also, each type of iRMX 86 object has an associated set
of system calls. These calls cannot be used to manipulate objects of
another type without causing an error.

Introduction 4-3

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

The advantages of an object—oriented architecture depend upon your point
of view. If you are an engineer, the advantage is that you can master
the Operating System in a very short time. You can also focus your
learning on the objects you plan to use. If you only need a few object
types, you can ignore the others.

If you are a manager, you reap economic benefits. Because engineers can

quickly become familiar with the iRMX 86 Operating System, you can trim
large amounts of time out of your system's development cycle. Your

system reaches your users far sooner and at far less cost than it could
without object—-oriented architecture.

MULTITASKING

The iRMX 86 Operating System uses multitasking to simplify the
development of applications that process real-time events.

The essence of real-time application systems is the ability to process
numerous events occurring at seemingly random times. These events are
asynchronous because they can occur at any time, and they are potentially
concurrent because one event might occur while another is being processed.

Any single program that attempts to process multiple, concurrent,
asynchronous events is bound to be complex. The program must perform
several functions. It must process the events. It must remember which
events have occurred and the order in which they occurred. It must
remember which events have occurred but have not been processed. The
complexity obviously grows greater as the system monitors more events.

Multitasking is a technique that unwinds this confusion. Rather than
writing a single program to process N events, you can write N programs,
each of which processes a single event. This technique eliminates the
need to monitor the order in which events occur.

Each of these N programs forms an iRMX 86 task, one of the types of
objects mentioned in "Object—Oriented Architecture."” Tasks are the only
active objects in the iRMX 86 Operating System, as only tasks can issue
system calls.

Multitasking simplifies the process of building an application system.
This allows you to build your system faster and at less expense.
Furthermore, because of the one-to—one relationship between events and
tasks, your system's code is less complex and easier to maintain.

INTERRUPT PROCESSING

The iRMX 86 Operating System is an interrupt processor. When an
interrupt occurs, the iRMX 86 Operating System schedules a task to
process the interrupt. This method of event detection improves the
performance of your application system.

Introduction 4-4

.

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

There are two ways that computer systems can schedule processing
associated with detecting and controlling events in the real world —-
polling and interrupt processing. Polling is implemented by having the
software periodically check to see if certain events have occurred. An
example of polling from a human perspective can be created using a class
of students and a teacher. If, rather than spotting raised hands, the
instructor specifically asks each student in the class if the student has
any questions, then the instructor is polling the students.

Polling has a major shortcoming. A significant amount of the processor's
time is spent testing to see 1f events have occurred. If events have not
occurred, the processor's time has been wasted.

The second method of controlling processing is interrupt processing.

When an event occurs the processor is literally interrupted. Rather than
executing the next sequential instruction, the processor begins to
execute a task associated specifically with the detected event.

The classroom example used earlier to portray a polling situation can
also be used to illustrate interrupt processing. If a student has a
question, he raises his hand and speaks the instructor's name. The
instructor, interpreting this as an interrupt, finishes his sentence and
deals immediately with the student's question. Once the instructor has
answered the student's question, he returns to what he was doing before
he was interrupted.

Interrupt processing of external events provides your application system
with three benefits.

e Better Performance. Interrupt processing allows your system to
spend all of its time running the tasks that process events,
rather than executing a polling loop to see if events have
occurred.

e More Flexibility. Because of the direct correlation between
interrupts and tasks, your system can easily be modified to
process different events. All you need to do is write the tasks
to process the new interrupts.

e Economic Benefits. Because interrupt processing allows your
system to respond to events by means of modularly coded tasks,
your system's code 1s more structured and easier to understand
than monolithic code. Modular code 1s less costly to develop and
maintain, and it can be developed more quickly than monolithic
code.

PREEMPTIVE PRIORITY-BASED SCHEDULING

The iRMX 86 Operating System uses preemptive, priority-based scheduling
to decide which task runs at any instant. This technique ensures that if
a more important task becomes ready while a less important task is
running, the more important task begins execution immediately.

Introduction 4-5

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

In multitasking systems, there are two common techniques for deciding
which task is to be run at any given moment. Time slicing, where tasks
are run in rotation, is the technique used in time~sharing systems. The
second technique, priority-based scheduling, uses assigned priorities to
decide which task is to be run.

Within priority-based scheduling, there are two approaches.
Non—-preemptive scheduling allows a task to run until it relinquishes the
processor. Even if a higher-priority task becomes ready for execution,
the original task continues to run until it explicitly surrenders the
processor.

The second approach to priority-based scheduling is preemptive. In
systems using preemptive scheduling, the system always executes the
highest priority task that is ready to run. In other words, if the
running task or an interrupt causes a higher-priority task to become
ready, the operating system switches the processor to the higher-priority
task.

Preemptive, priority-based scheduling goes hand-in-hand with the
interrupt processing discussed earlier. The priorities of tasks can be
tied to the relative importance of the events that they process. This
enables the processing of more—important events to preempt the processing
of less—important events without abandoning the less—important events.

MULTIPROGRAMMING

Multiprogramming provides your system with the ability to run more than
one application on a single iAPX 86,88,186,188,286-based microcomputer.
This helps reduce hardware costs.

Multiprogramming is a technique used to run several applications on a
single application system. By using this technique, the hardware is used
more fully. More processing is squeezed out of each hardware dollar.

In order to take full advantage of multiprogramming, you must provide
each application with a separate environment; that is, separate memory,
files and objects. The reason for the isolation is to prevent
independently developed applications from causing problems for each other.

For instance, suppose that two unrelated applications share a temporary
file on a disk. If Application 1 writes ianformation to the file and
Application 2 writes over the file, Application 1 has problems. The only
way to avoild this kind of problem with shared files is to create some
form of mutual exclusion. But if the two applications must interact even
to the point of excluding each other, they cannot be developed
independently. The two engineers creating the applications must
coordinate with each other and spend valuable time that could be used
within, rather than between, applications. The only alternative 1is to
avoid sharing the file.

Introduction 4-6

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

The iRMX 86 Operating System provides a type of object that can be used
to obtain this kind of isolation. The object is called a job, and it has
the following characteristics:

° Unlike tasks, jobs are passive. They cannot invoke system calls.

° Each job includes a collection of tasks and resources needed by
those tasks.

® Jobs serve as useful boundaries for dynamically allocating
memory. When two tasks of one job request memory, they share the
memory associated with their job. Two tasks in different jobs do
not directly compete for memory.

) An application consists of one or more jobs.

e Each job serves as an error boundary. When the application
detects an error, or when the operator decides to abort an
application, a job is a convenient object to delete.

Multiprogramming provides your application system with two benefits:

e Multiprogramming increases the amount of work your system can
do. By utilizing your hardware more fully, your system can run

several applications rather than one. This reduces the hardware
cost of implementation.

® Because of the correspondence between jobs and applications, new
jobs can be added to your system (or old jobs removed) without
affecting other jobs. This makes your system much easier and
faster to modify.

INTERTASK COORDINATION

The iRMX 86 Operating System provides simple techniques for tasks to
coordinate with one another. These techniques allow tasks in a
multitasking system to mutually exclude, synchronize, and communicate
with each other.

As we have already seen, multitasking is a technique used to simplify the
designing of real-time application systems that monitor multiple,
concurrent, asynchronous events. Multitasking allows engineers to focus
their attention on the processing of a single event rather than having to
contend with numerous other events occurring in an unpredictable order.

However, the processing of several events may be related. For instance,
the task processing Event A may need to know how many times Event B has
occurred since Event A last occurred. This kind of processing requires
that tasks be able to coordinate with each other. The iRMX 86 Operating
System provides for this coordination.

Introduction 4-7

FEATURES OF THE iRMX™ 86 CPERATING SYSTEM

Tasks can interact with each other in three ways. They can exchange
information, mutually exclude each other, and synchronize each other.
We'll now examine each of these.

Exchanging Information

Tasks exchange information for two purposes. One purpose is to pass data
from one task to another. For instance, suppose that one task
accumulates keystrokes from a terminal until a carriage return is
encountered. It then passes the entire line of text to another task,
which is responsible for decoding commands.

The second reason for passing data is to draw attention to a specific
object in the application system. In effect, one task says to another,
"I am talking about that object.”

The iRMX 86 System facilitates intertask communication by supplying
objects called "mailboxes" along with system calls to manipulate
mailboxes. The system calls associated with mailboxes are CREATE
MAILBOX, DELETE MAILBOX, SEND MESSAGE, and RECEIVE MESSAGE. Tasks use
the first two system calls to build and eradicate a particular mailbox.
They use the second two calls to communicate with each other.

Let's see how tasks can use a mailbox for drawing attention and for
sending information. If Task A wants Task B to become aware of a
particular object, Task A uses the SEND MESSAGE system call to mail the
object to the mailbox. Task B uses the RECEIVE MESSAGE system call to
get the object from the mailbox.

NOTE

The foregoing example, along with all
of the examples in this section, is
somewhat simplified in order to serve
as an introduction. If you want
detailed information, refer to the
iRMX 86 NUCLEUS REFERENCE MANUAL.

As mentioned previously, tasks can use mailboxes to send information to
each other. This is accomplished by putting the information into a
segment (an iRMX 86 object consisting of a contiguous block of memory)
and using the SEND MESSAGE system call to mail the reference to the
segment. The other task invokes the RECEIVE MESSAGE system call to get
access to the segment containing the message.

Why don't tasks just send messages directly between each other, rather

than through mailboxes? Tasks are asynchronous —-- they run in
unpredictable order.

Introduction 4-8

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

If two tasks want to communicate with each other, they need a place to
store messages and to wait for messages. If the receiver uses the
RECEIVE MESSAGE system call before the message has been sent, the
receiver waits at the mailbox until a message arrives. Similarly, if the
sender uses the SEND MESSAGE system call before the receiver is ready to
receive, the message is held at the mailbox until a task requests a
message from the mailbox. In other words, mailboxes allow tasks to
communicate with each other even though tasks are asynchronous.

Mutual Exclusion

Occasionally, when tasks are running concurrently, the following kind of
situation arises:

l. Task A is in the process of reading information from a segment.

2. An interrupt occurs and Task B, which has higher priority than
Task A, preempts Task A.

3. Task B modifies the contents of the segment that Task A was in
the midst of reading.

4. Task B finishes processing its event and surrenders the processor.
5. Task A resumes reading the segment.

The problem is that Task A might have information that is completely
invalid. For instance, suppose the application is air traffic control.
Task A is responsible for detecting potential collisions, and Task B is
responsible for updating the Plane Location Table with the new X- and
Y-coordinates of each plane's location. Unless Task A can obtain
exclusive use of the Plane Location Table, Task B can make Task A fail to
spot a collision.

Here's how it could happen. Task A reads the X-coordinate of the plane's
location and is preempted by Task B. Task B updates the entry that Task
A was reading, changing both the X- and Y-coordinates of the plane's
location. Task B finishes its function and surrenders the processor.
Task A resumes execution and reads the new Y-coordinate of the plane's
location. As a direct result of Task B changing the Plane Location Table
while Task A was reading it, Task A thinks the plane is at old X and new
Y. This misinformation could easily lead to disaster. This problem can
be avoided by mutual exclusion. If Task A can prevent Task B from
modifying the table until after A has finished using it, Task A can be
assured of valid information. Somehow, Task A must obtain exclusive use
of the table.

The iRMX 86 Operating System provides two types of objects that can be
used to provide mutual exclusion -- the semaphore and the region. A
semaphore is an integer counter that tasks can manipulate using four
system calls: CREATE SEMAPHORE, DELETE SEMAPHORE, SEND UNITS and RECEIVE
UNITS. The creation and deletion system calls are used to build and
eradicate semaphores. The send and receive system calls can be used to
achieve mutual exclusion.

Introduction 4-9

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Regions allow tasks to share data. Mutual exclusion is achieved because
only one task may access a region at a time. The use of regions should
be restricted to programmers who have a firm understanding of the iRMX 86

Operating System. For more information on regions, see the iRMX 86
NUCLEUS REFERENCE MANUAL.

Before discussing how semaphores can provide exclusion, we must examine
their properties. As mentioned above, a semaphore is a counter. It can
take on only nonmnegative integer values. Tasks can modify a semaphore's
value by using the SEND UNITS or RECEIVE UNITS system calls. When a task
sends N units (must be zero or greater) to a semaphore, the value of the
counter 1s increased by N. When a task uses the RECEIVE UNITS system
call to request M units (must be zero or greater) from a semaphore, one
of two things happens:

. If the semaphore's counter is greater than or equal to M, the
Operating System reduces the counter by M and continues to
execute the task.

) Otherwise, the Operating System begins running the task having
the next highest priority, and the requesting task waits at the
semaphore until the counter reaches M or greater.

How can tasks use a semaphore to achieve mutual exclusion? Easy! Create
a semaphore with an initial value of 1. Before any task uses the shared
resource, it must receive one unit from the semaphore. Also, as soon as
a task finishes using the resource, it must send one unit to the
semaphore. This technique ensures the following behavior. At any given
moment, no more than one task can use the resource, and any other tasks
that want to use it await their turn at the semaphore.

Semaphores allow mutual exclusion; they don't enforce it. All tasks
(there can be more than two) sharing the resource must receive one unit
from the semaphore before using the resource. If one task fails to do
this, mutual exclusion is not achieved. Also, each task must send a unit
to the semaphore when the resource is no longer needed. Failure to do
this can permanently lock all tasks out of the resource.

Synchronization

As mentioned earlier, tasks are asynchronous. Nonetheless, occasionally
a task must know that a certain event has occurred before the task starts
running. For instance, suppose that a particular application system
requires that Task A cannot run until after Task B has run. This kind of
requirement calls for synchronizing Task A with Task B.

Your application system can achieve synchronization by using semaphores.
Before executing either Task A or Task B, create a semaphore with an
initial value of zero. Then have Task A issue RECEIVE UNITS requesting
one unit from the semaphore. Task A is forced to wait at the semaphore
until Task B sends a unit. This achieves the desired synchronization.

Introduction 4-10

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Every real-time multitasking system must provide for intertask
coordination, so this coordination cannot be billed as an advantage. The
true advantage arises from the flexible means that the iRMX 86 System
provides for accomplishing coordination.

The intertask coordination supplied by the iRMX 86 Operating System is
flexible and simple to use. Semaphores and mailboxes can accommodate a
wide variety of situations. And your application system is not limited
to some arbitrary number of mailboxes or semaphores. It can create as
many as it needs.

EXTENDIBILITY

The iRMX 86 Operating System is extendible. It allows you to create
your own object types and to add system calls to the Operating System.

Something is extendible if you can add to it, and the iRMX 86 Operating
System is extendible. Your system programming engineers can build their
own types of objects and the system calls to manipulate those objects.
These custom features become a part of the Operating System. From the
point of view of the application programming engineer, there is no way to
distinguish your custom objects from those supplied by Intel.

The advantage of extendibility is that you can add your features to the
iRMX 86 Operating System and obtain the same benefits as supplied by its
object~oriented architecture. These benefits include the ability to send
your custom—made objects to mailboxes and the ability to put them in
object directories. Additionally, your application engineers can more
quickly become familiar with your custom features. This shrinks your
development time and costs, and it allows you to bring your application
system to your users sooner.

DEBUGGING SUPPORT

The iRMX 86 Operating System provides object—oriented debugging
facilities.

Intel provides three object—oriented debugging aids for use with the
iRMX 86 Operating System: the on-line Dynamic Debugger (or simply the
"Debugger"), the System Debugger (SDB), and the Crash Analyzer. You can
include these tools during development of your application system, then
remove them from your application when it has stabilized, thus reducing
the size of the application system.

All three tools are attuned to iRMX 86 objects (tasks, mailboxes, etc.).

This eases the debugging of iRMX 86 applications. These tools are
discussed in greater detail later in this chapter.

Introduction 4-11

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Because the Dynamic Debugger, System Debugger, and Crash Analyzer are
"sensitive"” to iRMX 86 objects, you can fully debug your application
system, including the interaction between tasks. The Dynamic Debugger
allows you to debug individual tasks while the remainder of the job
continues to execute. The System Debugger and Crash Analyzer allow you
to "freeze" the entire system and examine the contents of memory and CPU

registers, and the state of each object in use at the time.

Using the iRMX 86 debugging tools, you can reduce development time, time

to market, and the cost of implementing and maintaining your application
systems.

PROCESSOR SELECTIVITY

The iRMX 86 Operating System supports a number of Intel microprecessor
boards. During configuration you select the processor to match your
system.

In addition to supporting the iAPX 86,88 microprocessors, the

iRMX 86 Operating System can be configured to execute on other 1IAPX
family members, including the iAPX 186, 188, and 286 processors. These

processors have a higher level of integration and faster execution times
than the iAPX 86, 88 processors.

On the 1APX 186,188 processors, the iRMX 86 Operating System executes in

iRMX compatibility mode. On the iAPX 2856 processor, the Operating System
executes in real address mode. Applications written for iAPX 86,88-based

microcomputers will run in real address mode or in iRMX compatibility
mode without modification or relinking.

The ability to tailor the Operating System to match your processor means
you can upgrade your system to a higher level of integration without the
need to modify or relink your application systems to run on the new
processor. This provides flexibility in the development of your
application systems as well as faster execution times for applications
running on the more highly integrated processors.

INPUT/OQUTPUT FEATURES

The iRMX 86 Operating System offers the power and flexibility of a

general-purpose operating system. Input and output operations will be a
large part of most applications, so the Operating System offers a

collection of I/0 features to speed development of application systems,
and to make the I/O of those systems efficient.

Introduction 4-12

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

CHOICE OF I/0 SYSTEMS

To meet the I/0 needs of a wide variety of applications, the iRMX 86
Operating System provides two I/0 systems: the Basic I/0 System and the
Extended I/0 System. You can use the Basic I/O System only, or you can
combine the two I/0 systems.

Many features of the iRMX 86 Operating System are useful in most
applications, but not all applications. This is especilally true of
features relating to input and output. The iRMX 86 Operating Systen
provides two I/0 systems: the Basic I/0 System and the Extended I/0
Systen.

Basic 1/0 System

For some applications the performance or flexibility of the system is
more critical than the time necessary to produce the system. For these
applications, the iRMX 86 Operating System provides the Basic I/0 System.

The Basic I/0 System is the more flexible of the two I/O systems. It
provides very powerful capabilities, and it makes few assumptions about
the requirements of your application. The following features illustrate
the flexibility of the Basic I/0 System:

ALLOWS YOU TO DESIGN YOUR OWN BUFFERING ALGORITHM. Rather than
automatically providing a buffering algorithm, the Basic I/O System
allows you to design and implement your own buffering technique. Using

the Basic I/0 System, you control the synchronization between I/0 and
processing.

APPROPRIATE FOR RANDOM I/0 OPERATIONS. Perhaps the I/0 in your
application is random access. This means that rather than reading or
writing data in sequential blocks, the application accesses data in
blocks that are not adjacent to each other. The Basic I/0 System is more
appropriate for these operations because of the explicit control the
programmer has over I/0 operations.

GIVES YOUR TASK CONTROL OF DETAILS. The system calls of the Basic I/0
System often have many parameters. Using these parameters, your tasks
can closely tailor the behavior of each system call to match the
performance requirements of your application system.

Introduction 4-13

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

The Basic I/0 System emphasizes flexibility rather than ease of use. The

Basic I/0 System provides I/0 features that are useful in time—critical

or memory-critical applications, and allows the performance of a system
to be optimized.

Extended I/0 System

The Extended I/0 System is designed to be easy to use, and to be

efficient for sequential I/0. The important features of the Extended I1/0
System are described below.

AUTOMATIC BUFFERING OF I/0 OPERATIONS. If you want to use
multiple-buffered I/0, but do not want to be burdened with writing
complex code to check and switch buffers, you can use iRMX 86 Extended
I/0 System calls. When the application program issues a system call to
perform an I/0 operation, the iRMX 86 Operating System performs the input
or output and returns control to the user program after the data transfer
is completed. But before returning control to the user program, the

iRMX 86 Operating System starts reading or writing the next block.

For example, if the application is reading a file from disk, the
following sequence will occur:

1. When the application program opens a file using an Extended I/0

System call, the Operating System starts reading the first block
of the file ("initiates" the input).

2. The Operating System returns control to the application program.

3. Later the program requests an Extended I/0 System Read. The
Operating System has already started reading this data. When the
input is complete, the Operating System initiates a read of the
next block of the file (called "reading ahead"), and returns
control to the calling program.

In this way, whenever the user requests an Extended I/0 System Read, the
data is either immediately available, or is in the process of being read.

The equivalent output process 1s performed by "writing behind.” When an
application program requests an Extended I/0O System Write, the iRMX 86
Operating System copies the data to a buffer maintained by the Extended
I/0 System, and returns to the calling program. Whenever this buffer is
filled, the system initiates an output operation.

Introduction 4-14

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

EFFICIENT SEQUENTIAL I/O OPERATIONS. Another characteristic of the
Extended 1/0 System is that when it does a "read ahead” operation, the
Operating System assumes that a series of sequential reads are to be
performed. For example, the Operating System will read data from disk
address 23, then from disk address 24, and so on. So when your 1/0 is
mostly sequential, (for example, when examining consecutive records of a
file) Extended 1/0 System calls are particularly efficient. Though less
efficient, it is still possible to perform random access of a file with
the Extended I/0 System by preceding operations with a Seek call
specifying the offset into the file.

FREE OF TEDIOUS DETAILS. The system calls of the Extended I/0 System
have relatively few parameters and are easy to code. In many cases a
single Extended I/0 call will serve the purpose of several Basic I/0
System calls. This simplifies your application system, which reduces
development time and reduces costs.

The iRMX 86 Operating System allows you to select the features you
want. The Basic I/0 System gives maximum control of I/0 operations for
applications requiring finely tuned performance, especially while doing
random—access I1/0. The Extended I/0 System is easy to use. It saves
development costs and development time, especially in applications that
use sequential I/0.

Finally, remember that you can use both I/0 systems when your application
system uses I/0 for several purposes, some of which are best accomplished
by the Basic I/0 System, and some of which are best accomplished by the
Extended I/0 System.

DEVICE-INDEPENDENT INPUT AND OUTPUT

The input and output capabilities of the iRMX 86 Operating System are
device independent. This adds flexibility to your system by allowing you
to easily reroute input or output to different devices.

A system provides device—independent I/0 if it has one set of system
calls for communicating with all I/0 devices. The alternative to device
independence is to provide different calls for each type of device.
Let's first examine the alternative and then move on to device
independence. Consider an operating system that does not provide device
independence. The system calls controlling input and output operations
are explicitly related to the I/O devices being used. For instance, the
system call for writing to the line printer might be PRINT, while the
system call for writing to the terminal might be TYPE. Once you have
written a procedure in such a system, the procedure is locked into a
particular combination of devices. The only way you can reroute input or
output is to edit the source code and recompile.

Introduction 4-15

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Now consider an operating system that is device independent: the iRMX 86
Operating System. Because the iRMX 86 System supports device-independent
I/0, the system calls are not device dependent. The READ system call is
always used for input, and the WRITE system call is always used for
output. The device is specified by a parameter of the system call.
Consequently, by using a variable as the parameter that selects the
device, you can create I/0 procedures that are completely independent of
the devices they use.

Device independence makes your application system very flexible. If you
write a procedure to log events on a line printer, you can use the same
procedure to log events on a terminal or, for that matter, on a disk.
You need not recompile or otherwise modify your system.

HIERARCHICAL NAMING OF MASS STORAGE FILES

The iRMX 86 Operating System supports hierarchical naming of files on
mass storage devices. This naming technique provides your application
systems with additional flexibility by simplifying the process of
organizing and naming files.

Hierarchical naming is one of three common techniques used to name files
on mass storage devices such as disks, bubble memories, or drums. The
other two techniques are called simple naming and directory naming. The
advantages of hilerarchical naming become clear when that technique is
compared to the other two. First we'll look at simple naming.

Simple naming allows you to provide files with a descriptive name. For
instance, you might decide to name files ACCOUNTS PAYABLE, ACCOUNTS
RECEIVABLE, TRANSACTIONS, and INVENTORY. These names are certainly
descriptive, but what happens when a different application running in the
same system also decides to use one of these names? This question 1is
avoided by using a more powerful naming technique: directory naming.

Directory naming allows different applications (or different application
engineers, for that matter) to use the same file name. Each application
(or engineer) is given one special-purpose file, called a directory.

This directory contains only file names; it does not contain data.
Figures 4-2 and 4-3 provide examples of directories. When application
software refers to a specific file, 1t first names the directory and then
names the file. For instance, in Figure 4-2, the TRANSACTIONS file
associated with Engineering would be designated

ENGINEERING/TRANSACTIONS. The comparable file for Marketing, in Figure
4-3, would be designated MARKETING/TRANSACTIONS.

The advantage of directory naming over simple naming is that directory
naming allows the file names to reflect the relationships between files.
In Figure 4-2, all the files pertaining to Engineering are in the
directory called ENGINEERING., This grouping of related files is not
supported by simple naming.

Introduction 4-16

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

ENGINEERING
ACCOUNTS

PAYABLE »
ACCOUNTS .

RECEIVABLE Sm
TRANSACTIONS - ! ’E'E 2> % % g
INVENTORY 22 52 oo aF ~

L >m <en 22 NAMES
zZ om »5T >3
am a3 wZ 2 <
ul 53 raz > 0
Q= oz mog]
DIRECTORY 2z zo o e
FILE Q
-
DATA
FILES
x-183
Figure 4-2. An Engineering Directory
MARKETING
ACCOUNTS
PAYABLE »
ACCOUNTS g

RECEIVABLE 8=
TRANSACTIONS 4 - $3
INVENTORY 3 38% A% FILE

zs & el a3 AME
E > 14 ¥ Z0 m k3 N S
m2 2m sS4 >3
zx a4 5z ==
5m dz 7 »
o2 o3 mee @

DIRECTORY 2z zQ =

FILE) &

Figure 4-3. A Marketing Directory

DATA
FILES

x-184

What about situations in which more than one level of directory is
required? This situation is illustrated in Figure 4—-4. This figure
differs from 4-3 only in that a second level of grouping has been
included.

Introduction 4-17

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

MARKETING
ACCOUNTS
PAYABLE
ACCOUNTS
RECEIVABLE
TRANSACTIONS
INVENTORY
CAPITAL ACE
EQUIPMENT BOOKINGS TF;:ILE%%’T:ES STATIONARY
SMITH
NONCAPITAL BILLINGS PLEISTOCENE ADVERTISING
EQUIPMENT —'l ELECTRONICS _—l SMUDGE]
PENCILS I
mZ=z -
00Z3% m 3z
cZia 953 DIRECTGRY
IxZn TIzx e FILES
233 a =34Mm FILE
273z mZZ% NAMES
Spxh 5 %6
-

DATA
FILES

x-185

Figure 4-4. Hierarchical Naming of Files

Just as Figure 4-4 shows that single-level directory naming is not
sufficient for all collections of files, another figure could be
constructed to show that two—level directory naming is not always
sufficient. Consequently, the iRMX 86 Operating System supports any
number of levels of directories. This n-level directory naming is called
hierarchical naming of files.

Hierarchical naming of files simplifies the process of adding new
applications to your system. One concern about expanding your system is
the naming of mass storage files associated with a new application.
Names of new files must differ from names of existing files. If your
system uses only a few mass storage files, you can expect little
difficulty in assigning unique file names. But if your system uses a
large number of files, the problem of ensuring uniqueness becomes more
significant.

This uniqueness problem becomes particularly difficult if file names are
assigned by an operator in a system having more than one operator.
Hierarchical file naming eliminates the problem. Whenever you add a new
application to your system, you can assign it a directory. The new
application can then use this directory to provide unique names to any
number of files. Also, each operator can be assigned a unique directory
which can then be used to provide unique names.

Introduction 4-18

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

FILE ACCESS CONTROL

The iRMX 86 Operating System allows your application system to control
access to hierarchically named files. This facilitates file sharing
while still preventing valuable data from being copied, modified, or
destroyed by unauthorized users.

In the multiprogramming environment provided by the iRMX 86 Operating
System, the sharing of files can be useful. But the job that owns a file
may wish to share it with only certain other jobs rather than all other
jobs. Furthermore, the job owning a file may wish to restrict the nature
of the shared access. For example, the owning job may wish to allow a
particular file to be read but not written. The ability to specify how
and with whom a file is shared is called file access control.

The iRMX 86 Operating System provides powerful file access control by
allowing the owner of a file to specify who can use the file and how they
can use it. 1In fact, a file's owner can even grant different
combinations of access (reading only, writing only, reading and writing,
etc.) to each user of a file.

By controlling who can access a file and how they can access it, your
system becomes more reliable and secure. There is less chance for an
unauthorized task to accidentally modify a valuable file, and there is
less opportunity for an unauthorized task to read a confidential file.

Your application software can, in fact, expand file access protection
into a file security system. For instance, suppose that your application
involves several operators accessing files on disk. By providing each
operator with a password, so an individual's identity can be verified,
your application software can strictly control which operators have
access to which files.

CONTROL OVER FILE FRAGMENTATION

The iRMX 86 Operating System allows you to specify the granularity of
each mass storage file. This lets you trade faster I/0 for more
efficient use of space on the mass storage device.

When information is stored on a mass storage device, space is allocated
in chunks rather than one byte at a time. These chunks, called granules,
can be large or small, but all granules within one file must be the same
size. This size is called the file granularity, and it is specified by
the engineer who creates the file.

A file's granularity affects the use of a storage device in three ways.

° Data Transfer Rate. The granularity directly affects the speed
at which the Operating System can transfer information to or from
the storage device. The larger the granularity, the faster the
Operating System transfers data.

Introduction 4-19

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

e Access Time. The smaller the granules, the more time is required
to access a series of random locations in the file. Larger
granules reduce access time.

° Wasted Device Space. The file granularity directly affects the
amount of wasted space on the device. More device space is
wasted with larger granularity.

Here's an example. (For the sake of simplicity, we will ignore
any information stored on the device on behalf of the Operating
System.) Consider a file containing 20010 bytes. If the
granularity is 10000 bytes, the file occupies three granules,
each of which is 10000 bytes long. The first two granules are
full and the third contains only 10 useful bytes. This file
wastes almost 10000 bytes of storage space.

If we change the file granularity to 200 bytes, the file occupies
101 granules. Each of the first 100 granules is full and the
last granule contains only 10 useful bytes. The file now wastes
only 190 bytes of storage space.

By allowing you to control granularity, the iRMX 86 Operating System

lets you trade device space for performance. If your application has
many mass storage units and space is readily available, you can specify a
large file granularity. This provides you with faster average transfer
rates and shorter access times, but it wastes some of your device space.

If, on the other hand, you have only one small mass storage unit, you
might want to sacrifice some performance for better use of space. This
trade would be particularly desirable if you do not use the device often
enough to be concerned with the rate of data transfer.

SELECTION OF DEVICE DRIVERS

The iRMX 86 Operating System offers you your choice of Intel-supplied
device drivers. It also allows you to write your own drivers.

A device driver is a software module that serves as the interface between
a device's controller (which is hardware) and the iRMX 86 Basic I/0
System. The purpose of the driver 1s to make all devices look alike to
the Basic I/0 System. In effect, the driver hides the idiosyncrasies of
a device from the Basic I/0 System.

By selecting and creating device drivers, you can attach any device to
your application system. This means that you are not limited to a few
specific devices. You can select devices on any basis at all -—-
performance, cost, reliability, availability, whatever. The choice is
yours.

Introduction 4-20

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

TERMINAL SUPPORT CODE

Many brands and types of keyboard terminals are available in the
marketplace. The iRMX 86 Terminal Support Code allows you to use nearly
any terminal regardless of its individual characteristics. Terminal
Support Code also allows programmers or terminal operators to specify a
variety of special terminal modes and operationms.

Every terminal connected to an iRMX 86 application system communicates
with the system via one of two software packages: the iRMX 86 Terminal
Handler or the iRMX 86 Terminal Support Code. (The Terminal Handler is
described in a later section, "Interactive Configurability.") Terminal
Support Code is software that acts as a programmable interface between a
terminal driver and the Basic 1/0 System.

This section describes these major capabilities of the Terminal Support
Code:

e Editing and controlling terminal input.
e Type—ahead.
e Controlling terminal output.

° Terminal characterization.

Editing and Controlling Input to a Terminal

A terminal operator has available a set of characters that control and
edit terminal input. For example, an operator can:

e Use the RUBOUT key to delete the previous character in an input
line. The Terminal Support Code can be set to handle the RUBOUT
character differently for a video terminal than it does for a
hard-copy terminal.

° Reprint the line to show editing already performed.

e Discard the current input line and start typing a new line.
The Terminal Support Code allows you to replace default control
characters with different characters. You can also switch a terminal to

“transparent mode,"” so that editing and control characters have no effect
and are not removed from the line of text.

Type—-Ahead

If an operator types faster than the Operating System can read,
interpret, and respond to input, the Terminal Support Code sends the
first line to the I/0 System for processing, and saves additional data in
a type—ahead buffer.

Introduction 4-21

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

After the Operating System finishes with the first line, the Terminal
Support Code sends additional input data.

Controlling Output to a Terminal

When sending output to a terminal, the Terminal Support Code always
operates in one of four modes. An operator can dynamically switch from
one output mode to another by entering output control characters. The
output modes and their characteristics are as follows:

Normal The Terminal Support Code accepts output from the

application system and immediately passes output to the
terminal for display.

S topped The Terminal Support Code accepts output from the
application system, but it queues the output rather than
passing it immediately to the terminal.

Scrolling The Terminal Support Code accepts output from the
application system, and it queues the output as in the
stopped mode. However, rather than completely preventing
output from reaching the terminal, it sends a
predetermined number of lines to the terminal whenever
the operator enters a certain character at the terminal.

Discarding Data sent to the terminal is effectively lost; it is
neither displayed nor queued.

Translation

The Terminal Support Code accepts escape sequences (characters preceded
by an ESC character) to define characteristics of a terminal. This
powerful feature allows you to “"characterize" terminals so that the /0
system can use standard control codes and sequences of codes for all
terminals. This process 1is called translation.

Here is how translation works. The Basic I/0 System sends standard codes
to the Terminal Support Code to, for example, move the video cursor. The
Terminal Support Code converts the standard codes into codes recognized
by a particular terminal, and sends out these terminal-specific codes.

Besides translation, escape sequences are used to set terminal variables,
such as how many lines are displayed when in Scrolling mode. Escape
sequences can be sent either from the terminal, or from a program. That
is, you can change terminal behavior by keying in escape sequences or by
running a program.

Some of the advantages to including the Terminal Support Code imn your
application are:

Introduction 4-22

FEATURES OF THE iRMX"™ 86 OPERATING SYSTEM

e You can use virtually any ASCII keyboard terminal that can be
connected to your hardware.

® Your application can include convenient line-editing and
output—-control functions.

e You can define unique characteristics for each terminal in a
multiple-terminal system.

e You can define new characteristics either from programs or from
terminals.

CUSTOMIZING FEATURES

The iRMX 86 Operating System is designed specifically for OEM and VEU
applications. For this reason the application system as a whole can
appear unique to the user. Certain features of the Operating System
allow an application to be customized in its capabilities and in how 1t
appears to the end user. Let's look at these features.

CUSTOM INTERACTIVE COMMANDS

People interact with your applications by entering commands and
receiving information at terminals. The iRMX 86 Operating System allows
you to define commands that are appropriate to the application and are
meaningful to the operator. This command facility is called the Human
Interface.

By designing commands which are appropriate to the type of people who use
a system, you can control the human—to-application interface. This can
make a system appear "friendly,"” it can give the application a unique
character, and it can reduce operator errors.

Custom Commands = Programs

Because the first word in a command is the name of an executable program
file on a mass storage device such as a disk, you are given great
flexibility in defining commands. When someone types a command at the
terminal, the program having the command name is loaded from the
secondary storage and Is run by the Operating System. This means:

° You may add or modify commands simply by writing new programs.

) The number of custom commands for a system is not limited by the
amount of dynamic memory.

e You do not have to "rebuild" the system to change commands.
° Programs that are used infrequently do not take up memory space

when they aren't being run.

Introduction 4-23

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Command Line Parsing

System calls are available for retrieving and interpreting parameters of
a command. This process is called "parsing a command line.”

Consider an application that monitors toxins in the blood of hospital
patients. An operator (perhaps a nurse or doctor) can run a task that

displays the toxin level of an individual patient, or of all patients
being monitored.

One appfoach would be to have the operator run the task with a command:
RUN TOXIN.V3

The program might prompt with:
Display of which units? --

A more "friendly" approach allows a person to use commands that are
oriented to the application and to his or her skills, rather than to use
computer~oriented commands. In the example, a better command is:

TOXIN of John Doe

The program TOXIN issues a system call to receive the parameter "John
Doe". Because file names frequently are parameters for commands,
specialized system calls are also available to interpret file name
parameters.

The iRMX 86 Operating System makes it easy to design commands for
operators who are not particularly familiar with computers. The ability
to define commands enables you to create an application that is easy to
use, easy to understand, and resistant to operator errors. New commands
may be added by simply writing new programs, rather than making expensive
changes to the system.

APPLICATION LOADING

The iRMX 86 Operating System allows your application to read programs
from disk into memory and to run them. (This capability is briefly
described under Custom Interactive Commands in this section.) Also, the
Operating System allows a program to be broken into segments called
overlays, so that the entire program does not have to be in memory at one
time.

Introduction 4-24

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Load-Time Location

The explanation of Custom Interactive Commands mentioned that programs
can be loaded from a mass storage device like a disk or bubble memory.
The iRMX 86 Application Loader is designed so that programs may be loaded
anywhere in available memory. The loader will modify the appropriate
addresses in the program at the time the program is loaded. This
capability, Load-Time Location, offers great flexibility in the design of
application systems. As new programs are added, existing programs do not
have to be rebuilt ("linked") in order to run together. Or if more
memory is added to the system, the memory can be readily used.

Overlay Loading

Occasionally a program is large enough that it is necessary to break it
into pileces called overlays. Each overlay runs at a different time, and
occuples the same area of memory. A program containing overlays consists
of a "root" that is always present while the program is running, and of
two or more overlays. The overlays are lozded by system calls issued
from the root.

An overlay facility allows programs to be run even if the programs are
too large to fit in memory. Naturally, some care must be exercised to
ensure that functions performed by separate overlays do not have to run
simul taneously. Also, a program with overlays will execute somewhat
slower than one that does not contain overlays.

The iRMX 86 Application Loader gives a programmer great flexibility in
the way programs use memory. The system can load programs anywhere in
available memory, and programs can execute even though they are actually
larger than the memory avallable.

SIMULTANEOUS MULTIPLE TERMINAL SUPPORT
Operating systems are characterized as either single—terminal or
multi-terminal systems. The iRMX 86 Operating System, being a

multi-terminal system, can be accessed by more than one terminal at the
same time.

The iRMX 86 Operating System offers two ways that you can implement
multi-terminal support:

° Multi-access Human Interface (both standard multi-access and
modified multi-access).

° Simultaneous Multiple Terminal Support with I/O Programs.

This section explains both approaches.

Introduction 4-25

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Multi-Access Human Interface

The iRMX 86 Operating System can communicate with multiple terminals
simultaneously. The Human Interface part of the Operating System
provides multi-access, which is high-level support for this
communication. From a terminal in a multi-access system an operator can
execute commands, run development programs (like editors, compilers, and

so on), and run other application programs. Here is how multi-access
works.

The Operating System detects when a terminal is turned on and assigns an
operating environment for the terminal. This environment consists of an
identifier (ID), an area of memory in which programs can run, and a
priority at which the programs run. The Operating System then starts a
program called the initial program. (This is true even if you have only
one terminal.)

If the initial program is the one that comes with the Human Interface, we
call this standard multi-access. But you can replace the Intel-supplied
initial program with one of your own; we call this modified multi-access.

STANDARD MULTI-ACCESS. With standard multi-access, the initial program
is an Intel-supplied Command Line Interpreter, (CLI, for short). A CLI
is a program that parses commands an operator enters. As each command is
entered the CLI divides it into a program name and parameters, runs the
program indicated by the command, and passes the parameters to the
program.

MODIFIED MULTI-ACCESS. You have the option of providing your own initial
program. This initial program might be a CLI of your own design, or it
might be a completely different kind of program. For example, you can
write a Command Line Interpreter that checks a password before allowing
the user to access the system. Or if you want a particular terminal to
be used only for BASIC-language programs, a BASIC interpreter might be
the initial program.

Multi-access is particularly versatile because you can select, on a
terminal-by-terminal basis, what initial program runs. For example, one
terminal might run the Intel CLI, another run a special CLI, and a third
terminal might always run a word-processing program.

Multiple Terminal Support with I/0 Programs
You can implement multiple terminal support with your own programs. That

is, you can replace the iRMX 86 multi-access mechanism just described
with programs that you write.

Introduction 4-26

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

In this case, your programs communicate with terminals through I/0 system
calls. You might do this if you need to implement functions not
available with multi-access, or if you want to leave out the Human
Interface layer. (A later section, "Interactive Configurability,"”
describes how you can include and exclude parts of the iRMX 86 Operating
System.)

The obvious advantage of this feature is that the your system can be
accessed by more than one person at a time, which enables you to build
systems that are more cost—-effective and more powerful than
single—terminal systems.

Because of the variety of ways that the Operating System supports
multiple terminals, you can build specialized systems, you can make your
application system easy to use, and you can protect data from accidental
changes.

RUN-TIME BINDING

The iRMX 86 Operating System uses "run—time binding,"” the process of
linking objects, files and devices with the tasks that use them. This
provides your system with three kinds of flexibility. It allows tasks in
different jobs to share objects; it lets your procedures use logical
names for files and devices; and it simplifies the process of attaching
your application software to the iRMX 86 Operating System.

Before we look into run—time binding, let's consider binding as it
relates to a program. Binding is the process of letting each program
know the locations of the variables and procedures that it uses.

Binding can be performed several times during the development and
execution of a program. Some binding takes place during the process of
compilation. As a program is being compiled, its references to variables
and procedures are resolved (that is, converted into machine language)
whenever the compiler has sufficient information. Sometimes, however, a
program refers to variables or procedures that are part of a separate
program. When this happens, the compiler cannot resolve the reference,
and binding must be delayed.

Some binding also takes place during linking. Linking 1s the process of
combining several programs that are compiled separately. The purpose of
linking is to allow a program to refer to variables and procedures
defined in a different program. (Such references are called external
references because they refer to information outside of the program under
consideration.) When the linking process resolves an external reference,
it performs binding that cannot be completed during compilation.

Introduction 4-27

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Run—time binding means binding while the system is actually running. The
iRMX 86 Operating System provides three kinds of run-time binding:

® Binding objects to tasks.
° Binding files and devices to tasks.

e Binding your application software to the Operating System.

The first two kinds of run—time binding are based on the use of object
directories. An object directory is an attribute of a job that allows
tasks to provide ASCII names for objects. Tasks use the CATALOG OBJECT,
LOOKUP OBJECT, and UNCATALOG OBJECT system calls to define, lookup, or
delete the name of an object. In each case, the task using the system
call must specify the job whose object directory is to be accessed.

Let's look more closely at each type of run—-time binding.

Binding Objects to Tasks

When two tasks use a mailbox to pass information, they obviously must
both access the same mailbox. But if the programs for the two tasks are
compiled and linked independently of one another (as they probably would
be if they are in separate jobs), the tasks must use run—time binding to
access the same mailbox.

The run—time binding of objects to tasks 1s accomplished as follows.

When a task creates an object that it wishes to share with other tasks,
the creator task catalogs the object in an object directory. Other tasks
can then access the cataloged object if they know its ASCII name and its
object directory.

Engineers can control the sharing of objects by selectively broadcasting
object names. If two engineers wish to share an object, they must agree
on both the name and the object directory that is to contain the name.
One task then creates the object and the other accesses it through the
object directory.

Binding of Files and Devices to Tasks

Suppose you wish to code an application utility program that takes input
from any supported input device or from a disk file. Run—time binding
can help accomplish this. The utility program can be coded to lookup an
input connection under a particular name. Then any program that needs
the utility program can create the input connection, catalog it under the
agreed—-upon name, and invoke the utility program. In effect, the ASCIIL
name in the object directory is the logical name of the input file.

Introduction 4-28

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

Binding of Application Software to Operating System

The iRMX 86 Operating System uses a third type of run-time binding to
allow your application software to communicate with the Operating
System. Whenever your application software invokes a system call, an
Intel-supplied interface routine converts the call into a
software—generated interrupt. This interrupt causes control to be
transferred to a procedure within the iRMX 86 Operating System that
performs the desired function. In other words, the software interrupts
bind the system calls of your application software to the iRMX 86
procedures.

Run~time binding provides your application system with flexibility. By
allowing your system to name objects, the iRMX 86 Operating System
provides a means of sharing dynamically created objects between jobs. By
supporting logical names for files and devices, the iRMX 86 System allows
tasks to work with any combination of files and devices rather than with
a single, fixed combination. By using software interrupts to bind your
application software to the Operating System, you can reconfigure the
Operating System without having to recompile or relink your application
software.

ERROR HANDLING

The iRMX 86 Operating System allows your application system to specify
an error handling procedure for each task.

Error handling is the process of detecting and reacting to unexpected
conditions. The iRMX 86 Operating System supports error handling by
doing a substantial amount of validity testing and condition checking
within system calls, but it cannot detect every error.

Nonetheless, the iRMX 86 Operating System does protect your system from
most types of errors. The concepts involved in the iRMX 86 error
handling scheme are condition or exception codes, and exception
handlers. We'll look at these one at a time.

° Condition Codes. Whenever a task invokes a system call, the
iRMX 86 Operating System attempts to perform the requested
function. Whether or not the attempt is successful the Operating
System generates a condition code. This code indicates two
things. First, it shows whether the system call succeeded or
failed. Second, in the case of failure, it is called an
exception code and shows which unexpected condition prevented
successful completion.

e Exception Handlers. An exception handler is a procedure that the
Operating System can invoke when a task receives a condition code
indicating failure of the function requested. As each task is
created, it is assigned an exception handler; either one written
by the programmer, or a default exception handler provided by the
Operating System.

Introduction 4-29

FEATURES OF THE iRMX" 86 OPERATING SYSTEM

The alternative to using exception handlers is to process
exception codes in the procedure that issued the system call.

Because you can write the exception handler, you can control the
behavior of an application when it receives an exception code.
The handler can recover from the error, delete the task
containing the error, warn the operator of the error, or ignore
the error altogether. The choice is yours.

In summary, exception handling works as follows. The Operating System
generates a condition code for each system call. If the code indicates
successful completion, the Operating System detected no problems. If the
code indicates an exceptional condition, the exceptional code can be
processed either of two ways: within the procedure that used the system
call, or by an exception handler invoked by the Operating System. The
technique used is a characteristic of a task, and is established when the
task 1s incorporated intc the system.

Error handling provides your application system with several methods for
reacting to unusual conditions. One of these methods, having the
Operating System automatically invoke your task's error handling
procedure, greatly simplifies error processing. The other method,
dealing with some or all unusual conditions within your application task,
allows you to provide special processing for unusual circumstances. The
iRMX 86 Operating System allows your application system to use both

me thods.

DYNAMIC MEMORY ALLOCATION

The iRMX 86 Operating System supports dynamic allocation of memory.

This allows you to reduce your implementation costs by building systems
in which applications share memory. It also allows your applications to
change the amount of memory they use as their needs change.

Although there are numerous techniques for assigning memory to jobs, each

technique falls into one of two classes: static allocation or dynamic
allocation. Let's look briefly at static allocation first.

Static memory allocation entails assigning memory to jobs when the system
is starting up. Once the memory is allocated, it cannot be freed to be
used by other jobs. Consequently, the total memory requirements of the
system is always the sum of the memory requirements of each job.

Dynamic memory allocation, on the other hand, allows jobs to share
memory. Memory is allocated to jobs only when tasks request it. And
when a job no longer needs the memory, one of its tasks can free the
memory for use by other jobs.

Dynamic allocation also is useful within a job. Some tasks can use

additional memory to improve efficiency. An example of this is a task
that allocates large buffers to speed up input and output operations.

Introduction 4-30

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

The dynamic allocation of memory provides your application system with
reduced implementation costs. If your application system runs more than
one application, chances are fair that memory demands for various jobs
will be out of phase. That is, one job will be freeing memory while
another needs more. Dynamic memory allocation allows jobs to take
advantage of this. Consequently, your application system requires less
memory than it would using static allocation.

SOFTWARE INTERFACE

The iRMX 86 Operating System may be used to run various language
translators (PASCAL, FORTRAN, PL/M-86, ASM86 Macro Assembler, etc.). A
standard, flexible protocol, the Universal Development Interface (UDI),
allows language translators, language run—time packages, and other
software development tools to run on the iRMX 86 Operating System.

The UDI protocol consists of a set of system calls by which language
software uses the Operating System. (Language processors might be
compilers, interpreters, assemblers, or run—time systems.) Any language
may be run on the iRMX 86 Operating System if the language processor uses
the UDI standard system calls. In addition, the same language processor
can, without modification, be run on any other operating system which
includes the UDI system calls. (Intel markets a variety of operating
systems which use UDI for language support.)

There are at least two major advantages to the UDI software interface:

e A language processor can use well-defined, appropriate, standard
calls to communicate with the iRMX 86 Operating System. Existing
languages can be adapted easily to run on the Operating System.

° Any language processor or software tool using UDI system calls
can run on several Intel operating systems. This feature is
commonly termed "portability,” and is becoming a major
consideration in software design because of obvious economic
benefits.

BOOTSTRAP LOADING

The iRMX 86 Operating System contains a bootstrap loader that allows
your application system to reside on disk and be loaded into RAM
(random—access memory).

A bootstrap loader is a program that resides in ROM on your application
hardware. When your system's microprocessor is reset, the bootstrap
loader receives control and loads the rest of the software, including the
iRMX 86 Operating System and the application software, into RAM.

Introduction 4-31

FEATURES OF THE iRMX" 86 OPERATING SYSTEM

The iRMX 86 Bootstrap Loader provides your application system with two
major advantages:

e By placing the iRMX 86 Bootstrap Loader in ROM, you can shift the
rest of your application system to RAM. Since the rest of your
system is probably one or two orders of magnitude larger than the
Bootstrap Loader, this displacement substantially decreases the
amount of ROM required to implement your application.

This decrease in the amount of ROM required for your application

leads directly to reduced manufacturing costs. ROM, unlike RAM,

requires that information be "burned"” or masked into memory. By

decreasing the amount of ROM in your system, the Bootstrap Loader
reduces your masking or "burning" expenses.

e The iRMX 86 Bootstrap Loader simplifies the process of providing
updated software to your customers. Rather than shipping ROMs
containing the modified software, you can ship diskettes. This
greatly reduces the cost of updating your software.

TOOLS

Along with the iRMX 86 Operating System, Intel provides software tools to

help you develop an application system. Sometimes you use the features
listed in this section as part of your system, and sometimes you use them
only while developing the system. But each feature simplifies the
process of developing a complex system.

OBJECT-ORIENTED DYNAMIC DEBUGGER

The iRMX 86 Operating System provides a special dynamic debugger that is
attuned to iRMX 86 objects. This debugger simplifies the process of
removing the bugs in the Interaction between tasks of the application
system. It also facilitates debugging in a real-time environment.

We have already discussed the object-oriented architecture of the iRMX 86
Operating System. Reviewing briefly, each iRMX 86 job is a community of
tasks, and each task can manipulate objects. A special set of objects
(mailboxes and semaphores) provides a means for tasks to coordinate with
one another.

The iRMX 86 Dynamic Debugger (or simply the "Debugger") has two
capabilities that greatly simplify the process of debugging in a
multitasking environment. First, the Debugger allows you to debug
several tasks while the balance of the application system continues to
run in real time. Second, the debugger lets you see which tasks or
objects are queued at mailboxes and semaphores.

These two capabilities help you debug your application system at two
levels. You can look into the behavior of an individual task, and you
can examine the interaction between tasks. Both levels must be
thoroughly debugged before your system is fully implemented.

Introduction 4-32

FEATURES OF THE iRMX"™ 86 OPERATING SYSTEM

The object-oriented Debugger gives your application system flexibility
while simultaneously providing economic benefits.

By allowing you to debug several tasks while the system continues to run
in real time, the Debugger lets you check out new tasks in a running

system. This simplifies the process of adding new tasks to an existing
application system.

By simplifying the process of debugging interaction between tasks, the
Debugger lessens the amount of time needed to debug your application
system. This directly reduces the time to market, the cost of
implementation, and the cost of maintenance.

SYSTEM DEBUGGER

The iRMX 86 Operating System includes a System Debugger (SDB), which
extends the capabilities of your system monitor. The System Debugger
provides "static" debugging facilities for those times when the system
hangs or crashes, when the Nucleus is inadvertently overwritten or
destroyed, when you wish to "freeze" the system and examine it, or when
synchronization requirements preclude the debugging of selected tasks.

As we saw earlier, the Dynamic Debugger lets you debug one or more tasks
while the rest of the application system continues to run.

In contrast, the System Debugger stops the system (if it's not already
stopped) and allows you to examine the state of the system at that very
instant in time. If possible, after examining the state of the system
you can continue execution from where it stopped.

The SDB extends the capabilities of the iSDM 86,286 System Debug Monitor
(which you must purchase separately) or the iSBC 957B Monitor (which you
may already have) by allowing you to:

e Identify and interpret iRMX 86 system calls.

° Display information about iRMX 86 objects.

e Examine a task's stack to determine system call history.

The System Debugger provides the facilities necessary for diagnosing
system crashes. By stopping the system, the SDB provides a global view
of the system, which can help you find errors not easily found with the
Dynamic Debugger. Development time and costs are reduced because you can
track down and fix errors in a more timely manner.

Introduction 4-33

FEATURES OF THE iRMX"™ 86 OPERATING SYSTEM

CRASH ANALYZER

The iRMX 86 Operating System includes a Crash Analyzer that dumps the
contents of memory to a file, and then formats the information for
display or printing.

When your system crashes ~- as any system might during development -- the
Crash Analyzer provides a "snapshot" of the contents of memory. After a
system crash (or whenever you want to "freeze" the system) the Dumper
portion of the iRMX 86 Crash Analyzer writes the contents of selected
memory to a file on an Intellec Microcomputer Development System. The
Analyzer portion then reads the file and produces a formatted print file
that includes:

e [LEvery iRMX 86 object.

° The state of each object; for example, how many units are in a
semaphore, whether a task is ready or suspended or asleep, the
objects queued at a mailbox, the size of memory segments.

° The state of the hardware, including the contents of registers.

In short, the Crash Analyzer is oriented to the characteristics of the
iRMX 86 Operating System. Therefore an iRMX 86 memory dump doesn't show
just the usual raw data; it formats the data according to iRMX 86 data
types.

Having a memory dump facility helps to solve difficult and sometimes
obscure problems in your application system. There are four major
advantages to using the Crash Analyzer:

° It is a "smart" analysis utility that knows about the iRMX 86
system and environment, so it can save programmers laborious
searches through raw memory data. The result is an application
system that can be debugged and refined quickly, and a system
that you know is working according to design.

e A system failure does not have to be debugged at the time it
occurs. The problem can be handled later, perhaps by another
person, and perhaps at a different site.

° The Analyzer finds and identifies probable errors, such as
linked-lists that are broken, and stack overflow.

e Crash Analyzer software is divided between a relatively small
Dumper program that is part of the application system, and an
Analyzer program that runs on the host development system.
Therefore you can use the Crash Analyzer with little loss of
application system memory.

Introduction 4-34

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

INSTALLATION SYSTEMS

The iRMX 86 release package contains two systems that are ready to be

used. These ready-to-run systems are referred to as installation
systems.

The iRMX 86 Operating System is a "building block" operating system, with
pieces you can put together to create your system. The release diskettes
contain two installation systems, built and ready to run. Intel provides
one installation system for 1APX 86~based computers and one for

iAPX 286-based computers. Also on the release diskettes are the
definition files that were used to create these installation systems as
well as definition files that you can use to create systems for the 1iAPX
186/03, 186/51, and 188/48 processor boards, with little or no
modification.

The installation-system concept provides these specific advantages:

e The installation systems may be used as—is on Intel's Integrated
Systems such as the iSYS 86/310, iSYS 86/330A, iSYS 86/380,
iSYS 286/310 and iSYS 286/380 systems. No hardware or software
changes are required to install iRMX 86 on these systems.

e You can become familiar with the Operating System immediately,

and perhaps even run your application software without rebuilding
the Operating System.

e The installation systems have commands to perform common file
operations. (See "File Maintenance Programs"” later in this
chapter.) These commands can be used in developing your
application, and may themselves be included in your application.

o The actual files used to create the installation systems provide
an example of how to put together an iRMX 86 system, and may be
be used as a starting point for creating your own system.

ON-TARGET PROGRAM DEVELOPMENT

You may develop an iRMX 86 application system on a "host" computer
system, and then transfer the system to a "target"” computer. An
alternative is to develop programs on the target computer. With certain
hardware and software options, the iRMX 86 Operating System can provide
an ideal program development environment. Although program development
on a target system is not practical for all applications, for some
applications it is very worthwhile.

The emphasis of most of this chapter has been on building a specialized

sof tware product using the iRMX 86 Operating System as a basis for the
application.

Introduction 4-35

FEATURES OF THE iRMX" 86 OPERATING SYSTEM

Typically the programs you write are developed on an Intellec
Microcomputer Development System, and the application system is then
"migrated” onto an iSBC 86,88,186,188,286 board (the target computer).

In contrast, you can develop programs directly on the target computer by
using certain capabilities of the IRMX 86 Operating System. Each of
these features has already been described, and here is how they combine
to provide a program development system.

e File support. The iRMX 86 file system supports creation of
source, object, and loadable files. Many programmers can use the
same disk because of the hierarchical structure and protection
mechanisms of the iRMX 36 file system.

° Languages and software tools. The Universal Development
Interface makes it easy to support language processors and
run—time support systems. You can perform all phases of program
development using editors, linkers, and other tools of the
programming trade; these software tools are available from Intel
and run on the iRMX 86 Operating System.

° Convenience. The Application Loader makes it easy to load and
execute software. Also, the Human Interface provides a powerful
facility for parsing the names of files that are used by language
processors, editors, and linkers.

e Debugging. Programs developed on an iRMX 86 Operating System can
be debugged using the iRMX 86 object-oriented Dynamic Debugger
and the static System Debugger.

On-target program development using the iRMX 86 Operating System is
useful for these reasons:

° If your application system has spare resources (processing time,
memory, mass—storage space) you can use the system more
efficiently.

e Programmers can make changes on-site, which has economic and
scheduling advantages.

INTERACTIVE CONFIGURABILITY

The iRMX 86 Operating System is configurable. By selecting only the
parts of the Operating System that you need, you can reduce the amount of
memory required for your application system. The configuration process
is straightforward and certain because Intel provides the Interactive
Configuration Utility (ICU), a utility that guides you through the
process.

Introduction 4-36

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

A system 1s configurable if you can select the pieces of it that you want
and discard the pieces that you don't want. During the process of

configuration, you select the desired parts and combine them to form the
system,

Configuration is Making Choices

To configure an application system based on the iRMX 86 Operating System,
you first select the parts of the Operating System that your application
system requires, as shown in Figure 4-5. (You also specify important

characteristics of each module, such as memory requirements.) Then you
combine Operating System modules with your application software, with

Intel-supplied software and with software from vendors. This forms the
complete application system. Finally you install the application system
on the target hardware.

Configuration is Interactive

The iRMX 86 Operating System includes the Interactive Configuration
Utility (ICU), which guides you through the configuration process by
displaying a series of "menus." Each menu describes a number of
features, and then allows you to accept or change an existing (or
default) value for each feature. Also, the ICU allows you to save the
results of a previous configuration, so that you can make a small change
quickly without re—answering all of the questions.

Parts of the iRMX"™ 86 Operating System

The iRMX 86 Operating System consists of a number of major subsystems,
also called layers. During the process of configuration you specify
which of these subsystems, shown in Figure 4-5, to include in your
application system. The functions of these layers are:

° The Nucleus. The Nucleus is the heart of the iRMX 86 Operating
System. All other pieces of the Operating System use the
Nucleus, so it must be included in every application system built
upon the iRMX 86 Operating System.

With Intel's iOSP 86 Support Package, supplied on release

diskette, you can replace approximately two-thirds of the Nucleus
with the code contained in the 80130 Operating System Firmware
component. This device decreases the number of hardware
components required for your system.

Introduction 4-37

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

PARTS OF iRMX 86
OPERATING SYSTEM

UNIVERSAL

DEVELOPMENT
INTERFACE

CRASH ANALYZER

APPLICATION
LOADER

HUMAN

INTERFACE ™
iRMX "86 OPERATING SYSTEM

TERMINAL
HANDLER

DYNAMIC
DEBUGGER

SYSTEM
DEBUGGER

EXTENDED
1/0 SYSTEM

DEVICE
DRIVERS

BASIC
1/Q SYSTEM

NUCLEUS

APPLICATION SOFTWARE

NEXT
COMBINE APPLICATION
SOFTWARE WITH iRMX 86
OPERATING SYSTEM TO FORM

APPLICATION SYSTEM
3 3
z
g | az |[G&2
o <> |®»5
[0n? o9
m -6 | m%
g m T35 | FIRST ™
= s SELECT PARTS OF iRMX ™86
OPERATING SYSTEM
REQUIRED BY
APPLICATION SOFTWARE x-680

Figure 4-5. Configuration of an iRMX"™ 86 System

Introduction 4-38

FEATURES OF THE iRMX" 86 OPERATING SYSTEM

The 1/0 Systems. The I/0 Systems (Basic and Extended) provide
file management and the device-independent interface to input and
output devices. The I/0 Systems are optional components of the
iRMX 86 Operating System, so they can be excluded from the
Operating System i1f they are not needed. The user may include

the Basic I/0 System without including the Extended I/O System.
The Extended I/0 System requires the Basic I/0 System.

Device Drivers. Device drivers are the interface between an
application and the I/0 devices connected to the application.
Any device drivers selected during configuration (including
terminal drivers and Terminal Support Code) become part of the
Basic I/0 System.

The Human Interface. The Human Interface may control the
application system with commands entered at a terminal. The
Human Interface includes a set of commands for commonly used
operations. You can also create your own commands. Like the I/0
Systems, the Human Interface 1s an optional component and can be
left out of the Operating System if it is not required. If the
Human Interface is included, it requires all other system layers.

The Application Loader. The Application Loader allows your
application to load programs and overlays from disk into main
memory. The Application Loader is an optional part of a system,
but if included requires the 1/0 Systems.

The Dynamic Debugger. The Dynamic Debugger is also an optional
component of the 1RMX 86 Operating System. While the application
system is being developed, the Debugger is a very useful tool.

By including it in your system during the development period, you
can take advantage of its powerful capabilities. Then, once
development is completed, you can remove the Debugger and reduce
the size of your finished application system.

The System Debugger. The System Debugger (SDB), also optional,
extends the capabilities of the iSDM 86, 286 System Debug
Monitors by supplying "static"” debugging information about the
system after a crash or at any time you need to freeze and
examine the system. As with the Dynamic Debugger, you can
include the SDB in your system during development, then remove it
to reduce the size of your finished application system.

Terminal Handler. The Terminal Handler, another optional piece
of software, allows you to use a terminal without using the 1/0
System or Human interface. It is possible to configure the
terminal so that it is only an output device.

The Crash Analyzer. The Crash Analyzer, an optional component,
produces a post-mortem dump of memory. It allows a user to dump
memory to a file, and later format and print the file, showing
each iRMX 86 object. The program to dump memory to a file
becomes part of the application system; formatting and printing
is done with your development system.

Introduction 4-39

FEATURES OF THE iRMX" 86 OPERATING SYSTEM

e The Universal Development Interface (UDI). The Universal
Development Interface is a software interface that allows
language translators and other software development tools to
access the facilities of the iRMX 86 Operating System. The UDI
is the outermost layer of any application system but may be
excluded if not needed. However, if it is included it requires
the Human Interface and all other system layers.

Figure 4-5 illustrates the advantage of a configurable Operating

System. An iRMX 86 Operating System —— consisting of the Nucleus, Basic
I/0 System, and Application Loader —— 1is being combined with application
software. By excluding unnecessary subsystems of the Operating System,
you reduce the amount of memory needed by your system.

Two advantages to using Intel's interactive utility for configuration
are:

° Configuration of application systems, even complex systems, is
relatively easy.

e Choices you make during the configuration process are saved in a
file, and you can make changes to this file and re—use it. This
means that having once configured your application system, it is
easy to make changes to the configuratiom.

FILE MAINTENANCE PROGRAMS

The iRMX 86 Operating System is delivered with programs which allow you
to manipulate iRMX 86 files.

As you develop an application, you need to work with files. You can
write programs to perform these operations. But the Operating System
already has programs to perform operations that are usually necessary in
developing an application system. (These programs operate as commands to
the system, as explained in the earlier section "Custom Interactive
Commands.")

Here is a sample of some of the programs supplied with the Operating
System:

° COPY, which copies or creates files.

° FORMAT, which formats an iRMX 86 secondary storage device such as
a disk or diskette.

. DIR, which displays a directory of the files on an iRMX 86 device.

° DOWNCOPY and UPCOPY, which are used to move files between
Intellec development system devices and iRMX 86 devices.

Introduction 4-40

FEATURES OF THE iRMX™ 86 OPERATING SYSTEM

° RENAME, which allows you to rename files.
° CREATEDIR, which allows you to create a new file directory.

° SUBMIT, which automatically executes commands contained in an
iRMX 86 file.

e BACKUP and RESTORE for saving all of the files on a device.

The most important advantage of these programs is that you will save

time and money in developing your application system, because you already
have the software tools necessary to manipulate files during the
development process. In addition, the file maintenance programs may be
included as part of your application system if this is appropriate.

CHAPTER PERSPECTLVE

In this chapter we discussed some features of the iRMX 86 Operating
System., We also saw some of the advantages that each feature lends your
application system. Next we'll see how some of these features work

toge ther.

xkk

Introduction 4-41

CHAPTER 5
A HYPOTHETICAL SYSTEM

In the previous chapter, you were shown some of the features of the

iRMX 86 Operating System. The features were discussed individually.
This chapter revisits some of these features using a hypothetical system
to show you how features combine to form a powerful environment for your
application software.

During the following discussion, a hypothetical application system is
used to illustrate the relationship between your application software and
the iRMX 86 Operating System. The system monitors and controls kidney
machines in a hospital. These machines remove toxins from the blood of
patients whose kidneys are not functioning correctly.

The system, which is portrayed in Figure 5-1, consists of three main
hardware components.

e Intel iSBC 86 Single Board Computer

The single board computer provides the intelligence for the
entire system. It contains the software to monitor and control
the machines in the system.

° Bedside Units

One of these units is located at the side of each patient's bed.
Connected by cable to the iSBC 86 Single Board Computer, each of
these units performs four functions:

- Measuring the level of toxins in the blood as the blood
enters the unit.

- Displaying information so medical personnel at the bedside
can monitor the dialysis process.

= Accepting commands from the bedside personnel.

- Removing toxins from the blood.

Each bedside unit performs these functions under the control of
the single board computer. That is, commands and measurements

are sent to the single board computer which then adjusts the rate
of dialysis and generates the bedside display.

Introduction 5-1

A HYPOTHETICAL SYSTEM

° Master Control Unit

The system's Master Control Unit (MCU) consists of a terminal
with a screen and a keyboard. This terminal, which operates
under control of the single board computer, allows one individual
to monitor and control the entire system.

BEDSIDE BEDSIDE BEDSIDE
~»~ UNIT ~»~ UNIT ~~ UNIT

MASTER
CONTROL
UNIT

isSBC™ 86
SINGLE BOARD

COMPUTER IS
IN HERE.

x-186

Figure 5-1. The Hardware Of The Dialysis Application System

In summary, the system consists of one Master Control Unit and a variable
number of bedside units, all operating under control of the software
within an Intel i1SBC 86 Single Board Computer. Now let's look at the
software.

The application software controls the dialysis process. In order to do
this, the software must:

° Obtain commands from the Master Control Unit.

° Obtain commands (if there are any) from each of the active
bedside units.

° Reconcile the commands from the MCU and the commands of the
active bedside units.

] Obtain a toxicity level from each of the active bedside units.

Introduction 5-2

A HYPOTHETICAL SYSTEM

e Create a display at each active bedside unit.

] Create a display at the MCU.

° Control the rate of dialysis at each of the active bedside units.
Now that we have roughly examined the nature of the system, let's

investigate how the iRMX 86 Operating System fits in. Let's start with
interrupt processing.

INTERRUPT PROCESSING

Two kinds of information flow from the bedside units to the single board
computer —— commands and toxicity levels. Before we delve into the
technique used to process this information, we must know more about the
form of the information.

The toxicity levels, measured as the blood enters the bedside unit, are
not subject to violent change. The machine slowly removes toxins from
the blood while the patient's body, even more slowly, puts toxins back
in. The result is a steadily declining toxicity level.

This means that toxicity levels must be monitored regularly, but not too
frequently. Let's suppose that each bedside unit computes the toxicity
levels once every ten seconds and sends a signal when the computation is
complete. When the signal line goes high, the levels are available until
the signal line goes low and then high again for the next computation.

The command information changes less predictably than the toxicity
levels. Persons at the patient's bedside can enter commands through the
bedside unit. Let's suppose that after encoding the information they
press a button labeled ENTER, and that this button sets a line high.
When the line goes high, the command information is available until the
ENTER button is pressed for the next command.

Now let's see how the interrupt processing of the iRMX 86 Operating
System fields the commands. (The toxicity levels can be fielded in
precisely the same manner, so, for the sake of brevity, they are not
discussed.) By attaching all the signal lines to a MULTIBUS interrupt
line, we convert the signal into an interrupt level. Each interrupt
level has an interrupt task that is executed when the level goes high.
So, when the ENTER line from any bedside unit goes high, the interrupt
task for bedside commands begins running.

You must write the interrupt tasks for your system's custom devices, so
the bedside-command task may serve as an example for you. In brief, the
task performs the following steps.

° It determines which bedside unit received the command.

° It puts the command information, along with the number of the

bedside unit that received the command, into a message.

Introduction 5-3

A HYPOTHETICAL SYSTEM

° It sends the message to a predetermined mailbox. The only task
that wailts at this mailbox is the task that reconciles bedside
commands with the commands from the Master Control Unit.

) It surrenders the processor to the iRMX 86 Operating System.

One advantage of interrupt processing now becomes clear. Instead of
wasting time polling the bedside units to see if a command has been
issued, the application system can do other things until interrupted by
one of the units. When an interrupt (an event) does occur, it is quickly
converted into a message and is placed into a mailbox for processing by a
task. The system then returns to its normal priority-based, preemptive
scheduling. This technique enables your system to deliver more
throughput.

Interrupt processing also provides the application system with
flexibility. For instance, you can add more bedside units without
modifying the system's software at all.

HUMAN INTERFACE

Interaction between medical personnel and the system can be "human

engineered.” Information can be requested and displayed in a form that
is meaningful to the operators of the system. Also, new capabilities may
be added to the system by simply adding new programs.

MULTITASKING

The entire application system is based on the multitasking capability of
the iRMX 86 Operating System. Tasks are run using the preemptive,
priority-based, scheduling that was discussed in Chapter 4. This allows

the more important tasks (such as those controlling the bedside units) to
preempt lower priority tasks (such as those of the Terminal Handler).

INTERTASK COORDINATION

The only form of intertask coordination used in our hypothetical dialysis
system is intertask communication. The system uses a number of mailboxes
to send information from one task to another. The simplicity of
mailboxes allows engineers to divide the system into tasks on the basis
of modularity, rather than on the basis of minimizing intertask
communication.

MULTIPROGRAMMING

Although multiprogramming has not yet been of use in our hypothetical
example, its potential is high.

Introduction 5-4

A HYPOTHETICAL SYSTEM

Suppose that we extend the example to include cardiac monitoring in
addition to dialysis. The two functions could advantageously be
performed in different jobs. Why? Because they need share very few
resources.

If the cardiac application has very little to do with the kidney
application, there is no need for them to share mailboxes, tasks, or any
other objects. By splitting them into two different jobs, there is less
chance that one application can affect the environment of the other.

But what happens 1f the two applications need to share only a little

information? How can the shared data be passed from one job to another
without losing the benefits of isolation? The iRMX 86 Operating Systenm
provides for this contingency in its implementation of run—time binding.

RUN-TIME BINDING

As mentioned earlier in this manual, run—time binding provides a means
for tasks of different jobs to share objects. As tasks create objects to
be shared, the tasks catalog the objects in an object directory. Then
the tasks that need the objects can look them up by using their cataloged
names.

Run—-time binding also allows you to change the configuration of the

iRMX 86 Operating System without recompiling or relinking your
application software. For instance, suppose you have been including the
iRMX 86 Debugger in systems delivered to your customers. The advantage
in doing this is that it allows some debugging on systems as they are
being used. But now, a year or so after you started delivering systems,
your product has stabilized. Virtually no new bugs are being found. If
you delete the Debugger from your system, you can reduce the amount of
memory required in any new systems you sell. The run—time binding of the
system to your application software allows you to remove the Debugger
from your system without making any changes to your application software.

MASS STORAGE FILES

As specified, the hypothetical system does not require mass storage
files. However, a very reasonable extension of the current specification
could include recording information about patients.

The iRMX 86 I1I/0 System allows you to record information in files on
flexible and hard disks. The system provides device handlers, disk
formatting and allocating, and provides a way to move information between
main memory and the disk. Your application software need not include
code to perform these functions.

If mass storage devices were added to the system, it would be possible to
do program development on the system, so that new programs could be
written and tested at the site. This is a powerful addition to a system,
although it is not appropriate for every application.

Introduction 5-5

A HYPOTHETICAL SYSTEM

DEVICE INDEPENDENCE

Even if the application system uses mass storage devices, device
independence is not necessarily required. But, if the application is
extended to allow the operator at the MCU to send recorded data to any of
several devices (say teletypewriter, line printer, magnetic tape or
disk), device independence becomes more important. The

device-independent I/0 System lets you implement recording without adding
code specific to each possible device.

CHAPTER PERSPECTIVE

In this and the previous chapters, you were introduced to some of the

features and benefits associated with the iRMX 86 Operating System. If
you want more detailed information, you will find the next chapter very

useful. It contains descriptions of the iRMX 86 technical manuals.

*kk

Introduction 5-6

CHAPTER 6
iRMX™ 86 LITERATURE

This chapter describes the iRMX 86 Operating System documentation set.
This chapter lists the four volumes and the manuals contained therein,
describes the technical content and audience level of each manual, and
correlates individual manuals with the features described in previous

chapters.

The iRMX 86 documentation set consists of four bound volumes organized
into these functional categories: introductory and operatiomnal
information, programming information (two volumes), and installation and
configuration instructions. Each volume contains two or more iRMX 86
manuals that conform to the volume's functional theme.

Because the iRMX 86 documentation set 1s packaged in bound volumes, you
can no longer order manuals individually. Instead, you must order a
complete volume of text to get a manual contained in that volume.
(Individual manuals no longer have order numbers.)

When ordering individual volumes, you can order the binder, spine card,
and literature packet together as a unit or separately. If you wish to
order a volume as a unit, use the "order"” number that appears on the
spine of the binder. This number is also provided in the following
list. If you wish to order separate pieces of the volume (e.g., the
literature packet only), use the "part” number as labeled on the piece.
If you don't know the part number, consult the Intel Literature Guide.

The following 1list shows volume titles, order numbers, and individual
manuals in each of the volumes. Manuals are listed in the order they
appear in the volumes.

1. 4{RMX™ 86 INTRODUCTION AND OPERATOR'S REFERENCE MANUAL
Order Number: 146545

e Introduction to the iRMX™ 86 Operating System
e iRMX™ 86 Operator's Manual
e 1RMX™ 86 Disk Verification Utility Reference Manual

2. 1RMX™ 86 PROGRAMMER'S REFERENCE MANUAL, PART I
Order Number: 146546

° iRMX™ 86 Nucleus Reference Manual

e iRMX™ 86 Basic 1/0 System Reference Manual
e iRMX™ 86 Extended I/0 System Reference Manual

Introduction 6-1

iRMX™ 86 LITERATURE

3. iRMX™ 86 PROGRAMMER'S REFERENCE MANUAL, PART II
Order Number: 146547

iRMX™ 86 Application Loader Reference Manual

iRMX™ 86 Human Interface Reference Manual

iRMX™ 86 Universal Development Interface Reference Manual

Guide to Writing Device Drivers for the iRMX™ 86 and
iRMX™ 88 1/0 Systems

iRMX™ 86 Programming Techniques

iRMX™ 86 Terminal Handler Reference Manual

iRMX™ 86 Debugger Reference Manual

iRMX™ 86 Crash Analyzer Reference Manual

iRMX™ 86 System Debugger Reference Manual

iRMX™ 86 Bootstrap Loader Reference Manual

4, {RMX™ 86 INSTALLATION AND CONFIGURATION GUIDE
Order Number: 146548

) iRMX™ 86 Installation Guide

° iRMX™ 86 Configuration Guide

e Master Index for Release 6 of the iRMX™ 86 Operating
System

Each of these volumes (and the manuals contained in each) serves a
well-defined set of readers. For each volume, this chapter describes the
general content of the volume and the content, purpose and intended
readership of each manual in that volume. (Table 6-1 correlates features
with manuals.) Also, the chapter provides some time—-saving tips to bear
in mind as you read the documentation.

The following descriptions deal with engineers in two classes -— system
programmers, and application programmers. System programmers are
responsible for configuring the system, extending the Operating System,
writing interrupt handlers, and performing other functions that affect
the entire application system. Application programmers, on the other
hand, are responsible for writing application software. This distinction
is drawn because the actions of the system programmer have a more global
effect.

Specifically, some system calls can, if used improperly, cause problems
for all the tasks in your system; other system calls can affect only the
task invoking the call. As a matter of policy, the more powerful system
calls should be used only by system programmers and, even then, only
within Operating System extensions. To emphasize this distinction, the
more powerful system calls are identified, in whatever manual they are
described, by a caution regarding their effect.

Introduction 6-2

iRMX™ 86 LITERATURE

READING TIPS

The following pointers can save you a substantial amount of time:

e No one individual need become intimately familiar with all of the
documents associated with the iRMX 86 Operating System. Read
only the documents that relate to your responsibilities.

e Before reading one of the documents, read its preface and scan

its table of contents to see if the manual contains the kind of
information you seek.

° Read the Introductory Manual (this manual) before reading any of
the others.

By following these tips, you can quickly focus your attention on the
information that is of most value to you.

iRMX™ 86 INTRODUCTION AND OPERATOR'S REFERENCE MANUAL

This volume contains introductory and operations-specific information
about the iRMX 86 Operating System. The information in this volume 1s
designed for first-time users of the system.

INTRODUCTION TO THE iRMX™ 86 OPERATING SYSTEM
This manual, the one you are presently reading, is aimed at a wider

variety of readers than any of the other iRMX 86 manuals. Being an
introduction, it can be understood by anyone who has some experience

programming or managing programming projects. It is designed to
introduce managers and engineers to the iRMX 86 Operating System.

iRMX™ 86 OPERATOR'S MANUAL

This manual describes the Human Interface commands. For example, the
Human Interface provides commands:

) To copy, delete, and otherwise manage files.

° To display directories.

. To format and verify mass storage volumes.
The manual also describes:

o File pathnames and other file information necessary to use
commands.

] Standard logical names.

Introduction 6-3

iRMX™ 86 LITERATURE

° The Multi-Access Human Interface.
e The iRMX 86 Files Utility.

If you intend to include the iRMX 86 Human Interface in your system, you
will be interested in this manual.

iRMX™ 86 DISK VERIFICATION UTILITY REFERENCE MANUAL

This manual documents the Disk Verification Utility, a software tool that
runs as a Human Interface command, verifying and modifying the data

structures of iRMX 86 disk structures (files, directories, and physical
volumes). The manual describes how to invoke the utility and contains

detailed descriptions of all utility commands. Because users of the Disk
Verification Utility must be familiar with the structure of iRMX 86
volumes in order to use the utility intelligently, the manual describes
in detail the structure of iRMX 86 file and directory structures.

You will use this manual to maintain disk file volumes, and perhaps to
recover files that are "lost" or corrupted.

iRMX"™ 86 PROGRAMMER'S REFERENCE MANUAL, PART I

This volume contains detailed information about the iRMX 86 Nucleus and
Basic and Extended 1/0 systems. The information in this volume is
intended for system and application programmers.

iRMX™ 86 NUCLEUS REFERENCE MANUAL

This reference manual is written for engineers planning to use the
iRMX 86 Operating System. It is the information warehouse for the
Nucleus. It contains concise but detailed discussions of these topics:

e The nature of objects in general and of tasks, jobs, semaphores,
mailboxes, and segments in particular.

° Error processing.

° Interrupt processing.

. The creation and deletion of extensions to the Operating System.
° Reglon exchanges.

e Enabling and disabling the deletion of objects.

) Adding new types of objects to the Operating System.

Introduction 6-4

iRMX™ 86 LITERATURE

The heart of the iRMX 86 NUCLEUS REFERENCE MANUAL is a chapter describing

all the information necessary to use each system call relating to the
Nucleus, including:

° the calling sequence,
° a description of parameters,

° an explanation of exception codes that may be returned by each
call, and

° a sample program showing its usage.

iRMX™ 86 BASIC I/0 SYSTEM REFERENCE MANUAL

This manual describes the iRMX 86 Basic I/0 System. The manual contains
descriptions of:

. File directories, and the types of files supported (named,
stream, and physical).

° User objects, and access rights associated with user objects.

° 1/0 operations a programmer may use with the iRMX 86 Operating
System.

e Attaching and detaching devices.,

° System calls a programmer may use in accessing the facilities of
the Basic I/0 System.

e Terminal Support Code.

iRMX™ 86 EXTENDED I1/0 SYSTEM REFERENCE MANUAL

This manual describes the iRMX 86 Extended I/0 System, the easier-to-use

I1/0 system. It includes descriptions of the types of 1RMX 86 files, and
a general description of the Extended I1/0 System. The most useful part
of the manual is a chapter describing all the information necessary to

use each Extended I/0O System call.

The Extended I/0 System unburdens programmers from details of I/0

operations. In particular, Extended 1/0 data transfers are synchronous,
meaning that the operating system performs multiple-buffering operations,

automatically synchronizing 1/0 operations with processing.

Introduction 6-5

1RMX™ 36 LITERATURE

iRMX™ 86 PROGRAMMER'S REFERENCE MANUAL, PART II

This volume contains detailed information about the iRMX 86 programming
utilities and advanced programming techniques for writing application and

system programs. The information in this volume is intended for system
and application programmers.

iRMX™ 86 APPLICATION LOADER REFERENCE MANUAL

This manual describes the Application Loader. The Application Loader is
used for two purposes:

e To load and run programs that reside on secondary storage. These
programs are invoked by Human Interface commands.

° To load overlays by invoking system calls.

The manual describes the types of code that can be loaded by the
Application Loader (absolute, position—independent, and load-time
locatable). The manual also provides cdetailed descriptions of the
Application Loader system calls.

If your application uses the Application Loader (chances are that it
will), then you will want to use this manual.

iRMX™ 86 HUMAN INTERFACE REFERENCE MANUAL

The iRMX 86 Human Interface is an opticnal layer of the iRMX 86 Operating
System. The Human Interface allows operators to load and run programs

from a console terminal, and provides facilities for custom commands. In
addition, the Human Interface has a number of commands (COPY, FORMAT,
RENAME, etc.) that are documented in the iRMX 86 OPERATOR'S MANUAL.

If you want to use the powerful facilities provided by the Human
Interface, the manual provides information you need, such as:

° Descriptions of Human Interface system calls. These system calls

are used to parse custom commands, to control programs run by the
Human Interface, to send and receive messages, and generally to
control command functions.

° An explanation of the Multi-Access Human Interface, which allows
the Operating System to communicate with many terminals
simultaneously.

) Instructions for building command programs.

Introduction 6-6

iRMX™ 86 LITERATURE

iRMX"™ 86 UNIVERSAL DEVELOPMENT INTERFACE REFERENCE MASUAL

Designed for system and application programmers, this manual outlines
general programming considerations for using the Universal Development
Interface (UDI). The UDI is a software interface that allows language
translators and other software development tools to access the facilities
of the iRMX 86 Operating System. The manual describes in detail the UDI
system calls that provide this access.

You will be interested in this manual if you need a general introduction
to the application development process and to the use of the UDI.

GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX™ 86 AND iRMX™ 88 I/0 SYSTEMS

This manual gives detailed instructions for writing a device driver that
is compatible with both the iRMX 86 L/0 System and the iRMX 88 I/0
System. System programmers can use this manual to add new devices to

application systems. Readers of this manual must be very familiar with
the I/0 System and the Nucleus.

iRMX™ 86 PROGRAMMING TECHNIQUES

This manual provides system and application programmers with techniques
that can save time and avoid mistakes during system development.

iRMX™ 86 TERMINAL HANDLER REFERENCE MANUAL

If you wish to use the iRMX 86 Operating System without using the iRMX 86
I/0 System, you might need software to communicate with a terminal. This
is the function of the Terminal Handler. The iRMX 86 Terminal Handler

provides basic character echoing and line editing functions. The manual

also describes an optional form of the software called the Output-Only
Terminal Handler.

If your application is not using the I/0 System or Human Interface to
communicate with terminals, you will be interested in the information in
this manual.

iRMX™ 86 DEBUGGER. REFERENCE MANUAL

This manual describes the Dynamic Debugger (or simply the "Debugger”), an

interactive debugging tool used with the iRMX 86 Operating System. The
Debugger 1s especially useful because it is "sensitive" to 1RMX 86

objects and it lets you debug one or more tasks while the rest of the
system continues to run. This manual includes descriptions of iRMX 386
Dynamic Debugger commands.

Introduction 6-7

1RMX™ 86 LITERATURE

iRMX™ 86 SYSTEM DEBUGGER REFERENCE MANUAL

This manual describes the System Debugger, a static debugging tool that
is useful in diagnosing system crashes and other "freeze" situations.
The System Debugger, like the Dynamic Debugger, is attuned to iRMX 86
objects. The System Debugger is an extension of the iSDM 86 or 286
System Debug Monitor. This manual includes descriptions of System
Debugger commands.

iRMX™ 86 CRASH ANALYZER REFERENCE MANUAL

This manual describes the iRMX 86 Crash Analyzer, a utility used to
produce post—mortem memory dumps, and to print a formatted display that
describes iRMX 86 objects (memory segments, tasks, jobs, etc.) along with
the state of each object at the time the system failed.

Because the Crash Analyzer is such a useful tool for development, you
will probably want to include it in the early stages of your development
cycle. The reference manual describes everything that you need to know
about hardware requirements, operating the Crash Analyzer, and
interpreting the formatted output.

iRMX™ 86 BOOTSTRAP LOADER REFERENCE MANUAL

This manual describes the Bootstrap Loader. The Bootstrap Loader is used
to start a system running by loading the Operating System from a
secondary storage device, and transferring control to the Operating
System. The Bootstrap Loader is usually in the computer ROM.

If your application uses the Bootstrap Loader, you will want to use this
manual.

iRMX"™ 86 INSTALLATION AND CONFIGURATION GUIDE

This volume describes how to get your iRMX 86 Operating System up and
running on your hardware. The information in this volume is designed for
system managers and/or engineers.

This volume also contains the Master Index for the iRMX 86 documentation
set, which is useful to any user of the system.

iRMX™ 86 INSTALLATION GUIDE

The INTELLEC Microcomputer Development System is a general purpose tool

for programming microcomputers. When you purchase the iRMX 86 Operating
System, you receive the iRMX 86 software on several flexible disks and

you receilve the iSDM 86,286 System Debug Monitor, depending on your
hardware.

Introduction 6-8

iRMX"™ 86 LITERATURE

The 1RMX 86 INSTALLATION GUIDE tells you how to use the iRMX 86 software
and the iSDM package in conjunction with your Intellec Microcomputer
Development System and any Intel single board computer.

The manual describes everything necessary to get the installation systems
running. This includes instructions for installing wire jumpers on an
Intel Single Board Computers, loading and running an installation system,
and using the Human Interface commands included in the installation
systems. If you are familiar with the Intellec Microcomputer Development
System, this manual will prove very useful.

iRMX™ 86 CONFIGURATION GUIDE

As you build an application system upon the iRMX 86 Operating System, you

must decide which optional iRMX 86 features you want in your system.
Once you have made these decisions and have written your application

software, you can configure your system. Configuration is the process of
building a complete system from the iRMX 86 Nucleus, your application
software, and iRMX 86 options that you have selected.

The iRMX 86 CONFIGURATION GUIDE describes the iRMX 86 Interactive

Configuration Utility (ICU). The ICU leads a system programmer through
the process of configuration by displaying a logical series of "menus"

that describe each choice he or she must make. Each menu then allows a
default answer, or allows the programmer to change the default. The ICU,

using these answers, creates a file that automatically links and locates
the application system software.

MASTER INDEX FOR RELEASE 6 OF THE iRMX™ 86 OPERATING SYSTEM

The Master Index is your road map to the four-volume iRMX 86
documentation set. It is intended for all levels of users.

Introduction 6-9

iRMX™ 86 LITERATURE

Table 6-1.

Correlation of Manuals and Features

Title

Feature

iRMX 86 Nucleus
Reference Manual

IRMX 86 Basic /0 System
Reference Manual and

IRMX 86 Extended |/0 System
Reference Manual

iRMX 86 Human [nterface
Reference Manual

IRMX 86 Operator's Manual

IRMX 86 Bootstrap Loader
Reference Manual

IRMX 86 Application Loader
Reference Manual

IRMX 86 Installation Guide
IRMX 86 Configuration Gulide

IRMX 86 Debugger Reference
Manual

IRMX 86 System Debugger
Reference Manual

IRMX 86 Crash Analyzer
Reference Manual

Guide to Writing Device Drivers for
the IRMX 86 and iRMX 88 1/0 Systems

IRMX 86 Universal Development
Interface Reference Manual

Object-Oriented Architecture
Mul+tiprogramming
Mul+titasking

Interrupt Processing
Preenptive, Priority~based Scheduling
Error Handling

Dynamic Memory Allocation
Intertask Coordination
Run=Time Binding
Exterdibil ity

Processor Selectivity

Cholce of 1/0 Systems

Hierarchical Naming of Mass Storage Files
File Access Control

Control of File Fragmentation
Device~lIndependent 1/0

Terminal Support Code

Custom Interactive Commands
Mul+ti=Access Human Interface

File Maintenance Commands
Multi~Access Human Interface

Bootstrap Loading

Appl ication Loading

Installation Systems
Interactive Confliguration

Object=Oriented Dynamic Debugger
Debugging Support

Systen Debugging (static)
Debugging Support

Crash Analysis
Debugging Support

Selectlion of Device Drivers
Device~|ndependent 1/0

Software Interface

*kk

Introduction 6-10

INDEX

Primary references are underscored.

80130 Operating System Component 4-38

access control 4-19

access time 4-20

application 1-2

Application Loader and application loading 4-24, 4-39, 6-6
application software 1-2
application system 1-2
architectural features 4~2
ASM86 4-31

assemblers 4-31

asynchronous events 4-4
automatic I/0 buffering 4-14

BACKUP command 4~41

Basic I/0 System 4-13, 4-39, 6-5

binding 4-27

Bootstrap Loader and bootstrap loading 4-31, 6-8
buffering 4-14

cataloging objects 4-28

choice of I/0 systems 4-13

Command Line Interpreter (CLI) 4-26
commands 4-23

compilers 4-31

concurrent events 4-4

condition codes 4-29

configuration and the configuration utility 4-36, 6-9
controller (device) 4-21

COPY command 4-40

costs 3-1

Crash Analyzer 4-39, 6-8

CREATEDIR command 4-41

custom commands 4-23

custom interactive commands 4-23
customizing features 4-23

data transfer rate 4-19
debugging 2-3, 4-11
Dynamic Debugger 4-11, 4-32, 4-39, 6-7
System Debugger 4-11, 4-33, 4-39, 6-8
development costs 3-1
development software and utilities 2-3, 4-31, 4-36

Introduction Index-1

INDEX (continued)

device controller 4-20

device drivers 4-20, 4-39, 6-7
device~independent I/0 4-15, 5-6
device sensitivity 2-2

DIR command 4-40

directories 4-16

Disk Verification Utility 6-4

documentation 6-1
ordering of 6-1

DOWNCOPY command 4-40
dynamic debugging 2-3

dynamic memory allocation 4-7, 4-30

error processing 2-1, 4-29

escape sequences (terminal) 4-22
event detection 2-1

exception codes 4-29

exception handlers 4-29

Extended 1/0 System 4-14, 4-39, 6-5
extensions to Operating System 4-11
external references 4-27

file access control 4-19

file maintenance programs 4-40
file types 6-5

files 4-16, 4-36, 4-40

FORMAT command 4-40

FORTRAN 4-3, 4-31
fragmentation (of files) 4-19

granules and granularity 2-2, 4-19

hierarchical file structure 4-16

host computer system 4-35

human engineering 2-3, 4-23, 5-4

Human Interface 4-23, 4-39, 5-4, 6-6
multi-access 4-26

hypothetical system 5-1

I/0 buffering 4-14

iAPX 36,88,186,188,286~-based computers iii, 1-1
input/output features 4-12

installation systems 4-35, 6-6

Interactive Configuration Utility (ICU) 4-36
interpreters 4-31

interrupts and interrupt processing 4-4, 5-3
intertask coordination 4-7, 5-4

iOSP 86 Support Package 4-38

iRMX compatibility mode 4-12

iSBC 86,88,186,188,286 boards 4-36

iSBC 957B Monitor 4-33

iSDM 86,286 System Debug Monitors 4-33

job 4-7

Introduction Index-2

INDEX (continued)

languages and language translators 4-31, 4-36
linking 4-25
Load-Time Location 4-25
loading (program and overlay) 4-25
application 4-25, 4-39
bootstrap 4-31

mailbox 4-8
maintenance of software 3-2
manuals 6-1

ordering of 6-1
mass storage device 4-20
mass storage file allocation 2-2, 5-5
master index 6-9
memory allocation 2-2, 4-6, 4-19
memory dump 4-34, 6-8
messages between tasks 4-8
multi-access Human Interface 4-26
multiple terminal support 4-26
multiple users 2-2
multiple-buffered 1/0 4-14
multiprogramming 4-6, 5-4
multitasking 4-4, 5-4
mutual exclusion 4-9

Nucleus 4-37, 6-4

object directory 4-28

object-oriented architecture 4-3

objects 4-3, 4-32

on—-target program development 4-35
operating information 6-3

Original Equipment Manufacturer (OEM) 1-1
overlays 4-25

owner (of file) 4-19

parsing of command lines 4-24

PASCAL 4-31
PL/M-86 4-31
polling 4-5

portability 4-31

preemptive priority—-based scheduling 4-5
priority 4-6

processor selectivity 4-12

program environment 4-6, 4-26

protection (files) 4~19

random I/0 operations 4-14
reading ahead (file operation) 4-15

real-time events, software 2-1, 4-4
real address mode 4-12

region 4-10

RENAME command 4-41
RESTORE command 4-41

root (of overlaid program) 4-25

Introduction Index-3

INDEX (continued)

RUBOUT key 4-21
run~time binding 4-27, 5-5

scheduling 2-1, 4-6
scrolling 4-22
security (files) 4-19
segment 4-9
selection of device drivers 4-20
semaphore 4-3, 4-10
sequential I/0 operations 4-15
shared data regions 4-10
simultaneous multiple terminal support #-25
software interface 4-31
see also: Universal Development Interface
start—up systems, see: installation systems
static debugging 2-4
see also: System Debugger
SUBMIT command 4-41
synchronization 4-10, 6-5
system calls 6-5, 6-6, 6-7
System Debugger 4-33, 4-39, 6-8

target computer system 4-36

tasks and task scheduling 4-4

Terminal Handler 4-21, 4-39

Terminal Support Code 4-21

terminals (keyboard) 4-21

time-slicing, time-sharing 4-6

tools (for developing applications) 4-32
translation (Terminal Support Code) 4-22
type—ahead 4-22

typed architecture 4-3

units (semaphore) 4-10

Universal Development Interface (UDI) 4-31, 4-40, 6-7
UPCOPY command 4-40

user 1-2

Volume End User (VEU) 1-1

writing behind (file operation) 4-14

%%k

Introduction Index—4

iRMX™ 86
OPERATOR’S MANUAL

PREFACE

This manual is the primary reference for operators who access the iRMX 86
Operating System through a terminal using Human Interface commands. In
addition to Human Interface commands, this manual also discusses the
line-editing and control characters supported by the iRMX 86 Operating
System and two utilities available to iRMX 86 operators: the Patching
Utility and the Files Utility.

The manual is divided into the following chapters:

Chapter 1 discusses the Line—editing and control characters available
to terminals that access the iRMX 86 Operating System. This chapter
applies to all application systems, regardless of whether they
include the Human Interface.

Chapters 2 through 4 discuss the Human Interface. Chapter 2
introduces the operator to the Human Interface and describes the
general process of using it. Chapter 3 provides a detailed
description of Human Interface commands in alphabetical order.
Chapter 4 contains examples of Human Interface operations.

Chapter 5 discusses the Patching Utility, a utility that runs on both
iRMX 86-based systems and Series III Microcomputer Development
Systems.

Chapter 6 discusses the Files Utility, an iRMX 86 application system
that you can use to format and maintain iRMX 86 secondary storage
volumes.

Appendix A contains a list of iRMX 86 condition codes with short
descriptions of the codes.

NOTATIONAL CONVENTIONS

This manual uses the following notational conventions to illustrate

syntax:

UPPERCASE In examples of command syntax, uppercase information
must be entered exactly as shown. You can, however,
enter this information in uppercase or lowercase
characters.

lowercase In examples of command syntax, lowercase fields

indicate information to be supplied by the user. You
must enter the appropriate value or symbol for
lowercase fields.

Operator iii

PREFACE (continued)

underscore In examples of dialog at the terminal, user input is
underscored to distinguish it from system output.

<> Angle brackets surround variable fields in messages
displayed by the Human Interface commands and by the
utilities. This information can vary from message to
message.

All numbers, unless otherwise noted, are assumed to be decimal.
Hexadecimal numbers include the "h" radix character (for example OFFh).

Operator iv

CONTENTS

PAGE

CHAPTER 1

LINE EDITING AND CONTROL CHARACTERS

Type~Ahead.ssessseenessoccscccosrssssccsosssossassssssscnssssocnoscssssce 1-1
Controlling Input to a Terminalecccecescscccscscsososorscocccsccccns 1-2
Controlling Output to a Terminaleeceeceosecosoccoscrcccoscscscccessss 1-3
ESCAPe SEQUENCESessnssssessssossanrsasssossosssssossscossososssosssoscsse 1-6

CHAPTER 2
USING THE HUMAN INTERFACE
RequirementSeeesecenesescescecsossessrssssssossssssssssssccccsoscscnsasss
IRMX® 86 LayeTYSeeossscscscascsssssssssossssscscsoncsensssssssscsss
Hardware RequirementSeceecccescosescoescacconososessscsssescsscscnnsse
Configurable Features of the Human Interface.ccccecscecceccccccccss
Loading the Operating SysSteM.ececeeccscssscssccssssoscsscsscssscscsss
Loading the Operating System on an OEM SystemMeececceccssssccccccss
Loading the Operating System on Intel Integrated SystemS.sssececece
Loading the Operating System Without a Resident Monitoreseeeooooss
Loading From a PROM-Based Operating SysteMescesscesecscccosceccccscs
Accessing the Human Interfaceecseccceessccccsssesccecesccsscscsccsncns
File StruCtUTECeeceosesossccssccocsscsssssscsssssssscsossssssscsssscas
Types Of FileSeeesoteeesecesosecsssscccsoccesscscscssscosssssccans
Named File Hierarchyeeocsooeoeoesseeesossocccosscsscncsssosnscsssancs

|
HFROYgOYATLUuS W NDN PR

|
~

fa=

PAthNAmMESe eoseeeesessescscessescscsscssssosnsossscssossesssescsssscssse
Logical NamMeSe.eeeeeescesooossoesssscascsssosssssassassscocncsonsnssnse
Logical Names for DeviceSeecececcssscssssssccossscsccccscscsnns
Logical Names fOr FileSeeeeoeoccssccscscossoscsosossosnsosncsonssnccsne
Where Logical Names are Storedecesscscccecssssssssccccocccscsose 2-16
Logical Names Created by the Operating SystemMeeeccececsccccccss 2-17
Removing Volumes from DeviceSesssesecscccsssscssccscessscrncens 2-19
Wild CardSeececsseceescssncosessssscsossssscssssssssscscssscsossssosscs 2-19

NNNNNNNN!\IJNNI\JNNNNN
-
v

DEVIiCESeeosssessescsssosesnsassssssnsssosssesssssssossscsssasssessscsocsss 2-22
Automatic Device Characteristics RecognitionNiesceescescescrsscccess 2-22
How Automatic Device Characteristics Recognition WorkSeeeeoeceocoss 2-22
Commands That Cannot Recognize Device CharacteristicSececesecceess 2=-24
Operational Considerations for 1SBC® 215/i1SBX™ 218 DevicesS.e..... 2-25
Command SYNEAXeeeosoessosossesoaosscsscscsssscssssasscssrssosssssascnse 2-25
Command NameEeecoeeesesesacossossssssrsesssscsoscssssosrssscsesssoocsss 2=27
PreposSitionSeescecscescsocccstsosssscoossssoscssescscscsonnsssesscssscs 2-28
One—for-0ne MatChesesoeescssncssscesosccsccosesssssscssascsssosacsns 2-30
CONCALENALEeersescesessoesnsssssssssssssossssescsssssssstssesssnsssss 2-30
Error ConditionSeesssseesscsccssoscsscssscsssssesssssssossssssocsns 2-30
Other Parameter Sececsscessessescsssscsssssossscscssssssssossssccacess 2-31
System Managerleesceseceosoesssssssccssssssssscsscsososcssssccsnsonnse 2-32

Operator v

CONTENTS (continued)

CHAPTER 3

HUMAN

Error MeSSageSececosscssssssscssosasscsostosccssssosssassscscscsscssssss
Command Syntax SchematicCSeeccecesescescosecososcoscsncssssscscscsossacs
ATTACHDEVICE . eeeeecsocssasccsccscoossssssosssnssonsosssssosssssssssons
ATTACHFILE ¢ cecesoecossoscsccesssosscncssssosovnoessssnsossosssssososss

BACKUP esoooeosocosseeeonsocosvoesssessssssesesssassssssssoncscsssssnos
100 (S S N P S
CREATEDIR e eoecesscocccocsooscoocssassasossossssssveccossonsssccsons
DATE e cooosesoosossosossoscsooscsossscsosasssstsssssososscsnssnssscesccasnse
DEBUGeeeevooocssooscsosscasosssosessossoscsssvsosscsssssssssscosscssasss

DELETEG..Qooooo.ocoocuooooo.otoQtoo-oooonooo.nooo.o..-n.o.o.0.'000.

DETACHDEVICE . ccoevesossoossssosssscsscsssscssnssssossssossssscccsassocs
DETACHFILE¢s ceccvoosocsssoscccsvssoscscssscsctsesosssscscosssossssscscsssossss
DIR¢eceocococscooscsaacsoccasatsocasonenssssoscssosossosssssssosssssnse
DISKVERIFY . eeoeoosooosconsoscoscsnsnossceesnessscsnsnssscscnsocssccsssocs
DOWNCOPY e evooscosoevsvssosssssosecssssssssssceossosscssscsoscssscscssssssss
FORMAT e eoceevaceocsccccscsansnssossoosscsscsscososcesosucssveovseocssescncssosnse
INITSTATUS teesoescsesossosososconsscesstssscosscssnoscssssssnssncsssas
JOBDELETE . es ssecceccoccsssccsosnssesscssascscscscscssscsnsscscsccccsosss
LOCDATA ¢ csceesscossososcsvsecsscsssoscssscscescsscsssscsssscssossasonsosssasecs
LOCKeveeoosooseoososccscsossosscsossocstsssosscsosnsocsnsoconsonsscenssace
LOGICALNAMES e e o oo vecssosoessosecscssosvsecsssssosssssessescsscssssosscsssos
MEMORY eooeoesoeoososscosccocaoonsovsscssossssesososccssnasssosssosncsssscsss
N
PERMIT o eoececoceososccsescenscsoscccscocscscscsossssossossosscsescscscsacscs
RENAME ¢ e s o coccaccscssososcsssosscsassosscssssososcssssosssssscscscssssce
RESTORE cecsccecsscecsocovsosscscscscscnsrsssossccssoscssvnsssossssccocnse
SUBMIT e eeeeeonsosococooonsossecesoceoossscsoccssssscscososssccansos

SUPER-.......ooocootoon..o..otooo.uo.oco.ooo.oc.oo.olo..u'vltoooono

INTERFACE COMMANDS

PAGE

| U A S J T O I A U

|
WoOWO NN LU &P WLWWWINNDNDE Y W

= O
Sm HOWHE ONUFEF ONOOW OO 0OULTWE OO &~OYW

wwwwwwuwwwwww&f WWWLWWLWWWLWWWwLwWwLww ww

TIMEeeoeecoooosotoooooetonoosotocsossscoscosooscoosoocsesssscossascsss 3-105
UPCOPYeeeoeseovoacosscsososcsoscsnssncoesssocossscoscscsssasosssnsnsoscsss 3-107
VERSION e eoeeceosecosvsencessoscsscsvecsososcoossssosscesstsssccnsocss 3-110
WHOAMI e e oeovocevoccsoscocsvesssossocssosososscscsssscssnsssscssssssscass 3-112

CHAPTER 4

HUMAN

Command Examples FOrmatecececscscecsocsssecossssccsscsssoscscscsssacss
How to Begin a Console SeSsSiONecescescsccscscsccoscsccssscccnsssssasne
How to Create a Simple Data Fileeeeecesesessscssocssosssosossosscsnss
How tO COpY FileSeeecesscecesoosascsccnsanscsosscssosescnsscsssssssssss
to Copy tO New FileSeceeevoesccscccooscrscscsocsosrssscscsssnssnse
How to Display the Contents Of FileSeecececcesscsscscveccossssncne
How to Replace Existing F1lesS ceeecececccosscnsccsccsccccsscsscsas
to Concatenate FilleSeesesssceccsscssecssssossscssosocscsscscsnnse

How

How

INTERFACE EXAMPLES

Operator vi

I

-l-\-l-\-l—\-li\-l-\-l-\-l-\b
ot WM -

CONTENTS (continued)

PAGE

CHAPTER 4 (continued)
How tO Delete FileScesessescccscscssssososccscssossssssssesscsosssnscs 4
How to Use DirectorieSceccesccscsscssssssososssssosssscssssssssssssss 4
How to Create a New DirecCtOrYeeescoosssesscsscsssscsoscsccssssccns 4—
How to Refer to a Directoryeseeescecosecscscsccescscsssscsssscccs 4
How to Add New Entries to a Directoryececcceescecccsosccccnsccscsne 4
How to Create a Directory Within a Directoryseeesececcecscsscseess 4-12
How to List DirectorieSeeccececcscscosesccscsscscossosscscososcsssscscss 4-13
How to Move Files Between DirectorieSccscccecccsscserscosescccsccss 4-14
How to Delete 4 DirectOryeeeeeosecsccescsssssssscssoscssscscsssone 4-14
How to Change Your Default DirecCtoryeececscoessscssccccsscccscncens 4-15
How to Rename Files and Directori@Seccesscscssceccccscoscscccesccosss 4-16
How to Rename FileSeeeeseecssccscscsconsosscosscssscrssossoscecsnsscse 4-16
How to Rename Directorie€Sceeesccssscscsccssscscscssccsssoscssssse 4-18
How to Move Files Across Volume BoundarieSeecececsscscecscoccscssose 4-19
How to Format a New VOluMEeeceesecoscscsoscssscscsssosssssssscssoscse 4-20
Diskette Switching ProceduresS.ccecesccccosscsocsoscscssascsccssnscssoes 422

CHAPTER 5

PATCHING UTILITY

Types Of PatcheSecenescosccscocesoscoscsaosssscssosssassossosscsosnsasscns

Kinds of Codes That Can Be Patchedeeseccecscesccccccccanscscssscssocns

Versions of the Patching Utilityeceecocoseecsccocssosscsscsoscsncsnsa

Invoking the Patching Utilityecesoeecosccosserscccscssrscsscscsscnnns

ETTor MeSSageSeesscnsoesccossosssscvsscssssosssossscsssssssnssossasnsssscs

Patching ProceduresSscececcecsccsecscccsscscsosssssvscsscscsossnosssnsnss
Jump Instruction PatChecscosssescscsscsccsscccrsccsecssccssccssons
In~Place PatChecessecscscssssosscscossossssosscscscssssscsscssosssscsnss
Listing Translator Header RecOrdS..csscececccccscescvscoscsossscns

UMUWTUWWW
NNOoOULMPEEDNNNDNNR

CHAPTER 6
FILES UTILITY SYSTEM
Hardware Required.sseecsccoecesascosvecccsosscccsscscsscsscssnsscssscsoccns
Starting the Files UtilitYeeceecseoececsoscsssssscssscsccssccsscsscsns
Using the Files Utilityeececooooscccscsssscsoscsscssscoscscsnsnscssnans
Changing DisketteSesescscescsssssssscsosrssssesscscscsscssossscscsns
CommMAndSeeessscsesssssccsssssscsvnssssoscscsscsscsssessscsssssncnsscss
ATTACHDEV (AD) e cesessosscessossscsssscsssoossesssasssanssasscscsses

BREAK (BR).I..0.0"O.«Ol.......‘...'...'...l....IO..'O'.O...0.0

CREATEDIR (CD).000.‘.0‘.0.0..0..0..!.'.....'.'0..00.....00....0
DELETE (DE)..oc0.000o«oo.oooooh.oco.to.ooo..o-o.'ooo.oooolooooo
DETACH (DT)O'O!ouooo.ooooooolooooooolooool.ooo.oo.oo.-ocoooo‘.o

DIR (DI)COOloooooooooo0000.0.0000000.0oo.o-oon.uo.oooo.ooooo.oo

@@0@@?@0000
nmnouuesphLWwww e

Operator vii

- CONTENTS (continued)

CHAPTER 6 (continued)
DOWNCOPY (DC) e s veeeoecnnnneonnsessscesnanssssscasescsssssnssnas 6-6
FORMAT (FO)eeeeeoeonoonsnnsoeonossassoesassocnsscsssssnsascaces 6=6
HELP (HE) ee eeococccecsacsscassassosascsnsscccecssssossscscssssssssss 6-9
6-9
6-9

UPCOPY (UC)'C.l.l......'..0.‘..Ol.....Q.O..‘.G.....O.‘.l.l.....
Error MesSageSoooo.oc'oo.o-on'ooccnoooooooooootohooonoo.oo.ooo-oo

APPENDIX A
CONDITION CODES SuMMARYC0.0..0.Q........O.l.....l.‘l.O....O..‘..OQ. A—l

TABLES
1-1. Overview of Default Input Control CharactersSececcccscscececss 1-5
2-1. Input Pathname And Output Pathname Combinations.ecsecesecess 2-29
3-1. Human Interface Command Dictionaryeesecceoscccsccscscscccccens 3-5
3-2. Suggested Physical Device NameSseeesesecsosescscsccscccens 3-9
3-3. Controllers Connected to the iSBC® 186/03

SAST/SCSI Interfac@eseescccsescssososscssssssssssscsssassss 3-11
3-4, Directory Listing HeadingSeesoesocssesocccsssccssssssscsce 3-45
3-5. Optimal Interleave Factor for Hard Disk Controllerseeesecs. 3-63
3-6. Flexible Disk Controllers (using 8" DiskS)eececssccccsccss 3-64
A-1. iRMX™ 86 Codition CodeSeececesosescssesssscscsscscccsssscssscs A-1

FIGURES

Example Output of a System 86/300 SCT (Terse Mode)eeeeoecoss 2-6

Example of a Named-File Tre€seeececccecscossecceccsocsssccss 2-10
File Structure on an Intel Supplied Start—up Systemeceeeecss 2-12
Sample DEBUG DisSplayeececseccecsceosssocsosssaseosssossssscssonns 3-32
FAST Directory Listing Example (Default Listing Format).... 3-43
SHORT Directory Listing Example.ceccecececosassascsasossssons 3-43
LONG Directory Listing Example.ecescescccecsccessccscscccccnsns 3-44
EXTENDED Directory Listing Examplececceccecccsssccccssscoons 3-44
INITSTATUS Di8Playeececececececsccososescscacsssnssccccaanss 3-67

i

wuwwulawNNN
adaUbLWOWNEHWDNE
o

kkik

Operator viii

CHAPTER 1
LINE EDITING AND CONTROL CHARACTERS

Every terminal connected to an iRMX 86 application system communicates
with the system via one of two software packages: the iRMX 86 Terminal
Handler or the Terminal Support Code feature of the Basic I1/0 System.

The Terminal Handler is an independent layer of the Operating System that
provides terminal I/0 facilities for application systems that do not
include the Basic I/0 System. Because this manual assumes you are using
an application system that includes the Basic I/0 System, it does not
discuss how to communicate with an application system via the Terminal
Handler. Refer to the iRMX 86 TERMINAL HANDLER REFERENCE MANUAL for
information about the line-editing and control characters available with
the Terminal Handler.

The Terminal Support Code is a software package that interfaces to
terminal device drivers to provide terminal communication for systems
that include the Basic I/0 System. This manual assumes that your
terminal communicates with the iRMX 86 application system via the
Terminal Support Code.

The Terminal Support Code provides a set of line-editing and control
characters that give you the basic editing and control functions you need
when entering text at a terminal. You can use these characters in
addition to the Human Interface commands described later in this manual.
This chapter discusses, along with the terminal support code, the line
editing features and control characters which are available. However,
the Terminal Support Code contains many features other than those
discussed in this chapter. Refer to the iRMX 86 BASIC I/0 SYSTEM
REFERENCE MANUAL for a complete description of the Terminal Support Code.

TYPE—-AHEAD

When you enter characters at the terminal, you can use the type—ahead
feature to enter a number of lines at one time. The Terminal Support
Code sends the first line to the Operating System for processing and
stores additional lines in a type-ahead buffer. It sends the next line
in the buffer to the Operating System after the Operating System finishes
with the first line. If the type—ahead buffer becomes full, the Terminal
Support Code sounds the terminal bell and refuses to accept input.

Operator 1-1

LINE EDITING AND CONTROL CHARACTERS

CONTROLLING INPUT TO A TERMINAL

The Terminal Support Code provides several characters that you can enter

to control and edit terminal input. Some of these characters correspond

to single keys on your terminal (such as carriage return or rubout). For
others, called control characters, you must press the CTRL key, and while
holding it down, also press an alphabetical key. This manual designates

control characters as follows:

CTRL/character

The editing and control characters are processed by the Terminal Support
Code. With the exception of the line terminator, they are not normally
included in the input line that is sent to the Operating System.

The control characters listed in this section are the default

characters. Each can be replaced with a different character by means of
a selection procedure described in the iRMX 86 BASIC I/0 SYSTEM REFERENCE
MANUAL. The default editing and control characters for terminal input
include:

CARRIAGE RETURN Terminates the current line and positions the
or cursor at the beginning of the next line.
LINE FEED Entering either of these characters adds a

carriage return/line feed pair to the input line.

RUBOUT Deletes (or rubs out) the previous character in
the input line. In response to the RUBOUT, your
terminal display changes in one of two ways,
depending on the configuration of the Terminal
Support Code. In one configuration, each RUBOUT
removes a character from the screen and moves the
cursor back to that character position. In the
other configuration, each RUBOUT echoes the
deleted character back to the terminal. In the
second configurat-ion, also called hard-copy mode,
the Terminal Support Code surrounds the echoed
characters with the "#" character to distinguish
the echoed characters from the surrounding text.

CTRL/p A "quoting" character, which removes, from the
character that follows it, any meaning that is
special to the Terminal Support Code. It
literalizes the next character, causing it to be
sent on to the Operating System, even if it is a
control character that the Terminal Support Code
understands. All control characters (except for
output control characters) sent to the Operating
System in this manner are not processed as
control characters. Output control characters
(such as CTRL/s and CTRL/q) perform their special
functions even if preceded by a CTRL/p. The
CTRL/p does not echo at the terminal.

Operator 1-2

CTRL/r

CTRL/u

CTRL/x

CTRL/z

LINE EDITING AND CONTROL CHARACTERS

If the current input line 1is not empty, this
character reprints the line with editing already
performed. This control character enables you to
see the effects of the editing characters entered
since the most recent line terminator. If the
current line is empty, this character reprints
the previous line, up to the point of the line
terminator. Additional CTRL/r characters display
previous lines, until there are no more lines in
the type—ahead buffer. Subsequent CTRL/r
characters display the last line found.

Discards the entire contents of the type-ahead
buffer.

Discards the current input line. This character
echoes the "#" character, followed by a carriage
return/line feed, at the terminal.

If entered as the only character in a line, this
character specifies an end-of-file, terminating a
read from the terminal. If entered on a
non-empty line, it terminates the line without
appending a carriage return/line feed pair to the
line.

CONTROLLING OUTPUT TO A TERMINAL

When sending output to a terminal, the Terminal Support Code always

operates in one of four modes. You can switch the current output mode
dynamically to any of the other output modes by entering output control
characters. The output modes and their characteristics are as follows:

Normal

Stopped

Scrolling

Discarding

The Terminal Support Code accepts output from the
application system and immediately passes the output
to the terminal for display.

The Terminal Support Code accepts output from the
application system, but it queues the output rather
than immediately passing it to the terminal.

The Terminal Support Code accepts output from the
application system, and it queues the output as in the
stopped mode. However, rather than completely
preventing output from reaching the terminal, it sends
a predetermined number of lines (called the scrolling
count) to the terminal whenever the operator enters a
‘control character at the terminal.

The Terminal Support Code discards output from the

application system without displaying or queuing the
output.

Operator 1-3

LINE EDITING AND CONTROL CHARACTERS

The following control characters, when entered at the terminal, change
the output mode for the terminal. Like the input control characters,
these are defaults. They can be changed by a selection process described
in the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL.

CTRL/o Places the terminal in discarding mode if the terminal
is in a mode other than discarding mode. If the
terminal is already in discarding mode, the CTRL/o
character returns the terminal to its previous output
mode.

CTRL/q Resumes previous output mode. If you enter this
character after stopping output with the CTRL/s
character, output continues in the same manner as
before you entered the CTRL/s (that is, if your
terminal was in scrolling mode before you entered
CTRL/s, output resumes in scrolling mode). Entering
CTRL/q at any other time places your terminal in
normal mode (that is, all output is displayed at the
terminal without waiting for permission to continue).
Therefore, you can use CTRL/q to reverse the effect of
a CTRL/w and get your terminal out of scrolling mode.

CTRL/s Places the terminal in stopped mode (stops output).
You can resume output without loss of data by entering
the CTRL/q character. If the terminal is in
discarding mode (as a result of a CTRL/o character),
the CTRL/s character has no effect on output.

CTRL/t Places the terminal in scrolling mode and sets the
scroll count to one. This means that you must enter
another CTRL/t character after each displayed line in
order to continue the display.

CTRL/w Places the terminal in scrolling mode. In this mode,
the terminal displays output several lines at a time
(usually, enough lines to £ill the screen) and then
waits for user input to continue. When you enter
another CTRL/w character, the terminal displays the
next screen of information. The scrolling count is
selectable; refer to the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL for more information.

Entering the CTRL/w character while the terminal is
scrolling increments the scrolling count by the
original scrolling count value. Therefore, you can
use CIRL/w to increase the number of lines the
terminal displays before stopping. Entering an input
line resets the scroll count to its original value.

An additional control character is supported which, although it doesn't

affect the output mode of the terminal, can affect output to the
terminal. This character is:

Operator 1-4

LINE EDITING AND CONTROL CHARACTERS

CTRL/c Deletes the type—ahead buffer and causes the Operating

System to abort the currently—executing program.
you enter a Human Interface command to initiate a
program, you can enter CTRL/c to stop it.

For an overview of the control characters see Table l-1 and Table 1-2.

Table 1-1.

Overview of Default Control Characters

Characters

Results

Default Input Control Characters

carriage return or

terminates current line and puts

line feed cursor at start of next line
rubout deletes single character
CRTL/p removes any meaning special to
terminal support code
CRTL/r reprints line
CRTL/u discards type—ahead buffer
CRTL/x discards current input line
CRTL/z specifies an end of file
Default Output Control Characters
CRTL/o places terminal in discarding mode
CRTL/q resumes output mode
CRTL/s stops output
CRTL/t scrolls output one line at a time
CRTL/w scrolls output
CRTL/c aborts currently executing program

Operator 1-5

LINE EDITING AND CONTROL CHARACTERS

ESCAPE SEQUENCES

The Terminal Support Code also accepts escape characters that you can
enter to further define your terminal. (For example, you could set the
scroll count or switch your terminal into transparent mode so that
control characters have no effect.) You can enter these escape
characters from the terminal, or you can write them to the terminal from
a program. Refer to the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL for
more information about these escape characters.

kk%

Operator 1-6

CHAPTER 2
USING THE HUMAN INTERFACE

This chapter discusses how to use the Human Interface. It doesn't
provide detailed descriptions of individual commands. These descriptions
are in Chapter 3. However, it does address the following topics:

(] Requirements for including the Human Interface in your system.
. Configurable features of the Human Interface.
° The process of loading and accessing the Human Interface.
° The iRMX 86 file structure and file-naming conventions (including
wild cards).
. Devices supported by the Human Interface.
® Automatic Device Recognition.
e The general syntax of a command.
° The system manager.
REQUIREMENTS

This section explains the basic software and hardware requirements for
running the Human Interface.

iRMX™ 86 LAYERS

The Human Interface is a layer of the iRMX 86 Operating System. To
include the Human Interface in your application system, you must also
include the following additional layers:

Nucleus
Basic I/0 System
Extended 1/0 System

Application Loader

During command execution, the Human Interface invokes the services of
these other iRMX 86 layers in a way that is transparent to the operator.

Operator 2-1

USING THE HUMAN INTERFACE

Therefore, an operator needs little or no knowledge of operating system
structures to load and execute programs from the console keyboard. For
more information about iRMX 86 configuration, refer to the iRMX 86
CONFIGURATION GUIDE.

HARDWARE REQUIREMENTS

You can implement the iRMX 86 operating system on five different Intel
microprocessors. These CPUs are the iAPX 86, iAPX 88, iAPX 186, iAPX
188, and the iAPX 286 microprocessors. The iRMX 86 INSTALLATION GUIDE
explains how to install the Operating System on boards containing each of
the microprocessors.

Although you can use different Intel microprocessors to run the iRMX 86
operating system, the Human Interface does not change its appearance to
the user. Every command in this manual retains the format you see
described regardless of the microprocessor you use.

CONFIGURABLE FEATURES OF THE HUMAN INTERFACE

The Human Interface, like the other layers of the iRMX 86 Operating
System, 1is configurable. Thus, any description of how to use the Human
Interface depends a great deal on its configuration. This manual
describes several features of the Human Interface that may be different
(or not present at all) in your system. The configurable items that are
the most visible to the operator include:

® Multi-access. If your Human Interface is configured for
multi-access, several users can access the Human Interface at
once via separate terminals. One of the users, the system
manager, has more capabilities than other users and is
responsible for managing system resources and controlling who can
use the system. Users of a multi-access Human Interface are
concerned about user IDs, access rights to files, and attaching
and detaching devices —— all in relation to the other users of
the system.

However, 1if your Human Interface is configured for single access,
you are less interested in much of this information. You are the
only user accessing the system; therefore you are not as
interested in user IDs and the system manager. You have no great
concern about file access rights since all the files on the
system are yours.

This manual attempts to satisfy both users. It explains all the
information that the user of a multi-access Human Interface
needs, but it also points out cases where information does not
apply to users of single-access systems. In all cases, the
information required by a user of a single—access Human Interface
is a subset of the information required by a user of a
multi-access system.

Operator 2-2

USING THE HUMAN INTERFACE

° Initial program. During initialization, the Human Interface
starts an initial program for each terminal. This initial
program is a Command Line Interpreter (CLI), a program that reads
commands and starts those programs running.

This manual assumes that the initial program for all users is the
CLI supplied by the Human Interface. If your Human Interface is
configured with a different initial program, the information in
this manual might not describe your Human Interface accurately.
The system prompts might be different, the command syntax might
be different, or you might be restricted to using a special
program such as an interpreter or a transaction processor. If
you suspect that your initial program is not the standard CLI,
contact the person who configured your system to determine the
differences.

e RAM Disk. The RAM Driver treats a reserved area of RAM as if
that area of RAM were a physical device. Reserving RAM for the
RAM Driver occurs at system configuration time. Once you have
allocated an area of memory for the RAM Driver, you can use such
commands as FORMAT and ATTACHDEVICE to manipulate the contents of
of the reserved memory.

There are other configuration options that affect how the system appears
to a user. When describing these items, this manual points out their
configurable nature and urges you to consult the iRMX 86 CONFIGURATION
GUIDE. If you are not involved in iRMX 86 configuration, contact the
person who configured your system to obtain more information.

LOADING THE OPERATING SYSTEM

Before you can access the Human Interface, someone must first load the
Operating System into the memory of your iRMX 86 system and start it
running. This process can vary from system to system (depending on such
things as the monitor you use), but generally it involves one of the
following procedures:

° Connecting the target system (the iRMX 86 system) to an Intel
Microcomputer Development System and using the i1SDM 86 or 1iSDM
286 package to load the Operating System from development system
files to memory in the iRMX 86 system. This procedure is
normally done during the development phase of an application
system, when some of the system elements are still undergoing
development. Refer to the iSDM 86 SYSTEM DEBUG MONITOR REFERENCE
MANUAL and the iSDM 286 SYSTEM DEBUG MONITOR REFERENCE MANUAL for
more information.

) Using the iRMX 86 Bootstrap Loader to load the Operating System
from iRMX 86 files to memory.

Operator 2-3

USING THE HUMAN INTERFACE

LOADING THE OPERATING SYSTEM ON AN OEM SYSTEM

On systems which are not part of Intel's family of integrated systems,
such as the System 86/310, you must verify that the device contains the
correct volume and then perform the following steps:

1. Reset the system; usually, reset involves pressing a RESET button
on the system chassis. A series of characters (usually
asterisks) should appear at the system terminal (the one
connected to the processor board). If you have an iSDM 286
monitor, no characters appear on the screen; you simply go to
step 2.

2. Type an uppercase U at the system terminal. This procedure
accesses the resident monitor. The monitor displays the
following information:

iSDM xxx MONITOR Vx.y
COPYRIGHT <year> INTEL CORPORATION

The period (.) is the monitor prompt. 1SDM xxx indicates which
monitor you are using and Vx.y which version of the monitor you
are using.

3. Use the monitor's B command to bootstrap load the Operating
System. In most cases you do this by entering:

.B

For the default configuration of the Bootstrap Loader, this command loads
a file with pathname SYSTEM/RMX86 from the first available device. If
your Operating System resides on a file with a different pathname, you
must specify that pathname in the B command. Refer to the iRMX 86 LOADER
REFERENCE MANUAL, and the iRMX 86 CONFIGURATION GUIDE.

LOADING THE OPERATING SYSTEM ON INTEL INTEGRATED SYSTEMS

On Intel integrated systems (such as the System 86/310), you must verify
that the device contains the correct volume and then perform the
following steps:

1. Turn on the power to the terminals and to the system. If your
system contains multiple chassis (such as the 86/380
Microcomputer System), turn on the power to the PERIPHERAL
chassis before turning on the power to the PROCESSOR chassis.

Operator 2-4

USING THE HUMAN INTERFACE

2. Within a few seconds, the terminal connected to the system's
processor board (J1 connector) should begin displaying a series
of asterisks if the microprocessor is an iAPX 86 CPU. If the
microprocessor running the system is an iAPX 286 CPU, the display
will show only one astrisk. In either case, the system requires
no further input from you to load the Operating System from your
hard disk. 1In approximately 12 seconds, the System Confidence
Test (SCT), a diagnostic program residing in PROM which performs
an initial check of your hardware, begins to run automatically.
The SCT executes in its Terse Mode output (a short version of the
original SCT's output). If your want to run other modes of the
SCT, consult the SYSTEM x86/300 SERIES DIAGNOSTIC MAINTENANCE
MANUAL for more information. The system assumes a baud rate of
9600 for your terminal.

3. When the SCT successfully completes its check of the system, you
will see a display which is similar to Figure 2-1. Figure 2-1
shows the display you would see if your microcomputer was a
member of the System 286/300 series. But every display which the
SCT shows in its Terse Mode contains the same type of information.

4. When the SCT is successful, it invokes the Bootstrap Loader,
which attempts to load a file with the pathname /SYSTEM/RMX86.
The Bootstrap Loader, along with the SCT, resides in PROM.

5. 1If the SCT encounters a problem, it transfers control to the
monitor. Refer to the SYSTEM 86/300 SERIES DIAGNOSTIC
MAINTENANCE MANUAL if the Operating System fails to load. When
the Bootstrap Loader completes loading, you can access the Human
Inteface from any terminal, as described in the next section.

LOADING THE OPERATING SYSTEM WITHOUT A RESIDENT MONITOR

For some custom systems which do not include one of the monitors, you
simply ensure that an 1RMX 86-formatted volume containing the Operating
System resides in the proper device and reset the system.

LOADING FROM A PROM-BASED OPERATING SYSTEM

Some systems contain the entire Operating System in PROM and do not
require you to load additional information from secondary storage. The
usual process for starting these systems is simply to reset the system.
If you were not involved in the configuration of your system and are
unsure about how to load and start the Operating System, contact the
person who configured your system.

Operator 2-5

USING THE HUMAN INTERFACE

SCT 86/300W, Vx.y Copyright <years> Intel Corporation

Processor Subsystem, GO
Memory Subsystem, GO
Boot Subsystem GO

SCT Successful...Now Booting System

Figure 2-1. Example Output of a System 86/300 SCT (Terse Mode)

ACCESSING THE HUMAN INTERFACE

Assuming that the Operating System software is loaded into the system,
you access the Human Interface by powering on your terminal. If your
application system is configured for automatic baud rate recognition, you
must also enter the following character at the keyboard:

U (uppercase U)

This character allows the Operating System to determine the baud rate of
your terminal.

Operator 2-6

USING THE HUMAN INTERFACE

When the Human Interface starts running, it creates an environment for
you to enter commands. This environment is an iRMX 86 job, which this
manual refers to as an interactive job.

As part of creating this interactive job, the Human Interface assigns you
a user ID. This user ID is your “"identity"” in the system. It determines
your access to files and devices. Whenever you create files, the Human
Interface assigns your user ID as the owner ID of the file. Being the
owner of a file gives you complete control over the file; you can read
it, delete it, write it, update it, and select the access that you wish
to grant to other users. Your own ability to access files created by
other users depends on the access they grant you.

Once the interactive job has been created by the Operating System, an
initial program begins execution. The initial program that runs in your
interactive job (at your terminal) may be different from one that runs at
another terminal. (A configuration option specifies which initial
programs are assoclated with which user IDs.) Initial programs are
command line interpreters (CLIs), which read and parse command input and
start programs running based on that input. The Human Interface supplies
a standard CLI, which this manual assumes you are using. The standard
CLI begins running by displaying the following (configurable) header
message and prompt:

iRMX 86 HI CLI, V<x.y>: user = <user ID)>
Copyright <year> Intel Corporation

where:
V<x.y> The version number of the Human Interface.

user = user ID A display of your user ID. The Human Interface
uses this ID to determine the type of access you
have to files and devices. Most single-access
systems are set up to give you an ID of WORLD
(65535 decimal), but some may differ. The user ID
WORLD is compatible with multi-access systems (if
transferring files is necessary), because every
multi~access user has read and write access to
files created by WORLD.

- (hyphen) The Human Interface prompt. This prompt implies
that the CLI is ready to accept command input.

If the information that appears at your terminal is different from this,
contact the person who configured your iRMX 86 Operating System to
determine the differences between your initial program and the standard
CLI.

Next, the standard CLI searches for the logon file, a file whose pathname
is :PROG:R?LOGON (later sections of this chapter discuss pathnames of
files). There can be a file with this name for each user of the system.

Operator 2-7

USING THE HUMAN INTERFACE

The CLI expects to find command invocation lines in this file. When it
finds this file, the CLI automatically invokes the SUBMIT command to
process all the commands in the file (refer to Chapter 3 for more
information about SUBMIT). You can modify the information in your
¢+PROG:R?LOGON file to change the amount of processing that occurs
automatically when the Operating System recognizes your terminal. The
Operating System does not have a default R?LOGON file. If the Human
Interface does not find a R?LOGON file, it returns an error message. You
can ignore the error message.

As supplied with the Start-Up versions of the Operating System, the
R?LOGON file for each user contains the DATE and TIME commands which ask
you for the correct date and time as follows:

-date query
DATE:
In response, enter the date. Any of the following formats is acceptable:

5/13/83
1 oCT 83
25 OCTOBER 83

If you use an improper format, the DATE discards your entry and prompts
you for another date. For more information, refer to the description of
the DATE command in Chapter 3. After you enter the date correctly, DATE
responds by displaying the date. Then the following display occurs:

—-time query
TIME:

In response, enter the correct time in the format:
hours:minutes:seconds

You can omit the last field or the last two fields. TIME sets the
omitted fields to zero. The following are all valid times:

13:02:45
8:34
17

For more information, refer to the description of the TIME command in
Chapter 3. TIME responds by displaying the date and time.

After processing all the commands in the logon file, the CLI issues its

prompt (-) and returns control to you. At this point you can enter Human
Interface commands and invoke programs.

Operator 2-8

USING THE HUMAN INTERFACE

FILE STRUCTURE

One of the primary uses of Human Interface commands is manipulating
files. Before you can use the Human Interface commands described in
Chapter 3, you should have an understanding of the kinds of files that
exist 1n an iRMX 86 environment and how to access those files.

TYPES OF FILES

There are three basic types of files in an iRMX 86 environment: named
files, physical files, and stream files., These files are used as follows:

Named files Named files divide the data on mass storage devices
into individually-accessible units. Users and
programs refer to these files by name when they want
to access information stored in them. Terminal
operators access named files more often than any
other file type.

Physical files Physical files are mechanisms by which the Operating
System can access an entire I/0 device as a single
file. The Human Interface accesses backup volumes
and devices such as line printers and terminals in
this manner. It also accesses secondary storage
devices (such as disk drives) as physical devices
when formatting them. When terminal operators
access physical files, it is usually in a manner
that is transparent to them (such as copying a named
file to the line printer or formatting a disk).

Stream files Stream files are mechanisms for communicating
between programs. Two programs can use a stream
file for communication if one program writes
information to the stream file while another program
reads the information. Terminal operators seldom
use stream files directly.

When manipulating data with Human Interface commands, you are most often
dealing with named files. Therefore it is important that you know about
the hierarchy of named files and file-naming conventions. The next
sections discuss these topics in detail.

NAMED FILE HIERARCHY

The iRMX 86 Operating System allows you to organize named files into
structures called file trees, as shown in Figure 2-2. Figure 2-3 shows
the actual file structure you recieve in a Start-Up system. The file
structure in Figure 2-3 is what you would see if you kept the original
file hierarchy intact in your system.

Operator 2-9

USING THE HUMAN INTERFACE

DEPT1
DEPT2
DEPT3

DEPT1 DEPT2 DEPT3 l
BILL GEORGE
TOM HARRY Sue
SAM
BILL TOM GEORGE HARRY SAM SUE [BILL
SIM-SOURCE TEST-DATA
SIM-OBJECT TEST-OBJECT
SIM-SOURCE SIM-OBJECT TEST-OBJECT
TEST-DATA

BATCH-1
BATCH-2

It

DIRECTORY

DATA FILE

A\

x-053
BATCH-1 BATCH-2

Figure 2-2. Example of a Named-File Tree

As you can see from the figure, there are two kinds of files in the file
tree: data files and directories. Data files, (shown as triangles in
Figure 2-2) contain the information that you manipulate in the course of
your terminal session (for example, 1nventory, accounts payable, text,
source code, and object code). Directoriles (shown as rectangles in
Figure 2-2) contain only pointers to other files (either named files or
directories). The iRMX 86 Operating System allows you to have multiple
directories in a hierarchical structure 30 that instead of having a
single directory containing an enormous number of files, you can organize
your files into logical groupings under several directories. You can
display the list of files in any directory by invoking the DIR command
for that directory (refer to Chapter 3 for more information).

Operator 2-10

USING THE HUMAN INTERFACE

Another advantage of hierarchical file structure is that duplicate file
names are permitted unless the files reside in the same directory.
Notice in Figure 2-2 that the file tree contains two directories named
BILL. (These directories are on the extreme left and extreme right of
the figure.) However, the Operating System recognizes them as unique
files because each resides in a different directory.

Each file tree resides on a secondary storage volume —— the storage
medium that contains the data. Examples of volumes include flexible
diskettes, hard disks, and bubble memories. Before you can place named
files on a volume, you must format the volume to accept named files. The
formatting process writes a number of data structures on the volume to
aid the Operating System in creating and maintaining files. You can use
the FORMAT command (described in Chapter 3) to format your volumes.

The uppermost point of each file tree is a directory called the root
directory. When formatted for named files, each secondary storage volume
has one and only one root directory. For these reasons:

° There can be only one file tree per secondary storage volume.

° A file tree cannot extend to more than one volume.

PATHNAMES

This section describes how to specify a particular file in a named-file
tree. For simplification, it assumes that all files reside in the same
file tree, and thus in the same volume. To identify the volume as well
as the file, you must include a logical name for the device as the first
portion of the file specification. Refer to the "Logical Names" section,
later in this chapter, for more information about logical names.

In a file tree, each file (data or directory) has a unique shortest path
connecting it to the root directory. For example, in Figure 2-2, the
shortest path from the root directory to file BATCH-2 goes through
directory DEPT1l, through directory TOM, through directory TEST-DATA, and
finally stops at data file BATCH-2. When you want to perform an
operation on a file (for example, using the COPY command to copy one file
to another), you must specify not only the file's name, but the path
through the file tree to the file. This description is called the file's
pathname. For file BATCH-2 in Figure 2-2, the pathname is:

DEPT1/TOM/TEST-DATA/BATCH-2

Operator 2-11

7 x03eaad(

CT1-i

*c-7 92an814

wa3sLg dn-3jaeag parrddng [23ul ue uo 2an1oNI3§ OTFJ

0 = Attaching User
0 = owner
WORLD =L
:SD:

BOOT SYSTEM UTILS LiB LANG RMX86 INC WORK CONFIG USER
0= OWNER) (0 = owner (0 = owner (0 = owner (0 = owner 0 = owner) 0 = owner 0 = owner) 0 = owner (0 = owner
WORLD =L WORLD =L WORLD =L WORLD =L WORLD =L WORLD =L WORLD =L WORLD = DLAC WORLD =L WORLD =1L

r] RMX86 |
0 =owner
WORLD =L cMD USER
(0 = owner (0 = owner
Human Interface L. ititi WORLD=L WORLD = L.
Commands (v?;ﬂolhvénern
O = owner =
(Worezss) TERMINALS
WORLD =R
oMX8E iRMX™86 Libraries .
(worcs™y and Ceonfiguration Files Include Files
WORLD =R = awner
WORLD =R Configuration WORLD
Submit Files 0 = owner (WORLD = owner)
0 = owner WORLD =R
|wortn =r]
NDP87 RMX86 PASC86 PLM86 FORT86
0 = owner 0 = owner) 0 = owner (0 = owner 0 = owner
WORLD =L WORLD =L WORLD =L WORLD =L WORLD =L
PROG
(WORLD = owner)
iRMX™86 Interface Libraries and Language Libraries R?LOGON

I:I = directory
/\ = datafile
L =listaccess
R =read access
N =no access

DLAC = all access

0 = owner
WORLD =R

{WORLD = owner)

1350

HOVAIHINI NVWOH HHI DNISN

USING THE HUMAN INTERFACE

This pathname consists of the names of files (in uppercase or lowercase
characters; the Operating System treats them as the same) and

separators. In this case, slashes (/) separate the individual components
of the pathname and tell the Operating System that the next component
resides down one level in the file tree. You can use another separator,
the circumflex or up-arrow ("), btween path components. Each circumflex
tells the Operating System that the next path component resides up one
level in the file tree. The following pathname, although not the
shortest possible pathname, indicates another path to file BATCH-2:

DEPT1/BILL"~TOM/TEST-DATA/BATCH-2

If you always start at the root directory, the circumflex separator is
not very useful, since you usually want to traverse down the file tree.
However, in some systems, your starting point in the file tree may be a
directory other than the root directory. In such cases the circumflex
separator is useful in accessing files in other branches of the file
tree. Your default prefix (discussed later in the "Logical Names"
section of this chapter) determines your starting point in the file tree.

For example, suppose your starting point in the file tree is the
directory TOM shown in Figure 2-2. In order for you to access a file in
directory BILL from this starting point, you must use the circumflex in
the pathname. To indicate file SIM-SOURCE in directory BILL, you could

enter the pathname:

~BILL/S IM-S OURCE

This path tells the Operating System to go up one level in the file tree
from the starting point (to directory DEPT1 from directory TOM), search
in that directory for directory BILL, and search in directory BILL for
file SIM-SOURCE.

More than one circumflex allows you to go up any number of levels within
the file structrue. For example, if your starting point is TOM, then you
can go up to the root directory by using two circumflexes.

Another way to specify files in different branches of the file tree 1is by
including the slash separator as the first character in the pathname.

The slash tells the Operating System to ignore your normal starting point
and begin the path from the root directory. Using the previous example
where the starting point is directory TOM, another way to specify
SIM-SOURCE 1s with the pathname:

/DEPT1/BILL/S IM-SOURCE
The initial slash causes the Operating System to search in the root

directory for directory DEPTLl instead of in the normal starting directory
(TOM).

Operator 2-13

USING THE HUMAN INTERFACE

LOGICAL NAMES

Although the Operating System allows you to use pathnames to refer to
files, it also allows you to create symbolic names that correspond to
files or devices. These symbolic names are called logical names. You
can create logical names that represent devices, data files, or
directories. After creating a logical name, you can refer to the entity
it represents by specifying the logical name. The rules for logical
names are:

e Each logical name must contain 1 to 12 ASCII characters.

° The hexadecimal representation of each character must be between
021h and O7Fh inclusive (printable characters).

° The logical name cannot include the characters colon (:), slash
(/), up-arrow or circumflex (), asterisk (*), and question mark

(7).
] When you specify a logical name, you must surround it with colons.

When referring to logical names, this manual always lists the surrounding
colons.

For an example of how to use logical names, refer again to Figure 2-2.
Suppose you have created a logical name called :ME: that represents the
pathname DEPT1/TOM/TEST-DATA (a later paragraph in this section discusses
how to create this logical name). If you want to refer to the directory
TEST-DATA, you can either specify its pathname as before, or you can
specify the logical name :ME:. If you want to refer to the file BATCH-1
under directory TEST-DATA, you can do this in either of the following
ways:

DEPT1/TOM/TES T-DATA/BATCH-1
or
¢+ME: BATCH-1

The second line shows that you can use a logical name as a beginning
portion (or prefix) of a pathname. The logical name tells the Operating
System where to begin in its search for the file. However, you cannot
use a logical name in the middle or at the end of a pathname. If you use
a logical name, you must specify it at the beginning.

Notice that you must not include a slash or circumflex between the
logical name and the next path component if you want the Operating System
to search down one level. If you include the slash, the Operating System
ignores the normal starting point (the directory TEST-DATA) and searches
for the file BATCH-1 in the root directory of the volume. If you include
the circumflex, the Operating System searches up one level from the
starting point.

Operator 2--14

USING THE HUMAN INTERFACE

As a Human Interface user, you deal with two general classes of logical
names: logical names for devices and logical names for files.

Logical Names for Devices

Device logical names allow you to refer to specific devices by name. The
Operating System can establish logical names for devices during system
initialization. You can establish other logical names for new or
exlsting devices by invoking the ATTACHDEVICE command (see Chapter 3 for
details).

By using device logical names as the prefix portion of your pathname
specifications, you can refer to any file on any device. For example,
suppose your system contains two flexible disk drives for which you have
established logical names :FO: and :Fl:. (You used the ATTACHDEVICE
command to attach the devices as :FO: and :Fl:.) If you have a diskette
containing the file DEPT2/HARRY, you could place the diskette in drive
:FO: and access the file with the pathname:

:FO:DEPT2/HARRY

If you put the same diskette in drive :Fl:, you could access the file by
specifying the pathname:

:F1:DEPT2/HARRY

You can see that for devices containing named files, the device logical
name is actually a logical name for the root directory on that device.
If you enter the DIR command (described in Chapter 3) to list the
directory of device :Fl:, as follows:

DIR :Fl:

Logical Names for Files

A logical name for a file provides a shorthand way of accessing that
file. For example, suppose you have a file that resides several levels
down in the file tree, such as:

:F1:DEPT1/TOM/TEST-DATA/BATCH-2

where :Fl: is logical name for the device that contains the file. After
entering this pathname a few times, you might find it inconvenient to
continually enter so many characters. If so, you can establish a logical
name for this pathname, such as :BATCH:. (You could also say that you
attached the file with the logical name :BATCH:.) Then, whenever you
want to refer to the file in a command, you can specify the logical name
instead of the pathname.

Operator 2-15

USING THE HUMAN INTERFACE

If your logical names refer to directories instead of data files, you can
use the logical names in the prefix portion of a pathname. For example,
consider the same pathname:

:F1:DEPT1/TOM/TEST~DATA/BATCH-2

Suppose you have attached the pathname :F1:DEPT1/TOM/TEST-DATA as logical
name :TEST:; therefore it is a logical name for the directory TEST-DATA.
To refer to file BATCH-2, you could enter:

:TEST :BATCH-2

Logical names for files come into existence in two ways. One way is for
you to invoke the ATTACHFILE command (refer to Chapter 3 for details).
The other way is for the Operating System to create them. The Operating
System establishes a number of logical names for files during system
initialization. A later section lists these logical names.

Where Logical Names are Stored

When the Operating System creates logical names, at initialization time
or as a result of ATTACHFILE or ATTACHDEVICE commands, it does so by
placing the logical name, along with a token for a connection to the file
or device, into an object directory. This process is referred to as
cataloging the logical name (refer to the iRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for more information about this process). The object
directory that receives this information determines the scope of the
logical name (that is, who can use the logical name). There are three
possibilities:

Root object directory Logical Names cataloged in the object
directory of the root job can be accessed by
every user. When you use ATTACHDEVICE to
create logical names for devices, the
Operating System catalogs the logical names
in the root directory.

Logical names cataloged in the root object
directory remain valid until deleted or
until the system is reinitialized.

Global object directory Logical names can be cataloged in the object
directory of a job that is designated as a
global job (refer to the iRMX 86 EXTENDED
I/0 SYSTEM REFERENCE MANUAL for more
information about global jobs). Each
interactive job (user session) is a global
job. When you use ATTACHFILE to create
logical names for files, the Operating
System catalogs the logical names in your
global job. Likewise, if you invoke any
commands that issue ATTACHFILE commands

Operator 2--16

USING THE HUMAN INTERFACE

(such as a SUBMIT command), the Operating
System catalogs the logical names in your
global job. You (and any commands that you
invoke) can use the logical names cataloged
in your interactive job. However, other
users have no access to these logical names.

Logical names cataloged in your interactive
job remain valid for the life of your
interactive job or until deleted.

Local object directory Logical names can be cataloged in the object
directory of the job itself. When you
invoke a command (such as DIR), the
Operating System creates a job for that
command and catalogs certain objects in its
object directory. A command that you create
and invoke might also use iRMX 86 system
calls to catalog logical names in its own
object directory.

Logical names cataloged in a local job
remain valid only for the life of the job or
until deleted.

Whenever you (or one of the commands you invoke) use a logical name, the
Operating System searches for that logical name in as many as three
different object directories. It first looks in the local object
directory. If the logical name is not defined there, it next looks in
the global object directory and finally, if necessary, the root object
directory. It uses the first such logical name it finds.

Because of this order of search, you can override the system logical
names (those cataloged in the root object directory) by cataloging the
same logical names (but representing different files or devices) in the
object directory of your interactive job. For example, suppose you used
the ATTACHFILE command to attach a file with the logical name :SYSTEM:.
Then, whenever you specify :SYSTEM:, the Operating System refers to your
file and not the one represented by the same logical name in the root
object directory.

Logical Names Created by the Operating System

The Operating System establishes several logical names that you can use
without first having to create them. It catalogs some of these logical
names in the root object directory (where they are available to all
users). It catalogs others in global object directories (these are
specific to each interactive job). It catalogs others in local object
directories (these are specific to each interactive job and to each
command invoked).

Operator 2-17

USING THE HUMAN INTERFACE

The Human Interface catalogs system-wide logical names in the root object
directory. These logical names are available to all users and they
represent the same file or device for all users. The number of logical
names created and their identities depend on the configuration of your
Operating System. However, the following logical names are available on
most systems.

:BB: A device that is treated as an infinite sink (byte
bucket). Anything written to :BB: disappears, and
anything read from :BB: returns an end-of-file.

:LANG: A directory used to store language products, such as
assemblers, compilers, and linkers.

:SD: The system device. If you used the Bootstrap Loader
to load your system, this logical name refers to the
device from which the Bootstrap Loader read the
Operating System file.

:STREAM: The prototype stream file connection. To create a
connection to a stream file, you must use this logical
name as the prefix portion of the pathname.

¢ SYSTEM: The directory containing the Human Interface commands.

:UTILS: A directory used to store utility programs created by
users.

:WORK: A directory that Intel language translators and

utilities use to store their temporary and work files.

The following logical names are cataloged in each user's global object
directory. Although each user has access to these names, the names
represent different files or devices for each user.

H-H Your default prefix. This is the path to your default
directory. If you do not specify a logical name (a
prefix) at the beginning of a pathname, the Operating
System automatically uses :$: as the prefix. In this
case, the Operating System assumes that the file
resides in the directory corresponding to :$:. During
an interactive session, you can use the ATTACHFILE
command to change the directory corresponding to :$:.

:HOME: Your default prefix when you first start using the
Human Interface. Initially, :HOME: and :$: represent
the same directory. This logical name provides you
with the ability to re~establish your original :$:
logical name if you become lost in the hierarchical
file structure. You should not use ATTACHFILE to
change the directory corresponding to :HOME:.

:PROG: A directory in which to store your programs.

Operator 2-18

USING THE HUMAN INTERFACE

The following logical names are cataloged in the local object directory
of each user and each command that a user invokes. These logical names
can have different meanings for each user and each command.

:CI: The terminal keyboard (or command input). As the name
implies, each user's :CI: refers to the terminal
associated with that user.

:CO: The terminal screen (or command output). As the name
implies, each user's :CO: refers to the terminal
associated with that user.

Upon initialization, your Human Interface may create additional logical
names. These logical names are configuration parameters. Contact the
person who configured your system for more information about the logical
names initially available to you. The iRMX 86 CONFIGURATION GUIDE
discusses this subject in more detail.

Removing Volumes from Devices

Removing volumes from devices (such as removing flexible diskettes from
drives) destroys any connections that may have existed to files on that
device. Therefore, any logical names that represent files on the volume
are no longer valid once you remove the volume. The names remain
cataloged in the directories, but they do not represent valid
connections. Therefore, before removing volumes, you should invoke
DETACHFILE commands to detach the files.

WILD CARDS

Wild cards provide a shorthand notation for specifying several files in a
single reference when entering commands. You can use either of two
special wild card characters in the last component of a pathname to
replace some or all characters in that component. The wild card
characters are:

? The question mark matches any single character. The Human
Interface allows any character to appear in that character
position. It selects every file that meets this
requirement. For example, the name "FILE?" could imply all
of the following files:

FILEL
FILE2
FILEA

The asterisk matches any number of characters (including zero
characters). The Human Interface allows any number of
characters to appear in that character position. It selects
every file that meets this requirement. For example, the
name "FILE*" could imply all of the following files:

Operator 2-19

USING THE HUMAN INTERFACE

FILElL
FILE.OBJ
FILE
FILECHANGE

You can use multiple wild cards in a single pathname. For example, the
name:

PIF?.*

matches every file whose second through fourth characters are "PIF" and
whose sixth character is a period. These files could include all of the
following names (or more):

RPIFC.LIB
EPIFL.TXT
HPIFC.

You can use wild cards in both input pathnames (files that commands read
for information) and output pathnames (files into which commands write
information). For example, in the command:

COPY A* TO B¥*

the A* represents the input pathname and B* represents the output
pathname. In this command (which copies information from one file to
another), the Human Interface searches the appropriate directory for all
files that begin with the "A" character. Then it copies each file to a
file of the same name, but beginning with the "B" character. If the
directory contains the files:

ALPHA
All2
A

the previous command would copy files in the following manner:

ALPHA TO BLPHA
All2 TO B1l12
A TO B

There are several operational characteristics that you should be aware of
when using wild cards:

e Wild cards are valid in the last component of the pathname only.
Therefore, :Fl:SYSTEM/APPLl/FILE* is a valid pathname, but
:F1:SYSTEM/APP* /FILEl is not valid.

° You can negate the meaning of a wild card character by enclosing
it in quotes, either single (') or double ("). For example, if
you have a file named F*123, you can refer to it alone in a
command by specifying F'*'123 or 'F¥*123°'.

Operator 2-20

USING THE HUMAN INTERFACE

When you specify input and output pathnames in commands, you can
specify lists of pathnames, separated by commas. For example:

COPY A,B,C TO D,E,F

copies A to D, B to E, and C to F. If you use a wild cards in
any one of the output pathnames, you must use the same wild cards
in the same order in the corresponding input pathname. The term
"same order” means that if you use both the "#" and the "?"
characters, their ordering must be the same in both the input and
output pathnames. For example, the following is valid:

COPY A*B?C* TO *DE?FGH*I

However, the following is invalid because the wild cards are out
of order:

COPY A*B?C* TO *DE*FGH?L

If you use wild cards in an input pathname, you can omit all wild

cards from the corresponding output pathname to cause the Human
Interface to perform file concatenation. For example, suppose a

directory contains files Al, Bl, and Cl. The following command
is valid:

COPY *1 TO X
It copies files in the following manner:

Al TO X
B1 AFTER X
Cl AFTER X

But if X is a directory, concatenation is not performed by this
series of commands. Instead, the Human Interface copies each
file over to the new directory. Refer to the "Command Syntax”
section later in this chapter for more information about the
prepositions TO and AFTER.

The "*" character matches as close to the end of the pathname as
possible. For example, suppose the directory contains the file
"ABXCDEFXGH", and you enter the command:

COPY *X* TOQ *1*
This command copies:

ABXCDEFXGH TO ABXCDEF1GH

The first asterisk matches the characters "ABXCDEF", and the
second asterisk matches the characters "GH".

Operator 2-21

USING THE HUMAN INTERFACE

° You can also use wild cards for finding invisible files. An
invisible file is a file which will not appear in any normal
directory listing. Thus, the file is "invisible" to the user.
The name of any invisible file must begin with the prefix R?.
Since the wildcard function does not automatically match
invisible files, you must explicitly state the R? prefix. You do
this procedure by using quotes. Thus to find all the invisible
files within a directory, you use the format "R'?'*". You need
to include the quotes so that "?" 1is not interpreted as a
wildcard symbol.

DEVICES

The iRMX 86 Operating System allows you to communicate with various types
of devices (disks, terminals, etc.). FEach device supports one or more
types of files (named or physical). The following paragraphs identify,
in general, the kinds of devices with which you can communicate and the
types of files supported on those devices.

Terminals An operator needs the terminal to communicate with the
Human Interface. You can also write programs that
read from and write to terminals.

Disks Disks provide permanent storage for programs and
data. The Operating System allows you to communicate
with a variety of disk devices: Winchester disks,
other hard disks, and flexible diskettes.

Bubble Memory You can reconfigure the Operating System to include
support Bubble Memory. Once you have done this, you
can treat the bubble memory as a physical device, or
you can use it to store named files.

AUTOMATIC DEVICE CHARACTERISTICS RECOGNITION

Automatic device recognition gives the Operating System the ability to
recognize and access named disks of different formats without requiring
you to reattach the device. This feature does not work with physical
files. Refer to the iRMX 86 CONFIGURATION GUIDE for more information on
automatic device characteristics recognition.

HOW AUTOMATIC DEVICE CHARACTERISTICS RECOGNITION WORKS

The Basic I/0 System, the Extended I/0 System, and the formatting utility
(either the FORMAT command or the Files Utility) combine to provide the
automatic device characteristics recognition feature. They do this
procedure as follows:

Operator 2--22

USING THE HUMAN INTERFACE

When the formatting utility formats a disk as a named volume, it
formats with the same characteristics you specified when you used
ATTACHDEVICE to attach the device. However, it formats track O
with a fixed density (single density) and a fixed sector size
(128 bytes) regardless of the way it formats the rest of the
disk. On track O, the formatting program places the iRMX 86
volume label, a table that describes the characteristics of the
remainder of the volume (granularity, density, number of sides,
etc.). Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL for a description of the iRMX 86 volume label.

Because track 0 is formatted the same way for all named disks,
the Basic I/0 System can access the information on track O
without knowing the format of the remainder of the disk.

When you attach a device to the system as a named device (using
the ATTACHDEVICE command), you specify the name of a DUIB
(device—unit information block) as one of the ATTACHDEVICE
parameters. The DUIB names you can use are the ones that you
specified as input to the "Device-Unit Information"” screen of the
ICU.

The DUIB tells the Basic I/0 System which device—unit (disk
drive) to attach and which characteristics (granularity, density,
number of sides, etc.) to assume about the disk drive.

During the attach process, the Basic I/0 System reads the
information from track O (the volume label) and compares it with
the information in the DUIB you specified when attaching the
device. If the information does not match, the Basic I/0 System
performs the following operations:

a. It compares the information in the volume label with all the
other DUIBs defined for that device-—unit. If it finds a
match, it "switches” DUIBs and uses the matching one as the
current DUIB.

b. If none of the DUIBs defined for that device—unit match the
information in the volume label, the Basic I/0 System creates
a temporary DUIB that does match. It uses the information
from the DUIB that you specified when attaching the device
and modifies it with information from the volume label. As a
name for the temporary DUIB, the Basic 1/0 System appends a
question mark (?) to the beginning of the old DUIB name.

Whenever you remove a disk from a drive, the Operating System
automatically detaches the device. If it was accessing the
device through a temporary DUIB (as opposed to the one you
specified as an ATTACHDEVICE parameter), it destroys the DUIB.
However, it remembers the name of the DUIB that you specified as
input to ATTACHDEVICE.

Operator 2-23

USING THE HUMAN INTERFACE

5. When you insert a new disk into the drive and attempt to access
it as a named volume (by invoking the DIR command, for example),
the Operating System automatically reattaches the device using
the same process listed in step 3.

From these steps, you can see that you can continue to change diskettes
without having to detach and reattach the device. The Operating System
does this change for you automatically. However, this process occurs
only for named-file operations. Whenever the Operating System performs
physical-file operations, it cannot use the temporary or "switched”
DUIBs. Instead, it must use the DUIB you specified as a parameter to
ATTACHDEVICE.

COMMANDS THAT CANNOT RECOGNIZE DEVICE CHARACTERISTICS

Because the automatic device characteristics recognition feature does not
apply to physical-file operations, some Human Interface commands cannot
make use of this feature. They are:

FORMAT
BACKUP
RESTORE
DISKVERIFY

Each of these commands must detach the device and re—attach it again as a
physical device. This process cancels the ability of the Basic 1/0
System to recognize the characteristics of the volume. Therefore, these
commands assume that the device characteristics are those listed in the
DUIB you specified as an ATTACHDEVICE parameter. Consequently, if you do
not include, for example, a DUIB for a double-sided, double-density
diskette in your configuration, you cannot format such a diskette.
Neither can you create a backup volume in this format nor restore
information from one.

If you plan to use one of these commands and you are not sure how your
device was attached, use DETACHDEVICE and ATTACHDEVICE to reattach the
device with the characteristics you require.

OPERATIONAL CONSIDERATIONS FOR iSBC® 215/iSBX™ 218 DEVICES

If your system contains an iSBC 215/iSBX 218 controller, you may receive
error messages that are not appropriate when switching diskettes. For
example, if you attach your device as a double-sided/double-density
device and insert a single—sided/single-density diskette, you will
receive an I/0 error message when attempting an I/0 operation. In this
situation, the message does not indicate a problem. If you try the I/O
operation again, it will usually succeed.

Operator 2-24

USING THE HUMAN INTERFACE

COMMAND SYNTAX

This section describes the general syntax rules that apply when entering
Human Interface commands at a terminal. These rules apply equally to
both the supplied Human Interface commands and any user—-created commands
that may have been added to your system. The individual command
descriptions in Chapter 3 contain additional and more specific
information about each supplied Human Interface command.

The elements that form a standard command entry include a command name,
required input parameters (if any), and optional parameters. The general
structure of a command line is as follows (brackets [] indicate optional
portions):

command-name [inpath-list [preposition outpath-list]] [parameters] cr
where:

command-name Pathname of the file containing the command's
executable object code.

inpath-list One or more pathnames, separated by commas, of files
to be read as input during command execution.

preposition A word that tells the executing command how to handle
the output. The four prepositions used in
Intel-supplied commands are TO, OVER, AFTER, and AS.

outpath-list One or more pathnames, separated by commas, of files
that are to receive the output during command
execution.

parameters Parameters that cause the command to perform
additional or extended services during command
execution.

cr A line terminator character. This character
terminates the current line and causes the cursor to
go to a new line. This character also causes a
command to be loaded and executed if the cr character
is not preceded by the ampersand (&) symbol. The
RETURN (or CARRIAGE RETURN) key and NEW LINE (or LINE
FEED) key are both line terminators.

You can enter all elements of a command line in uppercase characters,
lowercase characters, or a mix of both. The Human Interface makes no
distinction between cases when it reads command line items. In addition,
you can include the following optional command line entries:

continuation An ampersand character (&) indicates that the command

mark continues on the next line. When you include the
ampersand character, the Human Interface displays two
asterisks (**) on the next line to prompt for the
continuation line. All characters appearing after the
continuation mark but before the line terminator are
interpreted as comments.

Operator 2-25

USING THE HUMAN INTERFACE

Within available memory limits, you can use as many
continuation lines for a given command as you desire.
After you enter the line terminator without a
preceding ampersand character, the invoked command
receives the entire command string as a single command.

comment A semicolon (;) character indicates that all text

character following it on the current line is a non-executable
comment. You can also enter comments after a
continuation mark (&) but before the line terminator.
A common use of comments in commands is in a SUBMIT
file list of commands (see the SUBMIT command in
Chapter 3).

quoting Two single—-quote (') or double—quote (") characters

characters remove the semantics of special characters they
surround. For example, if you surround an ampersand
character (&) with single quotes, the ampersand is not
recognized as a continuation character. The same
holds for other characters such as asterisk (*),
question mark (?), equals (=), semicolon (;), and
others. The only special characters not affected by
the quoting characters are the pathname separators,
semicolon (;), and dellar sign ($).

Although you can use either single quotes or double quotes as
quoting characters, you must use the same quoting character at
the beginning and at the end of your quoted string. If you want
to include the quoting character inside your quoted string, you
must specify the character twice. For example:

'Can' 'tl

You can accomplish the same effect by using the other quoting
character, for example:

"can [] t "

Although the Human Interface places no restriction on the number of
characters in a command, each terminal line can have a maximum of 255
characters, including any punctuation, embedded blanks, continuation
mark, non-executable comments, and carriage return. If your command
requires more characters, use continuation lines.

The following sections discuss the individual elements of the command
syntax in more detail.

Operator 2-26

USING THE HUMAN INTERFACE

COMMAND NAME

Each Human Interface command is a file of executable code that resides in
secondary storage. When you specify a command name, you actually specify
the name of the file containing the command's code. If you write your
own command (refer to the iRMX 86 HUMAN INTERFACE REFERENCE MANUAL for
information), you invoke it by entering the name of the file that
contains it. After you invoke a command, the Operating System loads it
from secondary storage into memory and executes it in conformance with
parameters you specify.

When you enter a command name, you can enter the complete pathname of the
command, or, in many cases, you can enter just the last component of the
pathname.

] If you enter the complete pathname of the command (that is, if
you include a logical name as the prefix portion of the
pathname), the Operating System searches only the device and
directory you specify for the command. If it cannot find the
command there, 1t returns an error message.

° If you enter only the last component of the pathname (such as
COPY instead of :F1l:SYSTEM/COPY), the Operating System
automatically searches a certain number of directories for the
command. It does not return an error message until it has
searched each of the directories. The number of directories
searched and the order of search are Human Interface
configuration parameters. However, in the default case, the
Operating System searches the following directories, in order,
for commands:

:PROG:
:UTILS:
:SYSTEM:
: LANG:

: S

When writing your own commands, you can take advantage of the order in
which the Operating System searches directories. For example, suppose
you write your own copy command, one that provides more or different
functions than the Human Interface COPY command. If you want to invoke
your own program whenever you type the command “"COPY", you can simply
place your copy program in a file called COPY in your :PROG: directory.
Since the Operating System searches the :PROG: directory before searching
the :SYSTEM: directory (the directory that normally contains Human
Interface commands), it will invoke your copy program when you enter the
command "COPY".

If you still want to be able to invoke the Human Interface COPY command,
you can do so by entering its complete pathname, that is, by entering the
following:

:SYSTEM: COPY

Operator 2-27

USING THE HUMAN INTERFACE

PREPOSITIONS

Preposition parameters in a command line tell the command how you want it
to process the output file or files. The Human Interface commands
usually provide three options in the chcice of a preposition: TO, OVER,
and AFTER. The preposition AS 1is also available for use in the
ATTACHDEVICE and ATTACHFILE commands. The TO preposition and :CO:
(console screen) will be used by default if you do not specify a
preposition and an output file. The prepositions have the following
meaning:

TO Causes the command .to send the processed output to new files;
that is, to files that do not already exist in the given
directory. If a listed output file already exists, the
command displays the following query at the console screen:

<{pathname>, already exists, OVERWRITE?

Enter a Y or y if you wish to write over the existing file.
Enter any other character if you do not wish the file to be
overwritten. In the latter case, the command does not
process the corresponding input file but rather goes to the
next input file in the command line. Commands process input
files and write to output files on a one—for-one basis. For
example:

COPY A,B TO C,D
coples file A to file C and file B to file D.

OVER Causes the command to write your input files to the output
files in sequence, destroying any information currently
contained in the output files. It creates new output files
if they do not exist already. For example:

COPY SAMP1,SAMP2 OVER OUT1,0QUT2

copies the data from file SAMPl over the present contents of
file OUT1l, and copies the data of SAMP2 over the contents of
file OUT2.

AFTER Causes the command to append the contents of one or more
files to the end of one or more new or existing files (file
concatenation). For example:

COPY IN1,IN2 AFTER DEST1,DEST2

appends the contents of file INLl to the the end of file
DEST1, and appends the contents of IN2 to the end of DEST2.

AS A special preposition used with the ATTACHDEVICE and
ATTACHFILE commands. When you use the AS preposition, the
Operating System does not assume that the command contains
input pathnames and output pathnames. Rather, it sees the

Operator 2-28

USING THE HUMAN INTERFACE

parameters as entities that it must associate (for example,
ATTACHFILE associates a pathname with a logical
name) . INPATH-LIST AND OUTPATH-LIST

An inpath-list specifies the files on which a command is to operate. An
outpath-list defines the destination or destinations of the processed
output. Each inpath-list or outpath—-list consists of a pathname (or
logical name) or list of pathnames. If you specify multiple pathnames,
you must separate the individual pathnames with commas. Embedded blanks
between pathnames are optional. You can also use wild cards to indicate
multiple pathnames (refer to the "Wild Cards" section of this chapter).
Usually when you specify multiple pathnames, each pathname in the
inpath-1list has a corresponding pathname in the outpath-list. For
example, the command:

COPY A, B TO C, D

copies file A to file C and also copies file B to file D. Therefore, A
and C are corresponding pathnames, and so are B and D. However, there
are some instances when the number of input pathnames you enter differs
from the number of output pathnames. The validity of the operation
depends on whether the pathname lists contain single pathnames,

Table 2-1. Input Pathname and Qutput Pathname Combinations

Human Interface

Inpath-list Outpath-list Action

single pathname single pathname one—for-one match
single pathname list of pathnames error

single pathname wild-card pathname error

single pathname list of wild cards error

single pathname pathname to directory one-for-one match
list of pathnames single pathname concatenate

list of pathnames list of pathnames one~for—-one match
list of pathnames wild-card pathname error

list of pathnames list of wild cards error

list of pathnames pathname to directory one—-for-one match
wild-card pathname single pathname concatenate
wild-card pathname list of pathnames error

wild-card pathname wild-card pathname one—for—-one match
wild-card pathname pathname to directory one-for—one match
wild-card pathname list of wild cards error

list of wild cards single pathname concatenate

list of wild cards list of pathnames concatenate

list of wild cards wild-card pathname concatenate

list of wild cards list of wild cards one-for-one match
list of wild cards pathname to directory one—-for-one match

Operator 2-29

USING THE HUMAN INTERFACE

lists of pathnames, a wild-card pathname, or lists of wild-card
pathnames. Table 2-1 lists the possibilities and describes the Human
Interface's action in each instance. The following sections discuss the

Human Interface's actions in more detail.

One-For-One Match

The combinations in Table 2-1 that are marked "one-for-one match” are
those in which each element in the inpath-list is matched with an element
of the outpath-list. An example of this is the command:

COPY A*, B* TO C*, D*

In this case, the Human Interface copies all files beginning with the
character "A" to corresponding files beginning with the character "C".
When it finishes this operation, it advances past the comma to the next
set of pathnames (copies all files beginning with "B" to corresponding
files beginning with "D").

Concatenate

The combinations in Table 2-1 that are marked "concatenate" are those in
which there are multiple input pathnames that correspond to a single
output pathname. In this situation, the Operating System automatically
appends the remaining input files to the end of the specified output
file, regardless of the preposition you specify.

This allows you to combine one—for-one file operations (as in TO or OVER
preposition) with file concatenation (as in the AFTER preposition) in a
single command, and thus avoid entering an extra command to perform a
separate concatenation operation. The following example explains this
situation.

Assume that in a COPY command, you use the TO preposition and specify the
following input and output pathnames:

COPY A,B,C TO D
When the Human Interface processes the command line, it copies file "A"

to file "D" and appends files "B" and "C" to the end of file "D" as
follows:

A TO D
B AFTER D
C AFTER D

Notice that this concatenation occurs only when there are multiple
elements in the inpath-list that correspond to a single element of the
outpath-list. This means that the following commands are invalid:

Operator 2--30

USING THE HUMAN INTERFACE

COPY A, B, C TO D, E 3 INVALID COMMAND

COPY A*, B*, C* TO D¥*, E* s INVALID COMMAND

Error Conditions

The combinations in Table 2-1 that are marked "error" indicate invalid
operations. For these combinations, the Human Interface returns an error
message without performing the requested operation.

OTHER PARAMETERS

Most commands allow you to enter parameters other than inpath-lists,
outpath-lists, and prepositions. These other parameters are known as
keyword parameters, because you must enter a particular word, called a
keyword, to obtain the additional or extended services provided by the
parameter.,

For example, the DIR command (described in Chapter 3) lists the contents
of a directory. You can enter several different keyword parameters to
specify the amount of information displayed and the format of the
display. A command such as:

DIR :SYSTEM: EXTENDED

displays the contents of the :SYSTEM: directory in extended format. You
could substitute other keywords such as SHORT or LONG to obtain different
formats.

The command descriptions in Chapter 3 list the keyword parameters
available with each command. However, the descriptions list the complete
names for the keywords. When you use keywords, you can enter their
complete names or you can enter only as many characters as are necessary
to uniquely identify the keyword. For example, you could enter the
previous command as:

DIR :SYSTEM: E
For the DIR command, the character E uniquely identifies the EXTENDED

parameter. Other keywords might require additional characters to make
them unique.

Some keyword parameters also require an associated value. An example of
this is the FORMAT command (described in Chapter 3), which prepares
secondary storage volumes for iRMX 86 use. A command such as:

FORMAT :F1:TEST FILES = 60

Operator 2-31

USING THE HUMAN INTERFACE

formats a volume on device :Fl: and sets up the volume to contain at most
60 files. The keyword in this command (FILES) has an associated value
(60). Although this example and the descriptions in Chapter 3 use the

equal sign (=) to associate keywords and values, there are actually two
ways to do this. They are:

keyword = value
keyword (value)

The blanks are optional. You can use either method when entering Human
Interface commands.

SYSTEM MANAGER

The multi-access Human Interface supports a user called the system
manager. The system manager's primary purpose is to maintain the
multi-access configuration files. The system manager can modify these
files to add or delete user IDs, add or delete terminals, and change
terminal or user characteristics (refer to the iRMX 86 CONFIGURATION
GUIDE for more information). For security reasons, no user other than
the system manager can access these files.

In addition, the system manager has a spacial user ID which gives that
user privileges that other users do not have. The system manager:

° Has read access to all data files and list access to all
directories.

° Can change the access rights of any file, regardless of the
file's owner.

e Can detach devices attached by any user.

® Can delete any user from the sysitem.

Any operator can become the system manager by invoking a Human Interface
command called SUPER. This command (which requires entering a password)
changes the operator's user ID from its normal value to that of the
system manager. Once an operator invokes SUPER, that operator has all
the powers of the system manager. Refer to Chapter 3 for more
information about the SUPER command.

k&%

Operator 2--32

CHAPTER 3
HUMAN INTERFACE COMMANDS

This chapter presents the commands in alphabetical sequence without
regard for functional organization. The Human Interface Command
Dictionary (Table 3-1) also lists a functional grouping of the commands
for fast reference.

The commands described in this chapter are supplied by Intel for iRMX 86
Operating Systems that are configured with the Human Interface. If you
are a new user of the Human Interface, it is suggested that you review
the information on file-naming conventions and invocation considerations
in Chapter 2 before reading this chapter.

This chapter does not describe how to specify the names of the devices
and directories that contain the Human Interface commands. This is
because during the Human Interface configuration process you can specify
a number of directories that the Human Interface automatically searches
for commands. If you place your Human Interface commands in one of these
directories (normally the :SYSTEM: directory), you can invoke the
commands by entering only their names. However, if your commands reside
in a directory that the Human Interface does not search automatically, or
if you have multiple commands with the same name in different
directories, you can use the complete pathname for the command. For
example, if the DIR command resides in directory COMMANDS on device :F6:
(a directory not normally searched by the Human Interface), you can
invoke the command by entering:

:F6:COMMANDS /DIR

Refer to the iRMX 86 CONFIGURATION GUIDE for more information about Human
Interface Configuration.

ERROR MESSAGES

Each command can generate a number of error messages which indicate
errors in the way you specified the command. The messages that apply to
a specific command are listed with that command. However, the following
are general error messages that can appear with many of the commands:

° command not found
There is no file whose pathname is the same as the command name

you specified, nor can the Human Interface find the file in any
of the directories it automatically searches.

Operator 3-1

HUMAN INTERFACE COMMANDS

{logical name)>, device does not belong to you

The device you specified was originally attached by a user other
than WORLD or you.

{pathname>, file does not exist

The pathname you specified does not represent an existing file.

{pathname>, invalid file type

You specified a data file for an operation that required a
directory, or vice versa.

{logical name>, invalid logical name

The logical name you specified contains unmatched colons, is
longer than 12 characters, or contains invalid characters.
{pathname>, invalid pathname

The pathname you specified contains invalid characters or a
component of the pathname (other than the last one) does not
exist or does not represent a directory.

<logical name>, is not a device connection

The logical name you specified does not represent a connection to
a physical device.

<logical name>, logical name does not exist

The logical name you specified does not exist.

parameters required

The command you specified cannot be entered without parameters.

program version incompatible with system
The command and the Operating System are not compatible. The

command expects to obtain information from internal tables that
are not present. Therefore the command cannot run successfully.

{control>, unrecognized control

The parameter you entered is not valid for the specified command.

Operator 3-2

HUMAN INTERFACE COMMANDS

° <{exception value> : <exception mnemonic>, while loading command

The Operating System encountered an exceptional condition while
attempting to load the command into memory from secondary
storage. The message lists the exception code encountered.

o <exception value> : <exception mnemonic>
An operational error occurred during the execution of the
command. The <exception value> and <exception mnemonic> portions
of the message indicate the exception code encountered.

° {parameter>, <exception value> : <exception mnemonic>
The command encountered an exceptional condition while attempting
to process the <parameter> portion of the command. The

<exception value)> and <exception mnemonic> portions of the
message indicate the exception code encountered.

COMMAND SYNTAX SCHEMATICS

The syntax for each command described in this chapter is presented by
means of a "railroad track” schematic, with syntactic elements scattered
along the track. Your entrance to any given schematic is always from
left to right, beginning with some command name entry.

Elements shown in uppercase characters must be typed in a command line
exactly as shown in the command schematics except that you can type them
either in uppercase or lowercase characters; the Human Interface makes no
distinction between cases in alphabetic characters. Syntactic elements
shown in lowercase characters are generic terms, which means that you
supply the specific item, such as the pathname for a file.

The vertical dotted line separates the position-dependent parameters from
those that are position-independent. Parameters to the left of the
dotted line must be entered in the order listed (from left to right).
Parameters to the right of the dotted line can be entered in any order
(as long as they obey the rest of the syntax).

The example that follows shows all the possible paths through a railroad
track schematic. Notice that the main track goes through required
elements in a given command.

"Railroad sidings" go through optional parameter elements. In some
cases, you have a choice of going through one of several possible sidings
before returning to the main track. 1In still other cases, the main track
itself diverges into two separate tracks, which means that you must
select one parameter or the other but not both.

Operator 3-3

(START)

In this

Ceommana () ©
N/
x-224
example:
A is a required element. It is position-dependent; it must be

entered first.

Either B or C is required but not both. These elements are also
position—dependent. Whichever element you enter must follow A
immediately.

D, E, or F are all optional but only one can be selected. These
are position—independent elements. If you select one of these
elements, you can enter it before or after G.

G is required. It is a position-independent parameter. You can
enter it before or after D, E, or F.

Operator 3-4

Table 3—-1. Human Interface Command Dictionary

Command Synopsis Page
File Management Commands

ATTACHFILE Associates a logical name with an existing file. 13
COPY Creates new data files, or copies files to

other pathnames. 24
CREATEDIR Creates one or more new directories. 28
DELETE Deletes data files and empty directories from a

volume on secondary storage. 33
DETACHFILE Removes the association of a logical name with

a file. 38
DIR Lists a directory's filenames (and optionally,

file attributes). 40
DOWNCOPY Copies files and directories from an iRMX 86

volume mounted on a secondary storage device to

an ISIS-II secondary storage device. 53
PERMIT Grants or rescinds user access to a file. 83
RENAME Renames files or directories. 88
UPCOPY Copies files and directories from an ISIS-II

secondary storage device to an iRMX 86 volume

mounted on a secondary storage device. 107

Volume Management Commands

ATTACHDEVICE Attaches a new physical device to the system

and catalogs its logical name in the root

job's object directory. 7
BACKUP Copies named files to a backup volume. 16
DETACHDEVICE Removes a physical device from system use and

deletes its logical name from the root job's

object directory. 35
DISKVERIFY Verifies the data structures of named and

physical volumes. 48
FORMAT Formats an iRMX 86 volume. 56

Operator 3-5

Table 3-1. Human Interface Command Dictionary (continued)

Command Synopsis Page
Volume Management Commands (continued)

LOCDATA Puts relocatable programs in absolute locations. 71
RESTORE Copies files from a backup volume to a named

volume. 91

Multi-Access Commands

INITSTATUS Displays the initialization status of Human

Interface terminals. 67
JOBDELETE Deletes a running interactive job. 69
LOCK Prevents the Human Interface from automatically

creating an interactive job. 75
SUPER Changes the operator's user ID into that of

the system manager (user ID 0). 102

General Utility Commands

DATE Sets or resets the system date, or displays

the current date. 29
DEBUG Transfers control to the iSDM 86 or iSDM 286

monitor to debug an iRMX 86 application program. 31
LOGICALNAMES | Lists all the logical names within the system 77
MEMORY Displays the memory available to the user. 80
PATH Shows the pathname for a file. 81
SUBMIT Reads, loads, and executes a string of commands

from secondary storage instead of the keyboard. 98
TIME Sets or resets the system clock, or displays

the current system time. 105
VERSION Displays the version numbers of commands. 110
WHOAMI Displays the current ID associated with the user. 112

Operator 3-6

ATTACHDEVICE

| ATTACHDEVICE

This command attaches a physical device to the Operating System and
associates a logical name with the device. The command catalogs the
logical name in the root object directory, making the logical name
accessible to all users. The format of the command is as follows:

|
|
— (B —
|

INPUT PARAMETERS

physical name

AS

:logical name:

NAMED

PHYSICAL

==

x-192

Physical device name of the device to be attached
to the system. This name must be the name used in
one of the Basic I/0 System's Device Unit
Information Blocks (DUIB), as defined at system
configuration time (see Table 3-2).

Preposition; required for the command.

A 1- to l2-character name, that represents the
logical name to be associated with the device.
Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons.

Specifies that the volume mounted on the device is
already formatted for NAMED files. Examples of
volumes that can contain named files are diskettes
or hard disk platters. If neither NAMED nor
PHYSICAL are specified, NAMED is the default. See
the FORMAT command in this chapter for a further
description of NAMED files.

Specifies that the volume mounted on the logical
device is considered to be a single, large file.
Examples include line printers and terminals. See
the FORMAT command in this chapter for a further
description of PHYSICAL volumes.

Operator 3-7

ATTACHDEVICE

WORLD Specifies that user ID WORLD (65535 decimal) is the
owner of the device. This implies that any user can
detach the device. If you omit this parameter, your
user ID is listed as the owner of the device. In this
case, only you and the system manager can detach the
device.

DESCRIPTION

ATTACHDEVICE attaches a device to the system and catalogs a logical name
for it in the root job's object directory. The logical name is the means
by which all users can access the device. Devices must have their
characteristics listed in the Basic 1/0 System's Device Unit Information
Block (DUIB) at configuration time before they can be attached with the
ATTACHDEVICE command.

Table 3-2A and Table 3-3B list the physical device names normally used
with the Basic I/0 System. Your system might support a subset of these
devices or it might support devices not listed. If it supports the
devices listed, it might support them under different names. Therefore,
consult the person who configured your system to determine the correct
device names for your system.

One frequent use of the ATTACHDEVICE command is to attach a new device,
such as a new disk drive or a line printer, without having to reconfigure
portions of the Operating System. (See the DETACHDEVICE command in this
chapter for a description of how to detach a device from the system
without reconfiguring.)

Unless you have a user ID of WORLD (65535) or specify the WORLD
parameter, once you attach a device, only you and the system manager can
detach the device. This limitation prevents users from detaching devices
belonging to other users and prevents you from accidentally detaching
system volumes. However, if you have a user ID of WORLD or specify the
WORLD parameter, any device that you attach can be detached by any other
user. Refer to the DETACHDEVICE commanc for more information.

When the device attachment is completed, the ATTACHDEVICE command
displays the following message:

<{physical name>, attached as <logical name>, id = <{user id>
where <physical name> and <{logical name> are as specified in the

ATTACHDEVICE command and <user id> is your user ID (or WORLD, if you
specify the WORLD parameter).

Operator 3-8

ATTACHDEVICE

Table 3-2. Suggested Physical Device Names
Physical
Device Device Unit Bytes per
Names Controller Type Number Sides Density Sector
Flexible Disk Drives: 8 Inch Drives
FO 204 Shugart SA800 0 1 Single 128
Fl 204 Shugart SA800 1 1 Single 128
FXO0 204 Shugart SA800 0 1 Single 512
FX1 204 Shugart SA800 1 1 Single 512
AFO 208 Shugart SA800 0 1 Single 128
AF1 208 Shugart SA800 1 1 Single 128
AFDO 208 Shugart SA800 0 1 Double 256
AFD1 208 Shugart SA800 1 1 Double 256
AMFO 208 Shugart SA410 0 1 Double 256
AMF1 208 Shugart SA410 1 1 Double 256
AFDDO 208 Shugart SA850/SA851 O 2 Double 256
AFDD1 208 Shugart SA850/SA851 1 2 Double 256
AFDXO 208 Shugart SA850/SA851 O 2 Double 1024
AFDX1 208 Shugart SA850/SA851 1 2 Double 1024
WFO 218(A) Shugart SA800 0 1 Single 128
WF1l 218(A) Shugart SA800 1 1 Single 128
WFDO 218(A) Shugart SA800 0 1 Double 256
WFD1 218(A) Shugart SA800 1 1 Double 256
WMFO 218(A) Shugart SA410 0 1 Double 256
WMF1 218(A) Shugart SA410 1 1 Double 256
WFDDO 218(A) Shugart SA850/SA851 O 2 Double 256
WFDD1 218(A) Shugart SA850/SA851 1 2 Double 256
WFDXO 218(A) Shugart SA850/SA851 O 2 Double 1024
WFDX1 218(A) Shugart SA850/SA851 1 2 Double 1024
Flexible Disk Drives: 5 1/4 Inch Drives
AMFDXO0 208 Shugart 450 0 2 Double 512
AMFDX1 208 Shugart 450 1 2 Double 512
AMFDYO 208 Shugart 460 0 2 Double 512
AMFDY1 208 Shugart 460 1 2 Double 512
PMFO* 218A Shugart 460 0 2 Double 512
PMFDX0* 218A Shugart 450 0 2 Double 512
PMFDX1* 218A Shugart 450 1 2 Double 512
PMFYO* 218A Shugart 460 0 2 Double 512
PMFY1#* 218A Shugart 460 1 2 Double 512
WMFDXO 218(A) Shugart 450 0 2 Double 512
WMFDX1 218(A) Shugart 450 1 2 Double 512
WMFDYO 218(A) Shugart 460 0 2 Double 512
WMFDY1 218(A) Shugart 460 1 2 Double 512
* Mounted on processor board. (A) = either 218 or 218A controller.

Operator 3-9

ATTACHDEVICE

Table 3-2., Suggested Physical Device Names (continued)
Physical
Device Bytes per
Names Controller Device Type Unit Number Sector
Hard Disk Drives
DO 206 0 512
D1 206 1 512
DSO 206 0 128
DS1 206 1 128
Winchester Disk Drives
wo 215 generic drive 0 1024
Wl 215 generic drive 1 1024
IWO 215 Priam 3450 (8") 0 1024
MwO 215 Memorex 101 (8") 0 1024
PWO 215 Pertec D80OO0 (8™) 0 1024
SwWO 215 Shugart SA1002 (8") 0 1024
CMO 215 CMI 5412 (5 1/4") 0 1024
CM1 215 CMI 5412 (5 1/4") 1 1024
CMBO 215 CMI 5419 (5 1/4") 0 1024
CMB1 215 CMI 5419 (5 1/4") 1 1024
Storage Module Disk (SMD) Drives
SMDO 220 0 1024
SMD1 220 1 1024
Bubble Memory Device
BXO 251 0 256
BO 254 0 256
Others

BB Byte bucket (already attached)

STREAM Stream file device (already attached)
T(n)* terminal

LP line printer

* Physical device names for terminals begin with the letter °T° and are

followed by a single digit.

Operator 3-10

ATTACHDEVICE

Table 3-3. Controllers Connected to the iSBC® 186/03
SASI/SCSI Interface

Device Manufacturer Unit Bytes Per
Name And Model Number Sector
SAQ * generic controller 0 512
SCO * generic controller 0 512
ATSO ** | Adaptec ACB-4000 0 512
XESO ** | Xebec S1l410 0 512
FJSO Fujitsu M2312K 0 512
SHSO ** Shugart SA1610-2 0] 512

* SAO is the SASI generic device name. SCO is the SCSI generic device
name.
** These controllers support the ST506 Winchester Interface.

ERROR MESSAGES

{device name>, cannot attach device

There 1is a hardware problem or for SCSI an incorrect
configuration.

{device name>, cannot be ATTACHED as <type> device

The device specified by <device name> cannot support the type of
files specified by <type> (NAMED or PHYSICAL). ATTACHDEVICE does
not attach the device. For example, the NAMED option is not
valid for a device such as a line printer.

{device name>, device already attached

The specified device has already been attached. ATTACHDEVICE
does not attach the device.

{device name>, device does not exist

The physical device name you specified does not correspond to a
name the Basic I/0 System recognizes. That is, the person who
configured your application system did not specify <device name>
as the name of a device-unit during configuration of the Basic
I1/0 System. ATTACHDEVICE does not attach the device.

Operator 3-11

ATTACHDEVICE

{logical name>, logical name already exists

The specified logical name is already cataloged in the root job's
object directory. ATTACHDEVICE does not attach the device.

0085 : ESLIST, too many device names

You tried to attach more than one physical device with a single
ATTACHDEVICE command. ATTACHDEVICE does not attach more than one
device.

{logical name>, volume is not a NAMED volume

ATTACHDEVICE attempted to attach a device as a named device and
discovered a physical volume on the device. However,
ATTACHDEVICE does attach the device. You can use the device
after formatting the volume as a named volume or after inserting
a named volume in the device.

<logical name>, volume not formatted
{logical name>, <exception value> : <exception mnemonic>

ATTACHDEVICE attempted to attach a device as a named device and
encountered an I/0 error while searching for the volume's root
directory. This usually indicates that the volume is not
formatted. However, ATTACHDEVICE does attach the device.

{logical name>, volume not mounted

The specified device does not contain a volume. However,
ATTACHDEVICE does attach the device.

<exception value> : <exception mnemonic>, while collecting device
name

ATTACHDEVICE encountered an exceptional condition while parsing
the device name from the command line. This message lists the
resulting exception code. ATTACHDEVICE does not attach the
device.

{exception value> : <exception mnemonic>, while collecting
logical name
ATTACHDEVICE encountered an exceptional condition while parsing

the logical name from the command line. This message lists the
resulting exception code.

Operator 3-12

ATTACHFILE

This command allows you to associate a logical name with an existing
file. The command catalogs the logical name in your global object
directory. The format of this command is as follows:

pathname ‘logical name:
x-193

INPUT PARAMETERS

pathname Pathname of the file to which the Human Interface
associates a logical name.

:logical name: 1- to l2-character name that represents the
logical name to be associated with the file.
Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons. If you omit this parameter, the default
logical name is :$:.

If you enter the ATTACHFILE command without parameters, the default is:

ATTACHFILE :HOME: AS :§:

DESCRIPTION

The ATTACHFILE command allows you to associate a logical name with an
existing file. After making this association, you can use the logical
name, instead of the entire pathname, to refer to the file.

When the attachment is complete, ATTACHFILE displays the following
message:

{pathname>, attached AS <logical name>

where <pathname> and <logical name> are as specified in the ATTACHFILE
command.

ATTACHFILE makes the association between a file and a logical name by
cataloging a connection to the file in your global object directory (this
is normally the object directory of your interactive job). It catalogs
the connection under the name specified as the logical name. If there is
another connection cataloged in the object directory under the same
logical name, ATTACHFILE uncatalogs and deletes the previous connection
before cataloging the new one. If an object other than a connection

Operator 3-13

ATTACHFILE

ATTACHFILE

is cataloged in the directory under the specified logical name,

ATTACHFILE leaves the previous object as is, does not catalog the new
connection, and displays an error message to describe the situation.

Because ATTACHFILE catalogs the connection in your global object
directory, the logical name has effect only within your interactive job.
Therefore, several users can specify the same logical name without
affecting the others.

If you specify a pathname for a file but omit the logical name,
ATTACHFILE attaches the file as :$:. This allows you to change your
default prefix. Changing your default prefix can be useful when you want
to manipulate files that reside in a directory other than the one
specified by your original default prefix. For example, suppose you have
a file that you normally refer to as:

:PROG : SOURCE/PLM/ INTERRUPT/TEST.P86
You can change your default prefix with the command:

ATTACHFILE SOURCE/PLM/INTERRUPT
Then, you can refer to the file as simply:

TEST.P86

When you finish using the files in directory :PROG:SOURCE/PLM/INTERRUPT,
you can return your default prefix to its original setting by entering:

ATTACHFILE
This is the same as entering:
ATTACHFILE :HOME: AS :§:

tHOME: is a logical name that refers to the same directory as your
original default prefix. Therefore, you can change your default prefix
as much as you like with ATTACHFILE and return to the original setting by
making reference to :HOME:. However, you cannot use ATTACHFILE to change
the meaning of :HOME:. (Also, you canno: use ATTACHFILE to change the
meaning of :CIL: and :C0:.)

The logical name created with ATTACHFILE remains valid until one of the
following situations occur:

e A DETACHFILE command (described later in this chapter) dissolves
the association between file and logical name.

® The interactive session that specified the ATTACHFILE command
terminates processing. This event occurs when a user, in
response to the Human Interface prompt, enters a Control-Z
character to reinitialize the interactive job. In this case, the
Operating System deletes the interactive job and then recreates
it.

Operator 3-14

ATTACHDEVICE

A task deletes the connection to the file via a Basic I/0 System
or Extended I/0 System call (refer to the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL or the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL for more information about connections). In
this instance, the logical name remains cataloged in the global
directory, but the connection to which it refers does not exist.

A user forcibly detaches the volume containing the file via the
DETACHDEVICE command (described later in this chapter).

A user removes the volume from the drive.

ERROR MESSAGES

{logical name>, list of logical names not allowed

You entered more than one logical name as input to ATTACHFILE.

{pathname>, list of pathnames not allowed

You entered more than one pathname as input to ATTACHFILE.

<logical name>, logical name not allowed

You attempted to attach a file using a logical name :HOME:, :CI:,
or :C0:. You cannot change the meaning of these logical names.
{logical name>, not a file connection

The logical name you specified, <logical name>, is already
cataloged in object directory of the session and does not
represent a connection object.

<{pathname>, not allowed as default prefix

You attempted to attach a physical or stream file as your default
prefix (:$:). Only named files are valid.

{logical name>, too many logical names

Your global object directory is full. Therefore ATTACHFILE is
unable to catalog the file's name in the object directory.

Operator 3-15

BACKUP

BACKUP

This command saves files on a named volume by copying them to a physical
volume which serves as a backup storage device. This command provides a
way of saving a large volume (a winchester disk, for example) onto a
number of smaller volumes such as diskettes or onto another mass storage
device such as a tape drive. Later, you can use the RESTORE command
(described later in this chapter) to retrieve these files and copy them
to a named volume.

:backup device:

C

INPUT PARAMETERS

pathname Pathname of a file on the source volume. BACKUP
saves all the files starting from this point on
the file tree. If you specify the logical name of
the device only, BACKUP saves all files in the
volume, beginning with the root directory. If you
specify a file and not a directory, then only the
specified file is saved.

DATE BACKUP saves all files created or modified on or
after the date and time specified with the
DATE/TIME parameters. Lf the DATE parameter is
omitted, the date defaults to the current system
date. If both date and time parameters are
omitted (DATE/TIME), then the date and time
default to 1/1/78 and 00:00:00.

mm/dd/yy Form used to specify the DATE.
mm Numerical designation for the month. (For
example: 1 represents January, 2 represents

February, etc.). Must be a digit.

dd Numerical designation for the day of the
month. Value must be in digits.

year Designation for the year. You enter this
as a two digit number, as follows:

Operator 3-16

x-667

TIME

hh:mm: ss

<name>=name

FORMAT

QUERY

entered year actual year

0 through 77 2000 through 2077

78 through 99 1978 through 1999
100 through 1977 error
1978 through 2099 1978 through 2099
2100 and up error

TIME is used in conjunction with the DATE
parameter to determine which files to
save. If TIME is omitted, the default is
00:00:00. BACKUP saves only those files
modified since the specified date or time.

Format for TIME parameter:

hh Hours specified as 0-24
mm Minutes specified as 0-59
ss Seconds specified as 0-59

Name that is given to the backup volume.
If you have a set of physical volumes,
this name applies to the set as a whole.

Causes BACKUP to format each volume
before writing to it. Interleave is set
to one. FORMAT should be inserted
whenever a new volume is used.

Causes the Human Interface to prompt for
permission to save each file. The Human
Interface prompts with one of the
following queries:

pathname, BACKUP Data File?
or
pathname, BACKUP Directory?

Enter one of the following responses to
the query:

ENTRY Action

Yory Save the file.

E or e Exit from BACKUP.
Rorr Continue saving files

without further query.

N or n If data file, do not save
the file; if directory
do not save the
directory or any file in
in that part of the
directory tree. Query for
the next file, if any.

Operator 3-17

BACKUP

BACKUP

OUTPUT PARAMETERS

TO

OVER

AFTER

:backup device:

DESCRIPTION

Other Error message and
reprompt.

Causes BACKUP to send the processed
output to new backup volume. This
preposition also causes BACKUP to read
the volume label from each newly mounted
physical volume in an attempt to
determine the volume type. This is an
attempt to ensure that the volume is
compatible with any previously mounted
volumes in the backup set.

Causes BACKUP to begin writing on each
fresh volume without checking the label
for compatibility. BACKUP writes over
any previous files or directories on the
backup volume.

Causes BACKUP to search the mounted
volume looking for the end of a previous
backup operation. BACKUP then appends
the file or directory after the previous
backup operation. If more volumes are
needed to complete the backup operation,
then BACKUP behaves as if the TO
preposition had been specified for
subsequent volumes. If FORMAT was
specified, BACKUP formats any new volumes
required to finish the backup operation.

The logical name of the device to which
BACKUP copies the files.

BACKUP is a utility which saves named files on backup volumes such as

tapes or diskettes.

For BACKUP to save files from a named volume, you

must have read access to the files and to the directories that contain

themn.

BACKUP saves the following information for each file:

° File name
° Access list, including owner
° Extension data

° File granularity

® Contents of the file

Operator 3-18

BACKUP

When you enter BACKUP, the command displays the following sign—-on message:

iRMX 86 BACKUP, Vx.y
Copyright <year> Intel Corporation

where Vx.y is the version number of the utility.

Once the command line has been scanned the following message is displayed
to indicate what TIME and DATE has been used to save files:

All Files Modified After <date> , <time> Will Be Saved

where <{date> and <time> are the values you specified in the date and time
parameters (or defaults). BACKUP then prompts you to mount the backup
volume.

When you use the BACKUP command, you do not have to format a volume
previous to issuing the command. BACKUP has a FORMAT parameter which you

can use to format any volume while a backup operation is occurring.

Whenever BACKUP requires a new backup volume, the command displays the
following message:

{device>, Mount Backup Volume [(name) #<nn>), Enter Y to Continue:
where <device> is the logical name of the backup device, (name) is the
name of the physical volume set, and nn is the identifying number of the
requested volume. In response to this message, you place a volume in the
backup device and enter one of the following responses:

Entry Action

Y, v, R or r Continue the backup process.

E or e Exit from the BACKUP command.
Any other Invalid entry; reprompt for entry.
character

BACKUP continues prompting for a backup volume until you supply one that
it can access.

If BACKUP detects that a volume cannot be read, that a volume is named
volume, or that the volume i1s a physical volume containing data, the
command informs you with one the following messages:

{device>, Recognized Volume

{device>, Volume Not Correctly Formatted

<{device>. Backup Volume <name> #<nn>, <date>, <time> Mounted
<{device>, Named Volume, <name> Mounted

where <{device> is the logical name of the backup device, <name> is the

Operator 3-19

BACKUP

volume name as recorded in the label, <nn> is the volume number of the
backup volume, and <date> and <time> are the date and times when the last
backup operation was performed. If the situation is appropriate, then
the command may prompt you by a request to FORMAT or to OVERWRITE the
mounted volume in the following way:

<{device>, Enter Y to Overwrite/Format:

In response to this prompt, you enter one of the following:

Entry Action
Yory Use the volume as a backup volume.
R orr Use the volume and do not query for permission

again. This is equivalent to specifying 'OVER'
on the command line for the rest of the BACKUP

operation.
E or e Exit from the BACKUP command.
N or n Reprompt for another volume.
Other Invalid Response-—-reprompt for entry.

When BACKUP has finished has finished a backup routine, the command
prints the following message:

Physical Volume (name), #nn, Complete

After the backup operation is complete, the number of data files and

directories which were saved are displayed for you in the following
format:

nn Data File[s] Saved
nn Director[y] [ies] Saved

BACKUP [Not] Complete

ERROR MESSAGES

If the error message requires a response, enter one of the following:

Entry Action

Y, y, Ror r Continue the backup process.

E or e Exit from the BACKUP command.

Any other Invalid entry; reprompt for entry.
character

Operator 3-20

BACKUP

<backup device>, backup operation not completed

When BACKUP requested a new backup volume, you specified an "E"
to exit BACKUP. This message is a reminder that the backup
operation is not complete. The last file on the last backup
volume may be incomplete.

<backup device>, backup volume #<nn>, <date>, <{time>, mounted
<backup device>, enter Y to overwrite:

The backup volume you supplied already contains backup
information. BACKUP lists the logical name of the backup device,
the volume number, and the date on which the original backup
occurred. It overwrites this volume if you enter Y, y, R, or r.

<backup device>, cannot attach volume
<backup device>, <exception value> : <exception mnemonic>
<backup device>, mount backup volume #<nn>, enter Y to continue:

BACKUP cannot access the backup volume. This could be because
there is no volume in the backup device or because of a hardware
problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. BACKUP
continues to issue this message until you supply a volume that
BACKUP can access.

<pathname>, <exception value> : <{exception mnemonic>, cannot back
up file

For some reason BACKUP could not copy a file from the named
volume, possibly because you do not have read access to the file
or because there is a faulty area on the named volume. The
message lists the pathname of the file and the exception code
encountered. BACKUP copies as much of the file as possible and
continues with the next file.

<backup device>, device in use
<backup device>, <exception value> : <exception mnemonic>
The device you specified for the backup device is the same device

that contains your input pathname. Continuing would result in
damage to the files on the input volume.

<backup device>, error writing volume label
<backup device>, <exception value> : <exception mnemonic>

Operator 3-21

BACKUP

<backup device>, input and output are on same device

The device you specified for the backup device is the same device
that contains your input pathname. Continuing would result in
damage to the files on the input volume.

<backup device>, invalid backup device

The logical name you specified for the backup device was not a
logical name for a device. Examples of invalid names are :CI:,
:CO:, and :HOME:.

<{exception value> : <exception mnemonic>, invalid DATE or TIME
For either the DATE or TIME parameter, you entered a value that
is out of range (such as 31/02/81 or 26:03:62). The message
lists the exception code encountered as a result of this entry.

invalid output specification

You did not supply the logical name of the backup device when you
entered the BACKUP command.

<backup device>, mount backup volume #<nn>, enter Y to continue:

When BACKUP attempted to write a label on the backup volume, it
encountered an error condition, possibly because of a faulty area
on the volume, or because the volume is write—protected. The
second line of the message indicates the iRMX 86 exception code
encountered. BACKUP reprompts for a different backup volume.

<backup device>, named volume, {volume name>, enter Y to
overwrite:

The backup volume you supplied is a named volume. BACKUP lists
the logical name of the device containing the volume and the
volume name. It overwrites this volume if you enter Y, y, R, or
r'

<backup device> not correctly formatted, enter Y to format:

The backup volume was not correctly formatted.

{exception value> : <exception mnemonic>, requested date/time
later than system date/time

Either the date and time you specified in the BACKUP command are

in error or you did not set the system date and time.

Operator 3-22

BACKUF

<{pathname>, too many input pathnames

You attempted to enter a list of pathnames or use a wild-carded

pathname as the input pathname. You can enter only one pathname
per invocation of BACKUP.

<{pathname>, too many output pathnames

You attempted to enter a list of logical names for the backup
device. You can enter only one output logical name per
invocation of BACKUP.

<{pathname>, unable to complete directory

BACKUP encountered an error when accessing a file in the
<{pathname> directory. It skips the rest of the files in the
directory and goes on to the next directory. This error could
occur if you do not have list access to the directory.

<backup device>, unrecognized volume, enter Y to overwrite:

The backup volume you supplied is a formatted volume, but it has
a label that is not readable. BACKUP will overwrite this volume
if you enter Y, y, R, or r.

<backup device>, volume not formatted

<backup device>, mount backup volume #<nn>, enter Y to continue:
The backup volume you supplied was not formatted. BACKUP

continues to issue this message until you supply a formatted
backup volume.

<backup device>, write error on backup volume
<backup device>, <exception value> : <exception mnemonic>

BACKUP encountered an error condition when writing information to
the backup volume. The second line of the message lists the
exception code encountered. This error is probably the result of
a faulty area on the volume.

Operator 3-23

COPY

This command reads data from the specified input source or sources and
writes the output to the specified destination file or files.

The format of the command is as follows:

L—(oueDJ
_oven = ——.—J

INPUT PARAMETERS

inpath-list

QUERY

x-317

One or more pathnames for the files to be copied.
Multiple pathnames must be separated by commas.
Separating blanks are optional. To copy files on
a one-for-one basis, you must specify the same
number of files in the inpath—list as in the
outpath—list.

Causes the Human Interface to prompt for
permission to copy each file. Depending on the
specified preposition (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

<{pathname>, copy TO <out-pathname>?

<{pathname>, copy OVER <out-pathname>?

<pathname>, copy AFTER <out-pathname>?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Y or y Copy the file.

E or e Exit from COPY command.

Rorr Continue copying files without

further query.
Any other Do not copy this file; go to the
character next file in the input list.

Operator 3-24

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath-list

DESCRIPTION

COPY

Writes the listed input files to named new
output files. The specified output file or
files should not already exist. If they do,
COPY displays the following message:

{pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over
the existing file. Enter an "N" (upper or lower
case) or a carriage return alone if you do not
wish to overwrite the existing file. In the
latter case, the COPY command will pass over the
corresponding input file without copying it, and
will attempt to copy the next input file to its
corresponding output file.

If you specify multiple input files and a single
output file, COPY appends the remaining input
files to the end of the output file.

Writes the input files over (replaces) the
existing output files on a one-for—one basis,
regardless of file size. If an output file does
not already exist, its corresponding input file
is written to a new file with the corresponding
output file name. If you specify multiple input
files and a single output file, COPY appends
the remaining input files to the end of the
output file.

Appends the input file or files to the current
data in the existing output file or files. If
the output file does not already exist, all
listed input files will be concatenated into a
new file with the listed output file name.

One or more pathnames for the output files.
Multiple pathnames must be separated by commas.
Separating blanks are optional. If you omit the
preposition and outpath—list parameters, COPY
displays the output at your console screen (TO
:CO:).

The COPY command can be used to perform several different operations.

Some of these 1nclude:

Operator 3-25

COoPY

e Creating new files (TO preposition).

° Copying over existing files or creating new files (OVER
preposition).

e Adding data to the end of existing files (AFTER preposition).

] Copying a list of files to another list of files on a
one-for-one basis.

. Concatenating two or more files into a single output file.

As each file is copied, the COPY command displays one of the following
messages:

<{pathname>, copied TO <out-pathname>
<{pathname>, copied OVER <out—pathname>
<{pathname>, copied AFTER <out-pathname>

When you copy files, the number of input pathnames you specify must
equal the number of output pathnames, unless you specify only one
output pathname. In the latter case, COPY appends the remainder of the
input files to the end of the ouput file. As each file is appended,
the following message is displayed on the console screen:

<{pathname>, copied AFTER <output-filed>

If you specify multiple output files, and there are more input files
than output files, or if you specify fewer input files than output
files, COPY returns an error message.

Also, if you specify a wild-card character in an output pathname, you
must specify the same wild-card character in the corresponding input
pathname. Other combinations result in error conditions.

You cannot successfully use COPY to copy a directory to a data file or
to another directory. Although a directory can be copied, the
attributes of the directory are lost. That is, the directory can no
longer be used as a directory. However, a file listed under one
directory can be copied to another directory. For example:

COPY SAMP/TEST/A TO :Fl:/ALPHA/BETA

This would copy the A data file to a different volume, directory, and
filename, where the new file's pathname would be :Fl:/ALPHA/BETA.

The user ID of the user who invokes the COPY command is considered the
owner of new files created by COPY. Only the owner can change the
access rights associated with the file (refer to the PERMIT command
later in this chapter).

Operator 3-26

COPY

When COPY creates new files, it sets the access rights and list of
accessors as follows:

. It sets the file for ALL access (delete, read, append, and
change).

° It sets the owner as the only accessor to the file.

Refer to the PERMIT command for more information about access rights
and the list of accessors.

ERROR MESSAGES
o <pathname>, output file same as input file

You attempted to copy a file to itself.

e <pathname>, UPDATE or ADD access required

Either you cannot overwrite the information in a file because
you do not have update access to it, or you cannot copy
information to a new file because you do not have add entry
access to the file's parent directory.

Operator 3-27

CREATEDIR

CREATEDIR

This command creates one or more iRMX 86 user directories. The format is
as follows:

CREATEDIR i;@—
T — —

x-318

INPUT PARAMETER
inpath-list One or more pathnames of the iRMX 86 directories
to be created. Multiple pathnames must be

separated by commas. Embedded blanks between
commas and pathnames are optional.

DESCRIPTION

CREATEDIR creates a directory with all access rights available to you,

the owner. That is, you can delete, list, add, and change the contents
of the directory you created with CREATEDIR. Other users (except the
system manager) have no access to the directory unless you use the PERMIT
command (described later in this chapter) to change the access rights and
list of accessors.

The following message is displayed if a directory is successfully created:

{directory—name>, directory created

You can create new directories that are subordinate to other directories.
For example:

CREATEDIR AB/DC/EF/GH
causes the newly-created directory GH to be nested within existing
directory EF, which in turn, is nested within directory DC, and so on.
The directories AB, DC, and EF must already exist before entering this

command.

You can check the contents of the directory at any time by using the DIR
command to list the directory (see the DIR command in this chapter).

ERROR MESSAGE
° {directory-name>, file already exists
The pathname of the directory to be created already exists.

Operator 3-28

DATE

This command sets a new system date or displays the current date. The

format is as follows:

INPUT PARAMETERS

dd

month

mm

year

QUERY

—Come >

dd month year

mm/dd/year

x-195

Two—digit number that specifies the day of the
month. Both digits are not required to set this l
parameter.

Designation for the month. You can enter the whole
name (such as AUGUST) or enough characters to
distinguish one month from another (for example, AU,
to distinguish AUGUST from APRIL). You can use this
form for specifying the month only when using the
"dd month year”" format.

Numerical designation for the month (for example: 1
represents January, 2 represents February, etc.).
You can use this form for specifying the month only
when using the "mm/dd/year” format. Both digits are
not required to set this parameter.

Designation for the year. You can enter this as a
two— or four-digit number, as follows:

entered year actual year

0 through 77 2000 through 2077
78 through 99 1978 through 1999
100 through 1977 error

1978 through 2099 1978 through 2099
2100 and up error

Causes DATE to prompt for the date by issuing the
following message:

DATE:

DATE continues to issue this prompt until you enter
a valid date.

Operator 3-29

DATE

DESCRIPTION

If you set one date parameter, you must set all three; there are no
default settings for individual date parameters. You must separate the
dd, month, and year entries with single blanks.

If you omit the date parameters, DATE displays the current date and time
in the following form:

dd mm yy, hhimm:ss

When the Operating System displays the date, it displays only the first
three characters of the month and the last two digits of the year. It
separates the hours, minutes, and seconds of the time with colons.

When you start up or reset the Operating System, the date is automatically
set to the last time you accessed the :SYSTEM: directory. You may then
reset the DATE setting to any acceptable value.

ERROR MESSAGES
o <date>, invalid date

You entered an invalid date. This error could result from
specifying a day that is invalid for the month you specified (such
as 31 FEB 82), entering characters for the year parameter that do
not fall into the legitimate ranges listed under the year
parameter, entering a month parameter that does not uniquely
identify the month, or entering invalid characters.

e <parameter>, invalid syntax

You specified both a date and the QUERY parameter in the DATE
command.

Operator 3--30

DEBUG

This command allows you to debug your iRMX 86 application jobs if your
system is configured with the iSDM 86, iSDM 286, or iSBC 957B monitors.

——(DEBUG pathname
~—
parameter-string
x-196

INPUT PARAMETERS

pathname Pathname of the file containing the application
program to be debugged.

parameter—-string String of required, optional, and default

parameters that can be used in the command line to
load and execute the application program.

DESCRIPTION

DEBUG loads your specified application program into main memory and
transfers control to the system monitor. You can then use the monitor to
single~step, display registers, and set breakpoints within the program.
Refer to the iSDM 86 SYSTEM DEBUG MONITOR REFERENCE MANUAL and the iSDM
286 SYSTEM DEBUG MONITOR REFERENCE MANUAL for more information.

When you invoke the DEBUG command, it displays the following message:
DEBUG file, <pathname>

where <{pathname> is the pathname of the file containing the application
job to debug. Then DEBUG loads the application job and displays
information about the location of the job's segments and groups. Figure
3-1 shows an example of this output.

As Figure 3-1 shows, the first line of the display lists the token for
the job that was created. The remaining lines list the base portions of
all segments and groups assigned by LINK86 when the code was linked. The
S(n) and G(n) values are the same as those that appear on the link map.
Therefore, you can match the base values shown in this display with the
offset values shown in the link map to determine the exact location of a
symbol listed in the link map. Refer to the iAPX 86, 88 FAMILY UTILITIES
USER'S GUIDE for information about LINK86 and the link map.

Operator 3-31

SEGMENT AND GROUP MAP FOR JOB:

A88F

NAME BASE NAME BASE NAME BASE NAME BASE NAME BASE
S(l) 9E4E S(2) 9E32 S(3) O9CFF S(5) 9CEC S(6) A863
S(7) A229 S(8) A84D S(9) Al52 S(13) 9cI1 S(15) 9¢85
S(17) 9c67 S(18) 9c5¢

G(1l) A229 G(2) Al52

Figure 3-1. Sample DEBUG Display

When DEBUG executes, the monitor in your system disables interrupts.
This causes the time—keeping function tc stop when code is not
executing. This slowing of the timing function:

e Affects the ability of the Nucleus to execute time—out tasks that
have provided time limits to system calls, such as RECEIVESUNITS
and RECELVESMESSAGE.

e Affects the ability of the Basic I/0 System to keep track of the
time-of-day and write its data structures to secondary storage.

Unless you use the monitor's NQ command to single-step through code, the
system monitor cannot tolerate interrupts while single-stepping. The NQ
comnand disables interrupts while single—stepping, allowing you to
single~step through code without being interrupted by the system clock.

When DEBUG is invoked to debug an application program, it loads the
application program into its own dynamic memory. As a result of this
process, the application program obtains dynamic memory from the memory
pool of DEBUG, not from the memory pool of the user session. Because
DEBUG uses a different set of default values than the CLI, it is possible
that the program may behave differently than when it is run independently.

ERROR MESSAGE
o <exception value> : <exception mnemonic> command aborted by EH

While processing, the DEBUG command encountered an exceptional

condition. Therefore, the Human Interface's exception handler
aborted the command. The message lists the exception code that
occurred.

Operator 3-32

DELETE

This command removes
storage. The format

INPUT PARAMETERS

inpath-list

QUERY

DESCRIPTION

data files and empty directories from secondary
is as follows:

"\,
DELETE inpath-list /1 (

x-319

One or more pathnames for the named data files or
empty directories to be deleted. Multiple
pathname entries must be separated by commas.
Separating blanks are optional.

Causes the DELETE command to ask for your
permission to delete each file in the list. Prior
to deleting a file, the DELETE command displays
the following query:

<{pathname>, DELETE?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Y or y Delete the file.

E or e Exit from DELETE command.

Rorr Continue deleting without further
query.

Any other Do not delete file; query for next
character file in sequence.

The DELETE command allows you to release unused secondary storage space
for new uses by removing empty directories and unneeded data files. To
delete a file, you need not be the owner of the file; however you must
have delete access to the file. If a user or program is accessing the
file (has a connection to the file) when you enter the DELETE command,
DELETE marks the file for deletion and deletes it when all connections to

the file are gone.

Operator 3-33

DELETE

DELETE

Non—empty directories cannot be deleted. If you wish to delete a
directory that contains files, you must first delete all its contents.
For example, 1f you wish to delete a directory named ALPHA whose entire
contents consist of a directory BETA containing a data file SAMP, you
would enter the following command:

DELETE ALPHA/BETA/SAMP, ALPHA/BETA, ALPHA

This command sequence would delete all the files contained under ALPHA
before deleting the directory itself.

DELETE displays the following message as it deletes each file or marks
the file for deletion:

<pathname>, DELETED

ERROR MESSAGE

e <pathname>, DELETE access required

You do not have permission to delete the specified file.

Operator 3-34

DETACHDEVICE

DETACHDEVICE

This command detaches the specified devices and deletes their logical

names from the root job's object directory. The format of this command
is as follows:

DETACHDEVICE logical-name-list

INPUT PARAMETER

logical-name—~list One or more logical names of the physical devices
that are to be detached. Colons surrounding each
logical name are optional; however, if you use
colons, you must use matching colons. Multiple
logical names must be separated by commas.

FORCE Causes DETACHDEVICE to detach the device even if
connections to files on the device currently exist.

DESCRIPTION

The DETACHDEVICE command allows you to detach a device without having to

reconfigure the system. After a device is detached, no volume mounted on
that device is accessible for system use.

Unless you are the system manager (user ID 0), you can detach only the
following devices:

e Devices that are configured with your user ID as the owner ID
] Devices you originally attached using the ATTACHDEVICE command

e Devices originally attached using the WORLD parameter of
ATTACHDEVICE

e Devices originally attached by user WORLD (user ID 65535)

DETACHDEVICE returns an error message if you attempt to detach devices
originally attached by other users. This error prevents users from
detaching devices belonging to other users and from accidentally

detaching system volumes. However, the system manager can detach all
devices.

Operator 3-35

DETACHDEVICE

Unless you specify the FORCE parameter, you cannot detach a device if any
connections exist to files on the device (that 1s, if other users are
currently accessing the device). However, the FORCE parameter causes
DETACHDEVICE to delete all connections to files on the device before
detaching the device.

After detaching the device and deleting its logical name from the root
job's object directory, the DETACHDEVICE command displays the following

message:

{logical-name>, detached

NOTE

Using the DETACHDEVICE command to
detach the device containing your Human
Interface commands causes loss of
access to Human Interface functions
until the system is restarted.

ERROR MESSAGES

{logical name>, can't detach device
<{logical name>, <exception value> : <exception mnemonic>

An exceptional condition occurred which prevented DETACHDEVICE
from detaching the device. This message lists the resulting
exception code.

{logical name>, device does not belong to you

The device was originally attached by a user other than WORLD or
you. Thus you cannot detach the device.

<logical name>, device has outsi:anding file connections

There are existing connections to files on the device. Because
you did not specify the FORCE parameter, DETACHDEVICE does not
detach the device.

{logical name>, device is in use

Another user or program is accessing the device (has a connection

to a file). Therefore, you musi: specify the FORCE parameter in
order to detach the device.

Operator 3-36

DETACHDEVICE

{logical name>, outstanding connections to device have been
deleted

There were outstanding connections to files on the volume.

However, because you specified the FORCE parameter, DETACHDEVICE
deleted those connections. This is a warning message that does
not prevent DETACHDEVICE from detaching the device.

Operator 3-37

DETACHFILE

DETACHFILE

This command allows you to terminate the association of a logical name
with a file. The format of this command is as follows:

x-198

PARAMETERS

logical-name-1list List of logical names, separated by commas, that
represent the files to be detached. Each logical
name must be contain 1 to 12 characters. Colons

surrounding each logical name are optional;
however, if you use colons, you must use matching
colons.

DESCRIPTION

You establish an association between a file and a logical name by
entering the ATTACHFILE command. DETACHFILE breaks this association. It
does this by uncataloging the logical name from your interactive job's
global object directory. When DETACHFILE detaches a file in this manner,
it displays the following message:

<logical name>, detached
where <logical name> is the name you specified.

You cannot use DETACHFILE to detach logilcal names that do not represent
files. DETACHFILE returns an error message if you make such an attempt.
In particular, you cannot use DETACHFILE to detach devices.

You cannot use DETACHFILE to detach logical names originally created by
other users. DETACHFILE searches for logical names in the global object
directory of your interactive job only. It does not search the root
job's object directory nor the object directories of any other
interactive jobs.

Operator 3-38

ERROR MESSAGES

{exception value> : <exception mnemonic> invalid global job

The Human Interface encountered an internal system problem when
it attempted to remove the logical name from the global job's
object directory. The message lists the resulting exception code.
{logical name>, logical name does not exist

The logical name is not cataloged in the global object directory
of your interactive job.

<logical name>, logical name not allowed

The logical name you specified was either :$:, :HOME:, :CI:, or
:CO:. You cannot detach the files associated with these logical
names.

{logical name>, not a file connection

The logical name you specified is cataloged in the global object

directory of your interactive job,but it is not the logical name
of a file.

Operator 3-39

DETACHFILE

DIR

This command lists the names and attributes of the data and directory
files contained in a given directory. The format of the command is as
follows:

@ inpath-list

A
7

outpath-list @

_J

(

INPUT PARAMETERS

inpath-list One or more pathnames of the directories to be
listed (the pathnames can represent data files if
the PARENT parameter is also specified). Multiple
directory pathname entries must be separated by
commas. Separating blanks are optional. If no
pathname is specified, the user's default
directory is listed.

FAST Lists only the filenames and directory names in
the directory. The output format contains five
columns of filenames unless you also specify the
ONE parameter (see Figure 3-2 at the end of this
command description). FAST is the default if you
omit the listing format.

SHORT Lists the file information in a two—column format
(see Figure 3-3 at the end of this command
description).

ONE Lists the output of a FAST or SHORT listing in
single-column format. ONE is the default number
of columns for EXTENDED or LONG listings.

Operator 3-40

LONG

EXTENDED

FREE

INVISIBLE

PARENT

QUERY

FOR

DIR

Lists file information in a one—line format (see
Figure 3-4 at the end of this command description).

Lists all available information for each data file
or directory file in the directory. The first
line for each file is the same as for the LONG
form. The second line contains the last access
date, creation date, and the accessor list. The
listing is in a double—column format (see Figure
3-5 at the end of this command description).

Lists the amount of free space available on the
volume containing the given directory. The
listing shows the number of free files, free
volume blocks, and free bytes.

Lists the invisible files (those beginning with
the characters "R?" or "r?") in addition to the
rest of the files in the directory. If you omit
this parameter, DIR does not display invisible
files.

Causes DIR to display an entry for the directory
specified in the inpath-list in addition to the
files contained in the directory. This parameter
is useful for obtaining information about the root
directory of a volume when using the LONG or
EXTENDED parameters.

Causes the DIR command to prompt you for
permission to list a directory by issuing the
following message:

<{pathname>, DIR?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Y or y List the directory.

E or e Exit from DIR command.

R orr Continue listing directories without

further query.

Any other Do not list directory; query for the
character next directory, if any.

Selects only those files within a specific

directory in the path-list. FOR can be used with
wildcard file designators.

Operator 3-41

OUTPUT PARAMETERS

TO Copies the directory listing to the specified
destination data file. If the destination file
already exists, DIR displays the following
information:

<{pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to delete the
existing file. Enter any other character if you
do not wish to delete the file.

If you omit the TO/OVER/AFTER preposition and the
output pathname, TO :CO: is the default.

OVER Copies the directory listing to the specified
output file and writes over (replaces) the
previous contents.

AFTER Appends the directory listing to the current
contents of the specified output file.

outpath-list One or more pathnames of the files to receive the
directory listing. Multiple pathname entries must
be separated by commas. Separating blanks are
optional. If you omit the preposition and the
outpath—-list, the default destination is the
user's console screen (TO :C0:).

DESCRIPTION

You do not need to be the owner of a directory to list its contents with
DIR; however, you must have list access to the directory.

The amount of information listed for each file depends upon what listing
format you specify (FAST, SHORT, LONG, or EXTENDED). The end of the
SHORT, LONG, and EXTENDED DIR listings show the amount of space used
(first line) by the files and the amount of free space left over (second
line).

An example of each type of listing format is provided at the end of the
DIR command description in Figures 3-2 through 3-5 respectively. Table
3-3, which follows the figures, provides an explanation of the
illustrated headings.

If you want to list the default user directory but also wish to specify a

listing format other than FAST, use the default directory name
explicitly. For example:

Operator 3-42

DIR

DIR :$: EXTENDED

displays a listing of the default directory in the EXTENDED format. Note
that the identity of your default directory is a configuration option.

Figures 3-2, 3-3, 3-4, and 3-5 show output examples for FAST, SHORT,
LONG, and EXTENDED listing formats respectively. Table 3-3 defines the
displayed column headings.

If a file name begins with the characters "R?" or "r?", it is an
invisible file. Normally DIR does not display invisible files. However,
you can specify the INVISIBLE parameter to display these files.

-DIR alpha

03 MAR 82 04:25:40

DIRECTORY OF alpha ON mvol
fnamel fname2 fname3 fname4 fname5
fname6 fname/7 fname8 fname9 fnamelO
fnamell . . .

Figure 3-2. FAST Directory Listing Example (Default Listing Format)

-DIR mydirectory2 §

03 MAR 82 21:55:24
DIRECTORY OF mydirectoryZ ON myvol

NAME AT ACC BLKS LENGTH NAME AT ACC BLKS LENGTH
append -R-- 02 1425 alpha.obj DRAU 3 2871
REFERENCE DR -L—— 1 10 DATA DR DLAC 1 4
LEMONADEIT DRAU 123456789 123456789
time DRAU 6 5374 detachdevice DRAU 4 3414
test -R—— 5 4415 schedule -—=U 7 6976
testprog.a86 -RA- 2 2040 DATABASE . LST -RAU 11 10336
EXPERIMENTAL DR -LAC 1 20 BACKUP DR DLAC 1 10

13 FILES 44 BLOCKS 36895 BYTES

33 FILES 3,000 BLOCKS 3,072,000 BYTES FREE

Figure 3-3. SHORT Directory Listing Example

Operator 3-43

DIR

-DIR mydirectoryl L

03 MAR 82 21:55:24
DIRECTORY OF mydirectoryl ON myvol
GRAN
NAME AT ACC BLKS LENGTH VOL FIL OWNER LAST MOD
ed -R-- 11 1057 1024 1 # 47 02 MAR 82
programs DR DL-- 30 30185 1024 1 # 47 03 MAR 82
fmat DRAU 1 39 1024 1 # 655535 08 NOV 81
OBJFILE -—-U 3 2895 1024 1 # 47 18 DEC 81
ALPHA1.P86 DLAC 2 1304 1024 1 # 50 22 0OCT 81
ALPHAL .MP1 DLAC 6 5397 1024 1 # 50 22 0OCT 81
manuals DR -L-—— 1 304 1024 1 # 47 02 JUL 80
7 FILES 54 BLOCKS 41181 BYTES
33 FILES 3,000 BLOCKS 3,072,000 BYTES FREE
Figure 3-4. LONG Directory Listing Example
-DIR mydir E
03 MAR 82 21:55:24
DIRECTORY OF mydir ON myvol
GRAN
NAME AT ACC BLKS LENGTH VOL FIL OWNER LAST MOD
programs DR DL-- 30 30185 1024 1 # 47 03 MAR 82
CREATION: Ol JAN 81 04:05:44 ACCESSORS ACC
LAST ACC: 03 MAR 82 05:52:33 # 47 DL--
LAST MOD: 03 MAR 82 05:52:33 # 50 -LA-
82 -L--
ed -R—— 11 1057 1024 1 # 47 02 MAR 82
CREATION: 11 NOV 81 12:24:05 ACCESSORS ACC
LAST ACC: 02 MAR 82 14:22:16 # 47 -R—
LAST MOD: 02 MAR 82 14:22:16
fmat DRAU 1 39 1024 1 # 65535 08 NOV 81
CREATION: Ol1 NOV 81 08:54:39 ACCESSORS ACC
LAST ACC: 03 MAR 82 14:56:59 # 65535 DRAU
LAST MOD: 08 NOV 81 20:44:01
testdir DR DLAC 1 32 1024 1 # 47 01 MAR 82
CREATION: 02 FEB 82 15:02:42 ACCESSORS ACC
LAST ACC: 03 MAR 82 09:32:53 t# 47 DLAC
LAST MOD: 01 MAR 82 13:13:07 # 50 —-LA~
65535 -L--
4 FILES 43 BLOCKS 32213 BYTES
33 FILES 3,000 BLOCKS 3,072,000 BYTES FREE
Figure 3-5. EXTENDED Directory Listing Example

Operator 3-44

Table 3-4. Directory Listing Headings

Heading Meaning

NAME l4—character file name.

AT File attribute, where:

DR = Directory
MP = Bit map file
blank = Data file

ACC File access rights of the user who entered the DIR command,
where:

—————— Delete
—————— List
Directories: ——=== Add
[r——m Change
DLAC
DRAU
LL——" Update
Data Files: ———- Append
------ Read
—————- Delete

BLKS Nine-digit number (five digits on SHORT listing) giving the
volume-granularity units allocated to the file. On the
SHORT display, if the number of digits exceeds five, DIR
displays the file in the nine-digit form (see the
LEMONADEIT file in Figure 3-5).

LENGTH 10-digit number (7 digits on SHORT listing) giving the
length of the file in bytes. On the SHORT form, if the
number of digits exceeds 7, the file is displayed in the
10-digit form (see the LEMONADIT file in Figure 3-5).

VOL Five-digit number giving the volume granularity in bytes.

FIL Three-digit number giving the granularity of the file in
multiples of volume granularity.

OWNER l4-character, alphanumeric owner name.

LAST MOD Date of last file modification.

LAST ACC Date of last file access.

CREATION Date of file creation.

Operator 3-45

DIR

Table 3-4. Directory Listing Headings (continued)

Heading Meaning

ACCESSORS User IDs of users who have access to the file.

ACC Access rights of the corresponding user. The format of
this field is identical to ACC as described previously.

ERROR MESSAGES

e 1o directory files found

None of the files you specified were directories.

e <pathname>, READ access required

You do not have read (list) access to the directory.

e <pathname>, UPDATE or ADD access required

Either you cannot overwrite the information in a file because you
do not have update access to it, or you cannot copy information
to a new file because you do not have add entry access to the
file's parent directory. The outpath-list is most likely to be
at fault.

EXAMPLES

The examples that follow show how a directory's files are listed when you
use your default prefix in a directory's pathname. In the examples,
directory names are enclosed in triangles; data file names are enclosed
in rectangles.

Assume you have the following directory structure for your files:

Operator 3-46

DIR

Q
J/
A
4
bk CB d
e f

x-324

Example 1:

Suppose your default prefix is :F0:Q. This example shows the files
that would be listed in response to various DIR commands. It shows
the pathnames that you could enter and the resulting files that DIR
would list.

Pathname Files Listed

omitted A, £

£ not allowed because f is a data file

A bb, CB, d

A/d not allowed because d is a data file

A/CB e, f

A/CB/e not allowed because e is a data file
Example 2:

Suppose your default prefix is :F0:Q/A. This example also shows the
files that would be listed in response to various DIR commands.

Pathname Files Listed

omitted bb, CB, d

A not allowed because directory A does not
contain an entry A

CB e, f

Operator 3-47

DISKVERIFY

DISKVERIFY

This command invokes the disk verification utility which verifies the

data structures of iRMX 86 physical and named volumes. This utility can
also be used to reconstruct portions of the volume and perform absolute

editing on the volume. The format of the DISKVERIFY command is as

follows:

—<DISKVERIFY>—C:IogicaI name:}

INPUT PARAMETERS

H outpath

!ﬁ?é%@%

PHYSICAL

1120

:logical-name: Logical name of the secondary storage device

DISK

containing the volume.

Displays the attributes of the volume (such as type of
volume, device granularity, block size, number of
blocks, interleave factor, extension size, volume
size, and number of fnodes) and returns control to you
at the Human Interface level. You can then enter any
Human Interface command.

If you omit this parameter (and the VERIFY parameter),
the utility displays a sign—-on message and the utility
prompt (*). You can then enter individual disk
verification commands. These commands are described

in the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL.

Operator 3-48

VERIFY or V

NAMED1 or N1

NAMED or N

ALL

NAMED2 or N2

PHYSICAL

DISKVERIFY

Performs a verification of the volume. If you
specify this parameter and omit the options, the
utility performs the NAMED verification.

If you specify this parameter, the utility
performs the verification function and returns
control to you at the Human Interface level. You
can then enter any Human Interface command.

If you omit this parameter (and the DISK
parameter), the utility displays a sign—on message
and the utility prompt (*). You can then enter
individual disk verification commands. These
commands are described in the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL.

VERIFY option that applies to named volumes only.
This option checks the fnodes of the volume to
ensure that they match the directories in terms of
file type and file hierarchy. (Refer to the
description of the FORMAT command for more
information about fnodes.) This option also
checks the information in each fnode to ensure
that it is consistent. As a result of this
option, DISKVERIFY displays a list of all files on
the volume that are in error, with information
about each file. Refer to the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more
information.

VERIFY option that performs both the NAMEDLl and
NAMED2 verification functions on a named volume.
If you omit the VERIFY option, NAMED is the
default option.

VERIFY option that applies to both named and
physical volumes. For named volumes, this option
performs both the NAMED and PHYSICAL verification
functions. For physical volumes, this option
performs only the PHYSICAL verification function.

VERIFY option that applies to named volumes only.
This option checks the allocation of fnodes on the
volume, checks the allocation of space on the
volume, and verifies that the fnodes point to the
correct locations on the volume. Refer to the
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL
for more information.

VERIFY option that applies to both named and

physical volumes. This option reads all blocks on
the volume and checks for I/0 errors.

Operator 3-49

DISKVERIFY

LIST

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath

DESCRIPTION

VERIFY option that you can use with other VERIFY
options that, either explicitly or implicitly,
specify the NAMEDl option. When you use this
option, the file information generated by VERIFY
is displayed for every file on the volume, even if
the file contains no errors. Refer to the iRMX 86
DISK VERIFICATION UTILITY REFERENCE MANUAL for
more information.

Copies the output from the disk verification
utility to the specified file. If the file
already exists, DISKVERIFY displays the following
information:

<{pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r to write over the existing
file. Enter any other character if you do not
wish to overwrite the file.

If no preposition is specified, TO :CO: is the
default.

Copies the output from the disk verification
utility over the specified file.

Appends the output from the disk verification
utility to the end of the specified file.

Pathname of the file to receive the output from
the disk verification utility. If you omit this
parameter and the TO/OVER/AFTER preposition, the
utility copies the output to the console screen
(TO :C0:). You cannot direct the output to a file
on the volume being verified. If you attempt
this, the utility returns an E$NOT_CONNECTED error
message.

When you enter the DISKVERIFY command, the utility responds by displaying

the following line:

iRMX 86 DISK VERIFY UTILITY, Vx.y
Copyright <year> Intel Corporation

where Vx.y is the version number of the utility. If you specify the
VERIFY or DISK parameter in the DISKVERIFY command, the utility performs
the operation specified in the parameter and copies the output to the
console (or to the file specified by the outpath parameter).

Operator 3--50

DISKVERIFY

Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for a
description of the output. After generating the output, the utility
returns control to the Human Interface, which prompts you for more Human
Interface commands. The following is an example of a DISKVERIFY command
that uses the VERIFY option:

-DISKVERIFY :Fl: VERIFY NAMED2
iRMX 86 DISK VERIFY UTILITY , Vx.y

Copyright <year> Intel Corporation
DEVICE NAME = Fl ¢+ DEVICE SIZE = 0003E900 : BLOCK SIZE = 0080

'NAMED2' VERIFICATION
BIT MAPS 0.K.

The following is an example of a DISKVERIFY command that uses the DISK
option:

~-DISKVERIFY :F2: DISK
iRMX 86 DISK VERIFY UTILITY, Vx.y
Copyright <year> Intel Corporation

Device name = WFO
Named disk, Volume name = UTILS

Device gran = 0080
Block size = 0080
No of blocks = 0000072D : No of Free blocks = 00000408
Volume size = 0003E900
Interleave = 0005
Extension size = 03
No of fnodes = 0038 : No of Free fnodes = 0022

However, if you omit the VERIFY and DISK parameters from the DISKVERIFY
command, the utility does not return control to the Human Interface.
Instead, it issues an asterisk (*) as a prompt and waits for you to enter
individual DISKVERIFY commands. The following is an example of such a
DISKVERIFY command:

~DISKVERIFY :Fl:

iRMX 86 DISK VERIFY UTILITY, Vx.y
Copyright <year> Intel Corporation
*

After you receive the asterisk prompt, you can enter any of the
DISKVERIFY commands listed in the iRMX 86 DISK VERIFICATION UTILITY
REFERENCE MANUAL.

ERROR MESSAGES
e argument error

The VERIFY option you specified is not valid.

Operator 3-51

DISKVERIFY

o command syntax error

You made a syntax error when entering the command.

e device size inconsistent
size in volume label = <valuel> : computed size = <value2>

When the disk verification utility computed the size of the
volume, the size it computed did not match the information
recorded in the iRMX 86 volume label. It is likely that the
volume label contains invalid or corrupted information. This
error is not a fatal error, but it is an indication that further
error conditions may result during the verification session. You
may have to reformat the volume or use the disk verification
utility to modify the volume latel. Refer to the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more information about
the disk verification utility ccmmands.

e not a named disk
You tried to perform a NAMED, NAMEDl, or NAMED2 verification on a

physical volume.

The NAMED1, NAMED2, and PHYSICAL verification options can also produce
error messages. Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL for more information about these messages.

EXAMPLE

The following command performs both named and physical verification of a
named volume.

—DISKVERIFY :Fl: VERIFY ALL

iRMX 86 DISK VERIFY UTILITY, Vx.y
Copyright <{year> Intel Corporation

DEVICE NAME = Fl : DEVICE SIZE = 0003E900 : BLK SIZE = 0080
'"NAMED1' VERIFICATION
'NAMED2' VERIFICATION

BIT MAPS 0O.K.

'PHYSICAL' VERIFICATION
NO ERRORS

Operator 3-52

DOWNCOPY

DOWNCOPY
This command copies files from a volume on an iRMX 86 secondary storage

device to a volume on an ISIS-II secondary storage device via the I
monitor. The format is as follows:

Conmern >

x-320

INPUT PARAMETERS

inpath-list One or more iRMX 86 pathnames for files, separated
by commas, that are to be copied to ISIS-II
secondary storage. Separating blanks between
pathnames are optional. The files may be copied
in the listed sequence either on a one—for—omne
basis or concatenated into one or more files.

QUERY Causes the Human Interface to prompt for
permission to copy each iRMX 86 file to the listed
ISIS~II destination file. Depending on which
preposition you specify (TO, OVER, or AFTER), the

Human Interface prompts with one of the following
queries:

<{pathname>, copy down TO <outfile>?
{pathname>, copy down OVER <outfile>?
<{pathname>, copy down AFTER <outfile>?

Enter one of the following in response to the

query:

Entry Action

Yory Copy the file.

E or e Exit from the DOWNCOPY command.

R orr Continue copying files without
further query.

Any other Do not copy this file; query

character for the next file in sequence.

Operator 3-53

DOWNCOPY

OUTPUT PARAMETERS

TO Reads iRMX 86 files and copies them TO new ISIS-II
files in the listed sequence. If the specified
output files already exist in the ISIS-II
directory when the TO parameter is used, DOWNCOPY
displays the following message:

{filename>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to delete the
existing file. Enter any other character if you
do not wish the existing file to be deleted.

If no preposition is specified, TO :CO: (ISIS-II
console screen) is the default. If more input
files than output files are specified, the
remaining input files are appended to the end of
the last-specified ISIS-II file.

OVER Copies the iRMX &6 input files OVER the existing
ISIS-II destination files in the specified

sequence. If you specify multiple input files and
one output file, DOWNCOPY appends the remaining
input files to the end of the output file.

AFTER Copies the iRMX &6 input files, in sequence, AFTER
the end of data on the existing ISIS-II
destination files.

outfile-list One or more ISIS-II filenames for the output
files. Multiple filenames must be separated by
commas. Separating blanks are optional. If the
preposition and cutput file defaults are not used
in the command line, the output goes to the
ISIS-II console screen.

DESCRIPTION

The DOWNCOPY command cannot be used to copy directories from an iRMX 86
system to a Series III Microcomputer Development System; only files can
be copied.

Before you enter a DOWNCOPY command on the iRMX 86 console keyboard, your
target system must be connected to a Series III system via the iSBC 957B
package, the iSDM 86 monitor, and the iSDM 286 monitor. To do this, you
must start your iRMX 86 system from the Series III terminal (either by
loading the software into the target system and using the monitor G
command to start execution, or by using the monitor B command to
bootstrap load the software). DOWNCOPY does not function if you start up
your system from the iRMX 86 terminal or i1f you establish the link
between the Series III system and target system after starting up your
iRMX 86 system.

Operator 3-54

When DOWNCOPY copies files to the development system, it turns off all
ISIS-II file attributes.

As each file in the input list is copied, one of the following messages
will be displayed on the Human Interface console output device (:CO:):

<{pathname>, copied down TO <out-filename)>
{pathname>, copied down OVER <out-filename>

{pathname>, copied down AFTER <out—filename)>

When the DOWNCOPY command is executing, the monitor disables interrupts.
This event affects services such as the time-of-day clock. Also, the
Operating System is unable to receive any characters that you type—ahead
while the monitor is disabling interrupts.

ERROR MESSAGES

<{pathname>, DELETE access required

DOWNCOPY could not replace an existing ISIS-II file because the
file is write-protected.

<{pathname>, ISIS ERROR: <nnn>

An ISIS-II Operating System error occurred when DOWNCOPY tried to
transfer the file to the Microcomputer Development System. Refer
to the INTELLEC SERIES IITI MICROCOMPUTER DEVELOPMENT SYSTEM
CONSOLE OPERATING INSTRUCTIONS for a description of the resulting
error code.

ISIS link not present

The the iRMX 86 system is not connected to the development system
via the monitor.

Operator 3-55

DOWNCOPY

FORMAT

FORMAT

This command formats or reformats a volume on an iRMX 86 secondary
storage device, such as a diskette, tape drive, hard disk, or bubble
memory. The format is as follows:

i |
) :L- L_..eamyut,ﬁnw, |
(m _J
[] ,

(
=

:logical-name: Logical name of the physical device-unit to be
formatted. You must surround the logical name
with colons. Also, you must not leave space
between the logical name and the succeeding volume
name parameter.

INPUT PARAMETERS

volume—name Six-character, alphanumeric ASCII name, without
embedded blanks, to be assigned to the volume. If
you include this parameter, you must not leave
spaces between the logical name and the volume
name.

FILES=num Defines the maximum decimal number of user files
that can be created on a NAMED volume. (This
parameter is not meaningful when formatting a
PHYSICAL volume and is ignored if specified for
such volumes.) FORMAT uses the information
specified in this parameter to determine how many
structures (called fnodes) to create on the NAMED
volume. The range for the FILES parameter is 1
through 32,761, although the maximum number of
user files you can define depends on the settings
of the GRANULARITY and EXTENSIONSIZE parameters
(as explained in the "Description” portion of this
command write—up). When you use this parameter,
FORMAT creates six additional fnodes for internal
system files. If not specified, the default is
200 user files.

Operator 3-56

FORCE

MAPSTART=num

GRANULARITY=num

EXTENSIONSIZE=num

FORMAT

Forcibly deletes any existing connections to files
on the volume before formatting the volume. If you
do not specify FORCE, you cannot format the volume
if any connections to files on the volume still
exist.

Gives the volume block number where the fnodes file,
bit map files, and the root directory should start.
The size of the block is set by the GRANULARITY
parameter. If no number is given, the Operating
System puts the fnodes file in the center of the
volume. If the number is too low, the Operating
System places the map files at the lowest available
space on the volume.

Volume granularity; the minimum number of bytes to
be allocated for each increment of file size on a
NAMED volume. (This parameter is not meaningful for
PHYSICAL volumes, and is ignored if specified for
such volumes.) FORMAT rounds the value you specify
up to the next multiple of the device granularity.
Then it places the decimal number in the header of
the volume, where it becomes the default file
granularity when a file is created on the volume.
The range is 1 through 65,535 (decimal) bytes,
although the maximum allowable volume granularity
depends on the settings of the FILES and
EXTENSIONSIZE parameters (as explained in the
"Description” portion of this write—up). If not
specified, the default granularity is the device
granularity. Once the volume granularity is
defined, it applies to every file created on that
volume.

NOTE

Using a large volume granularity (in
excess of 1024), might cause users to
exceed their memory limits when
executing programs that reside on the
volume. This error can occur because
the Operating System uses the volume
granularity as a minimum buffer size
when reading and writing files.

Size, in bytes, of the extension data portion of each
file. (This parameter is not meaningful for PHYSICAL
volumes, and is ignored if specified for such
volumes.) The range is O through 255 (decimal),
although the maximum allowable extension size depends
on the settings of the FILES and GRANULARITY
parameters (as explained in the "Description™ portion
of this write—up). If not specified, the default
extension size is 3 bytes.

Operator 3-57

FORMAT

INTERLEAVE=num

NAMED

PHYSICAL

QUERY

DESCRIPTION

Interleave factor for a NAMED or PHYSICAL volume.
Acceptable values are 1 through 255 decimal. If
not specified, the default value is 5. See the
interleave discussion under "Description”™ in this
section.

The volume can store only named files; that is,
the volume can hold many files (up to the number
of fnodes allocated), each of which can be
accessed by its pathname. A diskette or hard disk
surface are examples of devices that would be
formatted for named files. If neither NAMED nor
PHYSICAL is specified, the volume is formatted for
the file specified when you attached the device
(with the ATTACHDEVICE command).

The volume can be used only as a single, physical
file. The GRANULARITY and FILES parameters are
not meaningful when PHYSICAL is specified for the
volume. If neither NAMED nor PHYSICAL is

specified, the volume is formatted for the file
type specified when you attached the device (with

the ATTACHDEVICE command).

Prompts the user for permission to format the
volume. The Human Interface displays the
following:

{volume name>, FORMAT?
If the user replies with a 'Y', 'y', 'R', or 'r',
then the volume is formatted. Any other response
is considered by the Human Interface be a 'no'.

Every physical device-unit used for secondary storage must be formatted
before it can be used for storing and then accessing its files. For
example, every time you mount a previously unused diskette into a drive,
you must enter a FORMAT command to format that diskette as a new volume
before you can create, store and access files on it.

Once a volume is formatted, its name becomes a volume identifier when you
display any directory of the volume, and the name appears in the

directory's heading.

Although the Human Interface uses the volume name

in its own internal processing when you access the volume, you need not
specify the volume name in any subsequent command after the volume is
formatted. You must specify only the logical name of the secondary
storage device that contains the volume.

Operator 3-58

Volume Name

The Human Interface requires a volume name for its own internal
processing of your read/write accesses to the volume. Once the volume is
formatted, you need never specify the volume name in a command; you only
specify the logical name for the device on which you later mount the
volume.

For diskettes, a volume name gives you a method for identifying a volume
in case the stick—-on label on the diskette gets lost or destroyed. You
need only mount the disk on a drive and enter a DIR command for that
drive to get a directory listing that specifies the volume name.

Fnodes

The number of fnodes on a volume defines the number of files that can
exist on the volume. You can specify the number of fnodes reserved for
user files with the FILES parameter. Each fnode is a data structure that
contains information about a file. Each time you create a file on the
volume, the Operating System records information about the file in an
unused fnode. Later, it uses the fnode to determine the location of the
file on the volume. You can locate fnodes anywhere you wish on a volune.

Internal Files

When you format a named volume, FORMAT creates six internal system
files. It names three of these files and lists their names in the root
directory of the volume. The files are invisible. The files are:

file description
R?SPACEMAP Volume free space map
R?FNODEMAP Free fnodes map
R?BADBLOCKMAP Bad blocks map
R?VOLUMELABEL Volume label

The Operating System grants the user WORLD read access to these files.
Refer to the iRMX 86 DISK VERIFICATION UTILLITY REFERENCE MANUAL for more
information about these files.

Operator 3-59

FORMAT

FORMAT

Root Directory

FORMAT also uses one of the fnodes for the root directory. It lists the
user who formats the volume as the owner, giving that user all access
rights. No other user has access to the root directory until the owner
explicitly grants access. The owner can grant other users access to the
volume via the PERMIT command described later in this chapter. However,
because the owner has all access rights to the root directory, the owner
can obtain exclusive access to the volume, and can obtain delete access
to any file created on the volume, even files created by other users.

Extension Data

Each fnode contains a field that stores extension data for its associated
file. An operating system extension camn access and modify this extension
data by invoking the ASGETSEXTENSIONSDATA and ASSETSEXTENSIONSDATA system
calls (refer to the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL for more
information). When you format a volume, you can use the EXTENSIONSIZE

parameter to set the size of the extension data field in each fnode.
Although you can specify any size from C to 255 bytes, the Human

Interface requires all fnodes to have at least 3 bytes of extension data.

Volume Granularity

The default volume granularity is always the granularity of the physical
device for the volume. For example, if the default granularity for a
device is 128 bytes of secondary storage, the I/0 System will
automatically allocate permanent storage to each new file you create on
that volume in multiples of 128 bytes, regardless of whether the file
requires the full amount.

Relationship between FILES, GRANULARITY, and EXTENSIONSIZE

Although the FILES, GRANULARITY, and EXTENSIONSIZE parameters have
maximum values which are listed in the parameter descriptions, the
combination of these parameters must also satisfy the following formula:

(87 + EXTENSIONSIZE) x (FILES + 6) / GRANULARITY < 65535

where all numbers are decimal. FORMAT displays an error message if the
combination of parameter values exceeds the limit.

Interleave Factor

The interleave factor applies to volumes formatted either for NAMED or

Operator 3-60

FORMAT

PHYSICAL files. The interleave factor specifies the logical sector
sequence. If the consecutively-accessed sectors of a disk are staggered
(that is, if they are not consecutive physical sectors), disk access time
can decrease considerably. The reason for this decrease is that although
a controller cannot read a sector and issue another read command in the
time it takes for the next sector to be positioned under the head, the
controller can perform this operation in less time than it takes for the
disk to revolve once. Therefore, if the consecutively—accessed sectors
are staggered correctly, the next accessed sector will be positioned
under the read head just as the controller becomes ready to read it.

The amount of staggering is called the interleave factor. An interleave
factor of two means that as the disk rotates, the controller
consecutively accesses every second sector. An interleave factor of five
means that the controller consecutively accesses every fifth sector. The
following diagram illustrates how a controller accesses sectors on a
12-sector disk with an interleave factor of two.

Sector Number Access Number Rotation Number
Sector O 0 1
Sector 1 6 2
Sector 2 1 1
Sector 3 7 2
Sector 4 2 1
Sector 5 8 2
Sector 6 3 1
Sector 7 9 2
Sector 8 4 1
Sector 9 10 2
Sector 10 5 1
Sector 11 11 2

Note that the interleave factor also implies the number of disk rotations
necessary to access all the sectors on a given track. Thus from the
previous diagram you can see that an interleave factor of two implies
that it takes two rotations of the disk to access all the sectors on a
track.

Operator 3-61

FORMAT

When The Interleave Factor Is Important

The interleave factor is important when large transfers of consecutive
data take place at speeds that approach the maximum transfer rate of the
disk. This type of transfer occurs in the following cases:

® When you bootstrap load the Operating System from disk.

e When you use the Application Loader to load an application
program from disk.

e When you invoke programs that perform large transfers of
consecutive data, such as the Human Interface COPY command.

How To Select An Interleave Factor

Suitable interleave factors depend on the turnaround time of the software
that controls the I/0 operations; that is, the time between reading a
sector and becoming ready to read the next sector. In the cases listed
in the previous paragraph, the turnaround time between sector accesses 1s
different. Therefore the ideal interleave factors could be different.
The differences are:

e The Bootstrap Loader instructs the disk controller to read one
sector at a time. Thus, the turnaround time depends on the
execution overhead of the Bootstrap Loader and is comparatively
long. A large interleave factor is optimal for flexible disks
that you use with the Bootstrap Loader. For hard disks however,
the Bootstrap Loader has no effect on the turnaround time because
revolution speed is so great that more than one disk revolution
occurs between sector reads.

e The Application Loader reads several sectors at a time into its
internal buffer. Then it takes a relatively long time to process
the object records in this buffer. The ideal interleave factor
here is one that optimizes for the object record processing time
between disk accesses. For flexible diskettes, this interleave
factor is somewhat smaller than that for the Bootstrap Loader.
However, hard disks, as in the previous paragraph, are not
affected by the Application Loader.

) Applications which transfer large amounts of consecutive data
(such as the COPY command) can initiate data transfers involving
many sequential sectors. Thus the controller accesses sectors on
a given track as fast as possible. Here, the ideal interleave
factor is one that optimizes for the turnaround speed of the disk
controller.

The ideal interleave factor depends heavily on the application. However,
because the revolution speed of hard disks is so high, you should format
them with interleave factors that are optimized for the turnaround speed
of the disk controller.

Operator 3-62

FORMAT

The value to use for flexible diskettes depends on how you are going to
use the diskettes. For flexible diskettes that contain
bootstrap—loadable information (system disks), you should select an
interleave factor that optimizes for Bootstrap Loader performance. This
ensures that the bootstrap loading process completes in a reasonable
amount of time, despite using a device that is relatively slow-turning.
For non-system diskettes that contain loadable files (such as Human
Interface commands), select an interleave factor that optimizes for
Application Loader performance. Otherwise, select a value that optimizes
for copying.

If you do not know the optimal value for an interleave factor, it is
better to specify an interleave factor that is too large rather than one
that is too small. An interleave factor that is slightly larger than
optimal causes the disk to move only an extra sector or two before
reaching the correct sector. However, an interleave factor that is less
than optimal causes the disk to make nearly a complete revolution before
reaching the sector.

Optimal Interleave Factors For Intel Devices

This section lists the optimum values for some devices that Intel has
tested.

Table 3-5. Optimal Interleave Factor for Hard Disk Controllers

Device Optimal Interleave Factor
iSBC 206 device 4
iSBC 215 device
Priam 3
ANSI 4
Fujitsu/Memorex 3
Shugart SA 1004/Quantum 2
CMI 4
RMS 4
iSBC 220 device 4
iSBC 254 device (Not applicable to bubble memory devices)

Operator 3-63

FORMAT

Table 3-6. Flexible Disk Controllers (using 8" disks)

Optimal Interleave Factor For
Device Application Loader |Bootstrap Loader COPY
iSBC 204 device 5 7 1
iSBC 208 device 5 7 1
iSBX 218 device 5 7 2

Output Display

The FORMAT command displays one of the following message when volume
formatting is completed. For physical volumes:

volume (<volume name>) will be formatted as a PHYSICAL volume
device gran. <number>
interleave = <{number>
volume size <k-number> K (or M)

TTTTTTTTTITTTTTITTTT. ..

volume formatted

While the storage device i1s being formatted, FORMAT displays on the
console the letter "T" for every 100 tracks formatted. For example, if
you see three T's on the screen, the Operating System has finished
formatting at least 300 tracks. Displaying the T's on the screen is
useful when you format large capacity disks. A continuous stream of T's
lets you know that the system hasn®t failed diring the FORMAT operation.

For named volumes:

volume (<volume name>) will be formatted as a NAMED volume

granularity = <{number> map start = <number>
interleave = <{number> sides = <sides>
files = <{number> density = <density>
extensionsize = <{number> disk size = <d-size>

volume size <k-number> K (or M)

TTTTTTTTTTIT...

volume formatted

Operator 3-64

where:

<number)> Position where the fnodes start.

{volume name> Volume name specified in the FORMAT command.

<number> Decimal number as specified in the command (or the
default)

<k-number> Volume size in K (1024-byte units) or M
(1048576-byte units). FORMAT displays the volume
size in Kbyte units unless the size is greater
than 25 Mbytes.

<sides> Number of sides of the volume that will be
formatted (1 or 2). This field is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

<{density> Density at which the volume will be formatted
(single or double). This field is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

<d-size> Size of the volume (8 or 5.25). This field is

displayed only for flexible diskettes in which
FORMAT can recognize this characteristic.

ERROR MESSAGES

<logical name>, can't attach device
<{logical name>, <exception value> : <exception mnemonic>

FORMAT cannot attach the device for formatting, or it cannot
re—attach the device (that is, restore it to its original
condition) after formatting takes place.

{logical name>, can't detach device
{logical name>, <exception value> : <exception mnemonic>

FORMAT cannot detach the device for formatting, which means that
the volume does not exist, the volume is busy, or the device on
which the volume is mounted is not currently attached to the
system.

{logical name>, device is in use
You cannot format the volume because there are outstanding

connections to files on the volume and you did not specify the
FORCE parameter.

Operator 3—-65

FORMAT

FORMAT

{vol-name>, fnode file size exceeds 65535 volume blocks

The values you specified for fnocde size, granularity, and
extension data size cause the formula listed in the "Description”
section to exceed its limit.

<number>, invalid number

You specified an out—of-range number for any of the FILES,
GRANULARITY, EXTENSIONSIZE, or INTERLEAVE parameters.
{logical-name>, map files do not fit

The volume is too small for the map files or the map start block
is too high to allow room for the map files.

{logical name>, outstanding connections to device have been
deleted

There were outstanding connections to files on the volume.
However, because you specified the FORCE parameter, FORMAT
deleted those connections. This is a warning message that does
not prevent FORMAT from formatting the volume.

0085 : ESLIST, tco many values

You entered multiple logical—-name/volume—name combinations
separated by commas. FORMAT can format only one volume per
invocation.

<logical-name>: <exception code> unit status <xx>

An I/0 error occurred while physically formatting the volume.
{exception code> informs you of the type of error.

{volume name>, volume name is too long

FORMAT requires the volume name you specify to be 6 characters or
less.

Operator 3-66

INITSTATUS

INITSTATUS

This command displays the initialization status of Human Interface
terminals. The format of this command is as follows:

x-201

DESCRIPTION

INITSTATUS displays at the user terminal the initialization status of all
Human Interface terminals. Figure 3-6 illustrates the format of the
INITSTATUS display.

TERMINAL CONFIG DEVICE INIT USER JOB USER
DEVICE NAME EXCEP EXCEP EXCEP STATE ID ID
.TO. 0000 0000 0000 LE 1 65535
.Tl. 0000 0000 0000 -E 2 1
.T3. 0000 0002 -

T4, 0021 -

Figure 3-6. INITSTATUS Display

The

columns listed in Figure 3-6 contain the following information.

TERMINAL The physical name of the terminal, as defined during

DEVICE NAME the configuration of the Basic I/0 System and as
attached by the Human Interface. Periods surround
each name.

CONFIG EXCEP Hexadecimal condition code that the Human Interface
received when it attempted to interpret the terminal
definition and user definition files (refer to the
iRMX 86 CONFIGURATION GUIDE for more information). A
zero value indicates a normal condition. Nonzero
values indicate exceptional conditions. Refer to
Appendix B for a list of exception codes.

DEVICE EXCEP Hexadecimal condition code that the Human Interface
received when it originally attached the terminal as a
physical device.

Operator 3-67

INITSTATUS

INIT EXCEP

USER STATE

JOB ID

USER ID

ERROR MESSAGE

Condition code that the Human Interface received when
it created a job for the interactive session.

Two characters that indicate the current state of the
terminal. The first character can be either:

L The terminal is locked and cannot be
reinitialized (refer to the LOCK command
later in this chapter).

- The terminal is unlocked.
The second character can be either:

E The Human Interface created the interactive
job assoclated with this terminal and the
job exists.

- The interactive job does not exist.

A sequential number that the Human Interface assigns
to the interactive job during initialization. You
must specify this number as a parameter in the
JOBDELETE command in order to delete the corresponding
interactive job.

User ID associated with the interactive job. This ID
is the identification of the user that the Human
Interface associates with the job when the user begins
a Human Interface session.

° not a multi-access system

The Human Interface cannot return information about terminals
because it 1s not configured for multi-access.

Operator 3-68

JOBDELETE

This command deletes a running interactive job. The system manager can
use this command to delete any interactive job. Other users can delete

only those interactive jobs that have the same user ID that they have.
The format of this command is as follows:

JOBDELETE job-id-list

x-202

where:
job—id-1list One or more job IDs, separated by commas, of the
interactive jobs to be deleted. You can obtain
the IDs of jobs by invoking the INITSTATUS command
(described earlier in this chapter).
DESCRIPTION

The JOBDELETE command allows users to delete interactive jobs. Deleting

an interactive job causes the Human Interface to terminate the
corresponding user session.

When JOBDELETE attempts to delete a job, it first attempts to delete the
job's offspring jobs (for example, a SUBMIT file or a program invoked as
a result of an RQ$CREATE$IOS$JOB system call). It deletes multiple levels
of offspring jobs. However, JOBDELETE cannot delete any interactive job
(or offspring) that contains extension objects. Refer to the iRMX 86
NUCLEUS REFERENCE MANUAL for more information about deleting jobs
containing extension objects.

Normally, when a user's interactive job is deleted, the Human Interface
recreates the interactive job, thus restarting the user session.
However, if the LOCK command (described later in this chapter) has been
specified for the user's terminal, the Human Interface does not
automatically recreate the user's interactive job after a JOBDELETE

command. Therefore, the system manager can use the combination of LOCK
and JOBDELETE to remove users from the system prior to a system shutdown.

As JOBDELETE deletes each job, it displays the following message at the
user terminal (:CO:):

<job-ID>, deleted

where <job-ID> is the identifier of the deleted job.

Operator 3-69

JOBDELETE

JOBDELETE

ERROR MESSAGES

o <job-ID>, does not exist
The interactive job associated with the identifier <job-ID> does
not exist. It has already been deleted.

e <job-ID>, invalid job id
The number <{job-ID> is not a job ID that is associated with any
terminal managed by the Human Interface.

e <job-ID>, job does not belong to you
The user who attempted to delete the interactive job does not

have the same user ID as the interactive job or is not the system
manager.

o <job-ID>, not deleted
<job-ID>, <exception value> : <exception mnemonic)
An exceptional condition occurred, preventing JOBDELETE from

deleting the job <job-ID>. JOBDELETE displays the exception code
that resulted.

Operator 3-70

LOCDATA

This command locates a data stream and transforms it into an object
module that the iAPX 86, 88 utilities (LINK86, LOC86, LIB86, etc.) can
process and the iRMX 86 Bootstrap Loader can load. By locating the data
stream, it sets the absolute address at which the Bootstrap Loader loads
the data. You normally use this command when creating an application
system that includes a RAM-disk (an area of memory that the Operating
System treats as a secondary storage device). The format of this command

is as follows: o
o e

INPUT PARAMETERS value
x-668

inpath Pathname of the file to be processed. Multiple or
wild-card pathnames are not allowed.

BASE=value Base portion of the address at which LOCDATA
locates the data stream. The data stream can be
located only on l6-byte (paragraph) boundaries.
Therefore LOCDATA always uses a O value for the
offset portion of the address (that is, value:0).

You can specify a radix character of "0" or "H" at
the end of the value to indicate octal or
hexadecimal, respectively. If you omit the radix
character, decimal is the default.

If you omit this parameter, LOCDATA assumes a
value of O.

If you are using LOCDATA to set up the information
to be bootstrap loaded into a RAM DISK, you must
set this parameter to correspond to the beginning
address of the memory device. Refer to the iRMX
86 CONFIGURATION GUIDE for more information about
setting up a RAM DISK.

NAME=string Module name which LOCDATA associates with the
output module. Whenever you use LINK86 or LOC86
to process the module, this name appears in the
map files. You should use a valid PL/M-86
identifier for this parameter. If you omit this
parameter, LOCDATA uses a default value of
@LOCDATA.

Operator 3-71

LOCDATA

OUTPUT PARAMETERS

TO Writes the processed output to a named file. The
specified output file should not already exist.
If it does, LOCDATA displays the following message:

<{pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over the
existing file. Enter an "N" (upper or lower case)
or a carriage return alone 1f you do not wish to
overwrite the existing file. 1In the latter case,
the LOCDATA command will exit without processing
the data.

OVER Writes over (replaces) the existing output file,
regardless of file size. If the output file does
not already exist, LOCDATA creates a new file.

outpath Pathname of the file to receive the output of
LOCDATA. Multiple or wild-card pathnames are not
allowed.
DESCRIPTION

LOCDATA transforms an arbitrary string of data into a module that you can
add to a library using LIB86 and load into memory using the iRMX 86
Bootstrap Loader. LOCDATA creates an L-module to contain the data. The
L-module consists of an L-module header record (LHEADR), a SEGDEF record,
a number of physically-enumerated data records (PEDATA), and a module end
record (MODEND). LOCDATA places the module name into the LHEADR record.
It sets the appropriate fields of the MODEND record to indicate that the
module is a non—main module with no start address. Refer to the iAPX 86,
88 FAMILY UTILITIES USER'S GUIDE for more information about L-modules.

After processing the data, LOCDATA displays one of the following messages:
<{inpath>, located TO <outpath>
<inpath>, located OVER <outpath>

Two of the LOCDATA parameters allow you to specify information about the
L-module that LOCDATA creates. The BASE parameter allows you to specify
the base address of the module. When the Bootstrap Loader loads the
module, it places the data at the specified base address with an offset
of 0. The NAME parameter allows you to specify a module name. If you
process the module with LINK86 or LOC86, the resulting map files list the
name you specify as the only symbol name in the module.

Operator 3-72

LOCDATA

LOCDATA is a valuable tool for configuring an application system that
includes a RAM DISK (an area of memory that acts like a secondary storage
device). LOCDATA allows you to process an entire volume of Human
Interface commands (and any other files you desire) so that you can
include a copy of that volume in a library that the Bootstrap Loader
loads. If you do this correctly, when you bootstrap load the system your
RAM DISK will be formatted automatically, and it will contain the
commands and files you need. This feature is useful in many applications
and is necessary when installing the Operating System on a system that
contains a tape drive and an unformatted Winchester disk.

To create an application system that contains a RAM DISK that receives
data via the Bootstrap Loader, perform the following steps:

1. Configure a version of the Operating System that includes a RAM
DISK. Refer to the iRMX 86 CONFIGURATION GUIDE for more

information. Make a special note of the address to which you
assign the device.

2. Bootstrap load this new versiom of the Operating System.

3. Attach the RAM DISK as a named device. For example, you could
enter the following command:

ATTACHDEVICE RAM AS :RAM:

4., TFormat the RAM DISK for named files. For example, you could
enter the following command:

FORMAT :RAM:

5. Copy Human Interface commands (and other files that you require)
to the RAM DISK. An error message will occur when you run out of
room in the RAM DISK.

6. Detach the RAM DISK. For example:

DETACHDEVICE :RAM:

7. Attach the RAM DISK as a physical device. For example:

ATTACHDEVICE RAM AS :RAM: PHYSICAL

This allows you to access all the data in the device, including
the formatting information.

8. Use LOCDATA to process the information from the RAM DISK and
place the output in another file. Use the address of the RAM
DISK as the value for the BASE parameter. For example, if you
configured your RAM DISK to have a base address of 5000H, you
could enter the following command:

LOCDATA :RAM: TO COMMANDS BASE=5000H NAME=COMMANDS5000

Operator 3-73

LOCDATA

9. Use LIB86 to add the processed ocutput (in this case, the file
COMMANDS) to the library that contains the bootstrap loadable
version of the Operating System.

Now, whenever you b