
iRMX 86™ HUMAN INTERFACE
REFERENCE MANUAL

Order Number: 9803202-02

Copyright © 1981, Intel Corporation
I Intel Corporation, 3065 Bowers Avenue~ Santa Clara, California 95051 I

REV. REVISION HISTORY PRINT
DATE

-001 Original Issue 5/81

-002 Adds information about the Disk 11/81
Verification Utility, the BACKUP and
RES'tORE commands, and exceptional
condition codes; changes information
about the SUBMIT Slnd FORMAT
commands; corrects te~hnical and

U
typographical errors; and documents
Release 4 of the iRMX 86
Operating System.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporatirn makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporaticoll assumes no responsibility for any errors that may appear in this document.
Intel Corporati,m makes no commitment to update nor to keep current the information
contained in th is document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Uf'e, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior writtfn consent of Intel Corporation.

The following Bre trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP
CREDIT
i
ICE
iCS
im
INSITE
Intel
Intel

Intelevision
Intellec
iRMX
iSBC
iSBX
Library Manager
MCS
Megachassis
Micromainframe

Micromap
Multibus
Multimodule
Plug-A-Bubble
PROMPT
Promware
RMX/BO
System 2000
UPI
tScope

and the combil'ation of ICE, iCS. iRMX. iSBC. iSBX, MCS, or RMX and a numerical suffix.

IA509/12811 5K DQJ

PREFACE

This manual is the primary reference for using the iRMX 86 Human
Interface software on your iRMX 86 Operating System. The manual is
addressed to two levels of users:

• Operators who will be using Intel-supplied Human Interface
commands and (optionally) user-created commands at the console
keyboard.

• Development programmers who will be writing custom application
progams that can be loaded and executed via interactive keyboard
commands.

The manual is implicitly divided into two general sections that
approximate these two Human Interface user-levels:

1. Chapters 1 through 4 are addressed to all levels of readers and
describe the syntax, format, and uses of the supplied Human
Interface commands:

• Chapter 1 introduces you to the purpose and scope of the
Human Interface.

• Chapter 2 describes the general syntax rules and other
considerations for using interactive commands to load and
execute programs during your console sessions.

• Chapter 3 describes the function and syntax of Human
Interface commands, plus the interactive system prompts and
user responses that take place during command execution.

• Chapter 4 provides a series of Human Interface command
examples that introduce the console user to basic iRMX 86
file management.

2. Chapters 5 through 7 are addressed to the programmer who will be
writing new application commands that can be executed from the
console keyboard under the control of the Human Interface:

• Chapter 5 describes some of the programming considerations
for using Human Interface system calls in a program's source
code.

• Chapter 6 describes the Human Interface system calls in
alphabetical sequence. A system call dictionary is provided
at the beginning of the chapter for fast reference.

iii

I

PREFACE (continued)

• Chapter 7 provides an example of how Human Interface calls
are used to create a new command.

• Appendixes A, B, and C describe the Human Interface type
definitions, exception codes, and string table format,
respectively.

RELATED PUBLICATIONS

The following manuals provide additional background and reference
information:

Manual

Introduction to the iRMX 86111 Operating System

iRMX 86 111 Nucleus Reference Manual

iRMX 86111 Terminal Handler Reference Manual

iRMX 86 111 Basic I/O System Reference Manual

iRMX 86111 Extended I/O System Reference Manual

iRMX 86 111 Loader Reference Manual

iRMX 86111 System Programmer's Reference Manual

iRMX 86 111 Configuration Guide

iRMX 86 111 Programming Techniques

iRMX 86 111 Disk Verfication Utility Reference Manual

8086 Family Utilities User's Guide for 8080/808S-Based
Development Systems

iAPX 86,88 Family Utilities Users' Guide for 8086-Based
Development Systems

Users' Guide for the iSBC 9S7B1II iAPX 86,88 Interface and
Execution Package

Guide to Writing Device Drivers for the iRMX 86111 and
iRMX 88 111 I/O Systems

iMMX 800 Software Reference Manual and User's Guide

iv

Number

9803124

9803122

143324

9803123

143308

143318

142721

9803126

142982

144i33

9800639

121616

143979

142926

143808

CHAPTER 1
INTRODUCTION

CONTENTS

Human Interface Software Requirements ••••••••••••••••••••••••••••••
Human Interface Services •••

Human Interface Command Set Features •••••••••••••••••••••••••••••
Human Interface System Call Features •••••••••••••••••••••••••••••

File And Directory Structures ••••••••••••••••••••••••••••••••••••••
Files ••
Pa thname •••
Directories ••

Supplied Directories •••
User Directories •••

Volumes ••
Logical Names •••••••••••••••••••••••••••••••••••• ~ •••••••••••••••••
Summary ••

CHAPTER 2
HUMAN INTERFACE COMMAND ENTRY AND SYNTAX
Console Session ••
Command Line •••

Additional Command Syntax ••
Command Line Syntax Example ••••••••••••••••••••••••••••••••••••••
Keyboard Character Entries •••••••••••••••••••••••••••••••••••••••

Input And Output Parameters ••
Pathlists ••

Preposition Parameters •••
Control Keys •••
F:11e Handling Considerations •••••••••••••••••••••••••••••••••••••••
Directory Listings •• ; ••
F:11e Handling Safeguards •••

CHAPTER 3
HUt1AN INTERFACE COl1MANDS
Command Syntax Schematics ••
ATTACHDEVICE •••
BACKUP •••
COpy •••
C:REATEDIR ••
DATE •••
n:EBUG ••
DELETE •••
D'ETACHDEVICE •••
D'IR ••
DISKVERIFy •••
DOWNCOPY •••
FO~T •••
RENAME •••
RESTORE ••

v

PAGE

1-1
1-2
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-6
1-7
1-7
1-8

2-1
2-2
2-3
2-3
2-4
2-5
2-5
2-6
2-7
2-8
2-9
2-9

3-1
3-5
3-8
3-15
3-18
3-20
3-21
3-22
3-24
3-25
3-32
3-37
3-40
3-45
3-48

CONTENTS (continued)

CHAPTER 3 (continued)
SUBMIT •••.••••• ~ ••••••
TIl1E •••
UPCOpy •••

CHAPTER 4
FILE HANDLING EXAMPLES
Command Examples Format ••
How To Begin A Console Session •••••••••••••••••••••••••••••••••••••
How To Create A Simple Data File •••••••••••••••••••••••••••••••••••
How To Duplicate Files •••

How To Copy To New Files •••
How To Display Files •••
How To Replace Existing Files •••••••••••••••••••••••••••••••••••
How To Concatenate Files •••

How To Delete Files ••
How To Use Directories •••

How To Create A New Directory ••••••••••••••••••••••••••••••••••••
How to Reference A Directory •••••••••••••••••••••••••••••••••••••
How To Add New Entries To A Directory ••••••••••••••••••••••••••••
How To Create A Directory Within A Directory •••••••••••••••••••••
How To List Directories ••
How To Move Files Between Directories ••••••••••••••••••••••••••••
How To Delete A Directory ••

How To Rename Files And Directories ••••••••••••••••••••••••••••••••
How To Rename Files ••
How To Rename])irectories ••

How To Move Files Across Volume Boundaries •••••••••••••••••••••••••
How To Format A New Volume •••
Diskette Switching Procedures ••••••••••••••••••••••••••••••••••••••
How To Use A Submit File •••

CHAPTER 5
CREATING NEW COMl'·IANDS
General Command J~ine Structure •••••••••••••••••••••••••••••••••••••
Input And Output Parameter Calls •••••••••••••••••••••••••••••••••••
Message Processing Calls •••
Command Processing Calls •••
Program Control Gall •••
Parameter Parsing Calls ••

Parameter Syntax Considerations ••••••••••••••••••••••••••••••••••
Command Invocation •••
Program Control ••
Exception Hand2_er ••

Logical Names ••• , .••
Load Module Formats ••
Command Creation Procedures ••

vi

PAGE

3-55
3-58
3-59

4-1
4-1
4-2
4-3
4-4
4-4
4-5
4-6
4-8
4-8
4-9
4-10
4-10
4-11
4-12
4-13
4-13
4-14
4-14
4-16
4-16
4-18
4-19
4-20

5-1
5-2
5-4
5-5
5-5
5-5
5-6
5-7
5-7
5-8
5-8
5-8
5-9

CONTENTS (continued)

CHAPTER 6
HUMAN INTERFACE SYSTEM CALLS
C$CREATE$COMMAND$CONNECTION ••
C$DELETE$COMMAND$CONNECTION ••
C$FORMAT$EXCEPTION •••
C $GE T$CHAR. •••
CGETINPUT$CONNECTION •••
CGETINPUT$PATHNAME •••
CGETOUTPUT$CONt~ECTION ••
CGETOUTPUT$PATHNAME ••
CGETP AR.AMETER ••
C $SEND$COlmA.ND •••
C$SEND$CO$RESPONSE •••
C$SEND$EO$RESPONSE •••
CSETCONTROL$C ••
CSETPARSE$BUFFER •••

CHAPTER 7
COMMAND CREATION EXAMPLES
Example 1. Standard System Calls ••••••••••••••••••••••••••••••••••
E:xample 2. Parsing Call •••
Example 3. Advanced System Calls ••••••••••••••••••••••••••••••••••

APPENDIX A
TYPE DEFINITIONS •••

APPENDIX B
HUMAN INTERFACE EXCEPTION CODES ••••••••••••••••••••••••••••••••••••

APPENDIX C
STRING TABLE FORMAT ••.•••••.••••.•••••••••••••••••••••••••••••••••••

vii

PAGE

6-4
6-10
6-11
6-13
6-14
6-20
6-22
6-31
6-34
6-38
6-48
6-51
6-54
6-56

7-2
7-3
7-4

A-I

B-1

C-l

3-1.
3-2.
3-3.
3-4.
C-l.

3-1.
3-2.
5-1.
6-1.
A-I.
B-1.
B-2.
B-3.

CONTENTS (continued)

FIGURES

EXTENDED Directory Listing Example •••••••••••••••••••••••••
FAST Directory Listing Example •••••••••••••••••••••••••••••
LONG Directory Listing Example •••••••••••••••••••••••••••••
SHORT Directory Listing Example ••••••••••••••••••••••••••••
String Table Format ••

TABLES

Human Interface Command Dictionary ••••••••••••••••••••••••
Directory Listing Headings ••••••••••••••••••••••••••••••••
Standard Logical Names ••••••••••••••••••••••••••••••••••••
System Call Dictionary ••••••••••••••••••••••••••••••••••••
Type Definitions ••
Human Interface Exception Codes •••••••••••••••••••••••••••
Exception Code Ranges •••••••••••••••••••••••••••••••••••••
iRMX 86M Condition Codes ••••••••••••••••••••••••••••••••••

viii

PAGE

3-25
3-25
3-26
3-26
C-I

3-3
3-27
5-8
6-2
A-I
B-1
B-2
B-3

CHAPTER 1. INTRODUCTION

The iRMX 86 Human Interface allows console operators to load and execute
program files from a console keyboard. The operator types a command name
that is the name of the application program to be executed. That program
is loaded into main memory from secondary storage and the program is
executed in conformance with any required or optional parameters that the
operator specified in the command line.

The console operator and the Human Interface begin an interactive dialog
once a command is typed. A Human Interface module called the Command
Line Interpreter (CLI) scans the command line for validity and then
executes the associated program. If any syntax or other errors are
detected in the command entry, an explanatory error message is displayed
on the console screen and the operator is prompted for a new command
entry.

During execution, further dialog between the console operator and the
lprogram itself may take place if the program encounters specifications in
the command line that require further clarification. The program then
prompts the operator for a course of action it is to follow. Generally,
such queries are issued because a command line parameter is subject to
ambiguous interpretation, or to protect existing program or data file
structures from accidental destruction or modification. The displayed
prompts and queries are coded into the program via Human Interface system
calls when the program is written.

When program execution is completed, a status message is displayed that
defines what action(s) the program performed. The Human Interface then
prompts for a new command entry. Thus, program execution is truly
:interactive, from the time the operator enters a command until execution
:is completed. The operator c,ontrols and sometimes modifies execution
through command parameter entries and keyboard responses to prompts
:issued by the program. Human Interface functions, in turn, respond to
the operator keyboard entries by displaying status messages, error
messages or prompts to ensure successful program operation.

~UMAN INTERFACE SOFTWARE REQUIREMENTS

The Human Interface functions can be used on any iRMX 86 Operating System
that is configured with all of the following software layers:

• Nucleus

• Basic I/O System

• Extended I/O System

1-1

INTRODUCTION

• Application Loader

• Human Interface

The Human Interface is a software layer in an iRMX 86 Operating System
that is configured with the above-named modules. During command
execution, the Human Interface invokes the services of these software
modules in a way that is transparent to the console operator. Therefore,
an operator needs little or no knowledge of operating system structures
to load and execute programs from the console keyboard.

HUMAN INTERFACE SERVICES

The Human Interface provides and supports two distinct levels of services
for iRMX 86 users:

1. A set of non-resident Human Interface commands that consist of
file management and general utility routines. These commands are
available for immediate use on any iRMX 86 Operating System that
is configured with the Human Interface. The Human Interface
commands are described in detail in Chapters 3 and 4 of this
manual.

2. A set of system calls that provides programmers with convenient
routines for creating new applications commands. This feature is
of particular value to OEM's who are writing custom iRMX 86
applications for their own customers. The programmer invokes
specific command handling functions associated with the new
program by including the relevant Human Interface calls in the
program's source code.

Once a new command is assembled and linked, the programmer stores
it either under the :PROG: directory in secondary storage, or
under the : SYSTEM: directory for debugged commands (see "Supplied
Directories" later in this chapter for a description of the
:PROG: and : SYSTEM: directories). The Human Interface calls are
described in Chapters 5 and 6.

All iRMX 86 Nucleus, I/O System, Extended I/O System, and
Application Loader calls are also available when writing an
application program associated with a user-designed command. See
the appropriate iRMX 86 reference manuals.

Both the Intel-supplied and user-created commands should use the same
general syntax. This consistency in syntax makes it easier for the
console operator to use commands at the keyboard and aids the system
programmer who is designing and creating new commands.

1-2

INTRODUCTION

HUMAN INTERFACE COMMAND SET FEATURES

Some of the main features provided by the Intel-supplied file handling
a.nd utility routines are described in the following list. The console
operator can invoke any of the services by entering a single command:

• Create a new file.

• Create new directories.

• List the contents of a file.

• List a directory, plus the attributes of all files in the
directory. Five listing formats are availaible, depending upon
the amount of information desired.

• Rename files or directories across directory boundaries.

• Delete files and/or directories.

• Append one or more files to the end of an existing file, or
concatenate files.

• Copy files from an ISIS-II volume mounted on a secondary storage
device to an iRMX volume mounted on a secondary storage device,
or vice versa.

• Read command input from a secondary storage device.

• Format a new volume.

• Set or reset the system date and time from the console keyboard.

HT~ INTERFACE SYSTEM CALL FEATURES

The Human Interface system calls let programmers create new commands that
are compatible with the standard syntax. The calls consist of command
parsing, processing, and I/O connection routines that link an application
program with iRMX 86 Operating System resources in a way that is
completely transparent to the operator during command execution.

Optional parameter elements in the calls give the programmer the ability
to create new commands that are tailored to the exact requirements of the
end user. An important feature of the calls is that they ensure a
consistent syntax and processing for new commands. Thus, user-created
commands will still be usable without modification or rewriting in future
releases of the Human Interface.

Some of the main services provided by the Human Interface system calls
are as follows:

• Define the location of the user's system console input and output
devices (:CI: and :CO:, which are described later in the manual).

1-3

I

INTRODUCTION

• Set up I/O connections to input and output files specified in a
command line.

• Set up a command connection to send multiple-line commands.

• Allow a user to obtain control of the CTRL/C key.

• Concatenate multiple-line commands and then execute the command.

• Format a default message for a given exception code.

• Send and receive messages to and from the user's console.

FILE AND DIRECTORY STRUCTURES

The following subsections in this chapter define the file organization
and structures used both by tpe console operator and by executing
programs.

FILES

The file is the basic unit in the file organization. A file has a
pathname by which it is accessed, and it resides on a volume of some
secondary storage device rather than in main memory (see the pathname
definition under the next heading). A named file may consist of data
accessed by one or more programs, data that you access at the console, a
directory, or an executable program file that you invoke by a Human
Interface command. For example, all the supplied Human Interface
commands are non-resident program files.

PATHNAME

A pathname is a '''road map" through the hierarchical tree structure for a
named file or directory that is to be accessed during command execution.
This pathname tells the excuting command which directories (and in some
cases which device; see "Volumes" in this chapter) to search to find the
desired file or directory.

When you list a pathname in a command entry, enter each name element
within the path in a descending hierarchical order, and separate each of
these pathname elements with a slash mark (/). For example:

:F1:PRIME/LEVELA/mytest

is the pathname for a file named "my test" which is located on a volume
mounted on a device whose prefix is :F1:. PRIME/LEVELA means the
command is to search a parent directory named PRIME for a another
directory named LEVELA, which in turn, is searched for the my test file to
be accessed. Note that the file or directory to be read from or written
to is always the last element in the specified path.

1-4

INTRODUCTION

All of the following are valid pathnames:

a
able
:f1: /able/samp

(located on system's default directory)
(located on system's default directory)
(Pathname for samp located in able directory
on the device with prefix :F1:)

Each time you access a file or directory for a read or write, you must
enter the complete pathname. Once you create a new file or directory,
its pathname remains fixed unless you choose to rename or move that file
or directory to some new path. Note that pathname entries can be typed
in either uppercase or lowercase letters.

DIRECTORIES

A directory is a specialized file used to store a list of file names and
(optionally) other directory names in logical groupings. What
distinguishes a directory from other files is that a directory maintains
a formatted list of all subordinate directories and files that are
created and assigned under its name. This formatted list of file and
directory pathnames can be either displayed on the operator's console
screen or written to a specified output file via the DIR command.

A directory name is always a preceding component in the pathnames of
files or other directories listed under that directory. You can display
any directory's list of files and other directories by specifying the
directory's pathname in a DIR command (see Chapter 3).

There are two different types of directories: those supplied with the
Human Interface, and those you create yourself by using the CREATEDIR
command.

SUPPLIED DIRECTORIES

Intel supplies four directories with the Human Interface software. These
directories each have a logical name enclosed by colon characters. When
you wish to specifically list one of the directories, this logical name
must be specified in the DIR command. The logical names and purpose of
the supplied directories are as follows:

:PROG:

: SYSTEM:

The user's program directory in which all user-created
commands can be placed. When you type any command on
the console keyboard, this is the first directory that
the Human Interface automatically searches for that
command.

The directory in which the Intel-supplied Human
Interface commands are placed. When a command is
typed on the console keyboard, the Human Interface
searches this directory for that command after it has
searched the :PROG: directory.

1-5

:$:

: WORK:

INTRODUCTION

The prefix for the default directory on the system.
If you do not specifically list some other directory
in the pathname of files and directories you create
and subsequently access during console sessions, they
will be assigned to and listed from the default
directory. The :$: prefix need not be specified in a
command.

The user's work directory, which is a temporary or
"scratch" work area. This directory can be used
either programmatically by an executing command or by
a user during a console session. Files in this
directory are highly volatile once detached ••

All the supplied directory assignments described previously are
configurable options during system configuration time, including the
order of search for command names in the :PROG: and : SYSTEM:
directories.

USER DIRECTORIES

User directories are those you create during console sessions to expedite
the management of your files. Once you create a new directory by using
the CREATEDIR command (see Chapter 3), that directory's pathname becomes
the preceding element in the pathname hierarchy for any file you
subsequently assign to the directory's maintained list of files.

For example, if a directory named LEVELA contains a directory named
LEVELB and a data file named "test", the pathnames for LEVELB and test
would be LEVELA/LEVELB and LEVELA/test respectively. Similarly, if the
LEVELB directory contains a file named SAMP, the heirarchical structure
for this tree would be as follows:

LEVELA
directory

TEST""----- ~ LEVELB
data file directory

• SAMP
data file

and all accesses to SAMP would require the following pathname:

levela/levelb/samp

Note that in the above example, the directory and file pathnames were
assigned to the system's default user directory. All directories you
create will automatically be assigned and listed in your system's default
directory unless you specify the prefix for some other directory as the
preceding element in the pathname of the new directory.

1-6

INTRODUCTION

VOLUMES

A volume is a secondary storage device, such as a diskette, hard disk
platter, .or a bubble memory that you have formatted to accept files and
directories. Before you can enter any file or directory on a new volume,
that volume must be formatted by using the Human Interface FORMAT command
(see the FORMAT command description in Chapter 2).

To access a volume mounted on a device other than the default device for
your configuration, you specify the device's prefix as the first element
in the pathname of the file or directory that is being created or
accessed on the volume in that device. The prefix is actually the
logical name for the device on which the volume is mounted; for example,
:F1:. See the FORMAT command in Chapter 3 and the volume access examples
in Chapter 4 for more detailed information.

LOGICAL NAMES

Logical names let you refer to connections symbolically. You
differentiate a logical name from a component of a pathname by bracketing
the logical name with colons. You can use a logical name either as a
prefix or in place of a pathname.

The standard logical names and their meaning are described in Table 2-1.
However, note that these logical name assignments are all configurable
during system configuration time. See the iRMX 86 CONFIGURATION GUIDE
for more information.

You can also assign logical names to new physical devices that are added
to the system without having to go through a system reconfiguration. See
the ATTACHDEVICE command in Chapter 3 for more information.

Table 2-1. Standard Logical Names

Name Meaning

-, - ,- -

:CI: Prefix for user console input (default input file)
:Co: Prefix for user console output (default output file)
:PROG: Prefix to User Program Directory
: SYSTEM: Prefix to System Command Directory)
:$: Default prefix
: WORK: Prefix to User Work Directory
:BB: Byte bucket

1-7

INTRODUCTION

The full meaning of the logical names listed in Table 2-1 is as follows:

:CI: and :CO: Logical devices that establish the source of commands
and data and the command destination output,
respectively.

:PROG:

: SYSTEM:

: $:

:WORK:

:BB:

SUMMARY

The directory where the user-designed commands are
located. The directory name represented by :PROG: is
a configuration option.

The directory where the Human Interface commands are
located. The directory name represented by : SYSTEM:
is a configuration option.

The user's default directory, which is used for files
that do not have a logical name. This directory is a
configuration option.

The directory to be used for temporary files and work
("scratch") files. The directory name represented by
: WORK: is a configuration option.

The logical name of a device that is treated as an
infinite sink. Anything written to :BB: will
disappear, and a read from :BB: will receive an EOF
(end-of-file) •

During a Human Interface console session, a operator accesses system
services interactively rather than programmatically. At this level, the
dialog from operator to system is through keyboard commands, parameter
options, and responses to queries or prompts. The dialog from system to
operator is through displayed prompts, queries, status and error
messages, and listed output.

At the programming level, the Human Interface provides routines that
allow programmers to create new commands whose syntax and structure is
consistent with the features and requirements of the current and future
releases of the Human Interface.

1-8

CHAPTER 2. HUMAN INTERFACE COMMAND ENTRY AND SYNTAX

'Ibis chapter describes the general syntax rules and procedures to be
followed when using Human Interface commands at an operator's console.
Additional and more specific information is provided in the individual
command descriptions in Chapter 3.

When you enter a command at the console keyboard, the associated program
file is loaded and executed in conformance with any parameters you
:included in the command. During execution, the program may prompt or
query you for more information as to the precise operation you wish
performed. Following execution, the Human Interface displays status
Inessages that tell you the nature and scope of the operations performed
and whether or not execution was successful.

Error messages may also be displayed if you attempt an invalid operation
(e.g., a command syntax error) or if some error is encountered while the
command is being executed. Human Interface error messages are defined in
the individual command descriptions in chapter 3.

The general syntax rules described in this chapter apply equally to both
the supplied Human Interace commands and any user-created commands that
IMy have been added to your system.

CONSOLE SESSION

A console session begins when you enter a command at the the console
keyboard to load and execute a program. When your iRMX 86 Operating
System is initialized, the Human Interface displays the following message
to let you know that it has initialized and is ready to accept your first
keybo~rd command entry:

iRMX 86 HI Vx.x: user WORLD

where:

Vx.x

user WORLD

- (hyphen)

Is the number of the version of the Human Interface
that is currently running on your system.

Means you have read and write access to all files and
directories on the system.

Prompts you to enter a command. After command
execution is completed or is prematurely terminated
for any reason, the Human Interface displays another
hyphen to prompt for your next command.

2-1

HUMAN INTERFACE COMMAND ENTRY AND SYNTAX

Enter your command on the same line and immediately following the hyphen
prompt. For exan~le:

-copy a to b

where everything following the hyphen is your command entry. Type a
carriage return to end a command line and to position the cursor on a new
line. In all examples in this manual, it is assumed that you will
terminate every command line or data line by pressing the RETURN, LINE
FEED, or ESC key.

COMMAND LINE

The elements that form a standard command entry include a command name,
required input parameters (if any), and optional parameters. The general
structure of a command line that executes a file handling routine is as
follows:

command name inpath-list [preposition outpath-list] [parameters]

where:

command name

inpath-list

preposition

outpath-list

parameters

Pathname of the non-resident program file to be
executed. After the command line is entered, the
named program file is loaded into main memory from
secondary storage for execution.

One or more pathnames for the files to be read as
input during command execution. Hultiple pathnames in
an input file list must be separated by commas.
Embedded blanks between pathnames are optional. See
the description of pathlists later in this chapter.

A word that tells the executing command how you want
the output handled. The four prepositions used in
Intel-supplied commands are TO, OVER, AFTER, and AS.
Your system may also have other prepositions for
user-created commands. See the descriptions of
prepositions later in this chapter.

One or more pathnames for the files that are to
receive the output during command execution. Multiple
pathnames specified in an output file list must be
separated by commas. Embedded blanks between
pathnames are optional.

Specifically requested or defaulted optional
parameters that perform additional or extended
services during command execution. The QUERY
parameter that is available in some Human Interface
commands, or the EXTENDED parameter in the DIR command
are examples of such parameters. See the individual
parameter descriptions for the commands in Chapter 3.

2-2

HUMAN INTERFACE COMMAND ENTRY AND SYNTAX

ADDITIONAL COMMAND SYNTAX

line
terminator

Not shown in the command line format, but terminates
the command entry on the current line and causes the
cursor to go to a new line. The RETURN key, NEW LINE
key, or ESC key are used as line terminators,
depending on your hardware configuration.

Other optional command line entries are as follows:

continuation
mark

comment
character

An ampersand character (&) to indicate the command
line is continued on the next line. When you press
the RETURN key after you press the ampersand key, the
Human Interface displays two asterisks (**) on the
next line to prompt for the continuation line.

Within available memory limits, you can use as many
continuation lines for a given command as you desire.
After you press the RETURN key without a preceding
ampersand character, the invoked command will receive
the entire command string as a single command.

Note that an ampersand within a quoted string will not
be interpreted as a continuation mark.

A semicolon (;) character to indicate that all text
following it on the current line is to be read as a
non-executable comment. Comments can also be entered
after a continuation mark (&) is entered on a line but
before the RETURN key is pressed. A common use of
comments in commands is in a SUBMIT file list of
commands (see the SUBMIT command in Chapter 3).

Note that a semicolon within a quoted string will not
be interpreted as a comment character.

A command line and each succeeding continuation line for a complete
command can have a maximum of 255 characters per line, including any
punctuation, embedded blanks, continuation mark, non-executable comments,
and carriage return.

The Command Line Interpreter prescans the current line for a continuation
mark each time you press the RETURN key. If a continuation mark is
present, the cursor is positioned to a new line and the continuation
prompt (**) is issued. If a continuation mark is not present in the line
when the RETURN key is pressed, the command is loaded and executed.

COMMAND LINE SYNTAX EXAMPLE:

The following example incorporates of all of the command elements
described in the previous general syntax subsection except a comments
entry:

2-3

HUMAN INTERFACE COMMAND ENTRY AND SYNTAX

-copy test/sampl/data, test/more/prog to &
**new/filel,new/file2 query

where:

Human Interface prompt for a new command entry.

copy Name of the command to be executed.

test/sampl/data First pathname in the input pathlist.

test/more/prog

to

&

RETURN
(not shown)

**

new/filel

new/file2

query

RETURN
(not shown)

Pathname separator between input pathnames (embedded
blank is optional).

Second (and last) pathname in the input list.

Preposition that tells the command to copy the input
files TO new files.

Continuation character that tells the Human
Interface you wish to continue the command on the
next line.

Terminates the command entry on this line and
causes the cursor to go to a new line.

Human Interface prompt to continue the command entry
on the new line.

Pathname of the first file in the output list to
receive the output from the corresponding file in
the input list.

Separator between pathnames.

Pathname of the next file in the output list to
receive the output from the second input file.

Optional parameter that causes the command to prompt
for permission to copy each input file to each
listed output file in the listed sequence.

Ends the command entry and causes the command to
be loaded from secondary storage for execution. The
screen cursor is positioned on a new line.

KEYBOARD CHARACTER ENTRIES

You can type all elements of a command line in uppercase characters,
lowercase characters, or a mix of both. The Human Interface makes no
distinction between cases when it reads command line items, and your
entries will appear on the screen exactly as you enter them. For
example, you could create a new file with the pathname ''MY/TEST'' and then
specify the file as "my/test" in subsequent file accesses.

2-4

HUMAN INTERFACE COMMAND ENTRY AND SYNTAX

INPUT AND OUTPUT PARAMETERS

An input parameter consists of a pathname or pathname-list of files on
which a command is to operate. An output parameter defines the
destination or destinations of the processed output. Input and output
parameters may consist of the pathnames for one or more files or
directories, or logical names, where a logical name is a shorthand way
(prefix) of referring either to some physical device configured into your
system or to a file. The prefix is always enclosed by colons; for
instance, :Fl: or :PROG:.

An input parameter is required for all file handling commands. An output
parameter is also generally required but the default TO :CO: (to console
screen) can be used in most commands. See the individual command
descriptions in Chapter 3 for a a description of default parameters.

PATHLISTS

A pathlist is a list of pathnames, separated by commas, that comprises an
input or output parameter. A command reads the pathnames in a pathlist
in the sequence in which you enter them. Such lists of pathnames are
referred to in this manual as "inpath-lists" and "outpath-lists"
respectively. The example:

••• PRIME/urfile ,LEVEL3/samp , LEVELS/TEST/one •••

is a valid pathlist consisting of three pathnames, two of which are
separated by a comma, and the last separated by both a comma and a
separating blank.

The Human Interface also recognizes your console keyboard and console
screen as an "input file" and an "output file" respectively, and are
specified in a command line as follows:

:CI:

:CO:

The logical name ,prefix for the console input device
(console keyboard). Specifying :CI: in a command line
tells the command to read input from the console
keyboard.

The logical name prefix for the console output device
(console screen). For some commands such as COPY, TO
:CO: is the default output file if a preposition and
output file are not specified. For example, the
command:

copy test

causes the COPY command to write the contents of file
TEST TO the console screen by default.

2-5

HUMAN INTERFACE COMMAND ENTRY AND SYNTAX

PREPOSITION PARA}lliTERS

Preposition parameters in a command line tell the the command how you
want it to process the output file or files. The Human Interface file
management commands usually provide three options in the choice of a
preposition: TO, OVER, and AFTER, with AS as yet another preposition used
in the ATTACHDEVICE command. The TO preposition and :CO: (console
screen) will be used by default if you do not specify a preposition and
an output file. The prepositions have the following meaning:

TO Causes the command to send the processed output to new files;
that is, to files that do not already exist in the given
directory. If a listed output file does already exist, the
command will display the following query on the console
screE~n:

OVER

AFTER

pathname, already exists, DELETE?

Enter a Y or y if you wish to delete the existing file.
Enter any other character if you do not wish the file to be
delet~ed. If a Y is not entered, the executing command will
not process the corresponding input file but will go to the
next input filein the command line. The listed input files
are processed and written to the output files on a
one-for-one basis in the listed sequence. For example:

-copy a,b to c,d

where file a is copied to file c, and file b is copied to
file d.

Causes the command to write your input files over the output
files in the listed sequence, irrespective of whether or not
the output files already exist. For example:

-COpy sampl,samp2 OVER outl,out2

copies the data from file SAMPl over the present contents of
file OUTl, and copies the data of SAMP2 over the contents of
file OUT2.

Causes the command to append the contents of one or more
files to the end of one or more new or existing files (file
concatenation). For example:

-copy inl,in2 after destl,dest2

causes the contents of file INl to be written to the end of
the contents of DESTl, and the contents of INl to be added to
the end of DEST2.

2-6

HUMAN INTERFACE COMMAND ENTRY AND SYNTAX

AS Causes a physical device specified in an ATTACHDEVICE command
to be cataloged in the system's logical-name directory AS the
logical name specified in the command. All subsequent
accesses to the device, either interactively by keyboard
command or programmatically, must be performed by specifying
the cataloged logical name unless that logical name is
configured into the system as the standard default prefix.

CONTROL KEYS

CONTROL keys allow you to enter control commands to the Terminal
Handler. You invoke control commands by pressing the CTRL key, and while
holding it down, also pressing the required alphabetical key. In this
manual, CONTROL key functions are designated as follows:

CTRL/character

where CTRL specifies the CONTROL key, and character is the alphabetic
character used to perform the desired action. The CTRL keys and their
actions are as follows:

CTRL/z

CTRL/c

CTRL/d

CTRL/o

CTRL/s

CTRL/q

CTRL/x

CTRL/r

Signals end-of-file for keyboard entry applications.
CTRL/z should be entered on a new line because a
RETURN or LINE FEED will not be appended to the end of
the last data line.

Tells the Human Interface to abort the currently
executing program.

Invokes the iRMX 86 Debugger (if configured in your
system).

Suppresses output if output is in nornal mode, or
restores output to normal mode if output is already
suppressed.

Suspends writing to the output file.

Resumes writing to the output file.

Deletes the current displayed line during keyboard
input.

Operates in two modes: if the current line is empty,
CTRL/r sends the previous line to the console output
device so that you can edit and submit the line as a
new command; if the current line is not empty CTRL/r
sends a RETURN to the console output device, followed
by a reentry of the current line.

2-7

HUMAN INTERFACE COMMAND ENTRY AND SYNTAX

Other key operations that can be used are as follows:

RUBOUT

RETURN, ESC,
or

LINE FEED

Permits simple line editing on the current line. The
handling depends upon how the Terminal Handler option
was configured in your system. In one option, each
time the RUBOUT key is pressed, the last displayed
character is deleted with the cursor moving backward
one space across the line. You continue pressing the
RUBOUT key until you reach the character to be
corrected. In the other option, the deleted character
is echoed back to the console output device.

Signals the end of a command line or line of data and
positions the cursor on a new line. In this manual,
use of the RETURN key is assumed in command examples.

FILE HANDLING CONSIDERATIONS

Several of the Human Interface commands require that you specify a
preposition pararneter in the command line. That is, you must enter a TO,
OVER, or AFTER preposition as one of the command line parameters. In
such cases, the number of input files you list, as opposed to the number
of output files, can directly affect the way in which the command handles
the preposition and the way the files are processed.

Usually (but not necessarily), you will be specifying a one-for-one match
between the number of input files and output files. There are situations
where you can combine preposition functions.

For example, in a command (other than RENAME), if you specify more
pathnames in the input list than in the ouput list, the remaining input
files will be automatically appended to the end of the last specified
output file, regardless of what preposition you specified.

This flexibility in file handling allows you to combine one-for-one file
operations (as in TO or OVER preposition) with file concatenation (as in
the AFTER preposition) in a single command, and thus avoid entering an
extra command to perform a separate concatenation operation. For
instance, assume that in a COpy command, you use the TO preposition and
specify the following file names in the input and output parameters:

copy a,b,c TO d,e

When you execute the command line, file "a" will be copied to file "d",
and files "b" and "c" will be appended to the end of file "e" as follows:

a TO d
b TO e
c AFTER e

2-8

HUMAN INTERFACE COMMAND ENTRY AND SYNTAX

Conversely, if you specify fewer file names in the input list than in the
output list of a command line, the excess output file names will be
ignored, regardless of which preposition you specify. For example,
assume that in a command line you specify the following file names in the
input and output parameters:

copy a,b TO d,e,f,g

When the command is executed, file "a" will be matched with file "d",
file "b" matched with file "e", and files "f" and "g" will be ignored, as
follows:

a TO d
b TO e

Preposition parameters cannot be combined in a RENAME command; that is,
TO or OVER prepositions do not convert to an AFTER preposition if there
are more input files than output files.

DIRECTORY LISTINGS

A directory listing contains a list of files and other directories that
you assign to it. You can list a directory on the console screen or to a
named output file by using the DIR command and specifying the directory's
pathname (if you omit a directory name in a DIR command, the default user
directory will be listed). The amount of information provided for each
listed file or directory, and the format of the directory listing depend
on which parameter option you specify in the DIR command. See the DIR
eommand description in Chapter 3.

FILE HANDLING SAFEGUARDS

.A mismatch between the number of input file and output files is more apt
to be accidental than something you perform intentionally. The key point
is that Human Interface commands always attempt to perform as many of
your command line specifications as possible, without destroying ~he
integrity of your files. As the operation for each listed file is
successfully executed, the command displays a message that identifies the
file and defines precisely what operation was performed.

When a command encounters a parameter item that is subject to ambiguous
interpretation or could result in the accidental destruction of an
existing file, the command usually displays a query message and prompts
you to confirm or cancel the specific operation for that file. See the
command descriptions in Chapter 3 for a definition of the messages.

2-9

CHAPTER 3. HUMAN INTERFACE COMMANDS

lbe commands described in this chapter are supplied by Intel for iRMX 86
Operating Systems that are configured with the Human Interface. You can
use the commands to perform a number of highly convenient file management
functions or to invoke various utility routines.

If you are a new user of the Human Interface, it is suggested that you
review the command syntax and invocation considerations in Chapter 2
before reading the command descriptions provided in this chapter.

The commands described in this chapter assume that your iRMX 86 system is
configured with the Human Interface commands resident in secondary
storage under the : SYSTEM: directory), and any user-created commands
resident in the :PROG: directory. When you enter any command
(Intel-supplied or user-created) using this configuration, the Human
Interface always searches for the command in the :PROG: directory first
and the : SYSTEM: directory second.

The commands are presented in alphabetical sequence without regard for
functional organization. A functional grouping of the commands is given
in the Human Interface Command Dictionary in Table 3-1 for fast reference.

COMMAND SYNTAX SCHEMATICS

The syntax for each command described in this chapter is presented by
means of a "railroad track" schematic, with syntactic elements scattered
along the track. Your entrance to any given schematic is always from
left to right, beginning with some command name entry.

Elements shown in uppercase characters must be typed in a command line
exactly as shown in the command schematics except that you can type them
either in uppercase or lowercase characters; the Human Interface makes no
distinction between cases in alphabetic characters. Syntactic elements
shown in lowercase characters are generic terms, which means that you
supply the specific item, such as the pathname for a file.

The example that follows shows all the possible paths through a railroad
track schematic. Notice that the main track goes through required
elements in a given command.

'''Railroad sidings" go through optional parameter elements. In some
cases, you have a choice of going through one of several possible sidings
before returning to the main track. In still other cases, the main track
itself diverges into two separate tracks, which means that you must
select one parameter or the other but not both.

3-1

HUMAN INTERFACE COMMANDS

In this example:

• A is a required element.

• Either B or C is required but not both.

• D, E, or F are all optional but only one can be selected.

• G is required.

3-2

HUMAN INTERFACE COMMANDS

Table 3-1. Human Interface Command Dictionary

Command Synopsis Page

File and Volume Management Commands

I----------I-----------------------------~-+---,.--

ATTACHDEVICE

BACKUP

COpy

CREATEDIR

DELETE

DETACHDEVICE

DIR

DISKVERIFY

DOWNCOPY

FORMAT

RENAME

RESTORE

UPCOPY

Attaches a new physical device to the system
and adds its logical name to the root job's
object directory.

Copies named files to a backup volume.

Creates new data files, or copies files to other

3-5

3-8

pathnames. 3-15

Creates one or more new directories. 3-18

Deletes data files and empty directories from a
volume on secondary storage. 3-22

Removes a physical device from system use and
deletes its logical name from the root job's
object directory. 3-24

Lists a directory's filenames (and optionally,
file attributes). 3-25

Verifies the data structures of named and
physical volumes.

Copies files and directories from an iRMX 86
volume mounted on a secondary storage de-Olice to
an ISIS-II secondary storage device.

Formats an iRMX 86 volume.

Renames files or directories.

Copies files from a backup volume to a named
volume.

Copies files and directories from an ISIS-II
secondary storage device to an iRMX 86 volume
mounted on a secondary storage device.

3-32

3-37

3-40

3-45

3-48

3-59

--------------~---~------~-

3-3

I

I

I

I

HUMAN INTERFACE COMMANDS

Table 3-1. Human Interface Command Dictionary (continued)

Command Synopsis Page

General Utility Commands

DATE Sets or resets the system date, or displays the
current date. 3-20

DEBUG Transfers control to the iSBC 957A/B package to
debug an iRMX 86 application program. 3-21

SUBMIT Reads, loads, and executes a string of commands
from seco~dary storage instead of the keyboard. 3-55

TIME Sets or resets the system clock, or displays the
current system time. 3-58

3-4

ATTACHDEVICE

ATTACHDEVICE

This command attaches a physical device to the iRMX 86 Operating System
and catalogs the device's specified logical name in the root job's object
directory.

The format of the command is as follows:

INPUT PARAMETERS

physical device Physical device name of the device to be attached
to the system. This name should be the name of
one of the Basic I/O System's Device Unit
Information Blocks (DUIB), as defined at system
configuration time.

AS :logical name: Preposition plus logical name that causes the
physical device to be cataloged in the object
directory AS the specified logical name. After
the device is attached and cataloged via the
ATTACHDEVICE command, any command or program code
that accesses the device must specify the logical
name unless the device uses the default prefix as
its logical name.

NAMED Specifies that the volume mounted on the device is
already formatted for NAMED files. Examples of
named-file volumes are diskettes or hard disk
platters. If neither NAMED nor PHYSICAL are
specified, NAMED is the default. See the FORMAT
command in this chapter for a further desc~iption
of NAMED files.

PHYSICAL Specifies that the volume mounted on the logical
device is already formatted as a single, large
file. An example is a line printer. See the
FORMAT command in this chapter for a further
description of PHYSICAL volumes.

3-5

ATIACHDEVICE

DESCRIPTION

A physical device must be attached to the system and cataloged in the
root job's object directory before it can be accessed via the logical
name you assigned at the time the device was attached. Physical devices
must have been declared in the Basic I/O System's Device Unit Information
Block (DUIB) at configuration time before they can be attached with the
ATTACHDEVICE command.

The most frequent use of the ATTACHDEVICE command is to attach a new
device, such as a new disk drive or a line printer, without having to
reconfigure the system. (See the DETACHDEVICE command in this chapter
for a description of how to detach a device from the system without
reconfiguring.)

When the attachment is completed, the ATTACHDEVICE command displays the
following message:

physical name, attached as logical name

where "physical name" and "logical name" will be as specified in the
ATTACHDEVICE command.

ERROR MESSAGES

logical name, device already attached

The specified device is attached but is not cataloged. ATTACHDEVICE does
not attach the device.

device name, device does not exist

The physical device name you specified does not correspond to a name the
Basic I/O System recognizes. That is, there is no DUIB defined for the
device you specified. ATTACHDEVICE does not attach the device.

logical name, invalid logical name

The logical name specification is not enclosed with colons, contains
unmatched colons, is longer than 12 characters, or contains invalid
characters. ATTACHDEVICE does not attach the device.

logical name, logical name already exists

The specified logical name is already cataloged in the root job's object
directory. ATTACHDEVICE does not attach the device.

3-6

ATTACH DEVICE

physical device, may not be attached as a (NAMED or PHYSICAL)

The NAMED or PHYSICAL specification in the command is not allowed for
that physical device; for example, defining a line printer as a NAMED
volume. ATTACHDEVICE does not attach the device.

008A : E$CONTROL, too many device names

You tried to attach more than one physical device with a single
ATTACHDEVICE command. ATTACHDEVICE does not attach a device.

logical name, volume is not a named volume

ATTACHDEVICE attempted to attach a device as a named device and
discovered a physical volume on the device. However, ATTACHDEVICE does
attach the device.

logical name, volume not formatted

ATTACHDEVICE attempted to attach a device as a named device and
encountered an I/O error while searching for the volume's root
directory. However, ATTACHDEVICE does attach the device.

logical name, volume not mounted

The specified device does not contain a volume. However, ATTACHDEVICE
does attach the device.

logical name, exception code

ATTACHDEVICE was unable to attach the specified device. This message
lists the iRMX 86 exception code encountered.

3-7

BACKUP

BACKUP

This command saves files in a named volume by copying them to a physical
volume which serves as a backup volume. Later, you can use the RESTORE
command (described later in this chapter) to retrieve these files and
copy them to named volumes.

The format of this command is as follows:

~me

INPUT pARAMETERS

pathname

'dd mmm yy'

Pathname of a file on the source volume. BACKUP
saves files from the branch of the file tree that
begins with the specified file. If you specify
the logical name of the device only, BACKUP saves
files beginning with the root directory of the
volume.

Date parameter that BACKUP uses, in conjunction
with the time parameter, to determine which files
to save. BACKUP saves only those files that have
been modified since the specified date and time.
You must enclose the date parameter in single
quotes. The individual fields of this parameter
are:

dd Two-digit number that specifies the day of
the month.

mmm Three-character abbreviation for the
month, as follows:

JAN APR JUL OCT
FEB MAY AUG NOV
MAR JUN SEP DEC

yy Two-digit number that specifies the year.

If you omit this parameter but specify the time
parameter, the date defaults to the current
system date. If you omit both the date and time
parameters, the date defaults to 1 JAN 78.

INPUT PARAMETERS (continued)

hh:mm:ss

QUERY

OUTPUT PARAMETER

:backup device:

Time parameter that BACKUP uses, in conjunction
with the date parameter, to determine which files
to save. BACKUP saves only those files that have
been modified since the specified date and time.
The individual fields of this parameter are:

hh Hours specified as 0-24.

mm Minutes specified as 0-59.

ss Seconds specified as 0-59.

If you omit this parameter, the time defaults to
00:00:00.

Causes the Human Interface to prompt for
permission to save each file. The Human Interface
prompts with one of the following queries:

pathname, BACKUP data file?

or

pathname, BACKUP directory?

Enter one of the following responses to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Save the file.

Exit from the BACKUP command.

Continue saving files without
further query.

If data file, do not save the
file; if directory file, do not
save the directory or any file in
that portion of the directory
tree. Query for the next file, if
any.

Logical name of the device to which BACKUP copies
the files.

3-9

BACKUP

BACKUP

DESCRIPTION

BACKUP is a utility which saves named files on backup volumes, such as
diskettes. BACKUP saves the following information for each file:

• File name

• Access list

• Extension data

• User ID of the file owner

• File granularity

• Contents of the file

You can copy this information back to a named file by using the RESTORE
utility, described later in this chapter.

Before a volume can be used as a backup volume, the volume must be
formatted. Although BACKUP will accept both physical and named volumes,
it is recommended that you supply freshly-formatted physical volumes or
old backup volumes for this purpose. BACKUP issues a message before
continuing if the backup volume you supply is anything other than a
freshly-formatted physical volume. When BACKUP copies files to the
backup volume, it overwrites any information that currently exists on the
volume.

In order for BACKUP save files from a named volume, you must have read
access to the files and to the directories that contain them.

You can limit the files which BACKUP processes in the following ways:

• If you specify a complete directory name instead of just the
device's logical name in the invocation line, BACKUP limits its
processing to the specified directory and all subdirectories.

• If you specify the date and time parameters, BACKUP processes
only those files modified since the specified time.

• If you specify the QUERY parameter, BACKUP asks permission before
saving each file. If you deny permission for BACKUP to save a
data file, BACKUP skips the file and continues with the next
file. If you deny permission for BACKUP to save a directory
file, BACKUP skips the directory and all files contained in the
directory or its subdirectories.

When you enter the BACKUP command, BACKUP displays the following sign-on
message:

iRMX 86 DISK BACKUP UTILITY, Vx.x

where Vx.x is the version number of the utility. It then prompts you for
a backup volume.

3-10

DESCRIPTION (continued)

Whenever BACKUP requires a new backup volume, it displays the following
message:

backup device, mount backup volume Hnn, enter Y to continue:

where backup device indicates the logical name of the backup device and
nn the number of the requested volume. (BACKUP in some cases displays
additional information to indicate problems with the current volume.) In
response to this message, place a volume in the backup device and enter
one of the following:

Entry

Y, y, R or r

E or e

Any other
character

Action

Continue the backup process.

Exit from the BACKUP command.

Invalid entry; reprompt for entry.

BACKUP continues prompting for a backup volume until you supply one that
it can access.

If the backup volume you supply is not a freshly-formatted physical
volume, but one that BACKUP can access (such as a named volume, a
previously-used backup volume, or a physical volume containing data),
BACKUP informs you of this with one of the following messages:

backup device, not a physical volume, enter Y to overwrite:

or

backup device, backup volume Hnn, date, enter Y to overwrite:

where backup device is the logical name of the backup device, nn is the
volume number of the backup volume, and date is the date on which the
previous backup was performed. In response to these messages, enter one
of the following:

Entry

Y, y, R, or r

E or e

Any other
character

Action

Use the volume as a backup volume, overwriting the
information currently stored on the volume.

Exit from the BACKUP command.

Reprompt for another volume.

3-11

BACKUP

BACKUP

DESCRIPTION (continued)

As BACKUP saves each file in the source volume, it displays the following
message at the Human Interface console output device (:CO:):

pathname, SAVED

If your ,backup volume becomes full and you supply additional backup
volumes, you should write the numbers of the backup volumes on the volume
labels. Later, when you later restore files to a named volume with the
RESTORE utility, you must supply the backup volumes in order.

ERROR MESSAGES

backup device, backup volume #nn, date, enter Y to overwrite:

The backup volume you supplied already contains backup information.
BACKUP lists the logical name of the backup device, the volume number, and
the date on which the original backup occurred. It overwrites this volume
if you enter Y, y, R, or r.

backup device, cannot attach volume
backup device, exception code

backup device, mount backup volume #nn, enter Y to continue:

BACKUP cannot access the backup volume. This could be because there is no
volume in the backup device, the volume is write protected, or because of
a hardware problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. BACKUP continues to
issue this message until you supply a volume that BACKUP can access.

pathname, exception code, cannot back up file

For some reason BACKUP could not copy a file from the named volume,
possibly because you do not have read access to the file or because there
is a faulty area on the named volume. The message lists the pathname of
the file and the exception code encountered. BACKUP copies as much of the
file as possible and continues with the next file.

backup device, error writing volume label
backup device, exception code

backup device, mount backup volume #nn, enter Y to continue:

When BACKUP attempted to write a label on the backup volume, it
encountered an error condition, possibly because of a faulty area on the
volume, or because the volume is not formatted. The second line of the
message indicates the iRMX 86 exception code encountered. BACKUP
reprompts for a different backup volume.

3-12

ERROR MESSAGES (continued)

pathname, file does not exist

The pathname you specified as input to BACKUP does not represent an
existing file or device.

backup device, invalid backup device

The logical name you specified for the backup device was not a logical
name for a device.

exception code, invalid DATE or TIME

For either the DATE or TIME parameter, you entered a value that is out of
range (such as 31 FEB 81 or 26:03:62). The message lists the exception
code encountered as a result of this entry.

backup device, invalid logical name

The logical name you specified for the backup device contains unmatched
colons, is longer than 12 characters, contains invalid characters, or
does not exist.

backup device, not a physical volume, enter Y to overwrite:

The backup volume you supplied was formatted as a named volume or
contained some other information. BACKUP will overwrite this volume if
you enter Y, y, R, or r.

output specification missing

You did not supply the logical name of the backup device when you entered
the BACKUP command.

keyword, too many values

You entered too many values with either the DATE or TIME parameters. The
keyword portion of the message indicates the parameter that is in error.

keyword, unrecognized control

You entered one of the optional parameters of .the form "keyword=value,"
but the keyword was not DATE, TIME, or QUERY.

3-13

BACKUP

BACKUP

ERROR MESSAGES '(continued)

backup device, volume not formatted

backup device, mount backup volume #nn, enter Y to continue:

The backup volume you supplied was not formatted. BACKUP continues to
issue this message until you supply a formatted backup volume.

backup device, write error on backup volume
backup device, exception code

BACKUP encountered an error condition when writing information to the
backup volume. The second line of the message lists the exception code
encountered. This error is probably the result of a faulty area on the
volume.

pathname, exception code

The pathname you specified as input to BACKUP is in error. This error
could occur if you specify the same logical name that you specified for
the backup device. It could also occur if you specify an invalid or
nonexistent path component. This message displays the exception code
that results from this error.

3-14

COpy

This command reads data from the specified input source or sources and
writes the output to the specified destination file or files.

The format of the command is as follows:

INPUT PARAHETERS

inpath-list

QUERY

One or more pathnames for the files to be copied.
Multiple pathnames must be separated by commas.
Separating blanks are optional. To copy files on
a one-for-one basis, you must specify the same
number of files in the inpath-list as in the
outpath-list.

Causes the Human Interface to prompt for
permission to copy each file. Depending upon the
specified preposition (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

pathname, copy TO out-pathname?

pathname, copy OVER out-pathname?

pathname, copy AFTER out-pathname?

Enter one of the following (followed by a carriage
return) in response to the query:

Entrl Action
y or y Copy the file.
E or e Exit from COpy command
R or r Continue copying files without

further query.
Any other Do not copy this file; go to the
character next file in the input list.

3-15

-

COpy

OUTPUT PARAMETERS

TO

OWR

AFTER

outpath-list

DESCRIPTION

Writes the listed input files to named new
output files. The specified output file or
files should not already exist; if they do, COpy
will request permission to delete the existing
files before it executes the copy operation for
that file. If more input files than output
files are listed, the remaining input files will
be appended to the end of the last listed output
file.

Writes the listed input files over (replaces)
the existing output files on a one-for-one
basis, regardless of file size. If an output
file does not already exist, its corresponding
input file is written to a new file with the
listed output file name. If more input files
than output files are listed, the remaining
input files will be appended to the end of the
last listed output file.

Appends the input file or files to the current
data in the existing output file or files. If
the output file does not already exist, all
listed input files will be concatenated into a
new file with the listed output file name.

One or more pathnames for the output files.
Multiple pathnames must be separated by commas.
Separating blanks are optional. If the
preposition and output parameter defaults are
exercised in the command line, the output will
go to the user's console screen (TO :CO:).

COpy is a powerful and versatile command with a wide range of file
handling applications (see Chapter 4 for examples). Implementation
depends upon your selection of a preposition and your input file and
output file specification in the command line. The following are some
of the COpy command's features:

• Create new files (TO preposition).

• Copy over existing files or create new files (OVER preposition).

• Add data to the end of existing files (AFTER preposition).

• Copy a list of files to another list of files on a one-for-one
basis.

• Concatenate two or more files into a single output file.

3-16

DESCRIPTION (continued)

As each file is copied t the COpy command displays one of the following
messages t as appropriate:

pathname t copied TO out-pathname

pathnamet copied OVER out-pathname

pathname t copied AFTER out-pathname

If you do not specify a preposition or output filet TO :CO: is the
default output. The Human Interface normally expects all listed output
files to be new files when the TO preposition is used; however t it is
prepared to deal with existing files. If an existing output file name
is encountered during a copy operation using TOt the Human Interface
displays the the following message:

pathname t already exists t DELETE?

Enter Y or y if you wish to delete the existing file. The COpy command
will delete the file.

Enter any other character if you do not wish to delete the existing
file. The COpy command will pass over the corresponding input file
without copying itt and will attempt to copy the next listed input file
to its corresponding output file.

If more input files than output files are specified t the remainder of
the input files will be appended to the end of the last listed ouput
file. As each file is appended t the following message is displayed on
the console screen:

pathname t copied AFTER out-file

If there are fewer input filenames than output filenames specified in
the COpy command (regardless of the preposition)t the output files
remaining after the last valid copy operation will be ignored.

You cannot successfully use COpy to copy a directory to a data file or
to another directory. Although a directory can be copiedt the
attributes of the directory are lost. That iS t the directory can no
longer be used as a directory. However t a file listed under one
directory can be copied to another directory. For example:

copy samp/test/a to :fl:/alpha/beta

would copy the A data file to a different volume t directorYt and
filename t where the new file's pathname would be :fl:/alpha/beta.

3-17

COpy

CREATEDIR

I

CREATEDIR

This command creates one or more iRMX 86 user directories.

The format is as follows:

INPUT PARAMETER

inpath-list

DESCRIPTION

One or more pathnames of the iRMX 86 directories
to be created. Multiple pathnames must be
separated by commas. Embedded blanks between
commas and pathnames are optional.

A created iRMX 86 directory allows all access functions; that is, you can
read/write, delete, list, add, and change the contents of the directory
you created with CREATEDIR.

The following message is displayed if a directory is successfully created:

directory-name, directory created

You can create new directories that are subordinate to other directories.
For example:

createdir ab/dc/ef/GH

would cause the newly-created directory GH to be nested within existing
directory EF, which in turn, is nested within directory DC, and so on.

It is suggested that you use uppercase letters when you enter a new
directory name in a CREATEDIR command, and use lowercase letters when you
create a new data filename in a COpy command. You can then easily
distinguish between directory names and filenames in a directory listing.

You can check the contents of the directory at any time by using the DIR
command to list the directory (see the DIR command in this chapter).

ERROR MESSAGES

directory name, invalid file type

3-18

ERROR MESSAGES (continued)

You attempted to create a directory using a data file as part of the new
directory'spathname; only other directory names are allowed in the
pathname for a new directory.

directory-name, directory already exists

The specified pathname of the directory to be created already exists.

3-19

CREATEDIR

DATE

This command sets a new system date or displays the current date.

The format is as follows:

INPUT PARAMETERS

dd

mmm

yy

DESCRIPTION

~"""'!""""""----------t,....-

~
Two-digit number that specifies the day of the month.

Three-character abbreviation for the specified
month, as follows:

JAN
FEB­
MAR

APR
MAY
JUN

JUL
AUG
SEP

OCT
NOV
DEC

Two-digit number that specifies the year.

The dd, mmm, and yy entries are separated by single blanks.

If no new date is specified in the DATE command, the current date is
displayed.

If one of the date entries in the parameter string is set, all three must
be; there are no default settings for individual entries within the
parameter string.

If you request the system date on a non-timing system, the following
message will be displayed:

00:00:00

See also the TIME command in this chapter if you wish to set the system
clock in conjunction with setting the date.

ERROR MESSAGES

Errors in a date entry, such as syntax errors or a number out of range
(i.e., 31 FEB 81), cause the following error message to be displayed:

illegal date

If this occurs, reenter the DATE command with the correct syntax.

3-20

DEBUG

This command allows you to debug your iRMX 86 application jobs if your
system is configured with the iSBC 957A/B package.

INPUT PARAMETERS

command pathname

parameter string

DESCRIPTION

Pathname of the file containing the application
program to be debugged.

String of required, optional, and default
parameters that can be used in the command line to
load and execute the application program.

DEBUG loads your specified application program into main memory and
transfers control to the iSBC 957A/B package. You can then use the iSBC
957A/B package to single-step, display registers, and set breakpoints
within the program. Refer to the appropriate iSBC 957A or iSBC 957B
user's guide for a complete description of the iSBC 957A/B functions.

When DEBUG executes, the 957A/B package runs with its interrupts
disabled. Therefore, the time-keeping function is also disabled, with
the following consequences:

• Impacts the ability of the Nucleus to execute time-out tasks that
have provided time limits to system calls, such as RECEIVE$UNITS
and RECEIVE$MESSAGE.

• Impacts the ability of the Basic I/O System to keep track of the
time-of-day and write its data structures to secondary storage.

The 957A/B package cannot tolerate interrupts while the single-stepping
command is being used. Single-stepping will be affected if:

• Tasks are using non-zero time-out values in system calls such as
RECEIVE$UNITS and RECEIVE$MESSAGE.

• Time-of-day is configured in the Basic I/O System.

• Non-zero update timeout values are specified in the Basic I/O
System's Device Unit Information Blocks (DUIB).

~fue alternative to single-stepping is to use breakpoints.

3-21

DEBUG

DELETE

DELETE

This command removes data files and empty directories from secondary
storage.

The format is as follows:

INPUT PARAMETERS

inpath-list

QUERY

DESCRIPTION

One or more pathnames for the files or empty
directories to be deleted. Hultiple pathname
entries must be separated by commas. Separating
blanks are optional.

Causes the DELETE command to ask for your
permission to delete each file in the list. Prior
to deleting a file, the DELETE command displays
the following query:

pathname, DELETE?

Enter one of the following, followed by a carraige
return, in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Delete the file.

Exit from DELETE command.

Continue deleting without further
query •

Do not delete file;
query for next file in sequence.

The DELETE command allows you to release unused secondary storage space
for new uses by removing empty directories and unneeded data files. If a
file to be deleted is currently attached, it will be marked for deletion
and deleted when the file is detached.

The following message is displayed as each file is deleted or marked for
deletion:

pathname, deleted

3-22

ERROR MESSAGES

pathname, DELETE access required

You do not have permission to delete a specified file.

pathname, does not exist

The specified file was not found (e.g., a syntax error in a pathname or
the file is located in some other directory). The DELETE command will
attempt to delete each succeeding file specified in the filename-list
after it has encountered an error in a file name.

pathname, directory not e~ty

Non-empty directories may not be deleted. You attempted to delete a
directory that still lists filenames or other directory names.

If you still wish to delete the directory, you must first delete all its
contents. For example, if you wished to delete a directory named ALPHA
that contained a data file with the pathname ALPHA/BETA/SAMP, you would
enter the following command:

delete alpha/beta/samp,alpha/beta,alpha

which would delete all files cataloged in ALPHA before the directory
itself was deleted.

3-23

DELETE

DETACHDEVICE

DETACHDEVICE

This command detaches the specified logical device and deletes the entry
from the root job's object directory.

INPUT PARAMETER

:logical name:

DESCRIPTION

Logical name of the physical device that is to be
deleted from the root job's object directory.

The DETACHDEVICE command allows you to detach a device without having to
reconfigure the system. After a device is detached, no volume mounted on
that device is accessible for system use. For a description of formatted
volumes (NAMED or PHYSICAL), see the FORMAT command description in this
chapter.

When the device is detached and its logical name has been deleted from
the root job's object directory, the DETACHDEVICE command will display
the following message:

logical-name, detached

ERROR MESSAGE

NOTE

Using the DETACHDEVICE command to
detach the device containing your Human
Interface commands causes loss of
access to Human Interface functions
until the system is restarted.

illegal logical name

Either there is a syntax error in the logical name specification or the
logical name does not exist in the root job's object directory.

3-24

DIR

This command lists the names and attributes of files contained in a given
directory, including data filenames and directory names.

The format of the command is as follows:

INPUT PARAMETERS

inpath-list

EXTENDED

LONG

One or more pathnames of the directories to be
listed. Multiple directory pathname entries must
be separated by commas. Separating blanks are
optional. If no pathname is specified, the user's
default directory is listed.

Lists all available information for each data file
or directory file in the directory. The first
line for each file will be the same as for the
LONG form. The second line will contain the last
access date, creation date, and the accessor
list. The listing will be in a double-column
format (see Figure 3-1 at the end of this command
description) •

Lists file information in a one-line format (see
Figure 3-2 at the end of this command description).

3-25

DIR

INPUT PARAMETERS (continued)

FAST

SHORT

ONE

QUERY

OUTPUT PARAMETERS

TO

OVER

AFTER

out-pathname

Lists only the filenames and directory names in
the directory. The output format will be five
columns of filenames unless you also specify the
ONE parameter (see Figure 3-3 at the end of this
command description). If no listing format is
specified, FAST is the default.

Lists the file information in a two-column format
(see Figure 3-4 at the end of this command
description) •

Lists the output of a FAST or SHORT listing in
single-column f9rmat. ONE is the default number
of columns for EXTENDED or LONG listings.

Causes the DIR command to prompt you for
permission to list a directory by issuing the
following message:

pathname, DIR?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

List the directory.

Exit from DIR command.

Continue listing directories without
further query.

Do not list directory; query for the
next directory, if any.

Copies the directory listing to the specified
destination data file. If no TO/OVER/AFTER
preposition is specified, TO :CO: is the default.

Copies the directory listing to the specified
output file and writes over (replaces) the
previous contents.

Appends the directory listing to the current
contents of the specified output file.

Pathname of the file to receive the directory
listing. If the parameter is omitted, the default
destination is the user's console screen (TO :CO:).

3-26

DESCRIPTION

The amount of information listed for each file depends upon what
listing format you specify (EXTENDED, FAST, LONG, or SHORT) in the
DIR command. An example of each type of listing format is provided
at the end of the DIR command description in Figures 3-1 through 3-4
respectively. An explanation of the illustrated headings is provided
in Table 3-2 following the figures.

If you want to list the default user directory but also wish to
specify a listing format other than FAST, use the default directory
name explicitely. For example:

dir :$: extended

would display a listing of the user directory in the EXTENDED
format. Note that the default directory is a configuration option.

ERROR MESSAGES

pathname, is not a directory

A pathname exists but is not a directory.

pathname, directory does not exist

The pathname does not exist, either as a directory or as a data file.

pathname, directory LIST access required

You do not have list access to the directory.

DIR COMMAND EXAMPLES

The examples that follow show how a directory's files are listed when you
use your configured system's default prefix in a directory's pathname.
In the examples, directory names are enclosed in triangles; data file
names are enclosed in rectangles.

Assume you have the following directory structure for your files:

3-27

DIR

OIR

DIR CO~~D EXAMPLES (continued)

:FO:

Ii

Example 1:

If your default prefix was :FO:/Q, then the following files would be
listed in response to the DIR pathname entry examples in the
following "Pathname n column:

Pathname

omitted
f
A
AId
A/CB
A/CB/e

Example 2:

Files Listed

A, f
not allowed
bb, CB, d
not allowed
e, f
not allowed

because f is a data file

because d is a data file

because e is a data file

If your default prefix was :FO:/Q/A, then the following files would
be listed in response to the DIR pathname entry examples in the
following "Pathname" column:

Pathname

omitted
A

CB

Files Listed

bb, CB, d
not allowed because directory A does not
contain an entry A
e, f

3-28

DIR LISTING FORMATS

Figures 3-1, 3-2, 3-3, and 3-4 show output examples for EXTENDED, FAST,
LONG, and SHORT listing formats respectively. Table 3-2 defines the
displayed column headings.

(column scale only)
1 234 5 n 7

12345~7890l234567890123456789012345~7890l2345~789012345~789012345~789012345~789

11 MAR 80 06:30:30
DIRECTORY OF sys ON myvol

NAME
ed

idisk

AT ACC
DR

DR DLAC

BLKS
200

5

LENGTH
30185

CREATION:
LAST ACC:

39
CREATION:
LAST ACC:

GRAN
VOL FIL OWNER

16 3 Beck
20 APR 78
25 NOV 79

11) 1 WORLD
15 NOV 78
10 ,JAN 80

LAST MOD
20 NOV 79

ACCESSORS ACC
Engineers R
Techs lJ

I? DEC 79
ACCESSORS ACC

submitplmab MA DRAU 11 1057 24 2 BACKWORDPLMCOM 1~ JUN 79
CREATION: 20 APR 78 ACCESSORS ACC
LAST ACC: 20 .JAN 80 PYE-WACKET AU

TOGAN R
long1ongnamess D U

CHAOTICGOOD U 123456789 1234567890 12345 123 Chopin 01 DEC 79
CREATION: 16 NOV 79 ACCESSORS ACC
LAST ACC: 20 FEB 80 Clerics RA

MAGIC-USERS U
Thieves D
FIGHTERS DRAU

LAWFULEVIL D 73 9081 24]5 saveyourhat 04 JAN 80
CREATION: 15 NOV 79 ACCESSORS ACC
LAST ACC: 05 MAR RO WORLD RAU

5 FILES 1839 BLOC~S 1200453 BYTES

Figure 3-1. EXTENDED Directory Listing Exampl&

03/11/80 04:25:40
DIRECTORY OF alpha ON mvol

fname1 fname2 fname3 fname4
fname6 fname7 fnameS fname9
fname11 • • •

fnameS
f name 1 0

Figure 3-2. FAST Directory Listing Example

3-29

DIR

DIR

DIR LISTING FORMATS (continued)

(column scale only)
1 2 3 4 5 I) 7

123456789012345678901?'3456789012345678901?345~78901?'3451)78901234567890123451)789

11 JAN 80 06:30:30
DIRECTORY OF sys ON myvo1

GRAN
NAME AT ACC BLKS LENGTH VOL FLL OWNER LAST MOD
ed DR 200 30185 1() 3 BECK 20 NOV 79
idisk DR DLAC 5 39 I':; 1 WORLD 12 DEC 79
LEMONADEIT MA D 105 13074 1)4 2 ma1agi In MAR 77
credit DR 263 32967 128 fi WORLD 17 NOV 79
SUBMITAGAINPLM MA DRAU 11 1057 24 2 BACKWORDPLMCOM 16 JUN 79
type DR LA 4 366 11) 1 PASCAL 15 DEC 79
CHAOTICGOOD U 123456789 1234567890 12345 123 CHOPIN 01 DEC 79
LAWFULEVIL D 73 9081 24 15 saveyourpet 04 ,JAN 80

8 FILES 1839 BLOCKS 1200453 BYTES

Figure 3-3. LONG Directory Listing Example

(column scale only)
1 2 3 4 5 t) 7

1234567890123456789012345678901234567890123456789012345678901234567890123456789

03/11/80 04:25:50
DIRECTORY OF sys ON myvol

NAME AT ACC BLKS LENGTH NAME AT ACC BLKS LENGTH
append R 40 1425 attrib DRAU 38 4682
COPY MA DRAU n5 8042 CREDIT.HAZ R 263 33017
dcopy DRAU 62 7718 DELETE A 37 4506
REFERENCE DR L 5 10 DATA DR DLAC 1 4
DUMP D 22 2568 ED DR 200 30185
idisk DR DLAC 5 39
LEMONADEIT MA D 123456789 1234567890
CREDIT DR 263 32967 RENAME AU 21 2487
submit$plm MA DRAU 11 057 TYPE DR LA 4 31)1)
CHAOTICGOOD U 13293 1151n40 lawfulevil D 73 9081

18 FILES 1839 BLOCKS 1200453 BYTES

Figure 3-4. SHORT Directory Listing Example

3-30

Heading

NA.I.'1E :

AT:

ACC:

BLKS:

LENGTH:

VOL:

FIL:

OWNER:

LAST MOD:

LAST ACC:

CREATION:

ACCESSORS:

ACC:

Table 3-2. Directory Listing Headings

Meaning

l4-character file NAME

File ATtribute, where:
DR = Directory (if the ATtribute field is blank, the

file is a data file)

File ACCess rights, where:

Directories: ~
DLAC

DRAU

Other Files: E

Delete
List
Add
Change

Update
Append
Read
Delete

Nine-digit number (five digits on SHORT listing) giving the
volume-granularity units allocated to the file. On the
SHORT form, if the number of digits exceeds five, the file
is displayed in the nine-digit form (see the LEMONADEIT
file in Figure 3-4).

lO-digit number (7 digits on SHORT listing) giving the
length of the file in bytes. On the SHORT form, if the
number of digits exceeds 7, the file is displayed in the
lO-digit form (seethe LEMONADIT file in Figure 3-4).

Five-digit number giving the volume granularity in bytes.

Three-digit number giving the granularity of the file in
volume-granularity units.

l4-character, alphanumeric owner name.

Date of last file modification.

Date of last file access.

Date of file creation.

Heading for list of l4-character accessor names.

Heading for access rights of file accessors. The format of
this field is identical to ACC above.

3-31

nm

DISKVERIFY

DISKVERIFY

This command invokes the disk verification utility which verifies the
data structures of iRMX 86 physical and named volumes. This utility can
also be used to reconstruct portions of the volume and perform absolute
editing on the volume. The format of the DISKVERIFY command is as
follows:

INPUT PARAMETERS

: logical-name:

VERIFY or V

Logical name of the secondary storage device
containing the volume.

Performs a verification of the volume. If you
specify this parameter and omit the options, the
utility performs the NAMED verification.

If you specify this parameter, the utility
performs the verification function and returns
control to you at the Human Interface level. You
can then enter any Human Interface command.

If you omit this parameter, the utility displays a
sign-on message and the utility prompt (*). You
can then enter individual disk verification
commands. These commands are described in the
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL.

3-32

INPUT PARAMETERS (continued)

NAMEDI or Nl

NAMED2 or N2

NAMED or N

PHYSICAL

ALL

OUTPUT PARAMETERS

TO

OVER

AFTER

VERIFY option that applies to named volumes only.
This option checks the fnodes of the volume to
ensure that they match the directories in terms of
file type and file heirarchy. This option also
checks the information in each fnode to ensure
that it is consistent. As. a result of this
option, DISKVERIFY displays a list of all files on
the volume that are in error, with information
about each file. Refer to the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more
information.

VERIFY option that applies to named volumes only.
This option checks the allocation of fnodes on the
volume, checks the allocation of space on the
volume, and verifies that the fnodes point to the
correct locations on the volume. Refer to the
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL
for more information.

VERIFY option that performs both the NAMEDI and
NAMED2 verification functions on a named volume.
If you omit the VERIFY option, NAMED is the
default option.

VERIFY option that applies to both named and
physical volumes. This option reads all blocks on
the volume and checks for I/O errors.

VERIFY option that applies to both named and
physical volumes. For named volumes, this option
performs both the NAMED and PHYSICAL verification
functions. For physical volumes, this option
performs the PHYSICAL verification function.

Copies the output from the disk verification
utility to the specified file. If no preposition
is specified, TO :CO: is the default.

Copies the output from the disk verification
utility over the specified file.

Appends the output from the disk verification
utility to the end of the specified file.

3-33

DISKVERIFY

DISKVERIFY

OUTPUT PARA}lliTERS (continued)

outpath

DESCRIPTION

Pathname of the file to receive the output from
the disk verification utility. If you omit this
parameter and the TO/OVER/AFTER preposition, the
utility copies the output to the console screen
(TO :CO:). You cannot direct the output to a file
on the volume being verified. If you attempt
this, the utility returns an E$NOT_CONNECTED error
message.

When you enter the DISKVERIFY command, the utility responds by displayi~g
the following line:

iRMX 86 DISK VERIFY UTILITY, Vx.x

where Vx.x is the version number of the utility. If you specify the
VERIFY or V parameter in the DISKVERIFY command, the utility performs a
verification of the volume and copies the verification information to the
console (or to the file specified by the outpath parameter). Refer to
the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for a description
of the verification output. After generating the verification output,
the utility returns control to the Human Interface, which prompts you for
more Human Interface commands. The following is an example of such a
DISKVERIFY command:

-DISKVERIFY :Fl: VERIFY NAMED2
iRMX 86 DISK VERIFY UTILITY, Vx.x
DEVICE NAME = Fl : DEVICE SIZE 0003E900 BLOCK SIZE 0080

'NAMED2' VERIFICATION

BIT MAPS O.K.

However, if you omit the VERIFY (or V) parameter from the DISKVERIFY
command, the utility does not return control to the Human Interface.
Instead, it issues an asterisk (*) as a prompt and waits for you to enter
individual DISKVERIFY commands. The following is an example of such a
DISKVERIFY command:

-DISKVERIFY : Fl:

*
After you receive the asterisk prompt, you can enter any of the
DISKVERIFY commands listed in the iRMX 86 DISK VERIFICATION UTILITY
REFERENCE MANUAL.

3-34

ERROR MESSAGES

logical name, 0045 : E$LOG_NAME_NEXIST

You specified a nonexistent logical name in either the :logical name:
parameter or the out path parameter.

8042 : E$NOT_CONNECTION

You attempted to direct output to a file on the volume being verified.

command line error

You made a syntax error when entering the command.

device size inconsistent
size in volume label = valuel : computed size = value2

When the disk verification utility computed the size of the volume, the
size it computed did not match the information recorded in the iRMX 86
volume label. It is likely that the volume label contains invalid or
corrupted information. This error is not a fatal error, but it is an
:i.ndication that further error conditions may result during the
verification session. You may have to reformat the volume or use the
disk verification utility to modify the volume label. Refer to the iRMX
86 DISK VERIFICATION UTILITY REFERENCE MANUAL for more information about
the disk verification utility commands.

logical name, illegal logical name

The logical name you specified was not surrounded by colons (:).

not a named disk

You tried to perform a NAMED, NAMED 1 , or NAMED2 verification on a
physical volume.

verify-function argument error

The VERIFY option you specified is not valid.

The NAMED 1 , NAMED2, and PHYSICAL verification options can also produce
error messages. Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL for more information about these messages.

3-35

DISKVERIFY

DISKVERIFY

EXAMPLE

The following command performs both named and physical verification of a
named volume.

-DISKVERIFY :Fl: VERIFY ALL

DEVICE NAME = Fl DEVICE SIZE 0003E900 BLK SIZE 0080

'NAUED1' VERIFICATION

'NAMED2' VERIFICATION

BIT MAPS O.K.

'PHYSICAL' VERIFICATION

NO ERRORS

3-36

DO\mCOPY

This command copies files from a volume on an iRMX 86 secondary storage
device to a volume on an ISIS-II secondary storage device via the
iSBC 957A/B Interface and Execution package. The format is as follows:

inpath-lisl

INPUT PARAHETERS

inpath-list

QUERY

One or more iRMX 86 pathnames for files, separated
by commas, that are to be copied to ISIS-II
secondary storage. Separating blanks between
pathnames are optional. The files may be copied
in the listed sequence either on a one-for-one
basis or concatenated into one or more files.

Causes the Human Interface to prompt for
permission to copy each iRMX 86 file to the listed
ISIS-II destination file. Depending on which
preposition you specify (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

pathname, copy down TO out-pathname?

pathname, copy down OVER out-pathname?

pathname, copy down AFTER out-pathname?

Enter one of the following in response to the
query:

Entry

Y or y

E or e

R or r

Any other
character

3-37

Action

Copy the file.

Exit from the DOWNCOPY command.

Continue copying files without
further query.

Do not copy this file; query
for the next file in sequence.

DOWN COpy

DOWN COPY

I

OUTPUT PARAMETERS

TO

OVER

AFTER

outfile-list

DESCRIPTION

Reads iRMX 86 files and copies them TO new ISIS-II
files in the listed sequence. The specified
output files should not already exist in the
ISIS-II directory when the TO parameter is used.
If a named output file does exist, DOt~COPY will
display the following message:

filename, already exists, delete?

Enter a Y or y if you wish to delete the existing
file. Enter any other character if you do not
wish the existing file to be deleted.

If no preposition is specified, TO :CO: (ISIS-II
console screen) is the default. If more input
files than output files are specified, the
remaining input files will be appended to the end
of the last listed ISIS-II file.

Reads the listed iRMX 86 input files and copies
them OVER the existing ISIS-II destination files
in the listed sequence. If more input files than
output files are listed, the remaining input files
will be appended to the end of the last listed
ISIS-II file.

Reads the listed iRMX 86 input files and copies
them AFTER the end of data on the existing ISIS-II
destination files in the listed sequence.

One or more ISIS-II filenames for the output
files. Multiple filenames must be separated by
commas. Separating blanks are optional. If the
preposition and output file defaults are used in
the command line, the output will go to the
ISIS-II console screen.

The DOWNCOPY command cannot be used to copy directories from an iRMX 86
system to an ISIS-II system; only files can be copied.

Before you enter a DOWNCOPY command on the iRMX 86 console keyboard, you
must have your target system connected to a development system with the
957A/B package, and the package must be running. The ISIS-II copies of
the files will have all ISIS-II file attributes turned off.

As each file in the input list is copied, one of the following messages
will be displayed on the Human Interface console output device (:CO:), as
appropriate:

3-38

DESCRIPTION (continued)

pathname, copied down TO out-filename

pathname, copied down OVER out-filename

pathname, copied down AFTER out-filename

3-39

D()WNCOPY

FORMAT

I
I

FORMAT

This command formats or reformats a volume on an iRMX 86 secondary
storage device, such as a diskette, hard disk, or bubble memory.

The format is as follows:

INPUT PARAMETERS

: logical-name:

volume-name

FNODES=num

GRANULARITY=num

Logical name of the physical device-unit to be
formatted. The logical name must be preceded and
followed by colons without embedded blanks between
the logical name and volume name.

Six-character, alphanumeric ASCII name, without
embedded blanks, to be assigned to the volume.
(See the definition for a "volume" in Chapter 1.)

Defines the maximum decimal number of files that
may be created on a NAMED volume. (This parameter
is not meaningful when formatting a PHYSICAL
volume and will be ignored if specified for such
volumes.) The range is 7 through 32,767 fnodes,
although the maximum number of fnodes you can
define depends on the settings of the GRANULARITY
and EXTENSIONSIZE parameters (as explained in the
"Description" portion of this command write-up).
If not specified, the default is 50 fnodes.

Volume granularity; the minimum number of bytes to
be allocated for each increment of file size on a
NAMED volume. (This parameter is not meaningful
for PHYSICAL volumes, and will be ignored if
specified for such volumes.) The specified
decimal number is placed in the header of the
volume and becomes the default file granularity
when a file is created on the volume.

3-40

INPUT PARAMETERS

GRANULARITY=num (continued)

The range is 1 through 65,535 (decimal) bytes,
although the maximum allowable volume granularity
depends on the settings of the FNODES and
EXTENSIONSIZE parameters (as explained in the
"Description" portion of this write-up). If not
specified, the default granularity is the device
granualarity. Once the volume granularity is
defined, it applies to every file created on that
volume.

EXTENSIONSIZE=num Size, in bytes, of the extension data portion of
each file descriptor node (fnode). (This
paramet:er is not meaningful for PHYSICAL volumes,
and will be ignored if specified for such
volumes:.) The range is 0 through 65,448
(decimal), although the maximum allowable
extension size depends on the settings of the
FNODES and GRANULARITY parameters (as explained in
the "Description" .portion of this write-up). If
not specified, the default extension size is 3
bytes.

INTERLEAVE=num Interle·ave factor for a NAMED or PHYSICAL volume.

NAMED

PHYSICAL

If not specified, the default value is 5, which is
the optimum interleave factor for an iSBC 204
bootstrap load. See the interleave discussion
under "Description" in this command write-up.

The volume can store only named files; that is,
the volume can hold many files (up to the number
of fnodes allocated), each of which can be
accessed by its pathname. A diskette or hard disk
surface are examples of devices that would be
formatted for named files. If neither NAMED nor
PHYSICAL is specified, the volume is formatted for
the type of files specified when you attached the
device (with the ATTACHDEVICE command).

The volume can be used only as a single, physical
file. The GRANULARITY and FNODES parameters are
not meaningful when PHYSICAL is specified for the
volume. If neither NAMED nor PHYSICAL is
specified, the volume is formatted for the type of
files specified when you attached the device (with
the ATTACHDEVICE command).

3-41

FORMAT

I

I

FORMAT

DESCRIPTION

Every physical device-unit used for secondary storage must be formatted
before it can be used for storing and then accessing its files. For
example, every time you mount a previously unused diskette into a drive,
you must enter a FOR}~T command to format that diskette as a new volume
before you can create, store and access files on it.

Once a volume is formatted, its name becomes a volume identifier when you
list the root directory for the volume, and the name will appear in the
directory's heading. Although the Human Interface uses the volume name
in its own internal processing when you access the volume, you do not
need to specify the volume name in any subsequent command after the
volume is formatted; only the logical name of the secondary storage
device on which the volume is currently mounted needs to be specified.

The number of fnodes on a volume defines the number of files that can
exist on the volume. You can specify this number with with the FNODES
parameter. Each fnode is a data structure that contains information
about a file. Each time you create a file on the volume, the Operating
System records information about the file in an unused fnode. Later, it
uses the fnod~ in order to determine the location of the file on the
volume.

Each fnode contains a field that stores extension data for its associated
file. An operating system extension can access and modify this extension
data by invoking the AGETEXTENSION$DATA and A$SET$EXTENSION$DATA system
calls (refer to the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL for more
information). When you format a volume, you can use the EXTENSIONSIZE
parameter to set the size of the extension data field in each fnode.
Although you can specify any size from 0 to 65,448 bytes, the Human
Interface requires all fnodes to have at least 2 bytes of extension data.

The default volume granularity is always the granularity of the physical
device for the volume. For example, if the default granularity for a
device is 128 bytes of secondary storage, the I/O System will
automatically allocate 128 bytes of permanent storage to each new file
you create on that volume, regardless of whether or not a file requires a
full 128 bytes. If the size of a file exceeds 128 bytes, the I/O System
will allocate still another full block of 128 bytes, and so on, until the
volume is full.

Although the FNODES, GRANULARITY, and EXTENSIONSIZE parameters have
maximum values which are listed in the parameter descriptions, the
combination of these three parameters must also satisfy the following
formula:

(87 + EXTENSIONSIZE) x FNODES / GRANULARITY ~ 65535

where all numbers are decimal. FORMAT displays an error message if the
combination of parameter values exceeds the limit.

3-42

DESCRIPTION (continued)

As stated previously, the interleave factor applies to volumes formatted
either for NAMED or PHYSICAL files. The interleave specification
maximizes access speed for the files on a given volume, depending on the
intent of volume and the device configuration. For example, an
interleave factor of 5 for a flexible disk drive means that, for each
file, the I/O System will read every fifth sector on the diskette,
starting with an index of 1 (other, hard disk systems may be different,
depending on your configuration). Therefore, the I/O System does not
need to wait for the disk to make a complete revolution before it
accesses the next sector; the next sector by an increment of 5 is ready
to be accessed for read/ write by the time the previously accessed sector
has been processed.

The FORMAT command displays the following message when volume formatting
is completed:

volume (vol-name) will be formatted as a NAMED/PHYSICAL volume
granularity = number
interleave = number
numberfnodes = number
extensionsize = number

where:

vol-name

NAMED/PHYSICAL

number

ERROR MESSAGES

The volume name specified in the FOID1AT command.

Either NAMED or PHYSICAL will be displayed in the
message, depending on the command specification.

Default or specifically defined in the command.

If a device cannot be detached for formatting, the following message is
displayed on the user console:

logical-name, can't detach device

which means that the volume does not exist, the volume is busy, or the
device on which the volume is mounted is not currently attached to the
system.

If the device cannot be attached for formatting, or it cannot be
re-attached (e.g., restored to its original configuration prior to
formatting) after formatting takes place, the following message is
displayed on the user console:

device-name, can't attach device

3-43

FO~T

I

FORMAT

I

ERROR MESSAGES (continued)

The following error message is displayed if you attempt to format
something that is not a physical device:

logical-name, is not a device connection

TIle following error message i~ displayed if you specify a volume name
containing more than six ASCII characters or if you specify a logical
device name:

vol-name, illegal name

The following error message is displayed if you specify an out-of-range
number for any of the FNODES, GRANULARITY, EXTENSIONSIZE, or INTERLEAVE
parameters:

number, illegal number

The following message is displayed if the values you specify for fnode
size, granularity, and extension data size cause the formula listed in
the "Description" section to exceed its limit.

vol-name, fnode file size exceeds 65535 volume blocks

3-44

RENAME

This command allows you to change the pathname of one or more data files
or directories. RENAME is effective across directory boundaries on the
same volume. The format is as follows:

INPUT PARAMETERS

inpath-list

QUERY

OUTPUT PARAMETERS

TO

One or more pathnames, separated by commas, of
files or directories that are to be renamed.
Blanks between pathnames are optional separators.

Causes the Human Interface to prompt for
permission to rename each pathname in the input
list by issuing the following message:

oldname, RENAME?

Enter one of the following (followed by a carraige
return) in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Rename the file.
,

Exit from RENAME command.

Continue renaming without further
query.

Do not rename file; query for the next
file in sequence.

Moves the data to the new pathnames in the output
list. A new pathname in the output list should
not already exist. If, in fact, a new pathname
does already exist, RENAME displays the following
warning message when the pre-existing pathname is
encountered:

pathname, already exists, DELETE?

3-45

RENAME

RENAME

OUTPUT PARAMETERS

TO (continued)

OVER

outpath-list

DESCRIPTION

Enter a "y" or "y" if you wish the pre-existing
pathname and its contents to be written over by the
new name specification. The pre-existing pathname
and its contents will be deleted.

Enter any other character if you do not wish the
pre-existing file to be deleted. Renaming of the
specified file will not take place and the RENAME
command will attempt to rename the next pathname in
the list sequence.

Changes each old pathname in a list to the
corresponding new pathname, even if the new pathname
already exists. The old pathname is deleted from
secondary storage. OVER cannot be used to rename a
non-empty directory over another non-empty
directory.

List of new pathnames. Multiple pathnames must be
separated by commas. Separating blanks are optional.

The primary distinction between the RENAME command and the COpy command is
that, as a RENAME command is executed, it releases the pathnames in the
listed input files for new uses without having to perform any further
operation on the files.

Although RENAME can be used to rename an existing directory pathname TO a
new pathname, it cannot be used to rename an existing directory OVER
another existing directory. For example:

-rename ALPHA to DELTA allowed
-rename ALPHA over BETA not allowed (unless BETA is empty)
-rename ALPHA/sampl over BETA/testl allowed

CAUTION

Note that changing the name of a
directory also changes the path of all
files listed under that directory. All
subsequent accesses to those files must
specify the new pathnames for the files.

As eac~ file in a pathname list is renamed, the REN~lE command displays
one of the following messages, as appropriate:

old-pathname, renamed TO new-pathname
or

old-pathname, renamed OVER new-pathname

3-46

ERROR MESSAGES

There must be a one-for-one correspondence between the oldname and
newname lists in the RENAME command. A missing element in either list
causes RENAME to display the following message:

unmatched path name lists

If your system is configured with user-designed access limitations, you
must have at least delete access to old pathnames and add-entry access to
the destination directory to use the RENAME command.

If you are not allowed delete access on your system, the following
message is displayed when you attempt to use the OVER preposition in a
RENAME command:

o ld-pathname , DELETE access required

If you are not allowed add-entry access on your system, the following
message is displayed when you attempt to use the TO preposition in a
R.ENAME command:

new-pathname, directory ADD ENTRY access required

If the RENA}m command encounters an error in the renaming of a file, it
will attempt to continue renaming each succeeding file in sequence.

Use of the AFTER preposition is not valid for the RENAME command, and an
attempt to use it causes the following message to be displayed:

AFTER preposition, TO or OVER preposition expected

Note that the RENAME command is the only Human Interface file handling
command that cannot be used across volume boundaries; that is, you cannot
use the RENAME command to rename a file or move data from a 'volume
located on one secondary storage device to a volume located on another
secondary storage device (e.g., from one' diskette to another). An
attempt to do so causes the following error message:

0005: E$CONTEXT

Use the COpy command or a combination of COpy and DELETE commands if you
wish to ren~e files or move data across volume boundaries.

3-47

RENAME

RESTORE

RESTORE

This command restores files to a named volume by copying them from a
backup volume.

The format of this command is as follows:

INPUT PARAMETERS

:backup device:

QUERY

Logical name of the backup device from which
RESTORE restores files.

Causes the Human Interface to prompt for
permission to restore each file. The Human
Interface prompts with one of the following
queries:

pathname, RESTORE data file?

or

pathname, RESTORE directory?

Enter one of the following responses to the query:

Entry

Y or y

E or e

R or r

Any other
character

3-48

Action

Restore the file.

Exit from the RESTORE command.

Continue restoring files without
further query.

If data file, do not restore the
file; if directory file, do not
restore the directory or any
file in that portion of the
directory tree. Query for the
next file, if any.

OUTPUT PARAMETERS

TO

OVER

pathname

DESCRIPTION

Restores the files from the backup volume to new
files on the named volume, if the files do not
already exist on the named volume. However, if a
file being restored already exists on the named
volume, RESTORE prompts for permission to restore
the file.

Restores the files from the backup volume over
(replaces) the files on the named volume. If a
file does not exist on the named volume, RESTORE
creates a new file on the named volume.

Pathname of a file which receives the restored
files (you must specify a directory pathname when
restoring more than one file). If you specify a
logical name for a device, RESTORE places the
files under the root directory for that device.
However, the device must contain a volume
formatted as a named volume. If you wish to
restore files to the directory in which they
originated, you should specify the same pathname
parameter as you used with the BACKUP command.

RESTORE is a utility which copies files from backup volumes (where the
BACKUP command originally saved them) to named volumes. RESTORE copies
the files to any directory you specify, maintaining the hierarchical
r,elationships between the backed-up files.

When RESTORE copies files, it copies only those files for which you are
the owner. For these files, it restores the following information:

• File name

• Access list

• Extension data

• File granularity

• Contents of the file

RESTORE changes the creation, last modification, and last access dates of
the file to the current date.

Each backup volume which is used as input to the RESTORE command must
contain files placed there by the BACKUP command. In addition, if the
backup operation required multiple backup volumes, you must restore these
volumes in the same order as they were backed up.

3-49

RESTORE

RESTORE

DESCRIPTION (continued)

The output volume which receives the restored files must be a named
volume. You must have sufficient access rights to the files in that
volume to allow RESTORE to perform all necessary operations. In order
for RESTORE to create new files on a named volume, you must have add
entry access to directories on that volume. "In order for RESTORE to
restore files over existing files, you must have add entry and change
entry access to directories ih that volume and delete, append, and update
access to data files.

When you enter the RESTORE command, RESTORE displays the following
sign-on message:

iRMX 86 DISK RESTORE UTILITY Vx.x

where Vx.x is the version number of the utility. Then it prompts you for
a backup volume.

Whenever RESTORE requires a new backup volume, it issues the following
message:

backup device, mount backup volume Hnn, enter Y to continue:

where backup device indicat~s the logical name of the backup device and
nn the number of the requested volume. (RESTORE in some cases displays
additional information to indicate problems with the current volume.) In
response to this message, place the backup volume in the backup device
(make sure that the volume number is correct if the backup operation
involved mUltiple volumes). Enter one of the following:

Entry

Y, y, R, or r

E or e

Any other
character

Action

Continue the restore process.

Exit from the RESTORE command.

Invalid entry; reprompt for entry.

RESTORE continues prompting you until you supply the correct backup
volume.

As it restores each file, RESTORE displays the following message at the
Human Interface console output device (:CO:):

pathname, RESTORED

However, if a file with the same pathname already exists during a restore
operation using the TO preposition, RESTORE displays the following
message:

pathname, already exists, DELETE?

3-50

DESCRIPTION (continued)

Enter one of the following in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

ERROR MESSAGES

Action

Delete the file and replace it with the one from
the backup volume.

Exit from the RESTORE command.

Delete the file, replace it with the one from the
backup volume, and continue restoring files
without further queries.

Do not restore the file; go on to the next file.

pathname, ADD ENTRY or UPDATE access.required

RESTORE could not restore a file, either because you did not have add
entry access to the file's parent directory or because you did not have
update access to the file. RESTORE continues with the next file.

backup device, backup volume Hnn, date, mounted
backup device, backup volume Hnn, date, required

backup device, mount backup volume Hnn, enter Y to continue:

RESTORE cannot continue because the backup volume you supplied is not the
one that RESTORE expected. Either you supplied a volume out of order or
you supplied a volume from a different backup session. RESTORE reprompts
:for the correct backup volume.

backup device, cannot attach volume
backup device, exception code

backup device, mount backup volume Hnn, enter Y to continue:

RESTORE cannot access the backup volume. This could be because there is
no volume in the backup device, the volume is write protected, or because
of a hardware problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. RESTORE continues to
issue this message until you supply a volume that RESTORE can access.

3-51

RESTORE

RESTORE

ERROR MESSAGES (continued)

pathname, DELETE access required

RESTORE could not restore a file because you did not have delete access
to the file. RESTORE continues with the next file.

pathname, exception code, ,error during BACKUP, file not restored

When the BACKUP utility saved files, it encountered an error when
attempting to save the file indicated by this pathname. RESTORE is
unable to restore this file. The message lists the iRMX 86 exception
code encountered.

pathname, exception code, error during BACKUP, restore incomplete

When the BACKUP utility saved the files, it encountered an error when
attempting to save the file indicated by this pathname. RESTORE restores
as much of the file as possible to the named volume. The message lists
the iRMX 86 exception code encountered.

backup device, error reading backup volume
backup device, exception code

RESTORE tried to read the backup volume but encountered an error
condition, possibly because of a faulty area on the volume. The second
line of the message indicates the iRMX 86 exception code encountered.

pathname, exception code, error writing output file, restore incomplete

RESTORE encountered an error while writing a file to the named volume.
This message lists the iRMX 86 exception code encountered. RESTORE
writes as much of the file as possible to the named volume.

pathname, extension data not completely restored, nn bytes required

The amount of space available on the named volume for extension data is
not sufficient to contain all the extension data associated with the
specified file. The value nn indicates the number of bytes required to
contain all the extension data. This message indicates that the named
volume on which RESTORE is restoring files is formatted differently than
the named volume which originally contained the files. RESTORE restores
as much of the extension data as possible. To ensure that you restore
all the extension data from the backup volume, you should restore the
files to a volume formatted with an extension size set equal to the
largest value reported in any message of this kind. Refer to the
description of the FORMAT command for information about setting the
extension size.

3-52

ERROR MESSAGES (continued)

pathname, file does not exist

The pathname you specified as input to RESTORE does not represent an
existing file or device.

pathname, file not restored

For some reason, RESTORE was unable to restore a file from the backup
volume. RESTORE continues with the next file. Another message usually
precedes this message to indicate the reason for not restoring the file.

backup device, invalid logical name

The logical name you specified for the backup device contains unmatched
colons, is longer than 12 characters, contains invalid characters, or
does not exist.

backup device, not a backup volume

backup device, mount backup volume Unn, enter Y to continue:

The volume you supplied on the backup device was not a backup volume.
RESTORE continues to issue this message until you supply a backup volume.

backup device, not a valid backup device

The logical name you specified for the backup device was not a logical
name for a device.

output specification missing

You did not specify a pathname to indicate the destination of the
restored files.

pathname, READ access required

You do not have read access to a file on the backup volume; therefore
lffiSTORE cannot restore the file.

keyword, too many values

You specified too many values after the TO or OVER parameter.

3-53

RESTORE

RESTORE

ERROR MESSAGES (continued)

keyword, unrecognized control

You entered an invalid optional parameter. The keyword portion of the
message indicates the parameter that is in error.

pathname, exception code

The pathname you specified as input to RESTORE is in error. This error
could occur if you specify an invalid or nonexistent path component.
This message displays the exception code that results from this error.

3-54

SUBMIT

This command reads and executes a set of commands from a file in
secondary storage instead of from the console keyboard. To use the
SUBMIT command you must first create a data file that defines the command
sequence and formal parameters (if any).

The format of the command is as follows:

INPUT PARAMETERS

pathname

parameter-list

OUTPUT PARAt-lETERS

TO

Name of the file from which the commands ''1ill be
read. This file may contain nested SUBMIT files.

Actual parameters that are to replace the formal
parameters in the SUBMIT file. You must surround
this parameter list with parentheses. You can
specify as many as 10 parameters, separated by

. commas, in the SUBMIT command. If you omit a
parameter, you must reserve its position by
entering a comma. If a parameter contains a
comma, space, or parenthesis, you must enclose the
parameter in single quotes. The sum of all
characters in the parameter list must not exceed
512 characters.

Causes the output from each command in the SUBMIT
file to be written to the specified new file
instead of the console screen. If the listed
output file already exists, the SUBMIT command
will display the following message:

pathname, already exists DELETE?

Enter a Y or y if you wish the existing output
file to be deleted. Enter any other character if
you do not wish the existing file to be deleted.
A response other than Y or y causes the SUBMIT
command to be terminated and you will be prompted
for a new command entry.

3-55

SUBMIT

SUBMIT

OUTPUT PARAMETERS (continued)

OVER

AFTER

outpath-list

DESCRIPTION

Causes the output for each command in the SUBMIT
file to be written over the specified existing
file instead of the console screen.

Causes the output from each command in the SUBMIT
file to be written to the end of an existing file
instead of the console screen.

Pathnames of one or more files to receive the
processed output from each command executed from
the SUBMIT file. If no preposition or output file
is specified, TO :CO: is the default.

Any program that reads its commands from the console keyboard can be
executed from a SUBMIT file. If another SUBMIT command is itself used in
a SUBMIT file, it causes another SUBMIT file to be invoked. You can nest
SUBMIT files to any level of nesting until memory is exhausted. When one
nested SUBMIT file completes execution, it returns control to the next
higher level of SUBMIT file.

When you create a SUBMIT file, you indicate formal parameters by
specifying the characters %n, where n ranges from 0 through 9. When
SUBMIT executes the file, it replaces the formal parameters with the
actual parameters listed in the SUBMIT command (the first parameter
replaces all instances of %0, the second parameter replaces all instances
of %1, and so forth). If the actual parameter is surrounded by quotes,
SUBMIT removes the quotes before performing the substitution. If there
is no actual parameter that corresponds to a formal parameter, SUBMIT
replaces the formal parameter with a null string.

When you specify a preposition and output file in a SUBMIT command, only
your SUBMIT command entry will be echoed on the console screen; the
individual command entries in the submit file are not displayed on the
screen as they are loaded and executed.

The SUBMIT command will display the following message when all commands
in the submit file have been executed:

END SUBMIT pathname

3-56

EXAMPLE

This example shows a SUBMIT file that uses formal parameters and the
command that you can enter to invoke this SUBMIT file. The SUBMIT file,
which resides on file :Fl:PROGRAM, contains the following lines:

ATTACHDEVICE Fl AS %0
CREATEDIR %0/%1
UPCOPY : Fl: %2 'TO %0%1/%2

The SUBMIT file contains three formal parameters, indicated by %0, %1,
a.nd %2. The %0 indicates the logical name of an iRMX 86 device; the %1
indicates the name of a directory on that device; the %2 indicates the
name of a file which will be copied from an ISIS-II disk to the iRMX 86
device.

The SUBMIT command used to invoke this file is as follows:

-SUBMIT :Fl:PROGRAM (:Fl:, PROG, FILEl)

The command sequence created and executed by SUBMIT is shown as it would
he echoed on the console output device.

-ATTACHDEVICE Fl AS :Fl:
Fl, attached as :Fl:
-CREATEDIR :Fl:/PROG
:Fl:PROG, directory created
-UPCOPY :Fl:FILEl TO :Fl:PROG/FILEl
:Fl:FILEl upcopied TO :Fl:PROG/FILEl
END SUBMIT :Fl:PROGRAM

3-57

SUBMIT

TIME

This command sets the system clock. If no new time is entered, the TIME
command causes the current system time to be displayed.

The format is as follows:

~--""t"""---------"""""-
~

INPUT PARAMETERS

hh: Hours specified as 0 through 24.

mm: Minutes specified as 0 through 59.

ss Seconds specified as 0 through 59.

DESCRIPTION

If one of the time entries in the parameter string is set, all three must
be; there are no default settings for individual items in the parameter
string.

If you request the time-of-day and the system clock has not been set, the
TIME command displays the following message:

00:00:00

See also the DATE command in this chapter if you wish to set the date in
conjunction with the system clock.

An invalid time or an out-of-range entry for the TIME command causes the
following error message to be displayed:

illegal time

3-58

UPCOPY

This command copies files from a volume on ISIS-II secondary storage to a
volume on iRMX 86 secondary storage via the iSBC 957A/B Interface and
Execution package.

INPUT PARAMETERS

inpath-list

QUERY

List of one or more filenames of the ISIS-II files
that are to be copied to iRMX 86 secondary
storage, either on a one-for-one basis or
concatenated into one or more iRMX 86 output files.

Causes the Human Interface to prompt for
permission to copy each ISIS-II file to the listed
iRMX 86 output file. Depending on which
preposition you specify (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

filename, copy up TO out-pathname?

filename, copy up OVER out-pathname?

filename, copy up AFTER out-pathname?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Copy the file.

Exit from the UPCOPY command.

Continue copying files without
further query.

Do not copy this file; go to
the next file in sequence.

3-59

, UPCOpy

I

UPCOpy

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath-Ilst

DESCRIPTION

Copies the ISIS-II file or files TO a new iRMX 86
file or files in the listed sequence. The output
file or files should not already exist when the TO
preposition is used. If no preposition is
specified, TO :CO: is the default. If more input
files than output files are specified in the
command line, the remaining inputfiles will be
appended to the end of the last listed output file.

Copies the listed ISIS-II input file or files OVER
existing iRMX 86 destination files in the listed
sequence. If more input files than output files
are listed in the command line, the remaining
input files will be appended to the end of the
last listed output file.

Appends the listed ISIS-II input file or files
AFTER the end-of-data on an existing iRMX 86
output file or files in the listed sequence.

One or more pathnames of the iRMX 86 destination
files. Multiple pathnames muxt be separated by
commas. Separating blanks are optional. If the
preposition and output parameter defaults are used
in the command line, the output will go to the
iRMX 86 console screen.

Before you enter an UPCOPY command on the iRMX 86 console keyboard, you
must have your target system connected to a development system with the
957A/B package and the package must be running. The iRMX 86 copies of
the files will have WORLD accessj that is, all iRMX 86 system users can
peform read, write, and delete operations on the files without
restriction.

As each ISIS-II file in the input list is copied, the Human Interface
will display one of the following messages on the iRMX 86 console screen,
as appropriate:

filename, copied up TO out-pathname

filename, copied up OVER out-pathname

filename, copied up AFTER out-pathname

3-60

CHAPTER 4. FILE HANDLING EXAMPLES

l~is chapter shows you how to use the Human Interface file management
commands at the user console. The primary intent is to introduce you to
basic file manipulation techniques by presenting a series of examples
that illustrate typical command entries.

Those of you who will be using the Human Interface system calls to create
your own commands can also benefit by studying the examples. Hands-on
experience with the file handling commands will provide you with an
improved understanding of the interaction between the console user and
Human Interface services during program execution. You will then have a
better insight as to why and bow some of these same elements should be
included in your own custom commands.

crn~ND EXAMPLES FORMAT

To make it easier to follow the interactive dialog between the user and
Human Interface in the examples, the user keyboard entries are
underscored. All other items displayed in the examples are Human
Interface command output. For instance, in the example:

-copy samp to tes~
samp copied TO test
-copy test
aaaaa
bbbbb
test copied TO :CO:

the underscored items are user command entries; all other characters and
lines are output by the Human Interface or the supplied commands.

Control characters, such as (CTRL/z), are enclosed in parenthesis in the
examples to indicate that such entries are not echoed on the cons9le
Hcreen as they are entered. Do not actually enclose control key entries
with parentheses.

HOW TO BEGIN A CONSOLE SESSION

You can begin an interactive dialog with the Human Interface after a
sign-on message is displayed on your console screen. Although the
sign-on message is a system configuration option, the message supplied
with Human Interface systems is as follows:

iRMX 86 HI Vx.x: user = WORLD

4-1

I

FILE HANDLING EXAMPLES

where the message tells you the Human Interface is running, and the
hyphen (-) is a Human Interface prompt to indicate that it is ready to
accept your first command line. Begin entering a command immediately
after and on the same line as the prompt. For example:

-copy :ci: to test!

HOW TO CREATE A SIMPLE DATA FILE

The COpy command is the command used to create data files during a
console session. Assume you wish to create a file called ALPHA and write
two lines of data into the file. Also assume you wish the data file to
be listed under the default user's directory configured for your system,
which means you do not have to specify a directory name as a preceding
component in the file's pathname. Enter the following command and data:

-copy :ci: to alpha
aaaaa
bbbbb
(CTRL/z)

:ci: copied TO alpha

In this example, the :ci: in the COpy command line tells the command to
read data from the keyboard (:ci: = console input) and write the data
aaaaa and bbbbb to a new file named ALPHA, which will be listed under
your system's default user directory. You will not be prompted for the
data lines; simply begin entering data after you press RETURN at the end
of the command line. Your CTRL/z entry writes an end-of-file mark at the
end of your data.

Note that after you enter the last line of data, you MUST press the
RETURN key before you enter a CTRL/z to insert an end-of-file.
Otherwise, all characters entered after you press the RETURN key and
before you enter a CTRL/z would not be written to the file. For example:

-copy :ci: to alpha
ccccc
ddddd (CTRL/z) (then press RETURN)

would only write the data ccccc to the new file named ALPHA.

Since control characters are not echoed on the screen as you enter them,
(such as a RETURN or CTRL function), the above file creation sequence
would be displayed on the screen as follows:

-copy :ci: to alpha
ccccc
ddddd

:ci: copied TO alpha

4-2

FILE HANDLING EXAMPLES

Now, assume that when you entered the COpy command line, the Human
Interface sent you the following message and query:

-copy :ci: to alpha
alpha, already exists, DELETE?

Whenever you create a new data file, the COpy command expects a new
pathname rather than one already listed in the directory file. If your
entry to the query is:

alpha, already exists, DELETE? L

the COpy command deletes the data within the existing file and waits for
you to enter new data under that pathname.

If your response to the query is:

alpha, already exists, DELETE? n (or any other character except y)

your COpy command is ignored and the Human Interface prompts for a new
command entry by issuing a hyphen (-).

HOW TO DUPLICATE FILES

COpy command options provide a number of different ways for you to copy
existing files. You exercise these options either by specifying one of
the TO/OVER/AFTER prepositions, by the way in which you specify your
lnput file and output file pathname lists, or by a combination of both
techniques. The Human Interface provides the following file copy
services:

• Copy files on a one-for-one basis.

• List (display) files on the console screen.

• Create mUltiple copies of the same file.

• Copy data from multiple files to a new or existing file.

• Replace data in one file with data from another file.

• Add data from one or more files to the end of the data in another
file.

• Combine one-for-one file copying with file concatenation in a
single COPY command.

The examples that follow show you how to implement these various options
and also call your attention to certain file handling considerations when
using the COpy command.

4-3

FILE HANDLING EXAMPLES

HOW TO COpy TO NEW FILES

Copying existing files to new files is most frequently done on a
one-for-one basis; that is, you list a number of existing files to be
copied and a matching list of files to receive the copies. The files are
copied in the same sequence you specify in the input list and output list
on the command line. For example, assume you wished to copy files ALPHA
and BETA to files GAMMA and DELTA respectively. Enter the following
command:

-copy alpha,beta to gamma,delta
alpha copied TO gamma
beta copied TO delta

There is a rule to remember about copying lists of files. Although you
can list more input files than output files (for file concatenation,
which is described later), you cannot successfully list more output files
than input files in a command line because the command would not know how
to handle the remaining output files. The COpy command will copy input
files to listed output files until the input list is exhausted, but no
operation will be performed for the extra output files.

HOW TO DISPLAY FILES

When you perform a number of file manipulations during a single session,
it is occasionally advisable to check a file's contents by listing it on
the the screen before proceeding further. Assume you wish to display the
contents of a file named ALPHA that is listed under the user default
directory. Simply enter the command:

-copy alpha
aaaaa
aaaaa

alpha copied TO :CO:

This COpy command example used the default preposition (TO), and default
output file (:CO:), which is the console screen. However, remember that
one of these defaults cannot be used in a command line without using the
other. For example, the commands:

-copy alpha to
8MAD, 8004: E*PARAM

or

-copy alpha :co:
:CO:, unrecognized control"

obviously give poor results.

FILE HANDLING EXAMPLES

You can halt the scrolling of a displayed list to examine the data more
closely. Press the following CTRL function keys to control scrolling of
the listed output:

CTRL/s Stops the data from being scrolled off the screen
until you press a CNTRL/q or CTRL/c.

CTRL/q Resumes scrolling of listed data until the end-of-file
is reached or you enter a CTRL/c.

CTRL/c Cancels listing the data and returns control to the
Human Interface, which prompts for a new command.

HOW TO REPLACE EXISTING FILES

There may be occasions when you wish to update the contents of an
existing file. The most practical way to modify a file is to create a
new file and then replace the contents of the old file with the new
data. Although this operation can be done by using the RENAME command,
for now we'll perform it by exploring the use of the COpy command's OVER
preposition.

Assume the following conditions:

You have a file named ALPHA that is accessed under that name by a
number of different programs. ALPHA has outmoded data.

Since you cannnot change the name without also modifying the programs
that access ALPHA, you must retain the name but update the outmoded
file contents. Enter the following command sequence:

-copy :ci: to temp
nu nu nu nu
nu nu nu nu
(CTRL/z)

:ci: copied TO temp
-copy temp over alpha
temp copied OVER alpha
-copy alpha
nu nu nu nu
nu nu nu nu

alpha copied TO :CO:

The last COpy ALPHA command to list the file shows that the old file
contents have been successfully replaced. We could have used the TO
preposition in the COpy command to write TEMP over ALPHA, but since the
1luman Interface always expects a new output file when the TO preposition
is used, this would have caused unnecessary keystrokes as shown below:

4-5

FILE HANDLING EXAMPLES

-copy temp to alpha
alpha, already exists, DELETE? ~
temp copied TO alpha

Note that you now have two copies of the same new data; one in the TEMP
file and one in the ALPHA file. If you had used the OVER preposition in
a RENAME command instead of the COpy command, file TEMP would have been
deleted automatically when RENAME was executed. However, if you did not
want two existing copies of the same data, you could update the existing
file directly from the keyboard. Enter the following command:

-copy :ci: over alpha
newnewnew
(CTRL/z)
:ci: copied OVER alpha

HOW TO CONCATENATE FILES

Concatenation is the process of combining a number of files by appending
them in sequence into a single file. You can use the COpy command in
several ways to concatenate files: by specifying the AFTER preposition in
the command line; by specifying more input files than output files; or by
using a combination of both techniques.

Assume you have four existing files named A, B, C, D respectively, and
want to append the contents of B, C, and D to the end of file A.
Although you could specify the TO preposition in the COpy command line,
the TO preposition would force you to enter extra keystrokes because your
listed output file (A) already exists. It would also force you to delete
the previous contents of A, which is not always desirable. Therefore,
use the AFTER preposition, as follows:

-copy b,c,d after a
b copied AFTER a
c copied AFTER a
d copied AFTER a

Now, assume you wish to concatenate all four files into a new file called
ALL. You can still use the AFTER preposition, or you can use the TO
parameter, as follows:

-copy a,b,c,d to all
a copied TO all
b copied AFTER all
c copied AFTER all
d copied AFTER all

In this example, file A is copied to ALL and the remaining input files
are automatically appended to the end of ALL.

4-6

FILE HANDLING EXAMPLES

You can save keystrokes when listing a series of files on the screen by
using this automatic concatenation in a single command line. Assume you
wish to list files named ALPHA, BETA, and GAMMA. Enter the following
command, using the default TO preposition and default output file (:CO:):

-copy alpha,beta,gamma
aaaaa
aaaaa
alpha copied TO :CO:
bbbbb
bbbbb
beta copied AFTER :CO:
ggggg
ggggg
gamma copied AFTER :CO:

You can also use the OVER preposition in conjunction with file
concatenation. For example:

-copy alpha,beta,gamma over delta, zeta
alpha copied OVER delta
beta copied OVER zeta
gamma copied AFTER zeta

When data sequence and/or data format are important in a concatenated
file, remember that all copy operations are performed in the sequence you
specify in the comm.and line.

Assume you have formatted data in a group of files named A, B, C, D, and
E, and you wish to concatenate their contents into a new file named
SQUARE in that sequence. However, if you list the input files on the
eommand line in a haphazard sequence, as follows:

-copy b,a,d,c,e to square

the format of the total data block is destroyed, as can be ~een in the
following incorrect and correct versions of the listed output. Although
the data block of Latin words· shown in the left-hand example seems
eorrect when read horizontally, the intent and meaning of the vertical
C!olumns has been lost. The right-hand example shows the corrected file
sequence:

b,a,d,c,e
sequence

ARE P 0
SAT 0 R
OPE R A
TEN E T
ROT A S

a,b,c,d,e
sequence

SAT 0 R
ARE P 0
TEN E T
OPE R A
ROT A S

In the right-hand example, the Latin "magic square" now reads the same
both horizontally and vertically, which was the intended operation.

4-7

FILE HANDLING EXAMPLES

HOW TO DELETE FILES

It is vital to good file housekeeping that you routinely delete obsolete
or unused files and empty directories. (Deleting unused directories is
described later in this chapter.) In addition to the obvious benefit of
recovering unused secondary storage, deleting your obsolete files reduces
confusion and file manipulation errors.

Assume that you want to delete files ALPHA and BETA from the system.
Enter the following command:

-delete alpha,beta
alpha, deleted
beta, deleted

Now, assume that you entered the following command line and received the
following error message:

-delete ay,bee,key
ay, deleted
bee, deleted
key, does not exist

The error message for the KEY file tells you one of three things:

1. There is a syntax error in the spelling of the KEY file.

2. The file does not exist.

3. The file exists in a directory other than the one you are
currently accessing (see the directory examples later in this
chapter).

HOW TO USE DIRECTORIES

A user directory is simply another kind of file under which you assign
and maintain other files or directories. A directory file is
distinguished from a data file or program file by a directory heading
that is automatically created when you create a new directory. Under
that heading, the directory maintains a formatted list of files and other
directories that you subsequently assign to it. Directories provide you
with a convenient and efficient technique for organizing large numbers of
files into logical groupings. Creating your own user directories will
aid you in two ways:

1. It's easier to keep track of individual files when you're
maintaining large numbers of files on the system.

2. It reduces the possibility of accidental destruction of files,
either by yourself or other system users.

4-8

FILE' HANDLING EXAMPLES

A directory contains a list of all files assigned under its name, which
you can display by using the DIR command (described later). Optional DIR
command parameters also allow you to access and display other pertinant
j.nformation about each file, such as file size and other file attributes.

Previous command examples in this chapter have used the default user
directory configured for your system to create and access files. The
following examples show you how to create and use your own directories
for easier file management.

HOW TO CREATE A NEW DIRECTORY

Whenever you wish to group a series of files under a single topical
structure, you normally create a new directory in which to assign them
before the files themselves are created. (You can also move existing
files under a new directory name by using the REN~ command, as
described later.)

You create new directories by using the CREATEDIR command to specify a
list of directory names for the new directories. You will find it easier
to keep track of both your directories and files if you use directory
names that have lexical meaning; that is, the names give some hint of a
directory's topical structure.

Assume you wish to create two directories named MYTEST and NUTEST under
which you will assign several practice files. Enter the following
eommand:

-createdir MYTEST,NUTEST
MYTEST, directory created
NUTEST, directory created

You probably noticed that we entered the directory pathnames in capital
letters in the above example. It is suggested that you also capitalize
all directory pathname entries in a CREATEDIR command when you create new
directories, and use lowercase characters for data pathnames when you
create new files with the COpy command. This practice is recommended
because, when you subsequently list a directory by using the DIR command
(described later), it will be much easier for you to distinguish between
file pathnames and directory pathnames.

Once the directories or files are created, you can enter their pathnames
:in either lowercase or uppercase characters in subsequent commands; the
Human Interface commands make no distinction in interpretation.

4-9

FILE HANDLING EXAMPLES

HOW TO REFERENCE A DIRECTORY

After you create a new directory, all named files or directories that you
assign to that directory will have a hierarchical relationship to this
"parent" directory. This relationship to the parent is called a path. When
you wish to access any file or other directory assigned to the parent, you
must specifically identify the path in the form of a pathname in your
command.

For example, assume you have a directory named NUTEST under which you have
another directory named SAMP. SAMP, in turn, has a data file named TEST.
NUTEST is then the parent directory for the SAMP directory and SAMP, in
turn, is the parent for the TEST data file. In a command, the pathname for
the SAMP directory would he NUTEST/SAMP, where the slash characters (without
embedded blanks) separate the individual hierarchical components of the
pathname. The pathname for the TEST data file would be NUTEST/SAMP/TEST.

HOW TO ADD NEW ENTRIES TO A DIRECTORY

Previous data file examples in this chapter used the default user directory
(as configured for your system) for all file creation and access.
Consequently, each time we created a new file or accessed an existing one,
we only needed to enter the filename for the file; the directory name as the
first component of a file's pathname did not have to be specified in a
command. However, whenever you wish to create a new data file to be
assigned to a specific directory , you must precede the filename by the
directory name and separate the two names with a slash (/) in the COpy
command, as described in the previous subsection.

For example, assume you wish to create files named SAMP1 and SAMP2 and
assign them to the MYTEST directory. Enter the following commands:

-copy :ci: to ~test/samp1
aaaaa
(CTRL/z)

:ci: copied TO mytest/samp1
-copy :ci: to mytest/samp2
bbbbb
(CTRL/z)

:ci: copied TO mytest/samp2

Remember that once you have added files to a specific directory, every
subsequent operation involving those files must specify a preceding
directory name and the slash separator. For example, assume you wanted to
delete files SAMP1 and SAMP2 from the MYTEST directory and entered the
following command:

-delete mytest/samp1,samp2
mytest!samp1, deleted
samp2, does not exist

4-10

FILE HANDLING EXAMPLES

The Human Interface issued the "does not exist" message for SAMP2 because
it looked for the file in the default user directory instead of the MYTEST
directory. The correct command line entry should have been:

-delete mwtest/samp1,mytest/samp2

so that the Human Interface would search the correct directory for each
listed file.

HOW TO CREATE A DIRECTORY WITHIN A DIRECTORY

No doubt you have already realized that since you can create new
directories within the default user directory, you can also create other
directories within a given path of directory names in an ever-descending
hierarchy. This process exactly duplicates the classification of topics
and subtopics within a standard office filing syste~.

For example, assume you have data files ALPHA, BETA, and GAMMA assigned to
the MYTEST directory and now wish to add a new directory file named URTEST
to the directory. Enter a CREATEDIR command, as follows:

-createdir mytest/URTEST
mytest!URTEST, directory created

Now, assume you wish to create a new data file named NOMOR and assign it to
the URTEST directory. Enter the following COpy command:

-copy :ci: to mytest/urtest/nomor
nononon
nononon
(CONTROL/z)

:ci: copied TO mytest/urtest/nomor

The "MYTEST/URTEST" sequence is the pathname for the URTEST directory, and
the "MYTEST/URTEST/NOMOR" sequence is the pathname for the NOMOR ~ile. The
entire pathname must be specified for directories or files in any
subsequent file handling. For example, assume you have another data file
in URTEST named SUMOR and wish to list both NOMOR and SUMOR on the console
screen. Enter the following command and specify the pathname for each file:

-copy mytest/urtest/nomor,mytest/urtest/sumor
nononon
nononon
mytest/urtest/nomor copied TO :CO:
sumsumsum
sums ums um
mytest/urtest/sumor copied TO :CO:

4-11

FILE HANDLING EXAMPLES

You can also specify file operations involving two or more different
directories, and these directories need not be on the same path. Assume
you wish to list the ALPHA file from lofYEST and a file named DIFF on a
directory path ONE/MOR. Enter the following command:

-copy ~test/alpha,one/mor/diff
aaaaa
aaaaa
my test/alpha copied TO :CO:
yyyyy
yyyyy
one/more/diff copied TO :CO:

HOW TO LIST DIRECTORIES

Previous examples have shown you how to list data files by specifying a
directory pathname in a COpy command. However, you should not use the COpy
command because COpy will list the directory as though it were a data
file. For example, if we used the COpy command to list the MYTEST
directory on the screen:

-copy ~test
alphabetagammaurtest copied to :Co:

the resulting output is almost unreadable. Instead, use the DIR command to
list the directory's catalog of data files and/or directories as follows:

-dir my test

01 JAN 78 00:00:00-
DIRECTORY OF MYTEST ON VOLUME disk2

alpha
gamma

beta
URTEST

In this example, you used the DIR command's default TO preposition and FAST
format for the listing. You could have sent the directory listing to
another output file and specifed either the OVER preposition to write the
listing over the file's previous contents, or the AFTER preposition to
append the directory listing to other data. If you want to list more
information about each file, specify the EXTENDED parameter. See the DIR
description in Chapter 3 for examples of the available listing formats.

4-12

FILE' HANDLING EXAMPLES

HOW TO MOVE FILES BETWEEN DIRECTORIES

There may be situations when you wish to reorganize a large group of
existing files under new headings (directories). You can move files from
one directory to another by using the RENAME command. For example, assume
you wish to move files ALPHA, BETA, and GAMMA from the users default
directory to the existing directory MYTEST, and file DELTA from the user
default directory to an existing directory named NUTEST. Enter the
following command line, using the QUERY parameter (optional):

-rename al ha beta amma,delta to MYTEST/al ha,MYTEST/beta, &
MYTEST gamma,NUTEST delta query

alpha, RENAME TO MYTEST/alpha? L
alpha renamed to MYTEST/alpha
beta, RENAME TO MYTEST/beta? L
beta renamed to MYTEST/beta
gamma, RENAME TO MYTEST/gamma? L
gamma renamed to MYTEST/gamma
delta, RENAME TO NUTEST/delta? L
delta renamed to NUTEST/delta

Assume you later decided to move file ALPHA back to the default user
directory. You need not specify the default directory in the new pathname
for ALPHA. Enter the following command:

rename ~test/alpha to alpha
~test/alpha RENAMED to alpha

Any subsequent operations involving file ALPHA would only require the
filename. For example:

-copy alpha
aaaaa
aaaaa
alpha copied TO :CO:

HOW TO DELETE A DIRECTORY

You delete unused directories from secondary storage by using the DELETE
command. However, the Human Interface protects you from accidently
destroying valuable files by refusing to delete a directory that contains
one or more files. For example, assume you wished to delete directory
MYTEST and did not realize it contained a data file named ALPHA and a
directory named DED that itself contained a data file named LIV. You
entered the following command:

-delete ~test
my test, directory not empty

4-13

FILE HANDLING EXAMPLES

It would probably pay to list the MYTEST directory by using the DIR
command at this point. You now have several options: use the RENAME
command to move any files to to be saved to a different directory on the
same volume, or use the DELETE command to delete the entire contents of
MYTEST before deleting the directory.

Assume you wish to move ALPHA to the NUTEST directory and delete the rest
of the directory's contents so that MYTEST itself can be deleted. Enter
the following commands:

-rename my test/alpha to nutest/alpha
my test/alpha renamed to nutest/alpha
-delete m test/ded/liv,m test/ded,m test
my test ded liv deleted
mytest/ded deleted
my test deleted

The RENAME command automatically deleted the MYTEST/ALPHA pathname from
the MYTEST directory. Note how the pathname sequence in the DELETE
command travelled upward through the hierarchical structure to the MYTEST
directory as the last item to be deleted.

HOW TO RENAME FILES AND DIRECTORIES

The most direct method to save the contents of a file or directory but
change its pathname is to use the the RENAME command. To make the
process easier to follow, renaming of files and directories will be
described separately.

HOW TO RENAME FILES

Assume you wish to change the name of file ALPHA to a new name of OMEGA,
where OMEGA does not already exist. Enter the following command:

-rename alpha to omega
alpha renamed to omega

The ALPHA pathname would be automatically deleted from the system when
the RENAME command was executed. You can also rename lists of files to
new pathnames, and in this case, it is useful to include the QUERY
parameter in your command line to make certain that your old pathnames
and new pathnames are matched up in the way you intended.

Assume you wish to rename files ALPHA, BETA, and GAMMA to TOM, DICK, and
HARRY respectively. Enter the following command sequence:

-rename alpha,beta,gamma to tom,dick,harry
alpha renamed TO tom
beta renamed TO dick
gamma renamed TO harry

4-14

FILE HANDLING EXAMPLES

Remember that when using the RENAME command, you must always have a
one-for-one match of pathnames between the new list and the old file list.
For example, more old pathnames than new pathnames would cause the
following exchange at the console:

-rename alpha,beta to tom
alpha renamed to tom
un-matched path name lists,

Similarly, specifying fewer old pathnames than new names would cause the
following exchange:

-rename alpha to beta,tom
alpha renamed to beta

So far, these RENAME examples have used the TO parameter to give new names
to existing files. However, you can also use the OVER preposition with
RENAME. The primary purpose of OVER is to move data from one named file
over the data in another existing file. This matches the action of the
OVER preposition in the COpy command with one important distinction:
RENAME automatically deletes the input data file from the system when the
command is executed.

Exercise a little care here! It's easy to get into semantic confusion when
using the OVER preposition in a RENAME command. Just remember a few simple
rules:

•• Use the pathname of the data to be moved to a different but existing
pathname as the input parameter; that is, on the left-hand side of the
OVER preposition. This pathname will be deleted from the system when
the command is executed.

• Use the pathname that receives the input data as the ouput parameter;
that is, on the right-hand side of the OVER preposition. The previous
contents of this file will be replaced when the command is executed.

For example, assume you have a file named ABLE whose contents consist of
the data line aaaaa, and another file named BAKER whose contents consist of
the data line bbbbb. You wish to rename ABLE with the name BAKER. Enter
the following command:

-rename able over baker
able renamed OVER baker

Now, let's see what happened to the contents of the file previously named
ABLE but now named BAKER:

-copy baker
aaaaa

baker copied TO :CO:

4-15

FILE HANDLING EXAMPLES

The previous contents of BAKER have been deleted from the system, and
pathname ABLE has been deleted from its directory.You can also use the TO
preposition to rename files with other existing pathnames. Using TO
might be slightly less confusing but you must enter extra keystrokes.
For example, assume you wish to rename ALPHA and BETA with the existing
file names GAMMA and DELTA. Enter the following command:

-rename alpha,beta to gamma,delta
gamma, already exists, DELETE? ~
alpha renamed TO gamma
delta, already exists, DELETE? ~
beta renamed TO DELTA

HOW TO RENAME DIRECTORIES

A directory can be renamed to ~ pathname on the same volume (but not to
an existing pathname). Assume you have a directory whose pathname is
ALPHA/BETA and wish to rename it with a new pathanme of AY/BEE. Enter
the following command:

-rename alpha/beta to AY/BEE
alpha/beta renamed TO AY/BEE
-dir alpha/beta
alpha/beta, does not exist

Be cautious about renaming directories! That last message tells you the
consequences of renaming a directory to a new pathname. Once you rename
a directory, all files listed under that directory will also have their
pathnames changed. If your system has other programs that use data files
that are listed under the old directory name, those programs will never
find the files. In such a case, either the directories would have to be
renamed to their original names or the programs would have to modified.

In summary, the distinctions between using the RENAME and COpy commands
are as follows:

• When you use COpy to move the contents of an existing file TO a
new file or OVER an existing file, the input file still exists.

• When you use RENAME to move the contents of an input file TO a
named new file or OVER an existing file, the input pathname is
automatically released for new uses.

HOW TO MOVE FILES ACROSS VOLUME BOUNDARIES

You can use all Human Interface file handling commands except RENAME to
manipulate files across volume boundaries. That is you can copy files or
directories from one diskette or disk platter to another one mounted in a
different drive. The restriction against using REN~m across volume
boundaries is intended for the protection of files against accidental
deletion.

4-16

FILE HANDLING EXAMPLES

You access a different volume by entering the logical device name (for
the drive on which the volume is mounted) as the first item in the
pathname. For example, assume you have a volume mounted on a drive whose
logical name is :f1:. Further assume you wish to list the root directory
for that volume to see what directories and data files you have on the
volume. Enter the following command:

-dir :f1:

01 JAN 81 00:00:00
DIRECTORY OF :f1: ON VOLUME disk2

able
BUS

baker
nusamp

chuck
STATS

O~I samp

Assume you wish to copy file ABLE from this volume mounted on :f1: to the
~crTEST directory on your system's default volume (:fO:). Enter the
following command:

-cop, :f1:/able to my test/able
:f1: able copied TO my test/able

If you then wish to delete files ABLE and (for instance) BAKER from the
:f1: volume, simply enter the command:

-delete :f1:/able,:f1:/baker
:f1:/able, deleted
:f1:/baker, deleted

Now, assume the following conditions:

• You have two data files on the :f1: volume with the pathnames
STATS/SALES/FEB and STATS/SALES/MAR.

• You wish to merge both files to a new file with the pathname
MYTEST/PEEK/SUBTOT on your system's default volume.

Enter the following command:

-co :f1:/stats/sales/feb :f1:/stats/sales to test/ eek/subtot
:f1:/stats/sales feb copied TO mytest/peek/subtot
:f1:/stats/sales/mar copied AFTER mytest/peek/subtot

Note that a volume prefix must be specified for each pathname in any
command that crosses volume boundaries. A volume-u8es the prefix of the
drive on which it is mounted.

4-17

FILE HANDLING EXAMPLES

HOW TO FORMAT A NEW VOLUME

Whenever you wish to create a new volume on a secondary storage device
(such a diskette, disk platter, or bubble memory), you must format the
volume before you can write any information in it. Assume you are going
to mount a new diskette on a disk drive with the prefix :fl:. Further
assume you are going to name the volume NEWVOL to meet the Human
Interface requirement for a six-character volume name.

Enter the following command:

-format :fl:NEWVOL
volume (NEWVOL) will be formatted as a NAMED volume

granularity = 128
interleave = 5
numberfnodes = 50

volume formatted

This formatting example exercised all the default options. Only a
six-character volume name is a required parameter. Since all your
accesses to the volume will be through the logical name for the drive on
which the volume is mounted, the question naturally arises as to why a
volume name is required. There are two reasons:

1. The Human Interface requires a volume name for its own internal
processing of your read/write accesses to the volume. Once the
volume is formatted, you need never specify the volume name in a
command; you only specify the logical name for the device on
which you later mount the diskette.

2. For diskettes, a volume name gives you a method for identifying
a volume in case the stick-on label on the diskette gets lost or
destroyed. You need only mount the disk on a drive and enter a
DIR command for that drive to get a directory listing that
specifies the volume name.

The GRANULARITY, INTERLEAVE and FNODES parameters tell the FORMAT command
how you want the physical space (for instance, disk surface space) on the
volume allocated and accessed for maximum efficiency. The default
parameters caused the NEWVOL example to be formatted with the following
attributes:

• The default NAMED parameter specifies that you will be using the
volume only to handle named files and directories. If you
specified the PHYSICAL parameter, the entire volume would be
treated as a single, large physical file. Once you you define
the volume as NAMED or PHYSICAL, you can only use it for that
purpose.

• The GRANULARITY parameter specifies the minimum number of bytes
to be allocated for each increment of file size on the volume.
The default granularity is the granularity of the physical
device. Once the volume granularity is defined, it is applied to
every file you create on the volume.

4-18

FILE HANDLING EXAMPLES

For example, assume the default volume granularity for your device is
1024 bytes. Each time you create a new file on the volume, the I/O
System will automatically allocate 1024 bytes of primary storage to
that file, whether or not the file requires the full 1024 bytes. If
the size of your file exceeds 1024 bytes, the I/O System will increment
your file size by still another block of 1024 bytes, and so on, until
the end-of-file is reached.

• The INTERLEAVE default specifies that you want an interleave factor
of 5. The interleave factor maximizes access speed for the files on
a given volume, depending upon the intent of the volume and the
device configuration of your system.

For example, an interleave value of 5 for a flexible disk system
means that, for each file, the I/O System will read every fifth
sector on the diskette, starting from an index of 1 (other, hard
disk systems may be different, depending on your hardware
configuration). Therefore, the I/O System does not need to wait for
the disk to make a complete revolution before it accesses the next
sector; the next sector by an increment of 5 is ready to be accessed
for read/write by the time the first accessed sector has been
processed.

Note that the INTERLEAVE is the only optional parameter that is
meaningful for volumes formatted for PHYSICAL files; the FNODES and
GRANULARITY options are ignored in FORMAT commands that specify a
PHYSICAL file format for the volume.

• The default FNODES parameter specifies that you wish create a
maximum of 50 files ort the volume, including directory files.
Although the actual number of fnodes you can specify is 7 through
32,767, at a practical level one of your determining factors will be
the incremental file Size you specify in the GRANULARITY parameter.

DISKETTE SWITCHING PROCEDURES

If your system is configured with the iSBC 204 flexible disk controller and
you are using single-density diskettes to perform file management
functions, a special procedure is required to switch the diskettes.
Perform the following steps:

1. Remove the old diskette and mount the new one into the drive.

2. Enter a DIR command for the root directory of the new diskette to
force physical access. The root directory "name" will actually be
the prefix (logical device name) for the drive on which the diskette
is mounted. For example:

-dir : fl:

The following exception message will be displayed:

E$IO

4-19

FILE HANDLING EXAMPLE S

3. Ignore the error message and begin entering Human Interface
commands that access the volume. If your system is configured
with a dual-density disk controller, use the diskette changing
procedures described in the iRMX 86 INSTALLATION GUIDE.

HOW TO USE A SUBMIT FILE

A submit file gives you the ability to load and execute an entire series
of commands by entering a single SUBMIT command. Whenever you have a
group of commands that you must execute in sequence and on a routine
basis, using a submit file will save you time, keystrokes, and keyboard
entry errors.

Before you create a submit file, however, you should be aware of two
restictions about the commands that are loaded and executed from such a
file:

1. There is no way to change parameters in any given command between
submit file executions. If you wish to change any parameter
specification in a command line, you must recreate the entire
submit file.

2. You cannot change the execution sequence for commands without
recreating the file.

Now, assume you have three user-created application programs whose
command names are the pathnames :Fl:/STATS/PASSl, :Fl:/STATS/PASS2, and
:Fl:/StATS/PASS3 respectively. The pathnames tell you that the volume in
which they are located is mounted on the drive with the logical name
:Fl:, all three programs are located in the STATS directory, and the
program names are PASSl, PASS2, and PASS3.

• PASSI reads data from an update file whose pathname is always
:Fl:/NEWDATA, processes it, and writes it over an existing output
file whose name is always :Fl:/FETCH.

• PASS2 reads data from :Fl:/FETCH, processes it, and writes the
output after the end of data on an existing file named :Fl:/CARRY.

• PASS3 reads the data from :Fl:/CARRY, processes it, and writes
the output over an existing file whose pathname is :Fl:/TOTAL

• The Human Interface COpy command reads :Fl:/TOTAL and writes it
to the :CO: device (console screen). You could have PASS3 write
directly to :CO: but you would then have no way to recopy the
file.

Assume you have created your submit file with the pathname MYTEST/GETIT
and you now wish to create the NEWDATA file from :ci: and execute the
submit file. Enter the following commands:

4-20

FILE HANDLING EXAMPLES

-copy :ci: to :f1:/newdata
aaaaaa
bbbbbb
cccccc
(CTRL/z)
-SUBMIT ~test/getit

The Human-Interface will read the list of commands from the GETIT file as
though you were entering them from the keyboard, follow the pathnames to
the stored programs, load, and execute each program in sequence.

4-21

CHAPTER 5. CREATING NEW COMMANDS

The Human Interface system calls p,rovide a convenient and consistent
method for handling parameter parsing and processing in user-designed
commands. You implement parameter processing by using appropriate system
calls when you write the application program.

After you have assembled or compiled, linked, and then stored your new
command as an object module in secondary storage, a console operator can
load the program file by typing its command name (pathname of the program
file), plus any desired or required parameters on the console keyboard.

GENERAL COMMAND LINE STRUCTURE,

The general structure for a command line is as follows:

command-name input-pathname-list [preposition
output-pathname-list] [other parameters]
command -e nt ry-t ermi na t:or

The console operator must always s'pecifically type the "command name
entry on the keyboard to load and execute the associated program file.
Except for the "command entry terminator" (RETURN, LINE FEED, or ESC
key), all other command elements are optional, and the console operator
may use default options when the command line is entered.

Before you create a new command, you must make a number of decisions that
will affect the command line structure:

• The intended function or functions of the command.

• A command name, which you will use as the pathname for the
executable program file. Ideally, the command name should be a
descriptive verb or ndun that has some functional meaning for the
console operator who will be executing the command. COpy and
TIME are examples of command names that are a descriptive verb
and a descriptive noun, respectively.

• For file handling commands, an input pathname-list is usually
desirable. You will use the CGETINPUT$PATHNAME call to parse
the input pathname-list.

• If output is to be performed, you will use the
CGETOUTPUT$PATHNAME call in your program to parse the
preposition and output pathname-list.

• If other parameters are to be used in the new command, use the
CGETPARAMETER call to parse the parameters.

5-1

CREATING NEW COMMANDS

Commands are programs that can contain system calls, including those
supplied by the Human Interface. The Human Interface system calls are
divided into functional groups, as follows:

• Input and output parameter calls

• Message processing calls

• Command processing calls

• Program control call

• Parameter parsing calls

A brief description of the functions performed within these groups is
provided in the following subheadings; more specific information is given
in the individual call descriptions in Chapter 6.

INPUT AND OUTPUT PARAMETER CALLS

Every Human Interface command (Intel-supplied or user-created) that
performs I/O as part of its processing, must contain two or more of the
following elements in its parameter string:

• Command name

• Input list of pathnames

• Preposition (TO/OVER/AFTER entry) and output list of pathnames.

Examples:

command name in-pathname-list preposition output destination

COpy a,b TO c,db

RENAME alpha,beta OVER gamma,delta

The command name is usually a descriptive verb, and is a required element
for every command. When any form of I/O is to be be performed, a list of
one or more input files must be specified. When output is to be
performed, both a preposition and a list of one or more destination files
must be specified to receive the output.

The Human Interface provides four system calls that you can use to
process the I/O elements in a command line:

CGETINPUT$PATHNAME
Returns a pathname or pathnames that identify the input source or
sources.

5-2

CREATING NEW COMMANDS

CGETOUTPUT$PATHNAME Returns a pathname or pathnames that
identify the destination or destinations of
the output. If the operator does not
specify a preposition and pathname in a
command line, TO :CO: (console output) is
the default.

CGETINPUT$CONNECTION Returns an Extended I/O System input
connection to a file specified by a pathname.

CGETOUTPUT$CONNECTION Returns an Extended I/O System output
connection to a file specified by a pathname.

These calls are basic to I/O p:rocessing and provide a consistent
interpretation for commands. They also provide you with a method of
setting up the input and output connections for a command line.

Although you can use GET$INPUT$PATHNAME without using
GET$OUTPUT$PATHNAME, the reverse is not true. In your source statements,
a call to GET$INPUT$PATHNAME must always precede a call to
GET$OUTPUT$PATHNAME for pathname parameters.

For example, assume you have written a program whose command name is
REFINE. If the console operator enters the command line:

REFINE ALPHA TO BETA

your program calls CGETINPUT$PATHNAME to get the pathname ALPHA.
CGETINPUT$CONNECTION is then called to get a connection to the ALPHA
file. After getting the conn~ction, REFINE performs its programmed
operation and then calls CGEtOUTPUT$PATHNAME to get the BETA output
pathname. The program then c~lls CGETOUTPUT$CONNECTION to get a
connection to the BETA file. Finally, REFINE writes the data to the
output file.

Invoked programs have two "standard logical devices" available: a
Standard Input and a Standard Output. You can establish and manipulate
these logical devices by calling the system calls that parse the command
line and establish the standard I/O connections.

The Standard Input is parsed by the CGETINPUT$PATHNAME system call from
the input pathnames that appear after the command name on the command
line. The pathnames returned by CGETINPUT$PATHNAME may be given to the
CGETINPUT$CONNECTION routine to create an I/O connection. If the
CGETINPUT$CONNECTION call finds the input file does not exist, the
following message is issued to the user's console:

pathname, does not exist

The Standard Output is parsed by using the CGETOUTPUT$PATHNAME call in
your program. The call to this routine should appear immediately after
the first call to CGETINPUT$PATHNAME. User output redirection is
achieved by using the TO, OVER, or AFTER prepositions, which must appear

5-3

CREATING NEW COMMANDS

immediately after the Standard Input specification on a command line.
These prepositions are interpreted by the CGETOUTPUT$PATIINAME and
CGETOUTPUT$CONNECTION routines called in your program. When accepted
by a command, these prepositions are reserved words that appear in a
command line with the following syntax:

TO
OVER
AFTER

outpath-list

If a TO/OVER/AFTER preposition is not found on the command line, the
default supplied by the CGETOUPUT$PATHNAME call will be used.

The pathname parameter may be either for a single file or a list of
files. The TO/OVER/AFTER prepositions give the user a choice in the way
a specified pathname is to be handled.

The TO preposition specified in a command line indicates that the
pathname should not already exist as a maintained file before the
operation is performed. If the parsing call finds the file does exist,
the following message is displayed on the console screen:

pathname, already exists, DELETE?

Only a keyboard response of "Y" or "y" will cause the operation to be
performed for that particular pathname in a pathname list.

The OVER preposition in a command line specifies that, if the pathname
already exists, the pathname is to deleted and command execution is to
continue.

The AFTER preposition in a command line specifies that the standard
output is to be appended to end of the contents of the pathname.

The Command line Interpreter (see the description in Chapter 1) provides
protection for a user's files for every preposition except OVER. For
example:

TO xz
OVER xz
AFTER xz

all execute without a warning message if xz does not exist. However,
only the OVER preposition can replace an existing file without the
Warning message being issued (although AFTER can concatenate to an
existing file).

MESSAGE PROCESSING CALLS

The message processing calls provide a means to send and receive messages
from the user's console, and to format a default message for a specified
exception code.

5-4

CREATING NEW COMMANDS

COt~D PROCESSING CALLS

The command processing calls are intended for users who wish to create
their own stream of commands or employ modifications to some of the
functions performed by other Human Interface calls. There are three such
calls and they are used in combination, as follows:

1. C$CREATE$CO~~$CONNECTION -- establishes a token for a command
connection that allow,s multiple line commands without
interference from other tasks. The command connection TOKEN
established by the call is used in the C$SEND$COMMAND and
C$DELETE$COMMAND$CONNECTION calls.

2. C$SEND$COMMAND -- accepts command lines and combines them with
lines previously sent. After a full command is received,
C$SEND$COMMAND loads the command for execution.

3. C$DELETE$COMMAND$CONNECTION -- deletes a command connection TOKEN
previously established by a C$CREATE$COMMAND$CONNECTION call and
frees the memory used for the connection's data structures.

PROGRAM CONTROL CALL

The CSETCONTROL$C call lets, you modify the "standard" response of the
CTRL/c function by changing the calling program's CTRL/c semaphore to
some other semaphore specifie:d in a SET$CONTROL$C call. An application
example would be to change the CTRL/c semaphore of an edit program so
that when CTRL/c was pressed, it would not cause the editor to exit but
would instead allow it to cancel the current operation and prompt for a
new command.

PARAMETER PARSING CALLS

The Human Interface parsing calls help ensure system consistency in
processing commands. The parsing calls minimize parsing inconsistencies
in user-created programs, thus making it easier for the programme~ to
provide command line parsing in the new program. The parameter parsing
calls support two different types of parameters:

• The first type of parameter are parameters with values, which are
keyword parameters and preposition parameters. Parameters with
values may appear in three different forms:

keyword=value-part (keyword parameter)

keyword(value-part) (keyword parameter)

keyword value-part (preposition parameter)

Note that the first two forms are called keyword parameters and the last
form is called a preposition parameter, and that all three have a keyword
and a value-part. The differences between the forms are the separators

5-5

CREATING NEW COMMANDS

used in each. The reason for distinguishing between keyword parameters
and a preposition parameter lies in the method used to recognize them
during command line parsing:

• The presence of the equal sign (-) or the pair of parentheses ()
lets the Command Line Interpreter recognize keyword parameters
without foreknowledge of the keywords.

• The structure of the preposition parameter is so loose that the
Command Line Interpreter must be provided with a list of the
prepositions before they can be recognized. You must supply th~
CLI with this list in the form of a predict$table whenever a
parameter is requested from the parsing routines. See Table 6-1
for a listing of the Human Interface parameter parsing calls.

The value-part of a parameter is either a single value or a list of
values separated by commas. In addition, the value-part may itself
contain value-lists. If enclosed in parentheses, a value-list will be
returned to the STRING$TABLE as one value, including the parentheses.
For example:

A, (B ,C,D) ,E

where (B,C,D) will be returned as one value. The string$table format is
illustrated in Appendix C this manual.

• The second type of supported parameter are lists of values, which
may consist of a single value or a list of values that comprise
the value-part of a parameter. The values must be separated by
commas. Note that since a value-list is considered one value,
any quote marks appearing within the parentheses will not get
deleted. See the C$GET&PARAMETER system call in Chapter 6 for
more information.

Parameter parsing may be performed by using high-level calls to get
parameters or characters. If, instead, a command line is accessed at the
character level, it is the program's responsibility to provide syntax
compatibility. Application programs will not receive any comments found
in the command lines.

Allor a portion of a parameter can be quoted by using either single or
double quote marks. The same type of quote mark must be used to end a
quoted string as was used to begin the string; that is, if a quoted
string began with a single quote(') it must be terminated with a single
quote.

PARAMETER SYNTAX CONSIDERATIONS

Preposition parameters, such as TO/OVER/AFTER, may not be abbreviated.
However, keyword parameter names may be abbreviated in one of two ways:

1. Standard Abbreviation - this is performed by typing only as many
characters of the parameter as are necessary to make it unique.

5-6

CREATING NEW COMMANDS

2. Syllabic Abbreviation - this is performed by conforming to the
following rules:

a. If a name consists of two or more concatenated words, use
the first letter from each word. Digit sequences may not be
abbreviated.

b. If a name consists of only one syllable, use the first two
letters of the parameter name.

c. If a name consists of two or more syllables, use the first
letter of the first two syllables.

d. If negation is used (i.e., NOLIST), the "NO" is not
abbreviated; for example, NOLI.

e. If rules a through c result in the same abbreviation for
different name elements, a third letter must be added to one
of the names to achieve uniqueness in the abbreviation.
However, the third letter need not be added if the
conflicting names appear in different programs, or in the
same program but in different contexts.

COMMAND INVOCATION

All executable programs are non-resident and are invoked as separate
:lRMX 86 programs. After the command name has been broken out of a
command line, the CLI parses for the command pathname. If the pathname
contains an explicit logical name, the pathname is used "as is".
However, if the pathname consists only of components, such as a single
filename, the CLI first searches the User Program directory (:PROG:),
where user-created commands are cataloged. If the file is not found, the
CLI then searches the System Command directory (:SYSTEM:), where the
1luman Interface commands are cataloged. Note that this order of search
and the presence of the directories are configuration-time options. See
Table 5-1 and Chapter 1 for descriptions of the :PROG: and : SYSTEM:
directories.

PROGRAM CONTROL

When a user invokes a Human Interface command, the Human Interface
invokes the Application Loader to load the command from secondary storage
and create it as an I/O job. Whenever the calling task's priority is the
highest, the command starts executing. While the command is executing,
terminal is ignored and the user cannot enter other commands until the
first command finishes processing. In order to finish processing, the
command must contain, as its last executable statement, a call to
EXITIOJOB. Otherwise the terminal will be hung up forever.

The format of the call to EXITIOJOB is as follows:

CALL RQ$EXIT$IO$JOB(O,O,excep$ptr)

5-7

I

CREATING NEW COMMANDS

This implies a normal exit with no message sent to the message mailbox
and with the exception code returned in the location pointed to by
excep$ptr.

If an executing program contains a CSETCONTROL$C system call, an
operator can cancel program execution by pressing the CTRL/c key. See
the CSETCONTROL$C system call description in Chapter 6.

EXCEPTION HANDLER

Exceptions are divided into two categories: programming errors and
environmental conditions. Programming errors occur when the iRMX 86
system detects a condition that normally can be avoided by correct
coding. Environmental conditions, in contrast, are generally outside the
control of the application program.

The Human Interface provides a default exception handler for each program
it creates. This exception handler receives control on the occurrence of
all exceptions. You can cause all exceptions or no exceptions in an
application to be passed to the exception handler by using the Nucleus
CGETEXCEPTION$HANDLER and C$SET$EXCEPTION$HANDLER system calls. The
action taken by Human Interface exception handler will be to print and
error message and then cancel the program.

Since you may not want to construct a special exception message in a user
application, you can use the Human Interface C$FORMAT$EXCEPTION system
call to construct a standard message. You can pass either programming or
environmental exceptions to C$FORMAT$EXCEPTION, which will construct a
standard message. The application program would issue the message and
then either continue execution or exit itself.

LOGICAL NAMES

You may use either the logical names provided by the Human Interface or
create your own at system configuration time. See the iRMX 86
CONFIGURATION GUIDE for more information. The standard logical names and
their meaning are described in Table 2-1.

You can also assign logical names to new physical devices that are added
to the system without going through a system reconfiguration. See the
ATTACHDEVICE command in Chapter 3 for more information.

LOAD MODULE FORMATS

You can create new application programs in either relocatable or absolute
load format. However, if you use an absolute format, you must reserve
memory for the absolute object modules at iRMX 86 system configuration
time. Refer either to the iAPX 86,88 FAMILY UTIILITIES USER'S GUIDE

5-8

CREATING NEW COMMANDS

for 8086-BASED DEVELOPMENT SYS:TEMS or to the 8086 FAMILY UTILITIES GUIDE
for 8080/808S-BASED DEVELOPMENT SYSTEMS, as appropriate for your
development system, and the iRMX 86 CONFIGURATION GUIDE for more
information.

COMMAND CREATION PROCEDURES

The general procedures for creating a user-designed program that can be
executed by keyboard command are as follows:

1. Assuming you will be creating the program on a development
system, write the program code.

2. Assemble or compile the program.

3. Link the program to the appropriate iRMX 86 libraries, including
the Human Interface library. The link parameters to use depend
on your type of development system and the type of load module
desired, as follows:

Series III, Alternative A - creates a relocatable object
module in LTL or PIC code. Use LINK86 with the SEGSIZE
(STACK(u)), MEMPOOL, and BIND controls to generate a
relocatable object module. Generating an relocatable object
module is recommended to avoid having to reserve memory at
system configuration time.

Series III, Alternative B - creates an absolute object
module. Use the LINK86 and LOC86 commands and the NOINITCODE
and SEGSIZE (STACK(u) controls to generate the absolute
code. You must re,serve memory space at system configuration
time to receive the absolute object module.

Series II - create's an absolute object module (only). Use
the LINK86 and LOC86 commands with SEGSIZE (STACK(u))
control. You must res,erve memory space at system
configuration time to receive the absolute module.

4. Copy the program module from the development system to the :PROG:
directory on the appropriate iRMX 86 diskette by using the Human
Interface UPCOPY command.

5. Load and execute the program by typing its command name on the
user console.

See either the iAPX 86,88 FAMILY UTILITIES USER'S GUIDE for 8086-BASED
DEVELOPMENT SYSTEMS or the 8086 FAMILY UTILITIES USER'S GUIDE for
8080/808S-BASED DEVELOPMENT SYSTEMS, as appropriate for your development
system, for more information about the LINK86 and LOC86 commands.

5-9

I

I

I

I

CHAPTER 6. HmMAN INTERFACE SYSTEM CALLS

The Human Interface system calls described in this chapter are presented
in alphabetical sequence without regard to functional organization. A
functional grouping of the calls according to type is provided in the
System Call Dictionary in Table 6~1. For each call, the information is
organized into the following categories:

• Brief functional description.

• Calling sequence format.

• Input parameter definitions, if applicable.

• Output parameter definitions, if applicable.

• Considerations and consequences of call usage.

• Potential exception codes, and their possible causes.

Throughout the call descriptions, iRMX 86 data types such as WORD and
STRING are used. The data types are always capitalized, and they are
defined in Appendix C.

If you are a new user of the Human Interface calls, it is suggested that
you review the calling considerations in Chapter 5 before implementing
these command processing routines in your source code. Quick review of
the command format and syntax descripions in Chapter 2, and file handling
examples in Chapter 4 may also be useful.

It is also assumed that you are familiar with a number of terms and I
concepts that are common to the iRMX 86 Operating System. If you are
not, it is suggested that you take the time to read INTRODUCTION TO THE
lRMX 86 OPERATING SYSTEM and the chapters in the iRMX 86 NUCLEUS
REFERENCE MANUAL that refer to the terms memory pool and catalog.

6-1

I

HUMAN INTERFACE SYSTEM CALLS

Table 6-1. System Call Dictionary

System Call Synopsis

I/O Processing Calls

CGETINPUT$CONNECTION Return an EIOS connection for
the specified input file.

CGETOUTPUT$CONNECTION Return an EIOS connection for
the specified output file.

CGETCHAR

CGETINPUT$PATHNAME

CGETPARAMETER

CGETOUTPUT$PATHNAME

CSETPARSE$BUFFER

C$FORMAT$EXCEPTION

C$SEND$CO$RESPONSE

C$SEND$EO$RESPONSE

Command Parsing Calls

Get a character from the command line

Parse the command line return a
pathname that will identify the
Standard Input file.

Parse the command line for the next
parameter and return it as a
keyword name and a value.

Parse the command line and return
a pathname that will identify the
Standard Output file.

Parse a buffer other than the
current command line.

Message Processing Calls

Format a default message into
a user buffer for a given
exception code.

Send a message to the command
output (CO) and read a response
from the command input (CI).

Send a message to the error output
device (EO) and return a response
from the error input device (EI).

6-2

Page

6-14

6-22

6-13

6-20

6-34

6-31

6-56

6-11

6-48

6-51

HUMAN INTERFACE SYSTEM CALLS

Table 6-1. System Call Dictionary (continued)

System Call Synopsis

Command Processing Calls

C$CREATE$COMMAND$CONNECTION : Create a command connection and
return a token.

C$DELETE$COMMAND$CONNECTION : Delete a specific command
connection.

C$SEND$COMMAND

CSETCONTROL$C

;

Concatenate command lines into
the data structure created by
CREATE$COMMAND$CONNECTION and
then execute command.

Program Control Call

Change calling program's
CONTROL C semaphore to the
specified semaphore.

6-3

Page

6-4

6-10

6-38

6-54

C$CREATE$CO~$CONNECTION

I

I

HUMAN INTERFACE SYSTEM CALLS

C$CREATE $COMMAND$CONNECT ION

C$CREATE$COMMAND$CONNECTION, a command processing call, establishes a TOKEN
for a command connection that can be used to combine and invoke
multiple-line commands without interference from other tasks.

command$conn

INPUT PARAMETERS

default$ci

default $co

reserved$word

OUTPUT PARAMETERS

c ommand$ conn

except$ptr

DESCRIPTION

RQCCREATE$COMMAND$CONNECTION(default$ci, default$co,
reserved$word,
except$ptr);

A WORD containing a TOKEN representing a connection
that will be used as the :CI: (console input) for any
command started using this command connection.

A WORD containing a TOKEN representing a connection
that will be used as the :CO: for any commands
started using this command connection.

A WORD reserved for future use. Its value should be
zero (0).

A WORD which receives a TOKEN for a command
connection that subsequently may be used by
C$SEND$COMMAND and C$DELETE$COMMAND$CONNECTION to
refer to a particular command stream.

A POINTER to a WORD in which the Human Interface will
return an exception code.

The call creates a data structure and returns a TOKEN for a command
connection that may be used in conjunction with the C$SEND$CO~m call.
It also contains the default :CI: and :CO: connection that must be defined
by the caller for commands invoked by C$SEND$COMMAND calls.

This call can be used to invoke a command programmatically instead of
interactively; that is, one command can invoke still another command for
execution, and 80 on.

~4

EXCEPTION CODES

E$OK

E$CONTEXT

E$DEVFD

C·$CREA TE$COMMAND$CON:NECTION

No exceptional conditions were encountered.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• The Operating System detected a zero value for
the object directory size. This condition
occurred because an improper configuration of the
Human ~nterface subsystem set the job object
directory size to zero.

• The Operating System detected two command
connections being created simultaneously by two
tasks in the same job. This condition occurred
because a programmer miscalculated or disrupted a
synchronized use of the command connection.

• The Operating System detected the : STREAM: device
in the process of being detached.

• The job containing the task which invoked this
system call was not created by the Human
Interface subsystem.

• While creating a STREAM file, the Extended I/O
System was unable to attach the : STREAM: device
because another task had already invoked a Basic
I/O system call to attach the : STREAM: device.

• The Basic I/O System was unable to attach the
default$ci or default$co connection parameters.
This occurred because the Basic I/O System was
detaching the device on which the connection was
based.

Your task forced the Extended I/O System to attempt
the physical attachment of : STREAM: that had
formerly been only logically attached. In the
process of attempting to physically attach :STREAM:,
the Extended I/O System found that the device and
the device driver specified in the logical
attachment were incompatible. The Operating System
would not have returned this exception code if
:STREAM: had been properly configured in the
Extended I/O and/or Basic I/O subsystems.

6-5

C$CREATE$COMMAND$CONNECTION

EXCEPTION CODES (continued)

E$EXIST

E$IO

E$IOMEM

E$LIMIT

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• This condition occurred when your task used a
Human Interface call but was not within a job
created by the Human Interface subsystem.

• The parameter default$ci or default$co was not a
token for a valid object.

• The Basic I/O System deleted either the parameter
default$ci or default$co.

While attempting to attach the parameter default$ci
or default$co, the Basic I/O System detected an I/O
error.

The Basic I/O System job does not currently have a
block of memory large enough to allow the Human
Interface to create a stream file.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• While creating the objects needed by this call,
the Operating System detected the calling task's
job as already having reached the maximum number
of objects that can exist simultaneously. This
condition occurred because an improper
configuration of the Human Interface subsystem
set the number of the maximum objects within the
job too low.

• The Operating System detected the object
directory of the calling task's job as already
reached the maximum object directory size.

• The job containing the task which invoked this
call or the job's default user object is
currently involved in more than 255 (decimal) I/O
operations.

6-6

C$CREATE$COMMAND$CONNECTION

EXCEPTION CODES

E$LIMIT (continued)

ELOGNAME
$NEXIST

E$MEM

ENOTCONFIGURED

• The job containing the task which invoked this
call was not created by the Human Interface
subsystem.

• The object limit of the Basic I/O System job has
been exceeded. Refer to the chapter of the
iRMX 86 CONFIGURATION GUIDE that discusses the
Basic I/O System.

• During the process of configuring your
application system, the Basic I/O System job was
configured a maximum priority that is too low.
Specifically, the BIOS maximum prioirity is lower
than either the DUIB priority or the DEVINFO
priority. Refer to the iRMX 86 CONFIGURATION
GUIDE for information regarding the BIOS maximum
priority. Refer to the GUIDE TO WRITING DEVICE
DRIVERS FOR THE iRMX 86 AND iRMX 88 I/O SYSTEMS
for additional information regarding the DUIB and
DEVINFO.

The : STREAM: device does not exist. This condition
occurred because someone failed to configure
: STREAM: during the configuration of the Extended
I/O or Basic I/O subsystems.

The memory pool of the job whose task invoked this
call does not currently have a block of memory large
enough to allow this system call to run to
completion.

One or more of the following system calls are not
configured into the system:

Call Subsystem

A$ATTACH$FILE Basic I/O
A$CREATE$FILE Basic I/O
AGETFILE$STATUS Basic I/O
A$OPEN Basic I/O
A$PHYSICAL$ATTACH$DEVICE Basic I/O
A$SPECIAL Basic I/O
CATALOG$OBJECT Nucleus
CREATE$COMPOSITE Nucleus
CREATE $MAILB OX Nucleus
CREATE$SEGMENT Nucleus
CREATE$tASK Nucleus
CREATE $ SEMAPHMORE Nucleus
DELETE$COMPOSITE Nucleus

6-7

I

C$CREATE$COMMAND$CONNECTION

EXCEPTION CODES

ENOTCONFIGURED (continued)

ENOTPREFIX

ENOUSER

E$PARAM

Call

DISABLE$DELETION
ENABLE$DELETION
GET$DEFAULT$PREFIX
GET$TYPE
LOOKUP$OBJECT
RECEIVE$CONTROL
RECE IVE$MES SAGE
S$CREATE$FILE
SEND$CONTROL
SEND$MESSAGE
SET$INTERRUPT
SGETCONNECTION$STATUS
WAIT$INTERRUPT

Subsystem

Nucleus
Nucleus
Basic I/O
Nucleus
Nucleus
Nucleus
Nucleus
Extended I/O
Nucleus
Nucleus
Nucleus
Extended I/O
Nucleus

The : STREAM: logical name does not refer to either a
device connection or a file connection.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• The job containing the task which invoked this
call does not have a default user. This
indicates that your task used a Human Interface
call but was not within a job created by the
Human Interface subsystem.

• The job containing the task which invoked this
call has a default user. This default user is
not a user object.

• The system call LOOKUP$OBJECT was not configured.

The Extended I/O System was forced to attempt the
physical attachment of a : STREAM: device that had
formerly been only logically attached. In the
process of attempting to physically attach the
:STREAM: device, the Extended I/O System found that
the logical attachment referred to a file driver
(named, physical, or stream) that is not configured
into your system. Hence the physical attachment is
not possible. The Operating System would not have
returned this exception code if the : STREAM: device
had been properly configured in the Extended I/O
and/or Basic I/O subsystems.

6-8

C$CREATE$COMMAND$CONNECTION

EXCEPTION CODES (continued)

E$SUPPORT

E$TIME

E$TYPE

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• During the process of configuring the Basic I/O
subsystem, someone improperly configured the
Named File Driver Table. This table is divided
into a request part and an I/O system part.
A$ATTACH$FILE or A$OPEN was configured in the
request part, but the corresponding entry in the
I/O s,ystem part was not included. Refer to the
iRMX 86 CONFIGURATION GUIDE for further
information.

• The %NO CREATE FILE or the %NO TRUNCATE macro
calls were configured into the-Basic I/O
subsystem.

Your task used a Human Interface call but was not
within a job created by the Human Interface
subsystem.

When your task invoked this system call, the call
invoked a file-attaching call. While performing the
file-att,aching call, the Operating System detected a
default$ci or default$co parameter that is not a
connection.

6-9

C$DELETE$CO~$CONNECTION

I

C$DELETE$COMMAND$CONNECTION

C$DELETE$CO~UlND$CONNECTION deletes a command connection object and frees
the memory used by the connection's data structures.

CALL RQCDELETE$COMMAND$CONNECTION(command$conn, except$ptr);

INPUT PARAMETER

command$conn

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for a valid command
aonnection.

A POINTER to a WORD in which the Human Interface
will return an exception code.

This call deletes a command connection object previously defined in a
C$CREATE$COMMAND$CONNECTION .call and releases the memory used by the
connection's data structures.

EXCEPTION CODES

E$OK

E$TYPE

No exceptional conditions were encountered.

The command connection parameter refers to an object
that is not a command connection object.

6-10

C$ FORMAT$ EXCEPTION

C$FORMAT$EXCEPTION

C$FORMAT$EXCEPTION, a message processing call, builds a default message
for a given exception code into a user-provided buffer.

[

CALL RQCFORMAT$EXCEPTION(buff$p, buff$max, exception$code, brevity,
except$ptr) ;

---~-----

INPUT PARAMETERS

buff$p

buff$max

exception$code

brevity

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a buffer that will receive a STRING
from the Human Interface containing a formatted
exeption message.

A WORD that specifies the maximum number of bytes
that may be contained in the buffer pointed to by
buff$p.

A WORD containing the exception code value for which
a message is to be created.

A required BYTE that must be a "1". This gives the
format of the message as follows:

xxxx: (exception name)

up to a total length of 30 characters. The
exception name is prov~ded by the Human Interface
from an internal table.

A POINTER to a WORD in which the Human Interface
will return an exception code.

I

I

I

C$FORMAT$EXCEPTION causes the Human Interface to format a message for the I
E~xception code. The call concatenates 'the message to the end of the
STRING already in the buffer. If a STRING is not already present in the
buffer, the first byte of the buffer must be a zero. The message added by
C$FORMAT$EXCEPTION will not be longer than 79 characters. The call will
handle both environmental and programmer error exception codes.

6-11

C$FORMAT$EXCEPTION

I

EXCEPTION CODES

E$OK No exceptional conditions were encountered.

E$PARAM An unknown exception code was given.

E$STRING$BUFFER Someone specified a buffer that is too small. This
buffer is pointed to by the buff$p parameter. This
buffer provides for the exception message and is not
large enough to contain the message.

6-12

CGETCHAR

CGETCHAR

CGETCHAR, a command parsing call, gets a character from the command line.

[___ c_h_a_r ____ R_Q_$C_$_G_E_T_$_C_HA __ R_<e_x_c_e_p_t_$_p_t_r_)_; ________________________________ ~

OUTPUT PARAMETERS

char

except$ptr

DESCRIPTION

A BYTE containing the next character in the command
line's character string. A null (OOH) character
will be returned when there are no more characters.

A POINTER to a WORD in which the Human Interface
will return an exception code.

Consecutive calls to GET$CHAR get consecutive characters from the command
line. All parsing of the command line must be done in one task. When
using CGETCHAR in commands, you should ensure that the commands using it
are syntactically compatible with other commands provided by the Human
Interface. Note that use of CGETCHAR decreases the possiblility that
the command syntax will remain compatible with future Human Interface
releases.

EXCEPTION CODES

E$OK

E$CONTEXT

No exceptional conditions were encountered.

The Operating System detected a ·zero value for the
object directory size. This indicated that your
task used a Human Interface call but was not within
a job created by the Human Interface subsystem.

ENOTCONFIGURED The Nucleus system call LOOKUP$OBJECT was not
incorporated during system configuration.

E$TIME Your task used a Human Interface call but was not
within a job created by the Human Interface
subsystem.

6-13

I

I
I

CGETINPUT$CONNECTION

CGETINPUT$CONNECTION

CGETINPUT$CONNECTION, an I/O processing call, returns an Extended I/O
System connection to the specified input file.

connection

INPUT PARAMETER

name$p

OUTPUT PARAMETERS

connection

except$ptr

DESCRIPTION

RQCGET$INPUT$CONNECTION(name$p, except$ptr);

A POINTER to a STRING containing the pathname of the
file to be accessed.

A WORD that receives the t9ken for the T$CONNECTION
object for the specified pathname.

A POINTER to a WORD in which the Human Interface
will return an exception code.

The returned input connection will be open for reading and will have the
following attributes:

• Read only

• Accessible to all

• Two 1024-byte buffers

CGETINPUT$CONNECTION may display one of the following messages on :CO:
if an unusual or disallowed operation is encountered:

pathname, file not found

meaning that the input file does not exist, or:

pathname, READ access required

meaning that the user is not allowed read access to the input file.

6-14

CGETINPUT$CONNECTION

DESCRIPTION (continued)

CGETINPUT$CONNECTION causes an error message to be displayed whenever an
exceptional condition is encountered. The exceptional condition that
triggers the error message can be either one of those listed for
CGETINPUT$CONNECTION or from the Extended I/O System calls S$ATTACH$FILE
and S$OPEN.

The error message has the form:

pathname, xxxx:exception code

where:

pathname

xxxx

exception code

EXCEPTION CODES

E$OK

E$CONTEXT

Pathname of the file or directory that was being
accessed when the exceptional condition was detected.

Four-digit value of the exception code.

One of the exception codes defined under "Exception
Codes" in this call description.

No exceptional conditions were encountered.

When your task invoked this system call, the Human
Interface call invoked at least one other system
call. While the Operating System performed the
latter call, one of the following situations
occurred.

• The Operating System detected a zero value for
the object directory size. This indicates that
your task used a Human Interface call but was not
within a job created by the Human Interface
subsystem.

• The Basic I/O subsystem determined that the
device referenced by the name$p parameter was in
the process of being detached.

• The job containing the task which invoked this
system call was not created by the Human
Interface subsystem.

• While processing a file-attaching system call,
the Extended I/O System was unable to attach the
device containing the file, referenced by the
name$p parameter. This occurred because the
Basic I/O System has already attached the device.

6-15

CGETINPUT$CONNECTION

EXCEPTION CODES

E$DEVFD

E$FACCESS

E$FNEXIST

E$FTYPE

E$ILLVOL

The Extended I/O System was forced to attempt the
physical attachment of a device that had formerly
been only logically attached. In the process of
attempting to physically attach the device, the
Extended I/O System found that the device and the
device driver specified in the logical attachment
were incompatible. The Operating System would not
have returned this exception code if the device
referenced by the name$p parameter had been properly
configured in the Extended I/O and/or the Basic I/O
subsystems.

The access rights embedded in the connection have
prohibited you from opening the file in the read
mode. This exceptional condition can arise only
when the connection refers to named files.

While attaching the file specified in the name$p
parameter, the Operating System detected one of the
following circumstances:

• Either some file in the specified pathname
(referenced by the name$p parameter), or the
target file itself, is marked for deletion.

• Either some file in the specified pathname
(referenced by the name$p parameter), or the
target file itself, does not exist.

The Operating System detected an error in the
pathname specified by the name$p parameter. The
pathname included the name of a data file as a
directory. For example, the pathname A/B/C assumes
that A and B are names for directories. This
exception code would have been returned if either A
or B was actually a data file.

While attaching the file pointed to by the name$p
parameter, the file attaching call forced the
Extended I/O System to attempt the physical
attachment of the device as a named device. This
device had formerly been only logically attached.
In the process of attempting to physically attach
the device, the Extended I/O System examined the
volume label and found that the volume does not
contain named files. This prevented the Extended
I/O System from completing physical attachment
because the named file driver was requested during
logical attachment.

6-16

CGETINPUT$CONNECTION

EXCEPTION CODES (continued)

E$IO

E$IOMEM

E$LIMIT

ELOGNAME
$NEXIST

E$MEDIA

An I/O error occurred while trying to access the
file given in the name$p parameter.

While attempting to create a connection, memory from
the Basic I/O subsystem's memory pool was needed.
However" the Basic I/O System job does not currently
have a block of memory large enough to allow this
system c'all to run to completion.

When you.r task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• The Extended I/O subsystem created enough objects
to exceed the object limit of the Basic I/O
System job. Refer to the chapter of the iRMX 86
CONFIGURATION GUIDE that discusses the Basic I/O
System.

• During the process of configuring your
application system, the Basic I/O System job was
configured a maximum priority that is too low.
Specifically, the BIOS maximum priority is lower
than either the DUIB priority or the DEVINFO
priority. Refer to the iRMX 86 CONFIGURATION
GUIDE for information regarding the BIOS maximum
priority. Refer to the GUIDE TO WRITING DEVICE
DRIVERS FOR THE iRMX 86 AND iRMX 88 I/O SYSTEMS
for additional information regarding the DUIB and
DEVlliFO.

• While processing a file-attaching system call or
connection opening system call, the Operating
System detected either of the two following
situations: the calling task's job or the job's
default user object is currently involved in more
than 255 (decimal) I/O operations.

• The job containing the task which invoked this
system call was not an I/O job created by the
Human Interface subsystem.

The specified pathname for the specified device
(referenced by the name$p parameter) contains an
explicit logical, name. The Extended I/O System,
however, was unable to find this name in the object
directories of the local job, the global job, and
the root job.

The Operating System detected that the device
containing the specified file (referenced by the
name$p parameter) was not online.

6-17

CGETINPUT$CONNECTION

EXCEPTION CODES (continued)

E$HEM The memory pool of the calling task's job as not
currently having a block of memory large enough to
allow this system call to run to completion.

ENOPREFIX The pathname specified in the name$p parameter of
this call contained no explicit prefix (no logical
name), so the Extended I/O System attempted to use
the default prefix. However, the default prefix is
either undefined, or it is not a valid device
connection or file connection.

ENOTCONFIGURED There are two possible conditions that can cause the
Human Interface System to return this call:

• When your task invoked this system call, it
forced the Extended I/O System to attempt the
physical attachment of the device referenced by
the name$p parameter. This device had formerly
been only logically attached. In the process of
attempting to physically attach the device, the
Extended I/O System found that the logical
attachment referred to a file driver (named,
physical, or stream) that was not configured into
your system.

• At least one of the following system calls was
left out of the system during the configuration
process:

Call Subs~stem

A$ATTACH$FILE Basic I/O
AGETFILE$STATUS Basic I/O
A$OPEN Basic I/O
A$PHYSICAL$ATTACH$DEVICE Basic I/O
A$SPECIAL Basic I/O
CREATE$COMPOSlTE Nucleus
CREATE$MAILBOX Nucleus
C REATE $ SEGMENT Nucleus
DELETE$COMPOSITE Nucleus
DISABLE$DELETION Nucleus
ENABLE$DELETION Nucleus
GET$DEFAULT$PREFIX Basic I/O
GET$TYPE Nucleus
LOOKUP$OBJECT Nucleus
RECElVE$CONTROL Nucleus
RECElVE$MESSAGE Nucleus
S$ATTACH$FILE Extended I/O
SEND$CONTROL Nucleus
SEND$MESSAGE Nucleus
SET$INTERRUPT Nucleus
S$OPEN Extended I/O
WAIT$INTERRUPT Nucleus

6-18

CGETINPUT$CONNECTION

EXCEPTION CODES (continued)

ENOTPREFIX

ENOUSER

E$PARAM

The patnname specified by the name$p parameter
contained a logical name. The name referred to an
object that was neither a device connection nor a
file connection.

The job containing the task which invoked this call
does not have a default user or the default user of
this calling task's job was not a user object.

When your task invoked this system call t the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• The pathname specified by the name$p parameter
contained a logical name. The name was either
longer than 12 characters or contained invalid
characters.

• The system call forced the Extended I/O System to
attempt the physcial attachment of the device
referenced by the name$p parameter. The device
had formerly been only logically attached. In
the process of attempting to physically attach
the device, the Extended I/O System found that
the logical attachment referred to a file driver
(named, physical, or stream) that is not
configured into your system. Hence the physical
attachment is not possible.

E$PREFIX$SYNTAX The Operating System detected a colon (:) at the
start of the pathname specified by the name$p
parameter. This indicates that the pathname
contains a logical name. However, the Operating
System was unable to find a second colon to
terminate the logical name.

E$SHARE The Operating System detected some other tar;;k in
your system using the I/O System to manipulate the
file through another connection. That task
requested that the I/O System restrict the sharing
of the file to certain modes. Your task attempted
to use a read only mode that precludes sharing the
file.

E$TlME Your task used a- Human Interface call but was not
within a job created by the Human Interface
subsystem.

6-19

CGETINPUT$PATHNAME

CGETINPUT$PATHNAME

CGETINPUT$PATHNAME, an I/O processing call, returns a pathname that may
be used as the Standard Input.

CALL RQCGET$INPUT$PATHNAME(path$name$p, path$name$max, except$ptr);

INPUT PARAMETER

path$name$max

OUTPUT PARAMETERS

path$name$p

except$ptr

DESCRIPTION

A WORD that specifies the length in bytes of the
string pointed to by the path$name$p parameter,
where the maximum length that may be specified for a
pathname is 255 characters, plus one extra byte.

A POINTER to a buffer that will receive a STRING
containing the next pathname in the Standard Input.
A zero-length string indicates that there are no
more pathnames.

A POINTER to a WORD in which the Human Interface
will return an exception code.

The pathname returned by CGETINPUT$PATHNAME may be used for the
following purposes:

• In calls to the Extended I/O System.

• In a call to CGETINPUT$CONNECTION, to obtain a connection.

The pathname will be a single pathname from the command line's input
list. The next file in the input sequence may then be requested by making
successive calls to CGETINPUT$PATHNAME. The end of the pathname-list is
denoted by a zero-length string in the path$name$p buffer.

EXCEPTION CODES

E$OK No exceptional conditions were encountered.

6-20

CGETINPUT$PATHNAME

EXCEPTION CODES (continued)

E$CONTEXT The Operating System detected a zero value for the
object directory size. This indicates that your
task used a Human Interface call but was not within
a job created by the Human Interface subsystem.

E$EXTRA$SO There were no more input pathnames although the
output pathname list was not exmpty. For example,
file E is considered an extra pathname in the
command entry A,B TO C,D,E.

E$LIMIT While creating an object, the Operating System
detected a job's object limit having been exceeded.
The job contained the task which invoked this system
call.

E$LIST The last value of the input pathname list is
missing. For example, ABLE ,BAKER, has no value
following the second comma.

E$MEM The memory pool of the calling task's job as not
currently having a block of memory large enough to
allow this latter system call to run to completion.

ENOTCONFIGURED One or both of the following Nucleus System calls
were not incorporated during system configuration:

LOOKUP$OBJECT
CREATE$SEGMENT

I

E$PARSE$TABLES The Human Interface subsystem detected an error that I
should not occur unless someone inadvertently alters
an internal table used by this subsystem.

E$STRING The pathname to be returned exceeds the length limit
of 255 characters.

E$STRING$BUFFER Someone specified a buffer that is too small. This
buffer was pointed to by the path$name$p parameter
and was not large enough for the pathname to be
returned.

E$TIME Your task used a Human Interface call but was not
within a job created by the Human Interface
subsystem.

6-21

CGETOUTPUT$CONNECTION

I

CGETOUTPUT$CONNECTION

CGETOUTPUT$CONNECTION, an I/O processing call, parses the command line
and returns an Extended I/O System connection refering to the requested
output file.

connection = RQCGET$OUTPUT$CONNECTION(name$p, preposition,
except$ptr);

INPUT PARAMETERS

name$p

preposition

OUTPUT PARAMETERS

connection

except$ptr

A POINTER to a STRING containing the pathname of the
file to be accessed.

A BYTE that defines which preposition to use to
create the output file. Use one of the following
values to specify the preposition mode:

Value Meaning

0 Use same preposition as was
returned by the last
GET$OUTPUT$PATHNAME call.

I TO
2 OVER
3 AFTER

4-255 error

A WORD containing a token for an Extended I/O System
connection object for the file specified when the
call is invoke d.

A POINTER to a word in which the Human Interface
will return an exception code.

6-22

CGETOUTPUT$CONNECTION

DESCRIPTION

The returned output connection will be open for writing and will have the
following attributes:

• Write only

• Accessible to all

• Two 1024-byte buffers

CGETOUTPUT$CONNECTION may issue one of the following prompts on :CO: if
the user attempts to perform an unexpected or disallowed operation:

pathname» already exists» DELETE?

Ineaning that the TO preposition was used and the output file already
exists» or:

pathname» DELETE access required

meaning that the pre-existing file or directory cannot be deleted without
delete access to the file or directory» or:

pathname» directory ADD entry access required

meaning that the file is a directory and the user does not have add entry
access to it.

CGETOUTPUT$CONNECTION causes an error message to be displayed whenever
an exceptional condition is encountered. The exceptional condition that
triggers the error message can be either one of those listed for
CGETOUTPUT$CONNECTION or from an Extended I/O System call.

The error message has the form:

pathname» xxxx:exception code name

where:

pathname

xxxx

exception code
name

Pathname of the file or directory that was being
accessed when the exceptional condition was detected.

Four-digit value of the exception code.

One of the exception codes defined under "Exception
Codes" in this call description.

6-23

I

CGETOUTPUT$CONNECTION

EXCEPTION CODES

E$OK

E$CONTEXT

E$DEVFD

E$FACCESS

No exceptional conditions were encountered.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• The Operating System detected a zero value for
the object directory size. This indicates that
your task used a Human Interface call but was not
within a job created by the Human Interface
subsystem.

• The device referenced by the name$p parameter was
in the process of being detached.

• The Extended I/O System was unable to attach the
device containing the file because the Basic I/O
System has already attached the device.

A system call forced the Extended I/O System to
attempt the physical attachment of the device
referenced by the name$p parameter. This device had
formerly been only logically attached. In the
process of attempting to physically attach the
device, the Extended I/O System found that the
device and the device driver specified in the
logical attachment were incompatible. The Operating
System would not have returned this exception code
if the device referenced by the name$p parameter had
been properly configured in the Extended I/O and/or
the Basic I/O subsystems.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• While in the process of creating a file, the
Operating System detected the user as not having
update access to an existing file and/or as not
having add-entry access to the parent directory.

• While performing a connection opening call, the
access rights embedded in the connection have
prohibited you from opening the file in write
mode. This exceptional condition can arise only
when the connection refers to a named data file
or directory and the file is already open.

6-24

CGETOUTPUT$CONNECTION

EXCEPTION CODES

E$FACCESS (continued)

E$FNEXIST

E$FTYPE

E$ILLVOL

E$IO

E$IOMEM

E$LIMIT

• While performing a system call that removes
information from the end of a named data file,
the Operating System detected that the user does
not have update access to the file.

The Operating System detected one of the following
circumstances:

• Either some file in the pathname specified by
the name$p parameter is marked for deletion.

• Either some file in the pathname specified by
the name$p parameter, or the target file itself,
does not exist.

The Operating System detected an error in the
pathname specified by the name$p parameter. The
pathname included the name of a data file as a
directory. For example, the pathname A/B/C assumes
that A and B are names for directories. This
exception code would have been returned if either A
or B was actually a data file.

When the Operating System performed the call that
attaches or creates a file, the call forced the
Extended I/O System to attempt the physical
attachment of the device referenced by the name$p
parameter. This device had formerly been only
logically attached. In the process of attempting
to physically attach the device, the Extended I/O
System examined the volume label and found that the
volume does not contain named files. This
prevented the Extended I/O System from completing
physical attachment because the named file driver
was requested during logical attachment.

An I/O error occurred while trying to access or
create the file given in the name$p parameter.

The memory required to create a connection was part
of a Basic I/O System memory pool. However, the
Basic I/O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

6-25

CGETOUTPUT$CONNECTION

EXCEPTION CODES

E$LIMIT (continued)

ELOGNAME
$NEXIST

E$MEDIA

• While creating the objects needed by this call,
the Operating System detected the calling task's
job as already having reached the maximum number
of objects that can exist simultaneously.

• While processing the latter system call, the
Operating System detected either of the two
following situations: the calling task's job, or
the job's default user object, is currently
involved in more than 255 (decimal) I/O
operations.

• The job containing the task which invoked this
call wa not created by the Human Interface
subsystem.

• A subsystem created enough objects to exceed the
object limit of the Basic I/O System job. Refer
to the chapter of the iR~cr 86 CONFIGURATION
GUIDE that discusses the Basic I/O System.

• During the process of configuring your
application system, the Basic I/O System job was
configured a maximum priority that is too low.
Specifically, the BIOS maximum priority is lower
than either the DUIB priority or the DEVINFO
priority. Refer to the iRMX 86 CONFIGURATION
GUIDE for information regarding the BIOS maximum
priority. Refer to the GUIDE TO WRITING DEVICE
DRIVERS FOR THE iRMX 86 AND iRMX 88 I/O SYSTEMS
for additional information regarding the DUIB
and DEVINFO.

While processing a file-attaching call, the
Operating System detected the following: the
pathname specified in the name$p parameter contains
an explicit logical name. The Extended I/O System,
however, was unable to find this name in the object
directories of the local job, the global job, and
the root job.

The device specified by the name$p parameter was
not online.

6-26

CGETOUTPUT$CONNECTION

EXCEPTION CODES (continued)

E$MEM When your task invoked this call, the call invoked
at least one other system call. lfuile processing
this latter call, the Operating System detected the
memory pool of the calling task's job as not·
currently having a block of memory large enough to
allow this system call to run to completion. To be
more specific, if the latter call was attempting to
process a file-attaching system call, a
file-creating system call, or a connection opening
system call, then the creation or the opening of a
connection was not completed.

ENOPREFIX The pathname specified by the name$p parameter of
this call contained no explicit prefix (no logical
name), so the Extended I/O System attempted to use
the default prefix. However, the default prefix is
either undefined, or it is not a valid device
connection or file connection.

ENOTCONFIGURED There are two possible conditions that can cause
the Human Interface System to return this call:

• When your task invoked this system call, it
forced the Extended I/O System to attempt the
physical attachment of the device referenced by
the name$p parameter. This device had formerly
been only logically attached. In the process of
attempting to physically attach the device, the
Extended I/O System found that the logical
attachment referred to a file driver (named,
physical, or stream) that was not configured
into your system.

• At least one of the following system calls was
left out of the system during the configuration
process:

Call Subsystem

A$ATTACH$FILE Basic I/O
A$CREATE$FILE Basic I/O
AGETFILE$STATUS Basic I/O
A$OPEN Basic I/O
A$PHYS ICAL$ATTAC H$DEVICE Basic I/O
A$READ Basic I/O
A$SEEK Basic I/O
A$SPECIAL Basic I/O
A$TRUNCATE Basic I/O
A$l-lRITE Basic I/O
CREATE$COMPOSITE Nucleus
CREATE$MAILBOX Nucleus

6-27

CGETOUTPUT$CONNECTION

EXCEPTION CODES

ENOTCONFIGURED

ENOTPREFIX

ENOUSER

E$PARAM

(continued)

Call Subsystem

CREATE $ SEGMENT Nucleus
DELETE$COMPOSITE Nucleus
DISABLE$DELETION Nucleus
ENABLE$DELETION Nucleus
GET$DEFAULT$PREFIX Basic I/O
GET$TYPE Nucleus
LOOKUP$OBJECT Nucleus
RECEIVE$CONTROL Nucleus
RECEIVE$MESSAGE Nucleus
S$ATTACH$FILE Extended I/O
S$CREATE$FILE Extended I/O
SEND$CONTROL Nucleus
SEND$MESSAGE Nucleus
SET$INTERRUPT Nucleus
SGETCONNECTION$STATUS Extended I/O
S$OPEN Extended I/O
S$READ$MOVE Extended I/O
S$SEEK Extended I/O
S$TRUNCATE$FILE Extended I/O
S$WRITE$MOVE Extended I/O
WAIT$INTERRUPT Nucleus

The pathname specified by the name$p parameter
contained a logical name. The name referred to an
object that was neither a device connection nor a
file connection.

Your task used a Human Interface call but was not
within a job created by the Human Interface
subsystem.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• The Operating System detected the pathname
specified by the name$p parameter containing a
logical name. The logical name was either
longer than 12 characters or contained invalid
characters.

6-28

CGETOUTPUT$CONNECTION

EXCEPTION CODES

E$PARAM (continued)

E$PREFIX$SYNTAX

E$PREPOSITION

E$SHARE

• The system call forced the Extended I/O System
to attempt the physcial attachment of the device
referenced by the name$p parameter. The device
had formerly been only logically attached. In
the process of attempting to physically attach
the device, the Extended I/O System found that
the logical attachment referred to a file driver
(named, physical, or stream) that is not
configured into your system. Hence the physical
attachment is not possible.

The Operating System detected a colon (:) at the
start of the pathname specified by the name$p
parameter. This indicates that the pathname
contains a logical name. However, the Extended I/O
System was unable to find a second colon to
terminate the logical name.

Someone used a zero as the preposition value. This
indicated that the same preposition was to be used
as in the last CGETOUTPUT$PATHNAME call.
Unfortunately, CGETOUTPUT$PATHNAME has not been
called.

When your task invoked this system call, the call
invoked at least one other call. While the
Operating System performed the latter call, one of
the following situations occurred.

• While attempting to open a connection so that
your task could access the file through the
connection, the Operating System detected the
following: Some other task in your system is
using the I/O System to manipulate the file
through another connection. That task requested
that the I/O System restrict the sharing of the
file to certain modes. Your task attempted to
use a mode that precludes sharing the file.

• While attempting to open a connection so that
your task could access the file through the
connection, the Operating System detected your
task attempting to open a directory for writing
only.

• While processing a file-creating system call,
your task attempted to create a file that
already exists. Consequently, the Extended I/O
System must truncate the file to zero length.
Howe~er, the Extended I/O System cannot do this
because, when the file was initially created,
the owner specified that it could not be shared
with writers.

6-29

CGETOUTPUT$CONNECTION

EXCEPTION CODES

E$SPACE

E$SUPPORT

E$TIME

When your task invoked this system call, the call
invoked at least one other call. While the
Operating System performed the latter call, one of
the following situations occurred.

• While attempting to create a file or write into
a file, the Operating System detected that there
was no more space on the volume.

• While attempting to create a file, the Operating
System detected that the Extended I/O System had
run out of fnodes on the volume. Refer to the
FORMAT command in this manual.

Either the %NO CREATE FALSE or the %NO TRUNCATE
macro call was configured into the Basic I/O
subsystem.

Your task used a Human Interface call but was not
within a job created by the Human Interface
subsystem.

6-30

CGETOUTPUT$PATHNAME

CGETOUTPUT$PATHNAME

CGETOUTPUT$PATHNAME parses the command line and returns a pathname that
refers to the Standard Output file or device.

[

preposition RQCGET$OUTPUT$PATHNAME(path$name$p, path $name $max,
default $output$p , except$ptr);

,--------'

INPUT PARAMETERS

path$name$max A WORD that indicates the maximum size (in bytes)
of the path$name$ string. Since the maximum size
of the buffer is 256 bytes, the maximum allowable
size for individual pathnames is 255 characters
plus one extra byte.

default$output$p A POINTER to a STRING containing the command's
default Standard Output. If a TO/OVER/AFTER
preposition is not encountered in the command line
being processed, the text of this parameter will be
used as though it had appeared on the command

OUTPUT PARAMETERS

preposition

path$name$p

except$ptr

line. The text must specify TO, OVER, or AFTER for
the output mode. Examples: TO :CO: or TO :LP:.

A BYTE describing the preposition type that
CGETOUTPUT$PATHNAME encountered. This value may
be passed to CGETOUTPUT$CONNECTION jf a
connection to the file is desired. The value will
be one of the following:

Value

1
2
3

Meaning

TO
OVER
AFTER

A POINTER to a buffer that will receive a STRING
containing the next pathname in the Standard
Output. A null (zero-length) name will be returned
if no Standard Output pathnames were given and no
default$output parameter was specified (a zero
pointer or null string).

A POINTER to a WORD in which the Human Interface
will return an exception code.

6-31

CGETOUTPUT$PATHNAME

I

I

DESCRIPTION

The pathname returned by CGETOUTPUT$PATHNAME may be used for the
following purposes:

• In calls to the Extended I/O System. If the Extended I/O System
is used, the interpretation of the TO/OVER/AFTER prepositions
will be the user's responsibility.

• In a call to CGETOUTPUT$CONNECTION to obtain a connection.

On the command line, the Standard Output is denoted by the appearance of
the TO/OVER/ AFTER preposition. See "Parameter Parsing" in Chapter 5.

Further calls to CGETOUTPUT$PATHNAME will return additional pathnames,
either to the next file in the output list, or to the same pathname for a
concatenation operation.

EXCEPTION CODES

E$OK

E$CONTEXT

E$DEFAULT$SO

E$LIMIT

E$LIST

E$MEM

No exceptional conditions were encountered.

The Operating System detected a zero value for the
object directory size. This indicates that your
task used a Human Interface call but was not within
a job created by the Human Interface subsystem.

The default output name STRING is invalid for one
or more of the following reasons:

• The preposition given is not TO, OVER, or AFTER.

•

•

The parameter default$output$p does not contain
a pathname.

Someone did not specify an output preposition
on the command line and a default was not given.

The calling job's object limit was exceeded while
the objects needed by this call were being created.

One of the following conditions exist:

• The input pathnames contain unmatched
parentheses.

• The last value of input pathname list is
missing. For example, ABLE,BAKER, has no value
after the second comma.

The memory pool of the job containing the task
which invoked this call does not currently have a
block of memory large enough to allow this system
call to run to completion.

6-32

CGETOUTPUT$PATHNAME

EXCEPTION CODES (continued)

ENOTCONFIGURED One or both of the following Nucleus System calls
were not incorporated during system configuration:

E$PARSE$TABLES

CREATE$SEGMENT
LOOKUP$OBJECT

The Human Interface subsystem dectected an error
that should not occur unless someone alters an
internal table used by this subsystem.

E$STRING The pathname to be returned exceeds the length
limit of 255 characters.

E$STRING$BUFFER Someone created a buffer to which the parameter
path$name$p points. This buffer was not large
enough for the pathname to be returned.

E$TIME Your task used a Human Interface call but was not
within a job created by the Human Interface
subsystem.

6-33

I

CGETPARAMETE~

I

CGETPARAMETER

GET$PARAMETER parses the command line to find one parameter and returns
it as a keyword name and a list of values.

more = RQCGET$PARAMETER(name$p, name$max, value$p, value$max,
index$p, predict$list$p, except$ptr);

INPUT PARAMETERS

name$max

value$max

predict$list$p

OUTPUT PARAMETERS

more

name$p

value$p

A WORD that contains the length of the
user-supplied buffer (in bytes) specified by name$p.

A WORD that contains the length of the
user-provided buffer specified in value$p.

A POINTER to a STRING$TABLE, as described in
Appendix C, that contains the predicted
prepositions. The predict$list$p POINTER should be
zero if the preposition prediction function is not
being used for the command.

A BYTE value that indicates whether or not the
current call to CGETPARAMETER returned a
parameter. A value of OOh indicates there are no
more parameters; a value of OFFh indicates that a
parameter was returned.

A POINTER to the buffer that receives the parameter
keyword STRING. If a keyword did not exist for the
parameter, a null (zero-length) string will be
returned. The size of the buffer must be one byte
longer than the largest expected parameter keyword
or preposition.

A POINTER to a buffer that will receive a
STRING$TABLE, as described in Appendix C. The
value-part will be stored as a STRING$TABLE in the
buffer. If the parameter had multiple values, the
STRING$TABLE entry would return one value per
string.

6-34

CGETPARAMETER

OUTPUT PARAMETERS (continued)

index$p

except$ptr

DESCRIPTION

A POINTER to a BYTE that receives the index to the
predict$list$p entry that corresponds to the name$p
contents. If predict$list$p is empty or if the
parameter name is not found in the predict list,
the index will be zero; that is, the index will be
non-zero only if a preposition is found.

A POINTER to a WORD in which the Human Interface
will return an exception code.

CGETPARAMETER parses one parameter and returns it as a keyword name and
a value. A parameter may be one of the following:

• keyword parameter using parenthesis
• keyword parameter using equal sign
• preposition parameter
• list of values

A description of the types, format, and syntax of acceptable parameters
is provided in Chapter 5 under "Parameter Parsing."

A STRING$TABLE is the structure used to implement the predict$list
table. Any parameter you define in the predict$list table must be used
as a preposition. You will also need to provide a STRING$TABLE entry
containing the prepositions that CGETPARAMETER may encounter; that is,
unless you provide some external semantics in a STRING$TABLE, the parsing
routines have no way of distinguishing a preposition parameter from two
keyword parameters. See Appendix C for a description and format of a
STRING$TABLE.

EXCEPTION CODES

E$OK

E$CONTEXT

E$CONTINUED

No exceptional conditions were encountered.

The Operating System detected a zero value for the
object directory size. This indicates that your
task used a Humqn Interface call but was not within
a job created by the Human Interface subsystem.

The Operating System detected a continuation
character in the parse buffer while performing the
system call. This condition should only occur
while parsing the contents of a buffer other than
the command line buffer.

6-35

I
I

CGETPARAMETER

I

EXCEPTION CODES (continued)

E$LIST

E$LITERAL

One of the following conditions exist:

• The parameter contains unmatched parenthesis.

• A value in the value list is missing or an
improper value was entered. Examples of both
these conditions follow:

Value

A,B,
A, B,C
A,B=C,D

A,B(C,E),F

Comments

No value following second comma.
Space between first comma and B.
The equal sign can not be used
unless it is between quotes: 'B=C'
is proper.
The parentheses can not be used
unless between quotes.

The Operating System detected a literal (quoted
string) in the parse buffer with no closing quote.
This condition should only occur while parsing the
contents of a buffer other than the command line
buffer.

ENOTCONFIGURED The Nucleus System call LOOKUP$OBJECT was not
incorporated during system configuration.

E$PARSE$TABLES The Human Interface subsystem has detected an error
that should not occur unless someone inadvertently
alters an internal table used by this subsystem.

E$SEPARATOR The Operating System detected a command separator
in the parse buffer while performing this system
call. This condition should only occur while
parsing the contents of a buffer other than the
command line buffer. The following is a list of
the command separators: ><, <>, I I, I, [, and].

E$STRING One or more of the following conditions exist:

E$STRING$BUFFER

• The string to be returned as the parameter name
exceeds the length limit of 255 characters.

• One of the parameter values to be returned
exceeds 255 characters in length.

One or more of the following conditions exist:

• The string to be returned as the parameter name
exceeds the buffer size provided by the user in
the call.

6-36

CGETPARAMETER

EXCEPTION CODES

E$STRING$BUFFER (continued)

E$TIME

• The parameter values to be returned exceed the
value-buffer size provided by the user in the
call.

Your task used a Human Interface call but was not
within a job created by the Human Interface
subsystem.

6-37

I

C$SEND$COMMAND

C$SEND$COMMAND

C$SEND$COMMAND, a command processing call, accepts command lines as read
from the user's console and concatenates them into the data space created
by the C$CREATE$COMMAND$CONNECTION call.

CALL RQCSEND$COMMAND(command$conn, line$p,
except$ptr) ;

COmmand$eXcePt$p~

INPUT PARAMETERS

command$conn

line$p

OUTPUT PARAMETERS

A WORD containing a TOKEN for a command connection,
where the connection was created by a
C$CREATE$COMMAND$CONNECTION call.

A POINTER to a STRING containing a command to
execute.

command$except$ptr A POINTER to a WORD that receives the status of the
invoked command while it is being executed. This
parameter is undefined if an exceptional condition
code is returned in the exception pointer.

except$ptr A POINTER to a WORD in which the Human Interface
will return the exception code for an exception
that occured while the command was being loaded.

DESCRIPTION

C$SEND$COMMAND accepts command lines and combines them into the data
space created by the C$CREATE$COMMAND$CONNECTION call. The general
structure of a command line is as follows:

command-pathname inpath-list [preposition outpath-list] [parameters]

The command-pathname contains the pathname of the object file of the
program that is to be loaded by the Application Loader.

As described in greater detail in this manual's chapter on command entry
and syntax, a command line entry may contain several continuation marks.
The continuation mark indicates that the command line is continued on the
next line. If th,~ command line is continued on another line, an
E$CONTINUED exception code value is returned, the command is not
executed, and control returns to the caller.

6-38

C$SEND$COMMAND

DESCRIPTION (continued)

If a scan of the command line is successful, the command-pathname entered
in the line$p parameter is parsed. If no exception conditions halt the
process at this point, the Human Interface sybsystem requests the
Application Loader to execute the command.

An Application Loader call creates an I/O job and then the Application
Loader validates the header, group definition and segment definition
records of the object file of the program to be executed. Refer to the
8086 FAMILY UTILITIES USER'S GUIDE for explanations of segments, groups
and object file formats.

C$SEND$COMMAND returns two exception codes: one for the C$SEND$COMMAND
call and one for the invoked command. The except$ptr parameter returns
the C$SEND$COMMAND exceptional conditions, as decribed under the
EXCEPTION CODES heading in this command description. The command's
except$ptr returns the invoked command's exceptional condition codes, and
these are defined by the invoked command. The E$CONTROL$C exception code
can be received at either place.

EXCEPTION CODES

E$OK

EBADGROUP

E BADHEADER

EBADSEGMENT

E$CHECKSUM

E$CONTEXT

No exceptional conditions were encountered.

The object file represented by the command-pathname
contained an invalid group definition record.

The object file represented by the command-pathname
does not begin with a header record for a loadable
object module.

The object file represented by the command-pathname
contained an invalid segment definition record.

At least one record of the object file represented
by the command-pathname contains a checksum error.
This situation could occur if the CHECKSUM amount
calculated during the read operation did not match
the CHECKSUM field of the record being read.

When your task invoked this system call, the Human
Interface call invoked at least one other system
call. While the Operating System performed the
latter call, one of the following situations
occurred.

• The Operating System detected a zero value for
the object directory size. This indicated that
your task was not within a job created by the
Human Interface subsystem.

6-39

C$SEND$COMMAND

EXCEPTION CODES

E$CONTEXT (continued)

E$CONTINUED

I
E$CONTROL$C

E$DEVFD

E$EOF

• The Operating System detected the device
containing the object file of the
command-pathname was in the process of being
detached.

• The Operating System detected a situation where
the calling task's job was not created by the
Human Interface subsystem.

• The Extended I/O System was unable to attach
the device containing the object file
represented by the command-pathname because the
Basic I/O System has' already attached the
device.

• The Operating System detected a
command-pathname that refers to a device rather
than to a named file.

• The Operating System detected that the
UNCATALOG$OBJECT system call was not
incorporated into your system during the
configuration process.

The Operating System detected a continuation
character while scanning the command line pointed
to by the line$p parameter. This condition should
occur if the command line is to continue on the
next line.

The user typed CONTROL-C while the command was
being loaded.

Your task forced the Extended I/O System to attempt
the physical attachment of a device that had
formerly been only logically attached. In the
process of attempting to physically attach the
device, the Extended I/O System found that the
device and the device driver specified in the
logical attachment were incompatible. The
Operating System would not have returned this
exception code if the device referenced by the
line$p parameter had been properly configured in
the Extended I/O and/or Basic I/O subsystems.

The Application Loader returned this exception code
because the it encountered an unexpected end of
file on the object file represented by the
command-pathname.

6-40

C$SEND$COMMAND

EXCEPTION CODES (continued)

E$EXIST

E$FACCESS

E$FIXUP

E$FLUSHING

E$FNEXIST

E$FTYPE

E$ILLVOL

The Operating System detached the device containing
the object file represented by the command-pathname
before it completed the loading operation.

The Operating System detected the user as not
having READ access to the object file represented
by the command-pathname.

When the Application Loader load an LTL program,
the Loader must adjust some of the addresses used
in the code to reflect actual loaded code
addresses. This adjustment is known as a fixup and
is contained on a fixup record. The Application
Loader subsystem detected an invalid fixup record
on the object file represented by the
command-pathname. Refer to the iRMX 86 LOADER
REFERENCE MANUAL for an explanation of Load-time
Locatable Code (LTL).

The Operating System detected the device containing
the object file represented by the command-pathname
was in the process of being detached.

Some file in the command-pathname is either marked
for deletion or does not exist. For example, the
pathname A/B/C assumes that A and B are names for
directories and C is the name of an object file.
This exception code would have been returned if A,
B, or C was marked for deletion or did not exist.

The Operating System detected an error in the
command-pathname. The pathname included the name
of a data file as a directory. For example, the
pathname A/B/C assumes that A and B are names for
directories. This exception code would have been
returned if either A or B was something other than
a directory.

Your task forced the Extended I/O System to attempt
the physical attachment of a device that had
formerly been only logically attached. In the
process of attempting to physically attach the
device, the Extended I/O System examined the volume
label and found -that the volume does not contain
named files. This prevented the Extended I/O
System from completing physical attachment because
the named file driver was requested during logical
attachment.

6-41

C$SEND$COMMAND

EXCEPTION CODES (continued)

E$IO

E$IOMEM

EJOBPARAM

EJOBSIZE

E$LIMIT

The Operating System detected an I/O error as it
tried to load the object file represented by the
command-pathname.

The Basic I/O subsystem job does not currently have
a block of memory large enough to allow the Human
Interface to create the connection necessary to
allow this call to run to completion.

During the process of configuring the Human
Interface subsystem t someone modified either the
MIN$MEMORY or MAX$MEMORY parameters in the Human
Interface configuration. While processing your
task, the Operating System detected that the
MAX$MEMORY parameter is both nonzero and smaller
than the MIN$MEMORY.

During the process of configuring the Human
Interface subsystem, someone modified either the
MIN$MEMORY or MAX$MEMORY parameters of the Human
Interface configuration. While processing your
task, the Operating System detected that the
MAX$MEMORY parameter is nonzero and too small for
the object file represented by the command-pathname
to be loaded.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• The Human Interface subsystem created enough
objects to exceed the object limit of the Basic
I/O System job. Refer to the chapter of the
iRMX 86 CONFIGURATION GUIDE that discusses the
Basic I/O System.

• While creating the objects needed by this call,
the Operating System detected the calling
task's job already having reached the maximum
number of objects that can exist simultaneously.

• During the process of configuring your
application system, the Basic I/O System job
was configured a maximum priority that is too
low. Specifically, the BIOS maximum priority
is lower than either the DUIB priority or the
DEVINFO priority. Refer to the iRMX 86
CONFIGURATION GUIDE for information regarding
the BIOS maximum priority. Refer to the GUIDE
TO WRITING DEVICE DRIVERS FOR THE iRMX 86 AND
iRMX 88 I/O SYSTEMS for additional information
regarding the DUIB and DEVINFO.

6-42

C$SEND$COMMAND

EXCEPTION CODES

E$LIMIT (continued)

• The job containing the task which invoked this
call, or the job's default user object, is
currently involved in more than 255 (decimal)
I/O operations.

• The calling job's object directory is full or
the object directory of the created command's
job is full.

• The job containing the task which invoked this
call was not created by the Human Interface
subsystem.

• A value that specified the priority of the
loaded task in the new job is greater than the
newly created I/O job's maximum priority. This
maximum priority was specified during the
configuration of the Human Interface
subsystem. Refer to the iRMX 86 CONFIGURATION
GUIDE for more information.

• The object directory of the newly created I/O
job is full. The size of this object directory
was specified during the configuration of the
Extended I/O System. Refer to the iRMX 86
CONFIGURATION GUIDE for more information.

• Either the newly created I/O job, or its
default user, is currently involved in more
than 255 (decimal) I/O operations.

E$LITERAL The Operating System detected a literal (quoted
string) with no closing quote while scanning the
contents of the command line pointed to by the
line$p parameter.

E$LOADER$SUPPORT The object file represented by the command-pathname
required capabilities not configured into the
Application Loader. For example, you might be
attempting to load PIC code with a loader
configured only 'for absolute code. Refer to

ELOGNAME
$NEXIST

iRMX 86 LOADER REFERENCE MANUAL for an explanation
of PIC code.

The command-pathname specified in the line$p
parameter contains an explicit logical name but the
Extended I/O System was unable to find this name in
the object directories of the local job, the global
job, and the root job.

6-43

C$SEND$COMMAND

EXCEPTION CODES (continued)

E$MEDIA

E$MEM

The device containing the object file represented
by the command-pathname was not online.

When your task invoked this call, the call invoked
at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• The Operating System detected the memory pool
of the calling task's job as not currently
having a block of memory large enough to allow
this system call to run to completion.

• The Operating System detected that the memory
pool of the newly created I/O job does not
currently have a block of memory large enough
to allow the initial task to start running.

• The Operating System detected that the memory
pool of the Basic I/O System job does not
currently have a block of memory large enough
to allow the Application Loader to run.

ENOLOADER$MEM When your task invoked this system call, the call
invoked at least one other system call. The latter
call was a system call of the Application Loader.
While attempting to perform the Application Loader
system call, one of the following situations
occurred.

ENOMEM

• The Operating System detected the memory pool
of the newly created I/O job as not currently
having a block of memory large enough to allow
the Loader to run.

• The Operating System detected the memory pool
of the Basic I/O System's job as not currently
having a block of memory large enough to allow
the Application Loader to run.

The Application Loader attempted to load PIC or LTL
groups or segments. However, the memory pool of
the newly created I/O job does not currently
contain a block of memory large enough to
accommodate these groups or segments. Refer to the
iRMX 86 LOADER REFERENCE MANUAL for an explanation
of loading PIC or LTL groups or segments.

6-44

C$SEND$COMMAND

EXCEPTION CODES (continued)

ENOPREFIX The command-pathname specified in the line$p
parameter of this call contained no explicit prefix
(no logical name), so the Extended I/O System
attempted to use the default prefix. However, the
default prefix is either undefined, or it is not a
valid device connection or file connection.

ENOSTART The object file represented by the command-pathname
does not specify the entry point for the program
being loaded.

ENOTCONFIGURED One or more of the following system calls were not
incorporated during system configuration:

Call Subs~stem

A$ATTACH$FILE Basic I/O
A$CLOSE Basic I/O
A$LOAD$IO$JOB Application Loader
A$OPEN Basic I/O
A$PHYSICAL$ATTACH$DEVICE Basic I/O
A$READ Basic I/O
A$SEEK Basic I/O
A$SPECIAL Basic I/O
CATALO G$O BJECT Nucleus
CREATE$COMPOSITE Nucleus
CREATEIOJOB Extended I/O
CREATE$MAILBOX Nucleus
CREATE$SEGMENT Nucleus
CREATE$TASK Nucleus
DELETE$COMPOSITE Nucleus
DELETE$TASK Nucleus
DISABLE$DELETION Nucleus
ENABLE$DELETION Nucleus
EXITIOJOB Extended I/O
GET$DEFAULT$PREFIX Basic I/O
GET$TYPE Nucleus
LOOKUP$OBJECT Nucleus
RECEIVE$CONTROL Nucleus
RECEIVE$MESSAGE Nucleus
S$ATTACH$FILE Extended I/O
S $CATALOG$ CONNECTION Extended I/O
SEND$CONTROL Nucleus
SEND$MESSAGE Nucleus
SET$INTERRUPT Nucleus
UNCATALOG$OBJECT Nucleus
WAIT$INTERRUPT Nucleus

ENOTPREFIX The Operating System detected the command-pathname
specified in the line$p parameter containing a
logical name. The logical name referred to an
object that was neither a device connection nor a
file connection.

6-45

C$SEND$COMMAND

EXCEPTION CODES (continued)

ENOUSER

E$PARAM

E$PARSE$TABLES

E$PREFIX$SYNTAX

ERECFORMAT

ERECLENGTH

The Operating System detected the calling task's
job as not having a default user or detected the
default user of the calling task's job as not being
a user object.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• The Operating System detected the
command-pathname referenced in the line$p
parameter containing a logical name that was
either longer than 12 characters or contained
invalid characters.

• Your task forced the Extended I/O System to
attempt the physcial attachment of a device
referenced by the command-pathname in the
line$p parameter. This device had formerly
been only logically attached. In the process
of attempting to physically attach the device,
the Extended I/O System found that the logical
attachment referred to a file driver (named,
physical, or stream) that is not configured
into your system. Hence the physical
attachment is not possible.

• The Operating System detected that the object
file represented by the command-pathname has a
stack smaller than 16 bytes.

The Human Interface subsystem has detected an error
that should not occur unless someone alters an
internal table used by this subsystem.

The Operating System detected a colon (:) at the
beginning of the command-pathname specified in the
line$p parameter, which indicates that the pathname
contains a logical name. The Extended I/O System,
however, was unable to find a second colon to
terminate the logical name.

The Operating System detected that at least one
record in the object file represented by the
command-pathname contains a format error.

The object file represented by the command-pathname
contains a record that is longer than the Loader's
maximum record length. The Loader's maximum record
length is a parameter specified during the
configuration of the Loader. Refer to the iRMX 86
CONFIGURATION GUIDE for details.

6-46

C$SEND$COMMAND

EXCEPTION CODES (continued)

ERECTYPE The Application Loader detected one of the
following situations while attempting to load the
object file represented by the command-pathname.

• At least one record in the file being loaded is
of a type that the Loader cannot process.

• The Loader has encountered records in a
sequence that it cannot process.

E$SEPARATOR The Operating System detected a command separator
in while scanning the command line pointed to by
the line$p parameter. The following is a list of
the command separators: ><, <>, II, I, [, and].

E$SHARE An Application Loader system call was attempting to
use the object file represented by the
command-pathname that is already being used by some
other task. However, the Application Loader was
unable to share the file.

E$STRING The size of the command-pathname specified in the
line$p parameter exceeds the length limit of 255
(decimal) characters.

E$STRING$BUFFER The size of the command-pathname specified in the
line$p parameter exceeds the size of the command
name buffer that someone specified during the
configuration of the Human Interface.

E$TIME Your task was not within a job created by the Human
,Interface subsystem.

E$TYPE The Operating System detected a command connection
parameter that refers to an object that is not a
command connection.

6-47

C$SEND$CO$RESPONSE

C$SEND$CO$RESPONSE

C$SEND$CO$RESPONSE, a message processing call, sends a message to :CO:
and reads a response from :CI: that was defined at the time the job was
created.

CALL RQCSENDCORESPONSE(response$p, response$max, message$p,
except$ptr) ;

INPUT PARAMETERS

message$p

response$max

OUTPUT PARAMETERS

response$p

except$ptr

DESCRIPTION

A POINTER to a STRING containing the message to be
sent to :CO:.

A WORD that specifies the maximum number of
characters that the response$p string entry may
contain. If response$max is zero, no response from
:CI: will be requested and control will return to
the caller immediately.

A POINTER to a buffer that will receive a STRING
containing the user's response from :CI:.

A POINTER to a WORD in which the Human Interface
will return an exception code.

If a user response is requested to a C$SEND$CO$RESPONSE message, no other
output will be displayed until the user enters a line terminator from a
program or console keyboard. If response$p or response$max is zero, the
Human Interface will not wait for input. If response$p and response$max
are non-zero, the user may choose to ignore the displayed message by
entering a line terminator only. The values contained in message$p and
response$max have the following meaning:

messa~e$~ res~onse$max Action

zero zero No I/O will be performed
zero non-zero Send no message; wait for input
non-zero non-zero Send message, wait for input
non-zero zero Send message, don't wait

6-48

C$SEND$CO$RESPONSE

DESCRIPTION (continued)

The main distinction between C$SEND$CO$RESPONSE and C$SENDEORESPONSE
calls is that the messages sent by C$SEND$EO$RESPONSE are always directed
to the user's console screen and cannot be redirected to another device.
In contrast, messages output by C$SEND$CO$RESPONSE can be redirected via
a SUBMIT command.

EXCEPTION CODES

E$OK

E$CONTEXT

E$IO

E$LIMIT

No exceptional conditions were encountered.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• The Operating System detected a zero value for
the object directory size. This indicated that
your task used a Human Interface call but was
not within a job created by the Human Interface
subsystem-

• While reading from a file to a buffer, the
connection to the file was not open for reading
or for both reading and writing.

• While reading from a file to a buffer, the
connection to the file was closed.

• While creating the command connection that
created the calling task's job, the CI and CO
connections were opened with A$OPEN rather than
S$OPEN.

The Operating System detected an I/O error during
the reading or writing operation.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• While creating the objects needed by this call,
the Operating System detected the calling
task's job having already reached the maximum
number of objects that can exist simultaneously.

• The job containing the task which invoked this
call, or the job's default user object, is
currently involved in more than 255 (decimal)
I/O operations.

6-49

C$SEND$CO$RESPONSE

I

EXCEPTION CODES

E$LIMIT (continued)

• The job containing the task which invoked this
call was not created by the Human Interface
subsystem.

E$MEM The memory pool of the job containing the task
which invoked this call does not currently have
block of memory large enough to allow this system
call to run to completion.

ENOTCONFIGURED One or more of the following system calls were not
incorporated during system configuration:

Call Subsi:stem

A$READ Basic I/O
A$SEEK Basic I/O
A$WRITE Basic I/O
CREATE$MAILBOX Nucleus
CREATE$SEGMENT Nucleus
DISABLE$DELETION Nucleus
ENABLE$DELETION Nucleus
GET$TYPE Nucleus
LOOKUP$OBJECT Nucleus
RECEIVE$CONTROL Nucleus
RECEIVE$MESSAGE Nucleus
SEND$CONTROL Nucleus
SEND$MESSAGE Nucleus
S$READ$MOVE Extended I/O
S$WRITE$MOVE Extended I/O

E$PARAM While processing a write call, the Operating System
detected an attempt to write beyond the end of a
physical file.

E$SPACE While processing a write call, the Operating System
detected a full volume. The Extended I/O System,
however, was unable to complete the requested·
writing operation.

E$TIME Your task was not within a job created by the Human
Interface subsystem.

6-50

C$SEND$EO$RESPONSE

C$SEND$EO$RESPONSE

C$SEND$EO$RESPONSE, a message processing call, sends an exceptional
condition message to the user's console screen and optionally reads a
response from the console keyboard.

CALL RQCSENDEORESPONSE'(response$p, response$max, message$p,
except $pt r) ;

INPUT PARAMETERS

message$p

response$max

OUTPUT PARAMETERS

response$p

except$ptr

DESCRIPTION

A POINTER to a STRING containing the message to be
sent to the user's console screen. If zero, no
message is sent.

A WORD that gives the maximum number of characters
that the response$p entry may contain. If
response$max is zero, no response from the user's
keyboard will be requested and control will return
to the caller immediately.

A POINTER to a buffer that receives the STRING
containing the user's response from the console
keyboard.

A POINTER toa WORD in which the Human Interface
will return an exception code.

After C$SEND$EO$RESPONSE has sent a message to the console screen, no
other output will be displayed on the screen between the time the message
is displayed and a line terminator is typed on the console keyboard. The
values contained in message$pand response$max have the following meaning:

message$p

zero
zero
non-zero
non-zero

response$max

zero
non-zero
non-zero
zero

6-51

Action

No I/O will be performed
Send no message; wait for input
Send message, wait for input
Send message, don't wait

I

C$SEND$EO$RESPONSE

DESCRIPTION (continued)

The main distinction between the C$SEND$EO$RESPONSE and C$SENDCORESPOSE
calls is that the messages output by C$SEND$EO$RESPONSE are always sent to
the user's console screen and cannot be redirected to another device. In
contrast, messages output by C$SEND$CO$RESPONSE can be redirected via a
SUBMIT command.

EXCEPTION CODES

E$OK

E$CONTEXT

E$IO

E$LIMIT

No exceptional conditions were encountered.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call, one of
the following situations occurred.

• The Operating System detected a zero value for
the object directory size. This indicated that
your task used a Human Interface call but was
not within a job created by the Human Interface
subsystem.

• The connection to the file was not open for
reading or for both reading and writing.

• While reading from a file to a buffer or writing
from a buffer to a file, the connection to the
file was closed.

• While creating the command connection that
created the calling task's job, the CI and CO
connections were opened with A$OPEN rather than
S$OPEN.

In performing a read or write operation, the
Operating System detected an I/O error.

When your task invoked this system call, the call
invoked at least one other system call. While the
Operating System performed the latter call invoked,
one of the following situations occurred.

• While creating the objects needed by this call,
the Operating System detected the calling task's
job having already reached the maximum number of
objects that can exist simultaneously.

• The job containing the task which invoked this
call, or the job's default user object, is
currently involved in more than 255 (decimal)
I/O operations.

6-52

C$SEND$EO$RESPONSE

EXCEPTION CODES

E$LIMIT (continued)

• The job containing the task which invoked this
call was not created by the Human Interface
subsystem.

E$MEM The memory pool of the calling task's job as not
currently having a block of memory large enough to
allow this system call to run to completion.

ENOTCONFIGURED One or more of the following system calls were not
incorporated during system configuration:

Call Subsystem

A$READ Basic I/O
A$SEEK Basic I/O
A$WRITE Basic I/O
CREATE$MAILBOX Nucleus
CREATE$SEGMENT Nucleus
DISABLE$DELETION Nucleus
ENABLE$DELETION Nucleus
GET$TYPE Nucleus
LOOKUP$OBJECT Nucleus
RECElVE$CONTROL Nucleus
RECEIVE$MESSAGE Nucleus
SEND$CONTROL Nucleus
SEND$MESSAGE Nucleus
S$READ$MOVE Extended I/O
S$wRITE$MOVE Extended

E$PARAM While trying to write to the output, the Operating
System detected an attempt to write beyond the end
of a physical file.

E$SPACE While trying to write to the output,che Operating
System detected a full volume. Due to this
condition, the requested writing operation has not
been completed.

E$TlME Your task used a Human Interface call but was not.
within a job created by the Human Interface
subsystem.

6-53

I

CSETCONTROL$C

I

I

CSETCONTROL$C

CSETCONTROL$C, a program control call, changes a calling program's
CONTROL C exchange to the semaphore specified in the CSETCONTROL$C call.

CALL RQCSET$CONTROL$C(controlcsemaphore, except$ptr);

INPUT PARAMETER

controlcsemaphore A WORD containing the TOKEN for the user's
semaphore to which a single unit will be sent when
a CTRL/c is typed on the console keyboard. If the
controlcsemaphore TOKEN is zero, the program's
default CONTROL C semaphore will receive any future
CONTROL C units.

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a WORD in which the Human Interface
will return an exception code.

This call lets you modify the "standard" response to a CTRL/c entry to a
response that is appropriate for the given command. The default action
is to delete the command entry.

One unit will be sent to the semaphore each time CTRL/c is typed.
Any units sent to the semaphore that exceeds the maximum number specified
during system configuration will be ignored.

EXCEPTION CODES

E$OK

E$CONTEXT

No exceptional conditions were encountered.

When your task invoked this system call, the
Operating System detected a zero value for the
object directory size. This indicated that your
task used a Human Interface call but was not within
a job created by the Human Interface subsystem.
The other possibility is that RQ$UNCATALOG$OBJECT
was not configured.

ENOTCONFIGURED The Nucleus System call CATALOG$OBJECT was not
incorporated during system configuration.

6-54

CSETCONTROL$C

EXCEPTION CODES (continued)

E$LIMIT

E$TYPE

When your task invoked this system call, the
Operating System detected an object directory that
had already reached the maximum object directory
size.

The TOKEN given in the parameter
controlcsemaphore is not a TOKEN for a semaphore.

6-55

I

CSETPARSE$BUFFER

CSETPARSE$BUFFER

CSETPARSE$BUFFER, a command parsing call, permits parsing the contents
of a buffer other than the command line buffer whenever the parsing calls
are used.

offset RQCSET$PARSE$BUFFER(buff$p, buff$max, except$ptr);

INPUT PARAMETERS

buff$p

buff$max

OUTPUT PARAMETERS

offset

except$ptr

DESCRIPTION

A POINTER to a STRING containing the text to be
parsed. If the buff$p is zero, the buffer used for
parsing reverts to the command line buffer and the
buff$max parameter is ignored.

A WORD that specifies the number of characters in
the buffer that are to be used in parsing.

A WORD that receives the byte offset, in the
previous buffer, of the last byte parsed by the
Human Interface library calls.

A POINTER to a WORD in which the Human Interface
will return an exception code.

The user may change buffers and revert back to the command line parsing
buffer at will, by calling CSETPARSE$BUFFER with buff$p=O. However,
only one parsing buffer per job may be active at any given time.

Note that CSETPARSE$BUFFER does not affect C$GET$INPUT$PATHNAME or
CGETOUTPUT$PATHNMfE calls; that is, CSETPARSE$BUFFER does not
redirect these calls' input source.

EXCEPTION CODES

E$OK No exceptional conditions were encountered.

6-56

CSETPARSE$BUFFER

EXCEPTION CODES (continued)

E$CONTEXT When your task invoked this system call, the
Operating System detected a zero value for the
object directory size. This indicated that your
task was not within a job created by the Human
Interface subsystem.

E$LIMIT While processing this calling jobs object
directory, the Operating System detected an object
directory that has already reached the maximum
object directory size.

ENOTCONFIGURED The Nucleus System call LOOKUP$OBJECT was not
incorporated during system configuration.

E$TIME Your task was not within a job created by the Human
Interface subsystem.

6-57

CHAPTER 7. COMMAND CREATION EXAMPLES

The examples provided in this chapter are intended to provide some
insight as to how and why Human Interface system calls are used to
perform command parsing and processing in user-designed programs. The
examples presented in following pages are not complete programs and are
not tested. Therefore, they should be used only for general guidance
when preparing your own commands.

EXAMPLE 1. STANDARD SYSTEM CALLS

Show's implementation of the following "standard" Human Interface system
calls:

CGETINPUT$PATHNAME
CGETOUTPUT$PATHNAME
CGETINPUT$CONNECTION
CGETOUTPUT$CONNECTION

EXAMPLE 2. PARSING CALL

Shows implementation of the following Human Interface parsing call:

C $GE T$PARAMETER

EXAMPLE 3. ADVANCED SYSTEM CALLS

Show implementation of the following "advanced" Human Interface system
calls:

C$CREATE$COMMAND$CONNECTION
C$SEND$COMMAND
C$DELETE$COMMAND$CONNECTION

7-1

COMMAND CREATION EXAMPLES

EXAMPLE 1. STANDARD SYSTEM CALLS

/***
* This example demonstrates the use of the following Human Interface *
* standard input and output functions. *
*
*
*
*
*
*
*
*
*
*
*
*
*

rqCget$input$pathname
rqCget$output$pathname
rqCget$intput$connection
rqCget$output$connection

This program is a possible implementation of a copy utility, the
purpose of which is to copy data from successive input files to the
corresponding successive output files. For example, to copy file A
to file a, file C to file 0, and file E to file F, we could specify
in a command line:

COpy A,C,E TO B,D,F

*
*
*
*
*
*
* *-

*
*
*
*
*

**/

copy: DO;

DECLARE (input$pathname, output$pathname) structure (
length byte,

output$prep byte,
(input$token, output$token) word,
status word;

/* Get the 1st input pathname string */

string (41) byte),

CALL rqCget$input$pathname(@input$pathname, SIZE(input$pathname), @status);

DO WHILE (input$pathname.length (> H); /* A zero length indicates no more
input parameters. */

/* Get the corresponding output pathname string */
output$prep = rq$Cgetoutput$pathname(@output$~athnaffie,

SIZE(output$pathname), @(7,'TO :CO:'),
@status);

/* Establish connection with next pair of input and output files */

input$token = rq$Cgetinput$connnection(@input$pathname, @status);

output$token =, rq$Cgetout~ut$connection(@output$pathname,
output$prep, @status);

• Copy data and close both files.

/* Get the next input pathname string */
CALL rqCget$input$pathname(@input$pathname, SIZE(input$pathname), @status);

END /* DO WHILE */;

END copy;

7-2

COMMAND CREATION EXAMPLES

EXAMPLE 2 • PARS ING CALL

/***
* *
* This example demonstrates the use of the following Human Interface *
* parse standard function: *

*
*
*
*
*
*
*
*
*
*
*
*
*

rqCget$parameter

This program makes use of the get$parameter primative to parse out a
keyword parameter in a command line. Here, the keyword, "SIZE", is
parsed out, and its value-part converted to a word value and placed
"size$val". For example, we could specify in a command line:

PROGI SIZE = 400

Note that if the "SIZE" parameter is not present, "size$val" receives
a default value.

*
*
*
*
*
*
*
*
*
*
*
*
*

**/

progl: DO;

DECLARE STRING LITERALLY 'STRUCTURE (len BYTE, str (1) BYTE) "
STRING$TABLE LITERALLY 'STRUCTURE (num$entries BYTE,

entries (1) BYTE)',
PARAMETER$KEYWORD$MAX LITERALLY '20',
VALUE$TABLE$MAX LITERALLY '80',
DEFAULT$SIZE LITERALLY '100';

DECLARE value$table$buf (VALUE$TABLE$MAX) BYTE, /* Receives value string tbl.*/
value$table STRING$TABLE AT (@value$table$buf),
valuestrptr POINTER,
value$str based value$str$ptr STRING, /* For referencing strings

within the string table */
parameter$keyword$buf (PARAMETER$KEYWORD$MAX) BYTE, /* Receives the

keyword string*/
parameter$keyword STRING AT (@parameter$keyword$buf),
predict$list (*) BYTE DATA (2,2,'TO',5,'AFTER'), /* Sample predict

list table */
predict$list$index BYTE, /* Receives prep. string displacement within

predict$list, if a preposition is present*/
status WORD,
(size$val, i) WORD;

/* Get the next parameter, if present */
IF { rqcget$parameter (@parameter$keyword, PARAMETER$KEYWORD$MAX,

@value$table, VALUE$TABLE$MAX,
@predict$list$index, @predict$list,
@status)) THEN

IF (parameter$keyword.str(0) = IS') AND /* Is the keyword 'SIZE' ? */
(parameter$keyword.str{l) = 'I') THEN

DO;
valuestrptr = @value$table.entries; /* Point to 1st entry in table */
size$va1 = 0;
DO i = 0 to value$str.len - 1; /* Convert number string to a word value */

size$val size$val * 10;
size$val = size$val + (value$str.str(i) - 30B);
END;

END;
ELSE

size$val DEFAULT$SIZE; /* If the 'SIZE' parameter is not present,
use the default size. */

Rest of program

END progl;

7-3

COMMAND CREATION EXAMPLES

EXAMPLE 3. ADVANCED SYSTEM CALLS

/***
* *
*
*
*
*
*
*
*
*
*
*
*

This example demonstrates the use of the following Human Interface
advanced standard functions:

rqCcreate$command$connection
rqCsend$command
rqCdelete$command$connection

This program uses the above functions to invoke a copy utility
from within, ~nd then continue normal processing. The program is
invoked by the command line:

PROG2

*
*
*
*
*
*
*
*
*
*
*

* *
**/

prog2: DO;

DECLARE (ci$token, co$token, command$connection$token) WORD,
(status, statusl) WORD;

/* INVOKE UTILITY TO COPY FILE OLD TO FILE NEW */

/* Get tokens for CI and CO */
ci$token rq$cqet input$connection(@(4,' :CI: '), @status);
co$token = rq$cgetoutput$connection(@(4,':CO:'), @status);

/* Create command connection */
command$connection$tok = rqccreate$command$connection (ci$token,

coS token,
0,

/* Send command to copy files */
CALL rqcsend$command (command$connection$tok,

@(23,'COPY :FI:OLD TO :FI:NEW'),
@statusl, @status);

/* Delete command connection */

@status);

CALL rqcdelete$command$connection (command$connection$tok, @status);

Rest of program

END prog2;

7-4

APPENDIX A. HUMAN INTERFACE TYPE DEFINITIONS

The type definitions used in Human Interface system call description are
defined in Table A-1.

Type

BYTE

WORD

POINTER

STRING

TOKEN

Table A-1. Type Definitions

Definition

PL/M86 data type (8 bits).

PL/M 86 data type (16 bits).

PL/M 86 data type (32 bits).

A sequence of bytes, the first of which contains the number
of bytes in the sequence, (not including the count byte).
Since the count is only a byte, the maximum number of
characters that a STRING may contain is 255 characters. A
zero length specifies a null string.

A 2-byte iRMX 86 variable that contains the means of
locating an object.

A-1

APPENDIX B. HUMAN INTERFACE EXCEPTION CODES

Like other iRMX 86 software systems, the Human Interface returns a
condition code whenever a Human Interface call is invoked. If the call
executes without error, the Human Interface returns the code E$OK. When
an error is encountered during call execution, an exceptional condition
code is returned. The exceptional condition code may be returned either
from the Human Interface or from one of the other iRMX 86 systems
residing below it.

The exception codes listed in Table B-1 are unique to the Human Interface.

Table B-1. Human Interface Exception Codes

Programmer Errors:

~-----------------------------.. -.--- _.- -'~"---"--
E$PARSE$TABLES: 8080h
E$DEFAULT$SO: 8083h
E$STRING: 8084h

~---.------.---------~

Environmental Errors:

~--------------------------------~ .. -,----",-----,----I

E$OK: OOOOh
E$LITERAL: 0080h
E$STRING$BUFFER: 0081h
E$SEPARATOR: 0082h
E$CONTINUED: 0083h
E$LIST: 008Sh
E$PREPOSITION: 0087h
E$PATH: 0088h
E$CONTROL$C: 0089h
E$CONTROL: 008Ah
E$EXTRA$SO 008Bh

B-1

HUMAN INTERFACE EXCEPTION CODES

Other exception codes may be issued during Human Interface operations.
The hexadecimal values of these exception conditions fall into ranges
based on the subsystem which first detects the condition. Table B-2
lists the subsystems and their respective ranges.

Table B-2. Exception Code Ranges

~--------------------------------'---'------------~--------------.-------'

*

System Environmental Programming

Nucleus 0 to 1FH 8000 to 801FH

Basic I/O System 20 to 3FH 8020 to 803FH

Extended I/O System 40 to 5FH 8040 to 805FH

Application Loader 60 to 7FH 8060 to 807FH

Human Interface 80 to AFH 8080 to 80AFH

Universal Development CO to DFH 80CO to 80DFH
Interface

Reserved * 130 to 14FH 8130 to 814FH

Exception codes in this range could occur if you are a user of an
iRMX system with MMX software. Refer to iMMX 800 SOFTWARE REFERENCE
MANUAL AND USER'S GUIDE for an explanation of exception conditions
within this range.

B-2

HUMAN INTERFACE EXCEPTION CODES

Table B-2 provides a minimum of information about an exception
condition. In most cases, the exception condition must be considered in
terms of the unique circumstances that caused the condition. Table B-3
is provided to guide you to the most appropriate manual. The appropriate
i.RMX 86 manuals have more detailed descriptions of the meanings. The
appropriate manual is listed in the column marked "Manuals".

Hex.
Value

N
B
E

OH

IH

2H

3H

4H

5H

6H

Table B-3. iRMX 86'" Condition Codes

Mnemonic

E$OK

Manuals
N BEL H

* * * * *

Meaning

No exceptional conditions (normal)

Environmental Conditions

E$TIME * * * * *

E$MEM * * * * *

E$BUSY S

E$LIMIT * * * * *

E$CONTEXT * * * * *

E$EXIST * * * * *

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied.

Insufficient available memory to
satisfy a task's request.

Another task currently has access to
data protected by a region.

A task attempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit.

A system call was issued out of
proper context.

A token parameter has a value which
is not the token of an existing
object.

L
H
S

B-3

Loader Reference Manual
Human Interface Reference Manual
System Programmer's Ref Manual

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMX 86 m Condition Codes

Hex. Mnemonic
Value

Manuals
N BEL H

Meaning

Environmental Conditions (continued)

7H

8H

9H

OAH

20H

21H

22H

23H

24H

25H

26H

27H

28H

29H

E$STATE

ENOTCON­
FIGURED

E$INTER­
RUPT$SAT­
URATION

E$INTER­
RUPT$­
OVERFLOW

E$FEXIST

E$FNEXIST

E$DEVFD

E$SUPPORT

E$EMPTY$­
ENTRY

EDIREND

E$FACCESS

E$FTYPE

E$SHARE

E$SPACE

*

* * * * *

*

*

* *
* * * *

* * *

* * * *

* *

* *

* * * *

* * *
* * * *

* *

N Nucleus Reference Manual
B Basic I/O System Ref Manual
E Extended I/O Sys Ref Manual

A task attempted an operation which
would have caused an impossible
transition of a task's state.

This system call is not part of the
present configuration.

An interrupt task has accummulated the
maximum allowable amount of
SIGNAL$INTERRUPT requests.

An interrupt task has accummulated
more than the maximum allowable amount
of SIGNAL$INTERRUPT requests.

File already exists.

File does not exist.

Device and file driver are
incompatible.

Combination of parameters not
supported.

The specified slot in a directory
file is empty.

The specified slot is beyond the end
of a directory file.

File access not granted.

Incompatible file type.

Improper file sharing requested.

No space left.

L Loader Reference Manual
H Human Interface Reference Manual
S System Programmer's Ref Manual

B-4

Hex.
Value

2AH

2BH

2CH

2DH

2EH

40H

41H

42H

44H

45H

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMX 86m Condition Codes

Mnemonic Manuals
N BEL H

Meaning

Environmental Conditions (continued)

E$IDDR

E$IO

E$FLUSHING

E$ILLVOL

EDEVOFF­
LINE

E$PREFIX$­
SYNTAX

E$CANNOT$-
CLOSE

E$IOMEM

E$MEDIA

ELOGNAME-
NEXIST

I
I * * I

* * * *

* * * *

S *

*

* *

*

* *

* *

* *

Invalid device driver request.

An I/O error occured.

Connection specified in call was
deleted before the operation was
completed.

Invalidly named volume.

The device being accessed if now
offline.

The specified path starts with a colon
(:) but does not contain a second,
matching colon.

The Extended I/O System was not able
to transfer remaining data in buffers
to output device.

The Basic I/O System has insufficient
memory to process a request.

The device containing a specified
file is not online.

The Extended I/O System was unable
to find a specified logical name in
the object directories that it checks.

60H EABSADD- * An absolute object program was loaded
into system protected memory area.

N
B
E

61H

62H

RESS

EBADGROUP

EBAD-
HEADER

* * Illegal group component in the a
group definition record.

* * Illegal header record in the object
file.

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

L
H
S

Loader Reference Manual
Human Interface Reference Manual
System Programmer's Ref Manual

B-5

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMX 86- Condition Codes

Hex. Mnemonic Manuals
N BEL H

Meaning
Value

Environmental Conditions (continued)

N
B
E

63H

64H

65H

66H

67H

68H

69H

6AH

6BH

6CH

6DH

6EH

6FH

EBADSEG­
ME NT

E$CHECKSUM

E$EOF

E$FIXUP

ENOLOADER
$MEM

ENOMEM

ERECFMT

EREC­
LENGTH

ERECTYPE

ENOSTART

EJOBSIZE

E$OVLY

E$LOADER
$SUPPORT

* *

* *

* *

* *

* *

* *

* *

* *

'It *

* *

* *

*

* *

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

Illegal segment definition record.

A checksum error occurred while
reading an object record.

Unexpected end of file encountered
while reading object records.

Illegal fixup record in the object
file.

Insufficient memory to satisfy
loader dynamic memory requirements.

Insufficient memory to create PIC/LTL
segments.

Illegal record format encountered.

Record length of an object record
exceeds configured loader-buffer size.

Illegal record type encountered in
the object file.

Start address not found.

Maximum job-size specified is less
than the memory requirement specified
in the object file.

Overlay name does not match with any
of the overlay module names.

The object file being loaded requires
features not supported by the
configured loader.

L
H
S

B-6

Loader Reference Manual
Human Interface Reference Manual
System Programmer's Ref Manual

Hex.
Value

80H

8lH

82H

83

8SH

87H

89H

8BH

8000H

800lH

8002H

HUMAN INTERFACE EXCEPTION CODE S

Table B-3. iRMX 86~ Condition Codes

Mnemonic Manuals
N BEL H

Meaning

Environmental Conditions (continued)

E$LITERAL

E$STRING$­
BUFFER

E$SEPARA-
TOR

E$CONTINUED

E$LIST

E$PREPOSI-
TION

E$CONTROL$C

E$EXTRA$SO

E$ZERO$- *
DIVIDE

E$OVER-FLOW *

*

*

The parse buffer contains a literal
with no closing quote.

The string to be returned as the
parameter name exceeds the size of
the buffer the user provided in the
call.

* The parse buffer contains a command
separator.

* The parse buffer contains a
continuation character.

* The last value of the value list is
missing.

* The same preposition as on the the
command line was indicated, but can
not be used.

* The user typed CONTROL-C while the
command was being loaded.

* There were no more input pathnames
although the output pathname list was
not empty.

Programmer Errors

A task attempted to divide by zero.

An overflow interrupt occurred.

E$TYPE * * * * * A token parameter referred to an
existing object that is not of the
required type.

~-------~------------~----------~------------------------------------"------

N
B
E

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

L
H
S

B-7

Loader Reference Manual
Human Interface Reference Manual
System Programmer's Ref Manual

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMX 86- Condition Codes

Hex. Mnemonic
Value

Manuals
N BEL H

Meaning

Programmer Errors (continued)

8003H E$BOUNDS

8004H E$PARAM

8005H EBADCALL

8020H E$IFDR

8021H E$NOUSER

8022H ENOPREFIX

8040H ENOT­
PREFIX

8041H ENOT­
DEVICE

8042H ENOTCON­
NECTION

8060H EJOBPARAM

8080H E$PARSE$­
TABLES

8083H E$DEFAULT$SO

8084H E$STRING

*

* * * * *

* *

* *

* * *
* * *

* *

*

*

* *

*

*

*

N
B
E

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

A task attempted to access beyond the
end of a segment.

A parameter which is neither a token
nor an offset has an invalid value.

The I/O System code has been damaged,
probably due to a bug in an
application task. Recovery is not
possible.

Invalid file driver request.

No default user.

No default prefix.

Specified object is not a device
connection or file connection.

A token parameter referred to an
existing object that is not, but
should be, a device connection.

A token parameter referred to an
existing object that is not, but
should be, a file connection.

The maximum job-size specified is
less than the minimum job-size.

There is an error in the interal
parse tables.

The default output name STRING is
invalid.

The pathname to be returned exceeds
255 characters in length.

L
H
S

B-8

Loader Reference Manual
Human Interface Reference Manual
System Programmer's Ref Manual

APPENDIX C. STRING TABLE FORMAT

1he string table may be generated by using standard PL/M declarations.
The diagram in Figure C-l shows the string$table parameter format.

:--:
BYTE: number of entries (n)

:--: .. · STRING: string 1

.-------------------~------------------------. · .
STRING: string 2

.--------~-----------------------------------. · .
STRING: string 3

._---­· .

:--:
STRING: string n

:--:
Extra space, if any

• __ e · .

Figure C-l. String Table Format

See Appendix A for a definition of a STRING.

EXAMPLE:

Assume you wish to generate a preposition list for HAPPY, GLAD, and SAD.
The following declarations would be needed:

DECLARE
p$table(*) BYTE DATA(3, /* NUMBER OF STRINGS */

(5, 'HAPP Y') ,
(4, 'GLAD'),
(3,'SAD'),);

C-l

INDEX

Underscored entries are primary references.

:$: prefix 1-6, 1-7, 1-8
:BB: prefix -r=7, 1-8
:CI: prefix 1-3, 1-7, 1-8, 2-5, 4-2, 4-6, 4-10, 6-4, 6-48
:Co: prefix 1-3, 1-7, 1-8, 2-5, 4-4, 4-7, 4-12, 6-4, 6-14, 6-23, 6-31,

6-48 -
:PROG: prefix 1-2, 1-5, 1-8, 5-7
: SYSTEM: prefix 1-2~-5, 1-8, 5-7
: WORK: prefix 1-6, I-a--

AGETEXTENSION$DATA system call 3-42
ASETEXTENSION$DATA system call 3-42
absolute load 5-8
access rights 3-31, 3-51
AFTER preposition 2-6, 4-3, 4-6, 4-12, 5-4, 5-7, 6-22, 6-31, 6-51
ampersand 2-3
AS preposition 2-7
ATTACH$FILE 6-6, 6-7, 6-9, 6-15, 6-18, 6-27, 6-28, 6-45
ATTACHDEVICE command 1-7, 2-7, 3-5, 5-8

BACKUP command 3-9, 3-49
buffer parsing 6-56
BYTE definition A-I

C$CREATE$COMMAND$CONNECTION system call 5-5, 6-3, 6-4, 6-10, 6-38, 7-1
C$DELETE$COMMAND$CONNECTION system call 5-5, 6-3, 6-4, 6-10, 7-1
C$FORMAT$EXCEPTION system call 5-8, 6-2, 6-11
CGETCHAR system call 6-2, 6-13 --
CGETEXCEPTION$HANDLER system call 5-8
GGETINPUT$CONNECTION system call 5-3, 6-2, 6-14, 6-15, 6-20, 7-1
GGETINPUT$PATHNAME system ca.ll 5-1, 5-3, 6-2, 6-20, 6-56, 7-1
GGETOUTPUT$CONNECTION system call 5-3, 5-4, 6-2, 6-22, 6-23,

6-31,6-32, 7-1 ----
CGETOUTPUT$PATHNAME system call 6-2, 6-29, 6-31, 6-32, 6-56
CGETPARAMETER system call 5-1, 5-6, 6-2, 6-34, 6-35, 7-1
G$SEND$CO$RESPONSE system call 6-2, 6-48, 6-49, 6-52
C$SEND$COMMAND system call 5-5, 6-3, 6-4, 6-38, 6-39, 7-1
C$SEND$EO$RESPONSE system call 6-2, 6-49, 6-51, 6-52
CSETCONTROL$C system call 5-5, 5-8, 6-3, 6-54
CSETPARSE$BUFFER system call 6-2, 6-56 -­
CATALOG$OBJECT system call 6.;..7, 6-45, 6-54
CLOSE system call 6-45
Command Line Interpreter 1-1, 2-3, 5-4, 5-6

Index-l

INDEX

command
connection. 5-5, 6-3, 6-4, 6-10
creation 5-7
dictionary 3-3
entry 2-1, 2-4
examples4-1
Human Interface 3-1
invocation 5-7, 6-4
line 1-1, 2-2, 2-8, 4-2, 4-7, 4-20, 6-2, 6-13, 6-20, 6-22, 6-31,

6-34, 6-38, 6-56
name 1-1, 1-4, 2-2, 5-2, 6-47
parsing 6-2, 6-20, 6-31, 6-34, 6-56, 7-1
processing calls 5-5, 7-1
syntax 2-1, 3-1, 2-2

comment character-2-3
console

input device 2-5
output device 2-5
session 2-1

continuation mark 2-3, 6-38
CONTROL keys 2-7
COpy command 2-4, 3-15, 4-2, 4-4, 4-6, 4-12, 4-16, 4-20, 4-21
CREATE$COM}UlliD$CONNECTION system call 5-5, 6-3, 6-4, 6-10, 6-38, 7-1
CREATE$COMPOSITE system call 6-7, 6-18, 6-27, 6-45
CREATE$FILE system call 6-7, 6-8, 6-9, 6-27, 6-28
CREATEIOJOB system call 6-45
CREATE$MAILBOX system call 6-7, 6-18, 6-27, 6-45, 6-50, 6-53
CREATE$SEGMENT system call 6-7, 6-18, 6-21, 6-28, 6-33, 6-45, 6-50, 6-53
CREATE$TASK system call 6-7, 6-45
CREATEDIR command 1-5, 1-6, 3-19, 4-9
CTRL keys

CTRL key 2-7
CTRL/c 1-4, 2-7 4-5, 5-5, 5-8, 6-54 --' CTRL/d 2-7
CTRL/q 2-7, 4-5
CTRL/s 2-7, 4-5
CTRL/x 2-7, 4-5
CTRL/z 2-7, [.-1, 4-2

DATE command 3-20
DEBUG command 3-21
default directory 1-6, 1-8, 4-13
default message 6-~6-11
DELETE access 6-23
DELETE command 3-22, 4-8, 4-10, 4-13
DELETE$COMMAND$CONNECTION system call 5-5, 6-3, 6-4,
DELETE$COMPOSITE system call 6-7, 6-18, 6-28, 6-45
DELETE$TASK system call 6-45
DETACHDEVICE com~~nd 3-24

6-10 7-1 --'

Device Unit Information Block (DUIB) 3-5, 3-21, 6-7, 6-17, 6-26, 6-42

Index-2

device
attachment 3-5
detachment 3-25
fnodes 4-18
granularity 4-18
interleave factor 4-18
logical
physical

INDEX

DIR command 1-5, 2-9, 3-25, 4-9, 4-12, 4-18, 4-19
directory 1-4, 1-5, 1-6, 4-2, 4-8, 4-9, 4-10, 4-11, 4-12, 4-13, 4-14,

4-16 4-18 4-19 5-7 , , ,
directory

creation 3-19, 4-9
deletion 3-22, 4-13
examples 3-27
formats 3-29
listing 3-25, 4-12
parent 4-10
renaming 3-45, 4-16
restoring 3-48
user default 4-13

DISABLE$DELETION system call 6-8, 6-18, 6-28, 6-45, 6-50, 6-53
diskette switching 4-19
DISKVERIFY command 3-32
DOWNCOPY command 3-37
DUIB 3-5, 3-21, 6-7, 6-17, 6-26, 6-42

embedded blanks 2-2, 2-3
ENABLE$DELETION system call 6-8, 6-18, 6-28, 6-45, 6-50, 6-53
error input device 6-2
error messages 2-1
error output device 6-2
ESC key 2-2, 2-3, 2-8, 5-1
exception code 5-8, 6-5, 6-10, 6-12, 6-13, 6-15, 6-20, 6-24, 6-32, 6-35,

6-39, 6-49, 6-52, 6-54, 6-56
exception code mnemonics,

E$CONTEXT 6-5, 6-13, 6-15, 6-21, 6-24, 6-32, 6-35, 6-39, 6-40,
6-49, 6-52, 6-54, 6-57

E$CONTlNUED 6-35, 6-38, 6-40
E$CONTROL$C 6-39, 6-40
E$DEFAULT$SO 6-32
E$DEVFD 6-5, 6-16, 6-24, 6-40
E$EXIST 6-6, 6-41
E$EXTRA$SO 6-21
E$FACCESS 6-16, 6-24, 6-25, 6-41
E$FLUSHING 6-41
E$FNEXIST 6-16, 6-25, 6-41
E$FTYPE 6-16, 6-25, 6-41
E$ILLVOL 6-16, 6-25, 6-41
E$IO 4-19, 6-6, 6-17, 6-25, 6-42, 6-49, 6-52
E$IOMEM 6-6, 6-17, 6-25, 6-42
E$LIMIT 6-6, 6-7, 6-17, 6-21, 6-25, 6-26, 6-32, 6-42, 6-43, 6-49,

6-50, 6-52, 6-53, 6-55, 6-57
E$LIST 6-21, 6-32, 6-36

Index-3

INDEX

exception code mnemonics (continued)
E$LITERAL 6-36, 6-43
E$MEDIA 6-17, 6-26, 6-44
E$MEM 6-7, 6-18, 6-21, 6-27, 6-32, 6-44, 6-50, 6-53
ENOPREFIX 6-18, 6-27, 6-45
ENOTCONFIGURED 6-7, 6-8, 6-13, 6-18, 6-21, 6-27, 6-28, 6-33,

6-36, 6-45, 6-50, 6-53, 6-54, 6-57
ENOTPREFIX 6-8, 6-19, 6-28, 6-45
E$OK 6-5, 6-10, 6-12, 6-13, 6-15, 6-20, 6-24, 6-32, 6-35, 6-39,

6-49, 6-52, 6-54, 6-56
E$PARAM 4-4, 6-8, 6-12, 6-19, 6-28, 6-29, 6-46, 6-50, 6-53
E$PARSE$TABLES 6-21, 6-33, 6-36, 6-46
E$PREFIX$SYNTAX 6-19, 6-29, 6-46
E$PREPOSITION 6-29
E$SEPARATOR 6-36, 6-47
E$SHARE 6-19, 6-29, 6-47
E$STRING 6-12, 6-21, 6-33, 6-36, 6-37, 6-47
E$STRING$BUFFgR 6-12, 6-21, 6-33, 6-36, 6-37, 6-47
E$SUPPORT 6-9, 6-30
E$TlME 6-9, 6-13, 6-19, 6-21, 6-30, 6-33, 6-37, 6-47, 6-50, 6-53,

6-57
E$TYPE 6-9, 6-10, 6-47, 6-55

Exception handler 5-8
EXITIOJOB system call 6-45
Extended I/O System 1-1, 1-2, 5-3, 6-5, 6-7, 6-8, 6-14, 6-15, 6-16,

6-17, 6-18, 6-19, 6-20, 6-22, 6-23, 6-24, 6-25, 6-27, 6-28, 6-29,
6-30, 6-32, 6-40, 6-41, 6-43, 6-45, 6-46, 6-50, 6-53

EXTENDED parameter 2-2
extension data 3-11, 3-41, 3-42, 3-52

file
access rights 3-31
backup 3-8
concatenation 3-15, 4-6
creation 3-15, 4-2
deletion 3-22, 4-8
duplicatioU--3-15, 4-3
granularity 3-31
handling 2-2, 2-5, 2-8, 2-9, 4-1
length 3-31
listing 3-15, 4-4
name 4-2--
owner 3-31, 3-49
renaming 3-45, 4-14
replacemen~3-15, 4-5
restoring 3~~
scrolling 4-5
sequencing 4-7
structures 1-1, 1-4
SUBMIT 3-55, 4-20--

fnodes 3-41, 3-42, 4-18
formal parametrn- 3-57
FORMAT command 1--7, 3-40, 4-18, 6-30
FORMAT$EXCEPTION systemtCall 5-8, 6-2, 6-11

Index-4

INDEX

GET$CHAR system call 6-2, 6-13
GET$CONNECTION$STATUS system call 6-8, 6-28
GET$DEFAULT$PREFIX system call 6-8, 6-18, 6-28, 6-45
GET$EXCEPTION$HANDLER system call 5-8
GET$FILE$STATUS system call 6-7, 6-18, 6-27
GET$INPUT$CONNECTION system call 5-3, 6-2, 6-14, 6-15, 6-20, 7-1
GET$INPUT$PATHNAME system call 5-1, 5-3, 6-2, 6-20, 6-56, 7-1
GET$OUTPUT$CONNECTION system call 5-3, 5-4, 6-2, 6-22, 6-23, 6-31,6-32,

7-1 --
GET$PARAMETER system call 5-1, 5-6, 6-2, 6-34, 6-35, 7-1
GET$TYPE system call 6-8, 6-18, 6-28, 6-4s:-6-50, 6-53
granularity 3-31, 3-41, 3-42, 4-18

Human Interface
commands 3-1
services 1-2
software requirements 1-1
system calls 1-3, 6-2
type definitions A-I

I/O processing 5-3, 6-2, 6-14, 6-20, 6-22
lnput and output calls 5-2
interleave factor 3-41, 4-18
iSBC 957A/B package~21, 3-37, 3-59
ISIS-II files 1-3, 3-37, 3-59

keyboard character entries 2-4
keyword parameters 6-35

line terminator 6-48, 6-51
listing formats 1-3
load module formats 5-8
LOADIOJOB system call 6-45
logical device 4-19
logical names 1-5, 1-7, 2-5, 5-8
LOOKUP$OBJECT sy'stem call 6-8, 6-13, 6-18, 6-21, 6-28, 6-33, 6-36, 6-45,

6-50 6-53 ~-57 , ,
message processing 5-2, 5-4, 6-2, 6-11, 6-48, 6-51

NAMED files 4-18
named verification 3-33
NEW LINE key 2-3
NO CREATE FALSE 6-30
NO-TRUNCATE 6-30

object directory 6-5, 6-6, 6-13, 6-15, 6-21, 6-24, 6-32, 6-35, 6-39,
6-43, 6-49, 6-52, 6-54, 6-55, 6-57

outpath-list 2-2, 6-38
output paramet;;; 2-5, 2-8, 6-4, 6-13, 6-14, 6-20, 6-22, 6-31, 6-34,

6-35 6-38 6-4S--6-51 6-56 , , , ,
OVER preposition 2-6, 2-8, 4-5, 4-15, 5-4, 5-6, 6-22, 6-31, 6-32
()wner 3-31, 3-49 --

parameter 1-1, 2-1, 4-20, 5-1, 5-2, 5-5, 5-9
parameter parsing 5-5, 6-32, 6-35
parent directory 4-10, 6-24

Index-5

parsing calls 6-2, 6-56
pathlists 2-5

INDEX

pathname 1-4, 1-6, 2-2, 2-8, 4-3, 4-9, 4-14, 4-16, 5-7
PHYSICAL 3-41, 4-18
physical device 2-5, 2-7, 4-18
physical verification 3-33
PHYSICAL$ATTACH$DEVICE system call 6-7, 6-18, 6-27, 6-45
POINTER definition A-I
predict$table 5-6
preposition 2-2, 5-2, 5-4, 5-5, 6-22, 6-23, 6-29, 6-31, 6-32, 6-34,

6-35, 6-38
preposition parameters 2-6, 2-9, 5-5, 5-6
program control call 5-s,-6-3, 6-54
program debugging 3-21
program directories 1-5

QUERY parameter 2-2, 2-4, 4-3, 4-13
quoted string 2-3, 5-6, 6-36, 6-43

READ$MOVE system call 6-28, 6-50, 6-53
RECEIVE$CONTROL system call 6-8, 6-18, 6-28, 6-45, 6-50, 6-53
RECEIVE$MESSAGE system call 6-8, 6-18, 6-28, 6-45, 6-50, 6-53
relocatable load format 5-8, 5-9
RENAME command 2-8, 2-9, 3-44, 4-5, 4-9, 4-13, 4-14, 4-16
RESTORE command 3-9, 3-48----
RETURN key 2-2, 2-3, 2-4, 2-7, 2-8, 5-1
root directory 4-17
RUBOUT key 2-8

SEEK system call 6-27, 6-28, 6-45, 6-50, 6-53
semicolon character 2-3
SENDCORESPONSE system call 6-2, 6-48, 6-49, 6-52
SEND$COMMAND system call 5-5, 6-3, 6-4, 6-38, 6-39, 7-1
SEND$CONTROL system call 6-8, 6-18, 6-28, 6-45, 6-50, 6-53
SENDEORESPONSE system call 6-2, 6-49, 6-51, 6-52
SEND$MESSAGE system call 6-8, 6-18, 6-28, 6-45, 6-48, 6-50, 6-51, 6-53
SET$CONTROL$C system call 5-5, 5-8, 6-3, 6-54
SET$EXCEPTION$HANDLER sys tem call 5-8 --
SET$INTERRUPT system call 6-8, 6-18, 6-28, 6-45
SET$PARSE$BUFFER system call 6-2, 6-56
single-stepping 3-21
slash separator 4-10
SPECIAL system call 6-7, 6-18, 6-27, 6-45
Standard Input 5-3, 5-4, 6-2, 6-20
Standard Output 5-3, 5-4, 6-2, 6-31, 6-32
STRING 6-1, 6-11, 6-14, 6-20, 6-22, 6-31, 6-48, 6-51, 6-56
STRING$TABLE 5-6, 6-34, 6-35
SUBMIT command 2-3, 3-55, 4-20, 6-49, 6-52
submit file 4-20 ----
system

call dictionary 6-2
clock 3-58
date 3-20
program directory 1-2, 5-7

Index-6

INDEX

TIME command 3-58
TO preposition 2-6, 4-4, 4-6, 4-12, 4-14, 4-16, 5-4, 6-22, 6-23, 6-31
token definition A-I
TRUNCATE system call 6-27, 6-28
TRUNCATE$FILE system call 6-28
type definition A-I

UNCATALOG$OBJECT system call 6-40, 6-45, 6-54
UPCOpy command 3-59, 5-9
User directories 1-6, 4-8

verification utility 3-32
volume

boundaries 4-16
formatting 3-40, 4-18
granularity 3-41, 3-42
prefix 4-17
verification 3-32

WAIT$INTERRUPT system call 6-8, 6-18, 6-28, 6-45
WORn 6-1, 6-4
work directory 1-6
WRITE system call 6-27, 6-28~ 6-50, 6-53
WRITE$MOVE system call 6-28, 6-50, 6-53

Index-7

REQUEST FOR READER'S COMMENTS

iRMX 8610
' Human Interface
Reference Manual

9803202-02

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME ___ __ DATE ___________ _

TITLE ______________ ~ _____________________________________ ___

COMPANY NAME/DEPARTMENT __________________________ _

ADDRESS ________________________ _

CITY _________________________ STATE ___ ZIP CODE ______ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing I ntel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of I ntel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

O.M.S. Technical Publications

""11 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

INTEL CORPORATION ,3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	7-01
	7-02
	7-03
	7-04
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	replyA
	replyB
	xBack

