
INTRODUCTION TO THE
iRMX™86

OPERATING SYSTEM

Order Number: 9803124-03

Copyright © 1980, 1982, Intel Corporation
J Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

REV. REVISION HISTORY PRINT
DATE

-01 ORIGINAL ISSUE 4/80

-02 Release 2.0 of the iRMX 86
Operating System 11/80

-03 Release 4.0 of the iRMX 86
Operating System 1/82

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The Information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined as
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks ofIntel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Insite iSBC Multibus
CREDIT Intel iSBX Multimodule

intel Library Manager Plug-A-Bubble
ICE Intelevision MCS PROMPT
iCS Intellec Megachassis RMX/80
im iOSP Micromainframe System 2000
iMMX iRMX Micromap UPI

IA526!182! 6K YDJ

PREFACE

If you are looking for a high-level introduction to the iRMX 86 Operating
System, this manual will satisfy you. By reading this manual, you will
acquire sufficient knowledge of the iRMX 86 Operating System to:

• See how the iRMX 86 Operating System can help you develop your
application system in less time and at less expense.

• Begin reading the more detailed iRMX 86 manuals.

This manual, which is written for engineers
be read completely in one or two sittings.
starting with the most general and familiar
define specific and new terms.

and managers, is designed to
It presents information
terms that it then uses to

Throughout this manual, the expression "iAPX 86, 88-based microcomputer"
is used to refer to any microcomputer that uses the Intel iAPX 86 or
iAPX 88 microprocessor as its central processing unit.

iii

CONTENTS

CHAPTER 1
OVERVIEW OF THE iRMX 86 OPERATING SYSTEM
Major Characteristics of the iRMX 86 System ••••••••••••••••••••••••
Customers of the iRMX 86 Operating System ••••••••••••••••••••••••••
Commonly Used iRMX 86 Terminology ••••••••••••••••••••••••••••••••••
Purpose of the iRMX 86 Operating System ••••••••••••••••••••••••••••
Organization of this Manual ••

CHAPTER 2
CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE
Event Detection •• " •...••............•.....•......•........•.•.•
Scheduling of Processing •••.•••••.•••••••••••••••••••.•••••••••••••
Error Processing •••
Device Sensitivity •••
Sevice Selection •••
Mass Storage File Allocation Tradeoffs •••••••••••••••••••••••••••••
Unneeded Features ••
Multiple Applications ••
Memory Requirements ••
Files and Multiple Users •••

Human Engineering ••
Application Development ••

Debugging ••
Chapter Perspective ••

CHAPTER 3
BENEFITS OF THE iRMX 86 OPERATING SYSTEM
Developmen t Time ••
Cost of Implementation •••
Costs After Development ••
Chapter Perspective ••

CHAPTER 4
FEATURES OF THE iRMX 86 OPERATING SYSTEM
Architectural Features •••••••••••••••••••• .

Object-oriented Architecture •••••••••••••••••••••••••••••••••••••
Explanation of Object-Oriented Architecture ••••••••••••••••••••
Advantages of Ojbect-Oriented Architecture •••••••••••••••••••••

Multi tasking •••
Explanation of Multitasking ••••••••••••••••••••••••••••••••••••
Advantages of Multitasking •••••••••••••••••••••••••••••••••••••

Interrupt Processing •••
Explanation of Interrupt Processing ••••••••••••••••••• " •••••••••
Advantages of Interrupt Processing •••••••••••••••••••••••••••••

v

Page

1-1
1-1
1-2
1-3
1-3

2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-4

3-1
3-2
3-2
3-2

4-2
4-2
4-2
4-4
4-4
4-4
4-4
4-5
4-5
4-5

CONTENTS (continued)

CHAPTER 4 (continued)
Preemptive Priority-Based Scheduling •••••••••••••••••••••••••••••

Explanation of Preemptive Priority-Based Scheduling ••••••••••••
Advantage of Preemptive Priority-Based Scheduling ••••••••••••••

Multiprogrammdng •••
Explanation of Multiprogramming ••••••••••••••••••••••••••••••••
Advantages of Multiprogramming •••••••••••••••••••••••••••••••••

Intertask Coordination •••
Explanation of Intertask Coordination ••••••••••••••••••••••••••
Advantage of Intertask Coordination ••••••••••••••••••••••••••••

Extendibility ••
Explanation of Extendibility ••••••••••••••••••••••••••••••••••••
Advantage of Extendibility •••••••••••••••••••••••••••••••••••••••

Input10utput Features ••
Choice of I/O Systems ••

Explanation of Choice of I/O Systems •••••••••••••••••••••••••••
Advantages of Choice of I/O Systems ••••••••••••••••••••••••••••

Device-Independent Input and Ouput •••••••••••••••••••••••••••••••
Explanation of Device-Independent Input and Output •••••••••••••
Advantages of Device-Independent Input and Output •••••• -••••••••

Hierarchical Naming of Mass Storage Files ••••••••••••••••••••••••
Explanation of Hierarchical Naming •••••••••••••••••••••••••••••
Advantages of Hierarchical Naming ••••••••••••••••••••••••••••••

File Access Control ••
Explanation of File Access Control •••••••••••••••••••••••••••••
Advantages of File Access Control ••••••••••••••••••••••••••••••

Control Over File Fragmentation ••••••••••••••••••••••••••••••••••
Explanation of File Fragmentation ••••••••••••••••••••••••••••••
Advantages of Control over Fragmentation •••••••••••••••••••••••

Selection of Device Drivers ••••••••••••••••••••••••••••••••••••••
Explanation of Device Drivers ••••••••••••••••••••••••••••••••••
Advantages of Having a Selection •••••••••••••••••••••••••••••••

File Maintenance Programs ••
Explanation of File Maintenance Programs •••••••••••••••••••••••
Advantages of File Maintenance Programs ••••••••••••••••••••••••

Customizing Features •••
Custom Interactive Commands ••••••••••••••••••••••••••••••••••••••

Explanation of Custom Interactive Commands •••••••••••••••••••••
Advantage of Custom Commands •••••••••••••••••••••••••••••••••••

Application Loading ••
Explanation of Application Loading •••••••••••••••••••••••••••••
Advantages of Application Loading ••••••••••••••••••••••••••••••

Start-Up System ••
Explanation of Start-up System •••••••••••••••••••••••••••••••••
Advantages of Start-up System ••••••••••••••••••••••••••••••••••

Run-Time Binding •••
Explanation of Run-Time Binding •••••••••••••••• o ••••••••••••••••

Advantages of Run-Time Binding •••••••••••••••••••••••••••••••••
Error Handling •••

Explanation of Error Handling ••••••••••••••••••••••••••••••••••
Advantage of Error Handling ••••••••••••••••••••••••••••••••••••

vi

Page

4-6
4-6
4-6
4-7
4-7
4-8
4-8
4-8
4-12
4-12
4-12
4-12
4-13
4-13
4-13
4-15
4-15
4-16
4-16
4-16
4-16
4-18
4-19
4-20
4-20
4-20
4-20
4-21
4-21
4-22
4-22
4-22
4-22
4-23
4-24
4-24
4-24
4-25
4-25
4-25
4-26
4-26
4-26
4-26
4-27
4-27
4-29
4-29
4-29
4-30

CONTENTS (continued)

CHAPTER 4 (continued)
Dynamic Memory Allocation ••

Explanation of Dynamic Memory Allocation •••••••••••••••••••••••
Advantage of Dynamic Memory Allocation •••••••••••••••••••••••••

Software Interface •••
Explanation of Software Interface ••••••••••••••••••••••••••••••
Advantages of Software Interface •••••••••••••••••••••••••••••••

Object-Oriented Debugger •••
Explanation of Object-Oriented Debugger ••••••••••••••••••••••••
Advantage of Object-Oriented Debugger ••••••••••••••••••••••••••

On-Target Program Development ••••••••••••••••••••••••••••••••••••
Explanation of On-Target Program Development •••••••••••••••••••
Advantages of On-Target Program Development ••••••••••••••••••••

Bootstrap Loading ••
Explanation of Bootstrap Loader ••••••••••••••••••••••••••••••••
Advantages of Bootstrap Loader •••••••••••••••••••••••••••••••••

Configurability ••
Explanation of Configurability •••••••••••••••••••••••••••••••••
Advantages of Configurability ••••••••••••••••••••••••••••••••••

Chapter Perspective ••

CHAPTER 5
A HYPOTHETICAL SYSTEM
Interrupt Processing •••
Human Interface ••
Multitasking •••
Intertask Coordination •••
Multiprogramming •••
Run-Time Binding •••
Mass Storage Files •••
Device Independence ••••.•••
Chapter Perspective ••

CHAPTER 6
iRMX 86 LITERATURE
Reading Tips •••••••••••.••••••••••••••.••••••••••••••••••••••••••••
Introduction to the iRMX 86 Operating System •••••••••••••••••••• ' •••
iRMX 86 Nucleus Reference Manual •••••••••••••••••••••••••••••••••••
iRMX 86 Basic I/O System Reference Manual ••••••••••••••••••••••••••
iRMX 86 Extended I/O System Reference Manual •••••••••••••••••••••••
iRMX 86 Human Interface Reference Manual •••••••••••••••••••••••••••
iRMX 86 Loader Reference Manual ••••••••••••••••••••••••••••••••••••
iRMX 86 System Programmer's Reference Manual •••••••••••••••••••••••
iRMX 86 Installation Guide •••
iRMX 86 Confiauration Guide ••
iRMX 86 Debugger Reference Manual ••••••••••••••••••••••••••••••••••
iRMX 86 Programming Techniques •••••••••••••••••••••••••••••••••••••
Guide to Writing Device Drivers for the iRMX 86 and iRMX 88

I/O Sys tems ••

vii

Page

4-30
4-30
4-31
4-31
4-31
4-31
4-32
4-32
4-32
4-33
4-33
4-33
4-34
4-34
4-34
4-34
4-35
4-38
4-38

5-3
5-4
5-4
5-4
5-4
5-5
5-5
5-6
5-6

6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-5
6-5
6-6
6-6
6-6

6-6

CONTENTS (continued)

Page
CHAPTER 4 (continued)
iRMX 86 Terminal Handler Reference Manual........................... 6-7
iRMX 86 Disk Verification Utility Reference Manual................. 6-7
Run-Time Support Manual for iAPX 86~88 Applications................ 6-7

1-1.
3-1.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
5-1.

6-1.

FIGURES

The iRMX 86 Foundation For Application Systems •••••••••••••
The iRMX 86 System Provides Economic Benefits ••••••••••••••
Features of the iRMX 86 Operating System •••••••••••••••••••
An Engineering Directory •••••••••••••••••••••••••••••••••••
A Marketing Directory ••••••••••••••••••••••••••••••••••••••
Hierarchical Naming of Files •••••••••••••••••••••••••••••••
Configuration of a Hypothetical System •••••••••••••••••••••
The Dual Objective of iRMX 86 Configuration ••••••••••••••••
The Hardware of the Dialysis Application System ••••••••••••

TABLE

Correlation of Manuals and Features ••••••••••••••••••••••••

viii

1-2
3-1
4-2
4-17
4-18
4-19
4-35
4-36
5-2

6-8

CHAPTER 1. OVERVIEW OF THE iRMX· 86 OPERATING SYSTEM

The iRMX 86 Operating System is a software package designed for use with
Intel's iSBC 86,88 Single Board Computers and with other iAPX 86,88-based
computers. The Operating System is different from many other systems in
that it is specifically designed to be incorporated in the products that
you build.

The iRMX 86 Operating System consists of a collection of subsystems, each
of which provides one or more features that can be used in your product.
Based on the features that you need to build your product, you decide
which subsystems you want. You then combine these subsystems to form a
tailored operating system that precisely meets your needs.

MAJOR CHARACTERISTICS OF THE iRMX 86 SYSTEM

The iRMX 86 Operating System exhibits the following characteristics:

• It can simultaneously monitor and control unrelated events
occuring outside the single board computer.

• It can communicate with a wide variety of input, output, and mass
storage devices.

• It provides a powerful and flexible means for an operator to
observe and modify the behavior of the system.

• It provides a base upon which to run a number of languages and
other software tools.

These characteristics (especially when combined with features discussed
in Chapter 4) make the iRMX 86 Operating System an excellent foundation
for your software-based products (Figure 1-1).

CUSTOMERS OF THE iRMX 86 OPERATING SYSTEM

The iRMX 86 Operating System is designed for two types of customers.
Original Equipment Manufacturers, OEMs, are companies that build products
for resale. Volume End Users, VEUs, are companies that build products
for use within their organization. Both types of customers can produce
products more quickly and at less expense by using the iRMX 86 Operating
System.

1-1

OVERVIEW OF THE iRMX- 86 OPERATING SYSTEM

Application System

Figure 1-1. The iRMX- 86 Foundation For Application Systems

COMMONLY USED iRMX 86 TERMINOLOGY

The following terms are used frequently in this book:

• Applica tion

An application is the problem that you solve with your Pfoduct.

• Application System

An application system is the product that satisfies the
requirements of the application (Figure 1-1).

• Application Software

The application software is all the software you must add to the
iRMX 86 Operating System in order to complete your application
system (Figure 1-1).

• User

The user is the individual or organization who uses your
application system.

1-2

OVERVIEW OF THE iRMX· 86 OPERATING SYSTEM

PURPOSE OF THE iRMX 86 OPERATING SYSTEM

The iRMX 86 Operating System is your shortcut to the marketplace. By
supplying you with features that can be used in a large number of
application systems, the iRMX 86 Operating System allows you to focus
your attention on the specialized application software. Since you spend
less time and effort developing sophisticated system software, you can
bring your application system to market faster and at a lower price.

ORGANIZATION OF THIS MANUAL

This manual is divided into six chapters.
designed for managers, some for engineers,
following paragraphs identify the audience

Some of the chapters are
and others for both. The
and purpose of each chapter.

• Chapter 1 - Overview of the iRMX 86 Operating System

Chapter 1 provides managers and engineers with a very brief
introduction to the iRMX 86 Operating System. It provides
vocabulary needed in later chapters and contains a statement of
purpose for each chapter in this manual.

• Chapter 2 - Considerations Relating to Real-Time Software

Chapter 2 introduces engineers to some of the obstacles that the
iRMX 86 Operating System can eliminate. Managers who have had
programming experience may want to read this short chapter.

• Chapter 3 - Benefits of the iRMX 86 Operating System

Chapter 3 provides managers with a discussion of the economic
benefits of using the iRMX 86 Operating System. Interested
engineers may also want to read this short chapter.

• Chapter 4 - Features of the iRMX 86 Operating System

Chapter 4 is a tutorial for engineers. It discusses the features
of the iRMX 86 Operating System and, at the same time, it defines
the vocabulary used in the other iRMX 86 manuals. Engineers who
are already proficient at real-time, multitasking programming
need only skim this chapter to ascertain the features of the
iRMX 86 Operating System.

• Chapter 5 - A Hypothetical System

Chapter 5 is designed primarily for engineers. It describes a
relatively simple application system. The purpose of this
chapter is to illustrate the use of some of the features
discussed in Chapter 4.

1-3

OVERVIEW OF THE iRMX~ 86 OPERATING SYSTEM

• Chapter 6 - iRMX 86 Literature

Chapter 6 contains a description of the other manuals associated
with the iRMX 86 Operating System. This chapter is designed for
engineers who need information more detailed than that provided
by this introductory manual.

1-4

CHAPTER 2. CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

The kinds of difficulties encountered in real-time programming differ
significantly from those found in other aspects of programming. This
chapter briefly introduces some of the problems that face designers of
real-time systems.

The purpose of this chapter is not to discourage you from building a
real-time application system. Rather, its purpose is to show you the
kinds of hurdles that the iRMX 86 Operating System can help you jump.
Consequently, this chapter only poses questions -- it provides no
answers. You can find the answers in the discussion of iRMX 86 features
in Chapter 4 of this manual.

EVENT DETECTION

Real-time application systems monitor events in the real world. These
events occur asynchronously, that is, at seemingly random intervals.
When an event occurs, the system could be in the midst of processing
information associated with a previous event. Even so, the system must
be able to detect and record the occurrence of the second event.

SCHEDULING OF PROCESSING

Assuming that the system can detect and record the occurrence of an
event, it still must decide in what order to process recorded events.
For that matter, when the system is processing a relatively unimportant
event and a critical event occurs, the system must be able to respond
correctly. It must be able to postpone the processing of the less
significant event until the more important one has been processed. Then,
after the higher-priority processing, the system must resume where it
left off.

ERROR PROCESSING

Suppose that during the processing of real-time events, an error is
detected. How can the error be corrected, or how can its impact be
limited, without adversely affecting the running of the system? The whole
system, for instance, should not be shut down merely because an error is
detected.

2-1

CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

DEVICE SENSITIVITY

Many real-time applications use one or more input or output devices. And
sometimes, the devices associated with an application system must be
changed. By allowing devices to be changed without requiring
recompilation, the operating system can save much time and effort.

DEVICE SELECTION

What kinds of devices should an operating system support? Can it handle
line printers? Disks? Bubble memories? Tapes?

MASS STORAGE FILE ALLOCATION TRADEOFFS

In any real-time system, performance is an important_consideration. One
decision that relates directly to performance must be made before
formating mass storage files. In some applications, large granularity
(large amounts of information located contiguously) results in much
faster retrieval. In other applications, large granularity does not
improve performance, but does waste space on the device. The operating
system must contend with the tradeoff between performance and optimal use
of space on the device.

UNNEEDED FEATURES

Some OEM and VEU applications require features that other applications do
not. An operating system should provide a means of selecting required
features and rejecting unneeded features.

MULTIPLE APPLICATIONS

Sometimes there is a need to run more than one application on the same
computer. Several applications might need to share some resources, such
as hardware and perhaps some files, while reserving other resources for
themselves.

MEMORY REQUIREMENTS

The memory requirements of some applications change according to the
events that occur in the real world. If a system can share memory
between applications, then the total amount of memory required for the
system might be less then the sum of the maximum amounts required by each
application.

2-2

CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

FILES AND MULTIPLE USERS

Some applications, such as key-to-disk and database-management systems,
support more than one user. In such systems, two problems relate to mass
storage files.

The first problem pertains to file naming. The users must be able to
name files without concern for duplicate names. If they cannot, each
user may be forced to guess at names that have not yet been assigned by
other users.

The second problem deals with selective sharing of files. Multiuser
systems often must be able to share and protect files. For instance, in
a key-to-disk system, one operator may be entering data while another
simultaneously verifies. This illustrates the need for sharing a file.
Now suppose that the file contains confidential information. Once
verified, the file must be protected against unauthorized reading and
writing. This illustrates the need for restricting access. The system
must provide for both sharing and restricted access.

HUMAN ENGINEERING

Applications must be controlled by people. Systems will often contain
critical processes that operators must control with a minimum chance of
error. An application system should provide an easily-understood set of
interactive commands and messages by which operators may use the system.

APPLICATION DEVELOPMENT

Frequently the hardware on whicn an application system will be installed
includes mass storage devices and file structures. If possible, the
operating system should allow system development using this hardware.
This means that you should be able to use language processors
(assemblers, compilers, run-time support systems) linking utilities,
editors, and file maintenance utilities. Minimum time should be required
to install such development tools on the operating system.

DEBUGGING

Virtually all software, no matter how carefully checked out by manual
inspection, contains some bugs. Usually, these bugs are detected by
using the system until an error occurs. Once the error is found, an
engineer begins tracing backwards from the error to the bug that caused
it. When the bug is identified, the engineer modifies the software and
eliminates the bug. This process, called debugging, is repeated until no
more errors are found.

2-3

CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

This debugging process is not always straightforward in real-time
systems. Often, bugs in real-time systems are dependent upon events in
the real world (outside of the computer). In order to detect some
real-time bugs, the system must continue to run even while it is being
debugged.

CHAPTER PERSPECTIVE

If the foregoing considerations pertain to your application, then the
iRMX 86 Operating System can save you an enormous amount of effort. To
see how the iRMX 86 System resolves these and other similar problems,
read Chapter 4.

2-4

CHAPTER 3. BENEFITS OF THE iRMX1II 86 OPERATING SYSTEM

You are reading this manual because you are planning to develop a
real-time application system. As an OEM manager, you are interested in
developing your application system quickly using the latest Very Large
Scale Integration (VLSI) technology, while still holding down the cost of
development. Furthermore, you want to minimize your costs after
development. By serving as a foundation for your application software
(Figure 3-1), the iRMX 86 Operating System can help you meet your
objectives.

REDUCED DEVELOPMENT
COSTS

iRMX 86 OPERATING SYSTEM

/­
/

--

" ,

APPLICATION SOFTWARE
........ ./

'- .,..----------------,.........

SHORTER DEVELOPMENT
CYCLE

Figure 3-1. The iRMX1II 86 System Provides Economic Benefits

DEVELOPMENT TIME

The iRMX 86 Operating System helps you develop real-time application
systems quickly. Acting as the foundation for your specialized
application software, the iRMX 86 Operating System provides services that
are required by many real-time applications. Since these services are
supplied by the iRMX 86 Operating System, your application engineers
spend no time writing software to manage multitasking, dynamic memory
allocation, and other functions vital to many real-time applications.
Rather, your engineers concentrate their efforts on the software that
relates specifically to the application being solved. This greatly
reduces the time needed to develop your application system.

3-1

BENEFITS OF THE iRMX- 86 OPERATING SYSTEM

COST OF IMPLEMENTATION

The iRMX 86 Operating System helps reduce the cost of implementation in
the following ways.

• By supplying the general services required by many real-time
applications, the iRMX 86 System reduces your manpower
requirements.

• Industry-standard languages are available for use with the
iRMX 86 Operating System, and these languages are the same ones
used one your Intellec Development System.

• The features
development.
architecture,
Chapter 4.

of the Operating System simplify the process of
These features, such as object-oriented
device independence, and others, are discussed in

• Support for VLSI devices is available now, which results in
immediate improvements in speed and performance.

COSTS AFTER DEVELOPMENT

After your application system is developed, your major expense is
maintenance -- the process of removing bugs, making changes, and adding
features. The iRMX 86 Operating System helps minimize these costs.

First, a number of features of the iRMX 86 Operating System smooth the
process of system design, reducing the probability of major design
errors. These features, which include multitasking and multiprogramndng,
are described in Chapter 4.

Second, when errors do reveal the presence of bugs in your application
software, the iRMX 86 System provides features to help find the bugs.
These features include error handlers and an object-oriented, real-time
debugger.

Third, the modularity provided by multiple jobs and tasks lets Y9u make
changes and additions without severely affecting the system's overall
design.

CHAPTER PERSPECTIVE

The iRMX 86 Operating System is your economic ally. It helps you put
your real-time application system in the hands of your users in less time
and at less expense. It also allows you to use the latest improvements
in VLSI technology while reducing your maintenance costs after your
system is developed.

3-2

CHAPTER 4. FEATURES OF THE iRMX· 86 OPERATING SYSTEM

This chapter provides you with moderately detailed descriptions of the
following features (Figure 4-1) of the iRMX 86 Operating System:

ARCHITECTURAL FEATURES

• Object-Driented Architecture
• Multitasking
• Interrupt Processing
• Preemptive Priority-Based Scheduling
• Multiprogramming
• Intertask Coordination
• Extendibility

INPUT/OUTPUT FEATURES

• Choice of I/O Systems
• Device-Independent Input and Output
• Hierarchical Naming of Mass Storage Files
• File Access Control
• Control over File Fragmentation
• Selection of Device Drivers
• File Maintenance Programs

CUSTOMIZING FEATURES

• Custom Interactive Commands
• Application Loading
• Start-up System
• Run-time Binding
• Error Handling
• Dynamic Memory Allocation
• Software Interface
• Object-Oriented Debugger
• Bootstrap Loading
• On-Target Development
• Configurability

Each section of this chapter deals with one of these features and, in
case you are already familiar with some features, each sec·tion is
organized for easy skimming. The first few sentences of each section
provide a summary of the feature's value. The feature is then described
in moderate detail and, near the end of each section, the advantages of
the feature are discussed.

4-1

FEATURES OF '"THE iRMXtII 86 OPERATING SYSTEM

CUSTOMIZING

~~-J.'J

iRMX 86 OPERATING SYSTEM

~

"'­ APPLICATION SOFTWARE
......... --- --------

Figure 4-1. Features of the iRMX- 86 Operating System

ARCHITECTURAL FEATURES

When Intel software engineers designed the iRMX 86 Operating System, they
specified the basic processes and data structures of the system,
including such characteristics as the partitioning of programs into
"tasks," task scheduling, and task communication. These characteristics
are referred to as the "architecture" of the system. The important
architectural features of the Operating System are described here.

OBJECT-QRIENTED ARCHITECTURE

The iRMX86 Operating System uses an object-oriented architecture because
it makes the Operating System easy to learn and use.

Explanation of Object-Qriented Architecture

An operating system is a collection of sdftware that is meant to be used
by software engineers. Many operating systems are so complex that the
majority of the engineers using them are unable to fully grasp their
organization. In contrast, systems exhibIting object-oriented
architectures are easier to understand. Their mechanisms are well
defined, and they demonstrate a consistency that makes the operating
system seem less awesome.

4-2

FEATURES OF THE iRMX- 86 OPERATING SYSTEM

In other words, an object-oriented architecture is a means of humanizing
an operating system. It uses a collection of building blocks that are
manipulated by operators. Let's look at a typed architecture that you
might be familiar with -- FORTRAN.

FORTRAN exhibits a typed architecture. Its building blocks are variables
of several types. For instance, it has integers, real numbers,
double-precision real numbers, etc. It also has operators (+, -, *, /,
**, and others) that act on variables to produce understandable results.
Let's turn back to operating systems and see how object-oriented
architecture works in the iRMX 86 System.

The building blocks of the iRMX 86 Operating System are called
and, as with FORTRAN variables, objects are of several types.
tasks, jobs, mailboxes, semaphores, segments, and connections.
also other types of objects, but we already have enough for an
introduction.

objects
There are

There are

Just as the variables in a FORTRAN program are acted upon by operators,
the objects in an iRMX 86-based application system are acted upon by
system calls. In other words, your application software uses system
calls to manipulate the objects in your application system. For
instance, the CREATE MAILBOX and DELETE MAILBOX system calls do precisely
what their names suggest.

How does an object-oriented architecture make a system easier to learn
and use? By taking advantage of useful classification. To illustrate
this, let's return to FORTRAN. The variables of FORTRAN are classified
into types because each type exhibits certain characteristics. For
instance, all integer variables are somewhat similar, even though they
can take on different values. Once you learn the characteristics of an
integer variable, you feel comfortable with every integer variable. This
similarity makes FORTRAN easy to master.

For the same reasons, the objects of the iRMX 86 Operating System are
classified into types. Each object type (such as a semaphore) has a
specific set of attributes. Once you become familiar with the attributes
of a semaphore, you are familiar with all semaphores. There are no
special cases.

This useful classification also applies to iRMX 86 system calls. Each
type of iRMX 86 object has an associated set of system calls. These
calls cannot be used to manipulate objects of another type without
causing an error. (Our analogy breaks down at this point. FORTRAN
operators almost always work on several types of variables.)

The beauty of the object-oriented architecture of the iRMX 86 Operating
System can be summed up in one statement. Once you learn the attributes
and the system calls associated with a type of object, you have complete
knowledge of the behavior of the object type.

4-3

FEATURES OF THE iRMXM 86 OPERATING SYSTEM

Advantages of Object-Driented Architecture

The advantages of an object-oriented architecture depend upon your point
of view. If you are an engineer, the advantage is that you can master
the Operating System in a very short time. You can also focus your
learning on the objects you plan to use. If you only need a few object
types, you can ignore the others.

If you are a manager, you reap economic benefits. Because engineers can
quickly become familiar with the iRMX 86 Operating System, you can trim
large amounts of time out of your system's development cycle. Your
system reaches your users far sooner and at far less cost than it could
without object-oriented architecture.

MULTITASKING

The iRMX 86 Operating System uses multitasking to simplify the
deve~opment of applications that process real-time events.

Explanation of Multitasking

The essence of real-time application systems is the ability to process
numerous events occurring at seemingly random times. These events are
asynchronous because they can occur at any time, and they are potentially
concurrent because one event might occur while another is being processed.

Any single program that attempts to process multiple, concurrent,
asynchronous events is bound to be complex. The program must perform
several functions. It must process the events. It must remember which
events have occurred and the order in which they occurred. It must
remember which events have occurred but have not been processed. The
complexity obviously grows greater as the system monitors more events.

Multitasking is a technique that unwinds this confusion. Rather than
writing a single program to process N events, you can write N programs,
each of which processes a single event. This technique eliminates the
need to monitor the order in which events occur.

Each of these N programs forms an iRMX 86 task, one of the types of
objects mentioned in "Object-Oriented Architecture." Tasks are the only
active objects in the iRMX 86 Operating System, as only tasks can issue
system calls.

Advantages of Multitasking

Multitasking simplifies the process of building an application system.
This allows you to build your system faster and at less expense.
Furthermore, because of the one-to-one relationship between events and
t~sks, your system's code is less complex and easier to maintain.

4-4

FEATURES OF THE iRMXM 86 OPERATING SYSTEM

INTERRUPT PROCESSING

The iRMX 86 Operating System is an interrupt processor. When an
interrupt occurs, the iRMX 86 Operating System schedules a task to
process the interrupt. This method of event detection improves the
performance of your application system.

Explanation of Interrupt Processing

There are two ways that computer systems can schedule processing
associated with detecting and controlling events in the real world
polling and interrupt processing. Polling is implemented by having the
software periodically check to see if certain events have occurred. An
example of polling from a human perspective can be created using a class
of students and a teacher. If, rather than spotting raised hands, the
instructor specifically asks each student in the class if the student has
any questions, then the instructor is polling the students.

Polling has a major shortcoming. A significant amount of the processor's
time is spent testing to see if events have occurred. If events have not
occurred, the processor's time has been wasted.

The second method of controlling processing is interrupt processing.
When an event occurs the processor is literally interrupted. Rather than
executing the next sequential instruction, the processor begins to
execute a task associated specifically with the detected event.

The classroom example used earlier to portray a polling situation can
also be used to illustrate interrupt processing. If a student has a
question, he raises his hand and speaks the instructor's name. The
instructor, interpreting this as an interrupt, finishes his sentence and
deals immediately with the student's question. Once the instructor has
answered the student's question, he returns to what he was doing before
he was interrupted.

Advantages of Interrupt Processing

Interrupt processing of external events provides your application system
with three benefits.

• Better Performance

Interrupt processing allows your system to spend all of its time
running the tasks that process events, rather than executing a
polling loop to see if events have occurred.

• More Flexibility

Because of the direct correlation between interrupts and tasks,
your system can easily be modified to process different events.
All you need to do is write the tasks to process the new
interrupts.

4-5

FEATURES OF THE iRMX'" 86 OPERATING SYSTEM

• Economic Benefits

Because interrupt processing allows your system to respond to
events by means of modularly coded tasks, your system's code is
more structured and easier to understand. Modular code is less
costly to develop and maintain, and it can be developed more
quickly than monolithic code.

PREEMPTIVE PRIORITY-BASED SCHEDULING

The iRMX 86 Operating System uses preemptive, priority-based scheduling
to decide which task runs at any instant. This technique ensures that if
a more important task becomes ready while a less important task is
running, the more important task begins execution immediately.

Explanation of Preemptive Priority-Based Scheduling

In multitasking systems, there are two common techniques for deciding
which task is to be run at any given moment. Time slicing, where tasks
are run in rotation, is the technique used in time-sharing systems. The
second technique, priority-based scheduling, uses assigned priorities to
decide which task is to be run.

Within priority-based scheduling, there are two approaches.
Non-preemptive scheduling allows a task to run until it relinquishes the
processor. Even if while running it causes a higher-priority task to
become ready for execution (for instance, by deallocating a peripheral
device), the original task continues to run until it explicitly
surrenders the processor.

The second approach to priority-based scheduling is preemptive. In
systems using preemptive scheduling, the system always executes the
highest priority task that is ready to run. In other words, if the
running task or an interrupt causes a higher-priority task to become
ready, the operating system switches the processor to the higher-priority
task.

Advantage of Preemptive Priority-Based Scheduling

Preemptive, priority-based scheduling goes hand-in-hand with the
interrupt processing discussed earlier. The priorities of tasks can be
tied to the relative importance of the events that they process. This
enables the processing of more-important events to preempt the processing
of less-important events.

4-6

FEATURES OF THE iRMX- 86 OPERATING SYSTEM

MULTIPROGRAMMING

Multiprogramming provides your system with the ability to run more than
one application on one iAPX 86,88-based microcomputer. This helps reduce
hardware costs.

Explanation of Multiprogramming

Multiprogramming is a technique used to run several applications on a
single application system. By using this technique, the hardware is used
more fully. More processing is squeezed out of each hardware dollar.

In order to take full advantage of multiprogramming, you must provide
each application with a separate environment; that is, separate memory,
files and objects. The reason for the isolation is to prevent
independently developed applications from causing problems for each other.

For instance, suppose that two unrelated applications share a temporary
file on a disk. If Application 1 writes information to the file and
Application 2 writes over the file, Application 1 has problems. The only
way to avoid this kind of problem with shared files is to create some
form of mutual exclusion. But if the two applications must interact even
to the point of excluding each other, they cannot be developed
independently. The two engineers creating the applications must
coordinate with each other and spend valuable time that could be used
within, rather than between, applications. The only alternative is to
avoid sharing the file.

The iRMX 86 Operating System provides a type of object that can be used
to obtain this kind of isolation. The object is called a job, and it has
the following characteristics:

• Unlike tasks, jobs are passive. They cannot invoke system calls.

• Each job includes a collection of tasks and resources needed by
those tasks.

• Jobs serve as useful boundaries for dynamically allocating
memory. When two tasks of one job request memory, they share the
memory associated with their job. Two tasks in different jobs do
not directly compete for memory.

• An application consists of one or more jobs.

• Each job serves as an error boundary. When the application
detects an error, or when the operator decides to abort an
application, a job is a convenient object to delete.

4-7

FEATURES OF THE iRMX'III 86 OPERATING SYSTEM

Advantages of Multiprogramming

Multiprogramming provides your application system with two benefits:

• Multiprogramming increases the amount of work your system can
do. By using your hardware a larger percentage of the time, it
lets your system run several applications rather than one. This
reduces the hardware cost of implementation.

• Because of the correspondence between jobs and applications, new
jobs can be added to your system (or old jobs removed) without
affecting other jobs. This makes your system much easier and
faster to modify.

INTERTASK COORDINATION

The iRMX 86 Operating System provides simple techniques for tasks to
coordinate with one another. These techniques allow tasks in a
multitasking system to mutually exclude, synchronize, and communicate
with each other.

Explanation of Intertask Coordination

As we have already seen, multitasking is a technique used to simplify the
designing of real-time application systems that monitor multiple,
concurrent, asynchronous events. Multitasking allows engineers to focus
their attention on the processing of a single event rather than having to
contend with numerous other events occurring in an unpredictable order.

However, the processing of several events may be related. For instance,
the task processing Event A may need to know how many times Event B has
occurred since Event A last occurred. This kind of processing requires
that tasks be able to coordinate with each other. The iRMX 86 Operating
System provides for this coordination.

Tasks can interact with each other in three ways. They can exch~nge
information, mutually exclude each other, and synchronize each other.
We'll now examine each of these.

• Exchanging Information

Tasks exchange information for two purposes. One purpose is to
pass data from one task to another. For instance, suppose that
one task accumulates keystrokes from a terminal until a carriage
return is encountered. It then passes the entire line of text to
another task, which is responsible for decoding commands.

The second reason for passing data is to draw attention to a
specific object in the application system. In effect, one task
says to another, "r am talking about that object."

4-8

FEATURES OF THE iRMX- 86 OPERATING SYSTEM

The iRMX 86 System facilitates inter task communication by
supplying objects called mailboxes along with system calls to
manipulate mailboxes. The system calls associated with mailboxes
are CREATE MAILBOX, DELETE MAILBOX, SEND MESSAGE, and RECEIVE
MESSAGE. Tasks use the first two system calls to build and
eradicate a particular mailbox. They use the second two calls to
communicate with each other.

Let's see how tasks can use a mailbox for drawing attention and
for sending information. If Task A wants Task B to become aware
of a particular object, Task A uses the SEND MESSAGE system call
to mail the object to the mailbox. Task B uses the RECEIVE
MESSAGE system call to get the object from the mailbox.

NOTE

The foregoing example, along with all
of the examples in this section, is
somewhat simplified in order to serve
as an introduction. If you want
detailed information, refer to the
iRMX 86 NUCLEUS REFERENCE MANUAL.

As mentioned previously, tasks can use mailboxes to send
information to each other. This is accomplished by putting the
information into a segment (an iRMX 86 object consisting of a
contiguous block of memory) and using the SEND MESSAGE system
call to mail the segment. The other task invokes the RECEIVE
MESSAGE system call to get the segment containing the message.

Why don't tasks just send messages directly between each other,
rather than through mailboxes? Tasks are asynchronous -- they run
in unpredictable order. If two tasks want to communicate with
each other, they need a place to store messages and to wait for
messages. If the receiver uses the RECEIVE MESSAGE system call
before the message has been sent, the receiver waits at the
mailbox until a message arrives. Similarly, if the sender uses
the SEND MESSAGE system call before the receiver is ready to
receive, the message is held at the mailbox until a task requests
a message from the mailbox. In other words, mailboxes allow
tasks to communicate with each other even though tasks are
asynchronous_

4-9

FEATURES OF THE iRMX- 86 OPERATING SYSTEM

• Mutual Exclusion

Occasionally, when tasks are running concurrently, the following
kind of situation arises:

Task A is in the process of reading information from a
segment.

An interrupt occurs and Task B, which has higher priority
than Task A, preempts Task A.

Task B modifies the contents of the segment that Task A was
in the midst of reading.

Task B finishes processing its event and surrenders the
processor.

Task A resumes reading the segment.

The problem is that Task A might have information that is
completely invalid. For instance, suppose the application is air
traffic control. Task A is responsible for detecting potential
collisions, and Task B is responsible for updating the Plane
Location Table with the new X- and Y-coordinates of each plane's
location. Unless Task A can obtain exclusive use of the Plane
Location Table, Task B can make Task A fail to spot a collision.

Here's how it could happen. Task A reads the X- coordinate of
the plane's location and is preempted by Task B. Task B updates
the entry that Task A was reading, changing both the X- and
Y-coordinates of the plane's location. Task B finishes its
function and surrenders the processor. Task A resumes execution
and reads the new Y-coordinate of the plane's location. As a
direct result of Task B changing the Plane Location Table while
Task A was reading it, Task A thinks the plane is at old X and
new Y. This misinformation could easily lead to disaster.

This problem can be avoided by mutual exclusion. If Task A can
prevent Task B from modifying the table until after A has
finished using it, A can be assured of valid information.
Somehow, Task A must obtain exclusive use of the table.

The iRMX 86 Operating System provides a type of object that can
be used to provide mutual exclusion -- the semaphore. A
semaphore is an integer counter that tasks can manipulate using
four system calls: CREATE SEMAPHORE, DELETE SEMAPHORE, SEND
UNITS and RECEIVE UNITS. The creation and deletion system calls
are used to build and eradicate semaphores. The send and receive
system calls can be used to achieve mutual exclusion.

Before discussing how semaphores can provide exclusion, we must
examine their properties. As mentioned above, a semaphore is a
counter. It can take on only nonnegative integer values. Tasks
can modify a semaphore's value by using the SEND UNITS or RECEIVE
UNITS system calls. When a task sends N units (must be zero or

4-10

FEATURES OF THE iRMX- 86 OPERATING SYSTEM

greater) to a semaphore, the value of the counter is
increased by N. When a task uses the RECEIVE UNITS system
call to request M units (must be zero or greater) from a
semaphore, one of two things happens.

If the semaphore's counter is greater than or equal to M, the
Operating System reduces the counter by M and continues to
execute the task.

Otherwise, the Operating System begins running the task
having the next highest priority, and the requesting task
waits at the semaphore until the counter reaches M or
greater.

How can tasks use a semaphore to achieve mutual exclusion? Easy!
Create a semaphore with an initial value of 1. Before any task
uses the shared resource, it must receive one unit from the
semaphore. Also, as soon as a task finishes using the resource,
it must send one unit to the semaphore. This technique ensures
the following behavior. At any given moment, no more than one
task can use the resource, and any other tasks that want to use
it await their turn at the semaphore.

Semaphores allow mutual exclusion; they don't enforce it. All
tasks (there can be more than two) sharing the resource must
receive one unit from the semaphore before using the resource.
If one task fails to do this, mutual exclusion is not achieved.
Also, each task must send a unit to the semaphore when the
resource is no longer needed. Failure to do this can permanently
lock all tasks out of the resource.

• Synchronization

As mentioned earlier, tasks are asynchronous. Nonetheless,
occasionally a task must know that a certain event has occurred
before the task starts running. For instance, suppose that a
particular application system requires that Task A cannot run
until after Task B has run. This kind of requirement calls for
synchronizing Task A with Task B.

Your application system can achieve synchronization by using
semaphores. Before executing either Task A or Task B, create a
semaphore with an initial value of zero. Then have Task A issue
RECEIVE UNITS requesting one unit from the semaphore. Task A is
forced to wait at the semaphore until Task B sends a unit. This
achieves the desired synchronization.

4-11

FEATURES OF THE iRMX'" 86 OPERATING SYSTEM

Advantage of Intertask Coordination

Every real-time multitasking system must provide for intertask
coordination, so this,~oordination cannot be billed as an advantage. The
true advantage arises from the flexible means that the iRMX 86 System
provides for accomplishing coordination.

The intertask coordination supplied by the iRMX 86 Operating System is
flexible and simple to use. Se~phores and mailboxes can accommodate a
wide variety of situations. And your application system is not limited
to some arbitrary number of mailboxes or semaphores. It can create as
many as it needs.

EXTENDIBILITY

The iRMX 86 Operating System is extendible. It allows you to create your
own object types and to add system calls to the Operating System.

Explanation of Extendibility

Something is extendible if you can add to it, and the iRMX 86 Operating
System is extendible. Your system programming engineers can build their
own types of objects and the system calls to manipulate those objects.
These custom features become a part of the Operating System. From the
point of view of the application programming engineer, there is no way to
distinguish your custom objects from those supplied by Intel.

Advantage of Extendibility

The advantage of extendibility is that you can add your features to the
iRMX 86 Operating System and obtain the same benefits as supplied by its
object-oriented architecture. These benefits include the ability to send
your custom-made objects to mailboxes and the ability to put them in
object directories. Additionally, your application engineers can more
quickly become familiar with your custom features. This shrinks your
development time and costs, and it allows you to bring your application
system to your users sooner.

4-12

FEATURES OF THE iRMX" 86 OPERATING SYSTEM

INPUT/OUTPUT FEATURES

The iRMX 86 Operating System offers the power and flexibility of a
genera1-purpose operating system. Input and output operations will be a
large part of most applications, so the Operating System offers a
collection of I/O features to speed development of application systems,
and to make the I/O of those systems efficient.

CHOICE OF I/O SYSTEMS

To meet the I/O needs of a wide variety of applications, the iRMX 86
Operating System provides two I/O systems. You can use one system or the
other, or both may be combined in one application.

Explanation of Choice of I/O Systems

Many features of the iRMX 86 Operating System are useful in most
applications, but not all applications. This is especially true of
features relating to input and output. The iRMX 86 Operating System
provides two I/O systems: the Basic I/O System and the Extended I/O
System.

EXTENDED I/O SYSTEM. The Extended I/O System is designed to be easy to
use, and to be efficient for sequential I/O. The important features of
the Extended I/O System are:

• AUTOMATIC BUFFERING OF I/O OPERATIONS

If you want to use multiple-buffered I/O, but do not want to be
burdened with writing complex code to check and switch buffers,
you can use iRMX 86 Extended I/O System calls. When the
application program issues a system call to perform an I/O
operation, the iRMX 86 Operating System performs the input or
output and returns control to the user program after the data
transfer is completed. But before returning control to the user
program, the iRMX 86 Operating System starts reading or writing
the next block.

For example, if the application is reading a file from disk, the
following sequence will occur:

1. When the application program opens a file using an Extended
I/O System call, the Operating System starts reading the
first block of the file ("initiates" the input).

2. The Operating System returns control to the application
program.

4-13

FEATURES OF THE iRMXlII 86 OPERATING SYSTEM

3. Later the program requests an Extended I/O System Read. The
Operating System has already started reading this data. When
the input is complete, the Operating System initiates a read
of the next block of the file (called "reading ahead"), and
returns control to the calling program.

In this way, whenever the user requests an Extended I/O System
Read, the data is either immediately available, or is in the
process of being read.

The equivalent output process is performed by "writing behind."
When an application program requests an Extended I/O System
Write, the iRMX 86 Operating System copies the data to a buffer
maintained by the Extended I/O System, and returns to the calling
program. Whenever this buffer is filled, the system initiates an
output.

• EFFICIENT SEQUENTIAL I/O OPERATIONS

Another characteristic of the Extended I/O System is that when it
does a "read ahead" operation, the Operating System assumes that
a series of sequential reads are to be performed. For example,
the Operating System will read data from disk address 23, then
from disk address 24, and so on. So when your I/O is mostly
sequential, (for example, when examining consecutive records of a
file) Extended I/O System calls are particularly efficient. It
is still possible to perform random access of a file with the
Extended I/O System by preceding operations with a Seek call
specifying the offset into the file.

• FREE OF TEDIOUS DETAILS

The system calls of the Extended I/O System have relatively few
parameters and are easy to code. In many cases a single Extended
I/O Call will serve the purpose of several Basic I/O System
calls. This simplifies your application system, which reduces
development time and reduces costs.

BASIC I/O SYSTEM. For some applications the performance or flexibility
of the system is more critical than the time necessary to produce the
system. For these applications, the iRMX 86 Operating System provides
the Basic I/O System.

The Basic I/O System is the more flexible of the two I/O systems. It
provides very powerful capabilities, and it makes few assumptions about
the requirements of your application. The following features illustrate
the flexibility of the Basic I/O System:

4-14

FEATURES OF THE iRM.X'" 86 OPERATING SYSTEM

• ALLOWS YOU TO DESIGN YOUR OWN BUFFERING ALGORITHM

Rather than automatically providing a buffering algorithm, the
Basic I/O System allows you to design and implement your own
buffering technique. Using the Basic I/O System, you control the
synchronization between I/O and processing.

• APPROPRIATE FOR RANDOM I/O OPERATIONS

Perhaps the I/O in your application is random access. This means
that rather than reading or writing data in sequential blocks,
the application accesses data in blocks that are not adjacent to
each other. The Basic I/O System is more appropriate to these
operations because of the explicit control the programmer has
over I/O operations.

• GIVES YOUR TASK CONTROL OF DETAILS

The system calls of the Basic I/O System often have many
parameters. Using these parameters, your tasks can closely
tailor the behavior of each system call to match the performance
requirements of your application system.

As these features show, the Basic I/O System emphasizes flexibility
rather than ease of use. The Basic I/O System provides I/O features that
are useful in time-critical or memory-critical applications, and allows
the performance of a system to be optimized.

Advantages of Choice of I/O Systems

The iRMX 86 Operating System allows you to select the features you want.
The Basic I/O System gives maximum control of I/O operations for
applications requiring finely tuned performance, especially while doing
random-access I/O. The Extended I/O System is easy to use. It saves
development costs and development time, especially in applications that
use sequential I/O.

Finally, remember that you can use both I/O systems when your application
system uses I/O for several purposes, some of which are best accomplished
by the Basic I/O System, and some of which are best accomplished by the
Extended I/O System.

DEVICE-INDEPENDENT INPUT AND OUTPUT

The input and output capabilities of the iRM.X 86 Operating System are
device independent. This adds flexibility to your system by allowing you
to easily reroute input or output to different devices.

4-15

FEATURES OF THE iRMX'" 86 OPERATING SYSTEM

Explanation of Device-Independent Input and Output

Device independence is a relatively simple yet powerful concept. A
system provides device-independent I/O if it has one set of system calls
for communicating with all I/O devices. The alternative to device
independence is to provide different calls for each type of device.
Let's first examine the alternative and then move on to device
independence.

Consider an operating system that does not provide device independence.
The system calls controlling input and output operations are explicitly
related to the I/O devices being used. For instance, the system call for
writing to the line printer might be PRINT, while the system call for
writing to the terminal might be TYPE. Once you have written a procedure
in such a system, the procedure is locked into a particular combination
of devices. The only way you can reroute input or output is to edit the
source code and recompile. .

Now consider an operating system that is device independent: the iRMX 86
Operating System. Because the iRMX 86 System supports device-independent
I/O, the system calls are not device dependent. The READ system call is
always used for input, and the WRITE system call is always used for
output. The device is specified by a parameter of the system call.
Consequently, by using a variable as the parameter that selects the
device, you can create I/O procedures that are completely independent of
the devices they use.

Advantages of Device-Independent Input and Output

Device independence makes your application system very flexible. If you
write a procedure to log events on a line printer, you can use the same
procedure to log events on a terminal or, for that matter, on a disk.
You need not recompile or otherwise modify your system.

HIERARCHICAL NAMING OF MASS STORAGE FILES

The iRMX 86 Operating System supports hierarchical naming of files on
mass storage devices. This naming technique provides your application
systems with additional flexibility by simplifying the process of
organizing and naming files.

Explanation of Hierarchical Naming

Hierarchical naming is one of three common techniques used to name files
on mass storage devices such as disks, bubble memories, or drums. The
other two techniques are called simple naming and directory naming. The
advantages of hierarchical naming become clear when that technique is
compared to the other two. First we'll look at simple naming.

4-16

FEATURES OF THE iRMX- 86 OPERATING SYSTEM

Simple naming allows you to provide files with a descriptive name. For
instance, you might decide to name files ACCOUNTS PAYABLE, ACCOUNTS
RECEIVABLE, TRANSACTIONS, and INVENTORY. These names are certainly
descriptive, but what happens when a different application running in the
same system also decides to use one of these names? This question is
avoided by using a more powerful naming technique: directory naming.

Directory naming allows different applications (or different application
engineers, for that matter) to use the same file name. Each application
(or engineer) is given one special-purpose file, called a directory.
This directory contains only file names; it does not contain data.
Figures 4-2 and 4-3 provide examples of directories.

When application software refers to a specific file, it first names the
directory and then names the file. For instance, in Figure 4-2, the
TRANSACTIONS file associated with Engineering would be designated
ENGINEERING/TRANSACTIONS. The comparable file for Marketing, in Figure
4-3, would be designated MARKETING/TRANSACTIONS.

The advantage of directory naming over simple naming is that directory
naming allows the file names to reflect the relationships between files.
In Figure 4-2, all the files pertaining to Engineering are in the
directory called ENGINEERING. This grouping of related files is not
supported by simple naming.

ENGINEERING

ACCOUNTS
PAVABLE

lo ACCOUNTS 0
RECEIVABLE Om

TRANSACTIONS -t
Oz
Cc>

~ lo z-
INVENTORY m lo 0 -t Z -~2i Z 0 111 m FILE III 0 m

t
m- lo C "O~ NAMES ZZ 0 lo-
-t m -t Z -<z
om 0 -t 1oC>
~:!! III IXI~

DIRECTORY -<Z Z r-

e III m
FILE -DATA

FILE,S

Figure 4-2. An Engineering Directory

4-17

FEATURES OF THE iRMXlII 86 OPERATING SYSTEM

MARKETING

ACCOUNTS
PAYABLE

ACCOUNTS
~--~~

RECEIVABLE
TRANSACTIONSI-------"'--------, II s:

INVENTORY r------, z ~ ~ ~
1...-_.,-_.... ~ ;! ~ ;;;

Z m 0-1

DIRECTORY
FILE

6::! ::!Z
:II Z ~e
-< e (I)

Figure 4-3. A Marketing Directory

Os:
g~
~;;;
"'-I
;:z
~e
III ... m

What about situations in which more than one level of directory is
required? This situation is illustrated in Figure 4-4. This figure
differs from 4-3 only in that a second level of grouping has been
included.

-FILE
NAMES

-DATA
FILES

Just as Figure 4-4 shows that single-level directory naming is not
sufficient for all collections of files, another figure could be
constructed to show that two-level directory naming is not always
sufficient. Consequently, the iRMX 86 Operating System supports any
number of levels of directories. This n-Ievel directory naming is called
hierarchical naming of files.

Advantages of Hierarchical Naming

Hierarchical naming of files simplifies the process of adding new
applications to your system. One concern about expanding your system is
the naming of mass storage files associated with a new application.
Names of new files must differ ~rom names of existing files. If your
system uses only a few mass storage files, you can expect little
difficulty in assigning unique file names. But if your system uses a
large number of files, the problem of ensuring uniqueness becomes more
significant.

This uniqueness problem becomes particularly difficult if file names are
assigned by an operator in a system having more than one operator.

4-18

FEATURES OF THE iRMX- 86 OPERATING SYSTEM

MARKETING
ACCOUNTS

PAYABLE
ACCOUNTS

RECEIVABLE
TRANSACTIONS
INVENTORY

CAPITAL ACE
EQUIPMENT BOOKINGS TRILOBITE STATIONARY

MEMORIES SMITH
NON CAPITAL PLEISTOCENE ADVERTISING

EQUIPMENT r-- BILLINGS

~
ELECTRONICS SMUDGE

PENCI.LS n
mZ-1: m -I: ,j ./" OOZ. g~~5i s:~~~ DIRECTORY

~~~~ 'ii~~i:i - FILES 
~;:Cl::! FILE 

/\ /\~ 
NAMES 

-DATA 
FILES 

Figure 4-4. Hierarchical Naming Of Files 

Hierarchical file naming eliminates this problem. Whenever you add a new 
application to your system, you can assign it a directory. The new 
application can then use this directory to provide unique names to any 
number of files. Also, each operator can be assigned a unique directory 
which can then be used to provide unique names. 

FILE ACCESS CONTROL 

The iRMX 86 Operating System allows your application system to control 
access to hierarchically named files. This facilitates file sharing 
while still preventing valuable data from being copied, modified, or 
destroyed by unauthorized users. 

4-19 

I 



FEATURES OF THE iRMX- 86 OPERATING SYSTEM 

Explanation of File Access Control 

In the multiprogramming environment provided by the iRMX 86 Operating 
System, the sharing of files can be useful. But the job that owns a file 
may wish to share it with only certain other jobs rather than all other 
jobs. Furthermore, the job owning a file may wish to restrict the nature 
of the shared access. For example, the owning job may wish to allow a 
particular file to be read but not written. The ability to specify how 
and with whom a file is shared is called file access control. 

The iRMX 86 Operating System provides powerful file access control by 
allowing the owner of a file to specify who can use the file and how they 
can use it. In fact, a file's owner can even grant different 
combinations of access (reading only, writing only, reading and writing, 
etc.) to each user of a file. 

Advantages of File Access Control 

By controlling who can access a file and how they can access it, your 
system becomes more reliable and secure. There is less chance for an 
unauthorized task to accidentally modify a valuable file, and there is 
less opportunity for an unauthorized task to read a confidential file. 

Your application software can, in fact, expand file access protection 
into a file security system. For instance, suppose that your application 
involves several operators accessing files on disk. By providing each 
operator with a password, so an individual's identity can be verified, 
your application software can strictly control which operators have 
access to which files. 

CONTROL OVER FILE FRAGMENTATION 

The iRMX 86 Operating System allows you to specify the granularity of 
each mass storage file. This lets you trade faster I/O for more 
efficient use of space on the mass storage device. 

Explanation of File Fragmentation 

When information is stored on a mass storage device, space is allocated 
in chunks rather than one byte at a time. These chunks, called granules, 
can be large or small, but all granules within one file must be the same 
size. This size is called the file granularity, and it is specified by 
the engineer who creates the file. 

A file's granularity affects the use of a storage device in three ways. 

4-20 



FEATURES OF THE iRMX- 86 OPERATING SYSTEM 

• Data Transfer Rate 

The file granularity directly affects the speed at which the 
Operating System can transfer information to or from the storage 
device. The larger the granularity, the faster the Operating· 
System transfers data. 

• Access Time 

The smaller the granules, the more time is required to access a 
series of random locations in the file. Larger granules reduce 
access time. 

• Wasted Device Space 

The file granularity directly affects the amount of wasted space 
on the device. The larger the granularity, the more device space 
is wasted. 

Here's an example. (For the sake of simplicity, we will ignore 
any information stored on the device on behalf of the Operating 
System.) Consider a file containing 20010 bytes. If the 
granularity is 10000 bytes, the file occupies three granules, 
each of which is 10000 bytes long. The first two granules are 
full and the third contains only 10 useful bytes. This file 
wastes almost 10000 bytes of storage space. 

If we change the file granularity to 200 bytes, the file occupies 
101 granules. Each of the first 100 granules is full and the 
last granule contains only 10 useful bytes. The file now wastes 
only 190 bytes of storage space. 

Advantages of Control over Fragmentation 

By allowing you to control the file granularity, the iRMX 86 Operating 
System lets you trade device space for performance. If your application 
has many mass storage units and space is readily available, you can 
specify a large file granularity. This provides you with faster average 
transfer rates and shorter access times, but it wastes some of your 
device space. 

If, on the other hand, you have only one small mass storage unit, you 
might want to sacrifice some performance for better use of space. This 
trade would be particularly desirable if you do not use the device often 
enough to be concerned with the rate of data transfer. 

SELECTION OF DEVICE DRIVERS 

The iRMX 86 Operating System offers you your choice of Intel- supplied 
device drivers. It also allows you to write your own drivers. 

4-21 



FEATURES OF THE iRMXlB 86 OPERATING SYSTEM 

Explanation of Device Drivers 

A device driver is a software module that serves as the interface between 
a device's controller (which is hardware) and the iRMX 86 I/O System. 
The purpose of the driver is to make all devices look alike to the I/O 
System. In effect, the driver hides the idiosyncrasies of a device from 
the I/O System. 

Advantages of Having a Selection 

By selecting and creating device drivers, you can attach any device to 
your application system. This means that you are not limited to a few 
specific devices. You can select devices on any basis at all -­
performance, cost, reliability, availability, whatever. The choice is 
yours. 

FILE MAINTENANCE PROGRAMS 

The iRMX 86 Operating System is delivered with programs which allow you 
to manipulate iRMX 86 files. 

Explanation of File Maintenance Programs 

As you develop an application, you will need to work with files. You can 
write programs to perform these file operations. But the Operating 
System already has programs to perform operations that are usually 
necessary in developing an application system. (The programs operate as 
commands to the system; why a program is a command is explained in the 
section Custom Interactive Commands.) These commands include: 

• COPY, which copies files. 

• FORMAT, which formats an iRMX 86 secondary storage device such as 
a disk or diskette. 

• DIR, which displays a directory of the files on an iRMX 86 device. 

• DOWNCOPY and UPCOPY, which are used to move files between ISIS 
(De~elopment System) devices and iRMX 86 devices. 

• RENAME, which allows you to rename files. 

• CREATEDIR, which allows you to create a new file directory. 

• SUBMIT, which automatically executes commands contained in an 
iRMX 86 file. 

4-22 



FEATURES OF THE iRMXm 86 OPERATING SYSTEM 

Advantages of File Maintenance Programs 

The most important advantage of these programs is that you will save time 
and money in developing your application system, because you already have 
the software tools necessary to manipulate files during the development 
process. In addition, the file maintenance programs may be be included 
as part of your application system if this is appropriate. 

4-23 



FEATURES OF THE iRMX- 86 OPERATING SYST~ 

CUSTOMIZING FEATURES 

The iRMX 86 Operating System is designed specifical1y for OEM 
applications. For this reason the application system as a whole can 
appear unique to the user. Certain features of the Operating System 
allow an application to be customized in its capabilities and in how it 
appears to the end user. Let's look at these features. 

CUSTOM INTERACTIVE COMMANDS 

People interact with your applications by entering commands and receiving 
information at terminals. The iRMX 86 Operating System allows you to 
define commands that are appropriate to the application and are 
meaningful to the operator. This command facility is called the Human 
Interface. 

Explanation of Custom Interactive Commands 

By designing commands which are appropriate to the type of people who use 
a system, you can control the human-to-application interface. This can 
make a system appear "friendly," it can give the application a unique 
character, and it can reduce operator errors. 

CUSTOM COMMANDS = PROGRAMS. Because the first word in a command is the 
name of a program file on a mass storage device such as a disk, you are 
given great flexibility in defining commands. (In the example, TOXIN is 
the name of a program file.) When someone type a command at the 
terminal, the program having the command name is loaded from the disk, 
and is run by the Operating System. This means: 

• You may add or modify commands simply by writing new programs. 

• The number of custom commands for a system is not limited by 
program space in memory. 

• You do not have to "rebuild" the system to change commands. 

• Programs that are used infrequently do not take up memory space 
when they aren't being run. 

COMMAND LINE PARSING. System calls are available for retrieving and 
interpreting parameters of a command. This process is called "parsing a 
command line." 

4-24 



FEATURES OF THE iRMX- 86 OPERATING SYSTEM 

Consider an application that monitors toxins in the blood of hospital 
patients. An operator (perhaps a nurse or doctor) can run a task that 
displays the toxin level of an individual patient, or of all patients being 
monitored. One approach would be to have the operator run the task with a 
command: 

"RUN TOXIN. V3" 

The program might prompt with: 

"Display of which units? --" 

A more "friendly" approach allows a person to use commands that are 
oriented to the application and to his or her skills, rather than to use 
computer-oriented commands. In the example, a better command is: 

"TOXIN of John Doe" 

The program TOXIN issues a system call to receive the parameter "John 
Doe". Because file names frequently are parameters for commands, 
specialized system calls are also available to interpret file name 
parameters. 

Advantage of Custom Commands 

The iRMX 86 Operating System makes it easy to design commands for 
operators who are not particularly familiar with computers. The ability 
to define commands enables you to create an application that is easy to 
use, is easy to understand, and is resistant to operator errors. New 
commands may be added by simply writing new programs, rather than making 
expensive changes to the system. 

APPLICATION LOADING 

The iRMX 86 Operating System allows your application to read programs 
from disk into memory and to run them. (This capability is briefly 
described under Custom Interactive Commands in this section.) Also, toe 
Operating System allows a program to be broken .into segments called 
overlays, so that the entire program does not have to be in memory at one 
time. 

Explanation of Application Loading 

The iRMX 86 Application Loader provides two powerful facilities: 
Load-Time Location, and Overlay Loading. 

4-25 



FEATURES OF THE iRMX'" 86 OPERATING SYSTEM 

LOAD-TIME LOCATION. The explanation of Custom Interactive Commands 
mentioned that programs can be loaded from a mass storage device like a 
disk or bubble memory. The iRMX 86 Application Loader is designed so 
that programs may be loaded anywhere in available memory. The loader 
will modify the appropriate addresses in the program at the time the 
program is loaded. This capability, Load-Time Location, offers great 
flexibility in the design of application systems. As new programs are 
added, existing programs do not have to be rebuilt ("linked") in order to 
run together. Or if more memory is added to the system, the memory can 
be readily used. 

OVERLAY LOADING. Occasionally a program is large enough that it is 
necessary to break it into pieces called overlays. Each overlay runs at 
a different time, and occupies the same area of memory. A program 
containing overlays consists of a "root" that is always present while the 
program is running, and of two or more overlays. The overlays are loaded 
by system calls issued from the root. An overlay facility allows 
programs to be run even if the programs are too large to fit in memory. 
Naturally, some care must be exercised to ensure that functions performed 
by separate overlays do not have to run simultaneously. Also, a program 
with overlays will execute somewhat slower than one that does not contain 
overlays. 

Advantages of Application Loading 

The iRMX 86 Application Loader gives a programmer great flexibility in 
the way programs use memory. The system can load programs anywhere in 
available memory, and programs can execute even though they are actually 
larger than the memory available. 

START-UP SYSTEM 

The iRMX 86 release package contains a system that is ready to be used. 
This ready-to-run system is called the start-up system. 

Explanation of Start-up System 

The iRMX 86 Operating System is a "building block" operating system, with 
pieces you can put together to create your system. However, the release 
package that you receive includes a "start-up system", built and ready to 
run on appropriate hardware. The release package also includes the files 
which were used to create this start-up system. 

Advantages of Start-up System 

The start-up system provides these specific advantages: 

4-26 



FEATURES OF THE iRMX- 86 OPERATING SYSTEM 

• You can become familiar with the Operating System immediately, 
and perhaps even run your application software without rebuilding 
the Operating System. 

• The start-up system has commands to perform common file 
operations. (See File Maintenance Programs earlier in this 
chapter.) These commands can be used in developing your 
application, and may themselves be included in your application. 

• The actual files used to create the start-up system provide an 
example of how to put together an iRMX 86 system. 

RUN-TIME BINDING 

The iRMX 86 Operating System uses run-time binding. This provides your 
system with three kinds of flexibility. It allows tasks in different 
jobs to share objects; it lets your procedures use logical names for 
files and devices; and it simplifies the process of attaching your 
application software to the iRMX 86 Operating System. 

Explanation of Run-Time Binding 

Before we look into run-time binding, let's consider binding as it 
relates to a program. Binding is the process of letting each program 
know the locations of the variables and procedures that it uses. 

Binding can be performed several times during the development and 
execution of a program. Some binding takes place during the process of 
compilation. As a program is being compiled, its references to variables 
and procedures are resolved (that is, converted into machine language) 
whenever the compiler has sufficient information. Sometimes, however, a 
program refers to variables or procedures that are part of a separate 
program. When this happens, the compiler cannot resolve the reference, 
and binding must be delayed. 

Some binding also takes place during linking. Linking is the process of 
combining several programs that are compiled separately. The purpose 6f 
linking is to allow a program to refer to variables and procedures 
defined in a different program. (Such references are called external 
references because they refer to information outside of the program under 
consideration.) When the linking process resolves an external reference, 
it performs binding that cannot be completed during compilation. 

Run-time binding means binding while the system is actually running. The 
iRMX 86 Operating System provides three kinds of run-time 'binding: 

o Binding objects to tasks. 

o Binding files and devices to tasks. 

o Binding your application software to the Operating System. 

4-27 



FEATURES 01" THE iRMXlII 86 OPERATING SYSTEM 

The first two kinds of run-time binding are based on the use of object 
directories. An object directory is an attribute of a job that allows 
tasks to provide ASCII names for objects. Tasks use the CATALOG OBJECT, 
LOOKUP OBJECT, and UNCATALOG OBJECT system calls to define, lookup, or 
delete the name of an object. In each case, the task using the system 
call must specify the job whose object directory is to be accessed. 

Now we'll look more closely at each type of run-time binding. 

BINDING OBJECTS TO TASKS. When two tasks use a mailbox to pass 
information, they obviously must both access the same mailbox. But if 
the programs for the two tasks are compiled and linked independently of 
one another (as they probably would be if they are in separate jobs), the 
tasks must use run-time binding to access the same mailbox. 

The run-time binding of objects to tasks is accomplished as follows. 
When a task creates an object that it wishes to share with other tasks, 
the creator task catalogs the object in an object directory. Other tasks 
can then access the cataloged object if they know its ASCII name. 

Engineers can control the sharing of objects by selectively broadcasting 
object names. If two engineers wish to share an object, they must agree 
on both the name and the object directory that is to contain the name. 
One task then creates the object and the other accesses it through the 
object directory. 

BINDING OF FILES AND DEVICES TO TASKS. Suppose you wish to code an 
application utility program that takes input from any supported input 
device or from a disk file. Runtime binding can help accomplish this. 
The utility program can be coded to lookup an input connection under a 
particular name. Then any program that needs the utility program can 
create the input connection, catalog it under the agreed-upon name, and 
invoke the utility program. In effect, the ASCII name in'the object 
directory is the logical name of the input file. 

BINDING OF APPLICATION SOFTWARE TO OPERATING SYSTEM. The iRMX 86 
Operating System uses a third type of run-time binding to allow your 
application software to communicate with the Operating System. Whenever 
your application software invokes a system call, an INTEL-supplied 
interface routine converts the call into a software-generated interrupt. 
This interrupt causes control to be transferred to a procedure within the 
iRMX 86 Operating System that performs the desired function. In other 
words, the software interrupts bind the system calls of your application 
software to the iRMX 86 procedures. 

4-28 



FEATURES OF THE iRMX~ 86 OPERATING SYSTEM 

Advantages of Run-Time Binding 

Runtime binding provides your application system with flexibility. By 
allowing your system to name objects, the iRMX 86 Operating System 
provides a means of sharing dynamically created objects between jobs. By 
supporting logical names for files and devices, the iRMX 86 System allows 
tasks to work with any combination of files and devices rather than with 
a single, fixed combination. By using software interrupts to bind your 
application software to the Operating System, you can reconfigure the 
Operating System without having to recompile or relink your application 
software. 

ERROR HANDLING 

The iRMX 86 Operating System allows your application system to specify an 
error handling procedure for each task. 

Explanation of Error Handling 

Error handling is the process of detecting and reacting to unexpected 
conditions. The iRMX 86 Operating System supports error handling by 
doing a substantial amount of validity testing and condition checking 
within system calls, but it cannot detect every error. 

Nonetheless, the iRMX 86 Operating System does protect your system from 
most types of errors. The concepts involved in the iRMX 86 error 
handling scheme are exception codes, and exception handlers. We'll look 
at these one at a time. 

• Exception Codes 

Whenever a task invokes a system call, the iRMX 86 Operating 
System attempts to perform the requested function. Whether or 
not the attempt is successful the Operating System generates an 
exception code. This code indicates two things. First, it shows 
whether the system call succeeded or failed. Second, in the case 
of failure, the code shows which unexpected condition prevented 
successful completion. 

e Exception Handlers 

An exception handler is a procedure that the Operating System can 
invoke when a task receives an exception code indicating failure 
of the function requested. As each task is created, it is 
assigned an exception handler; either one written by the 
programmer, or a default error handler provided by the Operating 
System. The alternative to using exception handlers is to 
process exception codes in the procedure that issued the system 
call. 

4-29 



FEAtURES OF THE iRMX~ 86 OPERAl'ING SYSTEM 

Because yoU can write the error handler, you can control the 
behavior of an application when it receives an exception code. 
the handler can recover from the error, delete the task 
cont~ining the error, warn the operator of the error, or ignore 
the error altogether. The choice is yours. 

In summary, exception handling works as follows. The Operating System 
generates an exception code for each system call. If the code indicates 
successful compl~tion, the Operating System detected no problems. If the 
code indicates an exceptional condition, the exceptional condition can be 
processed either of two ways: within the procedure that invoked the 
system call, or by the task's exception handler, which is invoked by the 
Operating System. The technique used is a characteristic of the task, 
and is established when the task is incorporated into the system. 

Advantage of Error Handling 

Error handling provides your application system with several methods 
reacting to unusual conditions. One of these methods, having the 
Operating System automatically invoke your task's error handling 
procedure, greatly simplifies error processing. The other method, 
dealing with some or all-unusual conditions within your application 
allows you to provide special processing for unusual circumstances. 
iRMX 86 Operating System allows your application system to use both 
methods. 

DYNAMIC MEMORY ALLOCATION 

for 

task; 
The 

The iRMX 86 Operating System supports dynamic allocation of memory. This 
allows you to reduce your implementation costs by building systems in 
which applications share m~mory. It also allows your applic~tions to 
change the amount of memory they use as their needs change. 

Explanation of Dynamic Memory Allocation 

Although there are numerous techniques for assigning memory to jobs, each 
techniqu~ falls into one of two classes: static allocation or dynamic 
allocation. Let's look briefly at static allocation first. 

Static memory allocation enta:i,ls assigning melllQry to jobs when the system 
is starting up. Once the memory is allocated, it cannot be freed to be 
used by other jobs. Consequently, the tota.1 memory requirements of the 
system is always the sum of the memory requirements. of each job. 

Dynamic memory allocation, on the other hand, allows jobs to share 
memory. Memory is allocated to jo.bs only when tasks request it. And 
when a job no longer needs the memory, one of its tasks can free the 
memory for use by other jobs. 

4 ..... 3.0 



FEATURES OF THE iRMXm 86 OPERATING SYSTEM 

Dynamic allocation also is useful within a job. Some tasks can use 
additional memory to improve efficiency. An example of this is a task 
that allocates large buffers to speed up input and output operations. 

Advantage of Dynamic Memory Allocation 

The dynamic allocation of memory provides your application system with 
reduced implementation costs. If your application system runs more than 
one application, chances are fair that memory demands for various jobs 
will be out of phase. That is, one job will be freeing memory while 
another needs more. Dynamic memory allocation allows jobs to take 
advantage of this. Consequently, your application system requires less 
memory than it would using static allocation. 

SOFTWARE INTERFACE 

The iRMX 86 Operating System may be used to run various languages 
translators (PASCAL, FORTRAN, PL/M-86, ASM86 Macro Assembler, etc.). A 
standard, flexible protocol, the Universal Development Interface (UOI), 
allows language translators, language run-time packages, and other 
software development tools to run on the iRMX 86 Operating System. 

Explanation of Software Interface 

The UOI protocol consists of a set of system calls by which language 
software uses the Operating System. (Language processors might be 
compilers, interpreters, assemblers, or run-time systems.) Any language 
may be run on the iRMX 86 Operating System if the language processor uses 
the UOI standard system calls. In addition, the same language processor 
can, without modification, be run on any other operating system which 
includes the UOl system calls. (Intel markets a variety of operating 
systems which use UOl for language support.) 

Advantages of Software Interface 

There are at least two major advantages to the UDI software interface. 

• A language processor can use well-defined, appropriate, standard 
calls to communicate with the iRMX 86 Operating System. Existing 
languages can be adapted easily to run on the Operating System. 

• Any language processor or software tool using UOl system calls 
can run on several Intel operating systems. This feature is 
commonly termed "portability," and is becoming a major 
consideration in software design because of obvious economic 
benefits. 

4-31 



FEATURES OF THE iRMX'" 86 OPERATING SYSTEM 

OBJECT-QRIENTED DEBUGGER 

The iRMX 86 Operating System provides a special debugger that is attuned 
to iRMX 86 objects. This debugger simplifies the process of removing the 
bugs in the interaction between tasks of the application system. It also 
facilitates debugging in a real-time environment. 

Explanation of an Object-oriented Debugger 

We have already discussed the object-oriented architecture of the iRMX 86 
Operating System. Reviewing briefly, each iRMX 86 job is a community of 
tasks, and each task can manipulate objects. A special set of objects 
(mailboxes and semaphores) provides a means for tasks to coordinate with 
one another. 

The iRMX 86 Debugger has two capabilities that greatly simplify the 
process of debugging in a multitasking environment. First, the Debugger 
allows you to debug several tasks while the balance of the application 
system continues to run in real time. Second, the debugger lets you see 
which tasks or objects are queued at mailboxes and semaphores. 

These twp capabilities help you debug your application system at two 
levels. You can look into the behavior of an individual task, and you 
can examine the interaction between tasks. Both levels must be 
thoroughly debugged before your system is fully implemented. 

Advantage of an Object-oriented Debugger 

The object:-oriented Debugger gives your application system flexibility 
while simultaneously providing economic benefits. 

• Added Flexibility 

By allowing you to debug several tasks while the system continues 
to run in real time, the Debugger lets you check out new tasks in 
a running system. This simplifies the process of adding,new 
tasks to an existing application system. 

• Economic Benefits 

By simplifying the process of debugging the interplay between 
tasks, the Debugger lessens the amount of time needed to debug 
your application system. This directly reduces the time to 
market, the cost of implementation, and the cost of maintenance. 

4-32 



FEATURES OF THE iRMX'" 86 OPERATING SYSTEM 

ON-TARGET PROGRAM DEVELOPMENT 

You may develop an iRMX 86 application system on a "host" computer system, 
and then transfer the system to a "target" computer. An alternative is to 
develop programs on the target computer. With certain hardware and 
software options, the iRMX 86 Operating System can provide an ideal program 
development environment. Although on-target program development is not 
practical for all applications, for some applications it is very worthwhile. 

Explanation of On-Target Program Development 

The emphasis of most of this chapter has been on building a specialized 
software product using the iRMX 86 Operating System as a basis for the 
application. Typically the programs you write are developed on an Intellec 
Microcomputer Development System, and the system is then "migrated" onto an 
iSBC 86,88 board. 

In contrast, you can develop programs directly on the iSBC 86,88-based 
hardware by using certain capabilities of the iRMX 86 Operating System. 
Each of these features has already been described, and here is how they 
combine to provide a program development system. 

• File support. The iRMX 86 file system supports creation of source, 
object, and loadable files. Many programmers can use the same disk 
because of the hierarchical structure and protection mechanisms of 
the iRMX 86 file system. 

• Languages and software tools. The Universal Development Interface 
makes it easy to support language processors and run-time support 
systems. You can perform all phases of program development using 
editors, linkers, and other tools of the programming trade; these 
software tools are available from Intel and run on the iRMX 86 
Operating System. 

• Convenience. The Application Loader makes it easy to load and 
execute software. Also, the Human Interface provides a powerful 
facility for parsing the names of files that are used by language 
processors, editors, and linkers. 

• Debugging. Programs developed on an iRMX 86 Operating System can 
be debugged using the iRMX 86 object-oriented debugger. 

Advantages of On-Target Program Development 

On-target program development using the iRMX 86 Operating System can be 
attractive for these reasons: 

• If your application system has spare resources(processing time, 
memory, mass-storage space) you can use the system more efficiently. 

• Programmers can make changes on-site, which has economic and 
scheduling advantages. 

4-33 



FEATURES OF THE iRMX- 86 OPERATING SYSTEM 

BOOTSTRAP LOADING 

The iRMX 86 Operating System contains a bootstrap loader that allows your 
application system to reside on disk and be loaded into RAM 
(random-access memory). 

Explanation of Bootstrap Loader 

A bootstrap loader is a program that resides in ROM on your application 
hardware. When your iAPX 86,88 microprocessor is reset the bootstrap 
loader receives control and loads the rest of the software, including the 
iRMX 86 Operating System and the application software. 

Advantages of a Bootstrap Loader 

The iRMX 86 Bootstrap Loader provides your application system with two 
major advantages: 

• Reduced Manufacturing Costs 

By placing the iRMX 86 Bootstrap Loader in ROM, you can shift the 
rest of your application system to RAM. Since the rest of your 
system is probably one or two orders of magnitude larger than the 
Bootstrap Loader, this displacement substantially decreases the 
amount of ROM required to implement your application. 

This decrease in the amount of ROM required for your application 
leads directly to reduced manufacturing costs. ROM, unlike RAM, 
requires that information be "burned" or masked into memory. By 
decreasing the amount of ROM in your system, the Bootstrap Loader 
reduces your masking or "burning" expenses. 

• Reduced Software Maintenance Costs 

The iRMX 86 Boostrap Loader simplifies the process of providing 
updated software to your customers. Rather than shipping ROMs 
containing the modified software, you can ship diskettes. This 
greatly reduces the cost of updating your software. 

CONFIGURABILITY 

The iRMX 86 Operating System is configurable. By allowing you to select 
only the parts of the Operating System that you need, configurability 
reduces the amount of memory required for your application system. 

4-34 



FEATURES OF THE iRMX- 86 OPERATING SYSTEM 

Explanation of Configurability 

A system is configurable if you can select the pieces of it that you want 
and discard the pieces that you don't want. For example, Figure 4-5 
shows a system that consists of six parts. During the process of 
configuration, you select the desired parts and combine them to form the 
system. 

INDIVIDUAL PARTS 

PART 1 

PART 2 

PART 3 

PART 4 

DESIRED SYSTEM 

PART 1 
PART 5 

PART 4 

Figure 4-5. Configuration Of A Hypothetical System 

4-35 



FEATURES OF THE iRMX- 86 OPERATING SYSTEM 

When you configure an application system that is based on the iRMX 86 
Operating System, you have two objectives. First, you select the parts 
of the iRMX 86 Operating System that your application system needs. And 
second, you combine those parts with your application software to form 
the complete application system. These two objectives are depicted in 
Figure 4-6. 

PARTS OF iRMX 86 
OPERATING SYSTEM 

BOOTSTRAP 
LOADER 

APPLICA TlON 
LOADER 

HUMAN 
INTERFACE 

TERMINAL 
HANDLER 

DEBUGGER 

BASIC 
1/0 

EXTENDED 
1/0 

Figure 4-6. 

FIRST 
SELECT PARTS OF iRMX 86 
OPERATING SYSTEM 
REQUIRED BY 
APPLICATION SOFTWARE 

NEXT 
COMBINE APPLICATION 
SOFTWARE WITH iRMX 86 
OPERATING SYSTEM TO FORM 
APPLICATION SYSTEM 

The Dual Objective Of iRMX- 86 Configuration 

4-36 



FEATURES OF THE iRMXm 86 OPERATING SYSTEM 

The iRMX 86 Operating System consists of seven major parts. During the 
process of configuration you must specify which of these parts are to be 
included in your application system. The seven parts are: 

• The Nucleus 

The Nucleus is the heart of the iRMX 86 Operating System. All of 
the other pieces of the Operating System use the Nucleus, so it 
must be included in every application system built upon the 
iRMX 86 Operating System. 

• The I/O System 

The I/O System provides file management and the 
device-independent interface to input and output devices. The 
I/O System is an optional component of the iRMX 86 Operating 
System, so it can be excluded from the Operating System if it is 
not needed. The I/O System actually consists of two systems: the 
Basic I/O System and the Extended I/O System. The user may 
include the Basic I/O System without including the Extended I/O 
System. The Extended I/O System requires the Basic I/O System. 

• The Human Interface 

The Human Interface provides for controlling the application 
system with commands entered at a terminal. You can create 
commands, and the Human Interface provides some file-manipulation 
commands. Like the I/O System, the Human Interface is an 
optional component and can be left out of the Operating System if 
it is not required. If the Human Interface is included, it 
requires the Application Loader and the Extended I/O System. 

• The Application Loader 

The Application Loader allows your application to load programs 
and overlays from disk into main memory. The Application Loader 
is an optional part of a system, but if included requires one or 
both I/O Systems. 

• The Debugger 

The Debugger is also an optional component of the iRMX 86 
Operating System. While the application system is being 
developed, the Debugger is a very useful tool. By including it 
in your system during the development period, you can take 
advantage of its powerful capabilities. Then, once development 
is completed, you can remove the Debugger and reduce the size of 
your finished application system. 

• The Bootstrap Loader 

The Bootstrap Loader is an optional component of the iRMX 86 
Operating System. The Bootstrap Loader reads your application 
system from disk into main memory whenever you reset the hardware 
of the application system. 

4-37 



FEATURES OF THE 1RMX- 86 OPERATING SYSTEM 

• Terminal Handler 

The Terminal Handler is a piece or software that allows you to 
use a terminal without using the I/O System or Human interface. 
It is possible to configure the terminal so that it is only an 
output device. 

Advantages ofConfigurabi1ity 

Figure 4-6 shows the advantage of configurabi1ity. In this figure, an 
iRMX 86 Operating System consisting of the Nucleus, Human Interface, and 
I/O System is being combined with application software. By excluding 
from your finished product the subsystems of the iRMX 86 System that you 
don't need, you reduce the amount of memory needed by your system. 

CHAPTER PERSEPCTIVE 

In this chapter we discussed some features of the iRMX 86 Operating 
System. We also saw some of the advantages that each feature lends your 
application system. Next we'll see how some of these features work 
together. 

4-38 



CHAPTER 5. A HYPOTHETICAL SYSTEM 

In the previous chapter, you were shown some of the features of the 
iRMX 86 Operating System. The features were discussed individually. 
This chapter revisits some of these features using a hypothetical system 
to show you how features combine to form a powerful environment for your 
application software. 

During the following discussion, a hypothetical application system is 
used to illustrate the relationship between your application software and 
the iRMX 86 Operating System. The system monitors and controls a 
variable number of kidney machines in a hospital. These machines remove 
toxins from the blood of patients whose kidneys are not functioning 
correctly. 

The system, which is portrayed in Figure 5-1, consists of three main 
hardware components. 

• Intel iSBC 86,88 Single Board Computer 

The single board computer provides the intelligence for the 
entire system. It contains the software to monitor and control 
the function of all the machines in the system. 

• Bedside Units 

One of these units is located at the side of each patient's bed. 
Connected by cable to the iSBC 86 Single Board Computer,each of 
these units performs four distinct functions: 

Measuring the level of toxins in the blood as the blood 
enters the unit. 

Displaying information so medical personnel at the bedside 
can monitor the dialysis process. 

Accepting commands from the bedside personnel. 

Removing toxins from the blood. 

Each bedside unit performs these functions under the control of 
the single board computer. That is, commands and measurements 
are sent to the single board computer which then adjusts the rate 
of dialysis and generates the bedside display. 

• Master Control Unit 

The system's Master Control Unit (MCU) consists of a terminal 
with a screen and a keyboard. This terminal, which allows one 
individual to monitor and control the entire system, operates 
under control of the single board computer. 

5-1 



A HYPOTHETICAL SYSTEM 

BEDSIDE 
'/UNIT 

iSBC'· 86 

MASTER 
CONTROL 

UNIT 

SINGLE BOARD ~------r'" 
COMPUTER IS 
INHERE.-

BEDSIDE 
/UNIT 

Figure 5-1. The Hardware Of The Dialysis Application System 

So, in summary, the system consists of one Master Control Unit and a 
variable number of bedside units, all operating under control of the 
software within an Intel iSBC 86 Single Board Computer. Now let's look 
at the software. 

The application software controls the dialysis process. In order to do 
this, the software must: 

• Obtain commands from the Master Control Unit. 

• Obtain commands (if there are any) from each of the active 
bedside units. 

• Reconcile the commands from the MCU and the commands of the 
active bedside units. 

• Obtain a toxicity level from each of the active bedside units. 

• Create a display at each active bedside unit. 

• Create a display at the MCU. 

• Control the rate of dialysis at each of the active bedside units. 

5-2 



A HYPOTHETICAL SYSTEM 

Now that we have roughly examined the nature of the system, let's 
investigate how the iRMX 86 Operating System fits in. Let's start with 
interrupt processing. 

INTERRUPT PROCESSING 

Two kinds of information flow from the bedside units to the single board 
computer -- commands and toxicity levels. Before we delve into the 
technique used to process this information, we must know more about the 
form of the information. 

The toxicity levels, measured as the blood enters the bedside unit, are 
not subject to violent change. The machine slowly removes toxins from 
the blood while the patient's body, even more'slowly, puts toxins back 
in. The result is a rather steadily declining toxicity level. 

This means that the toxicity levels must be monitored regularly, but not 
too frequently. Let's suppose that each bedside unit computes the 
toxicity levels once every ten seconds and sends a signal when the 
computation is complete. When the signal line goes high, the levels are 
available until the signal line goes low and then high again for the next 
computation. 

The command information changes less predictably than the toxicity 
levels. Persons at the patient's bedside can enter commands through the 
bedside unit. Let's suppose that after encoding the information they 
press a button labeled ENTER, and that this button sets a line high. 
When the line goes high, the command information is available until the 
ENTER button is pressed for the next command. 

Now let's see how the interrupt processing of the iRMX 86 Operating 
System fields the commands. (The toxicity levels can be fielded in 
precisely the same manner so, for the sake of brevity, they are not 
discussed.) By attaching all the signal lines to a Multibus interrupt 
line, we convert the signal into an interrupt level. Each interrupt 
level has an interrupt task that is executed when the level goes high. 
So, when the ENTER line from any bedside unit goes high, the interrupt 
task for bedside commands begins running. 

You must write the interrupt tasks for your system's custom devices, so 
the bedside-command task may serve as an example for you. In brief, the 
task performs the following steps. 

• It determines which bedside unit received the command. 

• It puts the command information, along with the number of the 
bedside unit that received the command, into a message. 

• It sends the message to a predetermined mailbox. The only task 
that waits at this mailbox is the task that reconciles bedside 
commands with the commands from the Master Control Unit. 

• It surrenders th~ processor to the iRMX 86 Operating System. 

5-3 



A HYPOTHETICAL SYSTEM 

One advantage of interrupt processing now becomes clear. Instead of 
wasting time polling the bedside units to see if a command has been 
issued, the application system can do other things until interrupted by 
one of the units. When an interrupt (an event) does occur, it is quickly 
converted into a message and is placed into a mailbox for processing by a 
task. The system then returns to its normal priority-based, preemptive 
scheduling. This technique enables your system to deliver more 
throughput. 

Interrupt processing also provides the application system with 
flexibility. For instance, you can add more bedside units without 
modifying the system's software at all. 

HUMAN INTERFACE 

The iRMX 86 Human Interface allows interaction between medical personnel 
and the system to be "human engineered". Information can be requested 
and displayed at the MCU, and at bedside units, in a form that is 
meanignful to the operators of the system. Also, new capabilities may be 
added to the system by simply adding new programs. 

MULTITASKING 

The entire application system is based on the multitasking capability\of 
the iRMX 86 Operating System. Tasks are run using the preemptive, 
priority-based, scheduling that was discussed in Chapter 4. This allows 
the more important tasks (such as those controlling the bedside units) to 
preempt lower priority tasks (such as those of the Terminal Handler). 

INTERTASK COORDINATION 

The only form of intertask coordination used in our hypothetical dialYSis 
system is intertask communication. The system uses a number of mailboxes 
to send information from one task to another. The simplicity of 
mailboxes allows engineers to divide the system into tasks on the basis 
of modularity, rather than on the basis of minimizing inter task 
communication. 

MULTIPROGRAMMING 

Although multiprogramming has not yet been of use in our hypothetical 
example, its potential is high. Suppose that we extend the example to 
include cardiac monitoring in addition to dialysis. The two functions 
could advantageously be performed in different jobs. Why? Because they 
need share very few resources. 

5-4 



A HYPOTHETICAL SYSTEM 

If the cardiac application has very little to do with the kidney 
application, there is no need for them to share mailboxes, tasks, or any 
other objects. By splitting them into two different jobs, there is less 
chance that one application can affect the environment of the other. 

But what happens if the two applications need to share only a little 
information? How can the shared data be passed from one job to another 
without losing the benefits of isolation? The iRMX 86 Operating System 
provides for this contingency in its implementation of run-time binding. 

RUN-TIME BINDING 

As mentioned earlier in this manual, run-time binding provides a means 
for tasks of different jobs to share objects. As tasks create objects to 
be shared, the tasks catalog the objects in an object directory. Then 
the tasks that need the objects can look them up by using their ASCII 
names. 

Runtime binding also allows you to change the configuration of the 
iRMX 86 Operating System without recompiling or relinking your 
application software. For instance, suppose you have been including the 
iRMX 86 Debugger in systems delivered to your customers. The advantage 
in doing this is that it allows some debugging on systems as they are 
being used. But now, a year or so after you started delivering systems, 
your product has stabilized~ Virtually no new bugs are being found. If 
you delete the Debugger from your system, you can reduce the amount of 
memory required in any new systems you sell. The run-time binding of the 
system to your application software allows you to remove the Debugger 
from your system without making any changes to your application software. 

MASS STORAGE FILES 

As specified, the hypothetical system does not require mass storage 
files. However, a very reasonable extension of the current specification 
could include recording information about patients. 

The iRMX 86 I/O System allows you to record information in files on 
flexible and hard disks. The system provides device handlers, disk 
formatting and allocating, and provides a way to move information between 
main memory and the disk. Your application software need not in~lude 
code to perform these functions. 

If mass storage devices were added to the system, it would be possible to 
do program development on the system, so that new programs could be 
written and tested at the sit. This is a powerful addition to a system, 
although it is not appropriate for every application. 

~5 



A HYPOTHETICAL SYSTEM 

DEVICE INDEPENDENCE 

Even if the application system uses mass storage devices, device 
independence is not necessarily required. But, if the application is 
extended to allow the operator at the MCU to direct recorded data to any 
of several devices (say teletypewriter, line printer, magnetic tape or 
disk), device independence becomes more important. The 
device-independent I/O System lets you implement recording without adding 
code specific to each possible device. 

CHAPTER PERSPECTIVE 

In this and the previous chapters, you were introduced to some of the 
features and benefits associated with the iRMX 86 Operating System. If 
you want more detailed information, you will find the next chapter very 
useful. It contains descriptions of all the iRMX 86 technical manuals. 

5-6 



CHAPTER 6. iRMX1It 86 LITERATURE 

This chapter lists the iRMX 86 Operating System documentation, describes 
each manaual in the set, and correlates the manuals with the features 
described in previous chapters. The first six manuals listed here are: 
the manual you are reading, plus manuals describing each major "layer" of 
the Operating System. Otherwise the order in which the manuals are 
described is arbitrary. 

Manual 

- G-Introduction to the iRMX1It 86 Operating System 

."...- I iRMX1II 86 Nucleus Reference Manual 

_ v!iRMX1lt 86 Basic I/O System Reference Manual 

vtiRMX1It 86 Extended I/O System Reference Manual 

"l'iRMX 86 Human Interface Reference Manual 

.,/iRMX1II 86 Loader Reference Manual 

-°J'iRMX1It 86 System Programmer's Reference Manual 

-/ iRMX 86 Installation Guide 

-I iRMX1It 86 Configuration Guide 

iRMX 86 Debugger Reference Manual 

iRMXlII 86 Programming Techniques 

-.. (~,oGuide to 
iRMX 8811t 

Writing Device Drivers for the iRMX 86111 and 
I/O Systems 

I iRMXlII 86 Terminal Handler Reference Manual 

iRMX 86 11t Disk Verfication Utility Reference Manual 

1t'Run-time Support Manual for iAPX 86,88 Applications 

6-1 

Number 

9803124 

9803122 

9803123 

143308 

9803202 

143318 

142721 

9803125 

9803126 

143323 

142982 

142926 

143324 

144133 

121776 



iRMXlII 86 LITERATURE 

Each of these manuals is designed for a well-defined set of readers and 
each has a different purpose. This chapter describes the readers at whom 
each manual is aimed and the purpose of each manual. (Table 6-1 
correlates features with manuals.) Also, the chapter provides some 
time-saving tips to bear in mind as you read the documentation. 

The following descriptions deal with engineers in two classes -- system 
programmers, and application programmers. System programmers are 
responsible for configuring the system, extending the Operating System, 
writing interrupt handlers, and performing other functions that affect 
the entire application system. Application programmers, on the other 
hand, are responsible for writing application software. This distinction 
is drawn because the actions of the system programmer have a more global 
affect. 

Specifically, some system calls can, if used improperly, cause problems 
for all the tasks in your system; other system calls can affect only the 
task invoking the call. As a matter of policy, the more powerful system 
calls should be used only by system programmers and, even then, only 
within Operating System extensions. To emphasize this distinction, the 
more powerful system calls are all explained in one manual, the SYSTEM 
PROGRAMMER'S REFERENCE MANAUAL. 

READING TIPS 

The following pointers can save you a substantial amount of time: 

• No one individual need become intimately familiar with all of the 
documents associated with the iRMX 86 Operating System. Read 
only the documents that relate to your responsibilities. 

• Before reading one of the documents, read its preface and scan 
its table of contents to see if the manual contains the kind of 
information you seek. 

• Read the Introductory Manual before reading any of the others. 

By following these tips, you can quickly focus your attention on the 
information that is of most value to you. 

6-2 



iRMX1M 86 LtTERATURE 

INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM 

This manual, the one you are presently reading, is aimed at a wider 
variety of readers than any of the other iRMX 86 manuals. Being an 
introduction, it can be understood by anyone who has some experience 
programming or managing programming projects. It is designed to 
introduce managers and engineers to the iRMX 86 Operating System. 

iRMX 86 NUCLEUS REFERENCE MANUAL 

This reference manual is written for any engineers planning to use the 
iRMX 86 Operating System. It is the information warehouse for the 
Nucleus. It contains concise but detailed discussions of the following 
topics: 

• The nature of objects in general and of tasks, jobs, semaphores, 
mailboxes, and segments in particular. 

• Error processing. 

• Interrupt processing. 

• The requirements and behavior of the Nucleus system calls 
available to all engineers. 

Each of these topics is presented in a manner suitable for reference 
purposes and, to a lesser degree, for instructional purposes. 

iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL 

This manual describes the iRMX 86 Basic I/O System. The manual contains 
descriptions of the I/O operations a programmer may use with the iRMX 86 
Operating System, and of the types of files supported (named, stream, and 
physical). The heart of the manual is a chapter describing all the 
information necessary to use each Basic I/O System call, including: 

• calling sequence, 

• description of parameters, and 

• explanation of exception codes which may be returned by each call. 

The Basic I/O System is the more flexible of the two I/O systems 
delivered with the iRMX 86 Operating System. Because most of the system 
calls are asynchronous, the programmer is given full control of how I/O 
and processing will be synchronized in an application. 

6-3 



iRMX'" 86 LITERATURE 

iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL 

This manual describes the iRMX 86 Extended I/O System, the easier-to-use 
I/O system. It includes descriptions of the types of iRMX 86 files, and 
a general description of the Extended I/O System. Because the manual's 
chief use is as a reference (although it also serves as a tutorial), the 
most useful part of the manual is a chapter describing all the 
information necessary to use each Extended I/O System call, including: 

• calling sequence 

• description of parameters, and 

• explanation of exception codes which may be returned by each call. 

The Extended I/O System is specifically designed to urburden programmers 
from details of I/O operations. In particular, Extended I/O data 
transfers are synchronous, meaning that the operating system performs 
multiple-buffering operations, automatically synchronizing I/O operations 
with processing. 

iRMX 86 HUMAN INTERFACE REFERENCE MANUAL 

The iRMX 86 Human Interface is an optional layer of the iRMX 86 Operating 
System. The Human Interface allows operators to load and run programs 
from a console terminal, and provides facilities for custom commands. In 
addition, the Human Interface has a number of file-maintenance commands 
(COPY, FORMAT, RENAME, etc.). 

If you will want to use the powerful facilities provided by the Human 
Interface, the manual provides the information you will need, including: 

• Description of all Human Interface commands. 

• Descriptions of Human Interface system calls. The system calls 
are used for parsing of custom commands, control of programs run 
by the Human Interface, sending and receiving messages, and 
general command control functions. 

• Explanation of logical naming of devices and files, and 
descriptions of standard logical names. 

iRMX 86 LOADER REFERENCE MANUAL 

This manual describes the Bootstrap Loader and the Application Loader. 
The Bootstrap Loader loads an application system from secondary storage 
(disk, diskette, bubble-memory) into memory, and transfers control to the 
system. It works in conjunction with a program in ROM which is run when 
the iAPX 86,88 Processor is reset. The Loader Reference Manual describes 
how to use the Bootstrap Loader, and secondary storage devices from which 
systems can be loaded. 

6-4 



iRMX1II 86 LITERATURE 

The Application Loader is used for two purposes: 

1. To load and run programs that reside on secondary storage. These 
programs are invoked by Human Interface commands. 

2. To load overlays by invoking system calls. 

The Loader Reference Manual describes the types of code which may be 
loaded by the Application Loader (absolute, position-independent, and 
load-time locateable). The Manual also describes the information 
necessary to use the Application Loader system calls. 

If your application uses either the Bootstrap Loader or the Application 
Loader (most applications use one or both) then you will want to use this 
manual. As with most of the iRMX 86 manuals, this one serves primarily 
as a reference manual, secondarily as a tutorial. 

iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL 

This manual describes aspects of the iRMX 86 Operating System that should 
be used only within extensions of the iRMX 86 Operating System. If these 
features are used by application software that has not been incorporated 
into the Operating System, your application system might not be 
compatible with future releases of the iRMX 86 Operating System. 

This reference manual discusses the following topics: 

• The creation and deletion of extensions to the Operating System. 

• Region exchanges and related system calls. 

• Enabling and disabling the deletion of the objects. 

• Attaching and detaching devices. 

• Creation and deletion of user objects. 

• Adding new types of objects to the Operating System. 

• Using the Bootstrap Loader. 

iRMX 86 INSTALLATION GUIDE 

The INTELLEC Microcomputer Development System is a general purpose tool 
for programming microcomputers. When you purchase the iRMX 86 Operating 
System, you receive the iRMX 86 software on several flexible disks and 
you receive the iSBC 957B package. The iRMX 86 INSTALLATION GUIDE tells 
you how to use the software and the iSBC 957B package (or the 957A if you 
have an earlier release) in conjunction with your Microcomputer 
Development System and an iSBC 86,88 Single Board Computer. 

6-5 



iRMX- 86 LITERATURE 

The manual describes everything necessary to get the start-up system 
running. This includes instructions for installing wire jumpers on an 
iSBC 86/12 board, loading and running the start-up system, and using the 
Human Interface commands included in the start-up system. If you are 
familiar with the Intellec Microcomputer Development System, this manual 
will prove very useful. 

iRMX 86 CONFIGURATION GUIDE 

As you build an application system upon the iRMX 86 Operating System, you 
must decide which optional iRMX 86 features you want in your system. For 
instance, if your system uses no features of the I/O System, you can save 
a substantial amount of memory by excluding the iRMX 86 I/O System. 

Once you have made these decisions and have written your application 
software, you must configure your system. Configuration is the process 
of building a complete system from the iRMX 86 Nucleus, your application 
software, and iRMX 86 options that you have selected. The iRMX 86 
CONFIGURATION GUIDE leads you through the process of configuration. 

The readers of this manual must be thoroughly familiar with the ISIS 
Operating System and the language translators being used to create the 
application software. Furthermore, they must know which parts of the 
iRMX 86 System are used by the application software, and they must be 
fluent in the vocubulary of the iRMX 86 Nucleus, Terminal Handler, 
Debugger, I/O System, Bootstrap Loader, Human Interface, and Application 
Loader. 

iRMX 86 DEBUGGER REFERENCE MANUAL 

This manual describes the debugger used with the iRMX 86 Operating 
System. It explains the requirements and behavior of the Debugger 
commands available to all engineers. 

iRMX 86 PROGRAMMING TECHNIQUES 

This manual provides system and application programmers with techniques 
that can save time and avoid mistakes during system development. 

GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 AND iRMX 88 I/O SYSTEMS 

This manual gives detailed instructions for writing a device driver that 
is compatible with both the iRMX 86 I/O System'and the iRMX 88 I/O 
System. System programmers can use this manual to add new devices to 
application systems. Readers of this manual must be very familiar with 
the I/O System and the Nucleus. 

~6 



iRMX- 86 LITERATURE 

iRMX 86 TERMINAL HANDLER REFERENCE MANUAL 

If you wish to use the iRMX 86 Operating System without using the iRMX 86 
I/O System, you might need software to communicate with a terminal. This 
is the function of the Terminal Handler. The iRMX 86 Terminal Handler 
provides basic functions: 

• Line editing (special handling of RUBOUT key, certain control 
keys, and carriage return). 

• Character echoing as a line buffer is filled. 

The Terminal Handler Reference Manual describes the use of special keys, 
how the Terminal Handler communicates through mailboxes, and an option 
called Output-Only Terminal Handler. 

If your application is not using the I/O System or Human Interface to 
communicate with terminals, you will be interested in the information in 
this manual. 

iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL 

THis manual documents the Disk Verification Utility, a software tool that 
runs as a Human Interface command, verifying and modifying the data 
structures of iRMX 86 disk structures (files, directories, and physical 
volumes). The manual describes the how to invoke the utility and 
contains detailed descriptions of all utility commands. Because users of 
the Disk Verification Utility must be familiar with the structure of 
iRMX 86 volumes in order to use the utility intelligently, the manual 
describes in detail the structure of iRMX 86 file and directory 
structures. 

You will use this manual in maintaining disk file volumes, and perhaps in 
recovering files which are "lost" or corrupted. 

RUN-TIME SUPPORT MANUAL FOR iAPX 86,88 APPLICATIONS 

This manual describes facilities that Intel provides to develop an 
application system on the iAPX 86,88 processors, and describes how to use 
these facilities. The orgainization of the manual reflects the concept 
of application system "layers." Subjects discussed include language 
translators and utilities, the development process using Intel languages, 
and interaction between hardware and operating systems (including the 
iRMX 86 Operating System ). 

You will be interested in this manual if you need a general introduction 
to the application development process. Of particular interest is a 
discussion of Intel's Universal Development Interface CUDI), by which 
language taranslators and utilities use operating systems. 

6-7 



iRMX'" 86 LITERATURE 

Table 6-1. Correlation of Manuals and Features 

TITLE FEATURE 

iRMX 86 Nucleus Object-oriented Architecture 
Reference Manual Multiprogramming 

iRMX 86 Basic I/O System 
Reference Manual 
and 
iRMX 86 Extended I/O System 
Reference Manual 

iRMX 86 Human Interface 
Reference Manual 

iRMX 86 Loader Reference 
Manual 

iRMX 86 Installation 
Guide 

iRMX 86 Configuration Guide 

iRMX 86 System Programmer's 
Reference Manual 

iRMX 86 Debugger Reference 
Manual 

Guide to Writing Device 
Drivers for the iRMX 86 and 
iRMX 88 I/O Systems 

Run-time Support Manual for 
iAPX 86,88 Applications 

6-8 

Multitasking 
Interrupt Processing 
Preemptive t Priority-based 

Scheduling 
Error Handling 
Dynamic Memory Allocation 
Intertask Coordiation 
Run-time Binding 

Choice of I/O Systems 
Hierarchical Naming of Mass 

Storage Files 
File Access Control 
Control of File Fragmentation 
Applicaton Loading 
Device-Independent I/O 

Custom Interactive Commands 
File Maintenance Utilities 

Bootstrap Loader 
Application Loading 

Start-Up System 
Configurability 

Configurability 

Intertask Coordination 
Expandibility 
Selection of Device Drivers 
Run-time Binding 
File Access Control 
Device Independence 

Object-oriented Debugger 

Selection of Device Drivers 
Device-Independent I/O 

Software Interface 



INDEX 

For your convenience, the primary reference of topics having multiple 
references are underscored. 

access time 4-21 
application 1-2, 4-7 
application loading (Application Loader) 4-25 to 4-26, 4-33, 4-37, 6-4 
application software 1-2 
application system 1-2 
ASM 86 Macro Assembler 4-31 
asynchronous 2-1, 4-4, 4-11 
attaching devices 6-5 

Basic I/O System 4-13, 4-14 to 4-15, 6-3 
binding 4-27 to 4-29, 5-5, 6-8 
bootstrap loading 4-34, 4-37, 6-4 
bubble memory 4-16, 4-26 

commands 4-22, 4-24 to 4-25, 6-5, 6-8 
compilers 4-31 
concurrency 4-4, 4-11 
configuring 4-34 to 4-38, 6-6 
COpy (command) 4-22 
cost of implementation 3-2 
costs after development 3-2 
CREATEDIR (command) 4-22 
custom interactive commands 4-24 to 4-25 
customizing features 4-24 

data transfer rate 4-21 
debugging 2-3, 4-32, 4-33, 6-6 
detaching devices--6-5 
development time 3-1 
device drivers 4-21 to 4-22, 6-6 
device independence 2-2, 4-15 to 4-16, 5-6, 6-8 
device selection 2-2, 4-16, 4-21to 4-22 
DIR (command) 4-22 
directories 

file 4-16 to 4-19, 4-33, 6-3, 6-7 
object 4-27 to 4-28, 5-5, 6-3 

disk, diskette 4-16, 4-20, 4-22 to 4-23, 4-25, 4-33, 4-34, 6-7 
documentation 6-1 to 6-8 
DOWNCOPY (command) 4-22 
dynamic memory allocation 2-2, 4-7, 4-30 to 4-31 

Index-l 



INDEX (continued) 

editing 4-33 
error processing 2-1, 4-29 to 4-30, 6-3 
events 2-1, 4-4 to 4-5, 4-8 to 4-9 
example of application system 5-1 to 5-6 
exception codes 4-31, 6-3 to 6-4 
exception handler~-29 to 4-30 
exchanging information 4-8 to 4-9 
Extended I/O System 4-13 to 4-14, 6-4, 6-8 
extending the Operating System 4-12, 6-5 

file 
access control 2-3, 4-19 'to 4-20, 6-3 to 6-4, 6-7 
fragmentation 4-20 tOT-21, 6-8 
granularity 2-2, 4-20 to 4-21 
naming 4-16 to 4-19, 6-3 
maintenance 4-22 to 4-23 
protection 2-3, 4-19 to 4-20 
sharing 2-3, 4-7, 4-19 to 4-20, 4-33 

FORTRAN 4-3, 4-31 

granularity of files 2-2, 4-20 to 4-21, 6-8 

hierarchical file naming 4-16 to 4-19, 6-8 
human engineering 2-3, 4-24 
Human Interface 4-~to 4-25, 4-33, 5-4, 6-4 

iAPX 86,88 microcomputer iii, 1-1, 6-7 
iSBC 86,88 single-board computer 1-1, 4-33, 4-34, 5-1 
iRMX 86 Operating System 

architecture 4-2 to 4-4 
benefits 3-1 to 3-2 
characteristics 1-1 
customers 1-1 
documentation 6-1 to 6-8 
features 4-1 to 4-38, 6-8 
installation 6-5 
purpose 1-3 

iRMX 88 Operating System 6-6 
implementation cost 3-2 
input and output 4-13 to 4-23, 4-37, 5-5 to 5-6, 6-3 to 6-4, 6-8 
installation of iRMX 86 6-5 
interactive terminal operations 4-24 to 4-25, 5-4, 6-4 
interpreters 4-31 
interrupts 4-5 to 4-6, 5-3 to 5-4, 6-3, 6-8 
intertask coordination 4-8 to 4-12 

job 4-7 to 4-8, 4-30, 5-5, 6-3 

languages (computer programming) 4-31 
literature 6-1 to 6-8 
loading 

application 4-25 to 4-26, 6-4 to 6-5, 6-8 
bootstrap 4-34, 6-5 

load-time location 4-26 
l~gical names 4-27 

Index-2 



INDEX (continued) 

nucleus 4-37 

mailbox 4-9, 4-32, 5-4, 6-3 
maintenance of application system 3-2 
maintenance of files 4-22 to 4-23 
manuals 6-1 to 6-8 
mass storage (devices and files) 2-2 to 2-3, 4-16 4-20 to 4-21 4-24 ----, , 
memory allocation 2-2, 4-30 to 4-31, 6-8 
multiprogramming 2-2, 4-7 to 4-8, 5-5, 6-8 
multitasking 4-4 to 4-5, 4-8, 5-4, 6-8 
mutual exclusion 4-7, 4-10 to 4-11 

object directories 4-28, 5-5 
object names 4-27, 5-5 
object-oriented architecture 4-2 to 4-4, 4-32 
objects (types of) 

general discussion 4-2, 4-32, 5-5, 6-3 
custom (extension) 4-12, 6-5 
job 4-7 to 4-8 --
mailbox 4-9 
region 6-5 
semaphore 4-10 to 4-11 
task 4-5 to 4-6 

OEM 1-1 
development 4-33 on-target 

operator 
original 
overlays 

4-3, 4-7, 4-18 to 4-20, 4-24 to 4-25, 
equipment manufacturer (OEM) 1-1 

4-25 to 4-26, 6-4, 6-8 

parsing 4-24 to 4-25 
PASCAL 4-31 
PLM/86-86 4-31 
polling 4-5, 5-4 
portability 4-31 
program development 4-33 
protocol (UDI) 4-31 
priority-based scheduling 4-6, 5-4, 6-3, 6-8 

read-ahead 4-14 
real-time programming 2-1 
real-time software 2-1 

4-22 
regions 6-5 
RENAME (command) 
runtime binding 
runtime support 

4-27 to 4-29, 5-5, 6-3, 6-8 
4-31, 4-33, 6-7 

scheduling 2-1, 4-5, 4-6 to 4-7, 5-4, 6-3, 6-8 
segment 4-10, 
semaphore~10 to 4-11, 4-32, 6-3 
software development tools 4-31, 4-33, 6-7 
software interface (UDI) 4-31, 4-33, 6-7, 6-8 
software interrupt 4-28 ----
start-up system 4-26 to 4-27, 6-5, 6-8 
SUBMIT (command) 4-22 
synchronization 4-11 to 4-12 
system calls 4-3, 4-13 to 4-15 

Index-3 

4-30, 5-4, 5-6, 6-4 



INDEX (continued) 

task 4-2, 4-5 to 4-6, 4~8, 4-32, 5-4 to 5-5, 6-3 
terminal handler 4-38, 6-7, 6-8 
time-slicing 4-6 ---
types of objects 4-3, 4-12, 6-5 

Universal Development Interface (UDI) 4-31, 4-33, 6-7, 6-8 
UPCOpy (command) 4-22 
user 1-2 
user objects 6-5 

Very Large Scale Integration (VLSI) 3-1 
VEU 1-1 
volume end users 1-1 

write behind 4-14 

Index-4 



REQUEST FOR READER'S COMMENTS 

INTRODUCTION TO 
THE iRMX™86 

OPERATING SYSTEM 
9803124-03 

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets 
you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this 
document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are 
needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _ 

NAME ____________________________ DATE ______ _ 

TITLE _________________________________________________________________ ___ 

COMPANY NAME/DEPARTMENT _____________________________________________ __ 

ADDRESS ______________________________________________________________ _ 

CITY __________________________ ~ ___________ STATE ___ ZI P CODE _____ _ 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing I ntel products. Your comments on the back of this form 
will help us produce better manuals. Each reply witl be carefully reviewed by the responsible 
person. All comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
5200 N.E. Elam Young Pkwy. 
Hillsboro, Oregon 97123 

O.M.S. Technical Publications 

111111 NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 





inter 
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 

Printed in U.S.A. 


