iIRMX 86™ BASIC 1I/0 SYSTEM
REFERENCE MANUAL

Order Number: 9803123-04

Copyright © 1981, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 [::_

PRINT
REV. REVISION HISTORY DATE
-01 Original Issue 4/80
-02 Application Loader added and unimple- 11/80
mented system calls removed.
-03 Application Loader information removed. 5/81
Changes made to reflect Release 3 of the
iRMX 86 Operating System.
-04 Exception codes updated. 10/81
Changes reflect Release 4 of iRMX 86.
Change bars mark technical changes.

Additional copics of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporaticn makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel:
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel’s software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP Intelevision Micromap
CREDIT Intellec Multibus
i iRMX Multimodule
ICE iSBC Plug-A-Bubble
iCS iSBX PROMPT
im Library Manager Promware
INSITE MCS RMX/80
Intel Megachassis System 2000
Intel Micromainframe UPIL

pScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

i [A492/1181/ 2K DD|

PREFACE

This manual documents the Basic 1/0 System, one of the subsystems
available with the iRMX 86 Operating System. Although it contains some
introductory and overview material, it is intended primarily as a quick
reference to system calls, providing detailed descriptions of those system
calls available to application programmers. Other system calls, which are
reserved for system programmers, are discussed generally, but only to give
an overview of Basic I/0 System operation. The reserved system calls are
discussed in detail in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

READER LEVEL

This manual is intended for application programmers who are familiar with
the concepts and terminology introduced in the iRMX 86 NUCLEUS REFERENCE
MANUAL and with the PL/M-86 programming language.

CONVENTIONS

Throughout this manual, system calls are named using a generic shorthand
(such as CREATESFILE instead of RQ$SASCREATESFILE). The actual PL/M-86
external-procedure names used to invoke these operations are shown only in
Chapter 8, which lists the detailed calling sequences.

Chapter 8 of this manual, which contains detailed descriptions of the
system calls, lists only the PL/M-86 calling sequences. The system calls
can be invoked from assembly language, but in order to do so, you must
obey the PL/M-86 calling conventions, which are discussed in the iRMX 86
PROGRAMMING TECHNIQUES manual.

iii

PREFACE (continued)

RELATED PUBLICATIONS

The following manuals provide additional background and reference

information.

Manual
Introduction to the iRMX™ 86 Operating System
iRMX™ 86 Nucleus Reference Manual
iRMX™ 86 Debugger Reference Manual
iRMX™ 86 Terminal Handler Reference Manual
iRMX™ 86 System Programmer's Reference Manual
iRMX™ 86 Programming Techniques Manual
Guide to Writing Device Drivers for the iRMX™ 86 I/0 System
iRMX™ 86 Extended I/0 System Reference Manual
iRMX™ 86 Configuration Guide

PL/M-86 Programming Manual for 8080/8085-Based
Development Systems

PL/M-86 User's Guide for 8086-Based Development Systems

PL/M-86 Compiler Operating Instructions for 8080/8085-Based
Development Systems

8086/8087/8088 Macro Assembly Language Reference Manual
for 8086-Based Development Systems

8086/8087/8088 Macro Assembly Language Reference Manual
for 8080/8085-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions
for 8086-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions
for 8080/8085-Based Development Systems

iv

Number

9803124

9803122

143323

143324

142721

142982

142926

143308

9803126

9800466

121636

9803478

121627

121623

121628

121624

CONTENTS

CHAPTER 1
ORGANIZATIONAOOlo.cotot.oooo.oovlooovooo.oo‘c‘.uo.‘O-couooo'-oolooo

CHAPTER 2

FEATURES OF THE 1/0 SYSTEM

Asynchronous OperationNecceccccescscsesscssssscsscsssssssssssssssnses

Device IndependenCescccssesssccccessossocscoscssscscscssscscsssoscscss

Support for Many Kinds of DeviceSeeesssecsccssssecocosscscssocavens

Three Distinct Kinds of FileSescecosssscsestcsscccsossscsovcsscoses
Named FileSeeeeosesccoesscscoscoscsssnsssscsscsssscssscsscscssssssosse
Physical FileSeececccecocsssssscssossscscscccscccssossnssssnssccscnsscs
Stream FileSeeeoeeoesceecoscosscosssssscssssssnsssscsssnsssosssscss

File Sharing and Access CONntrolececcecsscecccsscscssosccsscssssnsos
File Sharingecececccscscescsosccsossosssosssosossscssosscscsosssnnsss
Access CONtrOleeceecasossecsssocessscscscoscscsstsossssscsssosssscscss

Separation of File Lookup and File Open OperationSeecsescecececcces

Control Over Fragmentation of FileSeceeecessccscsocccccssssocsannes

CHAPTER 3

BASIC TERMINOLOGY

System ProgrammerSeescecccseecsccccsossscccsossosnssvossocssossssasoes

DEevViceSeseseosssoccsessscsssosssosacsssssssassosssssscsnnasssssscsassssassos

VolUmMES ceescecoossasonscstsscosnossosensossassscssssssscsssscscnsossssscsnscns

s 2 N

CoONNECLiONSeecscessocsosssosssssasanssosssssssscsnossssssocssanssssscsse
Device ConnectionSeeceececcscescassscsoscscsotosncssssoscsnsncssssnsse
File ConnectionSeeccsccescosccosssescosscosssssonaccsscossssssssassse

CHAPTER 4
ASYNCHRONOUS SYSTEM CALLS....C.I.'......Il...'...0.'..'...'."..'..

CHAPTER 5
NAMED FILES
Multiple Files on a Single DeviCe@eesescscescsssscecssoscccssccsccsccs
Hierarchical Naming of FileSeececesccrssccceccscccacscsosnccsosscacsse
ConNeCtionSeteescececesctsosssacsseosscssssssccccssssascsssansscsscsscne
PathSeeeosocecocececossccoccossscscsoosssssssnssssonsoncescsocsnsssossosssse
Prefix and Subpatheseccecensecceesessssssoscascscscssssscssccccnnns
Default PrefiXeeeccesescecesescscsscaosnsscsssscscscsscacsssssosse
Users and Access RightSeecececcecsesoscecsvssssscssscosscscsossscsvssscsssens
Users and User ObjecCtSeeccececcecessccscosonssssscssssscssssscncanse
Concept Of USereceeescsvececeesossscsocsssscosssasssssssssscsssnsss

NNNNNN{?NNNNN

PAGE

|
VPP EPLLLNDND

4-1

Lo prPLOWWHERE

CONTENTS (continued)

CHAPTER 5 (continued)
Concept Of Groupececccscccscecasecscacssosssscsonnscsssssacancsss
Concept Of Worldeesoeesscesosacessnscsosecscvocsoossoscssccacccsnsnse
User ObjectSieccessceacscesosestssencssssonsssosssasssssscsosasnsas
Creating, Deleting, and Inspecting User ObjectSeceeccecccescscess
Default USerSeeessscseccecosescseesencssostssssocssoscscstssnscossnsses
Access RightSececesoscevecssecccccosccssssssscconsscsccsssscsssannne
Computing ACCESSececssesessssccsscscsosessscorssssscscssossscsssnnass
Time at Whicn Access 15 Computedecscesscoscassasccacssscsannasnscs
Access at Time of Creationececccecceccscsscsccsosccccsssscanssces
Granting Access to Other USerSeececesesscescsosesecssscocsnssense
System Calls for Named FileSeeeecesccccssssoscocsonccscsasassessnnanas
Obtaining and Deleting ConnectionSeececsescecssescscssoscccscccces
User ObjectSecseccesscssccsscasscsacescsaconssosenssnscsssasanscsnass
Default PrefiXoSceeccsscccccscscscesssccsssssssosssasoscssssscsnccnsa
Manipulating Dat@ececesssacsssccecscscacsssssssscsssccsscsncensescsns
obtaining StAtiSeseeeesccnsccssosesscsnsssessssssnscsnssascenssccnse
Reading Directory EntrieSeecececececcecesscccsssessescsscessscsnnssae
Deleting and Renaming FileSeeeecececssecsescsossscscsscaccnsncnansns
Changing ACCEeSSeseseseettccsssoncascsosacesscssssscsscssscssasacense
Ascertaining a File's NamEeeecescesosossssscsoscasscossncsanscanssa
Manipulating Extension Data.eseescscescscessscssocsesossscccccsnns
Detecting Changes in Device StatuSeeccsceccsssscsssccccscscssscscas
Chronological Overview of Named FileS.veessoscsssossscsoscsssescnnons
Most Frequently Used System CallSeeececcccecsscsssscacsansscssssns
Calls Relating to User ObjectSeececececssccscscssssscsssassssncans
Calls Relating to PrefiXeSececeecsceeccssccsscssssssscessccncanns
Calls Relating tO StatuUSecesccscscccsssassscosssssssasssscnsscncsnse
Calls Relating to Changing ACCESSeececccesessccccssscscccccssccsans
Calls for Monitoring Device ReadinesS.ceccececscoscocsccccnccnssas
Calls Relating to Extension Dataeececccsccceesecscsscccaccseconns
Calls for Renaming FileSeeeeeoeaseecssscssoscoscsaccssnnnsssnsssnse
Calls for Ascertaining File NameSeceoeeosesccccccessscccasascnssns

CHAPTER 6

PHYSICAL FILES

Situations Requiring Physical FileSeeececovceseocseesscsoscccnsancans
Connections and Physical FilleSsescocesesocosscsscsssscsssccsncsssnane
Using Physical FileSeeeteececencsccccssssssssssssssossnssssccssasanae

CHAPTER 7

STREAM FILES

Actions Required of the Writing TasKeeceeoeosoococsssssccossssassnas
Actions Required of the Reading TasKeeceeoeoeeooresstesscscaccocsnce

vi

PAGE

i |
OO NNNOONWn

i
o

i
o

I
—
p—

7-3

CONTENTS (continued)

CHAPTER 8

SYSTEM CALLS

Input Parameter SpecificatiOnNescececccesscscsessssscscscssscssrsannns
User Parametereccssccecsvesccscecosccasencvsascsossssosscssssssssscse
File-Path Parameter(s) for Named FileSeeeseccvesscscsccssccssanscs
Response Mailbox Parameterece.cecccccscscscsssccssscsssssssscsasscnsns
I/0 BUfferSeseescsesssessescasscossossscssncsscsscsssassssscsasenss

Exception CodeSseccsscccscscsscscosscscscssnssesnsssssnsssssnssncsscssssns

System CallSseesceessesscssesoososscscnncosssssssacsscsenosscnssnnssnss

System Call Dictionaryeeececescecscssccsssscsscscsscssecsssnsoscscsss
Job~Level System CallSeecsscceccoscscossssssscascssancssascsnsnscs
Get Time/Date System CallSeecececccccsessscccassscsosscssscssssnsns
Create-File—Connection System CallSeecececcecossscsssccsassssscens
File Modification System CallSecscececcaceccscccscssaccsssscssosscssce
File Input/Output System CallsS.ceecececcsssscsscssssssosscossansse
Device~Level Function System Callececscseecescscccescsnansscssses
Get Status/Attribute System CallS.esececccsscosacccscsascccnsscnnssse
Delete Connection/File System CallSeeescessccssssssscssescssosscosoas
System Programmer Calls (Calling Sequence Only)ececceccccesccscses
ASATTACHSFILE cceeevesoosssvsovsvssssessssnsnssossasassssnscssssassssscsoss
ASCHANGESACCESS e cseosssscscscecssscscssacssscsncscssscssscsncsoscsnsscsonsse
ASCLOSE e eeocseccostososcssocorsssesscscnsstststsontstsscscssscnsssnnnse
ASCREATESDIRECTORY ¢ s e ceecsccccsnccccsaccsssccssscssosssasassssness
ASCREATESFILE . ccseeocossossssoscsacscssccsascssstassecssnsssancossnnss
ASDELETESCONNECTION s oesceecsccocscssccasacsccsssasassssssssasnessae
ASDELETESFILEc s ccosscceoscccccccoscacsncsasscsscssassssccncncscsanss
ASGETSCONNECTIONSSTATUS ¢ eeeeossescconcssscsosssssssossscscssscannsae
ASGETSDIRECTORYSENTRYc e eseevoscscsovsossccsssssotssncssnnsssansss
ASGETSEXTENSIONSDATA ¢ cosecveoccotsancsscscstsscsstsssasosssasanssnns
ASGETSFILESSTATUS ¢ e v v eeeeoccoscesoscseasessscsnsasssssanssanssses
ASGETSPATHSCOMPONENT ¢ v o e e ovvocesecsnasscessssassscsssassassscnscns
10 24 0
ASPHYSICALSATTACHSDEVICE e cesoevescsenssssssccsscccsnsasssssnnssnne
ASPHYSICALSDETACHSDEVICE. cocevcocsvcsccsscscscsacscsannsssnansssns
ASREAD: ceveceonseeconsosencsssososcssnnsssscscssssssasssasssssnsss
ASRENAMESFILE s sececcsosccscscsccsesssscsscssssssosncsssssscssscsssssansce
ASSEEK: e eesssacsscsscossssscscssesscsscscsacssnssssassoessassnsescnnsss
ASSETSEXTENSTONSDATA e eveecssoensooascsccssssssssssscsssosssansss
ASSPECIAL:esescasccssesscsescsoosscscscsnssscosacsscsssscssscsssssssonsos
ASTRUNCATE e cceseoccssoccscesosasscsosossasscsssaosssnsassasossonss
ASWRITE coueeccnscososssotsssosscessecosssssassssossassssssossascsscs
CREATSUSER e ceesossessccsaccosscoscsssascansnsssssscssssssossscscsssssns
DELETESUSERceseeosssccososssessossossossasccssssssscssssccsssansasssanss
GETSDEFAULTSPREFIXeesoocoecsocscsoncsacnasasccsscssscsscssssenosssansss
GETSDEFAULTSUSER e« eeeeecescasosssosocsacsscssssssssasssasssssosess
GETSTIME ¢ oo secoossccocsoscossossossscscsssnsssscsnnssssssscassscsccnsss
INSPECTSUSER: e escesescsocscssocsccsecsesssascsensasonsssassascscssssssss
SETSDEFAULTSPREFIXeeecooovecsosssessocscsacscscsacccsssssssnsssscanse
SETSDEFAULTSUSER:ccossososcssocssooscsssscsacssssascsscsscsonnsassssoncse

SET$TIME'...O'.Q..I.......IQ...0.....I.QI...O..C.OQ‘...Q0..00....

vii

PAGE

ooooooooooooooooooooooooolooooooooooooooooooooooooo
WWININNEFEF OO NNNNOOOTUVI NS D

CONTENTS (continued)

APPENDIX A
iRMX 86 DATA TYPES.'O"'.O.'..IIOIO'.0.'......0"..0....".0..‘l'..

APPENDIX B
iRMX 86 TYPE CODES'O'Q.ocoooouc00oooo.c..c--ouoo.ooooo'ooooooco.-oc

APPENDIX C

I/0 RESULT SEGMENT

Structure of I/O Result Segmenteceeecesecesocsccsccssssssscsscssnnns

Unit Status for Specific DeviceSeecececssscccscssscsccsssaccsoncsns
iSBC 204 and 1iSBC 206 ControllerSeeecsessscssssccccsssassssscssnns
1SBC 215 Controllersescececccesssscscesvosasssonsscscsasonssnsssossns
1SBC 208 Controllereceeccessscsssscecscesccnsscsssscscsnsssssssssns

APPENDIX D

EXCEPTION CODES

Synchronous (Environmental) Exception CodeS.cceeessccccocsssscscsss
Sequential (Programmer Error) Exception CodeSecseccececcsccscssvocns
Concurrent Exception CodeScecesessesccssceossscscsscssssscssssssssos

APPENDIX E
LOGICAL DEVICES A.ND T}IE BASIC I/o SYSTEM...C..‘.'Q.‘..'....l...'..l

4-1.
5-1.
5-2,
8-1.

FIGURES

Concurrent Behavior of an Asynchronous System Calleececscsss
Example of a Named-File Tre@ececscecectcecscsvscecocasssnnse
Chronology of Frequently Used System Calls for Named Files.
Sample Named File Treeccceccsscessccsccocssssossccscssscssans

viii

PAGE

B-1

D-1
D-1
D-2

CHAPTER 1. ORGANIZATION

This manual is divided into eight chapters. Some of the chapters contain
introductory or overview material which you do not need to read if you
are already familiar with the subsystems or if you have used this manual
before. Other chapters contaln reference material which you will refer
to as you write your application tasks. You can use this chapter to
determine which of the other chapters you need to read. The manual
organization is as follows:

Chapter 1 This chapter describes the organization of the
manual. You should read this chapter if you are going
through the manual for the first time.

Chapter 2 This chapter describes the features of the Basic I1/0
System. You should read this chapter if you are going
through the manual for the first time or if you have
had very little previous exposure to the Basic I/0
System.

Chapter 3 This chapter explains some basic terminology
associated with the Basic I/0 System, including the
concepts of system programmer, device, volume, file,
and connection. You should read this chapter if you
are looking through the manual for the first time or
if you are unfamiliar with the Basic I/0 System.

Chapter 4 This chapter describes how to use the asynchronous
system calls that are included in the Basic 1/0
System. You should read this chapter before you write
tasks that make asynchronous system calls.

Chapter 5 These chapters describe named, physical, and stream
through files and how to use them. You should read one or
Chapter 7 more of these chapters, depending on the kinds of

files your application uses.

Chapter 8 This chapter contains detailed descriptions of the
system calls of the Basic I/0O System, in alphabetical
order. When writing your application tasks, you
should refer to this chapter for specific information
about the format and parameters of the system calls.

CHAPTER 2. TFEATURES OF THE BASIC I/0 SYSTEM

Because the iRMX 86 Operating System is designed for use by Original
Equipment Manufacturers (OEMs), it provides a large number of features —-—
including some that are not generally found in operating systems aimed at
end users. These features include:

e Asynchronous Operation

e Device Independence

° Support for Many Kinds of Devices

e Three Distinct Kinds of Files

° File Sharing and Access Control

° Separation of File Lookup and File Open Operations

. Control over Fragmentation of Files

The purpose of this chapter is to briefly explain each of these features
and to familiarize you with the terminology of the Basic I/O System.

ASYNCHRONOUS OPERATION

When you examine the system call chapter of this manual, you will find
that the system calls can be divided into two categories according to
their names. The first category consists of system calls having the
names of the form:

RQ$ XXXXX

where XXXXX is a brief description of what the system call does. The
second category consists of system calls having names of the form:

RQSAS XXXXX

System calls of the first category, without the A, are synchronous

calls. They begin running as soon as your application invokes them, and

continue running until they detect an error or accomplish everything they
must do. Then they return control to your application. In other words,

synchronous calls act like subroutines.

System calls of the second category (those with the A) are called
asynchronous because they accomplish their objectives by using tasks that
run concurrently with your application. This allows your application to
accomplish some work while the Basic I/0 System deals with mechanical
devices.

2-1

FEATURES OF THE BASIC I/0 SYSTEM

For more detail on the behavior of asynchronous system calls, refer to
Chapter 4.

DEVICE INDEPENDENCE

The Basic I/0 System provides you with one set of system calls that can be
used with any collection of devices. For instance, rather than using a
TYPE system call for output to a terminal and a PRINT system call for
output to a line printer, you can use a WRITE system call for output to
any device.

This notion of one set of system calls for I/0 to any collection of
devices is called device independence, and it provides your application
with a lot of flexibility. For example, suppose that your application
logs events as they occur. The device independence of the Basic I/0
System allows you to create an application that can log the events on any
device rather than just one. When the event application is running and
circumstances force an operator to reroute logging from, for instance, the
teletypewriter to the line printer, your application can easily comply.

For a more detailed explanation of device independence, refer to the
INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM.

SUPPORT FOR MANY XINDS OF DEVICES

Although your application can be device independent, the Basic I/O System
must be able to communicate with a wide variety of devices. In order to
connect a particular device to the Basic I/0O System, you must have a
device driver (a collection of software procedures) designed especially
for the device being connected.
The Basic I/0 System currently provides drivers for the following devices:

e iSBC 204 Single Density Flexible Disk Controller

° iSBC 206 Hard Disk Controller

° iSBC 254 Bubble Memory

° iSBC 215 Winchester Hard Disk Controller

° iSBC 218 Multimodule Flexible Disk Controller

e Byte Bucket

e Terminal or Teletypewriter
If you want to use any of these drivers in your application, refer to the

iRMX 86 CONFIGURATION GUIDE. It contains detailed instructions for
including specific drivers in your application system.

FEATURES OF THE BASIC I/0 SYSTEM
If you need drivers for other devices, you must write the drivers. Refer
to the GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEM.
If you want more specific information about the relationship between

devices, device drivers, and the Basic I/0 System, refer to the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL.

THREE DISTINCT KINDS OF FILES

Although all files in the Basic I/0 System are byte (as opposed to record)
oriented, the System provides you with three kind of files:

NAMED FILES

Named files are intended for use with random—access, secondary storage
devices such as disks, diskettes, and bubble memories. They allow your
application to organize its files into a tree-like, hierarchical structure
that reflects the relationships between the files and the application.
Furthermore, only named files allow your application to store more than
one file on a device, and only named files provide your application with
access control. Named files also provide a good starting place for
building custom access methods such as ISAM (indexed sequential access
method).

For more detailed information regarding named files, refer to Chapter 5.

PHYSICAL FILES

Physical files differ from named files in that physical files allow your
application more direct control over a device. Each physical file
occuples an entire device, and applications can deal with it as though it
were a string of bytes. Also, physical files do not provide access
control.

This more basic relationship with a device provides your application with
flexibility. For example, your application can interpret volumes created
on other systems by using physical files.

Physical files also provide your application with the ability to
communicate with devices that do not need the power of named files.
Several examples of such devices are line printers, display tubes,
plotters, and robots.

For more detailed information about physical files, see Chapter 6.

FEATURES OF THE BASIC I/0 SYSTEM

STREAM FILES
Stream files provide a means for two tasks to communicate with each
other. One task writes into the file while the other task concurrently

reads from it. Stream files use no devices and provide no access control.

For more detailed information about stream files, see Chapter 7.

FILE SHARING AND ACCESS CONTROL

The Basic 1I/0 System provides your application with the ability to share
files and, in the case of named files, to control access to the files.

FILE SHARING

In a multitasking system it is often useful to have several tasks
manipulating a file simultaneously. Consider, for example, a transaction
processing system in which a large number of operators concurrently
manipulate a common data base. If each terminal is driven by a distinct
task, the only way to implement an efficlent transaction system is to have
the tasks share access to the data base file. The iRMX 86 Operating
System allows multiple tasks to concurrently access the same file.

For more detailed information about sharing files, see Chapters 5, 6, and
7.

ACCESS CONTROL

Also useful in a multitasking system is the ability to control access to a
file. For instance, suppose that several engineering departments share a
computer. An engineer in one department may want to reserve to himself
the ability to delete his files, while allowing people in his department
to write and read his file, and people 1n other departments to only read
the files. The Basic I/0 named files provide your applications with this
kind of access control.

For more detailed information regarding access control, refer to Chapter 5.

SEPARATION OF FILE LOOKUP AND FILE OPEN OPERATIONS

Many operating systems waste valuable time by looking up a file whenever
an application tries to open one. The Basic I/0 System avoids this by
using a special type of object (called a connection) to represent the bond
between the file and a program.

FEATURES OF THE BASIC I/0 SYSTEM

Whenever your application software creates a file, the Basic I/O System
returns a connection. Your application can then use the connection to
open the file without suffering the expense of having the Basic I/0 System
lookup the file. Even when your application wants to open an existing
file, the application can present the connection and bypass the file
lookup process.

There are several other benefits associated with connection objects. In
the case of named files, connections embody the access rights to the
file. This means that access need only be computed once (when the
connection is created) rather thanm each time the file is opened.

A second benefit of connections is that several connections can
similtaneously exist for the same file. This allows several tasks to
concurrently access different locations in the file. This is possible
because each connection maintains a file pointer to keep track of the
location, within the file, where the task 1s reading or writing.

The process of obtaining a connection to a file is discussed in each of
Chapters 5, 6, and 7.

CONTROL OVER FRAGMENTATION OF FILES

The Basic I/0 System allows your application to specify the granularity of
each mass storage file. This lets you trade faster I/0 for more efficient
use of space on the mass storage device.

When information is stored on a mass storage device, space is allocated in
chunks rather than one byte at a time. These chunks (called granules) can
be large or small, but all granules within one file must be of the same
size. This size is called the file granularity. The Basic I/0 System
allows your application to specify the granularity of each file that it
creates.

For a detailed explanation of the benefits of control over file
fragmentation, see the INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM.

CHAPTER 3. BASIC TERMINOLOGY

There are five concepts that you must understand if you wish to use the
Basic I/0 System. These concepts are:

o system programmers
° devices

. volumes

° files

° connections

The following sections explain these concepts.

SYSTEM PROGRAMMERS

There are two programming roles associated with the iRMX 86 Operating
System. One role involves using system calls and objects that affect
only your own job, while the other role involes manipulating system
resources and characteristics. These two roles are called application
programming and system programming.

Although the roles have different names, separate people are not
required. One individual can perform both roles. The reason for the
distinction is that the actions of the system programmer affect the
performance and security of the entire system, whereas the actions of the
application programmer have a more limited effect.

At several locations in this manual you will find actions to be performed
by system programs written by system programmers. Because of the broad
effect of these functions, they are only briefly described in this
manual. For more detailed information you must refer to the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL.

DEVICES

The iRMX 86 notion of a device probably corresponds to what you are
familiar with. Flexible diskette drives, line printers, magnetic tape
drives, and hard disk drives are all examples of devices.

BASIC TERMINOLOGY

However, there are two situations where the iRMX 86 notion of device may
differ from yours:

° Several Machines on One Controller

Even 1f several machines are governed by one controller, the
Basic I/0 System considers each machine to be a distinct device.

e Several Platters on One Spindle

Generally, when several platters reside on a single spindle, the
Basic I/0 System considers the entire spindle to be one device.
The exception to this arises when one platter is removable and
the others are fixed. In such cases the removable platter is a
different device than the fixed platters, and the fixed platters
all constitute one device.

VOLUMES

A volume is the actual medium used to store the device's information. If
the device is a flexible disk drive, the volume is a diskette. If the
device is a magnetic tape drive, the volume is the reel of tape. If the
device is a multiplatter hard disk drive, the volume 1s the disk pack.

FILES

Some operating systems consider a file to be a device, while others
consider a file to be the information stored on a device. The Basic I/0
System considers a file to be information.

The Basic 1/0 System provides three kinds of files, each of which have
characteristics making it unique. These characteristics are described in
general terms in Chapter 2 and in detailed terms in Chapters 5, 6, and 7.

Regardless of the kind of file, the Basic I/0 System presents information
to applications in the form of a byte string rather than in records.

CONNECTIONS
A connection is an iRMX 86 object that can represent either of two things:

e The bond between iRMX 86 jobs and devices

® The bond between iRMX 86 jobs and files

BASIC TERMINOLOGY

DEVICE CONNECTIONS

Before your application can manipulate files on a particular device, the
device must be attached. (Because this process is typically performed by
system programmers rather than application programmers, it is discussed in
the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.) When a program
successfully attaches a device, the Basic I/0 System creates a connection
(a type of iRMX 86 object) that includes information describing the
attached device. Such connections are called device connections.

Applications typically obtain device connections by invoking a system
program written by your system programmer. This program passes the
connection for the desired device to the calling application program.

Once the device has been attached, the only way to refer to the device is
by the connection. If your application catalogs the device connection in
your job's object directory under the name of the device, all of the tasks
in the job will be able to refer to the device. This is one of several
ways of making the device connection available to tasks.

NOTE

A device cannot be multiply attached.
In other words, at any one time no more
than one device connection can exist
for each device. However, once a
device is detached, it can be
reattached.

FILE CONNECTIONS

Whenever your application creates or attaches a file, the Basic 1/0 System
returns a connection that represents the bond between the application
(iRMX 86 job) and the file. This kind of connection is called a file
connection. —

NOTE

Files can be multiply attached. In
other words, more than one connection
can exist simultaneously for any file.

The reason for distinguishing between the file and the file-to-application
bond is so several tasks can concurrently use the file. To support this
sharing of files, file connections provide the Basic I/0 System with
information describing the bond. This information includes:

BASIC TERMINOLOGY

a file pointer

This is a number that tells the Basic I/0 System where within the
file to read or write. The Basic I/0 System automatically
maintains this pointer as your application reads and writes
sequentially. However, if your application must use random
access, it can modify this number by using the ASSEEK system call.

an open-mode indicator

The Basic I/0 System sets this variable when your application
calls the ASOPEN system call to open this connection to the file.
The open—mode indicator tells the Basic I/O System how your
application is going to use the connection. This variable can
assume any of four values: open for read, open for write, open for
read and write, and not open.

a share-mode indicator

The Basic I/0 System sets this variable when your application
calls the ASOPEN system call. The share-mode indicator controls
how other connections can share the file with the connection being
opened. This variable can take on any of four values: no sharing
whatsoever, share with readers only, share with writers only,
share with readers or writers.

3-4

CHAPTER 4. ASYNCHRONOUS SYSTEM CALLS

Each asynchronous system call has two parts —— one sequential, and one
concurrent. As you read the descriptions of the two parts, refer to
Figure 4-1 to see how the parts relate.

] the sequential part

The sequential part behaves in much the same way as the fully
synchronous system calls in Chapter 2. Its purpose is to verify
parameters, check conditions, and prepare the concurrent part of
the system call. The sequential part then returns control to
your application.

° the concurrent part

The concurrent part runs as an iRMX 86 task. The task is made
ready by the sequential part of the call, and it runs only when
the priority-based scheduling of the iRMX 86 Operating System
gives it the processor.

The reason for splitting the asynchronous calls into two parts is
performance. The functions performed by these calls are somewhat time-—
consuming because they usually involve mechanical devices. By performing
these functions concurrently with other work, the Basic I/0 System allows
your application to run while the Basic I/O System waits for the
mechanical devices to respond to your application's request.

Let's look at a brief example showing how your application can use
asynchronous calls. Suppose your application requires some information
that is stored on disk. The application issues the ASREAD system call to
have the Basic I/0 System read the information into memory. Let's trace

the action one step at a time:

l. Your application issues the ASREAD system call. This call
requires, as do all asynchronous calls, that your application
specify a response mailbox for communication with the concurrent
part of the system call.

2. The sequential part of the ASREAD call begins to run. This part
checks the parameters for validity.

3. If the sequential part of the call detects a problem, it signals
an exception and returns control to your application. It does
not make ready the Basic I/0 System task to perform the reading
function.

ASYNCHRONOUS SYSTEM CALLS

APPLICATION CODE 1/0 SYSTEM CODE
INVOKE TEST FOR
ASREAD VALIDITY
aud
YES MAKE 1/O
TASK READY
NO |
RETURN WIiTH |
EXCEPTION
EXAMINE CODE |
EXCEPTION
CODE -« |
RETURN WITH
ESOK '

DO ERROR ¥
PROCESSING
1/0 TASK

PERFORMS
110
DO \
CONCURRENT
PROCESSING PUT STATUS
OF OPERATION
IN MESSARE
Y
RECEIVES
MESSAGE FROM 4

RESPONSE MAILBOX SEND MESSAGE

TO RESPONSE

Y MAILBOX
EXAMINE Y
STATUS

AWAIT NEXT

1/0 REQUEST FOR
THIS CONNECTION

DO ERROR
PROCESSING

GET DATA
FROM
BUFFER

Figure 4-1l. Concurrent Behavior of an Asynchronous System Call

ASYNCHRONOUS SYSTEM CALLS

Your application receives control. Its behavior at this point
depends on the condition code returned by the sequential part of
the system call. Therefore, the application tests the condition
code. If the code is E$0OK, the application continues running
until it must have the information from the disk. It is at this
point that your application can take advantage of the
asynchronous and concurrent behavior of the Basic I/0 System.

For example, your application can implement double (or multiple)
buffering by issuing another (or several) ASREAD system call(s)
while waiting for the first call to complete running.
Alternatively, your application can use this overlapping
processing to perform computations. The point is that you can
decide what you want your application to do while the
asynchronous system call is running.

On the other hand, if your application finds that the condition
code returned from the sequential part of the system call is
other than E$OK, the application can assume that the Basic I/0
System did not make ready a task to perform the function.

For the balance of this example, we will assume that the
sequential part of the system call returned an E$OK completion
code.

Your application now must have the information. Before taking
the information from the buffer, you application must verify that
the concurrent part of the ASREAD system call ran successfully.
The application issues a RECEIVESMESSAGE system call to check the
response mailbox that the application specified when it invoked
the ASREAD system call.

By using the RECEIVESMESSAGE system call, the application obtains
a segment that contains, among other things, a completion code
for the concurrent part of the ASREAD system call. If this
completion code is E$OK, then the reading operation was
successful, and the application can get the data from the

buffer. On the other hand, if the code is not ES$OK, the
application should analyze the code and attempt to determine why
the reading operation was not successful.

In the foregoing example, we used a specific system call (ASREAD) to show
how asynchronous calls allow your application to run concurrently with
I/0 operations. Now let's look at some generalities about asynchronous

calls.

All of the asynchronous system calls consist of two parts =-— one
sequential and one concurrent. The Basic I/0 System will
activate the concurrent part only if the sequential part runs
successfully (returns E$OK).

Every asynchronous system call requires that your application

designate a response mailbox for communication with the
concurrent part of the system call.

4-3

ASYNCHRONOUS SYSTEM CALLS

Whenever the sequential part of an asynchronous system call
returns a condition code other than E$OK, your application should

not attempt to receive a message from the response mailbox.
There can be no message because the Basic I/0 System cannot run
the concurrent part of the system call.

Whenever the sequential part of an asynchronous system call runs
successfully (E$O0K), your application can count on the Basic I/0
System running the concurrent part of the system call. Your
application can take advantage of the concurrency by doing some
processing before receiving the message from the response mailbox.

Whenever the concurrent part of a system call runs, the Basic I/0
System signals its completion by sending an object to the
response mailbox. The precise nature of the object depends upon
which system call your application invoked. You can find out
what kind of object comes back from a particular system call by
looking up the call in Chapter 8 of this manual.

Whenever the Basic I/0 System returns a segment to your
application's response mailbox, your application must delete the
segment when it is no longer needed. The Basic I/0 System draws
memory for such segments from your job's memory pool, so 1f your
application fails to delete the segment, your job may run short
of memory.

CHAPTER 5. NAMED FILES

Named files are intended for use with random-access, secondary storage
devices such as disks, diskettes, and bubble memories. Named files
provide several features that are not provided by physical or stream
files. These features include:

e Multiple Files on a Single Device

) Hierarchical Naming of Files

® Access Control

These features combine to make named files extremely useful in systems
that support more than one application and in applications that require
more than one file.

MULTIPLE FILES ON A SINGLE DEVICE

As shown in Figure 5-1, your application can use named files to implement
more than one file on a single device. This can be very useful in
applications requiring more than one operator, such as transaction
processing systems.

HIERARCHICAL NAMING OF FILES

The iRMX 86 named files feature allows your application to organize its
files into a number of tree-like structures as depicted in Figure 5-1l.
Each such structure, called a file tree, must be contained on a single
device, and no two file trees can share a device. In other words, if a
device contains any named files, the device contains exactly one file
tree. Named file trees also must fit on a single volume.

Each file tree consists of two categories of files —— data files and
directories. Data files (which are shown as triangles in Figure 5-1)
contain the information that your application manipulates, such as
inventories, accounts payable, transactions, text, source code, or object
code. In contrast, directory files (shown as rectangles) contain only
pointers to other files. The purpose of the directory files is to
provide you with a large degree of flexlbility in organizing your file
structure.

To illustrate this flexibility, take a close look at Figure 5-1. This
figure shows how named files can be useful in multi-user systems. Figure
5-1 is based on a collection of hypothetical engineers who work for three
departments (Departments 1, 2 and 3). Each engineer is responsible for
his own files.

5-1

NAMED FILES

DEPT1
DEPT2
DEPT3

DEPTH DEPT2 DEPT3
BILL GEORGE SUE
TOM HARRY
SAM BILL
BILL TOM 3EORGJ HARRY SAM SUE BILL
SIM-SOURCE TEST-DATA
SIM-OBJECT TEST-OBJECT
SIM-SOURCE SIM-OBJECT TEST-OBJECT
TEST-DATA
BATCH-1 = DIRECTORY

BATCH-2

A = DATA FILE

BATCH-1 BATCH-2

Figure 5-1. Example of a Named-File Tree

This multiperson organization is reflected in the file tree. The
uppermost directory (called the device's root directory) points to three
"department directories.” Each department directory points to several
"engineer's directories.” And the engineers can organize their files as
they wish by using theilr own directories.

Each file (directory or data) has a unique shortest path comnecting it to
the root directory of the device. For instance, in Figure 5-1, the file
called SIM SOURCE has the path DEPT_1/BILL/SIM SOURCE. This notion of
"path"” reflects the hierarchical nature of the named-file tree.

Another characteristic of hierarchical file naming is that there is less
chance for duplicate file names. For example, note that Figure 5-1
contains directories for two individuals named Bill. (These directories

NAMED FILES

are on the extreme left and right of the third level of the figure.)
Even if the rightmost Bill had a data file with the file name of

SIM OBJECT, its path would differ from that leftmost Bill's SIM OBJECT.
Specifically, the leftmost SIM OBJECT is identified by

DEPTL}/BILL/SIM;QBJECT
whereas the rightmost SIM OBJECT would be identified by
DEPT 3/BILL/SIM;9BJECT

Whenever your application manipulates either kind of named file, the
application must tell the Basic I/0 System which file is to be
manipulated. There are several ways to specify a particular named file
to the Basic I/0 System, all of which involve connections and paths.

CONNECTIONS

Once you have a connection to a particular named file, you can use the

connection as the PREFIX parameter of any system call. -If, in the same
call, you set the SUBPATH parameter to zero, the Basic I/O System will

ignore the SUBPATH and use only the PREFIX to find the file.

PATHS

If you do not have a connection to the file you can specify the file by
using its path. To do this, build an iRMX 86 string of the form
described in the opening pages of Chapter 8. (An iRMX 86 string is a
representation of a character string. To represent a string of n
characters, you must use ntl consecutive bytes. The first byte contains
the character count, n. The following n bytes contain the ASCII codes
for the characters in the same order as the string.) This string is
called a path name. Then use a pointer to this path name as the SUBPATH
parameter in the system call, and use the device connection as the PREFIX
parameter in the system call.

For example, if your named file tree is on Drive 1, and it has the path
name DEPT 2/HARRY/TEST RESULTS, you can specify the file by using the
device connection for Drive 1 as the PREFIX parameter and a pointer to
the path name as the SUBPATH parameter.

PREFIX AND SUBPATH

Once your application has obtained a connection to a directory file
within a named file tree, the application can use that connection as a
basis for reaching all files that descend from the directory.

NAMED FILES

For example, referring again to Figure 5-1, suppose your application has
a connection to Directory DEPT 1/TOM. The application can refer to Data
File BATCH 1 by using both the PREFIX and the SUBPATH parameters. The
application should use the connection to Directory DEPI_}/TOM as the
PREFIX, and it should use a pointer to a subpath name as the SUBPATH.
The subpath name is a string that connects Directory DEPT 1/TOM to Data
File BATCH 1. For this example, the subpath name is TEST DATA/BATCH 1.

DEFAULT PREFIX

Within one iRMX 86 job, most references to a named file tree are
generally confined to one branch of the tree. For example, in Figure
5-1, Tom will usually access the files in his directory more frequently
than files outside of his directory. Recognizing this clustering, the
Basic I/0 System provides the notion of default prefix.

The Basic I/0 System allows your application to specify one default
prefix for each iRMX 86 job. A default prefix is a connection to a
directory at the head of the most commonly used branch in your named file
tree. For instance, in Figure 5-1, Tom's application would probably use
a connection to Directory DEPIL}/TOM as the default prefix. To use the
default prefix, the application sets the PREFIX parameter to zero.

A default prefix provides a job with two advantages. First, by providing
a reference point within a named file tree, it allows your application

to use subpath names instead of path names. If your tree is several
levels deep, this can save coding time during development. Second, and
more significantly, a default prefix provides a means of writing
generalized application code that can work at any of several locations
within a tree.

Consider an example. Suppose that an assembler (implemented as an

iRMX 86 job) uses a default prefix to find a location in a named file
tree. The assembler could then use a subpath name of TEMP to find or
create a temporary work file. Before an application invokes the
assembler, it sets the default prefix of the assembler job to a directory
in the application's named file tree. This allows more than one job to
invoke the assembler concurrently without the risk of sharing temporary
files.

The Basic I/0 System keeps track of a job's default prefix by using the
job's object directory. Whenever your tasks use the SET$DEFAULTSPREFIX
system call to specify a connection as being the default, the Basic I/0
System catalogs the connection under the name $ in the job's object
directory.

USERS AND ACCESS RIGHTS

Named files provide your application with the ability to control access
to files. This ability is based on the concept of users and the concept
of access rights.

5-4

NAMED FILES

USERS AND USER OBJECTS

The Basic I/0 System implements an iRMX 86 object type called a user
object, but before you can find user objects useful, you must understand
the concepts of user, group, and World.

Concept of User

The concept of user correlates file access to people or to iRMX 86 jobs,
but the precise definition depends upon the nature of your application.
For instance, if your application interfaces with several people who
enter information, you might want: to consider each person (or small
groups of persons) a user. This would allow each individual (or small
group) to maintain access different from other individuals (or other
small groups).

Alternatively, 1f your application interfaces with only one (or even no)
person, then you might wish to consider each iRMX 86 job as a user. This
would allow your application to control which job accesses which file.

In more general terms, the set of entities that manipulate named files in
your system is the set of all users. If you want all of these entities
to be able to access any file, you can consider them to be a single

user. However, if you want to distribute different access to different
collections of these entities, you must divide the entities into subsets,
and each of these subsets 1s a user.

Now let's look at an example derived from Figure 5-1. As mentioned
earlier, each engineer in the figure is responsible for his own files.

If an engineer wants to have unique access to his files, access different
than anybody else's, the engineer is a user. On the other hand, if all
engineers are willing to give uniform access to each member of his
department (including himself) then the departments are the users.

Concept of Group

Closely related to the concept of user is the concept of group. A group
is a collection of users who share some access. For example, suppose
that each engineer in Figure 5-1 wishes to reserve for himself certain
access to his own files, while allowing members of the same department
different access to the same file. This can be accomplished by
considering each engineer as a user, and each department as a group that
includes all of its members. By doing this, an engineer can assign
himself one kind of access and his department another.

NAMED FILES

Concept of World

The concepts of user and group can be used to assign various kinds of

access to different collections of users, but once in a while it is
useful to assign one kind of access to all users. To do this, your

application must employ a special group, called World, that includes all
users.

User Objects

The Basic I/0 System supports an iRMX 86 object type, called a user
object, that lets you bind users to groups, including the special group
called World. Whenever an application attempts to gain access to or
create a named file, the application must present a user object to the
Basic I/0 System. The Basic 1/0 System then uses this object to compute
the kind of access permitted the application.

In effect, user objects serve a purpose analogous to that of the plastic
cards that allow people to deal with automatic bank tellers. If you
don't have a valid plastic card, you can't use the automated teller.
Similarly, if your application doesn't have the correct user object, it
can't access certain named files.

User objects consist of a collection of identity codes (id's). The first
id is the id of the user whom the object represents, and any additional
id's specify groups to which the user belongs. For example, the id list
of a user object might look like this:

0231
A4D5 (A1l numbers in the list are hexadecimal.)
FFFF

Suppose that this is the id list for the user object of Harry in Figure
5~1. Harry's id is 0231, and the other id's represent groups to which
Harry belongs. For example, A4D5 could be the id representing Department
2. A group does not need a user object unless the group (rather than the
users in the group) is going to create or access files.

Take a special note of the third id on the list. By convention, FFFF is
the id used for the World. If you wish to take advantage of this useful
convention, you must ensure that every user is considered to be part of
the world. 1In other words, whenever you create any user object, you
should include FFFF as a group to which the user belongs.

Futhermore, if you wish to allow the World to create and access files,
you must create a user object for the world. The id list of the World's
user object should contain a single id, FFFF. The use of this special
user object is described later in this chapter, in the "Granting Access
to Other Users" saction.

The Basic I/0 System computes access based on user objects and a file's
access list. This computation is fully explained in the "Access Rights"”
section of this chapter.

NAMED FILES

Creating, Deleting, and Inspecting User Objects

The process of creating and deleting user objects is generally performed
by system programs rather than by application programs. For example,
application programs requiring user objects can invoke a system program
to create the object and pass it back to the application program through
a mailbox. Another alternative, that is particularly useful in systems
that interact with more than one person, is to create a log-on facility
that creates user objects as operators enter a password.

The Basic I/0 System provides three system calls for creating, deleting
and inspecting user objects. These calls are described in the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL.

Default Users

Generally, most of the I/0 operations performed within a particular

iRMX 86 job are performed on behalf of one user object. Recognizing
this, the Basic I/0 System allows your application to designate one
default user per job. Whenever your application invokes a Basic I/0
System call on behalf of the default user, the application can use zero
as the token for the USER parameter. The Basic I/0 System will recognize
the zero as referring to the default user.

The notion of a default user provides two benefits. First, it allows you
to avoid some repetitive coding. Second, and more significantly, it
allows your application to easily parameterize the user for whom I/0 is
being performed. For example, if your application includes a job that
modifies a named file on behalf of other jobs in the system, the invoking
job can set the default user of the I/0 job to a specific user object.
Then, all of the Basic I/0 System calls having a zero user object will be
performed on behalf of the default user.

The Basic I/O System provides two system calls to manipulate a job's
default user. The GETSDEFAULTSUSER and SETSDEFAULTSUSER calls are both
described in the system call chapter of this manual.

The Basic I/0 System uses the job's object directory to keep track of the
job's default user. Whenever one of your tasks sets or gets a default
user, the Basic I/0 either catalogs or looks up the default user entry in
the object directory. The Basic I/0 System uses the name R?USER to refer
to the default user. To prevent problems, you should consider R?USER to
be a reserved name, and you should avoid using it.

ACCESS RIGHTS

For each named file (directory or data file), the Basic I/O System

maintains a list of ordered pairs having the form (id, access rights).
The id portion is the identity code for a user or a group. The access
rights portion is an encoded hexadecimal number that indicates all the

NAMED FILES

access rights for the associated id. The list of pairs is called the
file's access list, and the Basic I/0 System supports as many as three
entries for each named file.

The kinds of access rights that a user or group can have depend on
whether the file is a data file or a directory file. The kinds of access
rights available for data files are:

Delete The ability to delete the file with ASDELETESFILE
and rename the file with ASRENAMESFILE.

Read The ability to read the file with ASREAD.

Append The ability to add information to the end of the

file with ASWRITE.

Update The ability to change information in the file with
ASWRITE or drop information with ASTRUNCATE.

The kinds of access rights available for directory files are:

Delete The ability to delete the directory file with
ASDELETESFILE.
Display The ability to obtain the contents of directory

files with ASREAD or AGETDIRECTORYSENTRY.

Add Entry The ability to add files to the directory with
ASCREATESFILE, ASCREATESDIRECTORY, or ASRENAMESFILE.

Change Entry The ability to change the access rights of the files
in the directory with A$SCHANGESACCESS.

The numeric values associated with the access rights are explained in the
descriptions of ASCREATESFILE and ASCREATE$DIRECTORY in the system call
chapter of this manual.

When an application creates a named file, the application uses the,
ASCREATESFILE system call. Two of the parameters of this call are USER
and ACCESS. When the Basic I/0 System actually builds the file, it
initializes the access list with a single entry consisting of the id of
the user who invoked AS$CREATESFILE and the access he specified in the
call. The user who creates a file is called the owner of the file.

NOTE

The owner of a file has only one advan-
tage over other users who can access the
file, but the advantage is an important
one. Only a file's owner can use the
ASCHANGESACCESS system call to modify
the file's access list without being
granted explicit permission to do so.

5-8

NAMED FILES

Computing Access

Whenever an application attempts to access a named file, the application
must supply tl~ Basic I/0O System with a user object. The Basic I/0
System then = .ns the access list of the file and finds all entries that
match any id's (user or group) in the id list of the user object.
Finally, the Basic I/0 System computes the access by "or"ing together the
access of each matching entry.

Consider an example. Suppose that an application attempts to establish a
connection to a file having the following access list:

(D556, OF)
(8801, 05)
(FFFF, 02)

Now suppose that the application presents a user object having an id list
of

042A
8801
FFFF

The Basic I/0 System would find that the user object has two id's that
match entries in the file's access list. The id's are 8BOl and FFFF, and
the corresponding access rights are 05 and 02. So the Basic I/0 System
would compute access by "or"ing together 05 and 02, yielding access of
07. The precise interpretation of this access depends upon whether the
file is a directory or a data file, as explained previously.

Time at Which Access is Computed

The Basic I/0 System computes access only under two circumstances. The
first circumstance is the creation of a connection. Whenever an
application creates a connection (by using the A$CREATESFILE,
ASCREATESDIRECTORY, or ASATTACHSFILE system calls), the application
presents a user object to the Basic I/0 System. The System uses this
object and the access list of the named file to compute the access, and
it embeds this access in the connection object that is returned to the
application.

Later, when the application attempts to manipulate the file via the
connection, the Basic I/0 System uses the connection's embedded access to
decide what kind of manipulation is permitted. Even if an application
changes the access list of the file or the id list of the user object,
the change will have absolutely no effect on the access embedded in the
connection.

5-9

NAMED FILES

The second circumstance under which the Basic I/0 System computes access
arises when an application uses either the ASDELETESFILE or the
ASCHANGESACCESS system calls. If the system call invocation contains any
subpath other than the null subpath, the Basic I1/0 System will compute
access to the target file before performing the desired funciion. If
access is not granted, the Basic I/0 System will deny the user the
ability to delete the file or change access.

If an invocation of ASDELETESFILE or ASCHANGESACCESS does contain the
null subpath, the Basic I/0 System will use the access associated with
the PREFIX to decide whether or not to perform the function requested in
the system call.

NOTE

If a system call invocation contains a
subpath parameter other than the null
subpath, the Basic I/0 System checks
the access only to the last file in the
path and to the parent directory of the
last file. It does not check the
access to any other directory files
specified in the path.

Access at Time of Creation

Whenever your application creates a named file (either data or
directory), the application presents two access-related parameters to the
Basic I/0 System. One of the parameters is a user object. The Basic I/0
System uses this object to "brand™ the file as being owned by a specific
user.

The second access-related parameter is called ACCESS. This parameter
governs the owner's access rights. The kinds of access from which the
application can choose depend upon whether a data file or a directory is
being created. These rights are discussed in the "Access Rights" section
of this chapter.

Granting Access to Other Users

When an application initially creates a named file (either data file or
directory) access to the file is restricted to the creating user (the
owner). However, there are two ways for the owner to allow other users
to access the file.

The first technique is performed after the creation of the file. The
owner of the file is always entitled to change the access to the file.
So by using the A$CHANGE$ACCESS system call, the owner can provide other
users access.

5-10

NAMED FILES

The second technique involves a group user object (discussed earlier
under the heading of "User Objects"). If, when your application creates
a file, it uses a group's user object rather than its own user object,
the group is the owner of the file. Using ASCHANGESACCESS, any user in
the group can change the kind of access granted to the group, or the kind
of access granted to any other accessor of the file.

SYSTEM CALLS FOR NAMED FILES

There are 31 system calls that relate to iRMX 86 named files. Some of

these calls are useful for both data and directory files, some only for
one kind of file, and some (such as CREATESUSER) don't relate to either
kind of file.

The following sections briefly explain the purpose of each of the 31
system calls. The descriptions are grouped by function rather than
alphabetically. These descriptions are very brief. Chapter 8 of this
manual contains descriptions of most of the calls, and the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL contains descriptions of the others. If
any of the following descriptions do not explicitly refer to a more
detailed description, you can find such a description in Chapter 8.

OBTAINING AND DELETING CONNECTIONS

There are six system calls that relate to obtaining and deleting
connections.

e ASCREATESFILE

This call applies only to data files. Your application must use
this call to create a new data file, and it can use this call to
obtain a connection to an existing data file. If the application
uses this call to create a new file, the Basic I/0 System
automatically adds an entry in the parent directory for this new
file.

e ASCREATE$SDIRECTORY

This call applies only to directory files. Your application must
use this call to create a new directory file. The call cannot be
used to obtain a connection to an existing directory. The Basic
I/0 System automatically adds an entry in the parent directory
for this new directory.

e ASATTACHSFILE
This call applies to both data and directory files. Your

application can use this call to obtain a connection to an
existing data file or directory.

5-11

NAMED FILES

ASDELETE$CONNECTION

This call applies to both data and directory files. Your
application can use this call to delete a connection to either
kind of named file. This call cannot be used to delete a device
connection.

ASATTACHSDEVICE

This call does not directly apply to either data or directory
files. Your application uses this call to obtain a connection to
a device. Even though this connection is a device connection, it
can be used as the prefix for the root directory of the device.
This call is explained in detail in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL.

ASDETACHS$DEVICE

This call does not directly apply to either data or directory
files. Your application uses this call to delete a connection to
a device. This system call is explained in detail in the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL.

USER OBJECTS

There are five calls directly related to user objects. None of these
calls is specifically related to data or directory files. The calls are:

CREATESUSER

This call is used to create a user object. Since this call is
generally invoked only by system program, it 1s described in the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

DELETESUSER

This call is used to delete a user object. Since this call is
generally invoked only by system programs, it is described in the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

INSPECTSUSER

This call is used to ascertain a user object's id and to find out
to which groups the user belongs. Since this call is generally
invoked only by system programs, it is described in the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL.

SETSDEFAULT$USER
Your application can use this call to establish a default user

for any iRMX 86 job. This call is described in Chapter 8 of this
manua l.

5-12

NAMED FILES

e GETSDEFAULTSUSER

Your application can use this call to ascertain the default user
for any iRMX 86 job. This call is described in Chapter 8 of this
manual.

DEFAULT PREFIXES

There are two calls that relate to default prefixes, and both are
described in detail in Chapter 8 of this manual. Neither of these calls
relates directly to data files or directory files. The calls are:

° SETS$DEFAULTS$PREFIX

Your application can use this call to set the default prefix for
any iRMX 86 job.

° GET$DEFAULT$PREFIX

Your application can use this call to ascertain the default
prefix for any iRMX 86 job.

MANIPULATING DATA

There are six system calls that allow you to manipulate the data that
forms a file. All six can be used with data files, while only four apply
to directory files. All of the calls are described in Chapter 8 of this
manual. The system calls are:

e ASOPEN

This call applies to both data and directory files. Before your
application can use any other system calls to manipulate file
data, the application must open a connection to the file. This
system call is the only way to open a connection.

e ASCLOSE

This call applies to both data and directory files. After your
application has finished manipulating a file, the application can
use this system call to close the file connection. Your
application can elect to leave the file open, letting the Basic
I/0 System close it when the connection is deleted, but there is
an advantage to closing connections when they are not being used.

This advantage derives from the fact that, when a connection is
shared between two or more applications, some of the applications
can place restrictions on the manner of sharing. For instance,
an application can specify sharing with writers only. By closing
connections, your application can improve the likelihood that the
connections can be used by other applications.

5-13

NAMED FILES

A$SEEK

This system call applies to both data and directory files.
Whenever your application reads, writes, or truncates a file, the
application must tell the Basic I/0 System the location in the
file where the operation is to take place. To do this, your
application uses the A$SEEK system call to position the file
pointer of the file connection. The ASSEEK system call requires
that the file connection be open.

ASREAD

This system call applies to both data and directory files. Your
application can use this system call to read file data from the
location indicated by the file pointer. Before using this system
call, your application can use the ASSEEK system call to position
the file pointer. The ASREAD system call requires that the file
connection be open.

The outcome of this system call depends upon whether a data file
or a directory is being read. If your application reads a data
file, the application will receive data that makes up the file.
If the application reads from a directory, the application will
receive data that represents the entries of the directory.

Each entry in a directory consists of 16 bytes. The first two
bytes contain a 16-bit file descriptor number corresponding to
the file descriptor number associated with the ASGETSFILESSTATUS
system call in Chapter 8. The remaining 14 bytes are the ASCII
characters making up the name of the file to which the directory
entry points. (A file's name is the last component of a path
name.) The advantage of using the ASREAD system call to read a
directory is that your application can obtain several entries
with one operation.

ASWRITE

This system call applies only to data files. Your application
uses this system call to put new information in the file. Before
using this call, the application can use ASSEEK to position the
file poirter to the location within the file to receive the
information. The ASWRITE system call also requires that the file
connection be open.

ASTRUNCATE

This system call can be used only on data files. Your
application can use this call to trim information from the end of
the file. To do so, the application first must use ASSEEK to
position the file pointer to the first byte to be dropped. Then
the application invokes the A$TRUNCATE call to drop the specified
byte and any bytes located after the specified byte. The
ASTRUNCATE system call requires that the file connection be open.

5-14

NAMED FILES

OBTAINING STATUS

There are two status-related system calls, one for connections and one
for files. The calls are ASGETSFILES$STATUS and ASGETS$SCONNECTIONSSTATUS.
Both of these calls can be used with data files and directory files.

READING DIRECTORY ENTRIES

There are two system calls that your application can use to read entries
from a directory. The ASREAD system call (which can also be used to read
a data file) was discussed earlier, under the heading "Manipulating
Data.” The second system call is ASGETS$DIRECTORYSENTRY. This system
call can be used only on directory files, and can be used without opening
a connection. The ASGETSDIRECTORYSENTRY system call is fully described
in Chapter 8 of this manual.

DELETING AND RENAMING FILES

The Basic I/0 System provides one system call for deleting files, and
another for renaming files. Both of these calls can be used with data
files and directory files. The calls are:

] ASDELETESFILE

Your aplication can use this system call to delete data files and
directory files. However, any attempt to delete a directory that
is not empty will result in an exceptional condition.

The process of deleting a file involves two stages. First, the
application must call A$DELETESFILE. This causes the file to be
marked for deletion. The second stage, which is performed by the
Basic I/0 System, involves deciding when to delete the file. The
Basic I/0 System deletes marked files only after all connections
to the file have been deleted. Refer to the ASDELETESCONNECTION
system call to see how to delete connections.

e ASRENAMESFILE

Your application can use this system call to rename both data
files and directory files. In renaming a file, your application
can move the file to any directory in the same named file tree.
For example, you can rename A/B/C to be A/X/C. Iu effect, this
example simply moves File C from Directory B to Directory X.
This means that your application can change every component of a
file's path name.

5-15

NAMED FILES

CHANGING ACCESS

The Basic I/0 System provides one system call to let your application
change a file's access list. This call is ASCHANGES$ACCESS, and it
applies to both data files and directories. One rule governs the use of
ASCHANGESACCESS —~- only the owner of a file or a user with change entry
access to the directory containing the file can change the file's access
list.

ASCERTAINING A FILE'S NAME

The Basic I/0 System provides a system call to let your application find
out the last component of a file's path name when the application has a
connection to the file. The system call is AS$SGETS$SPATH$SCOMPONENT, and you
can use it on data files and directories. Note that your application can
use this system call repeatedly to obtain the entire path name for a file.

MANIPULATING EXTENSION DATA

When you format a volume to accommodate named files, you have the option
of allowing each file to carry extension data. The Basic I/0 System
provides two system calls that allow you to get and set extension data.
These calls apply to both data and directory files, and both are
described in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

e ASSETSEXTENSIONSDATA

This call provides a means of writing extension data.
ASSETSEXTENSIONSDATA can be used even if the file connection is
not open.

e ASGETSEXTENSIONSDATA

This call provides a means of reading extension data.
ASGETSEXTENSIONSDATA can be used even if the file connection is
not open.

DETECTING CHANGES IN DEVICE STATUS

The Basic I/0 System provides the ASSPECIAL system call to allow your
application to detect a change in the status of the device containing
your named file tree. Specifically, your application can use the
"notify"” function of the A$SPECIAL system call to establish a mechanism
for finding out if the device ceases to be ready. For more information,
refer to the ASSPECIAL section of Chapter 8.

5-16

NAMED FILES

CHRONOLOGICAL OVERVIEW OF NAMED FILES

Although 31 syctem calls can be used with named files, the system calls
cannot be used in arbitrary order. This section provides you with a
sense of how 1he calls relate to one another.

MOST FREQUENTLY USED SYSTEM CALLS

Figure 5-2 shows the chronological relationships between most frequently
used Basic I/0 System calls. To use the figure, start with the leftmost
box and follow the arrows. Any path that you can trace is a legitimate
sequence of system calls. However, there are also sequences not
represented in the figure.

——»] CREATE
FILE

J Y

WRITE DELETE DELETE
OPEN > SEEK > CLOSE —>
p FILE [CONNECTION, \
TRUNCATE l
ATTACH

FILE

A

—/

|/
arTACH — DATA FILES —
j DIRECTORIES
] CREATE o | | seex | | CLOSE
DIRECTORY PEN ng\o
TE
O 7 cORNECTION
— ATTACH | GET
CTORY
FiLE OENTRY

Figure 5-2. Chronology of Frequently Used System Calls for Named Files

5-17

NAMED FILES

CALLS RELATING TO USER OBJECTS

With one exception, the system calls relating to user objects are
completely independent of other Basic I/0 System calls. The one
exception is that your application must have a user object before it can
use any system call requiring a user object.

There are five system calls relating to user objects. Of the five,
GETSDEFAULTSUSER and CREATESUSER can be invoked any time. Two others,
DELETESUSER and INSPECTSUSER, can be invoked only after user objects
exist. The remaining call, SETS$DEFAULTSUSER requires that both a job and
a user object exist.

CALLS RELATING TO PREFIXES

The GET$DEFAULTSPREFIX system call can be invoked whenever a job exists.
However, the SETSDEFAULTSPREFIX requires both a job and a user object.

CALLS RELATING TO STATUS

Both of the status-related system calls, A$GETSFILESSTATUS and
ASGETSCONNECTIONSSTATUS, can be invoked whenever your application has a
file connection.

CALLS RELATING TO CHANGING ACCESS

The only system call related to changing access, ASCHANGESACCESS, can be
invoked whenever your application has both a user object and a path or
connection to a file.

CALLS FOR MONITORING DEVICE READINESS

There is only one system call that lets your application monitor the
readiness of a device, the A$SPECIAL system call. Your application can

use the "notify” function of this call any time after your appication has
obtained a device connection.

CALLS RELATING TO EXTENSION DATA

The two system calls relating to extension data, ASGETSEXTENSION$DATA and
ASSETSEXTENSIONSDATA, can be invoked whenever your application has a
connection to a file.

5-18

NAMED FILES

CALLS FOR RENAMING FILES
The one call for renaming a file, ASRENAMESFILE, can be used whenever

your application has a connection to the file to be renamed, a user
object, and a path that is to become the new pathname.

CALLS FOR ASCERTAINING FILE NAMES
There is only one system call for finding out a file's name,

ASGETSPATHSCOMPONENT. Your application can use this call whenever the
application has a connection to the file.

5-19

CHAPTER 6. PHYSICAL FILES

The Basic I/0 System provides physical files to allow your applications
to read (or write) strings of bytes from (or to) a device. In other
words, a physical file occupies an entire device, and the Basic I/0
System provides your applications with the ability to directly access the
driver of the device.

SITUATIONS REQUIRING PHYSICAL FILES

The close relationship between a device and a physical file is
particularly useful when your application uses sequential devices. For
example, you should use physical files to communicate with line printers,
display tubes, plotters, magnetic tape units, and robots.

There are even some instances where you should use physical files to
commnicate with random devices such as disks, diskettes, and bubble
memories. For instance:

e Formatting Volumes

Whenever you create an application to format a disk or diskette,
the application must have access to every byte on the volume.
Only physical files provide this kind of access.

e Volumes in Formats Required by Other Systems

If your application must read or write volumes that have been
formatted for systems other than the Basic I/O System, you must
use physical files. Your application will have to interpret such
information as labels and file structures, but a physical file
can provide your application with access to the raw information.

o Implementing Your Own File Format

Suppose that your application requires a less sophisticated file
structure than that provided by iRMX 86 named files. You can
build a custom file structure using a physical file as a
foundation.

CONNECTIONS AND PHYSICAL FILES

Although there is a one—to—one correspondence between the bytes on a
device and the bytes of a physical file, the device connection is
different from the file connection. The Basic I/0 System maintains this
distinction to remain consistent with named files and stream files. This
consistency helps you develop applications that can use any kind of file.

PHYSICAL FILES

USING PHYSICAL FILES

Several system calls can be used with physical files, but the order in
which they are used is not arbitrary. The following list provides a
brief description (in chronological order) of what an application must do
to use a physical file.

1'

Obtain a device connection.

This is necessary for two reasons. When your application creates
the physical file, the device connection tells the Basic I/0
System which device is to contain the file and that the file must
be a physical file.

Since the process of attaching a device is restricted to system
programs, you must create a system program. This program must
use the ASPHYSICALSATTACHSDEVICE system call to obtain the device
connection. When issuing this call, the system program must use
the name that was assigned to the device during system
configuration. For instructions as to how to assign names to
devices, refer to the iRMX 86 CONFIGURATION GUIDE.

Because devices cannot be multiply attached, your system program
must be written so as to call ASPHYSICALSATTACHS$DEVICE only
once. The program can then save the device connection and pass
it to any application program that requests it.

Obtain a file connection.

If your application knows that the file has not yet been created,
it should use the ASCREATESFILE system call to obtain a file
connection. This will work even though the physical file has
already been created. When invoking the system call, set the
USER, SUBPATH, ACCESS, MUSTSCREATE, GRANULARITY, and SIZE
parameters to zero, as these parameters are meaningless when
creating a physical file. Use the token of the device connection
as the PREFIX parameter in order to tell the Basic I/0 System
which device you want as your physical file.

If, on the other hand, your application is certain that the file
has already been created, use the ASATTACHSFILE system call to
obtain the file connection. To do this, your application should
first obtain a connection to the device or an existing connection
to the file and then use it as the PREFIX parameter in the system
call. The application should set the USER and SUBPATH parameters
to zero, as they have no meaning for physical files.

This careful distinction between the ASCREATESFILE and the
ASATTACHSFILE system calls is necessary to be consistent with
named files. If you want your application to work with any kind
of file, you must maintain this consistency.

PHYSICAL FILES

Open the file connection.

Use the ASOPEN system call to open the connection. When opening
the connection, your application must specify how the file can be
shared and how the application uses the connection. The system
call chapter of this manual explains how to do this.

Manipulate the file.

There are four system calls that can be used to read, write, or
otherwise manipulate your physical file:

° The ASREAD and ASWRITE system calls are straightforward and
are fully described in the system call chapter of this manual.

] The ASSEEK system call can be used to manipulate the file
connection's file pointer if the device is a random device
such as disk, diskette, or bubble. (If you are writing a
device driver for a magnetic tape unit, you can design it to
support AS$SEEK. Refer to the GUIDE TO WRITING DEVICE DRIVERS
FOR THE iRMX 86 OPERATING SYSTEM.)

° The A$SPECIAL system call can be used to request device
dependent functions from the device driver. The precise
nature of these functions depends upon the kind of device and
the number of special functions supported by the device
driver. Be aware that use of special functions can prevent
an application from being device independent.

Close the file connection.

Use the ASCLOSE system call to close the connection. This is
particularly important if the share mode of the connection
restricts the use of the file through other connections. Note
that your application can repeat steps 2, 3, and 4 any number of
times.

Delete the connection.

Use the ASDELETESCONNECTION system call to delete the
connection. This is only necessary if your applicationmn is
completely finished using the file.

Request that the device be detached.

Let the system program know when your application is certain it
no longer needs the device. The system program should keep track
of the number of applications using the device and should avoid
detaching it until it is no longer being used by any

application. Only then should the system program use the
ASPHYSICALSDETACHSDEVICE system call to detach the device.

CHAPTER 7. STREAM FILES

Stream files provide a means for one task to send large amounts of
information to another task in a different job. Be aware that this is
one of several techniques for job-to—job communication. If you are not
familiar with other techniques, refer to the iRMX 86 PROGRAMMING
TECHNIQUES manual.

The aspect of stream files that makes them very useful is that they allow
a task to communicate with a second task as though the second task were a
device. This extends the notion of device independence to include tasks.

Since two tasks are involved in using each stream file, each task must
perform one half of a protocol. There are a large number of protocols
that work, but the following one is typical and serves as a good
illustration. Note that the two halves of the protocol can be performed
in either order or concurrently.

ACTIONS REQUIRED OF THE WRITING TASK

The writing task must perform seven steps in its half of the protocol to
ensure that it has established communication with the reading task. The
steps are: :

1. Obtain a connection to the stream file device.

Although stream files do not actually require a physical device,
your application must obtain a device connection before creating
a stream file. This is necessary because, when your application
invokes the ASCREATESFILE system call, the device connection
tells the Basic I/0 System what kind of file to create.

Since the process of attaching a device is restricted to system
programs, you must create a system program that obtains the
connection. This program must use the ASPHYSICALSATTACH$DEVICE
system call to obtain the device connection.

The AS$PHYSICALSATTACHSDEVICE system call requires a parameter
that identifies the device to be attached. For stream files,
there is only one device, and its name is specified during the
process of configuring the system. Intel recomends the name
:stream:, but is is possible that the person responsible for
configuring your system changed this name. For the remainder of
this discussion, this manual assumes that the name of your
system's stream file device is :stream:. For more information
regarding the configuration process, refer the the iRMX 86
CONFIGURATION GUIDE.

7-1

STREAM FILES

As with other devices, :stream: cannot be multiply attached, so
the system program should be written so as to call
ASPHYSICALSATTACHSDEVICE only once. The program can then save
the device connection and pass it to any application program that
requests it.

Create the stream file.

Use the ASCREATESFILE system call to create the stream file.
When invoking the system call, set the USER, SUBPATH, ACCESS,
MUST$CREATE, SIZE, and GRANULARITY parameters to zero because
these parameters have no meaning when creating a stream file.
Use the token for the device connection as the PREFIX parameter
in order to tell the Basic I/0O System to create a stream file.
If this system call runs successfully, the Basic I/0 System will
return a token for a file connection to the stream file.

Pass the file connection to the reading task.

There are a number of ways of doing this, including object
directories and mailboxes. For explicit instructions, refer to
the iRMX 86 PROGRAMMING TECHNIQUES manual.

Open the file for writing.

Use the ASOPEN system call to open the file connection for
writing. Set the CONNECTION parameter to the token for the file
connection. Set the MODE parameter to write. And set the SHARE
parameter to allow sharing only with readers.

Write information to the stream file.

Use the ASWRITE system call as often as needed to write
information to the stream file. Use the token for the file
connection as the CONNECTION parameter.

The Basic I/0 System uses the concurrent part of the ASWRITE
system call to synchronize the writing and reading tasks on a
call-by-call basis. The Basic I/0 System does this by sending a
response to each invocation of ASWRITE only after the reading
task has finished reading all information that was written by the
ASWRITE call.

Close the connection.

When finished writing to the stream file, use the ASCLOSE system
call to close the connection. Note that after this step, the
writing task can repeat steps 4, 5, and 6.

Delete the connection.

Use the ASDELETE$CONNECTION system call to delete the connection
to the stream file.

STREAM FILES

ACTIONS REQUIRED OF THE READING TASK

The reading task must perform the following six steps in its half of the
protocol to successfully read the information written by the writing task.

1.

Get the file connection for the stream file.

The technique used to accomplish this depends on how the writing
task passed the file connection.

Create a second file connection for the stream file.

There are two reasons for doing this. First, the reading task
must have a different file pointer than the writing task.
Second, the Basic I/0 System rejects any connections created in
one job but used by another to manipulate a file.

Obtain this new connection by using the ASATTACHSFILE system
call. Set the USER and SUBPATH parameters to zero, and set the
PREFIX parameter to the token for the original file connection.

NOTE
The reading task can also use the
ASCREATESFILE system call to obtain the
new connection to the same stream
file. The reason for this is that the
Basic I/0 System examines the nature of
the PREFIX parameter in the
ASCREATESFILE system call. If the
value provided is a device connection,
the Basic I/0 System will create a new
file and return a connection for it.
On the other hand, if the value
provided is a file connection, the
Basic I/0 System will just create
another connection to the same file.

However, a careful distinction between
the ASCREATESFILE and the ASATTACHSFILE
system calls is necessary to be
consistent with named and physical
files. If you want your application to
work with any kind of file, you must
maintain this consistency.

Open the new file connection for reading.
Use the ASOPEN system call to open the connection for reading.
Set the CONNECTION parameter to the token for the new

connection. Set the MODE parameter to read, and set the SHARE
parameter to allow sharing with all connections to the file.

7-3

STREAM FILES

Commence reading.

Use the ASREAD system call to read the file until reading is no
longer necessary or until an end-of-file condition is detected by
the Basic I/0 System.

Close the new file connection.
Use the ASCLOSE system call to close the new file connection.

Note that after this step, the reading task can repeat steps 3,
4, and 5.

Delete the new file connection.

Use the ASDELETESCONNECTION system call to delete the new
connection to the stream file. The old connection is deleted by
the writing task, and the stream file is deleted by the Basic I/0
System as soon as both connections have been deleted.

7-4

CHAPTER 8. SYSTEM CALLS

This chapter describes the PL/M calling sequences to Basic I/0 System
calls. The system calls are listed here alphabetically by the same
shorthand notation used throughout this manual. For example,
ASDELETESFILE refers to the asynchronous-level delete-file system call
and appears alphabetically before SET$DEFAULTSPREFIX. This notation is
language independent and should not be confused with the actual form of
the PL/M call. The precise format of each call is spelled out as part of
its detailed description.

For those I/0 related calls which are invoked by system programmers, only
the format of the call is described. Detailed descriptions of these
calls are in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

Basic I/0 operations are declared as typed or untyped external procedures

for PL/M. PL/M programs perform I/0 operations by issuing external
procedure calls.

INPUT PARAMETER SPECIFICATION

The following paragraphs explain special properties of certain input
parameters to Basic I/O System calls.

USER PARAMETER

This parameter is specified in some asynchronous system calls. It
contains a token designating the caller's user object. A zero
specification designates the default user. The Basic I/0 System ignores
this parameter for physical and stream files.

FILE-PATH PARAMETER(S) FOR NAMED FILES

Named files are designated in system calls by specifying their path, that
is, their prefix and subpath. The prefix parameter can be a token
designating an existing device connection or file connection. If this
parameter is zero, the default prefix for the calling task's job is
assumed.

For named files, the subpath parameter is a pointer to an ASCII string.
The form of this string is described in the following paragraph. The
subpath can also be zero or can point to a null string, in which case a
prefix indicates the desired connection. For physical and stream files,
the subpath parameter is always ignored.

SYSTEM CALLS

System calls referring to named files can specify paths in the following
forms:

Prefix Subpath Designated Connection
0 0 or a pointer Connection whose token is
to a null string the default prefix.
0 Pointer to ASCII string defines a path
ASCII string from the connection whose

token is the default prefix to
the target connection.

token 0 or a pointer Connection whose token is
to a null string contained in the prefix
connection.
token Pointer to Prefix parameter contains a
ASCII string token for a connection. ASCII

string defines a path from
that connection to the target
connection.

The subpath ASCII string is a list of file names separated by slashes,
terminating with the desired file. A file name can be 1-14 ASCII
characters, including any printable ASCII character except the slash (/)
and up—arrow (4) or circumflex (~). 1In Figure 8-1, for example, if the
prefix is the token for directory OBSTETRICS and we wish to reference file
OUT_PATIENT, the subpath parameter must point to the string

DELIVERY/POST PARTUM/OUT_ PATIENT

If the ASCII string begins with a slash, the prefix merely designates the
tree and the subpath is assumed to start at the root directory of the tree
associated with the prefix. For example, if the prefix designates
directory GYNECOLOGY in Figure 8-1, the subpath to OUT PATIENT is

/0BSTETRICS/DELIVERY/POST_PARTUM/OUT_?ATIENT

Named files can also be addressed relative to other files in the tree,
using "4" as a path component. The "A" refers to the parent directory of
the current file in the path scan. For example, now that we have a
connection to OUT PATIENT in Figure 8-1, we can use that connection to
specify a subpath to IN PATIENT. With the token for the OUT_PATIENT
connection as our prefix, the subpath string would be

A IN_PATIENT

Note that no slasht follows the "T" in this example.

8-2

SYSTEM CALLS

Of course an even simpler approach would be to designate directory
POST PARTUM as the prefix, in which case the ASCII string becomes:

IN PATIENT
OBSTETRICS
GYNECOLOGY
.
.
ROOT
DIRECTORY
PRENATAL
DELIVERY
EMPTY
. DIRECTORY
.
IN-LABOR
POST-PARTUM
EMPTY
* ‘DIRECTORY
.
.
y
Y IN-PATIENT
OUT-PATIENT

Figure 8-1. Sample Named File Tree

8-3

SYSTEM CALLS

RESPONSE MAILBOX PARAMETER

This parameter is specified only in asynchronous system calls. It
contains a token designating the mailbox that is to receive the result of
the call. This information is provided by tasks to synchronize parallel
operations. To receive the result of the call, a task must wait at the
designated mailbox. Be aware that if several calls share the same
mailbox, the results may be received out of order.

Most asynchronous system calls return only an I/0 result segment to the
response mailbox. This segment contains an exception code and other
information about the operation. Appendix C describes the I/0 result
segment. Other system calls, the create—-file—connection system calls,
return to the mailbox a token for a connection if the system call
completes sucessfully or an I/0 result segment otherwise. After making
one of these system calls, a task should perform a GET$TYPE system call
to determine the type of object returned to the response mailbox. The
iRMX 86 NUCLEUS REFERENCE MANUAL describes the GET$TYPE system call in
detail.

NOTE

Result information segments should be
deleted once they are no longer
needed. Otherwise, they will consume
available memory.

1/0 BUFFERS

The ASREAD and ASWRITE system calls each require a buffer while
performing I/0. When you create these buffers, bear in mind the
following restrictions:

° Once the I/0 operation has been invoked, the tasks of your
application should avoid changing the contents of the buffer
until the Basic I/0 System completes the operation.

. If you use an iRMX 86 segment as a buffer, be sure that the
buffer is not deleted while an I/0 operation is in progress.

° If you choose to use an IRMX 86 segment as a buffer, you should
ensure that the segment is in the same job as the task performing
the I/0 operation. Using segments from one job as buffers for
I1/0 operations in a different job can lead to a problem. For
instance, suppose that Job A owns an iRMX 86 segment, and that
Job B uses this segment as a buffer for I/0. If Job A is
deleted, the iRMX 86 Operating System automatically deletes the
buffer even if I/0 is in progress.

8-4

SYSTEM CALLS

EXCEPTION CODES

The Basic I/0 System returns an exception code when a system call is
invoked. If e call executes without error, the Basic I/O System
returns the le "ESOK." If an error is encountered, some other code is
returned.

For those system calls that do not require a response mailbox parameter,
the Basic I/0 System returns the exception code to the word pointed to by
the except$ptr parameter. If an exceptional condition occurs, the Basic
I1/0 System can then either return control to the calling task or pass
control to an exception handler. See the iRMX 86 NUCLEUS REFERENCE
MANUAL for a detailed description of exception handling.

For those system calls that do require a response mailbox parameter (the
asynchronous calls), the Basic I/0 System returns an exception code for
the sequential portion of the call to the word pointed to by the
except$ptr parameter and an exception code for the concurrent portion of
the call to the status field of the I/0 result segment (see Appendix C).
If a sequential exceptional condition occurs, the Basic I/0 System either
returns control to the calling task or passes control to an exception
handler. It does not process the asynchronous portion of the call. If a
concurrent exceptional condition occurs, the calling task must signal the
exception handler or process the exceptional condition in line.

SYSTEM CALLS

The following pages provide a detailed description of each Basic I/0
System call, listed alphabetically. The system call dictionary, which
appears first, provides a summary of these calls, grouped by function and
correlated to the file types to which they apply. That system call
dictionary also acts as a cross-reference to the detailed descriptions.

8-5

SYSTEM CALLS

SYSTEM CALL DICTIONARY

This section summarizes the Basic I/0 System calls by function and, where
applicable, indicates the file types to which they apply:

PF Physical file

SF Stream file

NF Named data file

ND Named directory file

The page reference listed with each call points to the detailed
description for the call.

JOB-LEVEL SYSTEM CALLS

System Call Function Page
SET$DEFAULTSPREFIX Set default prefix for job. 8-105
GET$DEFAULTS$PREFIX Inspect default prefix. 8-99
SETSDEFAULTSUSER Set default user for job. 8-107
GETS$DEFAULTSUSER Inspect default user. 8-101

GET TIME/DATE SYSTEM CALLS
System Call Function Page

GETSTIME Get date/time value in 8-103
internally-stored format.

SYSTEM CALLS

CREATE-FILE—CONNECTION SYSTEM CALLS

System Call

ASCREATESFILE

ASATTACHSFILE

ASCREATESDIRECTORY

Function
Asynchronous data
file creation.

Asynchronous attach
file.

Asynchronous create
directory.

FILE MODIFICATION SYSTEM CALLS

System Call

ASCHANGE $ACCESS

ASRENAMESFILE

Function
Asynchronous change
access rights to file.

Asynchronous rename
file.

FILE INPUT/OUTPUT SYSTEM CALLS

System Call

ASOPEN

ASSEEK

ASREAD
ASWRITE

ASCLOSE

Function

Asynchronous open file.

Asynchronous move file
pointer.

Asynchronous read file.
Asynchronous write file.

Asynchronous close file.

DEVICE-LEVEL FUNCTION SYSTEM CALL

System Call

ASSPECIAL

Function

Asynchronous perform
device-level function.

8-7

oL~

TN

Page

8-29

8-23

Page

8-14

8-73

Page

8-63

8-79

8-69
8-93

8-20

Page

8-83

SYSTEM CALLS

GET STATUS/ATTRIBUTE SYSTEM CALLS

DELETE

SYSTEM

System Call
ASGETSCON-

NECTIONSSTATUS
ASGETSFILESSTATUS

ASGETSDIRECTORYSENTRY

ASGETSPATHSCOMPONENT

CONNECTION/FILE SYSTEM

System Call

ASDELETESCONNECTION

ASTRUNCATE

ASDELETESFILE

Function

Asynchronous get
connection status.

Asynchronous get file
status.

Asynchronous inspect
directory entry.

Asynchronous obtain

path name from
connection token.

CALLS

Function

Asynchronous delete
file connection.

Asynchronous truncate
file.

Asynchronous delete
file.

PROGRAMMER CALLS (Calling Sequences Only)

System Call

AS$GETSEXTENSIONSDATA

ASPHYSICALSATTACHSDEVICE

ASPHYSCIALSDETACHSDEVICE

A$SETSEXTENSIONS$DATA
CREATES$USER
DELETESUSER
INSPECT$USER

SET$TIME

Page

8-44

8-53

8-48

8-60

Page

8-36

8-90

8-39

Page
8-52
8-67
8-68

8--82

ASATTACHSFILE

SYSTEM CALLS

ASATTACHSFILE

ASATTACHSFILE creates a connection to an existing file.

CALL RQSASATTACHSFILE (user, prefix, subpath, respS$mbox, except$ptr);

INPUT PARAMETERS

user a WORD containing a token for the user object to
be inspected in any access checking that takes
place; a zero specifies the default user for the
calling task's job; this parameter is ignored when
attaching physical or stream files; access
checking does occur for named files.

prefix a WORD containing a token for the connection
object to be used as the path prefix; normally,
this will be a connection to an existing file
(followed by a null subpath); a zero specifies the
default prefix for the calling task's job.

subpath a POINTER to a string containing the subpath of
the file to be attached; a null string indicates
that the new connection is to the file designated
by the prefix; the new connection will not be
open, regardless of the open state of the prefix.

OUTPUT PARAMETERS

resp$Smbox a WORD containing a token for the mailbox that
receives the result object of the call; this
result object is a new connection if the call
succeeds or an I/0 result segment otherwise (see
Appendix C). To determine the type of object
returned, use the Nucleus system call RQSGETSTYPE.

the calling task should issue RQ$DELETESSEGMENT to

If the object received is an I/0 result segment, I
delete the segment.

except$ptr a POINTER to a WORD where the sequential exception
code will be returned.

ASATTACHSFILE
SYSTEM CALLS

DESCRIPTION

ASATTACHSFILE creates a connection to an existing file. Once the
comnection is established, it remains in effect until the connection
object is deleted, or until the creating job is deleted. Once attached,
the file may be opened, closed, read, written, etc., as many times as
desired.

EXCEPTION CODES

ASATTACHSFILE can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

ESOK NORMAL CODE. No exceptional conditioms.

ESDEVSOFFLINE The prefix parameter in this system call refers to
a logical connection. Either:

e The device is offline, or

® The device has never been physically attached.
(See Appendix E for a more detailed
explanation.)

ESEXIST Two conditions can cause this exception code to be
returned:

l. At least one of the following parameters is not
a token for a valid object:

e The prefix parameter
o The response mailbox parameter
e The user parameter.

2. The prefix connection is being deleted.

8-10

ASATTACHSFILE
SYSTEM CALLS

EXCEPTION CODES (continued)

ESLIMIT Processing this call caused one of these limits to
be exceeded:

® The maximum number of objects allowed for this
job (specified when the job was created).

e The number of I/O operations which can be

outstanding at one time for the user object
specified in the call (255 decimal).

e The number of I/0 operations which can be
outstanding at one time for the caller's job
(also 255 decimal).

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

E$NOSPREFIX You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

e No default prefix is cataloged for this job.

® When the system was configured, the Nucleus
system call LOOKUPSOBJECT was not included.

ESNOSUSER If the user parameter in this call is not zero,
then the problem is that the parameter is not a
user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

e No default user is cataloged for this job.

e When the system was configured, the Nucleus
system call LOOKUPSOBJECT was not included.

e The object which is cataloged with the name

R?USER is not a user object. The name R?USER
should be treated as a reserved word.

8-11

ASATTACHSFILE

SYSTEM CALLS

EXCEPTION CODES (continued)

ENOTCONFIGURED

E$PARAM

ESTYPE

One or more of the following system calls was not
included when the system was configured:

ASATTACHSFILE

GETS$TYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)
DISABLESDELETION (Nucleus)
CREATESCOMPOSITE (Nucleus)

The path name specified contains invalid
characters.

One of two conditions caused this exception:

e The prefix parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

e The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by respS$mbox. After examining the
segment, you should delete it.

ESCONTEXT

ESFNEXIST

ESFTYPE

ES$IO

The file specified is on a device which the system
is detaching.

This indicates one of the following circumstances:

e Either a file in the specified path, or the
target file itself, does not exist.

e Either a file in the specified path, or the
target file itself, is marked for deletion.

The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named
directory.)

An I/0 error occurred during the operation.

8-12

ASATTACHSFILE
SYSTEM CALLS

EXCEPTION CODES (continued)

ESLIMIT

ESMEM

ES$SUPPORT

To service this call, the Basic I/0 System had to
create some objects. The maximum number of
objects which it can contain at'one time was
exceeded. (This maximum limit is specified when
the Basic I/0 System job is configured.)

The memory pool of the Basic I/O System does not
currently have a block of memory large enough to
allow this system call to run to completion.

Your system is configured incorrectly. The entry
point associated with ASATTACHSFILE is not
included in the "I/0 System part” of the file
driver table (named, physical, or stream file).
The corresponding entry point in the "Request
part” is included. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

8-13

ASCHANGESACCESS

ASCHANGESACCESS

SYSTEM CALLS

ASCHANGESACCESS changes the access rights to a named data or directory
file.

CALL RQ$SASCHANGESACCESS(user, prefix, subpath, id, access, resp$mbox,
except$ptr);

INPUT PARAMETERS

user a WORD containing a token for the user object to
be inspected in access checking; a value of zero
specifies the default user for the calling task's
jobe

prefix a WORD containing a token for the connection to be
used as the path prefix; typically, this would be
a connection to the file whose access is being
changed (followed by a null subpath); a zero
specifies the default prefix for the calling
task's job.

subpath a POINTER to the STRING giving the subpath from
the prefix to the file whose access is to be
changed; a null string indicates that the prefix
itself designates the desired file; in this case,
the user parameter is ignored, since access
checking was already performed when the file was
attached.

id a WORD giving the ID number of the user whose
access 1s to be changed; if this ID does not
already exist in the ID-access list, it 1s added;
this 1ist may contain a total of three ID-access
pairs.

access a BYTE mask giving the new access rights for the
ID; if a bit is set to one, the corresponding
access 1s granted; for a named data file, the
possible bit settings are:

=]
.

t Meaning

Delete

Read

Append

Update

4-7 Reserved (set to 0)

@ e of

8-14

INPUT PARAMETERS

access (continued)

OUTPUT PARAMETERS

respS$mbox

except$ptr

DESCRIPTION

ASCHANGES$ACCESS
SYSTEM CALLS

For a named directory file, the possible bit
settings are:

B

e

t Meaning
Delete

Display

Add Entry

Change Entry

4-7 Reserved (set to 0)

WNP—‘Oi

If zero is specified for the access parameter
(that is, no access), the ID specified in the id
parameter is deleted from the file's ID-access
list.

a WORD containing a token for the mailbox that
receives an I/0 result segment indicating
completion of the access change (see Appendix C).
A value of zero means that you do not want to
receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should issue DELETES$SEGMENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

ASCHANGESACCESS system call applies to named files only. It is called to
change the access rights to a named data or directory file. Depending on
the contents of the "id” and "access" parameters specified in the system
call, users may be added to or deleted from the files's ID-access list,
or the access privileges granted to a particular user may be changed.

NOTE

The caller must be the owner of the
file or must have change entry access
to the file's parent directory. If the
owner is "WORLD", that is, OFFFFH, then

any

task may change the access mask of

the file.

8-15

ASCHANGE$ACCESS
SYSTEM CALLS

EXCEPTION CODES

ASCHANGESACCESS can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK NORMAL CODE. No exceptional conditions.

ESDEVSOFFLINE The prefix parameter in this system call refers to
a logical connection. Either:

o The device is offline, or
® The device has never been physically attached.
(See Appendix E for a more detailed

explanation.)

ESEXIST Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

] The prefix parameter
° The response mailbox parameter
° The user parameter.
2. The prefix connection is being deleted.
ESIFDR This system call applies only to named files, but
the prefix and subpath parameters specify some

other type of file.

ESLIMIT Processing this call caused one of these limits to
be exceeded:

e The maximum number of objects allowed for this
job (specified when the job was created).

8-16

ASCHANGESACCESS
SYSTEM CALLS

EXCEPTION CODES
ESLIMIT (continued)

e The number of I/O operations which can be
outstanding at one time for the user object
specified in the call (255 decimal).

e The number of I/O operations which can be

outstanding at one time for the caller's job
(also 255 decimal).

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOSPREFIX You specified a default prefix (prefix parameter
equals zero). But no default prefix can be found
because of one of the following:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

e No default prefix is cataloged for this job.

e When the system was configured, the Nucleus
system call LOOKUPS$OBJECT was not included.

ESNOSUSER If the user parameter in this call is not zero,
then the problem is that the parameter is not a
user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

e No default user is cataloged for this job.

e When the system was configured, the Nucleus
system call LOOKUPSOBJECT was not included.

e The object which is cataloged with the name

R?USER is not a user object. The name R?USER
should be treated as a reserved word.

8-17

ASCHANGES$ACCESS
SYSTEM CALLS

EXCEPTION CODES (continued)

ESNOTSCONFIGURED One or more of the following system calls was not
included when the system was configured:

CHANGE $ACCESS

GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)
DISABLESDELETION (Nucleus)
CREATESCOMPOSITE (Nucleus)

ESPARAM The path name specified contains invalid
characters.

E$SUPPORT The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

ESTYPE One of two conditions caused this exception:

e The prefix parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Loglcal devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

¢ The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

ESOK NORMAL CODE. No exceptional conditions.

ESCONTEXT The file specified is on a device which the system
is detaching.

ESFACCESS The user object in the parameter list is not
qualified for "change entry access” for the parent
directory, and is not the owner of the file.

ESFNEXIST This indicates one of the following circumstances:

e Either a file in the specified path, or the
target file itself, does not exist.

e Either a file in the specified path, or the
target file itself, is marked for deletion.

8-18

A$CHANGES$ACCESS
SYSTEM CALLS

EXCEPTION CODES (continued)

ESFTYPE

ES$IO

ESLIMIT

E$MEM

E$SUPPORT

The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named
directory.)

An I/0 error occurred during the operation.

To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/0 System job is configured.)

The memory pool of the Basic I/0 System does not
currently have a block of memory large enough to
allow this system call to run to completion.

Either of two problems can generate this exception
code:

l. Your system is configured incorrectly. The
entry point associated with ASCHANGESACCESS is
not included in the "I/O System part” of the
named file driver table. The corresponding
entry point in the "Request part" is included.
Refer to the iRMX 86 CONFIGURATION GUIDE for
further information.

2. The call attempted to add another access ID to

the list of access ID's. The access list
already contains the limit of three such ID's.

8-19

A$CLOSE

ASCLOSE

SYSTEM CALLS

ASCLOSE closes an open file connection.

CALL RQ$ASCLOSE(connection, resp$mbox, except$ptr);

INPUT PARAMETER

connection a WORD containing a token for the file connection
to be closed.

OUTPUT PARAMETERS

resp$mbox a WORD containing a token for a mailbox that is to
receive an I/0 result segment indicating the
result of the operation (see Appendix C). A value
of zero means that you do not want to receive an
I1/0 result segment.

If it receives an I/0 result segment, the calling
task should issue DELETESSEGMENT to delete the
segment.

except$ptr a POINTER to a WORD where the sequential exception
code will be returned.

DESCRIPTION

The ASCLOSE system call closes an open file connection. It is called
between uses of a file. A file connection must also be closed if the
user wishes to change the open mode or shared status of the connection.
The Basic I/0 System will not close the connection until all existing I/0
requests for the connection have been satisfied, and the Basic I/0 system
will not send a response to the resp$mbox until the file is closed.

EXCEPTION CODES

ASCLOSE can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

8-20

A$CLOSE
SYSTEM CALLS

EXCEPTION CODES (continued)

The following list is divided into two parts —— one for sequential codes,
and one for : ~urrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

ESOK NORMAL CODE. No exceptional conditions.
ESEXIST Two conditions can cause this exception code to be
returned:

l. At least one of the following parameters is not
a token for a valid object:

o The connection parameter
° The response mallbox parameter
2. The connection is being deleted.

ESLIMIT To service this call, the Basic I/0 System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/0 System job is configured.)

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOTSCONFIGURED One or more of the following system calls was not
included when the system was configured:

ASCLOSE

GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)

ES$SUPPORT The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

ESTYPE One of two conditions caused this exception:

e The connection parameter is not a valid object
type. It must be a connection object.

o The response mailbox parameter in the call is
not a token for a mailbox.

8-21

A$CLOSE

SYSTEM CALLS

Concurrent Exception Codes

The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK
ESCONTEXT

E$SUPPORT

NORMAL CODE. No exceptional conditions.
The connection you are trying to close is not open.

Your system is configured incorrectly. The entry
point associated with ASCLOSE is not included in
the "I/0 System part” of the file driver table
(named, physical, or stream file). The
corresponding entry point in the "Request part” is
included. Refer to the iRMX 86 CONFIGURATION
GUIDE for further information.

8-22

ASCREATESDIRECTORY

SYSTEM CALLS

ASCREATESDIRECTORY

ASCREATESDIRECTORY creates a directory file.

CALL RQS$ASCREATESDIRECTORY(user, prefix, subpath, access, resp$mbox,
except$ptr);

INPUT PARAMETERS

user a WORD containing a token for the user object of
the new directory's owner; the user object is
inspected to make sure the caller has proper
access to the new directory's parent; a zero
specifies the default user for the calling task's
job.

prefix a WORD containing a token for the connection to be
used as the path prefix; a zero specifies the
default prefix for the calling task's job.

subpath a POINTER to a STRING containing the subpath of
the directory to be created; the subpath string
must not be null, and must point to an unused
location in the directory tree.

access a BYTE mask giving the owner's initial access
rights to the directory: for each bit in the mask,
a one grants access and a zero denies it; the
possible bit settings are:

=]
.

t Meaning

Delete

Display

Add Entry

Change Entry

47 Reserved (set to 0)

wwo—nol

OUTPUT PARAMETERS

resp$mbox a WORD containing a token for the mailbox that
receives the result object of this call; this
result object i1s a directory file connection if
the call succeeded or an I/0 result segment
otherwise (see Appendix C). To determine the type
of object returned, use the Nucleus system call
GETSTYPE (Nucleus).

8-23

AS$CREATE$DIRECTORY
SYSTEM CALLS

OUTPUT PARAMETERS

resp$mbox (continued)
If the object received is an I/0 result segment,
| the calling task should issue DELETESSEGMENT to
delete the segment.

except$ptr a POINTER to a WORD where the sequential exception
code will be returned.

DESCRIPTION

The ASCREATESDIRECTORY system call is applicable to named directory files
only. When called, it creates a new directory file and returns a token
for the new file connection. This system call cannot be used to create a
connection to an existing directory.

NOTE

The caller must have add-entry access
to the parent of the new directory.

EXCEPTION CODES

ASCREATESDIRECTORY can return exception codes at two different times.

The code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —-- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK NORMAL CODE. No exceptional conditions.

ESDEVSOFFLINE The prefix parameter in this system call refers to
a logical connection. Either:

e The device is offline, or

e The device has never been physically attached.
(See Appendix E for a more detailed
explanation.)

8-24

ASCREATES$DIRECTORY
SYSTEM CALLS

EXCEPTION CODES (continued)

ESEXIST Two conditions can cause this exception code to be
returned:

l. At least one of the following parameters is not
a token for a valid object:

. The prefix parameter
. The response mailbox parameter
. The user parameter.
2. The prefix connection is being deleted.

ESIFDR This system call applies only to named files, but

the prefix and subpath parameters specify some
other type of file.

ESLIMIT Processing this call caused one of these limits to
be exceeded:

e The maximum number of objects allowed for this
job (specified when the job was created).

e The number of I/0 operations which can be
outstanding at one time for the user object
specified in the call (255 decimal).

e The number of I/0 operations which can be
outstanding at one time for the caller's job
(also 255 decimal).

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOSPREFIX You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

e No default prefix is cataloged for this job.

e When the system was configured, the Nucleus
system call LOOKUPSOBJECT was not included.

E$NOSUSER If the user parameter in this call is not zero,

then the problem is that the parameter is not a
user object.

8-25

A$SCREATES$DIRECTORY
SYSTEM CALLS

EXCEPTION CODES
E$NOSUSER (continued)

If the user parameter is zero, it specifies a
default user. But no default user can be found
because:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

e No default user is cataloged for this job.

o When the system was configured, the Nucleus
system call LOOKUPSOBJECT was not included.

e The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

ESNOTSCONFIGURED One or more of the following system calls was not
included when the system was configured:

ASCREATESDIRECTORY
GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)
DISABLESDELETION (Nucleus)
CREATES$COMPOSITE (Nucleus)

ESPARAM The path name contains invalid characters.
ESTYPE One of two conditions caused this exception:

o The prefix parameter is not a valid object
type. It must be either a connection object, or
a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

® The response mailbox parameter in the call is
not a token for a mailbox.
Concurrent Exception Codes
The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by respS$mbox. After examining the

segment, you should delete it.

ESCONTEXT The file specified is on a device which the system
is detaching.

8-26

A$CREATE$DIRECTORY
SYSTEM CALLS

EXCEPTION CODES (continued)

E$FACCESS The user object in the parameter list is not
qualified for "add-entry" access to the parent
directory.

ESFEXIST The file you are trying to create already exists.

ESFNEXIST This indicates one of the following circumstances:

e A file in the specified path does not exist.

e A file in the specified path is marked for
deletion.

ESFTYPE The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named

directory.)
E$IO An I/0 error occurred during the operation.
ESLIMIT To service this call, the Basic I/0O System had to

create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/0 System job is configured.)

E$MEM The memory pool of the Basic I/0 System does not
currently have a block of memory large enough to
allow this system call to run to completion.

E$SPACE Either:
e The volume has no more space, or

e No more named files or directories can be
created on this volume. The maximum number of
files or directories which can be created on a
particular volume is set when that volume is
formatted. (See the description of the FORMAT
Command in the iRMX 86 HUMAN INTERFACE
REFERENCE MANUAL.)

ESSUPPORT This code is caused by a conflict between the
service being requested by the A$CREATE$DIRECTORY
call and the way the Basic I/O System is
configured. One of these conditions exists:

e The entry point associated with
ASCREATESDIRECTORY is not included in the "I/0
System part” of the named file driver table.
The corresponding entry point in the "Request
part” is included. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

8-27

AS$CREATE$DIRECTORY
SYSTEM CALLS

EXCEPTION CODES
ESSUPPORT (continued)
® The call is attempting to allocate file space,

but the Basic I/0 System was configured with an
option which prevents allocation of file space.

8-28

ASCREATESFILE

SYSTEM CALLS

ASCREATESFILE

ASCREATESFILE creates a physical, stream, or named file.

CALL RQSASCREATESFILE (user, prefix, subpath, access, granularity,
high$size, low$size, must$create, resp$mbox,
except$ptr);

INPUT PARAMETERS

user applies to named files only and is a WORD
contalning a token for the user object of the
file's owner; it also furnishes the user ID for
any access checking that might occur; a zero
specifies the default user for the job; this
parameter is ignored for physical and stream files.

prefix a WORD containing a token for a device or file
connection; by implication, this parameter
indicates the type of file (physical, stream,
named) being created; for stream files, if the
prefix is a device connection, a new stream file
is created, and if the prefix is a file
connection, a new file connection to the same
stream file is created; for named files, the
prefix acts as the starting point in a directory
tree scan; a zero specifies the default prefix for

the job.

subpath applies to named files only and is a POINTER to a
STRING containing the subpath for the file being
created.

access applies to named files only and is a BYTE mask

giving the owner's initial access rights to the
new file; for each bit, a one grants access and a
zero denies it; the possible bit settings are:

[>~]
jurd

t Meaning
Delete

Read

Append

Update

4-7 Reserved (set to 0)

le—'Ol

8-29

A$CREATES$FILE

SYSTEM CALLS

INPUT PARAMETERS (continued)

granularity

high$size
low$size

must$create

OUTPUT PARAMETERS

resp$mbox

applies to named files only and is a WORD giving
the granularity of the file being created; this is
the size (in bytes) of each logical block to be
allocated to the file; the value specified in this
parameter is rounded up, if necessary, to a
multiple of the volume granularity; note that a
contiguous file can be expanded into a
noncontiguous file by writing past the contiguous
boundaries.

The granularity parameter can have the following
values:

0 Same as volume granularity
OFFFFH The file must be contiguous
other Number of bytes/allocation

When a contiguous file is extended, space is
allocated in volume-granularity units; if "other"
is specified, a multiple of 1024 bytes is
recommended.

This parameter is ignored for physical and stream
files.

applies to named files only and is a WORD pair
giving the number of bytes initially reserved for
the file; for stream files, this value must equal
zero.

applies to named files only and is a BYTE whose
value (OFFH for true or O for false) determines
the handling of input paths designating an
existing file (see following DESCRIPTION).

a WORD containing a token for the mailbox that
receives the result object of this call; this
result object is a token for a new file connection
if the call succeeded or a token for an I/0 result
segment otherwise (see Appendix C). To determine
the type of object returned, use the Nucleus
system call GETSTYPE (Nucleus).

If the object received is an I/0 result segment,

the calling task should issue DELETE$SEGMENT to
delete the segment.

8-30

ASCREATESFILE
SYSTEM CALLS

OUTPUT PARAMETERS (continued)

exceptSptr a POINTER to a WORD where the sequential exception
code will be returned.

DESCRIPTION

The ASCREATESFILE system call creates a physical, stream, or named data
file and returns a token for the new file connection. If a named file
designated by the prefix and subpath parameters already exists, one of
the following situations occurs:

e Error: If the "must$create” parameter is TRUE (OFFH), an error
condition code (ESFEXIST) is returned.

e Truncate File: If the "must$create” parameter is FALSE (0) and
the path designates an existing data file, a new connection to
that file is returned (that is, ASCREATESFILE acts like
ASATTACHSFILE). In this case, the file is truncated or expanded
according to the "size" parameter, so data in the file might be
lost.

. Temporary File Created: If the "mustS$create" parameter is FALSE
(0), and the path designates an existing directory file or
device, an unnamed temporary file is created on the corresponding
device. This file is deleted automatically when the last
connection to it is deleted. Since this file is created without
a path, it can be accessed only through a connection.

Any task can create a temporary file by referring to any
directory. This is true because temporary files are not listed
as ordinary entries in the directory, so no add—entry access is
required.

Many of the parameters specified in the ASCREATESFILE call do not apply
to physical and stream files. In these cases, the parameter is ignored.

NOTE
The caller must have add—-entry access

to the parent directory of the new
named file.

8-31

ASCREATESFILE
SYSTEM CALLS

EXCEPTION CODES

ASCREATESFILE can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing 1s a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK NORMAL CODE. No exceptional conditions.

ESDEVSOFFLINE The prefix parameter in this system call refers to
a logical connection. Either:

e The device is offline, or
e The device has never been physically attached.
(See Appendix E for a more detailed

explanation.)

ESEXIST Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

o The prefix parameter
° The response mailbox parameter
° The user parameter.
2. The prefix connection is being deleted.

ESLIMIT To service this call, the Basic I/0 System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/0 System job is configured.)

E$MEM The memory pool of the calling task's job does not

currently have a block of memory large enough to
allow this system call to run to completion.

8-32

ESNOSPREFIX

ESNOSUSER

E$SNOTSCONFIGURED

ESPARAM

ESTYPE

ASCREATESFILE
SYSTEM CALLS

You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

e No default prefix is cataloged for this job.

e When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

If the user parameter in this call is not zero,
then the problem is that the parameter is not a
user object.

If the user parameter 1s zero, it specifies a
default user. But no default user can be found
because:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

e No default user is cataloged for this job.

e When the system was configured, the Nucleus
system call LOOKUPS$OBJECT was not included.

e The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

One or more of the following system calls was not
included when the system was configured:

CREATESFILE

GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)
DISABLESDELETION (Nucleus)
CREATESCOMPOSITE (Nucleus)

The path name contains invalid characters.

One of two conditions caused this exception:

e The prefix parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are

described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

8-33

A$CREATESFILE

EXCEPTION CODES

ESTYPE (continued)

SYSTEM CALLS

e The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$CONTEXT

E$FACCESS

ESFEXIST

ES$FNEXIST

ESFTYPE

ESIO

ESLIMIT

ESMEM

The file specified is on a device which the system
is detaching.

The user object in the parameter list is not
qualified for "add entry" to the parent directory,
or is not qualified for "update” access to
existing file.

The "must$create” parameter in the call is TRUE,
and the file already exists. (See the DESCRIPTION
section.)

This indicates one of the following circumstances:
e A file in the specified path does not exist.

e A file in the specified path is marked for
deletion.

The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named
directory.)

An I/0 error occurred during the operation.

To service this call, the Basic I/0 System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/0 System job is configured.)

The memory pool of the Basic I/0 System does not

currently have a block of memory large enough to
allow this system call to run to completion.

8-34

ASCREATESFILE
SYSTEM CALLS

EXCEPTION CODES (continued)

E$SSHARE The file this call is attempting to create already
exists and is open. It was opened with the
characteristic "no share with writers.” (See the
ASOPEN call in this chapter.)

ESSPACE Either:
e The volume has no more space, or

e No more named files or directories can be
created on this volume. The maximum number of
files or directories which can be created on a
particular volume is set when that volume is
formatted. (See the description of the FORMAT
Command in the iRMX 86 HUMAN INTERFACE
REFERENCE MANUAL.)

E$SUPPORT This code is caused by a conflict between the
service being requested by the A$CREATESFILE call
and the way the Basic I/0 System is configured.
One of these conditions exists:

e The entry point associated with ASCREATESFILE
is not included in the "I/0 System part™ of the
file driver table (named, physical, or stream
file). The corresponding entry point in the
"Request part” is included. Refer to the
iRMX 86 CONFIGURATION GUIDE for further
information.

® The call is attempting to allocate file space,
but the Basic I/O System was configured with an
option which prevents allocation of file space.

e The file exists, and the must$create parameter
is FALSE. When the Basic I/O System was
configured, an option was chosen which
prevented this combination, so that files could
not be automatically truncated to zero size.
See the DESCRIPTION section.

e The file exists, the size parameter in the call
is less than the current size of the file, and
the Basic I/0 System was configured with an
option which prevents truncation of files.

8-35

ASDELETE$CONNECTION

SYSTEM CALLS

ASDELETES$CONNECTION

ASDELETESCONNECTION deletes a named file connection created by
ASCREATESFILE, ASCREATESDIRECTORY, or ASATTACHSFILE.

CALL RQ$SASDELETE$CONNECTION(connection, resp$mbox, except$ptr);

INPUT PARAMETER

connection a WORD containing a token for the file connection
to be deleted.

OUTPUT PARAMETERS

respS$mbox a WORD containing a token for the mailbox that
receives an I/0 result segment indicating the
result of the operation (see Appendix C). A value
of zero means that you do not want to receive an
1/0 result segment.

task should issue DELETESSEGMENT to delete the

I If it receives an I/0 result segment, the calling
segment.

except$ptr a POINTER to a WORD where the sequential exception
code will be returned.

DESCRIPTION

The ASDELETE$CONNECTION system call deletes a connection object. It also
deletes the associated file if both the file is already marked for
deletion (by a previous ASDELETESFILE call) and the specified connection
is the last remaining connection to the file. If a connection is open
when ASDELETESCONNECTION is called, it is closed before being deleted.

NOTE

Connections should be deleted when no
longer needed.

8-36

A$DELETE$CONNECTION
SYSTEM CALLS

EXCEPTION CODES

ASDELETESCONNECTION can return exception codes at two different times.
The code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

ESOK NORMAL CODE. No exceptional conditions.

ESCONTEXT The connection parameter is a device connection,
not a file connection.

ESEXIST Two conditions can cause this exception code to be
returned:

l. At least one of the following parameters is not
a token for a valid object:

) The connection parameter
° The response mailbox parameter
2. The connection is being deleted.

ESLIMIT To service this call, the Basic I/0 System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/0 System job is configured.)

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOTSCONFIGURED One or more of the following system calls was not
included when the system was configured:

ASDELETESCONNECTIION
GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)

8-37

A$DELETE$CONNECTION

SYSTEM CALLS

EXCEPTION CODES (continued)

E$SUPPORT The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

ESTYPE One of two conditions caused this exception:

Concurrent Exception Codes

The prefix parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

The response mailbox parameter in the call is
not a token for a mailbox.

The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by respSmbox. After examining the
segment, you should delete it.

ESOK NORMAL CODE. No exceptional conditions.

E$I0 An I/0 error occurred during the operation.

ES$SUPPORT One of these conditions caused this exception code:

Your system is configured incorrectly. The
entry point associated with ASDELETES$SCONNECTION
is not included in the "I/O System part” of the
file driver table (named, physical, or stream
file). The corresponding entry point in the
"Request part” is included. Refer to the

iRMX 86 CONFIGURATION GUIDE for further
information.

The connection being deleted is the last
connection to a file which is marked for
deletion. Normally this would be the point at
which the file itself would be deleted. But
the Basic I/0 System was configured without the
capability to delete files. (The call to
delete the file would also have returned an
ESSUPPORT exception code.)

8-38

ASDELETES$FILE

SYSTEM CALLS

ASDELETESFILE

ASDELETESFILE marks a named or stream file for deletion.

CALL RQSASDELETESFILE(user, prefix, subpath, resp$mbox, except$ptr);

INPUT PARAMETERS

user applies to named files only and is a WORD
containing a token for the user object to be
inspected in access checking; a zero specifies the
default user for the calling task's job.

prefix a WORD containing a token for a connection; in the
case of a named file, this prefix acts as the
starting point in a directory tree scan; a zero
specifies the default prefix for the calling
task's job.

subpath applies to named files only and is a POINTER to a
STRING giving the subpath for the file being
deleted; a null string indicates that the prefix
itself designates the desired file; in this
instance, the user parameter is ignored, since
access checking was already performed when the
file was attached.

OUTPUT PARAMETERS

resp$mbox a WORD containing a token for a mailbox that
receives an I/0 result segment (see Appendix C)
when the file is marked for deletion. The file
will not actually be deleted until all connections
to the file are deleted, as explained under the
DESCRIPTION below. A value of zero means that you

do not want to receive an 1/0 result segment.
If it receives an I/0 result segment, the calling
task should issue DELETESSEGMENT to delete the

segment.

except$ptr a POINTER to a WORD where the sequential exception
code will be returned.

8-39

ASDELETESFILE
SYSTEM CALLS

DESCRIPTION

The ASDELETESFILE system call applies to stream and named files only.
When called, it marks the designated file for deletion and removes the
file's entry from the parent directory. The entry is removed
immediately, but the file is not actually deleted until all connections
to the file have been severed (by AS$DELETE$SCONNECTION calls). Directory
files cannot be deleted unless they are empty.

NOTE

The caller must have delete access to
the fileo

EXCEPTION CODES

ASDELETESFILE can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the exceptS$ptr parameter of this system call.

E$OK NORMAL CODE. No exceptional conditions.

ESDEVSOFFLINE The prefix parameter in this system call refers to
a logical connection. Either:

e The device 1s offline, or
® The device has never been physically attached.
(See Appendix E for a more detailed

explanation.)

ESEXIST Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

® The prefix parameter

8-40

ASDELETES$FILE

SYSTEM CALLS

EXCEPTION CODES
ESEXIST (continued)
e The response mailbox parameter
° The user parameter.
2. The prefix connection is being deleted.

ESIFDR This system call applies only to named or stream
files, but the parameter list specified a another
type of file.

ESLIMIT Processing this call caused one of these limits to
be exceeded:

e The maximum number of objects allowed for this
job (specified when the job was created).

e The number of I/0 operations which can be
outstanding at one time for the user object
specified in the call (255 decimal).

e The number of I/0 operations which can be
outstanding at one time for the caller's job
(also 255 decimal).

E$SMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOSPREFIX You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

e No default prefix is cataloged for this job.

e When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

ESNOSUSER If the user parameter in this call is not zero,
then the problem is that the parameter is not a
user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because:

o When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

8-41

ASDELETESFILE

EXCEPTION CODES

ESNOSUSER (continued)

E$NOTSCONFIGURED

ESPARAM

E$SUPPORT

ESTYPE

SYSTEM CALLS

No default user is cataloged for this job.

When the system was configured, the Nucleus
system call LOOKUPSOBJECT was not included.

The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

One or more of the following system calls was not
included when the system was configured:

DELETESFILE

GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)
DISABLESDELETION (Nucleus)
CREATESCOMPOSITE (Nucleus)

The subpath parameter contains invalid characters.

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

The prefix parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by respS$mbox. After examining the
segment, you should delete it.

ESOK

ESCONTEXT

NORMAL CODE. No exceptional conditions.

One of these problems caused this exception code:

The file specified is on a device which the
system is detaching.

8-42

ASDELETES$FILE
SYSTEM CALLS

EXCEPTION CODES
E$CONTEXT (continued)

® The call is attempting to delete a stream file
which is already marked for deletion.

e The call is attempting to delete a directory
which has entries in it, or is attempting to
delete a ROOT directory.

ESFACCESS The user object in the parameter list is not
qualified for "delete” access to this file.

ESFNEXIST This indicates one of the following circumstances:

e Either a file in the specified path, or the
target file itself, does not exist.

e Either a file in the specified path, or the
target file itself, is marked fcr deletion.

ESFTYPE The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named

directory.)
ESIO An I/0 error occurred during the cperation.
ESLIMIT To service this call, the Basic I/0 System had to

create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/0 System job is configured.)

E$MEM The memory pool of the Basic I/O System does not
currently have a block of memory large enough to
allow this system call to run to completion.

E$SUPPORT One of two problems exist:

® Your system is configured incorrectly. The
entry point associated with ASDELETESFILE is
not included in the "I/0 System part™ of the
file driver table (named or stream file). The
corresponding entry point in the “"Request part”
is included. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

e The Basic I/0 System was configured to prevent

truncation of files. In order to delete a
file, the file must first be truncated.

8-43

AGETCONNECTION$STATUS

SYSTEM CALLS

ASGETS$CONNECTIONSSTATUS

ASGETSCONNECTIONSSTATUS returns information about a file connection.

CALL RQS$SASGETS$CONNECTIONSSTATUS (connection, resp$mbox, except$ptr);

INPUT PARAMETER

connection a WORD containing a token for the file connection
whose status is desired.

OUTPUT PARAMETERS

resp$mbox a WORD containing a token for the mailbox that
receives a connection-status segment. The calling
task is responsible for deleting the
connection-status segment.

The information in this segment is structured as

follows:
DECLARE

conn$status STRUCTURE(
status WORD,
file$driver BYTE,
flags BYTE,
open$mode BYTE,
share BYTE,
low$fileS$ptr WORD,
high$fileS$ptr WORD,
access BYTE);

These fields are interpreted as follows:

status a condition code indicating how the
status—fetch operation completed; if
this code is not E$OK, the remaining
fields must be considered invalid.

fileS$driver tells the type of file driver to which
this connection is attached; possible
values are:

Value Type
1 Physical files
2 Stream files
4 Named files

8-44

AGETCONNECTIONSSTATUS
SYSTEM CALLS

OUTPUT PARAMETERS
resp$mbox (continued)

flags contains two flag bits; if bit 1 is set
to one, this connection is active and
can be opened; if bit 2 is set, this
connection is a device connection.

open$mode the mode established when this con-
nection was opened; possible values are:

0 Connection is closed

1 Open for reading

2 Open for writing

3 Open for reading and writing
share the current sharing status established

when this connection was opened;
possible values are:

0 Private use only

1 Share with readers only
2 Share with writers only
3 Share with all users

The open mode and shared state are
initially set by the ASOPEN call.

low$file$ptr the current byte location of the
highS$fileSptr file pointer for this connection.

access gives the access rights for this
connection; for each bit set to one,
the corresponding access is granted;
bit values are:

Bit Data File Directory

0 Delete Delete
1 Read Display
2 Append Add Entry
3 Update Change Entry
4-7 Reserved Reserved
except $ptr a POINTER to a WORD where the sequential exception

code will be returned.

DESCRIPTION

The ASGET$CONNECTION$SSTATUS system call returns a segment containing
status information about a file connection.

8-45

ASGET$CONNECTIONS$STATUS
SYSTEM CALLS

EXCEPTION CODES

ASGETSCONNECTIONSSTATUS can return exception codes at two different

times. The code returned to the calling task immediately after invocation
of the system call is considered a sequential code. A code returned as a
result of asynchronous processing 1s a concurrent exception code. A

complete explanation of sequential and concurrent parts of system calls is
in Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK NORMAL CODE. No exceptional conditions.
ESEXIST Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

e The connection parameter
® The response mailbox parameter
2. The connection is being deleted.

ESLIMIT To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/0 System job is configured.)

ES$MEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOT$SCONFIGURED One or more of the following system calls was not
included when the system was configured:

ASGETS$CONNECTIONSSTATUS
GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)

ES$SUPPORT The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

8-46

ASGET$CONNECTIONS$STATUS

SYSTEM CALLS

EXCEPTION CODES (continued)
ESTYPE One of two conditions caused this exception:

e The connection parameter is not a valid object
type. It must be a connection object.

® The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/0 System will return the following codes in the
connection—-status segment (status field). After examining the segment,
you should delete it.

ESOK NORMAL CODE. No exceptional conditions.

E$SUPPORT Your system is configured incorrectly. The entry
point assoclated with ASGETSCONNECTIONSSTATUS is
not included in the "I/O System part” of the file
driver table (named, physical, or stream file).
The corresponding entry point in the "Request
part” is included. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

8-47

ASGET$DIRECTORYSENTRY

SYSTEM CALLS

ASGETSDIRECTORYSENTRY

ASGETSDIRECTORYSENTRY returns the file name associated with a named
directory file entry.

CALL RQSASGETSDIRECTORYSENTRY(connection, entry$num, respS$mbox,
except$ptr);

INPUT PARAMETERS

connection a WORD containing a token for the directory file
with the desired entry.

entryS$num a WORD giving the entry number of the desired file
name; entries within a directory are numbered
sequentially starting from zero; ESEMPTYSENTRY
condition code will be issued if the specified
file has been deleted and the Basic 1/0 System has
not reissued the entry to another file.

OUTPUT PARAMETERS

respSmbox a WORD containing a token for the mailbox that
receives a directory—entry segment. The task
making the ASGETSDIRECTORYSENTRY call is
responsible for deleting this segment.

Information in this segment 1s structured as

follows:
DECLARE
dirSentry$info STRUCTURE(
status WORD,
name (14) BYTE);
where:

status indicates how the operation completed;
ESOK, ESEMPTYSENTRY, and ES$DIRSEND
condition codes all indicate
successful completion.

name the file name contained in the
designated entry, padded with blanks;
this field is valid only if status =
E$OK.

8-48

ASGETDIRECTORY$SENTRY
SYSTEM CALLS

OUTPUT PARAMETERS (continued)

except$ptr a POINTER to a WORD where the sequential exception
code will be returned.

DESCRIPTION

The ASGET$DIRECTORYSENTRY system call applies to named files only. When
called, it returns the file name associated with a specified directory
entry. This name is a single subpath component for a file whose parent
is the designated directory. As an alternative to using this system
call, an application task can open and read a directory file.

NOTE

The caller must have display access to
the designated directory.

EXCEPTION CODES

ASGETSDIRECTORYSENTRY can return exception codes at two different times.
The code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK NORMAL CODE. No exceptional conditions.
ESEXIST Two conditions can cause this exception code to be
returned:

l. At least one of the following parameters is not
a token for a valid object:

] The connection parameter
e The response mailbox parameter

2. The connection is being deleted.

8-49

ASGET$DIRECTORYSENTRY

SYSTEM CALLS

EXCEPTION CODES (continued)

ESIFDR

ESLIMIT

ESMEM

E$NOTS$SCONFIGURED

E$SUPPORT

ES$TYPE

This system call applies only to named
directories, but the connection parameter
specifies something else.

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

AGETSDIRECTORYSENTRY
GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATES$SEGMENT (Nucleus)

The connection parameter specified is not wvalid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

e The connection parameter is not a valid object
type. It must be a connection object.

e The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/0 System will return the following codes in the
directory—entry segment (status field). After examining the segment, you

should delete it.
E$OK

E$DIREND

ESEMPTYSENTRY

E$FACCESS

E$FTYPE

NORMAL CODE. No exceptional conditions.

The entry$num parameter is greater than the number
of entries in the directory.

The file entry designated in the call has been

deleted, and the Basic I/0 System has not reissued
the entry to another file.

The connection in the parameter list is not
qualified for "display” access to the directory.

The connection parameter does not refer to a
directory.

8-50

AGETDIRECTORYSENTRY
SYSTEM CALLS

EXCEPTION CODES (continued)

ESIO An I/0 error occurred during the operation.

ESSUPPORT Your system is configured incorrectly. The entry
point associated with GETSDIRECTORYSENTRY is not
included in the "I/O System part” of the named
file driver table. The corresponding entry point
in the "Request part” is included. Refer to the
iRMX 86 CONFIGURATION GUIDE for further
information.

8-51

ASGET$EXTENSION$DATA

SYSTEM CALLS

ASGETSEXTENSIONSDATA

The ASGET$EXTENSIONSDATA system call returns extension data stored with a
Basic I/0 System file.

CALL RQ$ASGETSEXTENSIONSDATA(connection, respSmbox, exceptS$ptr);

This System Programmer call is included here for convenience.
ASGETSEXTENSIONSDATA is described completely in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL, Chapter 7.

8-52

ASGETSFILE$STATUS

SYSTEM CALLS

ASGETSFILESSTATUS

ASGETSFILESSTATUS returns status and attribute information about a file.

CALL RQ$ASGETSFILESSTATUS (connection, respSmbox, except$ptr);

INPUT PARAMETER

connection a WORD containing a token for a connection to the
file whose status is sought.

OUTPUT PARAMETERS

resp$mbox a WORD containing a token for the mailbox that
receives a segment containing the common
file-status (and, for named files, the named
file-status) information. The calling task is
responsible for deleting this segment.

Structure of the common file-status information is
as follows:

DECLARE common$info STRUCTURE(

status WORD,
numSconn WORD,
numSreader WORD,
num$writer WORD,
openS$share BYTE,
namedS$file BYTE,
devéname (14) BYTE,
fileS$drivers WORD,
functs BYTE,
flags BYTE,
dev$gran WORD,
lowSdev$size WORD,
highdevsize WORD,
devS$conn WORD);

These filelds are interpreted as follows:

a condition code indicating how the

status—fetch operation completed; if
this code is not ES$OK, the remaining
fields must be considered invalid.

the number of connections to the file.

8-53

ASGETS$FILE$SSTATUS

SYSTEM CALLS

OUTPUT PARAMETERS
resp$mbox (continued)

num$reader

nun$writer

open$share

named$file

dev$name

file$drivers

functs

the number of connections curreantly
open for reading.

the number of connections currently
open for writing.

the current shared status of the file;
possible values are:

0 Private use only

1 Share with readers only
2 Share with writers only
3 Share with all users

specifies whether the file is a named
file and, therefore, whether the
segment will contain named-file, as
well as common information; a value of
OFFH indicates the additional
information is present.

the name of the device where this file
resides, padded with blanks.

indicates which file drivers can be
used with the device containing the
file; if bit n 1is on, then file driver
n+l can be used; bit 15 is the
high-order bit.

Bit Driver No. Driver

0 Physical file
Stream file
reserved

Named file

SO =

1
2
3

describes the functions supported by
the device where this file resides;
each bit set to one indicates the
corresponding function is supported.

Bit =~ Function

FSREAD
FSWRITE
FSSEEK
F$SPECIAL
FSATTACHS$DEV
F$DETACHSDEV
F$OPEN
F$CLOSE

No s WNEFE O

8-54

OUTPUT PARAMETERS

AGETFILESSTATUS

SYSTEM CALLS

resp$mbox (continued)

flags used only with diskette drives;
interpreted as follows:

Bit Meaning
0 not a diskette device
1 O=single density
l1=double density
2 O=single sided
1=double sided
3 0=8-inch diskette
1=5 1/4~inch diskette
4-7 -reserved

where bit O is the rightmost bit.
dev$gran the device granularity, in bytes.

lowdevsize the size of the device, in bytes.
highdevsize

devS$Sconn the number of connections to the
device.

The foregoing structure is returned for all files.
If the file is a named file, additional information
is returned. This information appears in the
segment immediately after the common file-status
information (described previously) and is
structured as follows:

DECLARE
named$fileSinfo STRUCTURE(
fdesc $num WORD,
fileStype BYTE,
file$gran BYTE,
owner WORD,

lowScreateStime WORD,
high$create$time WORD,
lowSaccess $time WORD,
high$access$time WORD,

lowSmod $time WORD,
highmodtime WORD,
low$fileSsize WORD,

high$file$size WORD,
low$fileS$blocks WORD,
high$file$blocks WORD,

volS$name (6) BYTE,
volS$gran WORD,
low$volS$size WORD,
highvolsize WORD,

8-55

ASGETSFILESSTATUS

SYSTEM CALLS

OUTPUT PARAMETERS

resp$mbox (continued)

id$count WORD,
first$access BYTE,
first$ID WORD,
second$access BYTE,
second$ID WORD,
third$access BYTE,
third $ID WORD);

These fields are interpreted as follows:

fdesc $num

fileS$type

file$gran

owner

lowScreate$tinme
highScreateStime

low$accessS$time
high$SaccessS$time

lowSmod $time
highmodtime

low$fileSsize
high$file$size

low$fileSblocks
high$file$blocks

vol$name

the number of the file's file
descriptor; the file descriptor is a
Basic I1/0 System data structure
containing file attribute and status
data.

indicates the type of the file; a
value of 8 means data file, and 6
means directory file.

specifies the file granularity.
the user ID number of the file's owner.

the time and date when the file was
created; whether the Basic I/O System
maintains this field depends on a
configuration option.

the time and date when the file was
last accessed; whether the Basic I/0
System maintains this field depends on
a configuration option.

the time and date when the file was
last modified; whether the Basic I/0
System maintains this field depends on
a configuration option.

the total size, in bytes, of the data
in the file.

the number of volume blocks allocated
to this file.

the ASCII name for the volume
containing this file.

8-56

A$GETSFILESSTATUS
SYSTEM CALLS

OUTPUT PARAMETERS
resp$mbox (continued)
vol$gran the volume granularity, in bytes.

lowvolsize the size of the volume, in bytes.
highvolsize

id$count the number of access/ user=-ID pairs
declared for this file.

first$access access masks for as many ID's as are
secondSaccess indicated by id$count.

thirdS$access

Bit Data File Directory File

0 Delete Delete

1 Read Display

2 Append Add Entry

3 Update Change Entry

4-7 Reserved Reserved
first$SID ID values for the accessors.
second $ID
third$ID

except$ptr a POINTER to a WORD where the sequential exception

code will be returned.

DESCRIPTION

The ASGETSFILESSTATUS system call returns status and attribute
information about the designated file. Certain common information is
returned regardless of the file driver type (physical, stream, or
named). Additional information is returned for named files.

Note that this call returns device—dependent information.

EXCEPTION CODES

ASGET$FILE$STATUS can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

8-57

A$GETS$FILE$SSTATUS

SYSTEM CALLS

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

ESOK

ESEXIST

ESLIMIT

ESMEM

ESNOTSCONFIGURED

E$SUPPORT

ESTYPE

NORMAL CODE. No exceptional conditions.

Two conditions can cause this exception code to be
returned:

l. At least one of the following parameters is not
a token for a valid object:

() The connection parameter
L) The response mallbox parameter
2. The connection is being deleted.

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

ASGETSFILESSTATUS
GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

e The connection parameter is not a valid object
type. It must be a connection object.

¢ The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/0 System will return the following codes in the status
segment (staus field) at the mailbox specified by respS$mbox. After
examining the segment, you should delete it.

8-58

ASGETS$SFILESSTATUS
SYSTEM CALLS

EXCEPTION CODES (continued)

E$OK

E$SUPPORT

NORMAL CODE. No exceptional conditions.

Your system 1s configured incorrectly. The entry
point assoclated with ASGETSFILESSTATUS is not
included in the "I/O System part” of the file
driver table (named, physical, or stream file).
The corresponding entry point in the "Request

part” is included. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

8-59

ASGET$PATH$COMPONENT

ASGETS$PATHSCOMPONENT

SYSTEM CALLS

ASGET$PATHSCOMPONENT returns the name of a named file as the file is
known in its parent directory.

CALL RQ$ASGET$PATHSCOMPONENT(connection, resp$mbox, except$ptr);

INPUT PARAMETER

connection a WORD containing a token for the file connection
whose name is sought.

OUTPUT PARAMETERS

resp$mbox a WORD containing a token for the mailbox that
receives the fileSname segment; this segment
contains the file name associated with the
designated connection and is structured as follows:

DECLARE FILE$NAME
fileSname STRUCTURE(
status WORD,
name(14) BYTE);

These fields are interpreted as follows:

where:

status a condition code indicating how the
operation completed.

name a left—justified, null-padded ASCII
string giving the desired file name;
this name is the same as the last item
in the subpath string specified when
the file was created or renamed.

NOTE
The task which makes the ASGETSPATHS$SCOMPONENT
call is responsible for deleting the fileS$name
segment.
except$ptr a POINTER to a WORD where the sequential exception

code will be returned.

8-60

ASGET$PATH$COMPONENT
SYSTEM CALLS

DESCRIPTION

A caller who knows the token for a connection to a file can specify the
token to this system call and receive the name of the file in return.
This is the name by which the file is cataloged in its parent directory.
If the connection is to the root directory of a volume (that is, if no
parent directory exists), a null string is returned. A null string is
also returned if the file is marked for deletion.

ASGET$PATHSCOMPONENT can be called no matter what type of file is
supported, but if a connection to a physical or stream file is specified,
the call simply returns a null string.

EXCEPTION CODES

ASGETSPATHSCOMPONENT can return exception codes at two different times.
The code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete

explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK NORMAL CODE. No exceptionalvconditions.
ESEXIST Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

° The connection parameter
° The response mailbox parameter
2. The connection is being deleted.
ESLIMIT The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).
E$MEM The memory pool of the calling task's job does not

currently have a block of memory large enough to
allow this system call to run to completion.

8-61

ASGETPATH$COMPONENT

SYSTEM CALLS

EXCEPTION CODES (continued)

ENOTCONFIGURED

E$SUPPORT

ESTYPE

One or more of the following system calls was not
included when the system was configured:

ASGETSPATHSCOMPONENT
GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

e The connection parameter is not a valid object
type. It must be a connection object.

® The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/0 System will return the following codes in the status field
of the fileS$name segment. After examining the segment, you should delete

it.

ESOK

ESFNEXIST

ESIO

ESLIMIT

E$MEM

E$SUPPORT

NORMAL CODE. No exceptional conditions.

The file is marked for deletion. (A null string

is returned in the name field of the fileSname
segment.)

An I/0 error occurred during the operation.

To service this call, the Basic I/0 System had to
create some objects. The maximum number of ,
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/0 System job is configured.)

The memory pool of the Basic I1/0 System does not
currently have a block of memory large enough to
allow this system call to run to completion.

Your system is configured incorrectly. The entry
point associated with ASGET$PATHSCOMPONENT is not
included in the "I/O System part” of the named
file driver table. The corresponding entry point
in the "Request part” is included. Refer to the
iRMX 86 CONFIGURATION GUIDE for further
information.

8-62

ASOPEN

SYSTEM CALLS

ASOPEN opens an asynchronous file connection for I/0 operations.

CALL RQ$ASOPEN(connection, mode, share, resp$mbox, except$ptr);

INPUT PARAMETERS

connection

mode

share

OUTPUT PARAMETERS

resp$mbox

except$ptr

a WORD containing a token for the connection to be
opened.

a BYTE giving the mode desired for the open
connection; possible values are:

1 Open for reading
2 Open for writing
3 Open for both reading and writing

a BYTE specifying the kind of sharing desired for
this connection; possible values are:

Private use only

Share with readers only
Share with writers only
Share with all users

WK =O

a WORD containing a token for the mailbox that
receives the I/0 result segment (see Appendix C)
indicating completion of this operation. A value
of zero means that you do not want to receive an
I/0 result segment.

If it receives an I/0 result segment, the calling
task should issue DELETESSEGMENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

8~-63

ASOPEN

ASOPEN

SYSTEM CALLS

DESCRIPTION

The A$OPEN system call opens a connection for I/0 operations. The
connection must be opened before reading, writing, and seeking can be
performed on the associated file.

ASOPEN also initializes the file pointer to byte position zero.
Subsequent Basic I/O System calls (A$SEEK, AS$READ, and ASWRITE) will move

this pointer.

ASOPEN checks the current sharing status of the file, and returns an
ESSHARE exceptional condition 1f the requested sharing status is
inconsistent with the sharing already permitted. Open requests are not
queued.

If the file is attached by multiple connections, the file might be open
for reading by some connections and open for writing by others at the
same time. Any modification of the file by a writer will be seen by the
reader, if a reader subsequently reads the modified part of the file.

The request mode is compared to the current sharing status of the file;
if they are not compatible, an E$SHARE exceptional condition is

returned. No deadlock occurs, however, since open calls are not queued.
The system does not notify callers when the sharing status of the
connection changes. If such notification is important, users of the file
should arrange a suitable protocol.

NOTES

The mode and share parameters must each
be compatible with the current shared
state of the connected file.

Directory files can be opened and read,
but only by specifying a one for the
mode parameter and a three for the
share parameter.

EXCEPTION CODES

ASOPEN can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

8-64

ASOPEN
SYSTEM CALLS

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

ESOK

ESEXIST

ESLIMIT

E$SMEM

E$NOTSCONF IGURED

ESPARAM

E$SUPPORT

ESTYPE

NORMAL CODE. No exceptional conditioms.

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

° The connection parameter
o The response mailbox parameter
2. The connection is being deleted.

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

ASOPEN

GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)

The mode or share parameter has an invalid value
(out of the range 1-3 or 0-3 respectively).

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

e The connection parameter is not a valid object
type. It must be a connection object.

e The response mailbox parameter in the call is
not a token for a mailbox.

8-65

A$OPEN

SYSTEM CALLS

Concurrent Exception Codes

The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by respS$mbox. After examining the
segment, you should delete it.

E$OK

ESCONTEXT

ESFACCESS

ESSHARE

E$SUPPORT

NORMAL CODE. No exceptional conditions.

The connection (file or directory) is already
open, or it is a device connection.

The connection does not have access compatible
with the mode specified in this ASOPEN call.

One of these situations prevented opening the file:

® The current file share characteristic is not
compatible with the mode or the share parameter
in the ASOPEN call.

e This ASOPEN is attempting to open a directory
for some operation other than "read” (mode
parameter) and "share with all users” (share
parameter). (See DESCRIPTION above for more
information on sharing of files.)

Your system is configured incorrectly. The entry
point associated with ASOPEN is not included in
the "I/0 System part” of the file driver table
(named, physical, or stream file). The
corresponding entry point in the "Request part” is
included. Refer to the iRMX 86 CONFIGURATION
GUIDE for further information.

8-66

ASPHYSICALSATTACHSDEVICE

SYSTEM CALLS

ASPHYSICALSATTACHSDEVICE

The ASPHYSICALSATTACHSDEVICE system call attaches a device to the Basic
I/0 System.

CALL RQ$SASPHYSICALSATTACHSDEVICE(dev$name, fileSdriver, resp$mbox,
except $ptr);

This System Programmer call is included here for convenience.
ASPHYSICALSATTACHSDEVICE is described completely in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL, Chapter 7.

8-67

A$SPHYSICALSDETACH$DEVICE

SYSTEM CALLS

ASPHYSICALSDETACHSDEVICE

The ASPHYSICALSDETACHSDEVICE system call detaches a device from the Basic
I/0 System.

CALL RQSASPHYSICALSDETACHS$DEVICE(connection, hard, respS$mbox,
except$ptr);

This System Programmer call is included here for convenience.
ASPHYSICALSDETACHSDEVICE is described completely in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL, Chapter 7.

8-68

ASREAD

ASREAD

SYSTEM CALLS

ASREAD reads the requested number of bytes, starting with the current
position of the pointer for the specified file.

CALL RQ$ASREAD(connection, buff$ptr, count, respSmbox, exceptSptr);

INPUT PARAMETERS

connection

bufféptr

count

OUTPUT PARAMETERS

resp$mbox

except$ptr

a WORD containing a token for the open file
connection to be read.

a POINTER to the buffer that receives the data.

a WORD giving the number of bytes to be read.

a WORD containing a token for the mailbox that
receives the I/0 result segment (see Appendix C)
after the read is complete. A value of zero means
that you do not want to receive an I/0 result
segment.

If it receives an I/0 result segment, the calling
task should issue DELETESSEGMENT to delete the
segment.

The number of bytes read is in the "actual” field
of the I/0 result segment. If a read operation is
requested with the file pointer set at or beyond
the end of the file, an actual value of of zero is
returned.

If all the connections to a stream file are
requesting read operations, an actual value of

zero is returned.

a POINTER to a WORD where the sequential exception
code will be returned.

8-69

AS$READ

SYSTEM CALLS

DESCRIPTION

The ASREAD system call initiates a read operation from an open
connection. The connection is read as a string of bytes, starting at the
current location of the file pointer. Any number of bytes can be
requested. Some efficiency may be gained by starting reads on device
block boundaries. After the read operation is finished, the file pointer
points just past the last byte read.

The buffer specified by the "buff$ptr” parameter can be in a segment
allocated by the Nucleus, but thls is not a requirement.
NOTE
A call to ASREAD will not be successful

unless the mode of the open connection
permits reading (see ASOPEN).

EXCEPTION CODES

ASREAD can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing 1s a concurrent exception code. A complete

explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK NORMAL CODE. No exceptional conditions.

ESCONTEXT The connection parameter is a buffered connection
produced by the Extended I/0 System.

ESEXIST Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

) The connection parameter
] The response mailbox parameter
2. The connection is being deleted.

8-70

AS$READ

SYSTEM CALLS

EXCEPTION CODES (continued)

ESLIMIT

ES$MEM

ENOTCONFIGURED

E$SUPPORT

ESTYPE

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the éalling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

ASREAD

GETS$TYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

e The connection parameter is not a valid object
type. It must be a connection object.

e The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

ESOK
E$CONTEXT

E$FLUSHING

ES$IO

E$SPACE

NORMAL CODE. No exceptional conditioms.
This connection is not open for read or update.

The connection was closed before the READ request
was completed.

An I/0 error occurred during the operation.
The ASREAD request attempted to read past the end

of the physical device; this applies only to
physical files.

8-71

ASREAD

SYSTEM CALLS

EXCEPTION CODES (continued)

E$SUPPORT

Your system is configured incorrectly. The entry
point associated with ASREAD is not included in
the "I/0 System part" of the file driver table
(named, physical, or stream file). The
corresponding entry point in the "Request part” is
included. Refer to the iRMX 86 CONFIGURATION
GUIDE for further information.

8-72

ASRENAMESFILE

SYSTEM CALLS

ASRENAMESFILE

ASRENAMESFILE changes the path name of a named file.

CALL RQSASRENAMESFILE(connection, user, prefix, subpath, resp$mbox,
except$ptr);

INPUT PARAMETERS

connection a WORD containing a token for a connection to the
file being renamed; this connection and all other
connections to the file will remain in effect
after the file is renamed.

user a WORD containing a token for the user object to
be inspected in access checking; a zero specifies
the default user for the job.

prefix a WORD containing a token for the connection to be
used as the starting point in a path scan; a zero
specifies the default prefix for the job.

subpath a POINTER to a STRING containing the new subpath
for the file; prefix and subpath must not lead to
an already—-existing file; the string pointed to by
the subpath parameter cannot be a null string.

OUTPUT PARAMETERS

respSmbox a WORD containing a token for the mailbox that
receives an I/0 result segment (see Appendix C)
indicating completion of the rename operation. A
value of zero means that you do not want to
receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should issue DELETESSEGMENT to delete the
segment.

except$ptr a POINTER to a WORD where the sequential exception
code will be returned.

8-73

ASRENAMESFILE
SYSTEM CALLS

DESCRIPTION

The ASRENAMESFILE system call applies to named files only. It is called
to change the path name of a file. For named data or directory files,
ASRENAMESFILE can be used to recatalog files in different parent
directories, as long as the new directory is on the same volume as the
file's original parent directory.

There is one restriction governing the renaming of a directory. Any
attempt to rename a directory as its own parent will cause the Basic I/0
System to return an exception code. Alsc, be aware that renaming a
directory changes the paths of any files contained in the directory.

NOTE

The caller must have delete access to
the original file and must have
add—-entry access to the file's parent
directory.

EXCEPTION CODES

ASRENAMESFILE can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK NORMAL CODE. No exceptional conditions.
ESCONTEXT The connection and the prefix in the call refer to

different devices. You cannot simultaneously
rename a file and move it to another device.

ESDEVSOFFLINE The prefix parameter in this system call refers to
a logical connection. Either:

® The device is offline, or
® The device has never been physically attached.
(See Appendix E for a more detailed

explanation.)

8-74

A$SRENAMESFILE
SYSTEM CALLS

EXCEPTION CODES (continued)

ESEXIST

ESIFDR

ESLIMIT

ESMEM

ESNOSPREFIX

E$NOSUSER

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

° The prefix parameter

° The connection parameter

° The response mailbox parameter

° The user parameter.
2. The prefix connection is being deleted.
This system call épplies only to named files, but
the connection parameters specifies some other

type of file.

Processing this call caused one of these limits to
be exceeded:

e The maximum number of objects allowed for this
job (specified when the job was created).

e The number of I/0 operations which can be
outstanding at one time for the user object
specified in the call (255 decimal).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

® No default prefix is cataloged for this job.

® When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

If the user parameter in this call is not zero,

then the problem is that the parameter is not a
user object.

8-75

ASRENAMESFILE

EXCEPTION CODES

SYSTEM CALLS

E$NOSUSER (continued)

ESNOTSCONFIGURED

ESPARAM

E$SUPPORT

ESTYPE

If the user parameter is zero, it specifies a
default user. But no default user can be found
because:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

o No default user 1s cataloged for this job.

e When the system was configured, the Nucleus
system call LOOKUPSOBJECT was not included.

® The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

One or more of the following system calls was not
included when the system was configured:

RENAMESFILE

GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)
DISABLESDELETION (Nucleus)

The path name contains invalid characters, or has
a length of zero.

The connectlon parameter specified is not valid in
this system call because the connection was not
created by this job.

One of three conditions caused this exception:

o The prefix parameter 1s not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

® The connection parameter is not a connection
object.

® The response mailbox parameter in the call is
not a token for a mailbox.

8-76

ASRENAMESFILE

SYSTEM CALLS

Concurrent Exception Codes

The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

ESOK

ESCONTEXT

ESFACCESS

ESFEXITS

E$FNEXIST

ESFTYPE

ESIO

ESLIMIT

E$MEM

NORMAL CODE. No exceptional conditions.
One of these conditions caused this exception code:

e The file specified is on a device which the
system is detaching.

e The call is attempting to rename the ROOT
directory.

® The call is attempting to rename the directory
to a new path containing itself. This is
specifically forbidden; see DESCRIPTION.

Either:

e The user object in the parameter list is not
qualified for "delete" access to the file, or

e The connection doesn't have "add entry"” access
to the parent directory.

The file name already exists.
This indicates one of the following circumstances:
e A file in the specified path does not exist.

e A file in the specified path is marked for
deletion.

The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named
directory.)

An I/0 error occurred during the operation.

To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/0 System job is configured.)

The memory pool of the Basic I/0 System does not

currently have a block of memory large enough to
allow this system call to run to completion.

8-77

ASRENAMESFILE
SYSTEM CALLS

EXCEPTION CODES (continued)
E$SPACE There is no more space on this volume.
ES$SUPPORT As the Basic I/0O System is configured, either:

® The entry point associated with ASRENAME is not
included in the "I/0 System part” of the named
file driver table. The corresponding entry
point in the "Request part” is included. Refer
to the iRMX 86 CONFIGURATION GUIDE for further

information.

e The Basic I/0 System does not allow allocation
of space on volumes.

8-78

ASSEEK

SYSTEM CALLS

ASSEEK

ASSEEK moves the file pointer of an open connection.

CALL RQ$ASSEEK(connection, mode, hi$ptrS$move, lowSptr$move, resp$mbox,
except$ptr);

INPUT PARAMETERS

connection a WORD containing a token for the open file
connection whose file pointer is to be moved.

mode a BYTE describing the movement of the file pointer;
possible values are:

1 Move pointer back by "ptr$move” amount; if this
action moves the pointer past the beginning of
the file, the pointer is set to zero (first
byte).

2 Set the pointer to the location specified by
"ptrS$move”.

3 Move the file pointer forward by "ptrS$move”
amount.

4 Move the pointer to the end of the file, minus
the "ptrS$move" specified.

hiSptrmove a pair of words giving the number of bytes involved
low$ptrSmove in the seek; the interpretation of “"ptr$move™
depends on the mode setting, as just explained.

OUTPUT PARAMETERS

resp$mbox a WORD containing a token for the mailbox that
receives an 1/0 result segment (see Appendix C)
when the seek is completed. A value of zero means
that you do not want to receive an I/O result
segment.

task should issue DELETESSEGMENT to delete the

If it receives an I/0 result segment, the calling l
segment.

exceptSptr a POINTER to a WORD where the sequential exception
code will be returned.

8-79

A$SEEK

SYSTEM CALLS

DESCRIPTION

The A$SEEK system call applies to physical and named files only. This
call moves the file pointer for an open connection, thus allowing file
contents to be accessed randomly. The file pointer can be moved to any
byte position in the file; the first byte is byte zero.

EXCEPTION CODES

ASSEEK can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

ESOK NORMAL CODE. No exceptional conditions.

ESCONTEXT The connection parameter is a buffered connection
produced by the Extended I/O System.

ESEXIST Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

° The connection parameter
o The response mailbox parameter.
2. The connection is being deleted.

ESIFDR This system call applies only to named and
physical files, but the prefix and subpath
parameters specify a stream file.

ESLIMIT The call cannot be processed without exceeding the

maximum number of objects allowed for this job
(specified when the job was created).

8-80

A$SEEK
SYSTEM CALLS

EXCEPTION CODES (continued)

E$MEM

ESNOTSCONFIGURED

E$PARAM

E$SUPPORT

ESTYPE

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

ASSEEK
GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)

The mode parameter value is out of the valid range
(1 to 4).

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

e The connection parameter is not a valid object
type. It must be a connection object.

e The response mailbox parameter in the call is not
a token for a mailbox.

Concurrent Exception Codes

The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by respSmbox. After examining the
segment, you should delete it.

ESOK
ESCONTEXT

E$FLUSHING

ES$IO

ESPARAM

ES$SUPPORT

NORMAL CODE. No exceptional conditionms.
The connection is not open.

The connection specified in the call was closed
before the seek operation could be completed.

An I/0 error occurred during the operation.

This call attempted to seek beyond the end of the
physical device. This applies only to physical
files.

Your system is configured incorrectly. The entry
point associated with AS$SEEK is not included in the
"I/0 System part” of the file driver table (named or
physical file). The corresponding entry point in
the "Request part” is included. Refer to the

iRMX 86 CONFIGURATION GUIDE for further information.

8-81

ASSETSEXTENSION$SDATA

SYSTEM CALLS

AS$SETSEXTENSIONSDATA

The ASSET$EXTENSIONSDATA system call writes the extension data for a
Basic 1/0 System file.

CALL RQ$SASSETSEXTENSIONSDATA(connection, data$ptr, respSmbox,
except$ptr);

This System Programmer call is included here for convenience.
ASSETSEXTENSIONSDATA is described completely in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL, Chapter 7.

8-82

A$SPECIAL

ASSPECIAL

SYSTEM CALLS

ASSPECIAL enables tasks to perform a variety of special functions.

CALL RQS$SASSPECIAL(connection, spec$func, ioparm$ptr, respS$mbox,

except$ptr);

INPUT PARAMETERS

connection

spec$func

ioparm$ptr

OUTPUT PARAMETERS

resp$mbox

except$ptr

a WORD containing a token for a connection to the
file where the special function is to be performed.

an encoded WORD that, with the connection
argument, specifies the function being requested;
the functions are described under the heading
DESCRIPTION and are summarized as follows:

file driver spec$func

for connection value function
physical 0 format track
physical or named 2 notify
stream 0 query

stream 1 satisfy

a POINTER to a parameter block; the contents of
the parameter block depends upon the requirements
of the special function being requested and are
described fully under the heading DESCRIPTION.

a WORD containing a token for the mailbox that
receives the I/0 result segment (see Appendix C)
for the special operation. A value of zero means
that you do not want to receive an I/0 result

segment.

If it receives an I/0 result segment, the calling
task should issue DELETE$SEGMENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

8-83

AS$SPECIAL
SYSTEM CALLS

DESCRIPTION

The ASSPECIAL system call enables tasks to perform a variety of special
functions.

Tasks define their requests by means of the spec$func and ioparam$ptr
parameters. Spec$func is a code which, when combined with the file
driver associated with the connection argument, specifies the function
the Basic I/0 System is to perform. When more information is needed to
define a request, ioparam$ptr points to a parameter block containing the
additional data. Descriptions of the available functions follow.

Formatting a Track. This function applies to physical files only. To
format a track on a flexible diskette, set spec$func to O, and set
ioparam$ptr to point to a structure of the form

DECLARE format$track STRUCTURE(
track$number WORD,
interleave WORD,
track$offset WORD) ;

where:

track$number the number of the track to be formatted;
acceptable values are O to 76; other values cause
an ESSPACE exceptional condition.

interleave the interleaving factor for the track (that is,
the number of physical sectors to skip before
locating the next logical sector); the supplied
value, before being used, is evaluated mod 26 for
128-byte sectors or mod 8 for 5l2-byte sectors.

track$offset the number of physical sectors to skip before
locating logical sector one.

To format a track on a hard disk, set spec$func to O and set ioparam$ptr
to point to a structure of the form:

DECLARE formatS$Strack STRUCTURE(

track$number WORD,
interleave WORD,
track$offset WORD,
fillSchar WORD);
where:
track$Snumber the number of the track to be formatted;

acceptable values are O to 799; other values cause
an E$SPACE exceptional condition.

8-84

AS$SPECIAL
SYSTEM CALLS

DESCRIPTION (continued)

interleave the interleaving factor for the track; the

supplied value, before being used, is evaluated
mod 36 for 128-byte sectors or mod 12 for 512-byte
sectors.

track$offset the number of physical sectors to skip before
locating logical sector one.

fill$char the byte value with which each sector is to be
filled.

Requesting Notification that a Volume is Unavailable. This function
applies to named and physical files only.

When a person opens a door to a flexible disk drive or presses the STOP
button on a hard disk drive, the volume mounted on that drive becomes
unavailable. A task can request notification of such an event by calling
ASSPECIAL. For flexible disk drives attached to an iSBC 204 controller,
notification occurs when the Basic I/0 System first tries to perform an
operation on the unavailable volume. For most other drives notification
occurs immediately. The reason for this difference is that the iSBC 204
controller does not generate an interrupt when its drives cease to be
ready. In contrast, most other controllers do.

To request notification, a task calls A$SPECIAL with a token for a device
connection, with spec$func set to 2, and with ioparam$ptr pointing to a
structure of the form:

DECLARE notify STRUCTURE(
mailbox WORD,

object WORD);
where:
mailbox contains a token for a mailbox.
object contains a token for an object; when the Basic I/0

System detects that the implied volume is
unavailable, the object is sent to the mailbox.

After a task has made a request for notification, the Basic I/0 System
remembers the object and mailbox tokens until either the volume is
detected as being unavailable or until the device is detached (see
ASPHYSICALSDETACHSDEVICE in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE
MANUAL). When the volume becomes unavailable, the object is sent to the
mailbox. Note that this implies that some task should be dedicated to
waiting at the mailbox.

8-85

AS$SPECIAL
SYSTEM CALLS

DESCRIPTION (continued)

If the volume is detected as being unavailable, the Basic I/0 System will
not execute I/0 requests to the device on which the volume was mounted.
Such requests are returned with the status field of the I/0O result seg-
ment set to ESIO and the unit$status field set to IO$OPRINT (value = 3).
The latter code means that operator intervention is required.

To restore the availability of a volume, four steps are required:

1. Close the door of the diskette drive or restart the hard disk
drive.

2. Call ASPHYSICALSDETACHS$DEVICE (see the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL). It may be necessary to do a "hard” detach of
the device.

3. Call ASPHYSICALSATTACHSDEVICE (see the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL) and reattach the device.

4. Create a new file connection.

To cancel a request for notification, make a dummy request using the same
connection with a 0 value in the mailbox parameter. In this case, the
result is that there is no longer a request for notification.

Obtaining Information about Stream File Requests. Occasionally, a task
using a stream file needs to know what is being requested by the other
task using the same stream file. For example, the task doing a read
operation on a stream file might need to know how many bytes are being
sent by the task doing a write operation on the same file. Tasks can
obtain this kind of information by calling ASSPECIAL, using the
connection for the stream file, with spec$func set to O (query). The
ioparam$ptr argument is ignored.

If a read or write request is queued at the file, the information
requested is returned in the I/0 result segment for the call to
A$SPECIAL. The actual field contains the number of bytes being sent, the
count field contains the number of bytes still remaining in the buffer,
and the buff$ptr field points to the buffer.

If no read or write request is queued at the file, the calling task's
request for information is queued at the file. If a second request for
information is made before the first one is satisfied, the I/0 result
segments for both requests are returned with E$CONTEXT in the status
field.

8-86

A$SPECIAL
SYSTEM CALLS

Artificially Satisfying a Stream File I/O Request

When a task tries to read or write to a stream file, the request is not
satisfied until the other task makes a request that matches the first
request. For example, if task A wants to read 512 bytes, but task B only
wants to write 256 bytes, only 256 bytes are transferred. Task A
continues to wait for the other 256 bytes, even though Task B may never
write them.

By using ASSPECIAL, with a stream file connection and with spec$func set
to 1 (ioparam$ptr is ignored), either task can force the data to transfer
request to be satisfied, even though the reading task is requesting more
bytes than the writing task is providing. After the transfer, the tasks
can ascertain the number of bytes sent by checking the actual field in
their respective I/0 result segments.

A task trying to satisfy an I/0 request in this way will receive an
ESCONTEXT exceptional condition if no request is queued at the stream
file or if a request for information is queued. In the latter case, the
task that submitted the request for information also receives an
ESCONTEXT condition.

EXCEPTION CODES

ASSPECTIAL can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list 1s divided inté two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK NORMAL CODE. No exceptional conditionms.

ESCONTEXT The connection parameter is for a buffered I/0
connection, which is not valid in this call.
(Buffered I/0 connections are a function of the
Extended I1/0 System.)

ESEXIST Two conditions can cause this exception code to be
returned:

8-87

A$SPECIAL
SYSTEM CALLS

EXCEPTION CODES
ESEXIST (continued)

1. At least one of the following parameters is not
a token for a valid object:

e The connection parameter
o The response mailbox parameter

2. The connection is being deleted.

ESIFDR The function requested (specS$func) is not valid
for the type of file specified by the connection
parameter.

ESLIMIT The call cannot be processed without exceeding the

maximum number of objects allowed for this job
(specified when the job was created).

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOT$CONFIGURED One or more of the following system calls was not
included when the system was configured:

SPECIAL

GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)

E$PARAM The special request applies to a stream file, but
the code 1s not either "query" or "notify"”.

E$SUPPORT The connection parameter specified is not valid in

this system call because the connection was not
created by this job.

Concurrent Exception Codes
The Basic I/0O System can return the following codes in an I/O result
segment at the mailbox specified by respSmbox. After examining the
segment, you should delete it.
ESOK NORMAL CODE. No exceptional conditions.
ESCONTEXT One of the following exceptional conditions exists:
e The function code is "notify' and the

connection is not a device connection. This
applies to named and physical files only.

8-88

A$SPECIAL
SYSTEM CALLS

EXCEPTION CODES (continued)

e The connection is not open. This applies to
stream and physical files only.

e This is a "query"” request, but another query is
already queued This applies only to stream
files.

e This is a "satisfy"” request, but either a query
request is queued, or no requests are queued.
This applies only to stream files. (See
Artifically Satisfying A Stream File I/0

Request.)

ESFLUSHING The connection to which this special function
applies was closed before the function could be
completed.

ESIDDR The function being requested is not valid for the
device specified by the connection parameter.

ESIFDR The connection refers to a named file, but the
function is not "notify".

E$IO An I/0 error occurred during the operation.

ESSPACE The ASSPECIAL call attempted to format a physical

file past the end of the device.

E$SUPPORT Your system is configured incorrectly. The entry
point associated with AS$SPECIAL is not included in
the "I/O System part” of the file driver table
(named, physical, or stream file). The
corresponding entry point in the "Request part” is
included. Refer to the iRMX 86 CONFIGURATION
GUIDE for further information.

8-89

ASTRUNCATE

ASTRUNCATE

SYSTEM CALLS

ASTRUNCATE truncates a named file at the current setting of the pointer,
freeing all allocated space beyond the pointer.

CALL RQSASTRUNCATE(connection, respSmbox, except$ptr);

INPUT PARAMETER

connection a WORD containing a token for an open connection
to the file being truncated.

OUTPUT PARAMETERS

respSmbox a WORD containing a token for the mailbox that
receives the I/0 result segment (see Appendix C)
for the truncate operation. A value of zero means
that you do not want to receive an I/0 result
segment.

task should issue DELETESSEGMENT to delete the

| If it receives an I/0 result segment, the calling
segment.

exceptSptr a POINTER to a WORD where the sequential exception
code will be returned.

DESCRIPTION

The A$TRUNCATE system call applies to named files only. This call
truncates a file at the current setting of the file pointer, freeing all
allocated space beyond the pointer. AS$SEEK can be called to position the
pointer before AS$TRUNCATE is called. If the file pointer is at or beyond

the end-of-file, no operation is performed.
Truncation is performed immediately, rather than waiting until
connections to the file are deleted.
NOTE
The designated file connection must be

open for writing and the connection
must have update access to the file.

8-90

ASTRUNCATE
SYSTEM CALLS

EXCEPTION CODES

ASTRUNCATE can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

ESOK NORMAL CODE. No exceptional conditiomns.

ESCONTEXT The connection parameter is a buffered I/0
connection, which is invalid here. (Buffered 1/0
connections are a function of the Extended I/0

System.

ESEXIST Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

° The connection parameter
e The response mailbox parameter

2. The connection is being deleted.

ESIFDR This system call applies only to named files, but
the parameter list specified some other type of
file.

ESLIMIT ' The call cannot be processed without exceeding the

maximum number of objects allowed for this job
(specified when the job was created).

ESMEM The memory pool of the calling task's job does mnot
currently have a block of memory large enough to
allow this system call to run to completion.

8-91

A$TRUNCATE

SYSTEM CALLS

EXCEPTION CODES (continued)

E$SNOT$CONFIGURED

ES$SUPPORT

ESTYPE

One or more of the following system calls was not
included when the system was configured:

ASTRUNCATE

GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATESSEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

o The connection parameter is not a valid object
type. It must be a connection object.

e The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/0 System can return the following codes in an I/0 result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK
ES$CONTEXT

ESFACCESS

ESIO

E$SUPPORT

NORMAL CODE. No exceptional conditions.
The file specified is not open for write or update.

The connection in the parameter list is not
qualified for "update™ access to the file.

An I/0 error occurred during the operation.

As the Basic I/0 System is configured, either:

e The entry point associated with ASTRUNCATE is
not included in the "I/0 System part” of the
named file driver table. The corresponding
entry point in the "Request part"” 1s included.
Refer to the iRMX 86 CONFIGURATION GUIDE for
further information, or

® Truncating files is not allowed.

8-92

ASWRITE

SYSTEM CALLS

ASWRITE

ASWRITE writes data from the calling task's buffer to a connected file.

CALL RQSASWRITE (connection, buff$ptr, count, respS$mbox, except$ptr);

INPUT PARAMETERS

connection a WORD containing a token for the open connection
through which the write operation is to take place.

buff$ptr a POINTER to the buffer (segment) that contains
the data to be written.

count a WORD giving the number of bytes to be written.

OUTPUT PARAMETERS

resp$mbox a WORD containing a token for the mailbox that
receives the I/0 result segment (see Appendix C)
for the write operation. A value of zero means
that you do not want to receive an I/0O result

segment.

If it receives an I/0 result segment, the calling
task should issue DELETESSEGMENT to delete the
segment.

If all the other connections to a stream file are
requesting write operations, an actual value of
zero and a status value for ESFLUSHING are
returned in the I/0 result segment.

exceptS$Sptr a POINTER to a WORD where the sequential exception
code will be returned.

DESCRIPTION

The ASWRITE call writes data from the caller's buffer to a connected
file. The data is written starting at the current file pointer. After
the write operation, the file pointer is positioned just after the last
byte written. Some efficiency may be gained by starting writes on device
block boundaries and writing an integral number of device blocks.

8-93

ASWRITE

SYSTEM CALLS

DESCRIPTION (continued)

Be aware that it is possible to use the A$SEEK system call to position
the file pointer beyond the end of the file and comence writing. If a
task does this, the Basic I/0 System will extended the file to
accommodate the writing operation. However, the positions in the file
located between the old end of file and the beginning of the writing
operation will contain arbitrary information.

NOTES

The buffer supplying the data to be
written should not be modified until
the write request has been acknowledged
at the response mailbox.

The designated file connection must be
open for writing, and the connection
must have append or update access to
the file.

EXCEPTION CODES

ASWRITE can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/0 System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

ESOK NORMAL CODE. No exceptional conditions.

ESCONTEXT The connection specified is a buffered I/0
connection, which is not wvalid for the ASWRITE
call. (Buffered I/0 connections are a function of

the Extended I/0 system.)

E$EXIST Two conditions can cause this exception code to be
returned:

8-94

SYSTEM CALLS

EXCEPTION CODES (continued)

ESLIMIT

E$MEM

ESNOT$CONFIGURED

E$SUPPORT

ESTYPE

1. At least one of the following parameters is not
a token for a valid object:

° The connection parameter
° The response mailbox parameter
2. The connection is being deleted.

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

ASWRITE

GETSTYPE (Nucleus)
SENDSMESSAGE (Nucleus)
CREATES$SEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

e The connection parameter is not a valid object
type. It must be a connection object.

e The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/0 result
segment at the mailbox specified by respS$mbox. After examining the
segment, you should delete it.

ESOK
ES$CONTEXT

ESFACCESS

NORMAL CODE. No exceptional conditions.
The connection is not open for update or write.
The connection in the parameter list is not

qualified for "update" or "append” access to the
file.

8-95

ASWRITE

A$WRITE

SYSTEM CALLS

EXCEPTION CODES (continued)

ESFLUSHING

E$IO

ES$SPACE

E$SUPPORT

Either:

The connection was closed before the write
could be performed, or

The file specified by the connection parameter
is a stream file, and all other connections are
also requesting to write the file. (See the
description of respSmbox.)

An I/0 error occurred during the operation.

Either:

e The volume has no more space, or

e The operation attempted to write beyond the end
of the device. This applies to physical files
only.

As the Basic I/0 System is configured, either:

e The entry point associated with ASWRITE is not
included in the "I/0 System part” of the file
driver table (named, physical, or stream
file). The corresponding entry point in the
"Request part” is included. Refer to the iRMX
86 CONFIGURATION GUIDE for further information.

® The write is attempting to extend the file, but

allocation of file space is not allowed.

8-96

A$SCREATE$USER

SYSTEM CALLS
CREATESUSER

The CREATESUSER system call creates a user object.

user = RQSCREATESUSER(ids$ptr, except$ptr);

This System Programmer call is included here for convenience.
CREATES$USER is described completely in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL, Chapter 7.

8-97

ASDELETE$USER

DELETESUSER

SYSTEM CALLS

The DELETESUSER (Basic 1/0) system call deletes a user object.

CALL RQS$DELETE$USER(user, except$ptr);

This System Programmer call is included here for convenience.
DELETES$USER is described completely in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL, Chapter 7.

8-98

GETSDEFAULTSPREFIX

GET$DEFAULTSPREFIX

SYSTEM CALLS

GET$DEFAULTSPREFIX returns the default prefix of a job.

connection = GET$DEFAULTS$PREFIX(job, except$ptr);

INPUT PARAMETER

job

OUTPUT

except$ptr

connection

DESCRIPTION

The GET$DEFAULTSPREFIX
default prefix for the

EXCEPTION CODES
E$OK

ESNOSPREFIX

a WORD containing a token for the job whose
default prefix is sought; a zero specifies the
calling job.

a POINTER to a WORD where the sequential exception
code will be returned.

a WORD receiving a token for the connection object
which is the default prefix for the designated job.

system call allows the caller to determine the
specified job.

NORMAL CODE. No exceptional conditions.

You specified a default prefix (prefix argument

equals zero). But no default prefix can be found

because of one of the following:

e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

e No default prefix is cataloged for this job.

e When the system was configured, the Nucleus
system call LOOKUPS$OBJECT was not included.

8-99

GET$DEFAULT$PREFIX
SYSTEM CALLS

EXCEPTION CODES
E$NOSPREFIX (continued)

e The prefix which is cataloged is not the
correct type. The default prefix must be a
connection object or logical device object.
(Logical device objects are created by the
Extended 1I/0 System.)

ESNOTSCONFIGURED The system call GET$DEFAULTSPREFIX was not
included when the Basic I/0 System was configured.

8-100

GET$DEFAULT$USER

SYSTEM CALLS

GET$DEFAULTS$USER

GETSDEFAULTSUSER returns the default user object of a job.

user$id = GETSDEFAULTSUSER(job, except$ptr);

INPUT PARAMETER

job a WORD containing a token for the job whose
default user object is sought; a zero specifies
the calling job.

OUTPUT
except$ptr a POINTER to a WORD where the sequential exception
code will be returned.
user$id a WORD containing a token for the user object
which is the default user for the designated Jjob.
DESCRIPTION

The GET$DEFAULTSUSER system call allows the calling task to determine the
default user object associated with the designated job.

EXCEPTION CODES

ESOK NORMAL CODE. No exceptional conditioms.

ESNOSUSER No default user can be found because:
e When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

e No default user is cataloged for this job.

e When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

8-101

GET$DEFAULT$USER

EXCEPTION CODES

SYSTEM CALLS

E$NOSUSER (continued)

ESNOTS$CONFIGURED

e The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

The system call GETSDEFAULTSUSER was not included
when the Basic I/O System was configured.

8-102

SYSTEM CALLS

GETS$TIME

GET$TIME system call returns the date/time value from its doubleword
counter.

date$time = GET$TIME(except$ptr);

OUTPUT
dateS$time a POINTER containing a date/time value expressed
as the number of seconds since a fixed,
user—determined point in time; the offset portion
of the pointer contains the low part of the value
and the base portion contains the high part of the
value.
exceptéptr a POINTER to a WORD where the sequential exception
code will be returned.
DESCRIPTION

The GETSTIME system call returns the date/time value for the Basic 1/0
System. The Basic I/0 System maintains the date/time value in two words
containing the number of seconds since some fixed point in time. Any
time in the past can be used as the "beginning of time”. See your system
programmer for the reference point used in your system.

EXCEPTION CODES
ES$OK NORMAL CODE. No exceptional conditions.

ESNOTSCONFIGURED The system call GETS$TIME was not included when the
Basic I/0 Sytem was configured.

8-103

INSPECT$USER

INSPECTSUSER

SYSTEM CALLS

The INSPECT$USER (Basic I/0) System call returns a list of the ID's
contained in a user object.

CALL RQ$INSPECTSUSER(user, ids$ptr, except$ptr);

This System Programmer call is included here for convenience.
INSPECTSUSER is described completely in the i1RMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL, Chapter 7.

8-104

SET$DEFAULT$PREFIX

SYSTEM CALLS

SETSDEFALULTS$PREFIX

SETSDEFAULT$PREFIX sets the default prefix for an existing job.

CALL RQS$SETSDEFAULTS$PREFIX(job, prefix, except$ptr);

INPUT PARAMETERS

job a WORD containing a token for the job whose
default prefix is to be set; a zero specifies the
current job.

prefix a WORD containing a token for the connection that
is to become the default prefix.

OUTPUT PARAMETERS

except$ptr a POINTER to a WORD where the condition code will
be returned.

DESCRIPTION

The SET$DEFAULTSPREFIX system call sets the default prefix for an
existing job. It does this by cataloging the connection (supplied as the
prefix parameter) in the object directory of the job (supplied as the job
parameter). The Basic I/O System catalogs the prefix under the name $.

EXCEPTION CODES

ESOK NORMAL CODE. No exceptional conditiomns.

ESCONTEXT Either:

e When this job was created, a size of zero was
specified for the object directory. So a
default prefix cannot be cataloged

e As the system was configured, the Nucleus

system call UNCATALOGSOBJECT was not included.
So objects cannot be removed from the directory.

8~-105

SET$DEFAULT$PREFIX
SYSTEM CALLS

EXCEPTION CODES (continued)

ESEXIST At least one of the following parameters is not a
token for a valid object:

° The prefix parameter
o The job parameter

ESLIMIT The prefix parameter cannot be cataloged because
the job object directory is full.

ESNOTSCONFIGURED One or more of the following system calls was not
included when the system was configured:

SETSDEFAULTSPREFIX
CATALOGSOBJECT
GETSTYPE (Nucleus)

ESTYPE One of two conditions caused this exception:

e The prefix parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

® The job parameter is not a token for a job.

8-106

SET$DEFAULT3USER

SYSTEM CALLS

SETSDEFAULTSUSER

SET$DEFAULTS$USER sets the default user object for a job.

CALL RQS$SETS$DEFAULTSUSER(job, user, except$ptr);

INPUT PARAMETERS

job a WORD containing a token for the job whose
default user object is to be set; a zero
designates the calling task's job.

user a WORD containing a token for the user object that
is to become the default user.

OUTPUT PARAMETERS

exceptS$ptr a POINTER to a WORD where the sequential exception
code will be returned.

DESCRIPTION

The SETS$DEFAULTSUSER system call sets the default user for an existing
jO b.

EXCEPTION CODES
E$OK NORMAL CODE. No exceptional conditions.
E$CONTEXT Either:

e When this job was created, a size of zero was
specified for the object directory. So a
default prefix cannot be cataloged, or

e As the system was configured, the Nucleus

system call UNCATALOG$OBJECT was not included.
So objects cannot be removed from the directory.

8-107

SET$DEFAULT$USER

SYSTEM CALLS

EXCEPTION CODES (continued)

ESEXIST

ESLIMIT

ENOTCONFIGURED

ESTYPE

At least one of the following parameters is not a
token for a valid object:

) The user parameter

e The job parameter

The user object cannot be cataloged because the
job object directory is full.

One or more of the following system calls was not
included when the system was configured:

SETSDEFAULTSUSER
CATALOGSOBJECT (Nucleus)
GETSTYPE (Nucleus)

The job or user argument refers to an object of
the wrong type.

8-108

SET$TIME

SYSTEM CALLS

SETS$TIME

The SETSTIME system call sets the date and time for the I/O System.

CALL RQ$SETSTIME(timeS$high, timeSlow, except$ptr);

This System Programmer call is included here for convenience. SET$TIME
is described completely in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE
MANUAL, Chapter 7.

8-109

APPENDIX A. 1RMX™ 86 DATA TYPES

The following are the data types that are recognized by the iRMX 86

Operating System:

BYTE

WORD

INTEGER

OFFSET

TOKEN

POINTER

STRING

An unsigned, one byte, binary number.

An unsigned, two byte, binary number.

A signed, two byte, binary number that is stored in
two's complement form.

A word whose value represents the distance from the
base of a segment.

A word whose value identifies an object.

Two words containing the base of a segment and an
offset, in the order: offset followed by base.

A sequence of consecutive bytes. The first byte
contains the number of bytes that follow it in the
string.

APPENDIX B. iRMX™ 86 TYPE CODES

Each iRMX 86 object type is known within the iRMX 86 System by means of a
numeric code. For each code, there is a mnemonic name that can be
substituted for the code. The following lists the types with their codes
and associated mnemonics.

OBJECT TYPE INTERNAL MNEMONIC NUMERIC CODE
Job T$JOB 001H
Task T$TASK 002H
Mailbox TSMAILBOX 003H
Semaphore T$SEMAPHORE 004H
Segment T$SSEGMENT 006H
User T$NUMSUSER 100H
Connection TSCONNECTION 101H

APPENDIX C. 1I/0 RESULT SEGMENT

Certain asynchronous I/0 system calls return a data structure called an
1/0 result segment to the mailbox specified by the “"resp$mbox”
parameter. The following system calls can return such a segment:

ASATTACHSFILE AS$CHANGESACCESS
A$CLOSE AS$CREATE$DIRECTORY
ASCREATESFILE A$DELETE$CONNECTION
ASDELETESFILE ASOPEN

ASREAD ASRENAMESFILE
ASSEEK ASSPECIAL
ASTRUNCATE ASWRITE

Three of these system calls (ASATTACHS$FILE, A$CREATESDIRECTORY, and
ASCREATESFILE) can return either a connection or an I/O result segment to
the mailbox. Your application task can determine which type of object
has been returned by making a GETSTYPE system call before trying to
examine the object.

Before waiting at the response mailbox to receive the I/0 result segment,
your application task should examine the condition code returned in the
word pointed to by the “"except$ptr” parameter. If this code is "ES$OK",
the task can wait at the mailbox. However, if the code is not "E$0K", an
exceptional condition exists and nothing is sent to the mailbox.

Immediately after receiving the I/0 result segment, the task should
examine the status field. This field contains an "ESOK"” if the system
call was completed sucessfully or an exceptional—condition code if an
error occurred. The result segment also contains the actual number of
bytes read or written, if appropriate.

STRUCTURE OF I/O RESULT SEGMENT

The I/0 result segment is structured as follows:

DECLARE iors STRUCTURE(
status WORD,
unit$status WORD,
actual WORD);

I/0 RESULT SEGMENT

where:
status the condition code indicating the outcome of the
call; Appendix D lists these asynchronous condition
codes.
unit$status contains, in the low—-order four bits,
device~-dependent error code information that is
meaningful only if status = E$IO; the codes, their
meanings, and their associated mnemonics are as
follows:
code mnemonic meaning
0 TI0SUNCLASS Unclassifed error
1 I0SSOFT Soft error; the 1/0 system
has retried the operation
and failed; another retry is
not possible
2 I0SHARD Hard error; a retry is not
possible
3 IOSOPRINT Operator intervention is
required
4 TOSWRPROT Write-protected volume
actual the actual number of bytes transferred

The I/0 result segment contains other fields which are of interest only
to the designer of a device driver. These fields are not described in
this manual. For further information about the remaining fields of the
I/0 result segment, refer to the GUIDE TO WRITING DEVICE DRIVERS FOR THE
iRMX 86 I/0 SYSTEM.

UNIT STATUS FOR SPECIFIC DEVICES

You may need to know the information contained in the "unit$status” field
for the following devices.

iSBC 204 AND iSBC 206 CONTROLLERS

The iSBC 204 and 206 drivers place a controller-generated result byte in
the high eight bits of this word. For information about this byte, refer
to the hardware reference manual for the 1SBC 204 or 206 controller.

I/0 RESULT SEGMENT

iSBC 215 CONTROLLER

Under certain circumstances, the iSBC 215 Winchester disk controller
places information in the high twelve bits of this word. If the low four
bits indicate IO$SOFT, the controller sets the high twelve bits as
follows:

Bit Interpretation

15 (leftmost) l=geek error

14 l=cylinder address miscompare
13 l=drive fault
12 1=ID field ECC error
11 l=data field ECC error
10-8 unused
7 l=gector not found
6-4 unused

On the other hand, if the low four bits indicate IO$HARD, the iSBC 215
controller sets the high twelve bits as follows:

Bit Interpretation
15 l=invalid address
14 l=gector not found
13 1=invalid command
12 1l=no index
11 l=diagnostic fault
10 l=i1legal sector size
9 l=end of media
8 l=illegal format type
7 l=seek in progress
6 1=ROM error
5 1=RAM error
4 unused

If you need more detailed information regarding the
meanings of these errors, refer to the iSBC 215
WINCHESTER DISK CONTROLLER HARDWARE REFERENCE MANUAL.

iSBC 208 CONTROLLER

If the error is I0$SOFT (low four bits =1H), the next hex digit position
can be 0,1, or 2. That is, the value in the low byte of unit$status will
be Ol1H, 11H, or 21H. The upper byte of the unit$status word will indicate
the exact meaning of the error condition. The meanings are listed here.

I/0 RESULT SEGMENT

low byte high byte
bit meaning
01H 8,9 unit select
10 head select
11 not ready
12 equipment check
13 seek end
14,15

00 normal termination
01 abnormal termination
10 invalid command

11 ready state changed

11H 8 mnissing address mark
9 not writeable
10 no data, sector not found
12 over-run, DMA late
13 CRC error in ID field
15 end of cylinder

21H 8 missing data address mark
9 wrong cylinder in ID field
12 wrong cylinder in ID field
13 CRC error in data field
14 deleted data mark

If you need more detailed information regarding the meanings of these
errors, refer to the iSBC 208 FLEXIBLE DISK DRIVE CONTROLLER HARDWARE
REFERENCE MANUAL.

APPENDIX D. EXCEPTION CODES

This Appendix lists two types of exception codes. Those detected
synchronously with system call invocation (sequential codes) and those
detected during the asynchronous portion of system call processing
(concurrent codes). The sequential codes are returned to the location
addressed by the "excep$ptr” field of the system call. The concurrent
codes are returned in an I/0 result segment (see Appendix C). This
appendix lists all codes with theéir decimal and hexadecimal equivalents.

SYNCHRONOUS (ENVIRONMENTAL) EXCEPTION CODES

CODE DECIMAL HEXADECIMAL
E$SOK 0 OH
E$TIME 1 1H
ESMEM 2 21
ESLIMIT 4 4H
ESCONTEXT 5 5H
ESEXIST 6 6H
ESSTATE 7 7H
ENOTCONFIGURED 8 8H
ESFEXIST 32 20H
E$FNEXIST 33 214
E$SUPPORT 35 23H
ES$FACCESS 38 26H
ESFTYPE 39 274
E$SPACE 41 29H
ESDEVSOFFLINE 45 2DH

SEQUENTIAL (PROGRAMMER ERROR) EXCEPTION CODES

CODE DECIMAL HEXADECIMAL
E$ZEROSDIVIDE 32768 8000H
E$OVERFLOW 32769 8001H
ESTYPE 32770 8002H
E$PARAM 32772 8004H
E$BADSCALL 32773 8005H
ESIFDR 32800 8020H
ESNOUSER 32801 8021H
E$SNOPREFIX 32802 8022H

D-1

EXCEPTION CODES

CONCURRENT EXCEPTION CODES

CODE DECIMAL HEXADECIMAL
E$MEM 2 20
ESLIMIT 4 4H
E$CONTEXT 5 5H
E$FEXIST 32 208
E$FNEXIST 33 21H
E$DEVFD 34 224
E$SUPPORT 35 23H
ESEMPTYS$ENTRY 36 24H
ES$DIRSEND 37 25H
ES$FACCESS 38 26H
E$FTYPE 39 27H
E$SHARE 40 281
E$SPACE 41 29H
E$IDDR 42 2AH
ES$IO 43 2BH
ES$FLUSHING 44 2CH

D-2

APPENDIX E. LOGICAL DEVICES AND THE BASIC I/0 SYSTEM

You can assign a logical name to any device with the system programmer
call LOGICALSATTACHS$DEVICE. This creates a Logical Device object,
(TSLOGSDEV) and catalogs the object in the root object directory.

Typically, you will use these Logical Device objects with Extended I1/0
System calls. However, Basic I/O System calls also permit the prefix
parameter to be a Logical Device object. When you use a Logical Device
object as the prefix parameter in Basic I/0 System calls, you might
receive the exception code E$DEVSOFFLINE. If you receive this exception
code and the device is online, the device was never physically attached.

Before you can use a logically named device, the device must be made
known to the system (attached), with the Basic I/0 System call
ASPHYSICALSATTACHSDEVICE. But when LOGICALSATTACHSDEVICE is invoked, the
system does not immediately issue a call to A$PHYSICALSATTACHSDEVICE.
Instead, physical attachment occurs transparently during processing of
any Extended I/0 System call which references the Logical Device object.

You might create a logical device connection, but not invoke any Extended
I/0 System call to perform the physical attach operation. If so, the
Basic I/0 System will return E$DEVSOFFLINE. You can correct this
situation by invoking at least one Extended I/O System call which uses
the logical device.

For further information, refer to the descriptions of

LOGICALSATTACHSDEVICE and A$PHYSICALSATTACHSDEVICE in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL.

E-1

INDEX

Underscored entries are primary references.

access computation 5-9

access control 2-4

access list 5-8

access rights 5-8
asynchronous system calls 2-1, 4-1
ASATTACHSFILE 8-9
ASCHANGESACCESS 8-14

ASCLOSE 8-20
ASCREATESDIRECTORY 8-23
ASCREATESFILE 8-29
ASDELETESCONNECTION 8-36
ASDELETESFILE 8-39
ASGETSCONNECTIONSSTATUS 8-44
ASGETSDIRECTORYSENTRY 8-48
ASGETSEXTENSIONSDATA 8-52
ASGET$FILE$STATUS 8-53
ASGETS$PATHSCOMPONENT 8-60
ASOPEN 8-63
ASPHYSICALSATTACHSDEVICE 8-67
ASPHYSICALSDETACHSDEVICE 8-68
ASREAD 8-69

ASRENAMESFILE 8-73

ASSEEK 8-79
ASSETSEXTENSIONSDATA 8-82
AS$SPECIAL 8-83

ASTRUNCATE 8-90

ASWRITE 8-93

buffers 8-4
BYTE A-1

CREATE$USER 8-97
DELETESUSER 8-98

exception codes 8-5, D-2, and each system call in Chapter 8
-2, 5-3

connection 2-4, ,

data files 5-1

data types A-1l

default prefix 5-3
default user 5-7

device connections 3-3
device drivers 2-3
device independence 2-2
devices 2-2, 3-1

—

directory files 5-1

Index—-1

INDEX

file connections 3-3, 5-3
file pointer 3-4
file sharing 2-4
files 2-3, 3-2
fragmentation of 2-5
granularity 2-5
named files 2-3, 5-1
physical files 2-3, 6-1
stream files 2-3, 7-1
formats of volumes 6-1
fragmentation of files 2-5

GETSDEFAULT$PREFIX 8-99
GETSDEFAULTSUSER 8-101
GETSTIME 8-103
granularity of files 2-5
group 5-5

I/0 result segment C-1
INSPECTSUSER 8-104
INTEGER A-1

IORS C-1

Logical Devices E-1

named files 2-3, 5-1
access control 5-7
system calls for 5-11

object type codes B-1
OFFSET A-1

organization of manual 1-1
owner of a file 5-8

path 5-2, 5-3

path name 5-3

physical files 2-3, 6-1
POINTER A-1

prefix parameter 5-3, 8-1

response mailbox parameter 8-4

SET$DEFAULTSPREFIX 8-105
SETS$DEFAULTSUSER 8-107
SETSTIME 8-109

stream files 2-3, 7-1
STRING A-1

subpath parameter 5-3, 8-1
synchronous system calls 2-1
system call dictionary 8-6
system calls 8-1

system programmers 3-1, 8-1

Index-2

INDEX

temporary files 8-31
TOKEN A-1
type codes B-1

user 5-5

user object 5-6
user parameter 8-1
volumes 3-2

WORD A-1
World 5-6

Index—3

= @ iRMX 86™ Basic |/O System
In Reference Manual

9803123-04
REQUEST FOR READER’S COMMENTS

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE
TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITYy STATE_______ ZIP CODE

Please check here if you require a written reply. 0O

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intei Corporation.

| || " | NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.79 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

0.M.S. Technical Publications

intal
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	8-001
	8-002
	8-003
	8-004
	8-005
	8-006
	8-007
	8-008
	8-009
	8-010
	8-011
	8-012
	8-013
	8-014
	8-015
	8-016
	8-017
	8-018
	8-019
	8-020
	8-021
	8-022
	8-023
	8-024
	8-025
	8-026
	8-027
	8-028
	8-029
	8-030
	8-031
	8-032
	8-033
	8-034
	8-035
	8-036
	8-037
	8-038
	8-039
	8-040
	8-041
	8-042
	8-043
	8-044
	8-045
	8-046
	8-047
	8-048
	8-049
	8-050
	8-051
	8-052
	8-053
	8-054
	8-055
	8-056
	8-057
	8-058
	8-059
	8-060
	8-061
	8-062
	8-063
	8-064
	8-065
	8-066
	8-067
	8-068
	8-069
	8-070
	8-071
	8-072
	8-073
	8-074
	8-075
	8-076
	8-077
	8-078
	8-079
	8-080
	8-081
	8-082
	8-083
	8-084
	8-085
	8-086
	8-087
	8-088
	8-089
	8-090
	8-091
	8-092
	8-093
	8-094
	8-095
	8-096
	8-097
	8-098
	8-099
	8-100
	8-101
	8-102
	8-103
	8-104
	8-105
	8-106
	8-107
	8-108
	8-109
	8-110
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	I-01
	I-02
	I-03
	I-04
	replyA
	replyB
	xBack

