
iRMX 86™
·DISK VERIFICATION UTILITY

REFERENCE MANUAL

Order Number: 144133-001

Copyright © 1981, Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

REV. REVISION HISTORY PRINT
DATE

-001 Original Issue 11/81

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A yen ue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-1D4.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

RXP
CREDIT
i
ICE
iCS
im
Insite

Intel
Intel
Intelevision
Intellec
iRMX
iSBC
iSBX

ii

Library Manager
MCS
Megachassis
Micromainframe
Micromap
Multibus
Multimodule

Plug-A-Buggle
PROMPT
RMX/SO
System 2000

A495/1181/6K JAY

PREFACE

This manual documents the Disk Verification Utility, a software tool that
runs as a Human Interface command, verifying and modifying the data
structures of iRMX 86 named and physical volumes. The manual describes
the utility invocation and contains detailed descriptions of all utility
commands. Also, because users must be familiar with the structure of
iRMX 86 volumes in order to use the Disk Verification Utility
intelligently, the manual contains an appendix that describes the
structure of iRMX 86 named volumes.

READER LEVEL

This manual is intended for system programmers who have had experience in
examining actual volume information. It does not attempt to teach the
user the proper procedures for examining and editing volume information.

NOTATIONAL CONVENTIONS

This manual uses the following conventions to illustrate syntax.

UPPERCASE

lowercase

underscore

Uppercase information must be entered exactly as
shown. You can, however, enter this information in
uppercase or lowercase.

Lowercase fields contain variable information. You
must enter the appropriate value or symbol for
variable fields.

In examples of dialog at the terminal, user input
is underscored to distinguish it from system output.

Also, this manual uses the "railroad track" schematic to illustrate the
syntax of the disk verification commands. This syntax consists of what
looks like an aerial view of a model railroad setup, with syntactic
elements scattered along the track. To interpret the command syntax, you
start at the left side of the schematic, follow the track through all the
syntactic elements you desire (sharp turns and backing up are not
allowed), and exit at the right side of the schematic. The syntactic
elements that you encounter, separated by spaces, comprise a valid
command. For example, a command that consists of a command name and two
optional parameters would have the following schematic representation:

iii


~~~. 
param1 param2 

You could enter this command in any of the following forms: 

COMMAND 
COMMAND param1 
COMMAND param2 
COMMAND param1 param2 

The arrows indicate the possible flow through the tracks; they are 
omitted in the remainder of the manual. 

RELATED PUBLICATIONS 

The following manuals provide additional information that may be helpful 
to users of this manual. 

Manual Number 

iRMXnt 86 Human Interface Reference Manual 9803202 

iRMXnt 86 Nucleus Reference Manual 9803122 

iRMXnt 86 Basic I/O System Reference Manual 9803123 

iRMXnt 86 Loader Reference Manual 143318 

iRMXnt 86 Configuration Guide 9803126 

iRMXnt 86 Installation Guide 9803125 

iv 



CONTENTS 

CHAPTER 1 
INVOKING THE DISK VERIFICATION UTILITY 
Invocation ••••••••••••••••••••••••••••• 
Ou tpu t ...........................•................................. 
Invocation Error Messages •••••.•••••••••.•••••••••••••••..••••.•••• 

CHAPTER 2 
DISKVERIFY COMMANDS 
Command Names ••••••••••••••••••••••••••••• 
Parameters ••••••.•••••••••••••••••••••••••• 
Input Radices .................•.....•.....•..•..•.•................ 
Command Error Messages ••••••••••••••••••••••••••••••••••••••••••••• 
Connnand Dictionary ••••••••••••••••••••••••••••••••••••••••••••••••• 

ALLOCATE Command ••••••••••••••••••••••••••••••••••••••••••••••••• 
DISK Command ••••••••••••••••••••••••••••••••••••••••••••••••..••• 
DISPLAYBYTE Command •••••••••••••••••••••••••••••••••••••••••••••• 
DISPLAYDIRECTORY Command ••••••.••••••••••••.•••••.•••••••••.•.••• 
DISPLAYFNODE Command ••••••••••••••••••••••••••••••••••••••••••••• 
DISPLA'YWORD Comma.nd •••••••••••••••••••••••••••••••••••••••••••••• 
EXIT Comm.and ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
FREE Command ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
HELP Cornman d ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Miscellaneous Commands ••••••••••••••••••••••••••••••••••••••••••• 

ADD •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ADDRESS •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
BLOCK •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DEC •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DIV •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
HEX •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
MOD •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
MOL •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUB •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

(~UIT Command ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
READ Co mma. n d. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
SAVE Command ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBSTITUTEBYTE Command ••••••••••••••••••••••••••••••••••••••••••••• 
SUBSTITUTEWORD Comm.and ••••••••••••••••••••••••••••••••••••••••••••• 
VERIFY Command ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
WRITE Command •••••••••••••••••••••••••••••••••••••••••••••••••••••• 

APPENDIX A 
STRUCTURE OF iRMX 86 NAMED VOLUMES 
In traduction ...................................................... . 
Volume Labels •..••.•.••.••.•....••••••.•.•.•••••..•••••••.••.•••..• 

ISO Volume Label ••....••••..••..•••.•..•••......•...••...••••...• 
iRMX 86 Volume Label .•..•••••..••.•••.••••.••••.••..•....•.•....• 

Initial Files •••••••••••••••••••••••••••••••••••••••••••.•••••••••• 
Fnode File ••••••••••••••••••••••••••••••••••••••••••••••••••••.•• 

v 

PAGE 

1-2 
1-4 
1-4 

2-1 
2-1 
2-2 
2-2 
2-3 
2-5 
2-7 
2-9 
2-12 
2-14 
2-18 
2-21 
2-22 
2-24 
2-25 
2-25 
2-25 
2-26 
2-27 
2-27 
2-27 
2-28 
2-28 
2-29 
2-30 
2-31 
2-32 
2-34 
2-37 
2-40 
2-48 

A-I 
A-2 
A-2 
A-4 
A-8 
A-8 



CONTENTS (continued) 

APPENDIX A (continued) 
Fnode 0 (Fnode File) ••••••••••••••••••••••••••••••••••••••••••••• 
Fnode 1 (Volume Free Space Map File} ••••••••••••••••••••••••••••• 
Fnode 2 (Free Fnodes Map File) ••••• ~ ••••••••••••••••••••••••••••• 
Fnode 4 (Bad Blocks File) •••••••••••••••••••••••••••••••••••••••• 
Root Directory ••••••••••••••••••••••••••••••••••••••••••••••••••• 
Other Fnodes ..............•..•......•.........•..•.••.....•••..•. 

Long and Short Files •••••••••••••••••••••••• 
Short Files ••••••••••••••••••••••••••••••• 
Long Files ......................•................................ 

Flexible Diskette Formats ••••••••••••••• 
Example Volume- .•.......•.......•.....••......•.•.......•...•. 

ISO Vol ume La be 1. • . • • • • • • • • • • • • . • • • • • • • • • . • • • • • • • • . • • • • • • • . • 
iRt1X 86 Vo lume La be 1 ..•.......•••..••...........•..••.....•••...• 
Fnode File .......................•............................... 

Fnode 0 
Fnode 1 
Fnode 2 
Fnode 3 
Fnode 4 
Fnode 5 
Fnode 6 

{Fnode File) .....................•...•....•............ 
(Free Space 
(Free Fnode 
(Accounting 
(Bad Blocks 

Map) ••••••••••••••••••••••••••••••••••••••• 
Map) •••• 
File) ••• 
File) ..................................... . 

(Root Directory) •••••••••••• 
(Example File) •••••••••••••• 

Free Space Map File .........••....•.•.........•...•...•..•......• 
Free Fnodes Map File ••••••••••••••••••••••••••••••••••••••••••••• 
Root Directory ••••••••••••••••••••••••••••••••••••••••••••••••••• 

2-1. 
2-2. 
2-3. 
2-4. 
2-5. 
A-I. 
A-2. 
A-3. 

A-I. 
A-2. 

FIGURES 

DISPLAYBYTE Format ••••••••••••••••••••••••••••••••••••••••• 
DISPLAYWORD Format ••••••••••••••••••••••••••••••••••••••••• 
NAMEDI Verification Output ••••••••••••••••••••••••••••••••• 
NAMED2 Verification Output ••••••••••••••••••••••••••••••••• 
PHYSICAL Verification Output ••••••••••••••••••••••••••••••• 
General Structure of Named Volumes ••••••••••••••••••••••••• 
Short File Fnode ••••••••••••••••••••••••••••••••••••••••••• 
Long File Fnode •••••••••••••••••••••••••••••••••••••••••••• 

TABLES 

Eight-Inch Diskette Characteristics •••••••••••••••••••••••• 
5 1/4-Inch Disketee Characteristics •••••••••••••••••••••••• 

vi 

PAGE 

A-14 
A-14 
A-15 
A-15 
A-16 
A-16 
A-16 
A-17 
A-18 
A-20 
A-22 
A-22 
A-23 
A-24 
A-24 
A-25 
A-26 
A-27 
A-28 
A-29 
A-31 
A-32 
A-33 
A-33 

2-10 
2-19 
2-41 
2-42 
2-43 
A-I 
A-17 
A-19 

A-20 
A-21 



CHAPTER 1. INVOKING THE DISK VERIFICATION UTILITY 

In the process of using an iRMX 86 application system, you may have 
occasion to store data on secondary storage devices, sometimes large 
amounts of data. Due to the nature of secondary storage devices, 
unforseen circumstances such as power irregularities may destroy 
i.nformation on these devices, causing them to be inaccessable to your 
iRMX 86 system. In some cases, the loss of only a small amount of data 
can render an entire volume, such as a disk, useless. 

In such cases, it is desirable to have a mechanism to examine and modify 
the damaged volume. This mechanism would allow you to determine how much 
of the information on the volume was damaged. It would also allow you to 
recreate file structures on the damaged volume so that you could salvage 
some of the valid data. The iRMX 86 disk verification utility is a tool 
that allows you to perform these functions. 

The disk verification utility verifies the data structures of iRMX 86 
physical and named volumes. It can also be used to reconstruct the free 
fnodes map and the volume free space map of the volume and perform 
absolute editing. 

You can use the disk verification utility in one of two ways: 

• As a single command which verifies the structures of a volume and 
returns control to the Human Interface. 

• As an interactive program which allows you to check and modify 
information on the volume by entering individual disk 
verification commands. 

To take full advantage of the capabilities of the disk verification 
utility, you must be familiar with the structure of iRMX 86 named 
volumes. Appendix A contains detailed information about the volume 
structure. If you are unfamiliar with the iRMX 86 volume structure, you 
should avoid using the individual disk verification commands. When used 
carelessly, these commands can make your volumes unusable. 

However, even if you know nothing about iRMX 86 volume structures, you 
can still use the utility as a single command to verify that the data 
structures on an iRMX 86 volume are valid. 

1-1 



INVOKING THE DISK VERIFICATION UTILITY 

INVOCATION 

The format of the Human Interface command used to invoke the disk 
verification utility is as follows: 

where: 

:logical-name: 

TO 

OVER 

AFTER 

outpath 

Logical name of the secondary storage device 
containing the volume. 

Copies the output from the disk verification 
utility to the specified file. If no preposition 
is specified, TO :CO: is the default. 

Copies the output from the disk verification 
utility over the specified file. 

Appends the output from the disk verification 
utility to the end of the specified file. 

Pathname of the file to receive the output from the 
disk verification utility. If you omit this 
parameter and the TO/OVER/AFTER preposition, the 
utility copies the output to the console screen (TO 
:CO:). You cannot direct the output to a file on 
the volume being verified. If you attempt this, 
the utility returns an E$NOT_CONNECTION error 
message. 

1-2 



VERIFY or V 

NAMED1 or N1 

NAMED2 or N2 

NAMED or N 

PHYSICAL 

ALL 

INVOKING THE DISK VERIFICATION UTILITY 

Performs a verification of the volume. This 
verification function and the associated options 
are described in detail in the "VERIFY Command" 
section of Chapter 2. If you specify this 
parameter and omit the options, the utility 
performs the NAMED verification. 

If you specify this parameter, the utility performs 
the verification function and returns control to 
you at the Human Interface level. You can then 
enter any Human Interface command. 

If you omit this parameter, the utility displays a 
header message and the utility prompt (*). You can 
then enter any of the disk verification commands 
listed in Chapter 2. 

VERIFY option that applies to named volumes only. 
This option checks the fnodes of the volume to 
ensure that they match the directories in terms of 
file type and file heirarchy. This option also 
checks the information in each fnode to ensure that 
it is consistent. Refer to the description of the 
VERIFY command in Chapter 2 for more information. 

VERIFY option that applies to named volumes only. 
This option checks the allocation of fnodes on the 
volume, checks the allocation of space on the 
volume, and verifies that the fnodes point to the 
correct locations on the volume. Refer to the 
description of the VERIFY command in Chapter 2 for 
more information. 

VERIFY option that performs both the NAMED1 and 
NAMED2 verification functions on a named volume. 
If you omit the VERIFY option, NAMED is the default 
option. 

VERIFY option that applies to both named and 
physical volumes. This option reads all blocks on 
the volume and checks for I/O errors. 

VERIFY option that applies to both named and 
physical volumes. For named volumes, this option 
performs both the NAMED and PHYSICAL verification 
functions. For physical volumes, this option 
performs the PHYSICAL verification function. 

1-3 



INVOKING THE DISK VERIFICATION UTILITY 

OUTPUT 

When you enter the DISKVERIFY command, the utility responds by displaying 
the following line: 

iRMX 86 DISK VERIFY UTILITY, Vx.x 

where Vx.x is the version number of the utility. If you specify the 
VERIFY or V parameter in the DISKVERIFY command, the utility performs a 
verification of the volume and copies the verification information to the 
console (or to the file specified by the outpath parameter). The 
verification information is the same as that produced by the VERIFY 
utility command. Refer to the description of the VERIFY command in 
Chapter 2 for a description of the verification output. After generating 
the verification output, the utility returns control to the Human 
Interface, which prompts you for more Human Interface commands. The 
following is an example of such a DISKVERIFY command: 

-DISKVERIFY :F1: VERIFY NAMED2 
iRMX 86 DISK VERIFY UTILITY, Vx.x 
DEVICE NAME = F1 : DEVICE SIZE 0003E900 BLOCK SIZE 0080 

'NAMED2' VERIFICATION 

BIT MAPS O.K. 

However, if you omit the VERIFY (or V) parameter from the DISKVERIFY 
command, the utility does not return control to the Human Interface. 
Instead, it issues an asterisk (*) as a prompt and waits for you to enter 
individual DISKVERIFY commands. The following is an example of such a 
DISKVERIFY command: 

-DISKVERIFY :F1: 
iRMX 86 DISK VERIFY UTILITY, Vx.x 

* 
After you receive the asterisk prompt, you can enter any of the 
DISKVERIFY commands listed in the next section. If you enter anything 
else, the utility will display an error message. 

INVOCATION ERROR MESSAGES 

logical name, 0045 : E$LOG_NAME_NEXIST 

You specified a nonexistent logical.name in either the :logical name: 
parameter or the outpath parameter. 

8042 : E$NOT_CONNECTION 

You attempted to direct output to a file on the volume being verified. 

1-4 



INVOKING THE DISK VERIFICATION UTILITY 

command line error 

You made a syntax error when entering the command. 

device size inconsistent 
size in volume label = value1 : computed size value2 

When the disk verification utility computed the size of the volume, the 
size it computed did not match the information recorded in the iRMX 86 
volume label. It is likely that the volume label contains invalid or 
corrupted information. This error is not a fatal error, but it is an 
indication that further error conditions may result during the 
verification session. You may have to reformat the volume or use the 
disk verification utility to modify the volume label. 

logical name, illegal logical name 

The logical name you specified was not surrounded by colons (:). 

not a named disk 

You tried to perform a NAMED, NAMED 1 , or NAMED2 verification on a 
physical volume. 

verify-function argument error 

The VERIFY option you specified is not valid. 

1-5 





CHAPTER 2. DISKVERIFY COMMANDS 

When the disk verification utility issues the asterisk prompt, you can 
enter individual DISKVERIFY commands to examine or change the information 
on the volume. This process usually involves reading a portion of the 
volume into a buffer, modifying that buffer, and writing the information 
back to the volume. This chapter describes the commands that allow you 
to perform these operations. 

The commands in this chapter are presented in alphabetical order, without 
regard to function. Before describing the individual commands, this 
chapter discusses command names, parameters, input radices, and error 
lnessages. It also provides a command dictionary. 

COMMAND NAMES 

When you enter a DISKVERIFY command, you can enter the command name or 
command name abbreviation as listed in this chapter, or you can enter any 
portion of the command name that uniquely identifies the command from all 
other DISKVERIFY commands. 

For example, when specifying the DISPLAYFNODE command, you can enter the 
command name as: 

DISPLAYFNODE 
DF 
DISPLAYF 

or any other partial form of the word DISPLAYFNODE that contains at least 
the characters DISPLAYF. 

PARAMETERS 

Several DISKVERIFY commands have parameters which this chapter describes 
as being in the form: 

keyword = value 

Even though the individual command descriptions do not mention this, you 
can also enter these parameters in the form: 

keyword (value) 

2-1 



For example, the following are two acceptable ways of specifying a FREE 
command: 

FREE FNODE = 10 

FREE FNODE (10) 

INPUT RADICES 

DISKVERIFY always produces numerical output in hexadecimal format. 
However, when you provide input to DISKVERIFY, you can specify the radix 
of numerical quantities by including a radix character immediately after 
the number. The valid radix characters include: 

radix character example 

hexadecimal h or H l6h, 7CH 

decimal t or T 23t, lOOT 

octal 0, 0, q, or Q 270, 33Q 

If you omit the radix character, DISKVERIFY assumes the number is 
hexadecimal. 

COMMAND ERROR MESSAGES 

Each DISKVERIFY command can generate a number of error messages which 
indicate errors in the way you specified the command or problems with the 
volume itself. The messages for each command are listed with the command 
itself. However, the following messages can also occur with many of the 
commands (generally, whenever the utility reads from or writes to the 
volume): 

seek error 

The utility unsuccessfully attempted to seek to a location on the 
volume. This error normally results from invalid information in the iRMX 
86 volume label or in the fnodes. 

block I/O error 

The utility attempted to read or write a block on the volume and found 
that the 'block was physically flawed. Thus it cannot complete the 
requested command. 

2-2 



Also, when the disk verification utility begins processing, it obtains 
some information from the iRMX 86 volume label. If the label contains 
invalid information, the utility, in some cases, can assume that a named 
volume is a physical volume. If this occurs, the commands that apply to 
named volumes only (such as DISPLAYFNODE, DISPLAYDIRECTORY, and VERIFY 
NAMED) will issue the following message: 

not a named disk 

If you are convinced that your volume is indeed a named volume, this 
message may indicate that the iRMX 86 volume label is corrupted. 

2-3 



Command 

READ 

DISPLAYBYTE 

DISPLAYWORD 

SUBSTITUTEBYTE 

SUBSTITUTEWORD 

WRITE 

DISK 

DISPLAYFNODE 

DISPLAYDIRECTORY 

ALLOCATE 

FREE 

SAVE 

VERIFY 

HELP 

miscellaneous 
commands 

EXIT 

QUIT 

COMMAND DICTIONARY 

Synopsis 

Reads a volume block into the working 
buffer 

Displays the working buffer in byte 
format 

Displays the working buffer in word 
format 

Modifies the contents of the working 
buffer in byte format 

Modifies the contents of the working 
buffer in word format 

Page 

2-31 

2-9 

2-18 

2-34 

2-37 

Writes the working buffer to the volume 2-48 

Lists the attributes of the volume 

Displays fnode information 

Displays directory contents 

Marks a particular fnode or volume 
block as allocated 

Marks a particular fnode or volume 
block as free 

Writes the updated fnode and free 
space maps to the volume 

Verifies the volume 

Lists the DISKVERIFY commands 

Perform useful arithmetic and 
conversion functions; the commands 
include ADD, SUB, MUL, DIV, MOD, HEX, 
DEC, ADDRESS, and BLOCK. 

Exits the disk verification utility. 

Exits the disk verification utility. 

2-4 

2-7 

2-14 

2-12 

2-5 

2-22 

2-32 

2-40 

2-24 

2-25 

2-21 

2-30 



ALLOCATE COMMAND 

This command designates file descriptor nodes (fnodes) and volume blocks 
as allocated. The format of the ALLOCATE command is as follows: 

INPUT PARAMETERS 

ALLOCATE 

fnodenum Number of the fnode to allocate. This number can 
range from 0 through (max fnodes - 1), where max 
fnodes is the number of fnodes defined when the volume 
was originally formatted. 

blocknum 

OUTPUT 

Number of the volume block to allocate. This number 
can range from 0 through (max blocks - 1), where max 
blocks is the number of volume blocks in the volume. 

If you are using ALLOCATE to allocate fnodes, ALLOCATE displays the 
following message: 

fnodenum, fnode marked allocated 

where fnodenum is the number of the fnode that the utility designated as 
allocated. 

If you are using ALLOCATE to allocate volume blocks, ALLOCATE displays 
the following message: 

blocknum, block marked allocated 

where blocknum is the number of the volume block that the utility 
designated as allocated. 

ALLOCATE does not check the allocation status of fnodes or blocks before 
allocating them. Therefore, if you specify ALLOCATE for a block or fnode 
that is already allocated, ALLOCATE returns the same message as it would 
for a previously unallocated block or fnode. 

2-5 



ALLOCATE 

DESCRIPTION 

Fnodes are data structures on the volume that describe the files on the 
volume. They are created when the volume is formatted. An allocated 
fnode is one that represents an actual file. ALLOCATE designates fnodes 
as allocated by updating the FLAGS field of the fnode and free fnodes map 
file with this information. 

An allocated volume block is a block of data storage that is part of a 
file; it is not available to be assigned to a new file. ALLOCATE 
designates volume blocks as allocated by updating the volume free space 
map with this information. 

ERROR MESSAGES 

argument error 

You made a syntax error in the command or specified a nonnumeric 
character in the blocknum or fnodenum parameter. 

blocknum, block out of range 

The block number that you specified was larger than the largest block 
number in the volume. 

fnodenum, fnode out of range 

The fnode number that you specified was larger than the largest fnode 
number in the volume. 

2-6 



DISK COMMAND 

This command displays the attributes of the volume being verified. The 
format of this command is as follows: 

OUTPUT 

The output of the DISK command depends on whether the volume is formatted 
as a physical or named volume. For a physical volume, the DISK command 
displays the following information: 

Device name = devname 
Physical disk 

where: 

Device gran devgran 
Block size devgran 

No of blocks = numblocks 
Volume size size 

devname Name of the device containing the volume. This is the 
physical name of the device, as specified in the 
ATTACHDEVICE Human Interface command. 

devgran Granularity of the device, as defined in the device 
unit information block (DUIB) for the device. Refer 
to the iRMX 86 CONFIGURATION GUIDE for more 
information about DUIBs. For physical devices, this 
is also the volume block size. 

numblocks Number of volume blocks in the volume. 

size Size of the volume, in bytes. 

For a named volume, the DISK command displays the following information: 

Device name = devname 
Named disk, Volume name = volname 

Device gran = devgran 
Block size volgran 

No of blocks numblocks 
Volume size = 

No of fnodes 
size 
numfnodes 

2-7 

-



DISK 

OUTPUT (continued) 

The devname, devgran, numblocks, and size fields are the same as for 
physical files. The remaining fields are as follows: 

volname 

volgran 

numfnodes 

DESCRIPTION 

Name of the volume, as specified when the volume was 
formatted. Refer to Appendix A or to the description 
of the FORMAT command in the iRMX 86 HUMAN INTERFACE 
REFERENCE MANUAL for more information. 

Volume granularity, as specified when the volume was 
formatted. Refer to Appendix A or to the description 
of the FORMAT command in the iRMX 86 HUMAN INTERFACE 
REFERENCE MANUAL for more information. 

Number of fnodes in the volume. The fnodes were 
created when the volume was formatted. Refer to 
Appendix A or to the description of the FORMAT command 
in the iRMX 86 HUMAN INTERFACE REFERENCE MANUAL for 
more information. 

The DISK command displays the attributes of the volume. The format of 
the output from DISK depends on whether the volume is formatted as a 
named or physical volume. 

2-8 



DISPLA YBYTE 
I 

DISPLAYBYTE COMMAND 

This command displays the specified portion of the working buffer in byte 
format. It displays the buffer in 16-byte rows. The format of this 
command is as follows: 

INPUT PARAMETERS 

startoffset 

endoffset 

OUTPUT 

Number of the byte, relative to the start of the 
buffer, which begins the display. DISPLAYBYTE starts 
the display with the row containing the specified 
offset. If you omit this parameter, DISPLAYBYTE 
starts displaying from the beginning of the working 
buffer. 

Number of the byte, relative to the start of the 
buffer, which ends the display. If you omit this 
parameter, DISPLAYBYTE displays only the row indicated 
by startoffset. However, if you omit both startoffset 
and endoffset, DISPLAYBYTE displays the entire working 
buffer. 

In response to the command, DISPLAYBYTE displays the specified portion of 
the working buffer in rows, with 16 bytes displayed in each row. Figure 
2-1 illustrates the format of the display. 

As Figure 2-1 shows, DISPLAYBYTE begins by listing the block number of 
the data being displayed. It then lists the specified portion of the 
buffer, providing the column numbers as a header and beginning each row 
with the relative address of the first byte in the row. It also 
includes, at the right of the listing, the ASCII equivalents of the 
bytes, if the ASCII equivalents are printable characters. (If a byte is 
not a printable character, DISPLAYBYTE displays a period in the 
corresponding position.) 

2-9 



DISPLAYBYTE 

OUTPUT (continued) 

BLOCK NUMBER = blocknum 

offset 
0000 
0010 
0020 

o 1 234 5 6 7 8 9 ABC D E F 
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 

Figure 2-1. DISPLAYBYTE Format 

DESCRIPTION 

ASCII STRING 

After you read a volume block of memory into the working buffer with the 
READ command, you can display part or all of that memory, in byte format, 
by entering the DISPLAYBYTE command. DISPLAYBYTE displays the 
hexadecemal value for each byte in the specified portion of the buffer. 

If you omit all parameters, DISPLAYBYTE displays the entire block stored 
in the working buffer. 

ERROR MESSAGES 

argument error 

You made a syntax error in the command or specified a nonnumeric 
character in one of the offset parameters. 

invalid offset 

You either specified a larger value for startoffset than for endoffset or 
you specified an offset value that was larger than the number of bytes in 
the block. 

2-10 



DISPLAYBYTE 

EXAMPLES 

.Assuming that you have read block 20h into the working buffer with the 
READ command, the following command displays that block. 

*DISPLAYBYTE 

BLOCK NUMBER = 20 

offset 
0000 
0010 
0020 
0030 
0040 
0050 
0060 
0070 

* 

o 1 2 3 4 5 6 7 8 9 ABC D E F ASCII STRING 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 •••••••••••••••• 
00 00 08 00 00 00 00 00 00 00 01 00 OF FF FF 00 •••••••••••••••• 
00 00 00 00 00 05 00 00 00 00 25 00 08 01 FF FF •••••••••• % ••••• 
25 IF 00 00 2E 00 00 00 25 IF 00 00 2B 00 00 00 % ••••••• % ••• + ... 
01 00 00 00 01 00 80 00 00 00 00 00 00 00 00 00 •••••••••••••••• 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 •••••••••••••••• 
00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00 •••••••••••••••• 
00 00 00 00 01 00 OF FF FF 00 00 00 00 00 00 05 •••••••••••••••• 

The following command displays the portion of the block containing the 
offsets 31h through 45h. 

*D 31, 45 

BLOCK NUMBER = 20 

offset 0 1 2 3 4 5 6 7 8 9 ABC D E F ASCII STRING 
0030 25 IF 00 00 2E 00 00 00 25 IF 00 00 2B 00 00 00 % ••••••• % ••• + ••. 
0040 01 00 00 00 01 00 80 00 00 00 00 00 00 00 00 00 •••••••••••••••• 

* 

2-11 



DISPLA YDIRECTORY 

DISPLAYDIRECTORY COMMAND 

This command lists all the files contained in a directory. The format of 
the DISPLAYDIRECTORY command is as follows: 

INPUT PARAMETER 

fnodenum 

OUTPUT 

In response to the 
files contained in 
is as follows: 

Number of the fnode that corresponds to a directory 
file. This number can range from 0 through (max 
fnodes - 1), where max fnodes is the number of fnodes 
defined when the volume was originally formatted. 
DISPLAYDIRECTORY lists all files contained in this 
directory. 

command, DISPLAYDIRECTORY lists information about all 
the specified directory. The format of this display 

FILE NAME FNODE TYPE FILE NAME FNODE TYPE FILE NAME FNODE TYPE 

filenam fnode 
filenam fnode 

where: 

filenam 

fnode 

type 

type filenam fnode type filenam fnode type 
type filenam fnode type filenam fnode type 

Name of the file contained in the directory. 

Number of the fnode that describes the file. 

Type of the file, either DATA (for data files) or DIR 
(for directory files). 

2-12 



DISPLA YDIRECTORY 

DESCRIPTION 

DISPLAYDIRECTORY displays a list of files contained in the specified 
directory, along with their fnode numbers and types. With this 
information you can use other disk verification commands to examine the 
individual files. 

ERROR MESSAGES 

argument error 

You specified a nonnumeric character in the fnodenum parameter. 

not a named disk 

The volume you are verifying is not formatted as a named volume. Thus 
there are no directories to display. 

fnodenum, fnode not a directory 

The number you specified for the fnodenum parameter is not an fnode for a 
directory file. 

fnodenum, fnode out of range 

The number you specified for the fnodenum parameter is larger than the 
largest fnode number on the volume. 

EXAMPLE 

The following command lists the files contained in the directory whose 
fnode is fnode S. 

*DISPLAYDIRECTORY 5 

FILE NAME FNODE TYPE FILE NAME FNODE TYPE FILE NAME FNODE TYPE 

change.p86 
PLACES 

* 

0006 DATA 
0009 DIR 

samp. txt 
change.plm 

2-13 

0007 DATA 
OOOA DATA 

NAMES 0008 DIR 



DISPLAYFNODE COMMAND 

This command displays the fields associated with an fnode. The format of 
the DISPLAYFNODE command is as follows: 

INPUT PARAMETER 

fnodenum Number of the fnode to be displayed. This number can 
range from 0 through (max fnodes - 1), where max 
fnodes is the number of fnodes defined when the volume 
was originally formatted. 

OUTPUT 

In response to this command, DISPLAYFNODE displays the fields of the 
specified fnode. The format of the display is as follows: 

Fnode number fnodenum 
flags 

type 
file gran/vol gran 

owner 
create,access,mod times 

total size 
total blks 
pointer(1) 
pointer(2) 
pointer(3) 
pointer(4) 
pointer(5) 
pointer(6) 
pointer(7) 
pointer(8) 
this size 
id count 

accessor(1) 
accessor(2) 
accessor(3) 

parent 
aux(*) 

fIgs 
typ 
gran 
own 
crtime, acctime, modtime 
totsize 
totblks 
blks, blkptr 
blks, blkptr 
blks, blkptr 
blks, blkptr 
blks, blkptr 
blks, blkptr 
blks, blkptr 
blks, blkptr 
this size 
count 
access, id 
acces.s, id 
access, id 
prnt 
auxbytes 

2-14 



OUTPUT (continued) 

where: 

fnodenum 

fIgs 

typ 

gran 

own 

DISPLA YFNODE 

Number of the fnode being displayed. If the fnode 
does not describe an actual file (that is, if it is 
not allocated), the following message appears next to 
this field: 

*** ALLOCATION STATUS BIT IN THIS FNODE NOT SET *** 

In this case, the fnode fields are normally set to 
zero. 

A word defining the attributes of the file. 
Significant bits of this word are: 

bit Meaning 

o Allocation status. This bit is set to 
1 for allocated fnodes and set to 0 for 
free fnodes. 

1 

5 

6 

Long or short file attribute. This bit 
is set to 1 for long files and set to 0 
for short files. 

Modification attribute. This bit is 
set to 1 whenever a file is modified. 

Deletion attribute. This bit is set to 
1 to indicate a temporary file or a 
file that is going to be deleted. 

The DISPLAYFNODE command displays a message next to 
this field to indicate whether the file is a long or 
short file. 

Type of file. This field contains a value and a 
message. The possible values and messages are: 

value message 

00 fnode file 
01 volume map file 
02 fnode map file 
03 account file 
04 bad block file 
06 directory file 
08 data file 

File granularity, specified as a mUltiple of the 
volume granularity. 

User ID of the owner of the file. 

2-15 



DISPLA YFNODE 

OUTPUT (continued) 

crtime 
acctime 
mod time 

totsize 

totblks 

blks, blkptr 

thissize 

count 

access, id 

prnt 

auxbytes 

Time and date of file creation, last access, and last 
modification. These values are expressed as the 
number of seconds since January 1, 1978. 

Total size, in bytes, of the actual data in the file. 

Total number of volume blocks used by the file, 
including indirect block overhead. 

Values which identify the data blocks of the file. For 
short files, each blks parameter indicates the number 
of volume blocks in the data block and each blkptr is 
the number of the first such volume block. For long 
files, each blks parameter indicates the number of 
volume blocks pointed to by an indirect block and each 
blkptr is the block number of the indirect block. 

Size in bytes of the total data space allocated to the 
file, minus any space used for indirect blocks. 

Number of user IDs associated with the file. 

Each pair of fields indicate the access rights for the 
file (access) and the ID of the user who gains access 
(id). Bits in the access field are set to indicate the 
following access rights: 

data file directory 
bit operation operation 

0 delete delete 
1 read display 
2 append add entry 
3 update change entry 

The first ID listed is the owning user's ID. 

Fnode number of the directory file which contains the 
file. 

Auxiliary bytes associated with the file. 

Appendix A contains a more detailed description of the fnode fields. 

DESCRIPTION 

Fnodes are data structures on the volume that describe the files on the 
volume. The fnode structures are created when the volume is formatted. 
Each time a file is created on the volume, the iRMX 86 Operating System 
allocates an fnode for the file and fills in the fnode fields to describe 
the file. The DISPLAYFNODE command allows you to examine these fnodes 
and determine where the data for each file resides. 

2-16 



DISPLA YFNODE 

ERROR MESSAGES 

argument error 

You entered a value for the fnodenum parameter that was not a legitimate 
fnode number. 

not a named disk 

The volume you are verifying is not formatted as a named volume. Thus 
there are no fnodes to display. 

fnodenum, fnode out of range 

The number you specified for the fnodenum parameter is larger than the 
largest fnode number on the volume. 

EXAMPLE 

The following example displays fnode 6 of a volume. 

*DISPLAYFNODE 6 

Fnode number = 6 
flags 0025 =) short file 

type 08 =) data file 
file gran/vol gran 01 

owner FFFF =) world 
create,access,mod times 00000017, 00000158, 00000018 

total size 000003C1 
total blks 00000008 
pointer(l) 0008, 000050 
pointer(2) 0000, 000000 
pointer(3) 0000, 000000 
pointer(4) 0000, 000000 
pointer(5) 0000, 000000 
pointer( 6) 0000, 000000 
pointer(7) 0000, 000000 
pointer(8) 0000, 000000 
this size 00000400 
id count 0001 

accessor(l) OF, FFFF 
accessor(2) 00, 0000 
accessor(3) 00, 0000 

parent 0005 
aux(*) 000000 

* 

2-17 



DISPLA YWORD 

DISPLAYWORD COMMAND 

This command displays the specified portion of the working buffer in word 
format. It displays the buffer in 8-word rows. The format of this 
command is as follows: 

INPUT PARAMETERS 

startoffset 

endoffset 

OUTPUT 

Number of the byte, relative to the start of the 
buffer, which begins the display. DISPLA~~ORD starts 
the display with the row containing the specified 
offset. If you omit this parameter, DISPLAYWORD 
starts displaying from the beginning of the working 
buffer. 

Number of the byte, relative to the start of the 
buffer, which ends the display. If you omit this 
parameter, DISPLAYWORD displays only the row indicated 
by startoffset. However, if you omit both startoffset 
and endoffset, DISPLAYWORD displays the entire working 
buffer. 

In response to the command, DISPLAYWORD displays the specified portion of 
the working buffer in rows, with 8 words displayed in each row. Figure 
2-2 illustrates the format of the display. 

As Figure 2-2 shows, DISPLAYWORD begins by listing the block number of 
the data being displayed. It then lists the specified portion of the 
buffer, providing the column numbers as a header and beginning each row 
with the relative address of the first word in the row. 

2-18 



OUTPUT (continued) 

BLOCK NUMBER blocknum 

offset 
0000 
0010 
0020 

a 
0100 
0000 
FFFF 

DESCRIPTION 

2 
0302 
0000 
FFFF 

4 
0504 
0000 
FFFF 

6 
0706 
0000 
FFFF 

8 
0908 
0000 
FFFF 

A 
OBOA 
0000 
FFFF 

C 
ODOC 
0000 
FFFF 

E 
OFOE 
0000 
FFFF 

Figure 2-2. DISPLAYWORD Format 

DISPLA YWORD 

After you read a block of memory into the working buffer with the READ 
command, you can display part or all of that memory, in word format, by 
entering the DISPLAYWORD command. DISPLAYWORD displays the hexadecemal 
value for each word in the specified portion of the buffer. 

If you omit all parameters, DISPLAYWORD displays the entire block stored 
in the working buffer. 

ERROR MESSAGES 

argument error 

You made a syntax error in the command or specified a nonnumeric 
character in one of the offset parameters. 

invalid offset 

You either specified a larger value for startoffset than for endoffset or 
you specified an offset value that was larger than the number of bytes in 
the block. 

2-19 



DISPLA YWORD 

EXAMPLES 

Assuming that you have read block 20h into the working buffer with the 
READ command, the following command displays that block in word format. 

*DISPLAYWORD 

BLOCK NUMBER = 20 

offset a 2 4 6 8 A C E 
0000 0000 0000 0000 0000 0000 0000 0000 0000 
0010 0000 0080 0000 0000 0000 0001 FFOF OOFF 
0020 0000 0000 0500 0000 0000 0025 0108 FFFF 
0030 1F25 0000 002E 0000 1F25 0000 002B 0000 
0040 0001 0000 0001 0080 0000 0000 0000 0000 
0050 0000 0000 0000 0000 0000 0000 0000 0000 
0060 0000 0000 0000 0000 0000 0000 0080 0000 
0070 0000 0000 0001 FFOF GOFF 0000 0000 0500 

* 

The following command displays the portion of the block that contains the 
offsets 31h through 45h (words beginning at odd addresses). 

*DW 31, 45 

BLOCK NUMBER = 20 

offset a 2 4 6 8 A C E 
0031 001F 2EOO 0000 2500 001F 2BOO 0000 0100 
0041 0000 0100 8000 0000 0000 0000 0000 0000 

* 

The following command displays the portion of the block that contains the 
offsets 30h through 45h (words beginning at even addresses). 

*DISPLAYWORD 30 2 45 

BLOCK NUMBER = 20 

offset a 2 4 6 8 A C E 
0030 1F25 0000 002E 0000 1F25 0000 002B 0000 
0040 0001 0000 0001 0080 0000 0000 0000 0000 

* 

2-20 



EXIT COMMAND 

This command exits the disk verification utility and returns control to 
the Human Interface command level. The format of the EXIT command is as 
follows: 

This command is identical to the QUIT command. 

2-21 

-



FREE 

FREE COMMAND 

This command designates fnodes and volume blocks as free (unallocated). 
The format of the FREE command is as follows: 

INPUT PARAMETERS 

fnodenum 

blocknum 

OUTPUT 

Number of the fnode to free. This number can range 
from 0 through (max fnodes - 1), where max fnodes is 
the number of fnodes defined when the volume was 
originally formatted. 

Number of the volume block to free. This number can 
range from 0 through (max blocks - 1), where max 
blocks is the number of volume blocks in the volume. 

If you are using FREE to deallocate fnodes, FREE displays the following 
message: 

fnodenum, fnode marked free 

where fnodenum is the number of the fnode that the utility designated as 
free. 

If you are using FREE to deallocate volume blocks, FREE displays the 
following message: 

blocknum, block marked free 

where blocknum is the number of the volume block that the utility 
designated as free. 

FREE does not check the allocation status of fnodes or blocks before 
freeing them. Therefore, if you specify FREE for a block or fnode that 
is not allocated, FREE returns the same message as it would for a 
previously allocated block or fnode. 

2-22 



DESCRIPTION 

Free fnodes are fnodes for which no actual files exist. FREE designates 
fnodes as free by updating both the FLAGS field of the fnode and the free 
fnodes map file. 

Free volume blocks are blocks that are not part of any file; they are 
available to be assigned to any new or current file. FREE designates 
volume blocks as free by updating the volume free space map. 

ERROR MESSAGES 

argument error 

You made a syntax error in the command or specified a nonnumeric 
character in the blocknum or fnodenum parameter. 

blocknum, block out of range 

The block number that you specified was larger than the largest block 
number in the volume. 

fnodenum, fnode out of range 

The fnode number that you specified was larger than the largest fnode 
number in the volume. 

2-23 

FREE 



HELP COMMAND 

This command lists all available DISKVERIFY commands and provides a short 
description of each command. The format of this command is: 

OUTPUT 

In response to this command, HELP displays the following information: 

read 
display byte 
display word 

substitute byte 
substitute word 

write 
verify 

save 
allocate/free 

disk 
exit/quit 

display directory 
display fnode 

miscellaneous commands 
i. address 

ii. block 
iii. hex 
iv. dec 
v. add 

vi. sub 
vii. mul 

viii. div 
ix. mod 

read a disk block into the buffer 
display the buffer (byte format) 
display the buffer (word format) 
modify the buffer (byte format) 
modify the buffer (word format) 
write to the disk block from the buffer 
verify the disk 
save free fnodes and space maps 
allocate/free an fnode or disk block 
display disk attributes 
quit disk verify 
display the directory contents 
display fnode information 

convert block number to absolute address 
convert absolute address to block number 
display nu;mber as hexadecimal num;ber 
display number as decimal number 
add two 16-bit numbers 
subtract a 16-bit nu;ber from a 32-bit number 
mUltiply two 16-bit numbers 
divide a 32-bit number by a 16-bit number 
32-bit number MODULO 16-bit number 

2-24 



MISCELLANEOUS COMMANDS 

MISCELLANEOUS COMMANDS 

The following commands provide you with the ability to perform arithmetic 
and conversion operations within the disk verification utility. The 
commands perform the operations on unsigned numbers only and do not 
report any overflow conditions. 

ADD 

This command adds two numbers together. Its format is: 

where: 

arg1 and 
arg2 

Numbers which the command adds together. 

In response, the command displays the unsigned sum of the two numbers in 
both hexadecimal and decimal format. 

ADDRESS 

All memory in a volume is divided into volume blocks, which are areas of 
memory the same size as the volume granularity. Volume blocks are 
numbered sequentially in the volume, starting with the block containing 
the smallest addresses (block 0). The ADDRESS command converts a block 
number into an absolute address on the volume, so that you don't have to 
perform this conversion by hand. The format of this command is: 

where: 

blocknum Volume block number which ADDRESS converts into an 
absolute address. This parameter can range from 0 
through (max blocks - 1), where max blocks is the 
number of volume blocks in the volume. 

2-25 



MISCELLANEOUS COMMANDS 

ADDRESS (continued) 

In response, ADDRESS displays the following information: 

absolute address = addr 

where: 

addr 

BLOCK 

Absolute address (in hexadecimal) that corresponds to 
the specified block number. This address represents 
the number of the byte that begins the block and can 
range from 0 through (volume size - 1), where volume 
size is the size, in bytes, of the volume. 

The BLOCK command is the inverse of the address command. It converts a 
32-bit absolute address into a volume block number, so that you don't 
have to perform this conversion by hand. The format of this command is: 

where: 

address Absolute address, which BLOCK converts into a block 
number. This parameter can range from 0 through 
(volume size - 1), where volume size is the size, in 
bytes, of the volume. 

In response, BLOCK displays the following information: 

block number = blocknum 

where: 

blocknum Number of the volume block that contains the specified 
absolute address. The BLOCK command determines this 
value by dividing the absolute address by the volume 
block size and truncating the result. 

2-26 



MISCELLANEOUS COMMANDS 

DEC 

This command finds the decimal equivalent of a number. Its format is: 

w'here: 

arg Number for which the command finds the decimal 
equivalent. 

In response, the command displays the decimal equivalent of the specified 
number. 

DIV 

This command divides one number by another. Its format is: 

where: 

argl and 
arg2 

Numbers on which the command operates. It divides 
argl by arg2. 

In response, the command displays the unsigned, integer quotient in both 
hexadecimal and decimal format. 

HEX 

This command finds the hexadecimal equivalent of a number. Its format is: 

2-27 



MISCELLANEOUS COMMANDS 

HEX (continued) 

where: 

arg Number for which the command finds the hexadecimal 
equivalent. 

In response, the command displays equivalent of the specified number. 

MOD 

This command finds the remainder of one number divided by another. Its 
format is: 

where: 

argl and 
arg2 

Numbers on which the command operates. It performs 
the operation argl modulo arg2. 

In response, the command displays the value argl modulo arg2 in both 
hexadecimal and decimal format. 

MUL 

This command multiplies two numbers together. Its format is: 

where: 

argl and 
arg2 

Numbers which the command multiplies together. 

In response, the command displays the unsigned product of the two numbers 
in both hexadecimal and decimal format. 

2-28 



MISCELLANEOUS COMMANDS 

SUB 

This command subtracts one number from another. Its format is: 

where: 

argl and 
arg2 

Numbers on which the command operates. The command 
subtracts arg2 from argl. 

In response, the command displays the unsigned difference in both 
hexadecimal and decimal format. 

ERROR MESSAGES 

argument error 

You made a syntax error in the command, specified a nonnumeric value for 
one of the arguments, or specified a value for a block number parameter 
that was not a valid block number. 

block number out of range 

If the command was an ADDRESS command, the block number you entered was 
greater than the number of blocks in the volume. If the command was a 
BLOCK command, BLOCK converted the address to a volume block number, but 
the block number was greater than the number of blocks in the volume. 

EXAMPLES 

*MUL 134T, 13T 
6CE ( 1742T) 

*+ 8, 4 
OC ( 12T) 

*SUB 8884, 256 
862E (3435OT) 
*MOD 1225, 256T 

25 ( 37T) 
*HEX 155T 

9B 
*ADDRESS 15 
absolute address = OA80 

* 
*BLOCK 2236 

block number 44 

2-29 



.. 
QUIT COMMAND 

This command exits the disk verification utility and returns control to 
the Human Interface command level. The format of the QUIT command is as 
follows: 

This command is identical to the EXIT command. 

2-30 



READ COMMAND 

This command reads a volume block from the disk into the working buffer. 
The format of the READ command is: 

INPUT PARAMETER 

blocknum 

OUTPUT 

Number of the volume block to read. This number can 
range from 0 through (max blocks - 1), where max 
blocks is the number of volume blocks in the volume. 

In response to the command, READ reads the block into the working buffer 
and displays the following message: 

read block number: blocknum 

where blocknum is the number of the block. 

DESCRIPTION 

The READ command copies a specified volume block from the volume to the 
working buffer. It destroys any data currently in the working buffer. 
Once the block is in the working buffer, you can use DISPLAYBYTE and 
DISPLAYWORD to display the block and you can use SUBSTITUTEBYTE and 
SUBSTITUTEWORD to change the data in the block. Finally, you can use the 
WRITE command to write the modified block back out to the volume. 

ERROR MESSAGES 

argument error 

You specified a nonnumeric character in the blocknum parameter. 

blocknum, block out of range 

The block number that you specified was larger than the largest block 
number in the volume. 

2-31 

--



SAVE 

SAVE COMMAND 

This command writes the reconstructed free fnodes map and volume free 
space map to the volume being verified. (The NAMED2 option of the VERIFY 
command originally created the reconstructed maps.) The format of the 
SAVE command is: 

OUTPUT 

In response to this command, SAVE displays the following messag~: 

save fnode map? 

If you want to write the reconstructed free fnodes map to the volume, 
enter Y or YES. Otherwise, enter any other character or a carriage 
return alone. If you enter YES, SAVE writes the free fnodes map to the 
volume and displays the following message: 

free fnode map saved 

In any case, SAVE next displays the following message: 

save space map? 

If you want to write the reconstructed free space map to the volume, 
enter Y or YES. Otherwise, enter any other character or a carriage 
return alone. If you enter YES, SAVE writes the volume free space map to 
the volume and displays the following message: 

free space map saved 

DESCRIPTION 

Whenever you perform a VERIFY function with the NAMED2 option (refer to 
the description of the VERIFY command for more information), VERIFY 
creates its own free fnodes map and volume free space map. It does this 
by examining all directories and fnodes on the volume, not by copying the 
maps that exist on the volume. To create the free fnodes map, it 
examines every directory on the volume to determine which fnodes 
represent actual files. To create the volume free space map, it examines 
the POINTER(n) fields of the fnodes to determine which volume blocks the 
files use. 

2-32 



DESCRIPTION (continued) 

VERIFY then compares the newly created maps with the maps that exist on 
the volume. If a discrepancy exists, VERIFY displays a message to 
indicate the discrepancy. 

The SAVE command takes the free fnodes map and the volume free space map 
created during the VERIFY operation and writes them to the volume, 
replacing the maps that currently exist. 

ERROR MESSAGES 

not a named disk 

The volume being verified is not a named volume. Free fnode maps and 
volume free space maps exist only on named volumes. 

nothing to save 

You did not enter the VERIFY command with the NAMED2, NAMED, or ALL 
options prior to entering the SAVE command. Thus SAVE has no free fnode 
Inap and volume free space map with which to r~place those that exist on 
the volume. 

EXAMPLE 

The following example illustrates the format of the SAVE command. 

*SAVE 
save fnode map? ~ 
save space map? ~ 

free space map saved 

* 

2-33 

SAVE 



SUBSTITUTE BYTE 

SUBSTITUTE BYTE COMMAND 

This command allows you to interactively change the contents of the 
working buffer (in byte format). The format of the SUBSTITUTEBYTE 
command is: 

INPUT PARAMETER 

offset Number of the byte, relative to the start of the 
working buffer, which the command can change in 
response to user input. This number can range from 0 
to (block size - 1), where block size is the size of a 
volume block (and thus the size of the working 
buffer). If you omit this parameter, the command 
assumes a value of O. 

OUTPUT 

In response to the command, SUBSTITUTEBYTE displays the specified byte 
and waits for you to enter a new value. This display appears as: 

offset: val -

where offset is the number of the byte, relative to the start of the 
buffer, and val is the current value of the byte. At this point, you can 
enter one of the following: 

• A value followed by a carriage return. This causes 
SUBSTITUTEBYTE to substitute the new value for the current 
byte. If the value you enter requires more than one byte of 
storage, SUBSTITUTEBYTE uses only the low-order byte of the 
value. SUBSTITUTEBYTE then displays the next byte in the buffer 
and waits for your further response. 

• A carriage return alone. This causes SUBSTITUTEBYTE to leave 
the current value as is and display the next byte in the 
buffer. It then waits for your response. 

2-34 



SUBSTITUTE BYTE 

OUTPUT (continued) 

• A value followed by a period (.) and a carriage return. This 
causes SUBSTITUTEBYTE to substitute the new value for the 
current byte. It then exits from the SUBSTITUTEBYTE command and 
gives you the asterisk (*) prompt, permitting you to enter any 
DISKVERIFY command. 

• A period (.) followed by a carriage return. This exits the 
SUBSTITUTEBYTE command and gives you the asterisk (*) prompt, 
permitting you to enter any DISKVERIFY command. 

DESCRIPTION 

The SUBSTITUTEBYTE command gives you the ability to interactively change 
bytes in the working buffer. Once you enter the command, SUBSTITUTEBYTE 
displays the offset and the value of the first byte. You can change the 
byte by entering a new byte value, or you can leave the byte as is by 
entering a carriage return only. The command then displays the next byte 
i.n the buffer. In this manner, you can consecutively step through the 
buffer, changing whatever bytes are appropriate. When you finish 
changing the buffer, you can enter a period followed by a carriage return 
to exit the command. 

The SUBSTITUTEBYTE command considers the working buffer to be a circular 
buffer. That is, entering a carriage return when you are positioned at 
the last byte of the buffer causes SUBSTITUTEBYTE to display the first 
byte of the buffer. 

The SUBSTITUTEBYTE command changes only the values in the working 
buffer. To make the changes in the volume, you must enter the WRITE 
command to write the working buffer back to the volume. 

ERROR MESSAGES 

argument error 

You specified a nonnumeric character in the offset parameter. 

invalid offset 

You specified an offset value that was larger than the number of bytes in 
the block. 

2-35 



SUBSTITUTE BYTE 

EXAMPLE 

This example changes several bytes in two portions of the working 
buffer. Two SUBSTITUTEBYTE commands are used. Carriage returns are 
denoted by a <cr> to aid your understanding of this example. 

*SUBSTITUTEBYTE<cr> 

0000: AO - OO<cr> 
0001: 80 - <cr> 
0002: E5 - <cr> 
0003: FF - 3I<Cr> 
0004: FF - .<cr> 

*SUBSTITUTEBYTE 40<cr> 

0040: 00 - E6<cr> 
0041: 00 - E6<cr> 
0042: 00 - .<cr> 

* 

2-36 



SUBSTITUTEWORD 

SUBSTITUTEWORD COMMAND 

This command allows you to interactively change the contents of the 
working buffer (in word format). The format of the SUBSTITUTEWORD 
eommand is: 

INPUT PARAMETER 

offset Number of the byte, relative to the start of the 
working buffer, which the command can change in 
response to user input. This number can range from 0 
to (block size - 1), where block size is the size of a 
volume block (and thus the size of the working 
buffer). If you omit this parameter, the command 
assumes a value of O. 

OUTPUT 

In response to the command, SUBSTITUTEWORD displays the word beginning at 
the specified byte and waits for you to enter a new value. This display 
appears as: 

offset: val -

where offset is the number of the byte which begins the word, relative to 
the start of the buffer, and val is the current value of the word. At 
this point, you can enter one of the following: 

• A value followed by a carriage return. This causes 
SUBSTITUTEWORD to substitute the new value for the current 
word. If the value you enter requires more than one word of 
storage, SUBSTITUTEWORD uses only the low-order word of the 
value. SUBSTITUTEWORD then displays the next word in the buffer 
and waits for your further response. 

• A carriage return alone. This causes SUBSTITUTEWORD to leave 
the current value as is and display the next word in the 
buffer. It then waits for your response. 

• A value followed by a period (.) and a carriage return. This 
causes SUBSTITUTEWORD to substitute the new value for the 
current byte. It then exits from the SUBSTITUTEWORD command and 
gives you the asterisk (*) prompt, permitting you to enter any 
DISKVERIFY command. 

2-37 



SUBSTITUTEWORD 

OUTPUT (continued) 

• A period (.) followed by a carriage return. This exits the 
SUBSTITUTEWORD command and gives you the asterisk (*) prompt, 
permitting you to enter any DISKVERIFY command. 

DESCRIPTION 

The SUBSTITUTEWORD command is exactly like the SUBSTITUTEBYTE command 
except that it allows you to interactively modify words instead of 
bytes. Once you enter the command, SUBSTITUTEWORD displays the offset 
and the value of the first word. You can change the word by entering a 
new word value, or you can leave the word as is by entering a carriage 
return only. The command then displays the next word in the buffer. In 
this manner, you can consecutively step through the buffer, changing 
whatever words are appropriate. When you finish changing the buffer, you 
can enter a period followed by a carriage return to exit the command. 

The SUBSTITUTEWORD command considers the working buffer to be a circular 
buffer. That is, entering a carriage return when you are positioned at 
the last byte of the buffer causes SUBSTITUTEWORD to display the first 
byte of the buffer. 

The SUBSTITUTEWORD command changes only the values in the working 
buffer. To make the changes in the volume, you must enter the WRITE 
command to write the working buffer back to the volume. 

ERROR MESSAGES 

argument error 

You specified a nonnumeric character in the offset parameter. 

invalid offset 

You specified an offset value that was larger than the number of bytes in 
the block. 

EXAMPLE 

This example changes several bytes in two areas of the working buffer. 
Two SUBSTITUTEWORD commands are used. Carriage returns are denoted by a 
<cr> to aid your understanding of this example. 

2-38 



EXAMPLE (continued) 

*SUBSTITUTEWORD<cr> 

0000: AOBO - OOOO<cr> 
0002: 8070 - <cr> 
0004: E511 - <cr> 
0006: FFFF - 3III<cr> 
0008: FFFF - .<cr> 

*SUBSTITUTEWORD 35<cr> 

0035: 0000 - E6FF<cr> 
0037: 0000 - E6AB<cr> 
0039: 0000 - .<cr> 

* 

SUBSTITUTEWORD 

2-39 



VERIFY COMMAND 

This command checks the structures on the volume to determine whether the 
volume is properly formatted. The format of the VERIFY command is: 

INPUT p~mTERS 

NAMEDl or Nl 

NAMED2 or N2 

VERIFY 

Checks named volumes to ensure that the information 
recorded in the fnodes is consistent and matches the 
information obtained from the directories themselves. 
VERIFY performs the following operations during a 
NAMEDl verification: 

• Checks fnode numbers in the directories to see if 
they correspond to allocated fnodes. 

• Checks the parent fnode numbers recorded in the 
fnodes to see if they match with the information 
recorded in the directories. 

• Checks the fnodes against the files to determine 
if the fnodes specify the proper file type. 

• Checks the POINTER(n) structures of long files to 
see if the indirect blocks accurately reflect the 
number of blocks used by the file. 

• Checks each fnode to see if the TOTAL SIZE, TOTAL 
BLKS, and THIS SIZE fields are consistent. 

Checks named volumes to ensure that the information 
recorded in the free fnodes map and the volume free 
space map matches the actual files and fnodes. VERIFY 
performs the following operations during a NAMED2 
verification: 

2-40 



INPUT PARAMETERS (continued) 

• Creates a free fnodes map by examining every 
directory in the volume. It then compares that free 
fnodes map with the one already on the volume. 

• Creates a free space map by examining the information 
in the fnodes. It then compares that free space map 
with the one already on the volume. 

• Checks to see if the block numbers recorded in the 
fnodes and the indirect blocks actually exist. 

• Checks to see if two or more files use the same 
volume block. 

• Checks to see if two or more files use the same fnode. 

NAMED or N Performs both the NAMED1 and NAMED2 operations on a 
named volume. If you omit the parameter from the VERIFY 
command, NAMED is the default parameter. 

PHYSICAL Reads all blocks on the volume and checks for I/O 
errors. This parameter applies to both named and 
physical volumes. 

ALL Performs all operations appropriate to the volume. For 
named volumes, this option performs both the NAMED and 
PHYSICAL operations. For physical volumes, this option 
performs the PHYSICAL operations. 

OUTPUT 

VERIFY produces a different kind of output for each of the NAMED 1 , 
NAMED2, and PHYSICAL options. The NAMED and ALL options produce 
combinations of the first three kinds of output. 

Figure 2-3 illustrates the format of the NAMED1 output. 

DEVICE NAME = devname DEVICE SIZE devsize BLK SIZE blksize 

'NAMED1' VERIFICATION 

FILE 

FILE 

FILE 

(filename, fnodenum) 
error messages 
(filename, fnodenum) 
error messages 

(filename, fnodenum) 
error messages 

LEVEL 

LEVEL 

LEVEL 

lev PARENT parnt 

lev PARENT = parnt 

lev PARENT parnt 

Figure 2-3. NAMED1 Verification Output 

2-41 

TYPE typ 

TYPE typ 

TYPE = typ 

VERIFY 



VERIFY 

OUTPUT (continued) 

The following paragraphs identify the fields listed in Figure 2-3. 

devname 

devsize 

blksize 

filename 

fnodenum 

lev 

parnt 

typ 

Physical name of the device, as specified in the 
ATTACHDEVICE Human Interface command. 

Hexadecimal size of the volume, in bytes. 

Hexadecimal volume granularity. This number is the 
size of a volume block. 

Name of the file (1 to 14 characters). 

Hexadecimal number of the file's fnode. 

Hexadecimal level of the file in the file heirarchy. 
The root directory of the volume is the only level 0 
file. Files contained in the root directory are level 
1 files. Files contained in level 1 directories are 
level 2 files. This numbering continues for all 
levels of files in the volume. 

Fnode number of the directory which contains this 
file, in hexadecimal. 

File type, either DATA (for data files) or DIR (for 
directory files). If VERIFY cannot ascertain that the 
file is a directory or data file, it displays the 
characters "****" in this field. 

error messages Messages, which indicate the errors associated with 
the previously-listed file. The error messages which 
can occur are listed later in this section. 

As Figure 2-3 shows, the NAMED1 option displays information about each 
file that is in error. The NAMED1 display also contains error messages 
which immediately follow the listing of the affected files. 

Figure 2-4 illustrates the format of the NAMED2 output. 

DEVICE NAME = devname DEVICE SIZE devsize BLK SIZE blksize 

'NAMED2' VERIFICATION 

BIT MAPS O.K. 

Figure 2-4. NAMED2 Verification Output 

The fields in Figure 2-4 are exactly the same as the corresponding fields 
in Figure 2-3. 

2-42 



OUTPUT (continued) 

If VERIFY detects an error during NAMED2 verification, it displays one or 
more error message in place of the "BIT MAPS O.K." message. 

Figure 2-5 illustrates the format of the PHYSICAL output. 

,------------------------------_._-----------
DEVICE NAME = devname DEVICE SIZE = devsize BLK SIZE = blksize 

'PHYSICAL' VERIFICATION 

NO ERRORS 

Figure 2-5. PHYSICAL Verification Output 

The fields in Figure 2-5 are exactly the same as the corresponding fields 
in Figure 2-3. 

If VERIFY detects an error during PHYSICAL verification, it displays one 
or more error message in place of the "NO ERRORS" message. 

If you specify NAMED verification, VERIFY displays both the NAMED! and 
NAMED2 output. If you specify the ALL verification for a named volume, 
VERIFY displays the NAMED!, NAMED 2 , and PHYSICAL output. If you specify 
the ALL verification for a physical volume, VERIFY displays the PHYSICAL 
output. 

DESCRIPTION 

The VERIFY command checks physical and named volumes to ensure that the 
volumes contain valid file structures and data areas. VERIFY can perform 
three kinds of verification: NAMED!, NAMED 2 , and PHYSICAL. NAMED! and 
NAMED2 verifications check the file structures of named volumes. They do 
not apply to physical volumes. PHYSICAL verification checks each data 
block of the volume for I/O errors. PHYSICAL verification applies to 
both named and physical volumes. 

As part of the NAMED2 verification, VERIFY creates a free fnodes map and 
a volume free space map which it compares with the corresponding maps on 
the volume. You can use the SAVE command to write the maps produced 
during NAMED2 verification to the volume, overwriting the maps on the 
volume. 

2-43 

VERIFY 



VERIFY 

ERROR MESSAGES 

Four kinds of error messages can occur as a result of entering the VERIFY 
command: VERIFY command errors, NAMEDl errors, NAMED2 errors, and 
PHYSICAL errors. 

VERIFY command errors 

verify-function argument error 

The parameter you specified is not a valid VERIFY parameter. 

not a named disk 

You tried to perform a NAMED, NAMED 1 , or NAMED2 verification on a 
physical volume. 

NAMEDl errors 

The following messages can appear in a NAMEDl display, immediately after 
the file to which they refer. 

fnodenum, allocation status in this fnode not set 

The file is listed in a directory but the flags field of its fnode 
indicates that fnode is free. The free fnodes map mayor may not list 
the fnode as allocated. 

numblocks, blocks in indirect block do not match #blks in the fnode 

The file is a long file, and the number of blocks listed in a POINTER(n) 
field of the fnode does not agree with the number of blocks listed in the 
indirect block. 

directory stack overflow 

This message can indicate an internal error in the disk verification 
utility. However, it can also indicate that a directory on the volume 
lists, as one of its entries, itself or one of the parent directories in 
its pathname. If this happens, the utility, when it searches through the 
directory tree, continually loops through a portion of the tree, 
overflowing an internal buffer area. 

file size inconsistent 
total size = totsize : this size = thsize : data blocks = numblks 

The TOTAL SIZE, THIS SIZE, and TOTAL BLKS fields of the fnode are 
inconsistent. 

2-44 



ERROR MESSAGES (continued) 

fnode not on the disk 

The fnode number of the file, as recorded in the directory file, is 
larger than the largest fnode number on the volume. 

illegal file type 

The file type of a user file, as recorded in TYPE field of the fnode, is 
other than directory (06) or data (08). 

insufficient memory to create directory stack 

There is not enough dynamic memory in the system for the utility to 
perform the verification. 

invalid block# recorded in the fnode 

One of the POINTER(n) fields in the fnode specifies a block number that 
:is larger than the largest block number in the volume. 

invalid block# recorded in the indirect block 

The file is a long file and one of the indirect blocks specifies a block 
number that is larger than the largest block number in the volume. 

parent fnode number does not match 

The PARENT field of the fnode does not agree with the fnode number of the 
directory that contains the file. VERIFY displays the fnode number of 
the directory that contains the file, not the fnode number recorded in 
the PARENT field of the file's fnode. 

total blocks does not reflect the data blocks correctly 

The TOTAL BLKS field of the fnode and the number of blocks recorded in 
the POINTER(n) fields are inconsistent. 

NAMED2 errors 

The following messages can appear in a NAMED2 display. 

blocknum, block allocated but not referenced 

The volume free space map lists the specified volume block as allocated, 
but no fnode specifies the block as part of a file. 

2-45 

VERIFY 



VERIFY 

ERROR MESSAGES (continued) 

blocknum, block referenced but not allocated 

An fnode indicates that the specified volume block is part of a file, but 
the volume free space map lists the block as free. 

directory stack overflow 

This message can indicate an internal error in the disk verification 
utility. However, it can also indicate that a directory on the volume 
lists, as one of its entries, itself or one of the parent directories in 
its pathname. If this happens, the utility, when it searches through the 
directory tree, continually loops through a portion of the tree, 
overflowing an internal buffer area. 

fnodenum, fnode map bit marked allocated but not referenced 

The free fnodes map lists the specified fnode as allocated, but no 
directory contains a file with the fnode number. 

fnodenum, fnode referenced but fnode map bit marked free 

The specified fnode number is listed in a directory, but the free fnodes 
map lists the fnode as free. 

insufficient memory to create directory stack 

There is not enough dynamic memory in the system for the utility to 
perform the verification. 

insufficient memory to create fnode and space maps 

During a NAMED2 verification, the utility tried to create a free fnodes 
map and a volume free space map. However, there is not enough dynamic 
memory available in the system to create these maps. 

blocknum, multiple reference to this block 

More than one fnode specifies this block as part of a file. 

fnodenum, mUltiple reference to this fnode 

The directories on the volume list more than one file associated with 
this fnode number. 

2-46 



ERROR MESSAGES (continued) 

PHYSICAL errors 

blocknum, error 

An I/O error occurred when VERIFY tried to access the specified volume 
block. The volume is probably flawed. 

other errors 

The following error messages indicate internal errors in the disk 
verification utility. Under normal conditions these messages should 
never appear. However, if these messages (or other undocumented messages 
that also appear to indicate internal probiems) do appear during a NAMEDl 
or NAMED2 verification, you should exit the disk verification utility and 
re-enter the DISKVERIFY command. 

directory stack underflow 
directory stack empty 
directory stack error 

EXAMPLE 

The following command performs both named and physical verification on a 
named volume. 

*VERIFY ALL 

DEVICE NAME = Fl DEVICE SIZE 0003E900 BLK SIZE 0080 

'NAMEDl' VERIFICATION 

'NAMED2' VERIFICATION 

BIT MAPS O.K. 

'PHYSICAL' VERIFICATION 

NO ERRORS 

* 

2-47 

VERIFY 



WRITE 

WRITE COMMAND 

This command writes the contents of the working buffer to the volume. 
The format of this command is: 

INPUT PARAMETER 

blocknum 

OUTPUT 

Number of the volume block to which the command writes 
the working buffer. If you omit this parameter, WRITE 
writes the buffer back to the block most recently 
accessed. 

In response to the command, WRITE displays the following message: 

write to (blocknum)? 

where blocknum is the number of the volume block to which WRITE intends 
to write the working buffer. If you respond by entering Y or any 
character string beginning with Y, WRITE copies the working buffer to the 
specified block on the volume. Any other response aborts the write 
process. 

DESCRIPTION 

The WRITE command is used in conjunction with the READ, DISPLAYBYTE, 
DISPLAYWORD, SUBSTITUTEBYTE, and SUBSTITUTEWORD commands to modify 
information on the volume. Initially you use READ to copy a volume block 
from the volume to a working buffer. Then you can use DISPLAYBYTE and 
DISPLAYWORD to view the buffer and SUBSTITUTEBYTE and SUBSTITUTEWORD to 
change the buffer. Finally, you can use WRITE to write the modified 
buffer back to the volume. By default, WRITE copies the buffer to the 
block most recently accessed by a READ or WRITE command. 

A WRITE command does not destroy the data in the working buffer. The 
data remains the same until the next SUBSTITUTE BYTE , SUBSTITUTEWORD, or 
READ command modifies the buffer. 

2-48 



ERROR MESSAGES 

argument error 

You made a syntax error or specified nonnumeric characters in the 
blocknum parameter. 

blocknum, block out of range 

The block number you specified was larger than the largest block number 
:in the volume. 

EXAMPLE 

The following command copies the working buffer to the block from which 
it was read. 

*WRITE 
write to (4B)? ~ 

* 

2-49 

WRITE 





APPENDIX A. STRUCTURE OF iRMX'" 86 NAMED VOLUMES 

This appendix describes the structure of an iRMX 86 volume that contains 
named files. Those users who wish to examine named file volumes or 
create their own formatting utility programs can use this informtion. 

This appendix is intended for system programmers who have had experience 
in reading and writing actual volume information. It does not attempt to 
teach the reader these functions. 

INTRODUCTION 

Each iRMX 86 named volume contains ISO (International Organization for 
Standardization) label information as well as iRMX 86 label information 
and files. Figure A-I illustrates the general structure of a named file 
volume. 

single denSity flexible 
disk sector number 

01 03 04 05 06 07 08 09 26 27 -

unlnltlallzed, unlnitlallzed, 
reserved IRMX 86 reserved ISO reserved reserved 

for Volume 
for future Volume for future for 

Bootstrap Label 
ISO Label ISO Bootstrap 

Loader standard- standard- Loader 
Izatlon Izallon 

-

10 3831384 5111512 7671768 8951896 102311024 332713328-

absolute byte 
number 

fnode 
file 

volume 
free space 

map file 

free fnodes 
map file 

Figure A-I. General Structure of Named Volumes 

A-I 

bad 
blocks 

file 

Data 

and 

Directory 

files 

root 
directory 



STRUCTURE OF iRMX 86m NAMED VOLUMES 

This appendix discusses the structure in more detail. It includes 
information concerning the following: 

• ISO Volume Label 

• iRMX 86 Volume Label 

• fnode file 

• volume free space map file 

• free fnodes map file 

• bad blocks file 

• root directory 

It also discusses the structure of directory files and the concepts of 
long and short files. 

The blocks in Figure A-I that are reserved for the Bootstrap Loader are 
not discussed. To include these blocks on a new volume that you are 
formatting, you should copy them from an already formatted volume. 

VOLUME LABELS 

NOTE 

The following sections of this appendix 
refer to a data type called DWORD. 
DWORD must be declared literally as 
POINTER. This results in a 32-bit 
variable for the PLM/86 models COMPACT, 
MEDIUM, and LARGE. 

This section describes the structure of the volume labels that must be 
present on a named volume. These labels are the ISO volume label and the 
iRMX 86 volume label. 

ISO VOLUME LABEL 

The ISO (International Organization for Standardization) volume label is 
recorded in absolute byte positions 768 through 895 of the volume (for 
example, sector 07 of a single density flexible diskette). The structure 
of this volume label is as follows: 

A-2 



STRUCTURE OF iRMX 86 m NAMED VOLUMES 

DECLARE 
ISO$VOL$LABEL STRUCTURE ( 

LABEL$ID(3) 
RESERVED$A 
VOL$NAME(6) 
VOL$STRUC 
RESERVED$B(60) 
REC$SIDE 

BYTE, 
BYTE, 
BYTE, 
BYTE, 
BYTE, 
BYTE, 
BYTE, 
BYTE, 
BY~E, 
BYTE, 
BYTE); 

RESERVED$C (4) 
ILEAVE(2) 
RESERVED$D 
ISO$VERSION 
RESERVED$E( 48) 

where: 

LABEL$ID(3) 

RESERVED$A 

VOL$NAME(6) 

VOL$STRUC 

RESERVED$B (60) 

REC$SIDE 

RESERVED$C(4) 

ILEAVE(2) 

RESERVED$D 

ISO$VERSION 

RESERVED$D( 48) 

Label identifier. For named file volumes, this 
field contains the ASCII characters "VOL". 

Reserved field containing the ASCII character "1". 

Volume name. This field can contain up to six 
printable ASCII characters, left justified and 
space filled. A value of all spaces implies that 
the volume name is recorded in the iRMX 86 Volume 
Label (absolute byte positions 384-393). 

For named file volumes, this field contains the 
ASCII character "N", indicating that this volume 
has a non-ISO file structure. 

This is a reserved field containing 60 bytes of 
ASCII spaces. 

For named file volumes, this field contains the 
ASCII character "I" to indicate that only one side 
of the volume is to be recorded. 

This is a reserved field containing four bytes of 
ASCII spaces. 

Two ASCII digits indicating the interleave factor 
for the volume, in decimal. ASCII digits consist 
of the numbers 0 through 9. When formatting named 
volumes, you should set this field to the same 
interleave factor that you use when physically 
formatting the volume. 

This is a reserved field containing an ASCII space. 

For named file volumes, this field contains the 
ASCII character "I", which indicates ISO version 
number one. 

This is a reserved field containing 48 ASCII spaces. 

A-3 



STRUCTURE OF iRMX 86- NAMED VOLUMES 

iRMX 86 VOLUME LABEL 

The iRMX 86 Volume Label is recorded in absolute byte positions 384 
through 511 of the volume (sector 04 of a single density flexible 
diskette). The structure of this volume label is as follows: 

DECLARE 

where: 

RMX$VOLUME$INFORMATION 
VOL$NAME(10) 
FLAGS 
FILE$DRIVER 
VOL$GRAN 
VOL$SIZE 
MAX$FNODE 
FNODE$START 
FNODE$SIZE 
ROOT$FNODE 
DEV$GRAN 
INTERLEAVE 

STRUCTURE ( 
BYTE, 
BYTE, 
BYTE, 
WORD, 
DWORD, 
WORD, 
DWORD, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 

TRACK $ SKEW 
SYSTEM$ID 
SYSTEM$NAME(12) 
DEVICE$SPECIAL(8) 

BYTE, 
BYTE) ; 

VOL$NAME(10) Volume name in printable ASCII characters, left 
justified and zero filled. 

FLAGS BYTE which lists the device characteristics for 
automatic device recognition. The individual bits 
in this byte indicate the following characteristics 
(bit 0 is rightmost bit): 

Bit Meaning 

o VF$AUTO flag. When set to one, 
this bit indicates that the FLAGS 
byte contains valid data for 
automatic device recognition. 
When set to zero, it indicates 
that the remaining flags contain 
meaningless data. 

1 VF$DENSITY flag. This bit 
indicates the recording density of 
the volume. When set to one, it 
indicates modified frequency 
modulation (MFM) or double-density 
recording. When set to zero, it 
indicates frequency modulation 
(FM) or single-density recording. 

A-4 



FILE$DRIVER 

VOL$GRAN 

VOL$SIZE 

MAX$FNODE 

FNODE$START 

FNODE$SIZE 

ROOT$FNODE 

DEV$GRAN 

INTERLEAVE 

STRUCTURE OF iRMX 86 111 NAMED VOLUMES 

Bit Meaning 

2 VF$SIDES flag. This bit indicates 
the number of recording sides on 
the volume. When set to one, it 
indicates a double-sided volume. 
When set to zero, it indicates a 
single-sided volume. 

3 VF$MINI flag. This bit indicates 
the size of the recording media. 
When set to one, it indicates a 
5 1/4-inch volume. When set to 
zero, it indicates an 8-inch 
volume. 

Number of the file driver used with this volume. 
For named file volumes, this field is set to four. 

Volume granularity, specified in bytes. This 
value must be a multiple of the device 
granularity. It sets the size of a logical 
device block, also called a volume block. 

Size of the entire volume, in bytes. 

Number of fnodes in the fnode file. Refer to the 
next section for a description of fnodes. 

A 32-bit value which represents the number of the 
first byte in the fnode file (byte 0 is the first 
byte of the volume). 

Size of an fnode, in bytes. 

Number of the fnode describing the root 
directory. Refer to the next section for further 
information. 

Device granularity of all tracks except track 
zero (which contains the volume label). This 
field is important only when the system requires 
automatic device recognition. 

Block interleave factor for this volume. This 
value indicates the physical distance, in blocks, 
between consecutively-numbered blocks on the 
volume. A value of one indicates that 
consecutively-numbered blocks are adjacent. A 
value of zero indicates an unknown or undefined 
interleave factor. 

A-5 



TRACK$SKEW 

SYSTEM$ID 

SYSTEM$NAME(12) 

STRUCTURE OF iRMX 86 m NAMED VOLUMES 

Offset, in bytes, between the first block on one 
track and the first block on the next track. A 
value of zero indicates that all tracks are 
identical. 

Numerical code identifying the operating system 
that formatted the volume. The following codes 
are reserved for Intel operating systems: 

Operating System Code 

iRMX 86 
iRMX 88 
OS 88 

a - OFh 
10h - 1Fh 
20h - 2Fh 

Currently, the iRMX 86 Operating System places a 
zero in this field. 

Name of the operating system which formatted the 
volume, in printable ASCII characters, left 
justified and space filled. Zeros (ASCII nulls) 
indicate that the operating system is unknown. 
The iRMX 86 Operating System currently places 
several pieces of information into this field, as 
follows: 

• The left-most six bytes of this field 
contain the ASCII characters "iRMX86" to 
identify the operating system. Former iRMX 
86 releases filled this field with zeros. 

• The next byte is an ASCII character which 
identifies the program that formatted the 
volume. The following characters apply: 

Character Formatting Program 

F Human Interface FORMAT command 

U iRMX 86 Files Utility 

If the formatting program is unable to 
provide this information, it places an ASCII 
space in this field. 

• The next two bytes contain a two-digit ASCII 
sequence number which is incremented by the 
formatting program each time the formatting 
program changes in a way that affects the 
volume format. The Release 4 FORMAT Human 
Interface command places the characters "00" 
in this field. 

A-6 



STRUCTURE OF iRMX 86 m NAMED VOLUMES 

DEVICE$SPECIAL(8) 

• The right-most three bytes of the field 
contain a three-digit ASCII number 
specifying the version of the Basic I/O 
System that was used in formatting the 
volume (for example, the characters "030" 
would indicate version 3.0). If the 
formatting program is unable to obtain this 
information, it places ASCII spaces in this 
field. 

Reserved for special device-specific 
information. When no device-specific information 
exists, this field must contain zeros. If the 
device is a Winchester disk with an iSBC 215 
controller or if the device is a disk with an 
iSBC 220 controller, the iRMX 86 Operating System 
imposes a structure on this field and supplies 
the following information: 

SPECIAL 
CYLINDERS 
FIXED 
REMOVABLE 
SECTORS 
SECTOR SIZE 
ALTERNATES 

STRUCTURE ( 
WORD, 
BYTE, 
BYTE, 
BYTE, 
WORD, 
BYTE) ; 

where: 

CYLINDERS 

FIXED 

REMOVABLE 

SECTORS 

SECTOR SIZE 

ALTERNATES 

Total number of cylinders on 
the drive. 

Number of heads on the fixed 
disk or Winchester disk. 

Number of heads on the 
removable disk cartridge. 

Number of sectors in a track. 

Sector size, in bytes. 

Number of alternate cylinders. 

The remainder of the Volume Label (bytes 430 through 511) is reserved and 
must be set to zero. 

A-7 



STRUCTURE OF iRMX 86 m NAMED VOLUMES 

INITIAL FILES 

Any mechanism that formats iRMX 86 named volumes must place five files on 
the volume during the format process. These five files are the fnode 
file, the volume free space map file, the free fnodes map file, the bad 
blocks file, and the root directory. The first of these files, the fnode 
file, contains information about all of the files on the volume. The 
general structure of the fnode file is discussed first. Then all of the 
files are discussed in terms of their fnode entries and their functions. 

FNODE FILE 

A data structure called a file descriptor node (or fnode) describes each 
file in a named file volume. All the fnodes for the entire volume are 
grouped together in a file called the fnode file. When the I/O System 
accesses a file on a named volume, it examines the iRMX 86 Volume Label 
(described in the previous section) to determine the location of the 
fnode file, and then examines the appropriate fnode to determine the 
actual location of the file. 

When a volume is formatted, the fnode file contains six allocated 
fnodes. These fnodes represent the fnode file, the volume free space map 
file, the free fnodes map file, the bad blocks file, the root directory, 
and one other file. Later sections of this chapter describe these 
files. The size of the fnode file is determined by the number of fnodes 
that it contains. The number of fnodes in the fnode file also determines 
the number of files that can be created on the volume. 

NOTE 

When formatting a volume, you may be 
able to improve performance by placing 
the fnode file in the middle of the 
volume. By doing this, you reduce the 
average latency by 50%. For 
applications that have heavy file 
access, this may be desirable. 
However, the fnode file must start on a 
volume block boundary. 

A-8 



STRUCTURE OF iRMX 86m NAMED VOLUMES 

The structure of an individual fnode in a named file volume is as follows: 

DECLARE 
FNODE STRUCTURE ( 

where: 

FLAGS 

FLAGS WORD, 
TYPE BYTE, 
GRAN BYTE, 
OWNER WORD, 
CR$TIME DWORD, 
ACCESS$TIME DWORD, 
MOD$TIME DWORD, 
TOTAL$SIZE DWORD, 
TOTAL$BLKS DWORD, 

/* PTR(8) STRUCTURE ( */ 
POINTR(40) BYTE, /* NUM$BLOCKS WORD, */ 

/* BLK$PTR(3) BYTE); */ 
THIS$SIZE DWORD, 
RESERVED$A WORD, 
RESERVED$B WORD, 
ID$COUNT WORD, 

/* ACCESSOR(3) STRUCTURE( */ 
ACC(9) BYTE, /* ACCESS BYTE, */ 

/* ID WORD); */ 
PARENT WORD, 
AUX(*) BYTE) ; 

A WORD which defines a set of attributes for the 
file. The individual bits in this word indicate the 
following attributes (bit 0 is the rightmost bit): 

Bit Meaning 

o Allocation status. If set to one, this 
fnode describes an actual file. If set 
to zero, this fnode is available for 
allocation. When formatting a volume, 
this bit is set to one in the six 
allocated fnodes. In other fnodes, it 
is set to zero. 

1 Long or short file attribute. This bit 
describes how the PTR fields of the 
fnode are interpreted. If set to zero, 
indicating a short file, the PTR fields 
identify the actual data blocks of the 
file. If set to one, indicating a long 
file, the PTR fields identify indirect 
blocks. Indirect blocks are described 
later in this section. When formatting 
a volume, this bit is always set to 
zero, since the initial files on the 
volume are short files. 

A-9 



TYPE 

GRAN 

STRUCTURE OF iRMX 86'" NAMED VOLUMES 

Type 

Bit Meaning 

2 Reserved bit which is always set to one. 

3-4 Reserved bits which are always set to 
zero. 

5 

6 

7-15 

of file. 

Mnemonic 

FT$FNODE 
FT$VOLMAP 

Modification attribute. Whenever a 
file is modified, this bit is set to 
one. Initially, when a volume is 
formatted, this bit is set to zero in 
each fnode. 

Deletion attribute. This bit is set to 
one to indicate that the file is a 
temporary file or that the file is 
going to be deleted (the deletion may 
be postponed because additional 
connections exist to the file). 
Initially, when the volume is 
formatted, this bit is set to zero in 
each fnode. 

Reserved bits which are always set to 
zero. 

The following are acceptable types: 

Value ~ 

0 fnode file 
1 volume free space map 

FT$FNODEMAP 2 free fnodes map 
FT$ACCOUNT 3 space accounting file 
FT$BADBLOCK 4 bad device blocks file 
FT$DIR 6 directory file 
FT$DATA 8 data file 

During system operation, only the I/O System can 
access file types other than FT$DATA and FT$DIR. 
These file types are discussed later in this section. 

File granularity, specified in multiples of the volume 
granularity. The default value is 1. For the files 
initially present on the volume (fnode file, volume 
free space map file, free fnodes map file, bad blocks 
file, root directory), this value can be set to any 
mUltiple of the volume granularity. 

A-10 



OWNER 

CR$TIME 

ACCESS$TIME 

MOD$TIME 

TOTAL$SIZE 

TOTAL$BLKS 

POINTR(40) 

STRUCTURE OF iRMX 86 m NAMED VOLUMES 

User ID of the owner of the file. For the files 
initially present on the volume, this parameter is 
important only for the root directory. For the root 
directory, this parameter should specify the user 
WORLD (FFFFH). The I/O System does not examine this 
parameter for the other files (fnode file, volume free 
space map file, free fnodes map file, bad blocks file) 
and so a value of zero can be specified. 

Time and date that the file was created, expressed as 
a 32-bit value. This value indicates the number of 
seconds since a fixed, user-determined point in time. 
By convention, this point in time is 12:00 A.M., 
January 1, 1978. For the files initially present on 
the volume, this parameter is important only for the 
root directory. A zero can be specified for the other 
files (fnode file, volume free space map file, free 
fnodes map file, bad blocks file). 

Time and date of the last file access (read or write), 
expressed as a 32-bit value. For the files initially 
present on the volume, this parameter is important 
only for the root directory. 

Time and date of the last file modification, expressed 
as a 32-bit value. For the files initially present on 
the volume, this parameter is important only for the 
root directory. 

Total size, in bytes, of the actual data in the file. 

Total number of volume blocks used by this file, 
including indirect block overhead. A volume block is 
a block of data whose size is the same as the volume 
granularity. All memory in the volume is divided into 
volume blocks, which are numbered sequentially, 
starting with the block containing the smallest 
addresses (block 0). Indirect blocks are discussed 
later in this section. 

A group of bytes on which the following structure is 
imposed: 

PTR(8) STRUCTURE ( 
NUM$BLOCKS WORD, 
BLK$PTR(3) BYTE); 

A-II 



THIS$SIZE 

RESERVED$A 

RESERVED$B 

ID$COUNT 

ACC(9) 

STRUCTURE OF iRMX 86 m NAMED VOLUMES 

This structure identifies the data blocks of the 
file. These data blocks may be scattered throughout 
the volume, but together they make up a complete 
file. If the file is a short file (bit 1 of the FLAGS 
field is set to zero), each PTR structure identifies 
an actual data block. In this case, the fields of the 
PTR structure contain the following: 

NUM$BLOCKS 

BLK$PTR(3) 

Number of volume blocks in the 
data block. 

A 24-bit value specifying the 
number of the first volume block 
in the data block. Volume blocks 
are numbered sequentially, 
starting with the block with the 
smallest address (block 0). The 
bytes in the BLK$PTR array range 
from least significant 
(BLK$PTR(O» to most significant 
(BLK$PTR( 2) ). 

If the file is a long file (bit 1 of the FLAGS field 
is set to one), each PTR structure identifies an 
indirect block (possibly consisting of more than one 
contiguous volume block), which in turn identifies the 
data blocks of the file. In this case, the fields of 
the PTR structure contain the following: 

NUM$BLOCKS 

BLK$PTR(3) 

Number of volume blocks pointed to 
by the indirect block. 

A 24-bit volume block number of 
the indirect block. 

Indirect blocks are discussed later in this section. 

Size, in bytes, of the total data space allocated to 
the file. This figure does not include space used for 
indirect blocks, but it does include any data space 
allocated to the file, regardless of whether the file 
fills that allocated space. 

"Reserved field which is set to zero. 

Reserved field which is set to zero. 

Number of access-ID pairs declared in the ACC(9) field. 

A group of bytes on which the following structure is 
imposed: 

ACCESSOR(3) 
ACCESS 
ID 

A-12 

STRUCTURE ( 
BYTE, 
WORD) ; 



PARENT 

AUX(*) 

STRUCTURE OF iRMX 86 m NAMED VOLUMES 

This structure contains the access-ID pairs which 
define the access rights for the users of the file. 
By convention, when a file is created, the owning 
user's ID is inserted in ACCESSOR(O), along with the 
code for the access rights. The fields of the 
ACCESSOR structure contain the following: 

ACCESS 

ID 

Encoded access rights for the file. 
The settings of the individual bits in 
this field grant (if set to one) or 
deny (if set to zero) permission for 
the corresponding operation. Bit 0 is 
the rightmost bit. 

Bit 
-0-

1 
2 
3 

4-7 

Data File 
Operation 
delete 
read 
append 
update 

reserved 

Directory 
Operation 
delete 
display 
add entry 
change entry 

(must be 0) 

ID of the user who gains the 
corresponding access permission. 

Fnode number of directory file which lists this file. 
For files initially present on the volume, this 
parameter is important only for the root directory. 
For the root directory, this parameter should specify 
the number of the root directory's own fnode. For 
other files (fnode file, volume free space map file, 
free fnodes map file, bad blocks file) the I/O System 
does not examine this field. 

Auxiliary bytes associated with the file. The named 
file driver does not interpret this field, but the 
user can access it by making GET$EXTENSION$DATA and 
SET$EXTENSION$DATA system calls (refer to the iRMX 86 
SYSTEM PROGRAMMER'S REFERENCE MANUAL). The size of 
this field is determined by the size of the fnode, 
which is specified in the iRMX 86 Volume Label. The 
Files Utility allocates three bytes for this field by 
default. If you use the .Human Interface FORMAT 
command or create your own utility to format a volume, 
you can make this field as large as you wish; however, 
a larger AUX field implies slower file access. 

Certain fnodes designate special files that appear on the volume. The 
following sections discuss these fnodes and the associated files. 

A-13 



STRUCTURE OF iRMX 86- NA}ffin VOLUMES 

FNODE 0 (FNODE FILE) 

The first fnode structure in the fnode file describes the fnode file 
itself. This file contains all the fnode structures for the entire 
volume. It must reside in contiguous locations in the volume. Fields of 
fnode 0 must be set as follows: 

• The bits in the FLAGS field are set to the following (bit 0 is 
the rightmost bit): 

Bit 
o 
1 
2 

3-4 
5 
6 

7-15 

Value 
1 
o 
1 
o 
o 
o 
o 

Description 
Allocated file 
Short file 
Primary fnode 
Reserved bits 
Initial status is unmodified 
File will not be deleted 
Reserved bits 

• The TYPE field is set to FT$FNODE. 

• The GRAN field is set to 1. 

• The OWNER field is set to O. 

• The CR$TIME, ACCESS$TIME, and MOD$TIME fields are set to O. 

• Since the iRMX 86 Volume Label specifies the size of an 
individual fnode structure and the number of fnodes in the fnode 
file, the value specified in the TOTAL$SIZE field of fnode 0 
must equal the product of the values in the FNODE$SIZE and 
MAX$FNODE fields of the iRMX 86 Volume Label. 

• The TOTAL$BLOCKS field specifies enough volume blocks to account 
for the memory listed in the TOTAL$SIZE field. The product of 
the value in the TOTAL$BLOCKS field and the volume granularity 
equals the value of the THIS$SIZE field, since the fnode file is 
a short file. 

• Since the fnode file must reside in contiguous locations in the 
volume, only one PTR structure describes the location of the 
file. The value in the NUM$BLOCKS field of that PTR structure 
equals the value in the TOTAL$BLOCKS field. The BLK$PTR field 
indicates the number of the first block of the fnode file. 

• The ID$COUNT field is set to zero, indicating that no users can 
access the file. 

FNODE 1 (VOLUME FREE SPACE MAP FILE) 

The second fnode, fnode 1, describes the volume free space map file. The 
TYPE field for fnode 1 is set to FT$VOLMAP to designate the file as such6 

A-14 



STRUCTURE OF iRMX 86 m NAMED VOLUMES 

The volume free space map file keeps track of all the space on the 
volume. It is a bit map of the volume, in which each bit represents one 
volume block (a block of space whose siee is the same as the volume 
granularity). If a bit in the map is set to one, the corresponding 
volume block is free to be allocated to any file. If a bit in the map is 
set to zero, the corresponding volume block is already allocated to a 
file. The bits of the map correspond to volume blocks such that bit n of 
byte m represents volume block (8 * m) + n. The bits in the remaining 
space allocated to the map file (those that do not correspond to actual 
blocks of memory) must be set to zero. 

When the volume is formatted, the volume free space map file indicates 
that the first 3328 bytes of the volume (the label and bootstrap 
information) plus any files initially placed on the volume (fnode file, 
volume free space map file, free fnodes map file, bad blocks file) are 
allocated. 

FNODE 2 (FREE FNODES MAP FILE) 

The third fnode, fnode 2, describes the free fnodes map file. The TYPE 
field of fnode 2 is set to FT$FNODEMAP to designate the file as such. 

The free fnodes map file keeps track of all the fnodes in the fnodes 
file. It is a bit map in which each bit represents an fnode. If a bit 
in the map is set to one, the corresponding fnode is not in use and does 
not represent an actual file. If a bit in the map is set to zero, the 
corresponding fnode already describes an existing file. The bits in the 
map correspond to fnodes such that bit n of byte m represents fnode 
number (8 * m) + n. The bits in the remaining space allocated to the map 
file (those that do not correspond to actual fnode structures) must be 
set to zero. 

When the volume is formatted, the free fnodes map file indicates that 
fnodes 0, 1, 2, 3, and 4 are in use. If other files are initially placed 
on the volume, the free fnodes map file must be set to indicate this as 
well. 

FNODE 4 (BAD BLOCKS FILE) 

The fifth fnode, fnode 4, contains all the bad blocks on the volume. The 
TYPE field of fnode 4 is set to FT$BADBLOCK to indicate this. 

If there are any unusable blocks on a volume, this fnode must be 
initialized to describe a file which consists of all such bad blocks. If 
there are no bad blocks on the volume, the fnode must still be set up as 
allocated, and of the indicated type, but it should not assign any actual 
space for the file. 

A-15 



STRUCTURE OF iRMX 86 m NAMED VOLUMES 

ROOT DIRECTORY 

The root directory is a special directory file. It is the root of the 
named file heirarchy for the volume. The iRMX 86 Volume Label specifies 
the fnode number of the root directory (normally fnode 5). The root 
directory is its own parent. That is, the PARENT field of its fnode 
specifies its own fnode number. 

The root directory (and all directory files) associates file names with 
fnode numbers. It consists of a number of entries that have the 
following structure: 

DECLARE 
DIR$ENTRY STRUCTURE ( 

where: 

FNODE 

FNODE 
COMPONENT(14) 

WORD, 
BYTE) ; 

Fnode number of a file listed in the directory,. 

COMPONENT(14) A string of ASCII characters that is the final 
component of the path name identifying the file. Th:ts 
string is left justified and null padded to 14 
characters. 

When a file is deleted, its fnode number in the directory entry is set to 
zero. 

OTHER FNODES 

When a volume is formatted, one other fnode is set up, fnode 3, 
representing a file of type FT$ACCOUNT, The fnode is set up as 
allocated, and of the indicated type, but it does not assign any actual 
space for the file. 

When formatting a volume, no other fnodes in the fnode file represent 
actual files. The remaining fnodes must have bit zero (allocation 
status) set to zero. 

LONG AND SHORT FILES 

A file on a volume is not necessarily one contiguous string of bytes. In 
many cases, it consists of several contiguous blocks of data scattered 
throughout the volume. The fnode for the file indicates the locations 
and sizes of these blocks in one of two ways, as short files or as long 
files. 

A-16 



STRUCTURE OF iRMX 86 m NAMED VOLUMES 

SHORT FILES 

If the file consists of eight or less distinct blocks of data) its fnode 
can specify it as a short file. The fnode for a short file has bit 1 of 
the FLAGS field set to zero. This indicates to the I/O System that the 
PTR structures of the fnode identify the actual data blocks that make up 
the file. Figure A-2 illustrates an fnode for a short file. Decimal 
numbers are used in the figure for clarity. 

Label and 
Bootstrap 
Information 
~ 

fnode 8 
A 

TOTAL$SIZE 

8000 

TOTAL$BLKS 

8 

Volume 

• • • • • • 

3 

THIS$SIZE 

8192 

. 
• 

I 

fnode file Volume granularity = 1024 

Figure A-2. Short File Fnode 

As you can see from Figure A-2) fnode 8 identifies the short file. The 
file consists of three distinct data blocks. Three PTR structures give 
the locations of the data blocks. The NUM$BLOCKS field of each PTR 
structure gives the length of the data block (in volume blocks) and the 
BLK$PTR field points to the first volume block of the data block. 

A-17 



STRUCTURE OF iRMX 86 m NAMED VOLUMES 

The other fields shown in Figure A-2 include TOTAL$BLKS, THIS$SIZE, and 
TOTAL$SIZE. The TOTAL$BLKS field specifies the number of volume blocks 
allocated to the file, which in this case is eight. This equals the sum 
of NUM$BLOCKS values (3 + 2 + 3), since short files use all allocated 
space as data space. 

The THIS$SIZE field specifies the number of bytes of data space allocated 
to the file. This is the sum of the NUM$BLOCKS values (3 + 2 + 3) 
multiplied by the volume granularity (1024) and equals 8192. 

The TOTAL$SIZE field specifies the number of bytes of data space that the 
file occupies. This is designated in Figure A-2 by the shaded area. As 
you can see, the file does not occupy all the space allocated for it, and 
so the TOTAL$SIZE value (8000) is not as large as the THIS$SIZE value. 

LONG FILES 

If the file consists of more than eight distinct blocks of data, its 
fnode must specify it as a long file. The fnode for a long file has bit 
1 of the FLAGS field set to one. This tells the I/O System that the PTR 
structures of the fnode identify indirect blocks. The indirect blocks 
identify the actual data blocks that make up the file. 

Each indirect block contains of a number of indirect pointers, wh:Lch are 
structures similar to the PTR structures. However, an indirect block can 
contain more than eight structures and thus can point to more than eight 
data blocks. In fact, an indirect block can consist of more than one 
volume block; however, all volume blocks of of an indirect block must be 
contiguous. The structure of each indirect pointer is as follows: 

DECLARE 
IND$PTR STRUCTURE ( 

NBLOCKS BYTE, 
BLK$PTR BLOCK$NUM); 

where: 

NBLOCKS 

BLK$PTR 

Number of volume blocks in the data block. 

A 24-bit volume block number of first volume block in 
the data block. Volume blocks are numbered 
sequentially throughout the volume, starting with the 
block with the smallest address (block 0). 

The iRMX 86 Operating System determines how many indirect pointers there 
are in an indirect block by comparing the NBLOCKS fields of the indirect 
pointers with the NUM$BLOCKS field of the fnode. It assumes that the 
indirect block contains as many pointers as necessary for the sum of the 
NBLOCKS fields to equal the NUM$BLOCKS field. 

Figure A-3 illustrates an fnode for a long file. Decimal numbers are 
used in the figure for clarity. 

A-18 



STRUCTURE OF iRMX 86m NAMED VOLUMES 

Label and bootstrap 
Information 
~ 

Volume 

fnode 9 

~ A 

" Indirect block 

2 

[ZZJ 

~ 2 

~ 
• • • 

_ .....!..OTAL$SIZE _ 

~ 
20300 

_ ...!,.OTAL$BLKS _ 

20 

data 
blocks 

THIS$SIZE 

~ ~ 
------

20480 

· · • 
fnode file volume granularity = 1024 

Figure A-3. Long File Fnode 

As you can see from Figure A-3, fnode 9 identifies the long file. The 
actual file consists of nine distinct data blocks. One PTR structure and 
an indirect block give the locations of the data blocks. The NUM$BLOCKS 
field of the. PTR structure contains the number of volume blocks pointed 
to by the indirect block. The BLK$PTR field points to the first volume 
block of the indirect block. 

In the indirect block, each NBLOCKS field gives the length of an 
individual data block and each BLK$PTR field points to the first volume 
block of a data block. 

A-19 



STRUCTURE OF iRMX 86- NAMED VOLUMES 

Figure A-3 also lists the TOTAL$BLKS, THIS$SIZE, and TOTAL$SIZE values, 
which are more complex than for a short file. The TOTAL$BLKS field 
specifies the number of volume blocks allocated to the file, which in 
this case is 21. Twenty of the volume blocks are used for actual data 
storage and one of the blocks is used for the indirect block. 

The THIS$SIZE field specifies the number of bytes of data space allocated 
to the file, and does not include the size of the indirect block. This 
size is equal to the NUM$BLOCKS value (20) or the sum of NBLOCKS values 
in the indirect block (2 + 1 + 2 + 3 + 2 + 3 + 3 + 2 + 2 - 20) multiplied 
by the volume granularity (1024) and equals 20480. 

The TOTAL$SIZE field specifies the number of bytes of data space that the 
file currently occupies. This is designated in Figure A-3 by the shaded 
areas. As you can see, the file does not occupy all the space allocated 
for it, and so the TOTAL$SIZE value (20300) is not as large as the 
THIS$SIZE value. 

FLEXIBLE DISKETTE FORMATS 

The flexible diskette device drivers supplied with the iRMX 86 Basic I/O 
System can support several diskette characteristics. Tables A-I and A-2 
list these characteristics. 

Table A-I. Eight-Inch Diskette Characteristics 

Sector Density Sectors Device Size (in bytes) 
Size per Track One sided Two Sided 

128 Single 26 256256 512512 
256 Single 15 295168 590848 
512 Single 8 314880 630272 

1024 Single 4 315392 630784 

256 Double 26 509184 1021696 
512 Double 15 587264 1177600 

1024 Double 8 626688 1255424 

A-20 



STRUCTURE OF iRMX 86- NAMED VOLUMES 

Table A-2. 5 1/4-Inch Diskette Characteristics 

Sector Density Sectors Device Size (in bytes) 
Size per Track One Sided Two Sided 

35 Tracks 80 Tracks 35 Tracks 80 Tracks 

128 Single 16 71680 163840 143360 327680 
256 Single 9 80384 184064 161024 368384 
512 Single 4 71680 163840 143360 327680 

1024 Single 2 71680 163840 143360 327680 

256 Double 16 141312 325632 284672 653312 
512 Double 8 158720 366080 284672 653312 

1024 Double 4 141312 325632 284672 653312 

For compatibility with ECMA (European Computer Manufacturers Association) 
and ISO (International Organization for Standardization), the iRMX 86 
device drivers, when called by the formatting tools (the FORMAT Human 
Interface command and the FORMAT Files Utility command), format the 
beginning tracks of all flexible diskettes in the same manner, as follows: 

• For all 5 1/4-inch and 8-inch flexible diskettes, they format 
track 0 of side 0 with single-density, 128-byte sectors, with an 
interleave factor of 1. 

• In addition, for 8-inch, double-sided, double-density flexible 
diskettes, they format track 0 of side 1 with double-density, 
256-byte sectors. 

The iRMX 86 device drivers map the sectors on these beginning tracks into 
blocks of device granularity size so that the Basic I/O System and 
Bootstrap Loader can treat flexible diskettes as if they contain a 
contiguous string of blocks, all of the same size. 

However, this mapping is not exact when you use 8-inch, double-sided, 
double-density diskettes and specify a device granularity of 512 or 
1024. A problem arises because there are 26 128-byte sectors in a track, 
which is not an integral mapping for device granularities of 512 or 
1024. Thus the device driver combines the left-over 128-byte sectors of 
track 0, side 0 with the first sectors of track 0, side 1 in order to 
make a block of device granularity size. This continues throughout track 
0, side 1, but the same problem occurs with the last 256-byte sectors of 
track 0, side 1; there are not enough sectors to make a block of device 
granularity size. When the device driver tries to combine these 
left-over sectors of track 0, side 1 with the first sectors of track 1, 
side 0, it finds that the sectors of track 1, side 0 are already of 
device granularity size. Therefore, since the device driver cannot 
access partial sectors, it is left with one block (the left-over sectors 
of track 0, side 1) that is less than device granularity size. When the 
device granularity is 512, this small block is block 19; when the device 
granularity is 1024, the small block is block 9. 

A-21 



STRUCTURE OF iRMX 86- NAMED VOLUMES 

If nothing is done to exclude this smaller-than-normal block from use, 
the device driver will treat this block as a normal block, assuming it is 
of device granularity size. Thus if you try to write information to that 
block, the driver will attempt to write an entire device granularity 
block of information into a block that is much shorter, causing you to 
lose information. 

To prevent this situation, the Human Interface FORMAT command 
automatically declares this smaller-than-normal block as allocated in the 
volume free space map when it formats the volume. This prevents the 
Basic I/O System from ever writing information into this block. If you 
write your own formatting utility, you should also declare this block as 
allocated. 

EXAMPLE VOLUME 

This section lists the labels, fnode file, volume free space map file, 
free fnode map file, and root directory of a single density diskette 
which has been formatted by using the Human Interface FORMAT command with 
default parameters. Refer to the iRMX 86 HUMAN INTERFACE REFERENCE 
MANUAL for further information about the FORMAT command. This volume 
also contains one additional file whose fnode is shown. 

ISO VOLUME LABEL 

The following lists the individual fields of the ISO Label. Each 
two-digit number represents one byte, and thus one ASCII character. This 
label begins with byte number 768 of the diskette. 

field value (hex) ASCII eguivalent 

LABEL$ID(3) 56 4F 4C VOL 

LABEL$NO 31 1 

VOL$NAME(6) 20 20 20 20 20 20 (spaces) 

VOL$STRUC 4E N 

RESERVED$A(60) 20 (60 times) (spaces) 

REC$SIDE 31 1 

RESERVED$B(4) 20 (f our times) (spaces) 

A-22 



STRUCTURE OF iRMX 86 m NAMED VOLUMES 

field value (hex) ASCII equivalent 

ILEAVE(2) 31 30 10 

RESERVED$C 20 (space) 

ISO$VERSION 31 1 

RESERVED$D( 48) 20 (48 times) (spaces) 

iRMX 86 VOLUME LABEL 

The following lists the individual fields of the iRMX 86 Volume Label. 
This label begins with byte 384 of the diskette. Following this listing, 
the individual fields are shown. 

ASCII or decimal 
f:ield --- value equivalent 

VOL$NAME(10) 45 58 41 4D 50 4C 45 00 00 00 EXAMPLE 

FLAGS 01 

FILE$DRIVER 04 4 

VOL$GRAN 0080 128 

VOL$SIZE E900 0003 256256 

MAX$FNODE 0064 100 

FNODE$START ODOO 0000 3328 

FNODE$SIZE 005A 90 

ROOT$FNODE 0005 5 

DEV$GRAN 0080 128 

INTERLEAVE OOOA 10 

TRACK$SKEW 0000 0 

SYSTEM$ID 0000 0 

SYSTEM$NAME 69 52 4D 58 20 38 36 20 20 20 
20 20 iRMX 86 

DEVICE$SPECIAL 00 00 00 00 00 00 00 00 0 

A-23 



STRUCTURE OF iRMX 86- NAMED VOLUMES 

FNODE FILE 

The following lists the individual fields of the fnodes in the fnode 
file. Included are fnodes for the fnode file, the free space map file, 
the free fnodes map file, the accounting file, the bad blocks file, the 
root directory, and the example file. The fnode file begins at byte 
number 3328 decimal (ODOOH) of the diskette, as shown in the iRMX 86 
Volume Label. 

Fnode 0 (Fnode File) 

field 

FLAGS 

TYPE 

GRAN 

OWNER 

CR$TIME 

ACCESS$TIME 

MOD$TIME 

TOTAL$SIZE 

TOTAL$BLKS 

POINTR(40) 

PTR(O) 

value (hex) 

0005 

00 

01 

0000 

0000 0000 

0000 0000 

0000 0000 

2328 0000 

0047 0000 

NUM$BLOCKS 0047 

BLK$PTR(O) - 1A 00 00 
BLK$PTR(2) 

PTR(l) - PTR(7) 

NUM$BLOCKS 0000 

BLK$PTR(O) - 00 00 00 
BLK$PTR(2) 

THIS$SIZE 2380 0000 

RESERVED$A 0000 

RESERVED$B 0000 

A-24 

decimal equivalent 

o (FT$FNODE) 

1 

0000 

o 

o 

o 

9000 

71 

71 

26 

o 

o 

9088 

o 

o 



STRUCTURE OF iRMX 86- NAMED VOLUMES 

field 

ID$COUNT 

ACC(9) 

ACCESSOR(O) -
ACCESSOR(2) 

ACCESS 

ID 

PARENT 

AUX(*) 

value (hex) 

0000 

FF 

0000 

0000 

00 00 00 

Fnode 1 (Free Space Map) 

field 

FLAGS 

TYPE 

GRAN 

OWNER 

CR$TIME 

ACCESS$TlME 

MOD$TlME 

TOTAL$SIZE 

TOTAL$BLKS 

POINTR(40) 

PTR(O) 

value (hex) 

0005 

01 

01 

0000 

0000 0000 

0000 0000 

0000 0000 

OOFB 0000 

0002 0000 

NUM$BLOCKS 0002 

BLK$PTR(O) - 61 00 00 
BLK$PTR(2) 

PTR(l) - PTR(7) 

NUM$BLOCKS 0000 

BLK$PTR(O) - 00 00 QO 
BLK$PTR(2) 

decimal equivalent 

o 

decimal equivalent 

1 (FT$VOLMAP) 

1 

0000 

o 

o 

o 

251 

2 

2 

97 

o 

o 

A-25 



STRUCTURE OF iRMX 86m NAMED VOLUMES 

field 

THIS$SIZE 

RESERVED$A 

RESERVED$B 

ID$COUNT 

ACC(9) 

ACCESSOR(O) -
ACCESSOR(2) 

ACCESS 

ID 

PARENT 

AUX(*) 

value (hex) 

0100 0000 

0000 

0000 

0000 

FF 

0000 

0000 

00 00 00 

Fnode 2 (Free Fnode Map) 

field 

FLAGS 

TYPE 

GRAN 

OWNER 

CR$TlME 

ACCESS$TlME 

MOD$TIME 

TOTAL$SIZE 

TOTAL$BLKS 

POINTR(40) 

PTR(O) 

value (hex) 

0005 

02 

01 

0000 

0000 0000 

0000 0000 

0000 0000 

OOOD 0000 

0001 0000 

NUM$BLOCKS 0001 

BLK$PTR(O) - 63 00 00 
BLK$PTR(2) 

decimal equivalent 

256 

o 

o 

o 

decimal equivalent 

1 (FT$FNODEMAP) 

1 

0000 

o 

o 

o 

13 

1 

1 

99 

A-26 



STRUCTURE OF iRMX 86 m NAMED VOLUMES 

field value (hex) 

PTR( 1) - PTR( 7) 

NUM$BLOCKS 0000 

BLK$PTR(O) - 00 00 00 
BLK$PTR(2) 

THIS$SIZE 0080 0000 

RESERVED$A 0000 

RESERVED$B 0000 

ID$COUNT 0000 

ACC(9) 

ACCESSOR(O) -
ACCESSOR(2) 

ACCESS 

ID 

PARENT 

AUX(*) 

FF 

0000 

0000 

00 00 00 

Fnode 3 (Accounting File) 

decimal equivalent 

o 

o 

128 

o 

o 

o 

No space for this file is allocated on the volume. However, its fnode 
must appear in the fnode file. 

field 

FLAGS 

TYPE 

GRAN 

OWNER 

CR$TIME 

ACCESS$TIME 

MOD$TIME 

TOTAL$SIZE 

value (hex) 

0005 

03 

01 

0000 

0000 0000 

0000 0000 

0000 0000 

0000 0000 

A-27 

decimal equivalent 

3 (FT$ACCOUNT) 

1 

0000 

o 

o 

o 

o 



STRUCTURE OF iRMX 86- NAMED VOLUMES 

field value (hex) decimal egui va lent_ 

TOTAL$BLKS 0000 0000 0 

POINTR(40) 

PTR( 0) -PTR( 7) 

NUM$BLOCKS 0000 0 

BLK$PTR(O) - 00 00 00 0 
BLK$PTR(2) 

THIS$SIZE 0000 0000 0 

RE SERVE D$A 0000 0 

RESERVED$B 0000 0 

ID$COUNT 0000 0 

ACC(9) 

ACCESSOR(O) -
ACCESSOR(2) 

ACCESS FF 

ID 0000 

PARENT 0000 

AUX(*) 00 00 00 

Fnode 4 (Bad Blocks File) 

No space for this file is allocated on the volume. However, its fnode 
must appear in the fnode file. 

field 

FLAGS 

TYPE 

GRAN 

OWNER 

CR$TlME 

ACCESS$TlME 

value ~hex~ 

0005 

04 

01 

0000 

0000 0000 

0000 0000 

A-28 

decimal eguivalent 

3 (FT$BADBLOCK) 

1 

0000 

o 

o 



STRUCTURE OF 

field value (hex~ 

MOD$TlME 0000 0000 

TOTAL$SIZE 0000 0000 

TOTAL$BLKS 0000 0000 

POINTR(40) 

PTR( O)-PTR( 7) 

NUM$BLOCKS 0000 

BLK$PTR(O) - 00 00 00 
BLK$PTR(2) 

THIS$SIZE 0000 0000 

RESERVED$A 0000 

RESERVED$B 0000 

ID$COUNT 0000 

ACC(9) 

ACCESSOR(O) -
ACCESSOR(2) 

ACCESS FF 

ID 0000 

PARENT 0000 

AUX(*) 00 00 00 

Fnode 5 (Root Directory) 

field value ~hex) 

FLAGS 0025 

TYPE 06 

GRAN 01 

OWNER FFFF 

CR$TIME 0000 0000 

ACCESS$TlME 0000 0000 

iRMX 86· NAMED VOLUMES 

A-29 

decimal eguivalent 

0 

0 

0 

0 

0 

0 

0 

0 

0 

decimal eguivalent 

1 (FT$DIR) 

1 

(WORLD) 

o 

o 



STRUCTURE OF iRMX 86 111 NAMED VOLUMES 

field value (hex) decimal eguivalent 

MOD$TIME 0000 0000 0 

TOTAL$SIZE 0010 0000 16 

TOTAL$BLKS 0001 0000 1 

POINTR(40) 

PTR(O) 

NUM$BLOCKS 0001 1 

BLK$PTR( 0) - 70 00 00 112 
BLK$PTR(2) 

PTR(l) - PTR(7) 

NUM$BLOCKS 0000 0 

BLK$PTR( 0) - 00 00 00 0 
BLK$PTR(2) 

THIS$SIZE 0080 0000 128 

RE SERVE D$A 0000 0 

RESERVED$B 0000 0 

ID$COUNT 0001 1 

ACC(9) 

ACCESSOR(O) 

ACCESS FF 

ID FFFF (WORLD) 

ACCESSOR(l) -
ACCESSOR(2) 

ACCESS FF 

ID 0000 

PARENT 0005 

AUX(*) 00 00 00 

A-30 



STRUCTURE OF iRMX 86 m NAMED VOLUMES 

Fnode 6 (Example File) 

field 

FLAGS 

TYPE 

GRAN 

OWNER 

CR$TIME 

ACCESS$TIME 

MOD$TIME 

TOTAL$SIZE 

TOTAL$BLKS 

POINTR(40) 

PTR(O) 

value 

0025 

08 

01 

FFFF 

0000 0000 

0000 0000 

0000 0000 

01F4 0000 

0004 0000 

NUM$BLOCKS 0004 

BLK$PTR(O) - 80 00 00 
BLK$PTR(2) 

PTR ( 1 ) - PTR ( 7 ) 

NUM$BLOCKS 0000 

BLK$PTR(O) - 00 00 00 
BLK$PTR(2) 

THIS$SIZE 0200 0000 

RESERVED$A 0000 

RESERVED$B 0000 

ID$COUNT 0001 

ACC(9) 

ACCESSOR(O) 

ACCESS OF 

ID FFFF 

decimal equivalent 

8 (FT$DATA) 

1 

(WORLD) 

o 

o 

o 

500 

4 

4 

128 

o 

o 

512 

o 

o 

1 

(WORLD) 

A-31 



STRUCTURE OF iRMX 86- NAMED VOLUMES 

field value decimal equivalent 

ACCESSOR( 1) -
ACCESSOR(2) 

ACCESS 00 

ID 0000 

PARENT 0005 

AUX(*) 00 00 00 

FREE SPACE MAP FILE 

The following is a listing of the free space map file. This file starts 
at byte 12416 of the volume (volume block 61H). 

byte 

12416 
12432 
12448 
12464 
12480 
12496 
12512 
12528 
12544 
12560 
12576 
12592 
12608 
12624 
12640 
12656 

0000 0000 0000 0000 0000 0000 FFFO FFFE 
FFFO FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF 0003 0000 0000 

A-32 



STRUCTURE OF iRMX 86- NAMED VOLUMES 

FREE FNODES MAP FILE 

The following is a listing of the free fnodes map file. This file starts 
at byte 12672 of the volume (volume block 63H). 

byte 
12672 
12688 
12704 
12720 
12736 
12752 
12768 
12784 

FF80 FFFF FFFF FFFF FFFF FFFF OOOF 0000 
0000 0000 0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 0000 0000 

ROOT DIRECTORY 

The following is a listing of the root directory. This file starts at 
byte 14336 of the volume (volume block 70H). 

byte 
14336 
14352 
14368 
14384 
14400 
14416 
14432 
14448 

06 00 45 58 41 4D 50 4C 45 2E 46 49 4C 45 00 00 
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 

A-33 





INDEX 

Underscored entries are primary references. 

abbreviations 2-1 
access rights 2-16 
ADD command 2-25 
ADDRESS command 2-25 
ALLOCATE command 2-5 
allocation status 2-15, A-9 
attributes 2-7 
automatic device recognition A-4 
auxiliary bytes A-13 

bad blocks file A-15, A-28 
BLOCK command 2-~ 
buffer 2-9, 2-18, 2-31, 2-34, 2-37, 2-48 

command dictionary 2-4 
commands 2-1 

DEC command 2-27 
density A-4 
device granularity A-5 
device recognition A-4 
dictionary 2-4 
directory 2-12, A-16 
DISK command 2-7 
DISKVERIFY 

command 1-2 
output 1-4 

DISPLAYBYTE command 2-9 
DISPLAYDIRECTORY command 2-12 
DISPLAYFNODE command 2-14 
DISPLAYWORD command 2-18 
DIV command 2-27 

example volume A-22 
EXIT command 2-21 

file 
driver A-5 
granularity 2-15, A-10 
owner 2-15, A-II 
type 2-15, A-10 

fnode file A-8, A-14, A-24 
fnodes 2-6, 2-14, 2-22, 2-32, 2-40, A-5, A-7 
FREE command 2-22 
free fnodes map 2-32, 2-41, A-15, A-26, A-33 
free space map 2-32, 2-41, A-14, A-25, A-32 

Index-l 



INDEX (continued) 

granularity 2-15, A-5, A-I0 

HELP command 2-24 
HEX command 2-27 

initial files A-8 
input radices 2-2 
interleave factor A-3, A-5 
invocation 1-2 
iRMX 86 volume label A-4, A-23 
ISO label A-2, A-22 

long files 2-15, A-9, A-12, A-18 

miscellaneous commands 2-25 
ADD 2-25 
ADDRESS 2-25 
BLOCK 2-26 
DEC 2-27 
DIV 2-27 
HEX 2-27 
HOD 2-28 
MOL 2-28 
SUB 2-29 

MOD command 2-28 
MOL command 2-28 

NAMED verification 1-3, 2-41 
named volume structure A-I 
NAMEDI verification 1-3, 2-40 
NAMED2 verification 1-3, 2-40 

owner 2-15, A-II 

parameters 2-1 
parent directory A-13 
PHYSICAL verification 1-3, 2-41 

QUIT command 2-30 

radices 2-2 
READ command 2-31 
recording 

density A-4 
sides A-5 
size A-5 

root directory A-5, A-16, A-29, A-33 

SAVE command 2-32 
short files 2-15, A-9, A-12, A-17 
size A-5 
structure of iRMX 86 named volumes A-I 
SUB command 2-29 
SUBSTITUTEBYTE command 2-34 
SUBSTITUTEWORD command 2-37 

Index-2 



track skew A-6 

VERIFY 1-3, 2-32, 2-40 
volume 

blocks 2-5, 2-22, 2-31 

INDEX (continued) 

free space map 2-32, 2-40, A-14, A-25, A-32 
granularity A-5 
labels A-2, A-4 
name A-3, A-4 
size A-5 

working buffer 
WRITE command 

2-9, 2-18, 2-31, 2-34, 2-37, 2-48 
2-48 

Index-3 



REQUEST FOR READER'S COMMENTS 

iRMX 86™ Disk Verification 
Utility Reference Manual 

144133-001 

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets 
you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this 
document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are 
needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. 

NAME ______________________________________________________ DATE ____________ _ 

TITLE 

COMPANY NAME/DEPARTMENT ________________________________________________ _ 

ADDRESS ________________________________________________________________ __ 

CITY _____________________________ STATE ____ ZIP CODE ____ _ 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing I ntel products. Your comments on the back of this form 
will help us produce better manuals. Each reply will be carefully reviewed by the responsible 
person. All comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
5200 N.E. Elam Young Pkwy. 
Hillsboro, Oregon 97123 

O.M.S. Technical Publications 

""" 
NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 

Printed in U.S.A. 


	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	I-01
	I-02
	I-03
	replyA
	replyB
	xBack

