L——

GUIDE TO WRITING
DEVICE DRIVERS FOR THE iRMX"86
AND iRMX™88 I/0 SYSTEMS

Order Number: 142926-003

Copyright © 1980, 1981, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

————

PRINT

REV. REVISION HISTORY DATE

-001 Original Issuc 11/80

-002 Updated to reflect the changes in 5/81
version 3.0 of the iIRMX 86 software.

-003 Broadened to cover the IRMX 88 12/81

Executive and rcorganized for
improved usability.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appcar in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied inan
Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Insite iSBC Multibus
CREDIT Intet iISBX Multimodule

i Int Library Manuger Plug-A-Bubble
ICE Intelevision MCW PROMPT

iCS Intellec Mepachassis RMX/80

im iOSP 86 Micromainframe System 2000
iMMX iRMX Micromap UPI

ii

PREFACE

The I/0 System is the part of the iRMX 86 Operating System and the

iRMX 88 Real-Time Multitasking Executive that provides you with the
capability of accessing files on peripheral devices. Each of these I/0O
Systems is implemented as a set of file drivers and a set of device
drivers. A file driver provides user access to a particular type of
file, independent of the device on which the file resides. A device
driver provides a standard interface between a particular device and one
or more file drivers. Thus, by adding device drivers, your application
system can support additional types of devices. And it can do this
without changing the user interface, since the file drivers remain
unchanged.

This manual describes how to write device drivers to interface with the
I/0 Systems. It illustrates the basic concepts of device drivers and
describes the different types of device drivers (common, random access,
and custom).

READER LEVEL

This manual assumes that you are a systems—level programmer experienced
in dealing with I/0 devices. In particular, it assumes that you are
familiar with the following:

e The PL/M-86 programming language and/or the MCS-86 Macro
Assembly Language.

° The hardware codes necessary to perform actual read and write
operations on your I/0 device. This manual does not document
these device~dependent instructions.

If you plan to write a device driver that uses iRMX 86 system calls, you
should be familiar with the following, as well:

e The iRMX 86 Operating System and the concepts of tasks,
segments, and other objects.

e The I/0O System, as described in the iRMX 86 Basic I/0 SYSTEM
REFERENCE MANUAL. This manual documents the user interface to
the I/0 System.

® Regions, as described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.

And if you plan to write a device driver that uses iRMX 88 functions or
system calls, you should be familiar with the iRMX 88 Reference Manual.

iii

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful

to users of this manual.

Manual
iRMX™ 86 Nucleus Réference Manual
iRMX™ 86 Basic I/0 System Reference Manual
iRMX™ 86 Extended I/0 System Reference Manual
iRMX™ 86 Loader Reference Manual
iRMX™ 86 System Programmer's Reference Manual
iRMX™ 86 Configuration Guide
iRMX™ 88 Reference Manual
iRMX™ 80/88 Interactive Configuration Utility User's Guide

PL/M-86 Programming Manual for 8080/8085-Based Development
Systems

PL/M~86 Compiler Operating Instructions for 8080/8085-Based
Development Systems

PL/M-86 User's Guide for 8086-Based Development Systems

8086/8087/8088 Macro Assembly Language Reference Manual
for 8080/8085-Based Development Systems

8086/8087/8088 Macro Assembly Language Reference Manual
for 8086-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions
for 8080/8085-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions
for 8086-Based Development Systems

8086 Family Utilities User's Guide for 8080/8085-Based
Development Systems)

iAPX 86 Family Utilities User's Guide for 8086-Based
Development Systems

iv

Number
9803122
9803123
143308

143381
142721
9803126

143232

142603

9800466

9800478

121636

121623

121627

121624

121628

9800639

121616

CONTENTS

CHAPTER 1

INTRODUCTION

I/0 Devices and Device DriverScececccccecccccscscssssesessnsossssscsss
I/0 ReqUesStSecsecccccossscescsvsossccosssssocsscoosssocsssoossscsnes
Types of Device DriverSeecececccsccecsssccsesoscsccccsccssosscscnnsnns
How to Read this Manualeeesesoocccccscossssscsssscccosscscoscssosscosssse

CHAPTER 2
DEVICE DRIVER INTERFACES
I/0 System InterfaceSsecsesccssssccccsrsesssssssscsscssssssosssssnanses
Device=Unit Information Block (DUIB)ecccccccccccscsscssssccncsnes
DUIB Structurec.-.................’......-..........-..........
USing the DUIBS-.-.-..o,oo...o-ooooo-oooo-o.o-ooooooo-o-oooocoo
Creating DUIBSesecoescsossccsscscscscssssssccccsosssstscsscsssancnns
I1/0 Request/Result Segment (IORS)ecececceccescccccccocscossosscncnss
Device InterfacesScececssecscccscccsoscscnsccssosccssscsscsscsscsscsnsssncs

CHAPTER 3

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Categories of DeviceSecesccessecscssccenosesoscteccsccsscccscscssssccssscs
Common DeviceS.iceccsocesecestscncnsscsscssscsscccsscasossscscsssscssce
Random Access DeviceSsceeccesesccscacssscsoscscssscscsccsscccsccsnces
Custom DeviceSeecececescccesscssscsssosssosotscsccscssscsscscsnsnssse

I/0 System—Supplied Routines for Common and Random Access
Device DriverScecccsceccccscecccscescecscssnscssssscsssscssscscsnne

I/0 System Algorithm for Calling the Device Driver Procedurese.e...

Required Data StructureScecccccssccccsccssesssocscssnscscsscscssscscssnnanss
Device Information Tableeceeccecccecscsosscsccssscacescncsssssscsssnss
Unit Information Tablececcecccssoccscocssssossccescssosscscsssocccns
Relationships Between I/0 Procedures and I/O Data StructureSeeee.

Writing Drivers for Use with both iRMX 86— and iRMX 88-based
Systems.................-..-...............................o.....

Device Data storage Area-ooo.o..coooo-oo.co.--..oo.oooococo-.c-oo..

CHAPTER 4

L/0 REQUESTS

I/0 System Responses to I/0 RequeStSececccccscessssssossnssscssscns
Attach Device RequeStSeesscscecccscsevesscscccccsscssscsccscnscsns
Detach Device RequeStSescecccccscescsccosssssscscscssssssssscsssscncsns
Read, Write, Open, Close, Seek, and Special RequesStScecscscseccces
Cancel RequesStSesecsccscsccccocscesoscsscsesssscssssccsssccssosssssnns

DUIB and IORS Fields Used by Device DriversScccccecccceccccccccsccscce

PAGE

CONTENTS (continued)

CHAPTER 5

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

General InformatioONecsccecesccessesessscsssessssscsssnsscsssscccnscs
Device Initialization Procedur@ececcssececcesscssossccascscscscscscscsscns
Device Finish Procedur@ecececccesscsccccsscccstssasssssssacscccsscscscacse
Device Start Procedure@eccccscccccsvcscssscsoscsnosssssnesossssssscss
Device Stop Procedurfeecececseseccescscscssscssossescssssscsssncssascas
Device Interrupt Procedur@.ecsesccescscsccssssssssessscsccccssccsessas

CHAPTER 6

WRITING A CUSTOM DEVICE DRIVER

Initialize I/0 Procedur@ecccccccesccsssasscssscesssnssosnasssssscscces
Finisgh I/O Procedureerccccscesscessoscsoscsncssescsscssosnscsncsccsccosone
Queue I/0 Procedureeeccccccssscccscsscssssessscassasssrsssssasncsssnnsns
Cancel I/0 Procedur@eeccscscssacsssascsssssnsscssssssasssassssssasnsssss
Implementing a Request QUEUEcsccccccssoascsscsssscsccsssscsossssscsnae

CHAPTER 7
BINDING A DEVICE DRIVER TO THE I/O SYSTEMceseoscsccscsccsccccsssscns

APPENDIX A

COMMON DRIVER SUPPORT ROUTINES

INITSIO Procedur@eccccesscsecsccecosccssnnossssscosostsscscsscsccncasce
FINISHSIO ProcedurCececcescescescccosccsscssssscsscsncsenssssassesssscscscs
QUEUESIO ProcedUrececccccssessccssesssesssssosssscssssssscssssccnse
CANCELSIO Procedur@ececscccccccccacsscocscssssssscsasssssssscscsssnsas
Interrupt Task (INTERRUPTSTASK)cceeseccsssoscsscocscscscscscnscsnansosse

FIGURES

1-1. Communication LevelSeeeccecsosssescssscssssssscsscssscsscnsncans
1-2. Device Numberingeecececcocscsccscsssesscassscssssssscccscns
2-1l. Attaching DeviceSesccecccscscessosssssssscssccsnssscocnassans
3-1. Interrupt TaSk Interaction.--.-.--............-............
3-2. How the I/0 System Calls the Device Driver ProcedureS.ecess.
3-3. DUIBs, Device and Unit Information TableSeesevcecccesccccces
3-4. Relationships Between I/0 Procedures and I/0 Data
SETUCEUTCSecesssccssssscsssvssssessncoscscsssoscssscssscsssscss
6—1. Request QUEUE«cesecctesccocssccccscsssssessscssscscscsccnse
A-1. Common Device Driver Initialize I/O Procedureccecsccccceccss
A-2. Common Device Driver Finish 1/0 Procedurecceccecsccccccccces
A-3. Common Device Driver Queue I/0 Procedur€ecescccsscecscscccces
A-4, Common Device Driver Cancel I/0 Procedure.ccececescsceccones
A-5. Common Device Driver Interrupt TasKeeesoosssosescseoccsscns

TABLES

4-1, DUIB and IORS Fields Used by Common Device Driverseesecececces
4-2. DUIB and IORS Fields Used by Random Access Device Driverse...
4-3. DUIB and IORS Fields Used by Custom Device DriverSeececsccccscscs

vi

7-1

4-3
4-4
4-5

CHAPTER 1. INTRODUCTION

The iRMX 86 and iRMX 88 I/0 Systems are each implemented as a set of file
drivers and a set of device drivers. File drivers provide the support
for particular types of files (for example, the named file driver
provides the support needed in order to use named files). Device drivers
provide the support for particular devices (for example, an iSBC 215
device driver provides the facilities that enable an iSBC 215 Winchester
drive to be used with the I/0 System). Each type of file has its own
file driver and each device has its own device driver.

One of the reasons that the I/0 Systems are broken up in this manner is
to provide device~independent I/0. Application tasks communicate with
file drivers, not with device drivers. This allows tasks to manipulate
all files in the same manner, regardless of the devices on which they
reside. File drivers, in turn, communicate with device drivers, which
provide the instructions necessary to manipulate physical devices.
Figure 1-1 shows these levels of communication.

APPLICATION TASK

file independent Interface

FILE DRIVER

device independent interface

DEVICE DRIVER

DEVICE

Figure 1-1. Communication Levels

1-1

INTRODUCTION

The I/0 System provides a standard interface between file drivers and
device drivers. To a file driver, a device is merely a standard block of
data in a table. In order to manipulate a device, the file driver calls
the device driver procedures listed in the table. To a device driver, all
file drivers seem the same. Every file driver calls device drivers in
the same manner. This means that the device driver does not need to
concern itself with the concept of a file driver. It sees itself as
being called by the I/O System and it returns information to the I/0
System. This standard interface has the following advantages:

° The hardware configuration can be changed without extensive
modifications to the software. Instead of modifying entire file
drivers when you want to change devices, you need only substitute
a different device driver and modify the table.

° The I/0 System can support a greater range of devices. It can

support any device as long as you can provide for the device a
driver that interfaces to the file drivers in the standard manner.

I1/0 DEVICES AND DEVICE DRIVERS

Each I/0 device consists of a controller and one or more units. A device
as a whole is identified by a device number. Units are identified by
unit number and device-unit number. The unit number identifies the unit
within the device and the device—unit number identifies the unit among
all the units of all of the devices. Figure 1-2 contains a simplified
drawing of three I/0 devices and their device, unit, and device-unit

numbers.

DEVICE 0 DEVICE 1 DEVICE 2
CONTROLLER CONTROLLER CONTROLLER
UNIT 0 UNIT 1 UNIT 0 UNIT 1 UNIT 2 UNIT 0
DEVICE- DEVICE- DEVICE- DEVICE- DEVICE- DEVICE-
UNIT 0 UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT §

Figure 1-2. Device Numbering

INTRODUCTION

You must provide a device driver for every device in your hardware
configuration. That device driver must handle the I/0 requests for all
of the units the device supports. Different devices can use different
device drivers; or if they are the same kind of device, they can share
the same device driver code. (For example, two iSBC 215 controllers are
two separate devices and each has its own device driver. However, these
device drivers share common code.)

I/0 REQUESTS

To the device driver, an I/0 request is a request by the 1/0 System for
the device to perform a certain operation. Operations supported by the
I/0 System are:

Read

Write

Seek

Special
Attach device
Detach device
Open

Close

The I/0 System makes an I/0 request by sending an I/0 request/result
segment (IORS) containing the necessary information to the device
driver. (The IORS is described in Chapter 2.) The device driver must
translate this request into commands to the device in order to cause the
device to perform the requested operation.

TYPES OF DEVICE DRIVERS

The I/0 System supports three types of device drivers: custom, common,
and random access. A custom device driver is one that the user creates
in its entirety. This type of device driver may assume any form and may
provide any functions that the user wishes, as long as the I/0 System can
access it by calling four procedures, designated as Initialize 1/0,
Finish I/0, Queue I1/0, and Cancel I/0.

The I/0 System provides the basic support routines for the common and
random access device driver types. These support routines provide a
queueing mechanism, an interrupt handler, and other features needed by
common or random access devices. If your device fits into the common or
random access device classification, you need to write only the
specialized, device-dependent procedures and interface them to the ones
provided by the I/0 System in order to create a complete device driver.

1-3

INTRODUCTION

HOW TO READ THIS MANUAL

This manual is for people who plan to write device drivers for use with
iRMX 86— and/or iRMX 88-based systems. Because there are numerous
terminology differences between the two iRMX systems, the tone of this
manual is general, unlike that of other manuals for either system. For
iRMX 88 users, this should not be a problem, but iRMX 86 users should
take note of the following:

e In a number of places the phrase "the location of” is substituted
for "a token for”.

e The "device data storage area” that is alluded to in many places
is actually an iRMX 86 segment.

e The term “"resources” usually means "objects”. It is clear from
context which meaning is intended for the word "resources"”.

1-4

CHAPTER 2. DEVICE DRIVER INTERFACES

Because a device driver is a collection of software routines that manages
a device at a basic level, it must transform general instructions from
the 1/0 System into device-specific instructions which it then sends to
the device itself. Thus a device driver has two types of interfaces: an
interface to the I/0 System, which is the same for all device drivers,
and an interface to the device itself, which varies according to device.
This chapter discusses these interfaces.

1/0 SYSTEM INTERFACES

The interface between the device driver and the I/0 System consists of
two data structures, the device—unit information block (DUIB) and the I/O
request/result segment (IORS).

DEVICE-UNIT INFORMATION BLOCK (DUIB)

The DUIB is an interface between a device driver and the I/0 System in
the sense that the DUIB contains the addresses of the device driver
routines. By accessing the DUIB for a unit, the I/0 System can call the
appropriate device driver. All devices, no matter how diverse, use this
standard interface to the I/0 System. You must provide a DUIB for each
device—unit in your hardware system. You supply the information for your
DUIBs as part of the configuration process.

DUIB Structure

The structure of the DUIB is defined as follows:

DEVICE DRIVER INTERFACES

DECLARE

DEVSUNITSINFOSBLOCK STRUCTURE(

NAME (14)
FILESDRIVERS
FUNCTS

FLAGS
DEVSGRAN
LOWSDEVSSIZE
HIGHSDEVSSIZE
DEVICE

UNIT

DEVSUNIT
INITSIO
FINISH$IO
QUEUESIO
CANCEL$IO
DEVICESINFOSP
UNIT$INFOSP
UPDATESTIMEOUT
NUM$BUFFERS

BYTE,
WORD,
BYTE, -
BYTE,
WORD,
WORD,
WORD,
BYTE,
BYTE,
WORD,
WORD,
WORD,
WORD,
WORD,
POINTER,
POINTER,
WORD,
WORD,

PRIORITY

where:

NAME

FILE$DRIVERS

BYTE);

BYTE array specifying the name of the DUIB. This
name uniquely identifies the device—unit to the I/0O
System. If you are an iRMX 86 user, you specify
this name when attaching a unit by means of the
RQSASPHYSICALSATTACHSDEVICE system call. If you
are an iRMX 88 user, you specify the name when
configuring with the Interactive Configuration
Utility. Device drivers can ignore this field.

WORD specifying file driver validity. Setting bit
number 1 of this word implies that file driver
number i+l can attach this device—unit. Clearing
bit number i implies that file driver i+l cannot
attach this device—~unit. The low-order bit is bit
0. The bits are assoclated with the file drivers
as follows:

bit file driver
0 physical (no. 1)
1 stream (no. 2)
3 named (no. 4)

The remainder of the word must be set to zero.
(For iRMX 88 users, the physical file driver can
attach devices which are files, and the named file
driver can attach devices which can contain
multiple files.) Device drivers can ignore this
field.

2-2

FUNCTS

FLAGS

DEV$GRAN

DEVICE DRIVER INTERFACES

BYTE specifying the I/O function validity for this
device—unit. Setting bit number i implies that this
device-unit supports function number i. Clearing bit
number i implies that the device-unit does not
support function number i. The low-order bit is bit
0. The bits are associated with the functions as
follows:

o
e
“r

function

F$READ
FSWRITE
F$SEEK
F$SPECIAL
FSATTACHSDEV
FS$DETACHSDEV
F$OPEN
F$CLOSE

NoUL WO ‘

Bits 4 and 5 should always be set. Every device
driver requires these functions.

This field is used for informational purposes only.
The setting or clearing of bits in this field does
not limit the device driver from performing any 1/0
function. In fact, each device driver must be able
to support all of the 1/0 functions, either by per-
forming the function or by returning a condition code
indicating the inability of the device to perform
that function. However, in order to provide accurate
status information, this field should indicate the
device's ability to perform the I/0 functions.

BYTE specifying characteristics of diskette devices.
The significance of the bits is as follows:

bit meaning
0 0 = not a diskette device;
1 = diskette device
1 0 = single density; 1 = double density
2 0 = single sided; 1 = double sided
3 0 = 8~inch diskettes;
1

5 1/4-inch diskettes
47 reserved

For non—-diskette devices, bits 1-7 of this field have
no significance.

WORD specifying the device granularity in bytes.

This parameter is most important for random access
devices. It specifies the minimum number of bytes of
information that the device reads or writes in one
operation. You should set this value equal to the
volume granularity specified when the volume was
formatted.

2-3

LOWSDEVSSIZE
HIGHSDEVSSIZE

DEVICE

UNIT

DEVSUNIT

INITSIO

FINISHSIO

QUEUES$IO

CANCELSIO

DEVICES$INFOS$P

UNITSINFOSP

UPDATE$TIMEOQOUT

DEVICE DRIVER INTERFACES

WORD pair that forms a 32-bit field specifying the
number of bytes of information that the device—-unit
can store.

BYTE specifying the device number of the device with
which this device-unit is associated. Device drivers
can ignore this field.

BYTE specifying the unit number of this device—unit.
This distinguishes the unit from the other units of
the device.

WORD specifying the device—unit number. This number
distinguishes the device-unit from the other units in
the entire hardware system. Device drivers can
ignore this field.

WORD specifying the offset in the code segment of
this unit's Initialize I/0 device driver procedure.

WORD specifying the offset in the code segment of
this unit's Finish I/0 device driver procedure.

WORD specifying the offset in the code segment of
this unit's Queue I/0 device driver procedure.

WORD specifying the offset in the code segment of
this unit's Cancel I/0 device driver procedure.

POINTER to a structure which contains additional
information about the device. The common and random
access device drivers require device information
structures of a particular format. These structures
are described in Chapter 4. If you are writing a
custom driver, you can place information in this
structure depending on the needs of your driver.
Specify a zero for this parameter if the associated
device driver does not use this field.

POINTER to a structure that contains additional
information about the unit. Random access device
drivers require this unit information structure in a
particular format. Refer to Chapter 4 for further
information. If you are writing a custom device
driver, place information in this structure depending
on the needs of your driver. Specify a zero for this
parameter if the assoclated device driver does not
use this field.

WORD specifying the number of system time units that
the I/0 System is to wait before writing a partial
sector after processing a write request for a disk
device. In the case of drivers for non-disk devices,
this field should be set to OFFFFH during
configuration. Device drivers can ignore this field.

2-4

DEVICE DRIVER INTERFACES

NUMS$BUFFERS WORD which, if not zero, specifies that the device
is of the random access variety and indicates the
number of buffers I/0 System may allocate. The I/0
System uses these buffers to perform data blocking
and deblocking operations. That is, it guarantees
that data is read or written beginning on sector
boundaries. If you desire, the random access
support routines can also be made to guarantee that
no data is written or read across track boundaries
in a single request (see the section on the unit
information table in Chapter 4). A value of zero
indicates that the device is not a random access
device. Device drivers can ignore this field.

PRIORITY BYTE specifying the priority of the I/O System
service task for the device. Device drivers can
ignore this field.

Using the DUIBs

In order to use the I/0 System to connect your application software and
any files on a device—unit, the unit must first be attached. If you are
an iRMX 88 user, this is done automatically when you first attach or
create a file on the unit. If you are an iRMX 86 user, you attach the
unit by using the RQ$SASPHYSICALSATTACHSDEVICE system call (refer to the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL for a description of this
system call).

When you cause a unit to become attached, the I/0 System assumes that the
device~unit identified by the device name field of the DUIB has the
characteristics identified in the remainder of the DUIB. Thus, whenever
the application software makes any I/O requests using the connection to
the attached device-unit, the I/0 System ascertains the characteristics
of that unit, including which device driver procedures to call in order
to actually process the I/0 request, by means of the associated DUIB.

The I/0 System looks at the DUIB and calls the appropriate device driver
routine listed there in order to process the I/0 request.

If you would like the I/O System to assume different characteristics at
different times for a particular device-unit, you can accomplish this by
providing alternate DUIBs for the device—unit. If you supply mltiple
DUIBs, each containing identical device number, unit number, and
device—unit number parameters, but different DUIB device name parameters,
you can choose which DUIB to associate with a device-unit that you are
attaching by specifying the appropriate dev$name parameter in the
RQ$ASPHYSICALSATTACHSDEVICE system call (for iRMX 86 users) or the
appropriate device name when calling DQ$ATTACHSFILE or DQSCREATESFILE
(for iRMX 88 users). Before the DUIBs for a unit can be changed,
however, the unit must be detached.

DEVICE DRIVER INTERFACES

Figure 2-1 illustrates this concept. It shows six DUIBs, two for each of
three units of one device. The main difference within each pair of DUIBs
in this figure is the device granularity parameter, which is either 128
or 512. With this setup, a user can attach any unit of this device with
one of two device granularities. In Figure 2-1, units O and 1 are
attached with a granularity of 128 and unit 2 with a granularity of 512.
To change this, the user can detach the device and attach it again using
the other DUIB name.

name = UNITA
dev$gran = 128

device = 1
unit = 0
dev$unit = 6

1

name = UNITA1
dev$gran = 512

device = 1
unit = 0
dev$unit = 6

1
CALL RQ$ASPHYSICALSATTACHSDEVICE (UNITA,...)

name = UNITB
dev$gran = 128

devil':e =1
unit = 1
dev$unit = 7

i)

name = UNITB1
dev$gran = 512

device = 1
unit = 1
dev$unit = 7

|
CALL RQS$PHYSICALSATTACHSDEVICE (UNITB,...)

name = UNITC
dev$gran = 128

name = UNITC1
dev$gran = 512

DUIiBs for
device-unit 6

DUIBs for
device-unit 7

H : DUiBs for
device = 1 device = 1 device-unit 8
unit = 2 unit = 2
dev$unit = 8 dev$unit = 8

CALL RASASPHYSICALSATTACHSDEVICE (UNITC1,..)

Figure 2-1. Attaching Devices

Creating DUIBs

Before the system starts running, you must provide all of the DUIBs that
your system will ever need; you cannot create additional ones at run
time. If you are an iRMX 88 user, you define your DUIBs during
interactive configuration. If, on the other hand, you are an iRMX 86
user, place the DUIBs in the I/0 System configuration file as a part of
the I/0 System configuration process. The iRMX 86 CONFIGURATION GUIDE
describes this procedure. Observe the following guidelines when creating
DUIBs:

o Specify a unique name for every DUIB, even those that describe
the same device-unit.

° Create at least one DUIB for every device—unit in the hardware
configuration. Since the DUIB contains the addresses of the
device driver routines, this guarantees that no device-unit is
left without a device driver to handle its I/O.

2-6

DEVICE DRIVER INTERFACES

® Make sure to specify the same device driver procedures in all of
the DUIBs associated with a particular device. There is only one
set of device driver routines for a given device, and each DUIB
for that device must specify this unique set of routines.

° If you are using a common or random access device driver, you
must create a device information table for each device. If you
are using a random access device driver, you must create a unit
information table for each unit. See Chapter 4 for
specifications of these tables. Place pointers to these tables
in the device$info$p and unit$info$p fields of the appropriate
DUIBs. If you are using custom device drivers and they require
these or similar tables, you must create them, as well.

I/0 REQUEST/RESULT SEGMENT (IORS)

An I/0 request/result segment (IORS) is a data structure that the I/0
System creates when a user requests an I/0 operation. It contains
information about the request and about the unit on which the operation
is to be performed. The I/O System passes the IORS to the appropriate
device driver which then processes the request. When the device driver
performs the operation indicated in the IORS, it must modify the IORS to
indicate what it has done and send the IORS back to the response mailbox
(exchange) indicated in the IORS.

The IORS is the only mechanism that the I/0O System uses to transmit
requests to device drivers. Its structure is always the same. Every
device driver must be aware of this structure and must update the
information in the IORS after performing the requested function.
IORS is structured as follows:

The

DECLARE

IORS STRUCTURE(
STATUS WORD,
UNIT$STATUS WORD,
ACTUAL WORD,
ACTUALSFILL WORD,
DEVICE WORD,
UNIT BYTE,
FUNCT BYTE,
SUBFUNCT WORD,
LOWSDEVSLOC WORD,
HIGH$DEVSLOC WORD,
BUFF$P POINTER,
COUNT WORD,
COUNTSFILL WORD,
AUXS$P POINTER,
LINKSFOR POINTER,
LINK$BACK POINTER,
RESP$MBOX WORD,
DONE BYTE,
FILL BYTE,
CANCEL$ID WORD) ;

2-7

where:

STATUS

UNIT$STATUS

ACTUAL

ACTUALSFILL

DEVICE

UNIT

FUNCT

DEVICE DRIVER INTERFACES

WORD in which the device driver must place the
condition code for the I/0 operation. The ES$SOK
condition code indicates successful completion of the
operation. For a complete list of possible condition
codes, see either the iRMX 86 NUCLEUS REFERENCE
MANUAL, the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL,
and the iRMX 86 EXTENDED 1/0 SYSTEM REFERENCE MANUAL,
or the iRMX 88 REFERENCE MANUAL.

WORD in which the device driver must place additional
status information 1f the status parameter was set to
indicate the ESIO condition. The unit status codes
and their descriptions are as follows:

code mnemonic description
0 I0SUNCLASS Unclassified error
1 TI0$SOFT Soft error; a retry is possible
2 TIOSHARD Hard error; a retry is impossible
3 IOSOPRINT Operator intervention is required.
4 IOSWRPROT Write-protected volume

The I/0 System reserves values O through 15 (the
rightmost four bits) of this field for unit status
codes. The high 12 bits of this field can be used for
any other purpose that you wish. For example, the
iSBC 204 driver places the result byte in the high
eight bits of this field. Refer to the iSBC 204
FLEXIBLE DISKETTE CONTROLLER HARDWARE REFERENCE MANUAL
for further information on the result byte.

WORD which the device driver must update on the
completion of an I/0 operation to indicate the number
of bytes of data actually transferred.

Reserved WORD.

WORD in which the I/O System places the number of the
device for which this request is intended.

BYTE in which the I/0 System places the number of the
unit for which this request is intended.

BYTE in which the I/0 System places the function code
for the operation to be performed. Possible function
codes are:

SUBFUNCT

LOW$SDEVSLOC
HIGHSDEVSLOC

BUFF$P

COUNT

COUNTSFILL

AUXS$P

DEVICE DRIVER INTERFACES

function code
FSREAD
FSWRITE
F$SEEK
FSSPECTAL
FSATTACHSDEV
FSDETACHSDEV
FSOPEN
FSCLOSE

NoubPbWwWNNERO

WORD in which the I/O System places the actual
function code of the operation, when the F$SPECIAL
function code was placed in the FUNCT field. The
value in this field depends on the device driver.
The random access device driver currently supports
the following two special functions:

function code
FORMAT/QUERY 0
SATISY 1
NOTIFY 2

To maintain compatibility with random access device
drivers and to allow for future expansion, other
drivers should avoid using these codes, and 3 through
10 as well, for other functions.

WORD pair that forms a 32-bit field in which the I/0
System places the absolute byte location on the I/O
device where the operation is to be performed. For
example, for the F$WRITE operation, this is the
address on the device where writing begins. If a
random access device driver is used and the
track$size field in the unit's unit information table
contains a value greater than zero, this field
contains the track number (in.HIGH$DEVSLOC) and
sector number (in LOWSDEVSLOC). If track$size
contains zero, this field contains a 32-bit sector
number.

POINTER which the I/0 System sets to indicate the
internal buffer where data is read from or written to.

WORD which the I/O System sets to indicate the number
of bytes to transfer.

Reserved WORD.

POINTER which the I/0O System sets to indicate the
location of auxiliary data. This data is used when
the request calls the F$SPECIAL function, in order to
pass a variety of kinds of special function data.

For example, to format a track on a hard disk, set
FUNCT equal to F$SPECIAL, set SUBFUNCT equal to O,
and set AUXSP to point to a structure of the form:

2-9

LINK$FOR

LINKSBACK

RESP$MBOX

DONE

FILL

CANCELSID

DEVICE INTERFACES

DEVICE DRIVER INTERFACES

DECLARE
FORMATSTRACK STRUCTURE(
TRACKSNUMBER ~ WORD,

INTERLEAVE WORD,
TRACK$OFFSET WORD,
FILL$CHAR WORD);

The other Intel-defined F$SPECIAL options do not have
predefined structures.

POINTER that the device driver can use to implement a
request queue. Random access and common drivers use
this field to point to the location of the next IORS
in the queue.

POINTER that the device driver can use to implement a
request queue. Random access and common drivers use
this field to point to the location of the previous
IORS in the queue.

WORD that the I/0 System fills with either an iRMX 86
token for the response mailbox or the address of an
iRMX 88 exchange. Upon completion of the I/O
request, the device driver must send the IORS to this
response mallbox or exchange.

BYTE that the device driver can set to TRUE (OFFH) or
FALSE (OOH) to indicate whether or not the entire
request has been completed. Random access and common
drivers use this byte in this fashion.

Reserved BYTE.

WORD used to identify queued I/0 requests that are to
be removed from the queue by the CANCEL$IO procedure.

One or more of the routines in every device driver must actually send
commands to the device itself in order to carry out I/O requests. The
steps that a procedure of this sort must go through vary considerably,
depending on the type of I/0 device. Procedures supplied with the I/O
System to manipulate devices such as the 1SBC 204 and iSBC 206 devices
use the PL/M—86 builtins INPUT and OUTPUT to transmit to and receive from
I/0 ports. Other devices may require different methods. The I/0 System
places no restrictions on the method of communicating with devices. Use

the method that the device requires.

2-10

CHAPTER 3. CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

There are three types of device drivers in the iRMX 86 and iRMX 88
environments: common, random access, and custom. This chapter defines
the distinctions between the types of drivers and discusses the
characteristics and data structures pertaining to common and random
access device drivers. Chapters 5 and 6 are devoted to explaining how to
write the various types of device drivers.

CATEGORIES OF DEVICES

Because the I/0 Systems provide procedures that constitute the bulk of
any common or random access device driver, you should consider the
possibility that your device is a common or random access device. If
your device falls in either of these categories, you can avoid most of
the work of writing a device driver by using the supplied procedures.
The following sections define the three types of devices.

COMMON DEVICES

Common devices are relatively simple devices, such as line printers, that
conform to the following conditions:

e A first-in/first-out mechanism for queuing requests is sufficient
for accessing these devices.

° Only one interrupt level 1s needed to service a device.

o Data either read or written by these devices does not need to be
broken up into blocks.

If you have devices that fit into this category, you can save the effort
of creating an entire device driver by using the common driver routines
supplied by the I/0 System. Chapter 5 of this manual describes the
procedures that you must write to complete the balance of a common device
driver.

RANDOM ACCESS DEVICES

A random access device is a device, such as a disk drive, in which data
can be read from or written to any address of the device. The support
routines provided by the I/0O System for random access assume the
following conditions:

3-1

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS
e A first-in/first-out mechanism for queuing requests is sufficient
for accessing these devices.

e Only one interrupt level is needed to service the device.

° I/0 requests must be broken up into blocks of a specific length.

® The device supports random access seek operations.
If you have devices that fit into the random access category, you can
take advantage of the random access support routines provided by the I/0

System. Chapter 5 of this manual describes the procedures that you must
write to complete the balance of a random access device driver.

CUSTOM DEVICES
If your device fits neither the common nor the random access category,

you must write the entire driver for the device. The requirements of a
custom device driver are defined in Chapter 6.

1/0 SYSTEM-SUPPLIED ROUTINES FOR COMMON AND RANDOM ACCESS DEVICE DRIVERS

The 1I/0 System supplies the common and random access routines that the
I/0 System calls when processing I/0 requests. Flow charts for these
procedures can be found in Appendix A; their names and functions are as
follows:

Common Routine Random Access Routine Function
INITS$IO RADSINITSIO Creates the resources needed by

the remainder of the driver
routines, creates an interrupt
task, and calls a user-supplied
routine that initializes the
device 1itself.

FINISHS$IO RADSFINISHSIO Deletes the resources used by
the other driver routines,
deletes the interrupt task, and
calls a user-supplied procedure
that performs final processing
on the device itself.

QUEUESIO RADSQUEUESIO Places I/0 requests (IORSs) on
the queue of requests.

CANCELSIO RADSCANCELSIO Removes one or more requests
from the request queue, possibly
stopping the processing of a
request that has already been
started.

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

In addition to these routines, the I/0 Systems supply an interrupt
handler (interrupt service routine) and either INTERRUPT$TASK or
RADSINTERRUPT$TASK, which respond to all interrupts generated by the
units of a device, process those interrupts, and start the device working
on the next I/0 request on the queue. This interrupt task is the one
that the INITSIO or RADSINITSIO procedure creates.

After a device finishes processing a request, it sends an interrupt to
the processor. As a consequence, the processor calls the interrupt
handler. This handler either processes the interrupt itself or invokes
an interrupt task to process the interrupt. Since an interrupt handler
is 1limited in the types of system calls that it can make and the number
of interrupts that can be enabled while it is processing, an interrupt
task usually services the interrupt. The interrupt task feeds the
results of the interrupt back to the I/O System (data from a read
operation, status from other types of operations). The interrupt task
then gets the next I/0 request from the queue and starts the device
processing this request. This cycle continues until the device is
detached.

Figure 3-1 shows the interaction between an interrupt task, an 1/0
device, an I/0 request queue, and a Queue I/0 device driver procedure.
The interrupt task in this figure is in a continual cycle of waiting for
an interrupt, processing it, getting the next I/0 request, and starting
up the device again. While this is going on, the Queue I/0 procedure
runs in parallel, putting additional I/O requests on the queue.

REQUEST QUEUE INTERRUPT TASK
START DEVICE
1/0 REQUEST -« (D) SERVICE
<@ GET REQUEST INTERRUPT
1/0 REQUEST
™
°
e >
(D INTERRUPT

QUEUE 1/0 PROCEDURE

I/0 REQUEST |5y REGUESTS ON GUEUE

Figure 3-1. Interrupt Task Interaction

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

1/0 SYSTEM ALGORITHM FOR CALLING THE DEVICE DRIVER PROCEDURES

The 1/0 System calls each of the four device driver procedures in

response to specific conditions. Figure 3-2 is a flow chart that

illustrates the conditions under which three of the four procedures are

called.
3-2 labelled with corresponding circled numbers.

1.

The following numbered paragraphs discuss the portions of Figure

In order to start I/O processing, an application task must make
an I/0 request. This can be done by making any of a variety of
system calls. However, if you are an iRMX 86 user, the first I/0
request to each device-unit must be an
RQSASPHYSICALSATTACHSDEVICE system call, and if you are an iRMX
88 user, the first request to each device-unit must be either a
DQSATTACH or a DQS$CREATE system call.

If the request results from an RQ$ASPHYSICALSATTACH$DEVICE, a
DQ$ATTACH, or a DQS$CREATE system call, the I/O System checks to
see if any other units of the device are currently attached. If
no other units of the device are currently attached, the I/0
System realizes that the device has not been initialized and
calls the Initialize I/O procedure first, before queueing the
request.

Whether or not the I/0 System called the Initialize I/0
procedure, it calls the Queue I/0O procedure to queue the request
for execution.

If the request Jjust queued resulted from an
RQ$ASPHYSICALSDETACHSDEVICE system call, the I/0 System checks to
see 1f any other units of the device are currently attached. If
no other units of the device are attached, the I/0 System calls
the Finish I/0 procedure to do any final processing on the device
and clean up resources used by the device driver routines.

l The iRMX 86 I/0 System calls the fourth device driver procedure, the
Cancel I/0 procedure, under the following conditions:

e If the user makes an RQSASPHYSICALSDETACHSDEVICE system call
specifying the hard detach option, in order to forcibly detach
the connection objects associated with a device—unit. The
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL describes the hard
detach option.

(] If the job containing the task which made a request is deleted.

l The iRMX 88 I/0 System does not call the Cancel I/0 procedure.

3-4

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

The user makes an 1/0 request
via a system call

Does
this request
result from an
RQSASPHYSICALSATTACH
$DEVICE System

call

Are
any uniis
of the device
currently
attached
?

1/0 System calls the Initialize
1/0 procedure to initialize the
device

170 System calls the Queue 1/0
procedure to place the request
on the queue

Does
this request
result from an
RQSASPHYSICALS
DETACHS$DEVICE
system call
?

Are
any other
units of the
device currently
attached
?

yes

1/0 System calis the Finish 1/0
procedure to clean up the
device and delete objects

Figure 3-2. How the I/0 System Calls the Device Driver Procedures

3-5

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

REQUIRED DATA STRUCTURES

In order for the I/0 System—supplied routines to be able to call the
user—-supplied routines, you must include the addresses of these
user—supplied routines, along with other information, in a device
information table. In addition, processing I/0 requests through a random
access driver requires a unit information table. Each device-unit
information block (DUIB) contains one pointer field for a device
information table and another for a unit information table.

DUIBs which correspond to units of the same device should point to the
same device information table, but they can point to different unit

information tables, if the units have different characteristics. Figure
3-3 illustrates this.

puiB1

Device = 1
Unit = 0

UNITSINFOS1 DEVSINFO$1

Unit
]

DEVS$INFO$1 Device

UNITS$INFOS$1

Unit
1

puiB2

Device = 1
Unit = 1

DEV$INFO$1

UNITSINFO$2

UNITSINFOS2 ouB3
Dovice = 2
Unit= 0 Unit
Device
2
DEVSINFO$2

UNITSINFO$2

Figure 3-3. DUIBs, Device and Unit Information Tables

3-6

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

DEVICE INFORMATION TABLE

Common and random access device information tables contain the same
fields in the same order, but the tables have different names. Common
drivers refer to the device information table as COMMONSDEVICESINFO,
while random access drivers refer to RADSDEVICE$INFO. For brevity, we
show only the declaration of COMMONSDEVICES$INFO.

DECLARE
COMMONSDEVICESINFO STRUCTURE(
LEVEL WORD,
PRIORITY BYTE,
STACKS$SIZE WORD,
DATASSIZE WORD,
NUMSUNITS WORD,
DEVICESINIT WORD,
DEVICESFINISH WORD,
DEVICE$START WORD,
DEVICE$STOP WORD,
DEVICE$INTERRUPT WORD) ;
where:
LEVEL WORD specifying an encoded interrupt level at which

the device will interrupt. The interrupt task uses
this value in order to associate itself with the
correct interrupt level. The values for this field
are encoded as follows:

Bits
15-7
6-4

3

2-0

Value
o

First digit of the interrupt level (0-7)

If one, the level is a master level and

bits 6-4 specify the entire level

number.

If zero, the level is a slave level and
bits 2-0 specify the second digit.

Second digit of the interrupt level
(0-7), 1if bit 3 is zero.

NOTE

In iRMX 88 systems, only master
levels are available.

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

PRIORITY

STACK$SIZE

DATAS$SIZE

NUMSUNITS

DEVICESINIT

DEVICESFINISH

DEVICE$START

DEVICESSTOP

DEVICESINTERRUPT

BYTE specifying the initial priority of the
interrupt task. The actual priority of an

iRMX 86 interrupt task might change because the
iRMX 86 Nucleus adjusts an interrupt task's
priority according to the interrupt level that it
services. Refer to the iRMX 86 NUCLEUS REFERENCE
MANUAL for further information about this
relationship between interrupt task priorities
and interrupt levels.

WORD gpecifying the size, in bytes, of the stack
for the user-written device interrupt procedure
(and procedures that it calls). This number
should not include stack requirements for the I/O
System—supplied procedures. They add their
requirements to this figure.

WORD specifying the size, in bytes, of the user
portion of the device's data storage area. This
figure should not include the amount needed by
the I/0 System—supplied procedures; rather, it
should include only that amount needed by the
user-written routines. This then is the size of
the read or write buffers plus any flags that the
user-written routines need.

WORD specifying the number of units supported by
the driver. Units are assumed to be numbered
consecutively, starting with zero.

WORD specifying the start address of a
user-written device initialization procedure.
The format of this procedure, which is called by
INIT$I0, is described in Chapter 5.

WORD specifying the start address of a
ugser—-written device finish procedure. The format
of this procedure, which is called by FINISHSIO,
13 described in Chapter 5.

WORD specifying the start address of a
user-written device start procedure. The format
of this procedure, which is called by QUEUESIO
and INTERRUPT$TASK, is described in Chapter 5.

WORD specifying the start address of a
user—written device stop procedure. The format
of this procedure, which is called by CANCELS$IO,
is described in Chapter 5.

WORD specifying the start address of a
user-written device interrupt procedure. The
format of this procedure, which is called by
INTERRUPT$TASK, is described in Chapter 5.

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Depending on the requirements of your device, you can append additional
information to the COMMONSDEVICESINFO or RADSDEVICESINFO structure. For
example, most devices require that the I/0 port address be appended to
this structure, in order that the user-written procedures have access to
the device.

You must create device information tables as a part of the I/0 System
configuration process. The i1RMX 86 CONFIGURATION GUIDE describes this
procedure for 1RMX 86 users. You configure iRMX 88 applications
interactively with the Interactive Configuration Utility.

UNIT INFORMATION TABLE

If you have random access device drivers in your system, you must create a
unit information table for each different type of unit in your system.
Each random access device-unit's DUIB must point to one unit information
table, although multiple DUIBs can point to the same unit information
table. The structure of the unit information table is as follows:

DECLARE
RADSUNITSINFO STRUCTURE(
TRACKS$SIZE WORD,
MAXSRETRY WORD,
RESERVED WORD);

where:

TRACKSSIZE WORD specifying the size, in bytes, of a single track
of a volume on the unit. If the device controller
supports reading and writing across track boundaries,
place a zero in this field. If you specify a zero for
this field, the I/0 System—supplied procedures place a
32-bit sector number in the HIGH$DEVSLOC and
LOWSDEVSLOC fields of the IORS. If you specify a
nonzero value for this field, the I/0 System-supplied
procedures guarantee that read and write requests do
not cross track boundaries. They do this by placing
the sector number in the low order word of the
LOWSDEVSLOC field of the IORS and the track number in
the HIGHSDEVSLOC field before calling a user—written
device start procedure. Instructions for writing a
device start procedure are contained in Chapter 5.

MAXS$RETRY WORD specifying the maximum number of times an I/0
request should be tried if an error occurs. A value of
nine is recommended for this field. When this field
contains a nonzero value, the I/0 System—supplied
procedures guarantee that read or write requests are
retried 1f the user—-supplied device start or device
interrupt procedures return an IO$SOFT condition in the
IORS.UNIT$STATUS field. (The IORS.UNITS$STATUS field is
described in the "IORS Structure” section of Chapter 2.)

RESERVED Reserved WORD.

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

RELATIONSHIPS BETWEEN I/0 PROCEDURES AND I/0 DATA STRUCTURES

This section brings together several of the procedures and data structures
that have been described so far in this manual. Figure 3-4 shows the many
relationships that exist among these entities, with solid arrows indicating
procedure calls and dotted arrows indicating pointers. Note that the I/0
System contains the address of each DUIB, which in turn contains the
addresses of the procedures that the I1/0 System calls in order to perform
I/0 on the.associated device—unit. The DUIB also has the address of the
device information table and, if the device is a random access device, the
unit information table. The device information table, in turn, contains
the addresses of the procedures that are called by the procedures that the
I/0 System calls. It is through these links that the appropriate calls are
made in the servicing of an I/0 request for a particular device-unit.

INI?IG » DEVICESINIT.

/
/

/ DEVICE
oﬂzwcess'rm*r
NUCLEUS. / 7/
/
/ / uNIT
// 7‘\1:1%1'};:7—» INTERRUPT —-—7L7iozwcssmvsnnuw [:I
TASK —————» 1/0 SYSTEM 4
; / t /7 / // \\IIHII
// / L // vé unIT
[i =
/ /7y CANCELSO £ > DEVCESSTOP
/ s AR
/ /7 / / /1/ »= —
[/ #5777
/I 7 ==/ /
/7 / FINISHS1O: =z va y4 > DEVICESFINISH
buis / / /s -t / s 7
: /// ///’;/ / / //// pd
DIVS.UNIT ";/’ 2 // / // // //
omn's:;) // e DEVICE INFO. TABLE / Y4 id
UEUESIO
CANCELSIO -~ - : // / //‘/ i
FINISHSIO e . /;/ 2 LEGEND:
DEVICESINFOSP | DEVICESINIT g)
| UNITSINFOSP | DEVICESFINISH I —® PROCEDURECALL
: \ DEVICESSTART 4 ———— = REFERENCE
J \ DEVICESSTOP /
N N DEVICESINTERRUPT
AN
AN
AN
N\

UNIT INFO. TABLE

Figure 3-4. Relationships Between I/0 Procedures and I/0 Data Structures

3-10

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

WRITING DRIVERS FOR USE WITH BOTH iRMX 86— AND iRMX 88-BASED SYSTEMS

A common or random access device driver that makes no system calls will be
compatible with both the iRMX 86 and iRMX 88 I/O Systems. Consequently,
such a device driver can be "ported” between applications based on the two
iRMX systems.

DEVICE DATA STORAGE AREA

The common and random access device drivers are set up so that all data
which is local to a device is maintained in an area of memory. The
Initialize I/0 procedure creates this device data storage area and the
other procedures of the driver access and update information in it as
needed. Two purposes are served by storing the device~local data in a
central area.

First, all device driver procedures which service individual units of the
device can access and update the same data. The Initialize I/O procedure
passes the address of the area back to the I/0 System, which in turn gives
the address to the other procedures of the driver. They can then place
information relevant to the device as a whole into the area. The identity
of the first IORS on the request queue is maintained in this area, as well

as the attachment status of the individual units and a means of accessing
the interrupt task.

Second, several devices of the same type can share the same device driver
code and still maintain separate device data areas. For example, suppose
two 1SBC 204 devices use the same device driver code. The same Initialize
I/0 procedure is called for each device, and each time it is called it
obtains memory for the device data. However, the memory areas that it
creates are different. Only the incarnations of the routines that service
units of a particular device are able to access the device data area for
that device.

Although the common and random access device drivers already provide this
mechanism, you may want to include a device data storage area in any custom
driver that you write.

3-11

CHAPTER 4. 1I/0 REQUESTS

This chapter contains two kinds of information that writers of device
drivers will find useful. Presented first are summaries of the actioms
that the I/0 System takes in response to the various kinds of I/0
requests that application tasks can make. Next are three tables ——- one
for each type of device driver —-- that show which DUIB and IORS fields
device drivers should be concerned with.

I1/0 SYSTEM RESPONSES TO I/0 REQUESTS

This section shows which device driver procedures the I/0 System calls
when it processes each of the eight kinds of I/0 requests. When there
are multiple calls, the order of the calls is significant.

ATTACH DEVICE REQUESTS

When the 1/0 System receives the first attach device request for a
device, it makes the following calls to device driver procedures in the
following order:

The Call The Effects of the Call
Initialize I/0 The driver resets the device as a whole

and creates the device data storage
area and interrupt tasks.

Queue I/0, with the The driver resets the selected unit.
FUNCT field of the IORS
set to FSATTACH (=4)

When the I/0 System recelves an attach device request that is not the
first for the device, it makes the following call:

The Call The Effects of the Call
Queue I/0, with the The driver resets the selected unit.

FUNCT field of the IORS
set to FSATTACH (=4)

DETACH DEVICE REQUESTS

When the I/0 System receives a detach device request, and there is more
than one unit of the device attached, it makes the following call:

The Call The Effects of the Call
Queue I/0, with the The driver performs cleanup operations
FUNCT field of the IORS for the selected unit, if necessary.

set to FSDETACH (=5)

1/0 REQUESTS

When the I/0 System receives a detach device request, and there is only
one attached unit on the device, it makes the following calls to device
driver procedures in the following order:

The Call The Effects of the Call
Queue 1/0, with the The driver performs cleanup operations
FUNCT field of the IORS for the selected unit, if necessary.

set to FSDETACH (=5)

Finish I/O The driver performs cleanup operations
for the device as a whole, if necessary.

READ, WRITE, OPEN, CLOSE, SEEK, AND SPECIAL REQUESTS

When the I/0 System receives a read, write, open, close, seek, or special
request, it makes the following call to a device driver procedure:

The Call The Effects of the Call
Queue I/0, with the FUNCT The driver performs the requested
field of the IORS set to operation. (FSOPEN and F$CLOSE

FSREAD (=0), FSWRITE (=1), usually require no processing.)
FSOPEN (=6), F$CLOSE (=7),

FSSEEK (=2), or F$SPECIAL

(=3), depending on the type

of the I/0 request.

CANCEL REQUESTS

When a connection is deleted while I/O might be in progress, such as when
an iRMX 86 job is deleted, the I/O System makes the following calls to
device driver procedures in the following order:

The Call The Effects of the Call
Cancel 1/0. The driver removes from the request queue

all réquests that contaln the same Cancel ID
value as that in the current request, and
stops processing 1if necessary.

Queue I/0, with the When this request reaches the front of the
FUNCT field of the queue, it is simply returned to the indicated
IORS set to F$CLOSE response mallbox (exchange).

(=7)

DUIB AND IORS FIELDS USED BY DEVICE DRIVERS

The following tables indicate, for each type of device driver, the fields
of DUIBs and IORSs with which user—written portions of device drivers
need to be concerned.

Table 4-1 .

I/0 REQUESTS

DUIB and IORS Fields Used by Common Device Drivers

Attach Detach

Device Device Open Close Read Write

Seek Special

DUIB

Name
FileSdrivers
Functs

Flags
Dev$gran
Dev$size
Device

Unit
DevSunit
Init$io
Finish$io
QueueS$io
Cancel$io
Device$info$p
Unit$infolp

Update$timeout

Num$buffers
Priority

IORS
Status
Unit$status
Actual
Actual$fill
Device
Unit
Funct
Subfunct
LowS$devS$loc
Highdevloc
BuffS$p
Count
Count$£fill
Aux$p
Link$for
Link$back
Resp$mbox
Done
Fill
Cancel$id

B

B

BB

B|B|E

BIB(B
BiB(B

B|B|B
B

€€
€l

€

g |g

€€ |2

B

B

i

[a]

RiRig |8

Ris |8 (B

r ——— is read by the device driver
w —-— is written by the device driver

m ——— might be read by some device drivers

4-3

Table 4-2.

1/0 REQUESTS

DUIB and IORS Fields Used by Random Access Device Drivers

Attach Detach
Device Device Open Close Read Write

Seek Special

DUIB
Name
File$drivers
Functs
Flags
Dev$gran
DevSsize
Device
Unit
DevS$unit
Init$io
Finish$io
Queue$io
Cancel$io
Device$infoSp
Unit$infosp
Update$timeout
Num$buffers
Priority

IORS
Status
Unit$status
Actual
Actual$fill
Device
Unit
Funct
Subfunct
Lowdevloc
High$devS$loc
Buff$p
Count
Count$£ill
AuxS$p
Link$for
Link$back
Resp$mbox
Done
Fill
Cancel$id

8|8
BB
BB
BB |B
=}
BB |8

B
=Rl

B
B

2]
2]
~
La]
2]
2]

R La B Laf L]
2B La B la B ia]

r ——— 1s read by the device driver
w ——= is written by the device driver
m —=—= might be read by some device drivers

1/0 REQUESTS

Table 4-3. DUIB and IORS Fields Used by Custom Device Drivers

Attach Detach
Device Device Open Close Read Write Seek Special

DUIB
Name
File$drivers
Functs
Flags m m m m m m m m
Dev$gran m m m m m m m m
DevSsize m m m m m m m m
Device
Unit m m m m m m m m
DevSunit
InitS$io
Finish$io
Queue$io
Cancel$io
Device$info$p m m m m m m m m
UnitS$infoSp m m m m m m m m
Update$timeout
NumS$buffers
Priority
I0RS
Status W \ w w w W W \
UnitS$status W W W W W W W W
Actual W w
Actual$fill
Device
Unit m m m m m m m m
Funct r r r r r r r r
Subfunct
Lowdevloc m m m
Highdevloc m m m
Buff$p r r
Count r r
Count$fill
Aux$p m
Link$for a a a a a a a a
LinkS$back a a a a a a a a
RespSmbox r r r r r T r r
Done a a a a a a a a
Fill a a a a a a a a
Cancel$id m
r —= is read by the device driver
w ——= 1s written by the device driver
m ——— might be read by some device drivers
a —~- is available for any purpose suiting the needs of the device

driver

4-5

CHAPTER 5. WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

This chapter contains the calling sequences for the procedures that you
must provide when writing a common or random access device driver. Where
possible, descriptions of the duties of these procedures accompany the
calling sequences.

The I/0 System—supplied procedures are referred to in this chapter, for
brevity, as if the chapter were written only for writers of common device

drivers. For example, "INITS$IO" is shorthand for "INIT$IO or
RADSINITSIO".

GENERAL INFORMATION

The routines that are provided by the I/O System and that the I/O System
calls comprise the bulk of a common or random access a device driver.
These routines, in turn, make calls to device-dependent routines that you
must supply. These device—-dependent routines are described here briefly
and then are presented in detail:

A device initialization procedure. This procedure must perform any
initialization functions necessary to get the device ready to process
I/0. INIT$IO calls this procedure.

A device finish procedure. This procedure must perform any
necessary final processing on the device so that the device can be
detached. FINISH$IO calls this procedure.

A device start procedure. This procedure must start the device
processing any possible I/0 function. QUEUE$IO and INTERRUPT$TASK
(the I/0 System—supplied interrupt task) call this procedure.

A device stop procedure. This procedure must stop the device from
processing the current I/0 function, if that function could take an
indefinite amount of time. CANCELS$IO calls this procedure.

A device interrupt procedure This procedure must do all of the

device—dependent processing that results from the device sending an
interrupt. INTERRUPTSTASK calls this procedure.

DEVICE INITIALIZATION PROCEDURE

The INIT$IO procedure calls the user-written device initialization
procedure in order to initialize the device. The format of the call to
the user-written device initialization procedure is as follows:

CALL device$init(duib$p, ddata$p, status$p);

5-1

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

where:

device$init Name of the device initialization procedure. You can
use any name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the device information table.

duib$p POINTER to the DUIB of the device—unit being
attached. From this DUIB, the device initialization
procedure can obtain the device information table,
where information such as the I/0 port address is
stored.

ddata$p POINTER to the user portion of the device's data
storage area. You must specify the size of this
portion in the device informatiom table for this
device. The device initialization procedure can use
this data area for whatever purposes it chooses.
Possible uses for this data area include local flags
and buffer areas.

status$p POINTER to a WORD in which the device initialization
procedure must return the status of the initialization
operation. It should return the E$OK condition code
if the initialization is successful; otherwise it
should return the appropriate exceptional condition
code. If initialization does not complete
successfully, the device initialization procedure must
ensure that any data areas it initializes are reset.

If you have a device that does not need to be initialized before it can
be used, you can use the default device initialization procedure supplied
by the I/0 System. The name of this procedure is DEFAULTSINIT. Specify
this name in the device information table. DEFAULTSINIT does nothing but
return the E$OK condition code.

DEVICE FINISH PROCEDURE

The FINISHSIO procedure calls the user—written device finish procedure in
order to perform final processing on the device, after the last I/O
request has been processed. The format of the call to the device finish
procedure is as follows:

CALL device$finish(duib$p, ddata$p);

where:

device$finish Name of the device finish procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the device information table.

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

duib$p POINTER to the DUIB of the device-unit being
detached. From this DUIB, the device finish procedure
can obtain the device information table, where
information such as the I/O port address 1is stored.

ddata$p POINTER to the user portion of the device's data
storage area. The device finish procedure should
obtain, from this data area, identification of any
resources other user-written procedures may have
created, and delete these resources.

If you have a device that does not require any final processing, you can
use the default device finish procedure supplied by the I/0 System. The
name of this procedure is DEFAULTSFINISH. Specify this name in the
device information table. DEFAULTSFINISH merely returns to the caller
with an ESOK condition code and is normally used when the default
initialization procedure DEFAULTS$INIT is used.

DEVICE START PROCEDURE

Both QUEUESIO and INTERRUPT$TASK make calls to the device start procedure
in order to start an I/0 function. QUEUESIO calls this procedure on
receiving an I/0 request when the request queue is empty. INTERRUPT$TASK
calls the device start procedure after it finishes one I/0 request if
there are more I/0 requests on the queue. The format of the call to the
device start procedure is as follows:

CALL device$start(iors$p, duib$p, ddataSp);

where:

device$start Name of the device start procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the device information table.

iors$p POINTER to the IORS of the request. The device start
procedure must access the IORS in order to obtain
information such as the type of I/0 function
requested, the address on the device of the byte where
I/0 is to commence, and the buffer address.

duib$p POINTER to the DUIB of the device-—unit for which the
I/0 request is intended. The device start procedure
can use the DUIB to access the device information
table, where information such as the I/0 port address
is stored.

ddata$p POINTER to the user portion of the device's data
storage area. The device start procedure can use this
data area to set flags or store data.

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

The device start procedure must do the following:

It must be able to start the device processing any of the
functions supported by the device and recognize that requests
for nonsupported functions are error conditions.

If it transfers any data, it must update the IORS.ACTUAL field
to reflect the total number of bytes of data transferred (that
is, 1f it transfers 128 bytes of data, it must put 128 in the

IORS.ACTUAL field).

If an error occurs when the device start procedure tries to
start the device (such as on an FSWRITE request to a
write~protected disk), the device start procedure must set the
IORS .STATUS field to indicate an E$IO condition and the
IORS.UNITSSTATUS field to a nonzero value. The lower four bits
of the field should be set as indicated in the "IORS Structure"”
section of Chapter 2. The remaining bits of the field can be
set to any value (for example, the iSBC 204 device driver
returns the device's result byte in the remainder of this
field). If the function completes without am error, the device
start procedure must set the IORS.STATUS field to indicate an
ESOK condition.

If the device start procedure determines that the I/0 request
has been processed completely, either because of an error or
because the request has been successfully completed, it must set
the IORS.DONE field to TRUE. The I/0 request will not always be
completed; it may take several calls to the device interrupt
procedure before a request is completed. However, if the
request is finished and the device start procedure does not set
the IORS.DONE field to TRUE, the device driver support routines
will wait until the device sends an interrupt and the device
interrupt procedure sets IORS.DONE to TRUE, before determining
that the request is actually finished.

DEVICE STOP PROCEDURE

The CANCELS$IO procedure calls the user—written device stop procedure in
order to stop the device from performing the current I/0 function. The
format of the call to the device stop procedure is as follows:

CALL device$stop(iors$p, duib$p, ddata$p);

Where:

device$stop Name of the device stop procedure. You can use any

name for this procedure, as long as it doesn't
conflict with other procedure names and you include
this name in the device information table.

5-4

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

iors$p POINTER to the IORS of the request. The device stop
procedure needs this information to determine what
type of function to stop.

duib$p POINTER to the DUIB of the device—unit on which the
I/0 function is being performed.

ddata$p POINTER to the user portion of the device's data
storage area. The device stop procedure can use this
area to store data, if necessary.

If you have a device which guarantees that all I/0 requests will finish
in an acceptable amount of time, you can omit writing a device stop
procedure and use the default procedure supplied with the I/0 System.
The name of this procedure is DEFAULTS$STOP. Specify this name in the
device information table. DEFAULT$STOP simply returns to the caller.

DEVICE INTERRUPT PROCEDURE

INTERRUPTSTASK calls the user—-written device interrupt procedure to
process an interrupt that just occurred. Whereas the device start
procedure is called to start the device performing an I/0 function, the
device interrupt procedure is called when the device finishes performing
the function. The format of the call to the device interrupt procedure
is as follows:

CALL device$interrupt(iors$p, duibSp, ddataSp);

where:

device$interrupt Name of the device interrupt procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include this name in the device information
table.

iors$p POINTER to the IORS of the request being
processed. The device interrupt procedure must
update information in this IORS. A value of zero
for this parameter indicates that there are no
requests on the request queue and that the
interrupt 1s extraneous.

duib$p POINTER to the DUIB of the device—unit on which
the I/0 function was performed.

ddata$p POINTER to the user portion of the device's data
storage area. The device interrupt procedure can
update flags in this data area or retrieve data
sent by the device.

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

The device interrupt procedure must do the following:

) It must determine whether the interrupt resulted from the
completion of an I/0 function by the correct device-unit.

° If the correct device-—unit did send the interrupt, the device
interrupt procedure must determine whether the request is
finished. If the request is finished, the device interrupt
procedure must set the IORS.DONE field to TRUE.

° It must process the interrupt. This may involve setting flags
in the user portion of the data storage area, tranferring data
written by the device to a buffer, or some other operation.

o If an error has occurred, it must set the IORS.STATUS field to
indicate an ES$IO condition and the IORS.UNITSSTATUS field to a
nonzero value. The lower four bits of the field should be set
as indicated in the "IORS Structure” section of Chapter 2. The
remaining bits of the field can be set to any value (for
example, the iSBC 204 and 206 device drivers return the device's
result byte in the remainder of this field). It must also set
the IORS.DONE field to TRUE, indicating that the request is
finished because of the error.

° If no error has occurred, it must set the IORS.STATUS field to
indicate an ES$OK condition.

CHAPTER 6. WRITING A CUSTOM DEVICE DRIVER

Custom device drivers are drivers that you create in their entirety
because your device doesn't fit into either the common or random access
device category, either because the device requires a priority-ordered
queue, multiple interrupt levels, or because of some other reasons that
you have determined. When you write a custom device driver, you must
provide all of the features of the driver, including creating and
deleting resources, implementing a request queue, and creating an
interrupt handler. You can do this in any manner that you choose as long
as you supply the following four procedures that the I/0 System can call:

An Initialize I/0 Procedure. This procedure must initialize the
device and create any resources needed by the procedures in the
driver.

A Finish I/0 Procedure. This procedure must perform any final
processing on the device and delete resources created by the
remainder of the procedures in the driver.

A Queue I/O0 Procedure. This procedure must place the I/0 requests on
a queue of some sort, so that the device can process them when it
becomes available.

A Cancel I/0 Procedure. This procedure must cancel a previously
queued I/0 request.

In order for the I/0 System to communicate with your device driver
procedures, you must include the addresses of these four procedures in
the DUIBs which correspond to the units of the device.

The next four sections describe the format of each of the I/0O System

calls to these four procedures. Your procedures must conform to these
formats.

INITIALIZE I/0 PROCEDURE

The iRMX 86 I/O System calls the Initialize I/0 procedure when an
application task makes an RQ$ASPHYSICALSATTACHSDEVICE system call and no
units of the device are currently attached. The iRMX 88 I/0 System calls
the Initialize I/0 procedure when an application task attaches or creates
a file on the device and no other files on the device are currently
attached. In either case, the I/0 System calls the Initialize I/0
procedure before calling any other driver procedure.

WRITING A CUSTOM DEVICE DRIVER

The Initialize I/0 procedure must perform any initial processing
necessary for the device or the driver. If the device requires an
interrupt task (or region or device data object, in the case of iRMX 86
drivers), the Initialize I/O procedure should create it (them).

The format of the call to the Initialize I/0 procedure is as follows:

CALL initS$io(duib$p, ddata$p, status$p);

where:

init$io

duib$p

ddata$p

status$p

FINISH I/0 PROCEDURE

Name of the Initialize I/0 procedure. You can use
any name for this procedure as long as it does not
conflict with other procedure names. You must,
however, include its starting address in the DUIBs
of all device—units that it services.

POINTER to the DUIB of the device—unit for which
the request is intended. The init$io procedure
uses this DUIB to determine the characteristics of
the unit.

POINTER to a WORD in which the init$io procedure
can place the location of a data storage area, if
the device driver needs such an area. If the
device driver requires that a data area be
associated with a device (to contain the head of
the I/0 queue, DUIB addresses, or status
information), the init$io procedure should create
this area and save its location via this pointer.
If the driver does not need such a data area, the
init$io procedure should return a zero via this
pointer.

POINTER to a WORD in which the init$io procedure
must place the status of the initialize operation.
If the operation completes successfully, the
init$io procedure must return the E$OK condition
code. Otherwise it should return the appropriate
exception code. If the init$io procedure does mnot
return the E$OK condition code, it must delete any
resources that it has created and leave all data
fields with exactly the same information that they
contained prior to the call to init$io.

The iRMX 86 1/0 System calls the Finish I1/0 procedure after an
application task makes an RQSASPHYSICALSDETACHS$DEVICE system call to
detach the last unit of a device. The iRMX 88 I/0 System calls the
Finish I/0 procedure when an application task detaches or deletes the
last remaining file connection for the device.

WRITING A CUSTOM DEVICE DRIVER

The Finish I/0 procedure performs any necessary final processing on the
device. It must delete all resources created by other procedures in the
device driver and must perform final processing on the device itself, if
the device requires such processing.

The format of the call to the Finish I/0 procedure is as follows:

CALL finish$io(duib$p, ddata$t);

where:

finish$io Name of the Finish I/O procedure. You can specify
any name for this procedure as long as it does not
conflict with other procedure names. You must,
however, include its starting address in the DUIBs
of all device-units that it services.

duib$p POINTER to the DUIB of a device-unit of the device
being detached. The finish$io procedure needs this
DUIB in order to determine the device on which to
perform the final processing.

ddata$t WORD containing the location of the data storage
area originally created by the init$io procedure.
The finish$io procedure must delete this resource
and any others created by driver routines.

QUEUE I/0 PROCEDURE

The I/0 System calls the Queue 1I/0 procedure to place an I/0 request on a
queue, so that it can be processed when the device is not busy. It is
recommended that the Queue I/0 procedure actually start the processing of
the I/0 request if the device is not busy. The format of the call to the
Queue I/0 procedure is as follows:

CALL queue$io(iors$t, duib$p, ddata$t);

where:
queue$io Name of the Queue I/0 procedure. You can use any
name for this procedure as long as it does not
conflict with other procedure names. You must,
however, include its starting address in the DUIBs
of all device—-units that it services.
iors$t WORD containing the location of an IORS. This IORS

describes the request. When the request is
processed, the driver (though not necessarily the
queue$io procedure) must £ill in the status fields
and send the IORS to the response mailbox
(exchange) indicated in the IORS. Chapter 2
describes the format of the IORS. It lists the

6-3

WRITING A CUSTOM DEVICE DRIVER

information that the I/0 System supplies when it
passes the IORS to the queue$io procedure and
indicates the fields of the IORS that the device
driver must fill in.

duib$p POINTER to the DUIB of the device-unit for which
the request is intended.

ddata$t WORD containing the location of the data storage
area originally created by the init$io procedure.
The queue$io procedure can place any necessary
information in this area in order to update the
request queue or status fields.

CANCEL 1/0 PROCEDURE

The I/0 System can call the Cancel I/0 procedure in order to cancel one
or more previously queued I/0 requests. The iRMX 88 I/O System does not
call Cancel I/0, but in the iRMX 86 enviromment Cancel I/0 is called
under either of the following two conditions:

) If the user makes an RQ$SASPHYSICALSDETACHSDEVICE system call and
specifies the hard detach option (refer to the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL for a description of this call).
This system call forcibly detaches all objects associated with a
device-unit.

) If the job containing the task which made an I/0 request is
deleted. The I/O System calls the Cancel I/O procedure to remove
any requests that tasks in the deleted job might have made.

If the device cannot guarantee that a request will be finished within a
fixed amount of time (such as waiting for input from a terminal
keyboard), the Cancel I/0 procedure must actually stop the device from
processing the request. If the device guarantees that all requests
finish in an acceptable amount of time, the Cancel I/0 procedure does not
have to stop the device itself, but only removes requests from the queue.

The format of the call to the Cancel I/0 procedure is as follows:

CALL cancel$io(cancel$id, duib$p, ddata$t);

where:
cancel$io Name of the Cancel I/0O procedure. You can use any
name for this procedure as long as it doesn't
conflict with other procedure names. You must,
however, include its starting address in the DUIBs
of all device-units that it services.
cancel$id WORD containing the id value for the I/O requests

that are are to be cancelled. Any pending requests
with this value in the cancel$id field of their

6-4

WRITING A CUSTOM DEVICE DRIVER

IORS's must be removed from the queue of requests
by the Cancel I/0 procedure. Moreover, the I/0
System places a CLOSE request with the same
cancel$id value in the queue. The CLOSE request
must not be processed until all other requests with
that cancel$id value have been returned to the I/0
System.

duib$p POINTER to the DUIB of the device—unit for which
the request cancellation is intended.

ddata$t WORD containing the location of the data storage

area originally created by the init$io procedure.
This area may contain the request queue.

IMPLEMENTING A REQUEST QUEUE

Making I/0 requests via system calls and the actual processing of these
requests by I/O devices are asynchronous activities. When a device is
processing one request, many more can be accumulating. Unless the device
driver has a mechanism for placing I/0 requests on a queue of some sort,
these requests will become lost. The common and random access device
drivers form this queue by creating a doubly linked list. The list is
used by the QUEUE$IO and CANCEL$IO procedures, as well as by
INTERRUPTSTASK.

Using this mechanism of the doubly linked list, common and random access
device drivers implement a FIFO queue for I/O requests. If you are
writing a custom device driver, you might want to take advantage of the
LINKSFOR and LINK$BACK fields that are provided in the IORS and implement
a scheme similar to the following for queuing I/0 requests.

Each time a user makes an I/0 request, the I/O System passes an IORS for
this request to the device driver, in particular to the Queue I/O
procedure of the device driver. The common and random access driver
Queue I/0 procedures make use of the LINK$FOR and LINK$BACK fields of the
IORS to link this IORS together with IORSs for other requests that have
not yet been processed.

This queue is set up in the following manner. The device driver routine
that is actually sending data to the controller accesses the first IORS
on the queue. The LINKSFOR field in this IORS points to the next IORS on
the queue. The LINK$FOR field in the second IORS points to the third
IORS on the queue, and so forth until, in the last IORS on the queue, the
LINK$FOR field points back to the first IORS on the queue. The LINK$BACK
fields operate in the same manner. The LINK$BACK field of the last IORS
on the queue points to the previous IORS. The LINKS$SBACK field of the
second to last IORS points to the third to last IORS on the queue, and so
forth, until, in the first IORS on the queue, the LINKS$BACK field points
back to the last IORS in the queue. A queue of this sort is illustrated
in Figure 6-1.

WRITING A CUSTOM DEVICE DRIVER

Last IORS

First 10RS Second IOAS Third IORS

on queus O queus On QueUs on queue

link$for tink§tor Nnk$tor ® o o link$for —1
l— tink$back ink$back Sek$back link$back

Figure 6-1. Request Queue

The device driver can add or remove requests from the queue by ad justing
LINK$SFOR and LINK$BACK pointers in the IORSs.

To handle the dual problems of locating the queue and ascertaining
whether the queue is empty, you can use a variable such as head$queue.
If the queue is empty, head$queue contains the value 0. Otherwise,
head$queue contains the address of the first IORS in the queue.

CHAPTER 7. BINDING A DEVICE DRIVER TO THE I/0 SYSTEM

You can write the modules for your device driver in either PL/M-86 or the
MCS-86 Macro Assembly Language. However, you must adhere to the
following guidelines:

e If you use PL/M-86, you must define your routines as reentrant,
public procedures, and compile them using the ROM and COMPACT
controls.

° If you use assembly language, your routines must follow the
conditions and conventions used by the PL/M-86 COMPACT model of
computation. In particular, your routines must function in the
same manner as reentrant PL/M-86 procedures with the ROM and
COMPACT controls set. The 8086/8087/8088 MACRO ASSEMBLER
OPERATING INSTRUCTIONS FOR 8080/8085-BASED DEVELOPMENT SYSTEMS
and the 8086/8087/8088 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR
8086-BASED DEVELOPMENT SYSTEMS describe these conditions and
conventions.

If you are an iRMX 88 user, use the Interactive Configuration Utility to
link your modules together and to the rest of the iRMX 88 executive.

The remainder of this chapter applies only to iRMX 86 users.

After you have created your device driver procedures and compiled or
assembled them, you must link the object code to the I/0 System. If you
have written driver procedures for several types of devices, you might
want to place all of these routines in a library and link this library to
the 1/0 System. This allows you to maintain one file of driver routines
and still 1link in only those routines that satisfy external references.
The LIB86 command which allows you to create libraries of object modules
is described in the 8086 FAMILY UTILITIES USER'S GUIDE FOR
8080/8085-BASED DEVELOPMENT SYSTEMS and the iAPX 86 FAMILY UTILITIES
USER'S GUIDE FOR 8086—-BASED DEVELOPMENT SYSTEMS.

The process of linking your driver procedures to the I1/0 System occurs at
I/0 System configuration time. The iRMX 86 CONFIGURATION GUIDE contains
a description of this process. However, because the order im which you
1ink the modules is important and because you must modify the Submit file
10S.CSD, this chapter contains a brief description of the required LINK86
command.

The command used to link the I/0 System is as follows:

LINK86
: fx: ITABLE.OBJ,
:£x: IDEVCF.OBJ,
sfx:driver.obj,
: £x: IOOPT1.LIB,
:fx:10S.LIB,
:fx:RPIFC.LIB

TO :fx:ios.lnk (1inker options)

- B oI - - I -]

7-1

BINDING A DEVICE DRIVER TO THE I/0 SYSTEM

where:

fx The appropriate disk mnemonic, indicating where the
file resides.

ITABLE.OBJ The assembled I/0 System configuration files.

IDEVCF.OBJ

driver.ob]j The compiled or assembled code for your device
drivers. This can be a library of procedures.

I0OPT1.LIB I/0 System options library.

10S.LIB I/0 System library.

RPIFC.LIB Interface library.

Refer to the iRMX 86 CONFIGURATION GUIDE for a complete description of
the I/0 System configuration process.

7-2

APPENDIX A. COMMON DRIVER SUPPORT ROUTINES

This appendix describes, in general terms, the operations of the common
device driver support routines. The routines described include:

INITS$IO
FINISH$IO
QUEUESIO
CANCEL$ IO
INTERRUPTSTASK

These routines are supplied with the I/0 System and are the device driver
routines actually called when an application task makes an I/0 request of
a common device. These routines ultimately call the user-written device
initialize, device finish, device start, device stop, and device
interrupt procedures.

This appendix provides descriptions of these routines in order to show
you the steps that an actual device driver follows. You can use this
appendix to get a better understanding of the I/0 System—supplied portion
of a device driver in order to make writing the device-dependent portion
easier (the random access driver support routines follow essentially the
same pattern). Or you can use it as a guideline for writing custom
device drivers.

INIT$1I0 PROCEDURE

The iRMX 86 I/0 System calls INIT$IO when an application task makes an
RQSASPHYSICALSATTACHSDEVICE system call and there are no units of the
device currently attached. The iRMX 88 I/0 System calls INITSIO when an
application task attaches or creates a file on the device and no other
files on the device are attached.

INITSIO initializes objects used by the remainder of the driver routines,
creates an interrupt task, and calls a user-supplied procedure to
initialize the device itself.

When the 1/0 System calls INIT$IO, it passes the following parameters:
° A pointer to the DUIB of the device-unit to initialize
. In the iRMX 86 environment, a pointer to the location where
INITS$IO must return a token for a data segment (data storage

area) that it creates

° A pointer to the location where INIT$IO must return the
condition code

COMMON DRIVER SUPPORT ROUTINES

The following paragraphs show the general steps that the INIT$IO
procedure goes through in order to initialize the device. Figure A-l
i1llustrates these steps. The numbers in the figure correspond to the
step numbers in the text.

INIT$10

Creates data object for de-
vice and starts filling it.

Creates the region for ac-
cess to the queue

Creates the Interrupt task

Calls user-supplied proce-
dure to Initialize device.

Returns to 1/0 System,
passing data object and
condition code

Figure A-1l. Common Device Driver Initialize I/O Procedure

4.

5.

COMMON DRIVER SUPPORT ROUTINES

It creates a data storage area which will be used by all of the
procedures in the device driver. The size of this area depends
in part on the number of units in the device and any specilal
space requirements of the device. INIT$IO then begins
initializing this area and eventually places the following
information there:

e The value of the DS (data segment) register

® A token (identifier) for a region (exchange ——— for mutual
exclusion)

® The address of the DUIB for this device—unit
e A token (identifier) for the interrupt task

e Other values indicating that the queue is empty and the
segment is not busy

INIT$IO also reserves space in the data storage area for device
data.

It creates a region. The other procedures of the device driver
gain access from this region whenever they place a request on the
queue or remove a request from the queue. INIT$IO places a token
for this region in the data object.

It creates an interrupt task. This interrupt task handles the
interrupts generated by the device for which INIT$IO was called.
INIT$IO places a token for this task in the data storage area.

It calls a user—written device initialization procedure that
initializes the device itself. It gets the address of this
procedure by examining the device information table portion of
the DUIB. Refer to Chapter 3 for information on how to write
this initialization procedure.

It returns control to the I/0 System, passing a token for the
data storage area and a condition code which indicates the
success of the initialize operation.

FINISHSIO PROCEDURE

The iRMX 86 I/0 System calls FINISH$IO when an application task makes an
RQSASPHYSICALSDETACHSDEVICE system call and there are no other units of
the device currently attached. The iRMX 88 I/O System calls FINISH$IO
when an application detaches or deletes a file and no other files on the
device are attached.

FINISHSIO deletes the objects used by the other device driver routines,
deletes the interrupt task, and calls a user—supplied procedure to
perform final processing on the device itself.

COMMON DRIVER SUPPORT ROUTINES

When the I/0 System calls FINISH$IO, it passes the following parameters:
e A pointer to the DUIB of the device—unit just detached
° A pointer to the data storage area created by INIT$IO

The following paragraphs show the general steps that the FINISH$IO
procedure goes through in order to terminate processing for a device.
Figure A-2 illustrates these steps. The numbers in the figure correspond
to the step numbers in the text.

l. It calls a user—written device finish procedure that performs any
necessary final processing on the device itself. FINISH$IO gets
the address of this procedure by examining the device information
table portion of the DUIB. Refer to the Chapter 4 for
information about device information tables.

FINISHS$I10

Calis user-supplied
procedure to finish up
processing on the device

Deletes interrupt task for
device and resets interrupt

Deletes region and data
objects used by this device
driver

Returns to the 1/0 System

Figure A-2. Common Device Driver Finish I/O Procedure

A-4

COMMON DRIVER SUPPORT ROUTINES

2. It deletes the interrupt task originally created for the device
by the INIT$IO procedure and cancels the assignment of the
interrupt handler to the specified interrupt level.

3. It deletes the region and the data storage area originally
created by the INITS$IO procedure, allowing the operating system
to reallocate the memory used by these objects.

4. It returns control to the I/0 System.

QUEUESIO PROCEDURE

The 1/0 System calls the QUEUESIO procedure in order to place an I/O
request on a queue of requests. This queue has the structure of the
doubly linked list shown in Figure 2-2. If the device itself is not
busy, QUEUESIO also starts the request.

When the I/0 System calls QUEUE$IO, it passes the following parameters
e A token (identifier) for the IORS
° A pointer to the DUIB

e A token (identifier) for the data object originally created by
INITSIO

The following paragraphs show the general steps that the QUEUESIO
procedure goes through in order to place a request on the I/0 queue.
Figure A-3 illustrates these steps. The numbers in the figure correspond
to the step numbers in the text.

1. It sets the DONE field in the IORS to OH, indicating that the
request has not yet been completely processed. Other procedures
that start the I/0 transfers and handle interrupt processing also
examine and set this field.

2. It receives access to the queue from the region. This allows
QUEUESIO to adjust the queue without concern that other tasks
might also be doing this at the same time.

3. It places the IORS on the queue.

4. It calls an I/0 System—supplied procedure in order to start the
processing of the request. This results in a call to a
user-written device start procedure which actually sends the data
to the device itself. This start procedure is described in
Chapter 5. If the device is already busy processing some other
request, this step does not start the data transfer.

5. It surrenders access to the queue, allowing other routines to
insert or remove requests from the queue.

COMMON DRIVER SUPPORT ROUTINES

QUEUES$IO
Sels status fields in the
IORS
y
Gains access from the
region

Places the IORS on the
queue

Starts the processing of the
request, if the device is not
busy

Surrenders access to the
region

Returns to the 1/0 System

Figure A-3. Common Device Driver Queue I/0 Procedure

A-6

COMMON DRIVER SUPPORT ROUTINES

CANCEL$IO PROCEDURE

The I/0 System calls CANCEL$IO to remove one or more requests from the

queue and possibly to stop the processing of a request, if it has already
been started. The iRMX 86 I/0 System calls this procedure in one of two
instances:

° If a user makes an RQSASPHYSICALS$DETACHSDEVICE system call and
specifies the hard detach option (refer to the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL for information about this system
call). The hard detach removes all requests from the queue.

) If the job containing the task that makes an I/0 request is
deleted. 1In this case, the I/0 System calls CANCEL$IO to remove
all of that task's requests from the queue.

When the I/0 System calls CANCELS$IO, it passes the following parameters:
e An id value that identifies requests to be cancelled
° A pointer to the DUIB
e A token (identifier) for the device data storage area

The following paragraphs show the general steps that the CANCELS$IO
procedure goes through in order to cancel an I/0 request. Figure A-4
illustrates these steps. The numbers in the figure correspond to the
step numbers in the text.

1. It receives access to the queue from the region. This allows it
to remove requests from the queue without concern that other
tasks might also be processing the IORS at the same time.

2. It locates a request that is to be cancelled by looking at the
cancel$id field of the queued IORSs, starting at the front of the
queue.

3. 1If the request that is to be cancelled is at the head of the
queue, that is, the device is processing the request, CANCELS$IO
calls a user—written device stop procedure that stops the device
from further processing. Refer to the Chapter 5 for information
on how to write this device stop procedure.

4. If the request is finished, or if the IORS is not at the head of
the queue, CANCELSIO removes the IORS from the queue and sends it
to the response mailbox (exchange) indicated in the IORS.

5. It surrenders access to the queue, allowing other procedures to
insert or remove requests from the queue.

NOTE

The additional CLOSE request supplied
by the I/0 System will not be processed
until all other requests with the given
cancel$id value have been dealt with.

A-7

COMMON DRIVER SUPPORT ROUTINES

CANCELS$IO

FROM THE REGION

GAINS ACCESS

Y

Oblan 10AS
with speciied
CANCELSID vatue

currently

s
the device yes

the requost
?

Calls the user-writlen
device stop procedure

th
request done
?

Removes the (ORS
from the queue

l

Sends the IORS
fo the response
malthox

Surrenders access
to the reglon

l

Relurns to the
1/0 Syatem

Figure A-4.

Common Device Driver Cancel 1I/0

A-8

Procedure

COMMON DRIVER SUPPORT ROUTINES

INTERRUPT TASK (INTERRUPTSTASK)

As a part of its processing, the INIT$IO procedure creates an interrupt
task for the entire device. This interrupt task responds to all
Interrupts generated by the units of the device, processes those
interrupts, and starts the device working on the next I/0O request on the
queue.

The following paragraphs show the general steps that the interrupt task
for the common device driver goes through in order to process a device
interrupt. Figure A-5 illustrates these steps. The numbers in Figure
A-5 correspond to the step numbers in the text.

1. It uses the contents of the iAPX 86 DS register to obtain a token
(identifier) for the device data storage area. This is possible
because of the following two reasons:

e When INITS$IO created the interrupt task, instead of
specifying the correct contents of the DS register, it passed
the address of the data object as the contents of the task's
DS register.

° When the INIT$IO procedure created the data storage area, it
included the correct contents of the DS register in one of
the fields.

When the interrupt task starts running, it saves the contents of
the DS register (to use as the address of the data storage area)
and sets the DS register to the value listed in the field of the
data storage area. Thus the task has the correct value in its DS
register and it has the address of the data storage area. This
is the mechanism that is used to pass the address of the device's
data storage area from the INIT$IO procedure to the interrupt
task.

2. It makes an RQS$SETSINTERRUPT system call to indicate that it is
an interrupt task associated with the interrupt handler supplied
with the common device driver. It also indicates the interrupt
level to which it will respond.

3. It begins an infinite loop by waiting for an interrupt of the
specified level.

4. Via a region, it gains access to the request queue. This allows
it to examine the first entry in the request queue without
concern that other tasks are modifying it at the same time.

5. It calls a user—written device-interrupt procedure to process the
actual interrupt. This can involve verifying that the interrupt
was legitimate or any other operation that the device requires.
This interrupt procedure is described further in Chapter 3.

COMMON DRIVER SUPPORT ROUTINES

INTERRUPTSTASK

Adjusts DS register to obtain
the data object for the device

!

Sets Interrupt level at which to
respond and indicates device
handier

|

Y

Waits for interrupt of the
specified Jevel

Gains access from reglon

!

Calis the user-written interrupt
procedure to process the
interrupt

Y

Removes the IORS from the
queue and sends a message to
the response mail box

Starts the next request

Surrenders access to the reglon

Figure A-5. Common Device Driver Interrupt Task

A-10

COMMON DRIVER SUPPORT ROUTINES

If the request has been completely processed, (one request may
require multiple reads or writes, for example), the interrupt
task removes the IORS from the queue and sends it as a message to
the response mailbox (exchange) indicated in the IORS. If the
request is not completely processed, the interrupt task leaves
the IORS at the head of the queue.

If there are requests on the queue, the interrupt task initiates
the processing of the next I/0 request.

In any case, the interrupt task then surrenders access to the

queue, allowing other routines to modify the queue, and loops
back to wait for another interrupt.

A-11

APPENDIX B. EXAMPLES OF DEVICE DRIVERS

This appendix contains three examples of device drivers. The first, a
common driver, is a driver for a box with eight lights and eight
switches. The second, also a common driver, drives a line printer. And
the third, a random access driver, is a driver for the iSBC 206 disk
controller.

Note that the names of the procedures in the examples are not
deviceS$start, device$interrupt, etc., as in the text of this manual.

This is because the actual names are placed, during configuration, in the
appropriate DUIBs.

PL/M-86 COMPILER

EXAMPLES OF DEVICE DRIVERS

LIGHT

SERIES-IIT PL/M-86 DEBUG X119 COMPILATION OF MODULE LIGHT
OBJECT MODULE PLACED IN :F5:LIGHT.OBJ

COMPILER INVOKED BY:

VOO JO U bW

-

e
W N

-
v

P e e et b b b b

(=

PLM86.86 :F5:LIGHT.P86 ROM COMPACT

LIGHT:
/****ii*******i********i***********i**********************t*t*****k*

This driver is written to control a light/switch box
attached to an iSBC508 I/0 Expansion Board. The box consists of
a series of 8 LED's (one for each bit) and 8 switches which
allow a byte to be 'read' from the device. The box is attached
to the board at port &, and an interrupt level of the user’'s
choosing (set at configuration time in the DUIB of the IO0S) is
triggered by a debouncing circuit attached to the appropriate
interrupt level on the Multibus.

When the attachment is made to this device by a call to
RQSASPHYSICALSATTACHSDEVICE, the box will light all LED's to
indicate a successful attachment. When the device is detached,
all LED's will be turned off. Anytime a read or write is done
to or from the device, the interrupt must be manually triggered
by the user to indicate that the device has successfully
completed the transfer.

In order to accomplish this, the device was treatad a3 3
zo.mnon device, thereby allowing the use of the default routines
init$io, queue$io, finish$io, and cancel$io. 1In addition, the
Intel supplied procedures default$stop and default$finish were
used, since no action was required of the device on any of
these procedures.

This device and driver combination are not intended to be
used in a practical application, but rather are meantto show
the versatility and configurability of the device driver and to
present a simple example of one.

i*********************t*****************i**********ikkkkitkt***iﬁ*i/

DO;

DECLARE TRUE LITERALLY '@FFH';
DECLARE FALSE LITERALLY ' QH';
DECLARE ES$OK LITERALLY ' PH';
DECLARE ES$IDDR LITERALLY ' 22H';
DECLARE ES$IO LITERALLY ' 28BH';
DECLARE F$READ LITERALLY ' é';
DECLARE FSWRITE LITERALLY ' 1°;
DECLARE F$SEEK LITERALLY ' 2°;
DECLARE F$SPECIAL LITERALLY ’ 3';
DECLARE FSATTACHSDEV LITERALLY ' 4°;
DECLARE F$DETACHSDEV LITERALLY ' 5°;
DECLARE FSOPEN LITERALLY ' 6';
DECLARE FS$CLOSE LITERALLY ' 7';
DECLARE ALLSLIGHTSSOFF LITERALLY ‘000000008 ;

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

16 1 DECLARE ALLSLIGHTSSON LITERALLY '111111118°;

17 1 SETSLIGHTS:
/* Routine to output the corresponding string to the light box */

PROCEDURE (PORT ,NEWSVALUE) REENTRANT;

i8 2 DECLARE PORT WORD;
19 2 DECLARE NEWSVALUE BYTE;
293 2 OUTPUT (PORT)=NEWSVALUE;
21 2 END SETSLIGHTS;
22 1 READSSWITCHES:
/* Routine to read the switches on the front panel of the
light box */

PROCEDURE (PORT) BYTE REENTRANT;
23 2 DECLARE PORT WORD;
24 2 RETURN (INPUT (PORT));
25 2 END READSSWITCHES;

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

$EJECT

26 1 LIGHT$BOXSINITSIO:
PROCEDURE (DUIBSPTR,DDATASPTR,STATUSSPTR) REENTRANT PUBLIC;

/**************************t*i*t************************************
This procedure will establish a connection to the lights by

turning off all lights on all attached devices (as determined in
the num$units in the common$device$info block).

******************i***/

27 2 DECLARE DUIBSPTR POINTER;
28 2 DECLARE DUIB BASED DUIBSPTR STRUCTURE (
NAME (14) BYTE,
FILESDRIVERS WORD,
FUNCTS BYTE,
FLAGS BYTE,
DEVSGRAN WORD,
LOWSDEVSSIZE WORD,
HIGHSDEVSSIZE WORD,
DEVICE BYTE,
UNIT BYTE,
DEVSUNIT WORD,
INITSIO WORD,
FINISHSIO WORD,
QUEUESIO WORD,
CANCELSIO WORD,
DEVICESINFOSPTR POINTER,
UNITSINFOSPTR POINTER,
UPDATESTIMEOUT WORD,
NUMSBUFFERS WORD,
PRIORITY BYTE);
29 2 DECLARE STATUSSPTR POINTER;
39 2 DECLARE DDATASPTR POINTER;
31 2 DECLARE COMMONSDEVICESINFOSPTR POINTER;
32 2 DECLARE COMMONSDEVICESINFO BASED
COMMONSDEVICESINFO$PTR STRUCTURE (
LEVEL WORD,
PRIORITY BYTE,
STACKSSIZE WORD,
DATASSIZE WORD,
NUMSUNITS WORD,
DEVICESINIT WORD,
DEVICESFINISH WORD,
DEVICES$START WORD,
DEVICESSTOP WORD,
DEVICESINTERRUPT WORD,
BASE WORD) ;
33 2 DECLARE INDEX WORD;
34 2 COMMONSDEVICESINFOSPTR=DUIB.DEVICESINFOSPTR;
35 2 DO INDEX=§ TO (COMMONSDEVICE$INFO.NUMSUNITS-1);
36 3 CALL SETSLIGHTS ((COMMONSDEVICESINFO.BASE + INDEX),

ALLSLIGHTSS$OFF);

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

37 3 END;
38 2 END LIGHTSBOXSINITSIO;
39 1 LIGHTSBOXSSTARTSIO:
PROCEDURE (IORSS$PTR,DUIBSPTR,DDATASPTR) REENTRANT PUBLIC;
40 2 DECLARE DUIBSPTR POINTER;
41 2 DECLARE DUIB BASED DUIBSPTR STRUCTURE (
NAME (14) BYTE,
FILESDRIVERS WORD,
FUNCTS BYTE,
FLAGS BYTE,
DEVS$SGRAN WORD,
LOWSDEVS$SIZE WORD,
HIGHSDEVSSIZE WORD,
DEVICE BYTE,
UNIT BYTE,
DEVSUNIT WORD,
INITSIO WORD,
FINISHSIO WORD,
QUEUESIO WORD,
CANCELSIO WORD,
DEVICESINFOSPTR POINTER,
UNITSINFOSPTR POINTER,
UPDATESTIMEOUT WORD,
NUMSBUFFERS WORD,
PRIORITY BYTE);
42 2 DECLARE DDATASPTR POINTER;
43 2 DECLARE COMMONSDEVICES$SINFOSPTR POINTER;
44 2 DECLARE COMMONSDEVICESINFO BASED
COMMONSDEVICESINFOSPTR STRUCTURE (
LEVEL WORD,
PRIORITY BYTE,
STACKSSIZE WORD,
DATASSIZE WORD,
NUMSUNITS WORD,
DEVICESINIT - WORD,
DEVICESFINISH WORD,
DEVICES$START WORD,
DEVICES$STOP WORD,
DEVICESINTERRUPT WORD,
BASE WORD) ;
45 2 DECLARE IORSSPTR POINTER;
46 2 DECLARE IORS BASED IORSSPTR STRUCTURE (
STATUS WORD,
UNIT$STATUS WORD,
ACTUAL WORD,
ACTUALSFILL WORD,
DEVICE WORD,
UNIT BYTE,
FUNCT BYTE,
SUBFUNCT WORD,
LOWSDEVSLOC WORD,
HIGHSDEVSLOC WORD,
BUFFSPTR POINTER,

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

COUNT WORD,
COUNTSFILL WORD,
AUXSPTR POINTER,
LINKSFOR POINTER,
LINKSBACK POINTER,
RESPSMBOX WORD,
DONE BYTE,
FILL BYTE,
CANCELSID WORD);

/* Initialize the I/0 Structures */

47 2 COMMONSDEVICESINFOSPTR=DUIB.DEVICESINFOSPTR;
48 2 IORS.STATUS=ESIDDR;
49 2 IJORS.ACTUAL=8;
50 2 IORS .DONE=TRUE;
/* Check for valid 1/0 functions */
51 2 IF (IORS.FUNCT <= FS$CLOSE) THEN
/* 1/0 function is valid, go ahead */
52 2 DO CASE (IORS.FUNCT);

/* Read-- Set done to false, since function will be finished
by interrupt routine. Set status to E$0K, since
function is valid. */

53 3 DO;
54 4 IORS.DONE=FALSE;
55 4 IORS.STATUS=ES$OK;
56 4 END;

/* Write-~ Set done to false, since function will be finished
by interrupt routine. Set status to E$OK, since
function is valid. */

57 3 DO;
58 4 IORS.DONE=FALSE;
59 4 IORS.STATUS=ESOK;
60 -4 END;
/* Seek—— Function is invalid, return E$IDDR */
61 3 DO;
62 4 END;
/* Special-- Function is invalid, return ESIDDR */
63 3 DO;
64 4 END;
/* Attach-- Activate all lights, return ESOK */
65 3 DO;
66 4 CALL SETSLIGHTS ((COMMONSDEVICESINFO.BASE + DUIB.UNIT),

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

ALLSLIGHTSS$ON);
67 4 IORS.STATUS=ES$OK;
68 4 END;

/* Detach-- Deactivate all lights, return ES$OK. */

69 3 DO;

70 4 CALL SETS$LIGHTS ((COMMONSDEVICESINFO.BASE + DUIB.UNIT),
ALLSLIGHTSSOFF);

71 4 IORS.STATUS=ES$OK;

72 4 END;

/* Open-- Valid function, return E$OK */

73 3 DO;
74 4 IORS.STATUS=ESOK;
75 4 END;
/* Close-- Valid function, return E$SOK */
76 3 DO;
77 4 IORS.STATUS=ES$OK;
78 4 END;
79 3 END; /* case */
8@ 2 END LIGHTS$BOXSSTARTSIO;

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

$EJECT
8l 1 LIGHTS$SBOXSINTERRUPT:
PROCEDURE (IORSSPTR,DUIBSPTR,DDATASPTR) REENTRANT PUBLIC;
82 2 DECLARE DUIBS$PTR POINTER;
83 2 DECLARE DUIB BASED DUIB$PTR STRUCTURE (
NAME (14) BYTE,
FILESDRIVERS WORD,
FUNCTS BYTE,
FLAGS BYTE,
DEVSGRAN WORD,
LOWSDEVSSIZE WORD,
HIGHSDEVSSIZE WORD,
DEVICE BYTE,
UNIT BYTE,
DEVSUNIT WORD,
INITS$IO WORD,
FINISHSIO WORD,
QUEUESIO WORD,
CANCELSIO WORD,
DEVICESINFOSPTR POINTER,
UNITSINFOSPTR POINTER,
UPDATESTIMEOUT WORD,
NUMSBUFFERS WORD,
PRIORITY BYTE);
84 2 DECLARE DDATASPTR POINTER;
85 2 DECLARE COMMONSDEVICESINFOSPTR POINTER;
86 2 DECLARE COMMONSDEVICESINFO BASED
COMMONSDEVICESINFOSPTR STRUCTURE (
LEVEL WORD,
PRIORITY BYTE,
STACKSSIZE WORD,
DATAS$SIZE WORD,
NUMSUNITS WORD,
DEVICESINIT WORD,
DEVICESFINISH WORD,
DEVICESSTART WORD,
DEVICESSTOP WORD,
DEVICESINTERRUPT WORD,
BASE WORD) ;
87 2 DECLARE IORSSPTR POINTER;
88 2 DECLARE IORS BASED IORS$PTR STRUCTURE (
STATUS WORD,
UNITSSTATUS WORD,
ACTUAL WORD,
ACTUALSFILL WORD,
DEVICE WORD,
UNIT BYTE,
FUNCT BYTE,
SUBFUNCT WORD,
LOWSDEVSLOC WORD,
HIGHSDEVSLOC WORD,
BUFFS$PTR POINTER,
COUNT WORD,
COUNTSFILL WORD,

PL/M-86 COMPILER

89
90

91
92

93
94

95

96

97

38

99
100
101
102
123
104
195
1056
197

NN

w w W NN

FNWEBDWWW S

EXAMPLES OF DEVICE DRIVERS

LIGHT
AUXSPTR POINTER,
LINKSFOR POINTER,
LINKS$SBACK POINTER,
RESPS$MBOX WORD,
DONE BYTE,
FILL BYTE,
CANCELSID WORD);
DECLARE BUFFERSPTR POINTER;

DECLARE BUFFER BASED BUFFERSPTR (1) BYTE;
/* Check for a valid interrupt */

IF (IORSSPTR<>@) THEN
DO;

COMMONSDEVICESINFOSPTR=DUIB.DEVICESINFOSPTR;
BUFFERSPTR=IORS.BUFFS$PTR;

DO CASE (IORS.FUNCT);
/* Read-- Bring in switch reading */

BUFFER (IORS.ACTUAL)=READSSWITCHES (
COMMONSDEVICESINFO.BASE + DUIB.UNIT);

/* Write-- Output light pattern */

CALL SETSLIGHTS ((COMMONSDEVICESINFO.BASE + DUIB.UNIT),
BUFFER (IORS.ACTUAL));

END;
IORS,ACTUAL=IORS.ACTUAL+1;
IF (IORS.ACTUAL=IORS.CQUNT) THEN
DO;
IORS.STATUS=ES$OK;
IORS.DONE=TRUE;
END;
END;
END LIGHTS$SBOXSINTERRUPT;

END LIGHT;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
377 LINES READ

PROGRAM WARNINGS
@ PROGRAM ERRORS

P21BH 539D

=

= 30004 2D
= @POPH oD
= @OlEH 36D

END OF PL/M-86 COMPILATION

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER iprntr.p86

printer$startSinterrupt

SERIES-III PL/M-86 DEBUG X119 COMPTLATION
OBJECT MODULE PLACED IN :Fl:IPRNTR.OBJ

OF MODULE IPRNTR

COMPILER INVOKED BY: PLM86.86 :Fl:TPRNTR.P86 COMPACT ROM NOTYPE OPTIMIZE(3)

$title ('iprntr.p86°')
/*

* iprntr.p86

*

* This module implements centronix-type interface line printer
* driver. It is written as a 'common' device driver. It is
* assumed that the reader is familiar with the 8255 chip.
*
* LANGUAGE DEPENDENCIES:
* COMPACT ROM OPTIMIZE(3)
*/
$include(:fl:icpyrt.not)

= /*

= * INTEL CORPORATION PROPRIETARY INFORMATION. THIS LISTING IS

= * SUPPLIED UNDER THE TERMS OF A LICENSE AGREEMENT WITH INTEL

= * CORPORATION AND YAY WOT BE COPIED NOR DISCLOSED EXCEPT 1IN

= * ACCORDANCE WITH THE TERMS OF THAT AGREEMENT.

= */

1 iprntr: DO;

Sinclude(:fl:icomon.1lit)
= Ssave nolist
Sinclude(:fl:iparam.lit)
= 5save nolist
$include(:fl:inutyp.lit)
= 3save nolist
$include(:fl:iiors.lit)
= $save nolist
Sinclude(:£fl:iduib.1lit)
$save nolist
$include(:fl:iprntr.1it)
/*

= * Common device driver information
= *
= * level: Interrupt level
= * priority: Priority of interrupt task
= * gstack$size: Stack size for interrupt task
= * data$size: Device local data size
= * num$units: Number of units on device
= * device$init: Init device procedure
= * device$finish: Finished with device procedure
= * device$start: Start device procedure
= * device$stop: Stop device procedure
= * device$interrupt: Device interrupt procedure
= */
13 1 = DECLARE COMMONSDEVSINFO LITERALLY °
= level WORD,
= priority BYTE,
= gtack$size WORD,
= data$size WORD,

B~-10

EXAMPLES

PL/M-86 COMPILER iprntr.p86

14

15

16

18

TR B R I T T T O T I O I T

W nn

LU IO)

printer$Ssta

numSunits
device$init
device$finish
deviceS$Sstart
device$stop
deviceS$Sinterr

DECLARE i8255S$INF
ASport
BSport
C$port
Control$port

DECLARE
PRINTERSDEVIC
COMMONSDE
i82558INF
tabScontr
$include(:f1:i825
/*

»

8255 is progr

Group A:
Group B:

Port A and
Port B and

Port C defini

* % % %k ok ¥ % * ¥ % % ¥ % ¥ H

*/

DECLARE
MODESWORD
CHARSACK
INTSENABLE
INTSDISABLE
STROBESON
STROBESOFF

OF DEVICE DRIVERS

rtSinterrupt

WORD,
WORD,
WORD,
WORD,
WORD,
upt WORD';

O LITERALLY '

WORD,
WORD,
WORD,
WORD';
ESINFO LITERALLY 'STRUCTURE (
VSINFO,
o,
ol WORD) ';

5.1it)
ammed as follows:

Mode @
Mode 1

Upper Port C: OUTPUT
Lower Port C: INPUT

tion (bit 8 is LSB; bit 7 is MSB):

- Tnterrupt to CPU (not used by the driver)

- Character acknowledge from the printer

- Printer interrupt znable

- Paper error status (not used by the driver)
- Character strobe to the printer

- not used

LITERALLY '‘'87H',
LITERALLY 'a24°',
LITERALLY '‘g5H",
LITERALLY ‘g4u’,
LITERALLY 94",
LITERALLY '68H"';

$include(:fl:iprerr.1lit)

$save nolist
/*
* 1literal decla
*/
DECLARE
TABSCHAR LITER
SPACE LITER

ration

ALLY '@9H',
ALLY '20H';

B-11

PL/M-86 COMPILER

19
20

21

22

23

24

25
26

27
28
29

30
31
32

33
34

35

8] www NN

Db b W

Se
$s
*

* % % % % % ¥ ¥ ¥ % % ¥ * %

EXAMPLES OF DEVICE DRIVERS

iprntr.p86
printer$start$Sinterrupt

ject
ubtitle('printer$startSinterrupt')
printer$start/printer$interrupt
start/interrupt procedure for the line printer
CALLING SEQUENCE:
CALL printer$startSinterrupt (iors$p, duib$p, ddata$p);
INTERFACE VARIABLES:
iorsSp - I/0 request/result segment pointer
duibS$p - pointer to the device-unit info. block
ddata$p - pointer to the device(printer) data segment.
CALLS: None
/

printer$start$interrupt: PROCEDURE (iors$p, duib$p, ddata$p)

PUBLIC REENTRANT;

DECLARE

(iors$p, duib$p, ddata$p) POINTER;
DECLARE

iors BASED iors$p IOSREQSRESSSEG,

duib BASED duib$p DEVSUNITSINFOS$SBLOCK;
DECLARE

dinfo$p POINTER,

dinfo BASED dinfoSp PRINTERSDEVICESINFO;
DECLARE

buffer$p POINTER,

(char BASED buffer$p)(l) BYTE;

dinfoSp = duib.device$infoSp;

/*
* test for spurious interrupts
*/
IF iorsSp = @ THEN
DO;
/*
* turn off the interrupt and return
*/
OUTPUT (dinfo.Control$port) = INTSDISABLE;
RETURN; .
END;

DO CASE (iors.funct);

/* read */
DO;
jors.status = ESIDDR;
iors.done = TRUE;
END;

/* write */
DO;

B-12

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER iprntr.p35
printerSstart$Sinterrupt

/* get the buffer pointer */

36 4 bufferSp = iors.buff$p;
/* disable printer interrupt */
37 4 OUTPUT (dinfo.Control$Sport) = INT$DISABLE;
38 4 DO WHILE (iors.actual < iors.count);
/*

* convert TAB character to a SPACE character if the
* printer does not handle them
*/
39 5 IF ((char(iors.actual) = TABSCHAR) AND
((dinfo.tab$control) = FALSE))
THEN char(iors.actual) = SPACE;
/* .
* 1's complement the character and send it to the
* printer. Port-A is the data port
*/
41 5 OUTPUT (dinfo.ASport) = NOT(char(iors.actual));
/*
* strobe the line printer
* this is a way of telling the printer that there is
* valid data on the bus

*/
42 5 JUTPUT (dinfo.Control$Sport) = STROBESON;
43 5 OUTPUT (dinfo.ControlSport) = STROBESOFF;
/*
* increment the count of chars printed
*/
44 5 iors.actual = iors.actual + 1;
/*
* test whether printer acknowledgement bit is set
*/
45 5 IF (INPUT(dinfo.CSport) AND CHARSACK) = @ THEN
46 5 DO;

*

* printer didn't acknowledge. Hopefully it has

* gstarted printing. So enable the printer interrupt
* and return(printer will interrupt when it's done)

*/
47 6 OUTPUT (dinfo.ControlSport) = INTSENABLE;
48 6 RETURN;
49 6 END;
ELSE
50 5 DO;
/*
* printer copied the character into its buffer
* clear printer acknowledge bit by reading port B.
* actual$fill field in the ilors is used as a tempo-
* rary variable. Char read is ignored.
*
51 6 iors.actual$fill = INPUT(dinfo.BSport);
52 6 END;
53 5 END; /* end of DO WHILE statement */

B-13

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER iprntr.p86
printer$start$interrupt

/*
* get iors.done to TRUE
* gset iors.status to OK
*/

54 4 iors.status = ES$OK;
55 4 iors.done = TRUE;
56 4 END;

/* seek */
57 3 DO;
58 4 iors.status = ESIDDR;
59 4 iors.done = TRUE;
60 4 END;

/* special */
sl 3 DO;
62 4 jors.status = ESIDDR;
63 4 iors.done = TRUE;
64 4 END;

/* attach device */
85 3 DO;

/* initialize the 8255 */

65 4 OUTPUT (dinfo.ControlSport) = MODESWORD;
67 4 iors.status = ES$OK;
58 4 iors.done = TRYE;
59 4 END;

/* detach device */
70 3 DO;
71 4 iors.status = ES$OK;
72 4 iors.done = TRUE;
73 4 END;

/* open */
74 3 DO;
75 4 iors.status = ES$OK;
75 4 iors.done = TRUE;
77 4 END;

/* close */
78 3 DO;
79 4 iors.status = ESOK;
80 4 iors.done = TRUE;
81 4 END;
82 3 END; /* end of DO CASE statement */
83 2 END printer$startSinterrupt;

B-14

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER iprntr.p8s
printerS$Sstop

$subtitle('printer$stop')
/i
* printer$stop

* stop procedure for the line printer
*
* CALLING SEQUENCE:
* CALL printer$stop (iors$p, duib$p, ddatasp);
*
* INTERFACE VARIABLES:
* iors$p N I1/0 request/result segment pointer
* duib$p - pointer to the device-unit info. block
* ddatasSp - pointer to the device(printer) data segment.
*
* CALLS: None
*
*/
84 1 printer$Sstop: PROCEDURE (iors$p, duib$p, ddata$p) PUBLIC REENTRANT;
85 2 DECLARE
(iorsSp, duib$p, ddatasSp) POINTER;
86 2 DECLARE
iors BASED iors$Sp I0SREQSRESSSEG,
duib BASED duibSp DEVSUNITSINFOSBLOCK;
87 2 DECLARE
dinfoSp POINTER,
dinfo 3ASED dinfoSp PRINTERSDEVICESINFO;

* turn off the printer interrupt
* set iors.done to TRUE
* set iors.status to ESOK

*/
88 2 dinfo$p = duib.device$infoSp;
89 2 OUTPUT (dinfo.Control$port) = INTSDISABLE;
90 2 iors.status = E$OK;
91 2 iors.done = TRUE;
92 2 END printer$stop;
93 1 END iprntr;

MODULE INFORMATION:

CODE AREA SIZE = @l40Hu 320D
CONSTANT AREA SIZE = 0§000H @D
VARIABLE AREA SIZE = @000H @D
MAXIMUM STACK SIZE = 0816H 22D

500 LINES READ
G PROGRAM WARNINGS
6 PROGRAM ERRORS

END OF PL/M-86 COMPILATION

B-15

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER 1206ds.p86
Module Header

SERIES-III PL/M-86 DEBUG X119 COMPILATION OF MODULE I286DS
OBJECT MODULE PLACED IN :F5:I206DS.0BJ
COMPILER INVOKED BY: PLM86.86 :F5:I1206DS,.P86 COMPACT NOTYPE OPTIMIZE(3) ROM

Stitle('i206ds.p86")
Ssubtitle('Module Header')

/*

* 12p¢6ds.p86

*

* CONTAINS:

* i286$start maps to device$init.

* i2¢6%interrupt maps to device$interrupt.
* i286$init maps to device$start.

*

* This module contains the procedures that are referenced
* in the device information tables.

%

* LANGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE(3)

*/

1 i286ds: DO;

$include(:fl:icomon.lit)
= $save nolist
$include(:fl:inutyp.lit)
= $save nolist
$include(:fl:iparam.lit)
= $save nolist
$include(:fl:iiotyp.1it)
= $save nolist
$include(:fl:iiors.lit)
= $save nolist
$include(:fl:iduib.1it)
= $save nolist
Sinclude(:fl:idrinf.lit)
= $save nolist
$include(:£f1:i206in.1it)
= $save nolist
$include(:f1:1i205dv.1lit)
= $save nolist
$include(:fl:iexcep.lit)
= $save nolist
Sinclude(:fl:iiocexc.lit)
= $save nolist
Sinclude(:fl:iradsf.1lit)
= $save nolist

$include(:fl:i286dp.ext)
= $save nolist

$include(:£fl:12086dc.ext)
= $save nolist

Sinclude(:fl:i206fm.ext)
= $save nolist

PL./M-86 COMPILER i206ds.p86
Module Header

$include(:fl:iasmut.ext)
= $save nolist ;

$include(:fl:inotif.ext)’
= $save nolist

B-16

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206ds.p86
Local Data

$subtitle('Local Data')
/*

* The need$reset array is used to determine if device needs to be

* reset after an error. Indexed by status.

*

* TRUE = OFFH

* FALSE = Q00H

*/

49 1 DECLARE
need$Sreset(24) BYTE DATA(

FALSE, /* Successful completion */
TRUE, /* ID field miscompare */
FALSE, /* Data field CRC error */
FALSE, /* special for incorrect result$type */
TRUE, /* Seek error */
FALSE,
FALSE,
FALSE,
FALSE, /* Illegal Record Address */
FALSE,
FALSE, /* ID Field CRC error */
TRUE, /* Protocol error */
TRUE, /* Illegal Cylinder Address */
FALSE,
FALSE, /* Record not found */
FALSE, /* Data Mark Missing */
FALSE, /* Format Error */
FALSE, /* Write Protected */
FALSE,
TRUE, /* Write Error */
FALSE,
FALSE,
FALSE,
FALSE); /* Drive Not Ready */

B-17

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206ds.p86
Unit Status Array

Ssub;itle('Unit Status Array')
*

* unit$status is used to set the unit status field in iors.

* 1Indexed by status.

*

* TIOSUNCLASS =

* TJOS$SOFT =

* TOSHARD =

* TOSOPRINT =

* TO$WRPROT =

*/

508 1 DECLARE
unit$status(24) BYTE DATA(
IOSUNCLASS, /* Successful completion */
I0$SOFT, /* ID field miscompare */
TI0$SOFT, /* Data field CRC error */
I0$HARD, /* special for incorrect resultStype */
I0S$SOFT, /* Seek error */
I0OSUNCLASS,
IOSUNCLASS,
IOSUNCLASS,
IOSHARD, /* Illegal Record Address */
IOSUNCLASS,
I0$SOFT, /* ID Field CRC error */
I0$SOFT, /* Protocol error */
IO$HARD, /* Illegal Cylinder Address */
IOSUNCLASS,
I0$SOFT, /* Record not found */
I0$50FT, /* Data Mark Missing */
10$S0OFT, /* Format Error */
IOSWRPROT, /* Write Protected */
IOSUNCLASS,
I0S$SOFT, /* Write Error */
IOSUNCLASS,
TOSUNCLASS,
IOSUNCLASS,
IOSOPRINT); /* Drive Not Ready */
/*

* drive$ready is used to find the drive ready bit

* in the drive status.
*/

51 1 DECLARE
drive$ready(4) BYTE DATA(920H,040H,010H,020H);

B-18

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206ds.p86
i2@6$start

$subtitle('i2@66Sstart"')

~N
*

i2@86$start
start procedure for the iSBC 206 controller.

CALLING SEQUENCE:
CALL i2@06$start(iors$Sp, duib$p, ddatas$p);

INTERFACE VARIABLES:
iors$p - I/0 Reguest/Result segment pointer
duib$ - pointer to Device-Unit Information Block
ddatagp - device data segment pointer.

CALLS:
io$206
format$206
send206iopb

CALLED FROM:
radev via a reference in the device info table.

ABSTRACT:
This is the device start procedure called by Random
Access Interface (radev). The device is assumed to
have been initialized, any necessary resources
allocated and the interrupt task has already been
created. All requests to any number of
iSBC 206 controller board's are funneled through this
procedure. The reentrant nature of the procedure will
allow multiple invocations with only one copy of the
code. The nature of the request is passed in as the
function code and sub-function fields of the IORS.
The function provides a simple method to DO CASE into
the required procedures.

% % % % ok ¥ % % % ok % % % % ¥ % % ¥ % ¥ % % N F ¥ N ¥ X ¥ ¥ ¥ ¥ %

/

52 1 i286$start: PROCEDURE (iors$p, duib$p, ddata$p) PUBLIC REENTRANT;
53 2 DECLARE '

iors$p POINTER,

duib$p POINTER,

ddata$p POINTER;
54 2 DECLARE

iors BASED iors$p IOS$REQSRESSSEG,

duib BASED duib$p DEVSUNITSINFOS$SBLOCK,

¢infoSp POINTER,

dinfo BASED dinfo$p I206$DEVICESINFO,

uinfoSp POINTER,

uinfo BASED uinfo$p I206SUNITS$INFO,

ddata BASED ddata$p IO$PARMSBLOCKS$206,

base WORD,

dummy BYTE;

/*
* Initialize the local variables.
*/

B-19

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206ds.p86

i2@6S$start
55 2 dinfo$p = duib.device$Sinfol$p;
56 2 base = dinfo.base;
57 2 uinfo$p = duib.unit$infoSp;
/*
* I1f we got called because of a restore operation
* then just return.
*
58 2 IF (ddata.restore) THEN
59 2 RETURN;
50 2 do$case$funct:
DO CASE iors.funct;
/*
* in the following calls the @ddata is literally
*/ioprp (i.e., the pointer to the iopb).
*
61 3 caseSread:
DO;
62 4 CALL io0$206 (base, iors$p, duib$p, @ddata);
53 4 END case$read;
64 3 case$write:
DO;
55 4 CALL i0$206 (base, iors$p, duib$p, @ddata);
56 4 END case$write;
67 3 case$seek:
DO;
68 4 CALL i0$206 (base, iors$p, duib$p, @ddata);
69 4 END case$seek;
79 3 case$spec$ funct:
DO;
71 4 IF iors.sub$funct = FSSFORMATSTRACK THEN
72 4 CALL format$206 (base, iors$p, duib$p, @ddata);
ELSE
73 4 DO;
/*
* Notifiy caller that this is an
* Tllegal Device Driver Request.
*/
74 5 iors.status = ES$SIDDR;
75 5 iors.actual = 9;
76 5 lors.done = TRUE;
77 -5 END;
78 4 END case$spec$ funct;
79 3 case$attachSdevice:
DO;
80 4 dummy = (duib.dev$gran = 512);
81 4 IF ((input(sub$system$port) OR 873H) <> @FBH) OR
(((input(disk$config$port) AND
SHL (#10H,SHR (duib.unit,2))) <> 8) <> dummy) THEN
82 4 DO;

B-20

PL/M-86 COMPILER

83

85
86
87
88
89
9@
91

[N O R O, U R)

92 4
93 5

94

[$)]

95
96
97
98

S

99

w

100
101
142

w Lo

193

104
185
105

w Lo

187

108
109
1140

w P

111

112 2

EXAMPLES OF DEVICE DRIVERS

1206ds.p86
i2p6Sstart

iors.status

iors.unit$status =

iors.actual
iors.done =
RETURN;

END;
ddata.inter

= E$I0;
IOSOPRINT;
= @;

TRUE;

= interonmask;

ddata.instr = restore$op;

IF NOT send286iopb(base, @ddata) THEN
/%

* the board would not accept the iopb

* 50...
*/
DO;

iors.status

/*

= E$IO;

* insert the result code into unit status
* so the user has access to the code.
* This will assist in debugging.

*

iors.unit$status =

iors.actual
iors.done =

END;

END case$SattachS$device;

case$detachSdevice:
DO;

iors.status

iors.done =

= E$O0K;
TRUE;

END case$detach$device;

case$open:
DO;
iors.status
iors.done =
END caseS$open;

case$close:
DO;
iors.status
iors.done =
END case$close;

END do$case$ funct;

END i206$start;

B-21

= E$0K;
TRUE;

= E$OK;
TRUE;

I0$SOFT OR

SHL (input(result$byte$port), 8);
=@;

TRUE;

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206ds.p86

116
117
118

NN

i2@6$interrupt

$subtitle('i206Sinterrupt')

N
*

i206Sinterrupt
interrupt procedure for the iSBC 206 controller.

CALLING SEQUENCE:
CALL i2#6Sinterrupt(iors$p, duib$p, ddata$p);

INTERFACE VARIABLES:

iors$p - I/0 Request/Result segment pointer
duib$p - pointer to Device-Unit Information Block
ddata$p - device data segment pointer.

CALLS:
i2@6$start
send$206Siopb
rq$send$message

CALLED FROM:
radev via a reference in the device info table.

ABSTRACT:
This procedure will handle the interrupts from the
iSBC 206 controller and will initiate any actions
necessary to recover from an error condition
(there are some conditions that are not recoverable).

% % Ok % ¥ K ok Ok X ¥ X ¥ ¥ F K * FF ¥ ¥ F F F

*
~N

i206$interrupt: PROCEDURE (iors$p, duib$p, ddata$p)
PUBLIC REENTRANT;

DECLARE
iors$p POINTER,
duib$p POINTER,
ddata$p POINTER;

DECLARE
iors BASED iors$p IOSREQSRESS$SEG,
duib BASED duib$p DEVSUNITSINFOS$BLOCK,
dinfo$p POINTER,
dinfo BASED dinfo$p 1206SDEVICESINFO,
ddata BASED ddata$p IOSPARMSBLOCK$246,
temp BYTE,
base WORD,
spindle WORD,
status WORD;

/*

* Initialize the local variables.
*

dinfo$p = duib.device$infos$p;
base = dinfo.base;
spindle = shr(duib.unit, 2); /* 4 units/spindle */

/*
* jnput from the result type port and
* mask out all the unused bits.

B-22

PL/M-86 COMPILER

119
120

121

122
123

124

125
126

127
128

129

130
131

132

133
134

135
136
137
138
139

140
141

142
143

144

145

w

P g w W

Lo

[P 00 S] o w W w

(S, %)

EXAMPLES OF DEVICE DRIVERS

i266ds.p86
i206$interrupt

*/

IF (input(result$type$port) AND 3) = 0 THEN
done$int:

DO;
status = input(result$byteSport);

IF ddata.restore THEN
didSrestore:
DO;
ddata.restore = FALSE;
ddata.status(spindle) = status;
}g iors$p <> @ THEN

* There is a valid iors and we have
* just returned from a restore operation
* so, reinitiate the request.

*/
restart:
DO;

CALL i286S$start(iors$p,
ddata$p,
duib$p);

END restart;
/*
* That is all we can do so ...
*/
RETURN;

END did$restore;
ddata.status(spindle) = status;

IF iors$p <> @ THEN
valid$iors:
DO;
IF status <> @ THEN
bad$status:
DO;
iors.status = E$IO;
IF (status <= @1l0H) THEN
temp = status;
ELSE
temp = shr(status, 4) + 00FH;
iors.unit$status = unit$status(temp)
OR SHL (status,8):;
iors.actual = 9;
iors.done = TRUE;
/*
* Index into the need$reset array
* to determine the next course of
* action.
*
IF needSreset(ddata.status
(iors.unit / 4)) THEN
recalibrate:
DO;
/*

B-23

PL/M-86 COMPILER

146
147
148

149

154
151

152
153
154
155
156
157

158
159
1608
161
162
163

164
165

166
167
168

169

[o) W) We)

NwWs Tt

Wb bt WWw

o> W

N Wk

EXAMPLES OF DEVICE DRIVERS

i2@6ds.p86
i286$interrupt

* Note: must index drive

*/select bits from iors.unit.

*

ddata.inter = interonmask;

ddata.instr = restore$op;

ddata.restore = send$2363iopb(
dinfo.bhase,

@ddata);
END recalibrate;
END bad$status;
ELSE okS$status:
DO;
/*
* set actual = count as the status

* indicated that the transfer worked.
* This is done regardless of the

* operation preformed.

*/

iors.actual = iors.count;
iors.done = TRUE;
END ok$§status;
END valid$iors;
END done$int;
ELSE status$int:

DO;
/*

* Have arrived here because of an interrupt
* initiated by the drive itself.
* Could have been a drive ready or not ready
* gignal.
*/
temp = input(inter$stat$port);
DO spindle=@ TO 3;
IF (temp AND SHL (1, spindle)) <> @ THEN
GOTO found$spindle;
END;
found$spindle:
spindle = SHL (spindle,2);
DO temp=spindle TO spindle+3;
IF ((input(resultSbyte$port) AND
?:iveSready(spindle)) = @) THEN
* let the user know the status
* of the drive.
*/
CALL notify(temp, @ddata);
END;
END statusS$Sint;

END i266$interrupt;

B-24

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER 1266ds.p86
i206%init

$subtitle('i206Sinit'")

/*
* i206$init
* init procedure for the iSBC 206 controller.
*
* CALLING SEQUENCE:
* CALL i206Sinit(duib$p, ddata$p, status$p);
*
* INTERFACE VARIABLES:
* duib$p - pointer to Device-Unit Information Block
* ddata$ ~ device data segment pointer.
* statusSp - pointer to WORD indicating status of
* the operation.
*
* CALLS:
* <none>
*
* CALLED FROM:
* radev via a reference in the device info table.
*
* ABSTRACT:
* initialize the hardware when called.
* There is not much to do.
*/
179 1 i206$init: PROCEDURE (duib$p, ddata$p, status$p) PUBLIC REENTRANT;
171 2 DECLARE
duib$p POINTER,
ddata$p POINTER,
statusSp POINTER;
172 2 DECLARE
duib BASED duib$p DEVSUNITSINFOS$SBLOCK,
dinfo$p POINTER,
dinfo BASED dinfo$p I206$DEVICESINFO,
ddata BASED ddata$p IOSPARMSBLOCK$206,
status BASED status$p WORD;
173 2 DECLARE
i WORD;
174 2 dinfo$p = duib.deviceSinfo$p;
/*
* Reset iSBC 286 controller.
*/
175 2 output (reset$port) = 9;
176 2 status = ES$OK;
177 2 ddata.restore = FALSE;
178 2 END 1206%init;

179

-

END i206ds;

MODULE INFORMATION:

CODE AREA SIZE @36AH 874D

CONSTANT AREA SIZE = @000H 8D
VARIABLE AREA SIZE = 0000H #D
MAXIMUM STACK SIZE = @8846H 78D

1141 LINES READ
? PROGRAM WARNINGS
@ PROGRAM ERRORS

END OF PL/M-86 COMPILATION

B-25

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206i0.p86: iSBC 206 controller I/0O Module
Module Header

SERIES-III PL/M-86 DEBUG X119 COMPILATION OF MODULE I266I0
OBJECT MODULE PLACED IN :F5:120610.,0BJ
COMPILER INVOKED BY: PLM86.86 :F5:120610.P86 COMPACT NOTYPE OPTIMIZE(3) ROM

$title('i206io.p86: iSBC 286 controller I/0 Module')
$subtitle('Module Header')
1 i206io: DO;

/*
This module modifies the 206 parameter block
and passes the address of it to
the iSBC 206 controller.

io$206

LANGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE (3)
/

$include(:fl:icomon.lit) *
= $save nolist
$include(:fl:inutyp.lit)
= $save nolist
Sinclude(:£fl:iiotyp.lit)
= $save nolist
$include(:fl:iparam.lit)
= $save nolist
Sinclude(:£f1:i206dv.1it)
= $save nolist
$include(:£f1:i286in.11it)
= $save nolist
$include(:fl:iiors.lit)
= $save nolist
$include(:fl:iduib.1lit)
= $save nolist
$include(:fl:itrsec.1lit)
= $save nolist
$include(:fl:iexcep.lit)
= $save nolist
$include(:fl:iiocexc.lit)
= $save nolist

*
*
*
*
* CONTAINS:
*
*
*
*

$include(:£fl:i206dc.ext)
= $save nolist

/*

* This module does the normal io (read, writes and seeks).
* Formatting a track is handled by 1206fm.p86.

*/

31 1 DECLARE
i206S3op$Scodes (*) BYTE DATA (
READSOP,
WRITESOP,

PL/M-86 COMPILER i206i0.p86: 1SBC 206 controller I/0 Module
: Module Header

SEEKSOP

B-26

EXAMPLES OF DEVICE DRIVERS

PL/M-85 COMPILER i206i0.p86: iSBC 286 controller I/0 Module
io$286: iSBC 286 controller I/0 Module

$subtitle('io$206: iSBC 206 controller I/0 Module')
/*

*

io$206
I/0 module (read/write/seek)

CALLING SEQUENCE:
CALL 108206 (base, iors$p, duib$p, iopb$p);

INTERFACE VARIABLES:

*
*
*
*
*
*
* base - base address of the board.
* iors$p - I/9 Request/Result segment pointer
* duibs$p - pointer to Device-Unit Information Block
* iopb$p - pointer to I/0 parameter block.
*
* INTERNAL VARIABLES:
* iors - 1/0 Request/Result Structure.
* ts - DWORD containing track and sector info.
* ts$o - overlay of ts to allow access through
* PL/M-86.
* duib - Device Unit Information Block Structure.
* iopb - I/0 parameter block for the
* iSBC 206 controller.
* platter - local var to prevent multiple computations.
* spindle - as above.
* sur face - as above.
*
* CALLS:
* send206iopb(base, @iopb)
*
* ABSTRACT:
* All io functions (except format) are handled by this
* module.
*/
32 1 io$2@6: PROCEDURE (base, iors$p, duib$p, iopb$p) REENTRANT PUBLIC;
33 2 DECLARE
base WORD,
iors$p POINTER,
duib$p POINTER,
iopb$p POINTER;
34 2 DECLARE
®iors BASED iors$p IOSREQ$RESSSEG,
ts DWORD,
ts$o TRACKSSECTORSSTRUCT AT(@ts),
duib BASED duib$p DEVSUNITSINFOS$BLOCK,
iopb BASED iopb$p IO$PARMS$BLOCK$286,
platter BYTE,
spindle BYTE,
surface BYTE;
/*

* Initialize local variables:

* ts <-- track and sector info from iors.dev$loc.
* platter <-- from iors.unit.

* gpindle <-- from iors.unit.

*/ surface <-- from high bit in track field.

*

B-27

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206io0.p86: 1SBC 206 controller I/0O Module
io$206: iSBC 286 controller I/0 Module

35 2 ts = iors.dev$loc;
36 2 spindle = shr(iors.unit, 2); /* 4 units/spindle */
37 2 platter = iors.unit AND @@34; /* (as above)} */
38 2 surface = tsSo.track AND @0001H; /* select surface */
/*
* Fill out the iopb for the iSBC 206 controller.
*x/
39 2 iopb.inter = INTERSONS$MASK; /* we use interrupts */
40 2 iopb.cyl$add = shr(ts$o.track, 1); /* track/2 = cylinder */
/*
* Note that the iopb.instr field is used by
* the iSBC 206 controller to determine which
* drive/platter/surface combination to access
* AND the op code determines
* how that combination is to be accessed.
*/
41 2 iopb.instr = i2086S5op$codes(iors.funct) OR
shl(spindle, 4) OR
shl(platter, 6) OR
shl(surface, 3);
/*
* note: the controller only supports 512
* or 128 byte sectors so no checking is done.
*/
/* divide by sectors size */
42 2 iopb.r$count = iors.count / duib.dev$gran;
/*
* gsectors come in based on @ and the controller
* will only understand sectors starting at 1.
*/
/* (cyl AND @100H) / 2 */
43 2 iopb.rec$add = (tsSo.sector + 1) OR
shr(ts$o.track AND 020@¢H, 2);
44 2 iopb.buff$p = iors.buff$p;
a5 2 IF NOT send$286Siopb(base, @iopb) THEN
*
* the board did not accept the iopb so...
*/
46 2 DO;
47 3 iors.status = IOS$SOFT;
48 3 iors.actual = 4;
49 3 iors.done = TRUE;
50 3 END;
51 2 END io$2@6;
52 1 END i20861io0;

PL/M-86 COMPILER i206io0.p86: iSBC 286 controller I/0 Module
io$296: 1SBC 206 controller I/O Module
MODULE INFORMATION:

CODE AREA SIZE #@DBH 219D

CONSTANT AREA SIZE = (000H aD
VARIABLE AREA SIZE = 00@0H 8D
MAXIMUM STACK SIZE = @@22H 34D

615 LINES READ
PROGRAM WARNINGS
@ PROGRAM ERRORS

END OF PL/M-86 COMPILATION B-28

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i286dc: iSBC 206 controller parameter handler
Module Header

SERIES-IIL PL/M-86 DEBUG X119 COMPILATION OF MODULE I286DC
OBJECT MODULE PLACED IN :F5:1286DC.OBJ
COMPILER INVOKED BY: PLM86.86 :F5:1206DC.P86 COMPACT NOTYPE OPTIMIZE(3) ROM

Stitle('i206dc: 1SBC 206 controller parameter handler')
$subtitle('Module Header')
1 i286dc: DO;

/*
i2@6dc.p86

*
*

* CONTAINS:
* send206iopb

*

* LANGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE (3)
*/

$include(:fl:icomon.lit)
= $save nolist

$include(:fl:inutyp.lit)
= $save nolist

$include(:£1:i206dv.1it)
= $save nolist

B-29

PL/M-86 COMPILER

10

11
12

13
14
15

16
17

18
19

W N

EXAMPLES OF DEVICE DRIVERS

i2@86dc: iSBC 206 controller parameter handler
Send 206 I/0 Parameter Block

$subtitle('Send 206 I/0 Parameter Block')

/*

*

% o ¥ % % ¥ o ¥ % % % N ¥ ¥ ¥ ¥ ¥ * F

send$286S$iopb

send the iSBC 246 controller the address of the parameter

CALLING SEQUENCE:
CALL send$2065iopb (base, ilopb$p);

INTERFACE VARIABLES:

*/

base - base address of board.
iopb$p - 1/0 parameter block pointer
INTERNAL VARIALBLES:
iopbpo - overlay for the pointer.
iopb - 1/0 parameter block structure.
drive - local var to reduce computations.
CALLS:
<none>
ABSTRACT:
outputs the iopb to the iSBC 206 controller.
send2066iopb: PROCEDURE (base, iopb$p) BOOLEAN REENTRANT
DECLARE
base WORD,
iopbS$p POINTER;
DECLARE
iopbpo PSOVERLAY AT (@iopb$p),
iopb BASED iopb$p I0SPARMSBLOCKS246,
drive BYTE;
/*
* Extract the drive unit from the instruction.
*/
drive shr(iopb.instr AND @¢30H, 4);

drive = shl(91H,drive);

PUBLIC;

*
/: Check to see if the drive is busy.
IF/(input(controllerSstat)) <> (COMMANDS$BUSY OR drive) THEN
pos output (looffport) = low (iopbpo.offset);
/*
:/Check to see if the drive is busy AGAIN.

IF (input(controller$stat) AND COMMAND$BUSY) = 8 THEN

DO;
/i
* made it to here so
* output rest of iopb address.
*

output (lo$segSport) = low (iopb$pS$o.base);
output (hisegport) = high (iopbpo.base);

B-30

block

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i286dc: iSBC 206 controller parameter handler
Send 206 I/J Parameter Block

20 4 output (hioffport) = high (iopbpo.offset);
21 4 RETURN (TRUE) ;
22 4 END;
23 3 END;

/*

* If we got here then something blew up.

* So inform the caller that we could not process the iopb.

*/
24 2 RETURN (FALSE);
25 2 END send206iopb;
26 1 END i206dc;

MODULE INFORMATION:

CODE AREA SIZE

PO66H 102D

CONSTANT AREA SIZE = 0@00H @D
VARIABLE AREA SIZE = 0@00H @o
MAXIMUM STACK SIZE = @@0CH 12D

216 LINES READ
@ PROGRAM WARNINGS
¢ PROGRAM ERRORS

END OF PL/M-86 COMPILATION

B-31

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206£fm.p86
Module Header

SERIES-III PL/M-86 DEBUG X119 COMPILATION OF MODULE I206FM
OBJECT MODULE PLACED IN :F5:I266FM.O0OBJ
COMPILER INVOKED BY: PLM86.86 :F5:I206FM.P86 COMPACT NOTYPE OPTIMIZE (3) ROM

Stitle('i206£fm.p86")
$subtitle('Module Header')

/*
1206 €£m.p86

*

*

* CONTAINS:

* format$206
: build2@6$SfmtStable
*

LANGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE(3)
*/

1 i206fm: DO;

$include(:fl:icomon.1lit)
= $save nolist)
Sinclude(:fl:inutyp.lit)
= $save nolist
$include(:£fl:iiotyp.lit)
= $save nolist
Sinclude(:fl:iparam.1lit)
= $save nolist
$include(:fl:i206dv.1lit)
= $save nolist
Sinclude(:£f1:i286in.1it)
= $save nolist
$include(:fl:iradsf.lit)
= $save nolist
$include(:fl:iiors.lit)
= $save nolist
$include(:fl:iduib.lit)
= $save nolist
$include(:fl:itrsec.lit)
= $save nolist
$include(:fl:iexcep.lit)
= $save nolist
$include(:£fl:iioexc.lit)
= $save nolist

$include(:£fl:1206dc.ext)
= $save nolist

B-32

PL/M-86 COMPILER

EXAMPLES OF DEVICE DRIVERS

i206fm.p86
format$206: Format track procedure

$subtitle('format$206: Format track procedure')

34 1
35 2
36 2
37 2
38 2
39 2
40 3
41 3
42 3

/*
* format$206

* format a track on the iSBC 206 controller.

*

* CALLING SEQUENCE:

* CALL format$206 (base, iors$p, duib$p, iopb$p);

*

* INTERFACE VARIABLES:

* base - base address of board.

* iors$p - I/0 Request/Result segment pointer

* duib$p - pointer to Device-Unit Information Block
* iopbS$p - I/0 parameter block pointer.

*

* CALLS:

* build206fmtStable

* send206iopb

*

* CALLED FROM:

* i206Sstart

*

* ABSTRACT:

* this procedure will format a single track on the disk,
* It will not format the other side of the cylinder.
*/

format$286: PROCEDURE (base, iors$p, duib$p, iopb$p)
REENTRANT PUBLIC;

DECLARE
base WORD,
iorss$p POINTER,
duib$p POINTER,
iopb$p POINTER;
DECLARE
iors BASED iors$p IOSREQSRESS$SEG,

formatSinfo$p POINTER,
format$info BASED format$info$p FORMATSINFOSSTRUCT,

duib BASED duib$p DEVSUNITSINFOSBLOCK,
iopb BASED iopb$p IOS$SPARM$BLOCKS$206,
platter BYTE,
spindle BYTE,
surface BYTE,
max$sectors BYTE;

/%

* initialize local variables.

*/

format$info$p = iors.aux$p;
IF format$Sinfo.track$Snum > i205$TRACKSMAX THEN
DO;

* Let's leave now since we cannot
* access any tracks.

*/

iors.status = ES$SPACE;
iors.actual = 2;
iors.done = TRUE;

B-33

PL/M-86 COMPILER

43 3
44 3
45 2
46 2
47 2
48 2
49 2
50 2
51 2
52 2
53 2
54 2
55 2
56 2
57 2
58 2
59 3
60 3
61 3

PL/M-86 COMPILER

62 3
63 2

EXAMPLES OF DEVICE DRIVERS

i206fm,.p86
format$2066: Format track procedure

RETURN;
END;

/*

* yse local variables to eliminate later confusion.

*/
spindle = shr(iors.unit, 2); /* 4 units/spindle */
platter = iors.unit AND @@3H; /* (as above) */
surface = format$info.track$num AND

POA31H; /* select surface */

/*

* £i1l out the IOPB for the io0$206.

*/

iopb.inter INTERSONSMASK OR FORMATSTRACKSON;

/* track/2 = cylinder */
iopb.cyl$add = shr(format$info.track$num, 1);

/* set bit if over 256 cylinders */
iopb.rec$add = shr(format$info.track$num AND @200H, 2);
iopb.instr = format$op OR

shl(spindle, 4) OR

shl(platter, 6) OR

shl(surface, 3);

iopb.buff$p = Riopb.formatStable;

IF duib.devSgran = 128 THEN
max$sectors = 36;
ELSE
/*
* if not 128 then MUST be 512 byte sectors
*/

max$sectors = 12;

/*
* the device controller expects a table built containing
* the information on what the track should look like.

* so build it using the local variable.
*

CALL build206fmtStable(@iopb. format$table,
format$info.trackS$num,
format$info.track$interleave,
format$info.track$skew,
format$info.fill$char,
Max$sectors);

IF NOT send206iopb(base, @iopb) THEN
/'k
* the board did not accept the iopb so...
*/
DO;
jors.status = IOS$SOFT;
iors.actual = 8;
iors.done = TRUE;

1206£fm.p86
format$206: Format track procedure

END;

END format$2086;

B-34

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206fm.p86

64

65

66

67

68
69
70
71

N

wWwwNn

format$206: Format track procedure

Seject
/*

*

build$206Sfmt$table
fill out format table

CALLING SEQUENCE:

CALL build206fmt$table(bufsp,
track,
int$fact,
skew,
fill$char,
max$sectors);

INTERFACE VARIABLES:

buf$p - address of format table.

track - track to be formatted.

int$fact - interleave factor.

skew - squew from physical sector one.
fillSchar - used to fill sectors.

max$sectors - maximum number of sectors

CALLS:
<none>

No error checking on skew, int$fact parameters;
if nonsense, the algorithm completes & formats
the track in a strange manner.

/

build$206SfmtStable: PROCEDURE (buf$p, track, int$fact, skew,
fillSchar,max$sectors) REENTRANT;

* % ok % % ¥ % ¥ Ok % % % % F ¥ ok ¥ N F ¥ ¥ ¥ * ¥

DECLARE
buf$p POINTER,
track WORD,
int$fact BYTE,
skew BYTE,

fillSchar BYTE,
max$sectors BYTE;

DECLARE
s BYTE,
i BYTE;
DECLARE

fmt$tab BASED buf$p (36) STRUCTURE (
record$address BYTE,
fillSchar BYTE);

/%
* fill out the format table with OFFH,
* this will be used to indicate when
* all the record addresses are filled in.
*/
DO i = 8 TO (max$sectors - 1);
fmtStab(i) .record$address = QFFH;
fmtStab(i).fillSchar = fillSchar;
END;

B-35

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER 1206fm.p86
format$2@6: Format track procedure

72 2 s = skew MOD max$sectors;

73 2 DO i = 1 TO max$sectors;

74 3 DO WHILE fmtStab(s).record$address <> @FFH;
75 4 s = (s + 1) MOD max$sectors;

76 4 END;

77 3 fmt$tab(s) .record$address = i;

78 3 s = (s + int$fact) MOD max$sectors;

79 3 END;

80 2 END build$286S$SfmtStable;

81 1 END i286fm;

MODULE INFORMATION:

CODE AREA SIZE #1951 405D

CONSTANT AREA SIZE = @000H 8D
VARIABLE AREA SIZE = @009H oD
MAXIMUM STACK SIZE = §028H 40D

717 LINES READ
PROGRAM WARNINGS
@ PROGRAM ERRORS

END OF PL/M-86 COMPILATION

B-36

INDEX
Underscored entries are primary references.

attach device requests 4-1
buffers 2-5, 2-9

Cancel I/0 procedure 6-4

CANCEL$IO 2-4, 3-2, A-7

cancel requests 4-2

close requests 4-2

common device driver 1-3, 5-1
device information table 3-7
support routines A-1l

common device 3-1

communication levels 1-1

condition codes 2-8

creating DUIBs 2-6

custom device drivers 1-3, 6-1

custom devices 3-2

data storage area 3-8, 3-11
data structures 3-10
default finish procedure 5-3
default initialization procedure 5-2
default stop procedure 5-4
DEFAULTSFINISH 5-3
DEFAULT$INIT 5-2 .
DEFAULT$STOP 5-4
detach device requests 4-1
device
granularity 2-3
interfaces 2-10
number 1-2, 2-4, 2-8
device data storage area 3-8, 3-11, A-3, A-9
device driver
interfaces 2-1
type 1-3
device finish procedure 3-8, 5-2, A-4
device information table 2-4, 3-7

device initialization procedure 3-8, 5-1, A-3

device interrupt procedure 3-8, 5-5, A-9
device start procedure 3-8, 5-3, A-5
device stop procedure 3-8, 5-4, A-7
device-unit information block 2-1
device-unit

name 2-2

number l:Z; 2-4
doubly linked 1list 6-5

Index-1

INDEX (continued)

DUIB 2-1
creation 2-6
structure 2-1
use of 2-5, 4-2

examples of device drivers B-l

file drivers 1-2, 2-2

Finish I/0 procedure 6-2
FINISH$IO 2-4, 3-2, A-3
functions 2-3, 2-8, 2-9

granularity 2-3

Initialize I/0 procedure 6-1
INITSIO 2-4, 3-2, A-1
Intel-supplied routines 5-1
interfaces to the device driver 2-1
interrupt

handlers and tasks 3-3

level 3-7

task A-3

task priority 3-8
INTERRUPTSTASK 3-3, A-9
I/0 functions 2-3
I/0 request/result segment 1-3, 2-7
I/0 requests 1-3, 4-1
IORS 1-3, 2-7, A-5, A-7

structure 2-7

use of 4-2
I/0 System interfaces 2-1
I/0 System responses 4-1
I/0 System—supplied routines 5-1

levels of communication 1-1
link procedures 7-1

linked 1list 6-5

LINK86 7-1

name of device-unit 2-2
numbering of devices 1-2

open requests 4-2

portable device drivers 3-11
priority 3-8

Queue I/O procedure 6-3

QUEUE$IO 2-4, 3-2, A-5

random access device drivers 1-3, 5-1
random access devices 3-1

read requests 4-2

request queue 6-5

Index-2

INDEX (continued)

requests 1-3, 4-1
requirements for using the common device driver 3-1
retry limit 3-9, 4-7

seek requests 4-2
special requests 4-2
stack size 3-8

track size 3-9
types of device drivers 1-3

unit information table 2-4, 3-9
unit number 1-2, 2-4, 2-8

unit status codes 2-8

using the DUIBs 2-5

write requests 4-2

Index-3

inté® Guide to Writing Device Drivers for the
. iRMX™ 86 and iIRMX™ 88 {/0O Systems
142926-003

REQUEST FOR READER’'S COMMENTS

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you.found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE
TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE________ ZIP CODE

Please check here if you require a written reply. 0O

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of intel Corporation.

| ” " I NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.79 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

0.M.S. Technical Publications

inte|®
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	I-01
	I-02
	I-03
	replyA
	replyB
	xBack

