intel”

iIRMX ™86
PROGRAMMER’S REFERENCE MANUAL,
PART I |

For Release 6

Copyright © 1984, Intel Corporation Order Number: 146196-001
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

ASSEMBLY INSTRUCTIONS

Volume: iRMX™ 86 PROGRAMMER'S REFERENCE MANUAL, PART II
Order No: 146196-001

INTRODUCTION

This sheet describes how to assemble this iRMX 86 literature packet. The
assembly is simple and takes less than 5 minutes.

This literature packet contains:

° The literature in the volume, including this instruction sheet
and these manuals:

- i1RMX 86 APPLICATION LOADER REFERENCE MANUAL

- iRMX 86 HUMAN INTERFACE REFERENCE MANUAL

- iRMX 86 UNIVERSAL DEVELOPMENT INTERFACE REFERENCE MANUAL

- GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 AND iRMX 88
I/0 SYSTEMS

- iRMX 86 PROGRAMMING TECHNIQUES

- iRMX 86 TERMINAL HANDLER REFERENCE MANUAL

- iRMX 86 DEBUGGER REFERENCE MANUAL

- iRMX 86 SYSTEM DEBUGGER REFERENCE MANUAL

- iRMX 86 CRASH ANALYZER REFERENCE MANUAL

— iRMX 86 BOOTSTRAP LOADER REFERENCE MANUAL

° The first of two cardboard separators.
° Ten divider tabs, one for each manual.
° The bottom cardboard separator.

If your binder package is missing one or more of these items, contact
Intel immediately.

ASSEMBLY

Assembling the volume involves inserting the literature packet into its
three-ring binder and placing an appropriately labeled divider tab at the
front of each manual in the volume.

At this point you have torn open the shrink wrapping, removed the entire
literature packet, and extracted this sheet from the packet. Set this
sheet aside. You will be referring to it as you go.

To put the volume together, follow these steps:

(over)

ASSEMBLY INSTRUCTIONS (continued)

1. Separate the divider tabs from the rest of the literature packet.
Discard the cardboard. The divider tabs have these labels and match
these manuals:

Label Manual

Application Loader iRMX 86 APPLICATION LOADER REFERENCE MANUAL

Human Interface iRMX 86 HUMAN INTERFACE REFERENCE MANUAL

UDI iRMX 86 UNIVERSAL DEVELOPMENT INTERFACE
REFERENCE MANUAL

Device Drivers GUIDE TO WRITING DEVICE DRIVERS FOR THE

iRMX 86 AND iRMX 88 I/0O SYSTEMS
Programming Techniques iRMX 86 PROGRAMMING TECHNIQUES

Terminal Handler iRMX 86 TERMINAL HANDLER REFERENCE MANUAL
Debugger iRMX 86 DEBUGGER REFERENCE MANUAL

Crash Analyzer iRMX 86 CRASH ANALYZER REFERENCE MANUAL
System Debugger iRMX 86 SYSTEM DEBUGGER REFERENCE MANUAL
Bootstrap Loader iRMX 86 BOOTSTRAP LOADER REFERENCE MANUAL

2. Find Page xiv, which is at the end of the Volume Contents. Open the
binder rings and insert the Front Cover up to and including Page xiv
into the left side of the open rings. The top page of the literature
packet is now the "Application Loader" title page, which looks like this:

iRMX“ 86 APPLICATION LOADER
REFERENCE MANUAL

3. Insert the divider tab labeled "Application Loader" into the left
side of the open rings.

4. Insert the text of the Application Loader manual into the left side
of the binder rings. The last page of the Application Loader manual
is "Application Loader Index-2." The top page of the literature
packet should now be the title page of the Human Interface manual.

5. Repeat the process for the remaining manuals, matching divider tabs
with manuals.

6. Close the binder rings. Discard the shrink wrapping and this
instruction sheet.

iRMX™ 86
PROGRAMMER’S REFERENCE MANUAL, PART Il

For Release 6

Order Number: 146196-001

Copyright © 1984, Intel Corporation

] Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95061 r——‘

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limit-
ed to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appzar in this document. Intel Corporation makes
no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions statzd in Intel’s software license, or as defined in
ASPR 7-104.9(a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior writ-
ten consent of Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

BITBUS iLBX iPDS Plug-A-Bubble
COMMputer im iRMX PROMPT
CREDIT iMMX iSBC Promware
Data Pipeline Insite iSBX QUEX
GENIUS Intel iSDM QUEST

& intel iSXM Ripplemode
i ;mellBO.S. l);ligrsary Manager ﬁg}z(I/SO

2 ntelevision
iCI}(E: E inteligent Identifier Megachassis Seamless
iCS inteligent Programming MICROMAINFRAME SOLO
iDBP Intellec MULTIBUS SYSTEM 2000
iDIS Intellink MULTICHANNEL UPI

iOSP MULTIMODULE

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Copyright ©1983, Intel Corporation

REV,

REVISION HISTORY

DATE

Original Issue. Supplies and updates information
JSormerly contained in the IRMX 86 Loader Refer-
ence Manual, the iRMX 86 Human Interface
Reference Manual, the Guide to Writing Device
Drivers for the iRMX 86 and iRMX 88 1/0 Systems,
the iIRMX 86 Programming Techniques, the iRMX
86 Terminal Handler Reference Manual, the
iRMX 86 Debugger Reference Manual, the iRMX
86 System Debug Monitor Reference Manual, and
the iRMX 86 Crash Analyzer Reference Manual.

3/84

iii/iv

VOLUME PREFACE

This volume, the iRMX 86 PROGRAMMER'S REFERENCE MANUAL, PART II, contains
detailed information about iRMX 86 Operating System programming utilities

and advanced programming techniques for writing application and system
programs.

MANUALS IN THIS VOLUME

This section briefly describes each iRMX 86 manual in the order they
appear in this volume.

1RMX™ 86 APPLICATION LOADER REFERENCE MANUAL
Tab Label: Application Loader

This manual describes the iRMX 86 Application Loader, which loads code

from secondary storage into RAM for execution. The manual contains
detailed descriptions of the system calls available with the Application
Loader.

iRMX™ 86 HUMAN INTERFACE REFERENCE MANUAL

Tab Label: Human Interface
This manual documents system calls used to retrieve and interpret the
constituent parts of commands entered at a keyboard terminal. This

manual describes the system calls used for parsing and processing
commands, and for high-level I/0 operations to a terminal.

iRMX"™ 86 UNIVERSAL DEVELOPMENT INTERFACE REFERENCE MANUAL

Tab Label: UDI

This manual outlines general programming considerations for using the
Universal Development Interface (UDI) and describes in detail the UDI

system calls in the iRMX 86 Operating System.

GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX"™ 86 AND iRMX" 86 I/0 SYSTEMS
Tab Label: Device Drivers

This manual shows how to write device drivers that can be incorporated

into the i1RMX 86 Operatin§ System. This applies to devices for which the
iRMX 86 Operating System does not already supply device drivers.

VOLUME PREFACE
(continued)

iRMX"™ 86 PROGRAMMING TECHNIQUES
Tab Label: Programming Techniques

This manual provides a number of programming techniques that can reduce
the time spent designing and implementing an iRMX 86-based application
system. It includes discussions on PL/M-86 size controls, interface
procedures, assembly language programming, inter-job communication, and
stack sizes.

iRMX™ 86 TERMINAL HANDLER REFERENCE MANUAL
Tab Label: Terminal Handler

This document describes the 1RMX 86 Terminal Handler, which provides

basic character echoing and line editing functions. The Terminal Handler
is typically used with iRMX 86 Operating Systems that do not include the
Basic I/0 System.

iRMX™ 86 DEBUGGER REFERENCE MANUAL

Tab Label: Debugger

This manual describes the Dynamic Debugger, an interactive debugging tool

used with the iRMX 86 Operating System. The Debugger is especially
useful because it is "sensitive" to iRMX 86 objects, and it lets you

debug one or more tasks while the rest of the system continues to run.
The manual includes descriptions of iRMX 86 Debugger commands.

iRMX"™ 86 SYSTEM DEBUGGER REFERENCE MANUAL
Tab Label: System Debugger

This manual describes the System Debugger (SDB), a static debugging tool

that is useful in diagnosing system crashes and other “"freeze"
situations. The System Debugger, like the Dynamic Debugger, is attuned
to iRMX 86 objects. The SDB is an extension of the iSDM 86 and 286
System Debug Monitors. The manual includes descriptions of System
Debugger commands.

vi

VOLUME PREFACE
(continued)

iRMX™ 86 CRASH ANALYZER REFERENCE MANUAL

Tab Label: Crash Analyzer
This manual describes the iRMX 86 Crash Analyzer, a utility used to
produce post-mortem memory dumps and to print a formatted display. The
display utility shows iRMX 86 objects (memory segments, tasks, jobs,
etc.) along with the state of each object at the time the system failed.
iRMX™ 86 BOOTSTRAP LOADER REFERENCE MANUAL

Tab Label: Bootstrap Loader
This manual describes the iRMX 86 Bootstrap Loader, a start-up utility

that loads user-selected code into memory for execution after system
reset.

iRMX"™ 86 PUBLICATIONS

Because the iRMX 86 documentation set is packaged in bound volumes, you

can no longer order manuals individually. Instead, you must order a
complete volume to get a manual contained in that volume. (Individual

manuals no longer have order numbers.)

When ordering a volume, use the order number that appears on the spine of
the binder. This number is also provided in the following list. A
second number appears on the inside front cover of each volume, but it
can be ignored because it is a manufacturing part number used internally
at Intel.

The following list shows volume titles, order numbers, and individual

manuals in each of the volumes. Manuals are listed in the order they
appear in the volumes. This volume is indicated by boldface type.

1. iRMX"™ 86 INTRODUCTION AND OPERATOR'S REFERENCE MANUAL
Order Number: 146545-001

° Introduction to the iRMX™ 86 Operating System
e 1RMX™ 86 Operator's Manual
° iRMX™ 86 Disk Verification Utility Reference Manual

vii

4.

VOLUME PREFACE
(continued)

iRMX™ 86 PROGRAMMER'S REFERENCE MANUAL, PART L
Order Number: 146546-001

° iRMX"™ 86 Nucleus Reference Manual

] iRMX™ 86 Basic I/O System Reference Manual
e iRMX™ 86 Extended 1/0 System Reference Manual

iRMX"™ 86 PROGRAMMER'S REFERENCE MANUAL, PART II
Order Number: 146547-001

iRMX™ 86 Application Loader Reference Manual
iRMX" 86 Human Interface Reference Manual

iRMX" 86 Universal Development Interface Reference Manual

Guide to Writing Device Drivers for the iRMX" 86 and
iRMX™ 88 1/0 Systems

iRMX™ 86 Programming Techniques

iRMX™ 86 Terminal Handler Reference Manual

iRMX"™ 86 Debugger Reference Manual

iRMX™ 86 Crash Analyzer Reference Manual

iRMX™ 86 System Debugger Reference Manual

iRMX™ 86 Bootstrap Loader Reference Manual

iRMX™ 86 INSTALLATION AND CONFIGURATION GUIDE
Order Number: 146548-001

° iRMX"™ 86 Installation Guide

iRMX" 86 Configuration Guide
° Master Index for Release 6 of the 1RMX"™ 86 Operating System

RELATED PUBLICATIONS

° iAPX 86,88 Family Utilities User's Guide, Order Number: 121616
° iAPX 86,88 User's Manual, Order Number: 210201

e PL/M-86 User's Guide, Order Number: 121636

. 8086 Relocatable Object Module Formats, Order Number: 121748

° 1SDM™ 86 System Debug Monitor Reference Manual, Order Number:
146165

° iSDM™ 286 System Debug Monitor Reference Manual, Order Number:
145804

viii

VOLUME PREFACE
(continued)

ICE"~86/ICE™-88 Microsystems In-Circuit Emulator Operation
Instructions for ISIS-II Users Manual, Order Number: 162554

iMMX™ 800 MULTIBUS Message Exchange Reference Manual, Order
Number: 144912

iRMX™ 80/88 Interactive Configuration Utility User's Guide, Order
Number: 142603

ASiM86 Language Reference Manual for 8080/8085-Based Development
Systems, Order Number: 121703

ASM86 Macro Assembler Operating Instructions for 8036-Based
Development Systems, Order Number: 121623

ix

- VOLUME CONTENTS

APPLICATION LOADER: iRMX™ 86 APPLICATION LOADER REFERENCE MANUAL

CHAPTER 1: Introduction to the Application Loader
CHAPTER 2: Application Loader System Calls

CHAPTER 3: Configuration of the Application Loader
APPENCIX A: Data Types

APPENDIX B: Condition Codes

APPENDIX C: Asynchronous System Calls

HUMAN INTERFACE: iRMX™ 86 HUMAN INTERFACE REFERENCE MANUAL

CHAPTER 1: Overview

CHAPTER 2: Supporting Multiple Terminals
CHAPTER 3: Command Parsing

CHAPTER 4: 1I/0 Message Processing

CHAPTER 5: Command Processing

CHAPTER 6: Program Control

CHAPTER 7: Creating Human Interface Commands
CHAPTER 8: Human Interface System Calls

CHAPTER 9: Configuration of the Human Interface

APPENDIX A: Human Interface Type Definitions
APPENDIX B: Human Interface Exception Codes
APPENDIX C: String Table Format

UDI: iRMX"™ 86 UNIVERSAL DEVELOPYENT INTERFACE REFERENCE MANUAL

CHAPTER 1: Introduction to the Universal Development Interface

CHAPTER 2: UDI System Calls in the iRMX™ 86 Environment
CHAPTER 3: UDI Example

APPENDIX A: Data Types
APPENDIX B: iRMX" 86 Exception Codes

xi

VOLUME CONTENTS
(continued)

DEVICE DRIVERS: GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX™ 86 AND
iRMX™ 88 I/0 SYSTEMS

CHAPTER 1: Introduction

CHAPTER 2: Device Driver Interfaces

CHAPTER 3: Categories and Properties of Devices and Drivers
CHAPTER 4: 1I/0 Requests

CHAPTER 5: Writing Common or Random Access Device Drivers
CHAPTER 6: Writing a Custom Device Driver

CHAPTER 7: Terminal Drivers

CHAPTER 8: Binding a Device Driver to the I1/0 System

APPENDIX A: Random Access Driver Support Routines
APPENDIX B: Examples of Device Drivers

PROGRAMMING TECHNIQUES: iRMX™ &6 PROGRAMMING TECHNIQUES

CHAPTER 1: Selecting a PL/M-86 Size Control

CHAPTER 2: Interface Procedures and Libraries

CHAPTER 3: Timer Routines

CHAPTER 4: Assembly Language System Calls

CHAPTER 5: Communication Between iRMX™ 86 Jobs

CHAPTER 6: Simplifying Configuration During Development
CHAPTER 7: Deadlock and Dynamic Memory Allocation
CHAPTER 8: Guidelines for Stack Sizes

APPENDIX A: When is Each Chapter Useful?

TERMINAL HANDLER: iRMX™ 86 TERMINAL HANDLER REFERENCE MANUAL

CHAPTER 1: Overview of the Terminal Handler
CHAPTER 2: Using a Terminal with the iRMX" 86 Operating System

CHAPTER 3: Programming Considerations
CHAPTER 4: Configuration

xii

VOLUME CONTENTS
(continued)

DEBUGGER: iRMX™ 86 DEBUGGER REFERENCE MANUAL

CHAPTER 1:
CHAPTER 2:
CHAPTER 3:
CHAPTER 4:
CHAPTER 5:
APPENDIX A:

Introduction
Special Characters
Command Syntax
Debugger Commands
Configuration
Error Messages

SYSTEM DEBUGGER: iRMX™ 86 SYSTEM DEBUGGER REFERENCE MANUAL

CHAPTER 1:
CHAPTER 2:
CHAPTER 3:
CHAPTER 4:

Organization

Introduction
Using the System Debugger

Commands

CRASH ANALYZER: iRMX™ 86 CRASH ANALYZER REFERENCE MANUAL

CHAPTER 1: Introduction
CHAPTER 2: Configuring, Initlalizing and Loading the Dumper
CHAPTER 3: Invoking the Crash Analyzer
CHAPTER 4: The Listing Format
BOOTSTRAP LOADER: iRMX™ 86 BOOTSTRAP LOADER REFERENCE MANUAL
CHAPTER 1: Introduction
CHAPTER 2: Configuration
CHAPTER 3: Using the Bootstrap Loader

xiii

VOLUME CONTENTS
(continued)

BOOTSTRAP LOADER (continued)

CHAPTER 4: Writing a Driver for a Bootstrap Loading Device
APPENDIX A: Automatic Boot Device Recognition

APPENDIX B: Promming the Bootstrap Loader with a System Debug Monitor

iRMX™ 86 APPLICATION LOADER
REFERENCE MANUAL

CONTENTS

CHAPTER 1
INTRODUCTION TO THE APPLICATION LOADER
Loader Terminology......«..
Object COdCeesoenoensnnsscsoscsosercsscsscscssscscscsssnsscsssssscesns
Types of ObjeCt COdCecvscscoscsssosssssossssssossscsncssccsnssncsce
Absolute COdEe ecssesonsscsnsscesssoscosossossoscncnnsscsossssscsscnss
Position-Independent Code (PIC)eceesscsccssoscsscosoocsnsacnces
Load-Time-Locatable (LTL) COdeececescecccscoscccsocccscssssscnas
Synchronous and Asynchronous System CallSeesesscecsesccscssccccccce
I/O Job.-00.0....0....o...l.0000000.000000000..0.0..0..oo.o....lo
OVerlay-oooo.o.-ooooooan.0'-o-oo.ooooonooooooooooooo-o-ouoooooooo

Loader Features.........»..................-.......-...............

Device IndependencCeeecosscscssessscsccsvsessssrsocesssscsssssssssssee
Synchronous and Asynchronous System CallSeeesscsccccccsccsccscess
Support for Overlaid ProgramSecececeescccscaccoccsescccncscsssscose
Configurability.......».o......-............-..-.................
Preparing Code for Loadingesessssssecesesscssccsasssssscescoccsassccccns
PL/M-86 Models of Computation and Types of Object CodeSeecsocoscsss
Invoking iRMXm 86 System CallSececseroessssocscscscscacscossscscss
Entry POintSoooooooooomoo.oo-o.oo.ooooooooooo.oo.'ooooo-ooo.o.ooo
Using a Main Moduleeceecsseesssssosessevtoccsncsososssanscsssscocne
Writing a Procedure to be Loaded by the Application Loadereeees
Stack Sizes.oooooo-ooooooooooooo.uooo-cooooooooooooooooooo-.ooooo

How the Loader Works....»...........................-..........-...

CHAPTER 2
APPLICATION LOADER SYSTEM CALLS
Response Mailbox Parametere ceccsoscecsecssosccosssesssscscscnsscscsne
Condition COdeSeeesssosscsccsssossoscssscscssscccscscscscscscscsosssssssoss
Condition Codes for Synchronous System CallSeesscssceccesscssscss
Condition Codes for Asynchronous System CallSeeceeccscessccsoscscs
Sequential Condition COdeSeceseeccssscsesccscscsassrscssnsssssscns
Concurrent Condition COdeSooooo.o.00ooooooto‘oo'oooouooooocoooo
System Call DiCtionary.om.oooouooooooo-oooooo-o-.ooooooc-oo.oo..ooo
A$LOAD.O....0‘O.....Q..O.......O....0......0.‘.........'.'I......
AsLOADIOJOB..'......I‘A..........O....C...0.......'............0.
S$LOAD$IO$JOB....--...0nooooo-o-oooooo.oooooo..oooooooooo.ooooo-o

SsovERLAY........0....00.......0...'.....0......Q.....Q.'.....I.l

CHAPTER 3

CONFIGURATION OF THE APPLICATION LOADER

Types of Job Loading System CallSeevesososssescosoccccsoscscncscnsces
Loader in 2
Type 0f Code to be Loadedececeesescsssscsccscscsoscscssssccssosscscces
Default Memory POOl SiZEeeecssocccoesscsccscscscsssnsssscssosssccnns
Size of Application Loader BufferSeececeseesccscscssescesccsccsccssoes

Application Loader iii

PAGE

—
I |
OO OO LUV UPREEDEWWWINNN -

el R e T T R Sy R Gy By WU P T (P
1

US|
N

NN vat? NN NN N
WN B WWNON NN

CONTENTS
(continued)

PAGE
APPENDIX A

DATA TYPES.............Q.O‘..l........D.'O............'l........... A_l

APPENDIX B

CONDITION CODES

Normal Condition CoOdCeeovcecescssosssscessesosscscscsssncsccscssscscsoscscsccsce B-1
Programmer EYTOr COdE€Secscecesccvsovsssonssssossssscsssscasoscscccssosecse B-2
Environmental Problem CoOdeSeesecsssccosssescescrssscsssssscscsscssccccne B-2

APPENDIX C
ASYNCHRONOUS SYSTEM CALLS'.l...‘......00....0....-.....lI....."... C—l

TABLE

1-1. User Actions Required to Match Model of Segmentation
with Object Code Typeoc.oonow-c-oo.oouooooco..o.oooooooon 1-7

FIGURE

C—ln Behavior Of an Asynchronous Sy\s'tem Call. seeecersvesssrssvose C—2

kk*k

Application Loader iv

CHAPTER 1
INTRODUCTION TO THE
APPLICATION LOADER

The Application Loader is a part of the Operating System, and is used to
load programs under the control of iRMX 86 tasks —— tasks that are part

of the Operating System, and tasks that are part of applications programs
you write.

The Loader provides system calls that load programs from secondary
storage into memory. The Loader system calls give you several
advantages. They allow programs to run in systems that haven't enough

memory to accommodate all of their programs at one time. They allow
programs that are seldom used to reside on secondary storage rather than

in primary memory. Finally, they make it easier for you to add new
programs to the system.

Also, the Loader allows you to implement large programs by using

overlays. For example, suppose that your application system includes a
large compiler. By dividing the compiler into several parts, you can

avoid keeping the entire compiler in RAM. One of the parts, called the
root, remains in RAM as long as the compiler is running. The root uses
the Loader to load the other parts, called overlays.
This chapter is designed to help you understand the capabilities of the
Loader by providing you with background information. The chapter
consists of five main parts:

° Loader terminology

° Loader features

° Configuration options

® Preparing code for loading

. How the Loader works

After reading this chapter, you should be able to understand the system
call descriptions in Chapter 2.

LOADER TERMINOLOGY

Before attempting to read about the system calls of the Loader, you must
become familiar with the terminology used to describe theme. The
following terms are used fairly frequently in describing system calls:

° object code, object module, and object file

° absolute code, position-independent code (PIC), and load-time
locatable code (LTL)

Application Loader 1-1

INTRODUCTION TO THE APPLICATION LOADER

) fixup

° synchronous system calls, and asynchronous system calls
e I/0 job

° overlay, root module, and overlay module

The following sections define these terms or refer you to documents in
which you can find definitions.

OBJECT CODE

The term object code is used to distinguish between the program that goes
into a translator (compiler or an assembler) and the program that comes
out of a translator. However, in this manual, object code refers to the
following three categories of code:

e output of a translator
e output of the LINK86 command
° output of the LOC86 command
An object module is the output of a single compilation, a single

assembly, or a single invocation of the LINK86 or LOC86 commands, and an
object file is a named file in secondary storage that contains object

code 1n one or more modules.

TYPES OF OBJECT CODE

The Loader can load absolute code, position-independent code, and
load-time-locatable code. These are defined here.

Absolute Code

Absolute code, and an absolute object module, is code that has been

processed by LOC86 to run only at a specific location in memory. The
Loader loads an absolute object module only into the specific location
the module must occupye.

Application Loader 1-2

INTRODUCTION TO THE APPLICATION LOADER

Position-Independent Code (PIC)

Position—-independent code (commonly referred to as PIC) differs from
absolute code in that PIC can be loaded into any memory location. The
advantage of PIC over absolute code is that PIC does not require you to
reserve a specific block of memory. When the Loader loads PIC, it
obtains iRMX 86 memory segments from the pool of the calling task's job
and loads the PIC into the segments.

A restriction concerning PIC is that, as in the PL/M-86 COMPACT model of
segmentation (described later in this chapter), it can have only one code
segment and one data segment, rather than letting the base addresses of
these segments, and therefore the segments themselves, vary dynamically.
This means that PIC programs are necessarily less than 64K bytes in
length.

PIC code can be produced by means of the BIND control of LINK86.

Load-Time-Locatable (LTL) Code

Load-time locatable code (commonly referred to as LTL code) is the third
form of object code. LTL code is similar to PIC in that LTL code can be
loaded anywhere in memory. However, when loading LTL code, the Loader
changes the base portion of pointers so that the pointers are independent
of the initial contents of the registers in the microprocessor. Because
of this fixup (adjustment of base addresses), LTL code can be used by
tasks having more than one code segment or more than one data segment.
This means that LTI programs may be more than 64K bytes in length.
FORTRAN 86 and Pascal 86 automatically produce LTL code, even for short
programs.

LTL code can be produced by means of the BIND control of LINK86.

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

A synchronous system call is one in which the calling task cannot
continue running while the invoked system call is running. For example,
if a task invokes a synchronous Loader system call, the calling task will
resume running only after the loading operation has either failed or
succeeded.

An asynchronous system call is one in which the calling task can run

concurrently with the invoked system call. For a detailed explanation of
the behavior of asynchronous system calls, refer to Appendix C.

Application Loader 1-3

INTRODUCTION TO THE APPLICATION LOADER

1/0 JOB

An I/0 job is a special type of job for tasks that perform I/0 using the
Extended I/0 Systems In fact, if a task is not in an I/0 job, it cannot
successfully use all of the system calls in the Extended I/0 System.

The notion of an I/0 job relates to the Loader because some of the system
calls provided by the Loader use the Extended I/0 System. Specifically,
the ASLOADSIOSJOB and the SSLOADSIOSJOB system calls can be invoked only
by tasks running in an I/0 job.

If you are unfamiliar with I/0 jobs, refer to the iRMX 86 EXTENDED I/O
SYSTEM REFERENCE MANUAL for a definition.

OVERLAY

The term “"overlay,” when used as a verb, refers to the process of loading
object code that generally resides in RAM only for short periods of
time. For example, suppose that you are building a compiler that is very
large. You can design the compiler in either of the following ways:

. The compiler can be structured as a monolithic program that
resides on secondary storage unit:il it is needed. Once needed,
the entire collection of object code must be loaded into RAM.

° If the compiler is an overlaid program, pieces (overlays) of the
compiler reside on secondary storage; individual overlays are
loaded as they are needed. In this way, the compiler can run in
a much smaller area of memory. Note that the compiler might be
slower if it uses overlays, depending upon how it uses the time
when the overlays are being loaded.

In order to implement an overlaid program using the Loader, you divide
the program into two kinds of modules —-- a root module, and one or more
overlay modules.,

A root module is an object module that controls the loading of overlays.
Let's again use an overlaid compiler as an example. Suppose that you are
developing an application system incorporating the compiler. When the
compiler is invoked, your application system can load the root module of
the compiler using ASLOADSIQ$JOB or SSLOAD$SIOS$JOB. (These system calls
are described in the next chapter.) The root module can then use the
SSOVERLAY system call to load overlay modules as they are needed.

For more information regarding the notion of overlays, root module, and
overlay module, refer to the iAPX 86,88 FAMILY UTILITIES USER'S GUIDE.

Application Loader 1-4

INTRODUCTION TO THE APPLICATION LOADER

LOADER FEATURES

The iIRMX 86 Loader provides several features that make it valuable in any
application system that loads programs from secondary storage into RAM.
Some of these features are:

° Device Independence

° Synchronous and Asynchronous System Calls
o Support for Overlaid Programs

. Configurability

The following sections briefly discuss each of these features.

DEVICE INDEPENDENCE

The Loader can load object code from any device if the device supports
iRMX 86 named files and an iRMX 86-compatible device driver is available
for ite See the iRMX 86 CONFIGURATION GUIDE for a complete list of
devices for which Intel supplies device drivers. If you wish to load
from a device for which Intel does not yet supply a device driver, you
can write your own device driver. Refer to the GUIDE TO WRITING DEVICE
DRIVERS FOR THE iRMX 86 AND iRMX 88 I/O SYSTEMS for directions.

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

The Loader provides you with both synchronous system calls and
asynchronous system calls. If you want your tasks to explicitly control
the overlapping of processing with loading operations, you can use
asynchronous system calls. On the other hand, if you prefer ease of use
to explicit control, you can use synchronous system calls.

SUPPORT FOR OVERLAID PROGRAMS

The Loader contains a system call that is explicitly designed to simplify

the process of loading overlay modules. By using the SSOVERLAY system
call, your root module can easily load overlay modules contained in the
same object file as the root module.

CONFIGURABILITY

The Loader is configurable. You can select the features of the Loader
that your application system needs. If you don't need all of the
capabilities of the Loader, you can leave out some options and use a
smaller, faster version of it. Configurable features are summarized in
Chapter 3 and are discussed in detail in the iRMX 86 CONFIGURATION GUIDE.

Application Loader 1-5

INTRODUCTION TO THE APPLICATION LOADER

PREPARING CODE FOR LOADING

Two factors govern the methods you must use to prepare code for loading.
They are:

e The PL/M-86 model of segmentation to which you are adhering.

e Whether you want the loaded calls to be able to invoke iRMX 86
system calls.,

In addition to these factors, you must ensure that the object code
specifies an entry point and deals with stack size. The following
sections address these issues.

PL/M~-86 MODELS OF SEGMENTATION AND TYPES OF OBJECT CODE

When you compile your source code, you must (explicitly or implicitly)
specify a PL/M-86 model of segmentation (specified at compile time by the
SIZE control). The model you specify affects the kind of object code
generated. The purpose of this section is to correlate the model of
segmentation with the kind of code generated.

The PL/M~86 programming language offers four models of segmentation:
SMALL, MEDIUM, LARGE, and COMPACT. The iRMX 86 Operating System does not
support the SMALL model. Do not use i to generate any code that you
plan to load with the Loader. Table 1-1 explains what you must (or must
not) do, in addition to selecting a model of segmentation, in order to
produce object code of a particular type.

For more information regarding models of segmentation and their effect on
the iRMX 86 Operating System, refer to the iRMX 86 PROGRAMMING TECHNIQUES
manual.

INVOKING iRMX™ 86 SYSTEM CALLS

If you want your loadable code to invoke iRMX 86 system calls, you must
use LINK86 to link the loadable object modules to the iRMX 86 interface
procedures. Refer to the iRMX 86 PROGRAMMING TECHNIQUES manual for
details.,

ENTRY POINTS

Generally, when your tasks invoke the Loader, the Loader must be able to
determine the entry point for the loaded object code. (The entry point,
also known as the start address, is the location at which execution is to
begin.) The Loader uses this information when creating a job in which
the loaded code is to run as a task.

Application Loader 1-6

INTRODUCTION TO THE APPLICATION LOADER

Table 1-1. User Actions Required To Match PL/M-86 Model Of
Segmentation With Object Code Type

Model of Segmentation

Code Type Medium or Large Compact
Use LINK86 without the Use LINK86 without the
Absolute BIND control to link code BIND control to link code
Code together. Use LOC86 to together. Use LOC86 to

locate the code absolutely. locate the code absolutely.,

Not applicable. That is, Use LINK86 with the BIND

Position- you cannot produce PIC control to link code
Independent using the MEDIUM or LARGE togethers Do not use the
Code model. INITIAL or DATA statement

to initialize a pointer.
Do not exceed 64K bytes.

Use LINK86 with the BIND Use LINK86 with the BIND

Load-Time control to link code control to link code
Locatable together. Do not locate togethers Either use the
Code with LOC86. INITIAL or DATA statement

to initialize a pointer
or exceed 64K bytes.

Using A Main Module

The easiest way to ensure that your object file contains an entry point
is to write your source code as a main module; a main module always
contains an entry point. Further, if your code is either PIC or LTL
code, it must be a main module.

Writing A Procedure To Be Loaded By The Loader

In certain unusual circumstances there are advantages to writing your
source code as a procedure rather than as a main module. Such code will
have to be loaded using the ASLOAD system calle The mechanics of this
loading method are outlined in the description of ASLOAD in the next
chapter.

Application Loader 1-7

INTRODUCTION TO THE APPLICATION LOADER

STACK SIZES

When linking (using the LINK86 command) or locating (using the LOC86
command) your code, you must use the SEGSIZE(STACK(...)) control to
assign an appropriate stack size. When linking, you must also use the
MEMPOOL control if your program issues any Nucleus system calls that
create iRMX 86 objects dynamically. The SEGSIZE control is described in
the iAPX 86,88 FAMILY USER'S GUIDE.

HOW THE LOADER WORKS

If the Loader is configured into your system, the root job will create
the Loader job during initialization of the system. Once created, the
Loader job initializes the Loader code and then deletes itself. The
Loader code then remains in memory, where it executes as a task whenever
a Loader system call is invoked.

kkk

Application Loader 1-8

CHAPTER 2
APPLICATION LOADER SYSTEM CALLS

This chapter describes the PL/M-86 calling sequences for the system calls
of the Application Loader. The calls are listed alphabetically. For
example, ASLOAD precedes ASLOADSIO$JOB. This shorthand notation is
language—independent and should not be confused with the actual form of
the PL/M-86 call. The precise format of each call is defined as part of
the detailed description.

These iRMX 86 system calls are declared external procedures in the
PL/M-86 language. When you write a program in PL/M-86, you use these
procedures to invoke the system calls of the Loader.

Although the system calls are described as PL/M-86 procedures, your tasks
can invoke these system calls from assembly language. Refer to the

iRMX 86 PROGRAMMING TECHNIQUES manual for information about making system
calls in assembly language.

PL/M-86 data types, such as BYTE, WORD, and SELECTOR, are used throughout
the chapter. They are always capitalized and their definitions are found
in Appendix A. Also, the iRMX 86 data type TOKEN is capitalized
throughout the chapter. If your compiler supports the SELECTOR data
type, a TOKEN can be declared literally as SELECTOR or WORD. The word
"token"” in lower case refers to a value that the iIRMX 86 Operating System
returns to a TOKEN (the data type) when it creates the object.

RESPONSE MAILBOX PARAMETER

Two system calls described in this chapter are asynchronous. These are

the ASLOAD and the ASLOADSIOSJOB system calls. Your task must specify a
mailbox whenever it invokes an asynchronous system calle The purpose of
this mailbox is to receive a Loader Result Segment.

In general the Loader Result Segment indicates the result of the loading
operation. The format of a Loader Result Segment depends upon which
system call was invoked, so details about Loader Result Segments are
included in descriptions of the ASLOAD and ASLOADSIO$JOB system calls.

Avoid using the same response mailbox for more than one concurrent
invocation of asynchronous system calls. This is necessary because it is
possible for the Loader to return Loader Result Segments in an order
different than the order of invocation. On the other hand, it is safe to
use the same mailbox for multiple invocations of asynchronous system
calls if only one task invokes the calls and the task always obtains the
result of one call via RQSRECEIVESMESSAGE before making the next call.

Application Loader 2-1

APPLICATION LOADER SYSTEM CALLS

CONDITION CODES

The Loader returns a condition code whenever a system call is invoked.
If the call executes without error, the Loader returns the code ESOK. 1If
an error occurs, the Loader returns an exception code.

This chapter includes, for each of the Application Loader's system calls,
descriptions of the condition codes that the system call can return. The
system call chapters in manuals for the other layers of the iRMX 86
Operating System do the same thing for those layers. You can use the
condition code information to write code to handle exceptional conditions
that arise when system calls fail to perform as expected. See the

iRMX 86 NUCLEUS REFERENCE MANUAL for a discussion of condition codes and
how to write code to handle them.

CONDITION CODES FOR SYNCHRONOUS SYSTEM CALLS

For system calls that are synchronous {(SSLOADSIO$JOB and SSOVERLAY), the
Loader returns a single condition code each time the call is invoked. If
your system has an exception handler, it will receive these codes when

exceptional conditions occur, depending upon how the exception mode is
sete.

CONDITION CODES FOR ASYNCHRONOUS SYSTEM CALLS

For system calls that are asynchronous (ASLOAD and ASLOADSIOS$JOB), the
Loader returns two condition codes each time the call is invoked. One

code is returned after the sequential part of the system call is
executed, and the other is returned after the concurrent part of the call
is executeds Your task must process these two condition codes separately.

Appendix C describes the sequential and concurrent portions of
asynchronous system calls,

Sequential Condition Codes

The Application Loader returns the sequential condition code in the word
pointed to by the exceptSptr parameter. If your system has an exception
handler, it will receive these codes when exceptional conditions occur,
depending upon how the exception mode is set.

Application Leoader 2-2

APPLICATION LOADER SYSTEM CALLS

Concurrent Condition Codes

The Loader returns the concurrent condition code in the Loader Result
Segment it sends to the response mailbox. If the code is ESOK, the
asynchronous loading operation ran successfully. If the code is other
than ESOK, a problem occurred during the asynchronous loading operation,
and your task must decide what to do about the problem. Regardless of

the exception mode setting for the application, the exception handler is
not invoked by concurrent condition codes, so your program must handle it.

SYSTEM CALL DICTIONARY

The following list is a summary of the iRMX 86 Loader system calls,
together with a brief description of each call and the page where the
description of the call begins.

Name Description Type Page
ASLOAD Loads object code or data into Asynchronous 2=4
memory.
ASLOADIOJOB | Creates an I/0 job, loads the Asynchronous 2-15

job's code, and causes the job's
task to run.

SSLOADSIOSJOB | Creates an I/0 job, loads the Synchronous 2-25
job's code, and causes the job's
task to run.

SSOVERLAY Loads an overlay into memory. Synchronous 2-32

Application Loader 2-3

ASLOAD

)
<
/)
-
m
=
Y
-)
F
F
v

ASLOAD

The ASLOAD system call loads an object code or data file from secondary

storage into memory.

CALL RQSASLOAD(connection, response$mbox, except$ptr);

INPUT PARAMETERS

connection

responseSmbox

OUTPUT PARAMETER

exceptS$ptr

A TOKEN for a connection to the file that the
Loader is to loade The connection must satisfy all
of the following requirements:

. It must have been created in the calling task's
job.

° It must be a connection to a named file.

e When the file was created by CREATESFILE or

ATTACHSFILE, the specified user object must
have had READ access to the file.

° It must be closed.

If the connection does not satisfy all four of

these requirements, the Loader returns an exception
code.

A TOKEN for the mailbox to which the Loader sends
the Loader Result Segment after the concurrent part
of the system call finishes running. The format of

the Loader Result Segment is given in the following
DESCRIPTION secticn.

A POINTER to a WORD where the Loader is to place
the condition code generated by the sequential part
of the system call.

Application Loader 2-4

ASLOAD

DESCRIPTION

ASLOAD allows your task to load object code files or data files from
secondary storage into main memory. Unlike the ASLOADSIO$JOB and
SSLOADSIO$JOB system calls, ASLOAD doesn't automatically cause the code
to be executed as a task. The calling task must explicitly cause the
code to be executeds The following sections explain how to use ASLOAD to

load main modules or to load procedures and they give guidelines for
calling CREATESTASK, CREATE$JOB, or CREATE$SIO$JOB to run the loaded code.

Using ASLOAD to Load a Main Module

If you are using the ASLOAD system call to load a main module that will
run as a task, there are two cases.

l. The usual case is when you are loading PIC or LTL code, or you
are loading absolute code generated with the NOINITCODE control
of the LOC86 command. In this case, the Loader returns, in the
Loader Result Segment, parameters defining the entry point and
stack requirements for the loaded code. Your application needs
these parameters when invoking the CREATES$TASK, CREATES$JOB, or
CREATE$I0SJOB system call,

If the Loader has been configured to load only absolute code, it
will not load main modules generated with the NOINITCODE
control. In this event, the Loader returns the ESLOADER$SUPPORT
condition code. (See Chapter 3 and the iRMX 86 CONFIGURATION
GUIDE for information about configuring the Loader.)

2. The unusual case is when your object code is absolute code
generated without the NOINITCODE control of the LOC86 command.
In this case, you must allow the iRMX 86 Nucleus to create a
stack for you. To do this, specify 0:0 for the stack pointer
parameter of the CREATESTASK or the CREATE$JOB system call.

This action causes the Nucleus to create a stack for the loaded
code. However, because the loaded code contains a main module,
it also contains code that switches the stack register values so

the the Nucleus—created stack is ignored. This stack switching
allows the loaded code to use the stack allocated by the SEGSIZE
control.

To minimize the amount of memory wasted by stack switching,
specify a small stack size (128 decimal bytes) in CREATESTASK,
CREATESJOB, or CREATESIOSJOB system calls. This stack need not
be large because it is used only if the task is interrupted and
stack switching occurs.

Application Loader 2-5

ASLOAD

)
ol
/)
-]
m
=
0
>
F
|~
V0

Stack switching has an undesirable but avoidable side effect. If
you use the iRMX 86 Debugger, it will always indicate that the
stack for the loaded code has overfloweds The overflow
indication is caused by the main module switching stacks, rather
than by an actual overflow. This means that you cannot tell
whether overflow actually has occurreds To avoid this side
effect, write your source code as a procedure or use the LOC86
NOINITCODE control.

Using ASLOAD To Load A Procedure

If you write code as a procedure that you intend to load and run, it can
be loaded only by ASLOAD. Although the process of loading a procedure is
more restrictive than that of loading a main module, you can avoid the
stack-switching side effects described in the previous section.

To successfully load code that is written as a procedure, adhere to the
following rules:

e Generate the procedure as absolute code and do not use the
NOINITCODE control of the LOC86 command.

e Adhere to the PL/M—86 LARGE model of segmentation. This means
that you must either compile the procedure using the LARGE size
control, or you must follow the calling conventions of the LARGE
models For information about the PL/M-86 LARGE model of
segmentation, refer to the PL/M-86 USER'S GUIDE.

e When invoking the LOC86 command to assign absolute addresses to
your object code, use the START control to select one of the
PUBLIC symbols in your procedure as an entry point. Also specify
SEGSIZE(STACK(0)) to set the stack to zero lengths For more
information about the START and SEGSIZE controls, refer to the
iAPX 86,88 FAMILY UTILITIES USER'S GUIDE.

e When you invoke the CREATESTASK, CREATE$JOB, or CREATESIO$JOB
system call, allow the Operating System to allocate a stack for
the new task. Do this by setting the stack pointer parameter to
0:0. Be certain that you specify a stack size parameter that is
large enough for the task. For guidelines to determining stack
sizes, refer to the iRMX 86 PROGRAMMING TECHNIQUES manual.

e When you invoke the CREATESTASK, CREATES$SJOB, or CREATESIOSJOB
system call, set the data segment base parameter to 0. The
reason for this i1s that a procedure adhering to the LARGE model
of segmentation always initializes its own data segment.

For information about the CREATESTASK or the CREATESJOB system calls
refer to the iRMX 86 NUCLEUS REFERENCE MANUAL. For information about the
CREATESIOSJOB system call, refer to the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL. For information about the iRMX 86 Debugger, refer to
the iRMX 86 DEBUGGER REFERENCE MANUAL.

Application Loader 2-6

ASLOAD

Asynchronous Behavior

The ASLOAD system call is asynchronous. It allows the calling task to
contihue running while the loading operation is in progress. When the
loading operation is finished, the Loader sends a Loader Result Segment
to the mailbox designated by the response$mbox parameter. Refer to
Appendix C for an explanation of how asynchronous system calls work.

File Sharing

The Loader does not expect exclusive access to the file. However, other
tasks sharing the file are affected by the following:

¢ The other tasks should not attempt to share the connection passed
to the Loader, but instead should obtain their own connections to
the file.

o The Loader specifies "share with readers only"” when opening the
connection, so, during the loading operation, other tasks can
access the file only for reading.

Considerations Relating To Code Type

If the file being loaded contains absolute code, the Loader will not
create iRMX 86 segments for the code. Rather, it will simply load the
program into the memory locations specified for the target file. It is
the user's responsibility to prevent code from loading over existing
information, including the Operating System code. Refer to the iRMX 86
CONFIGURATION GUIDE to see how to do this by reserving areas of memory.

In contrast, if the file being loaded is position—-independent code or
load-time locatable code, the Loader will create iRMX 86 segments for
containing the loaded programe. However, the Loader does not delete these
segments; when your task no longer needs the loaded program, your task
should delete the segments.

Effects Of Model Of Segmentation

The Loader will return (in the Loader Result Segment) a token for each of
the code, data, and stack segments. This is enough segment information
for programs compiled as COMPACT, because only one segment of each type
will be created. But if the program adheres to the LARGE or MEDIUM model
of segmentation, more than one code segment and more than one data
segment can be created, although only one token will be returned for each
in the Loader Result Segment.

This means that if the code follows the LARGE or MEDIUM model, the
calling task cannot know the location of all of the loaded program's code
or data segments. Consequently, the calling task cannot delete all of
the data or code segments after the program has executed.

Application Loader 2-7

ASLOAD

7))
<
U]
wf
m
=
0
>
F
r
»

You can avoid this problem in either of two ways. FEither be certain that

the program being loaded adheres to the COMPACT model of segmentation, or
use the ASLOADSIOSJOB or SSLOADSIOS$JOB system calls instead of the ASLOAD
system call.

Format Of The ASLOAD Loader Result Segment

The Loader uses memory from the pool of the calling task's job to create
the Loader Result Segment for this system calle The calling task should
delete the segment after it is no longer needed. Creating multiple
segments without deleting them can result in an ESMEM exception code.

The Loader Result Segment has the following form:

STRUCTURE (exceptScode WORD,
recordScount WORD,
errorSrecStype BYTE,
undefined$ref WORD,
init$ip WORD,
code$segSbase WORD or SELECTOR,
stackSoffset WORD,
stack$segSbase WORD or SELECTOR,
stack$size WORD,
dataSseg$base WORD or SELECTOR);

where:
except$code A WORD containing the condition code for the

concurrent part of the system call. If the code is
other than ESOK, some problem occurred during the
loading operation.

record$count A WORD containing the number of records read by the
Loader on this invocation of ASLOAD. If the the
loading operation terminates prematurely,
recordScount contains the number of the last record
read.

errorSrecStype A BYTE identifying the type of record causing
premature termination of the loading operation,
except that a value of 0 means no record caused
premature termination. Object record types are
documented in the Intel publication 8086 RELOCATABLE
OBJECT MODULE FORMATS.,

undefined$- A WORD specifying whether the Loader found undefined
ref external references while loading the job. An
undefined external reference usually results from a
linking error. The Loader continues to run even if
a target file contains undefined external references.

Application Loader 2-8

init$ip

codeS$segShase

stackSoffset

ASLOAD

The value of undefinedSref depends upon your
configuration of the Loader. (See Chapter 3 and the
iRMX 86 CONFIGURATION GUIDE for information about
configuring the Loader.)

e If the Loader is configured to load LTL and
overlay code, as well as PIC and absolute code,
undefinedSref contains the number of undefined
external references detected during the loading
operation. (Note that undefined$ref equals the
number of undefined external references even if
the Loader is loading PIC or absolute code.)

e If the Loader is configured to load only absolute
code or only PIC or absolute code, the Loader
sets undefinedSref to 1 or to O, It is 1 if the
Loader finds undefined external references;
otherwise, it is O.

A WORD containing the initial value for the loaded
program's instruction pointer (IP register). The
calling task can use this information in either of
two ways:

e When invoking the CREATE$TASK, CREATE$JOB, or
CREATESIO0S$JOB system call.

e As the destination of a jump within the code
segment of the loaded program.

Init$ip is O if the file does not specify an initial

value for the instruction pointer, as can happen
when the file contains no main module.

A WORD or SELECTOR containing the base address for
the code segment with the entry point. The value in
codeS$segSbase can be used with init$ip as a POINTER
to the entry point of the loaded program. The
Loader places O into this field if the loaded
program does not contain a main module. TIf you are
using a compiler that supports the data type
SELECTOR, code$SsegSbase should be declared a
SELECTOR.

A WORD containing the offset of the bottom of the
stack, relative to the beginning of the stack
segment. The calling task can use the sum of this
value and the stack$size to initialize the stack
pointer (SP register).

The Loader sets stackSoffset to zero under each of
these circumstances:

Application Loader 2-9

ASLOAD

7))
>
7]
-y
m
=
(g
>
r
F
”

stacksegbase

stackS$size

data$segSbase

e The stack actually starts at offset O.
° There 1s no main module.

e The loaded code is a main module that
dynamically initializes the SP and SS registers.

A WORD or SELECTOR containing the base of the stack
segment for the loaded program. The calling task
can use this value to initialize the stack segment
(SP register). StackSsegSbase should be declared a
SELECTOR 1f your compiler supports the SELECTOR
data type.

The Loader sets stackSsegSbase to 0 under each of
these circumstances:

e If there is no main module. (In this case, the
target file does not specify a stack base).

e If the loaded code 1s a main module that
dynamically initializes the SP and SS registers.

A WORD specifying the number of bytes required for
the loaded progranm's stack. The calling task can
initialize the stack pointer (SP register) to the
sum of stackSoffset and stack$size when invoking
the CREATESTASK, CREATE$JOB, or CREATESIOS$SJOB
system call.

The Loader sets this value to 0 whenever both the
stackSoffset and stack$segSbase are 0. When all
three stack-related parameters are 0 and the target
file contains a main module, the loaded code must
set the stack pointer (SP register) and stack
segment (SS register).

A WORD or SELECTOER containing the initial base
address of the data segment (DS register). If your
compiler supports the SELECTOR data type,
dataSsegSbase should be declared a SELECTOR.

The Loader sets this value to 0 under each of these
circumstances:

® If the target file contains no main module.

° If the main module dynamically sets the DS
register after the program starts running.

Application Loader 2-10

ASLOAD

CONDITION CODES

The ASLOAD system call can return condition codes at two different

times. Codes returned to the calling task immediately after invocation
of the system call are sequential condition codes. Codes returned after
the concurrent part of the system call has finished running are
concurrent condition codes. The following list is divided into two parts
~- one for sequential codes and one for concurrent codes:

Sequential Condition Codes

The Loader can return any of the following condition codes to the WORD
pointed to by the except$ptr parameter of this system call.

ESOK No exceptional conditions.

ESBADSHEADER The target file does not begin with a valid header
record for a loadable object module. Possibly the
file is a directory.

ESCHECKSUM The header record of the target file contains a
checksum error.

ESCONNSNOTSOPEN The Loader opened the connection but some other
task closed the connection before the loading
operation was begun.

ESCONNSOPEN The calling task specified a connection that was
already open.

ESEXIST At least one of the following is true:

e The connection parameter is not a token for an
existing object.

e The msgSmbox parameter did not refer to an
existing object.

ESFACCESS The specified connection did not have "read" access
to the file.

ESFLUSHING The device containing the target file is being
detached.

ESIOSHARD A hard I/0 error occurred. This means that another

try 1s probably useless.

ESIOSOPRINT The device containing the target file was
of f-line. Operator intervention is required.

ESTIOSSOFT A soft I/0 error occurrede This means that the I/O

System tried to perform the operation and failed,
but another try might still be successful.

Application Loader 2-11

ASLOAD

ESIO$SUNCLASS An unknown type of I/0 error occurred.
ESIOSWRPROT The volume is write-protected.
ESLIMIT At least one of the following is true:

o The calling task's job has already reached its
object limit.

e Either the calling task's job, or the job's
default user object, is already involved in 255
(decimal) I/O cperations.

ESLOADERSSUPPORT To load the target file requires capabilities not
configured into the Loader. For example, it might
be attempting to load PIC when configured to load
only absolute code.

ESMEM The memory available to the calling task's job or
the Basic I/0 System is not sufficient to complete
the call.

ESNOTSFILESCONN The calling task specified a connection to a device
rather than to a named file.

ESSHARE The calling task tried to open a connection to a
file already being used by some other task, and the
file's sharing attribute is not compatible with the
open request.

E$SSUPPORT The specified connection was not created by the
calling task's job.

7))
ol
/]
-y
m
=
Y
>
F
F
(7]

ESTYPE The connection parameter is a token for an object
that is not a connection.

Concurrent Condition Codes

After the Loader attempts the loading operation, it returns a condition
code in the except$code field of the Loader Result Segment. The Loader
can return the following condition codes in this manner.

ESOK No exceptional conditions.

E$BADSGROUP The target file contains an invalid group
definition record.

E$BADSSEGMENT The target file contains an invalid segment
definition record.

ESCHECKSUM At least one record of the target file contains a
checksum error.

Application Loader 2-12

ESEQF

ESEXIST

ESFIXUP

ESFLUSHING

ESTO$SHARD

ESIOSOPRINT

ESIO$SOFT

ESTOSUNCLASS

ESTIOSWRPROT

ESLIMIT

ESNOSL OADERSMEM

ESNOSMEM

E$NOSTART

ESPARAM

ESRECSFORMAT

ASLOAD

The call encountered an unexpected end-of-file.

At least one of the following is true:

° The mailbox specified in the response$mbox
parameter was deleted before the loading
operation was completed.

® The device containing the file to be loaded was
detached before the loading operation was
completed.

The target file contains an invalid fixup record.

The device containing the target file is being
detached.

A hard I/0 error occurrede This means that another

try is probably useless.

The device containing the target file was
off-line. Operator intervention is required.

A soft I/0 error occurreds. This means that the I/0
System tried to perform the operation and failed,
but another try might still be successful.

An unknown type of I/0 error occurred.

The volume is write-protected.

U]
wd
wd
g
O
=
w
=
Y
>
n

The calling task's job has already reached its
object limit,

The memory pool of the newly created I/0 job does
not currently have a block of memory large enough
to allow the Loader to run.

The Loader attempted to load PIC or LTL groups or
segments, but the memory pool of the calling task's
job does not currently contain a block of memory
large enough to accommodate these groups or
segments.

The target file does not specify the entry point
for the program being loaded.

The target file has a stack smaller than 16 bytes.

At least one record in the target file contains a
format error.

Application Loader 2-13

-

ASLOAD

)
<
»
-l
m
=
(Y
F
r
(7]

ESRECSLENGTH

ESRECSTYPE

E$SEGSBOUNDS

The target file ccntains a record longer than the
Loader's internal buffer. The Loader's buffer
length 1s specified during the configuration of the
Loader. See Chapter 3 and the iRMX 86
CONFIGURATION GUIDE for information about
configuring the Loader.

At least one of the following is true:

° At least one record in the target file is of a
type that the Loader cannot process.

° The Loader encountered records in a sequence
that it cannot process.

The Loader created a segment into which to load

code. One of the data records specified a load
address outside of that segment.

Application Loader 2-14

ASLOADSI0$JOB

The ASLOADSIOSJOB system call reads the header record of an executable
file in secondary storage and creates an I/0 job. The job's initial task
then performs the concurrent part of the call, which is the loading of the
remainder of the file.

job = RQSASLOADSIO$JOB(connection, pool$lower$bound, poolSupper$Sbound,
except$handler, jobSflags, taskSpriority,
task$flags, msgSmbox, except$ptr);

INPUT PARAMETERS

connection A TOKEN for a connection to the file that the Loader
will load. The connection must be a connection to a
named file. Also, the connection must be closed,
the user object specified when the connection was
created must have had READ access, and the
connection must have been created in the calling
task's jobe

The Loader opens the connection for sharing with
readers only, so, during the loading operation,
other tasks may access the file only for reading.

pool$lower$— A WORD containing a value the Loader uses to
bound compute the pool size for the new I/0 job. See the
'DESCRIPTION section for details.

poolSupper$ - A WORD containing a value the Loader uses to
bound compute the pool size for the new I/0 job. See the
DESCRIPTION section for details.

exceptShandler A POINTER to a structure of the following form:

STRUCTURE(
exception$handler$offset WORD,
exception$handler$base WORD or SELECTOR,
exception$mode BYTE)

The Loader expects you to designate one exception
handler to be used both for the new task and for
the new job's default exception handler. If you
want to designate the system default exception
handler, you can do so by setting
exception$handler$base to zero. If you set the
base to any other value, then the Loader assumes
that the first two words of this structure point to
the first instruction of your exception handler.

Application Loader 2-15

- ASLOADSIOSJOB

7))
<
7]
-]
m
=
(1
>
F
r
(7]

jobS$flags

task$priority

taskS$flags

Exception$handler$base should be declared a
SELECTOR if the compiler you are using supports the
SELECTOR data type.

Set the exceptionémode to specify whean control is
to pass to the new task's exception handler.

Encode the mode as follows:

When Control Passes

Value To Exception Handler
0 Control never passes to handler
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

For more information regarding exception handlers
and the exception mode, refer to the iRMX 86
NUCLEUS REFERENCE MANUAL.,

A WORD specifying whether the Nucleus is to check
the validity of otjects used as parameters in
system calls., Setting bit 1 (where bit 0 is the
low-order bit) to O specifies that the Nucleus is
to check the validity of objects. All bits other
than bit 1 must be set to O.

A BYTE which,

° if equal to 0, indicates that the new job's
initial task is to have a priority equal to the
maximum priority of the initial job of the
Extended I/0 System.

° if not equal to O, contains the priority of the
initial task of the new job. If this priority
is higher (numerically lower) than the maximum
priority of the initial job of the Extended 1/0
System, an ESPARAM error occurs.

A WORD indicating whether the initial task uses
floating-point instructions, and whether to start
the task immediatelye.

Set bit O (the low-order bit) to 1 if the task uses
floating-point instructions; otherwise set it to 0.

Bit 1 indicates whether the initial task in the job
should run immediately, or whether it should be
suspended until a STARTIOJOB system call is
issued to start ite Set it to O if the task is to
be made ready immediately; set it to 1 if the task
is to be suspended.

Set bits 2 through 15 to O.

Application Loader 2-16

ASLOADSIOSJOB

ms gSmbox A TOKEN for a mailbox that serves two purposess
The first purpose is to receive the Loader Result
Segment after the loading operation is completed.
The format of the Loader Result Segment is provided
later in this description.

The second purpose is to receive an exit message
from the newly created I/0 job. The description of
the CREATESIOS$JOB system call in the iRMX 86
EXTENDED I/0 SYSTEM REFERENCE MANUAL shows the
format of an exit message.

OUTPUT PARAMETERS

exceptSptr A POINTER to a WORD where the Loader is to place
the condition code generated by the sequential part
of the system call.

job A TOKEN, returned by the Loader, for the newly
created I/0 job. This token is valid only if the
Loader returns an ESOK condition code to the WORD
pointed to by the except$ptr parameter.

DESCRIPTION

This system call operates in two phases. The first phase occurs during
the sequential part of this system calle (Refer to Appendix C for a
discussion of the sequential and concurrent parts of an asynchronous
system call.) During thig first phase, the Loader does the following:

e Checks the validity of the header record of the target file.

e Creates an I/0 jobe This I/0 job is a child of the calling

task's job. (Refer to the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE
MANUAL for a definition of I/0 jobs.)

e Returns a condition code reflecting the success or failure of the
first phase. The Loader places this condition code in the WORD
pointed to by the except$ptr parameter.

The second phase occurs during the concurrent part of the system call.
This part runs as the initial task in the new job and does the following:

e Loads the file designated by the connection parameter.
® Creates the task that will execute the loaded code. If there are
no errors while the file is being loaded and if bit 1 of the

task$flags parameter is O, the concurrent part makes the task in
the new job ready to run.

Application Loader 2-17

ASLOADSIOSJOB

. Sends a Loader Result Segment to the mailbox specified by the
msgSmbox parameter. One element in this segment is a condition
code indicating the success or failure of the second phase.

° Deletes itself.

Restriction
This system call should be invoked only by tasks running within I/O

jobs., Failure to heed this restriction causes a sequential exception
condition.

Pool Size For The New Job

The Loader uses the following information to compute the size of the
memory pool for the new I/0 job:

e The poolSlower$Sbound parameter, as a number of 16-byte paragraphs.

° The poolS$upper$bound parameter, as a number of 16—byte paragraphs.

e A Loader configuration parameter specifying the default dynamic
memory requirements. (Refer to Chapter 3 and the iRMX 86
CONFIGURATION GUIDE for information about configuring the Loader.)

® Memory requirements specified in the target file.

»
b
(7]
-
m
=
0
L >
r
-
»

The Loader gives you three options for setting the size of the I/0 job's
memory pool:

l. You can set both pool$lower$bound and poolSupper$bound to 0. If
you do this, the Loader decides how large a pool to allocate to
the new I/0 job. The Loader uses the requirements of the target
file and the default memory pool size -~ established when the
system is configured —- to make this decision. Unless you have
unusual requirements, you should choose this option.

2. You can use either or both of the bound parameters to override

the Loader's decision on pool size. If the Loader's decision
lies outside the bound(s) that yvou specify, the Loader adjusts

its decision so that it complies with your bounds.

3. If you set poolSupperSbound to OFFFFH, the Loader allows the new
I/0 job to borrow memory from the calling task's job. The
initial size of the memory pool is based on the poolSlower$bound
parameter.

Application Loader 2-18

ASLOADSIOSJOB

If you select Option 1 or 2, the Loader creates an I/0 job with the
minimum pool size equal to the maximum pool size. This means that the
new I/0 job will not be able to borrow memory from the calling task's
jobs If you want the I/0 job to be able to borrow memory, select
Option 3.

This system call is asynchronous. It allows the calling task to continue

running while the loading operation is in progress. When the loading
operation is finished the Loader sends a Loader Result Segment to the

mailbox designated by the msgSmbox parameter. Refer to Appendix C for a
detailed description of asynchronous system call behavior.

Format Of The Loader Result Segment

The Loader Result Segment has the form described below. This structure
is deliberately compatible with the structure of the message returned
when an I/0 job exits. (See the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE
MANUAL for a description of exit messages.)

STRUCTURE (terminationScode WORD,
except$code WORD,
jobStoken TOKEN,
return$data$len BYTE,
recordS$count WORD,
errorSrecStype BYTE,
undefinedSref WORD,
mem$requested WORD,
mem$received WORD) ;

where:

terminationScode A WORD indicating the success or failure of the
loading operation.

] A value of 100H indicates that the loading
operation succeeded.

° A value of 2 indicates that the loading
operation failed. 1In this case, your system
should delete the newly created I/0 job; the
Loader doesn't do so.

except$code A WORD containing the concurrent condition code.
Codes and interpretations follow this description.

job$token A TOKEN for the newly created I/0 job.

returnS$dataS$len A BYTE that is always set to 9.

Application Loader 2-19

ASLOADSIOSJOB

STIVO WALSAS

recordScount

error$recStype

undefined$—-
ref

memSrequested

memSreceived

A WORD containing the number of records read by
the Loader. If the loading operation terminates
prematurely, this value indicates the last record
read.

A BYTE identifying the reason the loading
operation terminated.

o A value of O means that no record caused
termination.
° A non-0 value is the type of the record that

caused premature termination. Object record
types are documented in the Intel
publication 8086 RELOCATABLE OBJECT MODULE
FORMATS.

This value tells whether the Loader found
undefined external references while loading the
jobe An undefired external reference usually
results from a linking error. The Loader
continues to run even if an target file contains
undefined external references. The value of
undefined$ref depends upon the configuration of
the Loader. (See Chapter 3 and the iRMX 86
CONFIGURATION GUIDE for information about
configuring the Loader.)

® If the Loader is configured to load LTL
code, as well as PIC and absolute code,
undefined$ref contains the number of
undefined external references the Loader
detected during the loading operation.
(Note that undefinedS$ref equals the number
of undefined external references even if the
Loader is loading PIC or absolute code.)

® If the Loader is configured to load only PIC
or absolute code or only absolute code, the
Loader sets undefined$ref to 1 or to 0. It
is 1 if the Loader found undefined external
references; otherwise, it is O.

A WORD indicating the number of 16-byte
paragraphs the target file requested for the new
job, including the memory needed for all segments
and that needed for the job's memory pool.

A WORD indicating the number of 16-byte
paragraphs actually allocated to the new job.

Application Loader 2-20

ASLOADSIOSJOB

CONDITION CODES

This system call can return condition codes at two different times.

Codes returned to the calling task immediately after the invocation of
the system call are considered sequential condition codes. Codes
returned after the concurrent part of the system call has finished
running are considered concurrent condition codes. The following list is
divided into two parts —— one for sequential codes and one for concurrent
codes.

Sequential Condition Codes

The Loader returns one of the following condition codes to the WORD
pointed to by the except$ptr parameter:

ESOK ' No exceptional conditions.

ESBADSHEADER The target file does not begin with a valid
header record for a loadable object module.
Possibly the file is a directory.

ESCHECKSUM The header record of the target file contains a
checksum error.

ESCONNSNOTSOPEN The Loader opened the connection, but some other
task closed the connection before the loading
operation was begun.

ESCONNSOPEN The specified connection was already open.
ESCONTEXT The calling task's job is not an I/0 job.
ESEXIST At least one of the following is true:

° The connection parameter is not a token for

an existing object.

° The calling task's job has no global job.
Refer to the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL for a definition of global
jObo

) The msgSmbox parameter does not refer to an
existing object.

ESFACCESS The specified connection does not have "read"
access to the file.

ESFLUSHING The device containing the target file is being
detached.

ESIOSHARD A hard I/0 error occurred. This means that

another try is probably useless.

Application Loader 2-21

ASLOADSIOSJOB

)
<
]
-f
m
=
Y
>
F
F
]

ESIOSOPRINT

ESIO$SOFT

ESIOSUNCLASS
ESIOSWRPROT

E$SJOBSPARAM

ESJOBSSIZE

ESLOADERSSUPPORT

ESMEM

E$NOSLOADERSMEM

ESNOTSCONFIGURED

ESNOTSFILESCONN

ESPARAM

ES$SHARE

E$SUPPORT

ESTIME

ESTYPE

The device containing the target file is
of f-line. Operator intervention is required.

A soft I/0 error occurred. This means that the
I/0 System tried to perform the operation and
failed, but another try might still be successful.

An unknown type of I/0 error occurred.
The volume is write—protected.

The pool$upperSbound parameter is both non-zero
and smaller than the poolSlower$bound parameter.

The pool$upperSbound parameter is non-0 and too
small for the target file.

The target file requires capabilities not
configured into the Loader. For example, the
loader might be attempting to load PIC code when
configured to load only absolute code.

The memory available to the calling task's job or

the Basic I/0 System is not sufficient to
complete the call.

The memory pool of the newly created I/0 job does
not currently have a block of memory large enough
to allow the Loader to run.

This system call is not part of the present
configuration.

The specified coanection is to a device rather
than to a named file.

The value of the exceptSmode field within the

exceptShandler structure lies outside the range 0
through 3.

The calling task tried to open a connection to a
file already being used by some other task, and

the file's sharing attribute is not compatible
with the open request.

The specified connection was not created in this
jobe.

The calling task's job is not an I/0 job.

The connection parameter is a token for an object
that is not a connection.

Application Loader 2-22

ASLOADSIOSJOB

Concurrent Condition Codes

After the Loader attempts the loading operation, it returns a condition
code in the exceptScode field of the Loader Result Segment. The Loader
can return the following condition codes in this manner:

ESOK No exceptional conditions.

ESBADSGROUP The target file contains an invalid group
definition record.

ESBADS$SEGMENT The target file contains an invalid segment
definition record.

ESCHECKSUM At least one record of the target file contains a
checksum error.

ESEOF The call encountered an unexpected end-of-file.

ESEXIST At least one of the following is true:

° The mailbox specified in the msgSmbox
parameter was deleted before the loading
operation was completed.

° The device containing the target file was
detached before the loading operation was
completed.

ESFACCESS The default user of the newly created I/0 job
does not have "read" access to the target file.

ESFIXUP The target file contains an invalid fixup record.

ESFLUSHING The device containing the target file is being
detached.

ESTO$HARD A hard I/0 error occurred. This means that
another try is probably useless.

ESTOSOPRINT The device containing the target file is
of f~line. Operator intervention is required.

ESIOS$SOFT A soft I/0 error occurred. This means that the
I1/0 System tried to perform the operation and
failed, but another try might still be successful.

ESIOSUNCLASS An unknown type of I/0 error occurred.

ESIOSWRPROT The volume is write-protected.

ESLIMIT At least one of the following is true:

Application Loader 2-23

ASLOADSIOSJOB

STIVO WALSAS

E$NOSLOADERSMEM

ESNOSMEM

E$NOSTART

ES$PARAM

ESRE CSFORMAT

ESRE CSLENGTH

ESRECSTYPE

ESSEGS$BOUNDS

® The taskSpriority parameter is higher
(numerically lower) than the newly—-created
I/0 job's maximum priority. This maximum
priority is specified during the
configuration of the Extended I/0 System (if
the job is a descendant of the Extended I/0
System) or during configuration of the Human
Interface (if the job is a descendant of the
Human Interface).

® Either the newly created I/O job, or its
default user, is already involved in 255
(decimal) 1/0 operations.

There is not sufficient memory available to the
newly created I/0 job or the Basic I/0 System to
allow the Loader to run.

The Loader is attempting to load PIC or LTL
groups or segments, but the memory pool of the
newly created I/0 job does not currently contain
a block of memory large enough to accommodate
these groups or segments.

The target file does not specify the entry point
for the program being loaded.

The target file has a stack smaller than 16 bytes.

At least one record in the target file contains a
format error.

The target file contains a record longer than the
Loader's internal buffer. The internal buffer
length is specified during the configuration of
the Loader. Refer to Chapter 3 and the iRMX 86
CONFIGURATION GUIDE for information about
configuring the Loader.

At least one of the following is true:

® At least one record in the target file is of
a type that: the Loader cannot process.

¢ The Loader encountered records in a sequence
that it cannot process.

The Loader created a segment into which to load

code. One of the data records specified a load
address outside of the new segment.

Application Loader 2-24

SSLOADSIO0$JOB

The SSLOADSIO$SJOB system call creates an I/0 job containing the Loader
task, which loads the code for the user task from secondary storage.

job = RQSSSLOADSIOS$JOB(path$ptr, poolSlowerSbound, poolSupperS$Sbound,
except$handler, job$flags, taskSpriority,
task$flags, msg$mbox, exceptSptr);

INPUT PARAMETERS

pathSptr A POINTER to a STRING containing a path name for the
named file with the object code to be loaded. The
path name must conform to the Extended I/0 System
path syntax for named files. If you are not
familiar with iRMX 86 path syntax, refer to the
iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

poolSlower$— A WORD containing a value that the Loader uses to
bound compute the pool size for the new I/0 jobs See the
DESCRIPTION section for details.
poolSupper$— A WORD containing a value that the Loader uses to
bound compute the pool size for the new I/0 job. See the

DESCRIPTION section for details.

exceptShandler A POINTER to a structure of the following form:

STRUCTURE (exceptionShandlerSoffset WORD,
exceptionShandler$base WORD or SELECTOR,
exception$mode BYTE)

The Loader expects you to designate an exception
handler to be used both for the new task and for
the new job's default exception handler. If you
want to designate the system default exception
handler, do so by setting exception$handler$base to
0. If you set the base to any other value, then
the Loader assumes that the first two words of this
structure point to the first instruction of your
exception handler.

ExceptionShandler$base should be declared as a

SELECTOR if the compiler you are using supports the
SELECTOR data type.

Application Loader 2-25

SSLOADSIOSJOB

)
<
(7]
-y
m
=
O
>
r
r
(7

except$handler (continued)

job$flags

task$priority

task$flags

Set the exceptionSmode to tell the Loader when to
pass control to the new task's exception handler.
Encode the mode as follows:

When Control Passes

Value To Exception Handler
0 Control never passes to handler
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

For more information regarding exception handlers
and the exception mode, refer to the iRMX 86
NUCLEUS REFERENCE MANUAL.

A WORD specifying whether the Nucleus is to check

the validity of ohjects used as parameters in
system calls. Setting bit 1 (where bit 0 is the
low-order bit) to O specifies that the Nucleus is
to check the validity of objects. All bits other
than bit 1 must ba set to O.

A BYTE which,

e 1if equal to 0, indicates that the new job's

initial task is to have a prilority equal to the
the maximum priority of the initial job of the
Extended I/0 System.

. if not equal to 0, contains the priority of the
initial task of the new jobs If this priority
is higher (numerically lower) than the maximum
priority of the initial job of the Extended I/0
System, an ESPARAM error occurs.

A WORD indicating whether the initial task uses

floating-point instructions, and whether to start
the task immediately.

Set bit O (the low—order bit) to 1 if the task uses
floating~point instructions; otherwise set it to O.

Bit 1 indicates whether the initial task in the job
should run immedisately, or whether it should be
suspended until a STARTIOSJOB system call is
issued to start it. Set bit 1 to O if the task is
to be made ready immediately; set it to 1 if the
task is to be suspended.

Set bits 2 through 15 to O.

Application Loader 2-26

SSLOADSIOSJOE

ms gSmbox A TOKEN for a mailbox that receives an exit message

from the newly created I/0 job. The description of
the CREATESIOSJOB system call in the iRMX 86
EXTENDED I/0 SYSTEM REFERENCE MANUAL documents the
format of an exit message.

OUTPUT PARAMETERS

except$ptr A POINTER to a WORD where the Loader is to place a

condition code.

job A TOKEN, returned by the Loader, for the newly
created I/0 job. This token is valid only if the
Loader returns an E$OK condition code to the WORD
specified by the exceptSptr parameter.
DESCRIPTION

This system call performs the same function as ASLOADSIO$JOB. The only
difference between the calls is that SSLOADSIOS$JOB is synchronous. That
is, the calling task resumes running only after the call has completed
its attempt to create an 1/0 job and a user task in that job.

The Loader does not necessarily have exclusive access to the file being
loaded.
using the file, they may access the file only for reading.

During the loading operation, however, if other tasks are also

NOTE
This system call should be invoked only
by tasks running within I/O jobs.
Failure to heed this restriction causes
the Loader to return an ESCONTEXT
exception code.

Pool Size For The New Job

The Loader uses the following information to compute the size of the
memory pool for the new I/0 job:

The poolSlowerSbound parameter, as a number of l6-byte paragraphs.
The poolSupper$bound parameter, as a number of l6-byte paragraphs.
A Loader configuration parameter specifying the default dynamic
memory requirements. (Refer to Chapter 3 and the iRMX 86
CONFIGURATION GUIDE for information about configuring the Loader.)

Memory requirements specified in the target file.

Application Loader 2-27

SSLOADSIOSJOB

The Loader gives you three options for setting the size of the I1/0 job's
memory pool:

l« You can set both pool$lower$bound and poolSupperSbound to zero.
If you do this, the Loader decides how large a pool to allocate
to the new I/0 job. The Loader uses the requirements of the
target file and the default memcry pool size —— established when
the system is configured -— to make this decision. Unless you
have unusual requirements, you should choose this option.

2. You can use either or both of the bound parameters to override
the Loader's decision on pool size. If the Loader's decision
lies outside the bound(s) that you specify, the Loader adjusts it
to comply with your bounds.

3. If you set pool$upperSbound to CFFFFH, the Loader allows the new

I/0 job to borrow memory from the calling task's job. The
initial size of the memory pool is equal to pool$lower$bound.

If you select Option 1 or 2, the Loader creates an I/0 job with the
minimum pool size equal to the maximum pool size. This means that the
new 1/0 job will not be able to borrow memory from the calling task's
jobe If you want the I/0 job to be able to borrow memory, select

(7)) Option 3.
<
7))
-y
m
= CONDITION CODES
0
> The Loader returns one of the following condition codes to the WORD
F specified by the except$ptr parameter of this system call:
(7
E$OK No exceptional conditions.
ES$SBADSGROUP The target file contains an invalid group
definition record.
ESBADSHEADER The target file deoes not begin with a valid header
record for a loadable object module.
ESBADSSEGMENT The target file contains an invalid segment
definition record.
ES$CHECKSUM At least one record in the target file contains a
checksum error.
ESCONTEXT The calling task's job is not an I/0O job.
ESEOF The call encountered an unexpected end-of-file.

Application Loader 2-28

ESEXIST

E$FACCESS

ESFIXUP

ESFNEXIST

ESFLUSHING

ESINVALIDSFNODE

ESTOSHARD

ESIO0$JOB

ESIOSOPRINT

ESIOS$SOFT

E$TOSUNCLASS

ESIO$WRPROT

E$JOBSPARAM

ESJOBSSIZE

SSLOADSIOSJOE

At least one of the following is true:

] The msgSmbox parameter is not a token for an
existing object.

e The calling task's job has no global job.
(Refer to the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL for a definition of global
job.)

e The device containing the target file was
detached.

The default user object for the new I/0 job does
not have "read" access to the specified file.

The target file contains an invalid fixup record.
The specified target file, or some file in the

specified path, does not exist or is marked for
deletion.

The device containing the target file is being
detached.

The fnode for the specified file is invalid, so the
file must be deleted.

A hard I/0 error occurreds This means that another

try is probably useless.

The calling task's job is not an I/O job.

The device containing the target file is off-line.
Operator intervention is required.

A soft I/0 error occurred. This means that the 1/0
System tried to perform the operation and failed,
but another try might still be successful.

An unknown type of I/0 error occurred.

The volume is write—-protected.

The poolSupperSbound parameter is nonzero and
smaller than the pool$lower$bound parameter.

The poolSupper$Sbound parameter is nonzero and too
small for the target file.

Application Loader 2-29

SSLOADSIOSJOB

]
<
]
-
m
=
o .
>
F
F
7

ESLIMIT

E$LOADERS SUPPORT

ESMEM

ESNOSLOADERSMEM

E$NOMEM

ES$NOSTART

ESNOT$CONFIGURED

ESPARAM

E$PATHNAMES -
SYNTAX

ESREC$FORMAT

At least one of the following is true:

e The taskSpriorxity parameter is higher
(numerically lower) than the newly-created I/0
job's maximum priority. This maximum priority
is specified during the configuration of the
Extended I/0 System (if the job is a descendant
of the Extended I/0 System) or of the Human
Interface (if the job is a descendant of the
Human Interface).

e Either the newly created I/0 job or its default
user object is already involved in 255
(decimal) I/0 operatioms.

The target file requires capabilities not
configured into the Loader. For example, it might
be attempting to load PIC when configured to load
only absolute code.

The memory available to the calling task's job is
not sufficient to complete the call.

The memory pool of the newly created I/0 job does
not currently have a block of memory large enough
to allow the Loader to run.

The target file contains either PIC segments or
groups, or LTL segments or groups. In any case,
the memory pool of the new I/0 job does not have a
block of memory large enough to allow the Loader to
load these records.

The target file dces not specify the entry point
for the program being loaded.

This system call 1s not part of the present
configuration.

At least one of the following is true:

e The value of the exceptSmode field within the

exceptShandler structure lies outside the range
0 through 3.

o The target file requested a stack smaller than
16 bytes.

The specified pathname contains one or more invalid
characters.

At least one record in the target file contains a
format error.

Application Loader 2-30

ESRECSLENGTH

ESRECSTYPE

ESSEGSBOUNDS

SSLOADSIOSJOB

The target file contains a record longer than the
Loader's internal buffer. The Loader's buffer
length is specified during the configuration of the
Loader. (See Chapter 3 and the iRMX 86
CONFIGURATION GUIDE for information about
configuring the Loader.)

At least one of the following is true:

® At least one record in the target file is of a
type that the Loader cannot process.

° The Loader encountered records in a sequence
that it cannot process.

The Loader created a segment into which to load
code. One of the data records specified a load
address outside of the new segment.

Application Loader 2-31

SSOVERLAY

)
-
/]
-
m
=
Y
>
r
r
]

SSOVERLAY

In programs with overlays, the root module of the program calls SSOVERLAY
to load overlay modules.

CALL RQS$SSOVERLAY(name$Sptr, except$ptr);

INPUT PARAMETER
name$ptr A POINTER to a STRING containing the name of an
overlay. The overlay name should have only
upper—case letters, both in this string and when
you specify the name in the LINK86 OVERLAY

control. For information about LINK86, refer to
the iAPX 86,88 FAMILY UTILITIES USER'S GUIDE.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD in which the Loader will place
a condition code.

DESCRIPTION

Root modules issue this system call when they want to load an overlay
module. Chapter 1 describes overlays.

Synchronous Behavior

This system call is synchronous. The calling task resumes running only
after the system call has completed its attempt to load the overlay.

File Sharing
The Loader does not expect exclusive access to the file containing the

overlay module. However, while the overlay is being loaded, if other
tasks are also using the file, they can access the file only for reading.

Application Loader 2-32

SSOVERLAY

CONDITION CODES

The Loader returns one of the following condition codes to the calling
task:

E$OK No exceptional conditions.

ESCHECKSUM At least one record in the target overlay contains
a checksum error.

ESEQOF The call encountered an unexpected end-of-file.

ESEXIST The specified device does not exist.

ESFIXUP The target file contains an invalid fixup record.

ESFLUSHING The device containing the target file is being
detached.

ESTIO$SHARD A hard I/0 error occurred. This means that another
try is probably useless.

ESIOSOPRINT The device containing the target overlay is
of f-line. Operator intervention is required.

ESIO$SOFT A soft I/0 error occurreds This means that the I/0
System tried to perform the operation and failed,
but another try might still be successful.

ESTOSUNCLASS An unknown type of I/O error occurred.

ESIOSWRPROT The volume is write-protected.

ESLIMIT Either the calling task's job, or its default user
object, is already involved in 255 (decimal) I/O
operations.

ESNOMEM The overlay module contains either PIC segments or
groups, or LTL segments or groups. In any case,
the memory pool of the new I/0 job does not have a
block of memory large enough to allow the Loader to
load the overlay module,

ESNOTSCONFIGURED This system call is not part of the present
configuration.

ESRECSFORMAT At least one record in the target overlay contains
a format error.

ESRECSLENGTH The target overlay contains a record longer than

the Loader's maximum record length. The Loader's
maximum record length is a parameter specified
during the configuration of the Loader.

Application Loader 2-33

SSOVERLAY

1)
<
/]
-
| M
2
0O
P>
F
r
»n

ESRECSTYPE

ESOVERLAY

ESSEG$BOUNDS

At least one of the following is true:

® At least one record in the target overlay is of
a type that the Loader cannot process.

° The Loader encountered records in a sequence
that it cannot process.

The overlay name indicated by the nameSptr
parameter does not match any overlay module name,

as specified with the OVERLAY control of the LINK86
command.

The Loader created a segment into which to load
code. One of the data records specified a load
address outside of the new segment.

*k%k

Application Loader 2-34

CHAPTER 3
CONFIGURATION OF THE
APPLICATION LOADER

The Application Loader is a configurable layer of the Operating System.
It contains several options that you can adjust to meet your specific
needs. To help you make configuration choices, the iRMX 86 manual set
provides three kinds of information:

e A list of configurable options.

° Detailed information about the options.

e Procedures to allow you to specify your choices.
The sections that follow describe the configurable options. To obtain

the second and third categories of information, refer to the iRMX 86
CONFIGURATION GUIDE.

TYPES OF JOB-LOADING SYSTEM CALLS

You can select the set of job-loading system calls in your configuration
of the Loader. You have these options:

e ASLOAD, which you can choose if you do not intend to load any IO
jobs,

e ASLOAD and ASLOADIOJOB, if you do intend to load IO jobs, and
if you intend to use only asynchronous loading operations.

e ASLOAD, ASLOAD$SIOSJOB, and SSLOADSIO$JOB, if you want all three
options.,

LOADER IN ROM

If you intend to place the Loader in ROM, you specify this when you
configure your system. If the Loader is not in ROM, it will itself have
to be loaded into RAM memory.

Application Loader 3-1

CONFIGURING THE APFLICATION LOADER

TYPE OF CODE TO BE LOADED

You can select the type of code that the Loader can loads The options
are:

e Absolute code only
® Position—independent code and absolute code

e Load-time locatable code, absolute code, and position-independent
code

. Overlays, as well as absolute, position-independent, and
load-time-locatable code

DEFAULT MEMORY POOL SIZE

You must specify the default size of the memory pool for jobs that are
created by the ASLOADSIOS$JOB and SSLOADSIOS$JOB system calls. This value
can be over-ridden by specifying the memory pool size when using LINK86.

SIZE OF APPLICATION LOADER BUFFERS

You can specify the size of two buffers that the Loader uses to load your

programs. The first is called the Read Buffer, and the second is called
the Internal Buffer.

LR

Application Loader 3-2

APPENDIX A
DATA TYPES

The following data types are recognized by the iRMX 86 Operating System:

BYTE

WORD

INTEGER

POINTER

OFFSET

SELECTOR

TOKEN

STRING

DWORD

An unsigned, eight-bit binary number.
An unsigned, two-byte, binary number.

A signed, two-byte, binary number. Negative numbers
are stored in two's—complement forms.

Two consecutive words containing the base address of a
(64K-byte processor) segment and an offset in the
segment. The offset is in the word having the lower
address.

A word whose value represents the distance from the
base address of a segment.

The base address of a segment.

A word or selector whose value identifies an object.

A token can be declared literally a WORD or a SELECTOR
depending on your needs.

A sequence of consecutive bytes. The value contained
in the first byte is the number of bytes that follow
it in the string.

A 4-byte unsigned binary number.

Kkk

Application Loader A-1

APPENDIX B
CONDITION CODES

The 1RMX 86 Application Loader uses two kinds of condition codes to
inform your tasks of any problems that occur during the execution of a
system call —- sequential condition codes and concurrent condition
codes. The distinguishing feature between the two kinds of codes is the
method that the Loader uses to return the code to the calling task. For
a discussion of the difference between these kinds of codes, refer to
Appendix C.

The meaning of a specific condition code depends upon the system call
that returns the code. For this reason, this appendix does not list
interpretations. Refer to Chapter 2 for an interpretation of the codes.,

The purpose of this appendix is to provide you with the numeric value
associated with each condition code the Loader can return. To use the
condition code values in a symbolic manner, you can assign (using the
PL/M-86 LITERALLY statement) a meaningful name to each of the codes.

The following list correlates the name of a condition code with the value
returned by the Extended I/0 System. The list is divided into three
parts: one for the normal condition code, one for exception codes
indicating a programming error, and one for exception codes indicate an
environmental problem. No distinction is drawn between sequential and
concurrent errors because most of the codes can be returned as either.

Be aware that this list covers only the condition codes returned by the
system calls of the Loader. Additional condition codes can be found in
the appendices of one or more of the following manuals:

e IRMX 86 NUCLEUS REFERENCE MANUAL

e IRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL

e iRMX 86 EXTENDED I/0O SYSTEM REFERENCE MANUAL

NORMAL CONDITION CODE

NAME OF CONDITION HEXADECIMAL VALUE

ESOK OH

Application Loader B-1

CONDITION CODES

PROGRAMMER ERROR CODES

NAME OF CONDITION HEXADECIMAL VALUE

E$SJOBSPARAM 806 0H

ENVIRONMENTAL PROBLEM CODES

NAME OF CONDITION HEXADECIMAL VALUE
ESNOTSCONFIGURED 8H
ESI0OSJOB 47H
ESIOSUNCLASS 50H
E$TI0$SOFT 51H
ESIOSHARD 52H
ESIO$PRINT 53H
ESIOSWRPROT 54H
E$SABSSADDRESS 60H
E$BADS$GROUP 61H
E$SBADSHEADER 62H
ESBADSSEGDEF 63H
ESCHECKSUM 64H
ESEOF 6 5H
ESFIXUP 66H
ESJOBSSIZE 6DH
ESLOADERS SUPPORT 6FH
ESNOSLOADERSMEM 67H
ESNOSMEM 68H
ESNOSSTART 6CH
ESOVERLAY 6EH
ESRE CSFORMAT 69H
ESRECSLENGTH 6AH
ESRECSTYPE 6BH
ESSEGSBOUNDS 70H
k%

Application Loader B-2

APPENDIX C
ASYNCHRONOUS SYSTEM CALLS

The iRMX 86 Application Loader provides two types of system calls:
synchronous and asynchronous. Synchronous calls return control to the

calling task after all operations are completed, either successfully or
unsuccessfully. But asynchronous calls are more complex. This Appendix

describes the operation of iRMX 86 asynchronous system calls,

Each asynchronous system call has two parts —- one sequential, and one
concurrent. As you read the descriptions of the two parts, refer to
Figure C~1 to see how the parts relate.

® the sequential part

The sequential part behaves in much the same way as the fully
synchronous system calls. Its purpose is to verify parameters,
check conditions, and prepare the concurrent part of the system
calle Also, it returns a condition code. The sequential part
then returns control to your application.

e the concurrent part

The concurrent part runs as an iRMX 86 task. The task is made
ready by the sequential part of the call, and it runs only when
the priority-based scheduling of the iRMX 86 Operating System
gives it control of the processor. The concurrent part also
returns a condition code.

The reason for splitting the asynchronous calls into two parts is
performances. The functions performed by these calls are somewhat
time—consuming because they involve mechanical devices such as disk
drives. By performing these functions concurrently with other work, the
Loader allows your application to run while the Loader waits for the
mechanical devices to respond to your application's request.

Let's look at a brief example showing how your application can use
asynchronous calls. - Suppose your application must load a program that is

stored on disk. The application issues the ASLOAD system call to have
the Loader load the program into memory. Let's trace the action one step
at a time:

le Your application issues the ASLOAD system call. (Asynchronous
calls require that your application specify a response mailbox
for communication with the concurrent part of the system call.)

2., The sequential part of the ASLOAD call begins to run. This part
checks the parameters for validity.

Application Loader C-1

ASYNCHRONOUS

SYSTEM CALLS

APPLICATION CODE

INVOKE
ASLOAD

APPLICATION LOADER CODE

EXAMINE
CONDITION
CODE

> TESTFOR
VALIDITY
YES MAKE LOADER
TASK READY
NO
RETURN WITH

(SEQUENTIAL
CONDITION CODE)

DO
CONCURRENT
PROCESSING

RECEIVE
MESSAGE FROM
RESPONSE MAILBOX

EXAMINE
CONDITION
CODE

USE
LOADED
PROGRAM

Figure C-1,

DO ERROR
PROCESSING

(CONCURRENT
CONDITION CODE)

DO ERROR
PROCESSING

|

|

EXCEPTION |
CODE

|

|

RETURN WITH
ESOK

LOADER TASK
LOADS
PROGRAM

A

PUT STATUS
OF OPERATION
IN MESSAGE

y

SEND MESSAGE
TO RESPONSE
MAILBOX

LOADER TASK
DELETES
ELF

1695

Behavior Of An Asynchronous System Call

Application Loader C-2

3.

4e

ASYNCHRONOUS SYSTEM CALLS

If the Operating System detects a problem, it places a sequential
exception code in the word to which your exceptS$ptr parameter
points. It then returns control to your application. It does
not make the Loader task ready.

Your application receives control. Its behavior at this point
depends on the condition code returned by the sequential part of
the system call. Therefore, the application tests the sequential
condition code. If the code is ESOK, the application continues
running until it must use the program loaded from the disk. It

is at this point that your application can take advantage of the
asynchronous and concurrent behavior of the Loader. For example,
your application can use this opportunity to perform computations.

On the other hand, if your application finds that the sequential
condition code is other than ESOK, the application can assume
that the Loader did not make ready a task to perform the function.

For the balance of this example, we will assume that the
sequential part of the system call returned an ESOK sequential
condition code.

Your application now may use the loaded program. But first, your
application must verify that the concurrent part of the ASLOAD
system call ran successfully. The application issues a
RECEIVESMESSAGE system call to check the response mailbox that
the application specified when it invoked the ASLOAD system call.

By using the RECEIVESMESSAGE system call, the application obtains
a Loader Result Segment containing a condition code for the
concurrent part of the ASLOAD system call. If this condition
code is ESOK, then the loading operation was successful, and the
application can use the loaded program. On the other hand, if
the code is not E$OK, the application should analyze the code and
attempt to determine why the loading operation was not successful,

In the foregoing example, we used a specific system call (ASLOAD) to show
how asynchronous calls allow your application to run concurrently with
loading operations. Now let's look at some generalities about all

iRMX 86 asynchronous calls:

All of the asynchronous system calls consist of two parts —— one
sequential and one concurrent. The Loader will activate the
concurrent part only if the sequential part runs successfully
(returns E$OK).

Every asynchronous system call requires that your application

designate a response mallbox for communication with the
concurrent part of the system call.

Application Loader C-3

ASYNCHRONOUS SYSTEM CALLS

Whenever the sequential part of an asynchronous system call
returns a condition code other than ESOK, your application should
not attempt to receive a message from the response mailboxe

There can be no message because the Application Loader cannot run
the concurrent part of the system call.

Whenever the sequential part of an asynchronous system call
returns E$OK, your application can count on the Loader running
the concurrent part of the system calle Your application can
take advantage of the concurrency by doing some processing before
receiving the message from the response mailboxe.

Whenever the concurrent part of a system call runs, the Loader
signals its completion by sending an object to the response
mailboxe The precise nature of the object depends upon which
system call your application invoked. You can find out what kind
of object comes back from a particular system call by looking up
the call in Chapter 2 of this manual.

Whenever the Loader returns a segment to your application's
response mailbox, your application must delete the segment when
it is no longer needed. The Loader uses memory for such

segments, so if your application fails to delete the segment, it
might run short of memory.

*h%

Application Loader C-4

INDEX

Primary references are underscored.

ASLOAD system call 1-7, 2-4

ASLOADSIOS$JOB system call 1-4, 2-15

absolute code 1-2, 1-7, 2-5, 2-7

Application Loader 1-1

assembler 1-2

asynchronous system call 1-3, 1-5, 2-1, 2-2, 2-7, 2-17, C-1

BIND control 1-3, 1-7
buffer size 3-2

compiler 1-2

concurrent condition codes 2-2
condition codes 2-2, B-1l
configuration 1-5, 3-1

data types 2-1, A-1l
device independence 1-5
device drivers 1-5

entry points 1-6
Extended I/0 System 1-4

file sharing 2-7, 2-32
fixup 1-3

header record of a file 2-15, 2-17

initialization 1-8
I/0 job 1-4, 2-15, 2-17, 2-25

linking 1-6
load-time locatable code (LTL) 1-3, 1-7, 2-5, 2-7
Loader 1-1
in ROM 3-1
Loader Result Segment 2-1, 2-5, 2-8, 2-18
terminology 1-1
loading functions 1-1
locating code 2-6
LTL 1-3, 1-7, 2-5, 2-7

memory pool size 2-18, 2-27, 3-2
model of segmentation 1-6, 2-6, 2-7

NOINITCODE control 2-5

Application Loader Index-1

INDEX (continued)

object code 1-2, 1-6
object file 1-2
object module 1
overlay 1-4

-2

PL/M-86 1-6, 2-1, 2-6
position-independent code (PIC) 1-3, 1-7, 2-5, 2-7

response mailbox 2-1, 2-3
root module 1-4

S$SLOADSIO$JOB system call 1-4, 2-25
SSOVERLAY system call 1-4, 2-32
sequential condition codes 2-2

stack creation 2-5

stack size 1-8, 2-5

stack switching 2-5

synchronous system call 1-3, 1-5, 2-2
system calls 2-1

translator 1-2

Kkk
Application Loader Index-2

iRMX™ 86 HUMAN INTERFACE
REFERENCE MANUAL

CONTENTS

CHAPTER 1
OVERVIEW

Resident Human Interface CommandSesecscecescecsesscscococsccscncnce 1-2
Human Interface System CallSeececceccesccscsoscescsocscssccscssscsassscsse 1-2
Standard Initial Programecscsccccscscsscscsocsscsscsocsnscasccsancsans 1-3
Multi—ACCeSS SUPPOTtLevecsooscsccsccsccsssscssscssssssssscesscsssnscscsse 1-3
Wild—=Card PathnamesSessescossceosessscscsscosscscsssssossssossosccssscs 1-4

CHAPTER 2

SUPPORTING MULTIPLE TERMINALS

Communicating with Terminals via the Basic and Extended I/0 Systems 2-1

Using the Multi—-Access Human Interfaceeececececcecececscocescccccencss 2-1
Standard Initial Program...cecescvscesvscsossscssscscssscssscsconse 2-2
Customized Initial Programecsccescsescccsccosscscosvsocsscsscssascsnnns 2-3

CHAPTER 3
COMMAND PARSING
Standard Command—Line StruCtUr@ecesccccccsscsscscocsssosssccssscssssse 3
Parsing the Command LinEesesescecccccscccsescssccsssssssesssscoscsssasce 3
Parsing Input and Output PathnameSeeececcscsccccccocscscsssssscscsce 3-
Wild-Card Characters in Input and Output PathnameS.eececccecescesse 3
Parsing Other ParameterScocececsccscssssscscssocssososcsscsssascssssscse 3
Parsing Nonstandard Command LineSeesescsecscccccsssccsscsccscsccscse 3
Variations on the Standard Command Linececescecccecscccccccccssns 3-13
Other Nonstandard Command LineScecccecececccecscscscsccccscscccscscscsse 3-15
Switching to Another Parsing Buffer.cccceccesccccecccscscccescscnssecs 3-15
Obtaining the Command Nam@eeeoesoesscsccesssessrsescsssrsvssssssscssscse 3-17

CHAPTER 4

1/0 AND MESSAGE PROCESSING

Establishing Input and Output ConnectionSeecesscecssecscccesccesases 4
Using CSGETSINPUTSCONNECTION: cececovcesasseossccccsscccsssscnsssne 4
Using CSGETSOUTPUTSCONNECTION:eeeoascessesccsscscsccscscncsccscssos 4-
Example Program ScenariOeeccecseccsccosscssscsssccsscecsssssssssssssse 4

Communicating with the Operator's Terminalesceccecsccscecesesssccee 4

Formatting Exception Codes into MessageSeescsessccccscccscccccsssns 4

CHAPTER 5
COMMAND PROCESSING

Creating a Command ConnectioNieceeccscsecsscecscsccscscesssssssssssncans 5-1
Sending Command Lines to the Command Connection and Invoking the
Comnland......'........0.0..."C...l..........'........‘.....'C..Q.

Deleting the Command ConnectioNeccccccccccccsscsssssscssecccscocces

Exampleooo..ooooo.0.00.0000000.000.00000.0.coocooo-ocoocooocuooiooi

U1l.IJ1U'I
wwN

iii

CONTENTS
(continued)

PAGE

CHAPTER 6

PROGRAM CONTROL
How the Default Control—C Mechanism WOrkSeeeeeseeeccceccccaseccenes 6—
PrOViding Your Own Control-C MechaniSMeeeecocecseavescoscoscoscssssccose 6

CHAPTER 7

CREATING HUMAN INTERFACE COMMANDS

Elements of a Human Interface Commandec«ceesececoscccececccsccccscanns 7
Parsing the Command Lin€eececccecssscssecsscsscsvscsesscsscccsccscce 7
Avoiding the Use of Certain System CallSeseesceccsccsssscascssasns 7-
Terminating the Commandeecesecscccssoscscsccosscsosesscsscssoscscsccnccna 7
INCLUDE FileSeesocevococscsssccscsssstsesssnscssscosscscsossoscssssscsncs 7

Producing an Executable Commandeccccseccccesscscssscsccsessscsscoscssce 7

CHAPTER 8

HUMAN INTERFACE SYSTEM CALLS
CSCREATESCOMMANDSCONNECTION . cevooscsceresososcsccsssecsssassncccsannas
CSDELETESCOMMANDSCONNECTION. e s s sssscoccccossccscsssscsoscssssssssccce
CSFORMATSEXCEPTION cucesocoossocsosscscsotsosssaossosasosscsssnscasannnca
CSGETSCHAR e o eoesvssossssscsccsssoscstoscscsscsosnscsssoscsssssassncsccncs
CSGETSCOMMANDSNAME ¢ e e s oo oo osvovcvossssssssssesosscosssosssccssscscnsss
CSGETSINPUTSCONNECTION . e soeoessososcesscasasasossosancsossocsnsssnnce
CSGETSINPUTSPATHNAME ¢ ¢ e coesesecoscssscssscsassscsssssscessscssssnsaes
CSGETSOUTPUTSCONNECTION c s esssevsosvssesccoecssssscsssasssnasssscsccsccs
CSGETSOUTPUTSPATHNAME c coeveeseccoscvooscessscccososssvsscsvssossccscsos
CSGETSPARAMETER s ee oo cenovsososccscesssssssassosascnscessncscsoscsseccce
CSSENDSCOMMAND e e s soeoovvacscssssscosssssssssnscscssossvnsssssosvcscsess
CSSENDSCOSRESPONSE e cooesccsossosccscscccccssscsnssscsssvecssssosnassase
CSSENDSEOSRESPONSE cesconcsssssossscssotsssscssvsesssnsossosssscscccons
CSSETSPARSESBUFFERcceeescececssorssocssctsssscsscsscocsscssssssscssnnne

PETTITITETETIT
LS PLLWWLUDNND HEFO S
=0 U M UNO BTW

CHAPTER 9

CONFIGURATION OF THE HUMAN INTERFACE

Resident ConfiguratioNecccsccccscscsccsossscssoscsoscsscacscsccsasscsccace
Nonresident ConfiguratioNececcscsccsccsccccsssosscscsscccscscsoscssns

O O

APPENDIX A
HUMAN INTERFACE TYPE DEFINITIONS..I..I...."......'..............Q. A,-]-

APPENDIX B
HI—]MAN INTERFACE EXCEPTION CODES'.‘..Q.II'.'.'..Q..'...."..........D. B_l

iv

CONTENTS
(continued)

PAGE

APPENDIX C
STRING TABLE FORMAT.D..'Oo00.0'000‘ococ-ooooon.coooo...'oocoooot.ooo C—l

TABLES

8—1. System Call Dictionary.'.'.....'...‘.'.'..........'....'.... 8_2
A-1. Type DefinitionSeecoscsecsesccecesccsccscsccecscocssccsosoncsoss A-1
B—lo Human Interface E‘xception Codesooooooooooaooooooocoooooooo. B_l
B—2. Exception Code Ramges.........l’............................ B_2
B-3. Conditions and Their CodeSeescvecescscsscescccosssscssascnsss B-3
FIGURES
3-1. CGETINPUTSPATHNAME and CGETOUTPUTSPATHNAME Examplese... 3-7
3-2. CGETPA.R.AMETER Example.......-............................. 3-12
5-1. Command Connection EXampleccccoccescssoscscsscscrssccssssanses 5-3
C—l. String Table Format..................."....‘...........'.. C—l
EE3

CHAPTER 1
OVERVIEW

The iRMX 86 Human Interface is a layer of the Operating System that
allows console operators to load and execute program files (also called
commands) from terminals. When the Human Interface begins running, it:

® (Creates an iRMX 86 job for each terminal configured in the Human
Interface. This job (also called the interactive job) furnishes
the application environment; all commands entered by the operator
run as offspring jobs of the operator's interactive job.

[Assigns an area of main memory for the operator (this occurs as
part of creating the interactive job). Any commands that the
operator runs use this area of memory.

e Starts an initial program (this also occurs as part of creating
the interactive job). The initial program is the operator's
interface to the Operating System. It is a command line
interpreter (CLIL), a program that reads its instructions from the
terminal. The Human Interface supplies a standard initial
program which reads commands from the terminal and invokes the

commands based on that terminal input. You can also supply your
own initial programs. In fact, there can be a separate initial
program for each terminal, if necessary.

When an operator enters information at a Human Interface terminal, the
operator communicates with the initial program. With the standard
initial program, the operator invokes a command by specifying the
pathname of the file that contains the command (and optionally specifying
parameters). The initial program reads the information from the terminal
and invokes Human Interface system calls to load the command into main
memory from secondary storage, create an iRMX 86 job for the command (as
an offspring of the operator's interactive job), and begin command
execution.

The Human Interface provides several features that aid both operators and
programmers. These features include:

° A set of Intel-supplied commands.

e A group of system calls to aild programmers in writing their own
commands.

. A standard command line interpreter (CLIL).
e Multi-access supporte.
° Support for wild-card pathnames.

This chapter provides an overview of these features.

Human Interface 1-1

OVERVIEW

RESIDENT HUMAN INTERFACE COMMANDS

In addition to the code for the resident Human Interface, Intel has

written a variety of commands which you can use with any application
system that includes the Human Interface. Included are:

° File management commands (such as COPY, DELETE, BACKUP, RESTORE,
and others)

) Device and volume management commands (such as ATTACHDEVICE,
FORMAT, DISKVERIFY, and others)

) General Utility commands (such as DEBUG, DATE, SUBMIT, and others)

The iRMX 86 OPERATOR'S MANUAL contains complete descriptions of all
commands supplied with the Human Interface.

HUMAN INTERFACE SYSTEM CALLS

The Human Interface provides a set of system calls that programmers can
use in commands they write. The following categories of system calls are
available:

. Command-parsing system calls

e I/0 and message-processing system calls
. Command-processing system calls

. Program control system calls

The command parsing system calls provide the ability to parse the command
line, allowing you to isolate and identify the parameters in a command
line. They also allow you to determine the command name and parse other
buffers of text. Chapter 3 provides further discussion of the command
parsing system calls.

The I/0 and message processing system calls allow you to establish
connections to input and output files, communicate with the terminal, and
format exception codes into a ready-to-display form. Chapter 4 provides
a further discussion of the I/0 and message processing system calls.

The command processing system calls allow you to invoke interactive

commands programmatically. Chapter 5 provides a further discussion of
the command processing system calls.

The program control system call allows you to override the default
Control-C handling task provided by the Human Interface. Chapter 6
provides a further discussion of program control.

Human Interface 1-2

OVERVIEW

STANDARD INITIAL PROGRAM

As stated previously, when an operator activates a terminal, the Human
Interface assigns an initial program to the operator. This initial
program is the first program to run. The identity of this initial
program is determined by a privileged operator (normally called the
system manager) when adding new users to the system. This process is
described in the iRMX 86 CONFIGURATION GUIDE.

Although the initial program can be almost anything —— from an editor to
a Basic interpreter —— the Human Interface supplies a standard initial
program called the Human Interface command line interpreter (CLI). The
function of the Human Interface CLI is to read input from the terminal
and invoke commands based on that input. This CLI (or a user—supplied
CLL) is required to allow an operator to Invoke commands.

MULTI-ACCESS SUPPORT

The Basic I/0 System supports multiple terminals by providing device
drivers that communicate with multiple-terminal hardware. The Human
Interface adds to this support by providing identification and protection
of users based on user IDs. This support is called multi-access support.

With multi-access support, multiple operators can communicate with the
Operating System. The Human Interface assigns each operator a unique
identification, called a user ID, and a separate area of memory in which
to run commands. When an operator creates files or attaches devices, the
Human Interface marks the operator as the owner of those files or
devices. Access to the files by other users depends on the permission
granted those users by the owner.

To run a multi-access Human Interface, a privileged operator (the system

manager) must first set up the proper directory structure and provide
several files containing information about the operators that can access

the system. This process is described in the iRMX 86 CONFIGURATION GUIDE.

Programmers who write commands do not have to write their code
differently for a multi-access Human Interface than for a single-access
Human Interface. The only difficulty a command might experience in a
multi-access environment that it wouldn't experience in a single-access
environment involves accessing files and devices. When a command is
invoked by an operator, the command inherits the operator's user ID.
Thus the command can perform operations only on files and devices to
which the invoking operator has access.

Human Interface 1-3

OVERVIEW

WILD-CARD PATHNAMES

The Human Interface supports the use of wild-card characters in file

names. This gives the operator a shorthand method of specifying several
files in a single reference. The wild—card characters supported by the

Human Interface are:
? Matches any single character
* Matches any sequence of characters (including zero characters)

The iRMX 86 OPERATOR'S MANUAL describes how an operator can use wild-card
characters when entering commands.

Programmers who write their own Human Interface commands do not have to
provide special code to support wild-card pathnames as long as they use
the Human Interface system calls CSGETSINPUTSPATHNAME and
CSGETSOUTPUTSPATHNAME to obtain the file names from the command line.
The Human Interface contains the mechanism to interpret the wild cards
and return the correct file name to the calling command. Refer to
Chapter 3 for more information about these system calls.

kkk

Human Interface l1-4

CHAPTER 2
SUPPORTING MULTIPLE TERMINALS

The iRMX 86 Operating System provides two ways for you to implement
multiple-terminal support on your application system. You can:

e Write application tasks that use the system calls of the Basic
and Extended I/0 Systems to communicate directly with multiple
terminals.

e Use the multi-access Human Interface.

This chapter discusses both methods.

COMMUNICATING WITH TERMINALS VIA THE BASIC AND EXTENDED I/0 SYSTEMS

One method of providing multiple terminal support is to omit the Human
Interface from your system, write your own application programs that
access the terminals directly, and configure these programs as tasks in
the Operating System. The Basic I/0 System provides device drivers that
allow tasks to communicate with multiple terminals. Therefore, if your
system contains the necessary hardware, your application tasks can use
Basic and Extended I/0O System calls to communicate with each terminal in
your system.

If you communicate with the terminals directly, without using the Human
Interface, you can tailor your terminal interface to meet your exact
needs. This might result in smaller, faster code than the Human
Interface (but at the expense of an increased program development
effort). This method requires you to write a great deal of code that the
Human Interface already supplies.

If you plan to use this method of providing multiple terminal support,
none of the information contained in this manual applies to you. Refer
to the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL and the iRMX 86 EXTENDED
I/0 SYSTEM REFERENCE MANUAL for information about the system calls you
can use to communicate with terminals.

USING THE MULTI-ACCESS HUMAN INTERFACE

The other method of providing multiple-terminal support is to use the
multi-access support provided by the Human Interface. The multi-access
support includes code required to communicate with multiple terminals.

Human Interface 2-1

SUPPORTING MULTIPLE TERMINALS

It uses the same Basic and Extended I/0 System calls that you would have
to use if you implemented the method described in the previous section.
However, the multi-access Human Interfzce also provides high-level

support for this communication. For example, from a terminal in a
multi-access system, an operator can execute commands, run development
programs (like editors, compilers, and so on), and run other application
programs. If you decide to use the multi-access support features of the
Human Interface, you can still tailor your system to meet your individual
needs. An important way of doing this is by selecting, for each
operator, the initial program that runs when that operator accesses the
Human Interface. There are two choices: the initial program supplied
with the Human Interface (the standard CLI) or initial programs that you
write. The user description files maintained by the system manager
identify this choice to the Human Interface (refer to the iRMX 86
CONFIGURATION GUIDE for more informaticn). By selecting the initial
program, you can greatly influence the operator's interface to the Human
Interface.

STANDARD INITIAL PROGRAM

The Human Interface supplies a command line interpreter (CLI) as the
standard initial program. During initialization, the Human Interface CLI
performs the following operations:

° Displays a sign—on message.

) Creates an iRMX 86 object callaed a command connection in which it

places information received from the terminal. Refer to Chapter
5 for more information about ccmmand connections.

) Attaches or creates the operator's :PROG: directory.
. Submits the file :PROG:R?LOGON for processing.

After this initial processing, the Human Interface CLI performs the
following operations:

® Displays the Human Interface prompt (-) and reads input from the
terminal (using the Human Interface system call
C$SENDSCOSRESPONSE) .

° Places the information it reads into the command connection
(using the Human Interface system call C$SENDSCOMMAND). After
receiving a complete command, the command connection removes the
command name portion, loads the file containing the command, and
passes the parameters to the command.

® Recognizes the ampersand (&) mark in a command line and displays
a different prompt (**) when a continuation line is required.

° Displays error messages in the event of certain operator errors.

Human Interface 2-2

SUPPORTING MULTIPLE TERMINALS

This is the user environment described in the iRMX 86 OPERATOR'S MANUAL.
If it satisfies the needs of your application system, you can assign the
Human Interface CLI to each operator as an initial program.

CUSTOMIZED INITIAL PROGRAMS

If the standard initial program does not meet your needs, you have the
option of providing your own initial programs. These initial programs
might be similar to the Human Interface CLI, or they might be completely
different kinds of programs. For example, you could write a CLL that
allows access to files in selected directories only. This would prevent
an operator from accidentally modifying other files. Or if you want a
particular operator to use only Basic—language programs, a Basic
interpreter might be the initial program for that operator. You can
select the initial program for each operator. You specify this selection
in the user description files maintained by the system manager (refer to
the iRMX 86 CONFIGURATION GUIDE).

If you provide your own initial program, this program must obey the
following rules:

) It must perform input and output via logical names :CI: and :CO:.

° If it requires the ability to run Human Interface commands, it
must create an iRMX 86 object called a command connection (via
the CSCREATESCOMMANDSCONNECTION system call). If the initial
program does not create a command connection, it (and any other
application tasks) cannot use the following Human Interface
system calls:

CSGETSINPUT$PATHNAME
CGETSOUTPUTSPATHNAME
CS$SEND$COSRESPONSE
C$SENDSEOSRESPONSE
CSSENDSCOMMAND
C$DELETES$SCOMMANDSCONNECTION

o If it does not create a command connection but still wishes to
use the Human Interface system calls CSGETSPARAMETER and
CSGETSCHAR, it must first invoke the CSETSPARSESBUFFER system
call.

. If it receives an end-of-file indication from the terminal, it
must terminate processing.

° It must invoke the Extended I/0 System call EXITSIOSJOB to
terminate processing. It must not use the PL/M-86 or ASM86
RETURN statement for this purpose.

Refer to Chapter 8 for detailed descriptions of the Human Interface
system calls mentioned in this section. Refer to the iRMX 86 EXTENDED
I/0 SYSTEM REFERENCE MANUAL for information about the EXITSIOSJOB system
call.

Kkk
Human Interface 2-3

CHAPTER 3
COMMAND PARSING

Whenever a Human Interface operator enters characters at a terminal to
invoke a command, an initial program associated with that operator reads
that information and causes the Operating System to invoke the command.
When it invokes the command, the Operating System places the parameters
into a parsing buffer. One of the first things that the command must do
is to read the parsing buffer, break the command line into individual
parameters, and determine the correct action to take based on the number
and meaning of the parameters.

The Human Interface provides several system calls to parse command lines
that follow a standard structure. It also provides other system calls to
process nonstandard formats. This chapter:

° Defines the standard structure of command lines

° Describes the system calls used to parse commands having this
structure

° Discusses how to switch from one parsing buffer to another
parsing buffer

® Describes system calls you can use to parse nonstandard commands

° Describes a system call that you can use to obtain the command
name the operator used when invoking the command

STANDARD COMMAND-LINE STRUCTURE

The standard structure of a Human Interface command line consists of a
number of elements separated by spaces. It is recommended that your
commands follow this structure. However, if you require a different
structure, refer to the "Parsing Nonstandard Command Lines” section of
this chapter. The standard structure is as follows (square brackets []
indicate optional portions):

command-name [inpath-list [preposition outpath-list]] [parameters] cr
where:

command—-name Pathname of the file containing the command's
executable object code.

Human Interface 3-1

inpath-list

preposition

outpath-list

COMMAND PARSING

One or more pathnames, separated by commas, of files
that the Human Intexface reads as input during command
execution. Individual pathnames can contain wild-card
characters to signify multiple files. Refer to the
iRMX 86 OPERATOR'S MANUAL for a description of the
wild~card characters and their usage. You can use the
CSGET$INPUTSPATHNAME system call to process this
inpath-list.

A word that tells the Human Interface how to handle
the output. The standard structure supports the
following prepositions:

TO The Human Interface writes the output
to a new file indicated by the output
pathname. If the file already exists,
the Human Interface queries the
operator as follows:

<{pathname>, already exists, OVERWRITE?

If the operator enters a Y or an R
(uppercase or lowercase), the Human
Interface replaces the existing file
with the new output. Any other
character causes the Human Interface to
proceed with the next pair of input and
output files.

OVER The Human Interface writes the output
to the file indicated by the output
pathrame. It overwrites any
information that currently exists in
the file.

AFTER The Human Interface appends the output

to the end of the file indicated by the
output pathname.

You can use the CSGETSOUTPUTSPATHNAME system call to
process the preposition.

One or more pathnames, separated by commas, of files
that are to receive the output during command
execution. The total number of pathnames in this list
and the number of wild cards used depends on the
inpath-list. Refer to the iRMX 86 OPERATOR'S MANUAL
for more information. You can use the
CSGETSOUTPUTSPATHNAME system call to process the
outpath-list.

Human Interface 3-2

parameters

cr

COMMAND PARSING

Parameters that cause the command to perform
additional or extended services during command
execution. The standard structure supports parameters
with the following formats:

value—list The parameter consists solely of
one or more groups of characters
(called values) separated by
commas. When the value-list is
present in the command line, the
command performs the service
indicated by the values.

keyword=value—-list A keyword with an associated value
(or list of values, separated by
commas). The keyword portion
identifies the kind of service to
perform, and each value supplies
further information about the
service request.

keyword(value-1list) Alternate form of the previous
format.

keyword value-list A keyword with an associated value
(or list of values, separated by
commas). Like the previous two
formats, the keyword portion
identifies the kind of service to
perform and each value portion
provides more information about
the service. However, the keyword
must be identified to the command
as a preposition (refer to the
description of the CSGET$PARAMETER
system call for more information).

You use the CSGETSPARAMETER system call to process the
parameter.

Line terminator character. The RETURN (or CARRIAGE
RETURN) key and NEW LINE (or LINE FEED) key are both
line terminators.

The Human Interface also supports the following special characters:

continuation
character

An ampersand character (&). When an operator includes
an ampersand in the command line as the last character
before the line terminator, the Human Interface
assumes that the command invocation continues on the
next line. If the standard Human Interface command
line interpreter (or any custom command line
interpreter that uses C$SENDSCOMMAND to invoke
commands) processes the operator's command entry, the
ampersand (and the line terminator that follows) are

Human Interface 3-3

comment
character

quoting
characters

COMMAND PARSING

edited out of the parsing buffer. Then the
continuation line is read and appended to the parsing
buffer. This process continues until the operator
enters a line without a continuation character.
Therefore, when the command receives control, its
parsing buffer contains a single command invocation,
without intermediate continuation characters or line
terminators.

A semicolon character (;). The Human Interface
considers this character and all text that follows it
on a line to be a non-executable comment. If the
standard Human Interface command line interpreter (or
any custom command line interpreter that uses
CSSENDSCOMMAND to invoke commands) processes the
operator's command entry, all comments are edited out
of the parsing buffer. Therefore, individual commands
do not have to search for and discard comments.

Two single—quote (') or double-quote (") characters
remove the semantics of special characters they
surround (but you must use the same character for both
the beginning and ending quote). If a command line
contains quoted characters, the Human Interface system
calls that invoke the command and parse the command
line do not perform any special functions associated
with the surrounded characters. For example, an
ampersand surrounded by double quotes is interpreted
as a single ampersand and not a continuation character.

The quotes remove the semantics of characters that are
special to the Human Interface but not special to
other layers of the Operating System. Therefore
quotes do not remove the semantics of characters such
as :, /, and |, which are special to the I/0 System.

To include the quoting character in the quoted string,
the operator must specify the character twice or use
the other quoting character. For example:

'can''t' or "can't”
causes:
1
can't

to be entered in the command line.

Human Interface 3-4

COMMAND PARSING

PARSING THE COMMAND LINE

When a command begins executing, a parsing buffer associated with the

conmand contains all the parameters that the operator entered when
invoking the command (everything except the command-name portion of the
invocation line). The Human Interface maintains a pointer for this
parsing buffer which initially points to the first parameter. By
invoking any of the following Human Interface system calls, the command
can read the parameters from the parsing buffer:

CSGETSINPUTSPATHNAME
CSGETSOUTPUT$ PATHNAME
CSGETS$PARAMETER
C$SGETS$CHAR

Each of the first three system calls reads an entire parameter and causes
the Human Interface to move the pointer to the next parameter. These
system calls understand quoting characters, remove the special meaning
from quoted characters, and discard the quote characters.

The last system call, CSGETSCHAR, sees the parsing buffer as a string of

characters. It reads a single character and causes the Human Interface
to move the pointer to the next character. It does not understand the

notion of quoting characters; therefore it does not remove the special
meaning from quoted characters, nor does it skip over the quotes. Except
for positioning the parsing pointer to a particular place in the buffer,
CSGETS$CHAR should not be used with the first three system calls.

PARSING INPUT AND OUTPUT PATHNAMES

If you restrict the invocation lines of the commands you write to a form
that is similar to the standard format discussed earlier in this chapter,
you can use the system calls C$SGETSINPUTSPATHNAME and
CSGETSOUTPUTSPATHNAME to identify the input and output pathnames in the
command line. Since the command line can contain multiple pathnames, you
might have to invoke these system calls several times to obtain all the
pathnames. However, the first call to CGETINPUT$PATHNAME reads the
entire inpath-list (the list of pathnames separated by commas) into a
buffer, moves the parsing pointer to the next parameter, and returns the
first pathname to the command. Likewise, the first call to
CSGETSOUTPUTSPATHNAME notes the preposition (TO, OVER, or AFTER), reads
the entire outpath-list into a buffer, moves the parsing pointer to the
parameter after the outpath—-list, and returns the first pathname to the
command. Succeeding CGETINPUTSPATHNAME and CGETOUTPUTSPATHNAME calls
return additional pathnames from the buffers created previously, but they
do not move the parsing pointer to the next parameter.

For example, if the parsing buffer contains:

A,B TO C,D

Human Interface 3-5

COMMAND PARSING

the first call to CSGET$INPUTSPATHNAME obtains both input pathnames (A
and B) and returns the first one (A) to the caller. The first call to
C$GETSOUTPUTSPATHNAME obtains both output pathnames (C and D) and returns
the first one (C) to the caller. CSGET30UTPUTSPATHNAME also identifies
TO as the preposition.

These system calls handle single pathnames, lists of pathnames, and
pathnames containing wild-card characters. However, because of this
versatility and because output pathnames are dependent on input pathnames
when both use wild-card characters, you must make calls to
CSGETSINPUTSPATHNAME and C$GETSOUTPUTSPATHNAME in a particular order. To
use these system calls effectively, obey the following rules:

1. Always call CSGETSINPUTSPATHNAME to obtain the input pathname
before calling CSGETSOUTPUTSPATHNAME to obtain the corresponding
output pathname. This is necessary because with wild-card
characters, the identity of the output pathname depends on the
identity of the input pathname. Therefore, C$SGET$OUTPUTS$PATHNAME
cannot determine the output pathname until CGETINPUT$PATHNAME
determines the corresponding input pathname.

2. Always alternate your calls to CSGETSINPUTSPATHNAME and
CSGETSOUTPUTSPATHNAME. This is necessary to handle wild-card
characters and lists of pathnames. If you invoke two calls to
CSGETSINPUTSPATHNAME without an intermediate call to
CSGETSOUTPUTSPATHNAME, you will not be able to obtain the first
output pathname. Similarly, if you invoke two calls to
C$GETS$OUTPUTSPATHNAME without an intermediate call to
CSGETSINPUTSPATHNAME, the second call returns invalid information.

C$GETSINPUTSPATHNAME and CSGETSOUTPUTSPATHNAME return the pathnames in
the form of iRMX 86 strings. Each string is a group of bytes in which
the first byte contains the number of ASCII bytes that follow. For these
system calls, the remaining bytes in the string contain the pathname. If

CSGETS$INPUTSPATHNAME returns a zero-length string (that is, the first
byte is zero), you know that there are no more pathnames to obtain.

After calling CSGETSINPUTSPATHNAME and CSGETSOUTPUTS$SPATHNAME to obtain
the input file and corresponding output file, you can use the system
calls CSGETSINPUTSCONNECTION and CSGET$OUTPUTS$SCONNECTION to obtain
connections to those files. Chapter 4 contains more information about

CSGETSINPUTSCONNECTION and C$SGETSOUTPUT3CONNECTION. Upon obtaining
connections to the files, you can perform the necessary I/0 operations.

Figure 3-1 contains an example of a program that uses
CSGETSINPUTSPATHNAME and CSGETSOUTPUTS$FATHNAME in its command-line
parsing (it also uses CSGETSINPUTSCONNECTION and C$GETSOUTPUTSCONNECTION
to obtain connections to the files. This command is a partial example of
a COPY command that you could implement.

Human Interface 3-6

COMMAND PARSING

/*************************k***

This example demonstrates the use of the following Human Interface
system calls:

rq$CS8getSinputSpathname
rq$CSgetSoutput$pathname
rq$CSgetS$inputSconnection
rq$CSgetSoutputSconnection

purpose is to copy data from successive input files to corresponding
output files. TFor example, to copy file A to file B, file C to file
D, and file E to file F, an operator could specify the following
command line:

O N b ¥ N ¥ ¥ ¥ ¥ ¥ N % ¥ ®

COPY A,C,E TO B,D,F

*
*
*
*
*
%
*
%
This program is a possible implementation of a COPY utility whose *
*
%
*
%
*
%
g deddedod dedk ok ddk ke ko Rk Rk Rk Rk Rk kR R Rk Rk Rk Rk Rk kR R kR Rk kR kK /

copy: DO;

$include (hexcep.lit)
$include (iexioj.ext)
$include (hgticn.ext)
$include (hgtipn.ext)
$include (hgtocn.ext)
$include (hgtopn.ext)

DECLARE (input$pathname, output$pathname) structure (
length byte,
char (41) byte),
output$prep byte,
(input$token, output$token) word,
excep word,
exitexcep word;

/* Get the first input pathname string */
CALL rqCget$Sinput$pathname (@input$pathname, SIZE(input$pathname),
@excep);
IF excep <> ESOK THEN
CALL rq$exit$io$job (exitexcep, 0, C@excep);

DO WHILE (input$pathname.length <> 0); /* A zero length indicates no more
input parameters. */

/* Get the corresponding output pathname string */
output$prep = rq$C$getSoutput$pathname (Coutput$pathname,
SIZE(output$pathname),
@(7,'To :C0:'), @excep);
IF excep <> E$O0K THEN
CALL rq$exit$io$job (exitexcep, 0, @excep);

Figure 3-1. CGETINPUTSPATHNAME And CGETOUTPUTSPATHNAME Example

Human Interface 3-7

COMMAND PARSING

/* Establish connection with the pair of input and output files */

input$token = rq$C8get$input$connection (@input$pathname, Cexcep);
IF excep <> ESOK THEN
CALL rq$exit$io$job (exitexcep, 0, @excep);

output$token = rq$C$getSoutputSconnection (@output$pathname,

output$prep, @excep);
IF excep <> ESOK THEN '

CALL rqSexitiojob (exitexcep, 0, @excep);

. Code to copy data and close both files

/* Get the next input pathname string */
CALL rqCget$input$pathname (@inputS$pathname, SIZE(input$pathname),
@excep);
IF excep <> ES$OK THEN
CALL rqSexitiojob (exitexcep, 0, @excep);

END /* DO WHILE */

/* Finish I/0 processing */
CALL rq$exit$io$job (exitexcep, 0, @excep);

END copy;

Figure 3-1. CSGETSINPUTSPATHNAME And CSGETSOUTPUTSPATHNAME Example
(continued)

WILD-CARD CHARACTERS IN INPUT AND OUTPUT PATHNAMES

Wild-card characters provide a shorthand notation for specifying several
files in a single reference. The Human Interface supports two wild-card
characters for use in the last component of input or output pathnames.
The wild-card characters are:

? The question mark matches any single character. For example,
the name "FILE?" could imply all of the following names (and
more):

FILEl

FILE2
FILEX

Human Interface 3-8

COMMAND PARSING

The asterisk matches any sequence of characters (including
zero characters). For example, the name "*FILE" could imply
all of the following files (and more):

OBJECTFILE
FILE
V1.2FILE
AFILE

The iRMX 86 OPERATOR'S MANUAL describes how to use wild-card characters
when entering commands. It also discusses restrictions and operational
characteristics of which an operator should be aware. Refer to that
manual for more information about using wild-card characters in file
names.

The CSGETSINPUT$SPATHNAME and C$GETSOUTPUT$PATHNAME system calls
automatically handle pathnames that contain wild-card characters. They
treat a wild-carded pathname as a list of pathnames.

CSGET$INPUTSPATHNAME matches wild cards. That is, each time you call it,
it compares the wild-carded component with the files in the specified
directory and returns the pathname of the next file that matches. For
example, if an input pathname is:

:PROG:PLM/A*

CSGETSINPUTSPATHNAME searchs the :PROG:PLM directory and returns the
pathname of the next file that begins with the letter "A."

CSGETSOUTPUTSPATHNAME generates wild cards. Each time you call it, it
compares the wild-carded output pathname with the wild-carded input
pathname and with the most recent pathname returned by
CSGETSINPUTSPATHNAME. Then it generates a corresponding output pathname
based on that information. The output pathname could refer to an
existing file or to a file which does not yet exist.

As an example, suppose an operator's default directory contains the
following files:

ALPHA BETA
All Bl
ADAM Cl1

Now suppose that you have written a command called REFINE that reads some
information from an input file, adjusts that information in some manner,
and writes the information to an output file. Assuming that you
interleaved the calls to CSGETSINPUTSPATHNAME and CSGETSOUTPUTSPATHNAME
correctly when you wrote the command, an operator could enter a command
line as follows:

REFINE A*,B* TO C*,D*

Human Interface 3-9

COMMAND PARSING

In this case, C$GETSINPUTSPATHNAME and C$GETSOUTPUT$PATHNAME return
pathnames as follows:

Pathname list returned Corresponding pathname list
by CSGETSINPUT$PATHNAME returned by C$GET$OUTPUTSPATHNAME
ALPHA CLPHA
All Cl1
ADAM CDAM
BETA DETA
B11 D11

PARSING OTHER PARAMETERS

The C$GETSPARAMETER system call is also available for parsing command

lines of the standard format. You can use this system call for the
following purposes:

e To parse parameters which appear after the input and output
pathnames.

° To parse all parameters, if the command does not use input and
output files.

e To parse the input and output pathnames, if the command requires
a preposition other than TO, OVER, or AFTER.

If you use CGETPARAMETER to parse input and output pathnames, you must
provide additional code to handle wild-card characters that may appear in
the command line. This is unlike CGETINPUTSPATHNAME and
C$GETSOUTPUTSPATHNAME which handle wild-—card characters automatically.
For example, suppose a command line contains the pathname:

FILE*

If you use CGETINPUT$PATHNAME to parse this parameter, the system call

assumes that FILE* is a wild-carded pathname. It searches the operator's
default directory and returns the pathname of the first file whose name
starts with the characters "FILE". Subsequent calls to
CSGETSINPUTSPATHNAME return other pathnames that meet the conditions.

However, if you use CSGETSPARAMETER to parse the same parameter, the
system call returns the value:

FILE*

It does not know that the characters represent a pathname, nor does it
know that the asterisk represents a wild card.

When called, CSGETSPARAMETER parses a single parameter and moves the

pointer of the parsing buffer to the next parameter. The parameter
returned as a result of this call cam be in any of the following forms:

Human Interface 3-10

COMMAND PARSING

value-list A value or group of values separated by
commas. The system call returns the entire
list in the form of a string table
(described in Appendix C). It places each
of the values in the value list in a
separate string.

keyword = value-list A keyword indicating the kind of parameter,
or followed by a value (or group of values,
keyword (value-list) separated by commas). The presence of the

equal sign or the parentheses lets the
system call recognize keyword parameters
without foreknowledge of the keywords. It
also informs the system call that the
characters following the equal sign (or the
characters in parenthesis) represent a
value-list and not a separate parameter.
The system call returns the keyword in a
string and the value-list in a string table.

keyword value-list A keyword indicating the kind of parameter,
followed by a value (or group of values,
separated by commas). In this case, since
the keyword and value-list are separated by
spaces instead of by an equal sign or
parentheses, the keyword is referred to as a
preposition. In order for the system call
to recognize that this structure is a
keyword/value-list instead of two separate
parameters, you must supply, as input to the
system call, a string table containing all
the possible prepositions that could occur.
The system call checks this list to
determine whether a group of characters
separated by spaces is a preposition keyword
or a separate parameter.

Individual parameters are separated by spaces.

In general, the value-list of a parameter is either a single value or a
list of values separated by commas. CSGET$SPARAMETER returns each of
these values as a string in a string table. However, an individual value
can itself consist of a value-list. If a group of values (separated by
commas) 1s enclosed in parentheses, CSGETSPARAMETER treats the values as
a single value, returning them in single string. For example, in the
following value-list:

A,(B,C,D),E

CSGETSPARAMETER considers "B,C,D" as a single value. Therefore, the
value-list consists of three values: "A", "B,C,D", and "E".

Figure 3-2 contains an example of a program that uses CGETPARAMETER in
its command-line parsing.

Human Interface 3-11

COMMAND PARSING

/***

This example demonstrates the use of the following Human Interface
system call:

rqS$CSget$parameter

*
*
%
*
*
This program makes use of rqCget$parameter to parse a keyword *
parameter in a command line. Here, the keyword, "SIZE", is parsed *
and its value portion converted to a word value and placed in *
"size$val”. For example, an operator could specify the following *
command line: *
*
*
*
%
*
/

PROG1 SIZE = 400
Note that if the "SIZE" parameter is not present, "size$val“receives

a default value.
R A O AR SR AR R R ORE N R R R RO R R R T P e P P e T T P P P T T 2

B % % ¥ ¥ N ¥ ¥ X N % F ¥ F* ¥

progl: DO;

$include (hexcep.lit)
$include (hgtpar.ext)

DECLARE STRING LITERALLY 'STRUCTURE (len BYTE, str (1) BYTE)',
STRINGSTABLE LITERALLY 'STRUCTURE (num$entries BYTE,
entries (1) BYTE)',
PARAMETERSKEYWORD$MAX LITERALLY '20',
VALUESTABLESMAX LITERALLY '80',
DEFAULTS$SIZE LITERALLY '100';

DECLARE value$table$buf (VALUESTABLESMAX) BYTE, /* Receives string table
value */
value$table STRINGSTABLE AT (@value$table$buf),
valuestrptr POINTER,
value$str BASED value$str$ptr STRING; /* For referencing strings
in the string table */

DECLARE parameter$keyword$buf (PARAMETERSKEYWORDSMAX) BYTE, /* Receives
the keyword
string */

parameter$keyword STRING AT (@parameter$keyword$buf),
excep WORD,
(size$val, 1) WORD;

Figure 3-2. CSGETPARAMETER Example

Human Interface 3-12

COMMAND PARSING

/* Get the next parameter, if present */
IF (rq$Céget$parameter (@parameter$keyword, PARAMETERSKEYWORD$MAX,
@value$table, VALUESTABLESMAX,
0,0,
@excep)) THEN
IF (parameter$keyword.str(0) 'S') AND /* Is the keyword 'SIZE'? */

(parameter$keyword.str(l) 'l') THEN

DO;

valuestrptr = @value$table.entries; /* Point to lst entry in
table */

size$val = 0;
DO i = 0 to value$str.len - 1; /* Convert number string to word
value */
size$val = size$val * 10;

sizeSval size$val + (valueS$str.str(i) - 30H);
END;
END;
ELSE
size$val = DEFAULTS$SIZE; /*If the 'SIZE' parameter is not present,

use the default size. */

. Continue with the rest of the program

Figure 3-2. C$GETS$PARAMETER Example (continued)

PARSING NONSTANDARD COMMAND LINES

If the command line you write follows the recommended structure described
earlier in this chapter, you can use CSGETSINPUTSPATHNAME,
CSGET$OUTPUTSPATHNAME, and CSGETSPARAMETER to parse the command line.
However, if you require the invocation line to be of a different form,
you might not be able to use these system calls. The following sections
discuss two types of nonstandard command lines: one that is similar to
the standard and one that is completely different.

VARIATIONS ON THE STANDARD COMMAND LINE

The "Standard Command-Line Structure” section of this chapter recommends
that the first parameters of your commands be a list of input pathnames,
a preposition, and a list of output pathnames. With this convention,
commands always call CSGETSINPUTS$SPATHNAME and C$GET$SOUTPUTSPATHNAME

Human Interface 3-13

COMMAND PARSING

first, before obtaining any optional parameters. Therefore, the input
and output pathnames are the only position-dependent parameters in your
commands; other parameters can appear in any order and can be optional.

However, suppose you want to structure your commands so that other
parameters appear before the input and output pathnames. You can still
use CSGET$INPUT$PATHNAME and C$GETSOUTPUTSPATHNAME to parse the input and
output pathnames. But, you have to ensure that your command knows which
of the parameters contain the input and output pathnames. You can do
this in several ways. Two of them are:

Enforce a rigid structure on the command line. For example,
suppose you want two parameters to appear before the input and
output pathnames, such as:

command pl p2 input-pathname prep output-pathname

Your command could use CSGETPARAMETER to parse the first and
second parameters. Then it could use CSGETSINPUTSPATHNAME and
C$GETSOUTPUTS$PATHNAME to parse the input and output pathnames.

If you do this, pl and p2 are position—-dependent parameters which
must be included whenever the command is invoked.

Use a separate parameter as a switch to inform the command that
the parameters that follow are input and output pathnames. This
method requires more code to implement but it can allow you to
make all your parameters (including the input and output
pathnames) position-independent:.

For example, you could implement your command such that whenever
the operator entered a parameter called FROM, it would signal the
command that the next parameters were input and output

pathnames. This command could contain a main loop that used
CSGETSPARAMETER to parse parameters. Then, whenever it received
a parameter whose value was "FROM", it could call another portion
of code that used CSGETSINPUTSPATHNAME and

C$GETSOUTPUTSPATHNAME. After retrieving the input and output
pathnames, the code could retura to the main loop to continue
processing parameters.

A hypothetical command of this sort might be called RETRIEVE, a
command that retrieves information from various data bases. The
operator could invoke this command with a command 1line such as:

RETRIEVE NAMES ADDRESSES PHONES FROM filel TO file2

In this command, operators can specify what they want to retrieve
before they specify where to get the information.

Human Interface 3~14

COMMAND PARSING

OTHER NONSTANDARD COMMAND LINES

In some instances, you might want your command line to look completely
different from that described earlier in this chapter. For example,
suppose you require a syntax in which the following rules apply:

. Spaces have no significance and can be omitted between parameters.

° You must place a prefix character before each parameter (a $
indicates an input file, an @ indicates an output file, and a -
indicates all other parameters.

With this kind of syntax, a user could invoke a command (in this example
the command is again called REFINE) as follows:

REFINE $infile-medium@outfile

Where infile is the file from which to read information, outfile is the
file in which REFINE should place its output, and medium is a parameter
that further directs the processing.

If you require the syntax outlined in this example (or any other
nonstandard syntax), you cannot use C$GETSINPUTSPATHNAME,
CS$GETS$OUTPUTSPATHNAME, and CSGET$PARAMETER to parse the individual
parameters. Any of these system calls would return the entire parameter
list as a single parameter.

For cases such as this, you can use the CSGET$CHAR system call to parse
the command line. This system call performs a single, simple operation.
It returns a single character from the command line and moves the pointer
to the next character. It does not understand the notion of parameters
as explained earlier in this chapter. Nor does it understand wild-card
characters or quoting characters.

CSGETS$CHAR requires you to provide the parsing algorithm in your own
program, because it makes no assumptions about the structure or order of
parameters. However, by using C$GETSCHAR you can enforce any command
syntax you choose.

Because C$GETSCHAR moves the pointer character by character, not
parameter by parameter, you should take care when using CGETCHAR in the
same program with CGETINPUTSPATHNAME, CSGET$OUTPUTS$PATHNAME, and
CGETPARAMETER. You must ensure that CGETCHAR leaves the pointer
pointing at the beginning of a parameter (or at blank characters which
immediately precede the parameter) before invoking any of the other
system calls.

SWITCHING TO ANOTHER PARSING BUFFER

When a command begins execution, it has a parsing buffer that is set up
by the Human Interface to contain the parameters of the command. The
command parsing system calls listed in this chapter operate on that
parsing buffer. This allows the command to parse its parameters.

Human Interface 3-15

COMMAND PARSING

Some commands might require the ability to parse additional lines of text
(for example, an editor needs to parse individual editor commands) after
the original command invocation. A command such as this cannot use the

Human Interface-provided parsing buffer because it has no way of placing
information in the buffer, and because it cannot reset the parsing

pointer to the beginning of the buffer.

To meet the needs of commands such as this, the Human Interface provides
a system call to change the parsing buffer from the one the Human
Interface provides to one that the command provides. This system call,
CSETPARSESBUFFER, switches the parsing buffer and sets the parsing
pointer to the beginning of the buffer.

One of the parameters of the C$SSETS$SPARSES$BUFFER system call (buff$p) is a
pointer to a buffer containing the text to be parsed. This buffer can
contain text read from the terminal, text read from a file, or even text
that you "hard code"” into the command. After the call to
CSETPARSESBUFFER, the following command parsing system calls obtain
information from the new parsing buffer:

C$SGETSPARAMETER
CSGET$CHAR

The other command parsing calls (CSGET$INPUTS$PATHNAME and

C$GETSOUTPUTSPATHNAME) are not affected by calls to C$SETS$SPARSESBUFFER.
These calls always obtain pathnames from the original parsing buffer (the
command line).

When you establish a new parsing buffer, C$SETSPARSE$BUFFER sets the
parsing pointer to the beginning of the buffer. This allows you to use
one buffer for parsing many lines of text. For example, suppose your
command has several sub—commands. Each time the operator enters a
sub-command, your command reads the sub-command into a buffer, calls
C$SETSPARSESBUFFER to reset the parsing pointer, and parses the
sub-command. The program flow for an operation like this could be:

l. Read the information from the terminal into a buffer (use
C$SEND$COSRESPONSE, CSSENDSEOSRESPONSE, or an Extended I/0 System
call).

2. Call C$SETSPARSES$BUFFER to set the parsing buffer to the buffer
containing the sub—command. This sets the parsing pointer to the
beginning of the buffer.

3. Parse the sub-command using C$GETS$PARAMETER or CSGET$CHAR system
calls.

4. Perform the operations requested by the sub—command.

5. Go back to step 1. Continue this loop until the operator exits
from the command.

Human Interface 3-16

COMMAND PARSING

If you specify a zero value for the buff$p parameter of
C$SETSPARSESBUFFER, the parsing buffer switches back to the original
command line buffer. However, the parsing pointer does not reset to the
beginning of the buffer; it remains pointing at the next parameter in the
command line. This allows you, if you wish, to parse part of the command
line, switch buffers and parse a portion of another buffer, and switch
back to the command line.

There is one problem with switching back and forth between parsing
buffers. Except when you switch to the command line buffer, every time
you call CS$SETSPARSESBUFFER, the parsing pointer moves to the start of
the buffer. Therefore, you lose your place in the buffer. However,
C$SETSPARSESBUFFER returns, in its offset parameter, a value that
indicates the position of the pointer in the previous buffer. This value
specifies the offset of the pointer, in bytes, from the beginning of the
buffer. If you intend to switch back to that buffer (by again calling
C$SETSPARSESBUFFER), you can use this value to move the pointer to its
previous position.

One way to do this is to use the CSGETSCHAR system call to move the
parsing pointer back to its previous position. After switching back to
the original buffer, call CSGET$CHAR the number of times specified in the
offset parameter of the first C$SETSPARSESBUFFER call (not the one that
switched back to the buffer). This positions the pointer to its previous
location. You can then continue parsing parameters from the point at
which you left off.

Another way to do this is by treating your parsing buffer as an array of
characters (an array called CHAR, for example). When you call
C$SETSPARSESBUFFER the first time, you can specify the buff$p parameter
to point to the first element of the array (CHAR(0), for example). Then,
when you switch parsing buffers, CSETPARSESBUFFER returns, in the
offset parameter, the number of bytes already parsed. When you switch
back to the first parsing buffer, you can use this offset value as an
index into the array; that is, have the buff$p parameter point to
CHAR(offset).

OBTAINING THE COMMAND NAME

A user invokes a command by specifying the pathname of the file
containing its object code and any parameters the command requires. The
Human Interface places the parameters in a parsing buffer, which the
command can access by invoking the system calls described earlier in this
chapter. 1In addition, the Human Interface places the command name in
another buffer. The command can obtain this name by calling
CSGETSCOMMANDSNAME.

CSGET$COMMANDSNAME does not operate on the parsing buffer used by the
other command parsing system calls. Nor 1s it affected by the
CSETPARSESBUFFER system. It can be called multiple times; each time it
returns the same command name.

Human Interface 3-17

COMMAND PARSING

If the operator enters the complete pathname of the command (including
the logical name), the command-name buffer contains exactly what the
operator entered. Howeve if the operator enters a command name without
a logical name, the Human Interface automatically searches a number of
directories for the command. In this case, the command-name buffer
contains not only the name the operator entered, but also the directory
containing the command (such as :SYSTEM:, :PROG:, or :$:).

Therefore, a command can use the value returned by CSGET$COMMANDSNAME and
the ampersand pathname separator (&) to access the directory in which it
resides. For example, if "command-name"” is the name received from
C$SGET$SCOMMANDSNAME, a command could access its directory by using the
pathname:

command-name&

It could access another file in the directory by specifying the pathname:

command—name&file

E X2

Human Interface 3-18

CHAPTER 4
- 1/0 AND
MESSAGE PROCESSING

The Human Interface provides several system calls that establish
connections to input and output files, communicate with the operator's
terminal, and format exception codes into messages that can be sent to
the operator. This chapter discusses these system calls.

ESTABLISHING INPUT AND OUTPUT CONNECTIONS

The Human Interface provides two system calls for establishing
connections to input and output files: CSGETSINPUTSCONNECTION and
CSGETSOUTPUTSCONNECTION. These system calls are structured so that you
can use the output from C$GETSINPUTSPATHNAME and CSGET$OUTPUTSPATHNAME as
input to these system calls.

USING CS$SGETS$INPUTSCONNECTION

CSGETSINPUT$CONNECTION obtains a connection to a file and opens that
connection for reading. One of the parameters of CSGETSINPUT$CONNECTION
is a pointer to a string containing the pathname of the file for which
the connection is sought. This pathname can be the pathname returned by
CSGETSINPUTSPATHNAME or it can be the pathname of any other file to which
you want a connection. If CSGETSINPUTSCONNECTION cannot obtain a
connection to the specified file for any reason, it returns an exception
code and writes a message to :CO: (normally the operator's terminal) to
indicate the type of problem. TFor example, if the specified input file
does not exist, CGETINPUTSCONNECTION displays the following message:

<{pathname>, file not found

The system call displays similar messages in other situations. Refer to
the description of C$GETSINPUTSCONNECTION in Chapter 7 for more
information.

Because C$SGETSINPUTSCONNECTION returns messages to the operator in the
event of an exceptional condition, your command does not have to return
additional messages unléss you require them. The command only has to
decide whether to abort or to continue with processing.

USING CSGETS$OUTPUT$CONNECTION

CSGETSOUTPUTSCONNECTION obtains a connection to a file and opens that
connection for writing. As in the case of CSGETSINPUTS$CONNECTION, one of
the parameters of C$GETSOUTPUTSCONNECTION is a pointer to a string
containing the pathname of the file for which a connection is sought.

Human Interface 4-1

I/0 AND MESSAGE PROCESSING

This pathname can be the pathname returned by CSGETSOUTPUTSPATHNAME or it
can be the pathname of any other file to which you want a connection.
There is another parameter in CSGETSOUTPUTSCONNECTION which specifies the
type of preposition to use when writing to the output file (TO, OVER, or
AFTER). This preposition governs how data gets written to the file.

If you specify the TO preposition and rhe pathname of an existing file,
CSGETSOUTPUTSCONNECTION prompts the operator for permission to delete the
existing file. This prompt appears as:

<{pathname>, already exists, OVERWRITE?

If the operator enters a "Y" or "y", the system call obtains the
connection to the existing file. If the operator enters "N" or "n", the
system call returns an exception code without obtaining a connection to
the file.

If you specify the OVER preposition, CSGETSOUTPUTSCONNECTION obtains the
connection without prompting the operator for permissiom.

If you specify the AFTER preposition, CSGETSOUTPUT$CONNECTION obtains the

connection without prompting the operator for permission. It also seeks
to the end of file before returning control. Thus any information you
write to the file will not overwrite the existing information. This 1is
unlike TO and OVER which cause CSGETSOUTPUTSCONNECTION to leave the file
pointer at the beginning of the file.

If the operator does not have the proper access rights to the file, or if
for some reason CSGETSOUTPUTSCONNECTION cannot obtain a connection to the
file, CSGET$OUTPUTSCONNECTION returns an exception code and displays a

message at the operator's terminal. Refer to the description of
CSGETSOUTPUTSCONNECTION in Chapter 7 for more information.

EXAMPLE PROGRAM SCENARIO

A normal scenario for using CSGETSINPUTSCONNECTION and
CSGETSOUTPUTSCONNECTION is as follows:

DO
Obtain input pathname from command line with CSGETS$INPUTS$SPATHNAME

Obtain output pathname from command line with
CSGET$OUTPUTS PATHNAME

Obtain connection to input file with CSGETS$INPUTSCONNECTION
Obtain connection to output file with CSGETSOUTPUTS$SCONNECTION
Read information from input file

Perform command operations on information

Human Interface 4-2

1/0 AND MESSAGE PROCESSING

Write information to output file
Delete connections to input and output files
UNTIL no more input and output pathnames remain

The program listing in Figure 3-1 shows an implementation of this
scenario.

COMMUNICATING WITH THE OPERATOR'S TERMINAL

The Human Interface provides two system calls that ease the process of
communicating with the operator's terminal. They are C$SEND$SCOSRESPONSE
and C$SENDSEOSRESPONSE. Each of these system calls combines into a
single system call several operations that you would normally perform
when communicating with the terminal.

In its general form, C$SENDSCOSRESPONSE establishes connections to :CI:
(console input) and :CO: (console output), writes a message to :CO:, and
reads a message from :CI:. As input to this system call, you can specify
the message to be sent, the size of the message to be received, and the
buffer to receive the message. Depending on the values you choose for
the parameters, you can either:

. Send a message and receive a message
. Send a message without waiting to receive a message
° Receive a message without sending anything

If you use C$SEND$COSRESPONSE, you do not have to invoke other system
calls to attach, open, read from, or write to the operator's terminal.

There is a difference between CSSENDSCOSRESPONSE and C$SENDSEOSRESPONSE.
C$SEND$COSRESPONSE deals specifically with the logical names :CI: and
:CO:. Therefore, its input and output can be redirected to files by
changing the pathnames represented by these logical names. This is what
happens when an operator places a command in a SUBMIT file; SUBMIT
assumes that :CI: is the SUBMIT file and that :CO: is the output file
specified in the SUBMIT command. On the other hand, while
CSSENDSEOSRESPONSE performs the same operations as C$SENDSCOSRESPONSE,
CSSENDSEOSRESPONSE always reads information from and writes information
to the operator's terminal. Input and output cannot be redirected with
C$SENDSEOSRESPONSE.

C$SENDSEOSRESPONSE is especially useful if you have multiple tasks
communicating with a single terminal. If a task uses either of these
system calls and requests a response from the terminal, no other output
is displayed at the terminal until the operator enters a response to the
first system call. After the operator responds, tasks can send further
information to the terminal. This mechanism, when used by all the tasks
which communicate with the terminal, prevents the operator from receiving

several requests for information before being able to respond to the
first one.

Human Interface 4-3

1/0 AND MESSAGE PROCESSING

FORMATTING MESSAGES BASED ON EXCEPTION CODES

Whenever you include iRMX 86 system calls in the code of a command that
you write, it is possible for those system calls to encounter exceptional
conditions. Exceptional conditions are divided into two categories:
programming errors and environmental conditions. Programming errors

occur when the iRMX 86 Operating System detects a condition that normally
can be avoided by correct coding. Environmental conditions, in contrast,

are generally outside the control of the application program.

Even the most thoroughly debugged commaands can encounter exceptional
conditions. The exceptional conditions can arise from invalid operator
entries, lack of secondary storage space, media errors, and other
problems over which the command has no control. The Human Interface
provides a default exception handler tc handle exceptional conditions in

commands that you write. This excepticin handler receives control on the
occurrence of all exceptional conditionms. It displays the exception code

value and mnemonic at the operator's terminal and aborts the command.

In many cases, you might want to provide your own exception handling,
either to pass additional information to the operator or to allow the
operator another chance to enter correct information. In such cases, you
can use the Nucleus system calls GETSEXCEPTIONSHANDLER and
SETSEXCEPTIONSHANDLER to assign your own exception handler or to cancel
the effect of the default exception handler on some or all exceptions
that occur in your command. Refer to the iRMX 86 NUCLEUS REFERENCE
MANUAL for more information about these system calls.

When you perform your own exception handling, you will probably create
special messages that you return to the operator in the event of certain
exceptional conditions. However, you might not want to create messages
for all possible exception codes. For ithis situation, the Human
Interface provides the the CSFORMATSEXCEPTION system call.

CSFORMATSEXCEPTION accepts an exception code value as input and returns a
string whose contents describe the exceptional condition. You can use
this string as input to a system call such as C$SSENDSCOSRESPONSE to write
the information to the operator terminal. By using CSFORMATSEXCEPTION,
you can return a message to the operator for all exceptional conditions,

but you do not have to enlarge your program by including the text of
these messages in the code of your command.

The text portion of the string produced by CSFORMATSEXCEPTION consists of
the exception code value and mnemonic in the following format:

value : mnemonic

You can display this string as is, or you can place additional
explanatory text in the string before displaying it.

*kk

Human Interface 4-4

CHAPTER 5
COMMAND PROCESSING

When you write your own command, you might want to perform an operation
that is already provided in another command (such as copying one file to
another, displaying a directory, etc.). Instead of duplicating the code
for this operation in your command, you can invoke Human Interface system
calls to issue the commands themselves. The effect of making these
system calls is the same as that produced by an operator entering a
command line at the terminal. The Human Interface provides three system
calls to facilitate this process of programmatic command invocation:
CSCREATE$SCOMMANDS$CONNECTION, CS$SEND$SCOMMAND, and

C$DELETES$COMMANDS CONNECTION.

Invoking commands programmatically involves the following operations:

° Creating an object (called a command connection) to store the
command invocation lines

° Sending the command line to the command connection and invoking
the command

e Deleting the command connection

This chapter discusses these operations and provides an example of how
the iRMX 86 system calls appear in a program.

CREATING A COMMAND CONNECTION

Before you can send a command line to the Operating System to be invoked,
you must create an object (called a command connection) to store the
command line. The CSCREATE$SCOMMANDSCONNECTION system call creates this

object and returns a token for the command connection. The token can be
used in calls to CSSENDSCOMMAND (to send command lines to the object) and

in calls to CS$DELETESCOMMANDSCONNECTION (to delete the object after using
it).

When you call CSCREATE$COMMANDSCONNECTION, you also specify tokens for
the connections that serve as command input and command output for the
invoked command. This allows you to redirect input and output for the
invoked command to secondary storage files. Or you can specify the
normal :CI: and :CO:.

The command connection is necessary to support the processing of

multiple-line commands without interference from other tasks. If not for
the command connections, the Operating System would be unable to

determine which continuation line went with which command when many tasks
were sending command lines to be processed. The command connection
provides a place to store command lines until the command is complete.

Human Interface 5-1

COMMAND PRCCESSING

SENDING COMMAND LINES TO THE COMMAND CONNECTION AND INVOKING THE COMMAND

The C$SENDSCOMMAND system call sends command lines to a command
connection and, when the command invocation is complete, invokes the
command. One of the parameters of this system call is the token for a
command connection, which identifies the command connection to use.
Another parameter is a pointer to a string which must contain a command
line. The format of the command line is the same as the format for
entering the command line at a terminal. The command can be any iRMX 86
Human Interface command (as described in the iRMX 86 OPERATOR'S MANUAL)
or any command that you write.

If the string specified as a parameter to C$SENDSCOMMAND contains a
complete command invocation, C$SENDSCOMMAND places the command line in
the command connection and invokes the command.

However, if the string does not contain the entire command invocation
(that is, it contains the "&" as a continuation character),
C$SENDSCOMMAND places the command line in the command connection without
invoking the command. It also returns a condition code informing the
calling program that the command is continued. Additional C$SENDSCOMMAND
calls place continuation lines in the command connection, combining them
with the command lines already there. When CS$SENDSCOMMAND sends the last
portion of the command invocation (a line without a continuation
character), it also invokes the entire command.

Once you call CSSENDSCOMMAND enough times to place a complete command
invocation in the command connection, CS$SSENDSCOMMAND invokes the
command. This involves loading the command from secondary storage and
starting it running. The CS$SENDSCOMMAND call that invokes the command
does not return control until the invoked command finishes processing.
Once the command finishes processing, you can use the command connection
for invoking other commands.

The C$SENDSCOMMAND system call contains two pointers to words that
receive iRMX 86 condition codes. One of these (called except$ptr in the
system call description) points to a word that receives the status of the
CSSENDSCOMMAND system call. An ESOK indicates that C$SENDSCOMMAND
received the full command invocation and invoked the command. An
ESCONTINUED indicates that the command invocation is not complete (the
last line contained a continuation character). Other exception codes
indicate other problems with the system call.

The other pointer (called command$except$ptr in the system call

description) points to a word that receives the status of the invoked
command. This allows you to determine the status of the invoked command.

Human Interface 5-2

COMMAND PROCESSING

DELETING THE COMMAND CONNECTION

After you have finished invoking commands programmatically, you must
delete the command connection. The CSDELETESCOMMANDSCONNECTION system
call performs this operation. You do not need to delete the command

connection after each command invocation, because the command connection
is re-usable. However, you should delete the command connection after

performing all C$SEND$SCOMMAND operations. This frees the memory used by
the data structures of the command connection.

EXAMPLE

Figure 5-1 contains an example of a program that uses

C$CREATE$ COMMANDS CONNECTION, SEND$COMMAND, and DELETE$COMMANDS$CONNECTION.
It invokes the Human Interface COPY command programmatically.

/*************************************'k*********************************

* *
* This example demonstrates the use of the following Human Interface *
* advanced standard functions: *
* *
* rq$CScreate$command$connection *
* rqCsend$command *
* rqSCdelete$command$connection *
* *
* This program uses the previous system calls to invoke the command *
* COPY :Fl:0LD to :F1:NEW from within and then continue normal *
* processing. The program is invoked with the command line: *
* *
* PROG2 *

ddkkhkkkhkkhkhhhhkkhhhkhdhhdthkhhhdhhhhhhhhhhhkihhrhhhdkhhdhhhhhhihkrrihds /
prog2: DO;

$include (hexcep.lit)
$include (hcrcen.ext)
$include (hsndcmd.ext)
$include (hdlccn.ext)
$include (iexioj.ext)
$include (hgtincn.ext)
$include (hgtocn.ext)

DECLARE (ci$token, coStoken, command$connection$token) WORD,

(excep, comexcep, exexcep) WORD;
DECLARE output$prep BYTE;

Figure 5-1. Command Connection Example

Human Interface 5-3

COMMAND PROCESSING

/* Invoke utility to copy file OLD to file NEW */

/* Get tokens for CI and CO */
ci$token = rq$CSgetSinputS$connection(@(4,':CI:'), @excep);
IF excep <> E$OK THEN
CALL rq$exit$io$job (excep, 0, exexcep);
co$token = rq$CSget$outputSconnection(@(4,':C0:'), output$prep, @excep);
IF excep <> E$OK THEN
CALL rq$exit$io$job (excep, 0, exexcep);

/* Create command connection */

command$connection$tok = rqSCcreateScommandS$connection (C@ci$token,
co$token, O,
@excep);

/* Send command to copy files */
CALL rqCsend$command (command$connectionStok,
@(23,'COPY :F1:0LD TO :F1:NEW'),
@comexcep, Cexcep);
IF excep <> ES$OK THEN
CALL rqS$exit$io$job (excep, 0, exexcep);

/* Delete command connection */
CALL rqCdeleteScommand$connection (command$connection$tok, @excep);
IF excep <> E$OK THEN

CALL rq$exit$io$job (excep, 0, exexcep);

. Rest of program

/* Finish I/0 processing */
CALL rqSexitiojob (excep, 0, @exexcep);

END prog2;

Figure 5-1. Command Connection Example (continued)

k%

Human Interface 5-4

CHAPTER 6
PROGRAM CONTROL

Normally, when a Human Interface command is executing, an operator cannot
communicate with the command (or with the application system in general)
unless the command initiates the communication by requesting input from
the terminal. This can present problems if an operator inadvertently
enters the wrong command, or if the operator decides while the command is
executing that the command is unnecessary. Under these circumstances,
the operator can enter a Control-C character. In the default case, the
Control~C causes the Human Interface to abort the currently—executing
command. However, you can override the default Control-C mechanism by
providing your own code to process Control-C characters. This chapter
discusses how to do this.

HOW THE DEFAULT CONTROL-C MECHANISM WORKS

When the operator enters a Control-C, the Operating System sends a unit
to a semaphore. In the default case, it sends the unit to a semaphore
established by the Human Interface. A Human Interface task waits at that

semaphore to receive the unit. When it receilves the unit, it aborts the
command that is currently executing and returns control to the operator.

The Human Interface task then waits at the semaphore for another unit.

This Control-C facility allows operators to cancel commands while the

commands are executing. It is a valuable facility that can be used with
your commands without requiring you to provide special implementation
code.

PROVIDING YOUR OWN CONTROL-C MECHANISM

With some commands that you write, you might want to override the default
Control-C mechanism. For example, suppose you write a text editor. An
operator invokes the editor with a Human Interface command and then
specifies edit commands to enter text into a buffer and modify that
text. While using the editor, the operator does not want a Control-C
character to abort the entire editing session, destroying text in the
editing buffer that may have taken an hour or more to create. Instead,
the operator might want a Control-C to abort an individual editor
command, but not abort the entire editor. 1In order to provide this
facility, your Human Interface command (the editor) must override the
default Control-C mechanism and provide its own code to handle Control-C
entries.

To override the default Control-C mechanism, you must change the

semaphore to which the Operating System sends the unit when the operator
enters a Control-C. By changing the semaphore to one that you create,

you circumvent the Control-C task of the Human Interface.

Human Interface 6-1

PROGRAM CONTROL

You can use the S$SPECIAL system call of the Extended I/0 System to
replace the Control-C semaphore. This system call is described in the
iRMX 86 EXTENDED I/0 SYSTEM REFERENCE MANUAL. However, it has three
parameters that are important when changing the semaphore. They are:

connection This parameter should contain the token for a
connection to the operator's terminal.

function This parameter should contain the value 6 to indicate
the set signal character function.

data$ptr This parameter should point to a structure of the
following form:

DECLARE signalSpair STRUCTURE(
semaphore WORD,
character BYTE);

where:

semaphore A token for your new Control-C
semaphore.

character The character code for the
Control-C character. If you use
the ASCII code (03), the Operating
System will place a unit in the
semaphore when an operator enters
Control-C. If you use the ASCII
code plus 20H (23H), the Operating
System clears out the terminal's
input buffers in addition to
placing the unit in the semaphore.

If your command task switches the Control-C semaphore, it must also
service that semaphore. It can do this either by creating a task that
waits continually at the semaphore for a unit or by containing in-line
code that periodically checks the semaghore. Once the job for the
initial command is deleted by the Human Interface, then Control-C once
again becomes the default method for program control. The Human
Interface reactivates Control-C by resetting a semaphore when the
original command finishes. For example, once the text editor we used as
an example terminates, then the Human Interface resets the semaphore so
that Control-C becomes active.

In either case, when a unit is sent to the semaphore, the command (or the
task) must perform the necessary Control-C operation.

The program flow of such a command would be:
1. Call CREATESSEMAPHORE to create the Control-C semaphore.

2. If you plan to create a Control-C task to service the semaphore,

call CATALOGSOBJECT to catalog the token for the semaphore in an
object directory.

Human Interface 6-2

PROGRAM CONTROL

3. Call S$ATTACHSFILE to obtain a connection to the terminal. Use
logical name :CI: as the pathname parameter.

4, Call SSOPEN to open the connection to the terminal for reading
only (mode 1).

5. 1If you plan to use a Control-C task, have the program call
CREATESTASK to start the Contrcl-C task.

6. Call S$SPECIAL to switch the Control-C semaphore to the one just

created. Use the token for the connection to the terminal as
input.

7. Continue with command processing. If you are servicing the
Control-C semaphore in-line, periodically check the semaphore (by
calling RECEIVESUNITS) to determine if it contains any units. If

you obtain a unit from the semaphore, perform the necessary
Control-C processing.

To service the Control-C with a task, the program flow of the Control-C
task would be:

1. Call LOOKUPS$OBJECT to obtain the token for the semaphore.
2. Do forever:
a. Call RECEIVESUNITS to obtain a unit from the semaphore.

b. Perform the operation that must occur when the operator
enters a Control-C.

Each method of servicing the Control-C semaphore has advantages and
disadvantages.

If your code services the Control-C semaphore with in—-line code, you can
perform any operation that you want. You can branch to various
locations, you can start new tasks running, you can abort the command, or
you can perform any other function that you wish. However, in order to
service the Control-C semaphore with in-line code, you must check the
semaphore periodically, to see if it contains a unit. When doing this,
you must ensure that you place the checks inside all program loops that
perform operations an operator might want to abort. Also, because you
can check the semaphore only periodically, you cannot guarantee a quick
response to the Control-C in all cases.

If you use a Control-C task, you can guarantee quick service because the
task is always waiting at the semaphore. However, because a separate
task services the Control-C, you can perform only a limited number of
operations in response to the Control-C.

. The task can send a message to the command, but then the command

would have to periodically check a mailbox. This has the same
disadvantages as in-line servicing with none of the advantages.

Human Interface 6-3

PROGRAM CONTROL

) The task can delete the command. However, the task has no way of
knowing what operations the command was performing when the
operator entered the Control-C. If the command was updating an

internal table, deleting the command could corrupt your entire
system.

Therefore, unless you have a specific reason for using a Control-C task,

this manual recommends that you use in-line code to service the Control-C
semaphore.

k%

Human Interface 6-4

CHAPTER 7
CREATING HUMAN
INTERFACE COMMANDS

This chapter discusses the steps that you must perform to create your own
Human Interface commands. It discusses the necessary elements of a
command as well as how to compile (or assemble) and link your code.

To perform the operations described in this chapter you must have either
an 1APX 86-based Microcomputer Development System (such as a Series III)
or an iRMX 86-based system that includes the Human Interface commands.
Either system must have an editor, the necessary compiler or assembler,
and the utility programs (such as LINK86).

ELEMENTS OF A HUMAN INTERFACE COMMAND

This section discusses the rules that every command you write must obey.

It also suggests some programming practices to make coding and using your
command easier.

PARSING THE COMMAND LINE

If you are going to allow the operator to enter parameters when invoking
the command, the first thing your command should do is parse the command
line. Chapter 3 describes the Human Interface system calls that you can
use for this. To support lists of pathnames and wild-carded pathnames,
the flow of a program that uses input and output files should be:

1. Call CS$SGETSINPUT$PATHNAME to obtain the first input pathname.

2. Call CSGETSOUTPUTSPATHNAME to obtain the preposition and first
output pathname.

3. Call CSGETSPARAMETER as many times as necessary to get all the
parameters.

4, Do until no more input pathnames remain:

a. Call CSGETSINPUTS$CONNECTION to obtain a connection to the
input file.

b. Call CSGETSOUTPUTSCONNECTION to obtain a connection to the
output file.

c. Read the information from the input file, perform the command

operations based on that input, and write information to the
output file.

Human Interface 7-1

CREATING HUMAN INTERFACE COMMANDS

d. Call S$DELETESCONNECTION (Extended I/O System call) to delete
the connections to the inpuf and output files.

e. Call C$GETSINPUTSPATHNAME and C$GET$OUTPUTSPATHNAME to obtain
the next input and output pathnames.

AVOIDING THE USE OF CERTAIN SYSTEM CALLS

When you write the code for your Human Interface command, you can use any
of the iRMX 86 system calls, depending on the requirements of your
command. However, some system calls are intended primarily for use in
system—level jobs (those jobs that you configure into the Operating
System rather than invoking as Human Interface commands). In the
descriptions of system calls, the iRMX &6 reference manuals contain
cautions concerning those system calls that you should avoid using.

In particular, avoid iRMX 86 objects (and their associated system calls)
that, by their use, make your command immune to deletion. Regions and
extension objects (described in the iRM¥ 86 NUCLEUS REFERENCE MANUAL) are
examples of such objects. If your command becomes immune to deletion, a
Control-C that an operator enters to cancel the command will have no

effect; also the operator's terminal may lock up when the command
finishes processing.

TERMINATING THE COMMAND

When the operator invokes a command, the Operating System loads the
command into memory and creates an I/0 job as the environment in which
the command runs. (The iRMX 86 EXTENDED I/0 SYSTEM REFERENCE MANUAL
discusses I/0 jobs.) Until the command finishes processing, the operator
is unable to run any other commands. In order to finish processing
correctly, any task in the command that exits must do so by calling
EXITIOJOB (an Extended 1/0 System call, described in the iRMX 86
EXTENDED I/0 SYSTEM REFERENCE MANUAL). This system call causes the
Operating System to delete the I/0 job containing the command, therefore
returning control to the operator. If the command omits the call to
EXIT$I0$J0B, the operator might not be able to enter further commands.

INCLUDE FILES

When you write the source code for your commands, you can use $INCLUDE
statements to include the following kinds of information: external
declarations of system calls, literal definitions of exception codes, and
common pieces of code that you declare.

Human Interface 7-2

CREATING HUMAN INTERFACE COMMANDS

As part of writing the code for your commands, you must declare each

iRMX 86 system call as an external procedure. Instead of writing this
code yourself, you can use the $INCLUDE statement to include this
information from files on one of the iRMX 86 release diskettes. This
diskette contains a file for each system call, with the external
declaration of that system call as the contents of the file. To use
these files, simply determine the system calls that your command uses and
place into your source code $SINCLUDE statements for the corresponding
external declaration files.

You also require literal definitions of exception codes so that you can
refer to the exception codes by their mnemonics instead of by their
values (for example, ESMEM instead of 2H). The Include Files release
diskette contains several files (one for each layer of the Operating
System) consisting of LITERALLY statements. Each file defines all the
iRMX 86 condition code mnemonics used in that layer. You should copy
these files, delete entries if you can guarantee that the deleted
exception codes will never appear, and use $INCLUDE statements to include
them in the compilation of your command.

Refer to the iRMX 86 INSTALLATION GUIDE for information about the release
diskettes and the files contained in them. Refer to the PL/M-86 USER'S
GUIDE for information about the $INCLUDE statement.

PRODUCING AN EXECUTABLE COMMAND

After you have written the source code for your command, you must produce
object code that can be executed in an iRMX 86 environment. This
involves the following procedure:

1. Compile (or assemble) the command using the appropriate
translators. When you do this, ensure that the names you specify
in S$INCLUDE statements specify the correct devices and
directories.

2. Using LINK86, link the code to iRMX 86 interface libraries (and
any other libraries that you require) and produce a relocatable

object module that the Operating System can load anywhere in
memory. The format of the LINK86 command is:

LINK86
command-pathname,
:dir:HPIFC.LIB,
:dir:LPIFC.LIB,
¢+dir:EPIFC.LIB,
:dir:IPIFC.LIB,
:dir:RPIFC.LIB,
:dir:other.1lib

TO output—-pathname
PRINT(mapfile-pathname) SYMBOLCOLUMNS(2) &
OBJECTCONTROLS(PURGE) &
BIND SEGSIZE(STACK(stacksize)) MEMPOOL(minsize,maxsize)

P RRRRRR R

Human Interface 7-3

CREATING HUMAN INTERFACE COMMANDS

where:
command- Complete pathname of the file containing your
pathname compiled (or assembled) command. You can link in
several files or libraries at this point, if
necessary.

other.1lib Any other files or libraries that you need to
link with your command.

output- Complete pathname of the file in which LINK86
pathname places the linked command.

mapfile- Complete pathname of the file on which LINK86
pathname places the link map.

stacksize Size, in bytes, of the stack needed by the
command and any system calls that the command
makes. The Human Interface uses this value when
it creates a job for the command. Be sure the
stack is large enough to handle both user and
system requirements. Refer to the iRMX 86
PROGRAMMING TECHNIQUES manual for information
about stack requirements of the system calls.

minsize Minimum and maximum amount of dynamic memory,

maxsize in bytes, required by the command. The command
uses this memory when it creates iRMX 86
objects. The Human Interface uses the minsize
and maxsize values when it creates a job for the
command. Be sure that these values are large
enough to satisfy the needs of your command and
small enough to allow the command to be loaded
into the operator's memory partition.

This command produces relocatable code that the Operating
System can load into any available memory. If you require
your command to be available as absolute code, you can use
LINK86 and LOC86 to produce this code. Refer to the

iAPX 86, 88 FAMILY UTILITIES USER'S GUIDE for more
information about LINK86 and LOC86. If you require absolute
code for your commands, you must also configure the Operating
System in such a way that it reserves the memory locations
required by the command. If it does not, the command, when
loaded into the system, could overwrite Operating System or
user information. Refer to the iRMX 86 CONFIGURATION GUIDE
for more information about Operating System configuration.

If you are using an iRMX 86-based system to compile and link your
command, the command is now ready for execution. An operator can invoke

the command by entering the pathname of the file containing the linked
command (the output-pathname in the LINK86 command).

Human Interface 7-4

CREATING HUMAN INTERFACE COMMANDS

If you are using a Microcomputer Development System to compile or link
your command, you must connect the development system to your iRMX 86
application system via the monitor and use the Human Interface UPCOPY

command to copy the linked command from the development system disk to an
iRMX 86 secondary storage device. The UPCOPY command is described in the

iRMX 86 OPERATOR'S MANUAL. After you transfer the linked command to an
iRMX 86 secondary storage device, an operator can invoke the command by
entering its pathname.

EX 1

Human Interface 7-5

CHAPTER 8
HUMAN INTERFACE
SYSTEM CALLS

The Human Interface system calls described in this chapter are presented
in alphabetical sequence without regard to functional organization. A
functional grouping of the calls according to type is provided in the
System Call Dictionary in Table 8-1. For each call, the information is
organized into the following categories:

) Brief functional description.

e Calling sequence format.

. Input parameter definitions, if applicable.

e Output parameter definitions, if applicable.

e Considerations and consequences of call usage.

° Potential exception codes, and their possible causes.

This chapter refers to PL/M-86 data types such as BYTE, WORD, and
SELECTOR and iRMX 86 data types such as STRING. These words, when used
as data types, are always capitalized; their definitions are found in
Appendix A. This chapter also refers to an iRMX 86 data type called
TOKEN. If your compiler supports the SELECTOR data type, you can declare
a TOKEN to be literally a SELECTOR or a WORD. The word "token" in lower
case refers to a value that the iRMX 86 Operating System assigns to an
object. The Operating System returns this value to a TOKEN (the data
type) when it creates the object.

If you are a new user of the Human Interface calls, it is suggested that

you review the parsing considerations in Chapter 3 before writing your
source code. You should also review the format of the released Human
Interface commands. They are described in the iRMX 86 OPERATOR'S MANUAL.

This chapter assumes that you are familiar with several terms and
concepts that are common to the iRMX 86 Operating System. If you are
not, you should read INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM and the

chapters in the iRMX 86 NUCLEUS REFERENCE MANUAL that refer to the terms
"memory pool” and "catalog."

Human Interface 8-1

Table 8-1. System Call Dictionary

System Call

Synopsis

Page

1/0 Processing Calls

CSGETSINPUTSCONNECTION

CSGET$OUTPUTSCONNECTION

Return an EIOS connection for
the specified input file.

Return an EIOS connection for
the specified output file.

8-15

8-25

Command Parsing Calls

CSGETSCHAR

CSGET$INPUTSPATHNAME

CSGETSPARAMETER

CSGETSOUTPUTS$SPATHNAME

C$SETSPARSESBUFFER

CSGET$COMMANDSNAME

Get a character from the command line

Parse the command line and return an
input pathname.

Parse the command line for the next
parameter and return it as a
keyword name and a value.

Parse the command line and return
an output pathname.

Parse a buffer other than the
current command line.

Return the command name by which the
the current command was invoked

8-11

8-20

8-34

8-31

8-51

8-13

Message Processing Calls

C$SFORMATSEXCEPTION

CSSENDSCOSRESPONSE

C$SENDSEOSRESPONSE

Create a default message for an
exception code and place it in a
user buffer.

Send a message to the command
output (CO) and read a response
from the command input (CI).

Send a messagze to the operator's
terminal and return a response from
that terminal.

8-45

8-48

Human Interface 8-2

Table 8-1. System Call Dictionary (continued)

System Call

Synopsis

Page

Command Processing Calls

C$CREATES$COMMANDS CONNECTION

C$DELETE$COMMANDS CONNECTION

C$SENDSCOMMAND

Create a command connection and
return a token.

Delete a specific command
connection.

Concatenate command lines into
the data structure created by

CREATE SCOMMANDSCONNECTION and

then invoke the command.

8-4

8-8

8-38

Human Interface 8-3

CSCREATESCOMMANDSCONNECTION

C$CREATE$COMMANDS CONNECTION

CSCREATESCOMMANDSCONNECTION, a command processing call, creates an iRMX

86 object called a command connection that i1s required in order to invoke
commands programmatically.

command$conn = RQSC$CREATESCOMMANDSCONNECTION(default$ci, default$co,
l flags, except$ptr);

INPUT PARAMETERS

default$ei A TOKEN for a connection that is used as the :CI:

(console input) for any commands you invoke using
this command connection.

defaultSco A TOKEN for a connection that is used as the :CO:
for any commands you invoke using this command
connection.

flags A WORD used to indicate that the Human Interface

should return an E$ERROROUTPUT exception code if
the system call C$SENDSEOSRESPONSE is used by any
task. If the usesr wants the exception code, then
the parameter is set to one (l); otherwise, the
parameter must equal zero (0).

OUTPUT PARAMETERS

command$conn A TOKEN which receives a token for the new command
connection.
except$ptr A POINTER to a WORD in which the Human Interface

returns a condition code.

DESCRIPTION

You can use this call when you want to invoke a command programmatically
instead of interactively. It provides a place to store command lines
until the command invocation 1s compleate.

The call creates an iRMX 86 object called a command connection and
returns a token for that command connection. The C$SEND$COMMAND system
call can use this token to send command lines to the command connection,
where they are stored until the command invocation is complete. The
command connection also defines default :CI: and :CO: connections that
are used by any commands invoked via thilis command connection.

Human Interface 8-4

CSCREATESCOMMANDSCONNECTION

Although a job can contain multiple command connections, the tasks in a
job cannot create command connections simultaneously. Attempts to do

this result in an ESCONTEXT exception code. Therefore, it is advisable
for one task to create the command connections for all tasks in the job.

A possible application where the parameter "flags" might be set to one

is when you want to write a custom CLI to perform batch jobs in the
background. When any of the background batch jobs attempt to communicate
with the terminal through C$SENDSEOSRESPONSE, the Human Interface issues
an exception code. In this way, the Human Interface keeps all the jobs
in the background. Note-—the Human Interface CLI does not provide
resident background or batch processing capability.

EXCEPTION CODES

ESOK No exceptional conditions were encountered.

E$ALREADYSATTACHED While creating a STREAM file, the Extended I/0
System was unable to attach the :STREAM: device
because another task had already invoked a Basic
I/0 system call to attach the :STREAM: device.

ESCONTEXT At least one of the following is true:

e Two command connections were being created
simultaneously by two tasks in the same job.

® The calling task's job is not an I/0 job.(Refer
to the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE
MANUAL for information about I/0 jobs.)

ESDEVSDETACHING The :STREAM: device, the defaultS$ci device, or the
defaultSco device was in the process of being
detached.

ESDEVFD The Extended I/0 System attempted the physical
attachment of the :STREAM: device. This device had
formerly been only logically attached. 1In the
process, the Extended I/0 System found that the
device and the device driver specified in the
logical attachment were incompatible. The
Operating System would not have returned this
exception code if the :STREAM: device had been
properly configured.

ESEXIST The default$ci or default$co parameter is not a
token for an existing job.

ESFNEXIST The :STREAM: file does not exist or is marked for
deletion.

Human Interface 8-5

CSCREATESCOMMANDSCONNECTION

ESIFDR
| ESINVALIDSFNODE
E$TOMEM

ESLIMIT

ESLOGSNAMESNEXIST
I ESMEM

E$SNOSPREFIX
I ENOTCONNECTION
ENOTLOGSNAME

| ESNOSUSER

The Extended I/0 System attempted to obtain
information about the default$ci or default$co
connection. However, the request for information
resulted in an invalid file driver request.

The fnode associated with the specified file is
invalid. Delete the file.

The Basic I/0 System job does mnot currently have a
block of memory large enough to allow the Human
Interface to create a stream file.

At least one of the following is true:

e The object directory of the calling task's job
has already reached the maximum object directory
size.

e The calling task's job has exceeded its object
limit.

e The calling task's job (or that job's default

user object) is already involved in 255
(decimal) I/0 operations.

e The calling task's job is not I/0 job. (Refer
to the iRMX 86 EXTENDED I1/0 SYSTEM REFERENCE
MANUAL for information about I/0 jobs.)

The call was unable to find the logical name
:STREAM: in the object directories of the local
job, the global job, or the root job.

The memory available to the calling task's job is
not sufficient to complete the call.

The calling task’s job does not have a valid
default prefix.

The default$ci or default$co parameter is a token
for an object, not a connection to a file.

The logical name :STREAM: refers to an object that
is not a file or device connection.

The calling task's job does not have a valid
default user object.

Human Interface 8-6

E$PARAM

E$SSUPPORT

CSCREATESCOMMANDSCONNECTION

The system call forced the Extended I/0 System to
attempt the physical attachment of the :STREAM:
device, which had formerly been only logically
attached. 1In the process, the Extended I/0 System
found that the stream file driver is not properly
configured into your system, so the physical
attachment is not possible.

The default$ci or default$Sco connection was not
created by this job.

Human Interface 8-7

CSDELETESCOMMANDSCONNECTION

CSDELETESCOMMANDS CONNECTION

CSDELETESCOMMANDSCONNECTION, a command processing call, deletes a command
connection object and frees the memory used by the command connection's
data structures.

CALL RQSCSSDELETESCOMMANDSCONNECTION(command$Sconn, except$ptr);

INPUT PARAMETER

command$conn A TOKEN for a valid command connection.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

This call deletes a command connection object previously defined in a
CSCREATESCOMMANDSCONNECTION call and releases the memory used by the
command connection's data structures.

EXCEPTION CODES
ESOK No exceptional conditions were encountered.

ESEXIST The command$conn parameter is not a token for an
existing object.

ESTYPE The command$conn parameter is a token for an object
that is not a command connection object.

Human Interface 8-8

CSFORMATSEXCEPTIO

CSFORMATSEXCEPTION

CSFORMATSEXCEPTION, a message processing call, creates a default message

for a given exception code and writes that message into a user—provided
string.

CALL RQSCSFORMATSEXCEPTION(buffSp, buff$max, exception$code,
reserved$byte, except$ptr);

INPUT PARAMETERS

buf f$max A WORD that specifies the maximum number of bytes
that may be contained in the string pointed to by
buff$p-

exception$code A WORD containing the exception code value for which

a message is to be created.

reservedS$byte A BYTE reserved for future use. Its value must be
one (1).

OUTPUT PARAMETER

buffsSp A POINTER to a STRING into which the Human Interface
concatenates the formatted exception message.

except$ptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

CSFORMATSEXCEPTION causes the Human Interface to create a message for the
exception code. The message consists of the exception code value and
exception code mnemonic in the following format:

value : mnemonic

where the mnemonics are provided by the Human Interface from an internal
table and are listed in Appendix B of this manual.

The call concatenates the message to the end of the string pointed to by
the buff$p pointer and updates the count byte to reflect the addition. If
a string is not already present in the buffer, the first byte of the
buffer must be a zero. The message added by CSFORMATSEXCEPTION will not
be longer than 30 characters (not including the length byte).

Human Interface 8-9

CSFORMATSEXCEPTION

EXCEPTION CODES
ES$OK
E$PARAM

E$STRING

ESSTRINGSBUFFER

No exceptional conditions were encountered.
An undefined exception code value was specified.

The message to be returned exceeds the length limit
of 255 characters.

The buffer pointed to by the buff$p parameter is
not large enough to contain the exception message.

Human Interface 8-10

C$GETSCHAR

C$GETSCHAR, a command parsing call, gets a character from the parsing
buffer.

char = RQ$SCSGETSCHAR(exceptSptr);

OUTPUT PARAMETERS

char A BYTE in which the Human Interface places the next
character of the parsing buffer. A null (O00H)

character is returned when parsing buffer's pointer
is at the end of the buffer.

except$Sptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

When an operator invokes a command, the command's parameters are placed
in a parsing buffer. The CSGET$CHAR system call gets a single character
from that buffer and moves the parsing pointer to the next character.
Consecutive calls to CSGETSCHAR return consecutive characters from the
parsing buffer.

EXCEPTION CODES
ESOK No exceptional conditions were encountered.

ESCONTEXT The calling task's job is not an I/0 job. Refer to I
the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE MANUAL
for information about I/0 jobs.

ESLIMIT At least one of the following situations occurred.

e The object directory of the calling task's job
has already reached the maximum object directory
size.

® The calling task's job has exceeded its object
limit.

Human Interface 8-11

CSGETSCHAR

ESMEM

o The calling task's job is not an I/0 job. Refer
to the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE
MANUAL for information about I/0 jobs.

The memory available to the calling task's job is
not sufficient to complete the call.

Human Interface 8-12

C$GETS$SCOMMANDSNAME

CSGET$COMMANDSNAME, a command parsing call, obtains the pathname of the
command that the operator used when invoking the command.

CALL RQCGETSCOMMANDSNAME (path$name$p, nameSmax, except$ptr);

INPUT PARAMETER

name$max A WORD that specifies the length in bytes of the
string pointed to by the path$name$p parameter.

OUTPUT PARAMETERS

path$name$p A POINTER to a STRING that receives the name of the
command (the last component of the pathname).

except$ptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

If a command needs to know the name under which it was invoked, the
CSGETSCOMMANDSNAME returns this information. This information is
available to each command and is stored in a buffer that is separate from
the parsing buffer. Therefore, calling CSGET$COMMANDSNAME does not
obtain information from the parsing buffer, nor does it move the parsing
pointer.

If the operator invokes the command without specifying a logical name,
the Human Interface automatically searches a number of directories for
the command. In such cases, the value returned by C$SGET$COMMAND$NAME

also includes the directory name (such as :SYSTEM:, :PROG:, or :$:) as a
prefix to the command name.

EXCEPTION CODES

ESOK No exceptional conditions were encountered.
ESLIMIT The calling task's job was not created by the Human
Interface.

Human Interface 8-13

CSGETSCOMMANDSNAME

I E$PATHNAMESSYNTAX The specified pathname contains invalid characters.

ESSTRINGSBUFFER The buffer pointed to by the path$name$p parameter
is not large enough to contain the command name.

ESTIME The calling task's job was not created by the Human
Interface.

Human Interface 8-14

CSGETSINPUTSCONNECTIO

CSGETS$INPUT$CONNECTION

CSGETSINPUT$CONNECTION, an I/0O processing call, returns an Extended I/0
System connection to the specified input file.

connection = RQ$SCSGETSINPUTSCONNECTION(path$SnameSp, except$ptr);

INPUT PARAMETER

path$name$p A POINTER to a STRING containing the pathname of
the file to be accessed.

OUTPUT PARAMETERS

connection A TOKEN in which the Operating System returns the
token for the connection to the specified pathname.

except$ptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

CSGETSINPUTSCONNECTION obtains a connection to the specified file. This
connection is open for reading and has the following attributes:

° Read only
° Accessible to all users

e Has two 1024-byte buffers (The buffer size may be different than
the default value of 1024 bytes.)

CSGET$INPUT$CONNECTION causes an error message to be displayed at the

operator's terminal (:CO:) whenever the Operating System encounters an
exceptional condition. The exceptional condition that triggers the error

message can either be one of those listed for CSGET$SINPUT$CONNECTION or
it can be one of those associated with the Extended I/0 System calls

SSATTACHSFILE and S$OPEN. The following messages can occur:

e <pathname>, file does not exist

The input file does not exist.

Human Interface 8-15

CSGETSINPUTSCONNECTION

e <pathname>, invalid file type
The input file was a data file and a directory was required, or
vice versa.

° {pathname>, invalid logical name
The input pathname contains a logical name that is longer than 12
characters, that contains unmatched colons, or that contains
invalid characters.

° <pathname>, logical name does not exist

The input pathname contains a logical name that does not exist.

. <{pathname>, READ access required

The user does not have read access to the input file.

e <pathname>, <exception value>:<exception mnemonic)

An exceptional condition occurred when CSGETSINPUTSCONNECTION
attempted to obtain the input connection. The <exception value>
and <exception mnemonic> portions of the message indicate the
exception code encountered. Refer to "Exception Codes"” in this
call description and to the descriptions of SSATTACHSFILE and
SSOPEN in the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE MANUAL.

EXCEPTION CODES

ESOK No exceptional conditions were encountered.
ESALREADYS$- The device containing the file specified in the
ATTACHED path$name$p parameter is already attached.
ESCONTEXT At least one of the following is true:

e The calling task's job is not an I/0 job.
(Refer to the 1RMX 86 EXTENDED 1/0 SYSTEM
REFERENCE MANUAL for information about I/0 jobs.)

® The calling task's job was not created by the
Human Interface.
ESDEVSDETACHING The device specified in the path$name$p parameter

is in the process of being detached.

Human Interface 8-16

E$DEVFD

ESEXIST

ESFACCESS

ESFNEXIST

ESFTYPE

ESILLVOL

ESINVALIDS-
FNODE

ESIOSHARD

ESIOMEM

E$TOSOPRINT

CSGETSINPUTSCONNECTION

The call attempted the physical attachment of a
device that had formerly been only logically
attached. 1In the process, the call found that the
device and the device driver specified in the
logical attachment were incompatible.

The specified device does not exist.

The specified connection does not have read access
to the file.

At least one of the following is true:

e The target file does not exist or is marked for
deletion.

e While attaching the file pointed to by the
path$name$p parameter, the call attempted the
physical attachment of the device as a named
device. It could not complete this process
because the device specified when the logical
attachment was made was not defined during
configuration.

The path pointed to by the path$name$p parameter
contained a file name that should have been the
name of a directory, but is not. (Except for the
last file, each file in a pathname must be a named
directory.

The call attempted the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached. The
call found that the volume did not contain named
files. This prevented the call from completing
physical attachment because the named file driver
was requested during logical attachment.

The fnode for the specified file is invalid, so the
file must be deleted.

While attempting to access the file specified in
the path$name$p parameter, the call detected a hard
I/0 error. This means that another call is
probably useless.

While attempting to create a connection, the call
needed memory from the Basic I/0 subsystem's memory
pool. However, the Basic I/0 System job does not
currently have a block of memory large enough to
allow this call to run to completion.

While attempting to access the file specified in
the path$name$p parameter, the call found that the
device was off-line. Operator intervention is
required when given this code.

Human Interface 8-17

CSGETSINPUTSCONNECTION

ESIOSOFT

ESIOSUNCLASS

ESLIMIT

E$LOGSNAMES -
NEXIST

ESLOGSNAMES—
SYNTAX

ESMEDIA

ESMEM

E$NOSPREFIX

ESNOTSLOGSNAME

ESNOSUSER

E$PARAM

While attempting to access the file specified in
the path$name$p parameter, the call detected a soft
I/0 error. It tried the operation again but was
unsuccessful. Another try might be successful.

An unknown type of I/0 error occurred while this
call tried to access the file given in the
path$name$p parameter.

At least one of the following is true:

e The calling task's job or the job's default user

object is already involved in 255 (decimal) I/0
operations.

® The calling task's job was not created by the
Human Interface.

The pathname for the specified device contains an
explicit logical name. The call was unable to find
this name in the object directories of the local
job, the global job, or the root job.

The pathname pointed to by the path$name$p parameter
contains a logical name. However, the logical name
contains an unmatched colon, is longer than 12
characters, has zero (0) characters, or contains
invalid characters.

The specified device was off-line.

The memory available to the calling task's job is
not sufficent to complete the call.

The calling task’s job does not have a valid
default prefix.

The logical name specified by the pathSnameS$p
parameter does not refer to a file or device
connection.

The calling task's job does not have a valid
default user.

At least one of the following is true:

e The system call forced the Extended I/0 System
to attempt the physical attachment of the device
referenced by the path$name$p parameter. This
device had formerly been only logically
attached. In the process, the Extended I/0
System found that the logical attachment
referred to a file driver (named, physical, or
stream) that is not configured into your system,
so the physical attachment is not possible.

Human Interface 8-18

E$PATHNAMES -
SYNTAX

ESSHARE

ESSTREAMSSPECIAL

CSGETSINPUTSCONNECTION

® The connection to the specified file cannot be
opened for reading.

The specified pathname contains invalid characters.

The files sharing attribute currently does not

allow new connections to the file to be opened for
reading.

The call attempted to attach a stream file and in
so doing issued an invalid stream file request.

Human Interface 8-19

CSGETSINPUT $PATHNAME

CSGETSINPUTSPATHNAME, a command parsing call, gets a pathname from the
list of input pathnames in the parsing buffer.

CALL RQ$CSGETSINPUTSPATHNAME(pathSname$p, path$name$max, except$ptr);

INPUT PARAMETER

path$name$Smax A WORD that specifies the length in bytes of the
string pointed to by the path$name$p parameter.
The maximum length that you can specify is 256
bytes (255 characters for the pathname and one byte
for the count).

OUTPUT PARAMETERS

path$name$p A POINTER to a STRING which receives the next
pathname in the pathname list. A zero-length
string indicates that there are no more pathnames.

except$ptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

The first call to CSGETSINPUTSPATHNAME retrieves the entire input
pathname list and moves the parsing pointer to the next parameter.
CSGETSINPUTSPATHNAME stores the list in an internal buffer and returns
the first pathname to the string pointed to by the path$name$p
parameter. Succeeding calls to CSGETSINPUTSPATHNAME return additional
pathnames from the input pathname list but do not move the parsing
pointer. CS$GETSINPUTSPATHNAME denotes the end of the pathname list by
returning a zero—length string.

C$GETSINPUTSPATHNAME accepts wild-card characters in the last component
of a pathname. It treats a wild—-carded pathname as a list of pathnames.
To obtain each pathname, it searches in the parent directory of the
wild-carded component, comparing the wild-carded name with the names of
all files in the directory. It returns the next pathname that matches.

The pathname returned by C$GETS$INPUTSPATHNAME can be used for any

purpose. However, it is most often used in a call to
CSGETSINPUTSCONNECTION, to obtain a connection.

Human Interface 8-20

CSGETSINPUTSPATHNAME

EXCEPTION CODES

ESOK No exceptional conditions were encountered.
ESALREADY $— The device containing the file pointed to by the
ATTACHED path$name$p parameter is already attached.
ESCONTEXT At least one of the following is true:

e The calling task's job is not an I/0 job.
(Refer to the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL for more information about I/0
jobs.)

® The task called CSGETSOUTPUTSPATHNAME before
calling CSGETSINPUTSPATHNAME.

ESDEVSDETACHING The device pointed to by the path$name$p parameter
is in the process of being detached.

ESDEVFD The Extended I/0 System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, the Extended
I/0 System found that the device and the device
driver specified in the logical attachment were
incompatible.

ESEXIST At least one of the following is true:
e The connection to the parent directory of the
file pointed to by the path$name$p parameter, is

not a token for the existing job.

® The calling task's job was not created by the
Human Interface.

ESFACCESS The connection used to open the directory does not
have read access to the directory.

ESFLUSHING The device containing the directory was in the
process of being detached.

Human Interface 8-21

CSGETSINPUTSPATHNAME

ESFNEXIST

ESFTYPE

| ESIFDR

ESILLVOL

ESINVALIDS-
FNODE

ESIOSHARD

E$IOMEM

E$TIOSOPRINT

At least one of the following is true:

® The target file does not exist or is marked for
deletion.

e While attaching the parent directory of the file
pointed to by the path$name$p parameter, the 1/0
System attempted the physical attachment of the
device as a named device. It could not complete
this process because the device specified when
the logical attachment was made was not defined
during configuration.

The path pointed to by the path$name$p parameter
contained a file name that should have been the
name of a directory, but is not. (Except for the
last file, each file in a pathname must be a named
directory.

The specified file is a stream or physical file.

The call attempted the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached. The
call found that the volume did not contain named
files. This prevented the call from completing
physical attachment because the named file driver
was requested during logical attachment.

The fnode for the specified file is invalid, so the
file must be deleted.

While attempting to access the parent directory of
the file pointed to by the path$name$p parameter,
the call detected a hard I/0 error. This means
that another call is probably useless.

While attempting to create a connection, this call
needed memory from the Basic I/0 subsystem's memory
pool. However, the Basic 1/0 System job does not
currently have a block of memory large enough to
allow this call to run to completion.

While attempting to access the parent directory of
the file pointed to by the path$name$p parameter,
this call detected that the device was off-line.
Operator intervention is required.
C$FORMATSEXCEPTION returns the value ESIO$SNOTSREADY
for this code.

Human Interface 8-22

CSGETSINPUTSPATHNAME

ESIOS$SOFT While attempting to access the parent directory of
the file pointed to by the path$name$p parameter,
this call detected a soft 1/0 error. It tried the
operation again, but was unsuccessful. Another try
might be successful.

E$TIOSUNCLASS An unknown type of I/0 error occurred while this
call tried to access the parent directory of the
file pointed to by the path$name$p parameter.

ESLIMIT At least one of the following is true:

e The calling task's job has already reached its
object limit.

® The calling task's job or the job's default user
object is already involved in 255 (decimal) I/0
operations.

o The calling task's job was not created by the
Human Interface.

E$LIST The last value of the input pathname list is
missing. For example, "ABLE,BAKER," has no value
following the second comma.

ESLOGSNAMES— The pathname for the specified device contains an

NEXIST explicit logical name. The call was unable to find
this name in the object directory of the local job,
the global job, or the root job.

ESLOGSNAMES- The pathname pointed to by the path$name$p parameter

SYNTAX contains a logical name. However, the logical name
contains an unmatched colon, is longer than 12
characters, has zero (0) characters, or contains
invalid characters.

ESMEDIA The specified device was off-line.

ES$MEM The memory available to the calling task's job is

not sufficient to complete the call.

ESNOSPREFIX The calling task's job does not have a valid
default prefix. I

E$NOT $LOGS$NAME The logical name specified by the path$name$p
parameter does not refer to a file or device
connection.

ESNOSUSER The calling task's job does not have a valid
default user object.

Human Interface 8-23

CSGETSINPUTSPATHNAME

ESPARAM

E$PARSES$TABLES
E$PATHNAMES~
SYNTAX

ESSHARE

E$STREAMS -
SPECIAL

E$STRING

ESSTRINGSBUFFER

ESSUPPORT

ESWILDSCARD

At least one of the following is true:

e The Extended I/0 System attempted the physical
attachment of the device pointed to by the
path$name$p parameter. This device had formerly
been only logically attached. In the process,
the Extended 1/0 System found that the logical
attachment referred to a file driver (named,
physical, or stream) that is not configured into
your system, so the physical attachment is not
possible.

e The connection to the parent directory cannot be
opened for reading.

The call detected an error in an internal table
used by the Human Interface.

The specified pathname contains invalid characters.

The connection to the parent directory cannot be
opened for reading.

The Extended I/0 System attempted to attach a
stream file and in so doing issued an invalid
stream file request.

The pathname to be returned exceeds the length
limit of 255 characters.

The buffer pointed to by the path$name$p parameter
was not large enough for the pathname to be
returned.

This call attempted to read the parent directory of
the pathname pointed to by the path$nameS$p
parameter. However, the file driver corresponding
to that directory does not support this operation.

The pathname to be returned contains an invalid
wild-card specification.

Human Interface 8-24

CSGETSOUTPUTSCONNECTIO

CGETOUTPUTSCONNECTION

CSGETSOUTPUT$CONNECTION, an I/0 processing call, parses the command line
and returns an Extended 1/0 System connection referring to the requested
output file.

connection = RQSCSGETSOUTPUTSCONNECTION(path$name$p, preposition,
except$ptr);

INPUT PARAMETERS

path$name$p A POINTER to a STRING containing the pathname of
the file to be accessed.

preposition A BYTE that defines which preposition to use to
create the output file. Use one of the following
values to specify the preposition mode:

Value Meaning
0 Use same preposition as was

returned by the last
CSGETSOUTPUTSPATHNAME call

1 TO
2 OVER
3 AFTER
4-255 Undefined, results in an error
OUTPUT PARAMETERS
connection A TOKEN in which the Human Interface returns a

token for the connection to the output file.

except$ptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

C$GETSOUTPUTSCONNECTION obtains a connection to the specified file. This
connection is open for writing and has the following attributes:

e Write only

° Accessible to all

Human Interface 8-25

CSGETSOUTPUTSCONNECTION

If the call to C$GETSOUTPUTSCONNECTION specifies the TO preposition and
the output file already exists, CSGETSOUTPUTSCONNECTION issues the
following message to the terminal (:CO:):

<{pathname>, already exists, OVERWRITE?
If the operator enters Y, y, R, or r, CSGETSOUTPUTSCONNECTION returns a
connection to the existing file, allowing the command to write over the
file. Any other response causes CSGETSOUTPUTSCONNECTION to generate an
ESFILEACCESS exception code.
CSGET$OUTPUTSCONNECTION causes an error message to be displayed at the

operator's terminal (:CO:) whenever an exceptional condition occurs. The
exceptional condition that triggers the error message can be either one

of those listed for CSGETS$SOUTPUTSCONNECTION or one of those associated
with an Extended I/0 System call. The following messages can occur:
e <pathname>, DELETE access required

I The user does not have delete access to an existing file.

) {pathname>, directory ADD entry access required

I The user does not have add entry access to the parent directory.

e <pathname>, file does not exist

The output file does not exist.

o <pathname>, invalid file type
The output file was a data file and a directory was required, or
vice versa.

e <pathname>, invalid logical nane
The output pathname contains a logical name that is longer than
12 characters, that contains unmatched colons, or that contains
invalid characters.

e <pathname>, logical name does mot exist

The output pathname contains a logical name that does not exist.

Human Interface 8-26

CSGETSOUTPUTSCONNECTION

e <pathname>, <exception value>:<exception mnemonic>

An exceptional condition occurred when CSGETSOUTPUTS$SCONNECTION
attempted to obtain the input connection. The <exception value>
and <exception mnemonic> portions of the message indicate the
exception code encountered. Refer to "Exception Codes"” in this
call description and to the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE
MANUAL.

EXCEPTION CODES

ESOK No exceptional conditions were encountered.

ESALREADYS$- The Extended I/0 System was unable to attach the

ATTACHED device containing the file because the Basic I/0
System has already attached the device.

ESCONTEXT The calling task's job was not created by the Human
Interface.

ESDEVSDETACHING The device referred to by the path$name$p parameter
was in the process of being detached.

ESDEVFD The call attempted the physical attachment of a
device that had formerly been only logically
attached. In the process, the call found that the
device and the device driver specified in the
logical attachment were incompatible.

ESEXIST The connection parameter for the device containing
that file is not a token for an existing object.

E$FACCESS At least one of the following is true:

e The default user for the calling task's job did
not have update access to an existing file
and/or add-entry access to the parent directory.

e The TO or OVER preposition was specified and the

default user for the calling task's job did not
have the ability to truncate the file.

Human Interface 8-27

CSGETSOUTPUTSCONNECTION

ESFNEXIST

ESFTYPE

ESIFDR

ESILLVOL

ESINVALIDS-
FNODE

E$STOSHARD

ES$IOMEM

ESTIOSOPRINT

At least one of the following is true:

e The target file does not exist or is marked for
deletion.

e While attaching the file pointed to by the
path$name$p parameter, the Extended I/0 System
attempted the physical attachment of the device
as a named device. It could not complete this
process because the device specified when the
logical attachment was made was not defined
during configuration.

The path pointed to by the path$name$p parameter
contained a file name that should have been the
name of a directory, but is not. (Except for the
last file, each file in a pathname must be a named
directory.

The call requested information about the specified
file, but the request was an invalid file driver
request.

The call attempted the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached. The
call found that the volume did not contain named
files. This prevented the call from completing
physical attachment because the named file driver
was requested during logical attachment.

The fnode for the specified file is invalid, so the
file must be deleted.

While attempting to access the file specified in
the path$name$p parameter, the call detected a hard
I1/0 error. This means that another try is probably
useless.

While attempting to create a connection, this call
needed memory from the Basic I/0 subsystem's memory
pool. However, the Basic I/0 System job does not
currently have a block of memory large enough to
allow this call to run to completion.

While attempting to access the file specified in
the path$name$p parameter, the call detected that
the device was off-line. Operator intervention is
required.

Human Interface 8-28

EIOSOFT

ESTOSUNCLASS

E$TOSWRPROT

ESLIMIT

ESLOGS$NAMES -
NEXIST

ESLOG$NAMES —
SYNTAX

ESMEDIA

ESMEM

ESNOSPREFIX

ESNOTSLOGSNAME

ESNOSUSER

CSGETSOUTPUTSCONNECTION

While attempting to access the file specified in
the path$name$p parameter, the call detected a soft
I1/0 error. It tried the operation again but was
unsuccessful. Another try might be successful.

An unknown type of I/0 error occurred while this
call tried to access the file given in the
path$nameS$p parameter.

While attempting to obtain an input connection to
the file specified in the path$nameS$p parameter,
this call found that the volume containing the file
is write-protected.

At least one of the following is true:

e The calling task's job or the job's default user

object is already involved in 255 (decimal) I/0
operations.

® The calling task's job is not an I/0O job.
(Refer to the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL for more information about I/0
jobs.)

The specified pathname contains an explicit
logical name. The call was unable to find this
name in the object directory of the local job, the
global job, or the root job.

The pathname pointed to by the path$name$p parameter

contains a logical name. However, the logical name
contains unmatched colons, is longer than 12
characters, or contains invalid characters.

The specified device was off-line.

The memory available to the calling task's job is
not sufficient to complete the call.

The calling task's job does not have a valid
default prefix.

The logical name specified by the pathS$name$p
parameter does not refer to a file or device

connection.

The calling task's job does not have a valid
default user object.

Human Interface 8-29

CSGETSOUTPUTSCONNECTION

ESPARAM

E$PATHNAMES -
SYNTAX

ESPREPOSITION

I E$SHARE

ESSPACE

ESSTREAMS
SPECIAL

The system call forced the Extended I/O System to
attempt the physical attachment of the device
referenced by the path$name$p parameter. The
device had formerly been only logically attached.
In the process, the Extended I/0 System found that
the logical attachment referred to a file driver
(named, physical, or stream) that is not configured

into your system, so the physical attachment is not
possible.

The specified pathname contains invalid characters.

One of the following is true:

e The command line contained an invalid
preposition value (a value greater than 3).

e The command line contained a zero as the
preposition value. This indicated that the same
preposition was to be used as in the last
CSGETSOUTPUTSPATHNAME call. However, this is
the first call to CSGET$SOUTPUT$SPATHNAME.

The new connection cannot be opened for writing.
One of the following is true:
e The volume is full.

o The volume already contains the maximum number
of files.

The Extended 1/0 System attempted to attach a
stream file and in so doing issued an invalid
stream file request.

Human Interface 8-30

CSGETSOUTPUTSPATHNAME

CSGETSOUTPUT$PATHNAME

CGETOUTPUTSPATHNAME, a command parsing call, gets a pathname from the
list of output pathnames in the parsing buffer.

preposition

= RQ$CSGETSOUTPUTSPATHNAME(path$Sname$p, path$name$max,
defaultSoutput$p, except$ptr);

INPUT PARAMETERS

pathSname$max A WORD that specifies the length in bytes of the

string pointed to by the path$name$p parameter.

The maximum length that you can specify is 256
bytes (255 characters for the pathname and one byte
for the count).

default$output$p A POINTER to a STRING containing the command's

default standard output. If the first invocation
of this system call does not encounter a
TO/OVER/AFTER preposition, the text of this
parameter will be used as though it had appeared in
the command line. The text must specify TO, OVER,
or AFTER for the output mode. Examples: TO :CO:
or TO :LP:.

OUTPUT PARAMETERS

preposition

path$name$p

except$ptr

A BYTE describing the preposition type that
CSGETSOUTPUTSPATHNAME encountered. You can pass
this value to CSGETSOUTPUTSCONNECTION when
obtaining an output connection to the file. The
value will be one of the following:

Value Meaning
1 TO
2 OVER
3 AFTER

A POINTER to a STRING that receives the next
pathname in the pathname list.

A POINTER to a WORD in which the Human Interface
returns a condition code.

Human Interface 8-31

CSGETSOUTPUTSPATHNAME

DESCRIPTION

You should not call CSGETSOUTPUTSPATHNAME before first calling
CSGETSINPUTSPATHNAME.

The first call to CSGETSOUTPUTSPATHNAME retrieves the preposition
(TO/OVER/AFTER) and the entire output pathname list; it then moves the
parsing pointer to the next parameter. If the parsing buffer does not
contain a preposition and pathname list, CGETOUTPUTSPATHNAME uses the
default pointed to by the defaultSoutput$p parameter (and does not move
the parsing pointer). After retrieving the pathname list,
CSGETSOUTPUTSPATHNAME stores it in an internal buffer, returns the first
pathname in the string pointed to by the path$name$p parameter, and
returns the preposition in the preposition parameter. Succeeding calls
to CSGETSOUTPUTSPATHNAME return additional pathnames from the output
pathname list (as well as the preposition), but they do not move the
parsing pointer. CSGETSINPUTSPATHNAME denotes the end of the pathname
list by returning a zero-length string in the string pointed to by
path$name$p.

CSGETSOUTPUTSPATHNAME accepts wild-card characters in the last component
of a pathname. It generates each output pathname based on this
wild-carded pathname, the corresponding wild~carded pathname that was
input to CSGETSINPUTSPATHNAME, and the most recent input pathname
returned by CSGETS$INPUTSPATHNAME.

The pathname returned by CSGET$OUTPUTS PATHNAME can be used for any
purpose. However, it is most often used in a call to
CSGETSOUTPUTSCONNECTION to obtain a connection to the file. In such a
case, C$GETSOUTPUTSCONNECTION processes the TO/OVER/AFTER preposition.
If the pathname is used as input to a system call other than
C$GETSOUTPUT$CONNECTION, the interpretation of the TO/OVER/AFTER
preposition is the user's responsibility.

EXCEPTION CODES

ESOK No exceptional conditions were encountered.

ESCONTEXT The calling task's job was not created by the Human
Interface.

ESDEFAULTSSO The default output string pointed to by

default$outputSp contained an invalid preposition
or pathname.

Human Interface 8-32

CSGETSOUTPUTSPATHNAME

ESLIMIT At least one of the following is true:

o The calling task's job has already reached its
limit.

e The calling task's job was not created by the
Human Interface.

ES$SMEM The memory available to the calling task's job is
not sufficient to complete the call.

ESPATHNAMES - The specified pathname contains invalid characters.

SYNTAX

ESSTRING The pathname to be returned exceeds the length
limit of 255 characters.

E$STRINGS-— The buffer pointed to by the path$name$p parameter

BUFFER was not large enough for the pathname to be
returned.

ESUNMATCHEDS - The numbers of files in the input and output lists

LISTS are not same.

ESWILDCARD The output pathname contains an invalid wild-card

specification.

Human Interface 8-33

CSGETSPARAMETER

CSGETSPARAMETER

GET$PARAMETER, a command parsing call, gets a parameter from the parsing

buffer.

more = RQSC$GETSPARAMETER(name$p, name$max, value$Sp, value$Smax,

index$p, predict$listS$p, except$ptr);

INPUT PARAMETERS

name$max

value$max

predict$listSp

OUTPUT PARAMETERS

more

name$p

value$p

A WORD that specifies the length in bytes of the
string pointed to by the name$p parameter. The
maximum length is 256 bytes (255 characters for the
name and one byte for the count).

A WORD that specifies the length in bytes of the
string pointed to by the value$p parameter. The
maximum length is 65535 decimal bytes.

A POINTER to a STRINGSTABLE, as described in
Appendix C, that specifies the values that this
system call accepts as prepositions. The
predict$listSp POINTER should be zero if you do not
intend to retrieve parameters that use prepositions.

A BYTE value that indicates whether or not the
current call to CSGETSPARAMETER returned a
parameter. A value of OOh indicates that there are
no more parameters (and that no parameter was
returned); a value of OFFh indicates that a
parameter was returned.

A POINTER to a STRING that receives the keyword
portion of the parameter. If this parameter does
not contain a keyword portion, the Human Interface
returns a null (zero—length) string.

A POINTER to a STRINGSTABLE, as described in
Appendix C, that receives the value portion of the
parameter. If the value portion contains a list of
values separated by commas, the Human Interface
returns the values to the string table one value
per string.

Human Interface 8-34

CSGETSPARAMETER

index$p A POINTER to a BYTE that receives the index to the
list of prepositions pointed to by predict$list$p.
This index identifies the name$p keyword as a
preposition and identifies it out of the list of
possible prepositions. If the predict$list$p list
is empty, or if the keyword name is not contained
in the predict$list$p list, the system call returns
a value of zero for the index. That is, the index
will be non-zero only if a keyword exists and it is
one of the prepositions in the predict$list$p list.

except$ptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

CSGET$PARAMETER retrieves one parameter from the parsing buffer and moves

the parsing pointer to the next parameter. The parameter can be one of
the following:

e keyword/value-list parameter using parentheses
e keyword/value—list parameter using an equal sign
e keyword/value-list parameter with the keyword as a preposition
o value-list without a keyword
A description of the types, format, and syntax of acceptable parameters
is provided in Chapter 3.

CSGETSPARAMETER places the keyword portion of the parameter in the string

pointed to by name$p; it places the keyword list in the string table
pointed to by value$p.

Without input from you, CSGETSPARAMETER cannot determine whether groups
of characters separated by spaces are separate parameters or a single
parameter that uses a preposition. C$GETSPARAMETER uses the list of
prepositions that you supply in the string table pointed to by
predict$list$p to determine the prepositions that can appear. When

CSGETSPARAMETER retrieves a parameter, it obtains from the parsing buffer
the next group of characters that are separated by spaces. Then it

checks those characters against those in the predict$list$p list. If the
characters match one of the values in the list, CSGET$PARAMETER realizes
that the characters represent a preposition and not an entire parameter;
it then obtains the next group of characters separated by spaces as the
value portion of the parameter.

EXCEPTION CODES

ESOK No exceptional conditions were encountered.

Human Interface 8-35

CSGETSPARAMETER

ESCONTEXT

ESCONTINUED

ESLIMIT

ESLIST

ESLITERAL

E$MEM

E$SPARAM

The calling task's job was not an I/0 job. Refer
to the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE MANUAL
for information about I/0 jobs.

The call found a continuation character in the
parse buffer. Command lines should not contain
continuation characters.

At least one of the following is true:

° The calling task's job has already reached its
object limit.

® The calling task's job was not an I/0 job.
Refer to the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL for information about I/0 jobs.

At least one of the following is true:

] The parameter contains an unmatched parenthesis.

° A value in the value list is missing or an
improper value was entered. Examples of both
these conditions follow:

Value Comments

A,B, No value following second comma.

A,B=C,D The equal sign can not be used
unless it is between quotes: 'B=C'
is valid.

A,B(C,E),F The parentheses can not be used in
a value unless it is between
quotes or set off by commas.
A,B,(C,E),F is valid.

The call found a literal (quoted string) in the
parsing buffer with no closing quote. This
condition should not occur in the command line
buffer.

The memory available to the calling task's job is
not sufficient to complete the call.

The predict$list$p parameter pointed to a string
table, but the index$p parameter was set to zero

(0.

Human Interface 8-36

ESPARSESTABLES

ESSEPARATOR

E$STRING

ES$STRINGSBUFFER

CSGETSPARAMETER

The call found an error in an internal table used
by the Human Interface.

The call found an invalid command separator in the
parsing buffer. This condition should not occur in
the command line buffer. The following is a list

of invalid command separators: ><, <>, ||, |, [,
and].

The string to be returned as the parameter name or
one of the parameter values exceeds the length
limit of 255 characters.

The string to be returned as the parameter name or
one of the parameter values exceeds the buffer size
provided in the call.

Human Interface 8-37

C$SENDSCOMMAND

C$SENDSCOMMAND, a command processing call, sends command lines to a

command connection created by CSCREATESCOMMANDSCONNECTION and, when the
command is complete, invokes the command.

CALL RQCSSSEND$COMMAND(command$conn, line$p, command$except$ptr,
except$ptr);

INPUT PARAMETERS

command$conn A TOKEN for the command connection that receives
the command line.

line$p A POINTER to a STRING containing a command line to
execute.

OUTPUT PARAMETERS

command$ex— A POINTER to a WORD in which the Human Interface

cept$ptr returns a condition code indicating the status of
the invoked command. This parameter is undefined
if an exceptional condition code is returned in the
word pointed to by except$ptr.

except$ptr A POINTER to a WORD in which the Human Interface
returns a condition code indicating the status of
the CSSENDSCOMMAND system call.

DESCRIPTION

You can use this system call when you want to invoke a command
programmatically instead of interactively. It stores a command line in
the command connection created by the C$CREATESCOMMANDSCONNECTION call,
concatenates the command line with any others already stored there, and
(if the command invocation is complete) invokes the command. The command
can be any standard Human Interface conmand (as described in the iRMX 86
OPERATOR'S MANUAL) or a command that you create.

As described in greater detail in Chapter 3, a command invocation can
contain several continuation marks. The continuation mark (&) indicates
that the command line is continued on the next line. If the command line
sent by CS$SENDSCOMMAND is continued on another line (that is, contains a
continuation mark), the Human Interface returns an ESCONTINUED exception
code and does not invoke the command. You can then call C$SENDSCOMMAND
any number of times to send the continuation lines.

Human Interface 8-38

CSSENDSCOMMAND

C$SENDSCOMMAND concatenates the original command line and all
continuation lines into a single command line in the command connection.
It removes all continuation marks and all comments from this ultimate
command line.

When the command invocation is complete (that is, the line sent by
C$SEND$COMMAND does not contain a continuation mark) the Human Interface
parses the command pathname from the command line. If no exception
conditions halt the process at this point, the Human Interface requests
the Application Loader to load and execute the command.

An Application Loader call creates an I/0 job for the command. Then the
Application Loader validates the header, group definition and segment
definition records of the command's object file. Refer to the 8086
FAMILY UTILITIES USER'S GUIDE for explanations of segments, groups and
object file formats.

CS$SENDSCOMMAND returns two condition codes: one for the C$SEND$COMMAND
call and one for the invoked command. The word pointed to by the
except$ptr parameter returns the C$SEND$SCOMMAND conditions, as described
under the EXCEPTION CODES heading in this command description. The word
pointed to by the command$except$ptr returns the invoked command's
condition codes; the values returned depend on the command invoked. The
ESCONTROLSC exception code can be returned at either place.

EXCEPTION CODES

ESOK No exceptional conditions were encountered.
ESALREADY $- The Extended I/0 System was unable to attach the
ATTACHED device containing the object file because the Basic

I/0 System has already attached the device.

EBADGROUP The object file represented by the command's
pathname contained an invalid group definition
record.

ESBADSHEADER The object file represented by the command's

pathname does not begin with a header record for a
loadable object module.

ESBADSSEGMENT The object file represented by the command's
pathname contains an invalid segment definition
record.

ESCHECKSUM At least one record of the object file represented

by the command's pathname contains a checksum
error. This situation could occur if the CHECKSUM
amount calculated during the read operation did not
match the CHECKSUM field of the record being read.

ESCONTEXT The calling task's job was not created by the Human
Interface.

Human Interface 8-39

CSSENDSCOMMAND

ESCONTINUED The Operating System detected a continuation
character while scanning the command line pointed
to by the line$p parameter. This condition should
occur if the command line is to continue on the
next line.

I ESDEVSDETACHING The device containing the object file was in the
process of being detached.

ESDEVFD The Extended 1/0 System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, the Extended
1/0 System found that the device and the device
driver specified in the logical attachment were
incompatible.

ESEOF The Application Loader encountered an unexpected
end of file on the object file represented by the
command's pathname.

ESEXIST At least one of the following is true:

e The call detached the device containing the
object file before completing the loading
operatiomn.

¢ The command$conn parameter is not the token for
a command connection.

ESFACCESS The default user for the calling task's job does
not have read access to the object file.

ESFIXUP When the Application Loader loads an LTL
(load-time-locatable) program, the Loader must
adjust some of the addresses used in the code to
reflect actual loaded code addresses. This
ad justment is known as a fixup and is contained on
a fixup record. The Application Loader detected an
invalid fixup record in the object file. Refer to
the iRMX 86 LOADER REFERENCE MANUAL for an
explanation of LTL code.

ESFLUSHING The device containing the object file was being
detached.

Human Interface 8-40

ESFNEXIST

ESFTYPE

E$ILLVOL

E$INVALIDS—
FNODE

ESIOSHARD

ESIOMEM

ESTIOSOPRINT

ESIO$SOFT

ESTOSUNCLASS

CSSENDSCOMMAND

At least one of the following is true:

e The file in the command's pathname is either
marked for deletion or does not exist.

e While attaching the file specified in the line$p
parameter, the Extended I/O System attempted the
physical attachment of the device as a named
device. It could not complete this process
because the device specified when the logical
attachment was made was not defined during
configuration.

The path pointed to by the path$name$p parameter
contained a file name that should have been the
name of a directory, but is not. (Except for the
last file, each file in a pathname must be a named
directory.

The call attempted the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached. The
call found that the volume did not contain named
files. This prevented the call from completing
physical attachment because the named file driver
was requested during logical attachment.

The fnode for the specified file is invalid, so the
file must be deleted.

While attempting to access the object file, this
call detected a hard I/0 error. This means that
another try is probably useless.

The Basic I/0 System does not currently have a

block of memory large enough to allow the Human
Interface to create the connection necessary to
allow this call to run to completion.

While attempting to access the object file, this
call found that the device was off-line. Operator
intervention is required. CSFORMATSEXCEPTION
returns the value ESIOSNOTSREADY when given this
code.

While attempting to access the object file, this
call detected a soft I/0 error. It tried again,
but was not successful. Another try might be
successful.

An unknown type of I/0 error occurred while this
call tried to access the object file.

Human Interface 8-41

CSSENDSCOMMAND

ESIOSWRPROT While attempting to obtain an input connection to
the object file, the call found that the volume
containing the file is write-protected.

ESLIMIT At least one of the following is true:

e The calling task's job has already reached its
object limit.

® The calling task's job , or the job's default
user object, is already involved in 255
(decimal) I/0 operations.

e The new I/0 job, or its default user, is already
involved in 255 (decimal) I/0 operations.

e The calling task's job is not an I/0 job. Refer
to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL for information about I/0 jobs.

ESLITERAL The call found a literal (quoted string) with no
closing quote while scanning the contents of the
command line pointed to by the line$p parameter.

ESLOGSNAMES - The command's pathname contains an explicit logical

NEXIST name but the call was unable to find this name in
the object directory of the local job, the global
job, or the root job.

ESLOG$NAMES - The pathname pointed to by the path$Sname$p parameter
SYNTAX contains a logical name. However, the logical name
contains an unmatched colon, is longer than 12
I characters, has zero (0) characters, or contains
invalid characters.
ESMEDIA The device containing the object file was off-line.
E$SMEM The memory available to the calling task's job, the

new 1/0 job, or the Basic I/0 System job is not
sufficient to complete the call.

ESNOSLOADERSMEM At least one of the following is true:

e The memory pool of the newly-created I/0 job
does not currently have a block of memory large
enough to allow the Loader to run.

e The memory pool of the Basic I/0 System's job

does not currently have a block of memory large
enough to allow the Application Loader to run.

Human Interface 8-42

CSSENDSCOMMANLE

ESNOSMEM The Application Loader attempted to load PIC or LTL
groups or segments. However, the memory pool of the
newly-created 1/0 job does not currently contain a
block of memory large enough to accommodate these
groups or segments. Refer to the iRMX 86 LOADER
REFERENCE MANUAL for an explanation of loading PIC or
LTL groups or segments.

ESNOSPREFIX The calling task's job does not have a valid default
prefix.
E$NOSSTART The object file represented by the command-pathname

does not specify the entry point for the program
being loaded.

ESNOT$CONNECTION The default$ci or default$co parameter is a token for
an object that is not a file connection.

ESNOTSLOGSNAME The command pathname contains a logical name. The
logical name of an object that is neither a device
connection nor a file connection.

ESNOSUSER The calling task's job does not have a valid default
user.
ESPARAM The Extended 1/0 System attempted the physical

attachment of a device containing the object file.
This device had formerly been only logically
attached. While attempting this, the Extended I/0
System found that the logical attachment referred to
a file driver (named, physical, or stream) that is
not configured into your system. Hence the physical
attachment is not possible.

ESPARSESTABLES The call found an error in an internal table.

ESPATHNAMES— The command's pathname contains invalid characters.
SYNTAX
ESRECSFORMAT At least one record in the object file contains a

record format error.

ESRECSLENGTH The object file contains a record that is longer than
the Loader's maximum record length. The Loader's
maximum record length is a parameter specified during
the configuration of the Loader. Refer to the
iRMX 86 CONFIGURATION GUIDE for details.

ESRECSTYPE At least one of the following is true:

e At least one record in the file being loaded is of
a type that the Application Loader cannot process.

e The Application Loader has encountered records in
a sequence that it cannot process.

Human Interface 8-43

CSSENDSCOMMAND

ESSEG$BOUNDS

ESSEPARATOR

E$STRING

ES$STRING$BUFFER

ESTIME

ESTYPE

The Application Loader created multiple segments in
which to load information. One of the data records
in the object file specified a load address outside
of the created segments.

The call found an invalid separator while scanning
the command line. The following is a list of the
invalid command separators: ><, <>, ||, |, [, and].

The size of the command's pathname exceeds the
length limit of 255 (decimal) characters.

The size of the command's pathname exceeds the size
of the command name buffer specified during the
configuration of the Human Interface.

The calling task's job was not created by the Human
Interface.

The command$conn parameter is token for an object
that is not a command connection.

Human Interface 8-44

C$SEND$COSRESPONSE

C$SENDSCOSRESPONSE, a message processing call, sends a message to :CO:
and reads a response from :CI:.

CALL RQ$CSSENDSCOSRESPONSE(response$p, response$max, messageSp,
except$ptr);

INPUT PARAMETERS

message$p A POINTER to a STRING containing the message to be
sent to :C0:. If zero, no message is sent.

response$max A WORD that specifies the length in bytes of the
string pointed to by the response$p parameter. If
response$Smax is zero, no response from :CI: will be
requested; control returns to the calling task
immediately.

OUTPUT PARAMETERS

response$p A POINTER to a STRING that receives the operator's
response from :CIL:.

except$ptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

When used with all its features, C$SENDSCOSRESPONSE sends the string
pointed to by message$p to :C0: and waits for a response from :CL:. It
places this response in the string pointed to by response$Sp. However, If
message$p 1is zero, C$SENDSCOSRESPONSE omits sending the message to :CO:;
if either response$max or response$p is zero, it does not wait for a
response from :CI:. Therefore, the operations performed by
CSSENDSCOSRESPONSE depend on the values of the message$p and response$max
parameters, as follows:

message$p response$max Action

zero zero Perform no I/0

zero non—zero Send no message, wait for input
non—-zero non—-zero Send message, wait for input
non-zero zZero Send message, don't wait

Human Interface 8-45

CSSENDSCOSRESPONSE

If CSSENDSCOSRESPONSE requests a response from :CI:, output from other
tasks can be displayed at :C0: while the system waits for a response from

:CIL:.

The main distinction between CS$SENDSCO$RESPONSE and CSSENDSEOSRESPONSE
calls is that CSSENDSEOSRESPONSE always sends messages to and receives
messages from the operator's terminal; input and output cannot be
redirected to another device. In contrast, CSSENDSCOSRESPONSE sends
messages to :C0: and receives messages from :CIL:; therefore, programs
such as SUBMIT can redirect this input and output.

EXCEPTION CODES
ESOK

E$CONTEXT

E$SCONNECTIONS-
OPEN

ESEXIST

E$FLUSHING

ESIOSHARD

ESTO$OPRINT

No exceptional conditions were encountered.

The calling task's job was not created by the Human
Interface.

At least one of the following is true:

¢ The connection to :CI: was not open for reading
or the connection to :CO: was not open for
writing.

® The connection to :CI: or :C0: was not open.

e The connection to :CI: or :CO: was opened with
ASOPEN rather than SSOPEN.

The token value for :CIlL: or :C0: is not a token for
an existing object.

The device containing the :CI: and :CO: files was
being detached.

While attempting to access the :CI: or :C0: file,
the Operating System detected a hard I/0 error.

While attempting to access the :CI: or :C0: file,
this call found that the device was off-line.
Operator intervention is required.
CSFORMATSEXCEPTICN returns the value ESIOSNOTSREADY
for this code.

Human Interface 8-46

CSSENDSCOSRESPONSE

ESIOSSOFT While attempting to access the :CI: or :CO: file,
this call detected a soft I/0 error. It tried
again, but was unsuccessful. Another try might be
successful.

E$TOSUNCLASS An unknown type of I/0 error occurred while this

call tried to access the :CI: or :C0: file.

ESIOSWRPROT While attempting to obtain a connection to the :CO:
file, this call found that the volume containing
the file is write—-protected.

ESLIMIT At least one of the following is true:

e The calling task's job has already reached its
object limit.

® The calling task's job, or the job's default
user object, is already involved in 255
(decimal) I/0 operations.

e The calling task's job was not created by the
Human Interface.

ESMEM The memory available to the calling task's job is
not sufficient to complete the call.

ESNOTSCONNECTION The call obtained a token for an object that should
have been a connection to :CI: or :CO: but was not
a file connection.

E$SPARAM The call attempted to write beyond the end of a
physical file.

E$SSPACE One of the following is true:
e The output volume is full.

e The call attempted to write beyond the end of a
physical file.

ESSTREAMSSPECIAL When attempting to read or write to :CI: or :C0:,
the Extended I/0 System issued an invalid stream
file request.

ESSUPPORT The connection to :CI: or :CO: was not created by
this job.

ESTIME The calling task's job was not created by the Human
Interface.

Human Interface 8-47

C$SENDSEOSRESPONSE

C$SENDSEOSRESPONSE, a message processing call, sends a message to and
reads a response from the operator's terminal.

CALL RQS$CSSEND$SEOSRESPONSE(response$p, response$max, message$p,
except$ptr);

INPUT PARAMETERS

messageS$p A POINTER to a STRING containing the message to be

sent to the operator's terminal. If zero, no
message is sent.

response$max A WORD that specifies the length in bytes of the
string pointed to by the response$p parameter. If
response$max is zero, no response from the
operator's terminal will be requested; control
returns to the calling task immediately.

OUTPUT PARAMETERS

responseS$p A POINTER to a STRING that receives the operator's
response from the terminal.

except$§ptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

When used with all its features, C$SSENDSEQOSRESPONSE sends the string
pointed to by message$p to the operator's terminal and waits for a
response from the operator. It places this response in the string
pointed to by response$p. However, if message$p is zero,
CSSENDSEOSRESPONSE omits sending the message to the operator; if either
response$max or response$p is zero, it does not wait for a response.
Therefore, the operations performed by C$SENDSEOSRESPONSE depend on the
values of the message$p and response$max parameters, as follows:

message$p response$max Action

zero zero Perform no I/0

zero non-zero Send no message, wait for input
non—-zero non—zero Send message, wait for input
non—zero zero Send message, don't wait

Human Interface 8-48

CSSENDSEOSRESPONSE

If CSSENDSEOSRESPONSE requests a response from the terminal, no other
output can be displayed at the terminal until C$SENDSEOSRESPONSE receives
a line terminator from the operator. However, the operator can choose to
ignore the displayed message by entering a line terminator only.

The main distinction between CS$SENDSCOSRESPONSE and C$SSENDSEOSRESPONSE

calls is that C$SENDSEOSRESPONSE always sends messages to and receives
messages from the operator's terminal; input and output cannot be

redirected to another device. 1In contrast, C$SENDSCOSRESPONSE sends
messages to :CO: and receives messages from :CIL:; therefore programs such
as SUBMIT can redirect this input and output.

EXCEPTION CODES

ESOK No exceptional conditions were encountered.
ESCONNECTIONS- At least one of the following is true:
OPEN

o The connection to :CL: was not open for reading
or the connection to :C0: was not open for
writing.

e The connection to :CI: or :CO0: was not open.

e The connection to :CI: or :CO: was opened with
ASOPEN rather than S$SOPEN.

ESCONTEXT The calling task's job was not created by the Human
Interface.

ESERRORS - Attempted to call SENDSEO$RESPONSE through an

OUTPUT invalid method.

ESEXIST The token value for :CI: or :CO: is not a token for

an existing object.

ESFLUSHING The device containing the :CI: and :CO: files was
being detached.

ESIOSOPRINT While attempting to access the terminal, this call
found that the device was off-line. Operator
intervention is required. CSFORMATSEXCEPTION

returns the value ESIOSNOTSREADY when given this
code.

Human Interface 8-49

CSSENDSEOSRESPONSE

ESLIMIT

ESMEM

ENOTCONNECTION

ESPARAM

ESSTREAMSSPECIAL

E$SUPPORT

ESTIME

At least one of the following is true:

® The calling task's job has already reached its
object limit.

e The calling task's job or the job's default user
object is already involved in 255 (decimal) I/0
operations.

o The calling task's job was not created by the
Human Interface.

The memory pool of the calling task's job does not
currently have block of memory large enough to
allow this system call to run to completion.

The call obtained a token for an object that should

have been a connection to :CI: or :CO: but was not
a file connection.

The call attempted to write beyond the end of a
physical file.

When attempting to read or write to :CI: or :CO:,
the Extended I/0 System issued an invalid stream
file request.

The connection to the terminal was not created by
this job.

The calling task's job was not created by the Human
Interface.

Human Interface 8-50

C$SETSPARSESBUFFER

CSSETSPARSESBUFFER, a command parsing call, permits parsing the contents

of a buffer other than the command line buffer whenever the parsing
system calls are used.

offset = RQSC$SETSPARSESBUFFER(buff$p, buff$max, except$ptr);

INPUT PARAMETERS

buff$p A POINTER to a buffer containing the text to be

parsed. If the buff$p is zero, the buffer used for
parsing reverts to the command line buffer and the
buff$max parameter is ignored.

buff$max A WORD that specifies the length in bytes of the
string pointed to by the buff$p parameter.

OUTPUT PARAMETERS

offset A WORD in which the Human Interface places the byte
offset from the start of the parsing buffer of the
last byte parsed in the previous parsing buffer.

except$ptr A POINTER to a WORD in which the Human Interface
returns a condition code.

DESCRIPTION

C$SSETSPARSE$BUFFER allows you to parse buffers other than the command
line. You can change buffers at will; you can also revert to the command
line parsing buffer by calling C$SETSPARSESBUFFER with buff$p=0.

However, only one parsing buffer per job can be active at any given time.

When called, CSETPARSESBUFFER sets the parsing pointer to the beginning
of the specified buffer. However, it also returns a value (in the offset
parameter) that identifies the last byte parsed in the previous parsing
buffer. This gives you the ability, when switching back to the previous
buffer, of positioning the parsing pointer to its previous position with
successive calls to CSGETS$CHAR.

Note that C$SETSPARSE$BUFFER does not affect the buffer from which

C$GETSINPUT$PATHNAME and C$GETSOUTPUTSPATHNAME retrieve pathnames. These
system calls always obtain their pathnames from the command line.

Human Interface 8-51

CSSETSPARSESBUFFER

EXCEPTION CODES

E$OK No exceptional conditlons were encountered.

E$CONTEXT The calling task's job is not an I/0 job. Refer to

the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE MANUAL
for information about I/0 jobs.

ESLIMIT At least one of the following is true:

e The calling task's job has already reached its
object limit.

e This indicates that the calling task's job was
not created by the Human Interface.

E$MEM The memory available to the calling task's job is
not sufficient to complete the call.

Kk

Human Interface 8-52

CHAPTER 9
CONFIGURATION OF
THE HUMAN INTERFACE

The Human Interface is a configurable part of the Operating System. It
contains several options that you can adjust to meet your specific
needs. To help you make configuration choices, Intel provides three
kinds of information:

e A list of configurable options
° Detailed information about the options
° Procedures to allow you to specify your choices

The balance of this chapter provides the first category of information.

To obtain the second and third categories of information, refer to the
iRMX 86 CONFIGURATION GUIDE.

Human Interface configuration consists of two parts: resident
configuration and nonresident configuration. Resident configuration
involves configuring the portion of the Human Interface that resides in
system memory at all times. This configuration takes place during the
configuration of the entire Operating System, when you adjust parameters,
include or exclude layers of the Operating System, and generate an
executable version of the Operating System. You cannot change the
resident configuration without reconfiguring the entire Operating

System. Nonresident configuration involves setting up an iRMX 86
directory structure and placing information about users into iRMX 86
files. The nonresident configuration information must be present when
the application system starts running, but you can modify the information
in the nonresident configuration files while the system is running. For
the new nonresident configuration to take effect, you must reinitialize
your application system.

RESIDENT CONFIGURATION

When you perform the resident Human Interface configuration, you can
modify parameters of the Human Interface that affect all Human Interface
users. These include:

] Information about the Human Interface's initial job, such as
minimum and maximum memory pool size and whether jobs created by
the Human Interface expect to use the 8087 Numeric Processor
Extension.

° Information about the initial user (or single user, if a

single-access system), including terminal name, user ID, maximum
priority, pathname of initial program, and default directory.

Human Interface 9-1

CONFIGURATION OF THE HUMAN INTERFACE

e Information about the jobs created by the Human Interface,
including minimum and maximum memory pool sizes.

° Initial size of the buffer that the Human Interface uses when
constructing commands.

¢ Maximum length of a command pathname.

° List of directories that the Human Interface automatically
searches, in order, when trying to find a command.

e Pathname of the directory assigned to the logical name :SYSTEM:

and a list of pathnames and the logical names that you want the
Human Interface to assign upon initializatiom.

e Whether the Human Interface includes an initial program that is
linked to the Human Interface and used for all operators
(resident initial program), or whether a separate initial program
is used for each operator. If you include a resident initial
program, you can also specify its pathname.

NONRESIDENT CONFIGURATION

The nonresident configuration involves specifying information about the
terminals and users that access a multi-access Human Interface.

For each terminal in the system you can specify:
e Terminal name
e Associated user name
e Memory partition size
¢ Maximum priority
e Pathname of the initial program
For each user in the system you can specify
e User ID
e Password
e Memory partition size
e Default prefix
e Pathname of the initial program

e Maximum job priority

k¥k X

Human Interface 9-2

APPENDIX A
HUMAN INTERFACE
TYPE DEFINITIONS

The type definitions used in Human Interface system call description are
defined in Table A-1.

Table A-1. Type Definitions

Type

Definition

BYTE
WORD

INTEGER

POINTER

SELECTOR

TOKEN

STRING

STRINGSTABLE

An unsigned, eight-bit, binary number.
An unsigned, two—-byte, binary number.

A signed, two—byte, binary number that is stored in
two's complement form.

Two consecutive words containing the base of a segment

and the offset into that segment. The offset must be
in the word having the lower address.

A 16-bit quantity that is equivalent to the base

portion of a pointer. Your PL/M compiler may not
support this data type.

A word or selector whose value identifies an object.
A TOKEN can be declared literally a WORD or a
SELECTOR, depending on your needs.

A sequence of consecutive bytes. The value contained
in the first byte is the number of bytes in the rest
of the string. Since a string contains only a single
byte in which to store the count, the maximum number
of characters that a string can contain is 255. A
zero count specifies a null string.

A count byte followed by a sequence of consecutive
strings. The value contained in the count byte is the
number of strings in the rest of the string table.
Since the string table contains only a single byte in
which to store the count, the maximum number of
strings that a string table can contain is 255. A
zero count specifies a null string table.

k%

Human Interface A-1

APPENDIX B
HUMAN INTERFACE
EXCEPTION CODES

Like other iRMX 86 software systems, the Human Interface returns a
condition code whenever a Human Interface call is invoked. If the call
executes without error, the Human Interface returns the code ESOK. When
an error 1s encountered during call execution, an exceptional condition
code is returned. The exceptional condition code may be returned either
from the Human Interface or from one of the other iRMX 86 layers residing
below it. The exception codes listed in Table B-1 are unique to the
Human Interface.

Table B-1. Human Interface Exception Codes

Programmer Errors:

ESPARSESTABLES 8080H
E$SJOBSTABLES 8081H
ESDEFAULT$SO 8083H
E$STRING 8084H
ESERRORSOUTPUT 8085H

Environmental Errors:

ES$OK 0000H
ESLITERAL 0080H
E$STRINGSBUFFER 0081H
E$SEPARATOR 0082H
E$SCONTINUED 0083H
E$INVALID$NUMERIC 0084H
ESLIST 0085H
ESWILDCARD 0086H
E$PREPOSITION 0087H
E$SPATH 0088H
E$CONTROLSC 0089H
E$CONTROL 008AH
E$UNMATCHEDSLISTS 008BH
E$DATE 008CH
ENOPARAMETER 008DH
E$VERSION 008EH
EGETPATHSORDER 008FH

Human Interface B-1

HUMAN INTERFACE EXCEPTION CODES

The values of condition codes fall into ranges based on the iRMX 86 layer
which first detects the condition. Table B-2 lists the layers and their
respective ranges, with numeric values expressed in hexadecimal

notation. Table B-3 lists all the exception codes for the operating
system. All the exceptlon codes are listed to their type (environmental
errors, Nucleus programming errors, etc.). For more information on the
exception codes, consult the manual which describes the layer from which
the exception code originates.

Table B-2. Condition Code Ranges

Environmental Programming
Layer Conditions Errors
Nucleus OH to 1LFH 8000H to 801FH
I I/0 Systems 20H to S5FH 8020H to 805FH
Application Loader 60H to VFH 8060H to 807FH
Human Interface 80H to AFH 8080H to 80AFH
Universal Development COH to DFH 80COH to 80DFH
Interface
Reserved for Intel * EOH to 3FFFH 80EOH to BFFFH
Reserved for users 4000H to 7FFFH COOOH to FFFFH
Note: * Exception codes in this range (130 to 14FH; 8130 to 814FH)
could occur if you are a user of an iRMX system with iMMX 800
software. Refer to iMMX 800 MULTIBUS MESSAGE EXCHANGE
REFERENCE MANUAL for an explanation of exception conditions
within this range.

Human Interface B-2

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes

Numeric Code
Category/
Mnemonic Meaning Hex Decimal
ESOK The most recent system call was
successful. OH 0
Nucleus Environmental Conditions
ESTIME A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied. 1H 1
ESMEM There is not sufficient memory avail-
able to satisfy a task's request. 2H 2
ESBUSY Another task currently has access to the
data protected by a region. 3H 3
ESLIMIT A task attempted an operation which,
if it had been successful, would have
violated a Nucleus—-enforced limit. 41 4
ESCONTEXT A system call was issued out of context
or the Operating System was asked to
perform an impossible operation. 5H 5
ESEXIST A token parameter has a value which is
not the token of an existing object. 6H 6
ESSTATE A task attempted an operation which
would have caused an impossible
transition of a task's state. 74 7
ESNOTSCON- This system call is not part of the
FIGURED present configuration. 8H 8
ESINTER- An interrupt task has accumulated the
RUPTSSAT- maximum allowable number of SIGNALSIN-
URATION TERRUPT requests. 9H 9
ESINTER~- An interrupt task has accumulated more
RUPTSOV~—- than the maximum allowable amount of
ERFLOW SIGNALSINTERRUPT requests. OAH 10

Human Interface B-3

Table B-3.

HUMAN INTERFACE EXCEPTION CODES

Conditions And Their Codes (continued)

Numeric Code

Category/
Mnemonic Meaning Hex Decimal
I/0 System Environmental Conditions
ESFEXIST The specified file already exists. 200 32
E$FNEXIST The specified file deoes not exist. 21H 33
ESDEVFD The device driver and file driver are
incompatible. 22H 34
E$SUPPORT The combination of parameters entered
is not supported. 23H 35
ESEMPTYS- The specified entry in a directory file
ENTRY is empty. 241 36
ESDIRSEND The specified directory entry index is
beyond the end of the directory file. 25H 37
ESFACCESS The connection does not have the correct
access to the file. 261 38
ESFTYPE The requested operation is not valid for
this file type. 27H 39
E$SHARE The requested operation attempted an
improper kind of file sharing. 28H 40
ESSPACE There 1s no space left on the volume. 29H 41
ESIDDR An invalid device driver request
occurred. 2AH 42
ESIO An I/0 error occurred. 2BH 43
ESFLUSHING The connection specified in the call was
deleted before the operation completed. 2CH 44
E$ILLVOL The device contains an invalid or
improperly-formatted volume. 2DH 45
ESDEVS$OFF- The device being accessed is now offline. 2EH 46
LINE
ES$IFDR An invalid file driver request occurred. 2FH 47

Human Interface B-4

Table B-3.

HUMAN INTERFACE EXCEPTION CODES

Conditions And Their Codes (continued)

Numeric Code

Category/
Mnemonic Meaning Hex Decimal
1/0 System Environmental Conditions (continued)
ESFRAGMENT- The file is too fragmented to be
ATION extended. 301 48
ESDIRSNOTS~ The call is attempting to delete a
EMPTY directory that is not empty. 31H 49
ESNOTSFILES— The connection parameter is not a
CONN file connection, but it should be. 32H 50
ESNOTSDEV- The connection parameter 1s not a device
ICESCONN connection, but it should be. 331 51
ESCONNSNOTS—- The connection is either closed or it is
OPEN open for access not compatible with the
current requeste. 341 52
ESCONNSOPEN The task attempted to open a connection
that is already open. 35H 53
ESBUFFEREDS- The specified connection was opened by
CONN the EIOS, which specified one or more
buffers for the connection. 36H 54
ESOUTSTAND—- A soft detach was specified, but
INGSCONNS connections to the device still exist. 37H 55
ESALREADYS$- The specified device is already attached.
ATTACHED 38H 56
ESDEVS— The file gpecified is on a device that
DETACHING the Operating System is detaching. 391 57
ESNOTS$SAMES— The existing pathname and the new path-
DEVICE name refer to different devices. You
cannot simultaneously rename a file and
move it to another device. 3AH 58
ESTLLOGICALS- The call is attempting to rename a di-
RENAME rectory to a new path containing itself. 384 59

Human Interface B-5

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)
Numeric Code
Category/
Mnemonic Meaning Hex Decimal
I/0 System Environmental Conditions (continued)
ESSTREAMS— A stream file requesi 1s out of context.
SPECIAL Either it is a query request and another
query request is already queued, or it is
a satlsfy request and either the request
queue is empty or a query request is
queued. 3CH 60
ESINVALIDS- The connection refers to a file with an
FNODE invalid fnode. You should delete this
file. 3pH 61
ESPATHNAME $— The specified pathname contains invalid
SYNTAX characters. 3EH 62
ESFNODESLIMIT The volume already contains the maximum
number of files. No more fnodes are
available for new files. 3F 63
ESLOGSNAMES— The specified pathname starts with a
SYNTAX colon (:), but it does not contain a
second, matching colon. 40H 64
E$IOMEM The Basic I/0 System has insufficient
memory to process a request. 424 66
ESMEDIA The device containing a specified file
is not on-line. 441 68
ESLOGSNAME$- The Extended I/0 System was unable to
NEXIST find the specified logical name in the
object directories that it checks. 45H 69
ESNOTSOWNER The user who attempted to detach the
device is not the owner of the device. 46H 70
ES$I10$J0B The Extended I/0 System cannot create an
I/0 job because the size specified for
the object directory 1s too small. 47H 71
ESTOSUNCLASS An unknown type of I/0 error occurred. 50H 80

Human Interface B—-6

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)
Numeric Code
Category/
Mnemonic Meaning Hex Decimal
1/0 System Environmental Conditions (continued)
ESIO$SOFT A soft 1/0 error occurred. A retry might
be successful. 51H 81
ES$STOSHARD A hard 1/0 error occurred. A retry is
probably useless. 52H 82
ESTOSOPRINT The device was off-line. Operator
intervention is required. 531 83
ESIOSWRPROT The volume is write—protected. 54H 84
ESTIOSNOSDATA A tape drive attempted to read the next
record, but it found no data 554 85
ESIOSMODE A tape drive attempted a read (write)
operation before the previous write
(read) completed 56H 86
Application Loader Environmental Conditions
E$BADSGROUP The group definition record contains an
invalid group component. 61H 97
ESBADSHEADER The object file contains an invalid
header record. 62H 98H
ESBADSSEGDEF The object file contains an invalid
segment definition record. 63H 99H
ESCHECKSUM A checksum error occurred while reading
a record. 64H 100
ESEOF The Application Loader encountered an
unexpected end-of-file while reading
a record. 65H 101
ESFIXUP The file contains an invalid fixup
record, 66H 102
ESNOSLOADERS- There is insufficient memory to satisfy
MEM the memory requirements of the
Application Loader. 67H 103

Human Interface B-7

Table B-3 .

HUMAN INTERFACE EXCEPTION CODES

Conditions And Their Codes (continued)

Numeric Code

Category/
Mnemonic Meaning Hex Decimal
Application Loader Environmental Conditions (continued)
E$SNOSMEM There 1s insufficient memory to create
PIC/LTL segments. 68H 104
ESRECSFORMAT The file contains an invalid record
format. 69H 105
ESRECSLENGTH The record length exceeds the configured
size of the Application Loader buffer. 6AH 106
ESRECSTYPE The file contains an invalid record type.| 6BH 107
ESNOSSTART The Application Loader could not find the
start address. 6CH 108
ESJOBSSIZE The maximum memory-pool size of the job
being loaded is smaller than the amount
of memory required to load its object
file. 6DH 109
ESOVERLAY The overlay name does not match any of
the overlay module names. 6EH 110
ESLOADERS— The file requires features not supported
SUPPORT by the Application Loader as configured. 6FH 111
E$SEGS$BOUNDS One of the data records in a module
loaded by the Application Loader referred
to an address outside the segment created
for it. 70H 112
Human Interface Environmental Conditions
ESLITERAL The parsing buffer contains a literal
with no closing quote. 80H 128
ESSTRINGSBUF- The string to be returned exceeds the
FER size of the buffer the user provided in
the call. 81H 129
E$SEPARATOR The parsing buffer ccntains a command
separator. 82H 130

Human Interface B-8

Table B-3.

HUMAN INTERFACE EXCEPTION CODES

Conditions And Their Codes (continued)

Category/
Mnemonic

Meaning

Numeric Code

Hex Decimal

Human Interface Envirommental Conditions (continued)

ESCONTINUED The parse buffer contains a continuation
character. 83H 131
ESINVALIDS- A numeric value contains invalid
NUMERIC characters. 84H 132
ESLIST A value in the value list is missing. 85H 133
ESWILDCARD A wild-card character appears in an
invalid context, such as in an inter-—
mediate component of a pathname. 86H 134
ESPREPOSITION The command line contains an invalid
preposition. 87H 135
ESPATH The command line contains an invalid
pathname. 88H 136
ESCONTROLSC The user typed a CONTROL-C to abort the
command . 89H 137
ESCONTROL The command line contains an invalid
control. 8AH 138
ESUNMATCHEDS- The number of files in the input and
LISTS output pathname lists is not the same. 8BH 139
E$DATE The operator entered an invalid date. 8CH 140
ES$SNOSPARAM~ A command expected parameters, but
ETERS the operator didn't supply any. 8DH 141
ESVERSION The Human Interface is not compatible
with the version of the command the
operator invoked. 8EH 142
ESGETSPATHS - A command called CSGETS$OUTPUTS$PATHNAME
ORDER before calling CSGETSINPUTSPATHNAME 8FH 143
UDI Environmental Conditions
ESUNKNOWNSEXIT| The program exited normally. 0COH 192

Human Interface B-9

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)

Numeric Code

condition.

Category/
Mnemonic Meaning Hex Decimal
UDI Environmental Conditions (continued)
ESWARNINGSEXIT | The program issued warning messages. O0C1H 193
ESERRORSEXIT The program detected errors. 0C2H 194
ESFATALSEXIT A fatal error occurred in the program. | OC3H 195
ESABORTSEXIT The Operating System aborted the 0Cc4H 196
program.
ESUDISINTERNAL |A UDI internal error occurred. 0C5H 197
Nucleus Programmer Errors
* E$ZEROS- A task attempted a divide in which
DIVIDE the quotient was larger than 16 bits. | 8000H 32768
* ESOVERFLOW An overflow interrupt occurred. 8001H 32769
ESTYPE A token parameter referred to an
existing object that is not of the
required type. 80021 32770
ESPARAM A parameter that is neither a token
nor an offset has an invalid value. 8004H 32772
E$BADSCALL An OS extension received an invalid
function code. 8005H 32773
* ESARRAYS- Hardware or software has detected an
BOUNDS array overflow. 8006H 32774
* ESNDP$STATUS | A Numeric Processor Extension (NPX)
error has occurred. 0S extensions
can return the status of the NPX to
the exception handler. 8007H 32775
* ESTLLEGAL$~ | The iAPX 186 or 286 processor tried 8008H 32776
OPCODE to execute an invalid instruction
* For iAPX 286-based systems, a CPU trap caused this exceptional

Human Interface B-10

Table B-3.

HUMAN INTERFACE EXCEPTION CODES

Conditions And Their Codes (continued)

Category/
Mnemonic

Meaning

Numeric Code

Hex Decimal

Nucleus Programmer Errors (continued)

* ESEMULATORS-

The 1APX 186 or 286 processor tried

TRAP to execute an ESC instruction with
the "emulator" bit set in the
relocation register (iAPX 186) or
the machine status word (iAPX 286). 80091 32777
* ESINTERRUPTS$—| An iAPX 286 LIDT instruction changed
TABLESLIMIT| the interrupt table limit to a value
between 20H and 42H. 800AH 32778
* ESCPUXFERS- For an 1iAPX 286 processor, the
DATASLIMIT | processor extension data transfer
exceeded the offset of OFFFFH in a
segment. 800BH 32779
* E$SEGSWRAP$— | For an iAPX 286 processor, either a
AROUND word operation attempted a segment
wraparound at offset OFFFFH; or a
PUSH, CALL, or INT instruction
attempted to execute while SP = 1, 800CH 32780
ESCHECKSEX- A Pascal task has exceeded the bounds
CEPTION of a CASE statement. 8017H 32791
I/0 System Programmer Errors
ESNOUSER No default user is defined. 80214 32801
ESNOPREFIX No default prefix is defined. 8022H 32802
ESNOTSLOGSNAME | The specified object is not a device
connection or file connection. 8040H 32832
ESNOTSDEVICE A token parameter referred to an
existing object that is not, but
should be, a device connection. 8041H 32833

* For iAPX 286-based systems, a CPU trap caused this exceptional

condition.

Human Interface B-11

HUMAN INTERFACE EXCEPTION CODES

Table B-3. Conditions And Their Codes (continued)

Numeric Code

Category/
Mnemonic Meaning Hex Decimal
1/0 System Programmer Lirrors (continued)
ESNOTSCON- A token parameter referred to an
NECTION existing object that is not, but
should be, a file connection. 8042H 32834
Application Loader Programmer Error
E$SJOBSPARAM The maximum memory pool size specified
for the job is less than the minimum
memory pool size specified. 8060H 32864
Human Interface Programmer Errors
ESPARSESTABLES | There is an error in the internal
parse tables. 8080H 32896
E$SJOBSTABLES An internal Human Interface table
was overwritten, causing it to
contain an invalid value. 8081H 32897
ESDEFAULTSSO The default output name string
is invalid. 8083H 32898
E$STRING The pathname to be returned exceeds
255 characters in length. 8084H 32899
ESERRORSOUTPUT | The command invoked by C$SEND$COMMAND
includes a call to C$3ENDSEOSRESPONSE,
but the command connection does not
permit C$SENDSEOSRESFONSE calls. 8085H 32900
UDI Programmer Errors
ESRESERVES— The calling program tried to reserve
PARAM memory for more than 12 files or
buffers. 80Cé6H 32966
ESOPEN$PARAM The calling program requested more
than two buffers when opening a file. 80C7H 32967

kkk

Human Interface B-12

APPENDIX C
STRING TABLE FORMAT

The iRMX 86 Operating System uses structures called strings to store
groups of ASCII characters (such as pathnames). The Operating System
assumes a string to be a series of consecutive bytes broken into two
portions: a count byte and text bytes. The first byte in the string is
the count byte; its value 1s set to the number of bytes in text portion
of the string. The text bytes contain the substance of the string.

The Operating System also uses another structure called a string table.

A string table consists of a count byte and a series of consecutive
strings. As with the string, the first byte in the string table is the
count byte; its value is set to the number of strings in the string

table. The diagram in Figure C-1 shows the stringStable parameter format.

BYTE: number of entries (n)
STRING: string 1

STRING: string 2

STRING: string 3

STRING: stringn

Extra space, if any

1119

Figure C-1. String Table Format

Human Interface C-1

STRING TABLE FORMAT

EXAMPLE:

Assume you wish to generate a string table containing the words HAPPY,
GLAD, and SAD. The following declarations would be needed:

DECLARE
pStable(*) BYTE DATA(3, /* NUMBER OF STRINGS */
5, "HAPPY',
4,'GLAD"',
3,'SAD');

k¥

Human Interface C-2

INDEX

Primary references are underscored.

AFTER preposition 3-2
ampersand (&) 3-3

Basic I/0 System 2-1
BYTE data type A-1l

CSCREATESCOMMANDSCONNECTION system call 2-
CSDELETES$SCOMMANDS$CONNECTION system call 2-
C$FORMATSEXCEPTION system call 4-4, 8-9 T
CSGETCHAR system call 3-15, 3-17, 8-11
CSGET$SCOMMANDSNAME system call 3-17, 8-13
CSGET$INPUT$SCONNECTION system call 3-6, 4-1
C$SGETSINPUTSPATHNAME system call 1-4, 2-3,
C$GETSOUTPUTSCONNECTION system call 3-6, 4
C$SGET$SOUTPUTSPATHNAME system call 1-4, 2-3
CSGETSPARAMATER system call 2-3, 3-10, 7-1
changing the parsing buffer 3-15
characters 8-11

:CI: 8-45
CLI 1-1, 2-2
:CO: 8-45

command connection 2-2, 8-38
creating 5-1, 8-4
deleting 8-8
example 5-3
sending commands 8-38
command creation 7-1
command line
interpreter (CLI) 1-1, 2-2
parsing 3-1, 7-1
structure 3-1
command name 3-1, 3-17, 8-13
command processing system calls 5-1
example 5-3
commands 1-2
comment characters 3-4
communicating with the terminal 2-1, 4-3
condition codes B-1
configuration 9-1
connections 4~1
input 4-1, 8-15
output 4-1, 8-25
continuation characters 3-3, 8-38
continuation lines 2-2

Human Interface Index-1

INDEX (continued)

Control-C handling 6-1

creating command connections 5-1, 8-4

creating commands 7-1

CSSENDSCOSRESPONSE system call 2-2, 4-3, 8-45
C$SENDSCOMMAND system call 2-2, 2-3, 3-3, 5-2, 8-38
C$SENDSEOSRESPONSE system call 4-3, 8-48
C$SETSPARSESBUFFER system call 2-3, 3-16, 8-51
customized initial program 2-3

data types A-1

deleting command connections 5-3, 8-8
dictionary of system calls 8-2
displaying exception codes 4-4, 8-9
dynamic memory size 7-4

errors B-1

exception code formatting 4-4, 8-9
exception codes B-1

EXIT$1I0$JOB system call 2-3, 7-2
Extended I/0 System 2-1

extension objects 7-2

I/0 and message processing 4-1
INCLUDE files 7-2
initial program 1-1, 1-3, 2-2
customized 2-3
standard 2-2
inpath-1list 3-2
input
connections 4-1, 8-15
pathnames 8-20
INTEGER data type A-1l
interactive job 1-1

keyword 3-3, 3-11, 8-34

LINK86 command 7-3
LOC86 command 7-4
logon file 2-2

message processing system calls 4-1
messages 8-9, 8-15, 8-26
multi-access support 1-3, 2-1

nonresident configuration 9-2
nonstandard command lines 3-13

object code 7-3
obtaining a command name 3-17
outpath-list 3-2
output
connection 4-1, 8-25
pathnames 8-31
OVER preposition 3-2

Human Interface Index-2

INDEX (continued)

overview 1-1

parameters 3-3, 8-34
parsing
buffer 3-1, 3-15, 8-51
commands 3-1, 7-1
input and output pathnames 3-5
nonstandard command lines 3-13
parameters 3-10
pathnames
input 8-20
output 8-31
POINTER data type A-l
preposition 3-2, 3-11, 8-31, 8-35
sPROG: directory 2-2
program control 6-1

quoting characters (' or ") 3-4

R?LOGON file 2-2

ranges of exception codes B-2
regions 7-2

resident configuration 9-1
restricted system calls 7-2

S$SPECIAL system call 6-2
SELECTOR data type A-1
semaphore 6-1
semicolon (;) 3-4
sending command lines to command connections 5-2
SETSEXCEPTIONSHANDLER system call 4-4
stack size 7-4
standard initial program 1-3, 2-2
stream file 8-5
STRINGSTABLE data type A-1l, C-1
strings 3-6, A-l
structure of command lines 3-1
supplied commands 1-2
supporting multiple terminals 2-1
system call dictionary 8-2
system calls 1-2, 8-1
command-parsing 1-2, 3-1
command-processing 1-2, 5-1
I/0 and message—processing 1-2, 4-1
program control 1-2, 6-1
system manager 1-3

terminal
communications 4-3
messages 8-45, 8-48
terminating the command 7-2
TO preposition 3-2
TOKEN data type A-1
type definitions A-1

Human Interface Index-3

INDEX (continued)

user ID 1-3

wild-card characters 1-4, 3-8, 8-20
WORD data type A-1

Tk
Human Interface Index-4

iIRMX™86 UNIVERSAL DEVELOPMENT INTERFACE
REFERENCE MANUAL

CONTENTS

PAGE

CHAPTER 1
INTRODUCTION TO THE UNIVERSAL DEVELOPMENT INTERFACE.scecscssssscccs 1-1

CHAPTER 2

UDI SYSTEM CALLS IN THE iRMX" 86 ENVIRONMENT

System Call Dictionary.-ooooooo.oo-ooooooocooooooooooo.ooooooooo-.o

OVEIViEWe oo voeo0000000600000060000600s0s0606060ossssessscesssnssssssossscssse
Memory Management System CallSeeescesncesscecscccssscscscscscscsccsscs
File—Handling System CallSeesesocossesnscsccsssssscsscsscsscscssossosssosscs
Condition Codes and Exception Handling CallSeeecscccccsccccccccsrs

Making UDI Calls from Programs in PL/M—86 and ASM86scecsccccssccescs
Example PL/M-86 Calling SequencCeeecscesscescsessescscsscssssssosccs
Example ASM86 Calling SeqUENCEseesssesssssscssssessossssscsssscnses

Descriptions of System Calls.oooooootQcmootonooo.ooo.ocooo.ooocco-o
DQsALLOCATE.....................I'..00.......l......'..l.....'...
DQ$ATTACH..........0'.l0...."..0..'.l'...'.........O.............
DQSCHANGESACCESSecosessoososscssscscssscacscssssssssssssssascnccns
DQscHANGEsEXTENSION..................O..l.............0.'.......'

DQSCLOSE.............‘.0................0........................

NN
i

I
= Oo0oNNNNOYULE BB

i
— =
SN

[|
(@

DQ$CREATE.......l..............0.....O..O........................

DQ$DECODE$EXCEPTION...l...............0'.......0........'........
DQ$DECODE$TIME...............0.'..Q.OD..........'..........I..... 2—16

NN DNNNDNNDDNDND NN NN
J

I

DQ$DELETE.-00..ooo..oo.‘o.oooo.o.c.ol.OoooOooooo.ooonoooooocooooo 2-18
DQsDETACHoo.oooc.ooo.oo'oo-ooooooooo-n.-oooooooooaooooo.ooo-ooooo 2-19
DQ$EXIT....................--...-...-............................ 2—20
DQSFILESINFO........--ouooo--o-uooooo-ooooooo.oooaooooo--oooooooo 2-22
DQsFREE-ooooooooooooo--ooooooc-oooooo'aoooooo.ooooo.oo-ooooo..c-o 2-25

DQGETARGUMENT.....-..'..00.o..o.o0O00.'oooooo..o.ooooooooo...o0 2-26
DQSGETsCONNECTION$STATUS'..ooooooooooooooooo'oonvooooooooooooooo- 2—28
DQGETEXCEPTION$HANDLER.oo----oooono-ooooooooooooooo-o.o-no.oooo 2-30
DQGETSIZE.-........0...onoo-uo-ooo.ooocoooon0.-.0.0........-... 2_31
DQGETSYSTEM$ID-0.aooooooooooonoooooooooco.ooooooooooo.ooo..o..o 2—32
DQsGETSTIMEoo-.oooon.ooo.-oo.ooooo.oooo.oo-oooooo-a.ooo-.ooooo-oo 2_33

DQsoPEN.ooocoooo.00.00000ooooco..oo.oo.oo.o.otoo'o..o'ooo..l.oooo 2-34
DQsOVERLAYoooo.o..o.oooooooooco-oo-ooooo.oooo-ooa-o-o..ooo-ooo.o. 2-37
DQsREAD.nou.ooooo...QQ..000O0oooooo.00.00o.t.o.oo.ooootoo..ocooo0 2-39
DQsRENAME.C..O......O..O..O.....O.......QI...000.......00........ 2—41
DQ$RESERVE$IO$MEMORY.ooooocoo.oonoo.o.oocooooooooooo-o.oo.o...oco 2-42
DQ$SEEK.o..ooooooooooooo-oocoo.oooooo-ooooooocoooooooooooc.o-oooo 2=44

DQ$SPECIAL-0o'o-ooonooooooooo.ooooooooooooooooooo-oo.ooooo.o.o-oc 2_46
DQ$SWITCH$BUFFER00009.oooooo-oooooo.oooooooooooooooooo.o-o-ooo.oo 2-49
DQ$TRAP$CC.....ooooo-ooooouoooooo.ooooooooooooooooooonoooooooo-oo 2-51
DQ$TRAP$EXCEPTION.0'.0'...0...0...0..'....O.....D'...l......0.... 2-52
DQsTRUNCATEonoooooo-oooooooooooocuoonoooooo'oootoooooooooo.-oo-o- 2-53

DstRITEOQOOOOOOOOOl..lO.............O.....l...'.....0..0.0.....0 2—54

UDI iii

CONTENTS
(continued)

PAGE

CHAPTER 3
UDI EXAMPLE

The Example Listingo-.....-.............---........................ 3-1
Compiling and Linkingio.oooooooooooooooooou-c-o.ooooooooooo-ooooooo 3-5

APPENDIX A

DATA TYPES.C................'.....'.'.Q...............0..........‘0 A-l

APPENDIX B
iRI"IXm 86 EXCEPTION CODES‘..............'....I..l................... B—l

2-1,
B‘lo

TABLES

System Call Dictionaryoonoo-.o..oooo-o-o-aoo-..oo.'o-o---oo 2-1
Exception Code Ranges......................-.-............. B-1

FIGURES

The Application—-Software-Hardware Modeleeseeeocosccosoccvcncs 1-1
Chronology of System CallSececesssescescssscnscscsccsssnssoes 24

kkhk

UDI iv

CHAPTERT1
INTRODUCTION TO THE

UNIVERSAL DEVELOPMENT INTERFACE

Intel's Universal Development Interface (known in this manual as the UDI)
is a set of system calls that is compatible with each of Intel's
operating systems. If an application system makes UDI system calls but
no explicit calls to the resident Intel operating system, the application
can be transported between operating systems. Figure 1-1 illustrates the
relationship between application code, the processing hardware, and the

layers of software that lie in between.

APPLICATION CODE IN INTEL APPLICATION LANGUAGE(S)
| | L
A 4
RUN-TIME LIBRARIES
FOR
NON-MATHEMATICAL FEATURES
i |
N 4 8087
OR
UDI LIBRARIES 80287
SUPPORT
. LIBRARY
A 4
OPERATING SYSTEM
L || | |
v A 4 L 4
8087
IAPX 86, 88, 186, 188 OR 206 OR
80287

x-636

Figure 1-1. The Application-Software-Hardware Model

UDI 1-1

INTRODUCTION TO THE UNIVERSAL DEVELOPMENT INTERFACE

In Figure 1-1, the downward arrows represent command flow and data flow
from the application code down to the hardware, where the commands are
ultimately executed. (Not shown in the figure is another set of arrows
showing the upward flow of data from the hardware to the application
code.) Note that one of the downward arrows is crossed out, signifying
that the application code does not make direct calls to the operating
systems Rather, all interaction between the application code and the
operating system is done through the UDI software.

By letting the UDI serve as the link between an application and the
operating system, it is possible to switch operating systems simply by
changing the interface between the UDI and the operating system. In
other words, all that is necessary to make an application transportable
between operating system environments {s a UDI library for each operating
systems This library always presents the same interface to the
application, but its interface with the operating system is designed
specifically and exclusively for that operating system. Intel provides
UDI libraries for the iRMX 86, iRMX 88, Series III, and Series IV
operating systems.

The UDI system calls, while presenting a standard interface to user
programs, behave somewhat differently when used in different operating
system environments. The reason for this is that the operating systems
each have many unique characteristics, and some of them are reflected in
the results of the UDI calls. For information about the UDI and the
minor behavioral differences it exhibit's between operating systems, refer
to the RUN-TIME SUPPORT MANUAL FOR 1APX 86,88 APPLICATIONS.

The next chapter discusses the UDI in the context of the iRMX 86
Operating System.

k%%

UDI 1-2

CHAPTER 2
- UDI SYSTEM CALLS IN
THE iRMX™ 86 ENVIRONMENT

The purpose of this chapter is to describe the requirements and behavior
of UDI system calls in the iRMX 86 environment.

SYSTEM CALL DICTIONARY

This section presents, in Table 2-1, a list of the UDI calls, arranged by

functional category. Each entry in the list includes the name of the
call, a concise description of its purpose, and its page number in this
chapter.

Table 2-1. System Call Dictionary

SYSTEM CALL FUNCTION PERFORMED PAGE

PROGRAM-CONTROL CALLS

DQSEXIT Exits from the current application job. 2-20
DQSOVERLAY Causes the specified overlay to be loaded. 2-37
DQSTRAPSCC Assigns Control-C procedure. 2-51

MEMORY-MANAGEMENT CALLS

DQSALLOCATE Requests a memory segment of a specified size. 2-8

DQSFREE Returns a memory segment to the system. 2-25

DQSGETSSIZE Returns the size of a memory segment. 2-31
DQSRESERVES - | Requests memory to be set aside for 2-42
IOSMEMORY overhead to be incurred by I/O operations.

UDI 2~1

UDI SYSTEM CALLS IN THE iRMX™ 86 ENVIRONMENT

Table 2-1. System Call Dictionary (continued)

SYSTEM CALL FUNCTION PERFORMED PAGE

FILE-HANDLING CALLS

DQSATTACH Creates a connection to a file. 2-9
DQSCHANGES - Changes the access rights associated with a 2-10
ACCESS file or directory.
DQS$SCHANGES - Changes the extension of a file name. 2-12
EXTENSION
DQ$SCLOSE Closes a file connection. 2-13
DQSCREATE Creates a file. 2-14
DQSDELETE Deletes a file. 2-18
DQSDETACH Closes a file and deletes a connection to it. 2-19
DQSFILESINFO Returns data about a file connection. 2-22
DQSGETS$CON- Returns the status of a file. 2-28
NECTIONS STATUS
DQSOPEN Opens a file connect:ion. 2-34
DQSREAD Reads the next sequence of bytes from a file. 2-39
DQSRENAME Renames a file. 2-41
DQS$SSEEK Moves the current position pointer of a file. 2-44
DQ$SPECIAL Sets the line-edit mode for a terminal. 2-46
DQSTRUNCATE Truncates a file to a specified length. 2-53
DQSWRITE Writes a sequence of bytes to a file. 2-54

UDI 2-2

UDI SYSTEM CALLS IN THE iRMX™ 86 ENVIRONMENT

Table 2-1. System Call Dictionary (continued)

SYSTEM CALL FUNCTION PERFORMED PAGE
EXCEPTION-HANDLING CALLS

DQSDECODES - Converts an numeric exception code into its 2~15
EXCEPTION equivalent mnemonic.

DQSGETSEXCEPT- Returns a POINTER to the current exception 2-30
IONSHANDLER handler.

DQSTRAPS - Identifies a custom exception handler to 2-52
EXCEPTION replace the current handler.

UTILITY CALLS
DQSDECODESTIME Returns system time and date in both binary 2-16
and ASCII-character format.

DQSGETSARGUMENT | Returns an argument from a command line. 2-26
DQSGETS - Returns the name of the underlying 2-37
SYSTEMSID operating system supporting the UDI.

DQSGETSTIME (Obsolete: included for compatability.) 2-33

DQ$SWITCHSBUFFER | Selects a new buffer to contain command 2-49

lines.

UDI 2-3

UDI SYSTEM CALLS IN THE iRMX™ 86 ENVIRONMENT

OVERVIEW

This section discusses the functions of the many of the system calls,
highlighting the interrelationships, if any, among the calls in the
functional groups of Table 2-1.

MEMORY MANAGEMENT SYSTEM CALLS

When the iRMX 86 Operating System loads and runs a program, the program is
allocated memory, in an amount that depends upon how the program was
configureds The portion of memory not occupied by loaded code and data --
the free space pool —- is available to the program dynamically, that is,
while the program runs. The Operating System manages memory as segments
that programs can obtain, use, and return.

Programs can use the UDI system calls named DQSALLOCATE and DQSFREE to get
memory segments from the pool, and to return segments to the pool,

respectively. They can also call DQSGETSSIZE to receive information about
allocated memory segments,

FILE-HANDLING SYSTEM CALLS

About one~half of UDI system calls are used to manipulate files. Figure
2—-1 shows the chronological relationships among the most frequently used
file~handling system calls.

ATTACH

',_J

READ WRITE
OPEN SEEK
TRUNCATE

Y

CLOSE DETACH - DELETE

x-327

L_\'

CREATE

Figure 2-1. Chronology Of System Calls

UDI 2-4

UDI SYSTEM CALLS IN THE iRMX™ 86 ENVIRONMENT

The key to using iRMX 86 files is the connection. A program wanting to
use a file first obtains (a token for) a connection to the file and then
uses the connection to perform operations on the files Other programs can
simultaneously have their own connections to the same file. Each program
having a connection to a file uses its connection as if it has exclusive
access to the file.

A program obtains a connection by calling DQSATTACH (if the file already

exists) or DQSCREATE (to create a new file). When the program no longer

needs the connection, it can call DQSDETACH to delete the connection. To
delete both the connection and the file, the program calls DQSDELETE.

Once a program has a connection, it can call DQSOPEN to prepare the
connection for input/output operations. The program performs input or
output operations by calling DQSREAD and DQSWRITE. It can move the file
pointer associated with the connection by calling DQS$SEEK. When the
program has finished doing input and output to the file, it can close the
connection by calling DQ$CLOSE. Note that the program opens and closes
the connection, not the file. Unless the program deletes the connection,
it can continue to open and close the connection as necessary.

If a program calls DQSDELETE to delete a file, the file cannot be deleted
while other connections to the file exist. In that case, the file is
marked for deletion and is not actually deleted until the last of the
connections is deleted. During the time that a file is marked for
deletion, no new connections to it may be created.

CONDITION CODES AND EXCEPTION HANDLING CALLS

Every UDI call except DQSEXIT returns a numeric condition code specifying
the result of the call. Each condition code has a unique mnemonic name by
which it is known. For example, the code 0, indicating that there were no

errors or unusual conditions, has the name E$OK. Any other condition
means there was a problem, so these conditions are called exceptions.

Exception conditions are classified as:

e Environmental Conditions. These are generally caused by
conditions outside the control of a program; for example, device
errors or insufficient memory.

° Programmer Errors. These are typically caused by mistakes in
programming (for example, "bad parameter"), but "divide-by-zero",
"overflow", "range check", and errors detected by the 8087 80287
Numeric Processor Extension (hereafter referred to generically as
the NPX) are also classified as programmer errors.

The iRMX 86 NUCLEUS REFERENCE MANUAL contains a list of condition codes
that the iRMX 86 Operating System can return, with the mnemonic and
meaning of each code.

UDI 2-5

UDI SYSTEM CALLS IN THE 3iRMX" 86 ENVIRONMENT

When an exception condition is detected, the normal (default) system
action is to display an error message at the console and terminate the
programe However, your program can establish its own exception handler by
calling DQSTRAPSEXCEPTION. The exception handler can interpret condition
codes that are returned by calling DQSDECODESEXCEPTION. The rest of this
section provides some facts that you need in order to write your own
exception handler.

After an exception condition occurs and before your exception handler gets
control, the iRMX 86 Operating System does the following:

l. Pushes the condition code onto the stack of the program that made
the system call having the exception condition.

2. Pushes the number of the parameter that caused the exception onto
the stack (1 for the first parameter, 2 for the second, etc.).

3. Pushes a word onto the stack (reserved for future use).

4, Pushes a word for the NPX onto the stack.

5. Initiates a long call to the exception handler.
If the condition was not caused by an erroneous parameter, the responsible
parameter number is zero. If the exception code is ESNDP, the fourth item
pushed onto the stack is the NPX status word, and the NPX exceptions have
been cleared.
Programs compiled under the SMALL model of segmentation cannot have an
alternate exception handler, but must use the default system exception

handler. This is because alternate exception handlers must have a LONG
POINTER, which is not available in the SMALL model.

MAKING UDI CALLS FROM PL/M—-86 AND ASM8G5 PROGRAMS

This section describes how to make UDI calls from a program, using the
DQSALLOCATE system call as an example. You can easily generalize from
this example to see how to make the other UDI calls. There are two
examples: one for a call from a PL/M-86 program and one for a call from
an ASM86 program.

The way this chapter shows the DQSALLOCATE system call syntax is the
following:

base$Saddr = DQSALLOCATE (size, exceptSptr);
There are three parameters: size (which has the WORD data type),
except$ptr (which has the POINTER data type), and base$addr (which has
WORD data type or the SELECTOR data type, depending on the version of
PL/M-SG) 'Y
Each of the examples that follow request 128 bytes of memory and point to
a WORD named "ERR" where the condition code is to be returned.

UDI 2-6

UDI SYSTEM CALLS IN THE iRMX" 86 ENVIRONMENT

EXAMPLE PL/M-86 CALLING SEQUENCE

DECLARE ARRAY BASE WORD, (or SELECTOR)
ERR WORD;

ARRAYBASE = DQSALLOCATE (128, @ERR);

EXAMPLE ASM86 CALLING SEQUENCE

MOV AX,128

PUSH AX ; first parameter
LEA AX,ERR

PUSH DS ; second parameter
PUSH AX H

CALL DQALLOCATE

MOV ARRAYBASE ,AX ; returned value

This example is applicable to programs assembled according to the COMPACT,
MEDIUM, and LARGE models of segmentation. For the SMALL model, omit
pushing the DS segment register.

DESCRIPTIONS OF SYSTEM CALLS

This section contains descriptions of the UDI system calls, which are
arranged alphabetically. Every system call description contains the
following information in this order:

° The name of the system call.

e A brief summary of the function of the call.

¢ The form of the call as it is invoked from a PL/M-86 program, with
symbolic names for each parameter.

° Definition of input and output parameters.

e A complete explanation of the system call, including any
information you will need to use the system call,

UDI 2-7

DQSALLOCATE

DQ$SALLOCATE

DQSALLOCATE requests a memory segment from the free memory pool.

base$Saddr = DQSALLOCATE (size, except$ptr);

INPUT PARAMETER
size A WORD which,

if not zero, contains the size, in bytes, of
the requested segment. If the size parameter
is not a multiple of 16, it will be rounded up
to the nearest multiple of 16 before the
allocation request is processed.

if zero, indicates that the size of the request
is 65536 (64K) bytes.

OUTPUT PARAMETERS

2]
<
2]
-
m
=
O
>
—
r
(]

base$addr A SELECTOR, into which the Operating System places
the base address of the memory segment. If the
request fails because the memory requested is not
available, this value will be OFFFFH, and the
system will return an ESMEM exception code.

exceptS$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

The DQSALLOCATE system call is used to request additional memory from the

free space pool of the program. Tasks may use the additional memory for
any desired purpose.

UDI 2-8

DQSATTACH

DQSATTACH

The DQSATTACH system call creates a connection to an existing file.

connection = DQSATTACH (pathSptr, exceptS$ptr);

INPUT PARAMETER

path$ptr A POINTER to a STRING containing the pathname of
the file to be attached.

OUTPUT PARAMETERS
connection A TOKEN for the connection to the file.

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call allows a program to obtain a connection to any existing
file. When the DQSATTACH call returns a connection, all existing
connections to the file remain valid.

Your program can use the DQSRESERVESIO$MEMORY call to reserve memory that
the UDI can use for its internal data structures when the program calls
DQSATTACH and for buffers when the program calls DQSOPEN. The advantage
of reserving memory is that the memory is guaranteed to be available when
needed. If memory is not reserved, a call to DQSATTACH might not be
successful because of a memory shortage. See the description of
DQSRESERVESIOSMEMORY later in this chapter for more information about
reserving memory.

UDI 2-9

DQ$CHANGESACCESS

DQSCHANGESACCESS

The DQSCHANGESACCESS lets you change the access rights of the owner of a
file (or directory), or the access rights of the WORLD user.

CALL DQSCHANGESACCESS (path$ptr, user, access, except$ptr);

INPUT PARAMETERS

path$ptr A POINTER to a STRING containing a pathname of the
file.
user A BYTE specifying the user whose access is to be
changed:
Value User
7))
a 0 Owner of the file
H 1 WORLD (all users on the system)
ii access A BYTE specifying the type of access to be granted
> the user. This word is to be encoded as follows.
; (Bit 0 is the low-order bit.)
7]
Bit Meaning
0 User can delete the file or directory
1 Read (the file) or List (the
directory)
2 Append (the file) or Add entry (to
the directory)
3 Update (read and write to the file)
or Change Access (to the directory)
4-7 Should be zero
OUTPUT PARAMETER
exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

UDI 2-10

DQ$CHANGESACCESS

DESCRIPTION

In the general iRMX 86 environment, every program is associated with a
user object, usually referred to as the default user for the program.

The default user consists of one or more user IDs. Each file has an
associated collection of user ID-access mask pairs, where each mask
defines the access rights the corresponding user ID has to the file.

When the program calls DQSCREATE to create a file or DQSATTACH to get
another connection to a file, the resulting connection receives all
access rights corresponding to user IDs that are both associated with the
file and in the default user. The purpose of the DQSCHANGESACCESS system
call is to change, for a particular file, the access rights associated
with a particular user ID. This has the effect of changing the access
granted when the program makes subsequent calls to DQSATTACH to get
further connections to the file.

In the UDI subset of the iRMX 86 environment, a default user has two
IDs. One of them, called the owner ID, is associated with the programe.
The other, called the WORLD, is associated universally with all
programs. DQ$CHANGES$ACCESS can change, for the file, the access mask of
either the owner ID or the WORLD.

Changing the access rights for a user ID have no effect on connections
already obtained by the program. However, all subsequently-obtained
connections reflect the changed access rights.

For more information about user IDs, default users, access masks, WORLD,

access rights, owner IDs, and how connections are related to all of these
entities, refer to the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL.

NOTE

DQSCHANGESACCESS affects only
connections made after the call is
issued. It does not affect existing
connections to the file.

UDI 2-11

DQSCHANGESEXTENSION

STIVO WALSAS

DQS$SCHANGESEXTENSION

DQSCHANGESEXTENSION changes or adds the extension at the end of a file
name stored in memory (not the file name on the mass storage volume).

CALL DQ$CHANGESEXTENSION (path$ptr, extensionSptr, except$ptr);

INPUT PARAMETERS

path$Sptr A POINTER to a STRING containing a pathname of the
file to be renamed.

extension$ptr A POINTER to a series of three bytes containing
the characters to be added to the pathname. This
is not a STRING. You must include three bytes,
even if some are blank.

OUTPUT PARAMETER

exceptS$Sptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This is a facility for editing strings that represent file names in
memory. If the existing file name has an extension, DQSCHANGES$EXTENSION
replaces that extension with the specifiled three characters. Otherwise,
DQSCHANGESEXTENSION adds the three characters as an extension.

For example, a compiler can use DQSCHANGESEXTENSION to edit a string
containing the name, such as :AFDI:FILE.SRC, of a source file to the
name, such as :AFD1:FILE.OBJ, of an object file, and then create the
object file,

Note that iRMX 86 file names may contain multiple periods, but if they
do, the extension, if any, consists of the characters following the last
periods Note also that an extension may contain more than three
characters, but any extension created or changed by DQ$SCHANGESEXTENSION
has at most three (non-blank) characters.

The three-character extension may not contain delimiters recognized by
DQSGETSARGUMENT but may contain trailing blanks. If the first character
pointed to by extension$ptr is a space, DQSCHANGESEXTENSION deletes the
existing extension, if any, including the period preceding the extension.

UDI 2-12

DQ$CLOSE

DQ$CLOSE

DQSCLOSE waits for completion of I/0 operations (if any) taking place on
the file, empties output buffers, and frees all buffers associated with
the connection.

CALL DQS$CLOSE (connection, except$ptr);

INPUT PARAMETER

connection A TOKEN for a file connection that is currently

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the system places the

DESCRIPTION

open.

condition code. Condition codes are described in
Appendix B.

)
-
-]
<
O
=
-
2
>
(7

The DQSCLOSE system call closes a connection that has been opened by the
DQSOPEN system call. It performs the following actions, in order:

1.

2.

3,

be

Waits until all currently-running I/0 operations for the
connection are completed.

Ensures that information, if any, in a partially-filled output
buffer is written to the file.

Releases all buffers associated with the connection.

Closes the connection. The connection is still valid, and can be
re-opened if necessary.

UDI 2-13

DQ$SCREATE

"
=<
0
-]
m
=
O
>
-
-
»

DQSCREATE

DQSCREATE creates a new file and establishes a connection to the file.

connection = DQSCREATE (pathSptr, except$ptr);

INPUT PARAMETER

path$ptr A POINTER to a STRING containing a pathname of the
file to be created.

OUTPUT PARAMETERS
connection A TOKEN for the connection to the file.
except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This call creates a new file with the name you specify and returns a
connection to its If a file of the same name already exists, it is
truncated to zero length and the data in it is destroyed.

To prevent accidentally destroying a file, call DQSATTACH before calling

DQSCREATE. If the file does not exist, DQSATTACH returns an ESFNEXIST
exception code.

UDI 2-14

DQ$DECODESEXCEPTION

DQ$DECODESEXCEPTION

DQSDECODESEXCEPTION translates an exception code into its mnemonic.

CALL DQSDECODESEXCEPTION (except$code, buf £$ptr, exceptS$ptr);

INPUT PARAMETER

exceptScode A WORD containing the numeric exception code that
is to be translated.

OUTPUT PARAMETERS

buffSptr A POINTER to a buffer (at least 81 bytes long)
into which the system returns the mnemonic in a
STRING.

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

Your program can call DQSDECODESEXCEPTION to exchange a numeric exception
code for its hexadecimal equivalent followed by its mnemonic. For
example, if you pass DQSDECODESEXCEPTION a value of 2 in the exceptS$code
parameter, the system returns the following string to the area pointed to
by the buff$ptr parameter:

0002: E$MEM

The hexadecimal values and mnemonics for condition codes are listed in
Appendix B.

UDI 2-15

DQ$SDECODESTIME

DQS$DECODESTIME

DQSDECODESTIME returns the current system time and date as a Double Word
integer and as a series of ASCII character bytes.

CALL DQSDECODESTIME (timeSptr, except$Sptr);

OUTPUT PARAMETERS
timeSptr A POINTER to a structure of the following form:

DECLARE DT STRUCTURE(

SYSTEMSTIME DWORD,
DATE (8) BYTE,
TIME (8) BYTE);

If the value in SYSTEMSTIME is O when
DQSDECODESTIME is called, DQSDECODESTIME returns
the current date and time in the DT structure, as
follows. (See the following DESCRIPTION section
for format information.):

SYSTEMSTIME receives the time as the number of
seconds since midnight, January 1, 1978.

(%)
=<
n
-
. m
=
O
>
~-
L
. D

DATE receives the date portion of the time, in
the form of ASCII characters.

TIME receives the time-of-day portion of the
time, in the form of ASCII characters.

If the value in SYSTEMSTIME is not O when
DQSDECODESTIME is called, DQSDECODESTIME accepts
that value as the number of seconds since
midnight, January 1, 1978, decodes the value, and
returns it in the DATE and TIME fields.

except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

UDI 2-16

DQ$DECODESTIME

DESCRIPTION

This system call returns the indicated date and time, each as a series of
ASCII bytes. (Note that they are not STRINGs.)

DATE has the form MM/DD/YY for month, day, and year. The two slashes (/)

are in the third and sixth bytes. For example, the date January 15th of
1982 would be returned as:

01/15/82

TIME has the form HH:MM:SS for hours, minutes, and seconds, with
separating colons (:). The value for hours ranges from O through 23.
For example, the time 20 seconds past 3:12 PM would be returned as:

15:12:20

If, when you call DQSDECODESTIME, the SYSTEMSTIME parameter is zero, the
call first gets the system time (number of seconds since midnight,
January 1, 1978) and then decodes it into the series of bytes as just
described.

But if SYSTEMSTIME is not zero on input, DQSDECODESTIME uses it as the
time to decode.

One thing your program can do with DQSDECODESTIME is first to call
DQSFILESINFO to get two DWORD values associated with a file (the last
time the file was updated and the time the file was created). Then the
program can call DQSDECODESTIME to interpret the times.

UDI 2-17

DQS$SDELETE

%))
o
-
m
=
O
>
-
-
()]

DQ$DELETE

DQSDELETE deletes an existing file.

CALL DQSDELETE (pathSptr, exceptSptr);

INPUT PARAMETER

pathSptr A POINTER to a STRING containing a pathname of the
file to be deleted.

OUTPUT PARAMETER

exceptS$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

A program can use this system call to delete a files The immediate
action this call takes is to mark the file for deletion. It does this
rather than abruptly deleting the file, because it will not delete any
file as long as there are existing connections to the file. DQSDELETE
will delete the file only when there are no longer any connections to the
file, that is, when all existing connections have been detached. On the
other hand, once the file is marked for deletion, no more connections may
be obtained for the file by way of DQSATTACH.

UDI 2-18

DQ$SDETACH

DQ$DETACH

DQSDETACH deletes a connection (but not the file) established by
DQSATTACH or DQSCREATE.

CALL DQSDETACH (connection, except$ptr);

INPUT PARAMETER

connection A TOKEN for the file connection to be deleted.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call deletes a file connection. If the connection is open,
the DQSDETACH system call automatically closes it first (see DQ$CLOSE).
DQSDETACH also deletes the file if the file has been marked for deletion
and this is the last existing connection to the file.

UDI 2--19

DQSEXIT

DQSEXIT

DQSEXIT transfers control from your program to the iRMX 86 Operating
Systeme It does not return any value to the calling program, not even a
condition code.

CALL DQS$EXIT (endScode);

INPUT PARAMETERS

endScode A WORD containing the encoded reason for
termination of the program. See the following
description for information about this value.

DESCRIPTION

DQSEXIT terminates a program. Before the actual termination, all of the
program's connections are closed and detached, and all memory allocated to
the program by DQSALLOCATE is returned to the memory pool.

DQSEXIT does not return a condition code to the calling program.

If the calling program is running as an I/0O job, the calling task,
normally the command line interpreter (CLI), receives an iRMX 86 condition
code based on the value your program supplied in the endS$Scode field when
it called DQS$EXIT. This assumes the following sequence of events:

1)
<
1]
-
m
=
o
>
-
r-
7]

l. The CLI calls RQ$CREATESIOS$JOB, specifying a response mailbox in
the call.

2. Your program, running as a task in the created I/0 job, performs
its duties and then calls DQSEXIT, specifying an end$code value.

3. DQSEXIT converts the end$code value into an iRMX 86 condition
code, as follows:

iRMX 86
endScode Condition Associated
Value Code Mnemonic Meaning
0 OCOH ESUNKNOWNSEXIT Termination was normal.
1 0C1H ESWARNINGSEXIT Warning messages were
issued.
2 0C2H ESERRORSEXIT Errors were detected.
3 0C3H ESFATALSEXIT Fatal errors were detected.
4 OC4H ESABORTSEXIT The job was aborted.
5-65535 OCOH ESUNKNOWNSEXIT Cause of termination not
known.

UDI 2--20

DQSEXIT

4o DQSEXIT calls RQSEXITSIOSJOB, specifying the iRMX 86 condition
code in the userS$faultScode field.

5. RQSEXITSIOSJOB places the condition code into the user$fault$code
field of a message. Then RQSEXITSIOSJOB sends the message to the
response mailbox set up by the earlier call to RQSCREATESIOS$JOB.

6. The CLI, when it obtains the message from the response mailbox,
can take appropriate actions. Note that it can call

DQSDECODESEXCEPTION first, to convert the condition code into its
associated mnemonic.

The CLI program supplied with the iRMX 86 Operating System ignores these
UDI condition codes when they are returned in the user$fault$code field
of the response message. Therefore, if you want the CLI to take actions
based on that code, you must provide your own CLI.

For more information about RQSCREATESIOSJOB, RQSEXITSIOS$SJOB, and the

format of the response message, see the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL.

UDI 2-21

DQSFILESINFO

DQSFILESINFO

DQSFILESINFO returns information about a file.

CALL DQSFILESINFO (connection, mode, file$infoS$ptr, except$ptr);

INPUT PARAMETERS

connection A TOKEN containing a connection for the file.

mode An encoded BYTE specifying whether DQSFILESINFO is

to return the User ID of the owner of the file.
Encode as follows:

Value Meaning
Do not return owner's User ID.
L »n 1 Return the owner's User ID.
=<
N
hv |
m
% OUTPUT PARAMETERS
> . ,
F: file$infoS$ptr A POINTER to a structure into which the requested
7)) information is to be returneds The form of the

structure is:

DECLARE FDATA STRUCTURE(

OWNER(15) STRING,
LENGTH DWORD,
TYPE BYTE,
OWNE RSACCESS BYTE,
WORLDSACCESS BYTE,
CREATESTIME DWORD,
LASTSMODSTIME DWORD,
RESERVED(20) BYTE);
where:
OWNER A STRING containing (if requested)
the User ID of the file owner.
TYPE A value indicating the type of file,

as follows:

Value File Type

0 Data file
1 Directory file

UDI 2-22

DQSFILESINFO

OWNERSACCESS An encoded BYTE whose bits
specify the type of access
granted to the owner, as

follows. When a bit is set, it
means the type of access is

granted; otherwise the type of

access is denied. (Bit O is the
low-order bit.)

Bit Associated Type of Access

Delete

1 Read (the data file) or
Display (the directory)

2 Append (to the data file)
or Add Entry (to the
directory)

3 Update (read and write to
the file) or Change Access
(to the directory)

WORLDSACCESS An encoded BYTE whose bits
specify the type of access
granted to the WORLD (all users
on the system). When a bit is
set, it means the type of access
is granted; otherwise the type of

access is denieds (Bit 0 is the
low—order bit.)

Bit Associated Type of Access

Delete

1 Read (the data file) or
Display (the directory)

2 Write (to the data file) or
Add Entry (to the directory)

3 Update (read and write to
the file) or Change Access
(to the directory)

CREATESTIME The date and time that the file
was created, expressed as the
number of seconds since midnight,
January 1, 1978. (You can

convert this date/time to ASCII
characters by calling
DQSDECODESTIME.)

UDI 2-23

DQSFILESINFO

LASTSMODSTIME The date and time that the file
or directory was last modified.

For data files, modified means
written or truncated; for
directories, modified means an
entry was changed or an entry was
added. (You can convert this
date/time to ASCII characters by
calling DQS$DECODESTIME.,)

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

The DQSFILESINFO returns information about a data file or a directory
file.

7]
%
-
m
=
O
>
-
-
(%)

UDI 2-24

DQ$FREE

DQSFREE

DQSFREE returns to the system a segment of memory obtained earlier by
DQSALLOCATE.

CALL DQSFREE (base$addr, exceptSptr);

INPUT PARAMETER
base$addr A TOKEN containing the base address of the segment

to be deleteds This value is the token returned
by DQSALLOCATE when the segment was obtained.

OUTPUT PARAMETER
exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

The DQSFREE system call returns the specified segment to the memory pool
from which it was allocated.

UDI 2-25

DQ$GETSARGUMENT

()]
@
-
m
=
. O
>
-
r
w

DQSGETSARGUMENT

The DQSGETSARGUMENT system call returns arguments, one at a time, from a
command line entered at the system console. This command line is either
that which invoked the program containing the DQSGET$ARGUMENT call or a
command line entered while the program was running.

delimitSchar = DQSGETSARGUMENT (argument$ptr, except$ptr);

INPUT PARAMETER

argumentSptr A POINTER to a huffer which will receive the
argument in the form of a STRING. The buffer must
be at least 81 bytes long.

OUTPUT PARAMETERS

delimitSchar A BYTE which receives the delimiter character.

except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

Your program can call GETSARGUMENT to get arguments from a command line.
Each call returns an argument and the delimiter character following the
argument.

Your program can use this command in two ways. One way 1s to get
arguments from the command line used to invoke the program at the
consoles In this case, you can assume that the command line is already
in a buffer that has automatically been provided for this purpose.

The other way to use this command is to get arguments from command lines
that are entered in response to requests from your programe. In this
case, your program must supply a buffer when calling DQSREAD, so this is
the buffer you want to be used when your program calls DQSGETSARGUMENT.

To set this up, your program must call DQSSWITCH$BUFFER before the call
to DQSGETSARGUMENT.

UDI 2-26

DQSGETSARGUMENT

A delimiter is returned only if the exception code is zero. The
following delimiters are recognized by the iRMX 86 Operating System:

,)Y (= # 1 $ T N + - > <~

as well as a space () and all characters with ASCII values in the range
0 through 20H.

Before returning arguments in response to DQSGET$ARGUMENT, the system
does the following editing on the contents of the command buffer:

. It strips out ampersands (&) and semicolons (3).

o Where multiple blanks are adjacent to each other between
arguments, it replaces them with a single blank. (Tabs are
treated as blanks.)

e It converts lowercase characters to uppercase unless they are
part of a quoted string.

When returning arguments in response to DQSGETSARGUMENT, the system
considers strings enclosed between matching pairs of single or double
quotes to be literals. The enclosing quotes are not returned as part of
the argument.

EXAMPLE

The following example illustrates the arguments and delimiters returned
by successive calls to DQSGETSARGUMENT. The example assumes that the
contents of the buffer are

PLM86 LINKER.PLM PRINT(:LP:) NOLIST

The following shows what is returned in this case if DQ$GETSARGUMENT is
called five times.

CALL NUMBER ARGUMENT RETURNED DELIMITER RETURNED

1 (O5H)PLMS6 space
2 (OAH)LINKER.PLM space
3 (O5H)PRINT (
4 (04H) : LP:)
5 (O6H)NOLIST cr

Note that the argument returned has the form of an iRMX 86 string, with
the first byte devoted to specifying the length of the string. 1In the
second call, there are ten characters in the argument, so the first byte
contains OAH.

Note that the last delimiter for each example is a carriage return (cr).
This is how your program can determine that there are no more arguments
in the command line.

UD1I 2-27

DQ$GETSCONNECTIONSSTATUS

DQSGETS$CONNECTIONSSTATUS

The DQSGET$CONNECTIONSSTATUS system call returns information about a file
connection.

CALL DQSGETSCONNECTIONSSTATUS (connection, info$ptr, exceptSptr);

INPUT PARAMETER

connection A WORD containing a token for the connection whose
status is desired.

OUTPUT PARAMETERS

n infoSptr A POINTER to a structure into which the Operating
ag System is to place the status information. The
- structure has the following format:
m
= DECLARE INFO STRUCTURE(
Y OPEN BYTE,
F: ACCESS BYTE,
o SEEK BYTE,
FILESPTRS DWORD) ;
Where:
OPEN 1 if the connection is open; 2
otherwise.
ACCESS Access privileges of the

connections The right is granted if
the corresponding bit is set to l.
(Bit 0 is the low-order bit.)

Bit Access
0 Delete
1 Read
2 Write
3 Update (read and
write)

UDI 2-28

DQ$SGETSCONNECTIONSSTATUS

SEEK Types of seek supported.
Value Meaning
0 No seek allowed
3 Seek forward and
backward

Other values are not meaningful.

FILESPTR This DWORD integer marks the current
position in the file. The position
is expressed as the number of bytes
from the beginning of the file, the
first byte being byte 0. This field
is undefined if the file is not open
or if seek is not supported by the
device. (For example, seek

operations are not valid for a line
printer.)

except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B,

DESCRIPTION

DQSGETSCONNECTIONSSTATUS returns information about a file CONNECTION.
You might use this system call, for example, if your program has
performed several read or write operations and it is necessary to
determine where the file pointer is now located.

UDI 2--29

DQSGETSEXCEPTIONSHANDLER

DQSGETSEXCEPTIONSHANDLER

DQSGETSEXCEPTIONSHANDLER returns the address of the current exception
handler.

CALL DQSGETSEXCEPTION (address$ptr, except$ptr);

OUTPUT PARAMETERS

addressSptr A POINTER to a POINTER into which this system call
returns the entry point of the current exception
handler.

except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

DQSGETSEXCEPTIONSHANDLER is an system call that returns to your program
the address of the current exception handler. This is the address
specified in the most recent call, if any, to DQSTRAPSEXCEPTION.
Otherwise the value returned is the address of the system default
exception handler.

1Y)
<
n
-
m
=
O
>
r
r
w

This routine always returns a two-word pointer, even if called from a
program compiled under the SMALL model of segmentation.

DQSGETSEXCEPTIONSHANDLER is used in conjunction with DQSTRAPSEXCEPTION

and DQSDECODESEXCEPTION. See the descriptions of these calls for more
information.

UDI 2-30

DQS$SGETSSIZE

DQSGETSSIZE

DQSGET$SIZE returns the size of a previously—allocated memory segment.

size = DQSGETSSIZE (baseSaddr, except$ptr);

INPUT PARAMETER

baseSaddr A TOKEN for a segment of memory that has been
allocated by the DQSALLOCATE call. This is the
same address returned by DQSALLOCATE when the
segment was allocated.

OUTPUT PARAMETERS
size A WORD which,

if not zero, contains the size, in bytes, of
the segment identified by the baseSaddr
parameter.

if zero, indicates that the size of the segment
is 65536 (64K) bytes,

exceptSptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

The GET$SIZE system call returns the size, in bytes, of a segment. The
size of the segment might not be exactly what was originally requested
for the segment, because DQSALLOCATE allocates memory in l6-byte
paragraphs. If a request is for a size that is not a multiple of 16,
DQSALLOCATE increases the size of the request to the next higher multiple
of 16 before acting upon the request.

UDI 2-31

DQGETSYSTEMSID

DQSGET$SYSTEMSID

DQSGETSSYSTEMSID returns the identity of the operating system providing
the environment for the UDI.

CALL DQSGETSYSTEMSID (id$ptr, except$ptr);

OUTPUT PARAMETERS
id$ptr A POINTER to a 21-byte buffer into which
DQSGETSSYSTEMSID places a STRING identifying the
operating system.
except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION
This system call returns the string:

iRMX 86

"
<
7]
-
m
=
O
>
-
-
w

followed by 13 blanks.

UDI 2-32

DQSGETSTIME

DQS$SGE TSTIME

DQSGETSTIME returns the current date and time in character format.

CALL DQSGETSTIME (buff$ptr, except$ptr);

This system call performs no action except that it returns. It is
included only for compatibility with previous versions of the UDI. You
should use the DQSDECODESTIME system call for this function.

UDI 2-33

DQ$SOPEN

%)
<
172]
-
m
=
O
>
-
-
(7]

DQSOPEN

The DQSOPEN system call opens a file for I/0 operations, specifies how

the file will be accessed, and specifies the number of buffers needed to
support the I/0 operations.

CALL DQS$SOPEN (connection, access, num$buf, except$ptr);

INPUT PARAMETERS
connection

access

num$buf

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for the file connection to be opened.

A BYTE specifying how the connection will be used

to access the file. This value is encoded as
follows:

Value Meaning
1 Read only
2 Write only
3 Update (both reading and writing)

A BYTE containing the number of buffers needed for
this connection. Specifying a value larger than 0
implicitly requests that “"double buffering” (that
is, read-ahead and/or write-behind) is to be
performed automatically.

A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

This system call prepares a connection for use with DQSREAD, DQSWRITE,
DQSSEEK, and DQSTRUNCATE commands. Any number of connections to the same
file may be open simultaneously.

The DQSOPEN system call does the following:

UDI 2-34

DQ$OPEN

° Creates the requested buffers.

e Sets the connection's file pointer to zeros This a place marker
that tells where in the file the next I/0 operation is to begin.

e Starts reading ahead if num$buf is greater than zero and the
access parameter is "Read only" or "Update."

Selecting Access Rights

The system does not allow reading using a connection open for writing
only nor writing using a connection open for reading only. If you are
not certain how the connection will be used, specify updating. However,
if the specified connection does not support the specified type of
access, an exception code is returned.

Selecting the Number of Buffers

The process of deciding how many buffers to request is based on three
considerations —~ compatibility, memory, and performance.

COMPATIBILITY. If you expect to run your UDI program on other systems,
you should request no more than two buffers.

MEMORY., The amount of memory used for buffers is directly proportional
to the number of buffers. So you can save memory by using fewer buffers.

PERFORMANCE. The performance consideration is more complex. Up to a
certain point, the more buffers you allocate, the faster your program can
rune The actual break-even point, where more buffers don't improve
performance, depends on many variables. Often, the only way to determine
the break—even point is to experiment. However, the following statements
are true of every system:

) To overlap I/0 with computation, you must request at least two
buffers.

o If performance is not at all important but memory is, request no
buffers.

Requesting zero buffers means that no buffering is to occur. That is,
each DQSREAD or DQSWRITE is followed immediately by the physical I/0
operation necessary to perform the requested reading or writing.
Interactive programs should open :CI: and :CO: with a request for no
buffers.

UDI 2-35

DQSOPEN

N
=<
n
—f
m
=
O
>
—
r
- »

If your program normally calls DQSSEEK before calling DQSREAD or
DQSWRITE, it should request one buffer.

Your program can use the DQSRESERVESIOSMEMORY call to reserve memory that
the UDI can use for its internal data structures when the program calls
DQSATTACH and for buffers when the program calls DQSOPEN. The advantage
of reserving memory is that the memory is guaranteed to be available when
needed. If memory is not reserved, a call to DQ$OPEN might not be
successful because of a memory shortage. See the description of
DQSRESERVESIOSMEMORY later in this chapter for more information about
reserving memory.

UDI 2-36

DQSOVERLAY

DQSOVERLAY

In systems using overlays, the root module calls DQSOVERLAY to load an
overlay module.

CALL DQSOVERLAY (name$Sptr, except$Sptr);

INPUT PARAMETER

nameSptr A POINTER to a STRING containing the name of an
overlay module. The name must be in uppercase.

OUTPUT PARAMETER

except$Sptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

A root module in an overlay system calls DQSOVERLAY each time it wants to
load an overlay module.

If your assembly language or PL/M-86 program uses the DQSOVERLAY
procedure, you should take care to ensure that you link the UDI library
to your program correctly. The iAPX 86, 88 FAMILY UTILITIES USER'S GUIDE
contains an example of linking an overlay program. This example lists a
two—~step link process, as follows:

l. Link the root and each of the overlays separately, specifying the
OVERLAY control, but not the BIND control, in each LINK86 command.

2. Link all the output modules together in one module, specifying
the BIND control, but not the OVERLAY control.

This is the same process you should use when linking your iRMX 86 overlay
programs.

UDI 2-37

DQSOVERLAY

X%
=<
N
B
)
=
O
»r
-
-
w

In addition, you must link the entire UDI library to the root portion of
the program and not to any of the overlays. To do this, use the INCLUDE
control to include the UDI externals file when assembling or compiling
the root portion of the programe By including this file with the root
module, you ensure that the root module makes external references to all
UDI routines. This prevents unsatisfied external references when the
root is linked to the overlays.

UDI 2-38

DQ$READ

DQSREAD

The DQSREAD system call copies bytes from a file into a buffer.

bytesSread = DQSREAD (connection, buff$ptr, bytesSmax,
exceptSptr);

INPUT PARAMETERS

connection A TOKEN for the connection to the file. This
connection must be open for reading or for both
reading and writing, and the file pointer of the
connection must point to the first byte to be read.

buffSptr A POINTER to the buffer that is to receive the
data from the file.

bytes$max A WORD containing the maximum number of bytes to
be read from the file.

OUTPUT PARAMETERS

72]
-l
-l
<
&)
=
1T}
-
\n
>
(2]

bytesSread A WORD containing the number of bytes actually
read. This number is always equal to or less than
the bytesSmax.

exceptSptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call reads a collection of contiguous bytes from the file
associated with the connection. The bytes are placed into the buffer
specified in the call.

The Buffer

The buff$ptr parameter tells the Operating System where to place the
bytes when they are read. Your program must provide this buffer.
DQSREAD copies as many bytes as it is instructed to copy (unless it
encounters the end of the file), so if the buffer is not long enough,
copying continues beyond the end of the buffer.

UDT 2-39

DQS$SREAD

Number of Bytes Read

The number of bytes that your program vequests is the maximum number of
bytes that DQSREAD copies into the buffer. However, there are two
circumstances under which the system reads fewer bytes.

° If the DQSREAD detects an end of file before reading the number
of bytes requested, it returns only the bytes preceding the end
of file. 1In this case, the bytes$read parameter is less than the

bytesSdesired parameter, yet no exceptional condition is
indicated.

® If an exceptional condition occurs during the reading operation,

information in the buffer and the value of the bytes$read
parameter are meaningless and should be ignored.

Connection Requirements

The connection must be open for reading or updating. If it is not,
DQSREAD returns an exceptional condition.

n
%
-
m
=
O
>
-
r-
(7]

UDI 2--40

DQSRENAME

DQ$RENAME

The DQSRENAME system call changes the pathname of a file.

CALL DQSRENAME (pathSptr, newSpath$ptr, except$ptr);

INPUT PARAMETERS

pathSptr A POINTER to a STRING that specifies the pathname
for the file to be renamed.

newSpathSptr A POINTER to a STRING that specifies the new
pathname for the file. This path must not refer
to an existing file.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call allows your programs o change the pathname of a data
file or a directory. Be aware that when you rename a directory, you are
changing the pathnames of all files contained in the directory. When you
rename a file to which a connection exists —- this is permitted —-- the
connection to the renamed file remains established.

A file's pathname may be changed in any way, provided that the file or
directory remains on the same volume.

UDI 2-41

DQ$RESERVES$SIOSMEMORY

DQSRESERVESI OSMEMORY

The DQSRESERVESIOSMEMORY lets your program reserve enough memory to
ensure that it can open and attach the files it will be using.

CALL DQSRESERVESIOSMEMORY (number$files, number$buffers, exceptSptr);

INPUT PARAMETERS

number$files The maximum number of files the program will have
attached simultaneously. This value must not be
greater than 12, Moreover, no more than 6 of
these files may be open similtaneously.

numberSbuffers The total number of buffers (up to a maximum of
12) that will be needed at one time. For example,
if your program will have two files open at the
same time, and each of them has two buffers
(specified when they are opened), number$files
should be two and numberS$buffers four.

OUTPUT PARAMETER

N’
%
-
L
=
O
>
-
r~
»

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

DQSRESERVESIOSMEMORY sets aside memory on behalf of the calling program,
guaranteeing that it will be available when needed later for attaching

and opening files. This memory is used for internal UDI data structures
when the program requests file connections via DQSATTACH and for buffers
when the program opens file connections via DQSOPEN. Memory reserved in
this way is not eligible to be allocated by DQSALLOCATE. Your program

should call DQSRESERVESIOSMEMORY before making any calls to DQSALLOCATE.

In the call to DQSRESERVESIOSMEMORY, you may specify as many as 12 files

(that can be attached using the reserved memory) and as many as 12
buffers (that can be requested when opening files).

UDI 2--42

DQ$RESERVES$SIOSMEMORY

NOTE

If a program calls DQSRESERVESIO$MEMORY
after making one or more calls to
DQSATTACH or DQSOPEN, the memory used
by those calls are immediately applied
against the file and buffer counts
specified in the DQSRESERVESIOSMEMORY
call, possibly exhausting the memory
supply being requested.

If your program calls DQSRESERVESIOSMEMORY more than once in a program,
it simply changes the amount of memory reserved.

RESTRICTION

This system call is effective only if your program uses exclusively UDI
system calls to communicate with the iRMX 86 Operating System.

UDI 2-43

DQS$SEEK

DQSSEEK moves the file pointer associated with the specified connection.

CALL DQ$SEEK (connection, mode, move$count, except$ptr)

INPUT PARAMETERS

connection A TOKEN for the open connection whose file pointer
is to be moved.

mode A BYTE indicating the type of file pointer
movement being requested, as follows:

Mode Meaning

1 Move the pointer backward by the
specified move count. If the move
count is large enough to position the
pointer past the beginning of the file,
set the pointer to the first byte
(posit:ion zero).

1)
<
2]
-
m
=
O
>
-
r
(7]

2 Set the pointer to the position
specified by the move count. Position
zero 1s the first position in the
file. Moving the pointer beyond the
end of the file is permitted.

3 Move the file pointer forward by the
specified move count. Moving the

pointer beyond the end of the file is
permitted.

4 First move the pointer to the end of
the file and then move it backward by
the specified move count. If the
specifiied move count would position the
pointer beyond the front of the file,
set the pointer to the first byte in
the file (position zero).

move$count A DWORD specilfying how far, in bytes, the file
pointer is to be moved.

UDI 2-44

DQS$SEEK

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

When performing non-sequential I/0, your programs can use this system
call to position the file pointer before using the DQSREAD, DQSTRUNCATE,
or DQSWRITE system calls. The location of the file pointer specifies
where in the file a DQSREAD, DQSWRITE, or DQSTRUNCATE operation is to
begin. If your program is performing sequential I/0 on a file, it need
not use this system call.

It is legitimate to position the file pointer beyond the end of a file.
If your program does this and then invokes the DQ$READ system call,
DQSREAD behaves as though the read operation began at the end of file.

If your program calls DQSWRITE when the file pointer is beyond the end of
the file, the data is written as requesteds Be aware that if you expand
your file in this manner, the expanded portion of the file can contain
undefined information.

UDI 2-45

DQS$SPECIAL

2]
=<
2]
-
m
=
O
>
-
-
(7]

DQSSPECIAL

DQ$SPECIAL specifies whether line editing features are to be available to
operators entering information at the console.

CALL DQSSPECIAL (mode, conn$ptr, except$ptr);

INPUT PARAMETERS

mode A BYTE used to specify the mode of terminal
input. The values and their meanings are:

Value Meaning

1 Transparent
2 Line editing
3 Immediate transparent

Each of these types is explained in the
DESCRIPTION section.

conn$ptr A POINTER to a TOKEN for a connection to the :CI:

files The connection must have been established
by DQSATTACH.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call changes the mode in which your program receives input
from a console input device. When your system starts to run, the mode is
line editing (mode 2). But by using D(QSSPECIAL you can change from line
editing to one of the transparent modes, or back to line editing.

UDI 2-46

DQS$SPECIAL

The Line Editing Modes

The meanings of the mode parameter are as follows:

Value Meaning
1 Transparent. Interactive programs often need to obtain

characters from the console exactly as they are typed.
This is made possible by transparent mode. In transparent
mode, all characters are placed in the buffer specified by
the call to DQSREAD. (The only exceptions are CIRL/C,
which terminates the program, and CTRL/D, which is
discarded.) DQSREAD returns control to the calling
program when the number of characters entered equals the
number of characters specified in the read request.

2 Line Editing. This option means that the console operator
has the opportunity to correct typing errors with special
keys before the application program receives the
characters typed. Line editing characters and their
effects are described following the descriptions of these
line editing modes.

3 Immediate Transparent. This option is nearly the same as
Transparent 1 mode, except that in Transparent 3 mode
DQSREAD returns control to your program immediately after
it is called, regardless of whether any characters have
been typed since the last call to DQSREAD. If no
characters have been typed, this is indicated by the
bytes$read parameter of the DQSREAD call. Characters that
are typed between successive calls to read the terminal
are held in the "type—ahead" buffer.

The Line Editing Characters

The following characters and control characters have the following
special editing capabilities on console input when line editing mode
(mode 2) is in effect:

CARRIAGE RETURN Terminates the current line and positions the
or cursor at the beginning of the next line.
LINE FEED Entering either of these characters adds a
carriage return/line feed pair to the input line.

RUBOUT Deletes (rubs out) the previous character in the
input line. Each RUBOUT removes a character from
both the screen and the type—-ahead buffer, and
moves the cursor back to that character position.

UDI 2-47

DQS$SPECIAL

n
-<
n
-
m
=
O
>
r
r-
(7]

CTRL/R

CTRL/U

CTRL/X

If the current input line is not empty, this
character reprints the line with editing already
performede This enables the operator to see the
effects of the editing performed since the most
recent line terminator was entered. If the
current line is empty, CTRL/R reprints the
previous line. Additional CTRL/Rs display
previous lines until all saved lines have been
displayed. After that, each additional CTRL/R
displays the last line again.

Discards the current line and the entire contents
of the type—ahead buffer.

Discards the current input line. It also displays
the "#" character at the terminal, followed by a
carriage returr/line feed.

UDI 2-48

DQ$SWITCH$BUFFER

DQ$SWITCHSBUFFER

DQSSWITCHSBUFFER substitutes a new command line for the existing one.

char$offset = DQSSWITCHSBUFFER (buff$ptr, except$ptr);

INPUT PARAMETER

buffSptr A POINTER to a STRING containing the "new” command
line, that is, the one whose arguments are to be
returned by subsequent calls to DQSGETSARGUMENT.

OUTPUT PARAMETERS

charSoffset A WORD into which the UDI places a number. This
number represents the number of bytes from the
beginning of the "o0ld" command line to the last
character of the last argument so far processed by
DQSGETSARGUMENT. In other words, the value in
charSoffset tells how many characters in the old
command line have been processed by the time of
this call.

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

When your program is invoked from the console, the Operating System
places the invocation command into a buffer. Typically, your program
will use DQSGETSARGUMENT to obtain the arguments in that command. If
your program subsequently calls DQSREAD to obtain an additional command
line from the console, it can call DQSSWITCHSBUFFER to designate the
buffer with the new command line as that from which arguments are to be
obtained when DQSGETSARGUMENT is called.

You can use DQ$SWITCHSBUFFER any number of times to point to different
strings in your programe However, you cannot use DQSSWITCHSBUFFER to
return to the command line that invoked the program, because only the
Operating System knows the location of that buffer. Therefore, you
should use DQSGETSARGUMENT to obtain all arguments of the invocation
command line before issuing the first call to DQ$SWITCHSBUFFER.

UDI 2-49

DQ$SWITCHSBUFFER

STIvO N3ILSAS

A second service of DQSSWITCHSBUFFER is that it returns the location of
the last byte of the last argument so far obtained from the old buffer by
calls to DQSGETSARGUMENT. Therefore, in addition to using
DQSSWITCHSBUFFER to switch buffers, you can use it after one or more
DQSGETSARGUMENT calls to determine where in the buffer the next argument
starts. However, doing this "resets"” the buffer, in the sense that the
next call to DQSGETSARGUMENT would return the first argument in the
buffer. To return to the desired point in the buffer, where you can
continue to extract arguments, call DQ$SWITCHSBUFFER again, but when
doing so, use the sum of the starting address of the buffer and the value
returned by the previous call to DQ$SWITCHSBUFFER. The following is an
example showing how to use the second service of DQSSWITCHSBUFFER:

DECLARE

mybuffer$ptr POINTER,

buf £$ptr POINTER,

argSptr POINTER,

buf f STRUCTURE(
of fset WORD,
segment: WORD) AT (@buffSptr),

nextS$Schar WORD,

charSoffset WORD,

condition$code WORD,

delimit$char BYTE;

/* initialize buff$ptr and nextSchar */
buff$ptr = mybuf fSptr;
next$char = 0;

/* determine where in the buffer the next argument starts */
char$offset = DQSSWITCHSBUFFER(buffSptr, @conditionS$Scode);
if condition$code <> E$OK then /* do error processing */
nextSchar = charS$offset + next$char;

/* return to desired point in buffer */
buff.offset = buff.offset + charSoffset;
charSoffset = DQSSWITCHSBUFFER(buff$ptr, @conditionS$code);
if condition$code <> ESOK then /* do error processing */

/* get next argument */
delimit$char = DQSGETSARGUMENT(arg$ptr, @condition$Sptr);
if condition$code <> ESOK then /* do error processing */

UDI 2-50

DQS$STRAPSCC

DQSTRAPSCC

The DQSTRAPSCC lets you specify a procedure that is to get control if an
operator enters CTRL/C at the console.

CALL DQSTRAPSCC (entry$pnt, except$ptr);

INPUT PARAMETER

entry$pnt A POINTER to the entry point of your CTRL/C
procedure.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

Normally, when an operator enters CTRL/C at the console, the system
empties the type-ahead buffer and aborts the currently-executing
programe By calling DQSTRAPSCC, your program can designate any other
procedure, so that it will automatically get control instead whenever
CTRL/C is entered at the console.

UDI 2-51

DQ$TRAPSEXCEPTION

DQSTRAPSEXCEPTION

DQSTRAPSEXCEPTION substitutes an alternate exception handler for the
default exception handler provided by the operating system.

CALL DQSTRAPSEXCEPTION (addressSptr, except$ptr);

INPUT PARAMETER

addressSptr A POINTER to a POINTER containing the entry point
of the alternate exception handler.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

STIVO IN3LSAS

Normally, the exception handler terminates the program that made the call
producing the exception condition and displays a message to that effect
on the console screen. DQSTRAPSEXCEPTION designates an alternative

exception handler as the one to which control should pass when an
exceptional condition occurs.

See the section EXCEPTION-HANDLING SYSTEM CALLS at the beginning of this

chapter for an explanation of the conditions of the stack when your
exception handler receives control.

UDI 2-52

DQ$STRUNCATE

DQSTRUNCATE

DQSTRUNCATE moves the end-of-file to the current position of a named file
connection's file pointer, thereby freeing the portion of the file lying
beyond the file pointer.

CALL DQSTRUNCATE (connection, except$ptr);

INPUT PARAMETER

connection A TOKEN for a connection to the named data file
that is to be truncated. The file pointer of this
connection marks the place where truncation is to
occur. The byte indicated by the pointer is the
first byte to be dropped from the file.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call truncates a file at the current setting of the file
pointer and releases all file space beyond the pointer for reallocation
to other files. If the pointer is at or beyond the end of file, no
truncation is performed. Unless the file pointer is already at the
proper location, your program should use the DQSSEEK system call to
position the pointer before calling DQS$TRUNCATE.

The connection should have write, or read and write access rights,
established when the connection was opened.

UDI 2-53

DQSWRITE

DQSWRITE

The DQSWRITE system call copies a collection of bytes from a buffer into
a file.

CALL DQSWRITE (connection, buff$ptr, count, exceptS$Sptr;

INPUT PARAMETERS

connection A WORD containing a token for the connection to
the file into which the information is to be
written.

buff$ptr A POINTER to a buffer containing the data to be

written to the specified file.

count A WORD containing the number of bytes to be
written from the buffer to the file.

OUTPUT PARAMETER

)]
%
-
m
=
O
>
-
-
(2]

exceptS$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix B.

DESCRIPTION

This system call causes the Operating System to write the specified
number of bytes from the buffer to the file.

Connection Requirements

If the connection is not open for writing or updating, DQSWRITE returns
an exception code.

UDI 2-%54

DQ$SWRITE

Number of Bytes Written

Occasionally, DQSWRITE writes fewer bytes than requested by the calling
programe This happens under the following two circumstances:

° When DQSWRITE encounters an I/0 error.

e When the volume to which your program is writing becomes full.

Where the Bytes Are Written

DQSWRITE starts writing at the location specified by the connection's
file pointer. After the writing operation is completed, the file pointer
points to the byte immediately following the last byte written.

If your program must reposition the file pointer before writing, it can
do so by using the DQSSEEK system call.

n
-
-l
<
o
=
w
-
(2]
>
(%)

*k®

UDI 2-55

CHAPTER 3
UDI EXAMPLE

This chapter presents an example of UDI system calls. After the program
listing are the compiler and linker commands used to build the program,
and a listing of the link map.

THE EXAMPLE LISTING

$compact

Soptimize(3)
/*.................D.........IC......0.4’.0..............'....Q....I.......
%

* Program UPPER

%

* This program demonstrates the use of UDI file-handling and

* command-line-parsing system calls. The program reads an input

* file of characters and converts all lowercase alphabetic characters

* to uppercase. The converted data are written to a second file.

%

* UPPER expects the command line that invokes it to be of the form:

%

* UPPER infile [TO outfile]

%

* (If "TO outfile" is not specified, :CO: is assumed.)
*..I..Q.l'............................l'.‘......‘...l...........I'..l..'.'
*/

upper: DO;

/* Literal declaration of TOKEN as SELECTOR */
$include(:include:1ltksel.lit)

/* External declaration files for UDI system calls */

$include(:includeuexit.ext)
$include(:includetuclose. ext)
$include(:include:uwrite.ext)
$include(:include:uread. ext)
$include(:include:uopen.ext)
$include(:includeiucreat.ext)
$include(:include:ugtarg.ext)
$include(:include:uatach.ext)
$include(:includesudcex.ext)

UDI 3-1

UDI EXAMPLE

DECLARE

CR LITERALLY 'ODH',

LF LITERALLY 'OAH',
ESOK LITERALLY '0'

TOKEN LITERALLY 'SELECTOR';

DECLARE

co$conn TOKEN;

$subtitle('check$exception')

® 00000 S 0GOSO OPNOOOEDOOCOOPOPOOOOENPOO0NDOOROEBONIODNOOOOOOROEOSLROOIEOSEIOGIONOIPOIOIOSNEPERDITOGDS

Procedure to check an exception code. If the exception code is
not ESOK, print a message and exit.

000 0GP0 OO RO OOO000I0OOOROOD 00O OEOO PP O00COOCEROOOO0OGOC00CGESPISIOSEOIOINPOCEDOIDISITPOSOIOSGSDTS

check$exception: PROCEDURE(exception, info$p) REENTRANT;

DECLARE

exception WORD,

infoSp POINTER,

info BASED info$p STRUCTURE(
count BYTE,
char(l) BYTE),

excSbuf STRUCTURE(
count BYTE,
char(80) BYTE),

dummy WORD ;

IF exception <> E$OK THEN
DO;
CALL dqSdecodeSexception(exception, @excSbuf, @dummy);
CALL dqSwrite(co$Sconn, @excSbuf.char, exc$buf.count, @dummy);
CALL dq$write(coSconn, @(': '), 2, @dummy);
CALL dq$write(co$conn, @info.char, info.count, @dummy);
CALL dq$write(co$conn, @(CR, LF), 2, @dummy);

CALL dqSexit(3);
END;

END check$exception;

UDT 3-2

UDI EXAMPLE

$subtitle('Main')

/*...C'..................0.."........Iv.'l.C......l.......0...............

*
*
*
%

*/

—-—- MAIN PROGRAM —--

© 00000 E 0P 0000000000000 080800000600000000000C00C0RPC00CE0IIC0CIEECIIOEIDNIOSIOIDNIOSIOIOINIEGTIELEIDS

DECLARE st WORD;

DECLARE
in$name(50) BYTE,
out$name(50) BYTE,
in$conn TOKEN,
outSconn TOKEN,
delim BYTE;
DECLARE
buffer(1024) BYTE,
in$bp POINTER,
inSchar BASED in$bp BYTE,
nextchar BASED inS$bp (2) BYTE,
inScount WORD,
1 WORD;

/*..‘.00.....'........'...........ll’.'..O..........‘.'.....0.0..0.....

* (Create a connection to :CO: (console output).
%*

® 0006060060000 00000000 0000000000000 000000000060000000000006000000000060°O0NTS

*/
co$conn = dqScreate(@(4, ':C0:'), @st);

CALL dqSopen(co$conn, 2, 0, @st);

/*.’..'......O....‘...O.“........li................0............'...0.

* Ignore the name of the program (the first ar gument).

® 0000 000000000000 000000000 0CCECRONTOODOO0ROO0RPOOROIOOIONOEOENINOIINOIEOIEOEDNINOSOIDINTCPOSES

*/

delim = dqgetargument(@uffer, @st);
CALL checkSexception(st, 0);
IF delim = CR THEN

CALL dqS$exit(0);

UDI 3-3

UDI EXAMPLE

/*'...'.................l.’........."Q."....l........I.....l.........

* Attach the input file, and open it.

*...........ll...'—......l.........l........."..0....'...'.....I.....

*/

delim = dqSgetargument(@ nSname, @st);
CALL check$exception(st, 0);

inSconn = dq$attach(@inSname, @st);
CALL checkSexception(st, @inSname);

CALL dq$open(in$conn, 1, 2, @st);
CALL checkS$exception(st, @in$name);

/*......................l.........ll'.l...............I...'..'....O...

* TFind out if there is an output file specified. If so, attach
* and open it. If not, use :CO0: for output.

*....'.’.'......"..............’"‘.‘.......................‘........
*/
IF delim <> CR THEN
DO;

delim = dq$getSargument(@buffer, @st);
CALL check$exception(st, 0);
IF (delim = CR) OR

(buffer(0) <> 2) OR

(buffer(l) <> 'T') OR

(buffer(2) <> '0') THEN

DO

CALL dqSwrite(coSconn, @('Invalid output file', CR,
LF), 21, @st);
CALL dqSexit(3);

END;
delim = dqgetSargument(@utsname, @st);
CALL checkS$exception(st, 0);
out$conn = dq$Screate(@ut$name, @st);
CALL check$exception(st, @out$name);
CALL dq$open(out$conn, 2, 2, @st);
CALL check$exception(st, @out$name);

END;
ELSE

out$conn = co$conn;

UDI 3-4

UDI EXAMPLE

/*"..I'.......'........D..........li.'..........................-"...

Read from input, convert, and write to output

*........'.’...........O.........."..................'...............
*/
DO WHILE 1;
inScount = dq$read(inSconn, @buffer, size(buffer), @st);
CALL checkSexception(st, @in$name);
IF inScount = 0 THEN
GOTO end$SofS$file;
DO 1=0 TO inScount-1;
IF (buffer(i) >= 'a') AND (buffer(i) <= 'z') THEN
buffer(i) = buffer(i) + 'A'-'a';
END;
CALL dq$write(out$conn, @buffer, inScount, @st);
CALL checkS$Sexception(st, @outS$name);
END;
endSof$file:

/*.....l.........‘........Q......'.Q......'.....’..........’....D.....

% (Close input and output files, and exit
*

© 200000000000 0000000006060 0000CR00CCNOSOOCEODLEEIDOOEOIESENOEOENINOEOCENOIOIOIOIOOIDBPDOIBDBEOIIPOIOIOITPOPES

*/

CALL dqS$close(in$conn, @st);
CALL checkSexception(st, @in$name);

CALL dq$close(out$conn, @st);
CALL checkSexception(st, @outS$name);

CALL dqSexit(0);

END upper;

COMPILING AND LINKING

The program UPPER was compiled and linked on an iRMX 86-based system with
the following commands:

attachfile :sd:1ib/rmx86 as :1ib:
plm86 upper.p86
1ink86 upper.obj, :lib:compacelib to upper bind mempool(5000H)

The link map is on the next page.

UDI 3-5

UDI EXAMPLE

iRMX 86 8086 LINKER, V2.0

INPUT FILES: UPPER.OBJ, :LIB:COMPAC.LIB
OUTPUT FILE: UPPER
CONTROLS SPECIFIED IN INVOCATION COMMAND:

BIND MEMPOOL(5000H)
DATE: 14/02/83 TIME: 12:05:37
LINK MAP OF MODULE UPPER

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS ALIGN SEGMENT CLASS
02F6H —===—=—- W CODE CODE
00lEH =-=--- %) CONST CONST
04750 ————-- %) DATA DATA
04540 —=——-- W STACK STACK
0000H --=--- W MEMORY MEMORY
0000H —--———- G ?77SEG

INPUT MODULES INCLUDED:
UPPER.OBJ (UPPER)
:LIB:COMPAC.LIB(DQATTACH)
:LIB:COMPAC.LIB(DQCLOSE)
:LIB:COMPAC.LIB(DQCREATE)
:LIB:COMPAC.LIB(DQDECODEEXCEPTION)
:LIB:COMPAC.LIB(DQEXIT)
:LIB:COMPAC.LIB(DQGETARGUMENT)
:LIB:COMPAC.LIB(DQOPEN)
:LIB:COMPAC.LIB(DQREAD)
:LIB:COMPAC.LIB(DQWRITE)
:LIB:COMPAC.LIB(SYSTEMSTACK)

GROUP MAP

GROUP NAME: CGROUP
OFFSET SEGMENT NAME
0000H CODE

GROUP NAME: DGROUP
OFFSET SEGMENT NAME
0000H CONST

OOlEH DATA

SYMBOL TABLE OF MODULE UPPER

BASE OFFSET TYPE SYMBOL BASE

G(1) 0293H PUB DQATTACH G(1)

G(1) 02A9H PUB DQCREATE G(1)

G(1) 02BFH PUB DQEXIT G(1)

G(1) 02D5H PUB DQOPEN G(1)

G(1) 02EBH PUB DQWRITE S(4)
&%

UDI 3-6

OVERLAY

OFFSET

029EH
02B4H
02CAH
02EOH
006CH

TYPE

PUB
PUB
PUB
PUB
PUB

SYMBOL

DQCLOSE
DQDECODEEXCEPTION
DQGETARGUMENT
DQREAD
SYSTEMSTACK

APPENDIX A
DATATYPES

The following data types are recognized by the iRMX 86 Operating System.

BYTE

WORD

INTEGER

POINTER

OFFSET

SELECTOR

TOKEN

STRING

DWORD

An unsigned, eight-bit binary number.
An unsigned, two-byte, binary number.

A signed, two—byte, binary number. Negative numbers
are stored in two's—complement form.

Two consecutive words containing the base address of a
(64K~-byte processor) segment and an offset in the

segment. The offset is in the word having the lower
address.

A word whose value represents the distance from the
base address of a segment.

The base address of a segment.

A word or selector whose value identifies an object.

A token can be declared literally a WORD or a SELECTOR
depending on your needs.

A sequence of consecutive bytes. The value contained
in the first byte is the number of bytes that follow
it in the string.

A 4-byte unsigned binary number.

k%

UDI A-1

APPENDIX B
iIRMX™ 86 CONDITION CODES

This appendix contains the exception codes that are generated by the
iRMX 86 Operating Systems Exception codes are any condition codes other
than ESOK, the normal code. Exception codes are classed as either
"Environmental Conditions” or "Programmer Errors”, although the latter
includes certain hardware errors as well as errors that result from
programming.

The values of these exception codes fall into ranges based on the iRMX 86
layer which first detects the condition. Table B-1 lists the layers and
their respective ranges, with numeric values expressed in hexadecimal
notation.

Table B—-1l. Exception Code Ranges

Layer Environmental Programming

Nucleus 1H to 1FH 8000H to 801FH
I1/0 Systems 20H to 5FH 8020H to 805FH
Application Loader 60H to 7FH 8060H to 807FH
Human Interface 80H to AFH 8080H to 80AFH
Universal Development COH to DFH 80COH to 80DFH

Interface

Reserved for Intel EOH to 3FFFH 80EOH to BFFFH
Reserved for users 4000H to 7FFFH COO0H to FFFFH

The iRMX 86 NUCLEUS REFERENCE MANUAL gives the value of each code and its
assoclated mnemonic, as well as a short description of its significance.
In addition, the table shows the layer(s) of the system that could
generate the code, in case you wish to refer the the appropriate manual.

*k%k

UDI B-1

INDEX

Primary references are underscored.

access to a file 2-10, 2-23, 2-28, 2-34
ALLOCATE system call 2-4, 2-8, 2-42
application model 1-1

ASM86 command 2-6

ATTACH system call 2-5, 2-9

CHANGESACCESS system call 2-10

CHANGESEXTENSION system call 2-12

CLOSE system call 2-5, 2-13

command line 2-26, 2-49

condition codes 2-5, 2-15, 2-20, B-1

connection 2-5, 2-9, 2-13, 2-14, 2-19, 2-28, 2-44
Control-C 2-51

CREATE system call 2-5, 2-14

data types A-1

date 2-16, 2-33
DECODESEXCEPTION 2-6, 2-15
DECODESTIME 2-16

default user 2-11

DELETE system call 2-5, 2-18
DETACH system call 2-5, 2-19

end of file 2-40

environmental conditions 2-5, B-1

example 3-1

exception handling 2-5, 2-15, 2-30, 2-52, B-1
EXIT system call 2-20

extension of a file 2-12

file access 2-10, 2-23, 2-28, 2-34
file extension 2-12

file handling 2-4

FILESINFO system call 2-22

file pointer 2-5, 2-44, 2-53

FREE system call 2-4, 2-25

free space pool 2-4, 2-8, 2-42

GETSARGUMENT system call 2-26, 2-49
GETSCONNECTIONSSTATUS system call 2-28
GETSEXCEPTIONSHANDLER system call 2-30
GET$SIZE system call 2-4, 2-31

UDI Index—1

INDEX (continued)

GET$SYSTEMSID system call 2-32
GET$STIME system call 2-33

input/output calls 2-4, 2-39, 2-54
interface to languages 2-6

language interface 2-6
line editing 2-46

memory management 2-4

-34

OPEN system call 2-5, 2-3
1-1, 2-32

operating system
overlay 2-37
OVERLAY system call 2-37
owner ID 2-11

owner of a file 2-10, 2-22

pathname of a file 2-41
PL/M-86 2-6
programmer errors 2-5, B-1

READ system call 2-5, 2-39
RENAME system call 2-41
RESERVESIOSMEMORY system call 2-9, 2-42

SEEK system call 2-5, 2-44

segment 2-4, 2-8, 2-25, 2-31

SPECIAL system call 2-46
SWITCHSBUFFER system call 2-26, 2-49
system calls (DQS) 2-1

time 2-16, 2-33

TRAPSCC system call 2-51

TRAPSEXCEPTION system call 2-6, 2-52
TRUNCATE system call 2-53

Universal Development Interface (UDI) 1-1

WRITE system call 2-5, 2-54
WORLD user 2-10, 2-23

kkk

UDI Index—2

GUIDE TO WRITING DEVICE DRIVERS
FOR THE iRMX™ 86 AND iRMX™ 88
1/0 SYSTEMS

CONTENTS

CHAPTER 1

INTRODUCTION

I/O Devices and Device DriverSeecesesesccescsssscescssscscssosscsnsns 1
I/O Requests.....................'.....ll'.......................... 1-
Types of Device DriverSesesesesecsccscocosseccsscesessncssncssncsoses 1
How to Read This Manuadleeeseseesescsesscecscsscsesecsccscscscssosnscssae 1

CHAPTER 2

DEVICE DRIVER INTERFACES
I/O System InterfaceSeesecscccsessceassccsccsosnsncsscsscccscsccosssssnse 2-1
Device-Unit Information Block (DUIB)Q».oo-oooooooooooo..a.o..ooo. 2-2
DUIB StrTuUCLUTECeessessesssssacsesssssnoscssscsscsacscsscscsssscsonss 2-2
Using the DUIBSceecessescesssecssscoocssesscscscscscscssscsssoncsace 2-7
Creating DUTBSeesesseccesessencesososessssasscsssscscsascsssnsosscse 2-8
I/O Request/Result SEgment (IORS)..o.ooooo-oooo-o.ooooooooooooooo 2=-9
2-1

Device InterfaceSeecsececcscnsesccsascsonsscnssssssscsscsssnsacsnse

CHAPTER 3

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Categories Of DeviceSeeesccsacesscsssssoscscsscscccsccnsccsccssscsnsne 3-1
Common DevicCeSessecssesssencossssecscsnsscessscsssssssssscsssscssnsssse 3-1
Random Access DevicCeSeessesseeecsscscoscesssssssssscsessscsnssssccsce 3-1
Terminal DeviceSeseeescsssscecccsccscncessssesncscsossoncssncscsoncs 3-2
Custom DeviceSesessesnccovsocssesccsssscsscsscsscsconscssssossasosasne 3-2

I/0 System-Supplied Routines for Common and Random Access
Device DriverSecesessccsescecsesscsscncsssanscenscsscscsscsssccscacce 3-2

I/0 System Algorithm For Calling the Device Driver ProcedureSeeeeces 3=4

Required Data StruCtUYESesesoessssescsscsssscsscsssncssassssscsssoce 3-7
Device Information Tableeesesececoecensscsssccscscossscessnssossoncs 3-8
Unit Information Tablesessocecescecocevscscnsncosnncsosscscsnssscss 3-10
Relationships Between I/0 Procedures and I/0 Data StructureSesees 3-12

Device Data Storage N o 2 T 3-13

Writing Drivers For Use With Both iRMX" 86— and iRMX" 88-Based

SYStEmSooooocooootooooooon-ooc.ocoooooooouoo.ooo-oooooo.ooobooooo 3-14

CHAPTER 4
I/0 REQUESTS
I/0 System Responses to I/0 RequeStSeecsvecssccessscscsscsasccssscss 4-1
Attach Device RequestSeeceossescssssscsocsscnscsscsccsscscsscnsensce 4-1
Detach Device RequestSeecesesvecssessssvcssssnessesscscsssnsscsssccsssosn 42
Read, Write, Open, Close, SGEk, and Special REQUEStS.n.ooooocoooo 4-2
4-2
4-3

Cancel Requests.............-........o-......-o................o.

DUIB and IORS Fields Used By Device DriverSessescsecsssvssccccoscssne

Device Drivers iii

CONTENTS
(continued)

CHAPTER 5
WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS
Introduction to Procedures that Device Drivers Must SubpplVessecescss
Device Initialization Procedureeseceesenscsccccenscecscssccscssocess
Device Finish Procedureesscccecscsesssssccccccsccscsccsscssccncscoce
Device Start ProcedurCeccecscesccscssssscscssscscsscncnssscescsssscssonse
Device Stop ProcedurCecescscsccccsccscssosscsnsssssssscsssescssscscsccsces
Device Interrupt ProcedilTCeesssscecccssnacssnsnsssvssesssscscscscncsscnse
Procedures that iRMX" 86 Random Access Drivers Must Callesecccoccss
NOTIFY ProcedurCeccscesesscscesscsccsssnsssnscscccsacsescssacsscsnssncs
SEEKsCOMPLETE PrOCEdUreoooooooooooomooooooooco-nooooo.ooonoo-onoo
Procedures for Other Long—Term OperationSescsscscsscecascccccsnse
BEGINsLONGSTERMsOP ProcedurCecssssssscccccsncssccssoscccsccsssssnscs
END$LONG$TERM$OP Procedure...........-o..............--........
GETsIORS ProcedirCessescccscsssessesnssnsecscsssscscsscsoscosssasossssasn
Formatting ConsiderationSesecsescscscorenccnccscsccscncscsccsscccsscnconce

CHAPTER 6

WRITING A CUSTOM DEVICE DRIVER

Initialize I/O ProcedurCecessssescsscssnesscscscscsscssccncscscecssscssscccs
Finish I/O ProcedurCeccescsssssscsccscsossesosesesnosssscscncccscccsnce
Queue I/O ProcedurCacececccccccssscncsscscsseesssncsccsnscnccnnscncose
Cancel I/O ProcedurCececsccccsccccscccsscsscsscsconsscessosscsnncsncsccces
Implementing a Request OUCUCeessessssvsscssccsscsscsssracsnssossccne

CHAPTER 7

TERMINAL DRIVERS

Terminal Squort COdCecoossenosncssnscsncssscssncsscnsnsnssssscssssnsss

Data Structures Supporting Terminal I/Oseccscccsccsscssscecceccccne
DUIBeescscesasconscscnoscnssssscccsencssssssrosscssscsncssnscsacnssccssococse
Device Information Tableecssosesesssseoscesesosccsscscccscsnssncccse
Unit Information Tableeeecsssecesosseesessesceccossscsscccsoscssncccccese
Terminal Controller Data and Terminal Unit Data@eececesssccsccssccss

Terminal Support Code (TSC) Data Ared.eccccececcscescssssscssscsssose

Procedures that Terminal Drivers Must SuppPlVeeceseccccsscsscscssses
Terminal Initialization Procedur@eececscecssassscsccsccssssccscses
Terminal Finish Procedur@eecescsscscoscessscessscncsssccssscccsscne
Terminal Setup ProcedurCeecscsessesccascscsssssssrscsscscsvscscssssss
Terminal Answer ProcedurEeecesscsssseccescsnccsssccssnsscsssnsosncs
Terminal Hangup ProcedurCececscsccccoccosenssssssesscsssccscscsnnse
Terminal Check ProcedurEeesesccsccsessesscvecscscscessssssccsscscscnse
Terminal OQutput ProcedurCeccccccccssocsscscscscsscscsscscsscscssssccsss
Additional Information for Buffered DeViCES..;.aoooqnooooon..ota.

Procedures' Use of Data StruCtlUreSeccceecsscsecssscssssscscssscsssosasce

CHAPTER 8

BINDING A DEVICE DRIVER TO THE I/0 SYSTEM

Using the iRMX" 86 Interactive Covnfiguration UtilitVeeesoesecscscscsscs
Using the iRMX" 88 Interactive Configuration UtilitVeeseocsssscesssse

Device Drivers iv

PAGE

[T I |
— QO

wr UlUlU1U1UI%1U1U1UlUIM w
= O XN SWNN -

8-1
8-4

CONTENTS
(continued)

PAGE

APPENDIX A

RANDOM ACCESS DRIVER SUPPORT ROUTINES

INITSIO ProcCedUre.eceeessseccscesoccascnasescssscsssossnessacsssnsscnsss A-1
FINISHSIO ProcCedUre.cceeescessssescasocasasssossossnscsssssscsnnssancss A-3
QUEUESIO ProcCedUr@.ceecececesesssescasasnscoasoscsssssscsssssssanscsescs A-5
CANCELSTIO ProcCedUre.ceeeeccesessscscssosssoscssssassansssossocasscasss A-6
Interrupt Task (INTERRUPTSTASK)eeeeeoceonosososassccssonnsssassocss A-9

APPENDIX B
EXAMPLES OF DEVICE DRIVERS ¢.eeceesescosrsoccossssssossssossssscecsacss B-1

FIGURES

Communication LevelS.ceseeceeroecsccasosesccsccscsosnssssoocs
Device NUumbering.eceeeoeeeeecccsccecoescacososscosccscsoscssnss
Attaching DeviceS.iceeserssessssesscansesscscanssscscasossassos
Interrupt Task InteractionN.esccecesesccescccecsccscasscsonse
How the I/O System Calls the Device Driver ProcedureS......
DUIBs, Device and Unit Information TableS.eeeeececscscsscsse
Relationships Between I/0 Procedures and I/0 Data

.

ww(.iows—w—
NSO N -

wwwulomn—nl-d
SN =N =
.

SErUCEUYCS eeeesesosacscssssesscosnssossscosssssascscsansacsassass 3-12
6-1. Request QUEUEC. . eestesearososssssssssssasssosscssssosssssssnsnsocs 6-6
7-1, Software Layers Supporting Terminal I/0...ceeeeecccssscccss 7-2
7-2. TSC DAtl@ ArCAceeeeccesasscsassossossosasesossassassssossorsososacss 7-12
8-1. Example IDEVCF,A86 Fil@.eeeeoosssaceasseasossscasossnssossans 8-2
8-2. Example User DevicCes SCreeN.isccecseccscrsccssosssssssssscncss 8-4
A-1., Random Access Device Driver Initialize I/O Procedure....... A-2
A-2. Random Access Device Driver Finish I/0 Procedure....ceceeeee A=4
A-3. Random Access Device Driver Queue I/0 Procedur€...eeeeesess A-6
A-4, Random Access Device Driver Cancel I/0 Procedur€..ceeececsss A-8
A-5., Random Access Device Driver Interrupt Task..ieesecseescesss A-10

TABLES
4-1, DUIB and IORS Fields Used by Common Device Drivers....cece. 4=4
4-2, DUIB and IORS Fields Used by Random Access Device Drivers.. 4-5
4-6
7-2

4-3, DUIB and IORS Fields Used by Custom Device DriversS.cesecess
7-1, Uses of Fields in Terminal Driver Data StructureS...eceeecse

ek

Device Drivers v

CHAPTER 1
INTRODUCTION

The iRMX 86 and iRMX 88 I/0 Systems are each implemented as a set of file

drivers and a set of device drivers. File drivers provide the support
for particular types of files (for example, the named file driver
provides the support for named files). Device drivers provide the
support for particular devices (for example, an iSBC 215 device driver
provides the facilities that enable you to use an iSBC 215 Generic
Winchester controller to control a Winchester-type drive with the I/0
System). Each type of file has its own file driver, and each device has
its own device driver.

One of the reasons that the I/0O Systems are broken up in this manner is

to provide device-independent I/0. Application tasks communicate with
file drivers, not with device drivers. This allows tasks to manipulate

all files in the same manner, regardless of the devices on which the
files reside. File drivers, in turn, communicate with device drivers,
which provide the instructions necessary to manipulate physical devices.
Figure 1-1 shows these levels of communication.

APPLICATION TASK

file independent interface

FILE DRIVER

device independent interface

DEVICE DRIVER

DEVICE

x-290

Figure 1-1. Communication Levels

Device Drivers 1-1

INTRODUCTION

The I/0 System provides a standard interface between file drivers and
device drivers. To a file driver, a device is merely a standard block of
data in a table. To manipulate a device, the file driver calls the
device driver procedures listed in the table. To a device driver, all
file drivers seem the same. Every file driver calls device drivers in

the same manner. This means that the device driver does not need to
concern itself with the concept of a file driver. It sees itself as

being called by the 1/0 System, and it returns information to the I/0
System. This standard interface has the following advantages:

. The hardware configuration can change without extensive
modifications to the software. Instead of modifying entire file
drivers when you want to change devices, you need only substitute
a different device driver and modify the table.

° The I/0 System can support a greater range of devices. It can

support any device, as long as you supply a device driver that
interfaces to the file drivers in the standard manner.

I/0 DEVICES AND DEVICE DRIVERS

Each I/0 device consists of a controller and one or more units. A device
as a whole is identified by a unique device number. Units are identified
by unit number and by device-unit number. The device number identifies
the controller among all the controllers in the system, the unit number
identifies the unit within the device, and the unique device-unit number
identifies the unit among all the units of all of the devices. Figure
1-2 contains a simplified drawing of three I/0 devices and their device,
unit, and device—unit numbers.

DEVICE 0 DEVICE 1 DEVICE 2
CONTROLLER CONTROLLER CONTROLLER
UNIT 0 UNIT 1 UNIT 0 UNIT 1 UNIT 2 UNIT 0
DEVICE- DEVICE- DEVICE- DEVICE- DEVICE- DEVICE-
UNIT 0 UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5

x-291

Figure 1-2. Device Numbering

Device Drivers 1-2

INTRODUCTION

You must provide a device driver for every device in your hardware
configuration. That device driver must handle the I/0 requests for all
of the units the device supports. Different devices can use different
device drivers; or if they are the same kind of device, they can share
the same device driver code. (For example, two iSBC 215 controllers are
two separate devices and each has its own device driver. However, these
device drivers can share common code.)

1/0 REQUESTS

To the device driver, an I/0 request i1s a request by the I/0 System for

the device to perform a certain operation. Operations supported by the
I/0 System are:

Read

Write

Seek

Special
Attach device
Detach device
Open

Close

The I/0 System makes an 1/0 request by sending to the device driver an
I/0 request/result segment (IORS) containing the necessary information.
(The IORS is described in Chapter 2.) The device driver must translate
this request into specific device commands to cause the device to perform
the requested operation.

TYPES OF DEVICE DRIVERS

The I/0 System supports four types of device drivers: custom, common,
random access, and terminal. A custom device driver is one that the user
creates in its entirety. This type of device driver can assume any form
and can provide any functions that the user wishes, as long as the I/0
System can access it by calling four procedures, designated as Initialize
1/0, Finish I/0, Queue I/0, and Cancel I/O.

The 1/0 System provides the basic support routines for the common, random
access, and terminal device driver types. These support routines provide
a queueing mechanism, an interrupt handler, and other features needed by
common, random access, and terminal devices. If your device fits into
the common, random access, or terminal device classification, you need to
write only the specialized, device-dependent procedures and interface
them to the ones provided by the I/O System to create a complete device
driver.

Device Drivers 1-3

INTRODUCTION

HOW TO READ THIS MANUAL

This manual 1is for people who plan to write device drivers for use with
iRMX 86~ and/or iRMX 88-based systems. Because there are numerous
terminology differences between the two iRMX systems, the tone of this
manual is general, unlike that of other manuals for either system. For
iRMX 88 users, this should not be a problem. But iRMX 86 users should
take note of the following:

° In a number of places the phrase "the location of" is substituted
for "a token for".

° The "device data storage area" that is alluded to in many places
is actually an iRMX 86 segment.

e The term "resources" usually means "objects." The intended
meaning of "resources™ 1s clear from its context.

ke

Device Drivers 1-4

CHAPTER 2
DEVICE DRIVER INTERFACES

Because a device driver is a collection of software routines that manages
a device at a basic level, it must transform general instructions from
the I/0 System into device-specific instructions which it then sends to
the device itself. Thus, a device driver has two types of interfaces:

] An interface to the I/0 System, which is the same for all device
drivers.

) An interface to the device itself, which varies according to
device.

This chapter discusses these interfaces.

I/0 SYSTEM INTERFACES

The interface between the device driver and the I/0 System consists of
two data structures: the device-unit information block (DUIB) and the I/0
request/result segment (IORS).

DEVICE-UNIT INFORMATION BLOCK (DUIB)

The DUIB is an interface between a device driver and the I/0 System, in
the sense that the DUIB contains the addresses of one of the following
routines:

° The device driver routines (in the case of custom device drivers).

° The device driver support routines (in the case of terminal
drivers, common drivers, and random access drivers).

By accessing the DUIB for a unit, the I/0 System can call the appropriate
device driver/device driver support routine. All devices, no matter how
diverse, use this standard interface to the I/0 Systems You must provide
a DUIB for each device-unit in your hardware systems You supply the
information for your DUIBs as part of the configuration process.

Device Drivers 2-1

DEVICE DRIVER INTERFACES

DUIB Structure

This section lists the elements that make up a DUIB. When creating DUIBs
for iRMX 86 applications, code them in the format shown here (as
assembly~language structures). The iRMX 86 Interactive Configuration
Utility (ICU) includes your DIUIIB file in the assembly of IDEVCF.A86 (a
Basic I/0O System configuration file). IDEVCF.A86 contains the definition
of the structure.

Unlike the iRMX 86 ICU, the iRMX 88 ICU prompts you for some fields in
the DUIB structure. The ICU automatically fills in the other fields,
depending upon factors such as the type of device you are configuring.
The iRMX 88 ICU generates the DUIBs and places them in the device
configuration source file.

DEFINE DUIB <

& NAME (14), ; byte (14)

& FILESDRIVERS, ;5 word

& FUNCTS, ; byte

& FLAGS, ; byte

& DEVSGRAN, s word

& DEVSSIZE, s dword

& DEVICE, ; byte

& UNIT, ; byte

& DEVSUNIT, 3 word

& INITSIO, ; word

& FINISHSIO, ;s word

& QUEUESIO, s word

& CANCELSIO, ; word

& DEVICESINFOSP, ; pointer

& UNITSINFOSP, 3 pointer

& UPDATESTIMEOUT, ; word

& NUMSBUFFERS, ; word

& PRIORITY, ; byte

& FIXEDSUPDATE, ; byte (iRMX 86 DUIB only)
& MAXSBUFFERS, ; byte (iRMX 86 DUIR only)
& RESERVED, ; byte (iRMX 86 DUIB only)
& >

Device Drivers 2-2

where:

NAME

FILE$DRIVERS

FUNCTS

DEVICE DRIVER INTERFACES

A 14-BYTE array specifying the name of the DUIB.

This name uniquely identifies the device-unit to
the I/0 System. Use only the first 13 bytes. The
fourteenth is used by the I/0 System.

You supply the name when configuring your
application system. If you are an iRMX 86 user,
you specify the DUIB name when attaching a unit via
the RQAPHYSICALSATTACHSDEVICE system call.

Device drivers can ignore this field.

For the iRMX 88 Executive, the DUIB name is the
device name portion of the name$p parameter for the
DQ$ATTACH or the DQ$CREATE system calls.

WORD specifying file driver validity. Setting bit
number "i" of this word implies that the

corresponding file driver can attach this
device-unit. Clearing bit number "i" implies that

the file driver cannot attach this device-unit.

The low—-order bit is bit 0. The bits are
associated with the file drivers as follows:

Bit "i" File Driver
0 physical
1 stream (iRMX 86 only)
3 named

The remaining bits of the word must be set to
zero. Device drivers can ignore this field.

BYTE specifying the I/0 function validity for this

device-unit. Setting bit number "i" implies that
the device—unit supports the corresponding
function. Clearing bit number "i" implies that the
device-unit does not support the function. The

low—order bit is bit 0. The bits are associated
with the functions as follows:

Bit "i" Function

read

write
seek

special
attach device
detach device
open

close

No bk W= O

Bits 4 and 5 should always be set. Every device
driver requires these functions.

Device Drivers 2-3

FLAGS

DEV$GRAN

DEV3$SIZE

DEVICE

DEVICE DRIVER INTERFACES

This field is used for informational purposes

only. Setting or clearing bits in this field does
not limit the device driver from performing any 1/0
function. In fact, each device driver must be able
to support any I1/0 function, either by performing
the function or by returning a condition code
indicating the inability of the device to perform
that function. However, to provide accurate status
information, this field should indicate the
device's ability to perform the I/0 functions.
Device drivers can ignore this field.

BYTE specifying characteristics of diskette
devices. The significance of the bits is as
follows, with bit 0 being the low-order bit:

Bit Meaning
0 0 = bits 1-7 not significant
1 = bits 1-7 significant
1 0 = single density; 1 = double
density
2 0 = single sided; 1 = double
sided
3 0 = 8-inch diskettes
1 =5 1/4-inch diskettes

£
o
]

standard diskette, meaning
that track 0 is
single—~density with
128-byte sectors

1 = not a standard diskette or
not a diskette

5-7 reserved

If bit 0 is set to 1, then a driver for the device

can read track O when asked to do so by the I/0
System.

WORD specifying the device granularity, in bytes.
This parameter applies to random access devices.
It specifies the minimum number of bytes of
information that the device reads or writes in one
operation.If the device is a disk or magnetic
bubble device, you should set this field equal to

the sector size for the device. Otherwise, set
this field equal to zero.

DWORD specifying the number of bytes of information
that the device—unit can store.

BYTE specifying the device number of the device

with which this device—unit is associated. Device
drivers can ignore this field.

Device Drivers 2-4

UNIT

DEV$UNIT

INIT$IO

FINISH$IO

QUEUE$IO

CANCEL$ IO

DEVICE$INFO$P

UNIT$INFOS$P

DEVICE DRIVER INTERFACES

BYTE specifying the unit number of this

device-unit. This distinguishes the unit from the
other units of the device.

WORD specifying the device-unit number. This
number distinguishes the device-unit from the other
units in the entire hardware system. Device
drivers can ignore this field.

WORD specifying the address of the Initialize I/0
procedure associated with this unit. When creating
the DUIB, use the procedure name as a variable to

supply this information. Device drivers can ignore
this field.

WORD specifying the address of the Finish I/O
procedure associated with this unit. When creating
the DUIB, use the procedure name as a variable to
supply this information. Device drivers can ignore
this field.

WORD specifying the address of the Queue I/0
procedure associated with this unit. When creating
the DUIB, use the procedure name as a variable to

supply this information. Device drivers can ignore
this field.

WORD specifying the address of the Cancel I/0
procedure associated with this unit. When creating
the DUIB, use the procedure name as a variable to
supply this information. Device drivers can ignore
this field.

POINTER to a structure which contains additional
information about the device. The common, random
access, and terminal device drivers require, for
each device, a Device Information Table, in a
particular format.

This structure is described in Chapter 3. If you
are writing a custom driver, you can place
information in this structure depending on the
needs of your driver. Specify a zero for this

parameter 1f the associated device driver does not
use this field.

POINTER to a structure that contains additional
information about the unit. Random access and
terminal device drivers require this Unit
Information Table in a particular format. Refer to
Chapter 3 for further information. If you are
writing a custom device driver, place information
in this structure, depending on the needs of your
driver. Specify a zero for this parameter if the
assoclated device driver does not use this field.

Device Drivers 2-5

UPDATE$TIMEOUT

NUM$BUFFERS

PRIORITY

FIXED$UPDATE

DEVICE DRIVER INTERFACES

WORD specifying the number of system time units
that the I/0 System must wait before writing a
partial sector after processing a write request for
a disk device. In the case of drivers for devices
that are neither disk nor magnetic bubble devices,
set this field to OFFFFH during configuration.

This field applies only to the device for which
this is a DUIB, and is independent of updating that
is done either because of the value in the
FIXED$UPDATE field of the DUIB or by means of the
A$UPDATE system call of the I/0 System. Device
drivers can ignore this field.

WORD which, if not zero, both specifies that the
device is a random access device and indicates the
number of buffers the I/O System allocates. The
I/0 System uses these buffers to perform data
blocking and deblocking operations. That is, it
guarantees that data is read or written beginning
on sector boundaries. If you desire, the random
access support routines can also guarantee that no
data is written or read across track boundaries in
a single request (see the section on the Unit
Information Table in Chapter 3). A value of zero
indicates that the device 1is not a random access
device. Device drivers can ignore this field.

BYTE specifying the priority of the I/0 System
service task for the device. Device drivers can
ignore this field.

BYTE indicating whether the fixed update option was
selected for the device when the application system
was configured. This option, when selected, causes
the I/0 System to finish any write requests that
had not been finished earlier because less than a
full sector remained to be written. Fixed updates
are performed throughout the entire system whenever
a time interval (specified during configuration)
elapses. This is independent of the updating that
is indicated for a particular device (by the
UPDATE$TIMEOUT field of the DUIB) or the updating
of a particular device that is indicated by the
ASUPDATE system call of the I/0 System.

A value of OFFH indicates that fixed updating has

been selected for this device, and a value of zero
indicates that it has not been selected. Device
drivers can ignore this field.

The FIXED$UPDATE field is not present in the
iRMX 88 DUIB.

Device Drivers 2-6

DEVICE DRIVER INTERFACES

MAX$BUFFERS BYTE specifying the maximum number of buffers that
the Extended 1/0 System (of the iRMX 86 Operating
System) can allocate for a connection to this
device when the connection is opened by a call to
S$OPEN., The value in this field is specified
during configuration. Device drivers can ignore
this field.

The MAX$BUFFERS field is not present in the iRMX 83
DUIB.

RESERVED BYTE reserved for future use.

The RESERVED field is not present in the iRMX 88
DUIB.

Using the DUIBs

To use the I/0 System to communicate with files on a device-unit, you
must first attach the unit. If you are an iRMX 88 user, attaching the
unit occurs automatically when you first attach or create a file on the
unit. If you are an iRMX 86 user, you attach the unit by invoking the
RQAPHYSICALSATTACH$DEVICE system call (refer to the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL for a description of this system call).

When you attach a unit, the I/0 System assumes that the device-unit
identified by the device name field of the DUIB has the characteristics
identified in the remainder of the DUIB. Thus, whenever the application
software makes an 1/0 request via the connection to the attached
device-unit, the 1/0 System ascertains the characteristics of that unit
by examining the associated DUIB. The I/0 System looks at the DUIB and

calls the appropriate device driver/device driver support routines listed
there to process the I/0 request.

If you want the I/0 System to assume different characteristics at
different times for a particular device-unit, you can supply multiple
DUIBs, each containing identical device number, unit number, and
device-unit number parameters, but different DUIB name parameters. Then
you can select one of these DUIBs by specifying the appropriate dev$name
parameter in the RQAPHYSICALSATTACH$DEVICE system call (for 1RMX 86
users) or the appropriate device name when calling DQ$ATTACH or DQ$CREATE
(for iRMX 88 users.) However, before you can switch the DUIBs for a
unit, you must detach the unit.

Figure 2-1 illustrates this concept. It shows six DUIBs, two for each of
three units of one device. The main difference within each pair of DUIBs
in this figure 1s the device granularity parameter, which 1s either 128

or 512, With this setup, a user can attach any unit of this device with
one of two device granularities. In Figure 2-1, units 0 and 1 are
attached with a granularity of 128 and unit 2 with a granularity of 512.
To change this, the user can detach the device and attach it again using
the other DUIB name.

Device Drivers 2-7

DEVICE DRIVER INTERFACES

NOTE

For iRMX 86 systems only, when the

1/0 System accesses a device containing
named files, it obtains information
such as granularity, density, size
(5-1/4" or 8" for diskettes), or the
number of sides (single or double) from
the volume label. Therefore it is not
necessary to supply a different DUIB
for every kind of volume you intend to
use. However, for iRMX 86
applications, you must supply a
separate DUIB for every kind of volume
you intend to format via the FORMAT
Human Interface command.

NAME = UNITA NAME = UNITA1
DEVSGRAN =128 DEV$GRAN =512

DUIBS FOR
DEVICE =1 DEVICE =1 DEVICE-UNIT 8
UNIT=0 UNIT=0
DEVSUNIT=6 DEVSUNIT = 6

3
1
CALLRQ$SASPHYSICALSATTACHSDEVICE (UNITA,...)
NAME = UNITB NAME = UNITB1
DEVS$GRAN =128 DEVS$GRAN =512
, DUIBS FOR
DEVICE =1 DEVICE =1 DEVICE-UNIT 7
UNIT =1 UNIT =1
DEVSUNIT =7 DEVSUNIT =7
t |
CALL RQSASPHYSICALSATTACHSDEVICE (UNITB,..)

NAME = UNITC NAME = UNITC1
DEVSGRAN =128 DEV$GRAN =512

DUIBS FOR
DEVICE =1 DEVICE =1 DEVICE-UNIT 8
UNIT =2 UNIT =2
DEVSUNIT=8 DEVSUNIT =B

CALL RQSASPHYSICALSATTACHSDEVICE (UNITC1,..)

Figure 2-1.

Attaching Devices

x-292

Creating DUIBs

During interactive configuration, you must provide the information for

all of the DUIBs.
up the DUIBs when it executes.

supplying DUIB information:

Device Drivers 2-8

The configuration file, which the ICU produces, sets
Observe the following guldelines when

DEVICE DRIVER INTERFACES

) Specify a unique name for every DUIB, even those that describe
the same device-unit.

e TFor every device~unit in the hardware configuration, provide
information for at least one DUIB. Because the DULB contains the
addresses of the device driver/device driver support routines,
this guarantees that no device-unit is left without a device
driver to handle its L/O.

° Make sure to specify the same device driver/device driver support
procedures in all of the DUIBs associated with a particular
device, There is only one set of device driver/device driver
support routines for a given device, and each DUIB for that
device must specify this unique set of routines.

° If you write a common or random access device driver, you must

supply a Device Information Table for each device. If you write
a random access device driver, you must also supply a Unit

Information Table for each unit. See Chapter 4 for
specifications of these tables. If you are using custom device
drivers and they require these or similar tables, you must supply
them, as well.

e For iRMX 86 systems only, if you write a terminal driver, you

must supply terminal device information table for each terminal
device driver, as well as a unit information table for each

terminal. See Chapter 7 for specifications of these tables.

I/0 REQUEST/RESULT SEGMENT (IORS)

An I/0 request/result segment (IORS) is the second structure that forms
an interface between a device driver and the I/O System. The I/O System
creates an IORS when a user requests an I/0 operation. The IORS contains
information about the request and about the unit on which the operation
is to be performed. The I/0 System passes the IORS to the appropriate
device driver, which then processes the request. When the device driver
performs the operation indicated in the IORS, it must modify the IORS to
indicate what it hds done and send the IORS back to the response mailbox
(exchange) indicated in the IORS.

The IORS is the only mechanism that the I/O System uses to transmit

requests to device drivers. The IORS structure is always the same.
Every device driver must be aware of this structure and must update the
information in the IORS after performing the requested function. The
IORS is structured as follows:

Device Drivers 2-9

DEVICE DRIVER INTERFACES

DECLARE

IORS STRUCTURE(
STATUS WORD,
UNIT$STATUS WORD,
ACTUAL WORD,
ACTUALSFILL WORD,
DEVICE WORD,
UNIT BYTE,
FUNCT BYTE,
SUBFUNCT WORD,
DEV$LOC DWORD,
BUFF$P POINTER,
COUNT WORD,
COUNT$FILL WORD,
AUX$P POINTER,
LINK$FOR POINTER,
LINK$BACK POINTER,
RESP$MBOX SELECTOR,
DONE BYTE,
FILL BYTE,
CANCELS$ID SELECTOR,
CONNS$T SELECTOR); (iRMX 86 IORS only)

where:

STATUS WORD in which the device driver must place the
condition code for the 1/0 operation. The E$OK
condition code indicates successful completion of the
operation. For a complete list of possible condition
codes, see either the iRMX 86 NUCLEUS REFERENCE
MANUAL, the iRMX 86 BASIC I/0 SYSTEM REFERENCE
MANUAL, and the iRMX 36 EXTENDED I/0 SYSTEM REFERENCE
MANUAL, or the iRMX 83 REFERENCE MANUAL.

UNIT$STATUS WORD in which the device driver must place additional

status information if the status parameter was set to
indicate the E$I0 condition. The unit status codes
and their descriptions are as follows:

Code Mnemonic Description

0 LO$UNCLASS Unclassified error

1 IO$SOFT Soft error; a retry is possible

2 IO$HARD Hard error; a retry is
impossible

3 IO$OPRINT Operator intervention is
required

4 IO$WRPROT Write-protected volume

5% IONODATA No data on the next tape record

6% IO$MODE A read (or write) was attempted

before the previous write (or
read) completed

*For iRMX 86 systems only.

Device Drivers 2-10

ACTUAL

ACTUAL$FILL

DEVICE

UNIT

FUNCT

SUBFUNCT

DEVICE DRIVER INTERFACES

The I/0 System reserves values 0 through 3 (the least
significant four bits) of this field for unit status
codes. The high 12 bits of this field can be used
for any other purpose that you wish. For example,
the 1SBC 204 driver places the controller's result
byte in the high eight bits of this field. For more
information about the data returned by your device

controller, refer to the hardware reference manual
for your controller.

WORD which the device driver must update upon
completion of an I/O operation to indicate the number
of bytes of data actually transferred.

Reserved WORD.

WORD into which the I/0 System places the number of
the device for which this request is intended.

BYTE into which the I/0 System places the number of
the unit for which this request is intended.

BYTE into which the I/0 System places the function
code for the operation to be performed. Possible
function codes are:

Code Function

0 F$READ

1 F$WRITE

2 F$SEEK

3 F$SPECIAL

4 F$ATTACH$DEV
5 F$DETACH$DEV
6 F$OPEN

7 F$CLOSE

WORD into which the I/0 System places the actual
function code of the operation, when the F$SPECIAL
function code was placed into the FUNCT field. The

value in this field depends upon the file driver to
be used with this device. The possible subfunctions

and the driver types to which they apply are as
follows:

File Driver Subfunct

For Connection Value Function

Physical# 0 Format track

Stream 0 Query

Stream 1 Satisfy

Physical or Named 2 Notify

Physical 3 Get disk/tape
data

Device Drivers 2-11

DEVS$LOC

BUFF$P

DEVICE DRIVER INTERFACES

File Driver Subfunct

For Connection Value Function

Physical 4 Get terminal data

Physical 5 Set terminal data

Physical 6 Set signal

Physical 7 Rewind tape

Physical 8 Read tape file
mark

Physical 9 Write tape file
mark

Physical 10 Retension tape

11-32767 Reserved for

other Intel
products

*These functions apply both to iRMX 86 and
iRMX 88 systems. The other functions are
iRMX 86-specific.

The values from 32768 to 65535 are available for
user-written/custom device drivers.

DWORD into which the I/0 System initially places the
absolute byte location on the I/0 device where the
operation is to be performed. For example, for a
write operation, this 1s the address on the device
where writing begins. The 1/0 System f£ills out this
information when it passes the IORS to the driver
support routines.

If the device driver is a random access driver, the
random access support routines modify the information
in the DEV$LOC field before passing the IORS on to
user-written driver procedures listed in Chapter 5.
The value that the random access support routines
fill out depends upon the TRACK$SIZE field in the
unit's Unit Information Table (see Chapter 3).

° If the TRACK$SIZE field is zero, the random
access support routines divide the value in
DEV$LOC by the device granularity and place that

value (the absolute sector number) in the DEV$LOC
field.

[] If the TRACK$SIZE field is nonzero, the random
access support routines use the absolute byte
number in DEV$LOC to calculate the track and
sector numbers. The routines then place the
track number in the high-order WORD (of DEV$LOC)

and the sector number in the low-order WORD (of
DEV$LOC) .

POINTER which the I/0 System sets to indicate the
internal buffer where data is read from or written to.

Device Drivers 2-12

COUNT

COUNT$FILL

AUX$P

DEVICE DRIVER INTERFACES

WORD which the I/0 System sets to indicate the number
of bytes to transfer.

Reserved WORD.

POINTER which the I/O System can set to indicate the
location of auxiliary data. Normally, the I/0 System

uses AUX$P to pass or receive the additional data
that the various subfunctions of the SPECIAL call
require.

The following paragraphs define the particular data

structures pointed to by AUX$P. The data structure
actually pointed to depends upon the SUBFUNCT field
of the IORS.

In a request to format a track on a disk or diskette,
FUNCT equals special, SUBFUNCT equals format track,
and AUX$P points to a structure of the form:

DECLARE FORMAT$TRACK STRUCTURE(
TRACK$NUMBER WORD,

INTERLEAVE WORD,
TRACK$OFFSET WORD,
FILL$CHAR BYTE) ;

These fields are defined as follows:

track$number The number of the track to be
formatted. Acceptable values are 0 to
(number of tracks on the volume - 1).

interleave The interleaving factor for the track.

(That is, the number of physical
sectors to advance when locating the
next logical sector.) The supplied
value, before being used, is evaluated
MOD the number of sectors per track.

track$offset The number of physical sectors to
advance when locating the first logical

sector on the next track.

fi1ll$char The byte value with which each sector
is to be filled.
NOTE

The rest of the information about the
AUX$P field is iRMX 86-specific.

Device Drivers 2-13

DEVICE DRIVER INTERFACES

In a request to set up an iRMX 86 mailbox, where the
iRMX 86 I/0 System is to send an object whenever a
door to a flexible disk drive is opened or the STOP
button on a hard disk drive 1is pressed, FUNCT equals
special, SUBFUNCT equals notify, and AUX$P points to
a structure of the form:

DECLARE SETUP$NOTIFY STRUCTURE(
MAILBOX SELECTOR,
OBJECT SELECTOR) ;

where the fields are defined in the i1RMX 86 BASIC 1I/0
SYSTEM REFERENCE MANUAL. Random access drivers do

not have to process such requests because they are
handled by the I/0 System.

In a request to obtain information about 1SBC 215 or
iSBC 220 (supported) disk devices, FUNCT equals
special, SUBFUNCT equals get device characteristics,
and AUX$P points to a structure of the form:

DECLARE DISK$DRIVE$DATA STRUCTURE(

CYLINDERS WORD,
FIXED BYTE,
REMOVABLE BYTE,
SECTORS BYTE,
SECTOR$SIZE WORD,
ALTERNATES BYTE);

where the fields are defined in the iRMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL.

In a request to obtain information about iSBX 217
tape drives (associated with an iSBC 215G board),
FUNCT equals special, SUBFUNCT equals get device
characteristics, and AUX$P points to a structure of
the form:

DECLARE TAPE}DRIVE$DATA STRUCTURE(
TAPE WORD,
RESERVED(7) BYTE);

where the fields are defined in the iRMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL.

In a request to read or write terminal mode

information for a terminal being driven by a terminal
driver, FUNCT equals special, SUBFUNCT equals get
terminal attributes (for reading) or set terminal

attributes (for writing), and AUX$P points to a
structure of the form:

Device Drivers 2-14

LINK$FOR

LINK$BACK

DEVICE DRIVER INTERFACES

DECLARE TERMINAL$ATTRIBUTES STRUCTURE(

NUM$WORDS WORD,
NUM$USED WORD,
CONNECTIONS$FLAGS WORD,
TERMINALS$FLAGS WORD,
IN$BAUDSRATE WORD,
OUT$BAUD$RATE WORD,
SCROLL$LINES WORD,
XYSIZE WORD,
XYOFFSET WORD,
FLOW$CONTROL WORD,
HIGH$WATER $MARK WORD,
LOW$WATER$MARK WORD,
FCHONSCHAR WORD,
FCOFFCHAR WORD) 3

where the fields are defined in the iRMX 86 BASIC L/0
SYSTEM REFERENCE MANUAL. If you are using the
Terminal Support Code, this special subfunction is
invisible to the terminal device driver.

In a request to set up special character recognition
in the input stream of a terminal driver for
signalling purposes, FUNCT equals special, SUBFUNCT
equals signal, and AUX$P points to a structure of the
form:

DECLARE SIGNAL$CHARACTER STRUCTURE(
SEMAPHORE SELECTOR
CHARACTER BYTE);

where the fields are defined in the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL. In a request to read a tape
file mark, FUNCT equals special, SUBFUNCT equals read
tape file mark, and AUX$P points to a structure of
the form:

DECLARE READ$FILE$MARK STRUCTURE(
SEARCH BYTE) ;

where the field is defined in the iRMX 86 BASIC I1I/0
SYSTEM REFERENCE MANUAL.

POINTER that the device driver/device driver support
routines can use to implement a request queue. This
field points to the location of the next IORS in the
queue.

POINTER that the device driver/device driver support

routines can use to implement a request queue. This
field points to the location of the previous IORS in
the queue.

Device Drivers 2-15

DEVICE DRIVER INTERFACES

RESP$MBOX SELECTOR that the I/0 System fills with either an
iRMX 86 token for the response mailbox or the address
of an IRMX 88 exchange. Upon completion of the 1/0
request, the device driver/device driver support

routines must send the IORS to this response mailbox
or exchange.

DONE BYTE that the device driver can set to TRUE (OFFH) or
FALSE (00H) to indicate whether the entire request
has been completed.

FILL Reserved BYTE.

CANCELS$ID SELECTOR used to identify queued 1/0 requests that
CANCEL$IO can remove from the queue.

CONNS$T SELECTOR used 1in requests to the iRMX 86 I/O System.
This field contains the token of the iIRMX 86 file
connection through which the request was issued.

DEVICE INTERFACES

To carry out I/0 requests, one or more of the routines in every device
driver must actually send commands to the device itself. The steps that
a procedure of this sort must go through vary considerably, depending on

the type of 1/0 device. Procedures supplied with the I/O System to
manipulate devices such as the 1SBC 204 and iSBC 206 devices use the

PL/M-86 builtins INPUT and OUTPUT to transmit to and receive from I/0
ports. Other devices may require different methods. The I/0 System

places no restrictions on the method of communicating with devices. Use
the method that the device requires.

Feke

Device Drivers 2-16

CHAPTER 3
CATEGORIES AND PROPERTIES
OF DEVICES AND DRIVERS

There are four types of device drivers in the iRMX 86 environment:
common, random access, custom, and terminal. There are three types of
device drivers in the iRMX 88 environment: common, random access, and
custom. This chapter defines the distinctions between the types of

drivers and discusses the characteristics and data structures pertaining
to common and random access device drivers. Chapters 5, 6, and 7 are

devoted to explaining how to write the various types of device drivers.

CATEGORIES OF DEVICES

Because the I/0 System provides procedures that constitute the bulk of

any common or random access device driver, you should consider the
possibility that your device is a common or random access device. If
your device falls in either of these categories, you can avoid most of
the work of writing a device driver by using the supplied procedures.
The following sections define the four types of devices.

COMMON DEVICES

Common devices are relatively simple devices other than terminals, such

as line printers. This category includes devices that conform to the
following conditions:

° A first-in/first-out mechanism for queuing requests is sufficient
for accessing these devices.

e Only one interrupt level is needed to service a device.

] Data either read or written by these devices does not need to be
broken up into blocks.

If you have a device that fits into this category, you can save the
effort of creating an entire device driver by using the common driver
routines supplied by the I/0 System. Chapter 5 of this manual describes
the procedures that you must write to complete the balance of a common
device driver.

RANDOM ACCESS DEVICES

A random access device is a device, such as a disk drive, in which data

can be read from or written to any address of the device. The support
routines provided by the I/0 System for random access assume the
following conditions:

Device Drivers 3-1

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

e A first-in/first-out mechanism for queuing requests is sufficient
for accessing these devices.

° Only one interrupt level is needed to service the device.
° I1/0 requests must be broken up into blocks of a specific length.
° The device supports random access seek operations.

If you have devices that fit into the random access category, you can
take advantage of the random access support routines provided by the I/0
System. Chapter 5 of this manual describes the procedures that you must

write to complete the balance of a random access device driver.

TERMINAL DEVICES

A terminal device is characterized by the fact that it reads and writes

single characters, with an interrupt for each character. Because such
devices are entirely different than common, random access, and even

custom devices, terminal drivers and their required data structures are
described in Chapter 7. The remainder of this chapter applies only to
common, random access, and custom device drivers.

CUSTOM DEVICES

If your device fits neither the common nor the random access category,

and is not a terminal or terminal-like device, you must write the entire
driver for the device. The requirements of a custom device driver are

defined in Chapter 6.

1/0 SYSTEM-SUPPLIED ROUTINES FOR COMMON AND RANDOM ACCESS DEVICE DRIVERS

The I/0 System supplies the common and random access routines that it
calls when processing I/0 requests. Flow charts for these procedures
appear in Appendix A. The names and functions of these procedures are as
follows: (The "RAD$" prefix applies to IRMX 88 routine names.)

Routine Function
(RAD$) INIT$IO Creates the resources needed by the remainder of

the driver routines, creates an interrupt task,
and calls a user—supplied routine that
initializes the device itself.

(RAD$)FINISH$ IO Deletes the resources used by the other driver

routines, deletes the interrupt task, and calls a
user-supplied procedure that performs final
processing on the device itself.

Device Drivers 3-2

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Routine Function

(RAD$)QUEUES$IO Places 1/0 requests (IORSs) on the queue of
requests.

(RAD$) CANCEL$ IO Removes one or more requests from the request

queue, possibly stopping the processing of a
request that has already been started.

These routines process I/0 requests for both common and random access
devices. They distinguish between categories based on the value of the
NUM$BUFFERS field in the unit's device-unit information block (DUIB).
(When calling each of these routines, the I/0 System supplies a pointer
to the DUIB as one of the parameters.) If the NUM$BUFFERS field is
nonzero, the routines assume the device 1s a random access device. If
the NUM$BUFFERS field is zero, the routines assume the device is a common
device.

In addition to the routines just described, the I/Q System supplies an
interrupt handler (interrupt service routine) and an interrupt task
(called INTERRUPT$TASK) which respond to all interrupts generated by the
units of a device, process those interrupts, and start the device working
on the next I/0 request on the queue. The INIT$I0 procedure creates the
interrupt task.

After a device finishes processing a request, it sends an interrupt to
the processor. As a consequence, the processor calls the interrupt
handler. This handler either processes the interrupt itself or invokes
an interrupt task to process the interrupt. Since an interrupt handler
is limited in the types of system calls that it can make and the number
of interrupts that can be enabled while it is processing, an interrupt
task usually services the interrupt. The interrupt task feeds the
results of the interrupt back to the I/O System (data from a read
operation, status from other types of operations). The interrupt task
then gets the next I/0 request from the queue and starts the device
processing this request. This cycle continues until the device is
detached.

Device Drivers 3-3

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Figure 3-1 shows the interaction between an interrupt task, an I/O
device, an I/0 request queue, and the Queue I/0 device driver procedure.
The interrupt task in this figure is in a continual cycle of waiting for
an interrupt, processing it, getting the next I/0 request, and starting
up the device again. While this 1s going on, the Queue I/0O procedure
runs in parallel, putting additional I/O requests on the queue.

REQUEST QUEUE INTERRUPT TASK

1/0 REQUEST -

@ SERVICE (® START DEVICE
(O GET REQUEST INTERRUPT [

1/0 REQUEST R
",

DEVICE

(D INTERRUPT

QUEUE 1/0 PROCEDURE

I/0 REQUEST |50 e qlESTS ON QUEUE

x-678

Figure 3-1. Interrupt Task Interaction

I/0 SYSTEM ALGORITHM FOR CALLING THE DEVI.CE DRIVER PROCEDURES

The I/0 System calls each of the four device driver procedures in
response to specific conditions. Figure 3-2 is a flow chart that
illustrates the conditions under which three of the four procedures are
called. The following numbered paragraphs discuss the portions of Figure
3-2 labeled with corresponding circled numbers.

l. To start I1/0 processing, an application task must make an I/0
request. It can do this by invoking any of a variety of system
calls. However, if you are an iRMX 86 user, the first I/O request to
each device-unit must be an RQAPHYSICAL$SATTACH$DEVICE system call,
and if you are an iRMX 88 user, the first request to each device=-unit
must be either a DQ$ATTACH or a DQ$CREATE system call.

Device Drivers 3-4

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

If the request results from an RQAPHYSICAL$ATTACH$DEVICE, a
DQ$ATTACH, or a DQ$CREATE system call, the I/O System checks to
see if any other units of the device are currently attached. If
no other units of the device are currently attached, the I/0
System realizes that the device has not been initialized and calls
the Initialize I/0 procedure first, before queueing the request.

Whether or not the I/0 System called the Initialize I/O procedure,

it calls the Queue I/0 procedure to queue the request for
execution.

If you are an iRMX 86 user and the request just queued resulted
from an iRMX 86 RQAPHYSICAL$DETACH$DEVICE system call, the I/0
System checks to see if any other units of the device are
currently attached. If no other units of the device are attached,
the I/0 System calls the Finish I/0 procedure to do any final
processing on the device and clean up resources used by the device
driver routines.

If you are an iRMX 88 user and the request just queued resulted
from either a DQ$DETACH or a DQ$DELETE system call, the I/0 System
checks to see if any other units of the device are currently
attached. If no other units of the device are attached, the I/0
System calls the Finish I/O procedure to do any final processing
on the device and clean up resources used by the device driver
routines,

The iRMX 86 I/0 System calls the fourth device driver procedure, the
Cancel I/0 procedure, under the following conditions:

If the user makes an RQAPHYSICAL$DETACH$DEVICE system call
specifying the hard detach option, to forcibly detach the
connection objects associated with a device—unit. The iRMX 86
BASIC 1/0 SYSTEM REFERENCE MANUAL describes the hard detach
option.

If the job containing the task which made a request is deleted.

The iRMX 88 I/0 System does not call the Cancel I1I/0 procedure.

Device Drivers 3-5

CATEGORIES AND PROPERTIES OF DEVICES AND

DRIVERS

THE USER MAKES AN I/0 REQUEST
VIAASYSTEM CALL

DOES THIS
REQUEST RESULT FROM AN
RQS$ASPHYSICALSATTACHSDEVICE
SYSTEM CALL? OR FROM A
DQSATTACH OR
DQSCREATE §YSTEM CALL

YES

NO
ARE
ANY UNITS
o YES QOF THE DEVICE
By < CURRENTLY
ATTASHED
/O SYSTEM CALLS THE
INITIALIZE I/O PROCEDURE TO
INITIALIZE THE DEVICE
« |
® !
I/0 SYSTEM CALLS THE QUEUE I/0
PROCEDURE TO PLACE THE
REQUEST ON THE QUEUE

DOES
THIS REQUEST
RESULT FROM AN
RQSASPHYSICALS-
DETACHSDEVICE
SYSTEM CALL
?

-l
Y

YES @

ARE
ANY OTHER
UNITS OF THE
DEVICE CURRENTLY
ATTA?CHED

1/0 SYSTEM CALLS THE FINISH I/0
PROCEDURE TO CLEAN UP THE
DEVICE AND DELETE OBJECTS

(RETURN

)

Figure 3-2. How the I/0

1877

System Calls the Device Driver Procedures

Device Drivers 3-6

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

REQUIRED DATA STRUCTURES

In order for the I/0 System-supplied routines to be able to call the
user—supplied routines, you must supply the addresses of these
user—-supplied routines, as well as other information, in a Device
Information Table. In addition, processing I/0 requests through a random
access driver requires a Unit Information Table. Each DUIB contains one

pointer field for a Device Information Table and another for a Unit
Information Table.

DUIBs that correspond to units of the same device should point to the
same Device Information Table, but they can point to different Unit

Information Tables, if the units have different characteristics. Figure
3-3 illustrates this.

DUiB1

Device 1
Unit 0

UNITSINFOS$1

DEVSINFOS$t
Unit
0

DEVSINFO$1 De‘;'ce

UNITSINFO$1

Unit
1

puiB2

Device 1
Unit 1

DEVSINFOS$1

UNITSINFOS$2

UNITSINFOS$2 ouB3 DEVSINFOS$2 |

Device - 2
Unit - 0 unit

Device
2

DEVSINFOS2

UNITSINFOS$2

x-293

Figure 3-3. DUIBs, Device and Unit Information Tables

Device Drivers 3-7

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

DEVICE INFORMATION TABLE

Common and random access Device Information Tables contain the same
fields in the same order. When creating Device Information Tables for
iRMX 86 applications, code them in the format shown here (as
assembly—-language structures). If you give the iRMX 86 ICU the pathname
of your Unit Information Table file, the ICU includes the file in the
assembly of IDEVCF.A86 (a Basic I/0 System configuration file).
IDEVCF.A86 contains the definition of the structure.

The fields DEVICE$INIT, DEVICE$FINISH, DEVICE$START, DEVICE$STOP, and
DEVICE$INTERRUPT contain the names of user-supplied procedures whose
duties are described in Chapter 5. When creating the file containing
your Device Information Tables, specify external declarations for these
user-supplied procedures. This allows the code for these user-supplied
procedures to be included into the assembly of the I/0 System. For
example, if your procedures are named DEVICE$INIT, DEVICE$FINISH,
DEVICE$START, DEVICE$STOP, and DEVICE$INVERRUPT, include the following
declarations in the file containing your Device Information Tables:

extrn device$init: near
extrn device$finish: near
extrn device$start: near
extrn device$stop: near
extrn device$interrupt: near

The iRMX 88 ICU prompts you for each field in the Device Information

Table structure. The. iRMX 88 ICU generates the Device Information Table
and places it in the device configuration source file.

Use the following format when coding your Device Information Tables:

RADEV_DEV_INFO <

& LEVEL, 3 word
& PRIORITY, 3 byte
& STACK$SIZE, ; word
& DATA$SLIZE, ; word
& NUM$UNITS, ; word
& DEVICE$INIT, 3 word
& DEVICE$FINISH, ; word
& DEVICE$START, 3 word
& DEVICE$STOP, 3 word
& DEVICE$ INTERRUPT 3 word
& >
where:
LEVEL WORD specifying an encoded interrupt level at which

the device will interrupt. The interrupt task uses
this value to associlate itself with the correct
interrupt level. The values for this field are
encoded as follows:

Device Drivers 3-8

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

PRIORITY

STACK$SIZE

DATA$SIZE

NUM$UNITS

iRMX 86 VALUES

Bits Value
15-7 0
6-4 First digit of the interrupt level
(0-7).
3 If one, the level is a master level and
bits 6-4 specify the entire level
number,

If zero, the level 1is a slave level and
bits 2-0 specify the second digit.

2-0 Second digit of the interrupt level
(0-7), 1f bit 3 is zero.

iRMX 88 VALUES

The values available are O through 3FH. Refer to
the iRMX 88 REFERENCE MANUAL for further
information.

BYTE specifying the initial priority of the
interrupt task. The actual priority of an

iRMX 86 interrupt task might change because the
iRMX 86 Nucleus adjusts an interrupt task's
priority according to the interrupt level that it
services. Refer to the iRMX 86 NUCLEUS REFERENCE
MANUAL for further information about this
relationship between interrupt task priorities
and interrupt levels.

WORD specifying the size, in bytes, of the stack
for the user-written device interrupt procedure
(and procedures that it calls). This number
should not include stack requirements for the I/0
System—-supplied procedures. They add their
requirements to this figure.

WORD specifying the size, in bytes, of the user
portion of the device's data storage area. This
figure should not include the amount needed by
the I/0 System—supplied procedures; rather, it
should include only that amount needed by the
user-written routines. This then is the size of
the read or write buffers plus any flags that the
user—-written routines need.

WORD specifying the number of units supported by

the driver. Units are assumed to be numbered
consecutively, starting with zero.

Device Drivers 3-9

CATEGORLIES AND PROPERTIES OF DEVICES AND DRIVERS

DEVICE$INIT WORD specifying the start address of a

user-written device initialization procedure.
The format of this procedure, which INIT$IO

calls, is described in Chapter 5.

DEVICE$FINISH WORD specifying the start address of a

user-Written device finish procedure. The format
of this procedure, which FINISH$IO calls, is
described in Chapter 5.

DEVICE$START WORD specifying the start address of a
user-written device start procedure. The format

of this procedure, which QUEUE$IO and
INTERRUPTS$TASK call, is described in Chapter 5.

DEVICE$STOP WORD specifying the start address of a

user-written device stop procedure. The format
of this procedure, which CANCEL$IO calls, is

described in Chapter 5.

DEVICE$ INTERRUPT WORD specifying the start address of a
user-written device interrupt procedure. The
format of this procedure, which INTERRUPT$TASK
calls, is described in Chapter 5.

Depending on the requirements of your device, you can append additional

information to the RADEV _DEV INFO structure. For example, most devices
require you to append the I/0 port address to this structure, so that the

user-written procedures have access to the device.

UNI'f INFORMATION TABLE

If you have random access device drivers in your system, you must create

a Unit Information Table for each different type of unit in your system.
Each random access device-unit's DUIB must point to one Unit Information
Table, although multiple DUIBs can point to the same Unit Information
Table. The Unit Information Table must include all information that is

unit-dependent.

When creating Unit Information Tables for iRMX 86 applications, code them

in the format shown here (as assembly-language structures). If you give
the iRMX 86 ICU the pathname of your Unit Information Table file, the ICU
includes the file in the assembly of IDEVCF.A86 (a Basic I/0 System

configuration file). IDEVCF.A86 contains the definition of the structure.

The iRMX 88 ICU prompts you for some fields in the Unit Information Table

structure. The iRMX 38 ICU generates the Unit Information Table and
places it in the device configuration source file.

The minimum requirements for the structure of the Unit Information Table
are as follows:

Device Drivers 3-10

CATEGORIES AND PROPERTLES OF DEVICES AND DRIVERS

RADEV_UNIT INFO <

& TRACK$SIZE,
& MAX$RETRY,
& CYLINDER$SIZE ; word
&

>

where:

TRACK$SLZE

MAX$RETRY

CYLINDER$SIZE

word
word

s we

WORD specifying the size, in bytes, of a single track
of a volume on the unit. If the device controller
supports reading and writing across track boundaries,
and your driver is a random—access driver, place a
zero in this field. If you specify a zero for this
field, the I/0 System-supplied random access support
procedures place an absolute sector number in the
DEV$LOC field of the IORS. If you specify a nonzero
value for this field, the random access support
procedures guarantee that read and write requests do
not cross track boundaries. They do this by placing
the sector number in the low-order word of the DEV$LOC
field of the IORS and the track number in the
high-order word of the DEV$LOC field before calling a
user-written device start procedure. Instructions for
writing a device start procedure are contained in
Chapter 5.

WORD specifying the maximum number of times an I/0
request should be tried if an error occurs. Nine is
the recommended value for this field. When this field
contains a nonzero value, the I/0 System—-supplied
procedures guarantee that read or write requests are
retried if the user-supplied device start or device
interrupt procedures return an IO$SOFT condition in
the IORS.UNIT$STATUS field. (The IORS.UNIT$STATUS
field is described in the "IORS Structure" section of
Chapter 2.)

For iRMX 86 systems, a WORD whose meaning depends on
its value, as follows:

0 The 1/0 System never requests a seek

operation. Instead, it expects the device
driver/controller to perform implied "seeks"
when a read/write on the unit begins on a

cylinder which is different from the one

associated with the current position of the
read/write head.

1 The 1/0 System automatically requests a seek
operation (to seek to the correct cylinder)
before performing a read or write. The

device driver for the unit must call the
SEEK$COMPLETE procedure immediately

following each seek operation.

Device Drivers 3-11

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Other Any other value specifies the number of
sectors in a cylinder on the unit. The I/0
System automatically requests a seek
operation whenever a requested read or write
operation on the unit begins in a different
cylinder than that associated with the
current position of the read/write head.
The device driver for the unit must call the
SEEK$COMPLETE procedure immediately

following each seek operation.

RELATIONSHIPS BETWEEN I/0 PROCEDURES AND I/0 DATA STRUCTURES

This section brings together several of the procedures and data
structures that have been described so far in this manual. Figure 3-4
shows the many relationships that exist among these entities, with solid
arrows indicating procedure calls and dotted arrows indicating pointers.
Note that the I/0 System contains the address of each DUIB, which in turn
contains the addresses of the procedures that the 1/0 System calls when
performing 1/0 on the associated device-unit. The DUIB also contains the
address of the Device Information Table and, if the device is a random
access device, the Unit Information Table. The Device Information Table,
in turn, contains the addresses of the procedures that are called by the
procedures that the I/0O System calls. It is through these links that the
appropriate calls are made in the servicing of an I/0 request for a
particular device-unit.

Device Drivers 3-12

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

DEVICESINIT

/

/ / DEVICE
QUEUESIO D/Ewcsssmm
NUCLEUS._ /: /
/ / -uun'
/T 7AINTERRUPT———» INTERRUPT #DEV!CEHNTERRUPT -
TASK ——~——» /O SYSTEM / / HANDLER TAsK // , / //l \
uNIT
v hiES
/ e (DEVICESSTOP
VAN S
) e
e
/’/%/ ’
= > DEVICESFINISH
ouis / / // P
n / / -
: ¥ ry)r s s
BIVSUNIT 7 Yy
INITSIO // e DEVICE INFO. TABLE / / Yyl
QUEUESIO _ - / Vs
CANCELSIO -] . / / //
FINISHSIO e . // LEGEND:
DEVICESINFOSP — DEVICESINIT ///)
UNITSINFOSP DEVICESFINISH PROCEDURE CALL
H AN DEVICESSTART V ————> REFERENCE
- AN DEVICE$STOP /
N DEVICESINTERRUPT
AN
AN
AN
N
N
UNIT INFO. TABLE
x-118
Figure 3-4. Relationships Between I/0 Procedures and L[/O Data Structures

DEVICE DATA STORAGE AREA

The common and random access device drivers are set up so that all data

that is local to a device is maintained in an area of memory. The
Initialize I/0 procedure creates this device data storage area, and the

other procedures of the driver access and update information in it as
needed. Storing the device-local data in a central area serves two
purposes.

First, all device driver procedures that service individual units of the

device can access and update the same data. The Initialize I/0 procedure
passes the address of the area back to the I/0 System, which in turn
gives the address to the other procedures of the driver.

Device Drivers 3-13

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

They can then place information relevant to the device as a whole into
the area. The identity of the first IOR3 on the request queue is
maintained in this area, as well as the attachment status of the
individual units and a means of accessing the interrupt task.

Second, several devices of the same type can share the same device driver
code and still maintain separate device data areas. For example, suppose
two iSBC 204 devices use the same device driver code. The same
Initialize I/O procedure is called for each device, and each time it is
called it obtains memory for the device data. However, the memory areas
that it creates are different. Only the incarnations of the routines
that service units of a particular device are able to access the device
data area for that device.

Although the common and random access device drivers already provide this

mechanism, you may want to include a device data storage area in any
custom driver that you write.

WRITING DRIVERS FOR USE WITH BOTH iRMX™ 86- AND iRMX™ 88~BASED SYSTEMS

A common or random access device driver that makes no system calls 1s
compatible with both the iRMX 86 and iRMX 88 I/O Systems. Consequently,
such a device driver can be "ported" between applications based on the
two iRMX systems.

Tk

Device Drivers 3-14

CHAPTER 4
1/0 REQUESTS

This chapter contains two kinds of information that writers of drivers
for devices other than terminals will find useful. Presented first are
summaries of the actions that the I/0 System takes in response to the
various kinds of I/0 requests that application tasks can make. Next are
three tables —— one for each type of device driver —-— that show which
DUIB and IORS filelds device drivers should be concerned with.

I1/0 SYSTEM RESPONSES TO I/0 REQUESTS

This section shows which device driver procedures the L/O System calls
when it processes each of the eight kinds of 1/0 requests. When there
are multiple calls, the order of the calls is significant.

ATTACH DEVICE REQUESTS

When the I/0 System receives the first attach device request for a
device, it makes the following calls, in order, to device driver
procedures:

The Call The Effects of the Call

Initialize I/0 The driver resets the device as a whole

and creates the device data storage
area and interrupt task(s).

Queue 1/0, with the The driver resets the selected unit.
FUNCT field of the IORS
set to F$ATTACH (=4)

When the I/0 System receives an attach device request that is not the
first for the device, it makes the following call:

The Call The Effects of the Call

Queue I/0, with the The driver resets the selected unit.
FUNCT field of the IORS
set to F$ATTACH (=4)

Device Drivers 4-1

I/0 REQUESTS

DETACH DEVICE REQUESTS

When the I/O System receives a detach device request, and there is more
than one unit of the device attached, it makes the following call:

The Call Tte Effects of the Call
Queue I/0, with the The driver performs cleanup operations
FUNCT field of the IORS for the selected unit, if necessary.

set to F$DETACH (=5)

When the I/0 System receives a detach device request, and there is only

one attached unit on the device, it makes the following calls, in order,
to device driver procedures:

The Call The Effects of the Call
Queue I/0, with the The driver performs cleanup operations
FUNCT field of the IORS for the selected unit, if necessary.

set to F$DETACH (=5)

Finish I/0 The driver performs cleanup operations
for the device as a whole (if
necessary) and deletes the objects
created by Initialize I1/0.

READ, WRITE, OPEN, CLOSE, SEEK, AND SPECIAL REQUESTS

When the I/0 System receives a read, write, open, close, seek, or special
request, it makes the following call to a device driver procedure:

The Call The Effects of the Call
Queue I1/0, with the FUNCT The driver performs the requested
field of the IORS set to operation. (F$OPEN and F$CLOSE

F$READ (=0), F$WRITE (=1), usually require no processing.)
F$OPEN (=6), F$CLOSE (=7),

F$SEEK (=2), or F$SPECIAL

(=3), depending on the type

of the I/0 request.

CANCEL REQUESTS
When a connection is deleted while I/0 might be in progress, such as when

an 1RMX 86 job is deleted, the I/0 System makes the following calls, in
order, to device driver procedures:

Device Drivers 4-2

I/0 REQUESTS

The Call The Effects of the Call

Cancel 1/0 The driver removes from the request

queue all requests that contain the

same Cancel ID value as that in the
current request, and stops processing

if necessary.

Queue 1/0, with the When this request reaches the front of

FUNCT field of the the queue, it is simply returned to the
IORS set to F$CLOSE indicated response mailbox (exchange).

(=7)

DUIB AND IORS FIELDS USED BY DEVICE DRIVERS

Tables 4-1, 4-2, and 4-3 indicate, for each type of device driver, the

fields of DUIBs and IORSs with which user-written portions of device
drivers need to be concerned.

Device Drivers 4-3

I/0 REQUESTS

Table 4-1. DUIB and IORS Fields Used by Common Device Drivers

Attach Detach
Device Device Open C(lose

Read Write

Seek Special

DUIB

Name

File$drivers

Functs

Flags m m m m

Dev$gran

3
3
=]
=]

]

E]

=]

Dev$size m m m m

Device

Unit m m m m

Dev$unit

Init$io

Finish$io

Queue$io

Cancel$io

Device$info$p m m m m

Unit$info$p m m m m

m

Update$ timeout

Num$buffers

Priority

Fixed$update

Max$buffers

IORS
Status W W W W

Unit$status W W W w

=

£

Actual

Actual$fill

Device

Unit m m m m

Funct r r r r

Subfunct

Dev$loc

Buff$p

Count

Count$fill

Aux$p

Link$for

Link$back

Resp$mbox

Done W W W W

Fill

Cancel$id

Conn$ t

r ——= 1is read by the device driver
w === is written by the device driver
m -—- might be read by some device drivers

Device Drivers 4-4

I/0 REQUESTS

Table 4-2, DUIB and IORS Fields Used by Random Access Device Drivers

Attach Detach
Device Device Open Close Read Write Seek Special

DUIB

Name

Fille$drivers

Functs

Flags m m m m m m m m

Dev$gran n n m

=]
=]
=)
=)
3

Dev$size m m m m m m m m

Device

Unit m m m m m m m m

Dev$unit

Init$io

Finish$io

Queue$io

Cancel$io

Device$info$p m m m m m m m m

Unit$info$p m m m m m m m m

Update$timeout

Num$buffers

Priority

Fixed$update

Max$buffers

IORS
Status W w w W 4 w 1% W

Unit$status W W W W

£
=
=
b

Actual 1 w

Actual$fill

Device

Unit m m m m m m m m

Funct r r r r r r r

2}

Subfunct r

Dev$loc r r r

Buff$p r r

Count r r

Count$fill

Aux$p m

Link$for

Link$back

Resp$mbox

Done 1% 1 W 1 w W 1 w

Fill

Cancel$id

Conn$t

r === is read by the device driver
w ——=— is written by the device driver
m ——= might be read by some device drivers

Device Drivers 4-5

Table 4-3.

I/0 REQUESTS

DUIB and IORS Fields Used by Custom Device Drivers

Attach Detach
Device Device

Open

Close

Read Write

Seek Special

DUIB
Name
File$drivers
Functs
Flags
Dev$gran
Dev$size
Device
Unit
Dev$unit
Init$io
Finish$io
Queue$io
Cancel$io
Device$info$p
Unit$info$p
Update$ timeout
Num$buffers
Priority
Fixed$update
Max$buffers

IORS

Status
Unit$status
Actual
Actual$fill
Device
Unit

Funct
Subfunct
Dev$loc
Buff$p
Count
Count$£fill
Aux$p
Link$for
Link$back
Resp$mbox
Done

Fill
Cancel$id
Conn$ t

E]
=]

=)

=]

2

E]

=)
=

£

£

3

2]

[al R a

Plpisio|e
AR LA

[CREVE B I)

[CREOR R Il)

O IR|PiL

[RECR B)
DL I |pie IS

slelolrlole

-=— 1is read by the device driver

--- is written by the device driver
might be read by some device drivers

B 3 E R
1
|
1

--- 1s available for any purpose sulting the needs of the device

driver

Device Drivers 4-6

ik

CHAPTER S
WRITING COMMON OR RANDOM
ACCESS DEVICE DRIVERS

This chapter contains the calling sequences for the procedures that you
must provide when writing a common or random access device driver. Where
possible, descriptions of the duties of these procedures accompany the
calling sequences.

In addition to providing information about the procedures that common or
random access drivers must supply, this chapter describes the purpose and
calling sequence for each of five procedures, two of which random access
device drivers in iRMX 86 applications must call under certain conditions.

INTRODUCTION TO PROCEDURES THAT DEVICE DRIVERS MUST SUPPLY

The routines that are provided by the I/0 System and that the L/O System
calls (INIT$I0, FINISH$IO, QUEUE$IO, CANCEL$IO, and INTERRUPT$TASK for
iRMX 86 systems) (RAD$INIT$IO, RAD$SFINISH$IO, RAD$QUEUES$IO,
RAD$CANCEL$IO, and INTERRRUPT$TASK for iRMX 88 systems) constitute the
bulk of a common or random access device driver. These routines, in
turn, make calls to device-dependent routines that you must supply.
These device—dependent routines are described here briefly and then are
presented in detail:

A device initialization procedure. This procedure must perform any
initialization functions necessary to get the device ready to process
I/0 requests. INIT$IO calls this procedure.

A device finish procedure. This procedure must perform any

necessary final processing on the device so that the device can be
detached. TFINISH$IO calls this procedure.

A device start procedure., This procedure must start the device
processing any possible I/0 function. QUEUE$IO and INTERRUPT$TASK
(the I/0 System—-supplied interrupt task) call this procedure.

A device stop procedure. This procedure must stop the device from

processing the current I/0 function, if that function could take an
indefinite amount of time. CANCEL$IO calls this procedure.

A device interrupt procedure. This procedure must do all of the

device-dependent processing that results from the device sending an
interrupt. INTERRUPT$TASK calls this procedure.

Device Drivers 5-1

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

DEVICE INITIALIZATION PROCEDURE

The INIT$I0 procedure calls the user-written device initialization
procedure to initilalize the device. The format of the call to the
user-written device initlalization procedure is as follows:

CALL device$init(duib$p, ddata$p, status$p);

where:

device$init Name of the device initialization procedure. You can
use any name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the Device Information Table.

duib$p POINTER to the DUIB of the device-unit being
attached. From this DUIB, the device initialization
procedure can obtain the Device Information Table,

where information such as the I/0 port address is
stored.

ddata$p POINTER to the user portion of the device's data
storage area. You must specify the size of this
portion in the Device Information Table for this
device. The device initialization procedure can use
this data area for whatever purposes 1t chooses.
Possible uses for this data area include local flags
and buffer areas.

status$p POINTER to a WORD in which the device initialization
procedure must return the status of the initialization
operation. It should return the E$0OK condition code
if the initialization is successful; otherwise it
should return the appropriate exceptional condition
code. If initialization does not complete
successfully, the device initialization procedure must
ensure that any resources it creates are deleted.

If you have a device that does not need to be initialized before it can
be used, you can use the default device Initialization procedure supplied
by the I/0 System. The name of this procedure is DEFAULT$INIT. Specify
this name in the Device Information Tabla. DEFAULT$INIT does nothing but
return the E$0K condition code.

DEVICE FINISH PROCEDURE

The FINISH$IO procedure calls the user-written device finish procedure to
perform final processing on the device, after the last I/0 request has
been processed. The format of the call to the device finish procedure is
as follows:

CALL device$finish(duib$p, ddata$p);

Device Drivers 5-2

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

where:

device$finish Name of the device finish procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the Device Information Table.

duib$p POINTER to the DUIB of the device-unit being
detached. From this DUIB, the device finish procedure
can obtain the Device Information Table, where
information such as the I/0O port address is stored.

ddata$p POINTER to the user portion of the device's data
storage area. The device finish procedure should
obtain, from this data area, identification of any
resources other user-written procedures may have
created, and delete these resources.

If you have a device that does not require any final processing, you can
use the default device finish procedure supplied by the I/O System. The
name of this procedure is DEFAULT$FINISH. Specify this name in the
Device Information Table. DEFAULT$FINISH merely returns control to the

caller. It is normally used when the default initialization procedure
DEFAULT$INIT is used.

DEVICE START PROCEDURE

Both QUEUE$IO and INTERRUPT$TASK make calls to the device start procedure
to start an I/0 function. QUEUE$IO calls this procedure on receiving an
I/0 request when the request queue is empty. INTERRUPT$TASK calls the
device start procedure after it finishes one I/0 request if there are one
or more 1/0 requests on the queue. The format of the call to the device
start procedure is as follows:

CALL device$start(iors$p, duib$p, ddata$p);

where:

device$start Name of the device start procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the Device Information Table.

iors$p POINTER to the IORS of the request. The device start
procedure must access the IORS to obtain information
such as the type of I/0 function requested, the
address on the device of the byte where L1/0 is to
commence, and the buffer address.

Device Drivers 5-3

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

duib$p POINTER to the DUIB of the device-unit for which the

I/0 request is intended. The device start procedure
can use the DUIB to access the Device Information

Table, where information such as the I/0 port address
is stored.

ddata$p POINTER to the user portion of the device's data

storage area. The device start procedure can use this
data area to set flags or store data.

The device start procedure must do the following:

It must be able to start the device processing any of the

functions supported by the device and recognize that requests for
nonsupported functions are error conditions.

If it transfers any data, it must update the IORS.ACTUAL field to

reflect the total number of bytes of data transferred (that is,

if it transfers 128 bytes of data, it must put 128 in the
IORS.ACTUAL field).

If an error occurs when the device start procedure tries to start
the device (such as on an write request to a write—protected
disk), the device start procedure must set the IORS.STATUS field
to indicate an E$I0 condition and the IORS.UNIT$STATUS field to a
nonzero value. The lower four bilts of the field should be set as
indicated in the "IORS Structure" section of Chapter 2. The
remaining bits of the field can be set to any value (for example,
the iSBC 204 device driver returns the device's result byte in
the remainder of this field). If the function completes without
an error, the device start procedure must set the IORS.STATUS
field to indicate an E$0OK condition.

If the device start procedure determines that the I/0 request has
been processed completely, either because of an error or because
the request has completed successfully, it must set the IORS.DONE
field to TRUE. The I/0 request will not always be completed; it
may take several calls to the device interrupt procedure before a
request is completed. However, if the request is finished and
the device start procedure does not set the IORS.DONE field to
TRUE, the device driver support routines wait until the device
sends an interrupt and the device interrupt procedure sets
IORS.DONE to TRUE, before determining that the request is
actually finished.

DEVICE STOP PROCEDURE

The CANCEL$IO procedure calls the user-written device stop procedure to
stop the device from performing the current I/0 function. The format of
the call to the device stop procedure is as follows:

Device Drivers 5-4

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

CALL device$stop(iors$p, duib$p, ddata$p);

where:

device$stop Name of the device stop procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
this name in the Device Information Table.

iors$p POINTER to the IORS of the request. The device stop
procedure needs this information to determine what
type of function to stop.

duib$p POINTER to the DUIB of the device-unit on which the
I/0 function is being performed.

ddata$p POINTER to the user portion of the device's data

storage area. The device stop procedure can use this
area to store data, if necessary.

If you have a device which guarantees that all I/0 requests will finish
in an acceptable amount of time, you can omit writing a device stop
procedure and use the default procedure supplied with the I/0 System.
The name of this procedure is DEFAULT$STOP. Specify this name in the
Device Information Table. DEFAULT$STOP simply returns to the caller.

DEVICE INTERRUPT PROCEDURE

INTERRUPT$TASK calls the user-written device interrupt procedure to

process an interrupt that just occurred. The format of the call to the
device interrupt procedure is as follows:

CALL device$interrupt(iors$p, duib$p, ddata$p);

where:

device$interrupt Name of the device interrupt procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and

you include this name in the Device Information
Table.

lors$p POINTER to the IORS of the request being
processed. The device Interrupt procedure must
update information in this IORS. A value of zero
for this parameter indicates either that there
are no requests on the request queue and the
interrupt is extraneous or that the unit is
completing a seek or other long—term operation.

duib$p POINTER to the DUIB of the device—unit on which
the I/0 function was performed.

Device Drivers 5-5

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

ddata$p POINTER to the user portion of the device's data
storage area. The device interrupt procedure can
update flags in this data area or retrieve data
sent by the device.

The device interrupt procedure must do the following:

° It must determine whether the interrupt resulted from the
completion of an I/0 function by the correct device-unit.

) If the correct device-unit did send the interrupt, the device
interrupt procedure must determine whether the request is

finished. 1If the request is finished, the device interrupt
procedure must set the IORS.DONE field to TRUE.

° It must process the iInterrupt. This may involve setting flags in
the user portion of the data storage area, tranferring data
written by the device to a buffer, or some other operation.

° If an error has occurred, it must set the IORS.STATUS field to
indicate an E$IO condition and the IORS.UNIT$STATUS field to a
nonzero value. The lower four blts of the field should be set as
indicated in the "IORS Structure" section of Chapter 2. The
remaining bits of the field can be set to any value (for example,
the iSBC 204 and 206 device drivers return the device's result
byte in the remainder of this field). It must also set the
IORS.DONE field to TRUE, indicating that the request is finished
because of the error.

] If no error has occurred, it must set the IORS.STATUS field to
indicate an E$0K condition.

PROCEDURES THAT iRMX™ 86 RANDOM ACCESS DRIVERS MUST CALL

There are several procedures that random access drivers in iRMX 86
applications can call under certain well-defined circumstances. They are
NOTIFY, SEEK$COMPLETE, and procedures for the long-term operations
(BEGIN$LONG$TERMOP, ENDLONGS$TERM$OP, and GET$IORS).

NOTIFY PROCEDURE

Whenever a door to a flexible diskette drive is opened or the STOP button
on a hard disk drive 1is pressed, the device driver for that device must
notify the I/O System that the device is no longer available. The device
driver does this by calling the NOTIFY procedure. When called in this
manner, the I/O System stops accepting I/0 requests for files on that
device unit. Before the device unit can again be available for I/0
requests, the application must detach it by a call to
A$PHYSICAL$DETACHS$DEVICE and reattach it by a call to
A$PHYSICALSATTACH$DEVICE. Moreover, the application must obtain new file
connections for files on the device unit.

Device Drivers 5-6

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

In addition to not accepting L/0O requests for files on that device unit,
the I/0 System will respond by sending an object to a mailbox. For this
to happen, however, the object and the mailbox must have been established
for this purpose by a prior call to A$SPECIAL, with the spec$func

argument equal to FS$NOTIFY (2). (The A$SPECIAL system call is described
in the BASIC I/O SYSTEM REFERENCE MANUAL.) The task that awaits the

object at the mailbox has the responsibility of detaching and reattaching

the device unit and of creating new file connections for files on the
device unit.

The syntax of the NOTIFY procedure 1s as follows:

CALL NOTIFY(unit, ddata$p);

where:
unit BYTE containing the unit number of the unit on the
device that went off-line.
ddata$p POINTER to the user portion of the device's data

storage area. This is the same pointer that is passed
to the device driver by way of either the device$start
or the device$interrupt procedure.

SEEK$COMPLETE PROCEDURE

In most applications, it is desirable to overlap seek operations (which

can take relatively long periods of time) with other operations. To
facilitate this, a device driver receiving a seek request can take the
following actions in the following order:

1. The device start procedure starts the requested seek operation.

2. Depending on the kind of device, either the device start

procedure or the device interrupt procedure sets the DONE flag in
the IORS to TRUE (OFFH).

® Some devices send only one interrupt in response to a seek
request —— the one that indicates the completion of the
seek. If your device operates in this manner, the device
start procedure sets the DONE flag to TRUE (OFFH) immediately.

° Some devices send two interrupts in response to a seek
request —— one upon receipt of the request and one upon
completion of the seek. If your device operates in this
manner, the device start procedure leaves the DONE flag in
the IORS set to FALSE (0).

When the first interrupt from the device arrives, the device
interrupt procedure sets the DONE flag to TRUE (OFFH).

Device Drivers 5-7

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

3. When the interrupt from the device arrives (the one that
indicates the completion of the seek), the device interrupt
procedure calls the SEEK$COMPLEIE procedure to signal the
completion of the seek operation,

This process enables the device driver to handle I/0 requests for other
units on the device while the seek is in progress, thereby increasing the
performance of the I/0 System.

The syntax of the call to SEEK$COMPLETE is as follows:

CALL SEEK$COMPLETE(unit, ddata$p);

where:
unit BYTE containing the number of the unit on the device
on which the seek operation is completed.
ddata$p POINTER to the user portion of the device's data

storage area. This is the same pointer that the
random access support routines passes to the device
start and device interrupt procedures.

Note that if your device driver calls the SEEK$COMPLETE procedure when a
seek operation 1s completed, the CYLINDER$SIZE field of the Unit
Information Table for the device unit should be configured greater than

zero. On the other hand, if the driver does not call SEEK$COMPLETE, then
CYLINDER$SIZE must be configured to zero.

PROCEDURES FOR OTHER LONG--TERM OPERATIONS

The iRMX 86 Operating System provides three procedures which device
drivers can use to overlap long-term operations (such as tape rewinds)
with other I/0 operations. The procedures are BEGIN$LONG$TERM$OP,
END$LONG$TERM$OP, and GET$IORS. These procedures are intended
specifically for use with devices that do not support seek operations
(such as tape drives).

BEGIN$LONG$TERM$OP Procedure

The BEGIN$LONG$TERM$OP procedure informs the random access support
routines that a long-term operation is in progress, and that the support
routines do not have to wait for the operation to complete before
servicing other units on the device. Calling BEGIN$LONG$TERM$OP allows
the controller to service read and write requests on other units of the
device while the long-term operation is in progress.

Device Drivers 5-8

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

To use BEGIN$LONG$TERM$OP, the device driver receiving the request for
the long-term operation should take the following actioms:

1. The

device start procedure starts the long—term operation.

2. Depending on the kind of device, either the device start
procedure or the device interrupt procedure sets the DONE flag in

the

3. The

IORS to TRUE (OFFH).

Some devices send only one interrupt in response to a request

for a long—term operation —— the one that indicates the
completion of the operation. If your device operates in this

manner, the device start procedure sets the DONE flag to TRUE
(OFFH) immediately.

Some devices send two interrupts in response to a request for
a long-term operation —- one upon recelpt of the request and
one upon completion of the operation. If your device
operates in this manner, the device start procedure leaves
the DONE flag in the IORS set to FALSE (0). When the first
interrupt from the device arrives, the device interrupt
procedure sets the DONE flag to TRUE (O0FFd).

procedure that just set the DONE flag to TRUE (either the

device start or device interrupt procedure) calls
BEGIN$LONGS$TERMS$OP.

The syntax of the call to BEGIN$LONG$TERM$OP is as follows:

CALL BEGIN$LONG$TERM$OP(unit, ddata$p);

where:

unit

ddata$p

BYTE containing the number of the unit on the device
which 1is performing the long—-term operation.

POINTER to the user portion of the device's data
storage area. This is the same pointer that the
random access support routines passes to the device
start and device interrupt procedures.

If your driver calls BEGIN$LONG$TERM$OP, it must also call

END$LONG$TERM$OP when the device sends an interrupt to indicate the end
of the long-term operation.

END$LONG$TERM$OP Procedure

The END$LONG$TERMS$OP procedure informs the random access support routines

that a long-term operation has completed. A driver that calls
BEGINSLONGSTERM$OP must also call ENDSLONG$TERM$OP or the driver cannot

further access the unit that performed the long-term operation.

Device Drivers 5-9

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

Specifically, when the unit sends an interrupt indicating the end of the
long-term operation, the device interrup: procedure must call
ENDSLONGSTERMSOP.

The syntax of the call to ENDSLONGSTERMSOP is as follows:

CALL ENDSLONGSTERMSOP(unit, ddata$p);

where:
unit BYTE containing the number of the unit on the device
which performed the long-term operation.
ddata$p POINTER to the user portion of the device's data

storage area. This is the same pointer that the
random access support routines passes to the device
start and device interrupt procedures.

GETSIORS Procedure

Long~term operations on some units involwve multiple operations. For
example, performing a rewind on some tape drives requires you to perform
a rewind and a read file mark. The GET$IORS procedure allows your driver
procedures to handle this situation without forcing you to write a custom
driver for each device that is different,

GETSIORS allows your driver procedure to obtain the token of the IORS for
the previous long-term request, so that It can modify the IORS to
initiate new I/0 requests., The IORSSP that INTERRUPTSTASK passed to the
device interrupt procedure is set to zero (for units busy performing a
seek or other long-term operation). Therefore, the driver can only
access the IORS in this manner.

To use GETSIORS, the device driver performing the long-term operation
should take the following actions:

l. The device driver starts the long-term operation and calls
BEGINSLONGSTERMS$0P in the usual manner (as described in the
"BEGINSLONGSTERMSOP Procedure” section)e.

2, When the unit sends an interrupt indicating the end of the
long-term operation, the device interrupt procedure calls
GETSIORS to obtain the IORS.

3. The device interrupt procedure modifies the FUNCT and SUBFUNCT
fields of the IORS to specify the next operation to perform. It
also sets the DONE flag to FALSE (0),

4. The device interrupt procedure calls ENDSLONGSTERMSOPERATION.

The syntax of the call to GETSIORS is as follows:

iorsSbase = GETS$IORS(unit, ddataSp);

Device Drivers 5-10

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

where:

iors$base SELECTOR in which the random access support
routines return the base portion of the IORS.
Use the PL/M-86 built-in procedure BUILD$PTR
(specifying an offset of 0) to obtain a pointer
to the IORS.

unit BYTE containing the number of the unit on the
device which performed the long-term operation.

ddata$p POINTER to the user portion of the device's data

storage area. This is the same pointer that the
random access support routines passes to the device
start and device interrupt procedures.

FORMATTING CONSIDERATIONS

If you write a random access driver and you intend to use the Human
Interface FORMAT command (for iRMX 86 systems) or the RQ$FORMAT call (for
iRMX 88 systems) to format volumes on that device, your driver routines
must set the status field in the IORS in the manner that the FORMAT
command expects.

When formatting volumes, the FORMAT command issues system calls

(A$SPECIAL or S$SPECIAL) to format each track. It knows that formatting
is complete when it receives an E$SPACE exception code in response. To

be compatible with FORMAT, your driver must also return E$SPACE.

In particular, if your driver must perform some operation on the device

to format it, your device interrupt procedure must set the IORS.STATUS to
E$SPACE after the last track has been formatted.

However, if the device requires no physical formatting (for example, when
formatting is a null operation for that device), your device start

procedure can set IORS.STATUS to E$SPACE immediately after being called
to start the formatting operation.

etk

Device Drivers 5-11

CHAPTER 6
WRITING A CUSTOM
DEVICE DRIVER

Custom device drivers are drivers that you create in their entirety
because your device doesn't fit into either the common or random access
device category, elther because the device requires a priority-ordered
queue, multiple interrupt levels, or because of some other reasons that
you have determined. When you write a custom device driver, you must
provide all of the features of the driver, including creating and
deleting resources, implementing a request queue, and creating an
interrupt handler. You can do this in any manner that you choose as long
as you supply the following four procedures for the I/0 System to call:

An Initialize I/O Procedure. This procedure must initialize the

device and create any resources needed by the procedures in the
driver.

A Finish I/0 Procedure. This procedure must perform any final
processing on the device and delete resources created by the
remainder of the procedures in the driver.

A Queue 1/0 Procedure. This procedure must place the 1/0 requests on
a queue of some sort, so that the device can process them when it
becomes available.

A Cancel I/0 Procedure. This procedure must cancel a previously
queued I/0 request.

In order for the 1/0 System to communicate with your device driver

procedures, you must provide the addresses of these four procedures for
the DUIBs that correspond to the units of the device.

The next four sections describe the format of each of the I/0 System

calls to these four procedures. Your procedures must conform to these
formats.

INITIALIZE 1/0 PROCEDURE

The iRMX 86 1/0 System calls the Initialize I/0 procedure when an
application task makes an RQAPHYSICAL$SATTACH$DEVICE system call and no
units of the device are currently attached. The iRMX 88 I/0 System calls
the Initialize I/0 procedure when an application task attaches or creates
a file on the device and no other files on the device are currently
attached. In either case, the I/0 System calls the Initialize I/O
procedure before calling any other driver procedure.

Device Drivers 6-1

WRITING A CUSTOM DEVICE DRIVER

The Initialize I/0 procedure must perform any initial processing
necessary for the device or the driver. If the device requires an
interrupt task (or region or device data area, in the case of iRMX 86
drivers), the Initialize I/0 procedure should create it (them).

The format of the call to the Initialize I/0 procedure 1s as follows:

CALL init$io(duib$p, ddata$p, status$p);

where:

init$io Name of the Initialize I/O procedure. You can use any
name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address in the DUIBs of
all device-units that it services.

duib$p POINTER to the DUIB of the device-unit for which the
request is intended. The init$io procedure uses this
DUIB to determine the characteristics of the unit.

ddata$p POINTER to a WORD in which the init$io procedure can
place the location of a data storage area, if the
device driver needs such an area. If the device
driver requires that a data area be associated with a
device (to contain the head of the I/0 queue, DUIB
addresses, or status information), the init$io
procedure should create this area and save its
location via this pointer. 1If the driver does not
need such a data area, the init$io procedure should
return a zero via this pointer.

status$p POINTER to a WORD in which the init$io procedure must
place the status of the initialize operation. If the
operation is completed successfully, the init$io
procedure must return the E$0K condition code.
Otherwise it should return the appropriate exception
code. If the init$io procedure does not return the
E$OK condition code, it must delete any resources that
it has created.

FINISH I/0 PROCEDURE

The iRMX 86 I/O System calls the Finish I/0 procedure after an
application task makes an RQAPHYSICAL$DETACH$DEVICE system call to
detach the last unit of a device. The iRMX 88 I/0 System calls the
Finish I/0 procedure when an application task detaches or deletes the
last remaining file comnection for the device.

The Finish I/0 procedure performs any necessary final processing on the
device. It must delete all resources created by other procedures in the
device driver and must perform final processing on the device itself, 1if
the device requires such processing.

Device Drivers 6-2

WRITING A CUSTOM DEVICE DRIVER

The format of the call to the Finish I/0 procedure is as follows:

CALL finish$io(duib$p, ddata$t);

where:

finish$io Name of the Finish L/0 procedure. You can specify
any name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address in the DUIBs
of all device-units that it services.

duib$p POINTER to the DUIB of the device-unit of the
device being detached. The finish$io procedure
needs this DUIB in order to determine the device on
which to perform the final processing.

ddata$t SELECTOR containing the location of the data

storage area originally created by the init$io

procedure. The finish$io procedure must delete
this resource and any others created by driver

routines.

QUEUE 1/0 PROCEDURE

The I/0 System calls the Queue I/0 procedure to place an 1/0 request on a

queue, so that it can be processed when the device is not busy. The
Queue 1/0 procedure must actually start the processing of the next I/0

request on the queue if the device is not busy. The format of the call
to the Queue I/0 procedure i1s as follows:

CALL queue$io(iors$t, duib$p, ddata$t);

where:
queue$io Name of the Queue I/0 procedure. You can use any
name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address for the DUIBs
of all device-units that it services.
iors$t SELECTOR containing the location of an IORS. This

IORS describes the request. When the request is
processed, the driver (though not necessarily the
queue$io procedure) must £11ll in the status fields
and send the IORS to the response mailbox
(exchange) indicated in the IORS. Chapter 2
describes the format of the IORS. It lists the
information that the I/0 System supplies when it
passes the IORS to the queue$io procedure and
indicates the fields of the IORS that the device
driver must f£fill in.

Device Drivers 6-3

WRITING A CUSTOM DEVICE DRIVER

duib$p POINTER to the DUIE of the device-unit for which
the request is intended.

ddata$t SELECTOR containing the location of the data
storage area originally created by the init$io
procedure. The queue$io procedure can place any
necessary information in this area in order to
update the request queue or status fields.

CANCEL 1/0 PROCEDURE

The I/0 System can call the Cancel I/0 procedure in order to cancel one
or more previously queued I/0 requests. The iRMX 88 I/O System does not
call Cancel 1/0, but in the iRMX 86 environment Cancel I/0 is called
under either of the following two conditioms:

. If the user makes an RQAPHYSICAL$DETACH$DEVICE system call and
specifies the hard detach option (refer to the iRMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL for a description of this call). This
system call forcibly detaches all objects associated with a
device-unit.

e If the job containing the task which made an I/0O request is

deleted. The I1/0 System calls the Cancel I/0 procedure to remove
any requests that tasks in the deleted job might have made.

If the device cannot guarantee that a request will be finished within a
fixed amount of time (such as waiting for input from a terminal
keyboard), the Cancel I/0 procedure must actually stop the device from
processing the request. If the device guarantees that all requests
finish in an acceptable amount of time, the Cancel I/0 procedure does not
have to stop the device itself, but only removes requests from the queue.

The format of the call to the Cancel I/O procedure is as follows:

CALL cancel$io(cancel$id, duib$p, ddata$t);

where:
cancel$id Name of the Cancel I/0 procedure. You can use any
name for this procedure as long as it doesn't
conflict with other procedure names. You must,
however, provide its starting address in the DUIBs of
all device—units that it services.
cancel$id WORD containing the id value for the I/0 requests

that are are to be cancelled. Any pending requests
with this value in the cancel$id field of their
IORS's must be removed from the queue of requests by
the Cancel 1/0 procedure. Moreover, the I/0 System
places a CLOSE request with the same cancel$id value
in the queue. The CLOSE request must not be
processed until all other requests with that
cancel$id value have been returned to the I/0 System.

Device Drivers 6-4

WRITING A CUSTOM DEVICE DRIVER

duib$p POINTER to the DUIB of the device—-unit for which
the request cancellation is intended.

ddata$t SELECTOR containing the location of the data
storage area originally created by the init$io
procedure. This area may contain the request queue.

IMPLEMENTING A REQUEST QUEUE

Making I/0 requests via system calls and the actual processing of these
requests by 1/0 devices are asynchronous activities. When a device is
processing one request, many more can be accumulating. Unless the device
driver has a mechanism for placing I/0O requests on a queue of some sort,
these requests will become lost. The common and random access device
drivers form this queue by creating a doubly linked list. The list is

used by the QUEUE$IO and CANCEL$IO procedures, as well as by
INTERRUPT$TASK.

Using this mechanism of the doubly linked list, common and random access
device drivers implement a FIFO queue for I/0 requests. If you are
writing a custom device driver, you might want to take advantage of the
LINK$FOR and LINK$BACK fields that are provided in the IORS and implement
a scheme similar to the following for queuing I/O requests.

Each time a user makes an I/0 request, the I/0 System passes an IORS for
this request to the device driver, in particular to the Queue I/0
procedure of the device driver. The common and random access driver
Queue I1/0 procedures make use of the LINK$FOR and LINK$BACK fields of the
IORS to link this IORS together with IORSs for other requests that have
not yet been processed.

This queue 1s set up in the following manner. The device driver routine
that is actually sending data to the controller accesses the first IORS
on the queue. The LINK$FOR field in this IORS points to the next IORS on
the queue. The LINK$FOR field in the second IORS points to the third
IORS on the queue, and so forth until, in the last IORS on the queue, the
LINK$FOR field points back to the first IORS on the queue. The LINK$BACK
fields operate in the same manner. The LINK$BACK field of the last IORS
on the queue points to the previous IORS. The LINK$BACK field of the
second to last IORS points to the third to last IORS on the queue, and so
forth, until, in the first IORS on the queue, the LINK$BACK field points
back to the last IORS in the queue. A queue of this sort is illustrated
in Figure 6-1.

The device driver can add or remove requests from the queue by adjusting
LINK$FOR and LINK$BACK pointers in the IORSs.

Device Drivers 6-5

WRITING A CUSTOM DEVICE DRIVER

First tORS Second IORS Third 1O0RS Last IORS
on queue on queue on queue on queue

linkStor linkstor link$tor o O o link$tor 1

‘—‘ linkSback link$back link$back link$back

x-679

Figure 6-1. Request Queue

To handle the dual problems of locating the queue and ascertaining
whether the queue is empty, you can use a variable such as head$queue.
If the queue is empty, head$queue contains the value 0. Otherwise,
head$queue contains the address of the first IORS in the queue.

Kk

Device Drivers 6-6

CHAPTER 7
TERMINAL DRIVERS

Both the 1RMX 86 and iRMX 88 Operating Systems supply a Terminal Handler
that can serve as an interface between the Nucleus and a terminal

device. This interface is minimal and allows limited interaction between
the terminal operator and the Operating System. However, the iRMX 86
Operating System also provides an interface to terminals via the Basic
I/0 System. This interface allows tasks to use the power and convenience
of I/0 System calls when communicating with terminals. To add support
for new terminal controllers in the Basic I/0 System, you can write
device drivers, which provide the software link between the Operating
System software (called the Terminal Support Code) and the terminal.

The iRMX 88 Executive does not support terminal drivers as outlined in
this chapter.

This chapter explains how to write a terminal driver whose capabilities
include handling single-character 1/0, parity checking, answering and
hanging up functions on a modem, and automatic baud rate searching for
each of several terminals. Such a driver is neither common, random
access, nor custom. Consequently, this chapter is more self-contained
than Chapters 5 and 6; it describes the data structures used by terminal
drivers, as well as the procedures that you must provide.

TERMINAL SUPPORT CODE

As in the case of common and random access drivers, the I/0 System
provides the procedures that the I/0 System invokes when performing
terminal I/0. They are known collectively as the Terminal Support Code.
Figure 7-1 shows schematically the relationships between the various
layers of code that are involved in driving a terminal.

Among the duties performed by the Terminal Support Code are managing
buffers and maintaining several terminal-related modes.

Device Drivers 7-1

TERMINAL DRIVERS

APPLICATION TASK

BASIC /0 SYSTEM

TERMINAL SUPPORT
CODE (TSC)

TERMINAL DRIVER

‘—/

TERMINAL

0952

Figure 7-1. Software Layers Supporting Terminal I/O

DATA STRUCTURES SUPPORTING TERMINAL I/0

The principal data structures supporting terminal I/O are the Device-Unit
Information Block (DUIB), Device Information Table, Unit Information
Table, and the Terminal Support Code (TSC) data structure. These data
structures are defined in the next few paragraphs.

DUIB

This section lists the elements that make up a DUIB for a device-unit
that is a terminal. When creating DUIBs for iRMX 86 applications, code
them in the format shown here (as assembly-language structures). If you
give the iRMX 86 ICU the pathname of your Unit Information Table field,
the iRMX 86 Interactive Configuration Utility (ICU) includes your DUIB
file in the assembly of IDEVCF.A86 (a Basic I/O System configuration
file). IDEVCF.A86 contains the definiticn of the structure.

Device Drivers 7-2

TERMINAL DRIVERS

DEFINE DUIB <

& NAME, ; byte (14)
& 1, ; word — file$drivers — (physical)
& OFBH, ; byte — functs - (no seek)
& 0, ; byte - flags — (not disk)
& 0, ; word - dev$gran - (not random access)
& 0, ; dword - dev$size - (not storage device)
& DEVICE, ; byte - (device dependent)
& UNIT, ; byte — (unit dependent)
& DEV$UNIT, ; word - (device and unit dependent)
& TSINITIO, ; word - init$io - (terminal device)
& TSFINISHIO, ; word — finish$io - (terminal device)
& TSQUEUEIO, ; word - queue$io - (terminal device)
& TSCANCELIO, ; word — cancel$io — (terminal device)
& DEVICE$INFO$P, ; pointer — (address of

s TERMINAL$DEVICE$INFO)
& UNIT$INFO$P, ; pointer - (address of

s+ TERMINAL$UNIT$INFO)
& OFFFFH, s word - update$timeout - (nmot disk)
& 0, ; word — num$buffers - (none)
& PRIORITY, ; byte — (1/0 System dependent)
& 0, ; byte — fixed$update - (none)
& O, ; byte — max$buffers - (none)
& RESERVED, ; byte
& >

DEVICE INFORMATION TABLE

A terminal's Device Information Table provides information about a
terminal controller. When creating these tables, code them in the format
shown here (as assembly-language declarations). If you give the iRMX 36
ICU the pathname of your Unit Information Table field, the ICU includes
the file in the assembly of IDEVCF.A86 (a Basic I/0 System configuration
file).

The fields TERM$INIT, TERM$FINISH, TERM$SETUP, TERM$OUT, TERM$ANSWER,
TERM$HANGUP, and TERM$CHECK contain the names of user—supplied procedures
whose duties are described later in this chapter. When creating the file
containing your Device Information Tables, specify external declarations
for these user-supplied procedures. This allows the code for these
user-supplied procedures to be included in the generation of the 1/0
System. For example, if your procedures are named TERM$INIT,
TERM$FINISH, TERM$SETUP, TERM$OUT, TERM$ANSWER, TERM$HANGUP, and
TERM$CHECK, include the following declarations in the file containing
your Device Information Tables:

extrn term$init: near
extrn term$finish: near
extrn term$setup: near
extrn term$out: near
extrn term$answer: near
extrn term$hangup: near
extrn term$check: near

Device Drivers 7-3

TERMINAL DRIVERS

Use the following format when coding your Device Information Tables:

TERMINAL$DEVICE$ INFORMATION
DW NUMSUNITS
DW DRIVER$DATAS$SIZE
DW STACK$SIZE
DW TERM$INIT
DW TERM$FINISH
DW TERM$SETUP
DW TERM$OUT
DW TERM$ANSWER
DW TERM$HANGUP
DW NUM$INTERRUPTS
INTERRUPTS
DW INTERRUPT$LEVEL
DW TERM$CHECK
. define interrupt$level and
term$check for each interrupt

we we we

. level
DRIVER$ INFO
DB DRIVER$INFO$1
DB DRIVER$INFO$2
where:
NUM$UNITS WORD containing the number of terminals on this

terminal controller.

DRIVER$DATA$SIZE WORD containing the number of bytes in the
driver's data area pointed to by the
USER$DATA$PTR field of the TSC Data structure.

STACK$SIZE WORD containing the number of bytes of stack
needed collectively by the user-supplied
procedures in this device driver.

TERM$INIT WORD specifying the address of this controller's
user-written terminal initialization procedure.
When creating the Device Information Table, use

the procedure name as a variable to supply this
information.

TERM$FINISH WORD specifying the address of this controller's

user-written terminal finish procedure. When
creating the Device Information Table, use the

procedure name as a variable to supply this
information.

TERM$SETUP WORD specifying the address of this controller's

user-written terminal setup procedure. When
creating the Device Information Table, use the

procedure name as a variable to supply this
information.

Device Drivers 7-4

TERM$OUT

TERM$ANSWER

TERM$HANGUP

NUM$ INTERRUPTS

INTERRUPT$LEVEL

TERM$CHECK

DRIVER$INFO

TERMINAL DRIVERS

WORD specifying the address of this controller's
user-written terminal output procedure. When
creating the Device Information Table, use the
procedure name as a variable to supply this
information.

WORD specifying the address of this controller's
user-written terminal answer procedure. When
creating the Device Information Table, use the
procedure name as a variable to supply this
information.

WORD specifying the address of this controller's
user-written terminal hangup procedure. When
creating the Device Information Table, use the

procedure name as a variable to supply this
information.

WORD containing the number of interrupt lines
that this controller uses. You must define an
INTERRUPT$LEVEL and TERM$CHECK word for each
interrupt.

WORDs containing the level numbers of the
interrupts that are associated with the terminals
driven by this controller. You must supply one
such word for each interrupt the controller uses.

WORDs specifying the addresses of this
controller's user—written terminal check
procedures. Each TERM$CHECK field specifies the
terminal check procedure for the INTERRUPT$LEVEL
immediately preceding it. When creating the
Device Information Table, use the procedure names
as the variables to supply this information. If
any of the TERM$CHECK words equals zero, there is
no term$check procedure associated with the
corresponding interrupt level. Instead,
interrupts on these levels are assumed to be
output ready interrupts which will cause TERM$OUT
to be called.

BYTES or WORDS containing driver-dependent
information.

Device Drivers 7-5

TERMINAL DRIVERS

NOTE

Usually, terminal drivers are concerned
only with the DRIVER$INFO fields of the
Device Information Table. Therefore, a
terminal driver can declare a structure

of the following form when accessing
this data:

DECLARE
TERMINAL$DEVICES INFO STRUCTURE(
FILLER(nbr$ofgwords) WORD,

DRIVER$INFO$1 BYTE,
DRIVER$ INFO$2 BYTE,
DRIVER$ INFO$N BYTE) ;

where nbrofwords equals 10 +

2% (number of interrupt levels used by
the driver)

You must supply the TERM$INIT, TERM$FINISH, TERM$SETUP, TERM$OUT,
TERM$ANSWER, TERM$HANGUP, and TERM$CHECK procedures. However, if your
terminals are not used with modems, the TERM$ANSWER and TERM$HANGUP
procedures can simply contain a RETURN. Also, if your application does
not need to perform special processing when all of the terminals on the
controller are detached, the TERM$FINISH procedure also can simply
contain a RETURN.,

UNIT INFORMATION TABLE

A terminal's Unit Information Table provides information about an
individual terminal. Although only one Device Information Table can
exist for each driver (controller), several Unit Information Tables can
exist if different terminals have different characteristics (such as baud
rate, duplex, or parity, for example). When creating Unit Information
Tables, code them in the format shown here (as assembly-language
declarations). If you give the iRMX 86 ICU; the pathname of your Unit
Information Table field, the ICU includes the file in the assemgly of
IDEVCF.A86 (a Basic I/0 System configuration file).

Device Drivers 7-6

TERMINAL DRIVERS

TERMINAL$UNIT$ INFORMATION
DW CONN$FLAGS
DW TERM$FLAGS
DW INS$RATE
DW OUT$RATE
DW SCROLL$NUMBER
DW FLOW$CONTROL*
DW HIGH$WATER$MARK*
DW LOW$WATER$MARK*
DW FCONCHAR*
DW FCOFFCHAR*

*These elements apply only to buffered device drivers and are useful
only if you must specify them at configuration time.

where:

CONN$FLAGS WORD specifying the default comnnection flags for

this terminal. Refer to the iRMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL for more information
about these flags. The flags are encoded as

follows. (Bit 0 is the low-order bit.)

Bits Value and Meaning

0-1 Line editing control.

0 = Invalid Entry.
1 = No line editing (transparent mode).
2 = Line editing (normal mode).
3 = No line editing (flush mode).
2 Echo control.
0 = Echo.
1 = Do not echo.
3 Input parity control.
0 = Set parity bit to O.
1 = Do not alter parity bit.
4 Output parity control.

0 = Set parity bit to O.

1 = Do not alter parity bit.

Device Drivers 7-7

TERMINAL DRIVERS

Bits Value and Meaning

5 Output control character control.

0 = Accept output control characters in the
input stream.

1 = Ignore output control characters in the
input stream.

6-7 0SC control sequence control.

0 = Act upon 0SC sequences that appear in
either the input or output stream.

1 = Act upon OSC sequences in the input
stream only.

2 = Act upon 0SC sequences in the output
stream only.

3 = Do not act upon any OSC sequences.

8-15 Reserved bits. For future compatibility,
set to O.

TERM$F LAGS WORD specifying the terminal connection flags for
this terminal. Refer to the i1RMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL for more information
about these flags. The flags are encoded as
follows. (Bit O is the low-order bit.)

Bits Value and Meaning
0 Reserved bit. Set to 1.
1 Line protocol indicator.
0 = Full duplex.
1 = Half duplex.
2 Output medium.
0 = Video display terminal (VDT).
1 = Printed (Hard copy).
3 Modem indicator.

0 = Not used with a modem.

1 = Used with a modem.

Device Drivers 7-8

Bits

4-5

6-8

10

TERMINAL DRIVERS

Value and Meaning

Input parity control.

0 =

1 =

Always set parity bit to 0.
Never alter the parity bit.

Even parity is expected on input. Set
the parity bit to O unless the received
byte has odd parity or there is some
other error, such as (a) the received
stop bit has a value of 0 (framing
error) or (b) the previous character

received has not yet been fully
processed (overrun error.)

0dd parity is expected in input. Set
the parity bit to O unless the received
byte has even parity or there is some
other error, such as (a) the received
stop bit has a value of 0 (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

Qutput parity control.

0 =

1 =

Always set parity bit to O.
Always set parity bit to 1.

Set parity bit to give the byte even
parity.

Set parity bit to give the byte odd
parity.

Do not alter the parity bit.

Translation control.

Do not enable translation.

Enable translation.

Terminal axes sequence control. This
specifies the order in which Cartesian-like
coordinates of elements on a terminal's
screen are to be listed or entered.

0 =

List or enter the horizontal coordinate
first.

Device Drivers 7-9

INSRATE

OUT$RATE

TERMINAL DRIVERS

Bits Value and Meaning

1 = List or enter the vertical coordinate
first.

11 Horizontal axis orientation control. This
specifies whether the coordinates on the

terminal's horizontal axis increase or
decrease as you move from left to right

across the screen.

0 = Coordinates increase from left to right.
1 = Coordinates decrease from left to right.
12 Vertical axils orientation control. This

specifies whether the coordinates on the
terminal's vertical axis iIncrease or

decrease as you move from top to bottom
across the screen.

0

Coordinates increase from top to bottom.

1

Coordinates decrease from top to bottom.

13-15 Reserved bits. For future compatibility,
set to O.

NOTE

If bits 4-5 contain 2 or 3, and bits
6-8 also contain 2 or 3, then they must
both contain the same value. That is,
they must both reflect the same parity
convention (even or odd).

WORD indicating the input baud rate. The word is
encoded as follows:

0= Invalid.

1

Perform an automatic baud rate search.

Other = Actual input baud rate, such as 9600.

WORD indicating the output baud rate. The word
i1s encoded as follows:

0= Use the input baud rate for output.

Other = Actual output baud rate, such as 9600.

Device Drivers 7-10

TERMINAL DRIVERS

Most applications require the input and output
baud rates to be equal. In such cases, use
INSRATE to set the baud rate and specify a zero
for OUT$RATE.

SCROLL$NUMBER WORD specifying the number of lines that are to
be sent to the terminal each time the operator

enters the appropriate control character
(Control-W is the default).

The Unit Information Table can contain additional data, depending on the
needs of the controller. Refer to the "Additional Information for
Buffered Devices”" section of this chapter for information about other
fields you can add to the table.

TERMINAL SUPPORT CODE (TSC) DATA AREA

DUIBs, Device Information Tables, and Unit Iﬁformation Tables are
structures that you set up at configuration time to provide information

about the initial state of your terminals. During configuration, the ICU
assembles these tables into the code segment of the Basic I/0 System.

Therefore, they remain fixed throughout the life of the application
system.

However, the Basic I/O System also provides a structure in the data

segment (this section calls it the TSC Data Area) which changes to
reflect the current state of the terminal controller and its units.

The TSC Data Area consists of three portions:

° A 30H-byte controller portion which contains information that
applies to the device as a whole.

] A 400H-byte unit portion for each unit in the device. The

NUM$UNITS field in the Device Information Table specifies the
number of unit portions that the Basic I/0 System creates.

L) A user portion which the user-written driver routines can use in
any manner they choose. The DRIVER$)DATA$SIZE field in the
Device Information Table specifies the length of this portion.
One of the fields in the controller portion (USER$DATA$PTR)
points to the beginning of this field.

Figure 7-2 illustrates the TSC Data Area graphically.

Device Drivers 7-11

TERMINAL DRIVERS

TSCSDATA

_______________________ 30H bytes
USERSDATASPTR
—
UNITSDATAS1
400H bytes
L]
>
.
< . <
UNITSDATASN
400H bytes
USERSDATA >

1874

Flgure 7-2., TSC Data Area

When the Basic I/0 System calls one of your user-written driver

procedures, it passes, as a parameter, a pointer either to the start of
the TSC Data Area or to the start of ome of the unit portions of the TSC

Data Area. Your driver routines can then obtain information from the TSC
Data Area or modify the information there.

The TSC Data Area always starts on a segment boundary Its structure is
as follows:

Device Drivers 7-12

TERMINAL DRIVERS

DECLARE TSC$DATA STRUCTURE(

IOS$DATA$SEGMENT SELECTOR,
STATUS WORD,
INTERRUPTS$TYPE BYTE,
INTERRUPTING$UNIT BYTE,
DEV$INFO$PTR POINTER,
USER$DATAS$PTR POINTER,
RESERVED(34) BYTE,
DECLARE UNIT$DATA(*) STRUCTURE(
UNIT$INFO$PTR POINTER,
TERMINALS$FLAGS WORD,
INSRATE WORD,
OUT$RATE WORD,
SCROLL$NUMBER WORD,
RESERVED1(901) BYTE,
BUFFERED$DEVICE$DATA(1L) BYTE,
RESERVED2(100) BYTE);
where:

IOS$DATA$SEGMENT SELECTOR containing the base address of the 1/0
System's data segment. The I/0 System's terminal
support routine TSINITIO fills in this
information during initialization.

STATUS WORD in which the user-written terminal
initialization procedure must return status
information.

INTERRUPT$TYPE BYTE in which the user-written terminal check
procedure must return the encoded interrupt
type. The possible values are:

0 None

1 Input interrupt

2 Output interrupt

3 Ring interrupt

4 Carrier interrupt

b Delay interrupt
If the terminal check procedure detects that
there are more interrupts to service, the
terminal check procedure adds the following value:

8 More interrupts
to the encoded interrupt type it returns.
For more information about these codes and their
values, see the description of the terminal check
procedure in the next section.

INTERRUPTING$UNIT BYTE in which the user-written terminal check

procedure must return the unit number of the
interrupting device. This value identifies the
unit that is interrupting.

Device Drivers 7-13

DEV$ INFO$PTR

USER$DATA$PIR

UNIT$DATA

UNIT$INFO$PTR

TERMINALS$FLAGS

TERMINAL DRIVERS

POINTER to the Terminal Device Information Table
for this controller. The I/0 System's terminal
support routine TSINITIO fills in this data
during initialization.

POINTER to the beginning of the user portion of
the TSC Data Area. This user area can be used by
the driver, as needed. The 1/0 System's terminal
support routine TSINITIO fills in this pointer
value during initialization.

STRUCTUREs containing unit portions of the TSC
Data Area. There 1s one structure for each unit
(terminal) of the device. When a user attaches
the unit (via the A$PHYSICAL$ATTACH$DEVICE system
call or the ATTACHDEVICE Human Interface command,
for example), the I/0 System's terminal support
routines initialize the appropriate UNIT$DATA
structure. They perform the initialization by
filling in all the fields of the UNIT$DATA
structure with information from the DUIB and the
Unit Information Table.

POINTER to the Unit Information Table for this
terminal. This is the same information as in the
UNIT$INFO$P field of the DUIB for this
device-unit (terminal).

WORD specifying the connection flags for this
terminal. Refer to the iRMX 86 BASIC 1/0 SYSTEM
REFERENCE MANUAL for more information about these
flags. The flags are encoded as follows. (Bit O
is the low-order bit.)

Bits Value and Meaning

0 Reserved bit. Set to l.

1 Line protocol indicator.
0 = Full duplex.
1 = Half duplex.

2 Output medium.
0 = Video display terminal (VDT).
1 = Printed (Hard copy)-.

3 Modem indicator.
0 = Not used with a modem.
1 = Used with a modem.

Device Drivers 7-14

6-8

10

TERMINAL DRIVERS

Value and Meaning

Input parity control.

0=

1 =

Always set parity bit (bit 7) to 0.
Never alter the parity bit.

Even parity is expected on input. Set
the parity bit to O unless the received
byte has odd parity or there is some
other error, such as (a) the receilved
stop bit has a value of 0 (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

0dd parity is expected in input. Set
the parity bit to O unless the receilved
byte has even parity or there is some
other error, such as (a) the received
stop bit has a value of 0 (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

Output parity control.

0 =

] =

Always set parity bit to O.
Always set parity bit to 1.

Set parity bit to give the byte even
parity.

Set parity bit to give the byte odd
parity.

Do not alter the parity bit.

Translation control.

Do not enable translation.

Enable translation.

Terminal axes sequence control. This
specifies the order in which Cartesian-like
coordinates of elements on a terminal's
screen are to be listed or entered.

0=

List or enter the horizontal coordinate
first.

Device Drivers 7-15

INSRATE

OUT$RATE

TERMINAL DRIVERS

Bits Value and Meaning

11

12

13-1

1l = List or enter the vertical coordinate
first.

Horizontal axis orientation control. This

specifies whether the coordinates on the
terminal's horizontal axis increase or
decrease as you move from left to right
across the screen.

0

Coordinates increase from left to right.

1 Coordinates decrease from left to right.
Vertical axis orientation control. This

specifies whether the coordinates on the
terminal's vertical axis increase or

decrease as you move from top to bottom
across the screen.

0 Coordinates increase from top to bottom.

1

Coordinates decrease from top to bottom.

5 Reserved bits. For future compatibility,
set to O.

NOTE

If bits 4-5 contain 2 or 3, and bits
6-8 also contain 2 or 3, then they must
both contain the same value. That is,

they must both reflect the same parity
convention (even or odd).

WORD indicating the input baud rate. The word is

encoded as follows:

0= Invalid.

i

1

Perform an automatic baud rate search.

Other = Actual input baud rate, such as 9600.

WORD indicating the output baud rate. The word

is encoded as follows:
0= Use the input baud rate for output.
Other = Actual output baud rate, such as 9600.

Device Drivers 7-16

TERMINAL DRIVERS

Most applications require the input and output
baud rates to be equal. In such cases, use
INSRATE to set the baud rate and specify a zero
for OUT$RATE.

SCROLL$NUMBER WORD specifying the number of lines that are to
be sent to the terminal each time the operator

enters the appropriate control character
(Control-W is the default).

BUFFERED$DEVICE$- BYTES that contain additional information that

DATA applies to drivers of buffered devices
(intelligent communications processors that
maintain their own internal memory buffers).
Refer to the "Additional Information for Buffered
Devices" section to see how to access these bytes.

PROCEDURES THAT TERMINAL DRIVERS MUST SUPPLY

The routines that make up the Basic I/0 System's Terminal Support Code
constitute the bulk of the terminal device driver. These routines, in
turn, make calls to device-dependent routines that you must supply. The
following paragraphs describe the routines briefly. Sections that follow
describe the routines in more detail.

A terminal initialization procedure. This procedure must perform any

initialization functions necessary to get the terminal controller
ready to process I/0 requests. TSINITIO calls this procedure.

A terminal finish procedure. This procedure must perform any final
processing so that the terminal controller can be detached.
TSFINISHIO calls this procedure.

A terminal setup procedure. This procedure sets up the terminal in

the proper mode (baud rate, parity, etc.). TSQUEUEIO and the
Terminal Support Code's interrupt task call this procedure.

A terminal answer procedure. This procedure sets the Data Terminal
Ready (DTR) line for modem support. TSQUEUEIO and the Terminal
Support Code's interrupt task call this procedure.

A terminal hangup procedure. This procedure clears the Data Terminal
Ready (DTR) line for modem support. TSQUEUEIO and the Terminal
Support Code's interrupt task call this procedure.

A terminal check procedure. This procedure determines which terminal

sent an interrupt signal and what type of interrupt it is. The
Terminal Support Code's interrupt handler calls this procedure.

A terminal output procedure. This procedure displays a character at
a terminal. TSQUEUEIO and the Terminal Support Code's interrupt task
call this procedure.

Device Drivers 7-17

TERMINAL DRIVERS

A set output waiting procedure. This procedure signals the Terminal
Support Code that a terminal is ready to perform character
transmission and interrupt handling.

When the Terminal Support Code calls these procedures, it passes, as a

parameter, a pointer to the TSC Data Area described in the previous
section., If the called procedure is to perform duties on behalf of all
of the terminals connected to the controller, the Terminal Support Code
passes a pointer to the beginning of the TSC Data Area (the device
portion). On the other hand, if the procedure is to perform duties for

just a particular terminal, the Terminal Support Code passes a pointer to
the unit portion of the TSC Data Area that corresponds to the terminal.

Because the TSC Data Area always starts on a paragraph boundary, a
procedure that receives a pointer to a unit portion of the data area can
construct a pointer to the beginning of the TSC Data Area. It does this
by calling the PL/M-86 builtin procedure BUILD$PTR using the base part of
the pointer it received and an offset of 0. Also, if a procedure, such
as term$check, receives a pointer to the beginning of the TSC data area,
it can calculate where any unit portion of the data area starts by using
the following formula:

unit$data$p = base(of TSC data area):[30H + (unit number * 4004)]

TERMINAL INITIALIZATION PROCEDURE

This procedure must initialize the controller. The nature of this
initialization is device—-dependent. When finished, the terminal
initialization procedure must £ill in the STATUS field of the TSC Data
Area, as follows:

e If initialization is successful, it must set STATUS to E$0K (0).

® If initialization is not successful, it should normally set

STATUS equal to E$IO (2BH). However, it can set the STATUS field
to any other value, in which case the Basic I/0 System returns
that value to the task that is attempting to attach the device.
(The Human Interface ATTACHDEVICE command expects the procedure
to return the E$IO status if initialization is unsuccessful.)

The syntax of a call to the user—-written terminal initialization
procedure is as follows:

CALL term$init(tsc$data$ptr);

Device Drivers 7-18

TERMINAL DRIVERS

where:
term$init Name of the terminal initialization procedure.
You can use any name for this procedure, as long
as it doesn't conflict with other procedure names
and you include the name in the Device
Information Table.
tsc$data$ptr POINTER to the beginning of the TSC Data Area.

TERMINAL FINISH PROCEDURE

The Terminal Support Code calls this procedure when a user detaches the
last terminal unit on the terminal controller. The terminal finish
procedure can simply do a RETURN, it can clean up data structures for the
driver, or it can clear the controller. The syntax of a call to the
user-written terminal finish procedure is as follows:

CALL term$finish(tsc$data$ptr);

where:
term$finish Name of the terminal finish procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.
tscfdatag$ptr POINTER to the beginning of the TSC Data Area.

TERMINAL SETUP PROCEDURE

This procedure "sets up" ome terminal according to the TERMINAL$FLAGS,
IN$RATE, OUT$RATE, SCROLL$NUMBER, and BUFFERED$DEVICE$DATA fields in the
corresponding UNIT$DATA portion of the TSC Data Area. In particular, if
IN$RATE 1s 1, then the term$setup procedure must start a baud rate
search. (The terminal check procedure usually finishes the search and
then fills in IN$RATE with the actual baud rate.) If OUT$RATE is 0, the
terminal setup procedure assumes the output baud rate is the same value
as the input baud rate.

If your terminal controller is a buffered device (an intelligent device

that manages its own internal data buffers), the terminal setup procedure
must also set one of the reserved fields of the UNIT$DATA structure.
Refer to the "Buffered Devices" section in this chapter for more
information.

If your terminal driver supports a modem, the terminal setup procedure

might have to perform additional services. Refer to the "Terminal
Hangup" section for more information.

Device Drivers 7-19

TERMINAL DRIVERS

The terminal setup procedure must call the set output waiting procedure.

Refer to a later section in this chapter for more information on the set
output waiting procedure. The syntax of a call to the user—written

terminal setup procedure is as follows:

CALL term$setup(unit$datasn$ptr);

where:
term$se tup Name of the terminal setup procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.
unit$data$n$ptr POINTER to the terminal's UNIT$DATA structure in

the TSC Data Area.

TERMINAL ANSWER PROCEDURE

This procedure activates the Data Terminal Ready line for a particular

terminal. The Terminal Support Code calls the terminal answer procedure
only when both of the following conditions are true:

° Bit 3 of TERMINAL$FLAGS in the terminal's UNIT$DATA structure
(the modem indicator) is set to 1.

° The Terminal Support Code has received a Ring Indicate signal
(the phone is ringing) or an answer request (via an OSC modem
answer sequence) for the terminal. Refer to the iRMX 86 BASIC
I/0 SYSTEM REFERENCE MANUAL for more information about OSC
sequences.

The syntax of a call to the user-written terminal answer procedure is as
follows:

CALL term$answer(unit$datasnlp);

where:
term$answer Name of the terminal answer procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.
unit$data$n$p POINTER to the terminal's UNIT$DATA structure in

the TSC Data Area.

Device Drivers 7-20

TERMINAL DRIVERS

TERMINAL HANGUP PROCEDURE

This procedure clears the Data Terminal Ready line for a particular

terminal. The Terminal Support Code calls the terminal hangup procedure
only when both of the following are true:

° Bit 3 of TERMINALS$FLAGS in the terminal's UNIT$DATA structure
(the modem indicator) is set to 1.

° The Terminal Support Code has received a Carrier Loss signal (the
phone is hung up) or a hangup request (via an OSC modem hangup

sequence) for the terminal. Refer to the iRMX 86 BASIC 1/0
SYSTEM REFERENCE MANUAL for more information about O0SC sequences.

The syntax of a call to the user-written terminal hangup procedure is as
follows:

CALL term$hangup(unit$datanp);

where:
term$hangup Name of the terminal hangup procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.
unit$data$n$p POINTER to the terminal's UNIT$DATA structure in

the Terminal Support Code data Area.

NOTE

Some modem devices recognize only
carrier detect as an indication that
someone 1s calling and loss of carrier
detect as an indication of hangup.
However, most of these devices require
the Data Terminal Ready line to be
active before they can recognize
carrier detect. For these devices, the
terminal setup procedure must activate
the Data Terminal Ready line.

Likewise, the terminal hangup procedure
must clear the Data Terminal Ready line
and then reactivate it.

Device Drivers 7-21

TERMINAL DRIVERS

TERMINAL CHECK PROCEDURE

The Terminal Support Code calls this procedure whenever an interrupt
occurs, which usually signals that a key on that terminal's keyboard has
been pressed. When called, the terminal check procedure should determine
the kind of interrupt and the interrupting unit, as follows:

1. Check all terminals on the device for an input character.

2. If no input character is available, check for a transmitter ready
to send another character.

3. If no transmit character is available, check for a change in
status (such as a ring or carrier interrupt).

When the terminal check procedure finds the first valid interrupt, it
should quit scanning other units. Then it should place the unit number
of the interrupting unit in the INTERRUPTING$UNIT field of the TSC Data
Area and information about the type of interrupt in the INTERRUPT$TYPE
field. The Terminal Support Code interprets values in the INTERRUPT$TYPE
field as follows:

no interrupt
input interrupt
output interrrupt
ring interrupt
carrier interrupt
delay interrupt

U bW NHEO

Also, 1f the terminal check procedure detects another interrupt while it
is returning information about the first interrupt, it should add the
following value:

8 more interrupts

to the value it places in the INTERRUPT$TYPE field. Adding this value

signals the Terminal Support Code to call the terminal check procedure
again after it processes the current interrupt.

Unless the controller hardware guarantees that an additional interrupt
will be set after one of multiple pending interrupts is serviced, the
terminal check procedure should always signal that more interrupts are
available unless it cannot detect interrupts at all. That is, it should
always return one of the following values in the INTERRUPT$TYPE field:

OH no interrupt

9H 1input interrupt plus more
OAH output interrupt plus more
OBH ring interrupt plus more
OCH carrier interrupt plus more
ODH delay interrupt plus more

Device Drivers 7-22

TERMINAL DRIVERS

By returning these values, the terminal check procedure ensures that the

Terminal Support Code calls it again. Otherwise, the driver could lose
characters. If, in fact, there are no more interrupts to service, the

terminal check procedure can return a zero value (no interrupt) the last
time it is called.

If your terminal driver supports a baud rate search to determine the baud

rate of an individual terminal, the terminal check procedure must
ascertain the terminal's baud rate, as follows:

1, The first time the terminal check procedure encounters an input
interrupt for a particular terminal, it should examine the

INSRATE field of that terminal's UNIT$DATA structure to determine
the baud rate.

2. If the IN$RATE field is set to 1 (perform automatic baud rate

search), the terminal check procedure should examine the input
character to determine if it is an uppercase "U". (It can
usually check for 19200, 9600, and 4800 baud in one attempt.)

3. If the terminal check procedure determines the baud rate, it

should set the IN$RATE field of the UNIT$DATA structure to
reflect the actual input baud rate.

4. If the terminal check procedure cannot determine the baud rate,
it should increment the IN$RATE field in the UNIT$DATA
structure. When the next input interrupt occurs, the terminal
check procedure can try again to determine the baud rate. Refer
to the example terminal driver in Appendix B to see how to
implement a baud rate scan.

5. Place a value of ODH in the INTERRUPT$TYPE field (delay interrupt
plus more). The ODH value tells the Terminal Support Code that a
baud rate scan 1s in progress. The Terminal Support Code then
waits a few clock cycles and calls the terminal setup procedure
to "set up" the terminal for the new baud rate.

If the terminal check procedure encounters an input interrupt, it must
also return the input character to the procedure that called it,
adjusting the parity bit according to bits 4 and 5 of the TERMINAL$FLAGS
field in the interrupting unit's UNIT$DATA structure. If the interrupt
is not an input interrupt, the terminal check procedure can return any
value.

The syntax of the call to the user-written terminal check procedure is as
follows:

input$char = term$check(tsc$data$ptr)

where:

input$char BYTE in which the terminal check procedure

returns the input character, if the interrupt was
an input interrupt. If the interrupt was not an
input interrupt, this parameter can have any
value.

Device Drivers 7-23

TERMINAL DRIVERS

term$check Name of the terminal check procedure. You can

use any name for this procedure, as long as it
doesn't conflict with other procedure names and

you include the name in the Device Information
Table.

tsc$data$ptr POINTER to the start of the Terminal Support Code
Data Area.

TERMINAL OUTPUT PROCEDURE

The Terminal Support Code calls this procedure to display a character at
a terminal. The Terminal Support Code passes it the character and a
pointer to the terminal's UNIT$DATA structure. If bits 6 through 8 of
the TERMINAL$FLAGS field of the UNIT$DATA structure so indicate, the
terminal output procedure should adjust the character's parity bit and
then output the character to the terminal.

The syntax of the call to the user-written terminal output procedure is
as follows:

CALL term$out(unit$datanp, output$character);

where:

term$out Name of the terminal output procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.

unit$data$n$p POINTER to the terminal's UNIT$DATA structure in
the TSC Data Area.

output$character BYTE containing a character that the terminal

output procedure should send to the terminal.

SET OUTPUT WAITING PROCEDURE

This procedure notifys the Terminal Support Code that the particular
terminal is ready to perform data transmission.

The syntax of a call to the set output waiting procedure is as follows:

CALL xtssetoutput$waiting (unit$datanp);

Device Drivers 7-24

where:

xtssetoutput
$waiting

unit$data$ngptr

TERMINAL DRIVERS

Name of the Terminal Support Code provided

procedure. The terminal setup procedure

that you write must declare
xtssetoutput$waiting as an external procedure
with one pointer parameter.

POINTER to the terminal's UNIT$DATA structure in

the TSC Data Area, This si the same pointer
passed to the terminal setup procedure by the
Terminal Support Code.

ADDITIONAL INFORMATION FOR BUFFERED DEVICES

If you are writing a driver for a buffered communications device (an
intelligent communications processor like the iSBC 544 board that manages

its own buffers of data

separately from the ones managed by the Terminal

Support Code), your driver routines must make use of the
BUFFERED$DEVICE$DATA fields of the UNIT$DATA structure. In so doing,
they should impose the following structure on those 1l bytes:

DECLARE BUFFERED$DEVICE$DATA STRUCTURE(

BUFFERED$DEVICE
FLOW$CONTROL
HIGH$WATER$MARK
LOWSWATER$MARK
FC$ONSCHAR
FCOFFCHAR

where:

BUFFERED$DEVICE

FLOW$CONTROL

HIGH$WATER$MARK

BYTE,
WORD,
WORD,

WORD,
WORD,

WORD) ;

When true, a BYTZ that specifies whether the unit
requires handling as a buffered device.

WORD specifying whether the communications board
sends flow control characters (selected by the
FCONCHAR and FCOFFCHAR fields, but usually
XON and XOFF) to turn input on and off. The

low-order bit (bit 0) controls this option, as
follows:

0 Disable flow control.
1 Enable flow control.

When flow control is enabled, the communication

board can control the amount of data sent to it
to prevent buffer overflow.

When the communication board's input buffer fills
to contain the number of bytes specified in this

WORD, the board sends the flow control character
to stop input.

Device Drivers 7-25

TERMINAL DRIVERS

LOWSWATER$MARK When the number of bytes in the communication
board's input buffer drops to the number
specified in this WORD, the board sends the flow
control character to start input.

FC$ONSCHAR WORD specifying an ASCII character that the
communication board sends to the connecting

device when the number of bytes in its buffer
drops to the low-water mark. Normally this

character tells the connecting device to resume
sending data.

FCOFFCHAR A WORD specifying an ASCII character that the
communication board sends to the connecting
device when the number of characters in its
buffer rises to the high-water mark. Normally
this character tells the connecting device to
stop sending data.

When a user attaches a unit on any terminal device, the Terminal Support

Code calls the terminal setup procedure. If the device is a buffered
device, the terminal setup procedure must set the BUFFERED$DEVICE field

to TRUE (OFFH). It should also fill in the other fields of the
BUFFERED$DEVICE$DATA structure. In addition, it should enable the

communication device's on-board receiver interrupt (the one for the unit
being attached) so that it can accept data from the comnected terminal.

When a user detaches a unit on a buffered device, the Terminal Support
Code sets the BUFFERED$DEVICE field to FALSE (OH) and again calls the
terminal setup procedure. The terminal setup procedure should disable

the communication device's on-board receiver interrupt (the one for the
unit being detached) to prevent extraneous characters from being received.

To distinguish between an "attach device" and a "detach device", the

terminal setup procedure should establish its own internal flags (one for
each unit) in addition to the BUFFERED$DEVICE fields. It can use these

flags as follows:

1. Initially, the terminal initialization procedure sets the flag of
each unit to FALSE to indicate that no devices are attached.

2. When the Terminal Support Code calls the terminal setup procedure
to attach a unit, both the BUFFERED$DEVICE field and the internal
flag are FALSE. The terminal setup procedure recognizes from
this combination that the operation is an "attach device."

3. The terminal setup procedure performs the "attach device"
operations and sets the internal flag and the BUFFERED$DEVICE
flag to TRUE to indicate that the device is attached.

4. When the unit is detached, the Terminal Support Code sets the
BUFFERED$DEVICE flag to FALSE and calls the terminal setup
procedure. In this situation, the BUFFERED$DEVICE field is
FALSE, but the internal flag is TRUE. The terminal setup
procedure recognizes from this combination that the operation is
a "detach device."

Device Drivers 7-26

TERMINAL DRIVERS

PROCEDURES' USE OF DATA STRUCTURES

Table 7-1 helps you sort out the responsibilities of the various

procedures in a terminal device driver. In the table, the following
codes refer to those procedures:

(1) terminal initialization
(2) terminal finish

(3) terminal setup

(4) terminal answer

(5) terminal hangup

(6) terminal check

(7) terminal output

Also, "System" and "ICU" are used in Table 7-1 to indicate the iRMX 86
software and the iRMX 86 Interactive Configuration Utility,
respectively. In addition, "Term$flags” is an abbreviation of

“Terminal$flags,” and numbers following immediately after "Term$flags"
are bit numbers in that word.

Device Drivers 7-27

TERMINAL DRIVERS

Table 7-1. Uses of Fields in Terminal Driver Data Structures

Filled in/Changed by Can or Will be Used by

TSC$DATA
I0S$DATA$SEGMENT System (1)-(7)
STATUS (1) System
INTERRUPT$TYPE (6) System
INTERRUPTING$UNIT (6) System
DEV$INFO$PTR System (L)=(7)
USER$DATAS$PTR System (1)-(7)
UNIT$DATA
UNIT$ INFO$PTR System System
TERM$FLAGS (0-2) System System
TERM$FLAGS (3) System (3)
TERM$FLAGS (4-5) System (3),(6)
TERM$FLAGS (6-8) System (3),(6),(7)
IN$RATE System,(3),(6) (3)
OUT$RATE System (3)
SCROLL$NUMBER System System
BUFFERED$DEVICE$DATA (3) System, (3)
TERMINAL$DEVICE$ INFORMATION
NUM$UNITS ICU System
DRIVER$DATAS$SIZE ICU System
STACK$SIZE ICU System
TERM$INIT ICU System
TERM$FINISH ICU System
TERM$SETUP ICU System
TERM$OUT ICU System
'TERM$ANSWER ICU System
TERM$HANGUP ICU System
TERM$CHECK ICU System
INTERRUPTS
INTERRUPT$LEVEL ICU System
TERM$CHECK ICU System
DRIVER$INFO ICU (1)=(7)

Fedek

Device Drivers 7-28

CHAPTER 8
BINDING A DEVICE DRIVER
TO THE /O SYSTEM

You can write the modules for your device driver in either PL/M-86 or the
ASM86 Macro Assembly Language. However, you must adhere to the following
guidelines:

] If you use PL/M-86, you must define your routines as reentrant,
public procedures, and compile them using the ROM and COMPACT
controls.

) If you use assembly language, your routines must follow the
conditions and conventions used by the PL/M-86 COMPACT size
control. In particular, your routines must function in the same
manner as reentrant PL/M-86 procedures with the ROM and COMPACT
controls set. The ASM36 MACRO ASSEMBLER OPERATING INSTRUCTIONS

manual describes these conditions and conventions.

USING THE iRMX™ 86 INTERACTIVE CONFIGURATION UTILITY

To use the iRMX 86 Interactive Configuration Utility to configure a
driver that you have written for your application system, you must
perform the following steps:

1. For each device driver that you have written, assemble or
compile the code for the driver.

2. Put all the resulting object modules in a single library, such
as DRIVER.LIB.

3. Ascertain the device numbers and device-unit numbers to use in
the DUIBs for your devices.

a. Use the ICU to configure a system containing all the
Intel-supplied drivers you require.

b. Use the G option to generate that system.

Cc. Use a text editor to examine the file IDEVCF.A86. Among
other things, this file contains DUIBs for all the
device—-units you defined in your configuration.

d. Look for the DEFINE DUIB structures in the file. Chapter 2
lists the format of these structures. Note the device
number (eighth field) and the device-unit number (tenth
field) of the last DUIB defined in the file.

Figure 8-1 lists part of an IDEVCF.86 file which contains
this information (the file you examine might look
different, depending on how you configure your system).
The arrows in the figure point to the relevant fields.

Device Drivers 8-1

BINDING A DEVICE DRIVER TO THE I/O SYSTEM

e. Use the next available device numbers and device-unit
numbers in your DUIBs.

DEFINEDUIB <
'1p',
00001H,
OF24,
00,

00,

00,

00,
00004H ,
00,
000O0BH,

INITIO,
FINISHIO,

QUEUEIO,
CANCELIO,
DINFOO4,
00,
OFFFFH,
00000H ,
130,
FALSE,
000004,

0

RR RR R RPRRARRRR R R R R R

¢

&
NUMDUIB EQU (THIS BYIE - DUIBTABLE) / SIZE DEFINEDUIB
BIOSCODE ENDS

ZDEVICETABLES(NUMDUIB,0000CH,005H,003E8H)
CODE SEGMENT

ASSUME CS:CGROUP

Figure 38-1. Example IDEVCF.A86 File

Device Drivers 8-2

BINDING A DEVICE DRIVER TO THE 1/0 SYSTEM

4, Create the following:

a.

d.

5. Use

The ICU does

A file containing the DUIBs for all the device-unilts you
are adding. Use the DEFINE DUIB structures shown in
Chapter 2. Place all the structures in the same file.
Later, the ICU includes this file in the assembly of the
IDEVCF.A86 file.

A file containing all the device information tables you are

adding. Use the RADEV_DEV_INFO structures shown in Chapter
2 for any random access drivers you add. Later, the ICU
includes this file in the assembly of the IDEVCF.A86 file.

If applicable, any unit information table(s). Use the
RADEV_UNIT INFO structures shown in Chapter 2 for any
random access drivers you add. Add these tables to the
file created in step b.

External declarations for any procedures that you write.
The names of these procedures appear in either the DUIB or
the Device Information Table associated with this device

driver. Add these declarations to the file created in step
b.

the ICU to configure your final system. When doing so:

Answer "yes" when asked if you have any device drivers not

supported by the ICU (this means drivers that you have
written).

As input to the "User Devices" screen, enter the pathname

of your device driver library. This refers to the library
built in step 2; for example, :F1:DRIVER.LIB.

Also, enter the information the ICU needs to include your
configuration data in the assembly of IDEVCF.A86. The
information needed includes the following:

° DUIB source code pathname (the file created in step
4a).

° Device and Unit source code pathname (the file created
in steps 4b through 4d).

° Number of user defined devices.
° Number of user defined device-units.
the rest.

Figure 8-2 contains an example of the "User Devices"” screen. The
underlined text represents user input to the ICU. In this example, the
file :F1:DRIVER.LIB contains the object code for the driver, :Fl:DUIB.SRC
contains the source code for the DUIBs, and :F1:DEVINF.SRC contalns the
source code for the Device and Unit Information Tables along with the
necessary external procedure declarations.

Device Drivers 8-3

The code i

BINDING A DEVICE DRIVER TO THE I/O SYSTEM

n the DRIVER.LIB file supports one device with two units.

Refer to the iRMX 86 CONFIGURATION GUIDE for instructions on how to use

the ICU.

User Devices

(oPN)

Object Code Path Name [1-45 characters]
NONE

(DPN) Duib Source Code Path Name [1-45 characters]

(DUP) Device and Unit Source Code Path Name [1-45 characters]

(ND) Number of User Defined Devices [0~OFFH] 0001H
(NDU) Number of User Defined Device-Units [0-OFFH] 0001H
Enter Changes [Abbreviations ?/= new_yalue] : OPN = :F1:DRIVER.LIB
: DPN = :F1:DUIB.SRC

: DUP = :F1:DEVINF.SRC

: ND =1

: NDU = 2

Figure 8-2. Example User Devices Screen

USING THE iRMX™ 88 INTERACTIVE CONFIGURATION UTILITY

To use the
driver tha

iRMX 88 Interactive Configuration Utility to configure a
t you have written for your application system, you must

perform the following steps in the following order:

1. For each driver, assemble or compile the code.

2, When using the ICU:

a

. Answer "208", "215", "common", "random", or "custom" when
asked for device type.

b. When prompted, enter the information for the DUIBs, the

device information tables, and, if applicable, the unit
information table.

c. When prompted for linking information, enter the names of

the appropriate modules.

The ICU does the rest.

Kok

Device Drivers 8-4

APPENDIX A
RANDOM ACCESS DRIVER
SUPPORT ROUTINES

This appendix describes, in general terms, the operations of the random
access device driver support routines. The routines described include:

INIT$ IO
FINISH$IO
QUEUE$ IO
CANCEL$ IO
INTERRUPT$TASK

NOTE

For iRMX 88 systems, these names are
prefixed by "RAD$".

These routines are supplied with the I/0 System and are the device driver

routines actually called when an application task makes an I/0 request to
support a random access or common device. These routines ultimately call

the user-written device initialize, device finish, device start, device
stop, and device interrupt procedures.

This appendix provides descriptions of these routines to show you the
steps that an actual device driver follows. You can use this appendix to
get a better understanding of the I/0O System—supplied portion of a device
driver to make writing the device-dependent portion easier (the random

access driver support routines follow essentially the same pattern). Or
you can use it as a guideline for writing custom device drivers.

INIT$IO PROCEDURE

The iRMX 86 I/0 System calls INIT$IO when an application task makes an

RQ$ASPHYSICALSATTACHS$DEVICE system call and there are no units of the
device currently attached. The iRMX 88 1/0 System calls INIT$IO when an
application task attaches or creates a file on the device and no other
files on the device are attached.

INIT$IO initializes objects used by the remainder of the driver routines,

creates an interrupt task, and calls a user—supplied procedure to
initialize_the device itself.

Device Drivers A-1

RANDOM ACCESS DRIVER SUPPORT ROUTINES

When the I/0 System calls INIT$IO, it passes the following parameters:
e A pointer to the DUIB of the device-unit to initialize

. In the iRMX 86 environment, a pointer to the location where

INIT$IO must return a token for a data segment (data storage
area) that it creates

. A pointer to the location where INIT$IO must return the condition
code

The following paragraphs show the general steps that the INIT$IO

procedure goes through in order to initialize the device. Figure A-1
illustrates these steps. The numbers in the figure correspond to the

step numbers in the text.

INIT$10

1
O CREATES DATA OEJECT FOR
DEVICE AND STARTS FILLING IT

Y

2
O CREATES THE REGION FOR
ACCESS TO THE QUEUE

\

CREATES THE INTERRUPT TASK

Y

@ CALLS USER-SUPPLIED PROCEDURE
TO INITIALIZE CEVICE

\

@ RETURNS TO I/0 SYSTEM

PASSING DATA OBJECT AND
CONDITION CODE

1873

Figure A-1l. Random Access Device Driver Initialize I/O Procedure

Device Drivers A-2

RANDOM ACCESS DRIVER SUPPORT ROUTINES

1. It creates a data storage area that will be used by all of the
procedures in the device driver. The size of this area depends
in part on the number of units in the device and any special
space requirements of the device. INIT$IO then begins

initializing this area and eventually places the following
information there:

° The value of the DS (data segment) register.

e A token (identifier) for a region (exchange) —-- for mutual
exclusion.

® An array which will contain the addresses of the DUIBs for

the device-units attached to this device. INIT$IO places the
address of the DUIB for the first attaching device unit to
this array.

e A token (identifier) for the interrupt task.

e Other values indicating that the queue is empty and the
driver 1s not busy.

It also reserves space in the data storage area for device data.

2. It creates a region., The other procedures of the device driver
receive control of this region whenever they place a request on
the queue or remove a request from the queue. INIT$IO places the
token for this region in the data storage area.

3. It creates an interrupt task to handle interrupts generated by
this device. INIT$I0 passes to the interrupt task a token for
the data storage area. This area is where the interrupt task
will get information about the device. Also, INIT$IO places a
token for the interrupt task in the data storage area.

4. It calls a user-written device initialization procedure that
initializes the device itself. It gets the address of this
procedure by examining the Device Information Table specified in
the DUIB. Refer to Chapter 3 for information on how to write
this initialization procedure.

5. It returns control to the I/O System, passing a token for the

data storage area and a condition code which indicates the
success of the initialize operation.

FINISH$3IO PROCEDURE

The iRMX 86 I/0 System calls FINISH$IO when an application task makes an

RQ$ASPHYSICALS$DETACH$DEVICE system call and there are no other units of
the device currently attached. The iRMX 838 I/0 System calls FINISH$IO

when an application detaches or deletes a file and no other files on the
device are attached.

Device Drivers A-3

RANDOM ACCESS DRIVER SUPPORT ROUTINES

FINISH$IO deletes the objects used by the other device driver routines,

deletes the interrupt task, and calls a user-supplied procedure to
perform final processing on the device itself.

When the I/0 System calls FINISH$IO, it passes the following parameters:
® A pointer to the DUIB of the device—unit just detached
e A selector to the data storage area created by INIT$IO

The following paragraphs show the general steps that the FINISH$IO

procedure goes through to terminate processing for a device. Figure A-2
illustrates these steps. The numbers in the figure correspond to the step

numbers in the text.

1. It calls a user-written device finish procedure that performs any

necessary final processing on the device itself. FINISH$IO gets
the address of this procedure by examining the Device Information
Table specified in the DUIB. Refer to the Chapter 4 for
information about device information tables.

FINISHS$O

@ CALLS USER-GUPPLIED

PROCEDURE TC! FINISH UP
PROCESSING ON THE DEVICE

Y

2
Q DELETES INTERRUPT TASK FOR
DEVICE AND RESETS INTERRUPT

A

@ DELETES REGION AND DATA OBJECTS
USED BY THIS DEVICE DRIVER

A

RETURNS TO THE I/0 SYSTEM

1876

Figure A-2. Random Access Device Driver Finish I/0 Procedure

Device Drivers A—4

RANDOM ACCESS DRIVER SUPPORT ROUTINES

2. It deletes the interrupt task originally created for the device

by the INIT$IO procedure and cancels the assignment of the
interrupt handler to the specified interrupt level.

3. It deletes the region and the data storage area originally
created by the INIT$IO procedure, allowing the operating system
to reallocate the memory used by these objects.

4. 1t returns control to the I/0 System.

QUEUE$IO PROCEDURE

The I/0 System calls the QUEUE$IO procedure to place an I/0 request on a

queue of requests. This queue has the structure of the doubly-linked
list shown in Figure 2-2, If the device itself is not busy, QUEUE$IO
also starts the request.

When the I/0 System calls QUEUE$IO, it passes the following parameters
e A token (identifier) for the IORS
° A pointer to the DUIB

e A token (identifier) for the data storage area originally created
by INIT$IO

The following paragraphs show the general steps that the QUEUE$IO

procedure goes through to place a request on the 1/0 queue. Figure A-3
illustrates these steps. The numbers in the figure correspond to the
step numbers in the text.

1. It sets the DONE field in the IORS to OH, indicating that the

request has not yet been completely processed. Other procedures
that start the I/0 transfers and handle interrupt processing also

examine and set this field.

2, It receives control of the region and thus access to the queue.
This allows QUEUE$IO to adjust the queue without concern that
other tasks might also be doing this at the same time.

3. It places the IORS on the queue.

4. It calls an I/0 System-supplied procedure to start the processing

of the request at the head of the queue. This results in a call
to a user-written device start procedure which actually sends the
data to the device itself. This start procedure is described in
Chapter 5. 1If the device is already busy processing some other
request, this step does not start the data transfer.

5. It surrenders control of the region, thus allowing other routines
to have access to the queue.

Device Drivers A-5

RANDOM ACCESS DRIVER SUPPORT ROUTINES

CANCEL$I0 PROCEDURE

The I/0 System calls CANCEL$IO to remove one or more requests from the
queue and possibly to stop the processing of a request, if it has already
been started. The iRMX 86 I/0 System calls this procedure in one of two
instances:

° If an iRMX 86 user makes an RQAPHYSICAL$DETACH$DEVICE system
call and specifies the hard detach option (refer to the iRMX 86
BASIC I/0 SYSTEM REFERENCE MANUAL for information about this
system call). The hard detach removes all requests from the
queue.

QUEUES$10

1
O SETS STATUS FIELDS

IN THE IGRS

Y

2
Q GAINS ACC.ESS

FROM THE REGION

3
O PLACES THE IORS

ON THE QUEUE

Y

@ STARTS THE PROCESSING OF THE REQUEST,
IF THE DEVICE IS-NOT BUSY

5
O SURRENDERS ACCESS

TO THE REGION

A

RETURNS TO THE I/0 SYSTEM

1878

Figure A-3. Random Access Device Driver Queue I/0 Procedure

Device Drivers A-6

RANDOM ACCESS DRIVER SUPPORT ROUTINES

° If the job containing the task that makes an 1/0 request is
deleted. In this case, the I/0 System calls CANCEL$IO to remove
all of that task's requests from the queue.

When the I/0 System calls CANCEL$IO, it passes the following parameters:
e An ID value that identifies requests to be cancelled
e A pointer to the DUIB
e A token (identifier) for the device data storage area

The following paragraphs show the general steps that the CANCEL$IO
procedure goes through to cancel an I/0 request. Figure A-4 illustrates
these steps. The numbers in the figure correspond to the step numbers in
the text.

1. It receives access to the queue by gaining control of the
region. This allows it to remove requests from the queue without
concern that other tasks might also be processing the IORS at the
same time.

2, It locates a request that is to be cancelled by looking at the
cancel$id field of the queued IORSs, starting at the front of the
queue.

3. If the request that is to be cancelled is at