
intel'
Object Programming
Language User's Guide

OBJECT PROGRAMMING LANGUAGE USER'S GUIDE

Manual Order Numper: 171823-002, Rev. B

Copyright © 1981 Intel Corporation
Intel Corporation, 3585 S.W. 198th Avenue, Aloha, Oregon 97007

ii

Additional copie~ of this manual or other Inlellilcrature may be obtained from:

Lileralule Department
Inlel Corporation
3065 Bower~ A \ enue
Santa Clara. C A 95051

The information in !hi~ document is ~ubject to change without notice.

Intel Corporal ion mal.e~ no warranty of any kind with regard 10 Ihis material. includinF. but not limited
10. the implied warranties of merchantability and fitness for a particulal purpose. Intel Corporation
a~sumt's no resromibility for any errors that may appear in this document. Intel Corporal ion make\ no
commitment to update nor to keep current the information contained in thi~ document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel sofn,ale products are copyrighted by and shall remain the propeny of Intel Corporation. Use.
duplicatiotl or disclosure is subject 10 restrictiom stated in Intel's software license. or as defined in ASPR
7·104 .9(al(91.

No pan of this document may be copied or reproduced in any form or by any means without the prior
writlen consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliate, and may be used only to id!=ntify Intel
products:

8\P Intcll"\ i~lon \hlllibu\
eRr-DIl Inlrlir..: "ullimoouir , iR~I\' Ptu,· B,,~blr
ICF iSIiC PRO'IPT
,('S ,S8\ Promy.afl"

'm Librar~ t-bnlltf RM\'!I/)
Imilt' MCS ~~'Itm 2(X)O

lnltl Mt"ill'ha'J\j~ l'Pt
inlrl M~'romar ~!.<or><

and the combination of ICE, iCS, iRMX. iSBC. iSBX. MCS, or RMX and a numerical suffix.

PREFACE

This document is both a tutorial and a reference ,for Obj ect Pro
gramming Language, the language available on the Intellec
432/100 computer system.

Chapter 1 contains an overview of the language and introduces
the concepts of class, object, message, method, window, and
workspace. These concepts are of fundamental importance to OPL
and are related to architectural features of the iAPX 432.

Chapter 2 provides a guided tour through the five elementary
Classes: Number, Boolean,String, Atom, and List. A conver
sational style is employed, using many examples.

Chapter 3 continues the tour with Window, Class, and the pre
defined utility objects. At the end of the chapter a new class
(Stack) is defined in enough detail that it can serve as a model
for user-defined classes.

Chapter 4 describes the Class Editor in the course of using it
to create a new class (Elevator).

Chapter 5 covers the use of disk files: saving and loading work
spaces, storing and reading data files, and interpreting OPL
source files.

Appendix A describes all the predefined classes and
to which they respond.

Appendix B lists the predefined Utility Objects and
to which they respond.

Appendix C lists the OPL error messages.

Appendix D contains a table of the ASCII codes.

Other Intel documents that may prove useful to OPL
include:

Getting Started on the Intellec 432/100
iAPX 432 Object Primer
iSBC 432/100 Hardware User's Guide
iAPX 432 Components User's Guide
Introduction to the iAPX 432 Architecture
iAPX 432 GDP Architecture Reference Manual
Object Builder User's Guide

plus

Intellec Series II, Series III, and ISIS manuals

the messages

the messages

users

TABLE OF CONTENTS

Chapter Overview of Object Programming Language
1.1 Introduction .. 1-1
1.2 Classes and Instances•. 1-1
1 .3 Obj ects and Messages 1-3
1.4 Windows and Workspaces 1-4

Chapter 2 Elementary OPL Programming
2.1 Introduction 2-1
2.2 Preliminaries 2-1
2.2.1 Typing in a Dialog Window 2-3
2.2.2 Execution of OPL Statements 2-4
2.3 The Classes Number, Boolean, and String 2-5
2.3.1 Common Messages•............. 2-7
2.3.2 Relational Messages•................ 2-B
2.3.3 Logical Messages 2-B
2.3.4 Substring Manipulation Messages 2-9
2.3.5 Concatenation Message 2-9
2.3.6 Conversion Message•..•...... 2-10
2.4 The Process of Sending a Message•............. 2-10
2.4.1 Identifying the Rec~iver•....•........... 2-11
2.4.2 Resolving the Message 2-11
2.4.3 Replies and Multiple Messages•.............. 2-12
2.4.4 Termination 2-12
2.5 Atoms .. 2-12
2.6 Class ·List ... 2-15
2.7 Dialog Loops ~ 2-17
2.7.1 The repeat Object•......... 2-17
2.7.2 The read Object 2-18
2.7.3 The -.-.-.-eval Message 2-19
2.7.4 The ... print Message•...................... 2-19
2.7.5 The cr Object 2-20
2.7.6 New Dialog Loops 2-20
2.8 Using Class Class, Part 1: New Instances 2-20

Chapter 3 OPL Programming
:3.1 Class Window 3-1
3.1 .1 Window Messages 3-1
3.1.2 New Windows 3-2
3.2 Using Class Class, Part 2: New Messages•....• 3-3
3.3 Using Class Class, Part 3: Variables•........ 3-5
3.3.1 Temporary Variables ..•.•.•...................... 3-6
3.3.2 Instance Variables ...•.......................... 3-6
3.3.3 Class Variables 3-6
:3.3.4 Scope Rules , 3-6
3.4 Using Utility Objects•.......... 3-B
3.4.1 Conditionals and the done Object 3-B
3.4.2 The to Object ~ 3-9
3.4.3 The for Object 3-10
3.4.4 The "Iiidisp Obj'ect •..................•...•...•... 3-11
3.4.5 The forget Object•....................•..• 3-11
3.4.6 The catch and throw Objects 3-12
3 . 5 The Mous e ' 3 -1 3
3.6 Using Class Class, Part 4: New Classes•... 3-14

Chapter 4 The Class Editor
4.1 Introduction
4.1 .1 Invoking the Editor ..
4.1.2 Editing Commands.
4.2 Editing Messages
4.3 Editing Methods
4.3.1 Commands for Methods.
4.3.2 Methods for Class Elevator.
4.4
4.5

Editing Variables
Running Class Elevator ..

5 Using Disk Files With OPL Chapter
5.1
5.2
5.3
5.4
5.4.1
5.4.2

Appendix
A.1
A.2
A.3
A.4
A.5
A.6
A.7
A.8

Introduction
Saving and Loading Workspaces ..
Class File
OPL Source Files~

Filing in ..
Filing out

A Predefined
Number ..
Boolean.
String ..
Atom ..
List.
Window ..
Class.
File ..

Classes and their

B Predefined Utility Objects

Messages

· .. 4-1
· .4-1
· .4-3
.4-3

· .. 4-5
. ... 4-5

· 4-6
. 4-8
..... 4-11

· .. 5-1
.5-1

. 5-2
· 5-4

.5-4
·5-4

.A-2
· .A-4

· .. A-5
· . A-7

. A-8
· • A-1 0

. A-1 :3
· A-1 5

Appendix
B.1
B.2

Objects
Objects

Whose Classes are Inaccessible B-1
in UTIL.WRKB-.6

Appendix C Error Messages. '. C-1

Appendix D ASCII Codes D-1

LIST OF ILLUSTRATIONS

Figure 1-1 The Hierarchy of Classes and Instances 1-3
1-2 Workspaces and Windows 1-5

Figure 2-1 Binding Atoms .. 2-14
2-2 Lists versus Strings 2-16
2-3 Evaluating the ... new Message 2-22

Figure 4-1 Messages .. 4-2
4-2 The Method Menu .. 4-5
4-3 A Method .. 4-7
4-4 Messages (Part 2) 4-9
4-5 Instance Variables 4-10
4-6 Class Variables .. 4-10

LIST OF TABLES

Table 2-1 OPL Special Characters•...• 2-2

CHAPTER 1
OVERVIEW OF OBJECT PROGRAMMING LANGUAGE

1.1 Introduction

Object Programming Language (OPL) is an interactive, object
oriented language whose structure parallels many of the
features of the iAP.X 432 object-based architecture. It uses a
single uniform notation for all operations; it is extensible,
both syntactically and semantically; and it supports a modular,
tool-building programming style.

OPL shares many features with the educational programming lan
guage, Xerox Small talk 72, which was in turn based on the
earlier languages Logo, Simula 67, and to a certain extent Lisp.

The following four rules define the basic structure of OPL:

1. Every entity in OPL is an object.

2. Every object is an instance of a class, and behaves in
the manner prescribed by the class definition (although an ob
ject also maintains information unique to its own instance).

3. Classes are defined by the messages they recognize and
the methods they use to reply to these messages.

4. Programming in OPL consists of defining classes, creating
instances of these classes, and sending messages to the in
stances.

These concepts can be grouped into two categories, one centering
around the notions of class and instance of class, the other
around the idea of sending messages to objects. Classes are
found in a few other programming languages (Simula 67, for ex
ample, has classes, and Ada uses the term "package" for a sim
ilar construction.) However, in their use of messages and
objects, OPL and Smalltalk are unique.

OPL has a fundamentally interactive nature, a nature supported
by the concepts of windows and workspaces, two other important
features of the language. The workspace idea i,s found in the
language APL, but the use of windows as primitive language
elements is unique to OPL and Small talk.

1.2 Classes and Instances

An OPL class is a kind of template that can be used to create
many individual entities with similar behavior. The class de
fines the common features of these entities, just as a cookie
cutter defines a pattern that is repeated in all the cookies it

1-1

stamps out. For example, the clas·s Number defines the laws of
arithmetic, and the instances of the class (individual numbers
such as 2, 5, or 27) obey those laws.

Classes are tools for. extending a language in a modular ·way.
The OPL user can easily customize his system by defining new
classes or adding new features to existing classes. The neces
sary programming is done conversationally, testing each defin
ition as it is entered. By creating new classes the OPL user
creates objects modelling his own abstract ideas, and invents
his own notation for using them as well. Extensibility permits
new facilities to be used as if they were built in. The user
interacts with new objects through the same notation as with the
old. Separately written tools can be combined with relative
ease.

Classes should not be confused with user-defined types, which
are allowed in many languages, Pascal and C, for example. In
these programming languages, types are just labels placed on
collections of variables. An OPL class, on the other hand,
defines the operations that these variables may perform. To
specify that an item is in a class is to define the behavior of
the item. To specify that a variable is of a certain type is
usually just to place it in a labelled box. (This is true, for
example, of the typedef operation in the language C, which
allows users to define customized data types. Declaring a C
variable to be of some customized type says nothing about the
operations that may be performed on the variable.)

On the other hand, an OPL class is closely related to an ab
stract data type, a concept that has emerged in the last decade
from research into programming languages. The language Simula
67 -- an ancestor of OPL -- was the first language to implement
abstract data types with the class construction. More recently,
CLU, Alphard, Concurrent Pascal, Ada, and Smalltalk have all
implemented versions of the same idea.

The iAPX 432 suppor·ts abstract data types (in Intel terminology,
type managers) in the architecture itself. A type manager is a
collection of procedures that manipulate data structures of one
typ~. The iAPX 432 architecture provides hardware-recognized
structures that are used to implement type managers. Type mana
gers are discussed in more detail in the Introduction to the
iAPX 432 Architecture.

The key word in "abstract data types" is abstract, and in fact
the notion of abstraction underlies the whole class concept.
Th~ basic idea of abstraction is to capture the "essential"
behavior of a set of related instances. Abstraction allows the
separation of the invariant common features from the idiosyn
cratic behavior of individual instances. In the context of
programming, abstraction. allows the separation of what the
instances of a class do from how they do it.

1-2

Even though the concept of abstact data type and class are only
now being implemented in programming languages, the basic ideas
of class and instance have a very long pedigree in Western
intellectual history; they can be traced back directly to
Plato's theory of Forms. Plato believed that an abstract "Form"
exis~ed for every collection of things which we perceive to be
similar in some way, a Form which captured the essence of the
similarity. He thought that behind the many tables in the
world, for example, there was a single ideal Table that somehow
described the essence of "tableness". Classes function in OPL
much as Plato thought Forms did in the world.

Since every entity in OPL is an instance of a class, classes
must also be instances of some class. In fact, classes are
instances of a special class, named Class, which has the unique
property of being an instance of itself. The class Class de
fines the essential properties that all classes have in common.
Figure 1-1 shows the relationships among Class, classes, and
instances of classes.

CLASS OF CLASSES.
IAN INST ANC~ OF ITSELFI

CLASSES
(INSTANCES OF CLASS!

~CLASS

~/\""'" (PRE.DEFINED) (~~~R DEFINED)
CLASSES CLASSES

/ / /'

"Ii'" ·"~:r'· TO~ ... '-... ,c!'r
(PRE-DEFINED) f PRE-DEFINED) (PRE-DEFINED) (USER) (USER-DEFINED)

INSTANCE \UTlLITY OBJECT!: INSTANCES 1~~~lNNEgE' INSTANCES ONLY

I \ I I ! \ . .
e' e2 85 repea' disp w

OBJECTS
(lNST ANCES OF CLASSES)

Figure 1-1. The Hierarchy of Classes and Instances

1.3 9bjects and Messages

One can distinguish between an action-oriented view of program
ming and an object-oriented view. In the acticn-oriented view,

. programs are the fundamental entities and objects are auxiliary
entities on which programs operate. In the object-oriented
view, objects are fundamental, and actions are the auxiliary
entities that describe the behavior of objects.

OPL is an object-oriented language. As a result programs are
conceived as collections of objects, which send and receive
messages and respond to these messages by actively doing things.
An object cannot be operated upon directly; it can only be sent
requests to perform actions and return replies. This view

1-3

differs from the conv~ntional picture, implici~ in most program
ming languages, of a static data structure being acted on by
procedures.

Literally everything in OPL is an object. Every object is a
member of some class which describes its representation, the
messages it can receive, and the methods it uses to answer them.
OPL is easily ext~nded with new classes of objects and new syn
tax for messages.

The OPL world-view may seem rather unusual compared with other
programming languages. But, with experience, the object-oriented
viewpoint becomes second nature. Objects can be thought of
almost as intelligent creatures inside the computer who know how
to perform certain kinds of tasks. The number 3, for instance,
is a creature that knows how to do arithmetic. Objects that
behave in the same way are grouped into classes. The ability to
do arithmetic is a property of all numbers, since they all be
long to the class Number.

1 .4. Windows and Workspaces

OPL is an environment for interactive problem solving. This en
vironment is populated by a diverse assortment of objects, each
of which can respond to a set of messages. The entire instan
taneous environment is called a workspace. All objects and
classes remain in the workspace after they have been created,
unless they are explicitly destroyed.

The entire OPL environment is rather like a workshop,with each
workspace a separate bench. Programmer.s can go from one work
space to another in the same manner as one can go from a metal
working area to a woodworking area. Different sets of tools
will be in different workspaces, just as the set of metalworking
tools will differ from the set of woodworking tools.

A window is a kind of viewport into a workspace. Figure 1-2
illustrates this relationship. OPL users are free to create
any number of windows (which appear as rectangular boxes on the
terminal screen) and associate them with any objects. The ob
ject uses the window as a means of communicating with the user.
Windows themselves are objects, so they can be sent messages.
Windows can be moved to any position and grown to any size.
They can overlap, just as pieces of paper on a desk can overlap,
without destroying any data. Together with workspaces they help
to make the OPL environment a "friendly" place.

1-4

o
object o

workspace

Figure } .. 2. Workspaces and Windows

1-5

2.1 Introduction

CHAPT.ER 2
ELEMENTARY OPL PROGRAMMING

This chapter and the two that follow contain a self-paced
learning guide to the OPL language. This part of the manual
should be read while sitting at the terminal of your Intellec
432/100 system.

OPL is an extensible language -- in fact programming really con
sists of extending the language to encompass new classes of
objects. Consequently, the line between the basic language
itself and applications is to a certain extent an arbitrary one.
For the purposes of this manual, "OPL" is defined by the con
tents of the ISIS file, EDITOR.WRK, on your distribution
diskette.

Appendices A and B constitute a reference document for all the
classes and objects available in the EDITOR.WRK version of OPL.
After you have worked through this chapter and Chapters 3 and 4,
you will probably have to consult only these appendices when
using OPL in the future.

You will inevitably make errors when programming in OPL.
Whenever your error can be detected by the interpreter, the
following message will be typed on the screen:

Error n

where n is a number. Appendix C contains a list of these error
codes and their meanings. (The actual error messages themselves
are not stored in the system, in order to conserve memory for
workspaces.)

2.2 Preliminaries

Before proceding any further, make sure you have followed the
instructions in Getting Started on the Intellec 432/100 that
show how to install and back up your software. Then refer to
Getting Started again for the procedure which loads the OPL
interpreter from an ISIS disk file into memory.

When this program has loaded the screen will clear and a rec
tangular box will appear at the bottom with the characters "? "
in it. You will also see a cursor character (the actual -
character depends on your terminal -- see Table 2-1) in the
bottom right corner of the screen; this is the "mouse" symbol.

2-1

The keyboard includes several keys which have special meanings
to OPL. These keys and the character codes they produce differ
on the different terminals that can be configured in an Intellec
432/100 system. (See Table 2-1 for a chart of the special keys.)
In this manual, the generic key names found in the left column
of the chart will always be used. For example, the key whose
function is to cause OPL code to be executed will be called DOlT
or !, but on your terminal this key will be represented by
RETURN.

Table 2-1. OPL Special Characters

+--+
i Name i Meaning iTerminal Key or Symbol I
+------------+-------------------------+-----------------------+

! or DOlT I send message

NEWLINE

STOP

, ,
lmove cursor to next , ,
I stop execution , ,

MOUSE LEFT I move mouse left , ,
,MOUSE , RIGHT I move mouse right , , ,
iMOUSE UP I move mouse up , , , ,
iMOUSE DOWN i move mouse down , , , ,
iMOUSE BUTTON set mouse button , ,
BACK SPACE

, , , , ,

delete character

CLEAR LINE I delete line , ,

line

<RETURN)

<LINE FEED)

<CTRL)C

<CTRL)A

<CTRL)S

<CTRL)W

<CTRL)Z

<CTRL)B

Hazeltine 1500:
<BACKSPACE) or <DELETE)
Hazeltine 1510:

<BACKSPACE) or <RUB)
VT52: <DELETE)
ADM 3: <RUB)

<CTRL)L

RE READ ldelete all to last prompt: <CTRL)X ,
+-------+--+

screen prompt ? I

screen DOlT echo

screen mouse symbol Hazeltine 1500: •
All others: •

, , , , , , , , , , , ,
screen cursor symbol I

+--+

2-2

Now type the following command

load ":fn:editor.wrk"

and press the DOlT key. This command will load in the EDITOR.WRK
workspace from the corresponding ISIS file on disk drive n.
(ISIS does not distinguish between upper and lower case for
filenames. Throughout this manual we will use lower case file
names in the actual OPL statements, but upper case names in
text.) As a result of this action, the rectangular box will
vanish, then reappear with the new heading, Editor.

(In order to return from OPL to ISIS at the end of an inter
active session, you should type

isis

and press the DOlT key.)

2.2.1 Typing in a Dialog Window

The rectangular box showing at the bottom of the screen is a
dialog window. Dialog windows are used for typing in OPL code
for immediate evaluation. Keystrokes and the result of each
evaluation will be printed in the window. The "?" is a prompt
indicating that the dialog window is ready for receiving input.
The "_" is a typing cursor.

Dialog windows behave like miniature terminals. Whenever a word
will not fit at the end of a line in a window, that word will be
moved down to the beginning of the next line. Pressing the NEW
LINE key while typing on the bottom line in the window will
cause the text to scroll up inside the window. Dialog windows
offer the following simple text editing features:

- To delete the last character typed, press the BACKSPACE
key. Only the current line is affected.

- To delete the entire current line, press the CLEAR-LINE
key.

To delete everything that has been typed since the last
prompt, press the RE-READ key. The letters "DEL" and a new
prompt will appear.

Try typing a few lines of text, then experiment with the editing
features.

2-3

2.2.2 Execution of OPL Statements

A dialog window will not do anything with keyboard input until
the DOlT key is pressed. Until DOlT is pressed, you can edit
your input in the manner described above. You can use the NEW
LINE key to move to a new line.

Now try some simple arithmetic. Type

2 + 2

then press the DOlT key; OPL echos "!" and types the answer "4"
on the next line. OPL allows integer addition (+), subtraction
(-), multiplication (*), and division (/). The range of allow
able integers is from -16,384 to 16,383. If you get a number
that is out of range, OPL will answer "no". Operator precedence
is not followed (i.e. multiplications are not necessarily per
formed before additions in complex expressions), so you should
use parentheses to make your meaning clear (see section 2.3.2).
Negative numbers cannot be entered directly, but must be ex
pressed as (O-x). Now experiment with some simple, calculator
like problems. Don't forget to press DOlT.

Actually, OPL interprets even these simple expressions as ob
jects being sent messages. The above example, 2 + 2, is
interpreted as the message "+ 2" sent to the object "2". The
object 2 has a method for answering this message, and that
method replies with the object "4".

The general format of an OPL statment (i.e. a message sending)
is the following:

object message 1.

The object is called the receiver of the message. We use the
symbol 1. to represent DOlT.

Everything in OPL is an object, including the dialog window.
The dialog window is called disp, and it can be sent a number of
messages, two of which are "move to (1) (c)" and "grow to (h)
(w)", where 1 is a line number, c is a column number, h is
height, and w is width. These messages can be used to change
the position and size or shape of the window. Try typing

disp move to 2 21

The dialog window will mpve to the top of the screen. (The
coordinates (2,2) are used instead of (1,1) in order to keep the
border of disp visible.)

2-4

Now type

disp grow to 22 351

The dialog window will change shape to cover the left 1/2 of the
screen. This window format is often convenient, because pre
vious commands remain visible as they scroll up the screen.

Spend a few minutes moving the window around and changing its
size and shape until you are comfortable with it. In the pro
cess you will familiarize yourself with the parameters of your
screen. Don't be alarmed if you accidentally move part or all of
the window off the screen, even the part containing the cursor.
The window will continue to respond to messages. (In the
remainder of this chapter we will assume that your dialog window
is at position 2 2, with size 22 35. If you have not chosen
this format, you may have to make adjustments to some of the
examples that follow.)

2.3 The Classes Number, Boolean, and String

In this section we will discuss three predefined classes of
objects -- Number, Boolean, and String -- and messages that
these classes answer. The class Number contains 32,768 objects,
the integers from -16,384 to 16,383. The class Boolean has two
objects, ~ and no. The class String contains objects con
sisting of sequences of bytes (a byte is a number between 0 and
255). Strings consisting exclusively of bytes between 0 and 127
(ASCII characters -- see Appendix D) may be -typed in a dialog
window as sequences of characters enclosed in quotation marks
(e.g. "hello").

We represent the syntax of a message by the message pattern

message

where " .•.. " indicates the object that receives the message.

Here are the message patterns for some of the most important
predefined messages recognized by number, boolean, and string
objects:

A message common to all classes:

•.. is ?

2-5'

Messages specific to each class:

NUMBERS

arithmetic:

+ (n)

- (n)

* (n)

/ (n)

relational:

= (n)

<> (n)

> (n)

< (n)

conversion:

. .. chars

BOOLEANS

logical:

and (b)

or (b)

STRINGS

concatenation:

. .. + (s)

substring manipulation:

[(n)]

find first (s)

[(n 1) to (n2) J
length

relational:

= (s)

< > (s)

> (s)

< (s)

where (n), (n1), and (n2) represent either numbers or expres
sions that evaluate to numbers; (b) represents either a boolean
or an expression that evaluates to a boolean; and (s) represents
a string or an expression that evaluates to a string.

For example, to count the number of characters in the string
"antidisestablishmentarianism" type

"antidisestablishmentarianism" lengthl

In this statement the message receiver is the string "antidis
establishmentarianism", and "length" is the message being sent
to the string.

In message patterns, the use of parentheses, e.g (n1), indicates
a parameter that the user must replace with an object of some
type or an expression that evaluates to an object. In the actual
message sending, parentheses will not ordinarily be used. For
example, the message sending

2-6

"hi" + "there"!

is an instance of the message pattern

. .. + (s)

of the class String. This message results in two strings being
concatenated. Instead of substituting a string for the parameter
(s), you could substitute an expression that evaluates to a
string. For example, the expression

"th" + "ere"

could be substituted for (s). Try it:

"hi" + ("th" + "ere")..!..

(Actually, the parentheses are not needed, as we shall see in
section 2.4.2.)

You have already been exposed to the arithmetic messages for
Class Number (see section 2.2.2). In this section we will cover
six other groups of messages: a message common to all classes,
relational messages for both numbers and strings, logical mes
sages for Class Boolean, substring manipulation messages for
Class String, the string concatenation message, and the con
version messages for numbers and strings.

2.3.1 Common Messages

The message ... is? is common to all predefined classes. (It
is also automatically definBd for all newly-specified user
classes --see section 4.2.) The message ..• is ? can be sent
to any object in order to find out its class. For example, try

23 is ?!

no is ?!

"dog" is ?!

The messages ... print and ... isnew are also common to all
classes. The ... print mess~ge is described in section 2.4.3,
while the ... isnew message is described in section 2.7. The
... isnew message cannot be explicitly sent; it is sent im
plicitly under the circumstances explained in section 2.7.

2-7

2.3.2 Relational Messages

Both the Class Number and the Class String recognize a group of
relational messages. These messages implement the operations
Equals, Does Not Equal, Greater Than, and Less Than. For
numbers, numerical order is used; for strings alphabetical order
is used. (Actually, numerical order is used for strings as well,
since each entry in a string is really a number between 0 and
255. In the ASCII code (numbers 0-127), lower case letters are
greater than upper case letters, which are in turn greater than
numerals. See Appendix D for a table of the ASCII code.) Try
these examples:

23 < 351.

45 <> 461.

"Jean" > "Jim"!

(The reply is no. Since the first letters are the same in both
strings, the comparison is by the second letter; and "e" is less
than "i", not greater.)

"Bill" = "Billy"1.

(The reply is no. To be equal, strings must match at every
position of both strings, so strings of different length cannot
be equal.)

"Jim" < "Jimmy"1.

(The reply is ~. A string equal to the first n characters ot a
longer string is defined to be less than the longer string.)

2.3.3 Logical Messages

Two messages defined for Class Boolean are used to implement the
operations Logical And and Logical Or. Try the following ex
amples

yes and no!

yes and yes1.

yes or yes1.

(The answer is ~, because in OPL Logical Or is Inclusive.)

yes or (3 = 4)1.

2-8

The last example illustrates the use of an expression (i.e. 3 =
4) as a message. The expression must be evaluated before it can
be sent. In this case, the expression evaluates to no, so the
message ... or no is sent to the object~. The expression
itself is interpreted as a message sending, as are all state
ments in OPL; it is interpreted as the object 3 being sent the
message ... = 4. Section 2.4.2 explains in more detail the use
of expressions as messages.

2.3.4 Substring Manipulation Messages

Objects of the Class String recognize four messages that facil
itate the manipulation of substrings. The message patterns of
these messages are ... length, ... [(n)], ... find first (s),
and ... [(n1) to (n2)]. Try the following examples:

"micromainframe" lengthl

"micromainframe"[5Jl

(The result is 111, the ASCII code for "0", which is the 5th
entry in the string.)

"micromainframe" find first "o"!

(The result is 5, the'position in "micromainframe" of the first
"0".)

"micromainframe" [5 to 5Jl

(The result is "0", the 1-byte substring beginning at position
5.)

"micromainframe" find first "main"!

(The result is 6, the position in "micromainframe" of the first
letter of "main".)

"micromainframe" [6 to 9Jl

(The result is "main", the substring of "micromainframe" ex
tending from position 6 to position 9.)

2.3.5 Concatenation Message

The message ... + (s) is used to concatenate strings. The para
meter (s) can be a byte, a string or an expression. For ex
ample, type

"com" + "puter"l

"star" + 116!

2-9

(The number 116 is the ASCII code for the 1-byte string "t".)

~he pattern "" + byte can be used to convert a number between 0
and 127 into a 1-byte string consisting of the corresponding
ASCII character. For example, try

"" + 651

The result is "A".

(The predefined utility object kb -- defined in Appendix B -
can be used to perform the reverse operation; it returns the
ASCII numerical code for the next character typed at the key
board. Try

kb!

OPL now waits for you to type a character, for example

A

The result is 65.)

2.3.6 Conversion Message

The message ... chars is used to convert numbers to the equiv
alent strings of numeric characters. For example, type

432 chars1

"iAPX " + 432 chars!

2.4 The Process of Sending a Message

In this section, we will examine in a step-by-step manner the
process carried out by the OPL interpreter when messages are
sent to objects and the objects reply. Only numbers, strings,
~nd booleans will be used, and the messages will be relatively
elementary. For a more detailed discussion of many of these
topics, consult section 2.7, Dialog Loops.

2-10

2.4.1 Identifying the Receiver

The first step OPL takes in executing a statement is to deter
mine what object is to be the first message receiver. The first
object in the statement is taken to be the receiver, unless
parentheses indicate that an expression is to be evaluated and
the result is to be used as the receiver. Consider the
following examples:

statement

3 + 4!
"abc"-length!
(3 = 4) or yes!
(3 + 4) * 51 -

receiver

3
"abc"
no
7

2.4.2 Resolving the Message

:message

+ 4
length
or .yes
* 5

Once the receiver is obtained, OPL begins matching the allowed
message patterns against the actual message that has been sent.
Matching proceeds from left to right, evaluating expressions as
they are encountered. No operator precedence is used; the
longest possible match is taken. See if you can predict how OPL
will evaluate the following statement:

1 + 2 * 3 + 4 * 5 + 6 * 7!

Did you get it right? The evaluation proceeds by recursion:

first: 1 is the receiver and the expression ... + (2 * 3 + 4 * 5
+ 6 * 7) is the message. But OPL must evaluate the expression
before the message can be sent. So,

second: 2 is the receiver and ... * (3 + 4 * 5 + 6 * 7) is the
message. Again the expression must be evaluated before the
message can be sent. This process continues until,

finally 6 is the receiver and ... * 7 is the message. The
result is sent to 5, and so on back to 1. Effectively, the
statement is interpreted as

1 + (2 * (3 + (4 * (5 + (6 * 7)))))1

Test by typing this expression.

Some objects recognize the empty message, for example the util
ity objects isis and kb that were introduced in sections 2.2 and
2.3.5, respectively. Typing these objects by themselves con
stitutes an entire message sending. If OPL can't match the
actual message that was sent with any of the standard message

2-11

patterns recognized by the receiver object, it checks to see if
the receiver recognizes the empty message; if the receiver does
recognize the empty message, OP1 assumes that this was in fact
the intended message.

2.4.3 Replies and Multiple Messages

Since everything in OPL is an object, the reply to a message
must also be an object. The choice of a reply is arbitrary but
is generally whatever will be most helpful. Hence, the number 3
will reply to the message "+ 4" with the number 7. Since the
reply is an object, it too can be sent a message. Thus it is
possible to stack several messages into a sequence. Try

"computer" length + 40l

In this case, the string "computer" is sent the message
... length. The reply is a number, 8, which is then sent the
message ... + 40. This process of piling one message on top of
another can continue indefinitely, as long as each reply recog
nizes the following message.

2.4.4 Termination

In OPL, statements are terminated normally or abnormally.
Normal termination is accomplished with the DOlT key or with a
period. DOlT causes the statement to be immediately executed;
periods simply separate one statement from the next in an OPL
program. Periods are used to separate several statements, when
it is not intended for the reply of one message to become the
receiver of the next. Normal termination is explained in
section 2.7, Dialog Loops, where several examples are shown.
Abnormal termination is caused by use of the STOP key or by the
occurance of an OPL error conditlon. Abnormal termination is
discussed in section 3.4.6, The catch and throw Objects.

2.5 Atoms

Not much programming can be accomplished if all strings and
numbers have to be written explicitly. You are probably famil
iar with the use of variables to stand in for numbers in other
programming languages. For example, Pascal uses assignment
statements such as "x := 34" to bind the value "34" to the
variable "x". The variable can then be used in any expression
where 34 itself can be used.

OPL has a similar concept, but it is far more generalized. In
OPL certain objects called atoms can be bound to any other ob
ject, not just to numbers. The following are some of the most
important messages recognized by atoms.

2-12

is ?

<- (object)

eval

The binding of atoms to other objects is accomplished with the
<- (object) message. Try the following:

@n <- 4 o OJ..

@n <- n + 32J..

@s <- "iAPX " ,
s!

s + n chars!

The @ symbol is very important in OPL. It is a predefined util
ity object (see Appendix B) which indicates that what follows
immediately after @ is to be taken literally. (It serves the
same purpose as the QUOTE function in Lisp.) @a means "the atom
a itself", not what a is bound to (i. e. not the"value" of a).
In programming languages other than OPL or Lisp this concept is
difficult to convey. In Pascal, for example, one cannot dis
tinguish between the variable x itself and the current value of
x.

The following examples may help clarify this notion:

s is ?!

@s is ?!

n is ?!

@n is ?!

The message ..• eval has the opposite effect. An atom replies
to .•. eval with the object to which it is bound (i.e. its
"value"). For example:

@s eval!

is equivalent to

s!

2-13

Figure 2-1 shows the relationships of three different atoms to
each other and to a string object.

CD @I - ". leslsl,ln,"

• (AI om)

CD@lC-@'

Figure 2-1. Binding Atoms

b
(Alom)

Atom a was bound to the string via the message

@a <- "a test string"l

Atom b was also bound to the same string, but with a different
message:

@b <- a!

(Note that a by itself refers to the string, since the atom a is
bound to the string.) The third atom, £, is bound to the atom
a, via the message

@c <- @a!

(Notice the difference between this message and the previous
one.)

Test the bindings of each of these atoms by typing

@a eval!

@b eval!

@c eval!

2-14 .

Now try the following example, which illustrates the binding of
atoms to objects in an interesting way.

@buffer <- "Now is the time for all good men to come to the
aid of their party."l.

@start <- 1!

@end<- buffer lengthl.

@search <- "men"!

@replace <- "women"!

@pointer <- buffer find first search!

@buffer <- buffer[start to pointer - 1]
+ replace
+ buffer[search length + pointer to endJl.

(We have shown this statement on three lines for clarity; if you
want to follow this format, use the NEW LINE key to separate the
lines.)

buffer!

These statements have the following effect:

The string, buffer, contains the text "Now is the time for
all good men to come to the aid of their party."

This string is split apart and the substring, search, con
taining the text "men" is removed.

Then the substring, replace, containing the text "women", is
joined together with two of the pieces of the string, buffer, to
create a new string, also named buffer.

The result of these operations is that "men" has been replaced
by "women" in the string buffer. These few statements may suggest
a simple search-and-replace tool to you. In section 3.4.2 we
will construct just such a tool.

2.6 Class List

Lists. are somewhat like strings, except that they are not
limited to characters; any object may appear at any position of
a list. (See Figure 2-2 for an illustration of the difference
between strings and lists.)

2-15

SIring { I "Ihlsll. Itrlngl" I
~ CI ... 01 Oblect

121 Number

I "hello,ul 2 String

mJ 3 Number
list I ". long string" I 4 String

01"'lrlng b"l[~ 5 lilt

~ • Boole.n

Figure 2;.2. Lists versus Strings

The utility object vars generates a list of all named objects in
the workspace. Try typing

vars!

Lists are typed and printed enclosed in parentheses. In fact,
OPL interprets as a list any sequence containing a combination
of atoms, strings, numbers, or lists enclosed in parentheses.
The following are the message patterns for some of the most
important of the predefined messages recognized by objects of
the Class List:

print

is ?

length

eval

. . . [(n)J

where (n). is a number or an expression that evaluates to a
numb.er-.-

When a list is typed explicitly, it must be preceded by an @
symbol, otherwise it will be interpreted by OPL as a par·entne
sised expression and an attempt will be made to evaluate it. For
example, try

2-16

@(3 + 2) is ?l

(3 + 2) is ?l

Now try these other examples.

@(3 + 2) lengthl

@(3 +2) print lengthl

@(3 + 2) eval!

(3 + 2)l

The last two of these examples mean the same thing. Lists re
spond to the ... eval message by running themselves as OPL code.

Atoms can be bound to lists just as they can be bound to
numbers or strings. Try

@m <- @(3 + 2)l

m!

m is ?!

m lengthl

m eval!

2.7 Dialog Loops

The program that monitors the dialog window and executes typed
in statements is called a dialog loop. This program has a very
simple format:

repeat {read eval print. cr)l

In this section we will examine the dialog loop, word by word,
and explain some of its features. It is very important for you
to understand how the dialog loop works.

2.7.1 The repeat Object

The predefined utility object repeat is defined in Appendix B.
Basically, repeat executes over-and-over as OPL code any message
that is sent to it. The message sent to repeat must be enclosed

2-17

in parentheses. Repeat loops can be exited by pressing the STOP
key; another way is by using a conditional expression and the
done object (see section 3.4.1).

2.7.2 The read Object

The object read responds to the empty message by taking a se
quence of characters from the keyboard and producing a list of
tokens. The list contains everything between the prompt? and
the DOlT !. Each entry in the list is a separate token. Tokens
may be divided into five categories:

category

Atom

Number

String

List

symbol

definition

A sequence of characters beginning
with a letter and followed by
zero or more letters or digits.

A sequence of one or more digits.

A sequence of printing characters
between" marks (except" itself).
In general, a sequence of bytes,
(i.e. numbers between 0 and 255).

A sequence of tokens between left
and right parentheses.

@ (ASCII 64): the literal symbol
~ (ASCII 26): the statement sep
-arator

<-, <=, <>, >=, => : the defined
double-characters.

«, », ==, ><, =< : the reserved
double-characters.

Any other printing character that
does not have a special meaning to
OPL. (For example, +, *, -, /, =)
Nonprinting characters are ignored.

For example, in a dialog loop, when you type

@s <- "hello"!

the object read produces a four-element list. To verify this,
type

2-18

read!

@s <- "hello"!

You will get the list (@ s <- "hello").

2.7.3 The ... eval Message

The message ... eval is recognized by objects of the class List
(see section 2.6); it causes lists to execute themselves as OPL
code. In the dialog loop, this message is used to execute the
list of tokens produced by the read object. The reply to this
message is the final object produced when the list is executed.
For example, the final object produced by the statement

"hello" length + 41

is the object 9. So, if you type this statement in a dialog
loop, read will produce a 4-element list ("hello" length + 4),
and the reply of ... eval will be 9.

When several statements are separated by periods, the reply from
the last statement becomes the reply of the whole. For example,
type

"statement 1" • "statement 2" . "statement 3"!

The reply of the entire statement is the string "statement 3"
and in the dialog loop "statement 3" is the reply of the ...
eval message.

2.7.4 The ... print Message

The message

print

is common to objects of all predefined classes. The reply to
this message is the receiving object itself; in addition some
representation of the receiving object is printed in disp.

The ... print message is used in the dialog loop to,print the
reply of the ... eval message. For example, type these two
statements

2-19

40 + 40!

(40 + 40) printJ..

In the first example, the reply of the entire statement is 80,
which is therefore the reply of the ... eval message in the
dialog loop. This reply is then sent the message ... print in
the dialog loop, so 80 is printed in disp.

In the second example, 80 is printed twice. The reply of the
expression (40 + 40) is sent the message ... print, which causes
the receiver (i.e. 80) to be printed the first time and also re
turns the number 80 as the reply of the whole statement. Thus
80 is the reply of the ... eval message in the dialog loop; so
again 80 is sent the message ..• print, and it is printed a
second time.

2.7.5 The cr object

The period (.) in the program of the dialog loop separates two
statements: -read eval print and cr. The last of these is a
predefined utility object that recognizes the empty message and
replies by printing a NEW LINE character in disp. This object
is not critical to the dialog loop; it merely serves to make the
format of dialog windows easier to read.

2.7.6 New Dialog Loops

To get a new dialog loop for disp that runs on top of the old
one, type the dialog loop program statement

repeat (read eval print . cr)l

To return to the original loop, type the utility object done,
which is defined in Appendix B. (These lower-level dialog loops
are also terminated by STOP or by any OPL error. See section
3.4.6, The catch and throw Objects.) The utility object indisp
lets you define new dialog windows with their own dialog loops
(see section 3.4.4).

2.8 Using Class Class, Part 1: New Instances

Classes are themselves instances of the class Class. In this
section we will examine only one of the messages recognized by
Class Class:

... new

2-20

This message causes the receiver class to create a new instance
of itself. For example

List new 10!

creates a new list of length 10. All the positions in the list
are initialized to the object "nil". This statement is not use
ful, however, because the new list is not bound to any atom
which can be used as an identifier (it has no name). Thus the
new list is inaccessible. The new list must be bound to an atom
in some manner, for example

@m <- List new 10!

This statement results in the creation of a new list of length
10, which is bound to the atom "m". Again the positions are
initialized to nil.

Actually, this message is a little more complicated than we have
indicated. The message •.. new is a Class message, which can be
sent to any class. But the parameter "10" is not associated
with the message ..• new. Instead "10" is a parameter for
... isnew (a1) which is a List message. The class messages only
refer to the things all classes have in common, but length is
not a property of all classes by any means. The classes Number
and Boolean don't have a length parameter, for instance.

The connection between the Class message ... new and the List
message ... isnew (a1) is very simple. The ... new message causes
List to create a new uninitialized instance of itself. Then the
uninitialized instance is sent the message ... isnew (a1) with
whatever parameters follow the ... new (in this case "10") sub
stituted for a1. The ... isnew 10 message creates an initial
ized list of length 10 (all the positions are initialized to
nil, of course). This initialized list is finally bound to the
atom m by the •.. <- (object) message.

The ... isnew message can only be used in this manner, that is,
only to initialize objects that are uninitialized. Therefore,
... isnew can only be sent as part of the ..• new message; it
cannot be sent explicitly to an object.

Thus, the message

@m <- List new 10!

really consists of three sequential messages:

2-21

List new

[u~initialized list] isnew 10

@m <- [10-element list]

Figure 2-3 illustrates these three sequential messages.

Step

,

2

3

receiver

List

unlnlliallzed
Instance
01 class

LIst

alom
m

cla.1
DI

receive,

Clall

LIlt

Atom

:I Itep evaluallon 01:
om .. LIlt new 10

melsage

••. new

••• llnew 10

... .-

Figure 2-3. Evaluating the ... new Message

reply

unlnillalized
Inltance
Dlcl .. 1

LIlt

10
element

nit

'0
element

nit
bound to

m

The same pattern is followed for all other classes. Try

@s1 <- String new 20!

s1 !

@maybe <- Boolean new!

maybel

@zero <- Number new!

zero!

@myatom <- Atom new "youratom"l

myatoml

youratom l -- You should get an error mess,age

(In the last example, you got an error message because youratom
is not bound to any value, although myatom has youratom as its
value.)

2-22

New strings are not initialized to any default value, although
the space for them is allocated. The value of new strings can
be changed by sending them messages. Neither boolean objects
nor numbers need ever be created in this manner. A new number
would be set to O. New boolean objects would be ~.

Now turn to Appendix A and study sections A.1 through A.5. In
these sections all the predefined messages for the classes
Number, Boolean, String, Atom, and List are described. Experi
ment with some of the messages you haven't used.

2-23

3.1 Class Window

CHAPTER 3
OPL PROGRAMMING

The class Window is one of most useful features of OPL. In
stances of this class can be made to appear as rectangular
boxes on the screen in any location. They can be manipulated in
the same way as disp was manipulated in section 2.2.2, and text
can be printed in them as easily as it can be printed in disp.
Windows provide a striking visual component to OPL; they seem to
make objects "real" to users.

3.1.1 Window Messages

Windows recognize several primitive messages, which are des
cribed in Appendix A. The one predefined instance of class
Window is disp. To refresh your memory, type

disp move to 2 10!

disp grow to 2 2

disp move to 2 2 grow to 22 35!

If you are wondering what disp's reply to each message was, the
text "<Window>" that was :printed is a clue. In the dialog loop
(discussed in section 2.7) the reply from the ... eval message
gets sent the message ... print. Objects in predefined classes
respond to the ... print message by printing some textual rep
resentation of themselves in disp. In the examples above disp
was asked to print itself (because in these cases the reply to
the ... eval message was the object disp itself). Now some
objects, such as numbers, have natural ways of printing them
selves, but many objects have no obvious printable represen
tation. In lieu of a printable representation of itself, an
object will print the name of its class in angle brackets. You
can supply more helpful printing methods if you so desire.

The actual window bound to the atom @disp may be changed by
using the indisp object described in section 3.4.4. This
feature allows OPL terminal responses to be directed to arbi
trary objects that answer the message ... <- (text).

Now spend some time sending messages to disp. For example:

3-1

disp unframe!

disp frame!

disp unframe frame!

In the last example, disp first receives a message to unframe
itself, and responds by erasing its frame. Since windows reply
to this message with themselves, disp immediately becomes the
receiver of the next message, and so re-draws its frame. Again
the reply is disp itself, which in the monitor receives the
message to print, and hence prints "<Window>".

repeat (disp unframe frame)l

(Press the STOP key when you get tired of this one.)

disp clearl

repeat (disp <- "*")1

disp hide showl

3.1.2 New Windows

As discussed in section 2.6, the Class message ... new is used to
create new instances of classes. This message can be used to
create new windows.

To create a new window and name it w, type

@w <- Window new 5 25 2 40 show

This statement creates a new uninitialized window, which immed
iately receives the message "isnew 5 25 2 40". The new window
initializes its height and width to 5 lines of 25 columns and
its screen location to line 2, column 40. Then the message
... show causes the window to appear on the screen.

Now try sending some messages to w, for example:

w move to 15 401

w grow to 5 10!

w <- "hi there"!

3-2

w unframe frame!

w at 4 3 <- "HELLO"!

Make up some of your own.

3.2 Using Class Class, Part 2: New Messages

One can extend or modify the definitions of existing classes,
both predefined classes of OPL and those created by the user.
(We will consider user-defined classes in Section 3.6.) The
class definitions are extended by adding new messages and the
methods that are used to answer them. (We have not had to dis
cuss methods before because the methods of primitive messages in
predefined classes are invisible.) New messages and methods
are added by sending the Class message

... answer (a1) by (a2)

to the class to which you wish to add the message. The para
meters a1 and a2 in this pattern are replaced by lists. List a1
containS-the new message, while list a2 contains the method for
the new message (i.e. the OPL code that, when executed, per
forms the function requested by the message).

As a simple example, suppose we want windows to be able to
"flash" themselves in order to attract our attention. We will
extend the class Window to include a "flash" message. In order
to do this we must define two things: the syntax of the message
and the method used to answer it. Our new message syntax will be

flash (n) times

The method for flashing will be to erase and redraw the window's
frame the requested number of times. We can add this capability
to class Window by evaluating

@list1 <- @(flash (n) times)l

@list2 <- @(do n (self unframe frame»l

Window answer list1 by list2!

or, more compactly,

Window answer @(flash (n) times)
by @(do n (self unframe frame))l

3-3

The method uses two utility objects that have not yet been ex
plained. Consult Appendix B for definitions of do (n) (@code)
and self. The do object replies to the ... (n) 1@code) message
in much the same-Way that repeat replies to the ... (@code)
message, except that the code is evaluated only (n) times in
stead of indefinitely. The object self replies to the empty
message with the receiver of the current message; it allows
objects to send themselves messages.

In more detail, the object do answers a message of the form

... (n) (@code)

There are two components to this message; both are parameters.
The first parameter n is evaluated. The second parameter code is
received by do unevaluated. This is indicated by the @ symbol
preceding the-variable name in the message pattern. The para
meter is not initially evaluated by the interpreter because do
will evaluate code itself; in fact, do's response to this -
message is to evaluate the code you send it the specified number
of times, as in:

do 3*4 (disp unframe frame)l

When do receives this message, n is 12 and code is the literal
list "Tdisp unframe frame)"; do-answers this message by evalu
ating the code 12 times, causing disp to blink its frame off and
on.

After you add this new message to Window, all previously defined
windows will be able to respond to it. For example:

w flash 20 times!

disp flash 5 timesl

A method can refer to an object's private data by mentioning its
instance variable names. For example, the method that answers
the Window message •.. move to (a1) (a2) must reference the
instance variables sl and sc, which specify the current line
number and column number of the window.

A class may reveal as much or as little of its representation as
it desires in the messages its instances answer. It can grant
full access to its representation if it answers the message

... 's (@code)

3-4

by the method

(code eval)

(Methods will be shown enclosed in parentheses because they are
treated as lists by the OPL interpreter.)

When this message is sent, code is an unevaluated piece of OPL
code, and the object replies with the result of evaluating that
code in its private context. Use of this message can be danger
ous. For example, if the message is defined for windows,
sending

disp's(@h <- h+2)1

increases disp's height without making a corresponding adjust
ment to its text buffer and will cause an error the next time
disp is asked to show.

3.3 Using Class Class, Part 3: Variabl~s

Every OPL object may maintain some private data that can be di
rectly accessed only by itself. These instance variables are
common to all instances of a class, but each instance has its
own values for them. For example, a window's size is described
by two variables: h, its height in lines, and w its width in
columns. Each window has its own values for these variables and
refers to them whenever it is asked to show on the screen. You
cannot change these values directly, but a window will do so if
asked by the now familiar message:

disp grow to 10 301

Sending this message has the visible effect of setting disp's
size to 10 lines of 30 columns each. To accomplish this, disp
has to hide itself, adjust its text buffer to 300 characters,
update its hand w values, and show itself again. Because
unauthorized access to these variables in prohibited, the window
is able to ensure that its buffer size and visible appearance
remain consistent with its height and width. (Return disp to a
more convenient size by typing: disp grow to 22 35 1.)
There are actually three sets of variables accessible when a
message is evaluated and its method is executed: temporary vari
ables, instance variables, and class variables. For each class
there are three dictionaries, each of which is a list of one set
of variables. To access these dictionaries, OPL provides three
Class messages:

3-5

tdict

idict

cdict

3.3.1 Temporary Variables

The values of temporary variables are assigned when a message is
sent and disappear as soon as a reply is made. They may be used
as scratchpad storage while the method is running. Certain tem
poraries are initialized with values from the message and thus
serve as formal parameters. To see the temporary variables for
class Window, type:

Window tdict!

Compare the result with the message patterns for Window in
Appendix A. Note that all the message parameters are temporary
variables.

3.3.2 Instance Variables

Instance variables are names for the data that is unique to each
instance of a class. Their values persist between messages, as
long as the object itself exists. The height, width, column
number, and line number are all instance variables. To see
Window's instance variables, type

Window idict!

3.3.3 Class Variables

Class variables play the role often filled by global variables
in other languages, but in a more secure and modular way. The
shared information held in class variables is accessible only to
members of the class and not to the world at large. Window has
no class variables (unless you define some). To verify this
fact, type

Window cdict!

3.3.4 Scope Rules

One important aspect of programming languages such as Pascal is
that the meaning of a particular variable name often depends on
the routine in which it is encountered. This dependency defines
the scope of the variable. An analogous situation exists in
OPL, but here the scope depends on the variable's class. When

3-6

OPL is trying to find the value bound to a variable, it searches
the dictionaries associated with the current receiver's class in
the order tdict, idict, cdict. When a name is mentioned that is
not in one of the three dictionaries of the current receiver's
class, OPL looks for it in the dictionaries associated with the
"surrounding" class. (The surrounding class is the one which
had a method, part of which resulted in the current message
being sent to the current receiver. This method corresponds to
the calling routine in Pascal. The method of the current
message corresponds to the called routine.) The search ehds in
the user's workspace.

Thus if a particular variable name is entered in a dictionary of
the current class, any other variable with that same name in a
dictionary that would be searched later is effectively hidden
from vie,,,. Conversely, any variables that are not masked in
this manner are accessible at every level, even from the inner
most object. Thus, to avoid scope conflicts it is important to
enter all variables in their appropriate dictionary. Parameters
are automatically entered into tdict, but all other variables
must be entered explicitly into their dictionary. If a para
meter is passed unevaluated (i.e. preceded by a "@" symbol), the
potential exists for conflict with names in the receiver's
dictionary. For example, if the atom @param were passed in, and
the entry param existed in the tdict of the receiver, then any
assignments to @param would actually be bound to the entry in
tdict, not to the name in the sender's class.

Variables may be entered in particular dictionaries by using the
three Class messages

tdict <- (a1)

idict <- (a1)

cdict <- (a1)

where the a1 parameter is a list that replaces the dictionary.
Temporary variables corresponding to parameters cannot be de
leted as long as the class recognizes the message with the
parameters. The idict of a class cannot be changed if any in
stances exist.
Class variables may be simultaneously bound to values and

placed in cdict with the Class message

cvar (@x) <- (a1)

which is explained in Appendix A, section A.7. When a class is
given a new cdict, variables that appear in both the old and the
new cdict retain their values.

3-7

3.4 Using Utility Objects

So far we have introduced several predefined utility objects:

@

do

isis

kb

cr

read

repeat

self

vars

Consult Appendix B for concise definitions of each one.

In this section we will introduce several more useful utility
objects and give a few examples of how they can be used.

3.4.1 Conditionals and the done Object

OPL's conditional expression provides a way to execute code if a
condition is met. Its syntax is as follows:

(expr1) => (@ alternative1)
(expr2) => (@ alternative2)

(exprN) => (@ alternativeN)

If the result of evaluating expr1 is anything other than the
object no, the code alternative1 is evaluated and its reply
becomes~he reply of the entire method. If the result of
evaluating expr1 is no, alternative1 is skipped and expr2 is
evaluated, and so on-.-

For example, the following expression replies with the smaller
of x and y. Try it.

@x <- 10!

@y <- 91
x < y => (x) y1

3-8

Since x (10) is greater than y (9), in this case the result is
10. Here is a slightly more complex example: Set the variable
sex eClual to "M", "F", or some other string. Then execute the
following e'xpression:

(sex="M" => ("John") sex="F" => ("Jane") "Baby") + "Doe"!

This expression produces the results "John Doe", "Jane Doe", or
"Baby Doe", depending on the value of sex.

The object done is used to exit from loops -- repeat loops, do
loops, and dialog loops. The done object recognizes two
messages: the empty message and the message ... with (x), where
~ is a reply sent to ,disp.

Conditional expressions are freCluently used in conjunction with
done. For example, type

repeat (kb <> 65 => (disp <- "no" . cr) done with yes)l

Now type any key; the word no will appear in disp until you type
A (65 in ASCII).

3.4.2 The to Object

The object to is useful for creating "verbs" or "procedures".
The syntax is

to (@object_name+message_pattern) (@code)

Where "object name" is the first word of a list of tokens, and
"message pattern" contains the remaining tokens. The to object
creates a temporary class (object name class) that answers the
message ..• message pattern. Then a single instance
(object name) of the temporary class is created and the class
itself is deleted (using the forget object -- see 3.4.5). The
idict of the temporary class is empty. Try the following:

to (flash (win)) (do 10 (win unframe frame))l

flash displ

flash w!

3-9

The above message to to creates an object named flash which is
the only instance of flash class. (You can ask flash for its
class by sending it the message ... is?) The object flash
answers the message pattern ... (win) by unframing and framing
ten times the window specified by the parameter (win)~

The to object can be used to extend the "search and replace"
method we outlined in section 2.4. Try the following:

to (search (buffer) for (old) replace with (new))
(@pointer <- buffer find first old.
@leng <- old length.
@buffer <- buffer[1 to pointer -1] + new
+ buffer[pointer + leng to buffer length])l

Now put the variables pointer and leng into the cdict for search
class. This avoids problems that might arise if these variables
w~re in vars (i.e. in the user's workspace). See section 3.2.4
for a discussion of the problems. To add these two variables to
cdict, type

search class cdict <- @(pointer leng)l

Now fill up some string with text:

@s1 <- "Now is the time for all good men."

You can search s1 for any substring and replace with any other
substring. Try

search s1 for "time" replace with "minute"l

This example illustrates the tool-building approach of OPL.

3.4.3 The for Object

The object for, which is contained in UTIL.WRK, implements a
for-loop control structure. For example:

for k <- 1 to 10 do (k print. sp)l

Try some other examples.

3-10

3.4.4 The indisp Object

The object indisp lets you temporarily name an object "disp" in
order to print in it. The format for the indisp object +
message is

ind isp (disp) (@code)

The result is that code is executed in an environment where the
object replacing the parameter disp acts as the dialog window.
For example:

@w2 <- Window new 10 20 2 40 show!
indisp w2 (v~rs print.)l -

(The period in the second statement is necessary to prevent
vars from printing in the old disp.)

Try this more complicated example:

to dialog (@w2 <- Window new 5 30 15 40 show. indisp w2
(repeat (read eval print. cr)))l

dialogl

This code uses to to create the object dialog which will
up a dialog loop-in a new window positioned arbitrarily.
dialog loop is identical to the one you normally run in.
back to the dialog window you came from, simply type the
object.

start
The
To get

done

The object replacing the parameter disp can be a file object
(see Chapter 5). This allows information that is normally sent
to the dialog window to be preserved.

3.4.5 The forget Object

Objects can be eliminated from the workspace by using the for
~ object. (In order to delete the object from the workspace,
all atoms bound to the object must be forgotten.) For example,
~delete wand w2, type

forget (w w2)l

This feature may prove useful if memory is limited. However, be
careful not to delete any of the utility objects, unless it is
absolutely necessary. The forget object can be used in con-

3-11

junction with mem compact (see Appendix B) to recover contiguous
sections of memory for later use by other objects.

3.4.6 The catch and throw Objects

The objects catch and throw provide a mechanism for jumping out
of a segment of OPL code and resuming execution elsewhere. This
mechanism is similar to the use of goto in Pascal as a way to
break out of a loop into the surrounding code. Control is
transferred from code containing a throw to the code following
the catch. Like goto in Pascal, throw specifies a label identi
fying the target of the jump., An object may also be transferred
along with the transfer of control; any object may be "thrown"
and "caught" in this manner. The most recent label and object
can be examined by sending messages to catch. Thus, you can
catch an object, examine it, and if you decide not to use it,
you can throw it to a higher-level catch.

Labels must be atoms. Certain labels, for example @error, have
been predefined. OPL error conditions result in a number being
thrown to the label @error. This number identifies the error
condition (see Appendix C). If you don't supply a catch for
this label, the default error handler will catch throws to
@error and print a message (e.g. Error 6) in disp.

The catch and throw objects each answer several messages, which
are described in Appendix B. To illustrate the use of these
objects, consider a new dialog loop as described in section
2~7.7, except now errors will be caught by our own error
handler. Type

catch @error in @(repeat (read eval print. cr»
do @(catch value = 3 => (disp <- "Atom not bound

to value.") throw @error with catch value)l

The outer "catch @error ... " catches all throws to label
@error from the dialog loop (i.e all OPL error condi~ions). If
the error number is 3, the text "Atom not bound to value" is
printed in disp, otherwise the error number is rethrown to the
default error handler.

To test the new error handler, type a few valid expressions
(e.g. 2 + 2!), then type an expression containing an unbound
atom, e. g.: -

Paul!

The result should be our error message. You are now back in the
main dialog loop; test this by typing Paul! again. This time
"Error 3" should appear.

3-12

The thrown object (catch value) and label (catch label) are
available for inspection until the next throw. If no object is
thrown, the catch value will be nil. In the above example,
"throw catch label with catch value" could have been used
instead of "throw @error with catch value".

The STOP key causes the predefined label, @STOP, to be thrown.
(Afterwards, catch value is nil.) As with @error, a default
handler is provided for the @STOP label. You can intercept
throws to @STOP by defining your own handler. For example, type

catch @STOP in @(repeat (disp <- "*"))
do @(disp <- "Had enough?")l

Now press STOP.

3.5 The Mouse

The solid character on your screen is the mouse; it is used pri
marily as a pointing device. You can drive the mouse around by
pressing the MOUSE UP, DOWN, LEFT, and RIGHT keys on your key
board (see Table 2-1). Try this. You can move the mouse at any
time, even while simultaneously running OPL code. Try the
following:

repeat (disp <- "*")1

Now drive the mouse around on the screen with the mouse keys.
You will continue to see stars print in disp; you'll also notice
that the mouse moves somewhat more slowly now that you're doing
two things at once. Press the STOP key to regain control.

You can ask the mouse where it is from OPL. The object ml will
tell you what screen line the mouse is on; mc will tell you the
mouse's column position. A common use of mr-and mc is to
position a window with the mouse. Try this:

@w <- Window new 5 10 2 40 show!

repeat (mb. w move to ml+1 mc+1)1

The object mb waits for the MOUSE BUTTON key to be pressed and
released. The effect of the above code is to wait on the mouse
button each time before moving w. In this way you can drive the
mouse wherever you want, then press the mouse button, and the
window w will move to where the mouse is sitting. The window is
positioned so that the upper left corner of the frame is on top
of the mouse.

3-13

Sometimes it is useful to ask if the mouse button was the last
key to be pressed. You can do this by sending the "?" message to
mb; the reply will be ~ if the mouse button was pressed, and
no otherwise. For example:

repeat (mb? => (mb.w move to ml+1 mc+1) disp <- "*,,) J..

With this code you ask if the mouse button is pressed; if it is
w is moved to the mouse, otherwise stars print in disp. Type
this in, play with the mouse keys, and watch what happens.

One final way to use the mouse is with the "has mouse" message
answered by windows. A window replies to this message with yes
if the mouse is anywhere on top of its frame or text area; it
replies no otherwise. Hence, by sending this message to a
window, you can ask if the mouse is touching it. This capabil
ity can be used to point to windows in order to "wake them up"
so that you may interact with them. As a very simple example,
try the following:

repeat (w has mouse => (w <- "*"»J..

Type this in and then move the mouse on and away from w. When
ever the mouse touches w, asterisks will appear in the-window.

3.6 Using Class Class, Part 4: New Classes

So far, all the classes you have learned were predefined. You
can define your own classes by sending the Class message ... new
to the class Class. For example, type:

@Stack <- Class new!

Of course, the new class must be given variable dictionaries,
message patterns, and methods for it to be useful.

To add messages and methods, you must use the Class message

... answer (a1) by (a2)

where (a1) and (a2) are lists containing the new message and
method~spectively. For example, let's define the messages

3-14

... push (a)

... pop

The first message asks a stack to push an object (a) on the top
of the stack, the second asks the stack to pop the topmost
object off the stack. We can use the following methods to
accomplish this objective.

for push (a), type:

@pushmethod <-
@(self full => (error "stack full")

@top <- top + 1.
array[topJ <- a.
self)J.

for pop, type:

@popmethod <-
@(self empty => (error "stack empty")

@x <- array[topJ.
@top <- top - 1.
x)J.

Note that in pushes the stack pointer (top) is incremented
before the item is placed on the stack, while in pops the
pointer is decremented after the data goes off the stack.

Now type the two statements that actually add these messages to
Class Stack:

Stack answer @(push (a)) by pushmethodJ.

Stack answer @(pop) by popmethodJ.

These two methods require two additional Stack messages:

... full

... empty

which will signal stack overflow and underflow. We also need an
object error, which will print an error message to an appro
priate window. We need to create an instance of a List, called
array, and to classify it as an instance variable so it will

3-15

remain between messages. We need another instance variable !£E,
which which points to the current top of the stack. The list
array will actually hold the items pushed onto the stack.

The following statements should be used to add the messages
... full and ... empty

for full, type:

Stack answer @(full) by @(top >= array length)l

for empty, type:

Stack answer @(empty) by @(top = 0)1

The next step is to redefine the default .. . isnew method (which
is simply "self"; check this by typing "Stack method for
@(isnew)l") so it can initialize top and create array. We will
need to pass ... isnew a parameter for the stack length. The
following message and method will do the trick:

message: ... isnew (1)

method: (@array <- List new 1 . @top <- 0 . self)

To create this combination, type

Stack answer @(isnew (1)) by @(@array <- List new 1.
@top <- 0 . self)l

Then create the error object by using to:

to (error (msg)) (disp <- msg . cr)l

Finally, put the instance and temporary variables in their dic
tionaries by using the Class message:

Stack idict <- @(array top) tdict <- @(a 1 x)l

You are now ready to create a stack instance and push and pop:

3-16

@s <- Stack new 10!

s push "colin"!

s push 29!

s push "jim"..!.

s push 31..!.

do 5 (s pop print. cr)..!.

The last statement should produce a stack underflow error
message, "stack empty".

Although you could use the procedures outlined in this chapter
to construct any new class or add any message, it is usually
much more convenient to make use of the class editor, a software
development tool described in the next chapter.

3-17

CHAPTER 4
THE CLASS EDITOR

4.1 Introduction

The Class Editor can be used to examine or modify the messages,
methods, and variables of any class. It is an extremely useful
tool for program development.

The editor is part of the workspace contained in EDITOR.WRK, so
if you followed the loading procedure in Chapter 2, you can use
it immediately. (The other workspace on your distribution
diskette, UTIL.WRK, contains all the objects in EDITOR.WRK
except the editor itself.) If your workspace contains the
editor, you can edit a class by sending it the message ... edit.

We will explore the features of the editor in the course of de
fining a new class: Elevator. Objects of this class appear on
the screen as small rectangular boxes that have some of the
stereotypical properties of elevators. In particular:

Elevators will move up and down in shafts.

They will move smoothly.

They will operate in a four-story building.

They will move from any floor to any other floor.

As they reach each floor, they will announce the floor
number.

4.1.1 Invoking the Editor

Fi rst, 'in order to make more memory available, you should elimi
nate any unnecessary objects created earlier. This is accom
plished with the forget object that was described in section
3.4.5. (Be careful not to delete any useful utility objects.)

Second, create the new class, Elevator, by typing

@Elevator <- Class new title <- "Elevator"!

~hird, invoke the editor:

Elevator edit!

You will see several windows appear in the upper left corner of
the screen, in an arrangement similar to Figure 4-1.

4-1

+---+
: Elevator messages :
+---------------------------------+-------+
: isnew : up
: is ? : down
: print : Answer
: : Change
: : Forget
: : method

: Quit
I
I
I
I
I
I
I

I
I
I
I

+---------------------------------+ I
I
I
I I

+---------------------------------+-------+

Figure 4-1. Messages

The four windows that make up the editor's display have differ
ent functions:

-The window at the top describes what is being edited. The
initial view of a class is of its messages, so "Elevator
Messages" appears in this window.

-The large window in the middle (the text window) displays
what is being edited; initially a list of message patterns will
appear.

-The bottom window is a dialog window used for typing text
to be inserted and for displaying error messages from the
editor. If an error message appears in this window, press any
key to clear the window and resume editing.

-The window at the right is a menu of editing commands.
Selections from this menu are made by pressing single keys
corresponding to the first character of a command name (" ... " is
selected by pressing ~).

It is important to note that the difference between upper case
and lower case initial letters is very significant in the com
mand menus found in the editor. For example, in Figure 4-2, the
down command and the Delete command are distinguished solely by
the case of their initial letter.

4-2

As a general rule, menu choices that begin with an upper case
letter are used to modify some part of the class definition.
Menu choices that begin with a lower case letter are simply used
to change your view, for example to scroll the text up or down,
or to view a different part of the class definition.

The mouse is used to point at an item to edit in the text win
dow. To point at a particular token, place the mouse anywhere on
top of the token or in the blank spaces to its left. When the
mouse is to the right of the last token on a line it is consid
ered to be pointing at the first token on the next line.

4.1.2 Editing Commands

The commands in the menu of Figure 4-1 can be divided into five
catego.ries:

up and down are used to scroll lines in the text window. The
editor's text window acts much like a viewport placed on top of
a scrolling sheet of paper. Lines clipped outside of this window
can be scrolled into. view by the menu choices "up" and "down".
Try using these commands to scroll the messages up and down.
(The "down" command moves messages onto the screen from the
bottom -- if any are available -- and off the screen at the top,
until the last line has been scrolled off. The "up" command
moves messages on the screen from the top -- if any are avail
able, and off the screen at the bottom, until no more messages
are available to be moved on.)

Answer, Change, and Forget are used to edit the current messages
and to add new ones.- See section 4.2.

method ,is used to bring into view a menu of commands for editing
the method of any message in the text window. The mouse must be
pointing at a message before this command is given. See section
4.3.

Quit is used to return from the editor to OPL itself .

..• is used to bring into view a new menu of additional commands
for editing messages. See section 4.4. (Only those commands
currently appearing in the menu can be selected.)

4.2 Editing Messages

The three menu choices "Answer", "Forget", and "Change" are
specifically for editing current messages and adding new mes
sages. "Answer" (press A) is used to add messages. "Forget"
(press F) is used to delete the message that the mouse is
currently 'pointing at. "Change" (press C) is used to change the
syntax of a message pattern, while keeping the same method.

For the Elevator example, we will add the following four
messages:

4-3

roof

three

two

lobby

each of which will cause elevator objects to move to one of the
four floors in our four-story building. The methods of these
four messages will make use of the additional messages

up

down

which cause elevators to move up or down one floor. We will
also change

isnew

to

isnew (newcolumn)

so that elevator objects can be created in a particular column
(newcolumn) of the screen: the "shaft" of the elevator. We will
define the methods for these messages so that elevators move
slowly from floor to floor and print the floor number in their
window as they reach each floor.

To add messages press the Answer key; the prompt "Answer?" will
appear in the bottom window. At the the same time, the menu
clears to indicate that no choices from it can be made. Type in
the first new message pattern, "roof", and press DOlT (do not
type the " ... "; this is just a notational convention). Since you
are typing in a dialog window, all the conventions, such as word
wraparound and the CLEAR-LINE key, are supported.

When you press DOlT, the menu will reappear. Repeat the process
of adding all the new messages. Finally, move the mouse to the
" . .. isnew" token and press the Change key; the prompt "Change
message to ?" will appear in the bottom window. Type in the new
version, "isnew (newcolumn) " , then press DOlT.

You are now finished adding and modifiying messages. The next
step is to specify the methods for these messages.

4-4

4.3 Editing Methods

Point the mouse at the first new message (... roof) and press
method. A new window arrangement will appear that will look
very much like Figure 4-2.The top window will display <Elevator>
"roof" to indicate that you are now viewing the method that an
instance of class Elevator uses to answer the " ... roof" mes
sage. The text window will of course be empty, since there is no
method as yet. You should also notice that the menu has a new
set of commands.

+---+ i <Elevator> roof i
+---------------------------------+-------+
i up i
: down i
i in i
i out i
i top i
: Add I

+---------------------------------+ I I
I I
I I
I I

Delete
Replace
Move
Paren
Unparen
message

+---------------------------------+-------+

Figure 4-2. The Method Menu

4.3.1 Commands for Methods

The set of commands in the method menu can also be divided into
five categories.

up and down have the same effect as the corresponding commands
described in section 4.1.1.

in, out, and top are used to descend into subexpression of
methods and come out of subexpressions. The editor knows about
the structure of OPL code and uses this knowledge to format the
displayed code attractively. The OPL code is always sho~n
neatly indented, with each statement starting on a new line.
Whenever the text is altered it is immediately reformatted.
Only the current level of the code is displayed; parenthesized
subexpressions are simply shown as "{III. The lIinll command
(press i) descends into one of these subexpressions (which must
be pOinted to by the mouse) to see its top level; the II out II

4-5

(press 0) command brings you back out again. The "top" command
(press t) immediately transfers you to the highest level from
any other level.

Add is used to add a new method to a message that has no method,
or to add pieces of code to an existing method at the location
pointed to by the mouse. An example of this command is given in
the next section. Unparen is used to remove parentheses and
raise to the current level the subexpression pointed to by the
mouse.

Delete, Replace, Move, and Paren all require you to delimit a
piece of-text. The left edge of the text is marked by the
position of the mouse at the time you select the command. To
mark the right edge of the text, position the mouse to the right
of the last token you wish to delimit and press the mouse
button. If this last token is not visible, use the "down"
command to scroll it into view. The meanings of these commands
should be fairly obvious from their names.

4.3.2 Methods for Class Elevator

So far you have added six new messages and modified one message.
Then you pressed the method key with the mouse pointing to the
... roof message. You now will type the method for ... roof.
Press Add; you will get the prompt "Add?" in the dialog window.
Now type the following method:

repeat (floor < 4 => (self up) done).
wait.
self

then press DOlT. The bottom window will clear, the menu will re
appear, and the text you just typed will appear in the text
window. The text window should now show the information that can
be seen in Figure 4-3.

4-6

+---+ l <Elevator> roof l
+---------------------------------+-------+ l repeat II . up l
I °t d I l wa1 . own I

self in l
out

+---------------------------------+ I I
I I
I I
I I

top
Add
Delete
Replace
Move .
Paren
Unparen
message

+---------------------------------+-------+

Figure 4-3. A Method

After typing the method for ..• roof, you should return to the
message menu with the message key, move the mouse to the
three message, then press the method key again. You should then
type in the following method :-

repeat (floor < 3 => (self up)
floor > 3 => (self down)
done).

wait.
self

The same process should be repeated for the ... two message, the
lobby message, the ... up message, the ... down message, and

the .•• isnew (newcolumn) message. The following methods are
used:

two:
repeat (floor < 2 => (self up)

floor > 2 => (self down)
done).

wait.
self

lobby:
repeat (floor > 1 => (self down)

done).
wait.
self

4-7

up:
win clear.
do floorheight (win move to win's sl-1 win's sc).
@floor <- floor + 1.
win at 1 1 <- floorname [floor].
self

down:
win clear.
do floorheight (win move to win's sl+1 win's sc).
@floor <- floor - 1.
win at 1 1 <- floorname [floor].
self

isnew (newcolumn):
@floor <- 1.
@win <- Window new height width lobbyline newcolumn

show at 1 1 <- " LOBBY".
self

Experiment with the Delete, Replace, Move, Paren, and Unparen
commands using the ... up method. Try putting the "win's sl-1"
subexpression in line 2 into parentheses. Descend into the {}
expression with the "in" command and verify that "win's sl-1" is
now at a lower level. Return to the highest level using the
"out" or "top" commands.

After all the methods have been typed, you must return to the
message menu with the message command in order.to edit the
variables.

4.4 Editing Variables

To edit the variables, press the " ... " selection when you are in
the message menu. The screen will-then have the appearance
shown in Figure 4-4.

4-8

+---+
: Elevator messages :
+---------------------------------+-------+

I
I
I
I
I
I
I
I
I
I

isnew (newcolumn) Title
is ? tdict
print idict
roof cdict
three vars
two
lobby
up
down

+---------------------------------+
I I
I I
I I
I I I

+---------------------------------+-------+

Figure 4-4. Messages (part 2)

Now simply use the tdict, idict, and cdict keys in turn to get
menus for the dictionaries~ These menus have the standard com
mands: up, down, Add, and Delete, which can be used to add and
delete variables in the dictionaries. Use the Add command to
add the following variables to their dictionaries:

temporary variables: newcolumn (added automatically because it
is a parameter)

instance variables: win floor

class variables: width height floorname lobbyline floorheight

The screen should look much like Figure 4-5 after you have added
the instance variables.

4-9

+---+
I idict I
+---------------------------------+-------+

win floor up

+---------------------------------+
1 1
1 1
1 1

down
Add
Delete
class

1 1 1

+---------------------------------+-------+

Figure 4-5. Instance Variables

After adding the variables, press class to return to the message
menu show in Figure 4-4. From here you can select vars to init
ialize the class variables. After you have made this selection,
the screen will look much like Figure 4-6.

+---------_._-----------------------------+
I Elevator cvars I
+---------------------------------+-------+ I width height floorname lobbyline Title

floorheight tdict

+---------------------------------+
1 1
1 1
I? 1
1,- 1

idict
cdict
vars

+---------------------------------+-------+

Figure 4-6 .. Class Variable

4-10

You enter a dialog loop in the bottom dialog window (indicated
by the cursor?). You can now assign values to the variables
in cdict. Type-the following

@width <- 8!

@height <- 4J..

@floorname <- List new 4 • floorname[1J <- " LOBBY"
floorname[2] <-" 2". floorname[3] <-" 3".
floorname[4] <-" ROOF"!

@lobbyline <- 20J..

@floorheight <- 6!

done!

The final done exits from the dialog loop and returns you to the
menu show in Figure 4-4. You can now select Title to change the
title of class Elevator or you can select .. ~ to return to the
message menu shown in Figure 4-1, then you-can press Quit to get
out of the editor. -

4.5 Running Class Elevator

Now that you have created class Elevator, you must create the
wait obj'ect that is referenced in the Elevator methods. Type

to (wait) (do 20 ())J..

You can now create 2 or 3 instances of class Elevator and send
them messages.

First, make sure that disp is properly positioned by typing

disp move to 2 2 grow to 22 35J..

Then try the following:

@e1 <- Elevator new 40!

@e2 <- Elevator new 50J..

@e3 .<- Elevator new 60!

4-11

These statements create three elevators located in columns 40,
50, and 60 of the screen. Now set these elevators in motion
with the following messages:

e1 three!

e2 up

do 10 (e2 two three lobby roof)l

do 10 (e2 roof three.e1 two lobby.e3 three roof lobby)l

See if you can improve this example by modifying the methods or
by adding new messages to Class Elevator.

You have now learned the most important parts of OPL. You have
learned the predefined messages associated with most of the
predefined classes; you have learned how to create new objects
in these classes; you have learned how to create new messages
and methods in the predefined classes; you have learned how to
create your own classes; and finally, in this chapter, you
learned to use the class editor to speed up the process of
creating and modifying class definitions. The only topic not
yet covered is the use of disk files for permanent storage of
information.

4-12

CHAPTER 5
USING DISK FILES WITH OPL

5.1 Introduction

In the Intellec 432/100 disk files are used for three purposes:

-to store workspaces for later use. (By workspace we mean a
snapshot of an OPL environment.) Files with the extension .WRK
contain workspaces. For example, on your distribution disk, the
file EDITOR.WRK contains the starting workspace.

-to store OPL source code. Files with the extension .ASC
contain source code. These files can be read into an OPL work
space and executed by using the filein object described in this
chapter.

-to store miscellaneous data. No standard extension has
been defined for data files, but it is useful to distinguish
them by appending a distinctive extension.

All these file types are supported under the ISIS operating
system.

5.2 Saving and Loading Workspaces

The easiest disk-oriented operations are saving and loading
workspaces. The objects used are save(f) and load(f), where f
is the name of an ISIS file. So for example, to save the
current workspace in a disk file named "crnt.wrkn on drive 2,
type

save n:f2:crnt.wrk"!

To reload that file, type

load ":f2:crnt.wrk"!

(The ".wrk" extensions can be omitted, since they are added
automatically.) Neither save nor load restores the mouse. B~th
save and load can sometimes take several minutes to transfer a
workspace-.--

If an ISIS error occurs during a load, or if the workspace in
the file has been damaged, the message

»> Disk error: workspace lost. Hit key.

5-1

will appear at the top of the screen. Pressing any key will
return you to ISIS. As we said in Chapter 2, the standard way to
leave the OPL environment and return to ISIS is to type the
object

isis!

Typing this object causes the current workspace to be lost, so
you must use the save object if you want to preserve the work
space. Individual classes and objects can be preserved only
with the fileout object described in section 5.4.

5.3 Class File

Before proceeding to source files, it is important to introduce
the concept of an OPL file object, an instance of the predefined
class File, whose messages are defined in Appendix A.

In order to communicate between OPL and a disk file, several
steps must be taken.

1. A file object must be created, i.e. an instance of class
File. For example:

@f <- File new!

2. ISIS must be instructed to create a disk file with a certain
name. For example:

f create ":f2:newfl"!

Note that ISIS files can have no more than six characters in
their name.

3. A communications channel must be opened between the file
object and the ISIS file. The ... create message does this auto
matically when the file is first created, and the ... open
message can be used when the file is accessed in the future.
For example

f open ": f2: newfl"1.

4. The file pointer must be positioned to the correct starting
byte in the file before data is transferred. Like ISIS, OPL
organizes files in blocks of 128 bytes, so the file pointer is a
pair of the form (block, offset). The messages .. ~open and ...

5-2

create both initialize the file pointer to (0, 0); the message
... at (a1) (a2) can be used at any time to reposition the file
pointer.

5. Data can be transferred from disk to object or from object to
disk. The ... <- (text) message is used for transfers to the
disk. For example

f <- "hello world."!

The messages ... next and ... next for (a1) can be used to trans
fer data from the disk. For example, the statements:

f at 0 O!

f next for 12!

reposition the file pointer to (0, 0) after the previous disk
write, then read the first 12 bytes of data.

The object read may also be used to transfer data from the disk.
For exampl~ry

f at 0 O!

read of f!

6. Finally, the communications channel between the disk file and
the file object should be closed. For example:

f close!

The object forget automatically closes files, so you can forget
files without having to close them first. All files should be
closed before the workspace is saved.

Notes: Data is transferred to disk files in 128-byte
blocks. Additional characters will be appended to
your data to pad out the block.

OPL ignores the keyboard during I/O, so STOP cannot
be used.

Files are opened in update mode, so the diskettes
should not be write-protected.

5-3

5.4 OPL Source Files

The process of reading a file of source text and converting it
to real OPL objects is called filing in. Similarly, writing out
objects as source text is filing out. To make these tasks
easier, two objects, filein and fileout have been provided.

5.4.1 Filing in

Assuming you have filein in your workspace, and have on disk
drive 2 an .ASC file, say ELEV.ASC, containing a program that
defines a class; you can file in that program by typing

filein: ":f2:elev"!

(filein assumes that the disk file has the extension ".ASC".)

The name of the class is defined in the program, it is not
necessarily the same as the name of the disk file.

When filein operates, the amount of free memory is displayed in
the upper right corner. If you have more than 16,383 free
bytes, display will read

free words: no

Filing in a large program may fail due to memory fragmentation.
A way to overcome this problem is to put "mem compact" messages
every so often in the file. When "mem compact" is read and eval
uated, all of the free space will be compacted into a single
large chunk. After a compaction has occurred you will have to
manually restart the filing in process. If you use filein, all
you have to do to resume filing in is say

(See Appendix B for a description of the ~ object.)

5.4.2 Filing out

The utility object fileout can be used to file out classes, and
also objects created with to. All parts of a class are filed
out except the class variables. There are two ways fileout can
be used. One way is to file out a single class to a file and
close that file. For example, to file out the class Elevator to
a file on drive 2, you can type

5-4

fileout: Elevator as ":f2:elev.asc"!

To file out the for object, you actually file out the class that
for is an instan~of. This class can be filed out to a file on
drive 2 by typing

fileout: for is ? as ":f2:for.asc"!

One thing must be kept in mind when using fileout with classes
that have defined class variables: the values of the class vari
ables are not saved. They must be restored when the class is
filed in, or else a special object must be created which auto
matically initializes the class variables; then this object can
be filed out in the same file as the class itself.

If you want to file out several things to the same file, you can
create the file yourself and·use the other fileout message.
Between filing out classes you can file out comments, do simple
formatting, and file out arbitrary OPL expressions by sending
the appropriate text to the file. For example, to file out the
class Elevator and an object, cinit, which intializes Elevator's
class variables, to the file NEWCL.ASC on drive 2, type:

to (cinit) (Elevator cvar height <- 4 cvar width <- 8
cvar lobbyline <- 20 cvar floorheight <- 6
cvar floorname <- @(" LOBBY"" 2"" 3"" ROOF"»

@QUOTE<- 34.
@NL <- 10.

@f <- File new create ":f2:newcl.asc".

f <- QUOTE <- "NEWCL.ASC" <- QUOTE <-

f <- NL <- NL.

fileout: Elevator to f.

f <- NL <- NL.

fileout: cinit is ? to f.

f <- NL <- NL.

fileout: wait is ? to f.

f <- NL <- NL.

f <- "cinit!"

f <- "done!".

f close!

5-5

" I " . .

In this example, the cinit object is created, then the atom
QUOTE is bound to the ASCII value for II and the atom NL is bound
to the value for NEW LINE. The file is opened and a header is
constructed. Then the three classes (Elevator, cinit class, and
wait class) are output, separated by pairs of carriage returns.
Finally, the statement invoking cinit and the object done are
added to the file, and then the file is closed. The done object
signals the end of file to a filein loop. ----

5-6

APPENDIX A.
PREDEFINED CLASSES AND THEIR MESSAGES

This appendix describes the predefined classes. The descrip
tion of a class includes its title, its variable dictionaries,
and the messages answered by its instances. The title of any
predefined class is simply its name; for example the title of
the class Atom is "Atom". In this document class names are capi
talized, but this is only a convention, not a requirement.

Most of the methods used to answer messages of the predefined
classes are primitive methods. If a class is asked to tell its
method for one of these messages, it will reply with a number.
The primitive methods cannot be changed, nor can a class be made
to forget a message which uses a primitive method. A few of the
predefined methods are OPL methods, which can be changed. These
methods will be given along with their message in the summary
that follows.

In the message patterns that follow, the symbols (a1), (a2),
(a3), (a4), and (a5) stand for parameters that the user must re
place with the appropriate objects. The class of the object
that replaces a parameter will be indicated. In most cases, OP1
attempts to evaluate parameters before they are passed to the
receiver. For example, the messages

@a <- 4!

disp move to 2+2 a!

have the same effect as the message

disp move to 4 41

because the parameters (a 1) and (a2) in the ... move to (a 1) (
a2) message are evaluated before the message is sent to disp.

However, in a few messages, parameters are not evaluated before
they are sent to the receiver. Instead, the receiver evaluates
the parameter. In the message patterns for these messages the
parameter is preceeded by an @ symbol. This @ symbol should not
be typed; it simply indicates-that the parameter is not evalu
ated. See section 3.3 for more details.

A-1

A.1 Number

Numbers are integers in the range -16384 to +16383. (Negative
numbers cannot be typed explicitly, they must be entered as
(O-n).) Arithmetic on numbers that would yield a result outside
this range will reply no instead. No class or instance vari
ables are defined. Numbers recognize the following messages, in
which the parameter (a1) must be replaced by a number or an
expression that evaluates to a number:

message

isnew

print

is ?

is (a1)

chars

• •• + (an

. .. - (an

* (a 1)

/ (a 1)

mod (a1)

•.• < (an

= (an

... > (a1)

reply

Replies with the number O.
This message cannot be sent
explicitly. It is sent implicitly
by the ... new Class message.

Prints the number in disp.
Reply is the receiver-.---

Reply is the class Number.

The reply is yes if a1 is
the word Number, no otherwise.

Replies the string representation
of the receiver.

Replies the sum of the receiver
and a1.

Replies the difference of the
receiver and a1.

Replies the product of the receiver
and a1.

Replies the integer quotient of the
receiver and a1.

Replies the integer remainder of the
receiver divided by a1. (Integer
division and remainder are defined
by the relation A=(A/B)+(A mod B).)

Replies ~ if the receiver is
less than ~; replies no other
wise.

Replies ~ if the receiver is
equal to ~; replies no other
wise .

Replies ~ if the receiver is
greater than a1; replies no
otherwise. -- --

A-2

••. <= (a1)

••• <> (a1)

•.• >= (a1)

... bits (a1)

Replies ~ if the receiver is
less than or equal to ~; replies
no otherwise .

Replies yes if the receiver is not
equal to a1; replies no other
wise .

Replies yes if the rec~iver is
greater than or equal to a1;
replies no otherwise. --

Replies ~ string of length a1 of
ASCII 111 liS and 1I0"S. The absolute
value of the receiver is converted
to binary. The order of
the bits is the reverse of the
binary value of the receiver. If
the receiver has more than a1 sig
nificant bits, the reply is~run
cated to the right. If the receiver
has fewer than a1 significant bits
the reply is padded with "OilS.

A-3

A.2 Boolean

A message which poses a yes-or-no question will cause the re
ceiver to reply with one of the objects ~ or no. .These "truth
values" are instances of the class Boolean. Noclass or
instance variables are defined. Boolean objects recognize the
following messages:

message

isnew

print

is ?

is (a 1)

. . . and (a1)

. .• or (a 1)

reply_

Replies the already existing
boolean no.
This message cannot be sent
explicitly. It is sent implicitly
by the new Class message.

Prints yes or no.

Reply is the class Boolean.

The reply is ~ if a1 is
the word Boolean, no otherwise.

Replies the receiver if a1 is not
the object no; replies nO-
otherwise. -- --

Replies the receiver if a1 is the
object no; replies ~ otherwise.

The prefix Boolean function "not" is provided by the object not;
see Appendix B.

A-4

A.3 String

Strings are used to represent text; each position of a string
can hold a single byte. (The words "byte" and "character" both
mean a number between 0 and 255.) Strings are indexed from 1
and cannot be longer than 16,383 positions. No class or in
stance variables are defined. Strings recognize the following
messages:

message

isnew (a1)

print

is ?

is (a 1)

length

[(a 1)]

[(a1)] <- (a2)

[(a1) to (a2)]

reply

Replies a new string of length a1.
The bytes of the new string are-
uninitialized.
This message cannot be sent
explicitly. It is sent implicitly
by the ... new Class message.

OPL method:
disp <- 34 <- self <- 34. self

Reply is the class String.

The reply is yes if a1 is the
word String, no otherwise.

Replies the length of the receiver.

Replies the ~th byte.

Replaces the ~th byte by a2.

Replies with a copy of the sub
string from position a1 to a2.
If a1 > a2 the reply is the-
empty string .

... [(a1) to (a2)] <- all (a3)
Fills positions a1 to a2 with
byte a3. Reply is a3.

[(a1) to (a2)] <- (a3)

••• < (a1)

Replaces the substring from
positions a1 to a2 by the
string a3 of the-Same length.
Reply isa3 .

Replies ~ if the receiver is
less than a1; replies no otherwise.
A formal definition is:"" < s1 for
any string s1 of length greater
than 0; s1 and s2 are identical up
to position k-1, s1 < s2 if
s1[k to s1 lengthJ <
s2[k to s2 lengthJ.

A-5

= (a 1)

.•• > (an

•• • <= (an

•.• <> (a1)

•.. >= (a1)

..• + (an

replies ~ if the two strings
are identical; replies no other
wise. A formal definition is:
"" - "". - ,
s1 = s2 if s1 length = s2 length
and s1[i] = s2[i] for i from 1 to
s1 length •

Replies no if self < a1 or
self = a1; replies yes other
wise .

Replies ~ if self < ~ or
self = ~; replies no other
wise .

Replies ~ if self < a1 or
self > ~; replies no other
wise .

Replies ~ if self> a1 or
self = ~; replies no other
wise .

Replies a copy of the string formed
by appending ~ to the end of the
receiver .

... find first (a1) Replies the number of the first
position where a1 occurs in the
receiver, or no-rf no occurence
is found. a1-may be a single byte
or a string-.-

... find first non (a1) Replies the number of the first
position in the receiver where a
character not in a1 occurs;
replies no if every character in
the receiver is in a1. a1 may
be a single byte or-a string .

. .. find [(a1) to (a2)] first (a3)
Like the " ... find first" message,
but only searches the subrange from

position ~ to a2 .

... find [(a1) to (a2)] first non (a3)
Like the " ... find first non"
message, but only searches the
subrange from position ~ to a2 .

... reverse Replies with a string that is the
reverse of the receiver (e.g. the
string "abc" becomes "cba").

A-6

A.4 Atom

Atoms are used as variables. An atom may be identified by the
special utility object @ which is placed immediately before .the
atom itself. An atom is-used as a variable by bin'ding it to a
value (i.e an object). An atom has a spelling which is repre
sented by a string. Atoms are unique; no two atoms have the same
spelling. No class or instance variables are defined. Atoms
recognize the following messages:

message

isnew (a1)

print

is ?

is (a1)

<- (a1)

... eval

chars

= (a 1)

reply

Replies the unique atom whose
spelling is a1, which is a string.
This message-Cannot be sent
explicitly. It is sent implicitly
by the new Class message.

Prints the receiver's spelling in
disp.

Reply is the class Atom.

The reply is ~ if ~ is the
word Atom, no otherwise.

Binds the object a1 to the
receiver in the current context.
Reply is a1. a1 may be any
object. - -

Replies the object currently bound
to the receiver.

Replies with the receiver spelling.

Replies ~ if the receiver and ~
are the same atom. Replies no if
a1 is a different atom or anY
other object.

A-7

A.5 List

A list is an object containing a fixed number of locations, each
of which may contain any object. The positions are numbered
from 1 to the length of the list (a maximum of 16,379 entries).
Different lists can have different lengths. Viewed as storage
objects, lists resemble one-dimensional arrays in other lan
guages. OPL also uses lists to represent OPL programs. No
class or instance variables are defined. Lists recognize the
following messages:

message

isnew (a1)

. .. pr int

[(an]

is ?

is (a 1)

[(a 1)] <- (a2)

[(a 1) to (a2)]

••• + (a1)

length

eval

reply

Replies a new list of length
a1. Each position contains
nil.
This message cannot be sent
explicitly. It is sent implicitly
by the ... new Class message.

OPL method:
@BACKSPACE <- 127
disp <- "(".
self length = a =>

(disp <- "),, . self)
self each a do

(a print. disp <- " ".)
diSp <- BACKSPACE <- ")".
self

Replies the object in the a1th
position.

Reply is the class List.

The reply is ~ if ~ is the
word List, no otherwise.

Puts the object a2 in the a1th
position. Reply-rs a2.

Replies a copy of the sublist from
position a1 to position a2. If
a1 > a2 the reply is the-empty
list .

Replies a copy of the list formed
by appending the list a1 to the
end of the receiver.

Replies the length of the receiver.

Runs the receiver as OPL code (using
the variable scope of the receiver's
class).

A-8

... eval in sender Runs the receiver as OPL code (using
the variable scope of the sender's
class) .

... each (@a1) do (@a2) Iterates over the receiver, tempo
rarily binding a1 to each element
in turn and running the code a2.
reply is niL

(The @ symbols should not be typed when the last message is
sent;-they simply indicate that a1 and a2 are not immediately
evaluated, but rather are evaluated by the receiver. a2, how
ever, must be enclosed in parentheses. For example: --

@n <- @("Andrew" "John" "Bill" "Scott" "Dennis")l

n each s do (s length print. cr)l

will successively bind s to each of the strings in the list n
and print the length of-each string. See section 3.3.)

A-9

A.6 Window

All screen activity is done through windows. Windows display
themselves as rectangular areas on the screen, optionally bor
dered by a frame. Each window has ten instance variables:

sl the screen line number of the window's first text line
sc -- the screen column number of the window's first text

column
h the height in lines
w -- the width in columns
1 -- the line number within the window's text area of its

cursor.
c -- the column number within the window's text area of its

cursor.
status -- a number containing some statQs information
text -- a string containing the window's text
scroll -- either nil or a list of OPL code; if code, it is

run whenever the window is about to scroll.
dfparm -- a string of compiled information for reshowing the

window.

No class variables are defined for windows. Each window may be
written into, scrolled, cleared, moved, shrunk or enlarged inde
pendently of the rest of the screen. Text written into a window
obeys word wraparound rules.

A window may be as small as one line by one column or as large
as 100 lines by 150 columns. A window's screen position is
given relative to the upper left corner of its text area.
Numbering of screen lines and columns begins in the upper left
hand corner of the screen. Hence, a window moved to line 1 and
column 1 of the screen will show all of its text but the top and
left sides of the frame will be clipped off the screen. A
window may be placed anywhere.

Windows recognize the following messages:

message reply

isnew (a1) (a2) (a3) (a4)
Initializes a new window to a1
lines and a2 columns in size-,
placed at line a3 and column a4
on the screen. ~he new windoW-has a
frame but is not showing, allowing
windows to be made and written into
before they are shown. The text of
a new window is initially blank.
This message cannot be sent
explicitly. It is sent implicitly
by the ... new Class message .

... print OPL method:
disp <- "<Window>". self

A-10

is ?

is (a 1)

... <- (a1)

... show

· .. hi de

... frame

· .. unframe

... clear

· . . at (a 1) (a2)

... move to (a1) (a2)

· .. grow to (a1) (a2)

... ' s (@code)

Reply is the class Window.

The reply is yes if a1 is the
word Window, no-otherwise .

Writes the text a1 into the window
at the current position of its
cursor. a1 may be a string or a
single byte. Reply is the receiver .

Displays the window on the screen.
Reply is the receiver. Receiver
will overwrite other windows, but
cannot permanently obscure disp.

Erases the window from the screen.
Previously obstructed parts of other
windows are brought into view. Reply
is the receiver.

Gives the window a frame. Reply "is
the receiver.

Erases the window's frame. Reply is
the receiver.

Fills the window's text buffer with
blanks and erases contents of
window's screen area. Reply is the
receiver.

Sets the window's write cursor to
its own line (a1) column (a2). No
changes are made to the screen
appearance; however, the next text
written in the window will appear at
the new cursor postion .

Moves the window to line a1 and
column a2 on the screen. ~eply is
the receiver.

Changes the window's size to be a1
lines of a2 columns. Any text
in the window is retained if
possible. Reply is the receiver .

Runs the code code in the context
of the receive~The @ symbol
should not be typed, nor are the
parentheses required.) OPL method:
code eval. See also section 3.3.

A-11

· .. has mouse Replies ~ if the mouse touches
the window's text or frame; replies
no otherwise.

A-12

A.7 Class

Classes define objects; the class Class defines classes them
selves. The instance variables of a class are its dictionaries
for temporary, instance, and class variables, the list of
messages answered by its instances, the class variables, and its
title. The editor is a class variable. Classes recognize the
following messages:

isnew

print

is ?

is (a 1)

.•. new

•.. edit

messages

reply

Replies a new, uninitialized
class. The new class's
dictionaries and class variables
are empty lists and its title is ""
The new class has default methods
for answering the messages .•.
isnew, •.• is ?, and •.. print.
This message cannot be sent
explicitly. It is sent implicitly
by the new Class message.

Prints the receiver's title in disp.

Reply is the class Class.

The reply is ~ if ~ is the
word Class, no otherwise.

Replies a new, uninitialized
instance of the class. The new
instance will immediately receive
a message beginning with the token
isnew •

Invokes the class editor on the
receiver. The reply is the edited
class. This message has no method
in workspaces that do not contain
the class editor; it will reply nil.

Replies a list of the messages
answered by the class's instances.

... answer (at) by (a2) Tells the receiver class to answer

•.. forget (af)

the message a1 by the method a2;
a1 and a2 are-lists. Reply is
the receiver .

Deletes the message a1 from the
messages answered by~he. class's
instances. A message which is
answered by a primitive method
cannot be deleted. Reply is the
receiver.

A-13

method for (a1) Replies the method used in answering
the message ~ .

... tdict Replies with the dictionary of
temporary variables .

... tdict <- (a1) Replaces the dictionary of temps
bya1. Temps are used both as
scratchpad variables and as message
parameters; any temps used as
message parameters cannot be deleted
from the temp dictionary .

... idict Replies with the dictionary of
instance variables .

... idict <- (a1) Replaces the instance dictionary
with a1 and replies with the
receiver. If instances of the
receiver exist, the dictionary
will not be replaced and the
reply will be no .

... cdict Replies with the dictionary of
class variables .

... cdict <- (a1) Replaces the class dictionary with
a1. Any new class variables
introduced are bound to nil;
previously existing class variables
retain their values.

title Replies the class's title

title <- (a1) Changes the class's title to a1,
which must be a string. ReplY-is
the receiver .

... cvar (@a1) Replies the value bound to the class
variable a1. If no such variable
is in the-Class dictionary, no is
replied. (The @ symbol shoul~not
be typed. See section 3.3.)

... cvar (@a1) <- (a2) Binds the receiver's class variable
a1 to the value a2. Makes an
entry for a1 in the class
dictionary-rf one is not there
already. Reply is the receiver.
(The @ symbol should not be typed;
see section 3.3.)

A-14

A.8 File

A file is an object that can be used to communicate with an ISIS
file on disk. It is not the actual file on disk. The same file
object can be used at different times to communicate with any
number of different ISIS files. Two hidden instance variables
are defined, but no class variables.

Files can be read and written either sequentially or randomly.
They recognize the following messages:

message

isnew

print

is ?

open (a1)

..• create (a1)

... close

. . . at (a 1) (a2)

reply

Replies with a new file object
ready to have a file assigned
to it.
This message cannot be sent
explicitly. It is sent implicitly
by the ... new Class message.

OPL method:
disp <- "<File>" . self

Reply is the class File.

Opens a communication channel
between the receiver and the
ISIS file named a1. The file
name a1 must be a-string
containing a valid ISIS file name.
The reply is no if the file does
not exist; otherwise the reply is
the message receiver .

Creates a new file named a1.
If a file with this name already
exists it is first deleted. Replies
the receiver.

Closes the communication channel
between the receiver and the ISIS
file, writing any buffered text not
yet written. The OPL file
object can be used to read or write
another ISIS file if desired.

Positions the file at block a1,
byte a2. Blocks and offsets-
within-blocks are numbered from O.
Blocks are 128 bytes long,
so the byte offset may be any number
between 0 and 127. Reply is the
receiver.

A-15

... <- (a1)

... next

... next for (a1)

Writes the text a1 to the file at
its current position. a1 may be a
string or a single byte-.- Notice the
similarity between this message and
message used to write text into
windows .

Replies with the byte from the
file's current position, advancing
the position one byte. Replies
no if no record has ever been
written at the file's current
position .

Replies with a string of the next
a1 bytes of the file from its
current position, advancing the
position. If fewer than a1 bytes
follow, everything up through the
last record is returned~ Replies
the empty string if no record has
ever been written at the file's
current position.

A file can be deleted using the delete object described in
Appendix B.

A-16

APPENDIX B
PREDEFINED UTILITY OBJECTS

Predefined utility objects are unique instances of anonymous
classes. In this appendix, the combination of object and
message will be shown instead of the " .. . message" pattern, which
indicates an arbitrary receiver.

B.1 Objects Whose Classes are Inaccessible

In this category belongs all the utility objects which belong to
classes that cannot be accessed at all. New instances, there
fore, cannot be created. The possible receiver-message combin
ations are as follows:

object+message reply or result

@anything

The @-symbol is used to refer to something literally; or put
another way, to prevent something from being evaluated.
It has the same function as QUOTE in Lisp. For example,
evaluating @(1 + 2) replies the list (1 + 2), but
evaluating (1 + 2) replies 3. More precisely, the format of
this object + message combination is @ (@x), where @x
indicates that the x parameter is sent to @ unevaluated;
the second @ symbol-is not actually typed.

catch (label) in (code)

If the atom label is thrown while code is running (see
throw), control returns to the point after the catch.
Reply is nil.

catch (label) in (code1) do (code2)

If the atom label is thrown while code1 is running, code2
is executed, and control returns to the point after the
catch. Reply is nil.

catch any in (code)

Like "catch (label) in (code)", but any label is caught.

catch any in (code1) do (code2)

Like "catch (label) in (code1) do (code2)", but any label is
caught.

B-1

catch label

Replies the label thrown to the most recent catch.

catch value

Replies the value thrown to the most recent catch.

cr

Prints a NEW LINE in disp.

delete (f)

Deletes the file named f, where f is a string containing
a valid ISIS file name.-

do (n) (@code)

done

Evaluates code n times. The @ symbol indicates that the
code parameter is passed to the do object unevaluated;
the symbol is not actually typed-.-

Will exit the innermost loop in which it occurs with the
value nil. All loops can be exited in this way, including
do and refeat loops and the loop of the List message
... each @x) do (@code).

done with (x)

Like done but replies with x

eq (a) (b)

Replies ~ if a and b are the same object; replies
no otherwise.

forget (@v)

Removes the variable(s) v from your workspace; v may be
an atom or a list of atoms.

B-2

go

Restarts a file interrupted by mem compact.

isis

kb

Returns to ISIS.

Waits for a key to be pressed, then replies with the
ASCII code of the key pressed. The MOUSE and STOP keys
are not seen by kb.

kb ?

If a key is pressed its ASCII code is replied. If no key is
pressed, no is replied.

load (f)

mb

mb ?

mc

Loads a previously saved workspace from an ISIS file named
f. See save. (The default file extension is .WRK.)

Waits for the mouse button to be pressed.

Replies yes if the mouse button is pressed; replies no
otherwise.-

Replies with the column position of the mouse.

mem compact

Exits all execution and compacts memory. Use this when OPL
signals "Error 4".

mem ?

Replies with the number of words (a word is two bytes) of
free space remaining in your workspace.

B-3

ml

Replies with the line position of the mouse.

nil

Default initial object.

not (b)

read

Replies ~ if b is no; replies no otherwise.

Replies with a list of tokens read .from the keyboard. A
token is an instance of one of the classes Atom, Number,
String, List, or symbol.

Keyboard input is echoed in the window named disp. The
prompt "?" first appears in disp followed by a typing
cursor. You may type your input in free format; NEW LINES
and extra spaces between tokens are ignored. The BACKSPACE
key will delete the last key typed; typing CLEAR-LINE will
delete the entire current line; typing RE-READ will elimin
ate everything that has been typed and give a new prompt.
Press the DOlT key to signal read that typing is complete.

read in (w)

Like read but echoes what you type in the window w.

read of (ob)

In this form of read, ob may be a string, a file, or any
object that replies to~he message ... next with a character.

The effect is as if the characters were typed in to read
from the keyboard, except no echoing is done. Reading is
terminated by a character value of 26, by reaching the end
of the string when ob is a string, or by a reply of no
when ob is a file or-some other object that is sent the
... next message.

read text

Similar to read but returns a string of the characters you
type. Reading is terminated by DOlT.

B-4

read text in (w)

Like read text, but echoes what you type in window w.

read text of (ob)

Like read of (ob), but returns a string of characters
instead of a sequence of tokens.

repeat (@code)

Repeatedly evalutes code until either done receives
control, or an error occurs, or the STOPkey is pressed.
The @ symbol is not typed; its presence in the message
pattern simply indicates that the code parameter is not
evaluated before·it is passed to the-r8peat object.

save (f)

Saves the current workspace in an ISIS file named f; f must
be a String. An extension of ".WRK" is assumed if-no
extension is specified. Saving and
loading are done from the specified ISIS drive.
Prior to saving the workspace, execution is returned to the
top level and the workspace is compacted.

screen freeze

Freezes the screen's appearance. Any changes made to the
screen's appearance will be stored and will only become
visible when the screen is unfrozen.

screen unfreeze

self

sp

Unfreezes the screen, making visible any changes stored
since the screen was last frozen. If .•. freeze and
... unfreeze messages are nested, only the outermost
..• unfreeze will actually update the screen. The
screen is automatically unfrozen whenever OPL returns
to the top level, as when. an error occurs or.when the STOP
key is pressed.

Replies with the receiver in the current context.

Prints a space in disp.

B-5

throw (label)

Throws the atom label to the most recent catch for that
label. (See catch.) A subsequent "catch value" will reply
nil.

throw (label) with (value)

vars

Like "throw (label)", but the object value is also thrown
to the most recent catch for that label.

Replies with a List of all the user-defined variables in
your workspace.

B.2 Objects inUTIL.WRK

UTIL.WRK is a workspace without the editor, but containing
several objects that have been created separately from the ob
jects described in the previous section. These objects, which
can be listed using the vars object, are to, for, indisp,
filein, and fileout. The classes which define these objects
may be obtained by using the •.. is ? message. The workspace
EDITOR.WRK also contains these objects; they may be deleted from
the workspace by using the forget object. The possible object
message combinations are as follows:

filein: (f)

Reads OPL source lines in from file f and executes them, a
line at a time, until a done is encountered. (The default
file extension is .ASC.)----

fileout: (c) as (f)

Stores the messages and methods used to create class c as a
list of OPL source lines in file f. Automatically creates,
opens, and closes file f when required. (The default file
extension is .ASC.)

fileout: (c) to (f)

Similar to immediately preceding message,except that the
file is not created, opened, or closed automatically. The
default file extension is .ASC.)

B-6

to (@p) (@code)

Creates an object-and-message combination E that executes
code'when the message is sent to the objec~. Neither @
symbols should be typed; they merely indicate that the E
and code parameters are passed to the to object unevaluated.
The object in E is an instance of a class that can be
obtained by sending the ... is ? message to the object.

for (@var) <- (10) to (hi) do (@code)

Implements a loop. Executes code repeatedly while var
is between the values hi and 10. Neither@ symbol should
be typed, they simply indicate-that the parameters code and
var are passed t,o the for ob j ect unevaluated.

indisp (disp) (@code)

Executes code in a new environment where "disp" means the
object whose name is passed as the parameter. The @ symbol
should not be typed; it simply indicates that the code
parameter is passed to indisp unevaluated.

B-7

APPENDIX C
ERROR MESSAGES

The following error conditions are recognized by the OPL inter
preter; each results in the label @error being thrown with value
equal to the number of the error condition:

o. Implementation error or feature not implemented.

1. Incomplete message.

2. @ not followed by a token.

3. Atom not bound to a value.

4. Can't find enough contiguous free space to allocate
an object. (See the mem compact utility object described
in Appendix B.)

5. => not followed by a yes-part.

6. Receiver does not answ-er this message.

7. Not used.

8. Length of new list or string is unacceptable.

9. Subscript for list or string is out of range.

10. Message parameter should be a number but is not.

11. Attempt to convert a number outside of 0 ... 255 into a byte.

1 2. Not us e d .

13. Not used.

14. Message parameter belongs to the wrong class.

15. Divide by zero.

16. Not used.

17. Attempt to set Window cursor outside text area. (Or attempt
to create a new window with illegal size parameters.)

18. Not used.

19. Not used.

20. Throw with no surrounding catch.

21. Number too big for a read (> 16,383).

C-1

22. "read of (ob)" did not reply with a number or no.

23. disp is not bound to a <Window>, so can't echo
keyboard.

24. OPL stack overflow.

25. Attempt to use a string of length <> 1.

26. In " ..• + (a1)" message for lists and strings, the, con
catenated length is greate.r than 16,383 bytes.

27. Not used.

28. Yes part of a conditional is not a list.

29. In "<String> [(a1) to (a2) 1 <- (a3)" message, the length
of string a3 must be the same as the length of the substring
to be replaced.

30. Message pattern syntax is incorrect.

31. Workspace not saved due to lack of space or some other
ISIS file error.

32. Workspace is incompatible with present system.

33. In "load (f)", f does not exist.

34. Disk read error while attempting "load (f)".

35. Can't redefine pre-defined workspace variables.

36. Error in "<File> create".

37. Error in "<File> close".

38. Error in "<File> open."

39. Disk write error (e.g. not enough space on the disk).

40. File name does not have proper ISIS format.

41. File not open.

42. Disk error encountered when trying to change file pointer
position.

99. The default error catcher was thrown something other than a
number.

C-2

Code

00
01
02
03
04
05
06
07
08
09
10
1 1
1 2
13
14
1 5
1 6
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Character

NULL Character
Start of Heading
Start of Text
End of Text
End of Transmission
Enquiry
Acknowledge
Bell
Backspace
Horizontal Tabulation
Line Feed
Vertical Tabulation
Form Feed
Carriage Return
Shift· Out
Shift· In
Data Link Escape
Device Control 1
Device Control 2
Device Control 3
Device Control 4
Negative Acknowledge
Synchronous Idle

APPENDIX D
ASCII CODES

Code Character

42 *
43 +
44
45
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58
59 . ,
60 <
61 =
62 >
63 ?
64 @

End of Transmission Block 65 A
Cancel 66 B
End of Medium 67 C
Substitute 68 D
Escape 69 E
File Separator 70 F
Group Separator 71 G
Record Separator 72 H
Unit Separator 73 I
Space 74 J , 75 K
" 76 L
77 M
$ 78 N
% 79 0
& 80 P .. 81 Q
(82 R
) 83 S

D-1

Code Character

84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 j 93
94

A

95
96 T

97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 1
109 m
110 n
111 0
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 Y
122 z
123 {
124 I

I

125 1 126
127 Delete

REQUEST FOR READER'S COMMENTS

Object Programming
Language User's Guide

171823-002

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process .

. Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1, Please specify by page any errors you found in this manual.

2, Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME ___ DATE __________ __

TITLE

COMPANY NAME/DEPARTMENT __ __

ADDRESS __ __

CITY _______________________________________ STATE ___ ZIP CODE ______ __

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing I ntel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
SSO Technical Publications Dept.
3585 SW 198th Ave.
Aloha, OR 97007

AL3-2-4B5

IIIIII NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

inter
INTEL CORPORATION , 3585 S.w. 198th Avenue, Aloha, Oregon 97007 • (503) 681-8080

Printed in U.S.AlY73/ 1 Kl0881 / AP

