

LITERATURE

To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES
P.O. BOX 7641
Mt. Prospect, IL 60056-7641

CURRENT HANDBOOKS

In the U.S. and Canada
call toll free
(800) 548-4725

Product line handbooks contain data sheets, application notes, article reprints and other design
information. All handbooks can be ordered individually, and most are available in a pre-packaged set in the
U.S. and Canada.

TITLE

SET OF THIRTEEN HANDBOOKS
(Available in U.S. and Canada)

INTEL
ORDER NUMBER

231003

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:

COMPONENTS QUALITY/RELIABILITY 210997

EMBEDDED APPLICATIONS 270648

8-BIT EMBEDDED CONTROLLERS 270645

16-BIT EMBEDDED CONTROLLERS 270646

16/32-BIT EMBEDDED PROCESSORS 270647

MEMORY PRODUCTS 210830

MICROCOMMUNICATIONS 231658

MICROCOMPUTER PRODUCTS 280407

MICROPROCESSORS 230843

PACKAGING 240800

PERIPHERAL COMPONENTS 296467

PRODUCT GUIDE 210846
(Overview of Intel's complete product lines)

PROGRAMMABLE LOGIC 296083

ADDITIONAL LITERATURE:
(Not included in handbook set)

AUTOMOTIVE HANDBOOK 231792

INTERNATIONAL LITERATURE GUIDE EOO029
(Available in Europe only)

CUSTOMER LITERATURE GUIDE 210620

MILITARY HANDBOOK 210461
(2 volume set)

SYSTEMS QUALITY/RELIABILITY 231762

ISBN

N/A

1-55512-132-2

1-55512-1 23-3

1-55512-121-7

1-55512-1 20-9

1-55512-122-5

1-55512-117-9

1-55512-119-5

1-55512-118-7

1-55512-115-2

1-55512-128-4

1-55512-127-6

1-55512-116-0

1-55512-124-1

1-55512-125-x

N/A

N/A

1-55512-126-8

1-55512-046-6

LlTINCOV/091790

u.s. and CANADA LITERATURE ORDER FORM
NAME: __ __
COMPANY: __ ___
ADDRESS: __ ___

CITY: _____________ ~ ______ ~--- STATE: ___ ZIP:
COUNTRY: __ __

PHONE NO.:
ORDER NO

Include postage:
Must add 15% of Subtotal to cover U.S.
and Canada postage. (20% all other.)

TITLE QTY. PRICE TOTAL

x =

x =

x =

x =

x =

x =

x =

x

x =

x =

Subtotal

Must Add Your
Local Sales Tax

) Postage

Total

Pay by check, money order, or include company purchase order with this form ($100 minimum). We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks for
delivery. .

o VISA 0 MasterCard 0 American Express Expiration Date _____________ _
Account No. ________________________________ __

Signature ___________________________________ _

Mail To: Intel Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

International Customers outside the U.S. and Canada
should use the International order form on the next page or
contact their local Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725
Prices good until 12/31/91.
Source HB

INTERNATIONAL LITERATURE ORDER FORM
NAME: __ __
COMPANY: __ ___
ADDRESS: ___ __

CITY: _______________________ STATE: ___ ZIP: ____ __
COUNTRY: ___ __
PHONE NO.: ~ __ ~ ____________________________________ __

ORDER NO TITLE QTY. PRICE TOTAL

x

x

x =

x =

x =

x =

x =

x =

x =

x =

Subtotal

Must Add Your
Local Sales Tax

Total

PAYMENT

Cheques should be made payable to your /ocs/lntel Sales Office (see inside back cover).

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
locs/lntel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned to
your locs/lntel Sales Office.

i860™ MICROPROCESSOR FAMILY
PROGRAMMER'S

REFERENCE
MANUAL

1991

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, 4-SITE, Above, ACE51 , ACE96, ACE186, ACE196, ACE960, ActionMedia, BITBUS,
Code Builder, COMMputer, CREDIT, Data Pipeline, DeskWare, DVI, ETOX, FaxBACK,
Genius, i, t, i287, i386, i387, i486, i750, i860, i960, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS,
12 1CE, iLBX, iMDDX, iMMX, Inboard, Insite, Intel, Inte1287, Inte1386, Inte1387, Inte1486,
intelBOS, Intel Certified, Intelevision, inteligent Identifier, inteligent Programming, Intellec,
Intellink, iOSP, iPAT, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSDM, iSXM, iWARP, Library
Manager, MAPNET, Matched, Media Mail, MCS, Megachassis, MICROMAINFRAME,
MULTI CHANNEL, MULTIMODULE, MultiSERVER, NetPort, ONCE, OpenNET, OTP,
PR0750, PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse Programming,
READY-LAN, RMXl80, RUPI, SatisFAXtion, Seamless, SLD, Snapln 386, SugarCube,
SUPERCHARGER, The Computer Inside, ToolTalk, UNIPATH, UPI, VAPI, Visual Edge,
VLSiCEL, WYPIWYF, and ZapCode.

MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk
Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade
mark or products.

OS/2 is a trademark of IBM Corp.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, I L 60056-7641

©INTEL CORPORATION 1991

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer's expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel's customer support is extensive. It can start with assistance during your development
effort to network management. 100 Intel sales and service offices are located worldwide - in the U.S., Canada,
Europe and the Far East. So wherever you're using Intel technology, our professional staff is within close
reach.

HARDWARE SUPPORT SERWCES
Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFfWARE SUPPORT SERWCES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and
;COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

NETWORK SERWCE AND SUPPORT

Today's broad spectrum of powerful networking capabilities are only as good as the customer support provided
by the vendor. Intel offers network services and support structured to meet a wide variety of end-user comput
ing needs. From a ground up design of your network's physical and logical design to implementation, installa
tion and network wide maintenance. From software products to turn-key system solutions; Intel offers the
customer a complete networked solution. With over 10 years of network experience in both the commercial
and Government arena; network products, services and support from Intel provide you the most optimized
network offering in the industry.

CONSULTING SERWCES

Intel provides field system engineering consulting services for any phase of your development or application
effort You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management conSUlting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course
categories include: architecture and assembly language, programming and operating systems, BITBUS ™ and
LAN applications.

CG/CUSTSUPP/112890

PREFACE

The Intel i860™ microprocessor family delivers supercomputer performance in a single
VLSI component. The 64-bit i860 architecture balances integer, floating point, and
graphics performance for applications such as engineering workstations, scientific com
puting, 3-D graphics, and multiuser systems. The architecture achieves high throughput
with RISC design techniques, parallel and pipelined processing units, wide data paths,
large on-chip caches, and fast, submicron CHMOS silicon technology. The i860 micro
processor family includes:

• i860 XR Microprocessor (part number 80860XR)

• i860 XP Microprocessor (part number 80860XP)

This book is the basic source of the detailed information that enables software designers
and programmers to use i860 microprocessors. This book explains all programmer-visible
features of the architecture.

Even though the principal users of this Programmer's Reference Manual will be pro
grammers, it contains information that is of value to systems designers and administra
tors of software projects, as well. Readers of these latter categories may choose to read
only the higher-level sections of the manual, skipping over much of the programmer
oriented detail.

HOW TO USE THIS MANUAL

• Chapter 1, "Architectural Overview," describes the i860 microprocessors "in a nut
shell" and presents for the first time the terms that will be used throughout the book.

• Chapter 2, "Data Types," defines the basic units operated on by the instructions of
the i860 microprocessor.

• Chapter 3, "Registers," presents the processor's database. A detailed knowledge of
the registers is important to programmers, but this chapter may be skimmed by
administrators.

• Chapter 4, "Addressing," presents the details of operand alignment, virtual memory,
and on-chip caches. Systems designers and administrators may choose to read the
introductory sections of each topic.

• Chapter 5, "On-Chip Caches," explains cache operation in detail sufficient for appli
cations programmers to optimize for the caches and for systems programmers to
manage the caches correctly.

• Chapter 6, "Concurrency Control," shows how the detached CCU of the i860 XP
microprocessor supports programs designed for concurrent operations, even in a uni
processor system.

• Chapter 7, "Core Instructions," presents detailed information about those instruc
tions that deal with memory addressing, integer arithmetic, and control flow.

iii

PREFACE

• Chapter 8, "Floating-Point Instructions," presents detailed information about those
instructions that deal with floating-point arithmetic, long-integer arithmetic, and 3-D
graphics support. It explains how extremely high performance can be achieved by
utilizing the parallelism and pipelining of the i860 architecture.

• Chapters 9 and 10, "Traps and Interrupts," deal with both systems- and applications
oriented exceptions, external interrupts, writing exception handlers, saving the state
of the processor (information that is also useful for task switching), and initialization.

• Chapter 11, "Programming Model," defines standards for the use of many features of
the i860 architecture. Software administrators should be aware of the need for stan
dards and should ensure that they are implemented. Following the standards pre
sented here guarantees that compilers, applications programs, and operating systems
written by different people and organizations will all work together.

• Chapter 12, "Programming Examples," illustrates the use of the i860 architecture by
presenting short code sequences in assembly language.

• The appendices present instruction formats and encodings, timing information, and
summaries of instruction characteristics. These appendices are of most interest to
assembly-language programmers and to writers of assemblers, compilers, and
debuggers.

RELATED DOCUMENTATION

The following books contain additional material concerning the i860 microprocessor:

• i860™ 64-Bit Microprocessor (Data Sheet), order number 240296

• i860™ XP Microprocessor (Data Sheet), order number 240874

• i860™ 64-Bit Microprocessor Assembler and Linker Reference Manual, order number
240436

• i860™ 64-Bit Microprocessor Simulator and Debugger Reference Manual, order number
240437

• i860™ Microprocessor Math Library Reference Manual, order number 464411

NOTATION AND CONVENTIONS

This manual uses special notation for symbolic representation of instructions and for
hexadecimal numbers. A review of this notation makes the manual easier to read.

Instruction Descriptions

The instruction chapters contain an algorithmic description of each instruction that uses
a notation similar to that of the Algol or Pascal languages. The metalanguage uses the
following special symbols:

• A ~ B indicates that the value of B is assigned to A.

• Compound statements are enclosed between the keywords of the "if" statement (IF
... , THEN ... , ELSE ... , FI) or of the "do" statement (DO ... , OD).

iv

PREFACE

• The operator + + indicates autoincrement addressing.

• Register names and instruction mnemonics are printed in a contrasting typestyle to
make them stand out from the text; for example, dirbase. Individual programming
languages may require the use of lowercase letters.

For register operands, the abbreviations that describe the operands are composed of two
parts. The first part describes the type of register:

c

f

One of the control registers fir, psr, epsr, dirbase, db, fsr, bear,
ccr, pO, p1, p2, or p3

One of the floating-point registers: fO through f31

One of the integer registers: rO through r31

The second part identifies the field of the machine instruction into which the operand is
to be placed:

srcl

srclni

srcls

src2

dest

The first of the two source-register designators, which may be
either a register or a 16-bit immediate constant or address offset.
The immediate value is zero-extended for logical operations and is
sign-extended for add and subtract operations (including addu and
subu) and for all addressing calculations.

Same as srcl except that no immediate constant or address offset
vC;llue is permitted.

Same as srcl except that the immediate constant is a 5-bit value
that is zero-extended to 32 bits.

The second of the two source-register designators.

The destination register designator.

Thus, the operand specifier isrc2, for example, means that an integer register is used and
that the encoding of that register must be placed in the src2 field of the machine
instruction.

Other (nonregister) operands are specified by a one-part abbreviation that represents
both the type of operand required and the instruction field into which the value of the
operand is placed:

#const

const32

A 16-bit immediate constant or address offset that the i860 micro
processor sign-extends to 32 bits when computing the effective
address.

A 32-bit constant. Only 16 bits of the constant can be used at one
time in any i860 microprocessor instruction. The operators 1% and
h% select the low-order and high-order half, respectively.

v

lbroff

sbroff

brx

PREFACE

A signed, 26-bit, immediate, relative branch offset. The offset has
a resolution of four bytes; it does not address individual bytes.

A signed, 16-bit, immediate, relative branch offset. The offset has
a resolution of four bytes; it does not address individual bytes.

A function that computes the target address by shifting the offset
(either lbroff or sbroff) left by two bits, sign-extending it to 32 bits,
and adding the result to the current instruction pointer plus four.
The resulting target address may lie anywhere within the address
space.

Unless otherwise specified, floating-point operations accept single- or double-precision
source operands and produce a result of equal or greater precision. Both input operands
must have the same precision. The source and result precision are specified by a two
letter suffix to the mnemonic of the operation, as shown in Table 0-1. In instruction
descriptions, the following codes represent precision specifications:

.p

.r

.V

.W

Precision specification .ss, .sd, or .dd (.ds not permitted). Refer
to Table 0-1.

Precision specification .ss, .sd, .ds, or .dd. Refer to Table 0-1.

.sd or .dd. Refer to Table 0-1.

.ss or .dd. Refer to Table 0-1.

Other abbreviations include:

.X

.y

mem.x(address)

PM

Suffix

.ss

.sd

.dd

.ds

.b (8 bits), .s (16 bits), or .I (32 bits)

.I (32 bits), .d (64 bits), or .q (128 bits)

The contents of the memory location indicated by address with a
size of x.

The pixel mask, which is considered as an array of eight bits
PM[7] .. PM[0], where PM[O] is the least-significant bit.

Table 0-1. Precision Specification

Source Precision Result Precision

single single
single double
double double
double single

vi

PREFACE

Hexadecimal Numbers

Hexadecimal constants are written, according to the C language convention, with the
prefix Ox. For example, OxOF is a hexadecimal number that is equivalent to decimal 15.

RESERVED BITS AND SOFTWARE COMPATIBILITY

In many register and memory layout descriptions, certain bits are marked as reserved or
undefined. When bits are thus marked, it is essential for compatibility with future pro
cessors that software not utilize these bits. Software should follow these guidelines in
dealing with reserved or undefined bits:

• Do not depend on the states of any reserved or undefined bits when testing the values
of registers that contain such bits. Mask out the reserved and undefined bits before
testing.

• Do not depend on the states of any reserved or undefined bits when storing them in
memory or in another register.

• Do not depend on the ability to retain information written into any reserved or unde
fined bits.

• When updating a control register, always set the reserved and undefined bits to values
previously retrieved from the same register.

• When initializing memory layouts, set reserved bits to zero.

NOTE

Depending upon the values of reserved or undefined bits makes software depen
dent upon the unspecified manner in which the i860 microprocessor handles
these bits. Depending upon values of reserved or undefined bits risks making
software incompatible with future processors that define usages for these bits.
AVOID ANY SOFfWARE DEPENDENCE UPON THE STATE OF RESERVED
OR UNDEFINED BITS.

vii

Architectural Overview

Data Types

Registers

Addressing

On-Chip Caches

Concurrency Control

Core Instructions

Floating-Point Instructions

Traps and Interrupts (80860XR)

Traps and Interrupts (80860XP)

Programming Model

Programming Examples

II
III

III
III

II
II
III

II
II

II
III

•

Appendix A
Instruction Set Summary

Appendix B
Instruction Format and Encoding

Appendix C
Instruction Timings

Appendix D
Instruction Characteristics

Appendix E
Compatibility Between i860™ XR and i860™ XP
~icroprocessors

Index

II
II

II

II
II

II

TABLE OF CONTENTS

CHAPTER 1 Page
ARCHITECTURAL OVERVIEW
1.1 OVERVIEW ... 1-1
1.2 INSTRUCTIONS ... 1-2
1.3 INTEGER CORE UNIT .. 1-5
1.4 FLOATING-POINT UNIT .. 1-5
1.5 GRAPHICS UNIT .. 1-B
1.B MEMORY MANAGEMENT UNIT .. 1-7
1.7 CACHES .. :... 1-7
1.8 PARALLEL ARCHITECTURE 1-8
1.9 SOFTWARE DEVELOPMENT ENVIRONMENT 1-9

CHAPTER 2
DATA TYPES
2.1 INTE.GER .. 2-'1
2.2 ORDINAL .. 2-1
2.3 SINGLE-PRECISION REAL .. 2-1
2.4 DOUBLE-PRECISION REAL 2-2
2.5 PIXEL 2-3
2.B REAL-NUMBER ENCODING 2-3

CHAPTER 3
REGISTERS
3.1 INTEGER REGISTER FILE 3-2
3.2 FLOATING-POINT REGISTER FILE .. 3-2
3.3 PROCESSOR STATUS REGISTER ... 3-2
3.4 EXTENDED PROCESSOR STATUS REGISTER .. 3-5
3.5 DATA BREAKPOINT REGISTER .. 3-7
3.B DIRECTORY BASE REGISTER ... 3-7
3.7 FAULT INSTRUCTION REGISTER .. 3-9
3.8 FLOATING-POINT STATUS REGISTER .. 3-10
3.9 KR, KI, T, AND MERGE REGISTERS .. 3-13
3.10 BUS ERROR ADDRESS REGISTER 3-13
3.11 PRIVILEGED REGISTERS (808BOXP ONLy) 3-13
3.12 CONCURRENCY CONTROL REGISTER (808BOXP ONLy) 3-14
3.13 NEWCURR REGISTER (808BOXP ONLy) 3-14
3.14 STAT REGISTER (808BOXP ONLy) 3-15

CHAPTER 4
ADDRESSING
4.1 ALIGNMENT 4-2
4.2 VIRTUAL ADDRESSING .. 4-3
4.2.1 Page Frame ,.. 4-3
4.2.2 Virtual Address 4-3
4.2.3 Page Tables 4-5
4.2.4 Page-Table Entries ... 4-5
4.2.4.1 PAGE FRAME ADDRESS 4-5
4.2.4.2 PRESENT BIT 4':7
4.2.4.3 WRITABLE AND USER BITS ... 4-7
4.2.4.4 WRITE-THROUGH BIT 4-8
4.2.4.5 CACHE DISABLE BIT ... :... 4-9

ix

TABLE OF CONTENTS

Page
4.2.4.6 ACCESSED AND DIRTY BITS 4-9
4.2.4.7 PAGE TABLES FOR TRAP HANDLERS ... 4-10
4.2.4.S COMBINING PROTECTION OF BOTH LEVELS OF PAGE TABLES 4-10
4.2.5 Address Translation Algorithm ... 4-10
4.2.6 Address Translation Faults 4-13

CHAPTER 5
ON-CHIP CACHES
5.1 ADDRESS TRANSLATION CACHES .. 5-1
5.2 INTERNAL INSTRUCTION AND DATA CACHES .. 5-4
5.2.1 Data Cache 5-6
5.2.1.1 DATA CACHE UPDATE POLICIES .. 5-S
5.2.2 Instruction Cache :.. 5-9
5.2.3 Cache Replacement Algorithm .. 5-9
5.2.4 Cache Consistency Protocol (SOS60XP Only) 5-10
5.2.4.1 DATA CACHE STATES (SOS60XP ONLY) ... 5-10
5.2.4.2 WRITE-ONCE POLICY (SOS60XP ONLy) .. 5-11
5.2.4.3 LOCKED ACCESSES (SOS60XP ONLy) 5-12
5.3 INTERNAL CACHE CONSISTENCY ... 5-13
5.3.1 Bypassing Instruction and Data Caches .. 5-13
5.3.2 Invalidating Cache Entries ... 5-14
5.3.3 Flushing the Data Cache 5-14
5.3.4 Address Space Consistency ... 5-14
5.3.5 Instruction Cache Consistency .. 5-15
5.3.6 Page Table Consistency .. 5-16
5.3.7 Consistency of Cacheability ... 5-17
5.3.S Protection Consistency 5-17
5.3.9 Load Pipe Consistency.. 5-17
5.3.10 Summary 5-1S

CHAPTER 6
CONCURRENCY CONTROL
6.1 DETACHED CCU ... 6-1
6.2 DCCU INITIALIZATION .. 6-1
6.3 DCCU ADDRESSING 6-2
6.4 DCCU INTERNALS 6-2
6.5 DCCU PROGRAMMING .. 6-3

CHAPTER 7
CORE INSTRUCTIONS
7.1 LOAD INTEGER ... 7-2
7.2 STORE INTEGER .. 7-3
7.3 TRANSFER INTEGER TO F-P REGISTER .. 7-4
7.4 LOAD FLOATING-POINT ... 7-5
7.5 STORE FLOATING-POINT ... 7-7
7.6 PIXEL STORE .. 7-S
7.7 INTEGER ADD AND SUBTRACT ... 7-9
7.S SHIFT INSTRUCTIONS .. 7-11
7.9 SOFTWARE TRAPS ... 7-12
7.10 LOGICAL INSTRUCTIONS .. 7-13
7.11 CONTROL-TRANSFER INSTRUCTIONS ... 7-15
7.12 CONTROL REGISTER ACCESS ... 7 -20
7.13 CACHE FLUSH .. 7-21

x

TABLE OF CONTENTS

Page
7.14 BUS LOCK ... 7-24
7.15 INPUT AND OUTPUT (80860XP ONLy) .. 7-27
7.16 LOAD INTERRUPT (80860XP ONLY) .. 7-28
7.17 SPECIAL CYCLES (80860XP ONLy) .. 7-29
7.18 ASSEMBLER PSEUDO-OPERATIONS .. 7-30

CHAPTER 8
FLOATING-POINT INSTRUCTIONS
8.1 PIPELINED AND SCALAR OPERATIONS ... 8-1
8.1.1 Scalar Mode .. ,........................... 8-2
8.1.2 Pipelining Status Information 8-3
8.1.3 Precision in the Pipelines 8-3
8.1.4 Transition between Scalar and Pipelined Operations 8-4
8.2 MULTIPLIER INSTRUCTIONS ... 8-4
8.2.1 Floating-Point Multiply.... 8-5
8.2.2 Floating-Point Multiply Low..................... 8-6
8.2.3 Floating-Point Reciprocals 8-8
8.3 ADDER INSTRUCTIONS .. 8-8
8.3.1 Floating-Point Add and Subtract 8-9
8.3.2 Floating-Point Compares 8-11
8.3.3 Floating-Point to Integer Conversion 8-12
8.4 DUAL OPERATION INSTRUCTIONS ... 8-13
8.5 GRAPHICS UNIT 8-25
8.5.1 Long-Integer Arithmetic .. 8-26
8.5.2 3-D Graphics Operations .. 8-26
8.5.2.1 Z-BUFFER CHECK INSTRUCTIONS ... 8-27
8.5.2.2 PIXEL ADD ... 8-30
8.5.2.3 Z-BUFFER ADD 8-33
8.5.2.4 OR WITH MERGE REGISTER 8-35
8.5.3 Transfer F-P to Integer Register 8-36
8.6 DUAL-INSTRUCTION MODE 8-36
8.6.1 Core and Floating-Point Instruction Interaction 8-37
8.6.2 Dual-Instruction Mode Restrictions 8-38

CHAPTER 9
TRAPS AND INTERRUPTS (80860XR)
9.1 TRAP HANDLER INVOCATION ... 9-1
9.1.1 Saving State .. 9-2
9.1.2 Inside the Trap Handler 9-3
9.1.3 Returning from the Trap Handler ... 9-3
9.1.3.1 DETERMINING WHERE TO RESUME .. 9-4
9.1.3.2 SEITING KNF 9-5
9.2 INSTRUCTION FAULT 9-5
9.3 FLOATING-POINT FAULT .. 9-6
9.3.1 Source Exception Faults .. 9-6
9.3.2 Result Exception Faults .. 9-8
9.4 INSTRUCTION-ACCESS FAULT 9-9
9.5 DATA-ACCESS FAULT ... 9-10
9.6 INTERRUPT TRAP .. ;.................................... 9-10
9.7 RESET TRAP .. 9-10
9.8 PIPELINE PREEMPTION ... 9-11

xi

TABLE OF CONTENTS

Page
9.B.1 Floating-Point Pipelines 9-11
9.B.2 Load Pipeline 9-12
9.B.3 Graphics Pipeline 9-12

CHAPTER 10
TRAPS AND INTERRUPTS (80860XP)
10.1 TRAP HANDLER INVOCATION ... 10-1
10.1.1 Saving State 10-2
10.1.2 Inside the Trap Handler 10-3
10.1.3 Fatal Errors 10-4
10.1.4 Returning from the Trap Handler 10-4
10.1.4.1 DETERMINING WHERE TO RESUME .. 10-5
10.1.4.2 SETIING KNF 10-5
10.2 INSTRUCTION FAULT 10-6
10.3 FLOATING-POINT FAULT .. 10-6
10.3.1 Source Exception Faults .. 10-7
10.3.2 Result Exception Faults 10-B
10.4 INSTRUCTION-ACCESS FAULT ... 10-10
10.5 DATA-ACCESS FAULT , ... 10-10
10.6 PARITY ERROR TRAP .. 10-11
10.7 BUS ERROR TRAP .. 10-11
10.B INTERRUPT TRAP ... 10-11
10.9 RESET TRAP ... 10-11
10.10 PIPELINE PREEMPTION ... 10-12
10.10.1 Floating-Point Pipelines .. 10-12
10.10.2 Load Pipeline .. 10-13
10.10.3 Graphics Pipeline 10-13
10.10.4 Using PI and PT Bits 10-13

CHAPTER 11
PROGRAMMING MODEL
11.1 REGISTER ASSIGNMENT 11-1
11.1.1 Integer Registers 11-1
11 .1.2 Floating-Point Registers 11-3
11 .1.3 Passing Structure Parameters in Memory...... 11-3
11 .1.4 Memory Parameter Area ... 11-3
11 .1.5 Environment Pointer ... 11-4
11 .1.6 Variable Length Parameter Lists 11-4
11 .1.7 Returning Structures ... 11-4
11.2 DATA ALIGNMENT .. 11-4
11.3 IMPLEMENTING A STACK .. 11-4
11 .3.1 Stack Entry and Exit Code ... 11-5
11 .3.2 Dynamic Memory Allocation on the Stack ... 11-7
11.4 MEMORY ORGANIZATION ; ... 11-7
11.5 INPUT/OUTPUT SPACE (BOB60XP ONLy) ... 11-7

CHAPTER 12
PROGRAMMING EXAMPLES
12.1 SMALL INTEGERS ... 12-1
12.2 SINGLE-PRECISION DIVIDE ... 12-2
12.3 DOUBLE-PRECISION DIVIDE 12-2
12.4 INTEGER MULTiPLy............ 12-3
12.5 CONVERSION FROM SIGNED INTEGER TO DOUBLE ... 12-4

xii

TABLE OF CONTENTS

Page
12.6 SIGNED INTEGER DIVIDE .. 12-4
12.7 STRING COpy ... 12-4
12.8 FLOATING-POINT PIPELINE ... 12-5
12.9 PIPELINING OF DUAL-OPERATION INSTRUCTIONS .. 12-6
12.10 PIPELINING OF DOUBLE-PRECISION DUAL OPERATIONS 12-9
12.11 DUAL INSTRUCTION. MODE 12-9
12.12 CACHE STRATEGIES FOR MATRIX DOT PRODUCT .. 12-10
12.13 3-D RENDERING ... 12-17
12.13.1 Distance Interpolation 12-19
12.13.2 Color Interpolation , 12-20
12.13.3 Boundary Conditions .. 12-23
12.13.3.1 Z-BUFFER MASKING 12-24
12.13.3.2 ACCUMULATOR INITIALIZATION ... 12-24
12.13.4 The Inner Loop 12-25
12.14 GRAPHICS TRANSFORMATION ... 12-26
12.14.1 Representation of Vertices 12-35
12.14.2 Graphics Transformation Matrix 12-35
12.14.3 Transformation Code Design ... 12-36
12.14.4 Transformation Performance .. 12-37
12.15 PERSPECTIVE DIVIDE .. 12-38

APPENDIX A
INSTRUCTION SET SUMMARY

APPENDIX B
INSTRUCTION FORMAT AND ENCODING

APPENDIX C
INSTRUCTION TIMINGS

APPENDIX D
INSTRUCTION CHARACTERISTICS

APPENDIX E
COMPATIBILITY BETWEEN
i860™ XR AND i860™ XP MICROPROCESSORS

INDEX

Figures

Figure Title Page

1-1 i860 ™ XR CPU Registers and Data Paths 1-3
1-2 i860 ™ XP CPU Registers and Data Paths ... 1-4
2-1 Real Number Formats .. 2-2
2-2 Pixel Format Examples .. 2-4
3-1 Register Set :... 3-1
3-2 Processor Status Register ... 3-3
3-3 Extended Processor Status Register ... 3-5
3-4 Directory Base Register 3-8
3-5 Floating-Point Status Register 3-11

xiii

TABLE OF CONTENTS

Figures

Figure Title Page

3-6 Concurrency Control Register (80860XP Only) 3-14
3-7 Concurrency Status Register 3-15
4-1 Memory Formats ... ;...................... 4-1
4-2 Big and Little Endian Memory Transfers•........ 4-2
4-3 Formats of Virtual Addresses 4-4
4-4 Address Translation ... 4-4
4-5 Formats of Page Table Entries .. 4-6
4-6 Invalid Page Table Entry .. 4-7
5-1 4K TLB Organization .. 5-2
5-2 4M TLB Organization 5-3
5-3 Cache Address Usage ... 5-5
5-4 Data Cache Organization (80860XR) .. 5-6
5-5 Data Cache Organization (80860XP) ... ~............ 5-7
5-6 Instruction Cache Organization (80860XR) 5-9
5-7 I nstruction Cache Organization (80860XP) ... 5-1 0
8-1 Pipelined Instruction Example ... 8-2
8-2 FMLOW Operation ... 8-7
8-3 Dual-Operation Data Paths .. 8-15
8-4 Data Paths by Instruction (1 of 8) 8-17
8-5 Data Path Mnemonics .. 8-25
8-6 PSR Fields for Graphics Operations ... 8-27
8-7 FADDP with 8-Bit Pixels ... 8-31
8-8 FADDP with 16-Bit Pixels ... 8-31
8-9 FADDP with 32 .. Bit Pixels ... 8-32
8-10 FADDZ with 16-Bit Z-Buffer 8-33
8-11 64-Bit Distance Interpolation .. 8-34
8-12 Dual-Instruction Mode Transitions (1 of 2) .. 8-37
11-1 Register Allocation 11-2
11-2 Stack Frame Format 11-6
12-1 Z-Buffer Interpolation 12-20
12-2 faddz Operands ,. 12-21
12-3 Pixel Interpolation for Gouraud Shading ... 12-23
12-4 faddp Operands 12-24
12-5 Functions of Parts of a Transformation Matrix 12-36

Tables

Table Title Page

2-1 Pixel Formats ... 2-3
2-2 Single and Double Real Encodings 2-5
3-1 Values of PS 3-4
3-2 Values of RB 3-9
3-3 Values of RC '" 3-10
3-4 Values of RM 3-11
3-5 Values of LRP1 and LRPO ... 3-13
3-6 Values of CO and DO 3-15
5-1 MESI Cache Line States (80860XP) .. 5-11
5-2 Internally Initiated Cache State Transitions (80860XP) 5-11

xiv

Table

5-3
5-4
6-1
7-1
7-2
8-1
8-2
9-1
9-2
10-1
10-2
11-1
12-1
12-2
12-3
A-1
A-2

TABLE OF CONTENTS

Tables

Title

Inquiry-Initiated Cache State Transitions (80860XP) .. .
Summary of Cache Flushing and Invalidation
CCU Addresses .. .
Control Register Encoding for Assemblers
Encoding of Special Bus Cycles .. .
OPC Encoding .. .
FAOOP MERGE Update .. .
Types of Traps (80860XR)
Register and Cache Values after Reset (80860XR)
Types of Traps (80860XP) .. .
Register and Cache Values after Reset (80860XP)
Register Allocation .. :
faddz Visualization .. .
Accumulator Initial Values .. .
Accumulator Initialization Table .. .
Precision Specification .. .
FADOP MERGE Update .. .

Examples

Example Title

7-1
7-2
7-3
7-4
11-1
11-2
11-3
11-4
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-19

Example of bla Usage
Cache Flush Procedure
Examples of lock and unlock Usage .. .
I nterrupt Acknowledge Sequence
Reading Misaligned 32-Bit Value
Subroutine Entry and Exit with Frame Pointer
Subroutine Entry and Exit without Frame Pointer :
Possible Implementation of alloca .. .
Sign Extension .. .
Loading Small Unsigned Integers ... ~
Single-Precision Divide
Double-Precision Divide .. .
Integer Multiply
Signed Integer to Double Conversion
Signed Integer Divide .. .
String Copy
Pipelined Add .. .
Pipelined Dual-Operation Instruction .. .
Pipelined Double-Precision Dual Operation
Dual-Instruction Mode : .. .
Matrix Multiply, Cached Loads Only (1 of 2) .. .
Matrix Multiply, Cached and Pipelined Loads (1 of 2)
Setting Pixel Size .. :
Register Assignments
Construction of Z Interpolants .. .
Construction of Color Interpolants
Z Mask Procedure

xv

Page

5-12
5-18

6-3
7~2(j
7.:.29
8-16
8-30

9;.1
9-11
10-1

10-12
11-1

12-22
12-25
12-26
A~2

A-5

Page

7-17
7-22
7-25
7-28
11-5
11 ~6
11-7
11-7
12-1
12-1
12-2
12-3
12-3
12-4
12-5
12-6
12-7
12-8

12:'10
12-11
12-13
12-19
12-17
12-18
12-23
12-24
12-25

TABLE OF CONTENTS

Examples

Example Title Page

12-20 Accumulator Initialization 12-27
12-21 3-D Rendering (1 of 2) 12-28
12-22 Graphics Transform (1 of 5) 12-30
12-23 Perspective Divide (1 of 2) 12-39

xvi

Architectural Overview

CHAPTER 1
ARCHITECTURAL OVERVIEW

The Intel i860 Microprocessor architecture balances integer, floating-point, and graphics
performance. Target applications include engineering workstations, scientific computing,
3-D graphics workstations, numerics accelerators, multiuser and multiprocessor systems.
The architecture achieves high throughput with RISe design techniques, pipelined and
parallel processing units, wide data paths, and large on-chip caches.

The i860 architecture was implemented first in the i860 XR microprocessor. The second
generation, the i860 XP microprocessor, is upward compatible for applications programs
and enhances the i860 microprocessor family with higher clock speeds, greater bus band
width, multiprocessor capabilities, larger on-chip caches, four Mbyte pages, and second
level cache support. '

1.1 OVERVIEW

The i860 microprocessor architecture supports more than just integer operations. The
architecture includes on a single chip:

• Integer operations

• Floating-point operations

• Graphics operations

• Memory management

• Data and instruction caches

Having a data cache as an integral part of the architecture provides support for vector
operations. The data cache supports applications programs in the conventional manner,
without explicit programming. For vector operations, however, programmers can explic
itly use the data cache as if it were a large block of vector registers.

To sustain high performance, i860 microprocessors incorporate wide information paths
that include:

• 64-bit external data bus

• 128-bit on-chip data bus

• 64-bit on-chip instruction bus

Floating-point and graphics programs can simultaneously use all three buses.

The i860 microprocessors include a RISe integer core processing unit with one-clock
instruction execution. The core unit processes integer instructions and provides com
plete support for operating systems, such as UNIX and OS/2. The core unit also drives
the graphics and floating-point hardware.

1-1

II

ARCHITECTURAL OVERVIEW

The i860 microprocessors support vector floating-point operations without special vector
instructions or vector registers. They accomplish this by using the on-chip data cache and
a variety of parallel techniques that include:

• Pipelined instruction execution with delayed branch instructions to avoid breaks in
the pipeline.

• Instructions that automatically increment index registers so as to reduce the number
of instructions needed for vector processing.

• Simultaneous integer and floating-point processing.

• Parallel multiplier and adder units within the floating-point unit.

• Pipelined floating-point hardware, with both scalar (nonpipelined) and vector (pipe
lined) variants of floating-point instructions. Software can switch between scalar and
pipelined modes.

• Large register set:

32 general-purpose integer registers, each 32 bits wide.

32 floating-point registers, each 32 bits wide, which can also be configured as 64-
and 128-bit registers. The floating-point registers also serve as the staging area
for data going into and out of the floating-point and graphics pipelines.

Figures 1-1 and 1-2 illustrate the registers and data paths of the i860 XR microprocessor
and i860 XP microprocessor respectively.

1.2 INSTRUCTIONS

There are two classes of instruction:

• Core instructions (executed by the integer core unit).

• Floating-point and graphics instructions (executed by the floating-point unit and
graphics unit).

The processors have a dual-instruction mode that can simultaneously execute one
instruction from each class (core and floating-point). Software can switch between dual
and single-instruction modes without overhead. Within the floating-point unit, dual
operation instructions (add-and-multiply, subtract-and-multiply) use the adder and mul
tiplier units in parallel. Using both dual-instruction mode and dual operation
instructions, i860 microprocessors can execute three operations simultaneously.

The integer core unit manages data flow and loop control for the floating-point units.
Together, they efficiently execute such common tasks as evaluating systems of linear
equations and performing Fast Fourier Transforms (FFT) and graphics transformations.

1-2

w

31

CJ) 4KBYTE

~ INSTRUCTION
> CACHE

32 %32

ADDRESS

1II1II ~~ ADDRESS

CJ)

~

64

8 KBYTE
DATA

CACHE

128

T T • ,--.1 FP MULTIPLIER UNIT

Figure 1-1. i860™ XR CPU Registers and Data Paths

31

114 64

240875i1-1

II

l

l> ::a
o
:J:
=i m
~
c:
::a
l>
r-

~
m ::a
<
~

@)

J:,.

31 31

~2

In
...J
I-
~

"'"

14 §~ ADDRESS

C/) 16 KBYTE C/) I C/)

~ INSTRUCTION ~ ~
> CACHE ~ ~

L-~-----a---~

M

Figure 1-2. i860™ XP CPU Registers and Data Paths

l:
@)

128

W I" I»
:D
0
:J:
=i m
0
-t
c:

M %64 I:D » r-

~ m
:D
<
~

240875i1-2

ARCHITECTURAL OVERVIEW

1.3 INTEGER CORE UNIT

The core unit is the administrative center of the processor. The core unit fetches both
integer and floating-point instructions. It contains the integer register file, and executes
load, store, integer, bit, and control-transfer operations. Its pipelined organization with
extensive bypassing and scoreboarding maximizes performance. Its instructions include:

• Loads and stores between memory and the integer and floating-point registers.
Floating-point loads can be pipelined in three levels to tolerate external memory
latency. A pixel store instruction contributes to efficient hidden-surface elimination.

• Transfers between the integer registers and the floating-point registers.

• Integer arithmetic for 32-bit signed and unsigned numbers. The 32-bit operations can
also perform arithmetic on smaller (8- or 16-bit) integers. (The graphics unit provides
arithmetic for 64-bit integers.)

• Shifts of the integer registers.

• Logical operations on the integer registers.

• Control transfers. The instruction set includes both direct and indirect branches and
call instructions as well as a branch for highly efficient loops. Many of these are
delayed transfers that avoid breaks in the instruction pipeline. One instruction pro
vides efficient loop control by combining the testing and updating of the loop index
with a delayed control transfer.

• System control functions, such as control register manipulation and cache
configuration.

• I/O and interrupt acknowledgment.

1.4 FLOATING-POINT UNIT

The floating-point unit contains the floating-point register file. This file can be accessed
as 8 x 128-bit registers, 16 x 64-bit registers, or 32 x 32-bit registers. Three additional
registers (KR, KI, and T) hold intermediate floating-point results.

The floating-point unit contains both the floating-point adder and the floating-point
multiplier. The adder performs floating-point addition, subtraction, comparison, and
conversions. The multiplier performs floating-point and integer multiply as well as
floating-point reciprocal operations .. Both units support 64- and 32-bit floating-point
values in IEEE Standard 754 format. Each of these units uses pipelining to deliver up to
one result per clock. The adder and multiplier can operate in parallel, producing up to
two results per clock. Furthermore, the floating-point unit can operate in parallel with
the core unit, sustaining a rate of two floating-point results per clock rate by overlapping
administrative functions with floating-point operations.

The RISC design philosophy minimizes circuit delays and enables using all the available
chip area to achieve the greatest performance for floating-point operations. The RISC
design philosophy, the use of pipelining and parallelism in the floating-point unit, and
the wide on-chip caches - all these factors contribute to extremely high levels of
floating-point performance.

1-5

II

ARCHITECTURAL OVERVIEW

Because i860 microprocessors employ RISe design principles, they d9 not have high
level math instructions. High-level math (and other) functions are implemented in soft
ware macros and libraries. For example, there is no sin instruction. The sin function is
implemented in software on i860 microprocessors. The sin routine for an i860 micropro-

. cessor, however, is still fast due to the high speed of the basic floating-point operations.
Commonly used math operations, such as the sin function, are offered by Intel as part of
a software library.

The floating-point data types, floating-point instructions, and exception handling all sup
port the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std
754-1985) with both single- and double-precision floating-point data types. Not all func
tions defined by the standard are implemented directly by the hardware. The i860 archi
tecture supplies the underlying data types, instructions, exception checking, and traps to
make it possible for software to implement the remaining functions of the standard
efficiently. Intel offers a software library that provides full IEEE-compatible arithmetic.

1.5 GRAPHICS UNIT

The graphics unit has 64-bit integer logic that supports 3-D graphics drawing algorithms.
This unit can operate in parallel with the core unit. It contains the special-purpose
MERGE register, and performs additions on integers stored in the floating-point regis
ter file.

These special graphics features focus on applications that involve three-dimensional
graphics with Gouraud or Phong color intensity shading and hidden surface elimination
via the Z-buffer algorithm. The graphics features of the i860 architecture assume that:

• The surface of a solid object is drawn with polygon patches which, like the pieces of a
puzzle, collectively approximate the shape of the original object.

• The color intensities of the vertices of the polygon and their distances from the viewer
are known, but the distances and intensities of the other points must be calculated by
interpolation.

The graphics instructions of the i860 microprocessor directly aid such interpolation. Fur
thermore, the i860 microprocessor recognizes the pixel as an 8-, 16-, or 32-bit data type.
It can compute individual red, blue, and green color intensity values within a pixel, but it
does so with parallel operations that take advantage of the 64-bit internal word size and
64-bit external data bus. An eight-byte MERGE register assists in parallelizing graphics
algorithms.

The graphics unit also provides addition and subtraction operations for 32- and 64-bit
integers, which are especially useful for high-resolution distance interpolation.

1-6

ARCHITECTURAL OVERVIEW

In addition to the support provided by the graphics unit, many 3-D graphics applications
directly benefit from the parallelism of the core and floating-point units. For example,
the 3-D rotation represented in homogeneous vector notation by ...

[X y Z W] [x y z 1] [j
o
cos t
-sin t
o

o
sin t
cos t
o

... is just one example of the kind of vector-oriented calculation that can be converted to
a program that takes full advantage of the pipelining, dual-instruction mode, dual
operations, and memory hierarchy of the i860 architecture.

1.6 MEMORY MANAGEMENT UNIT

The on-chip MMU of i860 microprocessors performs the translation of addresses from
the linear logical address space to the linear physical address for both data and instruc
tion access. Address translation is optional; when enabled, address translation uses page
tables. Information from these tables is cached on-chip. The i860 architecture provides
the basic features (bits and traps) to implement paged virtual memory and to implement
user/supervisor protection at the page level- all compatible with the paged memory
management of the Inte1386™ and Inte1486™ microprocessors.

The i860 XR microprocessor uses four-Kbyte pages with a two-level structure of page
directories and page tables of lK entries each. The TLB (translation look-aside buffer)
is a 64-entry, four-way set-associative memory, which caches translation information for
quick access.

The i860 XP microprocessor supports both four-Kbyte pages and four-Mbyte pages. The
four-Kbyte pages are compatible with those of the i860 XR microprocessor. There is a
two-level structure of page directories and page tables of lK entries each. The TLB is a
64-entry, four-way set-associative memory. The four-Mbyte pages do not use second
level page tables. They are supported by a second TLB, which is a 16-entry, four-way
set-associative memory. The four-Kbyte and four-Mbyte pages can be used together in
any combination.

1.7 CACHES

In addition to the page translation caches (TLBs) mentioned previously, the i860 micro
processor contains separate on-chip caches for data and instructions. Caching is trans
parent, except to systems programmers who must maintain cache consistency when
switching tasks, modifying instructions, or changing system memory parameters. The
on-chip cache controller also provides the interface to the external bus with a pipelined
structure that allows up to three outstanding bus cycles.

1-7

II

ARCHITECTURAL OVERVIEW

On the i860 XR microprocessor, the instruction cache is a two-way, set-associative mem
ory of four Kbytes, with 32-byte blocks. The data cache is a write-back cache, composed
of a two-way, set-associative memory of eight Kbytes, with 32-byte blocks.

On the i860 XP microprocessor, the instruction cache is a four-way, set-associative mem
ory of 16 Kbytes, with 32-byte lines. The data cache is a write-back cache, composed of a
four-way, set-associative memory of 16 Kbytes, with 32-byte lines. A MESI cache proto
col, combined with support for inquiry cycles, ensures that cache consistency is main
tained in multiprocessor and multimaster systems.

1.8 PARALLEL ARCHITECTURE

The i860 architecture offers a high level of parallelism in a form that is flexible enough
to be applied to a wide variety of processing styles:

• Conventional programs and conventional compilers can use i860 microprocessors as
scalar machines and still benefit from their high performance. Even when used as
scalar machines, i860 microprocessors implement concurrency between integer and
floating-point operations, as long as there are no conflicts for internal resources. An
integer instruction that follows a floating-point instruction begins immediately, over
lapping the floating-point instruction. A floating-point instruction that follows an
integer instruction also begins immediately.

• Compilers designed for the vector model can treat i860 microprocessors as vector
machines.

• Advanced instruction-scheduling technology for compilers can compare the process
ing requirements and data dependencies of programs with the available resources of
the i860 microprocessor, and can take maximum advantage of its dual-instruction
mode, pipe lining, and caching.

An established compiler technology for the vector model of computation already exists.
This technology can be applied directly to the i860 architecture. The key to treating the
i860 microprocessors as vector machines is choosing the appropriate vector primitives
that the compiler assumes are available on the target machine. (Intel has defined a
standard library of vector primitives.) The vector primitives are implemented as hand
coded subroutines; the compiler generates calls to these subroutines. If a compiler
depends on the traditional concept of vector registers, it can implement them by map
ping these registers to specific memory addresses. By virtue of frequent access to these
addresses, the simulated registers will reside permanently in the data cache.

Existing programs can be upgraded to take better advantage of the parallel i860 arch i
tectureusing vector-oriented technology. Flow analysis or "vectorizing" tools can iden
tify parallelism that is implicit in existing programs. When modified (either manually or
automatically) and compiled by an appropriate compiler for the i860 architecture, these
programs can achieve an even greater performance gain.

1-8

ARCHITECTURAL OVERVIEW

Designers of compilers will find that the i860 architecture offers more flexibility than
traditional vector architectures. The instruction set of the i860 architecture separates
addressing functions from arithmetic functions, which provides two benefits:

1. It is possible to address arbitrary data structures. Data structures are no longer
limited to vectors, arrays, and matrices. Parallel algorithms can be applied to linked
lists (for example) as easily as to matrices.

2. A richer set of operations is available at each node of a data structure. It becomes
possible to perform different operations at each node, and there is no limit to the
complexity of each operation. With the i860 architecture, it is no longer necessary to
pass all elements of a vector several times to implement complex vector operations.

1.9 SOFTWARE DEVELOPMENT ENVIRONMENT

The software environment available from Intel for the i860 architecture includes:

• Assembler, linker, C and FORTRAN compilers, and FORTRAN vectorizer.

• Simulator and debugger.

• UNIX operating system.

• APX (Attached Processor Executive), an integrated operating environment for i860
microprocessors hosted on Inte1386/Intel486 CPU platforms.

• Libraries of higher-level math functions and IEEE-standard exception support. Intel
offers such libraries in a form that can be utilized by a variety of compilers.

• Libraries of vector arithmetic.

• Libraries of graphics functions.

1-9

II

Data Types 2
I

CHAPTER 2
DATA TYPES

i860 microprocessors provide operations for integer and floating-point data. Integer II
operations are performed on 32-bit operands with some support also for 64-bit operands.
Load and store instructions can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit oper-
ands. Floating-point operations are performed on IEEE-standard 32- and 64-bit formats.
Graphics instructions operate on arrays of 8-, 16-, or 32-bit pixels.

Bits within data formats are numbered from zero starting with the least significant bit.
Illustrations of data formats in this manual show the least significant bit (bit zero) at the
right.

2.1 INTEGER

An integer is a 32-bit signed value in standard two's complement form. A 32-bit integer
can represent a value in the range -2,147,483,648 (_231

) to 2,147,483,647 (+231
- 1).

Arithmetic operations on 8- and 16-bit integers can be performed by sign-extending the
8- or 16-bit values to 32 bits, then using the 32-bit operations.

There are also add and subtract instructions that operate on 64-bit integers.

When an eight- or 16-bit item is loaded into a register, it is converted to an integer by
sign-extending the value to 32 bits. When an eight- or 16-bit item is stored from a
register, the corresponding number of low-order bits of the register are used.

2.2 ORDINAL

Arithmetic operations are available for 32-bit ordinals. An ordinal is an unsigned inte
ger. An ordinal can represent values in the range 0 to 4,294,967,295 (+232

- 1).

Also, there are add and subtract instructions that operate on 64-bit ordinals.

2.3 SINGLE-PRECISION REAL

A single-precision real (also called "single real") data type is a 32-bit binary floating
point number. See Figure 2-1. Bit 31 is the sign bit; bits 30 .. 23 are the exponent; and
bits 22 .. 0 are the fraction. In accordance with ANSI/IEEE standard 754, the value of a
single-precision real is defined as follows:

1. If e = 0 and f ~ 0 or e = 255 then generate a floating-point source-exception trap
when encountered in a floating-point operation.

2. If 0 < e < 255, then the value is -Is x 1.f x 2e- 127
• (The exponent adjustment 127

is called the bias.)

3. If e = 0 and f = 0, then the value is signed zero.

2-1

DATA TYPES

Single-Precision Real

tC e T °1
SIGN ~ + i EXPONENT~
FRACTION _______ ---...J_

Double-Precision Real

tT · T
t t, .. ___________ + _____ FRACTION
_ - EXPONENT
'---------'-------,.--------- SIGN

Figure 2-1. Real Number Formats

240875i2-1

The special values infinity, NaN, indefinite, and denormal generate a trap when encoun
tered. The trap handler implements IEEE-standard results. (Refer to Table 2-2 for
encoding of these special values.)

2.4 DOUBLE-PRECISION REAL

A double-precision real (also called "double real") data type is a 64-bit binary floating
point number. See Figure 2-1. Bit 63 is the sign bit; bits 62 .. 52 are the exponent; and bits
51..0 are the fraction. In accordance with ANSI/IEEE standard 754, the value of a
double-precision real is defined as follows:

1. If e = 0 and f ~ 0 or e = 2047, then generate a floating-point source-exception trap
when encountered in a floating-point operation.

2. If 0 < e < 2047, then the value is -ls x 1.f x 2e
-

1023
• (The exponent adjustment

1023 is called the bias.)

3. If e = 0 and f = 0, then the value is signed zero.

2-2

DATA TYPES

The special values infinity, NaN, indefinite, and denormal generate a trap when encoun
tered. The trap handler implements IEEE-standard results. (Refer to Table 2-2 for
encoding of these special values.)

A double real value occupies an even/odd pair of floating-point registers. Bits 31..0 are III
stored in the even-numbered floating-point register; bits 63 .. 32 are stored in the next
higher odd-numbered floating-point register.

2.5 PIXEL

A pixel may be 8, 16, or 32 bits long, depending on color and intensity resolution
requirements. Regardless of the pixel size, the processor always operates on 64 bits of
pixel data at a time. The pixel data type is used by two kinds of instructions:

• The selective pixel-store instruction that helps implement hidden surface elimination.

• The pixel add instruction that helps implement 3-D color intensity shading.

To perform color intensity shading efficiently in a variety of applications, the processor
defines three pixel formats according to Table 2-1.

Figure 2-2 illustrates one way of assigning meaning to the fields of pixels. These assign
ments are for illustration purposes only. The processor defines only the field sizes, not
the specific use of each field. Other ways of using the fields of pixels are possible.

2.6 REAL-NUMBER ENCODING

Table 2-2 presents the complete range of values that can be stored in the single and
double real formats. Not all possible values are directly supported by the processor. The
supported values are the normals and the zeros, both positive and negative. Other values
are not generated by i860 microprocessors, and, if encountered as input to a floating
point instruction, they trigger the floating-point source exception. Exception-handling
software can use the unsupported values to implement denormals, infinities, and NaN s.

Table 2-1. Pixel Formats

Pixel Bits of Bits of Bits of Bits of
Size Color 1 Color 2 Color 3 Other Attribute

(in bits) Intensity1 IntenSity1 Intensity1 (Texture, Color)

8 N (:S; 8) bits of intensity2 8-N

16 6 I 6 I 4 0
32 8 8 8 8

NOTES: 1 The intensity attribute fields may be assigned to colors in any· order convenient to the
application.

2 With 8-bit pixels, up to 8 bits can be used for intensity; the remaining bits can be used for any
other attribute, such as color or texture. Bits that require interpolation (shading), such as those
for intensity, must be the low-order bits of the pixel.

2-3

DATA TYPES

~
8-B[TPIXEL ~

/,5 14 13 12 11 10/9 8 7 6 5 4/3 2 1 0

16-BIT PIXEL RED GREEN BLUE

\ \ \
32-BIT PIXEL

/31 30 2fJ 28 2726 25 24/23 22 21 2() 19 18 17 16/15 14 13 12 11 10 9 8/7 6 5 4 3 2 1 0

RED GREEN BLUE TEXTURE

\ \ \ \

NOTE:
THESE ASSIGNMENTS OF SPECIFIC MEANINGS TO THE FIELDS OF PIXELS ARE FOR
ILLUSTRATION ONLY.
ONLY THE FIELD SIZES ARE DEFINED, NOT THE SPECIFIC USE OF EACH FIELD.

Figure 2-2. Pixel Format Examples

2-4

240875i2-2

DATA TYPES

Table 2-2. Single and Double Real Encodings

Class Sign
Biased Fraction

Exponent ff .. ff*

0 11..11 11 .. 11

Quiet

en 0 11 .. 11 10 .. 00
z m 0 11 .. 11 01 .. 11 z

Signaling

0 11 .. 11 00 .. 01

en Infinity 0 11 .. 11 00 .. 00
Q)
> :;:::; 0 11 .. 10 11 .. 11 ·w
0 a.. Normals

0 00 .. 01 00 .. 00

en
(ij 0 00 .. 00 11 .. 11
Q)

a::
Denormals

0 00 .. 00 00 .. 01

Zero 0 00 .. 00 00 .. 00

Zero 1 00 .. 00 00 .. 00

1 00 .. 00 00 .. 01

en Denormals
(ij
Q) 1 00 .. 00 11 .. 11 a::

1 00 .. 01 00 .. 00

Normals

en 1 11 .. 10 11 .. 11
Q)
>

Infinity ·ia 1 11 .. 11 00 .. 00
0>
Q)

z 1 11 .. 11 00 .. 01

Signaling

en 11 .. 11 01 .. 11
z « 1 11 .. 11 10 .. 00 z

Quiet

1 11 .. 11 11 .. 11

Single: ~ 8 bits-i> ~23 bits-i>
Double: ~11 bits-i> ~52 bits-i>

NOTE: *Integer bit is implied and not stored.

Registers 3

________________ B

CHAPTER 3
REGISTERS

As Figure 3-1 shows, the i860 microprocessor has the following registers:

• An integer register file

• A floating-point register file .

• Control registers

• Special-purpose registers

31
INTEGER

0 63
FLOATING-POINT

0 rO f1 0 0 fO
r1 f3 f2
r2 f5 f4
r3 f7 f6
r4 f9 f8
r5 f11 f10
r6 f13 f12
r7 f15 f14
r8 f17 f16
r9 f19 f18
r10 f21 f20
r11 f23 f22
r12 f25 f24
r13 f27 f26
r14 f29 f28
r15 f31 f30
r16
r17 SPECIAL PURPOSE
r18 63 0

r19

i iLGE
r20
r21
r22
r23
r24 CONTROL
r25 31 o 31 0

r26

_~~fi' r27 w ~

r28 pO dirbase
r29 p1· db
r30 p2 fsr
r31 p3 . epsr

NEWCURR I
STAT

D NOT AVAILABLE WITH 80860XR CPU

Figure 3-1. Register Set

3-1

II

240875i3-1

REGISTERS

The control registers are accessible only by load and store control-register instructions;
the integer and floating-point registers are accessed by arithmetic operations and load
and store instructions. The special-purpose registers KR, KI, and T are used by floating
point instructions; MERGE is used by graphics instructions. NEWCURR is a 32-bit
counter used in the i860 XP microprocessor for concurrency control; it is accessed by
memory load and store instructions. For information about initialization of registers,
refer to the reset trap in Chapters 9 and 10. For information about protection as it
applies to registers, refer, to the st.c. instruction in Chapter 7.

3.1 INTEGER REGISTER FILE

There are 32 integer registers, each 32 bits wide, referred to as rO through r31, which are
used for address computation and scalar integer computations. Register rO always
returns zero when read. This special behavior of rO makes it useful for modifying the
function of certain instructions. For example, specifying rO as the destination of a sub
tract (thereby effectively discarding the result) produces a compare instruction. Simi
larly, using rO as one source operand of an OR instruction produces a test-for-zero
instruction.

3.2 FLOATING-POINT REGISTER FILE

There are 32 floating-point registers, each 32 bits wide, referred to as fO through f31,
which are used for floating-point computations. Registers fO and 11 always return zero
when read. The floating-point registers are also used by a set of integer operations,
primarily for graphics computations.

The floating-point registers act as buffer registers in vector computations, while the data
cache performs the role of the vector registers of a conventional vector processor.

When accessing 64-bit floating-point or integer values, the i860 microprocessor uses an
even/odd pair of registers. When accessing 128-bit values, it uses an aligned set of four
registers (fO, f4, f8, f12, f16, f20, f24, or f28). The instruction must designate the lowest
register number of the set of registers containing 64- or 128-bit values. Misaligned reg
ister numbers produce undefined results. The register with the lowest number contains
the least significant part of the value. For 128-bit values, the register pair with· the lower
number contains the value from the lower memory address; the register pair with the
higher number contains the value from the higher address.

3.3 PROCESSOR STATUS REGISTER

The processor status register (psr) contains miscellaneous state information for the cur
rent process. Figure 3-2 shows the format of the psr.

• BR (Break Read) and BW (Break Write) enable a data access trap when the operand
address matches the address in the db register and a read or write (respectively)
occurs. (Refer to Section 3.5 for more about the db register.)

3-2

REGISTERS

BREAK READ
BREAK WRITE
CONDITION CODE
LOOP CONDITION CODE
INTERRUPT MODE
PREVIOUS INTERRUPT MODE
USER MODE
PREVIOUS USER MODE
INSTRUCTION TRAP
INTERRUPT
INSTRUCTION ACCESS TRAP
DATA ACCESS TRAP

~111,
FLOATING-POINT TRAP
DELAYED SWITCH
DUAL INSTRUCTION MODE

, ,~ ('If , If' ('If , { 'If , h~

/3130 29 28 2726 25 24/2322/2120 19 18 17/16/15//4/13/12/11/10/9/8/7/6/5/-1/3/2/ I/O

K D DIFI~I! I I
P L

C " "I PM PS SC N I P U I I C

F M SIT T T N T U MMC C W Rd

\ \ \ \~

I t KILL NEXT FP INSTRUCTION
(RESERVED)
SHIFT COUNT
PIXEL SIZE
PIXEL MASK

D RESERVED BY INTEL CORPORATION

III CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL

Figure 3-2. Processor Status Register

240875i3-2

• Various instructions set CC (Condition Code) according to the value of the result, as
explained in Chapter 7. The conditional branch instructions test CC. The bla instruc
tion described in Chapter 7 sets and tests LCC (Loop Condition Code).

• 1M (Interrupt Mode) enables external interrupts if set; disables interrupts if clear. 1M
does not affect parity error or bus error interrupts in the i860 XP microprocessor.
(Chapters 9 and 10 cover interrupts.)

• U (User Mode) is set when the i860 microprocessor is executing in user mode; it is
clear when the i860 microprocessor is executing in supervisor mode. In user mode,
writes to some control registers are inhibited. This bit also controls the memory pro
tection mechanism described in Chapter 4.

• PIM (Previous Interrupt Mode) and PU (Previous User Mode) save the correspond
ing status bits (IM and U) on a trap, because those status bits are changed when a
trap occurs. They are restored into their corresponding status bits when returning
from a trap handler with a branch indirect instruction when a trap flag is set in the
psr. (Chapters 9 and 10 provide the details about traps.)

3-3

REGISTERS

• IT (Instruction Trap), IN (Interrupt), IAT (Instruction Access Trap), DAT (Data
Access Trap), and FT (Floating-Point Trap) are trap flags. They are set when the
corresponding trap condition occurs. The trap handler examines these bits to deter
mine which condition or conditions have caused the trap. Refer to Chapters 9 and 10
for a more detailed explanation.

• DS. (Delayed Switch) is set if a trap occurs during the instruction before dual
instruction mode is entered or exited. If DS is set and DIM (Dual Instruction Mode)
is clear, the i860 microprocessor switches to dual-instruction mode one instruction
after returning from the trap handler. If DS and DIM are both set, the i860 micro
processor switches to single-instruction mode one instruction after returning from the
trap handler. Chapters 9 and 10 explain how trap handlers use these bits.

• When a trap occurs, the i860 microprocessor sets DIM if it is executing in dual
instruction mode; it clears DIM if it is executing in single-instruction mode. If DIM is
set, the i860 microprocessor resumes execution in dual-instruction mode after return
ing from the trap handler.

• When KNF (Kill Next Floating-Point Instruction) is set, the next floating-point
instruction is suppressed (except that its dual-instruction mode bit is interpreted). A
trap handler sets KNF if the trapped floating-point instruction should not be reexe
cuted. KNF is especially useful for returning from a trap that occurred in dual
instruction mode, because it permits the core instruction to be executed while the
floating-point instruction is suppressed. KNF is automatically reset by the i860 micro
processor when the instruction has been successfully bypassed. It is possible that the
core instruction may cause a trap when the floating-point instruction is suppressed. In
this case KNF remains set, permitting retry of the core instruction.

• SC (Shift Count) stores the shift count used by the last right-shift instruction. It
controls the number of shifts executed by the double-shift instruction, as described in
Chapter 7.

• PS (Pixel Size) and PM (Pixel Mask) are used by the pixel-store instruction described
in Chapter 7 and by the graphics instructions described in Chapter 8. The values of
PS control pixel size as defined by Table 3-1. The bits in PM correspond to pixels to
be updated by the pixel-store instruction pst.d. The low-order bit of PM corresponds
to the low- order pixel of the 64-bit source operand of pst.d. The number of low-order
bits of PM that are actually used is the number of pixels that fit into 64-bits, which
depends upon PS. If a bit of PM is set, then pst.d stores the corresponding pixel.

Table 3-1. Values of PS

Value
Pixel Size Pixel Size

in Bits in Bytes

00 8 1
01 16 2
10 32 4
11 (undefined) (undefined)

3-4

REGISTERS

3.4 EXTENDED PROCESSOR STATUS REGISTER

The extended processor status register (epsr) contains additional state information for
the current process beyond that stored in the psr. Figure 3-3 shows the format of the
epsr.

• The processor type is 1 for the i860 XR microprocessor; 2 for the i860 XP
microprocessor.

• The stepping number has a unique value that distinguishes among different revisions
of the processor.

• IL (Interlock) is set by the processor if a trap occurs after a lock instruction but
before the load or store following the subsequent unlock instruction. IL indicates to
the trap handler that a locked sequence has been interrupted. The trap handler must
clear IL.

• WP (Write Protect) controls the semantics of the W bit of page table entries. A clear
W bit in either the directory or the page table entry causes writes to be trapped.
When WP is clear, writes are trapped in user mode, but not in supervisor mode.
When WP is set, writes are trapped in both user and supervisor modes.

WRITE-PROTECT MODE l INTERLOCK 1
PARITY ERROR FLAG * ------., •

/31/3O/29/28/27/26/25/24/23/22/212tJ 10 18/17/16/15/14/13/12 11 10 0 8/7 6 5 '" 3 2 1 0

\

S P P T D B 0 BI~I DCS H ~ I ~ Iwl'l STEPPING I PROCESSOR I 10 I T ~ I S F E ~ T F F P L NUMBER TYPE

II') I' ~ I I' ' I~) 'n ~ BUS ERROR FLAG *
INTERRUPT
DATA CACHE SIZE
PAGE-TABLE BIT MODE
BIG ENDIAN MODE
OVERFLOW FLAG
BEF OR PEF AT SUPERVISOR LEVE
TRAP ON DELAYED INSTRUCTION
TRAP ON AUTOINCREMENT
TRAP ON PIPELINE USE
PIPELINE INSTRUCTION
STRONG ORDERING MODE

D RESERVED BY INTEL CORPORATION

~ CAN BE WRITTEN ONLY FROM SUPERVISOR LEVEL·

II READ ONLY (NOT WRITABLE BY SOFTWARE)

~ RESERVED IN THE 80860XR CPU

Figure 3-3. Extended Processor Status Register

3-5

L*
* * * * *

240875i3-3

II

REGISTERS

• PEF (parity error flag) is set by the i860 XP microprocessor when a parity error trap
occurs. As soon as PEF is set, further parity error and bus error traps are masked.
Software must clear PEF to reenable such traps. PEF is set at RESET.

• BEF (bus error flag) is set by the i860 XP microprocessor when the BERR pin is
asserted, indicating a bus error. As soon as BEF is set, further parity error .and bus
error traps are masked. Software must clear BEF to reenable such traps. BEF is set at
RESET.

• INT (Interrupt) is the value of the INT input pin, except during a locked sequence
when the INT flag is zero.

• DCS (Data Cache Size) is a read-only field that tells the size of the on-chip data
cache. The number of bytes actually available is 212+DCS; therefore, a value of zero
indicates 4 Kbytes, one indicates 8 Kbytes, etc. The value of DCS for the i860 XR
microprocessor is one, which indicates eight Kbytes. The value of DCS for the
i860 XP microprocessor is two, which indicates 16 Kbytes.

• PBM (Page-Table Bit Mode) determines which bit of page-table entries is output on
the PTB pin of the i860 XR CPU. When PBM is clear, the PTB signal reflects bit CD
of the page-table entry used for the current cycle. When PBM is set, the PTB signal
reflects bit WT of the page-table entry used for the current cycle. PBM has no effect
in the i860 XP microprocessor, it is used only by the i860 XR microprocessor.

• BE (Big Endian) controls the ordering of bytes within a data item in memory. Nor
mally (i.e., when BE is clear) the i860 microprocessor operates in little endian mode,
in which the addressed byte is the low-order byte. When BE is set (big endian mode),
the low-order three bits of all load and store addresses are complemented, then
masked to the appropriate boundary for alignment. This causes the addressed byte to
be the most significant byte. Big endian mode affects not only the memory load and
store instructions but also the Idio, stio, Idint, and scye instructions. Refer to
Chapter 4 for more information on byte ordering.

• OF (Overflow Flag) is set by adds, addu, subs, and subu when integer overflow
occurs. For adds and subs, OF is set if the carry from bit 31 is different than the carry
from bit 30. For addu, OF is set if there is a carry from bit 31. For subu, OF is set if
there is no carry from bit 31. Under all other conditions, it is cleared by these instruc
tions. OF Can be changed by arithmetic instructions in either user or supervisor mode.
It can be changed by the st.e instruction in supervisor mode only. OF controls the
function of the intovr instruction (refer to Chapter 7).

• BS (bus or parity error trap in supervisor mode) is set by the i860 XP microprocessor
when a bus or parity error occurs while the processor is in supervisor mode. The
operating system can use this bit to decide, for example, whether to abort the cur":
rently running process (if BS'= 0) or reboot the system (if BS = 1).

• DI (trap on delayed instruction) is set by the i860 XP microprocessor when a trap
occurs on a delayed instruction (the instruction located after a delayed branch
instruction). When DI is set, the trap handler must restart the interrupted procedure
from the branch instruction rather than at the address in fir.

• TAl (trap on auto increment instruction) is set by the i860 XP microprocessor when a
trap occurs on an instruction with auto increment (including the bla instruction).
When TAl is set, the trap handler should undo the auto increment (that is, restore
src2 to its original value).

3-6

REGISTERS

• PT (trap on pipeline use) indicates to the i860 XP microprocessor that a trap should
be generated and PI should be set when it executes an instruction that uses the
floating-point or graphics unit. Such instructions include all the instructions of
Chapter 8, plus the pfld instruction. PT is set and cleared only by software. It can be
used by the trap handler to avoid unnecessary saving and restoring of the pipelines
(refer to Chapters 9 and 10). When a trap due to PT occurs, the floating-point oper
ation has not started, and the pipelines have not been advanced. Such a trap also sets
the IT bit of psr.

• The behavior of PI (pipeline instruction) depends on the setting of PT. If PT = 0, the
i860 XP microprocessor sets PI when any pipelined instruction or pfld is executed. If
PT = 1, the processor sets PI when it decodes any instruction that uses the pipes,
whether scalar or pipelined. Refer to Chapters 9 and 10.

• SO (strong ordering) indicates whether the processor is in strong ordering mode
(SO = 1) or weak ordering mode (SO = 0). SO is set if the EWBE# pin is active
(LOW) at RESET.

3.5 DATA BREAKPOINT REGISTER

The data breakpoint register (db) is used to generate a trap when the i860 microproces
sor accesses an operand at the virtual address stored in this register. The trap is enabled
by BR and BW in psr. When comparing, a number of low order bits of the address are
ignored, depending on the size of the operand. For example, a 16-bit access ignores the
low-order bit of the address when comparing to db; a 32-bit access ignores the low-order
two bits. This ensures that any access that overlaps the address contained in the register
will generate a trap. The trap occurs before the register or memory update by the load or
store instruction.

3.6 DIRECTORY BASE REGISTER

The directory base register dirbase (shown in Figure 3-4) controls address translation,
caching, and bus options.

• ATE (Address Translation Enable), when set, enables the virtual-address translation
mechanism described in Chapter 4.

• DPS (DRAM Page Size) controls how many bits to ignore when comparing the cur
rent bus-cycle address with the previous bus-cycle address to· generate the NENE#
signal. This feature allows for higher speeds with static column or page-mode
DRAMs when consecutive reads and writes access the same column or page. The
comparison ignores the low-order 12 + DPS bits. A value of zero is appropriate for
one bank of 256Kxn RAMs, 1 for 1Mxn RAMS, etc. For interleaved memory,
increase DPS by one for each power of interleaving-add one for 2-way, and two for
4-way, etc.

~_7

II

REGISTERS

LATE BACK-OFF MODE- * --------------,1
CODE SIZE a-BITS-----------'J
REPLACEMENT BLOCK'-----------.l
REPLACEMENT CONTROL---------" y

/3130 2926 2726 25 242322 21 2tJ 111 16 1716 15 14 13 12/11 10111 6/7/6/5/"/3 2 1/0,

C L I B AZ
DIRECTORY TABLE BASE (DTB) RC RB S B T L DPS T ~

a I E

\ \ \ \ \ \ \ \ \

I-CACHE, T,LB_IN_VA_L_ID_A_TE ___________ +--'t t J
BUS LOCK- J
DRAM PAGE SIZE
ADDRESS TRANSLATION ENABLE----------------'

~ RESERVED IN a0860XR CPU

Figure 3-4. Directory Base Register

240875i3-4

• When BL (Bus Lock) is set, external bus accesses are locked. The LOCK# signal is
asserted with the next bus cycle (excluding instruction fetch and write-back cycles)
whose internal bus request is generated after BL is set. It remains set on every sub
sequent bus cycle as long as BL remains set. The LOCK# signal is deasserted on the
next load or store instruction after BL is cleared. A trap that occurs during a locked
sequence immediately clears BL and sets IL in epsr. In this case the trap handler
should resume execution at the beginning of the locked sequence. The lock and
unlock instructions control the BL bit (refer to Chapter 7). The result of modifying
BL with the st.c instruction is not defined.

• ITI (Instruction-Cache, TLB Invalidate), when set in the value that is loaded into
dirbase, causes all entries in the instruction cache and address-translation cache
(TLB) to be marked invalid. With the i860 XP microprocessor, ITI also invalidates all
virtual tags in the data cache. The ITI bit does not remain set in dirbase. ITI always
appears as zero when read from dirbase.

• When software sets the' LB bit, the i860 XP microprocessor enters two-clock late
back~off mode. This mode gives two additional clock periods of decision time to the
external logic that may need to use the BOFF# signal to cancel a bus cycle or data
transfer. If the processor enters one-clock late back-off mode during RESET via
configuration pin strapping, the LB bit has no effect, and it is impossible to enter
two-clock late back-off mode. Furthermore, software cannot exit two-clock late back
off mode once it is activated; the LB bit cannot be cleared except by resetting the
processor.

3-8

REGISTERS

• When CS8 (Code Size 8-Bit) is set, instruction cache misses are processed as 8-bit bus
cycles. When this bit is clear, instruction cache misses are processed as 64-bit bus
cyCles. This bit cannot be set by software; hardware sets this bit at initialization time
with the INT/CS8 pin. It can be cleared by software (one time only) to allow the
system to execute out of 64-bit memory after bootstrapping from 8-bit PROM. A
nondelayed branch to code in 64-bit memory should directly follow the st.c instruc
tion that clears CS8, in order to make the transition from 8-bit to 64-bit memory
occur at the correct time. The branch instruCtion must be aligned on a 64-bit bound- II
ary. Refer to the CS8 mode in the i860™ 64-Bit Microprocessor Hardware Design Guide
for more information.

• RB (Replacement Block) identifies the cache block (line or way) to be replaced by
cache replacement algorithms. RB conditions the cache flush instruction flush, which
is discussed in Chapter 7. Table 3-2 explains the values of RB.

• RC (Replacement Control) controls cache replacement algorithms. Table 3-3
explains the significance of the values of RC. The use of the RC and RB to imple
ment data cache flushing is described in Chapter 4.

• DTB (Directory Table Base) contains the high-order 20 bits of the physical addess of
the page directory when address translation is enabled (i.e., ATE = 1). The low
order 12 bits of the address are zeros (therefore the directory must be located on a
4K boundary).

3.7 FAULT INSTRUCTION REGISTER

When a trap occurs, this register (the fir) contains the address of the instruction that
caused the trap, as described in Chapters 9 and 10. The value of the fir can be accessed
by an Id.c instruction. The trap address can be read from the fir only once; reading the fir
anytime except the first time after a trap saves in idest one of the following values:

• In single-instruction mode, the address of the Id.c instruction

• In dual-instruction mode, the address of its floating-point companion of the Id.c
instruction (address of the Id.c - 4).

The fir cannot be modified by the st.c instruction.

Table 3-2. Values of RB

Replace Instruction

Value
Replace and Data Cache Way
TLB Way

i860™ XR CPU i860 ™ XP CPU

o 0 0 0 0

o 1 1 1 1

10 2 0 2

1 1 3 1 3

3-9

REGISTERS

Table 3-3. Value$ of RC

Value Meaning

00 Selects the normal (random) replacement algorithm where any block in the set may be
replaced on cache misses in all caches.

01 Instruction, data, and TLB cache misses replace the block selected by RB. This mode is
used for cache and TLB testing.

10 Data cache misses replace the block selected by RB. Instruction and TLB caches use
random replacement. This mode is used when flushing the data cache with the flush
instruction.

11 Disables data cache replacement. Instruction and TLB caches use random replacement.

3.8 FLOATING-POINT STATUS REGISTER

The floating-point status register (fsr) contains the floating-point trap and rounding
mode status for the current process. Figure 3-5 shows its format.

• If FZ (Flush Zero) is clear and underflow occurs, a result-exception trap is generated.
When FZ is set and underflow occurs, the result is set to zero, and no trap due to
underflow occurs.

• If TI (Trap Inexact) is clear, inexact results do not cause a trap. If TI is set, inexact
results cause a trap. The sti~ky inexact flag (SI) is set whenever an inexact result is
produced, regardless of the setting of TI.

• RM (Rounding Mode) specifies one of the four rounding modes defined by the IEEE
standard. Given a true result b that cannot be represented by the target data type, the
i860 microprocessor determines the two representable numbers a and c that most
closely bracket b in value (a < b < c). The i860 microprocessor th~n rounds (changes)
b to a or c according to the mode selected by RM as defined in Table 3-4. Rounding
introduces an error in the result that is less than one least-significant bit.

• The U-bit (Update Bit), if set in the value that is loaded into fsr by a st.c instruction,
enables updating of the result-status bits (AE, AA, AI, AO, AU, MA, MI, MO, and
MU) in the first-stage of the floating-point adder and multiplier pipelines. If this bit is
clear, the result-status bits are unaffected by a st.c instruction; st.c ignores the corre
sponding bits in the value that is being loaded. A st.c always updates fsr bits 21..17
and 8 .. 0 directly. The U-bit does not remain set; it always appears a zero when read.
A trap handler that has interrupted a pipelined operation sets the U-bit to enable
restoration of the result-status bits in the pipeline. Refer to Chapters 9 and 10 for
details.

• The FTE (Floating-Point Trap Enable) bit, if clear, disables all floating-point traps
(invalid input operand, overflow, underflow, and inexact result). Trap handlers clear
it while saving and restoring the floating-point pipeline state (refer to Chapters 9 and
10) and to produce NaN, infinite, or denormal results without generating traps.

• SI (Sticky Inexact) is set when the last-stage result of either the multiplier or adder is
inexact (i.e., when either AI or MI is set). SI is "sticky" in the sense that it remains
set until reset by software. AI and MI, on the other hand, can by changed by the
subsequent floating-point instruction.

3-10

REGISTERS

FLUSHZER",
TRAP INEXACT
ROUNDING MODE
UPDATE
FLOATING-POINT TRAP ENABLE
STICKY INEXACT FLAG
SOURCE EXCEPTION II
MULTIPLIER UNDERFLOW

,~llll
MULTIPLIER OVERFLOW
MULTIPLIER INEXACT
MULTIPLIER ADD ONE
ADDER UNDERFLOW
ADDER OVERFLOW

If " ,if , , " { "
/913O/2I9/28/27126125/242322/212(J 19 18 17116115114/1:JlI2/ff/1019 /8/716/514/9 2/110

...•...
AM ILL iF F

.. <i. R R R A A AA MM MM S S 1>" T U RM
T F

R R AE RR
P P P AI OU AI OU E I Ii E I Z

~ii .. < P P .. 1 0 [ii

\ \\\\\\ \ \\\\\\\\\\\\\\ \ \
J~ , 1~

1 1
ttL ADDER ,NEXACT

ADDER ADD ONE
RESULT REGISTER
ADDER EXPONENT
LOAD PIPE RESULT

PRECISION (80860XP ONLY)
INTEGER (GRAPHICS) PIPE

RESULT PRECISION
MULTIPLIER PIPE RESULT PRECISION
ADDER PIPE RESULT PRECISION

1
'25

80860XR ~ · ... ·.· .. i.:.· •.. i.. LOAD PIPE RESULT PRECISION
ONLY p.i

o RESERVED BY INTEL CORPORATION

240875i3-5

Figure 3-5. Floating-Point Status Register

Table 3-4. Values of RM

Value Rounding Mode Rounding Action

00 Round to nearest or even Closer to b of a or c; if equally close, select even
number (the one whose least significant bit is zero).

01 Round down (toward -00) a
10 Round up (toward + 00) c
11 Chop (toward zero) Smaller in magnitude of a or c.

3-11

REGISTERS

• SE (Source Exception) is set when one of the source operands of a floating-point
operation is invalid; it is cleared when all the input operands are valid. Invalid input
operands include denormals, infinities, and all NaNs (both quiet and signaling). Trap
handler software can implement IEEE-standard results for operations on these
values.

• When read from the fsr, the result-status bits MA, MI, MO, and MU (Multiplier
Add,..One, Inexact, Overflow, and Underflow, respectively) describe the last-stage
result of the multiplier.

When read from the fsr, the result-status bits AA, AI, AO, AU, and AE (Adder
Add-One, Inexact, Overflow, Underflow, and Exponent, respectively) describe the
last-stage result of the adder. The high-order three bits of the 11-bit exponent of the
adder result are stored in the AE field. The trap. handler needs the AE bits when
overflow or underflow occurs with double-precision inputs and single-precision
outputs.

After a floating-point operation in a given unit (adder or multiplier), the result-status
bits of that unit are undefined until the point at which result exceptions are reported.

When written to the fsr with the U-bit set, the result-status bits are placed into the
first stage of the adder and multiplier pipelines. When the processor executes pipe
lined operations, it propagates the result-status bits of a particular unit (multiplier or
adder) one stage for each pipelined floating-point operation for that unit. When they
reach the last stage, they replace the normal result-status bits in the fsr.

In a floating-point dual-operation instruction (e.g., add-and-multiply or subtract-and
lIlUltiply), both the multiplier and the adder may set exception bits. The result-status
bits for a particular unit remain set until the next operation that uses that unit.

• AA (Adder Add One), when set, indicates that the absolute value of the fraction of
the result of an adder operation was increased by one due to rounding. AA is not
influenced by the sign of the result.

• MA (Multiplier Add One), when set, indicates that the absolute value of the fraction
of the result of a multiplier operation was increased by one due to rounding. MA is
not influenced by the sign of the result.

• RR (Result Register) specifies which floating-point register (fO-f31) was the destina
tion register when a result-exception trap occurs due to a scalar operation.

• LRP (Load Pipe Result Precision), IRP (Integer (Graphics) Pipe Result Precision),
MRP (Multiplier Pipe Result Precision), and ARP (Adder Pipe Result Precision) aid
in restoring pipeline state after a trap or process switch. Eac~ defines the precision of
the last-stage result in the corresponding pipeline. One of these bits is set when the
result in the last stage of the corresponding pipeline is double precision; it is cleared
if the result is single precision. These bits cannot be changed by software.

• LRP applies only to the i860 XR microprocessor. The i860 XP microprocessor uses
LRP1 and LRPO (Load Pipe Result Precision), which together define the size of the
last-stage result of the load pipeline. They are encoded as Table 3-5 shows.

3-12

REGISTERS

Table 3-5. Values of LRP1 and LRPO

LRP1 LRPO pfld Length

0 0 (reserved)

0 1 4 Bytes

1 0 8 Bytes

1 1 16 Bytes

3.9 KR, KI, T, AND MERGE REGISTERS

The KR and Kl ("Konstant") registers and the T (Temporary) register are 64-bit,
special-purpose registers used by the dual-operation floating-point instructions described
in Chapter 8. The 64-bit MERGE register is used only by the graphics instructions also
presented in Chapter 8. Refer to that chapter for details of their use.

3.10 BUS ERROR ADDRESS REGISTER

In i860 XP microprocessor systems, the bear helps the trap handler determine faulty
memory locations. The i860 XP microprocessor loads a valid address into bear under
these conditions:

• For bus errors, the bear receives the address of the cycle for which the BERR signal
is asserted, if external hardware synchronizes assertion of BERR with BRDY # for
that cycle.

• For parity errors on a read, the bear receives the address of the cycle during which
the processor detects the error, if external hardware asserts PEN# with BRDY# for
that cycle.

If external hardware does not meet these conditions, the contents of the bear are
undefined.

A valid address in bear is accurate to 29 bits; that is, address signals A31-A3 are latched
in the high-order 29 bits of bear. At RESET and after every parity and bus error trap,
software must read the bear before further parity and bus error traps can occur. The
bear is a read-only register.

3.11 PRIVILEGED REGISTERS (80860XP ONLY)

The registers pO, p1 p2, and p3 are provided for the operating system to use. They do not
affect processor operation. They can be accessed by the Id.e and st.e instructions, but
they can be written only in supervisor mode. They may be used to store information such
as the interrupt stack pointer, current user stack pointer at the beginning of the trap
handler, register values during trap handling, processor ID in a multiprocessor system,
or for any other purpose.

3-13

II

REGISTERS

3.12 CONCURRENCY CONTROL REGISTER (80860XP ONLY)

The concurrency control register (ccr) controls the operation of the internal Concur
rency Control Unit (CCU), which is described in Chapter 6. The ccr can be written in
supervisor mode only, but can be read in user or supervisor mode. Figure 3-6 shows the
format of the ccr.

The DO (Detached Only) bit and the CO (CCU On) bit together specify the CCU
configuration. DO, when set, indicates that there is no external CCU. CO (CCU On) bit,
when set, indicates that the Concurrency Control Architecture is enabled. Table 3-6
summarizes the modes defined by CO and DO bits. The reserved combinations should
not be used by software.

If the DCCU is on (CO = DO = 1), the processor intercepts and interprets all memory
loads and stores which are to the CCU address space, which is the two pages defined by
CCUBASE. Loads and stores to that address range do not go to memory, but to the
DCCU.

CCUBASE is the virtual address of the memory area into which the CCU registers are
mapped. Software must set bit 12 to zero, because the CCUBASE must be aligned on a
two-page (8-Kbyte) boundary. This is because an external CCU contains supervisor reg
isters mapped to the second page.

3.13 NEWCURR REGISTER (80860XP ONLy)

The NEWCURR register is part of the detached CCU (concurrency control unit). It is a
32-bit counter that supplies an iteration count for loop execution. (Refer to Chapter 6.)

NEWCURR is architecturally a 64-bit register, but only the low-order 32 bits are pro
vided in the i860 XP microprocessor. Compiler and operating-system data structures
should provide for a 64-bit size for future implementation.

CCUBASE

DETACHED ONLY-------J.,---,l
CCUON---------~~.

EJ RESERVED BY INTEL CORPORATION

Figure 3-6. Concurrency Control Register (80860XP Only)

3-14

240875i3-6

REGISTERS

Table 3-6. Values of CO and DO

CO DO Mode

0 0 External CCU, or no CCU

0 1 reserved

1 0 reserved

1 1 Internal CCU (OCCU) only

3.14 STAT REGISTER (80860XP ONLy)

The STAT register is part of the detached CCU (concurrency control unit). As
Figure 3-7 shows, it contains the following bits:

InLoop

Nested

Detached

Indicates that the processor is currently executing a concurrent
loop. This bit is set when a processor starts a concurrent, non
nested loop, and it is cleared when the processor enters serial
code when not nested or idle. It can also be read or written
directly.

Indicates whether the processor is in the nested state. InLoop is
copied into this bit when starting a nested loop. Otherwise, it can
be read or written directly.

Always contains the value of ccr bit DO.

STAT is architecturally a 64-bit register. Compiler and operating-system data structures
should provide for a 64-bit size for future implementation.

InLoop
Nested ------------,
Detached

D RESERVED BY INTEL CORPORATION

l1li READ ONLY

Figure 3-7. Concurrency Status Register

3-15

240875i3-7

II

Addressing 4

II

CHAPTER 4
ADDRESSING

Memory is addressed in byte units with a paged virtual-address space of 232 bytes. Data
and instructions can be located anywhere in this address space. Address arithmetic is
performed using 32-bit input values and produces 32-bit results. The low-order 32 bits of
the result are used in case of overflow.

Normally, multibyte data values are stored in memory in little endian format, i.e., with
the least significant byte at the lowest memory address. As an option that may be dynam
ically selected by software in supervisor mode, i860 microprocessors also offer big endian
mode, in which the most significant byte of a data item is at the lowest address. The BE
bit of epsr selects the mode, as Chapter 3 describes. Figure 4-1 shows the difference
between the two storage modes. Figure 4-2 defines by example how data is transferred
from memory over the bus into a register in both modes. Big endian and little endian
data areas should not be mixed within a 64-bit data word. Illustrations of data structures
in this manual show data stored in little endian mode, i.e., the rightmost (low-order) byte
is at the lowest memory address.

i860 microprocessors always fetch instructions with little endian addressing. This implies
that instruction codes appear differently than documented here when accessed as big
endian data. Intel Corporation recommends that disassemblers running in a big endian
system convert instructions that have been read as data back to little endian form and
present them in the format documented here.

LITTLE ENDIAN FORMAT

r r r r r r r r 1
m+1 m

BIG ENDIAN FORMAT

r r r r [r r r 1
m m+5

240875i4-1

Figure 4-1. Memory Formats

4-1

II

intel® ADDRESSING

MainMemo~

d63 dO

II-K3FEDCBAI

~ ~
INSTRUCTION LITTLE ENDIAN BIG ENDIAN

Byte Enables Byte Enables
Asserted Data Bus ~ Asserted Data Bus

(BEn#) d63 dO d31 dO (BEn#) d63 dO

Id.b O(rO),r16 0 A A 7 H

Id.b 1 (rO),r16 1 B B 6 G
Id.b 2(rO),r16 2 C C 5 F
Id.b 3(rO),r16 3 D D 4 E
Id.b 4(rO),r16 4 E E 3 D
Id.b 5(rO),r16 5 F F 2 C
Id.b 6(rO),r16 6 G G 1 B
Id.b 7(rO),r16 7 H H 0 A

d63 dO d31 dO d63 dO

Id.s O(rO),r16 1:0 0 [] 7:6 [SJ Id.s 2(rO),r16 3:2 5:4

Id.s 4(rO),r16 5:4 FE FE 3:2

Id.s 6(rO),r16 7:6 I-K3 I-K3 1:0 BA

d63 dO d31 dO d63 dO

IdJ O(rO),r16 3:0 [;B IOCBAI 7:4 ~ Id.l 4(rO),r16 7:4 I-K3FE HGFE 3:0 DCBA

NOTE:
64- AND 128-BIT BIG END IAN ACCESSES ARE TREATED THE SAME AS LITTLE
ENDIAN ACCESSES

Figure 4·2. Big and Little Endian Memory Transfers

~
d31 dO

H
G
F
E
D
C
B
A

d31 dO

[]
BA

d31 dO

IHGFEI DCBA

240875i4-2

Page directories and page tables are also accessed in little endian mode, regardless of
the value of the BE bit. Operating systems, therefore, must maintain these tables in little
endian mode, either by accessing the tables only while BE = 0 or by using properly offset
addresses to load and store PTEs. Because all PTEs are 32 bits long, software running in
big endian mode must complement bit 2 of the 32-bit target address to produce the
offset-by-4 address that will be transformed to the desired memory location by big
endian processing.

Big endian mode affects not only the memory load and store instructions but also the
Idio, stio, Idint, and seye instructions.

4.1 ALIGNMENT

Alignment requirements are as follows; any violation results in a data-access trap:

• A 128-bit value is aligned to an address divisible by 16 when referenced in memory
(i.e., the four least significant address bits must be zero).

• A 64-bit value is aligned to an address divisible by eight when referenced in memory
(i.e., the three least significant address bits must be zero).

4-2

ADDRESSING

• A 32-bit value is aligned to an address divisible by four when referenced in memory
(i.e., the two least significant address bits must be zero).

• A 16-bit value is aligned to an address divisible by two when referenced in memory
(i.e., the least significant address bit must be zero).

4.2 VIRTUAL ADDRESSING

When address translation is enabled, the processor maps instruction and data virtual
addresses into physical addresses before referencing memory. This address transforma
tion is compatible with that of the Inte1386 and Intel486 microprocessors and imple-
ments the basic features needed for page-oriented virtual-memory systems and page- II
level protection. •

The address translation is optional. Address translation is disabled when the processor is
reset. It is enabled when a store (st.c) to dirbase sets the ATE bit. The operating system
typically does this during software initialization. Address translation is disabled again
when st.C clears the ATE bit. The ATE bit must be set if the operating system is to
implement page-oriented protection or page-oriented virtual memory.

4.2.1 Page Frame

A page frame is a unit of contiguous addresses of physical main memory. A page is the
collection of data that occupies a page frame when that data is present in main memory
or occupies some location in secondary storage when there is not sufficient space in main
memory.

- XR-
Page frames begin on four-Kbyte bound
aries and are fixed in size.

- XP-
The i860 XP microprocessor supports two
sizes of pages and page frames: four
Mbytes and four Kbytes. Four-Kbyte page
frames begin on four-Kbyte boundaries
and are fixed in size. Four-Mbyte page
frames begin on four-Mbyte boundaries
and are fixed in size.

The four-Kbyte address transformation is compatible with that of the Inte1386 and
Intel486 microprocessors.

4.2.2 Virtual Address

A virtual address refers indirectly to a physical address by specifying a page and an offset
within that page. Figure 4-3 shows the formats of virtual addresses.

- XR-
There is a single format for all pages.

4-3

- XP-
The format for virtual addresses that refer
to four-Mbyte pages is different from that
of four~ Kbyte pages.

FORMAT
FOR

4KBYTE
PAGE

FORMAT
FOR

4MBYTE
PAGE

ADDRESSING

/3130 2.9 28 2726 25 2-12322/2120 II} 18 1718 15 1-1 13 12/11 10 I} 8 7 8 5 -I 3 2 1 0

DIR PAGE OFFSET

\ \

/3130 2!J 28 2726 252-123 22/2120 II} 18 17181514 13 12 11 10 I} 8 7 6 5 4 3 2 1 0

DIR OFFSET

\

Figure .4-3. Formats of Virtual Addresses

80860XR AND 80860XP

4K PAGE FRAME

PAGE TABLE

PHYS ADDRESS

PAGE DIRECTORY

PG TBL ENTRY I-__ ~ .. L ____ --I'

4M PAGE FRAME

PHYS ADDRESS

80860XP ONLY

Figure 4-4. Address Translation

240875i4-3

240875i4-4

, Figure 4-4 shows how i860 microprocessors convert the DIR, PAGE, and OFFSET fields
of a virtual address into. the physical address by consulting page tables. The addressing
mechanism uses the DIR field as an index into a page directory. For 4K pages, it uses
the PAGE field as an index into the page table determined by the page directory and
uses the OFFSET field to address a byte within the page determined by the page table.

4-4

ADDRESSING

For 4M pages (80860XP only), the page directory entry determines the page address,
and the OFFSET field addresses a byte within that page table.

4.2.3 Page Tables

A page table is simply an array of 32-bit page specifiers. A page table is itself a page, and
contains 4 Kilobytes of data or at most 1K 32-bit entries.

At the highest level is a page directory.

- XR-
The page directory addresses up to 1K
page tables of the second level.

- XP-
The page directory holds up to 1K entries
that address either page tables of the sec
ond level or four-Mbyte pages.

A page table of the second level addresses up to lK four-Kbyte pages. All the tables
addressed by one page directory, therefore, can address 1M four-Kbyte pages.

Whether four Mbyte pages, four Kbyte pages, or some combination of the two are used,
one page directory can cover the processor's entire four gigabyte physical address space
(lK page directory entries x 4M page or 1K page directory entries x 1K page table
entries x 4K page).

The physical address of the current page directory is stored in the DTB field of the
dirbase register. Memory management software has the option of using one page
directory for all processes, one page directory for each process, or some combination of
the two.

4.2.4 Page-Table Entries

Page-table entries (PTEs) have one of the formats shown by Figure 4-5.

4.2.4.1 PAGE FRAME ADDRESS

The page frame address specifies the physical starting address of a page.

- XR-
Because pages are located on 4K bound
aries, the low-order 12 bits are always
zero. In a page directory, the page frame
address is the address of a page table. In a
second-level page table, the page frame
address is the address of the page frame
that contains the desired memory operand.

4-5

- XP-
In a page directory, the page frame
address is either the address of a page
table or the address of the four Mbyte
page frame that contains the desired mem
ory operand. In a second-level page table,
the page frame address is the address of
the 4Kbyte page frame that contains the
desired memory operand.

I

PAGE
DIR

ENTRY
4 KBYTE

PAGE

PAGE
DIR

ENTRY
4MBYTE

PAGE

PAGE
TABLE
ENTRY

4KBYTE
ONLY

ADDRESSING

PRESENT
WRITABLE
USER
ACCESSED
PAGE SIZE (0 INDICATES 4 KBYTE)

~ AVAILABLE FOR SYSTEMS PROGRAMMER USE t ,~ ", ,,~
/313029282726 25 2423 22 21 20 1918171615141312/11 10 9/8/7/6/5/4/3/2/1/0

PAGE FRAME ADDRESS 31 .. 12 AVAIL o 0 o A o 0 UWP

\ \ \ \ \ \ \ \ \ \

PRESENT
WRITABLE
USER
WRITE-THROUGH
CACHE DISABLE
ACCESSED
DIRTY
PAGE SIZE (1 INDICATES 4 MBYTE)

~ AVAILABLE FOR SYSTEMS PROGRAMMER USE t 'h In ~ " , I ,~

/31 3029282726 25 24232212120 19 18 1716 15 14 13 12/11 10 9/8/7/6/5/4/3/ 21t /0

PAGE FRAME ADDRESS 0 00000 0 0 0 01 AVAlL o 1 D A
CIN

UWP
31 .. 22 D T

\ \ \ ~~'l ~'\'l ~ \ \

PRESENT
WRITABLE
USER
WRITE-THROUGH
CACHE DISABLE
ACCESSED

~l, DIRTY
AVAILABLE FOR SYSTEMS PROGRAMMER USE t In In ~ , ~ II

/313029 28 272625242322 21 20 19 18 1716 1514 13 12111 10 9/8 7/6/5/4/3/2/1/0

PAGE FRAME ADDRESS 31 .. 12 AVAIL 0 o D A C
D

Wu
T

WP

\ \ \ \ \ \ \ \ \ \

D RESERVED BY INTEL CORPORATION (SHOULD BE ZERO)

240875i4-5

Figure 4-5. Formats of Page Table Entries

4-6

ADDRESSING

4.2.4.2 PRESENT BIT

The P (present) bit indicates whether a page table entry can be used in address transla
tion. P = 1 indicates that the entry can be used. When P = 0 in either level of page tables,
the entry is not valid for address translation, and the rest of the entry is available for
software use; none of the other bits in the entry is tested by the hardware. Figure 4-6
illustrates the format of a page-table entry when P = o.

If P = 0 in either level of page tables when an attempt is made to use a page-table entry
for address translation, the processor signals either a data-access fault or an instruction
access fault. In software systems that support paged virtual memory, the trap handler
can bring the required page into physical memory. Refer to Chapters 9 and 10 for more II
information on trap handlers. •

Note that there is no P bit for the page directory itself. The page directory may be
not-present while the associated process is suspended, but the operating system must
ensure that the page directory indicated by the dirbase image associated with the process
is present in physical memory before the process is dispatched.

4.2.4.3 WRITABLE AND USER BITS

The W (writable) and U (user) bits are used for page-level protection, which the proces
sor performs at the same time as address translation. The concept of privilege for pages
is implemented by assigning each page to one of two levels:

Supervisor level (U = 0)

User level (U = 1)

For the operating system and other systems software and
related data.

For applications procedures and data.

The U bit of the psr indicates whether the processor is executing at user or supervisor
level. The processor maintains the U bit of psr as follows:

• The processor clears the psr U bit to indicate supervisor level when a trap occurs
(including when the trap instruction causes the trap). The prior value of U is copied
into PU. (The trap mechanism is described in Chapters 9 and 10; the trap instruction
is described in' Chapter 7.)

• The processor copies the psr PU bit into the U bit when an indirect branch is exe
cuted and one of the trap bits is set. If PU was one, the processor enters user level.

m~.~N •• M •• n.~M"MMUM~"m9876S432 1/0<

A V A I L A B L E 0

\

240875i4-6

Figure 4-6. Invalid Page Table Entry

4-7

ADDRESSING

With the U bit of psr and the Wand U bits of the page table entries, i860 microproces
sors implement the following protection rules:

• When at user level, a read or write of a supervisor-level page causes a trap.

• When at user level, a write to a page whose W bit is not set causes a trap.

• When at user level, a store (st.c) to certain control registers is ignored.

• When at user level, privileged instructions (ldio, stio, seyc, Idint) have no effect.

When the processor is executing at supervisor level, all pages are addressable, but, when
it is executing at user level, only pages that belong to the user-level are addressable.

When the processor is executing at supervisor level, all pages are readable. Whether a
page is writable depends upon the write-protection mode controlled by WP of epsr:

WP=O All pages are writable.

WP=l A write to a page whose W bit is not set causes a trap.

When the processor is executing at user level, only pages that belong to user level and
are marked writable are actually writable; pages that belong to supervisor level are nei
ther readable nor writable from user level.

4.2.4.4 WRITE-THROUGH BIT

The write-through bit controls caching policy. Refer to Chapter 5 for more information.

- XR-
The i860 XR microprocessor does not
implement a write-through caching policy
for the on-chip instruction and data
caches; however, the WT (write-through)
bit in the second-level page-table entry
does determine internal caching policy. If
WT is set in a PTE, on-chip data caching
from the corresponding page is inhibited.
This is logically consistent with write
through, because all writes update main
memory. (Note, however, that instruction
caching is not inhibited.) If WT is clear,
the normal write-back policy is applied to
data from the page in the data cache. The
WTbit of page directory entries is not ref
erenced by the processor, but is reserved.

- XP-
The i860 XP microprocessor implements
both write-back and write-through caching
policies for the on-chip data cache. If WT
is set, the write-through policy is applied
to data from the corresponding page. If
WT is clear, the normal write-back policy
is applied to data from the page.

4-8

For four-Mbyte pages, the WT bit of the
page directory entry is used. For four
Kbyte pages, only the WT bit of the
second-level page table entry is used; the
WT bit of the page directory entry is not
referenced by the processor, but is
reserved.

ADDRESSING

- XR-
To control external caches, the PTB out
put pin reflects either CD or WT depend
ing on the PBM bit of epsr.

4.2.4.5 CACHE DISABLE BIT

- XP-
The value of the WT bit is driven exter
nally on the PWT pin, so that external
caches can employ the same policy used
internally.

If a page's CD (cache disable) bit is set, data from the page is not placed in the instruc
tion or data caches. Clearing CD permits the processor to place data from the associated
page into internal caches.

- XR-
Only the CD bit of the second-level page
table entry is used. The CD bit of page
directory entries is not referenced by the
processor, but is reserved.

- XR-
To control external caches, the PTB out
put pin reflects either CD or WT depend
ing on the PBM bit of epsr.

4.2.4.6 ACCESSED AND DIRTY BITS

- XP-
For four-Mbyte pages, the CD bit of the
page directory entry is used. For four
Kbyte pages, only the CD bit of the
second-level page table entry is used; the
CD bit of the page directory entry is not
referenced by the processor, but is
reserved.

- XP-
The value of the CD bit is driven exter
nally on the PCD pin, so that cacheability
can be the same in both internal and exter
nal caches.

The A (accessed) and D (dirty) bits provide data about page usage in both levels of the
page tables.

The processor sets the A-bit before a read or write operation to a page. For four-Kbyte
pages, it sets the A-bit of both levels of page tables.

The processor tests the dirty bit before a write, and, under certain conditions, causes
traps. The trap handler then has the opportunity to maintain appropriate values in the
dirty bits. For four-Mbyte pages, the D bit of the page directory entry is used. For
four-Kbyte pages, only the D bit of the second-level page table entry is used; the D bit of
the page directory entry is not referenced by the processor, but is reserved. The precise
algorithm for using these bits is specified in Section 4.2.5.

An operating system that supports paged virtual memory can use the D and A bits to
determine what pages to eliminate from physical memory when the demand for memory
exceeds the physical memory available. The D and A bits are normally initialized to zero
by the operating system. The processor sets the A bit when a page is accessed either by

4-9

II

ADDRESSING

a read or write operation (except during a locked sequence, when a trap occurs instead).
When a data-access fault occurs, the trap handler sets the D bit if an allowable write is
being performed, then reexecutes the instruction.

The operating system is responsible for coordinating its updates to the accessed and
dirty bits with updates by the CPU and by other processors that may share the page
tables. The processor automatically asserts the LOCK# signal while testing and setting
the A bit.

4.2.4.7 PAGE TABLES FOR TRAP HANDLERS

- XR-
It is not strictly necessary to ensure that
A = 1 in trap handler pages, because the
i860 XR microprocessor automatically
de asserts the LOCK# signal before enter
ing the trap handler. However, for compat
ibility with the i860 XP microprocessor, it
is recommended that A be preset as
required by the i860 XP microprocessor.

- XP-
When paging is enabled (ATE = 1), soft
ware that creates page tables and directo
ries must assure that A = 1 always in the
PTEs and PDEs for the code pages of the
trap handler and the first data page
accessed by the handler. Pre allocation of
these pages is required in case a trap
occurs during a lock sequence. Otherwise,
recursive traps would be generated, as the
A-bit would need to be set by the transla
tion hardware while the lock pin is active,
which is a trapping situation in itself.

4.2.4.8 COMBINING PROTECTION OF BOTH LEVELS OF PAGE TABLES

For any four-Kbyte page, the protection attributes of its page directory entry may differ
from those of its page table entry. The processor computes the effective protection
attributes for a page by examining the protection attributes in both the directory and the
page table and choosing the more restrictive of the two.

4.2.5 Address Translation Algorithm

The algorithms below define the translation of each virtual address to a physical address.
Let DIR, PAGE, and OFFSET be the fields of the virtual address; let PFAl and PFA2
be the page frame address fields of the first and second level page tables respectively;
DTB is the page directory table base address stored in the dirbase register.

Algorithm for i860 XR microprocessor:

1. Read the PTE (page table entry) at the physical address formed by DTB:DIR:OO.
Note that the data cache is not accessed during PTE fetches; therefore, theoperat
ing system must ensure that the page table is not in the cache.

2. If P in the PTE is zero, generate a data- or instruction-access fault.

4-10

ADDRESSING

3. If W in the PTE is zero, the operation is a write, and either the U bit of the PSR is
set or WP = 1, generate a data-access fault.

4. If the U bit in the PTE is zero and the U bit in the psr is set, generate a data- or
instruction-access fault.

5. If A in the PTE is zero and if the TLB miss occurred while the bus was locked,
generate a data- or instruction-access fault. (The trap allows software to set A to
one and restart the sequence. This avoids ambiguity in determining what address
corresponds to a locked semaphore for external bus hardware use.)

6. If A in the PTE is zero and if the TLB miss occurred while the bus was not locked,
assert LOCK#, refetch and check the PTE, set A, and store the PTE, de asserting II
LOCK# during the store.

7. Locate the PTE at the physical address formed by PFAl:PAGE:OO.

8. Perform the P, A, W, and U checks as in steps 3 through 6 with the second-level
PTE.

9. If D in the PTE is clear and the operation is a write, generate a data-access fault.

10. Form the physical address as PFA2:0FFSET.

Algorithm for i860 XP microprocessor:

1. Read the PDE (Page Directory Entry) at the physical address formed by
DTB:DIR:OO.

2. If P in the PDE is zero, generate a data- or instruction-access fault.

3. If W in the PDE is zero, the operation is write, and either the U bit of the PSR is set
or WP = 1, generate a data-access fault.

4. If the U bit in the PDE is zero and U bit in the psr is set, generate a data- or
instruction-access fault.

5. If A in the PDE is zero and the TLB miss occurred inside a locked sequence,
generate a data or instruction access fault. (The trap allows software to set A to one
and restart the sequence. This helps external bus hardware determine unambigu
ously what address corresponds to a locked semaphore.)

6. If bit 7 of the PDE is one (four-Mbyte page), and the operation is write, and D = 0
in the PDE, generate a data-access fault.

7. If A = 1 in the PDE, continue at step 11. Otherwise, assert LOCK#.

8. Perform the PDE read as in step 1 and the P, Wand U bit checks as in steps 2
through 4. '

4-11

ADDRESSING

9. Write the PDE with A bit set.

10. Deassert LOCK#.

11. If bit 7 of the PDE is one (four-Mbyte page), form the physical address as
PFAl:0FFSET, and exit address translation. In this case, PFA1 is 10 bits and
OFFSET is 22 bits.

12. The remaining steps are for four-Kbyte pages. If the A-bit in the PDE was zero
before translation began, assert LOCK#.

13. Fetch the PTE at the physical address formed by PFAl:PAGE:OO.

14. Perform the P-, W-, U-, and A-bit checks as in steps 2 through 5 with the second
level PTE. If A = zero in the PTE, and the TLB miss occurred inside a locked
sequence, generate a data or instruction access fault. LOCK# remains active.

15. If the operation is write, and D in the PTE is zero, generate a data access fault.

16. If the A-bit in the PDE was already active before translation began, and the A-bit in
the PTE is already active, go to step 20.

17. If LOCK# is not already active, assert it and refetch the PTE.

18. Perform the U-, W-, and P-bit checks and A-bit setting in the PTE as in steps 8
through 9. Do the locked write update of the PTE to unlock the bus, even if the
A-bit in the PTE is already one.

19. Deassert LOCK#.

20. Form the physical address as PFA2:0FFSET. In this case, PFA2 is 20 bits and
OFFSET is 12 bits.

During translation, the processor looks only in external memory for page directories and
page tables. The data cache is not searched. Therefore, any code that modifies page
directories or page tables must keep them out of the cache. The tables should be kept in
noncacheable memory or in write-through pages or should be flushed from the cache.

The processor expects page directories and page tables to be in little endian format. The
operating system must maintain these tables in little endian format either by setting BE
to zero when manipulating the tables or by complementing bit two of the 32-bit address
when loading or storing entries.

4-12

ADDRESSING

4.2.6 Address Translation Faults

An address translation fault can be signalled as either an instruction-access fault or a
data-access fault. (Refer to Chapters 9 and 10 for more information on this and other
faults.) The instruction that causes the fault can be reexecuted by the return-from-trap
sequence defined in Chapters 9 and 10.

4-13

I

On-Chip Caches 5

CHAPTER 5
ON-CHIP CACHES

By holding data, instructions, and address translation on-chip, the caches of the i860 XP
microprocessor provide the following advantages:

1. Low chip count for the CPU subsystem.

2. Wide processor-to-cache path: 16 bytes for data, 8 bytes for instructions.

3. Fast access without requiring much additional high-speed design in the system. The
fast cache-access circuitry is hidden on chip; the external bus can respond more
slowly without significantly degrading performance.

The caches of the i860 XP microprocessor differ from those of the i860 XR micropro
cessor in size, multiprocessor orientation, and other details. A single version of an oper
ating system can execute interchangeably on either processor by examining the processor
type field of psr and acting accordingly.

5.1 ADDRESS TRANSLATION CACHES

- XR-
The i860 XR microprocessor has four
Kbyte pages. A translation look -aside
buffer (TLB) caches address translation
information from the page tables. The
TLB (see Figure 5-1) is a 64-entry, four
way, set associative cache. The TLB func
tions when paging is enabled. When a page
is first accessed, its translation information
is saved in the TLB along with other page
attributes, such as access rights and cache
ability. Every address translation operation
looks up the virtual address in the TLB.
Only if the necessary paging information is
not in the cache must the paging tables in
memory be referenced. The TLB employs
a random replacement algorithm to choose
which of the four ways to replace.

5-1

- XP-
The i860 XP microprocessor allows both
four-Kbyte and four-Mbyte page sizes, and
a separate translation look-aside buffer
(TLB) is used to cache address translation
information for each page size. The TLB
for four-Kbyte pages (Figure 5-1) has 64
entries, and the TLB for four-Mbyte pages
(Figure 5-2) has 16 entries. Both are four
way set associative. The TLBs function
when paging is enabled. When a page is
first accessed, its translation information is
saved in the appropriate TLB along with
other page attributes, such as access rights
and cache ability. Every address translation
operation looks up the virtual address
simultaneously in both TLBs. Only if the
necessary paging information is not in
either of the caches must the paging tables
in memory be referenced. Both TLBs
employ a random replacement algorithm
to choose which of the four ways to
replace; however, invalid (empty) ways are
replaced before valid ways are overwritten.

II

ON-CHIP CACHES

VIRTUAL ADDRESS

8765432 f 0

BYTE SELECT

~. VIRTUAL
~ ADDRESS

PHYSICAL ADDRESS

VIRTUAL
ADDRESS PHYSICAL ADDRESS

f 0

PAGE FRAME BYTE SELECT

PHYSICAL ADDRESS

NOTES:
D DIRTY
CD CACHE DISABLE
WT WRITE-THROUGH
U USER MODE
W WRITABLE
V VALIDITY

240875i5-1

Figure 5-1. 4K TLB Organization

5-2

ON-CHIP CACHES

VIRTUAL ADDRESS

7 (/ 5 4 3 .2 1 0

PHYSICAL ADDRESS

g? VIRTUAL
~ ADDRESS

PHYSICAL ADDRESS

~--------~-+~~+
VIRTUAL

ADDRESS

PAGE FRAME

NOTES:
D DIRTY
CD CACHE DISABLE
WT WRITE-THROUGH
U USER MODE
W WRITABLE
V VALIDITY

PHYSICAL ADDRESS

7 (/ 5 4 3 .2 1 0

BYTE SELECT

PHYSICAL ADDRESS

Figure 5-2. 4M TLB Organization

5-3

II

240875i5-2

ON-CHIP CACHES

If an instruction's virtual address is found in the instruction cache, the virtual address is
not translated, and code access rights are not verified. However, when an instruction's
virtual address is not found in the cache, address translation does occur, and all access
rights are verified. The virtual addresses of data are always translated, and access rights
are always verified.

i860 microprocessors require simultaneous access to data and instruction caches, but the
paging unit can serVice only one address translation at a time. Data address translation
has higher priority in the paging unit than instruction address translation, if both are
required at the same time.

Any data or instruction access fault halts address translation at once, and the TLB is not
updated. If a directory read causes an access fault, the page table is not read at all.

- XR-
If the paging unit generates a fault (in set
ting the D bit for the first write to a
nondirty page, for example), the corre
sponding entry remains in the TLB. There
fore, software needs to invalidate the TLB
in response to paging-related data access
trap or instruction access trap faults (but
not for misalignment or db debugging
traps).

- XP-
If the paging unit generates a fault (in set
ting the D bit for the first write to a
nondirty page, for example), the corre
sponding entry is deleted from the TLB.
Therefore, software does not need to
invalidate the TLB entry in response to
data access trap or instruction access trap
faults.

If TLB replacement is initiated during a locked sequence generated by the· lock instruc
tion and if another locked sequence has to be executed to set the A-bit in the page
directory or page table entry, the paging unit generates an access fault. This helps exter
nal hardware implement "locking by address" by preventing generation of nested lock
sequences. (Refer to the lock instruction in Chapter 7.)

5.2 INTERNAL INSTRUCTION AND DATA CACHES

The i860 microprocessors have separate data and instruction caches on-chip. Having
separate caches for instructions and data allows simultaneous cache look-up. Up to two
instructions and 128 bits of data can be accessed simultaneously from these caches. The
caches are fully transparent to applications software.

- XR-
The data cache holds eight Kbytes; the
instruction cache holds four Kbytes. A line
can be filled from memory with four 8-byte
bus cycles. The four cycles are never inter
rupted by other loads or stores.

5-4

- XP-
The data and instruction caches hold
16 Kbytes each. A line can be filled from
memory with a four-transfer burst. Snoop
ing (address monitoring) is designed into
both instruction and data caches, to main
tain cache consistency in multiprocessor
systems.

ON-CHIP CACHES

-XR -
Each cache uses virtual tags for internal
access; there is no provision for snooping.
Figure 5-3 shows how the bits of virtual
addresses are mapped for caching.
Because only virtual tags are used, soft
ware that uses aliasing (a situation in
which the TLBs associate a single physical
address with two or more virtual
addresses) must take care not to violate
intertask protection.

- XP-
Each cache has two sets of tags: virtual tags
used for internal access, and physical tags
used for snooping. Figure 5-3 shows how
the bits of both virtual and physical
addresses are mapped for caching. The
presence of both virtual and physical tags
supports aliasing, a situation in which the
TLBs associate a single physical address
with two or more virtual addresses.

Any area of memory can be cached, although both software and hardware can disallow
certain areas from being cached - software by setting the CD bit in their page table
entries; hardware by deasserting the KEN# signal for bus cycles with addresses that fall

CACHE TAG SET SELECT

Figure 5-3. Cache Address Usage

5-5

BYTE
SELECT

240875i5-3

II

ON-CHIP CACHES

in those areas. (In the i860 XP microprocessor, data reads from the two four-Kbyte
pages pointed to by the CCUBASE field of ccr are not cached, either, if the CCU is
activated by setting CO of the ccr register. This is independent of the value of KEN #.)
When both software and hardware agree that a requested datum is cacheable, the pro
cessor reads an entire 32-byte line into the appropriate cache. Cache line fills are gen
erated only for read misses, not for write misses. A store that misses the cache does not
copy the missed line into cache from memory, but rather posts the datum in a write
buffer, then sends it to the external bus when the bus is available.

Stores that hit the cache utilize it for two cycles (one to check the virtual tags for hit,
another to update the cache line). However, the cache pipeline allows successive store
hits to operate at one per cycle.

- XR-
The processor's internal write buffers can
hold two successive stores, preventing a
freeze upon store miss.

5.2.1 Data Cache

- XR-
Figure 5-4 shows the organization of the
data cache. The data cache has two M
(modified) bits per virtual tag, one for
each half-line. If only one half-line is mod
ified, only that half-line is written back to
memory. There is no validity bit. To inval
idate a virtual tag, it must be filled with a
virtual address reserved for that purpose.

NOTE:
M MODIFIED

- XP-
The processor's internal write buffers can
hold three successive stores, preventing a
freeze upon store miss.

- XP-
Figure 5-5 shows the organization of the
data cache. The data cache has two status
bits per physical tag and one validity status
bit for the virtual tag. A virtual tag hit is
possible only when the validity bit of the
virtual tag is set.

240875i5-4

Figure 5-4. Data Cache Organization (80860XR)

5-6

ON-CHIP CACHES

I Ox10 8

~ VIRTUAL
Ox18 Ox10 8 0

~ TAG

a: VIRTUAL ::J Ox18 Ox10 8 0 0 TAG LL.

1 VIRTUAL
Ox18 Ox10 8 0

TAG

1----32-BYTE LINES -----1

NOTES:
M MODIFIED
E EXCLUSIVE
S SHARED
I INVALID
V VALIDITY

240875i5-5

Figure 5-5. Data Cache Organization (80860XP)

- XR-
If an operating system allows aliases, it is
possible for a physical line to appear in the
cache twice, under different virtual
addresses. Such a replication is undesir
able, because a write to one cache line
would not update the other line in the
cache. Aliasing of instructions and read
only data presents no problems.

If necessary, software can implement reli
able aliasing for writable, cache able data
by using only one way of the data cache
(by flushing the data cache, the setting
RC = 10 and RB= 00, for example).
Because only one way is available and
because the aliases necessarily have the
same set selection bits, all aliases for a
given physical address map to a single
location in the cache.

5-7

- XP-
Alias support is built into the cache
look-up algorithm. Even though a physical
line may be aliased, the processor never
enters the line twice in the data cache. If a
virtual address is not found among the vir
tual tags in the data cache, a bus cycle is
initiated and, at the same time, the physi
cal tags are searched for the physical
address (which by this time has been
retrieved from the paging unit). For reads,
if the physical address is found, the data
returned from the bus is ignored, on-chip
data is used, and the virtual tag is replaced
with the new one. For writes, if a virtual
address is not found, the write is issued on
the bus, and memory is updated. If the
physical address is found, the line in cache
is updated, and the virtual tag is replaced
with the new one. However, the cache
state (M, E, or S) of the physical-address
tag does not change when the virtual tag is
overwritten.

ON-CHIP CACHES

Note that the BE (big endian) bit of epsr has no influence on data cache behavior. Data
items are kept in cache in exactly the same ordering as in external memory. Byte-shifting
operations invoked by the BE bit upon loads and stores occur at the input to the register
files only.

5.2.1.1 DATA CACHE UPDATE POLICIES

To minimize bus traffic, a write-back policy is normally used. The write-back policy (also
called copy-back and deferred-write) reduces bus traffic by eliminating many unnecessary
writes. Writes to a line in the cache are not immediately forwarded to main memory;
instead, they are accumulated in the cache. The modified cache line is written to main
memory only when its cache space is needed for other data (or when a flush procedure is
executed).

Under a write-through policy, a write request to a line in the cache triggers updates to
both cache and main memory.

- XR-
The i860 XR microprocessor does not
implement the write-through policy. Set
ting the WT bit in a page table, disables
caching for the page. This is logically con
sistent with write-through, because all
writes update main memory.

- XP-
An address decoder, for example, can
select the write-through policy for writes to
video RAM, where it is necessary that
writes be seen on the video display. The
decoder can dynamically change the
update policy of the i860 XP microproces
sor with each cache line by manipulating
the WB/WT# input pin. Software, by set
ting the WT page-table bit, can select the
write-through policy for specific areas of
memory - those that are used for interpro
cessor message queues, for example. Set
ting WT overrides the WB/WT# pin.

A write-once policy combines write-through with write-back. Write-through is employed
for the first write to a cache line, while subsequent writes to the same line follow the
write-back policy.

- XR-
The i860 XR microprocessor does not
implement the write-once policy.

5-8

- XP-
Write-once is valuable in multiprocessor
systems to maintain cache consistency with
the least possible bus traffic. The first
write broadcasts to other processor nodes
the fact that a line has been modified.
Write-once is also used if a second-level
cache is attached to the i860 XP micropro
cessor to maintain consistency between the
first- and second-level caches.

ON-CHIP CACHES

5.2.2 Instruction Cache

- XR-
Figure 5-6 shows the organization of the
instruction cache. The instruction cache
has one validity bit for each virtual tag. As
in the data cache, if an operating system
allows aliases, it is possible for a physical
line to appear in the instruction cache
twice, under different virtual addresses.
Such replication in the instruction cache is
not problematic, however, because the
instruction cache is read-only.

5.2.3 Cache Replacement Algorithm

- xp-
Figure 5-7 shows the organization of the
instruction cache. The instruction cache
has one validity bit that is common to both
virtual and physical tags. Aliasing support
for instructions consists not simply of
changing the virtual tag, but rather fetch
ing a line whenever a virtual tag miss
occurs. If the physical address already
exists in the instruction cache, its line and
its tags are overwritten. So, even though a
physical line may be aliased, the processor
never enters the line twice in the instruc
tion cache.

The data, instruction, and address-translation caches all use similar algorithms to choose
which line of a set will be overwritten when a miss causes a line fetch.

- XR-
A pseudorandom replacement algorithm
chooses which line to replace.

T
C/)

~
~
0 VIRTUAL Ox18
~ TAG

NOTE:
V VALIDITY

- XP-
The first invalid line in a set of four is
replaced (in the order 0, 1, 2, 3). When
there are no more invalid lines in a set, a
pseudorandom replacement algorithm
chooses which valid lines to replace.

Ox10 8 0

Ox10 8 0

32-BYTE LINES

240875i5-6

Figure 5-6. Instruction Cache Organization (80860XR)

5-9

II

ON-CHI.P CACHES

I Ox10 8 0

C/) VIRTUAL
~ TAG

Ox18 Ox10 8 0
3:
a: VIRTUAL :::l Ox10 8 0 0 TAG LL

1 VIRTUAL
Ox10 8 0

TAG

32-BYTE LINES

NOTE:
V VALIDITY

240875i5-7

Figure 5-7. Instruction Cache Organization (80860XP)

The algorithm is controlled by counters inside the chip. RESET initializes these counters
to zero, so that the "randomness" is deterministic, and two i860 XR CPUs or two i860
XP CPU s executing the same code on identical boards have exactly the same series of
cache hits, misses, and replacements. Setting ITI to invalidate the caches and TLBs also
resets the internal counters used for random replacement. This brings the cache
replacement mechanism to a known state without resetting the whole chip.

When the flush instruction is used· to write back modified lines in the data cache, the
flush routine must alter the RC (replacement control) field of dirbase. Therefore, the
LFBSR is not used and replacement is not random. Instead, the block (or "way")
replaced is the one selected by the RB (replacement block) field of dirbase.

5.2.4 Cache Consistency Protocol (80860XP Only)

The i860 XP microprocessor implements cache consistency via its use of a MESI (Mod
ified, Exclusive, Shared, Invalid) protocol.

5.2.4.1 DATA CACHE STATES (80860XP ONLY)

Each line of the data cache of the i860 XP microprocessor can be in one of the states
defined in Table 5-1. Note that the instruction cache of the i860 XP only implements the
"SI" part of the MESI protocol, because the instruction cache is not writable.

5-10

ON-CHIP CACHES

Table 5-1. MESI Cache Line States (80860XP)

Cache Line State:
M E S I

Modified Exclusive Share~ Invalid

This cache line is valid? Yes ' Yes Yes No

The memory copy is out of date ...valid ... valid -

Copies exist in other caches? No No Maybe Maybe

A write to this line does not ...does not ... goes to bus ... goes directly
go to bus go to bus and updates to bus

the cache

The state of a cache line can change as the result of either internal or external activity
related to that line. Table 5-2 presents the line state transitions that result from internal
activity of the i860 XP microprocessor in the data cache.

External cache-consistency support is provided through inquiry cycles. Inquiry cycles are
initiated by other processors in a multiprocessor system to check whether an address is
cached in the internal cache of the i860 XP microprocessor. Table 5-3 shows the line
state transitions initiated by inquiry cycles.

5.2.4.2 WRITE-ONCE POLICY (80860XP ONLY)

A write-once cache policy can be implemented on the i860 XP microprocessor through
. use of the WB/WT# input pin. The signal on this pin is sampled in both read and write
cycles. A read miss causes a line to enter either S or E after the line fill. If WB/WT# is
sampled LOW at the time of NA# or the first BRDY # activation, the line enters S
state, forcing the next write hit to this line to show up on the bus. If WB/WT# is
sampled HIGH, the line enters E state. In write-through cycles, the state of a line is
changed from S to E when WB/WT# is sampled HIGH, so that subsequent writes are
not written through to the bus. Thus, if this signal is driven LOW on read cycles and

Table 5-2. Internally Initiated Cache State Transitions (80860XP)

State Next State after Read Next State after Write*

I If WB/WT# = 1, E; else S Write-through
Line fill I

S S Write-through
If WB/WT# = 1, E; else S

E E M

M M M

NOTE:
* "Write" does not include write-backs due to replacement. Those can only cause an M to I transition.

5-11

II

ON-CHIP CACHES

Table 5-3. Inquiry-Initiated Cache State Transitions (80860XP)

State INV=O INV=1

I I I

S S I

E S I

M S; write back the line I; write back the line

HIGH on write cycles, a write-once cache policy is implemented. The easiest way to
implement write-once (in systems not using the 82495XP cache controller) is to tie this
pin to the W/R# output of the processor.

If the WT bit in the page table entry is set, the i860 XP microprocessor ignores the
WB/WT# signal for the cycles that hit that page and always performs a write-through. In
other words, hardware cannot override software's selection of the wrife-through policy.

5.2.4.3 LOCKED ACCESSES (80860XP ONLy)

Locked accesses are those data loads and stores that occur after a lock instruction up to
and including the first load or store after the corresponding unlock instruction.

On the i860 XP microprocessor, state transitions for locked accesses differ from those in
Table 5-2 in ways that guarantee that locked accesses are seen by all processors in the
system. Any locked load or store generates both a cache look-up and an external bus
cycle, regardless of cache hit or miss.

1. In a locked read:

a. If the required data is found in the cache in a modified (M) state, further
accesses to the cache from subsequent loads or stores are delayed until data is
returned from the bus. (The cache may, however, be accessed by an inquiry
cycle.) If in the clock period before BRDY # the data is still found modified in
the cache, the cached data is used, and the bus data is ignored. If, however, an
intervening inquiry write-back changes the line to S or I state, the bus data is
used.

b. If the data is found in an unmodified (E or S) state, the data returned from the
bus is used.

c. If the data is not found in the cache, the data from the bus is used. The data is
placed in the cache if it is cacheable and KEN # is also asserted.

2. A locked store is forced through the cache and issued on the bus. No more data
accesses occur until the BRDY # for such a store. If the store hits the internal cache,
the cache update is done after BRDY # from the bus. Note that the line written by
a locked store remains in M state in spite of the write-through to the bus, because
the length of the write-through is less than the line size of 32 bytes.

5-12

ON-CHIP CACHES

Locked accesses are totally serializing in the sense that:

1. All loads and stores that precede the lock instruction are issued on the bus (if they
miss the cache) before the first locked access is issued. The locked access can be
issued before the last BRDY # of the prior cycle if NA# is activated in response to
the prior cycle.

2. No load or store after the last locked access is issued internally or on the bus until
the final BRDY # for all locked accesses.

To maximize performance, instruction fetches during the locked sequence are not seri
alizing. When NA# invokes pipelining, instruction fetches may be issued while locked
data fetches or stores remain on the bus.

5.3 INTERNAL CACHE CONSISTENCY

Software must take care not to create inconsistencies such as the following among the
internal caches (including the TLBs):

1. Changing the address space while leaving virtual-address tags from the prior space
in the instruction or data cache.

2. Changing instructions in memory (or in the data cache) without changing them in
the instruction cache.

3. Changing page table information in memory (or in the data cache) without changing
the same information in the TLBs.

Under certain circumstances, such as I/O references, instruction modification, page
table updates, or access to shared data in a multiprocessing system, it is necessary to
bypass, to invalidate, or to flush the caches. The i860 microprocessors provide the fol
lowing methods for doing this.

5.3.1 Bypassing Instruction and Data Caches

There are a variety of methods to bypass the caches:

1. If de asserted during cache-miss processing, the KEN# pin disables instruction and
data caching of the referenced data.

2. If the CD bit of the associated page table is set, caching of a page is disabled.

3. With the i860 XP microprocessor, if the WT bit of the associated page table is set,
caching is not disabled, but writes pass through the cache. (Note that WT does not
affect policy for the instruction cache, because the instruction cache is not writable.
However, when an instruction from a page having the WT bit of the PTE set is
placed in the data cache, the write-through policy applies just as for a data page.)

Fi-1 ~

II

ON·CHIP CACHES

With the i860 XR microprocessor, if the WT bit of the associated page table is set,
data caching is disabled, just as if' CD were set. However, WT does not affect
instruction caching; the i860 XR microprocessor caches instructions from WT pages.

- XR-
The value of the WT bit or the CD bit is
output on the PTB pin for use by external
caches.

5.3.2 Invalidating Ca'che Entries

- XP-
The value of the WT bit is output on the
PWT pin and the value of the CD bit is
output on the peD pin for use by external
caches.

Storing to the dirbase register with the ITI bit set invalidates each line of the instruction
and address-translation caches.

- XR-
Setting ITI does not invalidate the data
cache.

5.3.3 Flushing the Data Cache

- XP-
In the data cache, setting ITI invalidates
the virtual tags, but not the physical tags.

The data cache is flushed by a software routine that uses the flush instruction. The flush
instruction speeds up write-backs. The same effect (writing back modified lines) can be
achieved with the load instruction Idol, but this would be more than twice as slow - the
load must first do four bus transfers to get new data, then write back the modified line.
The flush instruction causes the write-backs without requiring a read from external
memory to replace the modified line.

- XR-
The flush procedure replaces the virtual
tags with addresses reserved for that pur
pose, effectively invalidating each cache
line.

5.3.4 Address Space Consistency

- XP-
The flush instruction invalidates virtual
tags, but not physical tags.

In a multitasking virtual-address system, the operating system may intentionally employ
aliasing, where several processes use the same physical memory while accessing it with
different virtual addresses. When the operating system switches control from one pro
cess to the next, it changes the DTB field of the dirbase to point to a different page
directory that defines the new address space. When this happens, all caches must be
invalidated: the TLBs, so that the new page directory is read into the TLBs; the data and
instruction caches, so that virtual addresses from the new space don't accidently match
cached virtual addresses from the old space.

5-14

ON·CHIP CACHES

- XR-
The data cache is invalidated by executing
the flush procedure. The TLB and instruc
tion cache are invalidated by setting the
ITI bit when writing to dirbase.

- XP-
The caches are invalidated by setting the
ITI bit when writing to dirbase. Invalidat
ing the instruction cache invalidates both
the physical and the virtual tags, because
the instruction cache has one status (valid)
bit, when is common to both physical and
virtual tags. In the data cache, setting ITI
does not invalidate physical tags. However,
any modified lines will eventually be writ
ten back when their space is required for
lines from the new address space or when
external agents on the bus express a need
for the modified data via inquiry cycles.

Note that the operating system code that flushes the caches must be present during the
flushing. Typically this code has th~ same virtual address for all processes.

NOTE

The mapping of the page(s) containing the currently executing instruction, the
next six instructions, and any data referenced by these instructions should not be
different in the new page tables when the DTB is changed.

Enabling or disabling address translation (via the ATE bit) is similar to changing the
DTB, in that the address mapping is changed.

- XR-
The instruction cache must be invalidated
and the data cache must be flushed prior
to changing ATE.

5.3.5 Instruction Cache Consistency

- XP-
The virtual tags in the data and instruction
cache must be invalidated prior to chang
ing ATE.

When software modifies a page containing instructions (as when a debugger replaces an
instruction with the trap instruction to set a breakpoint), the instruction cache can
become inconsistent for any of the following reasons:

• Because the data cache uses a write-back policy, changes to cached instruction pages
do not immediately update memory.

• Changes by software to instructions do not automatically update the instruction
cache.

• Instruction cache misses are not checked in the data cache.

5-15

II

ON-CHIP CACHES

Software must ensure that modified lines containing instructions are written to main
memory before the instruction cache tries to read them. There are two methods for this:

1. Flush the data cache using the flush instruction. Note that to make the instruction
cache consistent with the data cache, the data cache must be flushed before invali
dating the instruction cache.

2. Mark all instruction pages as WT (write through) so that modifications to instruc
tions are immediately written to memory. This is the better alternative.

In either case, the instruction cache must be invalidated (by a store to dirbase with. ITI
set) after a code page has been modified, so that the updated instructions will be read
from memory.

5.3.6 Page Table Consistency

When the operating system modifies page tables or directories, a TLB can become
inconsistent with the modifications for any of the following reasons:

• Because the data cache uses a write-back policy, updates to cached page tables do not
immediately update memory.

• Changes by software to page tables do not automatically update the TLB.

• The i860 microprocessors search only external memory for page directories and page
tables in the translation process. The data cache is not searched. (Data is not trans
ferred from the data cache to the TLBs during TLB replacement cycles.)

Software must ensure that modified lines containing page table entries are written to
main memory before the paging unit tries to read them. There are two methods for this:

1. Keep page tables and directories in noncacheable memory or write-through pages.

2. Flush the data cache using the flush instruction. Note that to make the TLBs con
sistent with the data cache, the data cache must be flushed before invalidating the
TLBs.

In any case, the TLBs must be invalidated (by a store to dirbase with ITI set) after a
page table or directory has been modified, so that the updated entries will be read from
memory.

The data cache does not need flushing if the program is modifying only the P, U, W, A,
or D bits of a PTE (as long as the page frame address is not changed and the PTE itself
is not in the data cache). The i860 microprocessors do not check these protection bits on
cache line write-back. Thus, a trap handler can service a data access trap for D-bit zero
by setting D = 1.

- XR-
Software must then invalidate the TLB.

- XP-
The processor itself invalidates the TLB
entry that causes a data access trap.

5-16

ON-CHIP CACHES

When setting the P or A bits, there is no need to invalidate or flush any caches, because
the processor does not load entries into the TLB that have P = 0 or A = O.

Two potential TLB inconsistencies are avoided automatically by the i860 XP
microprocessor.

1. If the paging unit issues a write cycle (to set the A bit, for example), this cycle is
snooped by the data cache for invalidation.

2. Any TLB entry that causes a DAT or IAT is automatically invalidated.

5.3.7 Consistency of Cacheability

Normally, an operating system ensures that the page attributes (CD and WT) of a mem
ory access are consistent with the cache contents. If, however, the operating system fails
to maintain consistency and changes the CD or WT bits while related lines are in the
cache, the processor gives priority to cache state. For example:

1. If a read or write request is to a noncacheable page (CD = 1), but the data (or code)
is found in cache, the request is satisfied by the cache, and no external cycle is
issued.

2. On the i860 XP microprocessor, if a store to a write-through page (WT = 1) hits a
cache line in E or M state, no write-through cycle is issued; only the cache is
updated.

5.3.8 Protection Consistency

- XR-
The ITI bit of dirbase should be set when
changing the WP bit of the epsr so that the
protection bits of page tables can be rein
terpreted as they are reloaded into the
TLBs.

5.3.9 Load Pipe Consistency

- XP-
The TLBs do not cache the WP bit of the
epsr. Therefore, there is no need to inval
idate the TLBs when changing the WP bit.

The pfld (pipelined floating-point load) instruction facilitates transfer of data from mem
ory to registers, and avoids placing data in the data cache. When large amounts of data
are used, pfld allows the programmer to keep rarely-used data out of the cache. The i860
microprocessors ensure consistency between cached data and pfld references. They
check the data cache and, upon a data cache hit to a modified line, forward data from
cache into the three-stage pfld pipeline.

5-17

II

ON-CHIP CACHES

5.3.10 Summary

Table 5-4 summarizes flush and invalidation requirements, assuming that WT is set in
the PTEs of instruction and page-table pages.

Table 5-4. Summary of Cache Flushing and Invalidation

i860 ™ XR CPU i860 XP CPU

Action Flush Invalidate Flush Invalidate
Data Caches Data Caches

Cache (ITI) Cache (ITI)

Setting A No No No No

Setting P No No No No

Clearing P Yes1 Yes No Yes

Setting 0 No Yes No No

Changing protection (U,W) No Yes No Yes

Setting CO or WT Yes Yes Yes Yes

Changing PFA in a used2 PTE Yes Yes No Yes

Changing dirbase OTB Yes Yes No Yes

Changing dirbase ATE Yes Yes No Yes

Changing epsr WP No Yes No No

Setting ccr DO and CO - - Yes3 Yes3

Modifying code Yes Yes N04 Yes

NOTES:
1. When marking a page "no longer present," a flush must be done before the page frame address in the

PTE is changed; but the flush can be done after clearing P.
2. "Used" means a PTE that at some past time had P set. (Flush the data cache before making the PTE

change; ITI after the change.)
3. Only if data from either of the CCU pages could have been cached.
4. Assuming all instructions and their page directories and page tables are in write-through or noncache

able pages.

5-18

Concurrency Control 6

II

CHAPTER 6
CONCURRENCY CONTROL

6.1 DETACHED CCU

The i860 XP supports parallel processing, where, multiple processors work simulta
neously on different parts of the same problem. The Concurrency Control Unit (CCU)
controls work sharing among CPUs in multiprocessor systems. The CCU is a VLSI chip
that allows multiple processors to work together to execute portions of a single program
in parallel. The CCU performs the iteration assignment and synchronization for loop
parallelization. Accesses to the CCU for synchronization are much faster than accesses
to shared memory semaphores.

To take advantage of the parallel architecture, software must be compiled by paralleliz
ing compilers that generate instructions to access the CCU. The CCU is memory
mapped, and its internal registers are accessed via integer memory load and store
instructions. However, such instructions cannot run on a system that does not include a 6
CCU. To allow an application compiled for parallel execution to run on any system
based on the i860 XP microprocessor, a "Detached Only" CCU (DCCU, also referred to
as "internal CCU") is implemented in the i860 XP microprocessor. The DCCU is a
compatible subset of the external CCU, consisting of the minimal set of features
required for a single CPU. The DCCU alone increases neither performance nor concur-
rency, but does allow software designed for parallel processing to run unmodified on a
single CPU.

6.2 DCCU INITIALIZATION

After reset, the i860 XP microprocessor DCCU is disabled (the CO and DO bits in the
ccr are clear). To enable the DCCU, software must set the CO and DO bits in ccr after
initializing CCUBASE to point to the CCU address space.

Before enabling the CCU, the operating system must invalidate the TLB and flush the
data cache to make sure that they do not contain data from the pages of the CCU
address space. The TLB is invalidated by setting ITI = 1 in the dirbase register. If the
two pages at the CCUBASE address may have been cached, the flush instruction must
be used once per each line of the data cache to invalidate the physical address of the
cache entry. The flush is not needed if page tables or external hardware have prohibited
caching of data from the CCUBASE pages.

Neither the external CCU nor the DCCU can be accessed within four instructions after
ccr is modified.

6-1

CONCURRENCY CONTROL

6.3 DCCU ADDRESSING

ceu facilities are memory-mapped, manipulated by integer load and store instructions.
The DCeU is memory-mapped to a single four-Kbyte user page. When the DeeU is
active, all accesses to this page are satisfied by the DeeD, and no external bus cycle is
generated. The address space of two adjacent pages beginning on an eight-Kbyte bound
ary is reserved for the eeD. The first (lower address) page contains locations accessible
in user mode (which includes the DeeU registers), and the second page contains loca
tions accessible in supervisor mode (used for external eeu only). The base address of
these pages is specified by the eeUBASE field in ccr. Accesses to the second page in
DeeU-only mode have no effect on the DeeU, and are treated as normal memory
accesses.

When the DeeU is active, accesses to its address page use only the virtual address; no
address translation is done. However, the accesses to an external eeu go through nor
mal address translation. The OS should make sure that the page table entries for the
ceu pages are set so that no fault occurs during address translation. If an external eeD
is used, the two PTEs for the eeu should have eD = 1 (caching disabled) and should
have page frame addresses that match the external hardware addresses of the eeu.
Accesses to the DeeU that cause a TLB miss do not cause the PTE to be loaded into
the TLB.

6.4 DCCU INTERNALS

The DeeU consists of an address decoder, a 32-bit counter (NEWeURR), and a status
register (STAT), which has three bits of state information (InLoop, Nested, and
Detached). InLoop, Nested and Detached correspond to the same bits of the external
ceu STAT register. The Detached bit always reflects the value of the DO bit in ccr.

Several addresses within the DeeU memory page are decoded to cause actions to the
NEWeURR, InLoop, and Nested state bits. The eeu address to be accessed is speci
fied by address bits 11-3. The valid eeu addresses are shown in Table 6-1 with their
mnemonics. Loads from any other addresses within the DeeU memory page return
zero; stores to any other addresses have no effect. Access to the DeeU by any load or
store instructions other than Id.x and st.x produce undefined results.

Assemblers should encode address bits 2-0 as zero for accesses in little-endian mode.
However, in big-endian mode (epsr BE bit = 1), DeeD accesses should have address
bit 2 active. Thus, software for big-endian access to the DeeU must differ from little
endian software. This allows an external eeu to be accessed in both big and little
endian modes.

When reading from the DeeU, the access latency is the same as reading data from the
data cache - the data is ready for use as a source by the second instruction after the
load. The first instruction after the load may use the data, but that instruction will
experience a one-clock freeze before the data becomes available.

6-2

CONCURRENCY CONTROL

Table 6-1. CCU Addresses

Mnemonic A11-A8 A7-A4 Little Endian Big Endian
A3-AO A3-AO

ebr_i 0000 Oabe dOOO d100

eget 1111 0110 0000 0100

eneweurr 1111 1100 0000 0100

estat 1111 1100 1000 1100

estatei 1111 1101 0000 0100

estatn 1111 1101 1000 1100

eelm 1111 1110 1000 1100

ever 1111 1111 1000 1100

NOTE: Variable i is a four-bit index formed by A6-A3. Let its binary form be represented by the symbols
abed.

6.5 DCCU PROGRAMMING

Compilers employ the CCU by emitting code sequences that access the register locations II
via the load and store instructions of the CPU. For example, the code sequences cstart •
and crepeat tell the CCU to perform scheduling functions. One processor, called the
lead processor, begins executing the serial code leading to a parallel loop. The lead
processor reaches the cstart code sequence at the beginning of the parallel section: This
code sequence causes the lead processor to broadcast the program counter, the frame
pointer, and the number of iterations in the loop to the other processors. All processors
that are ready to start processing are also assigned an iteration number. In this way, each
processor starts off knowing the total number of iterations to be executed, the starting
program state, and the iteration to be processed. Other important information that does
not change dynamically (for example, the number of processors that are working on the
loop) is stored in shared memory pages.

When a processor finishes an iteration, it executes the crepeat code sequence that the
compiler generates at the end of the loop code. If another iteration remains to be per
formed, the processor branches back to the top of the loop, receives a new iteration
number, and begins processing.

Eventually, one of the processors will execute the last iteration of the loop. A processor
can recognize this condition, because it was notified in the cstart sequence of the total
number of iterations to be performed. That processor begins executing the serial code
beyond the end of the loop, and becomes the new lead processor for the next loop.

Other processors will find that there are no more iterations to be. performed. Each of
these processors waits until the new lead processor signals it with the next cstart code
sequence to begin parallel execution again.

6-3

CONCURRENCY CONTROL

Another pair of code sequences, cadvance and cawait, control task synchronization;
Together, they implement event-count synchronization using the broadcast registers con
tained in the eeu. They allow parallel execution of code that otherwise could not be
executed in parallel because of data dependencies. The compiler assigns a broadcast
register to use as an event count for each dependency in a loop. The cadvance sequence
increments the event count. The cawait sequence causes the process to wait until the
event count reaches a given count, usually the current loop count. With these controls, a
given loop iteration can wait until lower-numbered iterations on which it depends have
passed the point of dependency.

When the ccr is configured for "internal eeu only," load and store instructions within
these high-level code sequences access the locations of the DeeU instead of the loca
tions of an external eeu. The action that results from loading and storing each of the
DeeU locations is described below. It is assumed that the register isrc2 contains the
value of eeUBASE in the upper 20 bits, and zeros in the lower 12 bits. The effects listed
for these accesses assume that the ccr is configured with CO = DO = 1. When the ccr is
configured for the external eeu (CO = DO = 0), the effects are determined by the exter
nal eeu hardware.

Idol I%cbr _i (isrc2) , idest

idest ~ Oxffffffff

Load from Broadcast Register

The four-bit index i in cbr_i, formed by A6-A3, ranges between 0 and 15 (cbr_O, cbr_1,
... , cbr_1S).

Loads from any of these 16 DeeU registers place all ones into the specified register
idest. Thus, a cawait operation is always satisfied, because it makes the processor wait
until the number of the current iteration is less than or equal to cbr_i.

stJ isrc1 ni, I%cbr _i (isrc2)

IF (i = 0)
THEN NEWCURR ~ 0

InLoop ~ 1
FI

Store to Broadcast Register

A store to register l%cbr_O clears the 32 bit counter and sets the InLoop bit. This action
begins a loop.

Stores to the other fifteen broadcast register locations of the DeeU have no effect. Such
a store causes a cadvance operation to become a no-op.

Idol I%cget (isrc2) , idest

NEWCURR ~ NEWCURR + 1
idest ~ NEWCURR

6-4

Load New Iteration Count

CONCURRENCY CONTROL

A load from cget causes the counter to increment and the results to be placed in the
specified register. This is used to start the next iteration of a loop.

Idol I%cnewcurr (isrc2) , idest

idest ~ NEWCURR

Load from Iteration Counter

A load from cnewcurr loads the idest with the contents of the counter.

stl isrc1 ni, I%cnewcurr (isrc2)

NEWCURR ~ isrc1 ni

Store to Iteration Counter

A store to cnewcurr causes the contents of the register isrcl to be loaded into the 32 bit
counter.

Idol I%cstat (isrc2) , idest

idest~ STAT

Load Status

A load from cstat causes the contents of the STAT register to be loaded into the spec
ified register idest. Refer to Chapter 3 for the register format.

st.1 isrc1ni, l%cstat(isrc2)
stl isrc1 ni, l%cstatci(isrc2)
stl isrc1 ni, l%cstatn(isrc2)

InLoop ~ bit 0 of isrc1ni
Nested ~ bit 1 of isrc1 ni

Store Status

A store to cstat, cstatn, or cstatci puts bits 0 and 1 of the register designated by isrcl into
the two state bits, InLoop and Nested. Stores to cstat, cstatn, and cstatci all have the
same effect.

Id.1 I%cstatci (isrc2) , idest

idest ~ STAT
IF (Nested = 0)
THEN InLoop ~ 0
FI

Load Status Clearing Inloop

This is similar to the previous Idol I%cstat except that the InLoop bit is cleared if Nested
is cleared. This is done when all iterations of a concurrent loop are completed.

Idol I%cstatn (isrc2) , idest

idest ~ STAT
Nested ~ InLoop

Load Status Setting Nested

6-5

CONCURRENCY CONTROL

This is similar to the load from cstat except that the contents of InLoop is loaded into
Nested. This is used before starting a new loop, to cause the eeu to switch to nested
mode if the processor is already in a concurrent loop.

sU isrc1 ni, I%cclm (isrc2)

(no effect)

Clear Broadcast Registers

A store to I%cclm has no effect on the DeeU. This operation is normally used before
entering a loop to clear those broadcast registers that are used as synchronization
counters. With the DeeU, no response is necessary. (Refer to the load and store oper
ations on broadcast registers.)

Id.ll%cver (isrc2) , idest

idest~ 0

The version and stepping numbers are returned as zero.

A store to I%cget and a load from I%cclm have undefined results.

Programming Notes

Load Version

All DeeU accesses can cause the same data access traps as other Id.x and st.x opera
tions (protection, breakpoint on read or write, page not present, misalignment).

The effect of addressing the DeeU with any of the instructions pfld, fld, or fst is unde
fined. Addressing the DeeU with Idio, stio, or pst has no effect.

6-6

Core Instructions 7

II

CHAPTER 7
CORE INSTRUCTIONS

Core instructions include loads and stores of the integer, floating-point, and control
registers; arithmetic and logical operations on the 32-bit integer registers; control trans
fers; I/O; and system control functions. All these instructions are executed by the core
unit.

The comments regarding optimum performance that appear in the subsections Program
ming Notes are recommendations only. If these recommendations are not followed, the
processor automatically waits the necessary number of clocks to satisfy internal hardware
requirements.

7-1

II

CORE INSTRUCTIONS

7.1 LOAD INTEGER

Id.x isrc1 (isrc2) , idest Load Integer

idest <E- mem.x (isrc1 + isrc2)

.x = .b (8 bits), .S (16 bits), or .I (32 bits)

The load integer instruction transfers an 8-, 16-, or 32-bit value from memory to the
integer registers. The isrcl can be either a 16-bit immediate address offset or an index
register. Loads of 8- or 16-bit values from memory place them in the low-order bits of
the destination registers and sign-extend them to 32-bit values in the destination
registers.

Traps

If the operand is misaligned, a data-access trap results.

Programming Notes

For best performance, observe the following guidelines:

1. The destination of a load should not be referenced as a source operand by the next
instruction.

2. A load instruction should not directly follow a store that is expected to hit in the
, data cache.

Even though immediate address offsets are limited to 16 bits, loads using a 32-bit
address offset may be implemented by the following sequence (r31 is recommended for
all such addressing calculations):

orh ha%ADDRESS, r~, r31
Id.l 1%ADDRESS(r31), idest

The 1% operator takes the low-order 16 bits of the address. Note that the processor uses
signed addition when it adds I%ADDRESS to r31. If bit 15 is set, this has. the effect of
subtracting from r31. Therefore, when bit 15 of I%ADDRESS is set, the high-order part of
the address must be derived by adding one to the high-order 16 bits, so that the net
result is correct. This is precisely what the ha% operator does.

The assembler must align the immediate address offsets used in loads to the same
boundary as the effective address, because the lower bits of the immediate offset are
used to encode operand length information.

7-2

CORE INSTRUCTIONS

7.2 STORE INTEGER

st.x isrc1 ni, #const(isrc2) Store Integer

mem.x (isrc2 + #cons~ +--- isrc1 ni

.x = .b (8 bits), .s (16 bits), or .I (32 bits)

The store instruction transfers an 8-, 16-, or 32-bit value from the integer registers to
memory. Stores do not allow an index register in the effective-address calculation,
because isrclni is used to specify the register to be stored. The #const is a signed, 16-bit,
immediate address offset. An absolute address may be formed by using rO for isrc2.
Stores of 8- or 16-bit values store the low-order 8 or 16 bits of the register.

Traps

If the operand is misaligned, a data-access trap results.

Programming Notes

For best performance, a load instruction should not directly follow a store that is
expected to hit in the data cache.

Even though immediate address offsets are limited to 16 bits, a store using a 32-bit
immediate address offset may be implemented by the following sequence (r31 is recom
mended for all such addressing calculations):

orh ha%ADDRESS, r0, r31
st.1 isrclni, l%ADDRESS (r31)

The 1% operator takes the low-order 16 bits of the address. Note that the processsor uses
signed addition when it adds I%ADDRESS to r31. If bit 15 is set, this has the effect of
subtracting from r31. Therefore, when bit 15 of I%ADDRESS is set, the high-order part of
the address must be derived by adding one to the high-order 16 bits, so that the net
result is correct. This is precisely what the ha% operator does.

The assembler must align the immediate address offsets used in stores to the same
boundary as the effective address, because the lower bits of the immediate offset are
used to encode operand length information.

7-3

II

CORE INSTRUCTIONS

7.3 TRANSFER INTEGER TO F-P REGISTER

ixfr isrc1 ni, fdest

fdest ~ isrc 1 ni

Transfer Integer to F-P Register

The ixfr instruction transfers a bit pattern from the 32-bit integer register isrclni to the
32-bit floating-point register fdest. Assemblers .and compilers should encode fsrc2 as fO.

Programming Notes

For best performance, the destination of an ixfr should not be referenced as a source
operand in the next two instructions.

7-4

CORE INSTRUCTIONS

7.4 LOAD FLOATING-POINT

fld.y isrc1(isrc2), fdest
fld.y isrc1(isrc2) + +, fdest

fdest «- mem.y (isrc1 + isrc2)
IF autoincrement
THEN isrc2 «- isrc1 + isrc2
FI

Floating-Point Load
(Normal)

(Autoincrement)

pfld.y isrc1(isrc2), fdest
pfld.y isrc1(isrc2) + +, fdest

Pipelined Floating-Point Load
(Normal)

(Autoincrement)

fdest «- mem.y (third previous pfld's (isrc1 + isrc2)
(where .y is precision of third previous pfld.z)

IF autoincrement
THEN isrc2 «- isrc1 + isrc2
FI

.y = .I (32 bits), .d (64 bits), or .q (128 bits)
pfld.q is not available with the i860 XR CPU

Floating-point loads transfer 32-, 64-, or 128-bit values from memory to the floating
point registers. These may be floating-point values or integers. An autoincrement option
supports constant-stride vector addressing. If this option is specified, the processor
stores the effective address into isrc2.

Floating-point loads may be either pipelined or not. Data that is expected to be used I
several times before being replaced in the cache should be loaded with the nonpipelined
fld instruction. The fld instruction checks the data cache. If the required data is in the
cache, no bus cycle is issued. On a cache miss, fld accesses the data via the bus, and
places the data in the cache. The fld instruction does not advance the load pipeline and
does not interact with outstanding pfld instructions.

The load pipeline has three stages. A pfld returns the data from the address calculated
by the third previous pfld, thereby allowing three loads to be outstanding on the external
bus. The pfld instruction, is optimized for use with uncached data; it does not place the
data in the data cache after a cache miss. When the data is already in the cache, pfld
reads the data from the cache only if it has been modified. A pfld should be used when
the data is expected to be used only once in the near future.

Traps

If the operand is misaligned, a data-access trap results. No trap occurs when the data
loaded is not a valid floating-point number. Executing pfld.q on the i860 XR micropro
cessor causes an instruction trap.

Programming Notes

In the i860 XR microprocessor, a pfld cannot load a 128-bit operand.

7-5

CORE INSTRUCTIONS

For the auto incrementing form of the instruction, the register coded as isrcl must not be
the same register as isrc2.

For best performance, observe the following guidelines:

1. The destination of an fld or pfld should not be referenced as a source operand in the
next two instructions.

2. An fld instruction should not directly follow a store instruction that is expected to hit
in the data cache. There is no performance impact for a pfld following a store
instruction.

3. A string of more than three successive pfld instructions causes internal delays due
the fact that the bandwith of the processor bus is one pfld per two cycles.

The assembler must align the immediate address offsets used in loads to the same
boundary as the effective address, because the lower bits of the immediate offset are
used to encode operand length information.

To take greatest advantage of the NENE# pin and the faster access to paged DRAM
that it provides, programmers should organize pfld instructions and their operands so
that successive memory accesses have a high probability of hitting the same DRAM
page.

7-6

CORE INSTRUCTIONS

7.5 STORE FLOATING-POINT

fst. y fdest, isrc 1 (isrc2)
fst. y fdest, isrc 1 (isrc2) + +

mem.y (isrc2 + isrc1) ~ fdest
IF autoincrement
THEN isrc2 ~ isrc1 + isrc2
FI

Floating-Point Store
(Normal)

(Autoincrement)

.y = .I (32 bits), .d (64 bits), or .q (128 bits)

Floating-point stores transfer 32-, 64-, or 128-bit values from the floating-point registers
to memory. These may be floating-point values or integers. Floating-point stores allow
isrcl to be used as an index register. An auto increment option supports constant-stride
vector addressing. If this option is specified, the processor stores the effective address
into isrc2.

Traps

If the operand is misaligned, a data-access trap results.

Programming Notes

For the auto incrementing form of the instruction, the register coded as isrcl must not be
the same register as isrc2.

For best performance, observe the following guidelines:

1. An Id or fld instruction should not directly follow a store instruction that is expected
to hit in the data cache. There is no performance impact for a pfld following a store
instruction.

2. The fdest of an fst.y instruction should not reference the destination of the next
instruction if that instruction is a pipelined floating-point operation.

The assembler must align the immediate address offsets used in stores to the same
boundary as the effective address, because the lower bits of the immediate offset are
used to encode operand length information.

7-7

II

7.6 PIXEL STORE

pst.d fdest, #const(isrc2j
pst.d fdest, #const(isrc2j + +

CORE INSTRUCTIONS

Pixels enabled by PM in mem.d (isrc2 + #cons~ ~ fdest
Shift PM right by 8/pixeLsizejn_bytes bits
IF autoincrement
THEN isrc2 ~ #const + isrc2
FI

Pixel Store
(Normal)

(Autoincrement)

The pixel store instruction selectively updates the pixels in a 64-bit memory location. The
pixel size is determined by the PS field in the psr. The pixels to be updated are selected
by the low-order bits of the PM field in the psr. The low-order bit of PM corresponds to
the low-order pixel of the 64-bit source operand of pst.d. The number of low-order bits
of PM that are actually used is the number of pixels that fit into 64-bits, which depends
upon PS. If a bit of PM is set, then pst.d stores the corresponding pixel.

This instruction is typically used in conjunction with the fzchks or fzchkl instructions to
implement Z-buffer hidden-surface elimination. When used this way, a pixel is updated
only when it represents a point that is closer to the viewer than the closest point painted
so far at that particular pixel location. Refer to Chapter 8 for more about fzchks and
fzchkl.

Traps

If the operand is misaligned, a data-access trap results.

Programming Notes

For the auto incrementing form of the instruction, the register coded as isrcl must not be
the same register as isrc2.

For best performance, observe the following guidelines:

1. An Id or fld instruction should not directly follow a store instruction that is expected
to hit in the data cache. There is no performance impact for a pfld following a store
instruction.

2. The [dest of a pst.y instruction should not reference the destination of the next
instruction if that instruction is a pipelined floating-point operation. .

Even if all bits of PM are zero, bus cycles are still issued; however, no byte-enable signals
are asserted.

7-8

CORE INSTRUCTIONS

7.7 INTEGER ADD AND SUBTRACT

addu isrc1, isrc2, idest

idest ~ isrc 1 + isrc2
OF ~ bit 31 carry
CC ~ bit 31 carry

adds isrc 1, isrc2, idest

idest ~ isrc 1 + isrc2
OF ~ (bit 31 carry ~ bit 30 carry)
Using signed comparison,

CC set if isrc2 + isrc1 < 0
CC clear if isrc2 + isrc1 ;;::: 0

subu isrc1, isrc2, idest

idest ~ isrc 1 - isrc2
OF ~ NOT (bit 31 carry)
CC ~ bit 31 carry

(i.e., using unsigned comparison,
CC set if isrc2 ::;: isrc1
CC clear if isrc2 > isrc1)

subs isrc1, isrc2, idest

idest ~ isrc 1 - isrc2
OF ~ (bit 31 carry ~ bit 30 carry)
Using signed comparison,

CC set if isrc2 > isrc1
CC clear if isrc2 ::;: isrc1

Add Unsigned

Add Signed

Subtract Unsigned

Subtract Signed

In addition to their normal arithmetic functions, the add and subtract instructions are
also used to implement comparisons. For this use, rO is specified as the destination, so
that the result is effectively discarded. Equal and not-equal comparisons are imple
mented with the xor instruction (refer to the section on logical instructions).

Add and subtract ordinal (unsigned) can be used to implement multiple-precision
arithmetic.

Flags Affected

CC and OF as defined above.

Programming Notes

For optimum performance, a conditional branch should not directly follow an add or
subtract instruction.

Refer to Chapter 12 for an example of how to handle the sign of 8- and 16-bit integers
when manipulating them with 32-bit instructions.

An instruction of the fOrIn subs -1, isrc2, idest yields the one's complement of isrc2.

7-9

II

CORE INSTRUCTIONS

When isrcl is immediate, the immediate value is sign-extended to 32-bits even for the
unsigned instructions addu and subu.

These instructions enable convenient encoding of a literal operand in a subtraction,
regardless of whether the literal is the subtrahend or the minuend. For example:

Calculation Encoding

Signed r6 = 2 - rS subs 2, rS, r6
r6 = rS - 2 adds -2, rS, r6

Unsigned r6 = 2 - rS subu 2, rS, r6
r6 = rS - 2 addu -2, rS, r6

Note that the only difference between the signed and the unsigned forms is in the setting
of the condition code CC and the overflow flag OF.

The various forms of comparison between variables and constants can be encoded as
follows:

Branch When True
Condition Encoding

Signed Unsigned

var :5 canst subs canst, var bnc
subu canst, var bc

var < canst
adds -canst, var bc
addu -canst, var* bnc

var ~ canst adds -canst, var bnc
addu -canst, var* bc

var > canst
subs canst, var bc
subu canst, var bnc

NOTE: *Valid anly when canst > 0

The arithmetic instructions are recommended for moving a small integer constant to an
integer register, because they move and sign-extend in one instruction. They do, how
ever, affect the condition code. The following assembler pseudo-operation utilizes the
adds instruction. The const32 represents a signed constant expression in assembly lan
guage whose value is in the range: OxFFFF8000 ~ const32 < Ox8000.

mov const32, idest

Assembler pseudo-operation, equivalent to:
adds l%const32, rO, idest

7-10

Small Constant-to-Register Move

CORE INSTRUCTIONS

7.8 SHIFT INSTRUCTIONS

shl isrc1, isrc2, idest

idest ~ isrc2 shifted left by isrc1 bits

shr isrc1, is.rc2, idest

SC (in psr) ~ isrc1
idest ~ isrc2 shifted right by isrc1 bits

shra isrc1, isrc2, idest

idest ~ isrc2 arithmetically shifted right by isrc1 bits

Shift Left

Shift Right

Shift Right Arithmetic

shrd isrc1 ni, isrc2, idest Shift Right Double

idest ~ low-order 32 bits of isrc1ni:isrc2 shifted right by SC bits

The arithmetic shift does not change the sign bit; rather, it propagates the sign bit to the
right isrc} bits.

Shift counts are taken modulo 32. A shrd right-shifts a 64-bit value with isre} bejng the
high-order 32 bits and isrc2 the low-order 32 bits. The shift count for shrd is taken from
the shift count of the last shr instruction, which is saved in the SC field of the psr.
Shift-left is identical for integers and ordinals.

Programming Notes

The shift instructions are recommended for the integer register-to-register move and for I
no-operations, because they do not affect the condition code. The shrd instruction is
used as the floating-point no-op, because not only does it not affect the condition code,
but it does not change the floating-point pipeline, either. The processor interprets the
D-bit of shrd as if it were a floating-point instruction. The following asst;!mbler pseudo
operations utilize the shift instructions:

mov isrc2, idest

Assembler pseudo-operation, equivalent to:
shl rO, isrc2, idest

nop

Assembler pseudo-operation, equivalent to:
shl rO, rO, rO

fnop

Assembler pseudo-operation, equivalent to:
shrd rO, rO, rO

Rotate is implemented by:

Register-to-Register Move

Core No-Operation

Floating-Point No-Operation

shr COUNT, r~, r~

shrd op, op, op
II Only loads COUNT into SC of PSR
II Uses SC for shift count

7-11

CORE INSTRUCTIONS

7.9 SOFTWARE TRAPS

trap isrc1 ni, isrc2, idest

Generate trap with IT set in psr

intovr

IF OF in epsr = 1
THEN generate trap with IT set in psr
FI

Software Trap

Software Trap on Integer Overflow

These instructions generate the instruction trap, as described in Chapters 9 and 10.

The trap instruction can be used to implement supervisor calls and code breakpoints.
The idest should be zero, because its contents are undefined after the operation. The
isrclni and isrc2 fields can be used to encode the type of trap.

The intovr instruction generates an instruction trap if the OF bit (overflow flag) of epsr
is set. It is used to test for integer overflow after the instructions adds, addu, subs, and
subu. Assemblers and compilers should encode isrcl, isrc2, and idest as zero.

Programming Notes

The trap and intovr instructions must not be included in a locked sequence.

7-12

CORE INSTRUCTIONS

7.10 LOGICAL INSTRUCTIONS

and isrc 1, isrc2, idest

idest ~ isrcl AND isrc2
CC set if result is zero, cleared otherwise

andh #const, isrc2, idest

idest ~ (#const shifted left 16 bits) AND isrc2
CC set if result is zero, cleared otherwise

andnot isrcl, isrc2, idest .

idest ~ (NOT isrcl) AND isrc2
CC set if result is zero, cleared otherwise

andnoth #const, isrc2, idest

idest ~ (NOT (#const shifted left 16 bits)) AND isrc2
CC set if result is zero, cleared otherwise

or isrcl, isrc2, idest

idest ~ isrcl OR isrc2
CC set if result is zero, cleared otherwise

orh #const, isrc2, idest

idest ~ (#const shifted left 16 bits) OR isrc2
CC set if result is zero, cleared otherwise

xor isrc1, isrc2, idest

idest ~ isrcl XOR isrc2
CC set if result is zero, cleared otherwise

xorh #const, isrc2, idest

idest ~ (#const shifted left 16 bits) XOR isrc2
CC set if result is zero, cleared otherwise

Logical AND

Logical AND High

Logical AND NOT

Logical AND NOT High

Logical OR

Logical OR High

Logical XOR

Logical XOR High

The operation is performed bitwise on all 32 bits of isrcl and isrc2. When isrcl is an
immediate constant, it is zero-extended to 32 bits.

The "h" variant signifies "high" and forms one operand by using the immediate constant
as the high-order 16 bits and zeros as the low-order 16 bits .. The resulting 32-bit value is
then used to operate on the isrc2 operand.

Flags Affected

CC is set if the result is zero, cleared otherwise.

Programming Notes

Bit operations can be implemented with logical operations by setting up isrcl as an
immediate constant that contains a one in the bit position to be operated on and zeros
elsewhere.

7-13

II

CORE INSTRUCTIONS

Bit Operation Equivalent Logical Operation

Set bit or

Clear bit andnot

Complement bit xor

Test bit and (CC set if bit is clear)

The logical instructions are recommended for moving a 32-bit integer constant to an
integer register. Note, however, that they do affect the condition code. The following
assembler pseudo-operation utilizes the or and orh instruction. The const32 represents a
signed. constant expression in assembly language whose value is in one of these ranges:
const32 < OxFFFF8000, const32 ;::: Ox8000.

mov const32, idest

Assembler pseudo-operation, equivalent to:
orh h%const32, rO, idest
or l%const32, idest, idest

7-14

Large Constant-to-Register Move

CORE INSTRUCTIONS

7.11 CONTROL-TRANSFER INSTRUCTIONS

Control transfers can branch to any location within the address space. However, if a
relative branch offset, when added to the address of the control-transfer instruction plus
four, produces an address that is beyond the 32-bit addressing range of the processor,
the results are undefined.

Many of the control-transfer instructions are delayed transfers. They are delayed in the
sense that the processor executes one additional instruction following the control
transfer instruction before actually transferring control. During the time used to execute
the additional instruction, the processor refills the instruction pipeline by fetching
instructions from the new instruction address. This avoids breaks in the instruction exe
cution pipeline. It is generally possible to find an appropriate instruction to execute after
the delayed control-transf~r instruction even if it is merely the first instruction of the
procedure to which control is passed.

Programming Notes

The sequential instruction following a delayed control-transfer instruction must not be
another control-transfer instruction, nor a trap instruction, nor the target of a control
transfer instruction.

7-15

II

CORE INSTRUCTIONS

br Ibroff

Execute one more sequential instruction.
Continue execution at brx(lbroff).

bc Ibroff

IF CC = 1
THEN continue execution at brx(lbroff)
FI

bc.t Ibroff

IF CC = 1
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

bnc Ibroff

IF CC = 0
THEN continue execution at brx(lbroff)
FI

bnc.t Ibroff

IF CC = 0
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

bte isrc1s, isrc2, sbroff

IF isrc1s = isrc2
THEN continue execution at brx(sbroff)
FI

btne isrc1s, isrc2, sbroff

IF isrc1 s ¢ isrc2
THEN continue execution at brx(sbroff)
FI

bla isrc1 ni, isrc2, sbroff

LCC_temp clear if isrc2 + isrc1 ni < 0 (signed)
LCC_temp set if isrc2 + isrc1 ni ~ 0 (signed)
isrc2 ~ isrc1 ni + isrc2
Execute one more sequential instruction
IF LCC
THEN LCC ~ LCC_temp

continue execution at brx(sbroff)
ELSE LCC ~ LCC_temp
FI

Branch Direct Unconditionally

Branch on CC

Branch on CC, Taken

Branch on Not CC

Branch on Not CC, Taken

Branch if Equal

Branch if Not Equal

Branch on LCC and Add

The instructions bc.t and bnc.t are delayed forms of bc and bnc. The delayed branch
instructions bc.t and bnc.t should be used when the branch is taken more frequently than
not; for example; at the end of a loop. The nondelayed branch instructionsbc, bnc, bte,

7-16

CORE INSTRUCTIONS

and btne should be used when branch is taken less frequently than not; for example, in
certain search routines.

If a trap occurs on a bla instruction or the next instruction, Lee is not updated. The trap
handler resumes execution with the bla instruction, so the Lee setting is not lost. The
i860 XP microprocessor sets the AI bit of epsr when a trap occurs on bla.

Programming Notes

The bla instruction is useful for implementing loop counters, where isrc2 is the loop
counter and isrcl is set to -1. In such a loop implementation, a bla instruction may be
performed before the loop is entered to initialize the Lee bit of the psr. The target of
this bla should be the sequential instruction after the next, so that the target instruction
is executed regardless of the setting of Lee. Another bla instruction placed as the next
to last instruction of the loop tests for loop completion and update the loop counter. The
total number of iterations is the value of isrc2 before the first bla instruction, plus one.
Example 7-1 illustrates this use of bla.

Programmers should avoid calling subroutines from within a bla loop, because a subrou
tine may also use bla and change the value of Lee.

For the bla instruction, the register coded as isrcl must not be the same register as isrc2.

II EXAMPLE OF bla USAGE

II Write zeros to an array of 64 single-precision numbers
II Starting address of array is already in r4

fmov.dd ffc'J, f2 II f3, f2 <-- fc'J
adds -1 rfc'J, r5 II r5 <-- loop increment
mov 15, r6 II r6 <-- loop count -1
bla r5, r6, CLEAR_LOOP II One time to initialize Lce
addu -16, r4, r4 II Start one group lower to

II allow for auto increment
CLEAR_LOOP:

bla r5, r6, CLEAR_LOOP II Loop for the 16 times
fst.q ffc'J, 16(r4)++ II Write and autoincrement

II to next group

Example 7-1. Example of bla Usage

7-17

II

CORE INSTRUCTIONS

call/broff Subroutine Call

r1 ~ address of next sequential instruction + 4 (or + 8 in dual mode)
Execute one more sequential instruction
Continue execution at brx(/broff)

calli [isrc1 ml Indirect Subroutine Call

r1 ~ address of next sequential instruction + 4 (or + 8 in dual mode)
Execute one more sequential instruction
Continue execution at address in isrc1 ni

(The original contents of isrc1 ni is used even if the next instruction
modifies isrc1 ni. Does not trap if isrc1 ni is misaligned.)

bri [isrc1 ml Branch Indirect Unconditionally

Execute one more sequential instruction
I F any trap bit in psr is set
THEN copy PU to U, PIM to 1M in psr

clear trap bits

FI

IF DS is set and DIM is reset
THEN enter dual-instruction mode after executing

one instruction in single-instruction mode
ELSE IF DS is set and DIM is set

FI

THEN enter single-instruction mode after
executing one instruction in
dual-instruction mode

ELSE IF DIM is set

FI

THEN enter dual-instruction mode
for next instruction pair

ELSE enter single-instruction mode
for next instruction pair

FI

Continue execution at address in isrc1 ni (The original contents of isrc1 ni
are used even if the next instruction modifies isrc1 ni. Does not trap
if isrc1ni is misaligned.)

Return from a subroutine is implemented by branching to the return address with the
indirect branch instruction brio

Indirect branches are also used to resume execution from a trap handler (refer to Chap
ters 9 and 10). The need for this type of branch is indicated by set trap bits in the psr at
the time bri is executed. In this case, the instruction following the bri must be a load or
move that restores isrclni to the value it had before the trap occurred.

Programming Notes

When using brito return from a trap handler, programmers should take care to prevent
traps from occurring on that or on the next sequential instruction. 1M should be zero
(interrupts disabled).

7-18

CORE INSTRUCTIONS

Due to contention for the psr register, the following sequence is illegal if any trap bits
are set when the bri instruction is executed:

bri any_address
st·c srcl, psr

The register isrclni of the calli instruction must not be r1.

7-19

II

CORE INSTRUCTIONS

7.12 CONTROL REGISTER ACCESS

Id.c csrc2, idest
idest ~ csrc2

st.c isrc1 ni, csrc2
csrc2 ~ isrc1ni

Load from Control Register

Store to Control Register

Csrc2 specifies a control register that is transferred to or from a general-purpose regis-:
ter. The function of each control register is defined in Chapter 3. As shown below, some
registers or parts of registers are write-protected when the U-bit in the psr is set. A store
to those registers or bits is ignored when the processor is in user mode. The encoding of
isrc2 is defined by Table 7-1.

Programming Notes

In single-instruction mode, using a Id.c instruction to read the fir anytime except the first
time after a trap saves in idest the address of the Id.c instruction; in dual-instruction
mode, the address of its floating-point companion (address of the Id.c - 4) is saved.

After a scalar floating-point operation, an st.c to fsr should not change the value of RR,
RM, or FZ until the point at which result exceptions are reported. (Refer to Chapters 9
and 10 for more details.)

Only a trap handler should use the instruction st.c to set the trap bits (IT, IN, IAT,
DAT, FT) of the psr.

Table 7-1. Control Register Encoding for Assemblers

Register Src2Code
User-Mode

Write-Protected?

fir (Fault Instruction) 0 N/A1
psr (Processor Status) 1 Yes2

dirbase (Directory Base) 2 Yes
db (Data Breakpoint) 3 Yes
fsr (Floating-Point Status) 4 No
epsr (Extended Processor Status) 5 Yes3

bear (Bus Error Address Register)4 6 N/A1
ccr (Concurrency Control Register)4 7 Yes
pO (Privileged Register 0)4 8 Yes
p1 (Privileged Register 1)4 9 Yes
p2 (Privileged Register 2)4 10 Yes
p3 (Privileged Register 3)4 11 Yes

NOTES:
1. The fir and bear registers cannot be written by the st.c instruction.
2. Only the psr bits BR, BW, PIM, 1M, PU, U, IT, IN, IAT, OAT, FT, OS, DIM, and KNF are write-protected.
3. The processor type, stepping number, and DCS cannot be changed from either user or supervisor level.
4. Available only with i860™ XP CPU. Using these encodings with the i860 XR CPU produces undefined

results.

7-20

CORE INSTRUCTIONS

7.13 CACHE FLUSH

flush #const(isrc2)
flush #const(isrc2) + +

Cache Flush
(Normal)

(Auto increment)

Write back modified data from the data-cache line residing at the cache
location addressed by (#const + isrc2).

For 80860XR, the contents of the line are undefined, and the tag is set to
(#const + isrc2); for 80860XP, the virtual tag and physical tag of the
line are invalidated.

IF autoincrement
THEN isrc2 ~ #const + isrc2
FI

The flush instruction is used to force modified data from the data cache to external
memory. The address #const + isrc2 must be aligned on a 16-byte boundary. Any of the
32-byte lines in a cache set can be addressed #const + isrc2. The particular line (or
"way") that is forced to memory is controlled by the RB field of dirbase. In user mode,
execution of flush is suppressed; use it only in supervisor mode. Because the register
designated by idest is undefined after flush, assemblers should encode idest as zero.

Example 7-2 shows how to use the flush instruction.

- XR-
To invalidate the virtual tags, the
addresses used by the flush instruction
refer to a reserved four-Kbyte memory
area that is not used to store data. These
addresses must be valid and writable in
both the old and the new task's space.

- XP-
The processor invalidates virtual tags by
clearing their V -bit. The physical tag state
is set to I (invalid). For compatibility with
the i860 XR CPU, it is recommended that
the addresses used by flush be chosen
from the same reserved four-Kbyte
memory area.

Making one pass for each way ensures that all cache lines containing modified data are
written back to memory. Each pass references every 32nd byte of the reserved area with
the flush instruction. Before the first pass, the RC field in dirbase is set to two and RB
is set to zero. This causes data-cache misses to flush line zero of each set. Before the
each subsequent pass, RB is increased by one, causing the next line of each set to be
flushed.

7-21

II

CORE INSTRUCTIONS

II CACHE FLUSH ROUTINE -- Common to 80860XR and 80860XP
II Rr, Rs, Rt, Ru, Rv, Rw, Rx, Ry represent integer registers
II Constant definitions for control registers masks:

DIRB_rb = 0xc00i DIRB_rc = 0x300

.data
flush_area::

.byte [4096] 0

.text
flush: :

mov r1,

II Using method of your choice, reserve
II 4 Kbytes of writable memory

Rr II Save return address
ld.c dirbase,Rv II Save dirbase
and not 0x0F00, Rv, Ru II Clear RC, RB fields
adds -1, r0, Rx II Loop decrement
mov flush_area-32, Rt II Starting flush address-32

II Get ready for first flush pass
or 0x800, Ru, Rs II Set RC = 2, RB 0
call LFLUSH
st.c Rs, dirbase II dirbase <-- RC 2, RB

II Get ready for second flush pass
or 0x900, Ru, Rs II Set RC = 2, RB 1
call LFLUSH
st.c Rs, dirbase II dirbase <-- RC 2, RB

II Check data cache size. II EPSR (21:18) is DCS (3 .. 0)
ld.c epsr, Rs II 0001=8K, 0010=16K
shr 19, Rs, Rs II Rs <- DCS (3 .. 1) • Bit 0 discarded
and 0x07, Rs, Rs II Isolate DCS (3 .. 1)

bc RESTORLDIRBASE II Taken if data cache is 8K or less

II This data cache is > 8K. Flush more cache ways.

II Get ready for third flush pass
or 0xa00, Ru, Rs II Set RC = 2, RB 2
call LFLUSH
st.c Rs, dirbase II dirbase <-- RC 2, RB

II Get ready for fourth flush pass
or 0xb00, Ru, Rs II Set RC = 2 and RB = 3
call LFLUSH
st.c Rs, dirbase II dirbase <-- RC = 2, RB

RESTORE_DIRBASE:
II Change DTB, ATE or ITI fields in Rv here, if necessary ...

st.c Rv, dirbase II Restore original dirbase

0

1

2

3

nopinOPinopinOPinopinop II Required to drain instruction Q
II Return from flush

bri Rr
nap

D_FLUSH:
mov 127, Ry
bla Rx, Ry, D_FLUSH_LOOP
mov Rt, Rw

D_FLUSH_LOOP:
bla Rx, Ry, D_FLUSH_LOOP
flush 32(Rw)++
bri r1
nap

II Reset loop counter
II One time to initialize LCC
II Original flush address

II Loop on next instruction 128 times
II Flush and auto increment
II Return after next instruction

Example 7-2. Cache Flush Procedure

7-22

CORE INSTRUCTIONS

- XR-
Note that the processor may direct actual
write cycles to the page reserved for flush
addresses. Each line of the data cache has
two M (modified) bits, one for each half
line. Although both half-lines are written
back if both are modified, the flush
instruction clears only the M-bit of the half
line that corresponds to the target address.
(If A4 = 0, the M-bit for the lower 16 bytes
is cleared; otherwise, the M-bit for the
higher 16 bytes is cleared.) The procedure
in Example 7-2 clears only the lower
M-bit. Because the other M-bit remains
set, the processor may later perform
16-byte write-backs to the reserved page.

7-23

- XP-
Unlike the i860 XR microprocessor, the
flush instruction of the i860 XP micropro
cessor invalidates the entire line by writing
back modified data and invalidating both
its virtual and its physical tag.

II

CORE INSTRUCTIONS

7.14 BUS LOCK

lock Begin Interlocked Sequence

Causes the next data load or store that appears on the bus to assert the
LOCK# signal, directing the external system to lock that location by
preventing locked reads, locked writes, and unlocked writes to it from
other processors. External interrupts are disabled from the first instruction
after the lock until the location is unlocked.

unlock End Interlocked Sequence

The next load or store (regardless of whether it hits in the cache)
deasserts the LOCK# signal, directing the external system to
unlock the location. Interrupts are enabled.

These instructions allow programs running in either user or supervisor mode to perform
atomic read-modify-write sequences in multiprocessor and multithread systems. The lock
protocol requires the following sequence of activities:

1. lock

2. Any load or store instruction that appears on the bus. For compatibility with future
processor generations, this should be a load. With the 80860XR, software in a mul
tiprocessing system should ensure that the first load or store instruction after a lock
references noncacheable memory or a memory location not yet cached. If the load
or store instruction hits the cache, the sequence is legal, but the bus of the 80860XR
is not locked. For the 80860XP, the first load or store does not have to miss the
cache; it (as well as all subsequent loads and stores in the locked sequence) are
forced to the bus.

3. unlock

4. Any load or store instruction (regardless of whether it misses the cache). For com
patibility with future processor generations, this should be a store.

There may be other instructions between any of these steps. The bus is locked after
step 2, and remains locked until step 4. Step 4 must follow step 1 by 30 instructions or
less; otherwise, an instruction trap occurs. The interlocked sequence must not branch
outside of the 30 sequential instructions following the lock instruction. If the processor
encounters another lock instruction before unlocking the bus or an unlock with no pre
ceding lock, that instruction is ignored.

If a trap occurs after step 1 but before or during step 4, the processor sets the IL
(interlock) bit of epsr. This is likely to happen, for example, during TLB miss processing,
when the A-bit of the page table entry is not set. (Refer to Chapter 4.)

The sequence must be restartable from the lock instruction in case a trap occurs. Simple
read-modify-write sequences are automatically restartable. For sequences with more
than one store, the software must ensure that no traps occur after the first non
reexecutable store. To ensure that no instruction-access fault occurs, the instructions

7-24

CORE INSTRUCTIONS

that are not restartable should not span a page boundary. To ensure that no unrecover
able data access fault occurs, locations to be modified should first be read then written
with unmodified data, so that any data access traps are triggered before modified data is
written.

When multiple memory locations are accessed during a locked sequence, the system only
needs to guarantee that the first location is locked against locked reads, locked writes,
and unlocked writes by other processors. High-performance multiprocessor hardware
systems can implement a fine-grained lock, during which other processors can use the
bus for access to other memory locations. Simpler systems may implement more inclusive
locking, even preventing other processors from using the system bus, but software should
not count on such an inclusive lock. For each shared data structure, software must
establish a single location that is the first location referenced by any locked sequence
that requires that data. For example, the head of a doubly linked list should be refer
enced before accessing items in the middle of the list.

Between locked sequences, at least one cycle of LOCK# pin deactivation is guaranteed
by the behavior of unlock.

If the load or store instruction of step 2 accesses a previously unaccessed page (A=O),
the bus is locked briefly while the A bit is set, unlocked, then locked again to satisfy the
lock instruction and start the locked sequence.

Example 7-3 shows how lock and unlock can be used in a variety of interlocked
operations.

II LOCKED TEST AND SET
II Value to put in semaphore is in r23

lock II
ld.b semaphore, r22 II Put current value of semaphore in r22
unlock I I
st.b r23, semaphore II

II The prior value of the semaphore in r22 can now be tested.

II LOCKED LOAD-ALU-STORE

II
II

L1:

lock
ld.l word,

II
r22 II

addu 1, r22, r22 II Can be any ALU operation
unlock
st.l r22, word II

LOCKED COMPARE AND SWAP
Swaps r23 with word in memory, if word r21

lock II
ld.l word, r22 II
bte r22, r21, L1 II
mov r22, r23 II Executed only if not equal
unlock II
st.l r23, word II

Example 7-3. Examples of lock and unlock Usage

7-25

II

CORE INSTRUCTIONS

Programming Notes

During the lock protocol, a transition to or from dual-instruction mode is not permitted.

The trap and intovr instructions must not be included within the lock protocol.

7-26

CORE INSTRUCTIONS

7.15 INPUT AND OUTPUT (80860XP ONLy)

Idio.x isrc2, idest

idest ~ port.x (isrc2)

stio.x isrc1ni, isrc2

port. x (isr,?2) ~ isrc1 ni

.x = .b (8 bits), .s (16 bits), or .I (32 bits)
Not available with the i860 XR CPU

Load I/O

Store I/O

The Idio instruction transfers an 8-, 16- or 32-bit value from the I/O space to the integer
registers. Eight- and 16-bit loads are sign-extended to 32 bits. isrcl must be zero.

The stio instruction transfers an 8-, 16- or 32-bit value from an integer register to the I/O
space.

No address translation is done for Idio and stio, and the virtual address is driven directly
to the external address bus. Data at the same address in the data cache is not accessed
by Idio or stio.

The Idio and stio instructions are suppressed in user mode.

Traps

The address in isrc2 must be aligned to match the operand size; otherwise, the i860 XP
microprocessor generates a misalignment data access trap. Address translation excep- a
tions do not occur, because the address is not translated. Breakpoint traps occur as in
Id~x and st.x instructions.

Using Idio or stio on the i860 XR microprocessor causes an instruction fault.

7-27

CORE INSTRUCTIONS

7.16 LOAD INTERRUPT (80860XP ONLY)

Idint.x isrc2, idest Load Interrupt Vector

Generate a bus cycle with M/IO# = 0, W/R# = 0, and D/C# = O.
idest ~ inL vector. x (isrc2)

.x = .b (8 bits), .s (16 bits), or .I (32 bits)
Not available with the i860 XR CPU

The Idint instruction performs an 8-, 16-, or 32-bit interrupt acknowledge cycle using the
address in isrc2. The interrupt vector (a datum from the external bus) is returned to
idest. Eight- and 16-bit values are sign-extended to 32 bits. Srcl should be zero. The
address in isrc2 is not translated, the data cache is not searched, and the bus cycle is not
burstable. In user mode, the Idint instruction is treated as a no-op.

The Idint instruction can be used to emulate the interrupt acknowledge sequence of the
Intel486 and Intel386 microprocessors, using the instruction sequence shown in
Example 7-4. The Intel486 and Inte1386 microprocessors generate two INT A cycles as a
response to an external interrupt and insert four idle clocks in between. In order to
generate a compatible interrupt acknowledge sequence, i860 XP microprocessor code
must prevent an instruction-cache miss between the two INTA cycles. This is done by
aligning the first Idint instruction on a 32-byte boundary.

For compatibility with INTA of the Intel486 CPU, the isrc2 of the first Idint instruction
should be a register containing the value 8, and the isrc2 of the second Idint should be rOo
The use of lock also matches the Intel486 CPU.

The Idint instruction can be executed only in supervisor mode; it is suppressed in user
mode.

Traps

The addresses in src2 must be aligned to match the operand size; otherwise, the i860 XP
microprocessor generates a misalignment data access trap. Address translation excep
tions do not occur, because the address is not translated. Data access traps for break
points can occur.

Using Idint on the i860 XR microprocessor causes an instruction fault.

II The following lock instruction must be on a 32-byte boundary:
lock I I Lock the bus
ldint.b src2, rdest II First INTA cycle. src2 contains 8.
or rdest, r~, rdest II Wait for completion
unlock II Unlock the bus after the next ldint
nap II Insert 2 + <number of NOPs> idle
nap I I clocks for 8259A recovery.
ldint.b r~, rdest II Second INTA cycle

Example 7-4. Interrupt Acknowledge Sequence

7-28

CORE INSTRUCTIONS

7.17 SPECIAL CYCLES (80860XP ONLy)

scyc.b isrc2 Special Cycles

Generate a special bus cycle (D/C# = 0, W/R# = 1, M/IO# = 0) and set the
address bus to the value contained in the register isrc2

Not available with the i860 XR CPU

The scyc instruction generates special bus cycles that signal internal events to external
devices over the bus. The value of isrc2 is placed on the address bus and specifies the
type of special cycle, as Table 7-2 defines. isrcl must be encoded as zero. The special
cycles are compatible with the corresponding cycles of the Intel486 microprocessor.

The external cache invalidate cycle (INVD instruction of the Intel486 CPU) tells an
external cache controller to invalidate its cache, without writing back to memory any
modified lines. The external cache write-back cycle (WBINVD instruction of the
Intel486 CPU) tells an external cache controller to write back all dirty lines and then
invalidate the cache.

The behavior of external caches depends on the design of the external bus decoder; for
example, the decoder may choose to make the INVD cycle flush modified data from the
external cache to memory, and not invalidate the cache (a "synchronize" operation).

The scyc instruction can be executed only in supervisor mode; it is suppressed in user
mode.

Traps

Data alignment traps can occur on scyc; so, if scyc.s or scyc.1 are used, the contents of
isrc2 must be aligned to the operand length. Data breakpoint traps can occur on the isrc2
value. The operands of scyc do not undergo address translation; therefore, address
translation exceptions do not occur.

Using scyc on the i860 XR microprocessor causes an instruction fault.

Table 7-2. Encoding of Special Bus Cycles

Special
Corresponding

isrc2
Bus Cycle

Intel486™ Microprocessor
Condition

0 Shutdown Shutdown

1 Ext. Cache Invalidate INV Instruction

2 Halt HLT Instruction

3 Ext. Cache Write Back WBINV Instruction

NOTE: All other encodings are reserved.

7-29

II

CORE INSTRUCTIONS

7.18 ASSEMBLER PSEUDO-OPERATIONS

mov const32, idest Small Constant-to-Register Move

... where OxFFFF8000 :5 const32 < Ox8000
Assembler pseudo-operation, equivalent to:

adds l%const32, rO, idest

mov const32, idest Large Constant-to-Register Move

... where const32 < OxFFFF8000 or const32 ;:::: Ox8000
Assembler pseudo-operation, equivalent to:

orh h%const32, rO, idest
or l%const32, idest, idest

mov isrc2, idest

Assembler pseudo-operation, equivalent to:
shl rO, isrc2, idest

nop

Assembler pseudo-operation, equivalent to:
shl rO, rO, rO

fnop

Assembler pseudo-operation, equivalent to:
shrd rO, rO, rO

Register-to-Register Move

Core No-Operation

Floating-Point No-Operation

These assembly-language instructions are provided for programmer convenience and for
their self-documenting value. They do not represent actual i860 microprocessor instruc
tions; instead, they are implemented by the i860 microprocessor instructions or instruc
tion sequences shown.

The const32 represents a signed constant expression in assembly language.

7-30

Floating-Point Instructions 8

II

CHAPTER 8
FLOATING-POINT INSTRUCTIONS

The floating-point section of i860 microprocessors comprises the floating-point registers
and three processing units:

1. The floating-point multiplier

2. The floating-point adder

3. The graphics unit

This section executes not only floating-point operations but also 32- and 64-bit integer
operations and graphics operations that utilize the 64-bit internal data path of the
floating-point section.

8.1 PIPELINED AND SCALAR OPERATIONS

The architecture of the floating-point unit uses parallelism to increase the rate at which
operations can be started. One type of parallelism used is called "pipelining." The pipe
lined architecture treats each operation as a series of more primitive operations (called
"stages") that execute in parallel. Consider the floating-point adder unit as an example.
Let A represent the operation of the adder. Let the stages be represented by AI' Ab and
A3 . The stages are designed such that Ai + I for one adder instruction can, execute in
parallel with Ai for the next adder instruction. Furthermore, each Ai can be executed in
just one clock. The pipelining within the multiplier and graphics units can be described
similarly, except that the number of stages and the number of clocks per stage may be II_
different.

Figure 8-1 illustrates three-stage pipelining as found in the floating-point adder (and in
the floating-point multiplier for single-precision). Each stage of the pipeline holds inter
mediate results and also (when introduced into the first stage by software) holds status
information pertaining to those results. The figure assumes that the instruction stream
consists of a series of consecutive floating-point instructions (in this case, the single
precision add instruction pfadd.ss), all of one type (i.e., all adder instructions or all
single-precision multiplier instructions). Each time a pipelined operation' is performed
using the pipeline in question, the status of the last stage becomes available in fsr, the
result of the last stage of the pipeline is stored in the destination register fdest, the
pipeline is advanced. one stage, and the input operands fsrcl and fsrc2 are transferred to
the first stage of the pipeline.

In i860 microprocessors, the number of pipeline stages ranges from one to three. A
pipelined instruction with a three-stage pipeline writes to its fdest the result of the third
prior instruction. A pipelined instruction with a two-stage pipeline writes to its fdest the
result of the second prior operation. A pipelined operation with a one-stage pipeline
stores the result of the prior operation.

8-1

FLOATING-POINT INSTRUCTIONS

INITIAL REGISTER CONTENTS

f2~ f7~ f12~ f3 3 f8 8 f13
f4 4 f9 9 f14
f5 5 f10 10 f15
f6 6 f11 11 f16

INSTRUCTION SEQUENCE
ADDER PIPELINE

DESTINATION
stage 1 stage 2 stage 3

2+7 ? None

pfadd.ss f3, f8, fO 3+8 2+7 None

pfadd.ss f4, f9, fO 4+9 3+8 2+7 1 None

pfadd.ss f5, f10, f1 5 + 10 4+9 3+8 1~9~f12
pfadd.ss f6, f11, f13 6 + 11 5 + 10 4+9 I:::: 11 ~ f13

pfadd.ss fO, fO, f14 0 6+ 11 5 + 10 1 13~ f14

NOTE:
PIPELINED INSTRUCTIONS DO NOT HAVE TO OCCUR IN CONSECUTIVE CLOCKS. THE PIPELINE
FREEZES UNTIL THE NEXT INSTRUCTION FOR THAT PARTICULAR PIEPLINE IS ENCOUNTERED.

240S75iS-1

Figure 8-1. Pipelined Instruction Example

There are four floating-point pipelines: one for the multiplier, one for the adder, one for
the graphics unit, and one for the pipelined floating-point load pfld. The adder pipeline
has three stages. The number of stages in the multiplier pipeline depends on the preci
sion of the source operands in the pipeline: two stages for double precision or three
stages for single precision. The graphics unit has one stage for all precisions. The load
pipeline has three stages for all precisions.

Changing the FZ (flush zero), RM (rounding mode), or RR (result register) bits of fsr
while there are results in either the multiplier or adder pipeline produces effects that are
not defined.

8.1.1 Scalar Mode

In addition to the pipelined execution mode described above, i860 microprocessors also
can execute floating-point and graphics instructions in "scalar" mode. Most floating
point and graphics instructions have both pipelined and scalar variants, distinguished by
a bit in the instruction encoding. In scalar mode, the unit does not start a new operation
until the previous operation is completed. The scalar operation passes through all stages
of its pipeline before a new operation is introduced, and the result is stored automati
cally. Scalar mode is used when the next operation depends on results from the previous
few floating-point operations (or when the compiler or programmer does not want to
deal with pipelining).

8-2

FLOATING-POINT INSTRUCTIONS

8.1.2 Pipelining Status Information

Result status information in the fsr consists of the AA, AI, AO, AU, and AE bits for the
adder, the MA, MI, MO, and MU bits for the multiplier, and the LRPO and LRPI bits
(LRP bit on the 80860XR) for the load pipeline. This information arrives at the fsr via
the pipeline in one of two ways:

1. It is calculated by the last stage of the pipeline. This is the normal case.

2. It is propagated from the first stage of the pipeline. This method is used when
restoring the state of the pipeline after a preemption. When a st.e instruction
updates the fsr and the U bit being written into the fsr is set, the store updates
result status bits in the first stage of both the adder and multiplier pipelines. When
software changes the result-status bits of the first stage of a -particular unit (multi
plier or adder), the updated result-status bits are propagated one stage for each
pipelined floating-point operation for that unit. In this case, each stage of the adder ,
and multiplier pipelines holds its own copy of the relevant bits of the fsr. When they
reach the last stage, they override the normal result-status bits computed from the
last-stage result.

At the next floating-point instruction (or at certain core instructions), after the result
reaches the last stage, the processor traps if any of the status bits of the fsr indicate
exceptions. Note that, in this case, the instruction that creates the exceptional condition
is not the instruction at which the trap is reported.

8.1.3 Precision in the Pipelines

In pipelined mode, when a floating-point operation is initiated, the result of an earlier
pipelined floating-point operation is returned. The result precision of the current
instruction applies to the operation being initiated. The precision of the value stored in
fdest is that which was specified by the instruction that initiated that operation.

Iffdest is the same register as fsrcl or fsrc2, the value being stored infdest is used as the
input operand. In this case, the precision of fdest must be the same as the source
precision.

The multiplier pipeline has two stages when the source operands are double-precision
and three stages when they are single. This means that a pipelined multiplier operation
stores the result of the second previous multiplier operation for double-precision inputs
and third previous for single-precision inputs (except when mixing precisions). The two
stage pipeline executes at two clocks per stage; the three-stage pipeline executes at one
clock per stage.

8-3

FLOATING-POINT INSTRUCTIONS

8.1.4 Transition between Scalar and Pipelined Operations

When a scalar operation is executed in the adder, multiplier, or graphics unit, it passes
through all stages of the pipeline; therefore, any unstored results in the affected pipeline
are lost. To avoid losing information, the last pipelined operations before a scalar oper
ation should be dummy pipelined operations that drain unstored results from the
affected pipeline.

After a scalar operation, the values of all pipeline stages of the affected unit (except the
last) are undefined. No spurious result-exception traps result when the undefined values
are subsequently stored by pipelined operations; however, the values should not be ref
erenced as source operands.

Note that the pfld pipeline is not affected by scalar fld and Id instructions.

For best performance a scalar operation should not immediately precede a pipelined
operation whose idest is nonzero.

8.2 MULTIPLIER INSTRUCTIONS

The multiplier unit of the floating-point section performs not only the standard floating
point multiply operation but also provides reciprocal operations that can be used to
implement floating-point division and square roots, and provides a special type of mul
tiply that assists in integer multiply sequences. The multiply instructions can be
pipelined.

Programming Notes

Complications arise with sequences of pipelined multiplier operations with mixed single
and double-precision inputs because the pipeline length is different for the two preci
sions. The complications can be avoided by not mixing the two precisions, i.e., by drain
ing out all single-precision operations with dummy single-precision operations before
starting double-precision operations, and vice versa. For the adventuresome, the rules for
mixing precisions follow:

• Single to Double Transitions. When a pipelined multiplier operation with double
precision inputs is executed and the previous multiplier operation was pipelined with
single-precision inputs, the third previous (last stage) result is stored, and the previ
ous operation (first stage) is advanced to the second stage (now the last stage). The
second previous operation (old second stage) is discarded. The next pipelined multi
plier operation stores the single-precision result.

• Double to Single Transitions. When a pipelined multiplier operation with single
precision inputs is executed and the previous multiplier operation was pipelined with
double-precision inputs, the result of the second previous multiplier operation
advances to the second stage, the result of the previous multiplier operation advances
to the second stage, and a single- or double-precision zero is placed in the last stage
of the pipeline. The next pipelined multiplier operation stores zero instead of the
result of the prior operation, and the MRP bit of fsr for that next operation is
undefined.

8-4

FLOATING-POINT INSTRUCTIONS

8.2.1 Floating-Point Multiply

fmul.p fsre1, fsre2, fdest

fdest ~ fsre1 x fsre2

pfmul.p fsre1, fsre2, fdest

fdest ~ last stage multiplier result
Advance M pipeline one stage
M pipeline first stage ~ fsre1 x fsre2

pfmul3.dd fsre1, fsre2, fdest

fdest ~ last stage multiplier result
Advance 3-stage M pipeline one stage
M pipeline first stage ~ fsre1 x fsre2

Floating-Point Multiply

Pipelined Floating-Point Multiply

Three-Stage Pipelined Multiply

These instructions perform a standard mUltiply operation.

Programming Notes

Fsrcl must not be the same as fdest for pipelined operations. For best performance when
the prior operation is scalar, fsrcl should not be the same as the fdest of the prior
operation.

The pfmul3.dd instruction is only for. use by exception handlers in restoring pipeline
contents (refer to "Pipeline Preemption" in Chapters 9 and 10). It should not be mixed
in instruction sequences with other pipelined multiplier instructions.

8-5

II

FLOATING-POINT INSTRUCTIONS

8.2.2 Floating-Point Multiply Low

fmlow.dd fsrc1, fsrc2, fdest Floating-Point Multiply Low

fdest ~ low-order 53 bits of (fsrc1 mantissa x fsrc2 mantissa)
fdest bit 53 ~ most significant bit of (fsrc1 mantissa x fsrc2 mantissa)

The fmlow instruction mUltiplies the mantissas of its floating-point operands. It operates
only on double-precision operands.

A mantissa is a 53-bit binary integer of the form I.f, where f is the 52-bit fractional part
of a floating-point operand. Multiplying two 53-bit mantissas produces a 106-bit true
result, which can be partitioned into the form ij.gh, where i and j are single bits, g is 51
bits, and h is 53 bits. As Figure 8-2 shows, the values j.g are not returned by fmlow; these
values, in normalized form, form part of the result that would be returned by an fmul.dd
operation on the same operands. With fmlow, bits 0-52 offdest receive h. (In an fmul.dd
operation these bits of the true result would be lost.) Bit 53 of fdest receives i, which is
the amount by which the exponent would be increased in an fmul.dd operation as the
first step of normalization. The high-order 10 bits of fdest are undefined.

An fmlow instruction can perform 32-bit integer multiplies. The two 32-bit operands
should be placed in the low-order parts of fsrcl and fsrc2. The value returned in the
low-order 53 bits of fdest is the same as that of the low-order 53 bits of an integer
multiply.

The fmlow instruction does not update the result-status bits of fsr and does not cause
source or result exceptions. (However, its execution may trigger a trap to report a result
exception caused by a prior floating-point instruction.)

8-6

FLOATING-POINT INSTRUCTIONS

fsrc1 fsrc2

TRASH

II
240875i8-2

Figure 8-2. FMLOW Operation

8-7

FLOATING-POINT INSTRUCTIONS

8.2.3 Floating-Point Reciprocals

frcp.p fsrc2, fdest Floating-Point Reciprocal

fdest ~ 1 / fsrc2 with absolute mantissa error < 2-7

frsqr.p fsrc2, fdest Floating-Point Reciprocal Square Root

fdest ~ 1 / v(fsrc2) with absolute mantissa error < 2-7

The frcp and frsqr instructions are intended to be used with algorithms such as the
Newton-Raphson approximation to compute divide and square root. Assemblers and
compilers must encode fsrcl as fO. A Newton-Raphson approximation may produce a
result that is different from the IEEE standard in the two least significant bits of the
mantissa. A library routine supplied by Intel may be used to calculate the correct IEEE
standard rounded result.

Traps

frcp causes a source-exception trap if fsrc2 is zero. frsqr causes a source-exception trap if
fsrc2 :5 O.

8.3 ADDER INSTRUCTIONS

The adder unit of the floating-point section provides floating-point addition, subtraction,
and comparison, as well as conversion from floating-point to integer formats.

8-8

FLOATING-POINT INSTRUCTIONS

8.3.1 Floating-Point Add and Subtract

fadd.p fsrc1, fsrc2, fdest

fdest ~ fsrc1 + fsrc2

pfadd.p fsrc1, fsrc2, fdest

fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ fsrc1 + fsrc2

fsub.p fsrc1, fsrc2, fdest

fdest ~ fsrc1 - fsrc2

pfsub.p fsrc1, fsrc2, fdest

fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~fsrc1 - fsrc2

famov.r fsrc1, fdest

fdest ~ fsrc 1

pfamov.r fsrc1, fdest

fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ fsrc1

Floating-Point Add

Pipelined Floating-Point Add

Floating-Point Subtract

Pipelined Floating-Point Subtract

Floating-Point Adder Move

Pipelined Floating-Point Adder Move

These instructions perform standard addition and subtraction operations. .

The famov and pfamov instructions send fsrcl through the floating-point adder, preserv
ing the value of -0 (minus zero) when fsrcl is -0. (Note that (p)fadd.p fsrcI, fO; fdest
may round -0 to + 0, depending on the RM bits of fsr.) The pfamov instruction is used
by the trap handler to restore pipeline states. Fsrc2 for (p)famov must be encoded as fO
by assemblers and compilers.

Programming Notes

In order to allow conversion from double precision to single precision, an famov or
pfamov instruction may have double-precision inputs and a single-precision output. In
assembly language, this conversion is specified using the fmov or pfmov pseudo
operation with the .ds suffix.

fmov.ds fsrc 1, fdest

Equivalent to famov.ds fsrc1, fO, fdest

pfmov.ds fsrc 1, fdest

Equivalent to pfamov.ds fsrc1, fO, fdest

8-9

Convert Double to Single

Pipelined Convert Double to Single

II

FLOATING-POINT INSTRUCTIONS

Conversion from single to double is accomplished by famov.sd or pfamov.sd. In assembly
language, this conversion is specified by the fmov or pfmov pseudo-operation with the
.sd suffix.

fmov.sd fsrc1, fdest

Equivalent to famov.sd fsrc1, fdest

pfmov.sd fsrc1, fdest

Equivalent to pfamov.sd fsrc1, fdest

Convert Single to Double

Pipelined Convert Single to Double

8-10

FLOATING-POINT INSTRUCTIONS

8.3.2 Floating-Point Compares

pfgt.p fsrc1, fsrc2, fdest Pipelined Floating-Point Greater-Than Compare

(Assembler clears R-bit of instruction)
fdest ~ last stage adder result
CC set if fsrc1> fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfle.p fsrc1, fsrc2, fdest Pipelined F-P Less-Than or Equal Compare

(Assembler sets R-bit of instruction.)
fdest ~ last stage adder result
CC cleared if fsrc1 ::; fsrc2, else set
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfeq.p fsrc1, fsrc2, fdest Pipelined Floating-Point Equal Compare

fdest ~ last stage adder result
CC set if fsrc 1 = fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

There are no corresponding scalar versions of the floating-point compare instructions.
The pipelined instructions can be used either within a sequence of pipelined instructions
or within a sequence of nonpipelined (scalar) instructions.

pfgt.p should be used for A > B and A < B comparisons. pfle.p should be used for
A ~ B and A ::;; B comparisons. pfeq.p should be used for A = B and A ~ B compar
isons. The mnemonics pfle.p and pfgt.p refer to the same opcode; the only difference in
instruction coding is the setting of the R-bit.

Traps

Compares never cause result exceptions when the result is stored. They do trap on
invalid input operands.

Programming Notes

The only difference between pfgt.p and pfle.p is the encoding of the R bit of the instruc
tion and the way in which the trap handler treats unordered compares. The R bit n()r
mally indicates result precision, but in the case of these instructions it is not used for that

. purpose. The trap handler can examine the R bit to help determine whether an unor
dered compare should set or clear CC to conform with the IEEE standard for unordered
compares. For pfgt.p and pfeq.p, it should clear CC; for pfle.p, it should set CC.

For best performance, a be or bne instruction should not directly follow a pfgt or pfeq
instruction. Be sure, however, that intervening instructions do not change cc.

8-11

II

FLOATING-POINT INSTRUCTIONS

8.3.3 Floating-Point to Integer Conversion

fix.v fsrc1, fdest Floating-Point to Integer Conversion

fdest ~ 64-bit value with low-order 32 bits equal to integer part of fsrc1 rounded

pfix.v fsrc1, fdest Pipelined Floating-Point to Integer Conversion

fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ 64-bit value with low-order 32 bits equal to

integer part of fsrc1 rounded

ftrunc.v fsrc1, fdest Floating-Point to Integer Truncation

fdest ~ 64-bit value with low-order 32 bits equal to integer part of fsrc1

pftrunc.v fsrc1, fdest Pipelined Floating-Point to Integer Truncation

fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ 64-bit value with low-order 32 bits equal to

integer part of fsrc1

The instructions fix, pfix, ftrunc, and pftrunc must specify double-precision results. The
low-order 32 bits of the result contain the integer part of fsrcl represented in twos
complement form. The high-order 32 bits of the result are undefined. For fix and pfix, the
integer is selected according to the rounding mode specified by RM in the fsr. The
instructions ftrunc and pftrunc are identical to fix and pfix, except that RM is not con
sulted; rounding is always toward zero. Assembler and compilers should encode fsrc2
as fO.

Traps

The instructions fix, pfix, ftrunc, and pftrunc signal overflow (AO bit of fsr set) if the
integer part of fsrcl is bigger than what can be represented as a 32-bit twos-complement
integer. Underflow and inexact are never signaled.

Adder overflow can occur due either to a true floating-point operation (for example,
pfadd.p or pfeq.p) or to an integer conversion operation (fix.v, pfix.v, ftrunc.v, pftrunc.v).
For a true floating-point operation, the exponent of the result will be all ones. For an
integer conversion operation, the exponent of the result will be less than all ones. When
adder overflow occurs, the trap handler can distinguish between the two cases by exam
ining the exponent of the result.

8-12

FLOATING-POINT INSTRUCTIONS

8.4 DUAL OPERATION INSTRUCTIONS

pfam.p fsrc1, fsrc2, fdest Pipelined Floating-Point Add and Multiply

fdest ~ last stage adder result
Advance A and M pipeline one stage (operands accessed before advancing
pipeline)
A pipeline first stage ~ A-op1 + A-op2
M pipeline first stage ~ M-op1 x M-op2

pfsm.p fsrc1, fsrc2, fdest Pipelined Floating-Point Subtract and Multiply

fdest ~ last stage adder result
Advance A and M pipeline one stage (operands accessed before advancing
pipeline)
A pipeline first stage ~ A-op1 - A-op2
M pipeline first stage ~ M-op1 x M-op2

pfmam.p fsrc1, fsrc2,
fdest

fdest ~ last stage multiplier result

Pipelined Floating-Point Multiply with Add

Advance A and M pipeline one stage (operands accessed before advancing
pipeline)
A pipeline first stage ~ A-op1 + A-op2
M pipeline first stage ~ M-op1 x M-op2

pfmsm.p fsrc1, fsrc2,
fdest

fdest ~ last stage multiplier result

Pipelined Floating-Point Multiply with Subtract

Advance A and M pipeline one stage (operands accessed before advancing
pipeline)
A pipeline first stage ~ A-op1 - A-op2
M pipeline first stage ~ M-op1 x M-op2

The instructions pfam, pfsm, pfmam, and pfmsm initiate both an adder (A-unit) opera
tion and a multiplier (M-unit) operation. The source precision specified by .p applies to
the source operands of the multiplication. The result precision normally specified by .p
controls in this case both the precisiun of the source operands of the addition or sub
traction and the precision of all the results.

Precision Precision of Source
Suffix of Source of Add or Subtract and

of Multiplication Result of all Operations

.ss single single

.sd single double

.dd double double

The instructions pfmam and pfmsm are identical to pfam and pfsm except that pfmam
and pfmsm transfer the last stage result of the multiplier to [dest.

8-13

II

FLOATING-POINT INSTRUCTIONS

Six operands are required, but the instruction format can specify only three operands;
therefore, there are special provisions for specifying the operands. These special provi
sions consist of:

• Three special registers (KR, KI, and T), that can store values from one
dual-operation instruction and supply them as inputs to subsequent dual-operation
instructions.

The constant registers KR and KI can store the value of fsrcl and subsequently
supply that value to the M-pipeline in place of fsrcl.

The transfer register T can store the last-stage result of the multiplier pipeline
and subsequently supply that value to the adder pipeline in place of fsrcl.

• A four-bit data-path control field in the opcode (DPC) that specifies the operands
and loading of the special registers.

1. Operand-1 of the multiplier can be KR, KI, or fsrcl.

2. Operand-2 of the multiplier can be fsrc2, the last-stage result of the multiplier
pipeline, or the last-stage result of the adder pipeline.

3. Opetand-1 of the adder can be fsrcl, the T-register, the last-stage result of the
multiplier pipeline, or the last-stage result of the adder pipeline.

4. Operand-2 of the adder can be fsrc2, the last-stage result of the multiplier pipe
line, or the last -stage result of the adder pipeline.

Figure 8-3 shows all the possible data paths surrounding the adder and mUltiplier.
Table 8-1 shows how the various encodings of DPC select different data paths.
Figure 8-4 illustrates the actual data path for each dual-operation instruction.

Note that the mnemonics pfam.p, pfsm.p, pfmam.p, and pfmsm.p are never used as such
in the assembly language; these mnemonics are used by this manual to designate classes
of related instructions. Each value of DPC has a unique mnemonic associated with it. An
initial "m" distinguishes the pfmam.p, and pfmsm.p classes from the pfam.p, and pfsm.p
classes. Figure 8-5 explains how the rest of these mnemonics are derived.

Programming Notes

Whenfsrcl goes to M-unit opl or toKR or KI,fsrcl must not be the same asfdest. For
best performance when the prior operation is scalar and the M-unit opl is fsrcl, fsrcl
should not be the same as the fdest of the prior operation.

Dual-operation instructions that feed the adder result back into the multiplier or adder
do so regardless of the register specified as fdest. In particular, even thoughfdest is fO or
f1, the value fed back is not zero, but rather the actual multiplier output.

Whe,n dual-operation instructions are used with single-precision operands, all 64 bits of
the T, KR, and KI registers are updated, but the values stored there are not converted to
double-precision format. (The exponent bias is not adjusted for double precision.)

8-14

FLOATING-POINT INSTRUCTIONS

DOUBLE PRECISION SINGLE PRECISION

3-STAGE MULTIPLIER AND ADDER 2-STAGE MULTIPLIER, 3-STAGE ADDER

fsrc1 fsrc2 fdest

MULTIPLIER

result

ADDER

result

fsrc1

op1 op2

------MULTIPLlER--
result

ADDER

result

Figure 8-3. Dual-Operation Data Paths

fsrc2 fdest

240875i8-3

Instead, zeros are inserted as pads in exponent bits 10 .. 8 and as the fraction's least
significant 29 bits (bits 28 .. 0). All 64 bits of the T, KR, and KI registers can be initialized
to zero with this sequence of instructions:

r2apt.ss ffa,
r2apt.ss ffa,
r2apt.ss ffa,
i2apt.ss ffa,

ffa,
ffa,
ffa,
ffa,

ffa
ff3
ffa
ffa

Single-precision values are stored in these 64-bit registers in a format that does not
conform to the standard for double-precision numbers; . therefore, leaving a single
precision value in T, KR, or KI can cause unexpected results if a later double-precision
operation refers to one of these registers. Likewise, valid double-precision values left in
T, KR, or KI can cause unexpected results if a later single-precision operation uses one
of these registers. A trap may occur in some of these cases. Even if a trap does not occur,
the bit patterns of one precision will represent a different value in the other precision.
Therefore, programs that use dual-operation instructions should clear T, KR, and KI
before switching precisions.

8-15

II

FLOATING-POINT INSTRUCTIONS

Table 8-1. OPC Encoding

OPC
PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K

Mnemonic Mnemonic op1 op2 op1 op2 Load Load*

0000 r2p1 r2s1 KR src2 src1 M result No No
0001 r2pt r2st KR src2 T M result No Yes
0010 r2ap1 r2as1 KR src2 src1 A result Yes No
0011 r2apt r2ast KR src2 T A result Yes Yes

0100 i2p1 i2s1 KI src2 src1 M result No No
0101 i2pt i2st KI src2 T M result No Yes
0110 i2ap1 i2as1 KI src2 src1 A result Yes No
0111 i2apt i2ast KI src2 T A result Yes Yes

1000 rat1p2 rat1s2 KR A result src1 src2 Yes No
1001 m12apm m12asm src1 src2 A result M result No No
1010 ra1p2 ra1s2 KR A result src1 src2 No No
1011 m12ttpa m12ttsa src1 src2 T A result Yes No

1100 iat1p2 iat1s2 KI A result src1 src2 Yes No
1101 m12tpm m12tsm src1 src2 T M result No No
1110 ia1p2 ia1s2 KI A result src1 src2 No No
1111 m12tpa m12tsa src1 src2 T A result No No

OPC
PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K

Mnemonic Mnemonic op1 op2 op1 op2 Load Load*

0000 mr2p1 mr2s1 KR src2 src1 M result No No
0001 mr2pt mr2st KR src2 T M result No Yes
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No
0011 mr2mpt mr2mst KR src2 T M result Yes Yes

0100 mi2p1 mi2s1 KI src2 src1 M result No No
0101 mi2pt mi2st KI src2 T M result No Yes
0110 mi2mp1 mi2ms1 KI src2 src1 M result Yes No
0111 mi2mpt mi2mst KI src2 T M result Yes Yes

1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No
1001 mm12mpm mm12msm src1 src2 M result M result No No
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No
1011 mm12ttpm mm12ttsm src1 src2 T M result Yes No

1100 mimt1p2 mimt1s2 KI M result src1 src2 Yes No
1101 mm12tpm mm12tsm src1 src2 T M result No No
1110 mim1p2 mim1s2 KI M result src1 src2 No No
1111 Intel Reserved

NOTE:
* If K-Ioad is set, KR is loaded when operand-1 of the multiplier is KR; KI is loaded when operand-1 of the

multiplier is KI.

8-16

FLOATING-POINT INSTRUCTIONS

r2p1 & r2s1 r2pt & r2st

fsret fsre2 fdest fsret fsre2 fdest

j I ~ j II'

~ ~ , '

~ ~
op1 : op2 op1 op2

MULTIPLIER MULTIPLIER

result result

op1 op2 op1 : op2

ADDER ADDER
-----------_.--

result result

I 1

r2ap1 & r2as1 r2apt & r2ast

fsret fsre2 fdest fsret fsre2 fdest

j '1'1

~

~

~ j ~

~ II
op1 op2 op1 : op2
---------- -- --------

MULTIPLIER MULTIPLIER

result result

op1 op2 op1 op2

ADDER ADDER

result result

I 1

240875i8-4a

Figure 8-4. Data Paths by Instruction (1 of 8)

8-17

fsrc1

fsrc1

FLOATING·POINT INSTRUCTIONS

i2p1 & i2s1

fsrc2

j [f<I

f
.~~~ ; ~~~ ... -..

MULTIPLIER

op1

result

ADDER
result

I

i2ap1 & i2as1

fsrc2

j ~

f
op1 op2

MULTIPLIER

result

op1 op2
-_.----------- .. -----------.--------

ADDER
result

I

fdest

J'

fdest

J

i2pt & i2st

T
op1 op2

---------.--------------
MULTIPLIER

result

op1 op2

ADDER
result

I

i2apt & i2ast

fsrc1 fsrc2

j ~
~

f
op1 op2

-------._---_.-
MULTIPLIER

result

~
t ,

op1 op2

ADDER
result

I

Figure 8·4. Data Paths by Instruction (2 of 8)

8-18

fdest

fdest

I~

240875i8-4b

fsrc1

fsrc1

FLOATING-POINT INSTRUCTIONS

rat1 p2 & rat152

op1 op2

MULTIPLIER
---------------_.--

result

op1 op2

ADDER

result

I

ra1p2 & ra152

op1 op2

MULTIPLIER

fsrc2 fdest

J~

fsrc2 fdest

J~

m12apm & m12a5m

fsrc1 fsrc2

j j
op1 op2

MULTIPLIER
------ ---------- --------------

result

~ 'If
op1 op2

ADDER
------ -----------------

result

I

m12ttpa & m12tt5a

fsrc1 fsrc2

j j
op1 op2

MULTIPLIER
-------------------- ----

result result

l ~
1 9T
t t

op1 op2 op1 op2

ADDER ADDER
---- --------- ------- --------_.--

result result

I I

Figure 8-4. Data Paths by Instruction (3 of 8)

8-19

fdest

J

fdest

)~

II

240875i8-4c

fsrc1

fsrc1

FLOATING-POINT INSTRUCTIONS

iat1 p2 & iat1 s2

....... ~p.~ ! •...•.• ~?~
MULTIPLIER

op1

result

ADDER

result

I

op2

ia1p2 & ia1s2

op1 op2

MULTIPLIER

result

fsrc2 fdest

"

fsrc2 fdest

JI'

m12tpm & m12tsm

T r
....... 0P.~ ; ~?~

MULTIPLIER

result

op1 op2

ADDER

result

I

m12tpa & m12tsa

l' T
op1 op2

--------------- --. __ ._--

MULTIPLIER

result

1 ~ l?
t f

op1 op2 op1 op2

ADDER ADDER

result result

I I

Figure 8-4. Data Paths by Instruction (4 of 8)

8-20

fdest

J~

fdest

J~

240875i8-4d

fsrc1

fsrc1

FLOATING-POINT INSTRUCTIONS

mr2p1 & mr2s1
fsrc2

I m
~

op1 op2

MULTIPLIER

result

op1 op2

ADDER

result

I

mr2mp1 & mr2ms1
fsrc2

1 ~

~
op1 op2

I

MULTIPLIER

result

ADDER

result

I

,It

op2

fdest

~

fdest

Jl'

mr2pt & mr2st

fsrc1 fsrc2

~ I ~ ~ ~ , ~

~
Op1 op2

_ _---------
MULTIPLIER

result

op1 op2
---------_._-

ADDER

result

I

mr2mpt & mr2mst

fsrc1 fsrc2

~
1 ~

~
-------~~~ ---- - --; ---- - --~~~-

MULTIPLIER

result

I

Op1 op2

ADDER

result

I

Figure 8-4. Data Paths by Instruction (5 of 8)

8-21

fdest

~~

fdest

)r

II

240875i8-4e

fsrc1

fsrc1

FLOATING-POINT INSTRUCTIONS

mi2p1 & mi2s1

fsrc2

j ttm
~

op1 : op2

MULTIPLIER
------------_.-

result

Op1 op2

ADDER

result

I

mi2mp1 & mi2ms1

fsrc2

1 ttm
~

op1 op2

MULTIPLIER

result

op1 op2

ADDER

result

I

fdest

JI'

fdest

1

mi2pt & mi2st

fsrc1 fsrc2

~ j ~
f

_______ O~1 _______ , _______ ~~~ _____ _

MULTIPLIER

result

"1r
~ ,~

op1 ! op2

ADDER

result

I

mi2mpt & mi2mst

fsrc1 fsrc2

~
1 ~

~
op1 op2

._-

MULTIPLIER

result

I

~
~ ,~

op1 op2

ADDER

result

I

Figure 8-4. Data Paths by Instruction (6 of 8)

8-22

fdest

JI'

fdest

JI'

240875i8-4f

fsrc1

fsrc1

FLOATING-POINT INSTRUCTIONS

mrmt1 p2 & mrmt1 s2

op1 op2

MULTIPLIER

result

I

op1 op2

ADDER

result

I

mrm1p2 & mrm1s2

~ ~ ~ : '

~ y
op1 op2

MULTIPLIER

result

l

op1 op2

ADDER

result

I

fsrc2 fdest

fsrc2 fdest

J~

mm12mpm & mm12msm

r r
op1 op2

MULTIPLIER

result

"
op1 op2

ADDER

result

I

mm12ttpm & mm12ttsm

fsrc1 fsrc2 fdest

I I
J

op1 op2

MULTIPLIER

result

I

~
t ,

op1 op2
--------------.

ADDER
------ .. - --------.--

result

I

Figure 8-4. Data Paths by Instruction (7 of 8)

8-23

II

240875i8-4g

fsrc1

FLOATING-POINT INSTRUCTIONS

mimt1 p2 & mimt152 mm12tpm & mm12tsm

op1 op2

MULTIPLIER

result

I

op1 op2

ADDER

result

I

fsrc2 fdest

"

mim1p2 & mim1s2

fsrc1

~

~ y
op1 op2

MULTIPLIER

result

I

~ ~
op1 : op2

ADDER
----- -------------------------------

result

I

J J
op1 op2

MULTIPLIER

result

I

¥
~ ,~

op1
:

op2

ADDER

result

I

fsrc2 fdest

J~

Figure 8-4. Data Paths by Instruction (8 of 8)

8-24

fdest

J~

240875i8-4h

FLOATING-POINT INSTRUCTIONS

Series 1 - Assumes the M-unit operand-2 is src2

M-unit M-unit A-unit Add/ A-unit
op1 op2 op2 Subtract op1

{r, i} 2 {a, m, nUll} {p, a} {1, t}

lUl l1 SUb~ ;:rK

Add (Plus)
M-result
M-result, load T
A-result, load T

'--- src2
~KR

-KI

Series 2 - Assumes no K loading

M-unit
op1 and op2

Load T
A-unit Add/ A-unit
op1 Subtract op2

{ra, rm, ia, im, m12} {t, nUll} {1, a, m, t} {p, s} {2, m, a}

LLL
' ~A-reSUIt
~M-result

src2
Subtract
Add (Plus)

T
'--- M-result

'----- A-result
'------ src1

-no

- src1, src2
'----- KI, M-result

'------- KI, A-result
'------- KR, M-result

'---------- KR, A-result

yes

Figure 8-5. Data Path Mnemonics

8.5 GRAPHICS UNIT

240875i8-5

The graphics unit operates on 32- and 64-bit integers stored in the floating-point register
file. This unit supports long-integer arithmetic and 3-D graphics drawing algorithms.
Operations are provided for pixel shading and for hidden surface elimination using a
Z-buffer.

Programming Notes

In a pipelined graphics operation, if fdest is not fO, then fdest must not be the same as
fsrcl or fsrc2.

For best performance, the result of a scalar operation should not be a source operand in
the next instruction, unless the next instruction is a multiplier or adder operation.

8-25

I

FLOATING-POINT INSTRUCTIONS

8.5.1 Long-Integer Arithmetic

fisub.w fsret, fsre2, fdest Long-Integer Subtract

fdest ~fsret - fsre2 (2's complement integer arithmetic)

pfisub.w fsret, fsre2, fdest Pipelined Long-Integer Subtract

fdest ~ last-stage graphics-unit result
last-stage graphics-unit result ~ fsret - fsre2 (2's complement integer arithmetic)

fiadd.w fsret, fsre2, fdest Long-Integer Add

fdest ~ fsret + fsre2 (2's complement integer arithmetic)

pfiadd.w fsret, fsre2, fdest Pipelined Long-Integer Add

fdest ~ last-stage graphics-unit result
last-stage graphics-unit result ~ fsret + fsre2 (2's complement integer arithmetic)

.w = .ss (32 bits), or .dd (64 bits)

The fiadd and fisub instructions implement arithmetic on integers up to 64 bits wide.
Such integers are loaded into the same registers that are normally used for floating-point
operations. These instructions do not set CC nor do they cause floating-point traps due
to overflow.

Programming Notes

In assembly language, fiadd and pfiadd are used to implement the fmov.ss, fmov.dd,
pfmov.ss, and pfmov.dd pseudo instructions.

fmov.ss fsre t, fdest

Equivalent to fiadd.ss fsret, fO, fdest

pfmov.ss fsret, fdest

Equivalent to pfiadd.ss fsret, fO, fdest

fmov.dd fsret, fdest

Equivalent to fiadd.dd fsret, fO, fdest

pfmov.dd fsret, fdest

Equivalent to pfiadd.dd fsret, fO, fdest

8.5.2 3-D Graphics Operations

Single Move

Pipelined Single Move

Double Move

Pipelined Double Move

i860 microprocessors support high-performance 3-D graphics applications by supplying
operations that assist in the following common graphics functions:

1. Hidden surface elimination.

2. Distance interpolation.

3. 3-D shading using intensity interpolation.

8-26

FLOATING-POINT INSTRUCTIONS

The interpolation operations of i860 microprocessors support graphics applications in
which the set of points on the surface of a solid object is represented by polygons.
The distances from the viewer and color intensities of the vertices of the polygon are
known, but the distances and intensities of other points must be calculated by interpo
lation between the known values.

Certain fields of the psr are used by the graphics instructions, as illustrated in
Figure 8-6.

The merge instructions are those that utilize the 64-bit MERGE register. The purpose of
the MERGE register is to accumulate (or merge) the results of multiple-addition oper
ations that use as operands the color-intensity values from pixels or distance values from
a Z-buffer. The accumulated results can then be stored in one 64-bit operation.

Two multiple-addition instructions and an OR instruction use the MERGE register. The
addition instructions are designed to add interpolation values to each color-intensity
field in an array of pixels or to each distance value in a Z-buffer.

8.5.2.1 Z-BUFFER CHECK INSTRUCTIONS

A Z-buffer aids hidden-surface elimination by associating with a pixel a value that
represents the distance of that pixel from the viewer. When painting a point at a specific
pixel location, three-dimensional drawing algorithms calculate the distance of the point
from the viewer. If the point is farther from the viewer than the point that is already
represented by the pixel, the pixel is not updated. i860 microprocessors support distance
values that are either 16-bits or 32-bits wide. The size of the Z-buffer values is indepen- I!I
dent of the pixel size. Z-buffer element size is controlled by whether the 16-bit instruc- IiII
tion fzchks or the 32-bit instruction fzchkl is used; pixel size is controlled by the PS field
of the psr.

PIXEL SIZE
PIXEL MASK

~ NOT USED FOR GRAPHICS OPERATIONS

Figure 8-6. PSR Fields for Graphics Operations

8-27

240875i8-6

FLOATING-POINT INSTRUCTIONS

All operands fsrc1, fsrc2, and fdest designate 64-bit register pairs.
Consider PM as an array of eight bits PM(7) .. PM(0), where PM(O) is the

least-significant bit.

fzchks fsrc1, fsrc2, fdest 16-Bit Z-Buffer Check

Consider operands ~s arrays of four 16-bit fields fsrc1(3) .. fsrc1(0) ,
fsrc2(3) .. fsrc2(O), and fdest(3) .. fdest(O) where zero denotes the
least-significant field.

PM ~ PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM [i + 4] ~ fsrc2(i) :s; fsrc1(i) (unsigned)
fdest(i) ~ smaller of fsrc2(i) and fsrc1(i)

00
MERGE ~ 0

pfzchks fsrc1, fsrc2, fdest Pipelined 16-Bit Z-Buffer Check

Consider operands as arrays of four 16-bit fields fsrc1(3) .. fsrc1(0),
fsrc2(3) .. fsrc2(O), and fdest(3) .. fdest(O) where zero denotes the
least-significant field.

PM ~ PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM [i + 4] ~ fsrc2(i) :s; fsrc1(i) (unsigned)
fdest ~ last-stage graphics-unit result
last-stage graphics-unit result(i) ~ smaller of fsrc2(i) and fsrc1(i)

00
MERGE ~ 0

fzchkl fsrc1, fsrc2, fdest 32-Bit Z-Buffer Check

Consider operands as arrays of two 32-bit fields fsrc1(1) .. fsrc1(0) ,
fsrc2(1) .. fsrc2(0), and fdest(1) .. fdest(O) where zero denotes the
least-significant field.

PM ~ PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 6]~ fsrc2(i) :s; fsrc1(i) (unsigned)
fdest(i) ~ smaller of fsrc2(i) and fsrc 1 (i)

00
MERGE ~ 0

pfzchkl fsrc1, fsrc2, fdest Pipelined 32-Bit Z-Buffer Check

Consider operands as arrays of two 32-bit fields fsrc1(1) .. fsrc 1 (0) ,
fsrc2(1) .. fsrc2(O), and fdest(1) .. fdest(O) where zero denotes the
least-significant field.

PM ~ PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 6] ~ fsrc2(i) :s; fsrc1 (i) (unsigned)
fdest(i) ~ last-stage graphics-unit result
last-stage graphics-unit result ~ smaller of fsrc2(i) and fsrc1(i)

00
MERGE ~ 0

8-28

FLOATING-POINT INSTRUCTIONS

The instructions fzchks and fzchkl perform multiple unsigned-integer (ordinal) compar
isons. The inputs to the instructions fzchks and fzchkl are normally taken from two
arrays of values, each of which typically represents the distance of a point from the
viewer. One array contains distances that correspond to points that are to be drawn; the
other contains distances that correspond to points that have already been drawn (a
Z-buffer). The instructions compare the distances of the points to be drawn against the
values in the Z-buffer and set bits of PM to indicate which distances are smaller than
those in the Z-buffer. Previously calculated bits in PM are shifted right so that consecu
tive fzchks or fzchkl instructions accumulate their results in PM. Subsequent pst.d
instructions use the bits of PM to determine which pixels to update.

8-29

II

FLOATING-POINT INSTRUCTIONS

8.5.2.2 PIXEL ADD

faddp fsrc1, fsrc2, fdest Add with Pixel Merge

fdest ~ fsrc1 + fsrc2 (using integer arithmetic; 8-byte operands and destination)
Shift, then load MERGE register from fsrc1 + fsrc2 as defined in Table 8-2

pfaddp fsrc1, fsrc2, fdest Pipelined Add with Pixel Merge

fdest ~ last-stage graphics-unit result
last-stage graphics-unit result ~ fsrc1 + fsrc2 (using integer arithmetic;

8-byte operands and destination)
Shift, then load MERGE register from fsrc1 + fsrc2 as defined in Table 8-2

The faddp instruction implements interpolation of color intensities. The 8- and 16-bit
pixel formats use 16-bit intensity interpolation. Being a 64-bit instruction, faddp does
four 16-bit interpolations at a time. The 32-bit pixel formats use 32-bit intensity interpo
lation; consequently, faddp performs them two at a time. By itself faddp implements
linear interpolation; combined with fiadd, nonlinear interpolation can be achieved.

Figure 8-7 illustrates faddp when PS is set for 8-bit pixels. Each operand can be treated
as four fixed-point numbers, each with an 8-bit integer portion and an 8-bit fractional
portion. Each fixed-point sum is rounded to 8 integer bits by truncation when it is loaded
into the MERGE register. With each faddp instruction, the MERGE register is shifted
right by 8 bits. Two faddp instructions should be executed consecutively, one to interpo
late for even-numbered pixels, the next to interpolate for odd-numbered pixels. The
shifting of the MERGE register has the effect of merging the results of the two faddp
instructions.

Figure 8-8 illustrates faddp when PS is set for 16-bit pixels. Each operand can be treated
. as four fixed-point numbers, each with a 6-bit integer portion and a IO-bit fractional
portion. Each fixed-point sum is rounded to 6 bits by truncation when it is loaded into
the MERGE register. With each faddp, the MERGE register is shifted right by 6 bits.
Normally, three faddp instructions are executed consecutively, one for each color repre
sented in a pixel. The shifting of MERGE causes the results of consecutive faddp
instructions to be accumulated in the MERGE register. Note that each one of the first
set of 6-bit values loaded into MERGE is further truncated to 4-bits when it is shifted to
the extreme right of the 16-bit pixel.

Figure 8-9 illustrates faddp when PS is set for 32-bit pixels. Each operand can be treated
as two fixed-point numbers, each with an 8-bit integer portion and a 24-bit fractional
portion. Each fixed-point sum is rounded to 8 bits by truncation when it is loaded into

Table 8-2. FADDP MERGE Update

Pixel Size Fields Loaded from Right Shift Amount
(from PS) Result into MERGE (Field Size)

8 63 .. 56, 47 .. 40, 31..24, 15 .. 8 8

16 63 .. 58, 47 .. 42, 31 .. 26, 15 .. 10 6

32 63 .. 56, 31 .. 24 8

8-30

FLOATING-POINT INSTRUCTIONS

63 47 31 15 0

I INT FRAC I INT FRAC I INT FRAC I INT FRAC I fsre1

+
63 47 31 15 0

I INT FRAC I INT FRAC I INT FRAC I INT FRAC I fsre2

IH ",:"¥,',,,d

1 "",,;t>'C;::yj

fdest

240875i8-7

Figure 8-7. FADDP with 8-Bit Pixels

63 47 31 15 0

I INT FRAC I INT FRAC I INT FRAC I INT FRAC I fsre1

+ II 63 47 31 15 0

I INT FRAC I INT FRAC I INT FRAC I INT FRAC I fsre2

1,,·"""""""":]
1::·",,,;;:';;;:;;.;1

fdest

@ill @ill @ill ID1ID
TRASH TRASH TRASH TRASH

240875i8-8

Figure 8-8. FADDP with 16-Bit Pixels

8-31

FLOATING-POINT INSTRUCTIONS

63 31 0

I INT FRACTION I INT FRACTION I fsrc1

63 0

I INT FRACTION INT FRACTION I fsrc2

[%-~it£Z$c'14:r)

wllmn;;,'!('J

fdest

MERGE

240875i8-9

Figure 8-9. FADDP with 32-Bit Pixels

the MERGE register. With each faddp, the MERGE register is shifted right by 8 bits.
Normally, three faddp instructions are executed consecutively, one for each color repre
sented in a pixel. The shifting of MERGE causes the results of consecutive faddp
instructions to be accumulated in the MERGE register.

Programming Notes

When interpolating with a negative slope, one pixel's most-significant bit may carry into
the least-significant bit of the fraction of the neighboring pixel on the left. The carry is
due to the fact that faddp instruction does not treat pixels individually; instead, it adds
their operands exactly as fiadd.dd does - in one 64-bit operation. (The only difference
between fiadd.dd and faddp is the effect on the MERGE register.) Interpolation algo
rithms should compensate for the carry.

8-32

FLOATING-POINT INSTRUCTIONS

8.5.2.3 Z-BUFFER ADD

faddz fsre1, fsre2, fdest Add with Z Merge

fdest ~ fsre1 + fsre2 (using integer arithmetic; 8-byte operands and destination)
Shift MERGE right 16, then load fields 31 .. 16 and 63 . .48 from fsre1 + fsre2

pfaddz fsre1, fsre2, fdest Pipelined Add with Z Merge

fdest ~ last-stage graphics-unit result
last-stage graphics-unit result ~ fsre1 + fsre2 (using integer arithmetic;

8-byte operands and destination)
Shift MERGE right 16, then load fields 31 .. 16 and 63 . .48 from fsre1 + fsre2

The faddz instruction implements linear interpolation of distance values such as those
that form a Z-buffer. With faddz, 16-bit Z-buffers can use 32-bit distance interpolation,
as Figure 8-10 illustrates. Each operand can be treated as two fixed-point numbers, each
with a 16-bit integer portion and a 16-bit fractional portion. Each fixed-point sum is
rounded to 16 bits by truncation when it is loaded into the MERGE register. With each
faddz, the MERGE register is shifted right by 16 bits. Normally, two faddz instructions
are executed consecutively. The shifting of MERGE causes the results of consecutive
faddz instructions to be accumulated in the MERGE register.

32-bit Z-buffers can use 32-bit or 64-bit distance interpolation. For 32-bit interpolation,
no merge instructions are required. Instead, two 32-bit adds can be performed simulta
neously by the 64-bit add instruction.

63 47 31 15 0

I INTEGER FRACTION I INTEGER FRACTION I fsrc1

63 47 15 0

I INTEGER FRACTION INTEGER FRACTION I fsrc2

I';;:;::!.::; d
h, ·~0:,t:1ttl

fdest

MERGE

240875i8-10

Figure 8-10. FADDZ with 16-Bit Z-Buffer

8-33

II

FLOATING·POINT INSTRUCTIONS

63 31 06 r,;;,3 _____ ... 3_1 ____ ----.0

I~_IN_T_EG_E_R_~ __ FR_A_C_TI_ON_~I I~_IN_T_EG_E_R_~ __ FR_A_C_TI_ON_~I

6 F3 _____ ~------~06 r,;;,3 ______________ ----.0

~I __ IN_T_E_GE_R_~ __ FR_A_C_TI_O_N~I ~I __ IN_T_E_GE_R_~ ____ FR_A_C_TI_O_N~I

240875i8-11

Figure 8·11. 64·Bit Distance Interpolation

For 32-bit Z-buffers, 64-bit distance interpolation is implemented (as Figure 8-11 shows)
with two 64-bit fiadd instructions. The merging is implemented with the 32-bit move
fmov.ss fsrcl, fdest.

Programming Notes

When interpolating with a negative slope, one pixel's most~significant bit may carry into
the least-significant bit of the fraction of the neighboring pixel on the left. The carry is
due to the fact that the faddz instruction does not treat pixels individually; instead, it
adds their operands exactly as fiadd.dd does - in one 64-bit operation. (The only differ
ence between fiadd.dd and faddz is the effect on the MERGE register.) Interpolation
algorithms should compensate for the carry.

8-34

FLOATING-POINT INSTRUCTIONS

8.5.2.4 OR WITH MERGE REGISTER

form fsre1, fdest

fdest +--- fsre1 OR MERGE (64 bits)
MERGE +--- 0

pform fsre 1, fdest

fdest +--- last-stage graphics-unit result

OR with MERGE Register

Pipelined OR with MERGE Register

last-stage graphics-unit result +--- fsre1 OR MERGE (64 bits)
MERGE +--- 0

For intensity interpolation, the form instruction fetches the partially completed pixels
from the MERGE register, sets any additional bits that may be needed in the pixels
(e.g., texture values), and loads the result into a floating-point register. Fsrc1 (when a
register) and fdest are floating-point register pairs; the fsrc2 field of the instruction
should contain zero.

For distance interpolation or for intensity interpolation that does not require further
modification of the value in the MERGE register, the fsrcl operand of form may be fO,
thereby causing the instruction to simply load the contents of the MERGE register into
a floating-point register.

8-35

II

FLOATING-POINT INSTRUCTIONS

8.5.3 Transfer F-P to Integer Register

fxfr fsrc 1, idest

idest ~ fsrc1

Transfer F-P to Integer Register

The bit pattern in the 32-bit floating-point register fsrcl is stored into the 32-bit integer
register idest. Assemblers and compilers should encodefsrc2 as fO.

Programming Notes

This scalar instruction is performed by the graphics unit. When it is executed, the result
in the graphics-unit pipeline is lost. However, executing this instruction does not impact
performance, even if the next instruction is a pipe lined operation whose fdest is nonzero
(refer to Section 8.1).

For best performance, idest should not be referenced in the next instruction, and fsrcl
should not reference the result of the prior instruction if the prior instruction is scalar.

8.6 DUAL-INSTRUCTION MODE

i860 microprocessors can execute a floating-point and a core instruction in parallel. Such
parallel execution is called dual-instruction mode. When executing in dual-instruction
mode, the instruction sequence consists of 64-bit aligned instruction pairs with a
floating-point instruction in the lower 32 bits and a core instruction in the upper 32 bits.

Programmers specify dual-instruction mode either by including in the mnemonic of a
floating-point instruction a d. prefix or by using the Assembler directives .dual ...
. enddual. Both of the specifications cause the D-bit of floating-point instructions to be
set. If the processor is executing in single-instruction mode and encounters a floating
point instruction with the D-bit set, one more 32-bit instruction is executed before dual
mode execution begins. If the processor is executing in dual-instruction mode and a
floating-point instruction is encountered with a clear D-bit, then one more pair of
instructions is executed before resuming single-instruction mode. Figure 8-12 illustrates
two variations of this sequence of events: one for extended sequences of dual
instructions and one for a single instruction pair.

When a 64-bit dual-instruction pair sequentially follows a delayed branch instruction in
dual-instruction mode, both 32-bit instructions are executed.

The recommended floating-point NOP for dual-instruction mode is shrd rO,rO,rO,
because this instruction does not affect the states of the floating-point pipelines~ Even
though this is a core instruction, bit 9 is interpreted as the dual-instruction mode control
bit. In assembly language, this instruction is specified as fnop or d.fnop. Traps are not
reported on fnop. Because it is a core instruction, d.fnop cannot be used to initiate entry
into dual-instruction mode.

8-36

FLOATING-POINT INSTRUCTIONS

31

op

d.fp-op

63 core-op or d.fp-op 1
core-op d.fp-op Enter Dual Instruction Mode

core-op d.fp-op

core-op fp-op Initiate Exit from
Dual Instruction Mode

core-op fp-op t
op Leave Dual Instruction Mode

op t
240875i8-12a

Figure 8-12. Dual-Instruction Mode Transitions (1 of 2)

31

op

d.fp-op

63 fp-op 1
I core-op fp-op

Temporary
Dual Instruction Mode

op

op ~
240875i-8-12b

Figure 8-12. Dual-Instruction Mode Transitions (2 of 2)

8.6.1 Core and Floating-Point Instruction Interaction

1. If one of the branch-on-condition instructions bc or bnc is paired with a floating
point compare, the branch tests the value of the condition code prior to the
compare.

2. If an ixfr, fld, or pfld loads the same register as a source operand in the floating
point instruction, the floating-point instruction references the register value before
the load updates it.

3. An fst or pst that stores a register that is the destination register of the companion
pipelined floating-point operation will store the result of the companion operation.

8-37

FLOATING-POINT INSTRUCTIONS

4. When the core instruction sets CC and the floating-point instruction is pfgt, pfle, or
pfeq, CC is set according to the result of the pfgt, pfle, or pfeq.

5. When a trap instruction causes a trap in dual-instruction mode, the floating-point
instruction has neither completed execution nor has updated the FT bit or any result
status bits. This is not a problem when the trap is inserted by a debugger, because
the trap is replaced by the original instruction, and the dual-mode pair is reexecuted.
However, when the trap is programmed, the trap handler must avoid reexecuting the
trap by returning to user code at the address in fir + 8. In this case, the trap handler
must emulate the floating-point instruction before returning to the user code. Emu
lation of the instruction must include all side-effects (for example, the effect of its
D-bit, effect on the pipelines, and effect on FT and result-status bits), just as if the
instruction had been executed by the processor in the original context.

6. In dual-instruction mode, when the intovr instruction causes a trap (or when an IT
trap occurs on the i860 XR microprocessor due to Idio, stio, scyc, Idint, or pfld.q),
the floating-point companion instruction has completely finished execution before
the trap is taken.

8.6.2 Dual-Instruction Mode Restrictions

1. The result of placing a core instruction in the low-order 32 bits or a floating-point
instruction in the high-order 32 bits is not defined (except for shrd rO, rO, rO which is
interpreted as fnop).

2. A floating-point instruction that has the D-bit set must be aligned on a 64-bit bound
ary (i.e., the three least-significant bits of its address must be zero). This applies as
well to the initial 32-bit floating-point instruction that triggers the transition into
dual-instruction mode, but does not apply to the following instruction.

3. When the floating-point operation is scalar and the core operation is fst or pst, the
store should not reference the result register of the floating-point operation. When
the core operation is pst, the floating-point instruction cannot be (p)fzchks or
(p)fzchkl.

4. When the core instruction of a dual-mode pair is a control-transfer operation and
the previous instruction had the D-bit set, the floating-point instruction must also
have the D-bit set. In other words, an exit from dual-instruction mode cannot be
initiated (first instruction pair without D-bit set) when the core instruction is a
control-transfer instruction.

5. When the core operation is a Id.c or st.c, the floating-point operation must be
d.fnop.

8-38

FLOATING-POINT INSTRUCTIONS

6. When the floating-point operation is fxfr, the core instruction cannot be Id, Idio,
Idint, Id.c, st, stio, st.c, call, calli, ixfr, or any instruction that updates an integer
register (including autoincrement indexing). Furthermore, the core instruction can
not be a fld, fst, pst, or pfld that uses as isrcl or isrc2 the same register as the idest of
the fxfr. Additionally, in dual-instruction mode, fxfr may not be used in a branch
delay slot if its destination register is referenced by the preceding branch instruction.

7. A bri must not be executed in dual-instruction mode if any trap bits are set.

8. When the core operation is bc.t or bnc.t, the floating-point operation cannot be pfeq
or pfgt. The floating-point operation in the sequentially following instruction pair
cannot be pfeq or pfgt, either.

9. A transition to or from dual-instruction mode cannot be initiated on the instruction
following a brio

10. An ixfr, fld, or pfld cannot update the same register as the companion floating-point
instruction unless the destination is fO or f1. No overlap of register destinations is
permitted; for example, the following instructions must not be paired:

II Illegal case 1
d.fmul.ss f9, fUI, fS

fld.q address, f4

IIIllegal case 2
d.fmul.ss Hll, Hll, f3

fld.q address, f0

II Illegal case 3
d.fmul.ss f9, f10, fll

fld.l address, fS
d.pfadd.ss fx, fx, f4;

Overlaps fS

Overlaps f3

Overlaps fS, If last stage
result is double-precision

11. During the lock protocol, a transition to or from dual-instruction mode is not
permitted.

8-39

Traps and Interrupts
(80860XR)

9

CHAPTER 9
TRAPS AND INTERRUPTS (80860XR)

Traps are caused either by exceptional conditions detected in programs or by external
interrupts. Traps cause interruption of normal program flow to execute a special pro
gram known as a trap handler. Traps are divided into the types shown in Table 9-1.

9.1 TRAP HANDLER INVOCATION

This section applies to traps other than reset. When a trap occurs, execution of the
current instruction is aborted. The instruction is restartable as described in Section 9.1.3.
The processor takes the following steps while transferring control to the trap handler:

1. Copies U (user mode) of the psr into PU (previous U).

2. Copies 1M (interrupt mode) into PIM (previous 1M).

3. Sets U to zero (supervisor mode).

Table 9-1. Types of Traps (80860XR)

Indication Caused by
Type

psr epsr fsr Condition Instruction

OF Software traps intovr
Instruction IT trap, scyc, Idio, stio,
Fault Idint, pfld.q

IL Missing unlock Any

SE Floating-point source Any M- or A-unit except
exception fmlow

Floating- AO, MO Floating-point result Any M- or A-unit except
Point FT AU, MU exception fmlow, pfgt, and pfeq.
Fault AI,MI overflow Reported on any F-P

underflow instruction, pst, fst, and
inexact result sometimes fld, pfld, and ixfr

Instruction Address translation Any
Access IAT exception
Fault during instruction fetch

Load/store address Any load/store

Data translation exception

Access DAT* Misaligned operand Any load/store

Fault address Any load/store
Operand address

matches db register

Interrupt IN External interrupt signal on INT pin

Reset None Hardware RESET signal

NOTE: *These cases can be distinguished by examining the operand addresses.

9-1

II

TRAPS AND INTERRUPTS (80860XR)

4. Sets 1M to zero (interrupts disabled). This guards against further interrupts until the
trap information can be saved.

5. If the processor is in dual instruction mode, it sets DIM; otherwise DIM is cleared.

6. DS is set under either of the following conditions:

• The processor is in single-instruction mode and the next instruction will be exe
cuted in dual-instruction mode.

• The processor is in dual-instruction mode and the next instruction will be exe
cuted in single-instruction mode.

7. The appropriate trap type bits in psr and epsr are set (IT, IN, IAT, DAT, FT, IL,
OF). Several bits may be set if the corresponding trap conditions occur
simultaneously.

8. An address is placed in the fault instruction register (fir) to help locate the trapped
instruction. In single-instruction mode, the address in fir is the address of the
trapped instruction itself. In dual-instruction mode, the address in fir is that of the
floating-point half of the dual instruction.· If an instruction- or data-access fault
occurred, the associated core instruction is the high-order half of the dual instruc
tion (fir + 4). In dual-instruction mode, when a data-access fault occurs in the
absence of other trap conditions, the floating-point half of the dual instruction will
already have been executed.

9. Clears the BL bit of dirbase and deasserts LOCK#.

The processor begins executing the trap handler by transferring execution to virtual
address OxFFFFFFOO. The trap handler begins execution in single-instruction mode. To
determine the cause or causes of the trap, the trap handler must examine the trap-type
bits in psr (IT, IN, IAT, DAT, FT) and epsr (IL) as well as the instruction addressed
by fir.

9.1.1 Saving· State

To support nesting of traps, the trap handler must save the current state before another
trap occurs. An interrupt stack can be implemented in software (refer to the section on
stack implementation in Chapter 11). Interrupts can then be reenabled by clearing the
trap-type bits and setting 1M to the value of PIM. The branch-indirect instruction is
sensitive to the trap-type bits; therefore, clearing the trap-type bits allows normal indi
rect branches tobe performed within the trap handler.

The items that make up the current state may include any of the following:

1. The fir.

2. The psr.

9-2

TRAPS AND INTERRUPTS (80860XR)

3. The epsr.

4. The fsr.

5. The dirbase register.

6. The MERGE register.

7. The KR,KI, and T registers.

8. Any of the four pipelines (refer to Section 9.8).

9. The floating-point and integer register files.

While the floating-point registers are being saved, the PTE bit of the fsr must be tem
porarily cleared, so that no floating-point traps are triggered. FTE must be restored to
its original value before returning from the trap handler.

9.1.2 Inside the Trap Handler

While most activities of trap handlers are application dependent (and, therefore, are
beyond the scope of this manual), programmers should be aware of the following
requirements that are imposed by the i860 microprocessor architecture:

1. For all types of traps, the trap handler must check the IL bit of epsr to determine if
a locked sequence is being interrupted.

2. The trap handler must execute Id.c fir, rdest once for each trap. Failure to do so
prevents fir from receiving the address of the next trap.

3. When the interrupted program is in dual-instruction mode, KNF may be set upon
entry to the trap handler. The handler must clear KNF (after saving its former
value) before it executes a floating-point instruction; otherwise, that floating-point
instruction would be killed.

9.1.3 Returning from the Trap Handler

Returning from a trap handler involves the following steps.

1. Restoring the pipeline states, including the fsr, KR, KI, T, and MERGE registers,
where necessary.

2. Subtracting srcl from src2, when a data-access fault occurred on an autoincrement
ing load/store instruction and a floating-point trap did not also occur.

3. Determining where to resume execution by inspecting the instruction at fir - 4. The
details for this determination are given in Section 9.1.3.1.

9-3

II

TRAPS AND INTERRUPTS (80860XR)

4. Restoring the integer and floating-point register files (except for the register that
holds the resumption address).

5. Updating the psr with the value to be used after return. It may be necessary to set
the KNF bit in the psr. The requirements for KNF are given in Section 9.1.3.2. The
trap handler must ensure that no trap occurs between the st.e to the psr and the
indirect branch that exits the trap handler.

6. Executing an indirect branch to the resumption address, making sure that at least
one of the trap bits is set in the psr. Neither the indirect branch nor the following
instruction may be executed in dual-instruction mode.

7. Restoring the register that holds the resumption address. (This is executed before
the delayed indirect branch is completed.)

Once restoration of the initial state has begun, the trap handler must ensure that no trap
occurs before returning to the interrupted procedure.

9.1.3.1 DETERMINING WHERE TO RESUME

To determine where to resume execution upon leaving the trap handler, the trap handler
should normally examine the instruction at fir - 4 to determine whether the instruction
at that address is a delayed control-transfer instruction (i.e., one that executes the next
sequential instruction on branch taken). However, examining fir - 4 may cause a page
fault. If the location in fir is at the beginning of a page, then fir - 4 is in the prior page.
If the prior page is not present, then examining fir - 4 will cause a page fault. In this
case, however, the instruction at fir - 4 could not have been a delayed control-transfer
instruction, and it is not necessary to examine fir - 4. Note that, when determining
whether the prior page is present, it is necessary to inspect the P (present) bit in both
the page table and its page directory entry.

If the instruction at fir - 4 is not a delayed control-transfer instruction, then execution
normally resumes at the address in fir. However, if the trap was caused by a trap instruc
tion, execution should resume at the address in fir + 4 in single-instruction mode or at
the address in fir + 8 in dual-instruction mode.

If, on the other hand, the instruction at fir - 4 is a delayed control-transfer instruction,
execution normally resumes at fir - 4 so that the control-transfer instruction (which did
not finish because of the trap) is also reexecuted. If the instruction at fir - 4 is a bla
instruction, then srcl should be subtracted from src2 before reexecuting the bla.

The one variance from this strategy occurs when the instruction at fir - 4 is a conditional
delayed branch (be.t or bne.t), the instruction at fir is a pfgt, pfle, or pfeq, and a source
exception has occurred .. To implement the IEEE standard for unordered compares, the
trap handler may need to change the value of CC. In this case it cannot resume at
fir - 4, because the new value of CC might cause an incorrect branch. Instead, the trap
handler must interpret the conditional branch instruction and resume at its target.

9-4

TRAPS AND INTERRUPTS (80860XR)

If the processor was in dual-instruction mode and execution is to resume at fir - 4, the
trap handler should set DS and clear DIM in the psr before resuming execution of the
interrupted procedure. Clearing DIM prevents the floating-point instruction associated
with the control-transfer instruction at fir - 4 from being reexecuted. Setting DS forces
the processor back to dual-instruction mode after executing the control-transfer
instruction.

Every code section should begin with a nop instruction so that fir - 4 is defined even in
case a trap occurs on the first real instruction of the code section. Furthermore, this nop
should not be the target of any branch or call.

9.1.3.2 SETTING KNF

The trap handler should set the KNF bit of psr if the trapped instruction is a floating
point instruction that should not be reexecuted; otherwise, KNF is left unchanged.
Floating-point instructions should not be reexecuted under either of the following
conditions:

• The trap was caused in dual-instruction mode by a data-access fault or an intovr
instruction and there are no other trap conditions. In this case, the floating-point
instruction has already been executed.

• The trap was caused by a source exception on any floating-point instruction (except
when a pfgt, pfle, or pfeq follows a conditional branch, as already explained in
Section 9.1.3.1). The trap handler determines the result that corresponds to the
exceptional inputs; therefore, the instruction should not be reexecuted.

9.2 INSTRUCTION FAULT

This fault is caused by any of the following conditions. In all cases the processor sets the
IT bit before entering the trap handler.

1. By the trap instruction. Note that when trap is executed in dual-instruction mode,
the floating-point companion of the trap instruction is not executed before the trap
is taken. This is not a problem when the trap is inserted by a debugger, because the
trap is replaced by the original instruction, and the dual-mode pair is reexecuted.
However, when the trap is programmed, the trap handler must avoid reexecuting the
trap instruction by returning to user code at the address in fir + 8. In this case, the
trap handler must emulate the companion floating-point instruction before return
ing to the user code. Emulation of the instruction must include all side-effects (for
example, the effect of its D-bit, effect on the pipelines, and effect on FT and result
status bits), just as if the instruction had been executed by the processor in the
original context.

2. By the intovr instruction. The trap occurs only if OF in epsr is set when intovr is
executed. The trap handler should clear OF before returning. Refer to the intovr
instruction in Chapter 7. When intovr causes a trap in dual-instruction mode, the
floating-point companion of the intovr instruction has completely finished execution
before the trap is taken.

9-5

II

TRAPS AND INTERRUPTS (80860XR)

3. By violation of the lock/unlock protocol explained in Chapter 7. In this case, IL is
also set, and the instruction pointed to by fir mayor may not have been executed.

4. By executing an instruction implemented only in the i860 XP microprocessor. Exe
cution of Idio, stio, seye, Idint, or pfld.q on the i860 XR microprocessor causes an
instruction trap.

The trap and intovr instructions must not be used within a locked sequence.

To distinguish between cases 1 and 2, the trap handler must examine the instruction
addressed by fir.

9.3 FLOATING-POINT FAULT

The floating-point faults of i860 microprocessors support the floating-point exceptions
defined by the IEEE standard as well as some other useful classes of exceptions. The
i860 microprocessors divide these into two classes:

1. Source exceptions. This class includes:

• All the invalid operations defined by the IEEE standard (including operations on
signaling NaN s).

• Division by zero.

• Operations on quiet NaNs, denormals and infinities. (These data types are imple
mented by software.)

2. Result exceptions. This class includes the overflow, underflow, and inexact excep
tions defined by the IEEE standard.

Software supplied by Intel provides the IEEE standard default handling for all these
exceptions.

Floating-point faults are reported only on floating-point instructions, and on pst, fst, fld,
pfld, and ixfr.

No floating-point fault occurs when pst, fst, fld, pfld, or ixfr transfers an operand that is
not a valid floating-point value.

9.3.1 Source Exception Faults

When used as inputs to the floating-point adder or multiplier, all exceptional operands
(including infinities, denormalized numbers and NaNs) cause a floating-point fault and
set SE in the fsr. Source exceptions are reported on the instruction that initiates the
operation. For pipelined operations, the pipeline is not advanced. The trap handler can
reference both source operands and the operation by decoding the instruction specified
by fir.

9-6

TRAPS AND INTERRUPTS (80860XR)

In the case of dual operations, the trap handler has to determine which special registers
the source operands are stored in and inspect all four source operands to see if one or
both operations need to be fixed up. It can then compute the appropriate result and
store the result in Idest, in the case of a scalar operation, or replace the appropriate
first-stage result, in the case of a pipelined operation.

Note that, in the following sequence, inappropriate use of the FTE bit of the fsr can
produce an invalid operand that does not cause a source exception:

1. Floating-point traps are masked by clearing the FTE bit.

2. A dual-operation instruction causes underflow or overflow leaving an invalid result
in the T register.

3. Floating-point traps are enabled by setting the FTE bit.

4. The invalid result in the T register is used as an operand of a subsequent instruction.

Even though the result of an operation would normally cause a source exception, it can
be inserted into the pipeline as follows:

1. Disable traps by clearing FTE.

2. Perform a pipelined add of the value with zero or a multiply by one.

3. Set the result-status bits of fsr to "normal" by loading fsr with the U-bit set and
zeros in the appropriate unit's result-status bits. The other unit's status must be set
to the saved status for the first pipeline stage.

4. Reenable traps by setting FTE.

5. Set KNF in the psr to avoid reexecuting the instruction.

The trap handler should ignore the SE bit for faults on fld, pfld, fst, pst, and ixfr instruc
tions when in single-instruction mode or when in dual-instruction mode and the compan
ion instruction is not a multiplier or adder operation. The SE value is undefined in
this case.

The trap handler should process result exceptions as described below and reexecute the
instruction before processing source exceptions.

9-7

II

TRAPS AND INTERRUPTS (80860XR)

9.3.2 Result Exception Faults

The class of result exceptions includes any of the following conditions:

• Overflow. The absolute value of the rounded true result would exceed the largest
finite number in the destination format.

• Underflow (when FZ is clear). The absolute value of the rounded true result would
be smaller than the smallest finite number in the destination format.

• Inexact result (when TI is set). The result is not exactly representable in the destina
tion format. For example, the fraction 1/3 cannot be precisely represented in binary
form. This exception occurs frequently and indicates that some (generally acceptable)
accuracy has been lost.

The point at which a result exception is reported depends upon whether it is caused by a
pipelined operation:

• Scalar (nonpipelined) operations. Result exceptions are reported on the next
floating-point, fst.x, or pst.x (and sometimes fld, pfld, ixfr) instruction after the scalar
operation. When a trap occurs, the last stage of the affected unit contains the result
of the scalar operation. The result is also written to the register indicated by the RR
field of the psr.

• Pipelined operations. Result exceptions are reported when the result is in the last
stage and the next floating-point, fst.x or pst.x (and sometimes fld, pfld, ixfr) instruc
tion is executed. When a trap occurs, the pipeline is not advanced, and the last-stage
results (that caused the trap) remain unchanged.

To define the cases in which the instructions fld, pfld, and ixfr report exceptions, let A be
any floating-point instruction that causes a result exception, and let B be fld, pfld, or ixfr,
the next floating-point instruction executed after A after any number of intervening
non-floating-point instructions.

• If the fdest of B overlaps with the fdest of A, then B always traps.

• If the fdest of B does not overlap with the fdest of A, then:

If A finishes executing before B executes, then B traps.

If A does not finish executing before B executes, then B does not trap.

To calculate the time for A to execute, refer to the instruction timings listed in
Appendix C.

When no trap occurs (either because FTE is clear or because no exception occurred),
the pipeline is advanced normally by the new floating-point operation. The result-status
bits of the affected unit are undefined until the point that result exceptions are reported.
At this point, the last-stage result-status bits (bits 29 .. 22 and 16 .. 9 of the fsr) reflect the
values in the last stages of both the adder and multiplier. For example, if the last-stage
result in the multiplier has overflowed and a pfadd is started, a trap occurs and MO
is set.

9-8

TRAPS AND INTERRUPTS (80860XR)

For scalar operations, the RR bits of fsr specify the register in which the result was
stored. RR is updated when the scalar instruction is initiated. The trap, however, occurs
on a subsequent instruction. Programmers must prevent intervening stores to fsr from
modifying the RR bits. Prevention may take one of the following forms:

• Before any store to fsr when a result exception may be pending, execute a dummy
floating-point operation to trigger the result-exception trap.

• Always read from fsr before storing to it, and mask updates so that the RR, RM, and
FZ bits are not changed.

For pipelined operations, RR is cleared; the result is in the pipeline of the appropriate
unit.

For both scalar and pipelined modes, if a result exception occurs, the trap handler must
calculate the desired result. In either mode, the result supplied by the CPU has the same
mantissa as the true result and has an exponent which is the low-order bits of the true
result. The trap handler can inspect the supplied result, calculate the result appropriate
for that instruction (a NaN or an infinity, for example), and store the calculated result.
The trap handler must store the calculated result in the register specified by RR (if
nonzero) or (if RR = 0) must load the calculated result into the last stage of the
pipeline in place of the saved result.

Adder overflow can occur due either to a true floating-point operation (for example,
pfadd.p or pfeq.p) or to an integer conversion operation (fix.v, pfix.v, ftrunc.v, pftrunc.v).
For a true floating-point operation, the exponent of the result will be all ones. For an
integer conversion operation, the exponent of the result will be less than all ones. When
adder overflow occurs, the trap handler can distinguish between the two cases by exam
ining the exponent of the result.

Result exceptions may be reported for both the adder and multiplier units at the same
time. In this case, the trap handler should fix up the last stage of both pipelines.

9.4 INSTRUCTION-ACCESS FAULT

This trap occurs during address translation for instruction fetches in any of these cases:

• The address fetched is in a page whose P (present) bit in the page directory or page
table is clear (not present).

• The address fetched is in a supervisor mode page, but the processor is in user mode.

• The address fetched is in a page whose PTE has A = 0, and the access occurs during
a locked sequence (i.e., between lock and unlock).

Note that several instructions are fetched at one time, either due to instruction prefetch
ing or to instruction caching. Therefore, a trap handler can change from supervisor to
user mode and continue to execute instructions fetched from a supervisor page. An
instruction access trap will occur only when the next group of instructions is fetched
from a supervisor page (up to eight instructions later). If, in the meantime, the handler

9-9

TRAPS AND INTERRUPTS (80860XR)

branches to a user page, no instruction access trap will occur. No protection violation
results, because the processor does not permit data accesses to supervisor pages while
running in user mode.

9.5 DATA-ACCESS FAULT

This trap results from an abnormal condition detected during data operand fetch or
store. Such an exception can be due only to one of the following causes:

• An attempt is being made to write to a page whose D-bit is clear.

• A memory operand is misaligned (is not located at an address that is a multiple of the
length of the data).

• The address stored in the db (data breakpoint) register is equal to one of the
addresses spanned by the operand.

• The operand is in a not-present page.

• A memory access is being attempted in violation of the memory protection scheme
defined in Chapter 4.

• A-bit is zero during address translation within a locked sequence.

When a data-access trap occurs and the next instruction is a pipelined floating-point
instruction, the destination register of the pipelined floating-point instruction may be
partially updated. This condition only affects debuggers, not applications software. A
debugger should somehow indicate that the contents of that register are invalid. Correct
execution will occur when the trap handler resumes execution after handling the data
access trap, because the pipelined floating-point instruction will then correctly update its
destination register.

9.6 INTERRUPT TRAP

An interrupt is an event that is signaled from an external source. If the processor is
executing with interrupts enabled (1M set in the psr), the processor sets the interrupt bit
IN in the psr, and generates an interrupt trap. Vectored interrupts are implemented by
interrupt controllers and software.

9.7 RESET TRAP

When the i860 XR microprocessor is reset, execution begins in single-instruction mode
at virtual address OxFFFFFFOO. This is the same address as for other traps. The reset
trap can be distinguished from other traps by the fact that no psr trap bits are· set.

Table 9-2 shows the initial settings of all registers and caches.

Software must ensure that the data cache is flushed (refer to Chapter 5) and'control
registers are properly initialized before performing operations that depend on4hevalues
of the cache or registers. The fir must be initialized with an Jd.c fir, rO instruction.

9-10

TRAPS AND INTERRUPTS (80860XR)

Table 9-2. Register and Cache Values after Reset (80860XR)

Registers Initial Value

Integer Registers Undefined
Floating-Point Registers Undefined
psr U, 1M, BR, BW, FT, OAT, IAT, IN, IT = 0; others are undefined
epsr IL, WP, PBM, BE = 0; Processor Type, Stepping

Number, DCS are read only; others are undefined
db Undefined
dirbase DPS, BL, ATE = 0; others are undefined
fir Undefined
fsr Undefined
KR, KI, T, MERGE Undefined

Caches Initial Value

Instruction Cache All entries invalid
Data Cache Undefined. All modified bits = O.
TLB All entries invalid

Reset code must initialize the floating-point pipeline states and the KR, KI, and T
registers to zero, using dummy pipelined instructions. Floating-point traps must be dis
abled to ensure that no spurious floating-point traps are generated.

After a RESET the i860 XR microprocessor starts execution at supervisor level (U = 0).
Before branching to the first user-level instruction, the RESET trap handler or subse
quent initialization code has to set PU and a trap bit so that an indirect branch instruc
tion will copy PU to U, thereby changing to user level. (Refer to the bri instruction in
Chapter 7.)

9.8 PIPELINE PREEMPTION

Each of the four pipelines (adder, multiplier, load, graphics) contains state information.
The pipeline state must be saved when a process is preempted or when a trap handler
performs pipe1ined operations using the same pipeline. The state must be restored when
resuming the interrupted code.

9.8.1 Floating-Point Pipelines

The floating-point pipeline state consists of the following items:

1. The current contents of the floating-point status register fsr (including the third
stage result status).

2. Unstored results from the first,second, and third stages. The number of stages that
exist in the multiplier pipeline depends on the sizes of the operands that occupy the
pipeline. The MRP bit of fsr helps determine how many stages are in the multiplier
pipeline.

9-11

II

TRAPS AND INTERRUPTS (80860XR)

3. The result-status bits for the first two stages.

4. The contents of the KR, KI, and T registers.

While the floating-point pipelines are being saved and restored, the FTE bit of the fsr
must be temporarily cleared, so that no floating-point traps are triggered. FTE must be
restored to its original value before returning from the trap handler.

9.8.2 Load Pipeline

The pipeline state for pfld instructions can be saved by performing three pfld instructions
to a dummy address. Thus, the pipeline is advanced three stages, causing the last three
real operands to be stored from the pipeline into registers that are then saved in some
memory area. The size of each saved value is indicated by the value of the LRP bit of the
fsr. Note that, when changing between big and .little endian modes, the load pipeline
must be saved before changing the BE bit.

The load pipeline can be restored performing three pfld instructions using the memory
addresses of the saved values. The pipeline will then contain the same three values it
held before the preemption.

9.8.3 Graphics Pipeline

The graphics pipeline has only one stage. To flush the pipeline, execute a pfiadd fO, fO,
fdest. The only other state information for the graphics unit resides in the PM bits of psr,
the IRP bit of the fsr, and in the MERGE register. Store the MERGE register with
a form instruction. Restore the MERGE register by using faddz instructions.

9-12

Traps and Interrupts 1 0
(BDB6DXP)

CHAPTER· 10
TRAPS AND INTERRUPTS (80860XP)

Traps are caused by exceptional conditions detected in programs or by external inter
rupts. Traps cause interruption of normal program flow to execute a special program
known as a trap handler. Traps are divided into the types shown in Table 10-1.

10.1 TRAP HANDLER INVOCATION

This section applies to traps other than reset. When a trap occurs, execution of the
current instruction is aborted. Except for bus and parity errors, the instruction is restart
able as described in Section 10.1.4. The processor takes the following steps while trans
ferring control to the trap handler:

1. Copies U (user mode) of the psr into PU (previous U).

2. Copies 1M (interrupt mode) into PIM (previous 1M).

3. Sets U to zero (supervisor mode).

Table 10-1. Types of Traps (80860XP)

Indication Caused by
Type

psr epsr fsr Condition Instruction

OF Software traps intovr

Instruction trap

Fault IT IL Missing unlock Any
PT & PI Pipeline usage Any scalar or pipelined

instruction that uses a pipeline

SE Floating-point source exception Any M- or A-unit except fmlow

Floating- Floating-point result exception Any M- or A-unit except fmlow,

Point FT AO,MO overflow pfgt, and pfeq. Reported on

Fault AU,MU underflow any F-P instruction, pst, fst,
AI, MI inexact result and sometimes fld, pfld,

and ixfr

Instruction Address translation exception Any
Access IAT during instruction fetch
Fault

Load/store address translation Any load/store
Data exception
Access DAT* Misaligned operand address Any load/store
Fault Operand address matches Any load/store

db register

Parity IN PEF Parity error on data pins during bus read operation
Error Fault when PEN# pin active

Bus IN BEF External interrupt signal on BERR pin Error Fault

Interrupt IN INT External interrupt signal on INT pin

Reset None PEF, BEF . Hardware RESET signal

NOTE: *These cases can be distinguished by examining the operand addresses.

10-1

TRAPS AND INTERRUPTS (80860XP)

4. Sets 1M to zero (interrupts disabled). This guards against further interrupts until the
trap information can be saved.

5. If the processor is in dual instruction mode, it sets DIM; otherwise DIM is cleared.

6. DS is set under either of the following conditions:

• The processor is in single-instruction mode and the next instruction will be exe
cuted in dual-instruction mode.

• The processor is in dual-instruction mode and the next instruction will be exe
cuted in single-instruction mode.

Otherwise, it is cleared.

7. The appropriate trap type bits in psr and epsr are set (IT, IN, IAT, DAT, FT, IL,
OF, PI, AI, DI, PT, BEF, PEF, BS). Several bits may be set if the corresponding
trap conditions occur simultaneously. If PEF or BEF is set, the processor places the
bus address in bear.

8. An address is placed in the fault instruction register (fir) to help locate the trapped
instruction. In single-instruction mode, the address in fir is the address of the
trapped instruction itself. In dual-instruction mode, the address in fir is that of the
floating-point half of the dual instruction. If an instruction- or data-access fault
occurred, the associated core instruction is the high-order half of the dual instruc
tion (fir + 4). In dual-instruction mode, when a data-access fault occurs in the
absence of other trap conditions, the floating-point half of the dual instruction will
already have been executed.

The processor begins executing the trap handler by transferring execution to virtual
address OxFFFFFFOO. The trap handler begins execution in single-instruction mode. To
determine the cause or causes of the trap, the trap handler must examine the trap-type
bits in psr (IT, IN, IAT, DAT, FT) and epsr (IL, PI, PT, BEF, PEF) as well as the
instruction addressed by fir.

10.1.1 Saving State

To support nesting of traps, the trap handler must save the current state before another
trap occurs. An interrupt stack can be implemented in software (refer to the section on
stack implementation in Chapter 11). Interrupts can then be reenabled by clearing the
trap-type bits and setting 1M to the value of PIM. The branch-indirect instruction is
sensitive to the trap-type bits; therefore, clearing the trap-type bits allows normal indi
rect branches to be performed within the trap handler.

The items that make up the current state may include any of the following:

1. The fir.

2. The psr.

10-2

TRAPS AND INTERRUPTS (80860XP)·

3. The epsr.

4. The fsr.

5. The dirbase register.

6. The MERGE register.

7. The KR, KI, and T registers.

8. Any of the four pipelines (refer to Section 10.10).

9. The floating-point and integer register files.

10. The privileged registers pO, p1, p2, p3.

11. bear

12. ccr

Items not used by the system or not altered by the trap handler need not be saved. Refer
also to Section 10.10.4 for a mechanism that the i860 XP microprocessor provides to
help avoid unnecessarily saving the pipelines.

While the floating-point registers are being saved, the FTE bit of the fsr must be tem
porarily cleared, so that no floating-point traps are triggered. FTE must be restored to
its original value before returning from the trap handler.

10.t.2 Inside the Trap Handler

While most activities of trap handlers are application dependent (and, therefore, are
beyond the scope of this manual), programmers should be aware of the following
requirements that are imposed by the i860 microprocessor architecture:

1. For all types of traps, the trap handler must check the IL bit of epsr to determine if
a locked sequence is being interrupted. If so, the trap handler must execute a load
or store operation to unlock the bus (no unlock instruction is required), and must _
restart at the beginning of the locked sequence instead of at the trapping instruc- _
tion. (Refer to the lock instruction in Chapter 7.) .

2. The trap handler must execute Id.c fir, rdest once for each trap. Failure to do so
prevents fir from receiving the address of the next trap.

3. When the interrupted program is in dual-instruction mode, KNF may be set upon
entry to the trap handler. The handler must clear KNF (after saving its former
value) before executing a floating-point instruction; otherwise, that floating-point
instruction would be killed.

10-3

TRAPS AND INTERRUPTS (80860XP)

10.1.3 Fatal Errors

When a bus error trap (BEF bit of epsr set) or parity error trap (PEF bit of epsr set)
occurs, the interrupted instruction is not restartable. The BS bit of epsr indicates
whether the trap occurred while in supervisor mode, in which case the operating system
should reboot, or in user mode, in which the operating system should discontinue the
interrupted task.

10.1.4 Returning from the Trap Handler

If the trap is not due to a bus or parity error and no locked sequence was interrupted,
the interrupted program is restartable. Returning from a trap handler involves the fol
lowing steps.

1. Restoring the pipeline states, including the fsr, KR, KI, T, and MERGE registers,
where necessary.

2. Subtracting srcl from src2, when a data-access fault occurred on an auto increment
ing load/store instruction and a floating-point trap did not also occur. The AI bit of
epsr indicates when an auto incrementing instruction causes a data-access trap; the
handler must determine whether a floating-point trap occurred.

3. Determining where to resume execution by inspecting the DI bit of epsr and possi
bly the instruction at fir - 4. The details for this determination are given in
Section 10.1.4.1.

4. Restoring the integer and floating-point register files (except for the register that
holds the resumption address).

5. Updating the psr with the value to be used after return. It may be necessary to set
the KNF bit in the psr. The requirements for KNF are given in Section 10.1.4.2. The
trap handler must ensure that no trap occurs between the st.e to the psr and the
indirect branch that exits the trap handler.

6. Executing an indirect branch to the resumption address, making sure that at least
one of the trap bits is set in the psr. Neither the indirect branch nor the following
instruction may be executed in dual-instruction mode.

7. Restoring the register that holds the resumption address. (This is executed before
the delayed indirect branch is completed.)

Once restoration of the initial state has begun, the trap handler must ensure that no trap
occurs before returning to the interrupted procedure.

10-4

TRAPS AND INTERRUPTS (80860XP)

10.1.4.1 DETERMINING WHERE TO RESUME

To determine where to resume execution upon leaving the trap handler, the trap handler
should first examine the DI bit of epsr. DI lets the trap handler avoid unnecessary
interpretation of the instruction at fir - 4.

If DI is clear, the instruction at fir - 4 is not a delayed control-transfer instruction, and
execution normally resumes at the address in fir. However, if the trap was caused by a
trap instruction, execution should resume at the address fir + 4 in single-instruction
mode or at the address fir + 8 in dual-instruction mode.

If DI is set, the instruction at fir - 4 is a delayed control-transfer instruction (i.e., one
that executes the next sequential instruction on branch taken), and the trap handler
must interpret that instruction to distinguish among these cases:

1. The instruction at fir - 4 is a conditional delayed branch (be.t or bne.t), the instruc
tion at fir is a pfgt, pfle, or pfeq, and a source exception has occurred. To implement
the IEEE standard for unordered compares, the trap handler may need to change
the value of CC. In this case it cannot resume at fir - 4, because the new value of
CC might cause an incorrect branch. Instead, the trap handler must interpret the
conditional branch instruction and resume at its target.

2. All other cases. Execution resumes at fir - 4 so that the control-transfer instruction
(which did not finish because of the trap) is also reexecuted. If the instruction at fir
- 4 is a bla instruction, then srcl should be subtracted from src2 before reexecuting
the bla.

If the processor was in dual-instruction mode and execution is,to resume at fir - 4, the
trap handler should set DS and clear DIM in the psr before resuming execution of the
interrupted procedure. Clearing DIM prevents the floating-point instruction associated
with the control-transfer instruction at fir - 4 from being reexecuted. Setting DS forces
the processor back to dual-instruction mode after executing the control-transfer
instruction.

10.1.4.2 SETTING KNF

The trap handler should set the KNF bit of psr if the trapped instruction is a floating-
point instruction that should not be reexecuted; otherwise, KNF is left unchanged. ~
Floating-point instructions should not be reexecuted under either of the following _
conditions:

• The trap was caused in dual-instruction mode by a data-access fault or an intovr
instruction and there are no other trap conditions. In this case, the floating-point
instruction has already been executed.

• The trap was caused by a source exception on any floating-point instruction (except
when a pfgt,pfle, or pfeq follows a conditional branch, as already explained in
Section 10.1.4.1). The trap handler determines the result that corresponds to the
exceptional inputs; therefore, the instruction should not be reexecuted.

10-5

TRAPS AND INTERRUPTS (80860XP)

10.2 INSTRUCTION FAULT

This fault is caused by any of the following conditions. In all cases the processor sets the
IT bit before entering the trap handler.

1. By the trap instruction. Note that when trap is executed in dual-instruction mode,
the floating-point companion of the trap instruction is not executed before the trap
is taken. This is not a problem when the trap is inserted by a debugger, because the
trap is replaced by the original instruction, and the dual-mode pair is reexecuted.
However, when the trap is programmed, the trap handler must avoid reexecuting the
trap instruction by returning to user code at the address in fir + 8. In this case, the
trap handler must emulate the companion floating-point instruction before return
ing to the user code. Emulation of the instruction must include all side-effects (for
example, the effect of its D-bit, effect on the pipelines, and effect on FT and result
status bits), just as if the instruction had been executed by the processor in the
original context.

2. By the intovr instruction. The trap occurs only if OF in epsr is set when intovr is
executed. The trap handler should clear OF before returning. Refer to the intovr
instruction in Chapter 7. When intovr causes a trap in dual-instruction mode, the
floating-point companion of the intovr instruction has completely finished execution
before the trap is taken.

3. By violation of the lock/unlock protocol explained in Chapter 7. In this case, IL is
also set, and the instruction pointed to by fir mayor may not have been executed.

4. By execution of an instruction that uses a pipeline when the PT bit of epsr is set.

The trap and intovr instructions must not be used within a locked sequence.

To distinguish between cases 1 and 2, the trap handler must examine the instruction
addressed by fir.

10.3 FLOATING-POINT FAULT

The floating-point faults of i860 microprocessors support the floating-point exceptions
defined by the IEEE standard as well as some other useful classes of exceptions. The
i860 microprocessors divide these into two classes:

1. Source exceptions. This class includes:

• All the invalid operations defined by the IEEE standard (including operations on
signaling NaN s).

• Division by zero.

• Operations on quiet NaNs, denormals and infinities. (These data types are imple
mented by software.)

10-6

TRAPS AND INTERRUPTS (80860XP)

2. Result exceptions. This class includes the overflow, underflow, and inexact excep
tions defined by the IEEE standard.

Software supplied by Intel provides the IEEE standard default handling for all these
exceptions.

Floating-point faults are reported only on floating-point instructions, and on pst, fst, fld,
pfld, and ixfr.

No floating-point fault occurs when pst, fst, fld, pfld, or ixfr transfers an operand that is
not a valid floating-point value.

10.3.1 Source Exception Faults

When used as inputs to the floating-point adder or multiplier, all exceptional operands
(including infinities, denormalized numbers and NaNs) cause a floating-point fault and
set SE in the fsr. Source exceptions are reported on the instruction that initiates the
operation. For pipelined operations, the pipeline is not advanced. The trap handler can
reference both source operands and the operation by decoding the instruction specified
by fir.

In the case of dual operations, the trap handler has to determine which special registers
the source operands are stored in and inspect all four source operands to see if one or
both operations need to be fixed up. It can then compute the appropriate result and
store the result in [dest, in the case of a scalar operation, or replace the appropriate
first-stage result, in the case of a pipelined operation.

Note that, in the following sequence, inappropriate 'use of the FTE bit of the fsr can
produce an invalid operand that does not cause a source exception:

1. Floating-point traps are masked by clearing the FTE bit.

2. An dual-operation instruction causes underflow or overflow leaving an invalid result
in the T register.

3. Floating-point traps are enabled by setting the FTE bit.

4. The invalid result in the T register is used as an operand of a subsequent instruction.

Even though the result of an operation would normally cause a source exception, it can
be inserted into the pipeline as follows:

1. Disable traps by clearing FTE.

2. Perform a pipelined add of the value with zero or a multiply by one.

10-7

TRAPS AND INTERRUPTS (80860XP)

3. Set the result-status bits of fsr to "normal" by loading fsr with the U-bit set and
zeros in the appropriate unit's result-status bits. The other unit's status must be set
to the saved status for the first pipeline stage.

4. Reenable traps by setting FTE.

5. Set KNF in the psr to avoid reexecuting the instruction.

The trap handler should ignore the SE bit for faults on fld, pfld, fst, pst, and ixfr instruc
tions when in single-instruction mode or when in dual-instruction mode and the compan
ion instruction is not a multiplier or adder operation. The SE value is undefined in this
case.

The trap handler should process result exceptions as described below and reexecute the
instruction before processing source exceptions.

10.3.2 Result Exception Faults

The result exceptions include:

• Overflow. The absolute value of the rounded true result would exceed the largest
finite number in the destination format.

• Underflow (when FZ is clear). The absolute value of the rounded true result would
be smaller than the smallest finite number in the ,destination format.

• Inexact result (when TI is set). The result is not exactly representable in the destina
tion format. For example, the fraction 1/3 cannot be precisely represented in binary
form. This exception occurs frequently and indicates that some (generally acceptable)
accuracy has been lost.

The point at which a result exception is reported depends upon whether it is caused by a
pipelined operation:

• Scalar (nonpipelined) operations. Result exceptions are reported on the next
floating-point, fst.x, or pst.x (and sometimes fld, pfld, and ixfr) instruction after the
scalar operation. When a trap occurs, the last stage of the affected unit contains the
result of the scalar operation. The result is also written to the register indicated by
the RR field of the psr.

• Pipelined operations. Result exceptions are reported when the result is in the last
stage and the next floating-point, fst.x or pst.x (and sometimes fld, pfld, and ixfr)
instruction is executed. When a trap occurs, the pipeline is not advanced, and the
last-stage results (that caused the trap) remain unchanged.

10-8

TRAPS AND INTERRUPTS (80860XP)

To define the cases in which the instructions fld, pfld, and ixfr report exceptions, let A be
any floating-point instruction that causes a result exception, and let B be fld, pfld, or ixfr,
the next floating-point instruction executed after A after any number of intervening
non-floating-point instructions.

• If the fdest of B overlaps with the fdest of A, then B always traps .

• . If the fdest of B does not overlap with the fdest of A, then:

If A finishes executing before B executes, then B traps.

If A does not finish executing before B executes, then B does not trap.

To calculate the time for A to execute, refer to the instruction timings listed in
Appendix C.

When no trap occurs (either because FTE is clear or because no exception occurred),
the pipeline is advanced normally by the new floating-point operation. The result-status
bits of the affected unit are undefined until the point that result exceptions are reported.
At this point, the last-stage result-status bits (bits 29 . .22 and 16 .. 9 of the fsr) reflect the
values in the last stages of both the adder and multiplier. For example, if the last-stage
result in the multiplier has overflowed and a pfadd is started, a trap occurs and MO
is set.

For scalar operations, the RR bits of fsr report in which register the result was stored.
RR is updated when the scalar instruction is initiated. The result exception trap, how
ever, occurs on a subsequent instruction. Programmers must prevent intervening stores
to fsr from modifying the RR bits. Prevention may take one of the following forms:

• Before any store to fsr when a result exception may be pending, execute a dummy
floating-point operation to trigger the result-exception trap.

• Always read from fsr before storing to it, and mask updates so that the RR, RM, and
FZ bits are not changed.

For pipelined operations, RR is cleared; the result is in the pipeline of the appropriate
unit.

For both scalar and pipelined modes, if a result exception occurs, the trap handler must
calculate the desired result. In either mode, the result supplied by the CPU has the same
mantissa as the true result and has an exponent which is the low-order bits of the true
result. The trap handler can inspect the supplied result, calculate the result appropriate
for that instruction (a NaN or an infinity, for example), and store the calculated result. If
RR is nonzero, the trap handler must store the calculated result in the register specified
by RR; if RR is zero, it must load the calculated result into the last stage of the pipeline
in place of the saved result.

Adder overflow can occur due either to a true floating-point operation (for example,
pfadd.p or pfeq.p) or to an integer conversion operation (fix.v, pfix.v, ftrunc.v, pftrunc.v).
For a true floating-point operation, the exponent of the result will be all ones. For an
integer conversion operation, the exponent of the result will be less than all ones. When
adder overflow occurs, the trap handler can distinguish between the two cases by exam
ining the exponent of the result.

10-9

TRAPS AND INTERRUPTS (80860XP)

Result exceptions may be reported for both the adder and multiplier units at the same
time. In this case, the trap handler should fix up the last stage of both pipelines.

10.4 INSTRUCTION·ACCESS FAULT

This trap occurs during address translation for instruction fetches in any of these cases:

• The address fetched is in a page whose P (present) bit in the page directory or page
table is clear (not present).

• The address fetched is in a supervisor mode page, but the processor is in user mode.

• The address fetched is in a page whose PTE has A = 0, and the access occurs during
a locked sequence (i.e., between lock and unlock).

Note that several instructions are fetched at one time, either due to instruction prefetch
ing or to instruction caching. Therefore, a trap handler can change from supervisor to
user mode and continue to execute instructions fetched from a supervisor page. An
instruction access trap will occur only when the next group of instructions is fetched
from a supervisor page (up to eight instructions later). If, in the meantime, the handler
branches to a user page, no instruction access trap will occur. No protection violation
results, because the processor does not permit data accesses to supervisor pages while
running in user mode.

10.5 DATA·ACCESS FAULT

This trap results from an abnormal condition detected during data operand fetch or
store. Such an exception can be due only to one of the following causes:

• An attempt is being made to write to a page whose D-bit is clear.

• A memory operand is misaligned (is not located at an address that is a multiple of the
length of the data).

• The address stored in the db (data breakpoint) register is equal to one of the
addresses spanned by the operand.

• The operand is in a not-present page.

• A memory access is being attempted in violation of the memory protection scheme
defined in Chapter 4.

• A-bit is zero during address translation within a locked sequence.
r

When a data-access trap occurs and the next instruction is a pipelined floating-point
instruction, the destination register of the pipelined floating-point instruction may be
partially updated. This condition only affects debuggers, not. applications software. A
debugger should somehow indicate that the contents of that register are invalid. Correct
execution will occur when the trap handler resumes execution after handling the data
access trap, because the pipelined floating-point instruction will then correctly update its
destination register. .

10-10

TRAPS AND INTERRUPTS (80860XP)

10.6 PARITY ERROR TRAP

If the PEN # pin is active and the bus unit detects a parity error during a bus read
operation, the processor sets PEF and generates a trap. Further parity error traps are
masked as soon as PEF is set. To reenable such traps, software must clear PEF and
unfreeze BEAR by executing Id.c bear, rdest.

BS (bus or parity error trap in supervisor mode) is set by the i860 XP microprocessor
when a parity error occurs while the processor is in supervisor mode. The operating
system can use this bit to decide, for example, whether to abort the process (user mode)
or reboot the system (supervisor mode).

10.7 BUS ERROR TRAP

When external hardware asserts the BERR pin, the processor sets BEF (bus error flag)
and traps. Further BERR traps are masked as soon as BEF is set by hardware. To
reenable such traps, software must clear BEF and unfreeze BEAR by executing Id.c
bear, rdest.

BS (bus or parity error trap in supervisor mode) is set by the i860 XP microprocessor
when a bus error occurs while the processor is in supervisor mode. The operating system
can use this bit to decide, for example, whether to abort the process (user mode) or
reboot the system (supervisor mode).

10.8 INTERRUPT TRAP

An interrupt is an event that is signaled from an external source. If the processor is
executing with interrupts enabled (1M set in the psr), the processor sets the interrupt bit
IN in the psr and generates an interrupt trap. Vectored interrupts are implemented by
interrupt controllers and software.

10.9 RESET TRAP

When the i860 XP microprocessor is reset, execution begins in single-instruction mode at
virtual address OxFFFFFFOO. This is the same address as for other traps. The reset trap
can be distinguished from other traps by the fact that no psr trap bits are set.

Table 10-2 shows the initial settings of all registers and caches.

Software must ensure that control registers are properly initialized before performing
operations that depend on the values of the registers. The fir must be initialized with a
Id.c fir, rO instruction. The bear must be initialized with a Id.c bear, rO instruction.

Reset code must initialize the floating-point pipeline states and the KR, KI, and T
registers to zero, using dummy pipelined instructions. Floating-point traps must be dis
abled to ensure that no spurious floating-point traps are generated.

10-11

TRAPS AND INTERRUPTS (80860XP)

Table 10-2. Register and Cache Values after Reset (80860XP)

Registers Initial Value

Integer Registers Undefined
Floating-Point Registers Undefined
psr U, 1M, BR, BW, FT, DAT, IAT, IN, IT = 0; others are undefined
epsr IL, WP, PBM, BE, PT = 0; BEF, PEF = 1;

Processor Type, Stepping Number, DCS, SO
are read only; others are undefined

db Undefined
dirbase DPS, BL, LB, ATE = 0; others are undefined
fir Undefined
fsr Undefined
bear Undefined
p3-pO Undefined
ccr CO, DO = 0; others are undefined
KR, KI, T, MERGE Undefined
NEWCURR Undefined
STATUS InLoop, Nested, Detached = 0

Caches Initial Value

Instruction Cache All entires invalid
Data Cache All entries invalid
TLB All entries invalid

After a RESET the i860 XP microprocessor starts execution at supervisor level (U = 0).
Before branching to the first user-level instruction, the RESET trap handler or subse
quent initialization code has to set PU and a trap bit so that an indirect branch instruc
tion will copy PU to U, thereby changing to user level. (Refer to the bri instruction in
Chapter 7.)

10.10 PIPELINE PREEMPTION

Each of the four pipelines (adder, multiplier, load, graphics) contains state information.
The pipeline state must be saved when a process is preempted or when a trap handler
performs pipelined operations using the same pipeline. The state must be restored when
resuming the interrupted code.

10.10.1 Floating-Point Pipelines

The floating-point pipeline state consists of the following items:

1. The current contents of the floating-point status register fsr (including the third
stage result status).

2. Un stored results from the first, second, and third stages. The number of stages that
exist in the multiplier pipeline depends on the sizes of the operands that occupy the
pipeline. The MRP bit of fsr helps determine how many stages· are in the multiplier
pipeline.

10-12

TRAPS AND INTERRUPTS (80860XP)

3. The result-status bits for the first two stages.

4. The contents of the KR, KI, and T registers.

While the floating-point pipelines are being saved and restored, the FTE bit of the fsr
must be temporarily cleared, so that no floating-point traps are triggered. FTE must be

, restored to its original value before returning from the trap handler.

10.10.2 Load Pipeline

The pipeline state for pfld instructions can be saved by performing three pfld instructions
to a dummy address. Thus, the pipeline is advanced three stages, causing the last three
real operands to be stored from the pipeline into registers that are then saved in some
memory' area. The size of each saved value is indicated by the values of the LRPO and
LRPI bits of the fsr. Note that, when changing between big and little endian modes, the
load pipeline must be saved before changing the BE bit.

The load pipeline can be restored performing three pfld instructions using the memory
addresses of the saved values. The pipeline will then contain the same three values it
held before the preemption.

10.10.3 Graphics Pipeline

The graphics pipeline has only one stage. To flush the pipeline, execute a pfiadd fO, fO,
fdest. The only other state information for the graphics unit resides in the PM bits of psr,
the IRP bit of the fsr, and in the MERGE register. Store the MERGE register with
a form instruction. Restore the MERGE register by using faddz instructions.

10.10.4 Using PI and PT Bits

The PI and PT bits are provided to help the trap handler avoid unnecessarily saving and _,
restoring the pipelines. •

Trap handlers that use PI or PT must initially examine fsr. If a pending trap exists - that
is, if the FTE (floating-point trap enable) bit is set and any of the floating-point excep
tion bits (AI, AO, AU, MI, MO, MU) is active-the trap handler must save the pipe
lines. The i860 XP microprocessor may set an fsr exception bit before the floating-point
trap is reported, and this pending trap relies on information in the pipeline. For exam
ple, an external interrupt might invoke the trap handler between the scalar floating
point instruction that produces an overflow and the next floating-point operation - the
one that would cause a branch to the trap handler for the floating-point trap.

10-13

TRAPS AND INTERRUPTS (80860XP)

If no pending trap exists, the handler can follow either of the following two methods:

• Using both PI and PT: Upon invocation for any reason, the trap handler saves the
state of PI and PT (in epsr), but does not save the pipes. If PI is found set (which
means that the interrupted code needs the state information currently in the floating
point pipelines), the handler sets PT and clears PI (with the st.e instruction), then
continues with trap processing. If the pipes are used during trap handling (even by a
scalar instruction), a trap will be generated with IT and PI set by hardware. The trap
handler may then check PI and PT, and if both are set, clear PT, PI, and IT; save the
pipes, set an indication that they were saved; and restart execution from the instruc
tion that caused the trap. At the end of trap handling, the trap handler restores the
pipes if they were saved, and restores PI and PT to their values before the trap. This
method, which avoids saving and restoring the pipes, assumes that most trap handling
sequences do not alter the pipes, and that therefore a trap for PT = 1 will not happen
very often.

• Using only PI: Another approach is to leave PT=O, using only the PI bit, which the
processor sets· each time a pipelined instruction or pfld is executed. The trap handler
saves PI, saves the pipes if PI is set, sets an indication that they were saved, and clears
PI. At the end of trap handling, the trap handler restores the pipes if they were saved,
and restores PI to its value before the trap. With this method, the pipes are some
times saved and restored unnecessarily if the trap handler code does not use the
pipes. This method is advised when it is known that the trap handler uses the pipes.

10-14

Programming Model 11

III

CHAPTER 11
PROGRAMMING MODEL

This chapter defines compiler and assembly language conventions for the use of certain
aspects of the i860 architecture. These standards must be followed to guarantee that
compilers, applications programs, and operating systems written by different people and
organizations will work together. The conventions here implement the proposed appli
cation binary interface (ABI) as defined in the Intel i860™ Architecture ABI Supplement
and the Unix System V Interface Definition, Issue 3.

11.1 REGISTER ASSIGNMENT

Table 11-1 defines the standard for register allocation. Figure 11-1 presents the same
information graphically. '

NOTE
The dividing point between locals and parameters in the floating-point registers is
now set at 8. Some earlier software (prior to the Intel i860™ Architecture ABI
Supplement) used a dividing point at 16.

11.1.1 Integer Registers

Up to 12 integral parameters (including pointers and characters) can be passed to sub
routines in the integer registers. The first (leftmost) parameter is passed in r16; the rest

Table 11-1. Register Allocation

Register Purpose
Left Unchanged

by a Subroutine?

rO Always zero Yes
r1 Return address No
r2 Stack pointer Yes1

r3 Frame pointer Yes
r4-r15 Local val ues Yes

r16-r17 Return value No
r16-r27 Parameters and temporaries No

r28 Memory parameter pointer No
r29 Environment pointer No

r28-r30 Temporaries No
r31 Addressing temporary No

10-f1 Always zero Yes
f2-f7 Local values Yes

f8-f15 Return value No
f8-f15 Parameters and temporaries No

f16-f31 Temporaries No

NOTE:
1. The stack pointer is normally kept unchanged across a subroutine call. However, some subroutines may

allocate stack space and return with a different value in r2.

11-1

II

l·n+~I® 'ttl PROGRAMMING MODEL

INTEGER FLOATING·POINT

ZERO ZERO ~ to
RETURN ADDRESS ~ ~ A

STACK POINTER ~ t4 LOCALS
FRAME POINTER I ~ ffi ..

PARAMETERS, RETURN VALUES,
- TEMPORARIES '-

f

i
TEMPORARIES

l

I
LOCALS

j

~ ffi
r5 t10
r6 f12
r7 f14
r8 t16
r9 f18
r10 f20
r11 f22
~2 f~

~3 ~6

r14 t28
r15 f30

RETURN I VALUE
RETURN VALUE

-PARAMETERS OR-
r-- TEMPORARIES -

1

r16
r17
r18
r19
r20
r21
r22
r23
r24
r25
r26
r27

MEMORY AREA PTR
ENVIRONMENT PTR

ADDRESS TEMP.

r28 }
r29 TEMPORARIES
r30
r31

240875i11-1

Figure 11-1. Register Allocation

in successively higher-numbered registers. If fewer parameters are required than the
number of parameter registers available, the remaining registers can be used for tempo
rary variables. If there are more integral parameters than will fit in the integer parame
ter registers, the remaining integral parameters are placed in a memory area, properly
aligned, in their proper order, and possibly interspersed with other nonintegral
parameters.

Registers r16 and r17 are both parameter registers and return value registers. If a sub
routine has an integral return value, it loads the return value into r16 before returning
control to the caller. Register r17 is used for return values that require more than one
register. Sixty-four-bit integer values are returned in floating-point registers.

Register r1 is the return-address register, because the call and calli instructions store the
return address in it. Subroutines must therefore use the value in r1 to return to the
caller. If a subroutine saves r1, it may then use it as a temporary until it returns.

11-2

PROGRAMMING MODEL

A separate addressing temporary register (r31) is allocated for construction of 32-bit
address temporaries by assemblers. Assemblers may use r31 by default to construct
32-bit addresses from 16-bit literals.

11.1.2 Floating-Point Registers

Floating-point and 64-bit integer values in the floating-point registers must use fS-f15
when passed by value if space permits. The leftmost such parameter is passed in fS or
fS-f9; the rest in successively higher-numbered registers. Single-precision parameters use
one register; double-precision parameters use two properly aligned registers.

The first floating-point parameter is placed in the register pair f8 and f9, if it is double
precision, or in register f8, if it is single precision. The second floating-point parameter,
if it is double-precision, is placed in the register pair f10 and f11, regardless of the type
of the first floating-point parameter. If the second floating-point parameter is single
precision, it is placed in register f9 if the first floating-point parameter is single precision,
or in register f10 if the first floating-point parameter is double precision. When single
and double-precision parameters are interspersed, it is possible for some floating-point
parameter registers to remain unused in order to preserve alignment. This argument-to
register mapping does not change even if two floating-point arguments are separated by
integral or aggregate arguments.

If there are more floating-point parameters than will fit in the floating-point parameter
registers, the remaining parameters are placed in a memory area, properly aligned, in
their proper order, and possibly interspersed with other non-floating-point parameters.
The last (rightmost) parameter is at the highest stack address (i.e., it is pushed first using
a grow-down stack).

11.1.3 Passing Structure Parameters in Memory

When passed by value, structure parameters are always placed in a memory area. The
minimum alignment for a structure parameter passed in memory is 16 bits, even if the
natural alignment requirement for the parameter is less.

11.1.4 Memory Parameter Area

When parameters are placed in memory, either because there are more parameters than
fit in the allocated registers or because there are structure parameters, register r2S is set
to point to this area in memory by the caller. The memory parameter area must be
properly aligned to preserve data alignment for the parameters within it. The minimum
alignment for the area is 16 bits, even if the natural alignment of its parameters is less.
Within the called procedure, register r28 a local scratch register, which is not preserved
for the caller.

11-3

PROGRAMMING MODEL

11.1.5 Environment Pointer

For block-structured languages that allow up-level data references or for other languages
or implementations that require that an environment be established, an environment
pointer is placed in register r29 before the call. Within the called procedure, this is a
local scratch register, which is not preserved for the caller.

11.1.6 Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C lan
guage uses a special method to access variable-count parameters. The stdarg.h and
varargs.h files define several functions to get at these parameters in a way that is inde
pendent of stack growth direction and of whether parameters are passed in registers or
on the stack. A C subroutine with variable parameters must use the va_start macro to set
up a data structure before the parameters can be used. The va_arg macro must be used
to access successive parameters.

11.1.7 Returning Structures

If a called procedure returns a structure, the caller provides space for the return value
and places the address of this space in r16 before the call instruction is executed. Having
the caller supply the return object's space allows reentrancy. The space provided by the
caller must be aligned properly for the type of structure being returned.

11.2 DATA ALIGNMENT

Compilers and assemblers must do their best to keep data aligned. It is acceptable to
have holes in data structures to keep all items aligned. In some cases (e.g., FORTRAN
programs with overlaid data), it is necessary to have misaligned data. A run-time trap
handler can be provided to handle misaligned data; however, such data imposes a per
formance penalty on the application. If a compiler must reference data that is known to
be misaligned, the compiler should generate separate instructions to access the data in
smaller units that will not generate misaligned-data traps. Accessing 16-bit misaligned
data requires two byte loads plus a shift. Storing to 32-bit misaligned data may require
four byte stores and three shifts. The code example in Example 11-1 is the recommended
method for reading a misaligned 32-bit value whose address is in rS.

11.3 IMPLEMENTING A STACK

In general, compilers or programmers have to maintain a software stack. Register r2
(called sp in assembly language) is the suggested stack pointer. Register r2 is set by the
operating system for the application when the program is started. The stack must be a
grow-down stack, so as to be compatible with that of the Inte1386 and Inte1486 architec
ture. If a subroutine call requires placing parameters on the stack, then the caller is

11-4

PROGRAMMING MODEL

andnot 3, r8, r9 II Get address aligned on 4~byte boundary
ld.l f2I (r9) , rlf21 II Get low 32-bit value
ld.l 4 (r9) , rll II Get high 32-bit value
and 3, r8, r9 II Get byte offset in 8-byte field
shl 3, r9, r9 II Convert to bit offset
shr r9, rf21, rf21 II Set shift count
shrd rll, rlf21, r9 II Put 32-bit value into R9

II If the misalignment offset (m) is known in advance, this code can be
II optimized. Assume r8 points to next aligned address less than
II address of misaligned field.

ld.l f2I (r8) , rlf21 II Get low value
ld.l 4 (r8) , rll II Get high value
shr m*8, rf21, rf21 II Set shift count
shrd rll, rlf21, r9 II Put 32-bit value into R9

Example 11-1. Reading Misaligned 32-Bit Value

responsible for adjusting the stack pointer upon return. The caller must also allocate
space on the stack for the overflow parameters (i.e., parameters that exceed the capacity
of the registers reserved for passing parameters) and store them there before the call
operation.

A separate frame pointer is used to allow calls to subroutines that change the stack
pointer to allocate space on the stack at run-time (e.g., alloca and va_start). Some lan
guages may also return values from a subroutine allocated on stack space below the
original top-of-stack pointer. Such a subroutine prevents the caller from using sp-relative
addressing to access values on the stack. If the compiler knows that it does not call
subroutines that leave sp in an altered state when they return, then no frame pointer is
necessary.

The stack must be kept aligned on 16-byte boundaries to keep data arrays aligned. Each
subroutine must use stack space in multiples of 16 bytes. The frame pointer r3 (called fp
in assembly language) must at all times point to a 16-byte boundary.

Figure 11-2 shows the stack-frame format. A fixed format is necessary to allow stack
frame analysis by a low-level debugger or multiple-level stack-frame unwinding.

11.3.1 Stack Entry and Exit Code

Example 11-2 shows the recommended entry and exit code sequences. The stack pointer
is restored to the value it had on entry into the subroutine. Assuming the subroutine
needs to call another subroutine, it must save the frame pointer and its return address. It
probably also needs to save some of its internal values across that call to another sub
routine; therefore, the example saves one local register into the stack frame and subse
quently reloads it.

11-5

II

II

II

PROGRAMMING MODEL

~ 0

1 __ 1

CALLER'S
------ STACK ------
; ______ SPACE ______ ,

1-----------------1 + caller's sp (0 mod 16)

RETURN POINTER

CALLER'S FRAME POINTER 1-----------------1 + current fp (0 mod 16)

LOCAL
------,STORAGE------
______ SPACE _____ _

1-----------------11 ... current sp (0 mod 16J

Figure 11-2. Stack Frame Format

Subroutine entry
adds -(Locals+l~), sp, sp II Allocate space for local variables

II Locals must be a multiple of 16

240875i11-2

st .1 fp, Locals(sp) II Save old frame pointer below old SP
st .1 rl, Locals+4(sp) II Save return address
adds Locals, sp, fp II Set new frame pointer
st .1 rS, -4(fp) II Save a local register

Subroutine exit
Id.l -4 (fp) , rS II Restore a local register
mov fp, sp II Deallocate stack frame
Id.l 4(fp), rl II Restore return address
Id.l o (fp), fp II Restore old frame pointer
bri rl II Return to caller after next instruc
adds 16, sp, sp II Deallocate frame pointer save area

Example 11-2. Subroutine Entry and Exit with Frame Pointer

Languages such as Pascal that need to maintain activation records on the stack can put
them below the frame pointer in the program-specific area. The frame pointer is
optional. All stack references can be made relative to sp. The code example in
Example 11-3 shows the recommended entry and exit sequences when no frame pointer
is required.

A lowest-level subroutine need not perform any stack accesses if it can run completely
from the temporary registers. No entry/exit code is required by such a subroutine.

11-6

PROGRAMMING MODEL

II Subroutine entry
addu -Locals, sp, sp II Allocate space for local variables

II -Locals must be a multiple of lb

II Subroutine exit
bri rl II Return to caller after next instruc
addu Locals, sp, sp II Restore stack pointer

Example 11-3. Subroutine Entry and Exit without Frame Pointer

11.3.2 Dynamic Memory Allocation on the Stack

Consider a function alloca that allocates space on the stack and returns a pointer to the
space. The allocated space is lost when the caller returns. The function alloca could be
implemented as shown in Example 11-4. For any function calling alloca, a separate stack
pointer and frame pointer are required.

11.4 MEMORY ORGANIZATION

Every code section should begin with a nop instruction so that the trap handler can
always examine the instruction at fir - 4 even in case a trap occurs on the first instruc
tiol1 of a section.

The memory-mapped I/O devices should also be placed in the upper operating-system
data space. The paging hardware allows logical addresses to be different from their
corresponding physical addresses. The I/O device logical address area may be located
anywhere convenient.

11.5 INPUT/OUTPUT SPACE (80860XP ONLy)

The i860 XP rpicroprocessor provides a four-Gbyte I/O space, which programs access via
the Idio and stio instructions. The processor distinguishes cycles generated by the I/O
instructions from memory accesses by driving the M/IO# output pin low. Generally,
using a separate I/O space yields a simpler system design, because I/O mapped devices
can have simpler address decoders. However, the choice between a separate I/O space
and memory-mapped I/O may be dictated by existing software or by the need to inter
face with existing memory-mapped devices or with other processors in the same system.

alloca: :

adds 15,
andnot 15,
subs sp,
bri rl
mov sp,

rib,
rib,
rib,

rib

II rib has size requested
rib II Round size to 0 mod lb
rib II
sp II Adjust stack downwards

II Return to caller after next instruc
II Set return value to allocated space

Example 11-4. Possible Implementation of alloca

11-7

II

PROGRAMMING MODEL

Other factors that programmers should consider in the use of the processor's I/O fea
tures include:

1. Protection.

• The Idio and stio instructions are privileged; they can only be executed at super
visor level. (At user level they are treated as no-ops.)

• Protection of memory-mapped I/O is under software control. Through page table
allocation, I/O addresses may be reserved for the operating system or may be
given selectively to user-level programs.

2. Address Translation.

• The address operand of Idio and stio instructions is a physical I/O address. It is
not translated by page tables.

• The addresses of memory-mapped I/O operations are translated. This is advanta
geous if user-level programs are given access to I/O addresses. The physical
addresses can be changed without affecting the user-level programs.

3. Cacheability.

• The memory-mapped I/O space must be noncacheable so that all accesses to that
space are seen by the devices and so that the possibility of write reordering is
eliminated. Software can make the space noncacheable by setting the CD (cache
disable) bit of page tables. External hardware can make the space noncacheable
by deasserting the KEN # signal for cycles that access I/O addresses.

• The processor never caches nor searches the data cache for the operands of I/O
instructions.

4. Reserved I/O Addresses.

• I/O addresses OxF8-0xFF are reserved in the x86 family of architectures. Pro
grams should avoid using these addresses so as not to interfere with other proces
sors that might be in the same system.

11-8

Programming Examples 12

II

CHAPTER 12
PROGRAMMING EXAMPLES

12.1 SMALL INTEGERS

The 32-bit arithmetic instructions can be used to implement arithmetic on 8- or 16-bit
ordinals and integers. The integer load instruction places 8- or 16-bit values in the low
order end of a 32-bit register and propagates the sign bit through the high-order bits of
the register.

Occasionally, it is necessary to sign extend 8- or 16-bit integers that are generated inter
nally, not loaded from memory. Example 12-1 shows how.

II SIGN-EXTEND 8-BIT INTEGER TO 32 BITS
II Assume the operand is already in rib

shl 24, rib, rib II left-justify
shra 24, rib, rib II right-justify all but sign bit

Example 12-1. Sign Extension

Example 12-2 shows how to load a small unsigned integer, converting the sign-extended
form created by the load instruction to a zero-extended form.

II LOADING OF 8-BIT UNSIGNED INTEGERS
II Assume the address is already in ri9

II Load the operand (sign-extended) into r20
ld.b 0(ri9), r20

II Mask out the high-order bits
and 0x000000FF, r20, r20

Example 12-2. Loading Small Unsigned Integers

12-1

PROGRAMMING EXAMPLES

12.2 SINGLE-PRECISION DIVIDE

Example 12-3 computes Z = X + Y for single-precision variables. The algorithm begins
by using the reciprocal instruction frcp to obtain an initial guess for the value of l/Y. The
frcr instruction gives a result that can differ from the true value of l/Y by as much as
2- . The algorithm then continues to make guesses based on the prior guess, refining
each guess until the desired accuracy is achieved. Let G represent a guess, and let E
represent the error, i.e., the difference between G and the true value of l/Y. For each
guess ...

Gnew = Goli2 - GOld *y).

Enew = 2(Eold)2.

This algorithm is optimized for high performance and does not produce results that are
rounded according to the IEEE standard. Worst case error is about two least-significant
bits.

12.3 DOUBLE-PRECISION DIVIDE

Example 12-4 computes Z = X + Y for double-precision variables. The algorithm is
similar to that shown previously for single-precision divide. For double-precision divide,
one more iteration is needed to achieve the required accuracy.

This algorithm is optimized for high performance and does not produce results that are
rounded according to the. IEEE standard. Worst case error is about two least-significant
bits.

II SINGLE-PRECISION DIVIDE

II The dividend X is in fb
II The divisor Y is in f2
II The result Z is left in f3
II f5 contains single-precision floating-point 2.

frcp.ss f2, f3 II first guess has 2**-8 error
fmul.ss f2, f3, f4 II guess * divisor
fsub.ss f5, f4, f4 II 2 - guess * divisor
fmul.ss f3, f4, f3 II second guess has 2**-15 error
fmul.ss f2, f3, f4 II avoid using f3 as srcl
fsub.ss f5, f4, f4 II 2 - guess * divisor
fmul.ss fb, f3, f5 II second guess * dividend
fmul.ss f4, f5, f3 II result = second guess * dividend

Example 12-3. Single-Precision Divide

12-2

PROGRAMMING EXAMPLES

II DOUBLE-PRECISION DIVIDE

II The dividend X is in f2
II The divisor Y is in f4
II The result Z is left in f8

frcp.dd f4, fb
fmul.dd f4, fb,
fld.d dbltwo, f10

II The fld.d is free.
fsub.dd f10, f8,
fmul.dd fb, f8,
fmul.dd f4, fb,
fsub.dd f10, f8,
fmul.dd fb, f8,
fmul.dd f4, fb,
fsub.dd f10, f8,
fmul.dd fb, f2,
fmul.dd f8, fb,

II first guess has 2**-8 error
f8 II guess * divisor

II load double-precision floating 2
It completely overlaps the preceding fmul.dd

f8 II 2 - guess * divisor
fb II second guess has 2**-15 error
f8 II avoid using fb as src1
f8 II 2 - guess * divisor
fb II third guess has 2**-29 error
f8 II avoid using fb as src1
f8 II 2 - guess * divisor
fb II guess * dividend
f8 II result = third guess * dividend

Example 12-4. Double-Precision Divide

II INTEGER MULTIPLY

II The multiplier is in r4
II The multiplicand is in r5
II The product is left in rb
II The registers f2, f4, and fb are used as temporaries.

ixfr r4, f2
ixfr r5, f4

II Two core instructions can be inserted here without penalty.
fmlow.dd f4, f2, fb

II Four core instructions can be inserted here without penalty.
fxfr fb, rb

II One core instruction can be inserted here without penalty.

Example 12-5. Integer Multiply

12.4 INTEGER MULTIPLY

A 32-bit integer multiply is implemented in Example 12-5 by transferring the operands
to floating-point registers and using the fmlow instruction. If the result is referenced in
the next instruction, eleven clocks are required. Seven clocks can be overlapped with
other operations.

12-3

PROGRAMMING EXAMPLES

12.5 CONVERSION FROM SIGNED INTEGER TO DOUBLE

The strategy used in Example 12-6 is to use the bits of the integer to construct a value in
double-precision format. The double-precision value constructed contains two biases:

Be

BN

A bias that compensates for the fact that the signed integer is
stored in two's complement format. The value of this bias is 231.

A bias that produces a normalized number, so that the algorithm
does not cause a floating-point exception. The value of this bias is
252.

If the desired value is x, then the constructed value is x + Be + BN. By later subtract
ing Be + BN, the value x is left in double Rrecision format, properly normalized by the
processor. The value of Be + BN is 252 + 231 (Ox4330_0000_8000_0000).

The conversion requires 7 clocks if the result is referenced in the next instruction. Three
clocks can be overlapped with 'other operations. If a single-precision result is required,
add an famov.ds instruction at the end.

12.6 SIGNED INTEGER DIVIDE

Example 12-7 combines the techniques of Section 12.3 and 12.5.

12.7 STRING COpy

Example 12-8 shows how to avoid the freeze condition that might occur when using a
load in a tight loop such as that commonly used for copying strings. A performance
penalty is incurred if the destination of a load. is referenced in the next instruction. In
order to avoid this condition, Example 12-8 juggles characters of the string between two
registers.

II CONVERT SIGNED INTEGER TO DOUBLE

II The integer is in r4
II The double-precision floating-point result is left in f7:f6
II The register f5:f4 contains BN+BC

xorh 0x8000, r4, r4 II Complement sign bit (equivalent to adding BC).
ixfr r4, f6 II Construct low half.
fmov.ss f5, f7 II Set exponent in high half (includes BN)

II One instruction can be inserted here without penalty.
fsub.dd f6, f4, f6 II (x + BN + BC) - (BN + BC) = x

II Two core instructions can be inserted here without penalty.

Example 12-6. Signed Integer to Double Conversion

12-4

PROGRAMMING EXAMPLES

II SIGNED INTEGER DIVIDE
II The denominator is in r4
II The numerator is in r5
II The quotient is left in rb
II The remainder is left in r7
II The registers f2 through fll are used as temporaries.
II Convert Denominator and Numerator

fld.d two52two31, fb II load constant 2**52 + 2**31
xorh ~x8~~~, r4, r19 II
ixfr r19, f4 II
fmov.ss f7, f5 II
xorh ~x8~~~, r5, r2~ II
fsub.dd f4, fb, f4 II
ixfr r2~, f2 II
fmov.ss f7, f3 II
fsub.dd f2, fb, f2 II

II Do Floating-Point Divide
fld.d dbltwo, fl~
frcp.dd f4, fb
fmul.dd f4, fb, f8
fsub.dd fl~, f8, f8
fmul.dd fb, f8, fb
fmul.dd f4, fb, f8
fsub.dd fl~, f8, f8
fmul.dd fb, f8, fb
fmul.dd f4, fb, f8
fsub.dd fl~, f8, f8
fmul.dd fb, f2, fb
fmul.dd f8, fb, f8

II Convert Quotient to Integer
fld.d onepluseps, fl~
fmul.dd f8, fl~, f8
ixfr r4, fl~
ftrunc.dd f8, f8

II Compute Remainder (optional)

II load floating-point two
II first guess has 2**-8 error
II guess * divisor
II 2 ~ guess * divisor
II second guess has 2**-15 error
II avoid using fb as srcl
II 2 - guess * divisor
II third guess has 2**-29 error
II avoid using fb as srcl
II 2 - guess * divisor
II guess * dividend
II result = third guess * dividend

II load value 1 + 2**-4~
II force quotient to be bigger than integer
II get denominator for remainder computation
II convert to integer

fmlow.dd fl~, f8, fl~ II quotient * denominator
fxfr fl~, r4
fxfr f8, rb II transfer quotient
subs r5, r4, r7 II remainder = numerator - quotient *

denominator

Example 12·7. Signed Integer Divide

12.8 FLOATING-POINT PIPELINE

Most instruction sequences that use pipelined instructions can be divided into three
phases:

Priming Filling a pipeline with known intermediate results while disposing
of previous pipeline contents. I

PROGRAMMING EXAMPLES

II STRING COpy
II Assumptions:
II Source address alignment unknown
II Destination address alignment unknown
II End of string indicated by NUL
II r17 - address of source string
II rlb - address of destination string

copy_string::
ld.b ~ (r17) , r2b II Load one character
bte ~ , r2b, done II Test for NUL character
adds 1, r17, r17 II Bump pointer to source string
ld.b
subs

loop::
st.b
adds
or
,bnc. t
ld.b

done::
bri
st.b

Continuous
Operation

Draining

~(r17), r27 II Load one more character
r17, rlb, r18 II Use constant offset to avoid

II incrementing two indexes

r2b, ~(rlb) II Store previous character
1, rlb, rlb II Bump common index
r~, r27, r2b II Test for NUL character

loop II If not NUL, branch after loading
r18(rlb) , r27 II next character. r18(rlb) = ~(r17)

rl
r2b,

II Return after storing
~(rlb) II the NUL character, too

Example 12-8. String Copy

Receiving expected results with the initiation of each new pipe
lined instruction.

Retrieving the results that remain in the pipeline after the pipe
lined instruction sequence has terminated.

Example 12-9 shows one strategy for using the floating-point adder, which has a three
stage pipeline. This example assumes that the prior contents of the adder's pipeline are
unimportant, and discards them by specifying register fO as the destination of the first
three instructions. After performing the intended calculations, it drains the pipeline by
executing three dummy addition instructions with fO (which always contains zero) as the
operands.

12.9 PIPELINING OF DUAL-OPERATION INSTRUCTIONS

When using dual-operation instructions (all of which are pipelined), code that primes
and drains the pipelines must take into account both the adder and multiplier pipelines.
Example 12-10 illustrates pipeline usage for a simple single-precision matrix operation:
the dot product of a 1 x 8 row matrix A with an 8 x 1 column matrix B. For the purpose of

12-6

PROGRAMMING EXAMPLES

II PIPELINED FLOATING-POINT ADD

II Calculates f10 = f4 + f5, fll = f6 + f7
II f12 = f8 + f9, f13 = f5 + f6

II Assume f4 1.0, f5 2.0, f6 = 3.0
II f7 = 4.0, f8 5.0, f9 = 6.0

II Stage 1 Stage
II Priming phase

pfadd.ss f4, f5, f0 II 1+2 ??
pfadd.ss f6, f7, f0 II 3+4 1+2
pfadd.ss f8, f9, f0 II 5+6 3+4

II Continuous operation phase
pfadd.ss f5, f6, f10 II 2+3 5+6

2 Stage 3 Result

?? Discard
?? Discard
3 Discard

7 f10= 3
II For longer pipelined sequences, include more instructions here

II Draining phase
pfadd.ss f0, f0, fll
pfadd.ss f0, f0, f12
pfadd~ss f0, f0, f13

II
II
II

0+0
0+0
0+0

2+3
0+0
0+0

Example 12-9. Pipelined Add

11
5
o

f11= 7
f12=11
f13= 5

tracking values through the pipelines, assume that the actual matrices to be multiplied
have the following values: '

A = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0] B=

8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0

Assume further that the two matrices are already loaded into registers thus:

A: f4 = 1.0
f5 = 2.0
f6 = 3.0
f7 = 4.0
f8 = 5.0
f9 = 6.0
flO =7.0
fll = 8.0

12-7

B: fl2 = 8.0
fl3 = 7.0
fl4 = 6.0
fl5 = 5.0
fl6 = 4.0
fl7 = 3.0
fl8 = 2.0
fl9 = 1.0

II

PROGRAMMING EXAMPLES

The calculation to perform is 1.0*8.0 + 2.0*7.0 + '" + 8.0*1.0 - a series of multipli
cations followed by additions. The dual-operation instructions are designed precisely to
execute this type of calculation efficiently by using the adder and multiplier in parallel.
At the heart of Example 12-10 is the dual-operation instruction m12apm, which multi
plies its operands and adds the multiplier result to the result of the adder.

The pnmmg phase is somewhat different in Example 12-10 than in Example 12-9.
Because the result of the adder is fed back into the adder, it is not possible to simply
ignore the prior contents of the adder pipeline; and because the result of the multiplier
is automatically fed into the adder, it is important to consider the effect of the multiplier
on the adder pipeline as well. This example waits until unknown results have been
drained from the multiplier pipeline, then puts zeros in all stages of the adder pipeline.

Because the adder pipeline has three stages, the draining phase produces three partial
results that must be added together.

II PIPELINED DUAL-OPERATION INSTRUCTION

II Multiplier Adder
II Stages Stages
II 1 2 3 1 2 3 Result

II Priming phase
pfmul.ss f4, f12, f0 II 1*8 ?? ?? ?? ?? ?? Discard
pfmul.ss f5, f13, f0 II 2*7 1*8 ?? ?? ?? ?? Discard
pfmul.ss f6, f14, f0 II 3*6 2*7 8 ?? ?? ?? Discard

pfadd.ss f0, f0 ,f0 II 0 ?? ?? Discard
pfadd.ss f0, f0 ,f0 II 0 0 ?? Discard
pfadd.ss f0, f0 ,f0 II 0 0 0 Discard

II Continuous operation phase
m12apm.ss f7, f15,f0 II 4*5 3*6 14 8+0 0+0 0 Discard
m12apm.ss f8, f16,f0 II 5*4 4*5 18 14+0 8+0 0 Discard
m12apm.ss f9, f17,f0 II 6*3 5*4 213 18+0 14+0 8 Discard
m12apm.ss fl13,f18,f0 II 7*2 6*3 213 20+8 18+0 14 Discard
m12apm.ss fll,f19,f0 II 8*1 7*2 18 20+14 213+8 18 Discard

II For larger matrices, include more instructions here

II Draining phase
m12apm.ss f0, f0, f0 II 0*13 8*1 14 18+18 20+14 28 Discard
m12apm.ss f0, f0, f0 II 0*0 0*0 8 14+28 18+18 34 Discard
m12apm.ss f0, f0, f0 II 13*0 0*0 0 8+34 14+28 36 Discard
II Sum the partial results
pfadd.ss fra, f0, f20 II 0+0 8+34 42 f20=36
pfadd.ss f20,f21,f21 II 42+36 0+0 42 f21=42
pf add. ss- f0, f0, f20 II 0+0 42+36 13 f2ra=42
pfadd.ss f0, f0, f0 II 0+0 0+0 78 Discard
pfadd.ss f0, f0, f21 II 0+0 0+0 0 f21=78
fadd.ss f20,f21,f20 II f20=120

Example 12·10. Pipelined Dual·Operation Instruction

12-8

PROGRAMMING EXAMPLES

12.10 PIPELINING OF DOUBLE-PRECISION DUAL OPERATIONS

Example 12-11 illustrates how pipeline usage for double-precision differs from the
single-precision Example 12-10. Example 12-11 performs the dot product of a 1x6 row
matrix A with a 6 X 1 column matrix B. For the purpose of tracking values through the
pipelines, assume that the actual matrices to be multiplied have the following values:

[

6.0] 5.0
4.0

A = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0,] B = 3.0

2.0
1.0

Assume further that the two matrices are already loaded into registers thus:

A: f5:f4 = 1.0
f7:f6 = 2.0
f9:f8 = 3.0
f11:f10 = 4.0
f13:f12 = 5.0
f15:f14 = 6.0

B: f17:f16 = 6.0
f19:f18 = 5.0
f21:f20 = 4.0
f23:f22 = 3.0
f25 :f24 = 2.0
f27:f26 = 1.0

Example 12-11 differs from Example 12-10 in that, with double precision, the multiplier
pipeline has only two stages; therefore, the priming and draining phases use fewer
instructions.

12.11 DUAL INSTRUCTION MODE

The previous Example 12-9 and Example 12-10 showed how i860 microprocessors can
deliver up to two floating-point results per clock by using the pipe lining and parallelism
of the adder and multiplier units. These examples, however, assume that the data is
already loaded in registers. Example 12-12 goes one step further and shows how to
maintain the high throughput of the floating-point unit while simultaneously loading the
data from main memory and controlling the logical flow.

The problem is to sum the single-precision elements of an arbitrarily long vector. The
procedure uses dual-instruction mode to overlap loading, decision making, and branch
ing with the basic pipelined floating-point add instruction pfadd.ss. To make obvious the
pairing of core and floating-point instructions in dual-instruction mode, the listing in
Example 12-12 shows the core instruction of a dual-mode pair indented with respect to
the corresponding floating-point instruction.

Elements are loaded two at a time into alternating pairs of registers: one time at loop1 II
into f20 and f21, the next time at loop2 into f22 and f23. Performance would be slightly ...
degraded if the destination of a fld.d were referenced as a source operand in the next

12-9

PROGRAMMING EXAMPLES

II PIPELINED DUAL-OPERATION INSTRUCTION

Multiplier
Stages

DOUBLE PRECISION

Adder
Stages

II
II
II 1 2 1 2 3 Result

II Priming phase
m12apm.dd f4, f16,f~ II 1*6 ??
m12apm.dd f6, f18,f~ II 2*5 1*6

??
??

?? ?? Discard
11'?? Discard

pfadd.dd f~, f~ ,f~ II
pfadd.dd f~, f~ ,f~ II
pfadd.dd f~, f~ ,f~ II

?? ?? Discard
~ ?? Discard
~ ~ Discard

II Continuous operation phase
m12apm.dd f8, f2~,f~ II 3*4 2*5 6+~ ~

6+~

1~+~

12+~

here

~
~
6

m12apm.dd f1~,f22,f~ II 4*3 3*4 1~+~
m12apm.dd f12,f24,f~ II 5*2 4*3 12+~
m12apm.dd f14,f26,f~ II 6*1 5*2 12+6 1~

II For larger vectors, include more instructions

II Draining phase
m12apm.dd f~, f~, f~ II ~*~ 6*1
m12apm.dd f~, f~, f~ II ~*~ ~*~

II Three partial sums are now in the
pfadd.dd f~ ,f~ ,f28 II
pfadd.dd f28,f3~,f3~ II
pfadd.dd f~ ,f~ ,f28 II
pfadd.dd f~ ,f~ ,f~ II
pfadd.dd f~ ,f~ ,f3~ II
fadd.dd f28,f3~,f3~ II

1~+1~ 12+6 12
6+12 1~+1~ 18

adder pipeline.
~ 6+12 2~

18+2~ ~ 18
~ 18+2~ ~

~ ~ 38
~ ~ ~

Discard
Discard
Discard
Discard

Discard
Discard

f28 = 18
f3~ = 2~
f28 = 18
Discard
f3~ 38
f3~ = 56

Example 12-11. Pipelined Double-Precision Dual Operation

two instructions. The strategy of alternating registers avoids this situation and maintains
maximum performance. Some extra logic is needed at sumup to account for· an odd
number of elements.

12.12 CACHE STRATEGIES FOR MATRIX DOT PRODUCT

Calculations that use (and reuse) massive amounts of data may achieve significantly less
than optimum performance unless their memory access demands are carefully taken into
consideration during algorithm design. The prior Example 12-12 easily executes at near
the theoretical maximum speed of the processor because it does not make heavy
demands on the memory subsystem. This section considers a more demanding calcula
tion, the dot product of two matrices, and analyzes two memory access strategies as they
apply to this calculation.

The product of matrix A=Ai,j of dimension L xM with matrix B = Bi,j of dimension MxN
is the matrix C = Ci,j of dimension L xN, where ...

12-10

PROGRAMMING EXAMPLES

II SINGLE-PRECISION VECTOR SUM
II input: rib - vector address, r17 - vector size (must be > 5)
II output: fib - sum of vector elements

fld.d r0(rlb), f20 II Load first two elements
mov -2, r21 II Loop decrement for bla

II Initiate entry into dual-instruction mode
d.pfadd.ss f0, f0, f0 II Clear adder pipe (1)
adds -b, r17, r17 II Decrement size by b

II Enter into dual-instruction mode
d.pfadd.ss f0, f0, f0 II Clear adder pipe (2)

bla r21, r17, Ll II Initialize LCC
d.pfadd.ss f0, f0, f0 II Clear adder pipe (3)

fld.d 8(rlb)++, f22 II Load 3rd and 4th elements
Ll::d.pfadd.ss f20, f30, f30 II Add f20 to pipeline

bla r21, r17, L2 II If more, go to L2 after
d.pfadd.ss f21, f31, f31 II adding f21 to pipeline and

fld.d 8(rlb)++, f20 II loading next f20:f21
II If we reach this point, at least one element remains to be loaded.
II r17 is either -4 or -3.
II f20, f21, f22, and f23 still contain vector elements.
II Add f20 and f22 to the pipeline, too.
d.pfadd.ss f20, f30, f30

br S
d.pfadd.ss f21,

nap
f31,

II Exit loop after adding
f31 II f21 to the pipeline

L2::d.pfadd.ss f22, f30, f30 II Add f22 to pipeline

S • • . .

bla r21, r17,
d.pfadd.ss f23, f31,

fld.d 8(rlb)++,
II If we reach this point,
II r17 is either -4 or -3.

Ll II If more, go to Ll after
f31 II adding f23 to pipeline and
f22 II loading next f22:f23

at least one element remains to be loaded.

II f20, f21, f22, and f23 still contain vector elements.
II Add f20 and f21 to the pipeline, too.
d.pfadd.ss f20, f30, f30

nop
d.pfadd.ss f21,

nop
f31, f31

II Initiate exit from dual mode
pfadd.ss f22, f30, f30 II Still in dual mode

mov -4, r21
pfadd.ss f23, f31, f31 II Last dual-mode pair

bte r21, r17, DONE II If there is one more
fld.l 8(rlb)++, f20 II element, load it and
pfadd.ss f20, f30, f30 II add to pipeline
II Intermediate results are sitting in the adder pipeline.
II Let Al:A2:A3 represent the current pipeline contents

DONE::pfadd.ss f0, f0, f30 II 0:Al:A2 f30=A3
pfadd.ss f30, f31, f31 II A2+A3:0:Al f31=A2
pfadd.ss f0, f0, f30 II 0:A2+A3:0 F30=Al
pfadd.ss f0, f0, f0 II 0:0:A2+A3
pfadd.ss f0, f0, f31 II 0:0:0 F31=A2+A3
fadd.ss f30, f31, fib II fib = Al+A2+A3

Example 12-12. Dual-Instruction Mode

12-11

PROGRAMMING EXAMPLES

The basic algorithm for calculation of a .dot product appears in Example 12-10. To
extend this algorithm to the current problem requires adding instructions to:

1. Load the entries of each matrix from memory at appropriate times.

2. Repeat the inner loop as many times as necessary to span matrices of arbitrary M
dimension.

3. Repeat the entire algorithm L*N times to produce the LxN product matrix.

Each of the Examples 12-13 and 12-14 accomplishes the above extensions through
straightforward programming techniques. Each example uses dual-instruction mode to
perform the loading and loop control operations in parallel with the basic floating-point
calculations. The examples differ in their approaches to memory access and cache usage.
To eliminate needless complexity, the examples require that the M dimension be a mul
tiple of eight and that the B matrix be stored in memory by column instead of by row.
Data is fetched 32 bytes beyond the higher-address end of both matrices. In real appli
cations, programmers should ensure that no page protection faults occur due to these
accesses.

• Example 12-13 depends solely on cached loads.

• Example 12-14 depends on a mix of cached and pipelined loads.

Example 12-13 uses the fld instruction for all loads, which places all elements of both
matrices A and B in the cache. This approach is ideal for small matrices. Accesses to all
elements (after the first access to each) retrieve elements from the cache at the rate of
one per clock. Using fld.q instructions to retrieve four elements at a time, it is possible to
overlap all data access as well as loop control with m12apminstructions in the inner
loop.

Note, however, that Example 12-13 is "cache bound"; i.e., if the combined size of the
two matrices is greater than that of the cache, cache misses will occur, degrading perfor
mance. The larger the matrices, the more the misses that will occur.

Example 12-14 uses fld for all the elements of each row of A, and uses pfld to pass all
columns of B against each row of A. This example is less cache bound, because only rows
of A are placed in the cache. More load instructions are required, because a pfld can
load at most two single-precision operands. Still, with pipelined memory cycles, it
remains possible to overlap the loading of the eight items from matrix A, the eight items
from matrix B, and the loop control with the eight m12apm instructions in the inner
loop.

The strategy of Example 12-14 is suitable for larger matrices than the strategy in Exam
ple 12-13 because, even in the extreme case where only one row of A fits in the cache,
cache misses occur only the first time each row is processed. However, if dimension M is
so great that not even one row of A fits entirely in the cache, cache misses will still occur.
On the other side, for small matrices, Example 12-14 may not perform as well as Exam
ple 12-13, because, even when there is sufficient space in the cache for elements of
matrix B, Example 12-14 does not use it.

12-12

PROGRAMMING EXAMPLES

II MATRIX MULTIPLY, C = A * 8, CACHED LOADS ONLY
II Registers loaded by calling routine
A=r16 II pointer into A, stored in memory by rows
8=r17 II pointer into 8, stored in memory by columns
C=r18 II pointer into C, stored in memory by rows
L=r19 II the number of rows in A
M=r2~ II the number of columns in A and rows in 8
N=r21 II the number of columns in 8
II Registers used locally
RC=r28 II rowlcolumn counter decremented by bla for loop control
DEC=r27 II decrementor for rowlcolumn pointers
Ar=r26 II counter of rows in A
8c=r2S II counter of columns in 8
8p=r24 II temporary pointer into 8
SIZ=r23 II number of bytes in row of A or column of 8
A1=f4; A2=fS; A3=f6; A4=f7; AS=f8; A6=f'; A7=f1~;A8=f11 II A row
81=f12;82=f13;83=f14;84=f1S;8S=f16;86=f17;87=f18;88=f19 II 8 column
T1=f2~;T2=f21;T3=f22 II temporary results

shl 2, M, SIZ II Number of bytes in M entries
adds -8, r~, DEC II Set decrementor for bla
adds -8, M, RC II Initialize rowlcolumn counter
adds -4, C, C II Start C index one entry low
d.fiadd.dd f~, f~, f~ II Initiate dual-instruction mode
adds -1, L, Ar II Make row counter zero relative
d.fnop II First dual-mode pair

bla DEC, RC, start_row II Initialize LCC
d.fnop II

subs A, SIZ, A II Start pointer to A one row low
start_row:: II Executed once per row of A

d.pfmul.ss f~, f~, f~ II
mov 8, 8p II Point to first col of 8

d.pfmul.ss f~, f~, f~ II
adds SIZ, A, A II Point to next row of A

d.pfmul.ss f~, f~, f~ II
fld.q 16C8p), 85 II Load 4 entries of 8

d.pfadd.ss f~, f~, f~ II
fld.q 16CA), AS II Load 4 entries of A

d.pfadd.ss f~, f~, f~ II
adds -1, N, 8c II Initialize column counter

d.pfadd.ss f~, f0, f0 II
fld.q 0CA), A1 II Load 4 entries of A

Example 12-13. Matrix Multiply, Cached Loads Only (1 of 2)

12-13

PROGRAMMING EXAMPLES

inner_loop:: II
d.m12apm.ss

fld.q
d.m12apm.ss

adds
d.m12apm.ss

adds
d.m12apm.ss

fld.q
d.m12apm.ss

fld.q
d.m12apm.ss

nap

Process eight
AS, 85, T1

eI(8p),81
A6, 86, Tl

32, A, A

entries of row of A with eight of col of 8

A7, 87, Tl
32, 8p, 8p

A8, 88, Tl
16(8p), 85

A1, 81, Tl
16(A), AS

A2, 82,Tl

d.m12apm.ss A3, 83, Tl
bla DEC, RC, inner_loop

d.m12apm.ss A4, 84, T2
fld.q eI(A), Ai

II
II Load 4 entries
II
II 8ump pointer to
II
II 8ump pointer to
II
II Load 4 entries
II
II Load 4 entries
II
II
II
II Loop until end
II
II Load 4 entries

of 8

A by 8 entries

8 by 8 entries

of 8

of A

of row/column

of A
II End Inner Loop. End of

d.m12apm.ss fel, fel, T3
row/column

II
subs A, SIZ, A

d.m12apm.ss fel, fel, Tl
adds -8, M, RC

d.m12apm.ss fel, fel, T2
nap

d.pfadd.ss fel, fel, T3
bla DEC, RC, inner_loop

d.pfadd.ss fel, fel, Tl
fld.q 16(A), AS

d.pfadd.ss fel, fel, T2
fld.q 16(8p),8S

d.fadd.ss Tl, T3, T3
fld.q eI(A), Ai

d.fadd·ss T2, T3, T3
adds -1, 8c, 8c

d.pfadd.ss fel, fel, fel
fst.l T3, 4(C)++

II Continue with next column of
d.pfadd.ss fel, fel, fel

bnc.t inner_loop
d.pfadd.ss fel, feJ, feJ

nap
II Continue with next row of A?

d.fnop
xor

d.fnop
bnc.t

d.fnop
adds

fnop
nap

fnop
nap

Ar, rei, rei

-1, Ar, Ar

II Set A pointer back to beginning of row
II
II Reinitialize row/column counter
II
II
II
II Won't branch; initializes LCC
II
II Load 4 entries of A
II
II Load 4 entries of 8
II
II Load 4 entries of A
II
II Decrement column counter
II
II Store row/column product in C
8?
II
II CC controlled by prior adds
II
II

II
II Is row counter zero?
II
II
II
II
II
II
II
II

Taken if row counter not zero

Decrement row counter
Initiate exit from dual mode

Last dual-mode pair
End

Example 12-13. Matrix Multiply, Cached Loads Only (2 of 2)

12-14

PROGRAMMING EXAMPLES

II MATRIX MULTIPLY, C = A * 8, CACHED AND PIPELINED LOADS MIXED
II Registers loaded by calling routine
A=r16 II pointer into A, stored in memory by rows
8=r17 II pointer into 8, stored in memory by columns
C=r18 II pointer into C, stored in memory by rows
L=r19 II the number of rows in A
M=r20 II the number of columns in A and rows in 8
N=r21 II the number of columns in 8
II Registers used locally
Ap=r29 II temporary pointer into A
RC=r28 II rowlcolumn counter decremented by bla for loop control
DEC=r27 II decrement or for rowlcolumn pointers
Ar=r26 II counter of rows in A
8c=r2S II counter of columns in 8
8p=r24 II temporary pointer into 8
SIZ=r23 II number of bytes in row of A or column of 8
Al=f4; A2=fS; A3=f6; A4=f7; AS=f8; A6=f9; A7=fl~;A8=fl1 II A row
81=f12;82=f13;83=f14;84=flS;8S=f16;86=f17;87=f18;88=fl9 II 8 column
Tl=f2~;T2=f21;T3=f22 II temporary results

mov 8, 8p II Pointer to 8
shl 2, M, SIZ II Number of bytes in M entries
adds -8, r~, DEC II Set decrementor for bla
adds -8, M, RC II Initialize rowlcolumn counter
d.fiadd.dd f~, f~, f~ II Initiate dual-instruction mode
adds -4, C, C II Start C index one entry low
d.fnop II First dual-mode pair

adds -1, L, Ar II Make row counter zero relative
d.fnop II

bla DEC, RC, start_row II Initialize LCC
d.fnop II

mov A, Ap II Pointer to A
start_row: : I I Executed once per row of A

d.pfmul.ss f~, f~, f~ II
pfld.d ~(8p), f~ II Load 2 entries of 8 into load pipe

d.pfmul.ss f~, f~, f~ II
pfld.d 8(8p)++, f~ II Load 2 entries of 8 into load pipe

d.pfmul.ss f~, f~, f~ II
pfld.d 8(8p)++, f~ II Load 2 entries of 8 into load pipe

d.pfadd.ss f~, f~, f~ II
fld.q ~(Ap), Ai II Load 4 entries of A

d.pfadd.ss f~, f~, f~ II
pfld.d 8(8p)++, 81 II Load 2 entries of 8

d.pfadd.ss f~, f~, f~ II
adds -1, N, 8c II Initialize column counter

d.fnop II
pfld.d 8(8p)++, 83 II Load 2 entries of 8

inner_loop:: II Process eight entries from A row with eight. from B col
d.m12apm.ss Ai, 81, f~ II

fld.q 16(Ap)++, AS II Load 4 entries of A
d.m12apm.ss A2, 82, f~ II

pfld.d 8(8p)++, 85 II Load 2 entries of 8
d.m12apm.ss A3, 83, f~ II

pfld.d 8(8p)++, 87 II Load 2 entries of 8

Example 12-14. Matrix Multiply, Cached and Pipelined Loads (1 of 2)

12-15

II

PROGRAMMING EXAMPLES

d.m12apm.ss A4, 84, f0 II
fld.q 16(Ap)++, Ai II Load 4 entries of A

d.m12apm.ss AS, 85, f0 II
nop II

d.m12apm.ss A6, 86, f0 II
pfld.d 8(Bp)++, B1 II Load 2 entries of 8

d.m12apm.ss A7, B7, f0 II
bla DEC, RC, inner_loop II Loop until end of row/column

d.m12apm.ss A8, 88, f0 II
pfld.d 8(8p)++, 83 II Load 2 entries of 8

II End Inner Loop. End of row/column
d.m12apm.ss f0, f0, f0 II

nop II
d.m12apm.ss f0, f0, f0 II

adds -8, M, RC II Reinitialize row/column counter
d.m12apm.ss f0, f0, f0 II

mov A, Ap II Set A pointer back to beginning of row
d.pfadd.ss f0, f0, T3 II

fld.q 0(Ap), Ai II Load first 4 entries of row of A
d.pfadd.ss f0, f0, Tl II

bla DEC, RC, inner_loop II Won't branch; initializes LCC
d.pfadd.ss f0, f0, T2 II

nop II
d.fadd.ss Tl, T3, T3 II

nop II
d.fadd.ss T2, T3, T3 II
adds -1, Bc, 8c II Decrement column counter

d.pfadd.ss f0, f0, f0 II
fst.l T3, 4(C)++ II Store row/column product in C

II Continue with next column of B?
d.pfadd.ss f0, f0, f0 II

bnc.t inner_loop II CC controlled by prior adds
d.pfadd.ss f0, f0, f0 II

nop II
II End of all columns of 8

d.fnop
mov 8, Bp

d.fnop
adds A, SIZ,

d.fnop
mov A, Ap

II Continue with next row
d.fnop

xor Ar, r0,
d.fnop

A

of

r0

bnc.t start_row
d.fnop

adds -1, Ar, Ar
fnop

nop
fnop

nop

A?

II
II Point to first col of B
II
II
II
II

II

Bump pointer to A by one row

Set A index to beginning of next row

II Is row counter zero?
II
II Taken if row counter not zero
II
II Decrement row counter
II Initiate exit from dual mode
II
II Last dual-mode pair
II End

Example 12·14. Matrix Multiply, Cached and Pipe lined Loads (2 of 2)

12-16

PROGRAMMING EXAMPLES

12.13 3-D RENDERING

This series of examples are routines that might be used at the lowest level of a graphics
software system to convert a machine-independent description of a 3-D image into val
ues for the frame buffer of a color video display. Typically, higher-level graphics routines
represent an object as a set of polygons that together roughly describe the surfaces of the
objects to be displayed. The graphics system maintains a database that describes these
polygons in terms of their colors, properties of reflectance or translucence, and the
locations in 3-D space of their vertices. Due to the roughness of the representation, the
amount of information in the database is considerably less than that which must be
delivered to the video display. A rendering procedure, such as Example 12-21, uses
interpolation to derive the detailed information needed for each pixel in the graphics
frame buffer. The rendering procedure also performs pixel-by-pixel hidden-surface
elimination.

The focus of this series of examples is Example 12-21, which operates on a segment of a
scan lin~. The segment is bounded by two points of given location and color: from point
(Xl, YO, Z1) with color intensities Redl, Gml, Blul to point (X2, YO, Z2) with color
intensities Red2, Gm2, Blu2. The points and color intensities are determined by higher
level graphics software. The points represent the intersection of the scan line with two
edges of the projected image of a polygon. For a given scan line, the rendering proce
dure is executed once for each polygon that projects onto that scan line. The higher-level
graphics software is responsible for orienting the objects with respect to the viewer, for
making perspective calculations, for scaling, and for determining the amount of light that
falls on each polygon vertex.

The 16-bit pixel format is used, giving ample resolution for color shading: 26 intensity
values for red, 26 intensity values for green, and 24 intensity values for blue.
Example 12-15 shows how to set the pixel size. For hidden-surface elimination, the
Z~buffer (or depth buffer) technique is employed, each Z value having a resolution of
16-bits.

Because the examples presented here use almost all of the registers of the processor, the
registers are given symbolic names, as defined by Example 12-16. In a real application, it
is likely that some of the inputs to the rendering procedure would be passed in floating
point registers instead of the integer registers employed here. The register allocation
shown in Example 12-16 simplifies the examples by avoiding the need to use any register
for multiple purposes.

II SET PIXEL SIZE TO 16
ld.c psr, Ra
andnoth 0x00C0, Ra,
orh 0x0040, Ra,
st·c Ra, psr

II Work on psr
Ra II Clear PS
Ra II PS = 16-bit pixels

II

Example 12-15. Setting Pixel Size

12-17

PROGRAMMING EXAMPLES

II REGISTER DEFINITIONS FOR RENDERING PROCEDURE
II INTEGER LOCALS

II

II

Ra
Rb
Rc
Rd

Xl
dX
ZBP
Zl
mZ
FBP
Redl
Grnl
Blul
mR
mG
mB

r4 II Temporary
= r5 II Temporary
= r6 II Temporary
= r7 II Temporary

INTEGER INPUTS
r16 II X coord of starting point of line seg in pixels
r17 II Width of scan line segment in number of pixels
r18 II Z-buffer pointer to the current line segment
r19 II Initial Z value, fixed-point 16.16 format
r20 II Z slope, fixed-point 16.16 format
r21 II Graphics frame buffer pointer to the current line seg
r22 II Initial red intensity, fixed-point 6.10 format, + .5
r23 II Initial green intensity, fixed-point 6.10 format, + .5
r24 II Initial blue intensity, fixed~point 6.10 format, + .5
r25 II Red slope, fixed-point 6.10 format
r26 II Green slope, fixed-point 6.10 format
r27 II Blue slope, fixed-point 6.10 format

REAL LOCALS
aZ f2 II Accumulated Z values
aZh f3 II
iZl f4 II Z interpolant, coefficient 1.0
iZlh f5 II
iZ3 f6 II Z interpolant, coefficient 3.0
iZ3h f7 II
oldz f8 II Original values from the Z-buffer
newz f10 II New Z-buffer values
newzh = fll II
newi f12 II New pixel values
iR f14 II Red interpolant, coefficient 4.0
iRh f15 II
aR f16 II Accumulated red intensities
aRh f17 II
iG = f18 II Green interpolant, coefficient 4.0
iGh f19 II
aG f20 II Accumulated green intensities
aGh f21 II
iB f22 II Blue interpolant, coefficient 4.0
iBh f23 II
aB f24 II Accumulated blue intensities
aBh f25 II
lZmask f26
lZmaskh f27
rZmask f28
rZmaskh f29

II left-end Z mask
II
II right-end Z mask
II

Example 12-16. Register Assignments

12-18

PROGRAMMING EXAMPLES

12.13.1 Distance Interpolation

To perform hidden surface elimination at each pixel, the rendering routine first interpo
lates the value of Z associated with each pixel. Distance interpolation consists of calcu
lating the slope of Z over the given line segment, then increasing the Z value of each
successive pixel by that amount, starting from Xl. The width of the line segment in
pixels is ...

. dX = X2 - Xl

Calculate the reciprocal of dX:

RdX = l/dX

The value of dX is used several times as a divisor. It is most efficient to calculate its
reciprocal once, then, instead of dividing by dX, multiply by RdX. The slope of Z is ...

mZ = (Z2 - Zl)*RdX

Because each polygon is a plane, the value of mZ is constant for all scan lines that
intersect the polygon's projection; therefore, mZ needs to be calculated only once for
each polygon. Example 12-21 assumes that dX and mZ have already been calculated, and
all that remains is to apply mZ to successive pixels. Let Z(Xn) be the Z value at pixel Xn.
Then ...

·Z(X1) = Zl
Z(X1 + 1) = Zl + mZ
Z(X1 + 2) = Zl + 2*mZ

Z(X1 + N) = Zl + N*mZ

Z(X1 + dX) = Zl + dX*mZ = Z(X2)

Figure 12-1 illustrates this Z-value interpolation.

The faddz instruction helps to perform the above calculations 64 bits at a time. Because
a Z value is 16 bits wide, Example 12-21 operates on the Z buffer in groups of four. The
faddz instruction, however, treats the interpolation values (N*mZ) as 32-bit fixed-point
numbers; therefore, two faddz instructions are executed for each group of four pixels.
Because of the way the faddz shifts the MERGE register, the first faddz corresponds to
even-numbered pixels, while the second corresponds to odd-numbered pixels. Instead of
starting with the value for the first pixel (Z(X1» and adding mZ to each pixel to produce III!
the value for the next pixel, the example procedure starts with the values for the first two •
even-numbered pixels and adds 1 *mZ to each of these values to produce the values for

12-19

PROGRAMMING EXAMPLES

(r, g, b, x, y, z = 4000)

3000 - 2400
mZ = 12 PIXELS

(r", g", b", x", y", z" = 1000)

Figure 12-1. Z-Buffer Interpolation

240875i12-1

the adjacent odd-numbered pair. Adding 3*mZ to each of the Z values of an odd
numbered pair produces the values for the next even-numbered pair. Figure 12-2 shows
one way of constructing the operands before starting the distance interpolations. (The
initial value given to fsrcl depends on the alignment of the first pixel.) Table 12-1 helps
to visualize the process.

After two faddz instructions, the MERGE register holds the Z values for four adjacent
pixels (in the correct order). The form instruction copies MERGE into one of the 64-bit
floating-point registers, because the MERGE register cannot be directly accessed by
pst.d.

The same register is used as both fsrcl and fdest in all faddz instructions. This register
serves to accumulate Z values for successive pixels; therefore, it is called an accumulator.
The registers used as fsrc2 are called interpolants. The code in Example 12-17 constructs
the interpolants; it needs to be executed only once for each polygon.

12.13.2 Color Interpolation

To determine the RGB color intensities at each pixel, the rendering routine interpolates
between the color intensities at the end points. (This rendering technique is called
"Gouraud shading" after H. Gouraud, "Continuous Shading of Curved Surfaces," IEEE
Transactions on Computers, C-20(6), June 1971, pp. 623-628.) Let the symbol C (color)

12-20

PROGRAMMING EXAMPLES

ACCUMULATOR

63 47 31 15 0

I Z1 -1.0*mZ FRACTION I Z1 - 3.0*mZ FRACTION
I initial

fsrc1

INTERPOLANTS

63 47 31 15 0

I 3.0*mZ FRACTION I 3.0*mZ FRACTION I first
fsrc2

63 47 31 15 0

I 1.0*mZ FRACTION I 1.0*mZ FRACTION I second
fsrc2

240875i12-2

Figure 12-2. faddz Operands

represent either R (red), G (green), or B (blue). Color interpolation consists of calcu
lating the slope of C over the given line segment, then increasing the C values of each
successive pixel by that amount, starting from the values for Xl. This must be done for
C=R, C=G, and C=B. The slope of Cis ...

mC = (C2 - Cl)*RdX

... where RdX = l/dX

The value of mC is constant for all scan lines that intersect a given pair of polygon edges;
therefore mC needs to be calculated only once for each such pair. Example 12-21
assumes that mC has already been calculated for all colors, and all that remains is to
apply mC to successive pixels. Let C(Xn) be a C value at pixel Xn. Then ...

C(Xl) = Cl
C(Xl + 1) = Cl + mC
C(Xl + 2) = Cl + 2*mC

C(Xl + N) = Cl + N*mC

C(Xl + dX) = Cl + dX*mC = C(X2)

Figure 12-3 illustrates Gouraud shading of a triangle.

The faddp instruction performs the above calculations 64 bits at a time. Because a pixel
is 16 bits wide, Example 12-21 operates on pixels in groups of four. Instead of starting
with the value for the first pixel (C(Xl» and adding mC to each pixel to produce the

12-21

PROGRAMMING EXAMPLES

Table 12-1. faddz Visualization

MERGE Register
Operands 63-32 31-0

I I I 63-48 47-32 31-16 15-0

src1 -1.0 -3.0

src2 3.0 3.0

rdest/src1 2.0 0.0 2 I I 0- I
src2 1.0 1.0

rdest/src1 3.0 1.0 3 I 2 I 1 I 0

src2 3.0 3.0

rdest/src1 6.0 4.0 6 I I 4 I
src2 1.0 1.0

rdest/src1 7.0 5.0 7 I 6 I 5 I 4

src2 3.0 3.0

rdest/src1 10.0 8.0 10 I I 8 I
src2 1.0 1.0

rdest/src1 11.0 9.0 11 I 10 I 9 I 8

src2 3.0 3.0

rdest/src1 14.0 12.0 14 I I 12 I
src2 1.0 1.0

rdest 15.0 11.0 15 I 14 I 13 I 12

NOTE: Because the values of Z1 and mZ are constant for each loop through the rendering routine, the
numbers shown here are the values of the coefficient N, where the actual operands have the values
Z1 + N*mZ. For each execution of faddz, src1 is the same as rdest of the prior faddz. After every
two faddz instructions, a form instruction empties the MERGE register.

value for the next pixel, the example procedure starts with the values for the first four
pixels and adds 4 *mC to each group of four to produce the values for the next four.
Three faddp instructions are executed for each group of four pixels. The first increments
the blue values; the second, green; the third, red. Figure 12-4 shows one way of con
structing the operands for each color before starting the color interpolations. (The initial
value given to fsrcl depends on the alignment of the first pixel.)

Setup of the accumulator and interpol ants is similar to that of the Z-buffer. The code in
Example 12-18 constructs the interpolants; it needs to be executed only once for each
pair of edges in each polygon.

12-22

II CONSTRUCT
ixfr
shl
adds
ixfr
fmov.ss
fmov.ss

NOTE:

PROGRAMMING EXAMPLES

INTERPOL ANTS iZl AND iZ3 GIVEN mZ
mZ, iZl II Join each half in 64-bit
1, mZ, Ra II Ra = 2*mZ
Ra, mZ, Ra II Ra = 3*mZ
Ra, iZ3 II Join each half in 64-bit
iZl, iZlh II Join each half in 64-bit
iZ3, iZ3h II Join each half in 64-bit

Example 12-17. Construction of Z Interpolants

(r = 20, g, b, x, y, z)

27 - 30
rnR = 12 PIXELS

(r" = 40, g", b", x", y", z")

VALUES OF RED COLOR RANGE FROM 0 TO 63.

Figure 12-3. Pixel Interpolation for Gouraud Shading

12.13.3 Boundary Conditions

register

register
register
register

240875i12-3

i860 microprocessors operate on 64-bit quantities that are aligned on 8-byte boundaries.
The code in this example takes full advantage of this design, handling four 16-bit pixels
in each loop. However, if the first or last pixel of a line segment is not on an 8-byte
boundary, two kinds of special considerations are required:

1. Masking of Z values near the end points.

2. Initialization of the accumulators.

12-23

PROGRAMMING EXAMPLES

ACCUMULATOR
63 47 31

.... 3_~m_1 ~~! _F_R_AC_-I-_;_~_~";": _F_R_AC_-I-_~_C+~: _F_R_A_C~I--_~ __ ---' ~~~~I
INTERPOLANT

63 47 31 15 0

14*mc : FRAC 1 4*mc : FRAC 1 4*mc: FRAC 1 4*mc : FRAC I fsrc2

240875i12-4

Figure 12-4. faddp Operands

II CONSTRUCT INTERPOL ANTS iR, iG, iB GIVEN mR, mG, mB
shl 18, mR, Ra II Multiply each color slope by four,
shl 18, mG, Rb II then shift by 16 to put
shl 18, mB, Rc II significant bits into high half
shr 16, Ra, mR II Return significant 16 bits
shr 16, Rb, mG II to low-order half. Any sign bits
shr 16, Rc, mB II in high-order half are gone.
or mR, Ra, Ra II Join 16-bit quarters
or mG, Rb, Rb II in 32-bit register
or mB, Rc, Rc II
ixfr Ra, iR II Join 32-bit halves
ixfr Rb, iG II in 64-bit register
ixfr Rc, iB II
fmov.ss iR, iRh II
fmov.ss iG, iGh II
fmov·ss iB, iBh II

Example 12-18. Construction of Color Interpolants

12.13.3.1 Z-BUFFER MASKING

When either the first or last pixel of the line segment is not at an 8-byte boundary, the
rendering procedure must mask the first or last set of new Z-buffer values (newz) so that
the Z-buffer and the frame buffer are not erroneously updated. Sometimes both the first
and last pixels are in the same 4-pixel set, in wh,:ch case either one may not be on
an 8-byte boundary. A function that looks up and calculates masks is shown in
Example 12-19.

Because the value OxFFFF is used for masking, the Z-buffer is initialized with OxFFFE,
so that the fzchks instruction always finds the mask to be greater than any Z-buffer
contents.

12.13.3.2 ACCUMULATOR INITIALIZATION

When the first pixel of the line segment is not at an 8-byte boundary, initial values
placed in the accumulators (aZ, aB, aG, and aR) must be selected so that Z1, Red1,

12-24

PROGRAMMING EXAMPLES

·macro zmask I_align, r_align, Rx, Ry
II I_align -- left-end alignment in two-byte units
II r_align -- right-end alignment in two-byte units
II Rx, Ry -- scratch registers
II Left-end OR masks
II Input Output Input
II I_align IZmask r_align

Right-end OR masks
Output
rZmask

II 0 0000 0000 0000 0000 0 FFFF
II 1 0000 0000 0000 FFFF 1 FFFF
II 2 0000 0000 FFFF FFFF 2 FFFF
II 3 0000 FFFF FFFF FFFF 3 0000
II If the first and last pixels are contained in
II aligned set, then IZmask = IZmask OR rZmask .

FFFF FFFF 0000
FFFF 0000 0000
0000 0000 0000
0000 0000 0000
the same 64-bit

. endm

Example 12-19. Z Mask Procedure

Grn1, and Blu1 correspond to the correct pixel. The desired result is that shown by
Table 12-2. However, each value is a composite of two terms: one that is constant for
each edge pair (n *mZ, n *mR, n *mG, n *mB) and one that can vary with each scan line
(Zl, Red1, Grn1, Blu1). The example assumes that the constant values have all been
calculated and stored in a memory table of the format shown by Table 12-3. At the
beginning of each line segment the values appropriate to the alignment of the line seg
ment are retrieved from the table and added to the initial Z and color values, as shown
in Example 12-20.

12.13.4 The Inner Loop

Once the proper preparations have been made, only a minimal amount of code is
needed to render each scanline segment of a polygon. The code shown in Example 12-21
operates on four pixels in each loop. The left and right ends of the line segment go
through different logic paths so that the Z-buffer masks can be applied by the form
instruction. All the interior points are handled by the tight inner loop.

Table 12-2. Accumulator Initial Values

Alignment Initial Z Accumulator Values

0 Z1 - 1*mZ Z1 - 3*mZ
2 Z1 - 2*mZ Z1 - 4*mZ
4 Z1 - 3*mZ Z1 - 5*mZ
6 Z1 - 4*mZ Z1 - 6*mZ

Alignment
Initial Color Accumulator Values

C = R, G, B

0 C1 - 1*mC C1 - 2*mC C1 - 3*mC C1 - 4*mC
2 C1 - 2*mC C1 - 3*mC C1 - 4*mC C1 - 5*mC
4 C1 - 3*mC C1 - 4*mC C1 - 5*mC C1 - 6*mC
6 C1 - 4*mC C1 - 5*mC C1 - 6*mC C1 - 7*mC

12-25

PROGRAMMING EXAMPLES

Table 12-3. Accumulator Initialization Table

Table Values
Alignment

*mZ *mR *mG *mB

0 -1, -3 -1, -2, -3, -4 -1, -2, -3, -4 -1, -2, -3, -4
2 -2, -4 -2, '--3, -4, -5 -2, -3, -4, -5 -2, -3, -4, -5
4 -3, -5 -3, -4, -5, -6 -3, -4, -5, -6 -3, -4, -5, -6
6 -4, -6 -4, -5, -6, -7 -4, -5, -6, -7 -4, -5, -6, -7

The controlling variable dX is zero-relative and is expressed as a number of pixels. The
value of dX also indicates alignment of the end-points with respect to the 4-pixel groups.
Unaligned left-end pixels are subtracted from dX before entering the inner loop; there
fore, subsequent values of dX indicate the alignment of the right end. A value that is 3
mod 4 indicates that the right end is aligned, which explains the test for a value of -5
near the end of the loop (-5 mod 4 = 3). The fact that the value -5 is loaded into
register Rb on every execution of the loop does not represent a programming ineffi
ciency, because there is nothing else for the core unit to do at that point anyway.

12.14 GRAPHICS TRANSFORMATION

Example 12-22 transforms each of a list of 1 x4 row vectors with a 4x4 matrix. This
calculation is typical of 3-D graphics transformations where objects are represented as a
polygon mesh. Typically, each element in the object database is associated with a list of
all the vertices of the polygons in the mesh that forms the object.

Interactive graphics systems that provide J-tighly realistic images generally require that
the representation of an object be transformed in the following ways:

• Local scaling - making objects narrower or wider in any dimension.

• Rotation - a circular movement.

• Translation -linear relocation.

• Perspective projection - making parallel lines converge to give the impression of
depth.

• Overall scaling - zooming in or out.

Any transformation of an object, reduces to a transformation of every vertex in that
object's vertex list. The object database may also have lists of polygons and lists of edges;
however, these lists are not used by the transformation procedure.

The theory of graphics is reviewed here only to the degree necessary to explain the
example procedures. For a more detailed study, refer to a graphics text, such as:

• James D. Foley and Andries Van Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley, Reading, Mass., 1982.

• David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics,
McGraw-Hill, New York, 1976.

12-26

PROGRAMMING EXAMPLES

II ACCUMULATOR INITIALIZATION TABLE
.data; .align .double

acc_init_tab:: .double [16) ~

.dsect
aBi: .double
aGi: .double
aRi: .double
aZi: .double

.end

.text

II Four initial 16-bit blue values
I I F 0 uri nit i a 1 16 - bit g r e e'n val u e s
II Four initial 16-bit red values
II Two initial 32-bit Z values

II INITIALIZE ACCUMULATORS
.macro acc_init Lalign, Rtab, Rx, Ry, Fx, Fxh
II Lalign -- left-end alignment (~ .. 3) in two-byte units
II Rtab -- register to use for addressing the table
II Rx, Ry, Fx, Fxh -- scratch registers

mov acc_init_tab, Rtab II
shl 5, Lalign, Lalign II Multiply by row width
adds Lalign, Rtab, Rtab II Index row corresponding

II to alignment
fld.d aZi(Rtab), aZ II Z
ixfr Zl, Fx II Z
fld. d aRi (Rtab), aR II R--Load constant values
shl 16, Redl, Rx II R--Shift start val to hi-order
fmov.ss Fx, Fxh II Z
shr 16, Rx, Ry II R--Redl stripped of sign bits
fiadd.dd Fx, aZ, aZ II Z
or Rx, Ry, Ry II R--Form (Redl,Redl)
ixfr Ry, Fx II R--Put in 64-bit register
fld. d aGi (Rtab), aG II G
shl 16, Grnl, Rx II G
fmov.ss Fx, Fxh II R--Form (Redl,Redl,Redl,Redl)
shr 16, Rx, Ry II G
fiadd.dd Fx, aR, aR II R--Add variables to constants
or Rx, Ry, Ry II G
ixfr Ry, Fx II G
fld·d aBi(Rtab), aB II B
shl 16, Blul, Rx II B
fmov.ss Fx, Fxh II G
shr 16, Rx, Ry II B
fiadd.dd Fx, aG, aG II G
or Rx, Ry, Ry II B
ixfr Ry, Fx II B
fmov.ss Fx, Fxh II B
fiadd.dd Fx, aB, aB II B

.endm

Example 12-20. Accumulator Initialization

12-27

PROGRAMMING EXAMPLES

II RENDERING PROCEDURE
II l6-bit pixels, 16-bit Z-buffer

and 3, Xl, Ra II Determine alignment of start-point
acc_init Ra, Rb, Rc, Rd, Fa, Fah II Initialize accumulators
subs 4, Ra, Rb II 4 - alignment
subs dX, Rb, dX II Adjust dX by Xl alignment
II If dX <= 0, then right end is in same set as left end
and 3, dX, Rb II Determine alignment of right end
zmask Ra, Rb, Rc, Rd II Prepare left- and right~end masks

left_end:: II Handle boundary conditions
d·faddz aZ, iZ3, aZ II Interpolate 2 even Z values

adds -8, F8P, FBP II Anticipate auto increment
d.faddz aZ, iZl, aZ II Interpolate 2 odd Z values

adds -8, Z8P, ZBP II Anticipate auto increment
d.form IZmask, newz II Mask 4 new Z values

fld.d 8(Z8P), oldz II Fetch 4 old Z values
d.faddp a8, i8, aB II Interpolate 4 blue intensities

mov -4, Ra II Loop increment: 4 pixels
d.faddp aG, iG, aG II Interpolate 4 green intensities

adds -4, dX, dX II Prepare dX for bla at end of loop
d.faddp aR, iR, aR II Interpolate 4 red intensities

bla Ra, dX, Ll II Initialize LCC
d.form f0, newi II Move 4 new pixels to 64-bit reg

adds 5, dX, r0 II Any whole sets (dX < -5)?
Ll: d.fzchks oldz, newz, newz II Mark closer points in PM[7 .. 4]

bc short_segment II Get out now if no whole set
d.fnop II

fld.d 16(Z8P), oldz II Fetch 4 old Z values
inner_loop:: II Handle all interior points

d·faddz aZ, iZ3, aZ II Interpolate 2 even Z values
nop II

d.faddz aZ, iZl, aZ II Interpolate 2 odd Z values
fst.d newz, 8(ZBP)++ II Update Z buf from prior loop

d.form f0, newz II Move 4 new Z values to 64-bit reg
nop II

d.fzchks f0, f0, f0 II Shift PM[7 .. 4] to PM[3 .. 0]
mov -5, Rb II -5 mod 4 = 3, aligned right end

d.faddp a8, i8, aB II Interpolate 4 blue intensities
pst.d newi, 8(F8P)++ II Store pixels indicated by PM[3 .. 0]

d.faddp aG, iG, aG II Interpolate 4 green intensities
xor Rb, dX, r0 II Are we at an aligned right end?

d.faddp aR, iR, aR II Interpolate 4 red intensities
bc aligned_end II Taken if at an aligned ~ight end

d.form f0, newi II Move 4 new pixels to 64-bit reg
bla Ra, dX, inner_loop II Loop if not at end of line segment

d.fzchks oldz, newz, newz II Mark closer points in PM[7 .. 4]
fld.d 16(Z8P), oldz II Fetch 4 old Z values for next loop

II End of inner_loop. Right end not aligned

Example 12-21. 3-D Rendering (1 of 2)

12-28

PROGRAMMING EXAMPLES

right_end:: II Handle boundary conditions
d.faddz aZ, iZ3, aZ II Interpolate 2 even Z values

nop
d.faddz

fst·d
d.form

nop
d.fzchks

nop
d.faddp

pst.d
d.faddp

nop
d.faddp

nop

aligned_end::
d.form

br
d.fzchks

nop

short_segment::
d.fnop

adds
d.fnop

bnc.t
d.fnop

fld .d

II
aZ, iZl, aZ II Interpolate 2 odd Z values
newz, 8(ZBP)++ II Update Z buf from prior loop
rZmask, newz II Mask 4 new Z values

II
ff{l, ff{l, ff{l II Shift PM[7 •. 4] to PM[3 .. ra]

II
aB, iB, aB II Interpolate 4 blue intensities
newi,
aG,

8(FBP)++ II Store pixels indicat~d by PM[3 .. f{l]
iG, aG II Interpolate 4 green intensities

aR, iR,

I I No special
ff{l, newi
wrap_up
oldz, newz,

8, dX,

right_end

II
aR II Interpolate 4 red intensities

II

boundary conditions
II Move 4 new pixels to 64-bit reg
II

newz II Mark closer points in PM[7 .. 4]
II

II
rf{l II Is right end in same set as left?

II
II Branch taken if no·
II

16(ZBP), oldz II Fetch 4 old Z values

wrap_up:: II
fzchks

fst.d
fnop

pst.d

Store the unstored and leave dual mode.
ff{l, ff{l, ff{l II Shift PM[7 .. 4] to PM[3 .. ra]
newz, 8(ZBP)++ II Update Z buf from prior loop

newi, 8(FBP)++ II Store pixels indicated by PM[3 •. f{l]

Example 12-21. 3-~ Rendering (2 of 2)

12-29

PROGRAMMING EXAMPLES

II GRAPHICS TRANSFORM
II Multiplies each element of a list of vertices in
II homogeneous coordinates by a single transformation matrix.

II Parameters
Vp=r16 II Pointer to single-precision input vertex list
Mp=r17 II Pointer to single-precision xform matrix M
Up=r18 II Pointer to single-precision output vertex list
VN=r19 II Number of vertices (assumed >= 1)

II C syntax: xform (input_list, matrix, output_list, vertex_count);
XW=f2 II Temporary

II Tranformation matrix M. Assumes that M is stored
II col 1 col 2 col 3 col 4

Mll=f4; M12=f5; M13=f6; M14=f7 II row
M21=f8; M22=f9; M23=f10; M24=fll II row
M31=f12; M32=f13; M33=f14; M34=f15 II row
M41=f16; M42=f17; M43=f18; M44=f19 II row

II Input vertex V
II Even Odd Ping-pong input registers

II x component of vertex

II

Vx=f'20; VX=f28
Vy=f21; VY=f29
Vz=f22; VZ=f30
Vw=f23; VW=f31

II y component of vertex
II z component of vertex
II w component of vertex

Transformed vertex U
Ux=f24 II x component of transformed vertex
Uy=f25 II Y component of transformed vertex
Uz=f26 II z component of transformed vertex
Uw=f27 II w component of transformed vertex

1
2
3
4

row-major, as in

II This procedure modifies all floating-point registers. Save on the

C.

II stack any floating point registers that the caller assumes preserved.

II Assume that adder pipe and T register contain "safe" values (values
II that will not cause a source exception) from calling procedure or
II from prior calls to this procedure. If not, execute the following:
II pfmul.ss f0, f0, f0; pfmul.ss f0, f0, f0; pfmul.ss f0, f0, f0;
II pfadd.ss f0, f0, f0; pfadd.ss f0, f0, f0; pfadd.ss f0, f0, f0;
II i2apt f0, f0, f0;

x for m :: ; _x for m : :
fld.q 0(Vp), Vx
fld.q 0(Mp), Mll
fld.q 48(Mp), M41

II Load first even vertex
II Load transformation matrix M, row 1
II Load row 4

II For brevity in pipeline diagrams, let a symbol of the form "apq"
II represent Va*Mpq. For example, y21 represents Vy*M21 .
. align .double

Example 12-22. Graphics Transform (1 of 5)

12-30

PROGRAMMING EXAMPLES

II II Multiplier Adder ---
II II Stages Stages
II II KR KI *1 *2 *3 T +1 +2 +3 Rslt Instt
d.i2pt.ss Vy, fl(J, fl(J II -- Y (aa)

fld.q 32(Mp), M31 II Load row 3
d.m12apm.ss Vx, Mll, fl(J II -- Y xll -- (1(J1)

fld.q 16(Mp), M21 II Load row 2
d.m12apm.ss Vw, M41, fl(J II -- Y w41 xll (1(J2)

adds -16, Up, Up II Compensate for auto increment store
d.m12apm.ss Vx, M12, fl(J II Y x12 w41 xll (1(J3)

nap
d.m12ttpa.ss Vw,M42, fl(J II Y w42 x12 w41 xll -- (1(J4)

nap

d.m12tpm.ss Vy, M21, fl(J II Y y21 w42 x12 xll+ (I(JS)

nap II w41
d.i2apl.ss fl(J, M22, fl(J II Y y22 y21 w42 x12 xll+ (1(J6)

nap II w41
d.m12tpm.ss Vx, M13, fl(J II Y x13 y22 y21 x12+ xll+ (1(J7)

nap II w42 w41

d.m12apm.ss Vz, M31, fl(J II Y z31 x13 y22 xll+ x12+ (1(J8)
nap II y21+ w42

II w41
d.m12ttpa.ss Vw,M43, fl(J II -- Y w43 z31 x13 y22 xll+ x12+ (1(J9)

nap II y21+ w42
II w41

d.m12ttpa.ss Vz,M32, fl(J II -- Y z32 w43 z31 x13 x12+ xll+ (11(J)
adds -2, VN, VN II y22+ y21+
II -1 indicates done II w42 w41

d.m12apm.ss Vx, M14, fl(J II -- Y x14 z32 w43 x13 xll+ x12+ (11)
fld. d 16(Vp)++, VX II y21+ y22+ \
II Next vertex (odd) II z31+ w42

II w41
d.m12tpm.ss Vy, M23, fl(J II -- Y y23 x14 z32 -- x13+ xll+ x12+ (12)

nap II w43 y21+ y22+
II z31+ w42
II w41

d.m12apm.~s Vw, M44, fl(J II -- Y w44 y23 x14 -- x12+ x13+ xll+ (13)
bc end_even_xform II y22+ w43 y21+

II Avoid using data II z32+ z31+
II beyond end of list II w42 w41

d.i2apt.ss VY, M24, Ux II -- Y y24 w44 y23 x14 x12+ x13+ xll+ (14)
fld.d 8(Vp), VZ II y22+ w43 y21+
II Rest of vertex II z32+ z31+

II w42 w41
d.m12apm.ss Vz, M33, fl(J II -- Y z33 y24 w44 x14 x13+ x12+ (15)

nap II y23 y22+
II w43 z32+
II w42

d.m12tpm.ss Vz, M34, Uy II -- Y z34 z33 y24 -- x14+ x13+ x12+ (16)
nap II w44 y23+ y22+

II w43 z32+
II w42

Example 12-22. Graphics Transform (2 of 5)

12-31

PROGRAMMING EXAMPLES

xformloop: ��-----------------------ODD VERTEX------------------~-------II
II II KR KI *1 *2 *3 T +1 +2 +3 Rslt Inslt
d.m12ttpa.ss VX,Mll, f~ II Y Xll z34 z33 y24 x14+ x13+ (~l)

nop II w44 y23+
II w43

d.m12apm.ss VW, M41, f~ II -- Y W41 Xll z34 y24 x13+ x14+
nop II y23+ w44

II z33+
II w43

d.m12tpm.ss VX, M12, XW II -- Y X12 W41 Xll -- y24+ x13+
nop II z34 y23+

II z33+
II w43

d.m12ttpa.ss VW,M42, f~ II -- Y W42 X12 W41 Xll -- y24+ x13+
nop II z34 y23+

II z33+
II w43

x14+
w44

(~2)

(~3)

(~4)

d.m12tpm.ss VY, M21, Uz II -- Y Y21 W42 X12 -- Xll+ y24+ x13+ (~5)
nop II W41 z34 y23+

II z33+
II w43

d.i2apl.ss XW, M22, f~ II -- Y Y22 Y21 W42 X12
nop II

II
II

d.m12tpm.ss VX, M13, f~ II -- Y X13 Y22 Y21 --
nop II

II
II

x14+
y24+
z34+
w44
X12+
W42

d.m12apm.ss VZ, M31, f~ II -- Y Z31 X13 Y22 -- Xl1+
nop II Y21+

II W41
II

d.m12ttpa.ss VW,M43, Uw II -- Y W43 Z31 X13 Y22
fst.q Ux, 16(Up)++ II

II Store xformed vertex II
II

d.m12ttpa.ss VZ,M32, f~ II
adds -1, VN, VN II

II

Y Z32 W43 Z31 X13

d.m12apm.ss VX, M14, f~ II -- Y X14 Z32 W43 X13
fld·d 16(Vp)++, Vx II
II Next even vertex II

II
d.m12tpm.ss VY, M23, f~ II -- Y Y23 X14 Z32 --

nop II

d.m12apm.ss VW, M44, f~
be end_odd_xform

II Avoid using data
II beyond end of list
d.i2apt.ss Vy, M24, Ux

fld.d 8(Vp), Vz
II Rest of vertex

d.m12apm.ss VZ, M33,
nop

f~

d.m12tpm.ss VZ, M34, Uy
nop

II
II
II -- Y W44 Y23 X14 -
II
II
II
II -- y Y24 W44 Y23 X14
II
II
II

II -- y Z33 Y24 W44 X14
II
II
II
II -- y Z34 Z33 Y24 --
II
II
II

X12+
Y22+
W42
Xll+
Y21+
Z31+
W41
X13+
W43

X12+
Y22+
Z32+
W42

X13+
Y23
W43

X14+
W44

Xll+
W41

x14+
y24+
z34+
w44
X12+
W42

Xll+
Y21+
W41

X12+
Y22+
W42

Xll+
Y21+
Z31+
W41
X13+
W43

X12+
Y22+
Z32+
W42

X13+
Y23+
W43

Xll+
W41

x14+
y24+
z34+
w44
X12+
W42

Xll+
Y21+
W41

X12+
Y22+
W42

Xll+
Y21+
Z31+
W41
X13+
W43

X12+
Y22+
Z32+
W42

Example 12-22. Graphics Transform (3 of 5)

12-32

x14+
y24+
z34+
w44

Xll+
Y21+
Z31+
W41

X12+
Y22+
Z32+
W42

(~6)

(~7)

(~8)

(~9)

(1IIJ)

(11)

(12)

(13)

(14)

(15)

(16)

PROGRAMMING EXAMPLES

II-----EVEN VERTEX------II KR KI *1 *2 *3 T +1 +2 +3 Rslt Inslt
d.m12ttpa.ss Vx,Mll, fl2l II Y xll Z34 Z33 Y24 X14+ X13+ (1211>

nop II W44 Y23+
II W43

d.m12apm.ss Vw, M4l, fl2l II -- Y w4l xll Z34 Y24 X13+ X14+ (1212)
nop II Y23+ W44

II Z33+
II W43

d.m12tpm.ss Vx, M12, XW II -- Y x12 w4l xll -- Y24+ X13+ X14+ (1213)
nop II Z34 Y23+ W44

II Z33+
II W43

d.m12ttpa.ss Vw,M42, fl2l II -- Y w42 x12 w4l xll -- Y24+ X13+ (1214)
nop II Z34 Y23+

II Z33+
II W43

d.m12tpm.ss Vy, M21, Uz II -- Y y21 w42 x12 -- xll+ Y24+ X13+ (1iI5)
nop II w4l Z34 Y23+

II Z33+
II W43

d.i2apl.ss XW, M22, flil II -- Y y22 y21 w42 x12 X14+ xll+ (1iI6)
nop II Y24+ w4l

II Z34+
II W44

d.m12tpm.ss Vx, M13, flil II -- Y x13 y22 y21 -- x12+ X14+ xll+ (1iI7)
nop II w42 Y24+ w4l

II Z34+
II W44

d.m12apm.ss Vz, M31, flil II -- Y z31 x13 y22 -- xll+ x12+ X14+ (1iI8)
nop II y21+ w42 Y24+

II 11141 Z34+
II W44

d.m12ttpa.ss VIII,M43, Uw II -- Y w43 z31 x13 y22 xll+ x12+ X14+ (1iI9)
fst.q Ux, 16(Up)++ II y21+ w42 Y24+

II Store xformed vertex II w4l Z34+
II W44

d.m12ttpa.ss Vz,M32, flil II Y z32 11143 z31 x13 x12+ xll+ (11i1)
adds -1, VN, VN II y22+ y21+

II 11142 11141
d.m12apm.ss Vx, M14, flil II -- Y x14 z32 w43 x13 xll+ x12+ (11)

fld;d 16(Vp)++, VX II y21+ y22+
II Next odd vertex II z31+ w42

II 11141
d.m12tpm.ss Vy, M23, flil II -- Y y23 x14 z32 -- x13+ xll+ x12+ (12)

nop II 11143 y21+ y22+
II z31+ 11142
II w4l

d.m12apm.ss VIII, M44, flil II -- Y w44 y23 x14 -- x12+ x13+ xll+ (13)
be end_even_xform II y22+ w43 y21+

II Avoid using data II z32+ z31+
II beyond end of list II 11142 w4l
d.i2apt.ss VY, M24, Ux II -- Y y24 w44 y23 x14 x12+ x13+ xll+ (14)

fld.d 8(Vp), VZ II y22+ w43 y21+
II Rest of vertex II z32+ z31+

II w42 w41
d.m12apm.ss Vz, M33, flil II -- Y z33 y24 w44 x14 x13+ x12+ (15)

br xformloop II y23 y22+
II 11143 z32+
II 11142

d.m12tpm.ss Vz, M34, Uy II -- Y z34 z33 y24 -- x14+ x13+ x12+ (16)
nop II w44 y23+ y22+

II w43 z32+
II w42

II Example 12-22. Graphics Transform (4 of 5)

12-33

PROGRAMMING EXAMPLES

end_even_xform::
d.i2apt.ss f", M24, Ux II -- -- y24 w44 y23 x14 -- x12+ x13+ xll+ (14)

nop II y22+ w43 y21+
II z32+ z31+
II w42 w41

d.m12apm.ss Vz, M33, f" II -- -- z33 y24 w44 x14 x13+ x12+ (15)
br end_xformloop II y23 y22+

II w43 z32+
II w42

d.m12tpm.ss Vz, M34, Uy II -- -- z34 z33 y24 -- x14+ x13+ x12+ (16)
nop II w44 y23+ y22+

II w43 z32+
II w42

end_odd_xform::
d.i2apt.ss f", M24, Ux II -- -- Y24 W44 Y23 X14 -- X12+ X13+ Xll+ (14)

fld.d 8(Vp), Vz II Y22+ W43 Y21+
II Rest of vertex II Z32+ Z31+

II W42 W41
d.m12apm.ss VZ, M33, n II -- -- Z33 Y24 W44 X14 X13+ X12+ (15)

nop II Y23 Y22+
II W43 Z32+
II W42

d.m12tpm.ss VZ, M34, Uy II -- -- Z34 Z33 Y24 -- X14+ X13+ X12+ (16)
nop II W4Y 423+ Y22+

II W43 Z32+
II W42

end_xformloop:: II Begin exit from dual-instruction mode
m12ttpa.ss f", f", f" II " z34 z33 y24 x14+ x13+ ("1l

nop II w44 y23+
II w43

m12apm.ss f", f", f" II -- -- " ftl z34 y24 x13+ x14+ (ftl2)
nop II y23+ w44

II z33+
II w43

m12tpm.ss n, f", XW II -- -- " " " y24+ x13+ x14+ ("3)
II z34 y23+ 1!J44
II z33+
II w43

m12ttpa.ss f", f", f" II -- -- " " " " y24+ x13+ ("4)
II z34 y23+
II z33+
II w43

m12tpm.ss f", f", Uz II -- -- " " " " 0 y24+ x13+ ("5)
II z34 y23+
II z33+
II w43

i2ap1.ss XW, f", n II -- -- " 0 " " x14+ " (06)
II y24+
II z34+
II w44

m12tpm.ss f0, f", f0 II -- -- ftl " 0 " 0 x14+ 0 ("7)
II y24+
II z34+
II w44

m12apm.ss n, f", f" II -- -- 0 0 0 0 ftl " x14+ (08)
II y24+
II z34+
II w44

m12ttpa.ss f", f", Uw II -- -- 0 " 0, 0 ftl " 0 x14+ ("9)
II y24+
II z34+
II w44

Ilbri r1 II Do bri here, if this code is a subroutine
fst.q Ux, 16(Up)++ II Store last xformed vertex

Example 12-22. Graphics Transform (5 of 5)

12-34

PROGRAMMING EXAMPLES

12.14.1 Representation of Vertices

A point in three-dimensional space is defined by its three coordinates along the X, Y,
and Z axes, so that a point P is represented by the vector (x, y, z). However, in graphics
programming, it is convenient to represent points by homogeneous coordinates. In homo
geneous coordinates, the point P is defined by a four-dimensional vector (w*x, w*y, w*z,
w). The additional factor w is called the scaling factor. To determine the actual coordi
nates of P, the scaling factor has to be divided out, leaving (x, y, z, 1).

The use of homogeneous coordinates has two advantages:

1. The range of numbers represented by x, y, and z may be greater than the limits
imposed by the processor's data types. This would be an advantage if, for example,
the coordinates x, y, and z were each stored as 16-bit integers, but a greater resolu
tion than 64K were desired. This is not an advantage in this example, where the
floating-point data types of the i860 architecture provide adequate resolution for
high-definition displays over a wide range of magnitudes.

2. The 1 x 4 vector formed by homogeneous coordinates can be multiplied by a 4x4
matrix. A 4 x 4 matrix is capable of representing all the transformations of a point.

12.14.2 Graphics Transformation Matrix

The formula for the product of a 1 x 4 row vector with a 4 x 4 matrix is:

[VX,VY,VZ,Vw] *
[

MM2111 M12 M13 M14]
M22 M23 M24

M31 M32 M33 M34
M41 M42 M43 M44

= [Ux,UY,Uz,Uw] =

(Vx*M11 + Vy*M21 + Vz*M31 + Vw*M41),
(Vx*M12 + Vy*M22 + Vz*M32 + Vw*M42),
(Vx*M13 + Vy*M23 + Vz*M33 + Vw*M43),
(Vx*M14 + Vy*M24 + Vz*M34 + Vw*M44)

(1)

The components of a 4 x 4 matrix, when multiplied by a point in homogeneous represen
tation, do not all have the same effect on that point. Figure 12-5 shows the various
functions of different parts of the matrix. One matrix can specify a combination of trans
formations, depending on the values in the matrix.

The transformation procedure presented in this example assumes that any or all of the
possible transformations may be specified in the transformation matrix, and, therefore, it
performs the complete matrix multiplication. Some systems achieve high transformation
rates by eliminating some capabilities. For example, by eliminating perspective and
zooming, the transformation matrix can be reduced to 3 x 3, with translation performed II
separately as simple additions. The procedure presented here makes no such simplifying .
assumptions.

12-35

PROGRAMMING EXAMPLES

3x3 3x1
submatrix for submatrix for

local scaling and rotation perspective

1x3 1 x 1
submatrix for submatrix for

translation zooming

240875i12-5

Figure 12-5. Functions of Parts of a Transformation Matrix

12.14.3 Transformation Code Design

As formula (1) indicates, the graphics transformation consists generally of a series of
multiplications followed by additions. The dual-operation instructions of the i860 archi
tecture are designed precisely to execute this type of calculation efficiently by using the
pipelined adder and multiplier in parallel. For the single-precision operands used, the
adder and multiplier pipelines both have three stages.

It is easiest to keep the adder and multiplier pipelines full when the input is treated as a
vector and the same operation is applied repeatedly to consecutive elements of the
vector. In this example, the vertex list is treated as a vector, and a single transformation
is applied to each vertex.

The dual-operation mnemonics used in this example are (refer to Chapter 8):

Mnemonic Multiplier Adder Register loading

m12apm fsrc1 *fsrc2 Mout+Aout

m12tpm fsrc1 *fsrc2 T +Mout

m12ttpa fsrc1 *fsrc2 T + Aout T~Mout

i2pt KI*fsrc2 T +Mout KI~fsrc1

i2apt KI*fsrc2 T +Aout KI~fsrc1
T~Mout

i2ap1 KI*fsrc2 fsrc1 + Aout T~Mout

12-36

PROGRAMMING EXAMPLES

The row*column dot products are calculated in an order determined by the needs of the
pipelined instruction, not in the order one would choose for pencil and paper calcula
tion. Instead of calculating rowl *columnl, followed by row2*column2, the code inter
leaves multiplies from rowl *columnl with those from row2*column2 and row3*column3.
Thus, when the third stage of the adder ejects a row 1 *columnl component, another
rowl*columnl component is ready at the output of the multiplier, and the two compo
nents can be immediately added by one of the instructions that feeds the adder output
back into the adder input.

Note that the adder pipeline is used by only 12 of the 16 cycles of xformloop, while the
multiplier is busy for all 16 cycles. This idle time in the adder is necessary, because the
dot product operation requires only M -1 adds for M multiplies.

Dual-instruction mode is used, so that loop control and loading and storing of the verti
ces can be carried on in parallel with transformation calculations.

To achieve maximum throughput, it is necessary to load the next input vector before
finishing with the current one. This is accomplished by alternating between two sets of
input registers and by "unrolling" the loop; i.e., processing two inputs in each pro
grammedloop. The section of code entitled "ODD VERTEX" is identical to the section
entitled "EVEN VERTEX" except for the input registers used. Even with unrolling, the
code fits easily within the 4-Kbyte instruction cache.

The load instructions read one entry beyond the end of the input vertex list; so, to avoid
a page fault, storage should be allocated at that location. However, the data at that
location are not used in the floating-point pipelines and therefore need not be valid.

The example procedure can be called by C syntax of the form:

xform (input_list, matrix, output_list, verte)Lcount);

Note that the same procedure can be used to combine two 4x4 transformation matrices.
In this case the call from C has the form:

xform (matri)LA, matri)LB, resulLmatrix, 4);

The result_matrix has the same transformation effect on a vertex list as matriLA and
matri)LB would have if applied in succession.

12.14.4 Transformation Performance

At 40 MHz, the number of transforms per second is given by:

40 million clocks/sec + 16 clocks/xform = 2.5 million xforms/sec

The number of floating-point operations per second is given by:

40 million clocks/sec x 28 flops/xform x 1 xform / 16 clocks = 70 Mflops

12-37

I

PROGRAMMING EXAMPLES

The latency from the first floating-point operation to storing the first result is 27 cycles.

These performance figures are not indicative of total graphics performance, because
transformation code is just a small part of a graphics system. Transformation of surface
or vertex normals, lighting calculations, factoring out Vw, clipping, and rendering must
also be considered.

12.15 PERSPECTIVE DIVIDE

After the graphics transform shown in Section 12.14, the scaling factor w must be divided
out of each of the transformed vertices sooner or later. The basic algorithm for division
is shown in Sections 12.2 and 12.3. The perspective divide procedure in Example 12-23
expands on the basic algorithm in two respects:

1. It performs three divisions using one reciprocal calculation.

2. It takes advantage of the floating-point pipelines and dual-operation instructions.

The example is coded as a stand-alone function that treats the entire vertex list as a
vector. While this structure is convenient for illustrating the algorithm, it is not neces
sarily the most efficient structure for any specific application. The overhead for function
entry and exit, for loop setup, and for loading and storing the vertices may be reduced by
integrating the perspective divide with another procedure, such as transformation.

The instructions at the heart of the loop operate on three vertices at a time, so as to best
utilize the floating-point multiplier and adder pipelines. The dual-operation mnemonics
used in this example are shown in the following table.

Mnemonic Multiplier Adder Register Loading

m12apm fsrel *fsre2 Mout+Aout

i2s1 KI*fsre2 srel-Mout

12-38

PROGRAMMING EXAMPLES

II PIPELINED DIVIDE FOR GRAPHICS PERSPECTIVE

II Inputs: (lists of vertices using single-precision
II floating-point homogeneous coordinates)
Vp rlb;
Up = r17;
Len = r18;

II Points to list of input vertices, stored row major.
II Points to list of output vertices, stored row major.
II Number of vertices (assumed)= 3, and a multiple of 3).

II For each input vertex (x, y, z, w), calculate (x/w, ylw, zlw, 1).
II Because pipelines have three stages, work on three vertices at a time.

II Symbolic register definitions:

Gl = f28; G2 f29; G3 f3~
Wlrcp = f19; W2rcp = f23; W3rcp = f27

II Guesses at reciprocals
II True reciprocals

II Registers to hold coordinates of three vertices:
Xl flb; Yl f17; Zl f18; Wl f19
X2 f2~; Y2 f2l; Z2 f22; W2 f23
X3 = f24; Y3 f25; Z3 = f2b; W3 = f27

tmp = f3l
Dcr r19 II Loop decrement
floatl = f8
fl oat2 = f9

II Single-precision l.~
II Single-precision 2.~

. d a t a; . ali g n . do ubI e; 0 n e_ two: :
one: ·float l.~ II One for normalized W
two: .float 2.~ II Two for floating-point divide usage

.text; .align .quad
pdivide:: ; _pdivide::

fld.d one_two, floatl
mov -3, Dcr
addu -lb, Up, Up
fld.q ~(Vp), Xl
addu -1, Len, Len
fld.q lb(Vp)++, X2
bla Dcr, Len, pdiv_loop
fld.q lb(Vp)++, X3

II Set loop decrement
II Compensate for autoincrement

II Initialize LCC

Example 12-23. Perspective Divide (1 of 2)

12-39

II

PROGRAMMING EXAMPLES

pdiv-loop: :
/1 First calculate reciprocals for 3 vertices: l/Wl, l/W2, l/W3.
II Pipelined floating-point division with 15 bits of precision in result.
II (Such precision is plenty, as llw used only for creating screen-image
II coordinates, and screen has less than 2K pixels/dimension.)
II Newton-Raphson formula for divide: Gnew = Guess*(2-(Guess*W»

frcp.ss Wl, Gl II Guessl (approx. l/wl)
frcp.ss W2, G2 II Guess2 (1/w2)
frcp.ss W3, G3 II Guess3

pfmul.ss Wl, Gl, f0 II Guess1*Wl
pfmul.ss W2, G2, f0
pfmul.ss W3, G3, f0

i2s1.ss float2, f0, f0 II 2- (Guess1*W1)
i2s1.ss float2, f0, f0 II 2-(Guess2*W2)
i2s1.ss float2, f0, f0 II 2-(Guess3*W3)

m12apm.ss Gl, tmp, tmp II Start calc of Guess*(2-Guess*Wl)
m12apm.ss G2, tmp, tmp II Guess*(2-Guess*W2)
m12apm.ss G3, tmp, tmp II Guess*(2-Guess*W3)

IIIf 23-bit precision divide is required, insert following instructions:
II pfmul.ss Wl, Gl, Gl; pfmul.ss W2, G2, G2; pfmul.ss W3, G3, G3
II i2s1.ss float2, f0, f0; i2s1.ss float2, f0, f0; i2s1.ss float2, fl1/, f0
II m12apm.ss Gl, tmp, tmp; m12apm.ss G2, tmp, tmp; m12apm.ss G3, tmp, tmp

pfmul.ss Yl, Wlrcp, Wlrcp II Start Yl/Wl
II Wlrcp has l/Wl (15 bits precision)
pfmul.ss Xl, Wlrcp, W2rcp II Xl/Wl
pfmul.ss Zl, Wlrcp, W3rcp II Zl/Wl

pfmul.ss W2rcp, Y2, Yl II Start Y2/W2
pfmul.ss W2rcp, X2, Xl II X2/W2
pfmul.ss W2rcp, Z2, Zl II Z2/W2

pfmul.ss W3rcp, Y3, Y2 II Start Y3/W3
pfmul.ss W3rcp, X3, X2 II X3/W3
pfmul.ss W3rcp, Z3, Z2 II Z3/W3

II NOTE: The following 3 multiplies could begin a scaling operation,
II in which case srcl and src2, instead of being f0, would multiply
II a scale factor for screen size by Yl, Y2, and Y3

pfmul.ss f0, f0, Y3
pfmul.ss f0, f0, X3

.align .double
d.pfmul.ss f0, f0, Z3

d.fmov.ss floatl, Wl
fmov.ss floatl, W2
fmov.ss floatl, W3
fst.q X3, 16(Up)++

fld.q 16(Vp)++, Xl
fld.q 16(Vp)++, X2
bla Dcr, Len, pdiv_loop
fld.q 16(Vp)++, X3

bri rl
nop

II Initiate dual-instruction mode

fst.q Xl, 16(Up)++
fst.q X2, 16<Up)++

II New W value is 1.11/
II Last dual-mode pair

Example 12-23. Perspective Divide (2 of 2)

12-40

Instruction Set Summary A ll

APPENDIX A
INSTRUCTION SET SUMMARY

Key to abbreviations:

For register operands, the abbreviations that describe the operands are composed of two
parts. The first part describes the type of register:

c

f

One of the control registers fir, psr, epsr, dirbase, db, fsr, bear,
ccr, pO, p1, p2, or p3

One of the floating-point registers: fO through f31

One of the integer registers: rO through r31

The second part identifies the field of the machine instruction into which the operand is
to be placed:

srcl

srclni

srcls

src2

dest

The first of the two source-register designators, which may be
either a register or a 16-bit immediate constant or. address offset.
The immediate value is zero-extended for logical operations and is
sign-extended for add and subtract operations (including addu and
subu) and for all addressing calculations.

Same as srcl except that no immediate constant or address offset
value is permitted.

Same as srcl except that the immediate constant is a 5-bit value
that is zero-extended to 32 bits.

The second of the two source-register designators.

The destination register designator.

Thus, the operand specifier isrc2, for example, means that an integer register is used and
that the encoding of that register must be placed in the src2 field of the machine
instruction.

Other (nonregister) operands are specified by a one-part abbreviation that represents
both the type of operand required and the instruction field into which the value of the
operand is placed:

#const

[broff

A 16-bit immediate constant or address offset that the i860 micro
processor sign-extends to 32 bits when computing the effective
address.

A signed, 26-bit, immediate, relative branch offset.

A-1

sbroff

brx

INSTRUCTION SET SUMMARY

A signed, 16-bit, immediate, relative branch offset.

A function that computes the target address by shifting the offset
(either lbroff or sbroff) left by two bits, sign-extending it to 32 bits,
and adding the result to the current instruction pointer plus four.
The resulting target address may lie anywhere within the address
space.

Other abbreviations include:

.p

.r

.V

.W

.X

.y

mem.x(address)

port.x(address)

Precision specification .ss, .sd, or .dd (.ds not permitted). Refer
to Table A-I.

Precision specification .ss, .sd, .ds, or .dd. Refer to Table A-I.

.sd or .dd Refer to Table A-I.

.ss or .dd. Refer to Table A-I.

.b (8 bits), .s (16 bits), or .1 (32 bits)

.I (32 bits), .d (64 bits), or .q (128 bits)

The contents of the memory location indicated by address with a
size of x.

The I/O port indicated by address with a size of x.

int_vector.x(address) The interrupt vector with a size of x returned from I/O port
address.

PM

Suffix

.ss

.sd

.dd

.ds

The pixel mask, which is considered as an array of eight bits
PM(7) .. PM(O), where PM(O) is the least-significant bit.

Table A-1. Precision Specification

Source Precision Result Precision

single single
single double
double double
double single

NOTE: Unless otherwise specified, floating-point operations accept single- or double-precision source
operands and produce a result of equal or greater precision. Both input operands must have the
same precision. The source and resultprecision are specified by a two-letter suffix to the mnemonic
of the operation.

A-2

INSTRUCTION SET SUMMARY

Instruction Definitions in Alphabetical Order

adds isrcl, isrc2, idest .. Add Signed
idest ~ isrcl + isrc2
OF ~ (bit 31 carry ~ bit 30 carry)
CC set if isrc2 + isrcl < 0 (signed)
CC clear if isrc2 + isrcl ;::: 0 (signed)

addu isrcl, isrc2, idest .. Add Unsigned
idest ~ isrcl + isrc2
OF ~ bit 31 carry
CC ~ bit 31 carry

and isrcl, isrc2, idest Logical AND
idest ~ isrcl and isrc2
CC set if result is zero, cleared otherwise

andh #const, isrc2, idest, ... Logical AND High
idest ~ (#const shifted left 16 bits) and isrc2
CC set if result is zero, cleared otherwise

andnot isrcl, isrc2, idest ... Logical AND NOT
idest ~ (not isrcl) and isrc2
CC set if result is zero, cleared otherwise

andnoth #const, isrc2, idest .. Logical AND NOT High
idest ~ (not (#const shifted left 16 bits» and isrc2
CC set if result is zero, cleared otherwise

bc lbroff Branch on CC
IF CC = 1
THEN continue execution at brx(lbroff)
FI

bc.t lbroff ... Branch on CC, Taken
IF CC = 1
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

A-3

I

INSTRUCTION SET SUMMARY

bla isrclni, isrc2, sbroff Branch on LCC and Add
LCC-temp clear if isrc2 + isrclni < 0 (signed)
LCC-temp set if isrc2 + isrclni ~ 0 (signed)
isrc2 ~ isrclni + isrc2
Execute one more sequential instruction
IF LCC
THEN LCC ~ LCC-temp

continue execution at brx(sbroff)
ELSE LCC ~ LCC-temp
FI

bnc lbroff , .. Branch on Not CC
IF CC = 0
THEN continue execution at brx(lbroff)
FI

bnc.t lbroff ... Branch on Not CC, Taken
IF CC = 0
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

br lbroff .. Branch Direct Unconditionally
Execute one more sequential instruction.
Continue execution at brx(lbroff).

bri [isrclni] .. Branch Indirect Unconditionally
Execute one more sequential instruction
IF any trap bit in psr is set
THEN copy PU to U, PIM to 1M in psr

clear trap bits

FI

IF DS is set and DIM is reset
THEN enter dual-instruction mode after executing one

. instruction in single-instruction mode
ELSE

FI

IF DS is set and DIM is set
THEN enter single-instruction mode after executing one

ELSE

FI

instruction in dual-instruction mode
IF
THEN

ELSE

FI

DIM is set
enter dual-instruction mode

for next instruction pair
enter single-instruction mode

for next instruction pair

A-4

INSTRUCTION SET SUMMARY

Continue execution at address in isrclni
(The original contents of isrclni is used even if the next instruction
modifies isrclni. Does not trap if isrclni is misaligned.)

bte isrcis, isrc2, sbroff .. Branch If Equal
IF isrcls = isrc2
THEN continue execution at brx(sbroff)
FI

btne isrcls, isrc2, sbroff ... Branch If Not Equal
IF isrcls ~ isrc2
THEN continue execution at brx(sbroff)
FI

calilbroff ... ~ .. Subroutine Call
r1 +- address of next sequential instruction + 4 (or + 8 in dual mode)
Execute one more sequential instruction
Continue execution at brx(lbroff)

calli [isrcl ni] ... Indirect Subroutine Call
r1 +- address of next sequential instruction + 4 (or + 8 in dual mode)
Execute one more sequential instruction

f Continue execution at address in isrclni
(The original contents of isrclni is used even if the next instruction
modifies isrclni. Does not trap if isrclni is misaligned. The
register isrclni must not be r1.)

fadd.p fsrcl, fsrc2, fdest ... Floating-Point Add
fdest +- fsrcl + fsrc2

faddp fsrcl, fsrc2, fdest : Add with Pixel Merge
Idest +- fsrcl + fsrc2 (using integer arithmetic; 8-byte operands and destination)
Shift and load MERGE register fromfsrcl + fsrc2 as defined in Table A-2

faddz fsrcl, fsrc2, fdest ... Add with Z Merge
fdest +- fsrcl + fsrc2 (using integer arithmetic; 8-byte operands and destination)
Shift MERGE right 16 and load fields 31..16 and 63 . .48 fromfsrcl + fsrc2

Tabl'e A-2. FADDP MERGE Update

Pixel Size Fields Load from Right Shift Amount
(from PS) Result into MERGE (Field Size)

8 63 .. 56, 47 . .40, 31 .. 24, 15 .. 8 8

16 63 .. 58, 47 . .42, 31 .. 26, 15 .. 10 6

32 63 .. 56, 31 .. 24 8

A-5

INSTRUCTION SET SUMMARY

famov.r fsrcl, fdest ... Floating-Point Adder Move
fdest ~ fsrcl

fiadd.w fsrcl, fsrc2, fdest .. Long-Integer Add
fdest ~ fsrcl + fsrc2 (2's complement integer arithmetic)

fisub.w fsrcl, fsrc2, fdest .. Long-Integer Subtract
frdest ~ fsrcl - fsrc2 (2's complement integer arithmetic)

fix.v fsrcl, fdest .. Floating-Point to Integer Conversion
fdest ~ 64-bit value with low-order 32 bits equal to integer part of fsrcl rounded

Floating-Point Load
fld.y isrcl (isrc2), fdest .. (Normal)
fld.y isrcl(isrc2) + +, fdest ... (Autoincrement)

fdest ~ mem.y (isrcl + isrc2)
IF auto increment
THEN isrc2 ~ isrcl + isrc2
FI

Cache Flush
flush #const(isrc2) ... (Normal)
flush #const(isrc2) + + ... (Autoincrement)

Write back (if modified) the line in data cache that has address (#const + isrc2)
80860XR: and set tag value to (#const + isrc2).

80860XP: and invalidate its virtual and physical tags.
Contents of line undefined.
IF autoincrement
THEN isrc2 ~ #const + isrc2
FI

fmlow.dd fsrcl, fsrc2, fdest .. Floating-Point Multiply Low
fdest ~ low-order 53 bits of (fsrcl mantissa x fsrc2 mantissa)
fdest bit 53 ~ most significant bit of (fsrcl mantissa x fsrc2 mantissa)

fmov.r fsrcl, fdest ... Floating-Point Reg-Reg Move
Assembler pseudo-operation

fmov.ss fsrcl, fdest
fmov.dd fsrcl, fdest
fmov.sd fsrcl, fdest
fmov.ds fsrcl, fdest

= fiadd.ss fsrcl, fO, fdest
= fiadd.dd fsrcl, fO, fdest
= famov.sd fsrcl, fdest
= famov.ds fsrcl, fdest

fmul.p fsrcl, fsrc2, fdest ... Floating-Point Multiply
fdest ~ fsrcl x fsrc2

fnop .. Floating-Point No Operation
Assembler pseudo-operation

fnop = shrd rO, rO, rO

A-6

INSTRUCTION SET SUMMARY

form fsrcl, fdest OR with MERGE Register
fdest <E- fsrcl OR MERGE
MERGE <E- 0

frcp.p fsrc2, fdest .. Floating-Point Reciprocal
fdest <E- 1 / fsrc2 with maximum mantissa error < 2- 7

frsqr.p fsrc2, fdest Floating-Point Reciprocal Square Root
fdest <E- 1 / Vifsrc2) with maximum mantissa error < 2- 7

Floating-Point Store
fst.y fdest, isrcl (isrc2) .. (Normal)
fst.y fdest, isrcl (isrc2) + + ... (Autoincrement)

mem.y (isrc2 + isrcl) <E- fdest
IF auto increment
THEN isrc2 <E- isrcl + isrc2
FI

fsub.p fsrcl, fsrc2, fdest ... Floating-Point Subtract
fdest <E- fsrcl - fsrc2

ftrunc.v fsrcl, fdest Floating-Point to Integer Conversion
fdest <E- 64-bit value with low-order 32 bits equal to integer part of fsrc1

fxfr fsrcl, idest ... Transfer F -P to Integer Register
idest <E- fsrcl

fzchkl fsrcl, fsrc2, fdest .. 32-Bit Z-Buffer Check
Consider the 64-bit operands as arrays of two 32-bit

fields fsrcl (l) . .fsrcl (0), fsrc2(1) . .fsrc2(0), and fdest(l) . .fdest(O)
where zero denotes the least-significant field.

PM <E- PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 6] <E- fsrc2(i) ~ fsrcl (i) (unsigned)
fdest(i) <E- smaller of fsrc2(i) and fsrcl (i)

OD
MERGE <E- 0

fzchks fsrcl, fsrc2, fdest ... 16-Bit Z-Buffer Check
Consider the 64-bit operands as arrays of four 16-bit

fields fsrcl (3) . .fsrcl (0), fsrc2(3) . .fsrc2(0), and fdest(3) . .fdest(0)
where zero denotes the least-significant field.

PM <E- PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM [i + 4] <E- fsrc2(i) 5: fsrcl (i) (unsigned)

A-7

INSTRUCTION SET SUMMARY

fdest(i) ~ smaller of fsre2(i) and fsrel (i)
OD
MERGE~O

intovr ... Software Trap on Integer Overflow
IF OF = 1
THEN generate trap with IT set in psr
FI

i ixfr isrelni, fdest ... Transfer Integer to F-P Register
fdest ~ isrelni

Id.c esre2, idest .. Load from Control Register
idest ~ esre2

Id.x isrel(isre2), idest ... Load Integer
idest ~ mem.x (isrel + isre2)

Idint.x isre2, idest .. Load Interrupt Vector
idest ~ int~veetor.x (isre2)
NOTE: Not available with the i860 XR CPU

Idio.x isre2, idest ... Load I/O
idest ~ port.x (isre2)
NOTE: Not available with the i860 XR CPU

lock .. Begin Interlocked Sequence
Set BL in dirbase.
The next data load or store that appears on the bus locks that location.
Disable interrupts until the bus is unlocked.

mov isre2, idest ... Register-Register Move
Assembler pseudo-operation

mov isre2, idest = shl rO, isre2, idest

mov const32, idest ... Constant-to-Register Move
Assembler pseudo-operation

adds l%const32, rO, idest
... when OxFFFF8000 :5 eonst32 < Ox8000

orh h%const32, rO, idest
or l%eonst32, idest, idest

... otherwise

nop ... Core-Unit No Operation
Assembler pseudo-operation

nop = shl rO, rO, rO

A-a

INSTRUCTION SET SUMMARY

or isrcl, isrc2, idest ... Logical OR
idest ~ isrcl OR isrc2
CC set if result is zero, cleared otherwise

orh #const, isrc2, idest .. Logical OR high
idest ~ (#const shifted left 16 bits) OR isrc2 .
CC set if result is zero, cleared otherwise

pfadd.p fsrcl, fsrc2, fdest Pipelined Floating-Point Add
fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ fsrcl + fsrc2

pfaddp fsrcl, fsrc2, fdest .. Pipelined Add with Pixel Merge
fdest ~ last-stage graphics-unit result
last-stage graphics-unit result ~ fsrcl + fsrc2 (using integer arithmetic; 8-byte
operands and destination)
Shift and load MERGE register from fsrcl + fsrc2 as defined in Table A-2

pfaddz fsrcl, fsrc2, fdest .. Pipe lined Add with Z Merge
frdest ~ last-stage graphics-unit result
last-stage graphics-unit result ~ fsrcl + fsrc2

(using integer arithmetic; 8-byte operands and destination)
Shift MERGE right 16 and load fields 31..16 and 63 . .48 fromfsrcl + fsrc2

pfam.p fsrcl, fsrc2, fdest Pipelined Floating-Point Add and Multiply
fdest ~ last· stage adder result
Advance A and M pipeline one stage (operands accessed before advancing

pipeline)
A pipeline first stage ~ A-op1 + A-op2
M pipeline first stage ~ M-op1 x M-op2

pfamov.r fsrcl, fdest .. Pipelined Floating-Point Adder Move
fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ fsrcl

pfeq.p fsrcl, fsrc2, fdest .. Pipelined Floating-Point Equal Compare
fdest ~ last stage adder result
CC set if fsrcl = fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfgt.p fsrcl, fsrc2, fdest Pipelined Floating-Point Greater-Than Compare
(Assembler clears R-bit of instruction)
fdest ~ last stage adder result
CC set if fsrcl > fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

A-9

II

INSTRUCTION SET SUMMARY

pfiadd.w fsrcl, fsrc2, fdest ... Pipelined Long-Integer Add
fdest ~ last-stage graphics-unit result
last-stage graphics-unit result ~ fsrcl + fsrc2 (2's complement integer arithmetiC)

pfisub.w fsrcl, fsrc2, fdest ... Pipelined Long-Integer Subtract
fdest ~ last-stage graphics-unit result
last-stage graphics-unit result ~ fsrcl - fsrc2 (2's complement integer arithmetic)

pfix.v fsrcl, fdest ... Pipelined Floating-Point to Integer Conversion
fdest ~ last stage adder result
Advance A pipeline on'e stage
A pipeline first stage ~ 64-bit value with low-order 32 bits

equal to integer part of fsrcl rounded

Pipelined Floating-Point Load
pfld.y isrcl (isrc2), fdest .. (Normal)
pfld.y isrcl (isrc2) + +, fdest (Autoincrement)

fdest ~ mem.y (third previous pfld's(isrcl + isrc2))
(where .y is precision of third previous pfld.y)

IF auto increment
THEN isrc2 ~ isrcl + isrc2
FI
NOTE: pfld.q is not available with the i860 XR CPU

pfle.p fsrcl, fsrc2, fdest Pipe lined F -P Less-Than or Equal Compare
Assembler pseudo-operation, identical to pfgt.p except that

assembler sets R-bit of instruction.
fdest ~ last stage adder result
CC clear if fsrcl ~ fsrc2, else set
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfmam.p fsrcl, fsrc2, fdest Pipelined Floating-Point Add and Multiply
fdest ~ last stage multiplier result
Advance A and M pipeline one stage (operands accessed before advancing

pipeline)
A pipeline first stage ~ A-opl + A-op2
M pipeline first stage ~ M-opl x M-op2

pfmov.r fsrcl, fdest Pipelined Floating-Point Reg-Reg Move
Assembler pseudo-operation

pfmov.ss fsrcl, fdest = pfiadd.ss fsrcl, fO, fdest
pfmov.dd fsrcl, fdest = pfiadd.dd fsrcl, fO, fdest
pfmov.sd fsrcl, fdest = pfamov.sd fsrcl, fdest
pfmov.ds fsrcl, fdest = pfamov.ds fsrcl, fdest

pfmsm.p fsrcl, fsrc2, fdest Pipelined Floating-Point Subtract and Multiply
fdest ~ last stage multiplier result
Advance A and M pipeline one stage (operands accessed before advancing

A-10

INSTRUCTION SET SUMMARY

pipeline)
A pipeline first stage +- A-op1 - A-op2
M pipeline first stage +- M -op 1- x M -op2

pfmul.p fsrel, fsre2, fdest .. Pipelined Floating-Point Multiply
fdest +- last stage multiplier result
Advance M pipeline one stage
M pipeline first stage +- fsrel x fsre2

pfmul3.dd fsrel, fsre2, fdest .. Three-Stage Pipelined Multiply
fdest +- last stage multiplier result
Advance 3-Stage M pipeline one stage
M pipeline first stage +- fsrel x fsre2

pform fsrel, fdest ... Pipelined OR to MERGE Register
fdest +- last-stage graphics-unit result
last-stage graphics-unit result +- fsrel OR MERGE
MERGE +- 0

pfsm.p fsrel, fsre2, fdest Pipelined Floating-Point Subtract and Multiply
fdest +-last stage adder result _
Advance A and M pipeline one stage (operands accessed before advancing

pipeline)
A pipeline first stage +- A-op1 - A-op2
M pipeline first stage +- M -op 1 x M -op2

pfsub.p fsrel, fsre2, fdest .. Pipelined Floating-Point Subtract
fdest +- last stage adder result
Advance A pipeline one stage
A pipeline first stage +- fsrel - fsre2

pftrunc.v fsrel, fdest Pipelined Floating-Point to Integer Conversion
fdest +- last stage adder result
Advance A pipeline one stage
A pipeline first stage +- 64-bit value with low-order 32 bits

equal to integer part of fsrel

pfzchkl fsrel, fsre2, fdest ... Pipelined 32-Bit Z-Buffer Check
Consider the 64-bit operands as arrays of two 32-bit

fields fsrel (1).!srel (0), fsre2(1).!sre2(0), and fdest(l) .!dest(O)
where zero .denotes the least-significant field.

PM +- PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 6] +- fsre2(i) ~ fsrel (i) (unsigned)
fdest(i) +- last-stage graphics-unit result
last-stage graphics-unit result +- smaller of fsre2(i) and fsrel (i)

OD,
MERGE +- 0

A-11

II

INSTRUCTION SET SUMMARY

pfzehks fsrcl, fsrc2, fdest .. Pipelined 16-Bit Z-BufTer Check
Consider the 64-bit operands as arrays of four 16-bit

fields fsrcl (3).fsrcl (0), fsrc2(3).fsrc2(0), and fdest(3) .. fdest(0)
where zero denotes the least-significant field.

PM +- PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM [i + 4] +- fsrc2(i) $ fsrcl (i) (unsigned)
fdest +- last-stage graphics-unit result
last-stage graphics-unit result (i) +- smaller of fsrc2(i) and fsrcl (i)

OD
MERGE +- 0

pst.d fdest, #const(isrc2) ... Pixel Store
pst.d fdest, #const(isrc2) + + ... Pixel Store Autoincrement

Pixels enabled by PM in mem.d (isrc2 + #const) +- fdest
Shift PM right by 8/pixel size (in bytes) bits
IF autoincrement
THEN isrc2 +- #const + isrc2
FI

seye.x isrc2 ... Special Cycles
Generate a special bus cycle (D/C# = 0, W/R# = 1, M/IO# = 0) and
set BE7#-BEO# according to the value contained in the register isrc2
NOTE: Not available with the i860 XR CPU

shl isrcl, isrc2, idest ... Shift Left
idest +- isrc2 shifted left by isrcl bits

shr isrcl, isrc2, idest .. Shift Right
SC (in psr) +- isrcl
idest +- isrc2 shifted right by isrcl bits

shra isrcl, isrc2, idest ... Shift Right Arithmetic
idest +- isrc2 arithmetically shifted right by isrcl bits

shrd isrclni, isrc2, idest , .. Shift Right Double
idest +- low-order 32 bits of isrclni:isrc2 shifted right by SC bits

st.e isrclni, csrc2 ... Store to Control Register
csrc2 +- srcl ni

st.x isrcl ni, #const(isrc2) .. Store Integer
mem.x (isrc2 + #const) +- isrclni

stio.x isrcl ni, isrc2 Store I/O
port.x (isrc2) +- isrclni
NOTE: Not available with the i860 XR CPU

A-12

INSTRUCTION SET SUMMARY

subs isrcl, isrc2, idest Subtract Signed
idest ~ isrcl - isrc2
OF ~ (bit 31 carry 7: bit 30 carry)
CC set if isrc2 > isrcl (signed)
CC clear if isrc2 :5 isrcl (signed)

subu isrcl, isrc2, idest .. Subtract Unsigned
idest ~ isrcl - isrc2
OF ~ NOT (bit 31 carry)
CC ~ bit 31 carry
(i.e., CC set if isrc2 :5 isrcl (unsigned)

CC clear if isrc2 > isrcl (unsigned))

trap isrcl ni, isrc2, idest .. Software Trap
Generate trap with IT set in psr

unlock ... End Interlocked Sequence
Clear BL in dirbase. The next load or store
unlocks the bus. Interrupts are enabled.

xor isrcl, isrc2, idest .. Logical Exclusive OR
idest ~ isrcl XOR isrc2
CC set if result is zero, cleared otherwise

xorh #const, isrc2, idest•.. Logical Exclusive OR High
idest ~ (#const shifted left 16 bits) XOR isrc2
CC set if result is zero, cleared otherwise

A-13

II

Instruction Format and B
Encoding III

APPENDIX B
INSTRUCTION FORMAT AND ENCODING

All instructions are 32 bits long and begin on a four-byte boundary. When operands are
registers, the encodings shown in the following table are used:

Register Encoding

rO 0

r31 31

fO 0

f31 31

Fault Instruction 0
Processor Status 1
Directory Base 2
Data Breakpoint 3
Floating-Point Status 4
Extended Processor Status 5

Bus Error Address* 6
Concurrency Control* 7

pO* 8
p1* 9
p2* 10
p3* 11

NOTE:
* Available only with i860 XP CPU. Using these encodings with the i860 XR CPU produces undefined

results.

Among the core instructions, there are two general formats: REG-format and CTRL
format. Within the REG-format are several variations.

B-1

INSTRUCTION FORMAT AND ENCODING

REG-Format Instructions

General Format

313029 28 2726/25 242322 21/20 19 18 1718/1514 13 12 11/10 9 8 7 8 5 4 3 2 1 0

OPCODE/I SRC2 DEST SRC1
IMMEDIATE, OFFSET,

OR NULL

\ \ \ \

16-Bit Immediate (except bte and btne)

/3130 29 26 27/26/25 242322 21120 19 18 1718it5 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0 <

OPCODE 1 SRC2 DEST IMMEDIATE

\ \ \ \

st, bla, bte, and btne

/31 30 29 28 2726/25 24 2322 21/20 19 18 17 ,0/,5 14 13 12 11/10 9 8 7 0 5 4 3 2 1 0

OPCODE/I SRC2
OFFSET SRC1

OFFSET LOW
HIGH SRC1S

\ \ \ \ \

bte and btne with 5-Bit Immediate

/31 3029 26 27/26/25 242322 21/20 19 18 17 18/15 14 13 12 11/,0 9 8 7 8 5 4 3 2 1 0

OPCODE 1 SRC2
OFFSET

IMMEDIATE OFFSET LOW
HIGH

\ \ \ \

240875ib-1

In these instructions, the src2 field selects one of the 32 integer registers (for most
instructions) or one of the control registers (for st.c and Id.c). Dest selects one of the 32
integer registers (for most instructions) or floating-point registers (for fld, fst, pfld, pst,
ixfr). For instructions where srcl is optionally an immediate constant or address offset,
bit 26 of the opcode (I-bit) indicates whether srcl is immediate. If bit 26 is clear, an
integer register is used; if bit 26 is set, srcl is contained in the low-order 16 bits, except
for bte and btne instructions. For bte and btne, the five-bit immediate value is contained
in the srcl field. For st, bte, btne, and bla, the upper five bits of the offset or broffset are
contained in the dest field instead of srcl, and the lower 11 bits of offset are the lower 11
bits of the instruction.

8-2

INSTRUCTION FORMAT AND ENCODING

For Id and st, bits 28 and 0 determine operand size as follows:

Bit 28 Bit 0 Operand Size

a a 8 bits

a 1 8 bits

1 0 16 bits

1 1 32 bits

When srcl is immediate and bit 28 is set, bit 0 of the immediate value is forced to zero.

For fld, fst, pfld, pst, and flush, bit 0 selects autoincrement addressing if set. For fld, fst,
pfld, and pst, bits 1 and 2 select the operand size as follows:

Bit 1 Bit 2 Operand Size

a a 64 bits

a 1 128 bits*

1 0 32 bits

1 1 32 bits

NOTE: *The 128-bit encoding for pfld is not available with the i86a XR CPU.

For flush, bits 1 and 2 must be zero.

When srcl is immediate, bits 0 and 1 of the immediate value are forced to zero to
maintain alignment. When bit 1 of the immediate value is clear, bit 2 is also forced to
zero.

8-3

INSTRUCTION FORMAT AND ENCODING

REG-Format Opcodes

Id.x Load Integer
st.x Store Integer
ixfr Integer to F-P Reg Transfer
- (reserved)

fld.x, fst.x Load/Store F-P
flush Flush
pst.d Pixel Store
Id.c, st.c Load/Store Control Register

bri Branch Indirect
trap Trap
- (Escape for F-P Unit)
- (Escape for Core Unit)
bte, btne Branch Equal or Not Equal
pfld.y Pipelined F-P Load
- (CTRL-Formaf Instructions

addu, -s, subu, -s, Add/Subtract
shl, shr Logical Shift
shrd Double Shift
bla Branch LCC Set and Add
shra Arithmetic Shift

and (h) AND
andnot(h) ANDNOT
or(h) OR
xor(h) XOR
- (reserved)

L Integer Length
o -8 bits
1 -16 or 32 bits (selected by bit 0)

LS Load/Store
o -Load
1 -Store

SO Signed/Ordinal
o -Ordinal
1 -Signed

H High
o -and, or, andnot, xor
1 - andh, orh, andnoth, xorh

B-4

31

0
0
0
0

0
0
0
0

0
0
0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

30 29 28 27

0 0 L 0
0 0 L 1
0 0 0 1
0 0 1 1

0 1 0 LS
0 1 1 0
0 1 1 1
0 1 1 LS

1 0 0 0
1 0 0 0
1 0 0 1
1 0 0 1
1 0 1 E
1 1 0 0
1 1 x x

0 0 SO AS
0 1 0 LR
0 1 1 0
0 1 1 0
0 1 1 1

1 0 0 H
1 0 1 H
1 1 0 H
1 1 1 H
1 x x 1

AS Add/Subtract
o -Add
1 -Subtract

LR Left/Right
o - Left Shift
1 - Right Shift

E Equal
o - Branch on Unequal
1 - Branch on Equal
Immediate
o - src1 is register
1 - src1 is immediate

26

I
1
0
0

I
1
1
0

0
1
0
1
I
I
x

I
I
0
1
I

I
I
I
I
0

INSTRUCTION FORMAT AND ENCODING

Core Escape Instructions

/313029282726/2524232221/20/11181716/1514131211/1011/8765/4 32 I 0
"

",

SRC2 DEST SRC1 SIZE I;~, ~ol OPCODE " o 1 001 1
,:;,:1

\ \ \ \ \ \

D RESERVED BY INTEL CORPORATION (SET TO ZERO)

NOTE:
FIELDS NOT USED BY AN INSTRUCTION ARE RESERVED AND MUST BESET TO ZERO.

240875ib-2

Core Escape Opcodes

4 3 2 o
- (reserved) 0 0 0 0 0
lock Begin Interlocked Sequence 0 0 0 0 1
calli Indirect Subroutine Call 0 0 0 1 0
- (reserved) 0 0 0 1 1
intovr Trap on Integer Overflow 0 0 1 0 0
- (reserved) 0 0 1 0 1
- (reserved) 0 0 1 1 0
unlock End Interlocked Sequence 0 0 1 1 1
Idio* Load I/O 0 1 0 0 0
stio* Store I/O 0 1 0 0 1
Idint* Load Interrupt Vector 0 1 0 1 0
scyc* Special Cycles 0 1 0 1 1
- (reserved) 0 1 1 x x
- (reserved) 1 0 x x x
- (reserved) 1 1 x x x

NOTE:
* Available only with i860 XP CPU, not with i860 XR CPU.

For the instructions Idio, stio, Idint, and seye, the operand size is encoded by bits 9 and
10 as follows. For other instructions, these bits are reserved and should be set to zero.

Operand Size Bit 10 Bit 9

8 Bits (.b) 0 0

16 Bits (.s) 0 1

32 Bits (.I) 1 0

reserved 1 1

B-5

II

INSTRUCTION FORMAT AND ENCODING

CTRL-Format Instructions

/31 3() 29/28 27 1!(J/25 242322 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0

o 1 1 ope BROFFSET

\ \ \

NOTE:
BROFFSET IS A SIGNED 26-BIT RELATIVE BRANCH OFFSET

240875ib·3

CTRL-Format Opcodes

28 27 26

br Branch Direct 0 1 0
call Call 0 1 1
bc(.t) Branch on CC Set 1 0 T
bnc(.t) Branch on CC Clear 1 1 T

T Taken
o -bc or bnc
1 - bc.t or bnc.t

B-6

INSTRUCTION FORMAT AND ENCODING

Floating-Point Instructions

/31 ,J() 29 28 2726/25 242322 21/20 19 18 1716/15 14 13 12 11/10/9/8/7/6 5 4 3 2 1 0

0 1 0 0 1 0 SRC2 DEST SRC1 P D S R OPCODE

\ \ \ \ \ \ \ \ \

- Source; one of 32 floating-point registers SRC1, SRC2
DEST - Destination; one of 32 floating-point registers

p

D

(except fxfr; one of 32 integer registers)

Pipelining*
1 - Pipelined instruction mode
o - Scalar instruction mode
Dual-Instruction Mode
1 - Dual-instruction mode
o -Single-instruction mode

S

R

8-7

Source Precision
1 - Double-precision source operands
o -Single-precision source operands
Result Precision**
1 - Double-precision result
o -Single-precision result

240875ib-4

INSTRUCTION FORMAT AND ENCODING

Floating-Point Opcodes

6 5 4 3 2 o
pfam Add and Multiply* 0 0 0 OPC pfmam Multiply with Add*
pfsm Subtract and Multiply* 0 0 1 OPC pfmsm Multiply with Subtract*

(p)fmul Multiply 0 1 0 0 0 0 0
fmlow Multiply Low 0 1 0 0 0 0 1
frep Reciprocal 0 1 0 0 0 1 0
frsqr Reciprocal Square Root 0 1 0 0 0 1 1
pfmul3.dd 3-Stage Pipelined Multiply 0 1 0 0 1 0 0

(p)fadd Add 0 1 1 0 0 0 0
(p)fsub Subtract 0 1 1 0 0 0 1
(p)fix Fix 0 1 1 0 0 1 0
(p)famov Adder Move 0 1 1 0 0 1 1
pfgt/pfle** Greater Than 0 1 1 0 1 0 0
pfeq Equal 0 1 1 0 1 0 1
(p)ftrune Truncate 0 1 1 1 0 1 0

fxfr Transfer to Integer Register 1 0 0 0 0 0 0
(p)fiadd Long-Integer Add 1 0 0 1 0 0 1
(p)fisub Long-Integer Subtract 1 0 0 1 1 0 1

(p)fzehkl Z-Check Long 1 0 1 0 1 1 1
(p)fzehks Z-Check Short 1 0 1 1 1 1 1
(p)faddp Add with Pixel Merge 1 0 1 0 0 0 0
(p)faddz Add with Z Merge 1 0 1 0 0 0 1
(p)form OR with MERGE Register 1 0 1 1 0 1 0

NOTE:
All opcodes not shown are reserved.
* pfam and pfsm have P-bit set; pfmam and pfmsm have P-blt clear.

** pfgt has R bit cleared; pfle has R bit set. -

8-8

INSTRUCTION FORMAT AND ENCODING

Data Path Encoding

OPC PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic op1 op2 op1 op2 Load Load*

0000 r2p1 r2s1 KR src2 src1 M result No No
0001 r2pt r2st KR src2 T M result No Yes
0010 r2ap1 r2as1 KR src2 src1 A result Yes No
0011 r2apt r2ast KR src2 T A result Yes Yes

0100 i2p1 i2s1 KI src2 src1 M result No No
0101 i2pt i2st KI src2 T M result No Yes
0110 i2ap1 i2as1 KI src2 src1 A result Yes No
0111 i2apt i2ast KI src2 T A result Yes Yes

1000 rat1p2 rat1s2 KR A result src1 src2 Yes No
1001 m12apm m12asm src1 src2 A result M result No No
1010 ra1p2 ra1s2 KR A result src1 src2 No No
1011 m12Hpa m12Hsa src1 scr2 T A result Yes No

1100 iat1p2 iat1s2 KI A result src1 src2 Yes No
1101 m12tpm m12tsm src1 src2 T M result No No
1110 ia1p2 ia1s2 KI A result src1 src2 No No
1111 m12tpa m12tsa src1 src2 T A result No No

OPC PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic op1 op2 op1 op2 Load Load*

0000 mr2p1 mr2s1 KR src2 src1 M result No No
0001 mr2pt mr2st KR src2 T M result No Yes
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No
0011 mr2mpt mr2mst KR src2 T M result Yes Yes

0100 mi2p1 mi2s1 KI src2 src1 M result No No
0101 mi2pt mi2st KI src2 T M result No Yes
0110 mi2mp1 mi2ms1 KI src2 src1 M result Yes No
0111 mi2mpt mi2mst KI src2 T M result Yes Yes

1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No
1001 mm12mpm mm12msm src1 src2 M result M result No No
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No
1011 mm12Hpm mm12Hsm src1 src2 T M result Yes No

1100 mimt1p2 mimt1s2 KI M result src1 src2 Yes No
1101 mm12tpm mm12tsm src1 src2 T M result No No
1110 mim1p2 mim1s2 KI M result src1 src2 No No
1111 Intel Reserved

NOTE: *If K-Ioad is set, KR is loaded when operand-1 of the multiplier is KR; KI is loaded when operand-1
of the multiplier is KI.

8-9

Instruction Timings c

________________ B

APPENDIX C
INSTRUCTION TIMINGS

Generally, i860 microprocessor instructions take one clock to execute unless a freeze
condition is invoked. Detailed times, along with freeze conditions and their associated
delays, are shown in the table on the following pages. The following symbols are used for I!I
brevity in the timing table: Ii:I
+n

~n

n .. m

XR:

XP:

OA

Rl

R2

RL

RLI

RN

RX

n clocks must be added to the execution time if the stated condi
tions apply.

The processor requires at least n clocks between the indicated
instructions. The actual delay will be n minus the number of clocks
for executing intervening instructions (or dual-mode pairs). If the
time for intervening instructions is ~ n, there is no delay.

Indicates a range of clocks. These cases are accompanied by a
reference to a note where further explanation is available.

Applies to i860 XR microprocessors only.

Applies to i860 XP microprocessors only.

The number of clocks to finish all outstanding accesses.

The number of clocks from ADS# through the first READY #
(80860XR) or BRDY # (80860XP) of the indicated bus activity.

The number of clocks from ADS# through the second READY #
or BRDY#.

The number of clocks from ADS# through the last READY # or
BRDY#.

XP: The number of clocks through last BRDY # of first access.

XR: The number of clocks until next nonrepeated address can be
issued (i.e., an address that is not the 2nd-4th cycle of a cache fill,
the 2nd-8th cycle of ct· GS8 mode instruction fetch, nor the 2nd
cycle of a 128-bit write).

The number of clocks through READY# or BRDY# for the next
64-bit-or-Iess write cycle or second READY # or BRDY # for the
next 128-bit write cycle.

C-1

Notes:

a.

b.

c.

TLB

INSTRUCTION TIMINGS

"Ad-dress path full" means one address internally waiting for bus
while external bus pipeline full.

"Store path full" means two stores or one 256-bit write-back inter
nally waiting for bus plus external bus pipeline full.

If a floating-point instruction, graphics-unit instruction, fst, or pst
is executed when a scalar floating-point operation (other than frcp
or frsqr) is in progress, the scalar operation must complete first:
two additional clocks for fadd, fix, fmlow, fmul.ss, fmul.sd, ftrunc,
and fsub; three additional clocks for fmul.dd. Add one if either or
both of these situations occur:

1. There is an overlap between the result register of the previous
scalar operation and the source bf the floating-point operation,
and the destination precision of the scalar operation differs
from the source precision of the floating-point operation.

2. The floating-point operation is pipelined and its destination is
not fO.

TLB miss. Five clocks plus the number of clocks to finish two
reads plus the number of clocks to set A-bits (if necessary).

In addition, any instruction may be delayed due to an instruction cache miss or TLB miss
during the instruction fetch. The time for a TLB miss is shown above in note TLB. An
instruction cache miss adds the following delays:

• The number of clocks to get the next instruction from the bus (ADS# clock to first
READY# or BRDY# clock, inclusive).

• XR: When any of the instructions in the new instruction-cache line is a branch or call
or causes a freeze, the time through the last READY # for the new line.

• If the data cache is being accessed when the instruction-cache miss occurs, two clocks
for data cache miss; one clock for hit.

Not included in the table is the delay caused by a trap. This depends on the trap
handler.

In dual instruction mode, each pair of instructions requires the maximum of the times
required by each individual instruction.

C-2

Instruction

adds

addu

and

andh

andnot

andnoth

bc

bc.t

bla

bnc

bnc.t

br

bri

bte

btne

call

calli

fadd.p

faddp

faddz

famov.r

fiadd.w

Execution
Clocks

1
2
+1

1
2
+1

1
2

(same as bc)

(same as bc.t)

1

2

1
3

(same as bte)

1
+ 1
+1 +R1
+1 +R2

2
+ 1
+1 +R1
+1 +R2

1
~2 . .4

1
+1

~2 . .4

(same as faddp)

INSTRUCTION TIMINGS

Condition

If branch not taken.
If branch taken.
If the prior instruction is addu, adds, subu, subs, pfeq, or pfgt.

If branch taken.
If branch not taken.
If the prior instruction is addu, adds, subu, subs, pfeq, or pfgt.

If branch taken.
If branch not taken.

If branch not taken.
If branch taken.

If r1 referenced in next instruction.
If data cache load miss in progress for a read of less than 128 bits.
If data cache load miss in progress for 128-bit read.

If r1 referenced in next instruction.
If data cache load miss in progress for a read of less than 128 bits.
If data cache load miss in progress for 128-bit read.

(... and all other A-unit instructions except dual operations)
If executed when a scalar floating-point operation (other than frcp
or frsqr) is in progress.c

(... and all other G-unit instructions except fiadd.w, fxfr)
If fdest is used by next instruction and next instruction is G-, M- or
A-unit instruction
If executed when a scalar floating-point operation (other than frcp
or frsqr) is in progress.c

(same as fadd.p)

1
+ 1

+1

~2 . .4

If fdest is used by next instruction and next instruction is M- or
A-unit instruction (except when fiadd is used for fmov.dd or
fmov.ss).
If fdest is used by next instruction and next instruction is G-unit
instruction.
If executed when a scalar floating-point operation (other than frcp
or frsqr) is in progress. C

C-3

Instruction

fisub.w

fix.v

fld.y

flush

fmlow.dd

fmov.r

fmul.p

fnop

form

frcp.p

frsqr.p

fst.y

Execution
Clocks

INSTRUCTION TIMINGS

Condition

(same as faddp)

(same as fadd.p)

1
+ 1
~2

+1 +R1
+1 +R2
+1 +RL
~2

+2

+R2
+RN
+RL1
+TLB

1
~3

~2

+R2
+1 +RX
+TLB

1
+1

+1
~2 . .4

If this is the instruction after an st, fst or pst that hits the data
cache.
If fdest is referenced in the next two instructions.
If 32-bit fld.l or 64-bit fld.d misses the data cache.
If 128-bit fld.q misses the data cache.
If data cache load miss in progress (except in the following case).
XP: If this instruction follows a data cache access that misses in the
virtual tags but hits in the physical tags.
XP: If the prior instruction is a pfld.y that hits a modified line in the
data cache.
XP: If data-cache line write-back due to snoop is in progress.
XR: If address path full.a

XP: If address path full. a

If TLB miss.

XR: If preceded by another flush.
XP: If preceded by another flush.
XP: If data-cache line write-back due to snoop is in progress.
If flush to modified line when store path full. b

If TLB miss.

(... and all other M-unit instructions except dual operations)
If fsrc1 refers to result of the prior operation (either scalar or
pipelined).
If the prior operation is a double-precision multiply.
If executed when a scalar floating-point operation (other than frcp
or frsqr) is in progress.c

fmov.ss and fmov.dd same as fiadd.w
fmov.sd and fmov.ds same as fadd.p

(same as fmlow.dd)

1

(same as faddp)

(same as fmlow.dd)

(same as fmlow.dd)

1
+1

+1 +RL
+2

+R2
~2 . .4

+RN
+RL1
+1 +RX
+TLB

If followed by pipelined floating-point operation that overwrites the
register being stored.
If data cache load miss in progress.
XP: If the prior instruction is a pfld.y that hits a modified line in the
data cache.
XP: If this instruction follows a data cache access that misses in the
virtual tags but hits in the physical tags.
XP: If data-cache line write-back due to snoop is in progress.
If executed when a scalar floating-point operation (other than frcp
or frsqr) is in progress.c

XR: If address path full. a

XP: If address path full. a

If cache miss when store path full. b

If TLB miss.

C-4

Instruction

fsub.p

ftrunc.v

fxfr

fzchkl

fzchks

intovr

ixfr

Id.c

Id.x

Idint.x

Idio.x

lock

mov

nop

or

orh

pfadd.p

pfaddp

pfaddz

Execution
Clocks

INSTRUCTION TIMINGS

Condition

(same as fadd.p)

(same as fadd.p)

1
+1
+1 +R1
+1 +R2
~2 .. 4

If idest referenced in next instruction.
If data cache load miss in progress for 64-bit read.
If data cache load miss in progress for 128-bit read.
If executed when a scalar floating-point operation (other than frcp
or frsqr) is in progress.c

(same as faddp)

(same as faddp)

1

1
+1 +R1
+1 +R2
~2

1
+1
+1 +R1
+1 +R2

1
+1
+1

+1 +RL
~1 +R1

~2

+2

+R2
+RN
+RL1
+1 +RX
+TLB

1 + OA

+ OA

If data cache load miss in progress for 64-bit read.
If data cache load miss in progress for 128-bit read.
If fdest is referenced in the next two instructions.

If idest referenced in next instruction.
If data cache load miss in progress for 64-bit read.
If data cache load miss in progress for 128-bit read.

If idest referenced in next instruction.
If this is the instruction after an st, fst or pst that hits the data
cache.
If data cache load miss in progress.
If Id.x misses the data cache and a subsequent instruction refer
ences the idest of the Id.x (exm·1pt for following case).
XP: If this instruction follows a data cache access that misses in the
virtual tags but hits in the physical tags.
XP: If the prior instruction is a pfld.y that hits a modified line in the
data cache.
XP: If data-cache line write-back due to snoop is in progress.
XR: If address path full.a

XP: If address path full. a

If cache miss when store path full. b

If TLB miss.

(same as fadd.p)

(same as faddp)

(same as faddp)

C-5

II

Instruction

pfam.p

pfamov.r

pfeq.p

pfgt.p

pfiadd.w

pfisub.w

pfix.v

, pfld.y

pfle.p

pfmam.p

pfmov.r

pfmsm.p

pfmul.p

pfmul3.dd

pform

pfsm.p

pfsub.p

pftrunc.v

pfzchkl

pfzchks

pst.d

scyc.x

shl

shr

shra

Execution
Clocks

INSTRUCTION TIM.INGS

Condition

1 (... and all other dual operations)
+ 1 If fsrc1 refers to result of the prior operation (either scalar or

pipelined).
+ 1 If the prior operation is a double-precision multiply.
~2 .. 4 If executed when a scalar floating-point operation (other than frcp

or frsqr) is in progress.c

(same as fadd.p)

(same as fadd.p)

(same as fadd.p)

(same as faddp)

(same as faddp)

(same as fadd.p)

1
+ 1 + RL
~2

+ 1 + RL1
+2+0A
+2

+R2
+RN
+RL1
+TLB

1

If data cache load miss in progress.
If fdest is referenced in the next two instructions.
If three pfld's are outstanding.
XR: If pfld hits data cache.
XP: If the prior instruction is a pfld.y that hits a modified line in the
data cache.
XP: If this instruction follows a data cache access that misses in the
virtual tags but hits in the physical tags.
XP: If data-cache line write-back due to snoop is in progress.
XR: If address path fulLa
XP: If address path fulLa
If TLB miss.

(same as pfam.p)

pfmov.ss and pfmov.dd same as faddp
pfmov.sd and pfmov.ds same as fadd.p

(same as pfam.dd)

(same as fmlow.dd)

(same as fmlow.dd)

(same as faddp)

(same as pfam.dd)

(same as fadd.p)

(same as fadd.p)

(same as faddp)

(same as faddp)

(same as fst.d)

1 + OA

C-6

Instruction

shrd

st.c

st.x

stio.x

subs

subu

trap

unlock

xor

xorh

Execution
Clocks

1

3
+ 1 + R1
+1 +R2

1
+ 1 + RL
+2

+R2
+RN
+RL1
+1 +RX
+TLB

1 + OA

INSTRUCTION TIMINGS

Condition

If data cache load miss in progress for a read of less than 128 bits,
If data cache load miss in progress for 128-bit read.

If data cache load miss in progress,
XP: If the prior instruction is a pfld.y that hits a modified line in the
data cache,
XP: If this instruction follows a data cache access that misses in the
virtual tags but hits in the physical tags,
XP: If data-cache line write-back due to snoop is in progress,
XR: If address path fu",a
XP: If address path fu",a
If cache miss and store path fu",a
If TLB miss,

C-7

Instruction Characteristics 0

II

APPENDIX D
INSTRUCTION CHARACTERISTICS

The following table lists some of the characterisics of each instruction. The characteris
tics are:

• What processing unit executes the instruction. The codes for processing units are:

A Floating-point adder unit
E Core execution unit
G Graphics unit
M Floating-point multiplier unit

• Whether the instruction is pipelined or not. A P indicates that the instruction is
pipelined.

• Whether the instruction is a delayed branch instruction. A D marks the delayed
branches.

• Whether execution is suppressed in user mode. An SU marks supervisor-only
instructions.

• Whether the instruction is available on both the i860 XR and i860 XP microproces
sors. An XL marks instructions that are available only on the i860 XP microprocessor.

• Whether the instruction changes the condition code CC. A CC marks those
instructions that change CC.

• Which faults can be caused by the instruction. The codes used for exceptions are:

IT Instruction Fault
SE Floating-Point Source Exception
RE Floating-Point Result Exception, including overflow, underflow, inexact

result
DAT Data Access Fault

Note that this is not the same as specifying at which instructions faults may be
reported. A result exception is reported on the subsequent floating-point instruction,
pst, fst, or sometimes fld, pfld, and ixfr.

The instruction access fault IAT and the interrupt trap IN are not shown in the table
because they can occur for any instruction.

• Performance notes. These comments regarding optimum performance are recommen
dations only. If these recommendations are not followed, the i860 microprocessor
automatically waits the necessary number of clocks to satisfy internal hardware
requirements. The following notes define the numeric codes that appear in the
instruction table:

1. The following instruction should not be a conditional branch (be, bnc, be.t, or
bne.t).

2. The destination should not be a source operand of the next two instructions.

3. A load should not directly follow a store that is expected to hit in the data cache.

4. When the prior instruction is scalar, fsrcl should not be the same as the fdest of
the prior operation.

n-1

II

INSTRUCTION CHARACTERISTICS

5. The idest should not reference the destination of the next instruction if that
instruction is a pipelined floating-point operation.

6. The destination should not be a source operand of the next instruction. (For call
and calli, the destination is r1.)

7. When the prior operation is scalar and multiplier opl is fsrel, isre2 should not be
the same as the idest of the prior operation.

8. When the prior operation is scalar, srel and sre2 of the current operation should
not be the same as dest of the prior operation.

9. A pfld should not immediately follow a pfld.

• Programming restrictions. These indicate combinations of conditions that must be
avoided by programmers, assemblers, and compilers. The following notes define the
alphabetic codes that appear in the instruction table:

a. The sequential instruction following a delayed control-transfer instruction may
not be another control-transfer instruction, nor the target of a control-transfer
instruction.

b. When using a bri to return from a trap handler, programmers should take care
to prevent traps from occurring on that or on the next sequential instruction. 1M
should be zero (interrupts disabled) when the bri is executed.

c. If idest is not zero, isrel must not be the same as idest.

d. When fsrel goes to multiplier opl or to KR or KI, fsrel must not be the same as
fdest.

e. If dest is not zero, srel and sre2 must not be the same as dest.

f. Isrel must not be the same register as isre2 for the autoincrementing form of this
instruction.

g. Isrel must not be the same register as isre2.

D-2

INSTRUCTION CHARACTERISTICS

Pipelined?

Instruction Execution Delayed? Sets Faults
Performance Programming

Unit Supervisor? CC? Notes Restrictions
XP Only?

adds E CC 1
addu E CC 1
and E CC
andh E CC
andnot E CC

andnoth E CC
bc E
bc.t E D a
bla E D a, 9
bnc E

bnc.t E D a
br E D a
bri E D a, b
bte E
btne E

call E D 6 a
calli E D 6 a
fadd.p A SE,RE
faddp G 8
faddz G 8

famov.r A SE,RE
fiadd.w G 8
fisub.w G 8
fix.p A SE,RE
fld.y E DAT 2, 3 f

flush E
fmlow.dd M 4
fmul.p M SE,RE 4
form G 8
frcp.p M SE,RE

frsqr.p M SE,RE
fst.y E DAT 5 f
fsub.p A SE,RE
ftrunc.p A SE,RE
fxfr G 6,8

fzchkl G 8
fzchks G 8
intovr E IT
ixfr E 2
Id.c E

Id.x E DAT 6
Idint.x E SU,XP DAT
Idio.x E SU,XP DAT
lock E
or E CC
orh E CC

D-3

INSTRUCTION CHARACTERISTICS

Pipelined?

Instruction Execution Delayed? Sets Faults Performance Programming
Unit Supervisor? CC? Notes Restrictions

XP Only?

pfadd.p A P SE, RE*
pfaddp G P * 8· e
pfaddz G P * 8 e
pfam.p A&M P SE, RE* 7 d
pfamov.r A P SE, RE*

pfeq.p A P CC SE* 1
pfgt.p A P CC SE* 1
pfiadd.w G P * 8 e
pfisub.w G P * 8 e
pfix.p A P SE, RE*

pfld.y E P, (XP)** OAT* 2, 9 f
pfmam.p A&M P SE, RE* 7 d
pfmsm.p A&M P SE,RE* 7 d
pfmul.p M P SE, RE* 4 c
pfmul3.dd M P SE, RE* 4 c

pform G P * 8 e
pfsm.p A&M P SE, RE* 7 d
pfsub.p A P SE, RE*
pftrunc.p A P SE, RE*
pfzchkl G P * 8

pfzchks G P * 8
pst.d E OAT 5 f
scyc.x E SU,XP OAT
shl E
shr E

shra E
shrd E
st.c E
st.x E OAT
stio.x E SU,XP OAT

subs E CC 1
subu E CC 1
trap E IT
unlock E
xor E CC
xorh E CC

NOTES:
*On the i860 XP microprocessor, the pipelined instructions can generate IT with PI.

**On the i860 XR microprocessor, the 128-bit pfld.q is not available. If used it causes an instruction trap.

D-4

Compatibility Between E
i860 ™ XR and i860 ™ XP
Microprocessors

II

APPENDIX E
COMPATIBILITY BETWEEN

i860™ XR AND i860™ XP MICROPROCESSORS

REQUIRED CHANGES

To port existing systems software from the i860 XR microprocessor to the i860 XP
microprocessor, the following changes may be required. Applications software does not
require changes.

1. Data cache flush. All four ways of the data cache must be flushed on the i860 XP II
microprocessor. The cache flush routine can be modified to check processor type in
epsr or the DCS field of dirbase and flush the appropriate number of ways.

2. Parity and bus error traps. If the i860 XP system signals these errors, the trap
handler must be extended to handle them. Software must avoid testing the BEF and
PEF bits unless executing on the i860 XP microprocessor.

3. LOCK# deactivation. On the i860 XP microprocessor, traps do not automatically
deactivate the LOCK# signal, so the trap handler must do a data access to deacti
vate LOCK#. Trap handlers that already access data soon after invocation do not
require this modification.

4. Load pipe precision. The precision of the last stage of the load pipeline is specified
by the LRP bit on the i860 XR microprocessor but by the LRPO and LRPI bits on
the i860 XP microprocessor. The procedure that restores the load pipe must check
the processor type, use the appropriate bits, and restore the correct precision. Pipe
restoration code for the i860 XR microprocessor will work correctly on the i860 XP
microprocessor if pfld.q is not used. .

5. Pre-accessed trap handler pages. Page-directory and page-table entries for the
instruction pages of the trap handler and for the first data page accessed by the trap
handler must always have A = 1. Software modified to allocate page tables this way
works on both i860 XR and i860 XP microprocessors.

6. Page directory entry bit 7. On the i860 XP microprocessor, this bit determines
whether the page size is four Mbytes or four Kbytes. On the i860 XR microproces
sor, it is reserved and should be set to zero. It must be set to zero for four unmodified
i860 XR microprocessor software to work correctly on the i860 XP microprocessor.

E-1

• +_I® In'tJI COMPATIBILITY BETWEEN i860™ XR AND i860™ XP MICROPROCESSORS

PERFORMANCE OPTIMIZATIONS

Software developers may wish to make the following performance enhancements in sys
tems software for the i860 XP microprocessor. Systems software that must execute on
both i860 XP and i860 XR systems can contain code both with and without the optimi
zations. By testing the processor type, the appropriate instruction path can be
determined.

1. Data cache flush. On the i860 XP microprocessor, a complete flushing of the data
cache is not needed when changing context or marking a page not present.

2. The epsr bits AI, DI, PI, and PT can be used on the i860 XP microprocessor to
make trap handlers more efficient.

3. Four-Mbyte pages can be allocated to frame buffers and the operating-system ker
nel, thereby reducing the cost of TLB misses.

NEW FEATURES

Software that uses the new features available only on the i860 XP microprocessor will
not be compatible with the i860 XR microprocessor unless alternate instruction paths
are provided.

Systems software features:

1. New instructions Idio, stio, Idint, and scyc.

2. Four-Mbyte pages.

3. Privileged registers pO, p1, p2, and p3.

4. Concurrency control unit.

5. 128-bit load instruction pfld.q.

6. Support for virtual address aliases.

Applications software features:

1. Concurrency control unit.

2. 128-bit load instruction pfld.q. The i860 XR microprocessor traps on pfld.q; there
fore, software has the opportunity to emulate a pfld.q with two pfld.d instructions.
However, this strategy does not yield optimal performance on the i860 XR
microprocessor.

E-2

• +_I® In-e- COMPATIBILITY BETWEEN i860™ XR AND i860™ XP MICROPROCESSORS

NOTES

On the i860 XP microprocessor, pages with WT = 1 are cached with the write-through
policy; whereas, on the i860 XR microprocessor, they are not cached at all. Because this
change in the function of WT was anticipated in the i860 XR microprocessor documen
tation, no incompatibility should arise.

E-3

II

Index

3-D graphics operations
graphics unit, 8.5.2

3-D rendering
programming examples, 12.13

8-bit pixel
data format, 2.5

16-bit pixel
data format, 2.5

16-bit value
alignment requirements, 4.1

32-bit binary floating-point
single-precision real, 2.3

32-bit integer
data type, 2.1

32-bit ordinal
data type, 2.2

32-bit pixel
data format, 2.5

32-bit value
alignment requirements, 4.1

64-bit binary floating-point
double-precision real, 2.4

64-bit external data bus
architecture overview, 1.1

64-bit integer
data type, 2.1

64-bit on-chip instruction bus
architecture overview, 1.1

64-bit ordinal
data type, 2.2

64-bit value
alignment requirements, 4.1
register alignment, 3.2

128-bit on-chip data bus
architecture overview, 1.1

128-bit value
alignment requirements, 4.1
register alignment, 3.2

82495XP cache controller
write-once policy, 52.4.2

AA (adder add-one)
fsr format, 3.8

A (accessed) bit ..
address translation algonthm (1860 XP),

4.2.5
page table entry, 4.2.4.6

access rights
address translation caches, 5.1

adder
floating-point pipe lining, 8.1
floating-point unit overview, 1.4
instructions, 8.3

address computation
integer register file, 3.1

address decoder
DeeU internals, 6.4

INDEX
addressing

alignment, 4.1
virtual, 4.2

address space
consistency, 5.3.4

address translation
algorithm (i860 XP), 4.2.5
algorithm (i860 XR), 4.2.5
ATE (address translation enable) in

dirbase, 3.6
faults, 4.2.6
memory management unit overview, 1.6
on-chip caches, 5.1
virtual addressing, 4.2

adds (Add. Signe~) ..
instructIOn defInItIon, 7.7
OF (overflow flag) in epsr, 3.4

addu (Add. UnsigI?-e~)
instructIOn defInItIon, 7.7
OF (overflow flag) in epsr, 3.4

AE (adder exponent)
fsr format, 3.8

AI (adder inexact)
fsr format, 3.8

AI (trap on autoincrement instruction)
epsr format, 3.4

aliasing
address space consistency, 5.3.4
for instructions, 5.2.2
for virtual addresses, 5.2

alignment
addressing requirements, 4.1
floating-point register access, 3.2

andh (Logical AND High)
instruction definition, 7.10

and (Logical AND)
instruction definition, 7.10

andnoth (Logical AND NOT High)
instruction definition, 7.10

andnot (Logical AND NOT)
instruction definition, 7.10

ANSI/IEEE standard 754-1985
double-precision real, 2.4
floating-point unit overview, 1.4
single-precision real, 2.3

AO (adder overflow)
fsr format, 3.8

architecture

Index-1

caches, 1.7
floating-point unit, 1.4
graphics unit" 1.5
instructions, 1.2
integer core unit, 1.3
memory management unit, 1.6
overview, 1.1
parallelism, 1.8
software development environment, 1.9

ARP (adder pipe result precision)
fsr format, 3.8

assembler language
conventions, 11.0
pseudo-operations, 7.18

ATE (address translation enable)
address space consistency, 5.3.4
dirbase format, 3.6
for address translation, 4.2

AU (adder underflow)
fsr format, 3.8

bc (Branch on CC)
instruction definition, 7.11

bc.t (Branch on CC Taken)
dual-instruction mode restrictions, 8.6.2
instruction definition, 7.11

bear (bus error address register)
register field definitions, 3.10
saving trap handler state (i860 XP), 10.1.1

BE (big endian)
and data cache behavior, 5.2.1
epsr format, 3.4

BEF (bus error flag)
epsr format, 3.4

BERR signal
BEF (bus error flag) in epsr, 3.4
with BRDY #, 3.10

bias .

INDEX

bri (Branch Indirect Unconditionally)
dual~instruction mode restrictions, 8.6.2
instruction definition, 7.11

BS (bus or parity error trap in supervisor
mode)

epsr format, 3.4
bte (Branch If Equal)

instruction definition, 7.11
btne (Branch If Not Equal)

instruction definition, 7.11
buffer registers

for vector computations, 3.2
bus

64-bit external data, 1.1
64-bit on-chip instruction, 1.1
128-bit on-chip data, 1.1
and dirbase options, 3.6
on-chip/external, 1.1

bus error trap
traps and interrupts (i860 XP), 10.7

BW (break write)
enabling databreak point, 3.5
psr format, 3.3

cache

double-precision real exponent adjustment,
2.4

address translation, 5.1
and dirbase, 3.6
consistency, 5.3.7
instruction and data, 5.2
internal consistency, 5.3
invalidating entries, 5.3.2
MESI protocol (i860 XP only), 5.2.4
on-chip operation, 1.7

single-precision real exponent adjustment,
2.3

big endian
addressing mode, 4.0
DCCU internals, 6.4

bla (Branch on LCC and Add)
CC (condition code), 3.3
instruction definition, 7.11

BL (bus lock)
dirbase format, 3.6

bnc (Branch on Not CC)
instruction definition, 7.11

bnc.t (Branch on Not CC Taken)
dual-instruction mode restrictions, 8.6.2
instruction definition, 7.11

BOFF# signal
LB in dirbase, 3.6

boundary conditions
accumulator initialization, 12.13.3.2
Z-buffer masking, 12.13.3.1

br (Branch Direct Unconditionally)
instruction definition, 7.11

BR (break read)
enabling databreak point, 3.5
psr format, 3.3

BRDY#
bus error, 3.10
locked accesses, 5.2.4.3

policy for write-through bit (i860 XP),
4.2.4.4

replacement algorithm, 5.2.3
See also data cache and instruction cache
strategies for matrix dot product example,

12.12
calli (Indirect Subroutine Call)

instruction definition, 7.11
call (Subroutine Call)

dual-instruction mode restrictions, 8.6.2
instruction definition, 7.11

CBR (Clear Broadcast Registers)
internal CCU only, 6.5

CC (condition code)
psr format, 3.3

ccr (concurrency control register)
register field definitions (i860 XP only),

3.12
saving trap handler state (i860 XP), 10.1.1

CCU
detached, 6.1

CCUBASE
ccr format (i860 XP only), 3.12

CD (cache disable)

Index-2

and internal caches, 4.2.4.5
page tables for trap handlers, 4.2.4.5
to disallow caching, 5.2

INDEX

co (CCD on)
ccr format (i860 XP only), 3.12

color intensity shading
graphics unit, 1.5
using pixel formats, 2.5

compilers
and CCU, 6.5
parallel architecture, 1.8

concurrency control
DCCD addressing, 6.3
DCCU initialization, 6.2
DCCD internals, 6.4
DCCD programming, 6.5
detached CCD, 6.1

concurrency control unit (CCU)
ccr (concurrency control register) (i860 XP

only),3.12
NEWCURR register (i860 XP only), 3.13
STAT register, 3.14

consistency
address space, 5.3.4
cacheability, 5.3.7
instruction cache, 5.3.4
internal cache, 5.3
load pipe, 5.3.9
page table, 5.3.6
protection, 5.3.8

conversion from signed integer to double
programming examples, 12.5

copy-back policy
data cache update, 5.2.1.1

core instructions
Assembler Pseudo-Operations, 7.18
Bus Lock, 7.14
Cache Flush, 7.13

. Control Register Access, 7.12
Control Transfer Instructions, 7.11
floating-point instruction interaction, 8.6.1
Floating-Point Load, 7.4
Input and Output (i860 XP only), 7.15
Integer Add and Subtract, 7.7
Load Integer, 7.1
Load Interrupt (i860 XP only), 7.16
Logical Instructions, 7.10
overview, 1.2
Pixel Store, 7.6
Shift Instructions, 7.8
Software Traps, 7.9
Special Cycles (i860 XP only), 7.17
Store Floating-Point, 7.5
Store Integer, 7.2
Transfer Integer to F-P Register, 7.3

Core No-Operation instruction
assembler pseudo-operations, 7.18

CS8 (code size 8-bit)
dlrbase format, 3.6

data-access fault
traps and interrupts (i860 XP), 10.5
traps and interrupts (i860 XR), 9.5

data alignment
programming model, 11.2

data cache
bypassing, 5.3.1
cache overview, 1.7
flushing, 5.3.3
for vector floating-point operations, 1.1
on-chip cache, 5.2
organization, 5.2.1
states for cache consistency (i860 XP only),

5.2.4
update policies, 5.2.1.1

data types
double-precision real, 2.4
integer, 2.1
ordinal, 2.2
pixel, 2.5
real-number encoding, 2.6
single-precision real, 2.3

DAT (data access trap)
psr format, 3.3

db (data breakpoint register)
data-access fault (i860 XR), 9.5
register field definitions, 3.5

D (dirty) bit
address translation caches, 5.1
page table entry, 4.2.4.6

db register
BR (break read) and BW (break write), 3.3

DCCU
addressing, 6.3
CO (CCU on) and DO (detached only) in

ccr (i860 XP only), 3.12
initialization, 6.2
internals, 6.4
programming, 6.5

DCS (data cache size)
epsr,3.4

deferred-write
data cache update policy, 5.2.1.1

delayed transfers
control-transfer instructions, 7.11

denormal
FTE (floating-point trap enable), 3.8
special values for floating-point numbers,

2.3, 2.4
Detached

DCCD internals, 6.4
STAT register format, 3.14

development environment
software, 1.9

DIM (dual instruction mode)
DS (delayed switch), 3.3

dirbase (directory base register)
addressing virtual, 4.2 .
ATE bit for address translation, 4.2
DCCD initialization, 6.2
for page directory physical address, 4.2.3
P (present bit), 4.2.4.2
P (present) bit, 4.2.4.2

Index-3

INDEX

page tables, 4.2.3
register field definitions, 3.6
saving trap handler state (i860 XP), 10.1.1
saving trap handler state (i860 XR), 9.1.1
trap handler invocation (i860 XR), 9.1
virtual addressing, 4.2

DIR field
virtual address, 4.2.2

distance interpolation
3~D graphics operations, 8.5.2

DI (trap on delayed instruction)
epsr format, 3.4

DO (detached only)
ccr format (i860 XP only), 3.12

double-precision divide
programming examples, 12.3

double-precision real
data type, 2.4

D PS (DRAM page size)
dirbase format, 3.6

DS (delayed switch)
psr format, 3.3

DTB (directory table base)
address space consistency, 5.3.4
dirbase format, 3.6

dual~instruction mode
fault instruction register, 3.7
floating~point instructions, 8.6
overview, 1.2
programming examples, 12.11
restrictions, 8.6.2
trap handler invocation (i860 XR), 9.1

dual-operation instructions
floating-point instructions, 8.4
fsr (floating-point status register), 3.8
overview, 1.2

environment pointer, 11.1.5
epsr (extended processor status register)

BL (bus lock), 3.6
cache disable (CD) bit, 4.2.4.5
inside trap handler (i860 XR), 9.1.2
inside trap handler (i860 XP), 10.1.2
register field definitions, 3.4
saving trap handler state (i860 XP), 10.1.1
saving trap handler state (i860 XR), 9.1.1
trap handler invocation (i860 XP), 10.1
trap handler invocation (i860 XR), 9.1
writable and user bits, 4.2.4.3

EWBE# pin
SO (strong ordering), 3.4

exception handling
special values for floating-point numbers,

2.6

faddp (Add with Pixel Merge)
instruction definition, 8.5.2.2

fadd.p (Floating-Point Add)
instruction definition, 8.3.1

faddz (Add with Z Merge)
instruction definition, 8.5.2.3

famov.r (Floating-Point Adder Move)
instruction definition, 8.3.1

fiadd.w (Long-Integer Add)
instruction definition, 8.5.1

fir (fault instruction register)
DI (trap on autoincrement instruction), 3.4
inside trap handler (i860 XP), 10.1.2
inside trap handler (i860 XR), 9.1.2
register field definitions, 3.7
saving trap handler state (i860 XP), 10.1.1
saving trap handler state (i860 XR), 9.1.1
source exception faults (i860 XR), 9.3.1
trap handler invocation (i860 XP), 10.1
trap handler invocation (i860 XR), 9.1

fisub.w (Long-Integer Subtract)
instruction definition, 8.5.1

fix.v (Floating-Point to Integer Conversion)
instruction definition, 8.3.3

fld.y (Floating-Point Load)
dual-instruction mode restrictions, 7.4, 8.6.2
instruction definition, 7.4
instruction interaction, 8.6.1

floating-point
add and subtract, 8.3.1
compares, 8.3.2
fault (i860 XP), 10.3
fault (i860 XR), 9.3
integer conversion, 8.3.3
operations using data cache, 1.1

floating-point instructions
adder instructions, 8.3 ,
core instruction interaction, 8.6.1
dual instruction mode, 8.6
dual operation instructions, 8.4
graphics unit, 8.5
multiplier instructions, 8.2
overview, 1.2
pipelined and scalar operations, 8.1

floating-point pipeline
pipeline preemption (i860 XR), 9.8.1
programming examples, 12.8

floating-point register file
floating-point unit overview, 1.4
graphics unit, 8.5
graphics unit overview, 1.5
register assignment, 11.1.2
registers, 3.2
saving trap handler state (i860 XP), 10.1.1
saving trap handler state (i860 XR), 9.1.1

floating-point source-exception trap
double-precision real generation, 2.4
real-number encoding, 2.6
single-precision real generation, 2.3

floating-point unit

Index-4

integer core unit control, 1.1
operation, 1.4
parallellism, 8.1

INDEX

flush (Cache Flush)
and cache replacement, 5.2.3
and DCCO initialization, 6.2
for flushing data cache, 5.3.3
instruction definition, 7.13
RB (replacement block), 3.6
RB (replacement block) in dirbase, 3.6

flush requirements
summary, 5.3.10

fmlow.dd (Floating-Point Multiply Low)
instruction definition, 8.2.2

fmov.dd (Double Move)
instruction definition, 8.5.1

fmov.ds (Convert Double to Single)
instruction definition, 8.3.1

fmov.sd (Convert Single to Double)
instruction definition, 8.3.1

fmov.ss (Single Move)
instruction definition, 8.5.1

fmul.p (Floating-Point Multiply)
instruction definition, 8.2.1

fnop (Floating-Point No-Operation)
assembler pseudo-operations, 7.18

form (OR with MERGE Register)
instruction definition, 8.5.2.4

frcp.p (Floating-Point Reciprocal)
instruction definition, 8.2.3

frsqr.p (Floating-Point Reciprocal Square
Root)

instruction definition, 8.2.3
fsr (floating-point status register)

register field definitions, 3.8
returning from trap handler (i860 XR),

9.1.3
saving trap handler state (i860 XP), 10.1.1
saving trap handler state (i860 XR), 9.1.1
source exception faults (i860 XR), 9.3.1

fst.y (Floating-Point Store)
dual-instruction mode restrictions, 8.6.2
instruction definition, 7.5 ."
instruction interaction, 8.6.1

fsub.p (Floating-Point Subtract)
instruction definition, 8.3.1

FTE (floating-point trap enable)
fsr format, 3.8

FT (floating-point trap)
psr format, 3.3

ftrunc.v (Floating-Point to Integer Truncation)
instruction definition, 8.3.3

fxfr (Transfer F-P to Integer Register)
dual-instruction mode restrictions, 8.6.2
instruction definition, 8.5.3

fzchkl (32-Bit Z~Buffer Check)
dual-instruction mode restrictions, 8.6.2
instruction definition, 8.5.2.1

fzchks (16-BIT Z-Buffer Check)
dual-instruction mode restrictions, 8.6.2
instruction definition, 8.5.2.1

FZ (flush zero)
changing, 8.1
fsr format, 3.8

Gouraud shading
color intensity, 1.5
color interpolation, 12.13.2

graphics
floating-point register file computations, 3.2
instruction overview, 1.2

graphics transformation
graphics transformation matrix, 12.14.2
programming examples, 12.14
representation of vertices, 12.14.1
transformation code design, 12.14.3
transformation performance, 12.14.4

graphics unit
floating-point instructions, 8.5
integer core unit control, 1.1
operation, 1.5

hidden surface elimination
3-D graphics operations, 8.5.2
graphics unit, 1.5
Z-buffer, 8.5

H variant
logical instructions, 7.10

i860 microprocessor
addressing, 4.0
architectural overview, 1.0
concurrency control, 6.0
core instructions, 7.0
data types, 2.0
floating-point instructions, 8.0
i860 XR/i860 XP compatibility, E.O
instruction characteristics, D.O
instruction format and encoding, B.O
instruction set summary, A.O
instruction timing, e.o
on-chip caches, 5.0
programming examples, 12.0
programming model, 11.0
registers, 3.0
traps and interrupts (i860 XP), 10.0
traps and interrupts (i860 XR), 9.0

IAT (instruction access trap)
psr format, 3.3

IEEE (Standard for Binary Floating-Point
Arithmetic)

floating-point unit overview, 1.4
IL (interlock)

epsr format, 3.4
1M (interrupt mode)

psr format, 3.3
indefinite

special values for floating-point numbers,
2.3,2.4

Index-5

INDEX

inexact result
result exception faults (i860 XR), 9.3.2

infinity
FTE (floating-point trap enable), 3.8
special values for floating-point numbers,

2.3,2.4
IN (interrupt)

psr format, 3.3
InLoop

DeeD internals, 6.4
STAT register format, 3.14

input/output space
programming model (i860 XP only), 11.4

inquiry cycles
data cache states, 5.2.4

instruction-access fault
traps and interrupts (i860 XP), 10.4
traps and interrupts (i860 XR), 9.4

instruction cache
bypassing, 5.3.1
cache overview (i860 XP), 1.7
cache overview (i860 XR), 1.7
consistency, 5.3.4
on-chip cache, 5.2
organization, 5.2.2

instruction characteristics
See Appendix D

instruction fault
traps and interrupts (i860 XP), 10.2
traps and interrupts (i860 XR), 9.2

instruction format and encoding
See Appendix B

instructions
core instructions, 1.2
floating-point instructions, 1.2
floating-point unit overview, 1.4
graphic instructions, 1.2
graphics unit overview, 1.5
integer core unit overview, 1.3

instruction set summary
See Appendix A

instruction timings
See Appendix, e

INT/eS8 pin
CS8 (code size 8-bit) in dirbase, 3.6

integer
data type, 2.1
operations using floating-point register file,

3.2
integer core unit

operating system support, 1.1
operation, 1.3

integer multiply
programming examples, 12.4

integer register files
integer core unit overview, 1.3
register assignment, 11.1.1
registers, 3.1
saving trap handler state (i860 XP), 10.1.1
saving trap handler state (i860 XR), 9.1.1

Intel386 microprocessor
implementing a stack, 11.3
Load Interrupt instruction, 7.16
memory management unit operation, 1.6
page frame, 4.2.1
virtual addressing, 4.2

Intel486 microprocessor
implementing a stack, 11.3
Load Interrupt instruction, 7.16
memory management unit operation, 1.6
page frame, 4.2.1
Special Cycles instruction, 7.17
virtual addressing, 4.2

internal cache
consistency, 5.3

interpolation operations
3-D graphics operations, 8.5.2

interrupt trap
traps and interrupts (i860 XP), 10.8
traps and interrupts (i860 XR), 9.6

INT input pin
INT (interrupt), 3.4

INT (interrupt)
epsr format, 3.4

intovr (Software Trap On Integer Overflow)
instruction definition, 7.9
instruction fault (i860 XR), 9.2
OF (overflow flag), 3.4

invalidation requirements
summary, 5.3.10

IRP (integer pipe result precision)
fsr format, 3.8

ITI (instruction-cache, TLB invalidate)
dirbase format, 3.6

IT (instruction trap)
psr format, 3.3

ixfr (Transfer Integer to F-P Register)
dual-instruction mode restrictions, 8.6.2
instruction definition, 7.3
instruction interaction, 8.6.1

KEN# pin
to disable caching, 5.3.1
to disallow caching, 5.2

KI (constant register)
floating-point unit overview, 1.4
register definitions, 3.9
returning from trap handler (i860 XR),

9.1.3
saving trap handler state (i860 XP), 10.1.1
saving trap handler state (i860 XR), 9.1.1

KNF (kill next floating-point instruction)
psr format, 3.3

KR (constant register)
floating-point unit overview, 1.4
register definitions, 3.9
returning from trap handler (i860 XR),

9.1.3
saving trap handler state (i860 XP), 10.1.1
saving trap handler state (i860 XR), 9.1.1

Index-6

Large Constant-to-Register Move instruction
assembler pseudo-operations, 7.18

LB (late back-off)
dirbase format, 3.6

LCC(loop condition code)
CC (condition code), 3.3

Id.c (Load from Control Register)
dual-instruction mode restrictions, 8.6.2
inside trap handler (i860 XP), 10.1.2
inside trap handler (i860 XR), 9.1.2
instruction definition, 7.12
privileged registers (i860 XP only), 3.11

Idint.x (Load Interrupt Vector)
BE in epsr, 3.4
big endian mode, 4.0
dual-instruction mode restrictions, 8.6.2
instruction definition, 7.16
instruction fault (i860 XR), 9.2
writable and user bits, 4.2.4.3

Idio.x (Load I/O)
BE in epsr, 3.4
big endian mode, 4.0
dual-instruction mode restrictions, 8.6.2
instruction definition, 7.15
instruction fault (i860 XR), 9.2
writable and user bits, 4.2.4.3

Id.x (Load Integer)
and DCCU internals, 6.4
fir (fault instruction register), 3.7
for flushing data cache, 5.3.3
instruction definition, 7.1

little endian
addressing format, 4.0

Load from Broadcast Register instruction
internal CCU only, 6.5

Load from Iteration Counter instruction
internal CCU only, 6.5

Load New Iteration Count instruction
internal CCU only, 6.5

load pipe
consistency, 5.3.9

Load Status Clearing Inloop instruction
internal CCU only, 6.5

Load Status instruction
internal CCU only, 6.5

Load Status Setting Nested instruction
internal CCU only, 6.5

Load Version instruction
internal CCU only, 6.5

LOCK# pin
bus lock, 7.14

LOCK# signal
BL (bus lock) in dirbase, 3.6

lock (Begin Interlocked Sequence)
BL (bus lock), 3.6
dual-instruction mode restrictions, 8.6.2
IL in epsr, 3.4
instruction definition, 7.14
instruction fault (i860 XR), 9.2
for locked accesses, 5.2.4.3

INDEX

locked access
cache consistency (i860 XP only), 5.2.4.3

long-integer arithmetic
graphics unit, 8.5

LRPO (load pipe result precision)
fsr format (i860 XP), 3.8

LRP1 (load pipe result precision)
fsr format (i860 XP), 3.8

LRP (load pipe result precision)
fsr format (i860 XR), 3.8

MA (multiplier add-one)
fsr format, 3.8

memory management unit
operation, 1.6

memory organization
programming model, 11.4

memory parameter area, 11.1.4
MERGE register

3-D graphics operations, 8.5.2
graphics unit overview, 1.5
register definitions, 3.9
returning from trap handler (i860 XR),

9.1.3
saving trap handler state (i860 XP), 10.1.1
saving trap handler state (i860 XR), 9.1.1

MESI protocol
cache consistency (i860 XP only), 5.2.4

MI (multiplier inexact)
fsr format, 3.8

M/IO# output pin
for cycle identification, 11.5

M (modified bits)
cache flush, 7.13
data cache, 5.2.1

MMU
See memory management unit

MO (multiplier overflow)
fsr format, 3.8

mov (Register-to-Register Move)
instruction definition, 7.8

MRP (multiplier pipe result precision)
fsr format, 3.8

multiplier
floating-point pipelining, 8.1
floating-point unit overview, 1.4
instructions, 8.2

MU (multiplier underflow)
fsr format, 3.8

NaN
FTE (floating-point trap enable), 3.8
special values for floating-point

numbers,2.3, 2.4
NENE# pin

Load Floating-Point; 7.4
NENE# signal

DPS (DRAM page size) in dirbase, 3.6

Index-7

Nested
DCCD internals, 6.4
STAT register format, 3.14

NEWCDRR register
DCCD internals, 6.4
register field definitions (i860 XP only),

3.13
Newton-Raphson approximation

floating-point reciprocals, 8.2.3
nop (Core No-Operation)

instruction definition, 7.8

OFFSET field
,Virtual address, 4.2.2

OF (overflow flag)
epsr format, 3.4

operating systems
integer core processing unit, 1.1

ordinal
data type, 2.2

orh (Logical OR High)
instruction definition, 7.10

or (Logical OR)
instruction definition, 7.10
using register RO, 3.1
with MERGE register, 8.5.2.4

OS/2
integer core processing unit, 1.1

overflow
result exception faults (i860 XR), 9.3.2

PO, PI, P2, P3
See privileged registers

paged memory management
memory management unit overview, 1.6

PAGE field
virtual address, 4.2.2

page frame
physical main memory (i860 XP), 4.2.1
physical main memory (i860 XR), 4.2.1

page frame address
virtual address translation (i860 XP),

4.2.4.1
virtual address translation (i860 XR),

4.2.4.1
page table

consistency, 5.3.6
page-table entries (PTE)

virtual address translation, 4.2.4
page tables (i860 XP)

for trap handlers, 4.2.4.7
virtual address translation, 4.2.3

page tables (i860 XR)
for trap handlers, 4.2.4.7
virtual address translation, 4.2.3

paging unit
address translation cache, 5.1

INDEX

parallelism
floating-point unit, 8.1
parallel architecture overview, 1.8

parameter lists
variable length, 11.1.6

parity error trap
traps and interrupts (i860 XP), 10.6

PBM (page-table bit mode)
epsr format, 3.4

PEF (parity error flag)
epsr format, 3.4

PEN#
with BRDY#, 3.10

perspective divide
programming examples, 12.15

pfaddp (Pipelined Add with Pixel Merge)
instruction definition, 8.5.2.2

pfadd.p (Pipelined Floating-Point Add)
instruction definition, 8.3.1

pfaddz (Pipelined Add with Z Merge)
instruction definition, 8.5.2.3

pfamov.r (Pipelined Floating-Point Adder
Move)

instruction definition, 8.3.1
pfam.p (PipeliIied Floating-Point Add and

Multiply)
instruction definition, 8.4

pfeq.p (Pipelined Floating-Point Equal
Compare)

dual-instruction mode restrictions, 8.6.2
instruction definition, 8.3.2
instruction interaction, 8.6.1

pfgt.p (Pipelined Floating-Point Greater-Than
Compare)

dual-instruction mode restrictions, 8.6.2
instruction definition, 8.3.2
instruction interaction, 8.6.1

pfiadd.w (Pipelined Long-Integer Add)
instruction definition, 8.5.1

pfisub.w (Pipe lined Long-Integer Subtract)
instruction definition, 8.5.1

pfix.v (Pipelined Floating-Point to Integer
Conversion)

instruction definition, 8.3.3
pfld.y (Pipelined Floating-Point Load)

dual-instruction mode restrictions, 8.6.2
instruction definition, 7.4
instruction fault (i860 XR), 9.2
instruction interaction, 8.6.1
load pipe consistency, 5.3.9
PI in epsr, 3.4
pipelining, 8.1
PT in epsr, 3.4
PT (trap on pipeline use), 3.4

pfle.p (PipelinedF-P Less-Than or Equal
Compare)

Index-8

instruction definition, 8.3.2
instruction interaction, 8.6.1

INDEX

pfmam.p (Pipelined Floating-Point Multiply
with Add)

instruction definition, 8.3.2
pfmov.dd (Pipelined Double Move)

instruction definition,. 8.5.1
pfmov.ds (Pipelined Convert Double to

Single)
instruction definition, 8.3.1

pfmov.sd (Pipelined Convert Single to
Double)

instruction definition, 8.3.1
pfmov.ss (Pipelined Single Move)

instruction definition, 8.5.1
pfmsm.p (Pipe lined Floating-Point Multiply

with Subtract)
instruction definition, 8.4

pfmul3.dd (Three-Stage Pipelined Multiply)
instruction definition, 8.2.1

pfmul.p (Pipelined Floating-Point Multiply)
instruction definition, 8.2.1

pform (Pipelined OR with MERGE Register)
instruction definition, 8.5.2.4

pfsm.p (Pipe lined Floating-Point Subtract and
Multiply)

instruction definition, 8.4
pfsub.p (Pipelined Floating-Point Subtract)

instruction definition, 8.3.1 .
pftrunc.v (Pipelined Floating-Point to Integer

Truncation)
instruction definition, 8.3.3

pfzchkl (Pipelined 32-Bit Z-Buffer Check)
instruction definition, 8.5.2.1

pfzchks (Pipelined 16-Bit Z-Buffer Check)
instruction definition, 8.5.2.1

Phong
color intensity, 1.5

physical tags
for snooping, 5.2

PIM (previous interrupt mode)
psr format, 3.3 -

pipeline
floating-point (i860 XP), 10.10.1
floating-point instructions, 8.1
graphics preemption (i860 XP), 10.10.3
graphics preemption (i860 XR), 9.8.3
load preemption (i860 XP), 10.10.2
load preemption (i860 XR), 9.8.2
preemption (i860 XP), 10.10
preemption (i860 XR), 9.8
result exception faults (i860 XP), 10.3.2
result exception faults (i860 XR), 9.3.2

pipelining
floating-point adder, 8.1
floating-point multiplier, 8.1
floating-point unit overview, 1.4
integer core unit overview, 1.3
of double-precision dual operations

example, 12.10
of dual-operation instructions example, 12.9
pfld (Pipe lined Floating-Point Load), 8.1

precision, 8.1.3
scalar/pipelined operation transition, 8.1.4
status information, 8.1.2

PI (pipeline instruction)
epsr format, 3.4

pixel
data format, 2.5
data type, 2.5
graphics unit overview, 1.5

pixel add
Z-buffer check instructions, 8.5.2.2

pixel shading
Z-buffer, 8.5

PM (pixel mask)
psr format, 3.3

P (present bit)
virtual address translation, 4.2.4.2

privileged registers
register field definitions (i860 XP only),

3.11
saving trap handler state (i860 XP), 10.1.1

processing units
concurrency control unit (CCU), 6.1
floating-point, 1.4
graphics, 1.5
integer core, 1.3
memory management unit, 1.6

processor type
epsr format, 3.4

programming examples
3-D rendering, 12.13
cache strategies for matrix dot product,

12.12
conversion from signed integer to double,

12.5
double-precision divide, 12.3
dual instruction mode, 12.11
floating-point pipeline, 12.8
graphics transformation, 12.14
integer multiply, 12.4
perspective divide, 12.15
pipe lining double-precision dual operations,

12.10
pipelining dual-operation instructions, 12.9
signed integer divide, 12.6
single-precision divide, 12.2
small integers, 12.1
string copy, 12.7

programming model
data alignment, 11.2
implementing a stack, 11.3
input/output space, 11.5
memory organization, 11.4
register assignment, 11.1

protection
consistency, 5.3.8

PS (pixel size)
psr format, 3.3

Index-9

INDEX

psr (processor status register)
db register, 3.5
PT (trap on pipeline use), 3.4
register field definitions, 3.3
returning from trap handler (i860 XR),

9.1.3
saving trap handler state (i860 XP), 10.1.1
saving trap handler state (i860 XR), 9.1.1
source exception faults (i860 XR), 9.3.1
trap handler invocation (i860 XP), 10.1 '
trap handler invocation (i860 XR), 9.1
W (writable) and U (user) bits, 4.2.4.3
writable and user bits, 4.2.4.3

pst.d (Pixel Store)
dual-instruction mode restrictions, 8.6.2
instruction definition, 7.6
instruction interaction, 8.6.1
PS (pixel size) and PM (pixel mask) in psr,

3.3
PTB signal

PBM (page-table bit mode) in epsr, 3.4
PT (trap on pipeline use)

epsr format, 3.4
PU (previous user mode)

PIM (previous interrupt mode), 3.3
PWTpin

write-through bit, 4.2.4.4

RB (replacement block)
dirbase format, 3.6

RC field
and cache replacement, 5.2.3

RC (replacement control)
dirbase format, 3.6

read-only
instruction cache, 5.2.2

real number
data format, 2.3

real-number
encoding, 2.6

register assignment
programming model, 11.1

register field definitions
bear (bus error address register), 3.10
ccr (concurrency control register)

(i860 XP only), 3.12
db (data breakpoint register), 3.5
dirbase (directory base register), 3.6
epsr (extended processor status register),

3.4
fir (fault instruction register), 3.7
fsr (floating-point status register), 3.8
KR, KI, T, and MERGE registers, 3.9
NEWeURR register (i860 XP only), 3.13
privileged registers (i860 XP only), 3.11
psr (processor status register), 3.3
STAT register (i860 XP only), 3.14

registers
floating-point register file, 3.2
integer register file, 3.1

Register-to-Register Move instruction
assembler pseudo-operations, 7.18

rendering
boundary conditions, 12.13.3
color interpolation, 12.13.2
distance interpolation, 12.13.1
inner loop, 12.13.4

replacement algorithm
cache, 5.2.3

RESET
back-off mode, 3.6
cache replacement, 5.2.3

reset trap
traps and interrupts (i860 XP), 10.9
traps and interrupts (i860 XR), 9.7

result exception faults
floating-point fault (i860 XP), 10.3.2
floating-point fault (i860 XR), 9.3.2

result-status bits
U (update bit), 3.8

RISe
floating-point unit, 1.4
integer core unit, 1.1

RM (rounding mode)
changing, 8.1
fsr format, 3.8

RR (result register)
changing, 8.1
fsr format, 3.8

scalar
floating-point instructions, 8.1
integer computation, 3.1
mode, 8.1.1
result exception faults (i860 XP), 10.3.2
result exception faults (i860 XR), 9.3.2
transition with pipelined operation, 8.1.4

se (shift count)
psr format, 3.3

scyc.x (Special Cycles)
BE (big endian) in epsr, 3.4
big endian mode, 4.0
instruction definition, 7.17
instruction fault (i860 XR), 9.2
writable and user bits, 4.2.4.3

serializing
and locked accesses, 5.2.4.3

SE (source exception)
fsr format, 3.8

shl (Shift Left)
instruction definition., 7.8

shra (Shift Right Arithmetic)
instruction definition., 7.8

shrd (Shift Right Double)
instruction definition., 7.8

shr (Shift Right)
instruction definition., 7.8

signed integer divide
programming examples, 12.6

Index-10

sign extension
integer, 2.1

single-instruction mode
fault instruction register, 3.7
overview, 1.2
trap handler invocation (i860 XR), 9.1

single-precision divide
programming examples, 12.2

single-precision real
data type, 2.3

SI (sticky inexact)
fsr format, 3.8

Small Constant-to-Register Move instruction
assembler pseUdo-operations, 7.18

small integers
programming examples, 12.1

snooping
address monitoring (i860 XP), 5.2

software development environment, 1.9
SO (strong ordering)

epsr format, 3.4
source exception faults

floating-point fault (i860 XP), 10.3.1
floating-point fault (i860 XR), 9.3.1

stack
dynamic memory allocation, 11.3.2
entry and exit code, 11.3.1
implementation programming model, 11.3

state transitions
for locked accesses, 5.2.4.3

STAT register
DeCU internals, 6.4
register field definitions (i860 XP only),

3.14
st.c (Store to Control Register)

addressing virtual, 4.2
BL (bus lock), 3.6
dual-instruction mode restrictions, 8.6.2
fir (fault instruction register), 3.7
for address translation, 4.2
instruction definitiqn, 7.12
privileged registers '(i860 XP only), 3.11
U (update) of fsr, 3.8
writable and user bits, 4.2.4.3

stepping number
processor revisions in epsr, 3.4

stio.x(Store I/O)
BE (big endian) in epsr, 3.4
big endian mode, 4.0
dual-instruction mode restrictions, 8.6.2
instruction definition, 7.15 '
instruction fault (i860 XR), 9.2
writable and user bits, 4.2.4.3

Store Status instruction
internal ecu only, 6.5

Store to Broadcast Register instruction
internal eeu only, 6.5

Store to Iteration Counter instruction
internal eeu only, 6.5

INDEX

string copy
programming examples, 12.7

structure parameters
passing in memory, 11.1.3
returning, 11.1.7

st.x (Store Integer)
DCeU internals, 6.4
instruction definition, 7.2

subs (Subtract Signed)
instruction definition, 7.7
OF (overflow flag) in epsr, 3.4

subu (Subtract Unsigned)
instruction definition, 7.7
OF (overflow flag) in epsr, 3.4

tags
physical, 5.2
virtual, 5.2

test-for-zero
using register rO, 3.1

TI (trap inexact)
fsr format, 3.8

TLB (translation look-aside buffer)
address translation cache, 5.1
address translation caches, 5.1
memory management unit overview, 1.6

transitions
scalar/pipelined operation transition, 8.1.4
single/double precision floating-point, 8.2

trap handler
fatal errors (i860 XP), 10.1.3
IL (interlock), 3.4
inside, (i860 XP), 10.1.2
inside (i860 XR), 9.1.2
invocation (i860 XP), 10.1
invocation (i860 XR), 9.1
page tables, 4.2.4.7
returning from (i860 XP), 10.1.4
returning from (i860 XR), 9.1.3
saving state (i860 XP), 10.1.1
saving state (i860 XR), 9.1.1
setting KNF (i860 XP), 10.1.4.2
setting KNF (i860 XR), 9.1.3.2
using PT and PI bits (i860 XP), 10.10.4
where to resume (i860 XP), 10.1.4.1
where to resume (i860 XR), 9.1.3.1

traps and interrupts
bus error trap (i860 XP), 10.7
data-access fault (i860 XP), 10.5
data-access fault (i860 XR), 9.5
floating-point fault (i860 XP), 10.3
floating-point fault (i860 XR), 9.3
instruction-access fault (i860 XP), 10.4
instruction-access fault (i860 XR), 9.4
instruction fault (i860 XP), 10.2
instruction fault (i860 XR), 9.2
interrupt trap (i860 XP), 10.8
interrupt trap (i860 XR), 9.6
parity error trap (i860 XP), 10.6
pipeline preemption (i860 XP), 10.10

Index-11

pipeline preemption (i860 XR), 9.8
reset trap (i860 XP), lD.9
reset trap (i860 XR), 9.7
trap handler invocation (i860 XP), 10.1
trap handler invocation (i860 XR), 9.1

trap (Software Trap)
instruction cache consistency, 5.3.5
instruction definition, 7.9
instruction fault (i860 XR), 9.2
instruction interaction, 7.9

T (temporary register)
floating-point unit overview, 1.4
register definitions, 3.9
returning from trap handler (i860 XR),

9.1.3
saving trap handler state (i860 XP), 10.1.1
saving trap handler state (i860 XR), 9.1.1

two's complement
integer data type, 2.1

underflow
result exception faults (i860 XR), 9.3.2

UNIX
integer core processing unit, 1.1

unlock (End Interlocked Sequence)
BL (bus lock), 3.6
for locked accesses, 5.2.4.3
IL (interlock) in epsr, 3.4
instruction definition, 7.14

U (update bit)
fsr format, 3.8

U (user bit)
control register access, 7.12
virtual address translation, 4.2.4.3

U (user mode)
psr format, 3.3

validity bit
virtual tag, 5.2.1

vector floating-point operations
i860 microprocessor support, 1.1

virtual address
addressing, 4.0
address translation, 4.2
db register, 3.5

INDEX

physical main memory (i860 XP), 4.2.2
physical main memory (i860 XR), 4.2.2

virtual tags
instruction cache, 5.2.2
for internal access, 5.2

WB/WT# input pin
data cache update policy, 5.2.1.1
to implement write-once policy, 5.2.4.2

WP (write protect)
epsr format, 3.4
W (writable) and U (user) bits, 4.2.4.3

writable and user bits
virtual address translation, 4.2.4.3

write-back
data cache update policy, 5.2.1.1
i860 XP caching implementation, 4.2.4.4

write-once f

caching policy (i860 XP only), 5.2.4.2
data cache update policy, 5.2.1.1

write-through
bit for caching policy (i860 XP), 4.2.4.4
bit for caching policy (i860 XR), 4.2.4.4
data cache update policy, 5.2.1.1
i860 XP caching implementation, 4.2.4.4

WT page-table bit
caching policy, 4.2.4.4
data cache update policy, 5.2.1.1

W (writable bit)
page table entries and WP (write protect),

3.4
virtual address translation, 4.2.4.3

xorh (Logical XOR High)
instruction definition, 7.10

xor (Logical XOR)
instruction definition, 7.lD

Z-buffer
3-D graphics operations, 8.5.2
add, 8.5.2.3
algorithm, 1.5
check instructions, 8.5.2.1
graphics unit, 8.5

Index-12

.LABAMA

ltel Corp.
015 Bradford Dr., #2
luntsville 35805
el: (205) 830-4010
AX: (205) 837-2640

.RIZONA

Intel Corp.
10 North 44th Street
,uite 500
'hoenix 85008
el: (602) 231-0386
'AX: (602) 244-0446

ltel Corp.
225 N. Mona Lisa Rd.
,uite 215
'ucson 85741
'el: (602) 544-0227
'AX: (602) 544-0232

:ALlFORNIA

Intel Corp.
'1515 Vanowen Street
iuite 116
:anoga Park 91303
'el: (818) 704-8500
'AX: (816) 340-1144

Intel Corp.
:00 N. Continental Blvd.
iuite 100
:I Segundo 90245
'el: (213) 640-6040
'AX: (213) 640-7133

ltel Corp.
Sierra Gate Plaza

iuite 280C
loseville 95678
'el: (916) 782-8086
'AX: (916) 782-8153

Intel Corp.
1665 Chesapeake Dr.
iuite 325
ian Diego 92123
'el: (619) 292-8086
'AX: (619) 292-0628

Intel Corp."
:00 N. Tustin Avenue
iuite 450
ianta Ana 92705
'el: (714) 835-9642
WX: 910-595-1114
'AX: (714) 541-9157

Intel Corp."
ian Tomas 4
!700 San Tomas Expressway
!nd Floor
ianta Clara 95051
'el: (408) 986-8086
WX: 910-338-0255
'AX: (408) 727-2620

:OLORADO

ltel Corp.
1445 Northpark Drive
iuite 100
;olorado Springs 80907
'el: (719) 594-6622
'AX: (303) 594-0720

'Intel Corp."
,00 S. Cherry SI.
iuite 700
lenver 80222
'el: (303) 321-8086
WX: 910-931-2289
'AX: (303) 322-8670

:ONNECTICUT

'Intel Corp.
101 Lee Farm Corporate Park
13 Wooster Heights Rd.
lanbury 06810
'el: (203) 748-3130
'AX: (203) 794-0339

'Sales and Service Office
Field Application Location

DOMESTIC SALES OFFICES
FLORIDA MICHIGAN OHIO VIRGINIA

tlntel Corp. tlntel Corp. tlntel Corp." tlntel Corp.
800 Fairway Drive 7071 Orchard Lake Road 3401 Park Center Drive 9030 Stony Point Pkwy.
Suite 160 Suite 100 Suite 220 Suite 360
Deerfield Beach 33441 West Bloomfield 48322 Dayton 45414 Richmond 23235
Tel: (305) 421-0506 Tel: (313) 851-8096 Tel: (513) 890-5350 Tel: (804) 330-9393
FAX: (305) 421-2444 FAX: (313) 851-8770 TWX: 810-450-2528 FAX: (804) 330-3019

FAX: (513) 890-8658
tlntel Corp. MINNESOTA tlntel Corp." WASHINGTON 5850 T.G. Lee Blvd.

25700 Science Park Dr. Suite 340 tlntel Corp. Suite 100 Orlando 32822 tlntel Corp.
Tel: (407) 240-8000

3500 W. 80th SI. Beachwood 44122 155 108th Avenue N.E. Suite 360 Tel: (216) 464-2736 FAX: (407) 240-8097
~~~:0(s~n2lt~~5~~i~1 

SUite 386 
TWX: 810-427-9298 Bellevue 98004 

Intel Corp. TWX: 910-576-2867 
FAX: (804) 282-0673 Tel: (206) 453-8086 

11300 4th Street North FAX: (612) 831-6497 TWX: 910-443-3002 
Suite 170 OKLAHOMA FAX: (206) 451-9556 
SI. Petersburg 33716 

MISSOURI Intel Corp. Tel: (813) 577-2413 Intel Corp. 
FAX: (813) 578-1607 6801 N. Broadway 408 N. Mullan Road 

tlntel Corp. Suite 115 SUite 102 
3300 Rider Trail South Oklahoma City 73162 Spokane 99206 GEORGIA Suite 170 Tel: (405) 646-6086 Tel: (509) 928-8086 
Earth City 63045 FAX: (405) 840-9819 FAX: (509) 928-9467 tlntel Corp. Tel: (314) 291-1990 

20 Technology Parkway FAX: (314) 291-4341 OREGON 
Suite 150 WISCONSIN 
Norcross 30092 tlntel Corp. 
Tel: (404) 449-0541 NEW JERSEY 15254 N.w. Greenbrier Pkwy. Intel Corp. 
FAX: (404) 605-9762 

Intel Corp. 
Building B 330 S. Executive Dr. 
Beaverton 97006 SUite 102 Arbor Circle South Tel: (503) 645-8051 Brookfield 53005 ILLINOIS 6 Campus Drive TWX: 910-467-6741 Tel: (414) 784-6087 

tlntel Corp." 
Parsippany 07054 FAX: (503) 645-8181 FAX: (414) 796-2115 Tel: (201) 455-1868 

Woodfield Corp. Center III FAX: (201) 644-0680 PENNSYLVANIA 300 N. Martingale Road 
Suite 400 tlntel Corp." tlntel Corp." CANADA Schaumburg 60173 Lincroft Office Center 925 Harvest Drive 
Tel: (708) 605-8031 125 Half Mile Road Suite 200 
FAX: (708) 706-9762 Red Bank 07701 Blue Bell 19422 BRITISH COLUMBIA Tel: (908) 747-2233 Tel: (215) 641-1000 
INDIANA FAX: (908) 747-0983 FAX: (215) 641-0785 Intel Semiconductor of 

tlntel Corp." Canada, Ltd. 
tlntel Corp. NEW YORK 400 Penn Center Blvd. 4585 Canada Way 
8910 Purdue Road 

Suite 610 Suite 202 
Suite 350 Intel Corp." 

Pittsburgh 15235 Burnaby V5G 4L6 
Indianapolis 46268 850 Crosskeys Office Park 

Tel: (412) 823-4970 Tel: (604) 298-0387 
Tel: (317) 875-0623 Fairport 14450 

FAX: (412) 829-7578 FAX: (604) 298-8234 
FAX: (317) 875-8938 Tel: (716) 425-2750 

TWX: 510-253-7391 

IOWA 
FAX: (716) 223-2561 PUERTO RICO ONTARIO 

tlntel Corp." tlntel Corp. tlntel Semiconductor of Intel Corp. 2950 Express Dr., South South Industrial Park Canada, Ltd. 1930 SI. Andrews Drive N.E. Suite 130 P.O. Box 910 2650 Queensview Drive 2nd Floor Islandia 11722 Las Piedras 00671 Suite 250 Cedar Rapids 52402 Tel: (516) 231-3300 Tel: (809) 733-8616 Ottawa K2B 8H6 Tel: (319) 393-5510 TWX: 510-227-6236 Tel: (613) 829-9714 
FAX: (516) 348-7939 TEXAS FAX: (613) 820-5936 

KANSAS 
tlntel Corp. tlntel Corp. tlntel Semiconductor of 

tlntel Corp. 300 Westage Business Center 8911 N. Capital of Texas Hwy. Canada, Ltd. 
10985 Cody SI. Suite 230 Suite 4230 190 Attwell Drive 

"Fishkill 12524 Austin 78759 SUite 500 Suite 140 Tel: (512) 794-8086 Overland Park 66210 Tel: (914) 897-3860 Rexdale M9W 6H8 
Tel: (913) 345-2727 FAX: (914) 897-3125 FAX: (512) 338-9335 Tel: (416) 675-2105 
FAX: (913) 345-2076 

Intel Corp. tlntel Corp." FAX: (416) 675-2438 

Seventeen State Street 12000 Ford Road 
MARYLAND 14th Floor Suite 400 

QUEBEC Dallas 75234 New York 10004 
tlntel Corp." Tel: (212) 248-8086 Tel: (214) 241-8087 

tlntel Semiconductor of FAX: (214) 484-1180 10010 Junction Dr. FAX: (212) 248-0888 Canada, Ltd. 
Suite 200 tlntel Corp." 1 Rue Holiday 
Annapolis Junction 20701 

NORTH CAROLINA 7322 S.w. Freeway SUite 1"15 
Tel: (301) 206-2860 Suite 1490 Tour East 
FAX: (301) 206-3677 

tlntel Corp. Houston 77074 PI. Claire H9R 5N3 
(301) 206-3678 Tel: (713) 988-8086 Tel: (514) 694-9130 5800 Executive Center Dr. 

Suite 105 TWX: 910-881-2490 FAX: 514-694-0064 
MASSACHUSETTS Charlotte 28212 FAX: (713) 988-3660 

Tel: (704) 568-8966 
tlntel Corp." FAX: (704) 535-2236 UTAH 
Westford Corp. Center 
3 Carlisle Road tlntel Corp. tlntel Corp. 
2nd Floor 5540 Centerview Dr. 428 East 6400 South 
Westford 01886 Suite 215 Suite 104 
Tel: (508) 692-0960 Raleigh 27606 Murray 84107 
TWX: 710-343-6333 Tel: (919) 851-9537 Tel: (801) 263-8051 
FAX: (508) 692-7867 FAX: (919) 851-8974 FAX: (801) 268-1457 

CG/SALE/022891 



,ALABAMA 

Arrow Electronics, Inc. 
1015 Henderson Road 
Huntsville 35805 

. Tel: (205) 837-6955 
FAX: 205-751-1581 

Hamilton/Avnet Computer 
4930 I Corporate Drive 
Huntsville 35805 

Hamilton/Avnet Electronics 
4940 Research Drive 
Huntsville 35805 
Tel: (205) 837-7210 
FAX: 205-721-0356 

MTI Systems Sales 
4950 Corporate Drive 
Suite 120 
Huntsville 35806 
Tel: (205) 830-9526 
FAX: (205) 830-9557 

Pioneer!Technologies Group, Inc. 
4825 University Square 
Huntsville 35805 
Tel: (205) 837-9300 
FAX: 205-837-9358 

ALASKA 

Hamilton/Avnet Computer 
1400 W. Benson Blvd., SUite 400 
Anchorage 99503 

ARIZONA 

tArrow Electronics, Inc. 
4134 E. Wood Street 
Phoenix 85040 
Tel: (602) 437-0750 
TWX: 910-951-1550 

Hamilton/Avnet Computer 
30 South McKemy Avenue 
Chandler 85226 

Hamilton/Avnet Computer 
90 South McKemy Road 
Chandler 85226 

tHamilton/Avnet Electronics 
505 S. Madison Drive 
Tempe 85281 
Tel: (602) 231-5140 
TWX: 910-950-0077 

Hamilton/Avnet Electronics 
30 South McKemy 
Chandler 85226 
Tel: (602) 961-6669 
FAX: 602-961-4073 

Wyle Distribution Group 
4141 E. Raymond 
Phoenix 85040 
Tel: (602) 249-2232 
TWX: 910-371-2871 

CALIFORNIA 

Arrow Commercial System Group 
1502 Crocker Avenue 
Hayward 94544 
Tel: (415) 489-5371 
FAX: (415) 489-9393 

Arrow Commercial System Group 
14242 Chambers Road 
Tustin 92680 
Tel: (714) 544-0200 
FAX: (714) 731-8438 

tArrow Electronics, Inc. 
19748 Dearborn Street 
Chatsworth 91311 
Tel: (213) 701-7500 
TWX: 910-493-2086 

tArrow Electronics, Inc. 
9511 Ridgehaven Court 
San Diego 92123 
Tel: (619) 565-4800 
FAX: 619-279-8062 

tArrow Electronics, Inc. 
521 Weddell Drive 
Sunnyvale 94086 
Tel: (408) 745-6600 
TWX: 910-339-9371 

tCertified Technical Distributor 

DOMESTIC DISTRIBUTORS 
tArrow Electronics, Inc. 
2961 Dow Avenue 
Tustin 92680 
Tel: (714) 838-5422 
TWX: 910-595-2860 

Hamilton/Avnet Computer 
3170 Pullman Street 
Costa Mesa 92626 

Hamilton/Avnet Computer 
1361B West 190th Street 
Gardena 90248 

Hamilton/Avnet Computer 
4103 Northgate Blvd. 
Sacramento 95834 

Hamilton/Avnet Computer 
4545 Viewridge Avenue 
San Diego 92123 

Hamilton/Avnet Computer 
1175 Bordeaux Drive 
Sunnyvale 94089 

Hamilton/Avnet Electronics 
21150 Califa Street 
Woodland Hills 91367 

tHamiiton/Avnet Electronics 
3170 Pullman Street 
Costa Mesa 92626 
Tel: (714) 641-4150 
TWX: 910-595-2638 

tHamiiton/Avnet Electronics 
1175 Bordeaux Drive 
Sunnyvale 94086 
Tel: (408) 743-3300 
TWX: 910-339-9332 

tHamilton/Avnet Electronics 
4545 Ridgeview Avenue 
San Diego 92123 
Tel: (619) 571-7500 
TWX: 910-595-2638 

tHamiiton/Avnet Electronics 
21150 Califa SI. 
Woodland Hills 91376 
Tel: (818) 594-0404 
FAX: 818-594-8233 

tHamilton/Avnet Electronics 
10950 W. Washington Blvd. 
Culver City 20230 
Tel: (213) 558-2458 
TWX: 910-340-6364 

tHamitton/Avnet Electronics 
1361B West 190th Street 
Gardena 90248 
Tel: (213) 217-6700 
TWX: 910-340-6364 

tHamilton/Avnet Electronics 
4103 Northgate Blvd. 
Sacramento 95834 
Tel: (916) 920-3150 

Pioneer!Technologies Group, Inc. 
134 Rio Robles 
San Jose 95134 
Tel: (408) 954-9100 
FAX: 408-954-9113 

Wyle Distribution Group 
124 Maryland Street 
EI Segundo 90254 
Tel: (213) 322-8100 

Wyle Distribution Group 
7431 Chapman Ave. 
Garden Grove 92641 
Tel: (714) 891-1717 
FAX: 714-891-1621 

tWyle Distribution Group 
2951 Sunrise Blvd., Suite 175 
Rancho Cordova 95742 
Tel: (916) 638-5282 

tWyle Distribution Group 
9525 Chesapeake Drive 
San Diego 92123 
Tel: (619) 565-9171 
TWX: 910-335-1590 

tWyle Distribution Group 
3000 Bowers Avenue 
Santa Clara 95051 
Tel: (408) 727-2500 
TWX: 408-988-2747 

tWyle Distribution Group 
17872 Cowan Avenue 
Irvine 92714 
Tel: (714) 863-9953 
TWX: 910-371-7127 

tWyle Distribution Group 
26677 W. Agoura Rd. 
Calabasas 91302 
Tel: (818) 880-9000 
TWX: 372-0232 

COLORADO 

Arrow Electronics, Inc. 
7060 South Tucson Way 
Englewood 80112 
Tel: (303) 790-4444 

Hamilton/Avnet Computer 
9605 Maroon Circle, Ste. 200 
Engelwood 80112 

tHamiiton/Avnet Electronics 
9605 Maroon Circle 
Suite 200 
Englewood 80112 
Tel: (303) 799-0663 
TWX: 910-935-0787 

tWyle Distribution Group 
451 E. 124th Avenue 
Thornton 80241 
Tel: (303) 457-9953 
TWX: 910-936-0770 

CONNECTICUT 

tArrow Electronics, Inc. 
12 Beaumont Road' 
Wallingford 06492 
Tel: (203) 265-7741 
TWX: 710-476-0162 

Hamilton/Avnet Computer 
Commerce Industrial Park 
Commerce Drive 
Danbury 06810 

tHamiiton/Avnet Electronics 
Commerce Industrial Park 
Commerce Drive 
Danbury 06810 
Tel: (203) 797-2800 
TWX: 710-456-9974 

tPioneer/Standard Electronics 
112 Main Street 
Norwalk 06851 
Tel: (203) 853-1515 
FAX: 203-838-9901 

FLORIDA 

tArrow Electronics, Inc. 
400 Fairway Drive 
Suite 102 
Deerfield Beach 33441 
Tel: (305) 429-8200 
FAX: 305-428-3991 

tArrow Electronics, Inc. 
37 Skyline Drive 
Suite 3101 
Lake Marv 32746 
Tel: (407) 323-0252 
FAX: 407-323-3189 

Hamilton/Avnet Computer 
6801 NW. 15th Way 
FI. Lauderdale 33309 

Hamilton/Avnet Computer 
3247 Spring Forest Road 
SI. Petersburg 33702 

tHamiiton/Avnet Electronics 
6801 NW. 15th Way 
Ft. Lauderdale 33309 
Tel: (305) 971-2900 
FAX: 305-971-5420 

tHamilton/Avnet Electronics 
3197 Tech Drive North 
SI. Petersburg 33702 
Tel: (813) 573-3930 
FAX: 813-572-4329 

tHamiiton/Avnet Electronics 
6947 University Boulevard 
Winter Park 32792 
Tel: (407) 628-3888 
FAX: 407-678-1878 

tPioneer!Technologies Group, Inc. 
337 Northlake Blvd., Suite 1000 
Alta Monte Springs 32701 
Tel: (407) 834-9090 
FAX: 407-834-0865 

Pioneer!Technologies Group, Inc. 
674 S. Military Trail 
Deerfield Beach 33442 
Tel: (305) 428-8877 
FAX: 305-481-2950 

GEORGIA 

Arrow Commercial System Group 
3400 C. Corporate Way 
Deluth 30139 
Tel: (404) 623-8825 
FAX: (404) 623-8802 

tArrow Electronics, Inc. 
4250 E. Rivergreen Parkway 
Deluth 30136 
Tel: (404) 497-1300 
TWX: 810-766-0439 

Hamilton/Avnet Computer 
5825 D. Peachtree Corners E. 
Norcross 30092 

tHamiiton/Avnet Electronics 
5825 D Peachtree Corners 
Norcross 30092 
Tel: (404) 447-7500 
TWX: 810-766-0432 

Pioneer!Technologies Group, Inc. 
3100 F Northwoods Place 
Norcross 30071 
Tel: (404) 448-1711 
FAX: 404-446-8270 

ILLINOIS 

tArrow Electronics, Inc. 
1140 W. Thorndale 
Itasca 60143 
Tel: (708) 250-0500 
TWX: 708-250-0916 

Hamilton/Avnet Computer 
1130 Thorndale Avenue 
Bensenville 60106 

tHamiiton/Avnet Electronics 
1130 Thorndale Avenue 
Bensenville 60106 
Tel: (708) 860-7780 
TWX: 708-860-8530 

MTI Systems Sales 
1100 W. Thorndale 
Itasca 60143 
Tel: (708) 773-2300 

tPioneer/Standard Electronics 
2171 Executive Dr., Suite 200 
Addison 60101 
Tel: (708) 495-9680 
FAX: 708-495-9831 

INDIANA 

tArrow ElectroniCS, Inc. 
7108 Lakeview Parkway West Drive 
Indianapolis 46268 
Tel: (317) 299-2071 
FAX: 317-299-0255 

Hamilton/Avnet Computer 
485 Gradle Drive 
Carmel 46032 

Hamilton/Avnet Electronics 
485 Gradle Drive 
Carmel 46032 
Tel: (317) 844-9333 
FAX: 317-844-5921 

tPioneer/Standard Electronics 
9350 Priority Way 
West Drive 
Indianapolis 46250 
Tel: (317) 573-0880 
FAX: 317-573-0979 

CG/SALE/O 



IWA 

Imilton/Avnet Computer 
5 33rd Avenue SW 
ldar Rapids 52404 

Imilton/Avnet Electronics 
5 33rd Avenue, S.w. 
ldar Rapids 52404 
·1: (3t9) 362-4757 

'NSAS 

row Electronics, Inc. 
'08 Melrose Dr., Suite 210 
nexa 66214 
II: (913) 541-9542 
IX: 913-541-0328 

Imilton/Avnet Computer 
.313 W. 95th Street 
nexa 61219 

lamilton/Avnet Electronics 
313 W. 95th 
lerland Park 66215 
,1: (913) 888-8900 
IX: 913-541-7951 

,NTUCKY 

Imilton/Avnet Electronics 
5 A. Newtown Circle 
xington 40511 
I: (606) 259-1475 

iIIRYLAND 

now Electronics, Inc. 
00 Guilford Drive 
lite H, River Center 
llumbia 21046 
I: (301) 995-6002 
.x: 301-381-3854 

lmilton/Avnet Computer 
22 Oak Hall Lane 
llumbia 21045 

lamilton/Avnet Electronics 
22 Oak Hall Lane 
llumbia 21045 
I: (301) 995-3500 
.x: 301-995-3593 

lesa Technology Corp. 
20 Patuxent Woods Dr. 
llumbia 21046 
I: (301) 290-8150 
,x: 301-290-6474 

ioneer!Technologies Group, Inc. 
00 Gaither Road 
lithersburg 20877 
I: (301) 921-0660 
,x: 301-921-4255 

'SSACHUSETTS 

·ow Electronics, Inc. 
Upton Dr. 

Imington 01887 
I: (508) 658-0900 
IX: 710-393-6770 

tmilton/Avnet Computer 
D Centennial Drive 

abody 01960 

amilton/Avnet Electronics 
D Centennial Drive 
abody 01960 
I: (508) 532-9838 
X: 508-596-7802 

ioneer/Standard Electronics 
Hartwell Avenue 

Kington 02173 
I: (617) 861-9200 
X: 617-863-1547 

lie Distribution Group 
Third Avenue 
rlington 01803 
I: (617) 272-7300 
X: 617-272-6809 

CHIGAN 

rrow Electronics, Inc. 

~~?a ~~~~~rty Road 

ix\3m_~~~:~bgg 

ertified Technical Distributor 

DOMESTIC DISTRIBUTORS (Contd.) 
Hamilton/Avnet Computer 
2215 S.E. A-5 
Grand Rapids 49508 

~f~go~~~J~~tR~~,mtt~~eI 00 
Novi 48050 

Hamilton/Avnet Electronics 
2215 29th Street S.E. 
SpaceA5 
Grand Rapids 49508 
Tel: (616) 243-8805 
FAX: 616-698-1831 

Hamilton/Avnet Electronics 
41650 Garden Brook 
Novi 48050 
Tel: (313) 347-4271 
FAX: 313-347-4021 

tPioneer/Standard Electronics 
4505 Broadmoor S.E. 
Grand Rapids 49508 
Tel: (616) 698-1800 
FAX: 616-698-1831 

tPioneer/Standard ElectroniCS 
13485 Stamford 
Livonia 48150 
Tel: (313) 525-1800 
FAX: 313-427-3720 

MINNESOTA 

tArrow Electronics, Inc. 
5230 W. 73rd Street 
Edina 55435 
Tel: (612) 830-1800 
TWX: 910-576-3125 

Hamilton/Avnet Computer 
12400 Whitewater Drive 
Minnetonka 55343 

tHamiiton/Avnet Electronics 
12400 Whitewater Drive 
Minnetonka 55434 
Tel: (612) 932-0600 
TWX: 910-576-2720 

tPioneer/Standard Electronics 
7625 Golden Triange Dr. 
Suite G 
Eden Prairie 55343 
Tel: (612) 944-3355 
FAX: 612-944-3794 

MISSOURI 

tArrow Electronics, Inc. 
2380 Schuetz 
SI. Louis 63141 
Tel: (314) 567-6888 
FAX: 314-567-1164 

Hamilton/Avnet Computer 
739 Goddard Avenue 
Chesterfield 63005 

tHamiiton/Avnet Electronics 
741 Goddard 
Chesterfield 63005 
Tel: (314) 537-1600 
FAX: 314-537-4248 

NEW HAMPSHIRE 

Hamilton/Avnet Computer 
2 Executive Park Drive 
Bedford 03102 

Hamilton/Avnet Computer 
444 East Industrial Park Dr. 
Manchester 03103 

NEW JERSEY 

tArrow Electronics, Inc. 
4 East Stow Road 
Unit 11 
Marlton 08053 
Tel: (609) 596-8000 
FAX: 609-596-9632 

tArrow Electronics 
6 Century Drive 
Parsipanny 07054 
Tel: (201) 538-.0900 
FAX: 201-538-0900 

Hamilton/Avnet Computer 
1 Keystone Ave., Bldg. 36 
Cherry Hill 08003 

Hamilton/Avnet Computer 
10 Industrial Road 
Fairfield 07006 

tHamiiton/Avnet Electronics 
1 Keystone Ave., Bldg. 36 
Cherry Hill 08003 
Tel: (609) 424-0110 
FAX: 609-751-2552 

tHamiiton/Avnet Electronics 
10 Industrial 
Fairfield 07006 
Tel: (201) 575-3390 
FAX: 201-575-5839 

tMTI Systems Sales 
9 Law Drive 
Fairfield 07006 
Tel: (201) 227-5552 
FAX: 201-575-6336 

tPioneer/Standard Electronics 
14-A Madison Rd. 
Fairfield 07006 
Tel: (201) 575-3510 
FAX: 201-575-3454 

NEW MEXICO 

Alliance Electronics Inc. 
10510 Research Avenue 
Albuquerque 87123 
Tel: (505) 292-3360 
FAX: 505-292-6537 

Hamilton/Avnet Computer 
5659 Jefferson, N.E. Suites A & B 
Albuquerque 87109 

tHamiiton/Avnet Electronics 
5659A Jefferson N.E. 
Albuquerque 87109 
Tel: (505) 765-1500 
FAX: 505-243-1395 

NEW YORK 

tArrow Electronics, Inc. 
3375 Brighton Henrietta Townline Rd. 
Rochester 14623 
Tel: (716) 427-0300 
TWX: 510-253-4766 

Arrow ElectroniCS, Inc. 
20 Oser Avenue 
Hauppauge 11788 
Tel: (516) 231-1000 
TWX: 510-227-6623 

Hamilton/Avnet Computer 
933 Motor Parkway 
Haupauge 11788 

Hamilton/Avnet Computer 
2060 Townline 
Rochester 14623 

tHamiiton/Avnet ElectroniCS 
933 Motor Parkway 
Hauppauge 11788 
Tel: (516) 231-9800 
TWX: 510-224-6166 

tHamiiton/Avnet Electronics 
2060 Townline Rd. 
Rochester 14623 
Tel: (716) 272-2744 
TWX: 510-253-5470 

Hamilton/Avnet ElectroniCS 
103 Twin Oaks Drive 
Syracuse 13206 
Tel: (315) 437-0288 
TWX: 710-541-1560 

tMTI Systems Sales 
38 Harbor Park Drive 
Port Washington 11050 
Tel: (516) 621-6200 
FAX: 510-223-0846 

Pioneer/Standard ElectroniCS 
68 Corporate Drive 
Binghamton 13904 
Tel: (607) 722-9300 
FAX: 607-722-9562 

Pioneer/Standard Electronics 
40 Oser Avenue 
Hauppauge 11787 
Tel: (516) 231-9200 
FAX: 510-227-9869 

tPioneer/Standard Electronics 
60 Crossway Park West 
Woodbury, Long Island 11797 
Tel: (516) 921-8700 
FAX: 516-921-2143 

tPioneer/Standard ElectroniCS 
840 Fairport Park 
Fairport 14450 
Tel: (716) 381-7070 
FAX: 716-381-5955 

NORTH CAROLINA 

tArrow Electronics, Inc. 
5240 Greensdairy Road 
Raleigh 27604 
Tel: (919) 876-3132 
TWX: 510-928-1856 

Hamilton/Avnet Computer 
3510 Spring Forest Road 
Raleigh 27604 

tHamiiton/Avnet Electronics 
3510 Spring Forest Drive 
Raleigh 27604 
Tel: (919) 878-0819 
TWX: 510-928-1836 

~~~e~:~~~~~~~o~l~~ gr~J.P' Inc. 
Charlotte 28210
Tel: (919) 527-8188
FAX: 704-522-8564

Pioneer Technologies Group, Inc.
2810 Meridian Parkway
Suite 148
Durham 27713
Tel: (919) 544-5400
FAX: 919-544-5885

OHIO

Arrow Commercial System Group
284 Cramer Creek Court
Dublin 43017
Tel: (614) 889-9347
FAX: (614) 889-9680

tArrow Electronics, Inc.
6238 Cochran Road
Solon 44139
Tel: (216) 248-3990
TWX: 810-427-9409

Hamilton/Avnet Computer
7764 Washington Village Dr.
Dayton 45459

Hamilton/Avnet Computer
30325 Bainbridge Rd., Bldg. A
Solon 44139

tHamiiton/Avnet Electronics
7760 Washington Village Dr.
Dayton 45459
Tel: (513) 439-6733
FAX: 513-439-6711

tHamiiton/Avnet Electronics
30325 Bainbridge
Solon 44139
Tel: (216) 349-5100
TWX: 810-427-9452

Hamilton/Avnet Computer
777 Brooksedge Blvd.
Westerville 43081
Tel: (614) 882-7004
FAX: 614-882-8650

Hamilton/Avnet Electronics
777 Brooksedge Blvd.
Westerville 43081
Tel: (614) 882-7004

MTI Systems Sales
23400 Commerce Park Road
Beachwood 44122
Tel: (216) 464-6688

tPioneer/Standard Electronics
4433 Interpoint Boulevard
Dayton 45424
Tel: (513) 236-9900
FAX: 513-236-8133

tPioneer/Standard Electronics
4800 E. 131st Street
Cleveland 44105
Tel: (216) 587-3600
FAX: 216-663-1004

CG/SALE/022891

OKLAHOMA
Arrow Electronics, Inc.
4719 South Memorial Dr.
Tulsa 74145

tHamiiton/Avnet Electronics
12121 E. 51st S1., Suite 102A
Tulsa 74146
Tel: (918) 252-7297

OREGON
tAl mac Electronics Corp.
1885 NW. 169th Place
Beaverton 97005
Tel: (503) 629·8090
FAX: 503-645-0611

Hamilton/Avnet Computer
9409 Southwest Nimbus Ave.
Beaverton 97005

tHamiiton/Avnet Electronics
9409 S.W. Nimbus Ave.
Beaverton 97005
Tel: (503) 627-0201
FAX: 503·641-4012

Wyle
9640 Sunshine Court
Bldg. G, Suite 200
Beaverton 97005
Tel: (503) 643-7900
FAX: 503-646·5466

PENNSYLVANIA
Arrow Electronics, Inc.
650 Seco Road
Monroeville 15146
Tel: (412) 856·7000

Hamilton/Avnet Computer
2800 Liberty Ave., Bldg. E
Pittsburgh 15222

Hamilton/Avnet Electronics
2800 Liberty Ave.
Pittsburgh 15238
Tel: (412) 281-4150

Pioneer/Standard Electronics
259 Kappa Drive

~~~~~~~~r i~~~~oo 
FAX: 412-963-8255 

tPioneer/Technologies Group, Inc. 
Delaware Valley 
261 Gibralter Road 
Horsham 19044 
Tel: (215) 674·4000 
FAX: 215-674·3107 

TENNESSEE 

Arrow Commercial System Group 
3635 Knight Road 
Suite 7 
Memphis 38118 
Tel: (901) 367·0540 
FAX: (901) 367-2081 

TEXAS 

Arrow Electronics, Inc. 
3220 Commander Drive 
Carrollton 75006 
Tel: (214) 380-6464 
FAX: (214) 248-7208 

tCertified Technical Distributor 

DOMESTIC DISTRIBUTORS (Contd.) 
Hamilton/Avnet Computer Hamilton/Avnet Computer tArrow Electronics, Inc. 
1807A West Braker Lane 17761 Northeast 78th Place 1093 Meyerside, Unit 2 
Austin 78758 Redmond 98052 Mississauga LST 1 M4 

Hamilton/Avnet Computer tHamiiton/Avnet Electronics 
Tel: (416) 673-7769 

Forum 2 17761 N.E. 78th Place 
FAX: 416-672-0849 

4004 Beltline, Suite 200 Redmond 98052 Hamilton/Avnet Computer 
Dallas 75244 Tel: (206) 881-6697 Canada System Engineering 

Hamilton/Avnet Computer 
FAX: 206-867-0159 Group 

Wyle Distribution Group 
3688 Nashua Drive 

4850 Wright Rd., Suite 190 Units 7 & 8 
Stafford 77477 15385 N.E. 90th Street Mississuaga L4V 1 M5 

Redmond 98052 
tHamilton/Avnet Electronics Tel: (206) 881-1150 Hamilton/Avnet Computer 
1807 W. Braker Lane FAX: 206-881-1567 3688 Nashua Drive 
Austin 78758 Untts9&10 
Tel: (512) 837-8911 WISCONSIN Mississuaga L4V 1 M5 
TWX: 910-874-1319 Hamilton/Avnet Computer Arrow Electronics, Inc. 
tHamiiton/Avnet Electronics 200 N. Patrick Blvd., Ste. 100 6845 Rexwood Road 
4004 Beltline, SUite 200 Brookfield 53005 Units 7, 8, & 9 
Dallas 75234 Tel: (414) 792-0150 Mississuaga L4V 1 R2 
Tel: (214) 308-8111 FAX: 414-792-0156 Hamilton/Avnet Computer 
TWX: 910-860-5929 190 Colonade Road 
tHamilton/Avnet Electronics 

Hamilton/Avnet Computer Nepean K2E 7J5 
20875 Crossroads Circle 

4850 Wright Rd., Sutte 190 Suite 400 tHamiiton/Avnet Electronics 
Stafford 77477 Waukesha 53186 6845 Rexwood Road 
Tel: (713) 240-7733 Units 3-4-5 
TWX: 910-881-5523 tHamiiton/Avnet Electronics Mississauga L4T 1 R2 

tPloneer/Standard Electronics 
28875 Crossroads Circle Tel: (416) 677-7432 
Suite 400 FAX: 416-677-0940 1826-0 Kramer Waukesha 53186 

Austin 78758 Tel: (414) 784-4510 tHamiiton/Avnet Electronics 
Tel: (512) 835-4000 FAX: 414-784-9509 190 Colonnade Road South 
FAX: 512-835-9829 Nepean K2E 7L5 

tPioneer/Standard Electronics 
Tel: (613) 226-1700 

13710 Omega Road CANADA FAX: 613-226-1184 

Dallas 75244 tZentronics 
Tel: (214) 386-7300 ALBERTA 1355 Meyerside Drive 
FAX: 214-490-6419 Mississauga LST 1 C9 

tPioneer/Standard Electronics 
Hamilton/Avnet Computer Tel: (416) 564·9600 
2816 21st Street Northeast FAX: 416-564-8320 

10530 Rockley Road Calgary T2E 6Z2 tZentronics Houston 77099 
Tel: (713) 495-4700 Hamilton/Avnet Electronics 155 Colonnade Road 

FAX: 713-495-5642 2816 21st Street N.E. #3 Unit 17 
Calgary T2E 6Z3 Nepean K2E 7Kl 

tWyle Distribution Group Tel: (403) 230·3586 Tel: (613) 226-8840 
1810 Greenville Avenue FAX: 403-250-1591 FAX: 613-226·6352 
Richardson 75081 

Zentronics QUEBEC Tel: (214) 235-9953 
FAX: 214-644-5064 6815 #8 Street N.E. Arrow Electronics Inc. 

Suite 100 1100 S1. Regis 
UTAH Calgary T2E 7H Dorval H9P 2T5 

Hamilton/Avnet Computer 
Tel: (403) 295-8818 Tel: (514) 421-7411 
FAX: 403-295-8714 FAX: 514-421-7430 

1585 West 2100 South 
Salt Lake City 84119 BRITISH COLUMBIA Arrow Electronics, Inc. 

500 Boul. St·Jean-Baptiste 
tHamiiton/Avnet Electronics tHamiiton/Avnet Electronics Suite 280 
1585 West 2100 South 8610 Commerce C1. Quebec G2E 5R9 
Salt Lake City 84119 Burnaby V5A 4N6 Tel: (418) 871-7500 
Tel: (801) 972-2800 Tel: (604) 420-4101 FAX: 418-871-6816 
TWX: 910-925·4018 FAX: 604-437-4712 Hamilton/Avnet Computer 
tWyle Distribution Group Zentronics 2795 Rue Halpern 
1325 West 2200 South 108·11400 Bridgeport Road S1. Laurent H4S 1 P8 
Suite E Richmond V6X 1T2 tHamilton/Avnet Electronics 
West Valley 84119 Tel: (604) 273-5575 2795 Halpern 
Tel: (801) 974-9953 FAX: 604-273-2413 S1. Laurent H2E 7Kl 

WASHINGTON ONTARIO 
Tel: (514) 335-1000 
FAX: 514·335-2481 

tAlmac Electronics Corp. Arrow Electronics, Inc. tZentronics 
14360 S.E. Eastgate Way 36 Antares Dr., Unit 100 520 McCaffrey 
Bellevue 98007 Nepean K2E 7W5 S1. Laurent H4T 1 N3 
Tel: (206) 643-9992 Tel: (613) 226-6903 Tel: (514) 737-9700 
FAX: 206-643-9709 FAX: 613·723-2018 FAX: 514-737-5212 

CG/SALEI 



FINLAND 

Intel Finland OY 
Ruosilantie 2 
00390 Helsinki 
Tel: (358) 0 544 644 
TLX: 123332 

FRANCE 

Intel Corporation SAR.L. 
1, Rue Edison·BP 303 
78054 SI. Quentin-en-Yvelines 
Cedex 
Tel: (33) (1) 30577000 
TLX: 699016 

ISRAEL 

Intel Semiconductor Ltd. 
Atidim Industrial Park-Neve Sharet 
P.O. Box 43202 
Tel-Aviv 61430 
Tel: (972) 03-498080 
TLX: 371215 

EUROPEAN SALES OFFICES 
ITALY 

Intel Corporation Italia S.pA 
Milanofiori Palazzo E 
20094 Assago 
Milano 
Tel: (39) (02) 89200950 
TLX: 341286 

NETHERLANDS 

Intel Semiconductor B.V. 
Postbus 84130 
3099 CC Rotterdam 
Tel: (31) 10.407.11.11 
TLX: 22283 

SPAIN 

Intel Iberia SA 
Zurbaran, 28 
28010 Madrid 
Tel: (34) (1) 308.25.52 
TLX: 46880 

SWEDEN 

Intel Sweden A.B. 
Dalvagen 24 
171 36 Solna 
Tel: (46) 8 734 01 00 
TLX: 12261 

SWITZERLAND 

Intel Semiconductor A.G. 
Zuerichstrasse 
8185 Winkel-Rueti bei Zuerich 
Tel: (41) 01/8606262 
TLX: 825977 

UNITED KINGDOM 

Intel Corporation (U.K.) Ltd. 
Pipers Way 
Swindon, Wiltshire SN3 1 RJ 
Tel: (44) (0793) 696000 
TLX: 444447/8 

WEST GERMANY 

Intel GmbH 
Dornacher Strasse 1 
8016 Feldkirchen bei Muenchen 
Tel: (49) 089/90992-0 
FAX: (49) 089/904/3948 

Intel GmbH 
Abraham Lincoln Strasse 16-18 
6200 Wiesbaden 
Tel: (49) 06121/7605-0 
TLX: 4-186183 

Intel GmbH 
Zettachring lOA 
7000 Stuttgart 80 
Tel: (49) 0711/7287-280 
TLX: 7-254826 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA IRELAND NORWAY Bytech Components Ltd. Rapid Silicon 

Bacher Electronics G.m.b.H. Nordisk Elektronikk (Norge) A/S 
12A Cedarwood 3 Bennet Court 

Micro Marketing Ltd. Chineham Business Park 8ennet Road 
Rotenmuehlgasse 26 Glenageary Office Park Postboks 123 Crockford Lane Reading 
1120 Wien Glenageary Smedsvingen 4 Basingstoke Berks RG2 OQX 
Tel: (43) (0222) 8356 46 Co. Dublin 1364 Hvalstad Hants RG24 OWD Tel: 0734752266 
TLX: 31532 Tel: (21) (353) (01) 856288 Tel: (47) (02) 84 62 10 Tel: (0256) 707107 FAX: 0734312728 

FAX: (21) (353) (01) 857364 TLX: 77546 FAX: 0256-707162 
BELGIUM TLX: 31584 
Inelco Belgium SA PORTUGAL Conformix WEST GERMANY 
Av. des Croix de Guerre 94 ISRAEL ATD Portugal LOA Rapid House 
1120 Bruxelles Rua Dr. Faria de Vasconcelos, 3 A Oxford Road Electronic 2000 AG 
Oorlogskruisenlaan, 94 Eastronics Ltd. 

1900 Lisboa High Wycombe Stahlgruberring 12 
1120 Brussel 11 Rozanis Street Tel: 351 1 847 22 00 Bucks HP11 2EE 8000 Muenchen 82 
Tel: (32) (02) 216 01 60 P.O.B.39300 

FAX: 351 1 84721 97 Tel: (0494) 474147 Tel: (49) 089/42001-0 
TLX: 64475 or 22090 Tel-Aviv 61392 FAX: (0494) 452144 TLX: 522561 

Tel: (972) 03-475151 
DENMARK TLX: 33638 SPAIN 

Bytech Systems ITT Multikomponent GmbH 
ITI-Multikomponent ATD Electronica, SA Unit 3 Poslfach 1265 
Naverland 29 ITALY Plaza Ciudad de Viena, 6 The Western Centre Bahnhofstrasse 44 
2600 Glostrup Intesi 

28040 Madrid Western Road 7141 Moeglingen 
Tel: (45) (0) 2 45 66 45 Tel: (34) (1) 2344000 Bracknell Tel: (49) 07141/4879 
TLX: 33355 

Divisione ITT Industries GmbH TLX: 42477 Berks RG12 lRW TLX: 7264472 
Viale Milanofiori 
Palazzo E/5 Metrologia Iberica, SA Tel: (0344) 55333 

FINLAND 
i~~9(g~sg~?s~J~31 Ctra. de Fuencarral, n.80 FAX: (0344) 867270 Jermyn GmbH 

OY Fintronic AB ,28100 Alcobendas (Madrid) 1m Dachsstueck 9 

Melkonkatu 24A TLX: 311351 Tel: (34) (1) 653 86 11 Jermyn 6250 Limburg 

00210 Helsinki Vestry Estate Tel: (49) 06431/508-0 

Tel: (358) (0) 6926022 Lasi Elettronica S.pA SWEDEN Olford Road TLX: 415257-0 

TLX: 124224 V. Ie Fulvio Testi, 126 Sevenoaks 
20092 Cinisello Balsamo (MI) Nordisk Elektronik AB Kent TN14 5EU Metrologie GmbH 

FRANCE Tel: (39) 02/2440012 Torshamnsgatan 39 Tel: (0732) 450144 Meglingerstrasse 49 
TLX: 352040 Box 36 FAX: (0732) 451251 8000 M uenchen 71 

Almex 16493 Kista Tel: (49) 089/78042-0 
Zone industrielle d'Antony Telcom S.r.1. Tel: (46) 08-034630 MMD Ltd. 

TLX: 5213189 
48, rue de I'Aubepine Via M. Civitali 75 TLX: 10547 
BP 102 20148 Milano 3 Bennet Court 

Proelectron Vertriebs GmbH 
92164 Antony Cedex Tel: (39) 02/4049046 SWITZERLAND 

Bennet Road 
Max Planck Strasse 1-3 

Tel: (33) (1) 40965400 TLX: 335654 Reading 
6072 Dreieich 

TLX: 250067 Industrade A.G. Berks RG2 OQX 
Tel: (49) 06103/30434-3 ITT Multicomponents Hertistrasse 31 Tel: (0734) 313232 
TLX: 417903 LEX Electronics Viale Milanofiori E/5 8304 Wallisellen FAX: (0734) 313255 

73-79, Rue des Solets 20090 Assago (MI) Tel: (41) (01) 8328111 
Silic 585 Tel: (39) 02/824701 TLX: 56788 Metro Systems 
94663 Rungis Cedex TLX: 311351 Rapid House 

YUGOSLAVIA 
Tel: (33) (1) 49784878 

Silverstar TURKEY Oxford Road 
TWX: 200485 High Wycombe H.R. Microelectronics Corp. 

Metrologie 
Via Dei Gracchi 20 EMPA Electronic Bucks HP11 2EE 2005 de la Cruz Blvd., Ste. 223 
20146 Milano Lindwurmstrasse 95A Tel: 0494474171 Sarita Clara, CA 95050 

Tour d'Asnieres Tel: (39) 02/49961 U.S.A. ' 
4, av, Laurent-Cely TLX: 332189 8000 Muenchen 2 FAX: 049421860 

Tel: (1) (408) 988·0286 
92606 Asnieres Cedex Tel: (49) 089/53 80 570 

TLX: 387452 
Tel: (33) (1) 47906240 TLX: 528573 Micro Marketing 
TLX: 611448 NETHERLANDS Taney Hall 

UNITED KINGDOM Eglington Terrace 
Rapido Electronic Components 

Tekelec-Airtronic Koning en Hartman S,p,a. 
Cite des Bruyeres Elektrotechniek B.V, Access Electronic Components Ltd, Dundrum Via C, Beccaria, 8 
Rue Carle Vernel - BP 2 Energieweg 1 Jubilee House, Jubilee Road Dublin 14 34133 Trieste 
9231 0 Sevres 2627 AP Delft Letchworth, Herts SG6 1 QH Eire Italia 
Tel: (33) (1) 45347535 Tel: (31) (1) 15/609906 Tel: (0462) 480888 Tel: 0001 989 400 Tel: (39) 040/360555 
TLX: 204552 / TLX: 38250 FAX: (0462) 682467 FAX: 0001 989 828 TLX: 460461 

CG/SALE/022891 



AUSTRALIA 

Intel Australia Ply. Ltd. 
Unit 13 
Allambie Grove Business Park 
25 Frenchs Forest Road East 
Frenchs Forest, NSW, 2086 
Tel: 61-2975-3300 
FAX: 61-2975-3375 

BRAZIL 

Intel Semiconductores do Brazil LTDA 
Avenida Paulista, 1159-CJS 404/405 
01311 - Sao Paulo - S.P. 
Tel: 55-11-287-5899 
TLX: 11-37-557-ISDB 
FAX: 55-11-287-5119 

CHINA/HONG KONG 

Intel PRC Corporation 
15/F, Office 1, Citic Bldg. 
Jian Guo Men Wai Street 
Beijing, PRC 
Tel: (1) 500-4850 
TLX: 22947 INTEL CN 
FAX: (1) 500-2953 

Intel Semiconductor Ltd. * 
10/F East Tower 
Bond Center 
Queensway, Central 
Hong Kong 
Tel: (852) 844-4555 
FAX: (852) 868-1989 

INTERNATIONAL SALES OFFICES 
INDIA 

Intel Asia Electronics, Inc. 
4/2, Samrah Plaza 
SI. Mark's Road 
Bangalore 560001 
Tel: 91-812-215773 
TLX: 953-845-2646 INTEL IN 
FAX: 091-812-215067 

JAPAN 

Intel Japan K.K. 
5-6 Tokodai, Tsukuba-shi 
Ibaraki, 300-26 
Tel: 0298-47-8511 
TLX: 3656-160 
FAX: 0298-47-8450 

Intel Japan K.K. * 
Hachioji ON Bldg. 
4-7-14 Myojin-machi 
Hachioji-shi, Tokyo 192 
Tel: 0426-48-8770 
FAX: 0426-48-8775 

Intel Japan K.K. * 
Bldg. Kumagaya 
2-69 Hon-cho 
Kumagaya-shi, Saitama 360 
Tel: 0485-24-6871 
FAX: 0485-24-7518 

Intel Japan K.K. * 
Kawa-asa Bldg. 
2-11-5 Shin-Yokohama 
Kohoku-ku, Yokohama-shi 
Kanagawa, 222 
Tel: 045-474-7661 
FAX: 045-471-4394 

Intel Japan K.K. * 
Ryokuchi-Eki Bldg. 
2-4-1 Terauchi 

f~r:og6~~~;_~ib~saka 560 

FAX: 06-863-1084 . 

Intel Japan K.K. 
Shinmaru Bldg. 
1-5-1 Marunouchi 
Chiyoda-ku, Tokyo 100 
Tel: 03-3201-3621 
FAX: 03-3201-6850 

Intel Japan K.K. 
Green Bldg. 
1-16-20 Nishiki 
Naka-ku, Nagoya-shi 
Aichi 450 
Tel: 052-204-1261 
FAX: 052-204-1285 

KOREA 

Intel Korea, Ltd. 
16th Floor, Life Bldg. 
61 Yoido-dong, Youngdeungpo-Ku 
Seoul 150-010 
Tel: (2) 784-8186 
FAX: (2) 784-8096 

SINGAPORE 

Intel Singapore Tec;;hnology, Ltd. 
101 Thomson Road #08-03/06 
United Square 
Singapore 1130 
Tel: (65) 250-7811 
FAX: (65) 250-9256 

TAIWAN 

Intel Technology Far East Ltd. 
Taiwan Branch Office 
8th Floor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886-2-716-9660 
FAX: 886-2-717-2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA 

Dafsys S.R.L. 
Chacabuco, 90-6 Piso 
1069-8uenos Aires 
Tel: 54-1-34-7726 
FAX: 54-1-34-1871 

AUSTRALIA 

Email Electronics 
15-17 Hume Street 
Huntingdale, 3166 
Tel: 011-61-3-544-8244 
TLX: AA 30895 
FAX: 011-61-3-543-8179 

NSD-Australia 
205 Middleborough Rd. 
Box Hill, Victoria 3128 
Tel: 03 8900970 
FAX: 03 8990819 

BRAZIL 

Elebra Componentes 
Rua Geraldo Flausina Gomes, 78 
7 Andar 
04575 - Sao Paulo - S.P. 
Tel: 55-11-534-9641 
TLX: 55-11-54593/54591 
FAX: 55-11-534-9424 

CHINA/HONG KONG 

Novel Precision Machinery Co., Ltd. 
Room 728 Trade Square 
681 Cheung Sha Wan Road 
Kowloon, Hong Kong 
Tel: (852) 360-8999 
TWX: 32032 NVTNL HX 
FAX: (852) 725-3695 

INDIA 

Micronic Devices 
Arun Complex 
No. 65 DV.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011-91-812-600-631 

011-91-812-611-365 
TLX: 9538458332 MDBG 

*Field Application Location 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sion, Trombay Road 
Chembur 
Bombay 400 071 
TLX: 9531 171447 MDEV 

Micronic Devices 
25/8, 1 st Floor 
Bada Bazaar Marg 
Old Rajinder Nagar 
New Delhi 110 060 
Tel: 011-91-11-5723509 

011-91-11-589771 
TLX: 031-63253 MDND IN 

Micronic Devices 
6-3-348/12A Dwarakapuri Colony 
Hyderabad 500 482 
Tel: 011-91-842-226748 

S&S Corporation 
1587 Kooser Road 
San Jose, CA 95118 
Tel: (408) 978-6216 
TLX: 820281 
FAX: (408) 978-8635 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
Kitakyushu-shi 802 
Tel: 093-511-6471 
FAX: 093-551-7861 

CTC Components SYstems Co., Ltd. 
4-8-1 Dobashi, Miyamae-ku 
Kawasaki-shi, Kanagawa 213 
Tel: 044-852-5121 
FAX: 044-877-4268 

Dia Semicon Systems, Inc: 
Flower Hill Shinmachi Higashi-kan 
1-23-9 Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: 03-3439-1600 
FAX: 03-3439-1601 

Okaya Koki 
2-4-18 Sakae 
Naka-ku, Nagoya-shi 460 
Tel: 052-204-2916 
FAX: 052-204-2901 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-12-22 Tsukiji 
Chuo-ku, Tokyo 104 
Tel: 03-3546-5011 
FAX: 03-3546-5044 

KOREA 

J-Tek Corporation 
Dong Sung Bldg. 9/F 
158-24, Samsung-Dong, Kangnam-Ku 
Seoul 135-090 
Tel: (822) 557-8039 
FAX: (822) 557-8304 

Samsung Electronics 
Samsung Main Bldg. 
150 Taepyung-Ro-2KA, Chung-Ku 
Seoul 100-102 
C.P.O. Box 8780 
Tel: (822) 751-3680 
TWX: KORSST K 27970 
FAX: (822) 753-9065 

MEXICO 

SSB Electronics, Inc. 
675 Palomar Street, Bldg. 4, Suite A 
Chula Vista, CA 92011 
Tel: (619) 585-3253 
TLX: 287751 CBALL UR 
FAX: (619) 585-8322 

Dicopel SA 
Tochtli 368 Fracc. Ind. San Antonio 
Azcapotzalco 
C.P. 02760-Mexico, D.F. 
Tel: 52-5-561-3211 
TLX: 177 3790 Qicome 
FAX: 52-5-561-1279 

PSI SA de C.V. 
Fco. Villa esq. Ajusco sin 
Cuernavaca - Morelos 
Tel: 52-73-13-9412 
FAX: 52-73-17-5333 

NEW ZEALAND 

Email Electronics 
36 Olive Road 
Penrose, Auckland 
Tel: 011-64-9-591-155 
FAX: 011-64-9-592-681 

SAUDI ARABIA 

ME Systems, Inc. 
642 N. Pastoria Ave. 
Sunnyvale, CA 94086 
U.S.A. 
Tel: (408) 732-1710 
FAX: (408) 732-3095 
TLX: 494-3405 ME SYS 

SINGAPORE 

Electronic Resources PIe, Ltd. 
17 Harvey Road 
#03-01 Singapore 1336 
Tel: (65) 283-0888 
TWX: RS 56541 ERS 
FAX: (65) 289-5327 

SOUTH AFRICA 

Electronic Building Elements 
178 Erasmus SI. (off Watermeyet SI.) 
Meyerspark, Pretoria, 0184 
Tel: 011-2712-803-7680 
FAX: 011-2712-803-8294 

TAIWAN 

Micro Electronics Corporation 
12th Floor, Section 3 
285 Nanking East Road 
Taipei, R.O.C. 
Tel: (886) 2-7198419 
FAX: (886) 2-7197916 

Acer Sertek Inc. 
15th Floor, Section 2 
Chien Kuo North Rd. 
Taipei 18479 R.O.C. 
Tel: 886-2-501-0055 
TWX: 23756 SERTEK 
FAX: (886) 2-5012521 

CG/SALE/022 






