$\stackrel{5}{2}$

Embedded Microcontrollers
and Processors Vol.I

Embedded Microcontrollers and Processors Vol.I

LITERATURE

To order Intel literature or obtain literature pricing information in the U.S. and Canada call or write Intel Literature Sales. In Europe and other international locations, please contact your local sales office or distributor.

INTEL LITERATURE SALES
In the U.S. and Canada
P.O. Box 7641

Mt. Prospect, IL 60056-7641

call toll free

(800) 548-4725

This 800 number is for external customers only.

CURRENT HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design information. All handbooks can be ordered individually, and most are available in a pre-packaged set in the U.S. and Canada.

Title	Intel Order Number	ISBN
SET OF TWELVE HANDBOOKS (Available in U.S. and Canada)	231003	N/A
CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:		
CONNECTIVITY	231658	1-55512-174-8
EMBEDDED APPLICATIONS (1993/94)	270648	1-55512-179-9
EMBEDDED MICROCONTROLLERS \& PROCESSORS (2 volume set)	270645	1-55512-176-4
MEMORY PRODUCTS	210830	1-55512-172-1
MICROCOMPUTER PRODUCTS	280407	1-55512-173-X
MICROPROCESSORS (2 volume set)	230843	1-55512-169-1
MOBILE COMPUTER PRODUCTS	241420	1-55512-186-1
i750® ${ }^{\text {® }}$, $86{ }^{\text {™ }}$, $\mathbf{1 9 6 0}{ }^{\text {® }}$ PROCESSORS AND RELATED PRODUCTS	272084	1-55512-185-3
PACKAGING	240800	1-55512-182-9
PERIPHERAL COMPONENTS	296467	1-55512-181-0
PRODUCT OVERVIEW (A guide to Intel Architectures and Applications)	210846	N/A
PROGRAMMABLE LOGIC	296083	1-55512-180-2

ADDITIONAL LITERATURE:

(Not included in handbook set)

AUTOMOTIVE	231792	$1-55512-125-\mathrm{X}$
COMPONENTS QUALITY/RELIABILITY	210997	$1-55512-132-2$
CUSTOMER LITERATURE GUIDE	210620	$\mathrm{~N} / \mathrm{A}$
INTERNATIONAL LITERATURE GUIDE	E00029	N / A
(Available in Europe only)	210461	$1-55512-189-6$
MILITARY AND SPECIAL PRODUCTS (2 volume set)	231762	$1-55512-046-6$
SYSTEMS QUALITY/RELIABILITY	241197	$\mathrm{~N} / \mathrm{A}$
HANDBOOK DIRECTORY		

Founded in 1968 to pursue the integration of large numbers of transistors onto tiny silicon chips, Intel's history has been marked by a remarkable number of scientific breakthroughs and innovations. In 1971, Intel introduced the 4004, the first microprocessor. Containing 2300 transistors, this first commercially-available computer on a chip is considered primitive compared with today's million-plus transistor products.

Innovations such as the microprocessor, the erasable programmable read-only memory (EPROM) and the dynamic random access memory (DRAM) revolutionized electronics by making integrated circuits the mainstay of both consumer and business computing products.

Over the last two and a half decades, Intel's business has evolved and today the company's focus is on delivering an extensive line of component, module and system-level building block products to the computer industry. The company's product line covers a broad spectrum, and includes microprocessors, flash memory, microcontrollers, a broad line of PC enhancement and local area network products, multimedia technology products, and massively parallel supercomputers. Intel's 32 -bit X86 architecture, represented by the Intel $386{ }^{\mathrm{TM}}$ and Intel486 ${ }^{\mathrm{TM}}$ microprocessor families, are the de facto standard of modern business computing and installed in millions of PCs worldwide.

Intel has over 25,000 employees located in offices and manufacturing facilities around the world. Today, Intel is the largest semiconductor company in the United States and the second largest in the world.

U.S. and CANADA LITERATURE ORDER FORM

NAME: \qquad
COMPANY: \qquad
ADDRESS: \qquad
CITY: \qquad STATE: \qquad ZIP: \qquad
COUNTRY:
PHONE NO.: ()
ORDER NO.

Subtotal \qquad
Must Add Your Local Sales Tax \qquad

Include postage:

Must add 15% of Subtotal to cover U.S. and Canada postage. (20% all other.)
\qquad
Total \qquad
Pay by check, money order, or include company purchase order with this form (\$200 minimum). We also accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-3 weeks for delivery.
\square VISAMasterCardAmerican Express Expiration Date \qquad
Account No. \qquad
Signature \qquad
Mail To: Intel Literature Sales P.O. Box 7641

Mt. Prospect, IL 60056-7641
International Customers outside the U.S. and Canada should use the International order form on the next page or contact their local Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725

INTERNATIONAL LITERATURE ORDER FORM
NAME: \qquad
COMPANY:
ADDRESS:
\qquad

CITY: \qquad STATE: \qquad ZIP: \qquad
COUNTRY: \qquad
$\begin{array}{lclll}\text { PHONE NO.: }(,) & & & \\ \text { ORDER NO. } & \text { TITLE } & \text { QTY. PRICE TOTAL }\end{array}$

Must Add Your Local Sales Tax \qquad
Total \qquad

PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover).
Other forms of payment may be available in your country. Please contact the Literature Coordinator at your local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned to your local Intel Sales Office.

EMBEDDED MICROCONTROLLERS and PROCESSORS VOLUME I

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel products:

$376{ }^{\text {™ }}$	$1750{ }^{\text {® }}$	MAPNET ${ }^{\text {m }}$
Above ${ }^{\text {TM }}$	-860 ${ }^{\text {™ }}$	Matched ${ }^{\text {TM }}$
ActionMedia®	1960®	MCS ${ }^{\text {® }}$
BITBUS ${ }^{\text {™ }}$	Intel287 ${ }^{\text {m }}$	Media Mail ${ }^{\text {™ }}$
Code Builder ${ }^{\text {TM }}$	Intel386 ${ }^{\text {m }}$	NetPort ${ }^{\text {TM }}$
DeskWare ${ }^{\text {™ }}$	Intel387 ${ }^{\text {m }}$	NetSentry ${ }^{\text {™ }}$
Digital Studio ${ }^{\text {M }}$	Intel486 ${ }^{\text {TM }}$	OpenNET ${ }^{\text {TM }}$
DV1®	Intel $487^{\text {TM }}$	OverDrive ${ }^{\text {TM }}$
EtherExpress ${ }^{\text {™ }}$	Intel ${ }^{(1)}$	Paragon ${ }^{\text {™ }}$
ETOX ${ }^{\text {™ }}$	intel inside. ${ }^{\text {TM }}$.	ProSolver ${ }^{\text {mM }}$
ExCA ${ }^{\text {™ }}$	Intellec®	RapidCAD ${ }^{\text {™ }}$
Exchange and Go ${ }^{\text {TM }}$	iPSC®	READY-LAN ${ }^{\text {TM }}$
FaxBACK ${ }^{\text {™ }}$	iRMX ${ }^{\text {® }}$	Reference Point ${ }^{(1)}$
FlashFile ${ }^{\text {™ }}$	iSBC®	RMX/80 ${ }^{\text {™ }}$
Grand Challenge ${ }^{\text {TM }}$	iSBX ${ }^{\text {TM }}$	RxServer ${ }^{\text {TM }}$
-6	iWARP ${ }^{\text {m }}$	SatisFAXtion ${ }^{\text {® }}$
ICE ${ }^{\text {TM }}$	LANDesk ${ }^{\text {™ }}$	Snapln $386^{\text {™ }}$
iLBX ${ }^{\text {TM }}$	LANPrint ${ }^{\text {® }}$	Storage Broker ${ }^{\text {TM }}$
Inboard ${ }^{\text {M }}$	LANProtect ${ }^{\text {TM }}$	SugarCube ${ }^{\text {TM }}$
1287 ${ }^{\text {™ }}$	LANSelect ${ }^{\text {® }}$	The Computer Inside. ${ }^{\text {TM }}$
-386 ${ }^{\text {™ }}$	LANShell®	TokenExpress ${ }^{\text {™ }}$
i387 ${ }^{\text {™ }}$	LANSight ${ }^{\text {m }}$	Visual Edge ${ }^{\text {M }}$
i486 ${ }^{\text {™ }}$	LANSpace ${ }^{*}$	WYPIWYF®
$1487{ }^{\text {™ }}$	LANSpool®	

MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.
Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark or products.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Sales
P.O. Box 7641

Mt. Prospect, IL 60056-7641

DATA SHEET DESIGNATIONS

Intel uses various data sheet markings to designate each phase of the document as it relates to the product. The marking appears in the upper, right-hand corner of the data sheet. The following is the definition of these markings:

Data Sheet Marking

Product Preview

Advanced Information Contains information on products being sampled or in the initial production phase of development.*

Preliminary Contains preliminary information on new products in production.*
No Marking Contains information on products in full production.*
*Specifications within these data sheets are subject to change without notice. Verify with your local Intel sales office that you have the latest data sheet before finalizing a design.

intel.

MCS ${ }_{\text {® }}$-48 $\mathbf{4 8}$ Single Component

MCS ${ }^{\circledR}$-48 Instruction Set

MCS ${ }^{\circledR}$-48 Data Sheets

MCS®.51 Architectural Overview

MCS® ${ }^{\text {- }} 51$ Programmer's Guide and Instruction Set

MCS ${ }^{\text {® }} .51$ Hardware
Descriptions and Data Sheets

8XC51FX Hardware
Description and Data Sheets

8XC51GB Hardware

Description and Data Sheets
MCS®-51 Development Support Tools
RUPI-44 FamilyMCS® ${ }^{\text {® }}$ 80/85 Data SheetsMCS ${ }^{\circledR}$-96 ArchitecturalOverview and Quick References8X9X Data Sheets8XC196KB Data Sheets8XC196KC Data Sheet8XC196KD Data Sheets

inted.

8XC196KR Data Sheet
8XC196NT/8XC196NQ and8XC196KT Data Sheets
8XC196MC Data Sheet
MCS ${ }^{\circledR}$-96 DevelopmentSupport Tools
MCS®. 51 and MCS. 96 Packaging Information23
80186/188/C186/C188
Data Sheets24
80186/80188 DevelopmentSupport Tools
i376 ${ }^{\text {TM }}$ Processor andPeripherals Data Sheets
i376TM ProcessorDevelopment Tools27

Table of Contents

Alphanumeric Index xxi
MCS ${ }^{\circledR}$-48 FAMILY
Chapter 1
MCS®-48 Single Component System 1-1
Chapter 2
MCS®-48 Expanded System 2-1
Chapter 3
MCS ${ }^{\circledR}$-48 Instruction Set 3-1
Chapter 4
MCS®-48 DATA SHEETS
8243 MCS-48 Input/Output Expander 4-1
P8748H/P8749H/8048AH/8035AHL/8049AH/8039AHL/8050AH/8040AHL HMOS Single Component 8-Bit Microcontroller 4-8
D8748H/D8749H HMOS-E Single-Component 8-Bit Microcontroller 4-21
P8049KB HMOS Single-Component 8-Bit Microcontroller 4-33
MCS-48 Express 4-45
MCS®-51 FAMILY
Chapter 5
MCS-51 Family of Microcontrollers Architectural Overview 5-1
Chapter 6
MCS-51 Programmer's Guide and Instruction Set 6-1
Chapter 7
8051, 8052 and 80C51 Hardware Description 7-1
8XC52/54/58 Hardware Description 7-37
8X5X DATA SHEETS
MCS-51 8-Bit Control-Oriented Microcontrollers 8031AH/8051AH/8032AH/ 8052AH/8751H/8751H-8 7-48
8051AHP MCS-51 Family 8-Bit Control-Oriented Microcontroller with Protected ROM 7-63
8751BH Single-Chip 8-Bit Microcontroller with 4 Kbytes of EPROM Program Memory 7-73
8751BH Express 7-85
8752BH Single-Chip 8-Bit Microcontroller with 8 Kbytes of EPROM Program Memory 7-87
8752BH Express 7-99
8XC5X DATA SHEETS 80C31BH/80C51BH Express 7-101
80C51BHP CHMOS Single-Chip 8-Bit Microcontroller with Protected ROM 7-103
87C51/80C51BH/80C31BH CHMOS Single-Chip 8-Bit Microcontroller with 4 Kbytes Internal Program Memory 7-117
87C51 Express 7-136
87C51-20/-3 Commercial/Express 20 MHz CHMOS Microcontroller 7-139
8XC51SL/Low Voltage 8XC51SL Keyboard Controller 7-153
87C52/80C52/80C32 CHMOS Single-Chip 8-Bit Microcontroller with 8 Kbytes Internal Program Memory 7-154
87C52/80C52/80C32 Express 7-170
87C52-20/80C52-20/80C32-20 Commercial/Express 20 MHz Microcontroller 7-172
87C54/80C54 CHMOS Single-Chip 8-Bit Microcontroller with 16 Kbytes Internal Program Memory 7-188
87C54/80C54 Express 7-204
87C54-20/-3 80C54-20/-3 Commercial/Express 20 MHz Microcontroller 7-206

Table of Contents (Continued)

87C58/80C58 CHMOS Single-Chip 8-Bit Microcontroller with 32 Kbytes Internal Program Memory 7-222
87C58/80C58 Express 7-239
87C58-20/-3 80C58-20/-3 Commercial/Express 20 MHz Microcontroller 7-241
Chapter 8
8XC51FX Hardware Description 8-1
8XC51FX DATA SHEETS
83C51FA/80C51FA Express 8-44
87C51FA/83C51FA/80C51FA CHMOS Single-Chip 8-Bit Microcontroller with 8 Kbytes Internal Program Memory 8-46
87C51FA Express 8-65
87C51FA-20/-3 Commercial/Express 20 MHz CHMOS Microcontroller 8-68
87C51FB/83C51FB CHMOS Single-Chip 8-Bit Microcontroller with 16 Kbytes Internal Program Memory 8-83
87C51FB-20/-3 83C51FB-20/-3 Commercial/Express 20 MHz Microcontroller 8-100
87C51FC/83C51FC CHMOS Single-Chip 8-Bit Microcontroller with 32 Kbytes Internal Program Memory 8-115
87C51FC/83C51FC Express 8-132
87C51FC-20/-3 83C51FC-20/-3 Commercial/Express 20 MHz Microcontroller 8-134
Chapter 9
87C51GB Hardware Description 9-1
8XC51GB DATA SHEETS
87C51GB/83C51GB/80C51GB CHMOS Single-Chip 8-Bit Microcontroller 9-56
87C51GB/80C51GB CHMOS Single-Chip 8-Bit Microcontroller Express 9-78
Chapter 10
83C152 Hardware Description 10-1
8XC152JX DATA SHEET
8XC152JA/JB/JC/JD Universal Communication Controller 8-Bit Microcontroller 10-71
Chapter 11
MCS®-51 DEVELOPMENT SUPPORT TOOLS
Development Tools for the MCS-51 Family of Microcontrollers 11-1
ACE51FX Software 11-7
EV80C51FX Evaluation Board 11-8
EV80C51GX Evaluation Board 11-11
THE RUPI FAMILY
Chapter 12
The RUPI-44 Family: Microcontroller with On-Chip Communication Controller 12-1
8044 Architecture 12-9
The RUPI-44 Serial Interface Unit 12-19
8044 Application Examples 12-57
8044 DATA SHEET
8044AH/8344AH/8744AH High Performance 8-Bit Microcontroller with On-Chip Serial Communication Controller 12-131
MCS ${ }^{\circledR}$-80/85 FAMILY
Chapter 13
MCS®-80/85 DATA SHEETS
8080A/8080A-1/8080A-2 8-Bit N-Channel Microprocessor 13-1
8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessors 13-11
8155H/8156H/8155H-2/8156H-2 2048-Bit Static HMOS RAM with I/O Ports and Timer 13-31
8185/8185-2 1024×8-Bit Static RAM for MCS ${ }^{\circledR}$-85 13-45
8224 Clock Generator and Driver for 8080A CPU 13-50

Table of Contents (Continued)

8228 System Controller and Bus Driver for 8080A CPU 13-55
8755A 16,384-Bit EPROM with I/O 13-59
MCS®-96 FAMILY
Chapter 14
MCS-96 Architectural Overview 14-1
8X9X Quick Reference 14-15
8XC196KB Quick Reference 14-40
8XC196KC Quick Reference 14-73
8XC196KD Quick Reference 14-104
8XC196KR Quick Reference 14-134
8XC196KT Quick Reference 14-161
8XC196MC Quick Reference 14-190
8XC196NT/NQ Quick Reference 14-224
MCS-96 A/D Converter Quick Reference 14-253
Chapter 15
8X9X DATA SHEETS
809XBH/839XBH/879XBH Commercial/Express HMOS Microcontroller 15-1
8097JF/8397JF/8797JF Commercial/Express HMOS Microcontroller 15-23
8098/8398/8798 Commercial/Express HMOS Microcontroller 15-42
Chapter 16
8XC196KB DATA SHEETS
80C196KB10/83C196KB10/80C196KB12/83C196KB12 Commercial/Express CHMOS Microcontroller 16-1
80C198/83C198/80C194/83C194 Commercial/Express CHMOS Microcontroller 16-22
8XC196KB/8XC196KB16 Commercial/Express CHMOS Microcontroller 16-38
8XC198 Commercial CHMOS Microcontroller 16-60
Chapter 17
8XC196KC DATA SHEET
8XC196KC Commercial/Express CHMOS Microcontroller 17-1
Chapter 18
8XC196KD DATA SHEETS
8XC196KD/8XC196KD20 Commercial CHMOS Microcontroller 18-1
8XL196KD Commercial CHMOS Microcontroller 18-26
Chapter 19
8XC196KR DATA SHEET
8XC196KR/KQ/JR/JQ Commercial/Express CHMOS Microcontroller 19-1
Chapter 20
8XC196NT/8XC196NQ AND 8XC196KT DATA SHEETS
8XC196NT/8XC196NQ CHMOS Microcontroller 20-1
8XC196KT Commercial CHMOS Microcontroller 20-33
Chapter 21
8XC196MC DATA SHEET
87C196MC Industrial Mótor Control Microcontroller 21-1
Chapter 22
MCS®-96 DEVELOPMENT SUPPORT TOOLS
ICE-196KD/HX In-Circuit Emulator 22-1
ICE-196 KD/PC In-Circuit Emulator 22-6
MCS-96 Software Development Packages 22-9
ApBuilder Programming Package 22-12
EV80C196KX/EV8097BH/EV80C196KB/EV80C196KC/EV80C196KD Evaluation Boards 22-15
EV80C196KR Evaluation Board 22-22
EV80C196MC Evaluation Board 22-24
Chapter 23
MCS®-51 and MCS-96 PACKAGING INFORMATION MCS-51 and MCS-96 Packaging Information 23-1
80186/80188 FAMILY
Chapter 24
80186/188/C186/C188 DATA SHEETS
80186 High Integration 16-Bit Microprocessor 24-1
80C186 CHMOS High Integration 16-Bit Microprocessor 24-59
80C186XL20, 16, 12, 10 16-Bit High Integration Embedded Processor 24-128
80C186EA20, 16, 12 16-Bit High Integration Embedded Processor 24-174
80C186EB-20 ,-16, -13, -8, 16-Bit High-Integration Embedded Processor 24-227
80C186EC-16, -13 16-Bit High-Integration Embedded Processor 24-283
80L186EA8 16-Bit High Integration Embedded Processor 24-338
80L186EB-13, -8, 16-Bit High-Integration Embedded Processor 24-366
80C187 80-Bit Math Coprocessor 24-390
80188 High Integration 8-Bit Microprocessor 24-420
80 C 188 CHMOS High Integration 16-Bit Microprocessor 24-479
80C188XL20, 16, 12, 10 16-Bit High Integration Embedded Processor 24-551
80C188EA20, 16, 12 16-Bit High Integration Embedded Processor 24-597
80C188EB-20, -16, -13, -8 16-Bit High-Integration Embedded Processor 24-649
80C188EC-16, -13 16-Bit High-Integration Embedded Processor 24-704
80L188EA8 16-Bit High Integration Embedded Processor 24-761
80L188EB-13, -8, 16-Bit High-Integration Embedded Processor 24-788
82188 Integrated Bus Controller for $8086,8088,80186,80188$ Processors 24-812
Chapter 25
80186/80188 DEVELOPMENT SUPPORT TOOLS
ICE-186/188 Family In-Circuit Emulator 25-1
8086/80C186 Software Development Tools 25-8
EV80C186EA/XL Evaluation Board 25-13
EV80C186EB Evaluation Board 25-16
EV80C186EC Evaluation Board 25-19
DB86A Artic Software Debugger 25-21
i376TM EMBEDDED PROCESSOR
Chapter 26
i376TM PROCESSOR AND PERIPHERALS DATA SHEETS
376 High Performance 32-Bit Embedded Processor 26-1
Intel387 SX Math CoProcessor 26-96
82355 Bus Master Interface Controller (BMIC) 26-97
82370 Integrated System Peripheral 26-98
82596DX and 82596SX High-Performance 32-Bit Local Area Network Coprocessor 26-99
Chapter 27
i376TM PROCESSOR DEVELOPMENT TOOLS
Intel386 and Intel486 Family Development Support 27-1
TRANS 186-376 Assembly Code Translator 27-9 27-9
CAN 82527 CONTROLLER
Chapter 28
82527 DATA SHEET
Serial Communications Controller (Controller Area Network Protocol) 28-1
Chapter 29
82527 DEVELOPMENT TOOL
EV82527 Evaluation Kit 29-1

Alphanumeric Index

376 High Performance 32-Bit Embedded Processor 26-1
80186 High Integration 16-Bit Microprocessor 24-1
80188 High Integration 8-Bit Microprocessor 24-420
8044 Application Examples 12-57
8044 Architecture 12-9
8044AH/8344AH/8744AH High Performance 8-Bit Microcontroller with On-Chip Serial Communication Controller 12-131
8051, 8052 and 80C51 Hardware Description 7-1
8051 AHP MCS-51 Family 8-Bit Control-Oriented Microcontroller with Protected ROM 7-63
8080A/8080A-1/8080A-2 8-Bit N-Channel Microprocessor 13-1
8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessors 13-11
8086/80C186 Software Development Tools 25-8
8097JF/8397JF/8797JF Commercial/Express HMOS Microcontroller 15-23
8098/8398/8798 Commercial/Express HMOS Microcontroller 15-42
809XBH/839XBH/879XBH Commercial/Express HMOS Microcontroller 15-1
80C186 CHMOS High Integration 16-Bit Microprocessor 24-59
80C186EA20, 16, 12 16-Bit High Integration Embedded Processor 24-174
80C186EB-20 ,-16, -13, -8, 16-Bit High-Integration Embedded Processor 24-227
80C186EC-16, -13 16-Bit High-Integration Embedded Processor 24-283
80C186XL20, 16, 12, 10 16-Bit High Integration Embedded Processor 24-128
80C187 80-Bit Math Coprocessor 24-390
80C188 CHMOS High Integration 16-Bit Microprocessor 24-479
80C188EA20, 16, 12 16-Bit High Integration Embedded Processor 24-597
80C188EB-20, -16, -13, -8 16-Bit High-Integration Embedded Processor 24-649
80C188EC-16, -13 16-Bit High-Integration Embedded Processor 24-704
80C188XL20, 16, 12, 10 16-Bit High Integration Embedded Processor 24-551
80C196KB10/83C196KB10/80C196KB12/83C196KB12 Commercial/Express CHMOS
Microcontroller 16-1
80C198/83C198/80C194/83C194 Commercial/Express CHMOS Microcontroller 16-22
80C31BH/80C51BH Express 7-101
80C51BHP CHMOS Single-Chip 8-Bit Microcontroller with Protected ROM 7-103
80L186EA8 16-Bit High Integration Embedded Processor 24-338
80L186EB-13, -8, 16-Bit High-Integration Embedded Processor 24-366
80L188EA8 16-Bit High Integration Embedded Processor 24-761
80L188EB-13, -8, 16-Bit High-Integration Embedded Processor 24-788
8155H/8156H/8155H-2/8156H-2 2048-Bit Static HMOS RAM with I/O Ports and Timer 13-31
8185/8185-2 1024×8-Bit Static RAM for MCS®-85 13-45
82188 Integrated Bus Controller for 8086, 8088, 80186, 80188 Processors 24-812
8224 Clock Generator and Driver for 8080A CPU 13-50
8228 System Controller and Bus Driver for 8080A CPU 13-55
82355 Bus Master Interface Controller (BMIC) 26-97
82370 Integrated System Peripheral 26-98
8243 MCS-48 Input/Output Expander 4-1
82596DX and 82596SX High-Performance 32-Bit Local Area Network Coprocessor 26-99
83C152 Hardware Description 10-1
83C51FA/80C51FA Express 8-44
8751BH Express 7-85
8751BH Single-Chip 8-Bit Microcontroller with 4 Kbytes of EPROM Program Memory 7-73
8752BH Express 7-99
8752BH Single-Chip 8-Bit Microcontroller with 8 Kbytes of EPROM Program Memory 7-87
8755A 16,384-Bit EPROM with I/O 13-59
87C196MC Industrial Motor Control Microcontroller 21-1
87C51 Express 7-136
87C51-20/-3 Commercial/Express 20 MHz CHMOS Microcontroller 7-139

Alphanumeric Index (Continued)

87C51/80C51BH/80C31BH CHMOS Single-Chip 8-Bit Microcontroller with 4 Kbytes Internal Program Memory 7-117
87C51FA Express 8-65
87C51FA-20/-3 Commercial/Express 20 MHz CHMOS Microcontroller 8-68
87C51FA/83C51FA/80C51FA CHMOS Single-Chip 8-Bit Microcontroller with 8 Kbytes Internal Program Memory 8-46
87C51FB-20/-3 83C51FB-20/-3 Commercial/Express 20 MHz Microcontroller 8-100
87C51FB/83C51FB CHMOS Single-Chip 8-Bit Microcontroller with 16 Kbytes Internal Program Memory 8-83
87C51FC-20/-3 83C51FC-20/-3 Commercial/Express 20 MHz Microcontroller 8-134
87C51FC/83C51FC CHMOS Single-Chip 8-Bit Microcontroller with 32 Kbytes Internal Program Memory 8-115
87C51FC/83C51FC Express 8-132
87C51GB Hardware Description 9-1
87C51GB/80C51GB CHMOS Single-Chip 8-Bit Microcontroller Express 9-78
87C51GB/83C51GB/80C51GB CHMOS Single-Chip 8-Bit Microcontroller 9-56
87C52-20/80C52-20/80C32-20 Commercial/Express 20 MHz Microcontroller 7-172
87C52/80C52/80C32 CHMOS Single-Chip 8-Bit Microcontroller with 8 Kbytes Internal Program Memory 7-154
87C52/80C52/80C32 Express 7-170
87C54-20/-3 80C54-20/-3 Commercial/Express 20 MHz Microcontroller 7-206
87C54/80C54 CHMOS Single-Chip 8-Bit Microcontroller with 16 Kbytes Internal Program Memory 7-188
87C54/80C54 Express 7-204
87C58-20/-3 80C58-20/-3 Commercial/Express 20 MHz Microcontroller 7-241
87C58/80C58 CHMOS Single-Chip 8-Bit Microcontroller with 32 Kbytes Internal Program Memory 7-222
87C58/80C58 Express 7-239
8X9X Quick Reference 14-15
8XC152JA/JB/JC/JD Universal Communication Controller 8-Bit Microcontroller 10-71
8XC196KB Quick Reference 14-40
8XC196KB/8XC196KB16 Commercial/Express CHMOS Microcontroller 16-38
8XC196KC Commercial/Express CHMOS Microcontroller 17-1
8XC196KC Quick Reference 14-73
8XC196KD Quick Reference 14-104
8XC196KD/8XC196KD20 Commercial CHMOS Microcontroller 18-1
8XC196KR Quick Reference 14-134
8XC196KR/KQ/JR/JQ Commercial/Express CHMOS Microcontroller 19-1
8XC196KT Commercial CHMOS Microcontroller 20-33
8XC196KT Quick Reference 14-161
8XC196MC Quick Reference 14-190
8XC196NT/8XC196NQ CHMOS Microcontroller 20-1
8XC196NT/NQ Quick Reference 14-224
8XC198 Commercial CHMOS Microcontroller 16-60
8XC51FX Hardware Description 8-1
8XC51SL/Low Voltage 8XC51SL Keyboard Controller 7-153
8XC52/54/58 Hardware Description 7-37
8XL196KD Commercial CHMOS Microcontroller 18-26
ACE51FX Software 11-7
ApBuilder Programming Package 22-12
D8748H/D8749H HMOS-E Single-Component 8-Bit Microcontroller 4-21
DB86A Artic Software Debugger 25-21
Development Tools for the MCS-51 Family of Microcontrollers 11-1
EV80C186EA/XL Evaluation Board 25-13

Alphanumeric Index (Continued)

EV80C186EB Evaluation Board 25-16
EV80C186EC Evaluation Board 25-19
EV80C196KR Evaluation Board 22-22
EV80C196KX/EV8097BH/EV80C196KB/EV80C196KC/EV80C196KD Evaluation Boards 22-15
EV80C196MC Evaluation Board 22-24
EV80C51FX Evaluation Board 11-8
EV80C51GX Evaluation Board 11-11
EV82527 Evaluation Kit 29-1
ICE-186/188 Family In-Circuit Emulator 25-1
ICE-196 KD/PC In-Circuit Emulator 22-6
ICE-196KD/HX In-Circuit Emulator 22-1
Intel386 and Intel486 Family Development Support 27-1
Intel387 SX Math CoProcessor 26-96
MCS-48 Express 4-45
MCS-51 8-Bit Control-Oriented Microcontrollers 8031AH/8051AH/8032AH/8052AH/ 8751H/8751H-8 7-48
MCS-51 and MCS-96 Packaging Information 23-1
MCS-51 Family of Microcontrollers Architectural Overview 5-1
MCS-51 Programmer's Guide and Instruction Set 6-1
MCS-96 A/D Converter Quick Reference 14-253
MCS-96 Architectural Overview 14-1
MCS-96 Software Development Packages 22-9
MCS ${ }^{\circledR}$-48 Expanded System 2-1
MCS ${ }^{\circledR}$-48 Instruction Set 3-1
MCS®-48 Single Component System 1-1
P8049KB HMOS Single-Component 8-Bit Microcontroller 4-33
P8748H/P8749H/8048AH/8035AHL/8049AH/8039AHL/8050AH/8040AHL HMOS Single Component 8-Bit Microcontroller 4-8
Serial Communications Controller (Controller Area Network Protocol) 28-1
The RUPI-44 Family: Microcontroller with On-Chip Communication Controller 12-1
The RUPI-44 Serial Interface Unit 12-19
TRANS 186-376 Assembly Code Translator 27-9

MCS ${ }^{\circledR}$-48 Single Component

 System
THE SINGLE COMPONENT MCS®-48 SYSTEM

1.0 INTRODUCTION

Sections 2 through 5 describe in detail the functional characteristics of the 8748 H and 8749 H EPROM, 8048AH/8049AH/8050AH ROM, and 8035AHL/ 8039AHL/8040-AHL CPU only single component microcomputers. Unless otherwise noted, details within these sections apply to all versions. This chapter is limited to those functions useful in single-chip implementations of the MCS ${ }^{6}-48$. The Chapter on the Expanded MCS ${ }^{6}-48$ System discusses functions which allow expansion of program memory, data memory, and input output capability.

2.0 ARCHITECTURE

The following sections break the MCS-48 Family into functional blocks and describe each in detail. The following description will use the 8048AH as the representative product for the family. See Figure 1.

2.1 Arithmetic Section

The arithmetic section of the processor contains the basic data manipulation functions of the 8048AH and can be divided into the following blocks:

```
- Arithmetic Logic Unit (ALU)
- Accumulator
- Carry Flag
- Instruction Decoder
```

In a typical operation data stored in the accumulator is combined in the ALU with data from another source on the internal bus (such as a register or $1 / 0$ port) and the result is stored in the accumulator or another register.

The following is more detailed description of the function of each block.

INSTRUCTION DECODER

The operation code (op code) portion of each program instruction is stored in the Instruction Decoder and converted to outputs which control the function of each of the blocks of the Arithmetic Section. These lines control the source of data and the destination register as well as the function performed in the ALU.

ARITHMETIC LOGIC UNIT

The ALU accepts 8 -bit data words from one or two sources and generates an 8-bit result under control of the Instruction Decoder. The ALU can perform the following functions:

- Add With or Without Carry
- AND, OR, Exclusive OR
- Increment/Decrement
- Bit Complement
- Rotate Left, Right
- Swap Nibbles
- BCD Decimal Adjust

If the operation performed by the ALU results in a value represented by more than 8 bits (overflow of most significant bit), a Carry Flag is set in the Program Status Word.

ACCUMULATOR

The accumulator is the single most important data register in the processor, being one of the sources of input to the ALU and often the destination of the result of operations performed in the ALU. Data to and from I/O ports and memory also normally passes through the accumulator.

2.2 Program Memory

Resident program memory consists of 1024,2048 , or 4096 words eight bits wide which are addressed by the program counter. In the 8748 H and the 8749 H this memory is user programmable and erasable EPROM; in the 8048AH/ 8049AH/8050AH the memory is ROM which is mask programmable at the factory. The 8035AHL/8039AHL 8040AHL has no internal program memory and is used with external memory devices. Program code is completely interchangeable among the various versions. To access the upper 2 K of program memory in the 8050 AH , and other MCS-48 devices, a select memory bank and a JUMP or CALL instruction must be executed to cross the 2 K boundary.

There are three locations in Program Memory of special importance as shown in Figure 2.

LOCATION 0

Activating the Reset line of the processor causes the first instruction to be fetched from location 0.

LOCATION 3

Activating the Interrupt input line of the processor (if interrupt is enabled) causes a jump to subroutine at location 3.

LOCATION 7

A timer/counter interrupt resulting from timer counter overflow (if enabled) causes a jump to subroutine at location 7.

Therefore, the first instruction to be executed after initialization is stored in location 0 , the first word of an external interrupt service subroutine is stored in location 3 , and the first word of a timer/counter service routines

is stored in location 7. Program memory can be used to store constants as well as program instructions. Instructions such as MOVP and MOVP3 allow easy access to data "lookup" tables.

Figure 2. Program Memory Map

2.3 Data Memory

Resident data memory is organized as 64,128 , or 256 by 8 -bits wide in the $8048 \mathrm{AH}, 8049 \mathrm{AH}$ and 8050AH. All locations are indirectly addressable through either of two RAM Pointer Registers which reside at address 0 and 1 of the register array. In addition, as shown in Figure 3, the first 8 locations ($0-7$) of the array are designated as working registers and are directly addressable by several instructions. Since these registers are more easily addressed, they are usually used to store frequently accessed intermediate results. The DJNZ instruction makes very efficient use of the working registers as program loop counters by allowing the programmer to decrement and test the register in a single instruction.

By executing a Register Bank Switch instruction (SEL RB) RAM locations 24-31 are designated as the working
registers in place of locations $0-7$ and are then directly addressable. This second bank of working registers may be used as an extension of the first bank or reserved for use during interrupt service subroutines allowing the registers of Bank 0 used in the main program to be instantly "saved" by a Bank Switch. Note that if this second bank is not used, locations 24-31 are still addressable as general purpose RAM. Since the two RAM pointer Registers R0 and R1 are a part of the working register array, bank switching effectively creates two more pointer registers (R0/and R1/) which can be used with R0 and R1 to easily access up to four separate working areas in RAM at one time. RAM locations (8-23) also serve a dual role in that they contain the program counter stack as explained in Section 2.6. These locations are addressed by the Stack Pointer during subroutine calls as well as by RAM Pointer Registers R0 and R1. If the level of subroutine nesting is less than 8 , all stack registers are not required and can be used as general purpose RAM locations. Each level of subroutine nesting not used provides the user with two additional RAM locations.

Figure 3. Data Memory Map

Figure 4. "Quasi-bidirectional" Port Structure

2.4 Input/Output

The 8048AH has 27 lines which can be used for input or output functions. These lines are grouped as 3 ports of 8 lines each which serve as either inputs, outputs or bidirectional ports and 3 "test" inputs which can alter program sequences when tested by conditional jump instructions.

PORTS 1 AND 2

Ports 1 and 2 are each 8 bits wide and have identical characteristics. Data written to these ports is statically latched and remains unchanged until rewritten. As input ports these lines are non-latching, i.e., inputs must be present until read by an input instruction. Inputs are fully TTL compatible and outputs will drive one standard TTL load.

The lines of ports 1 and 2 are called quasi-bidirectional because of a special output circuit structure which allows each line to serve as an input, and output, or both even though outputs are statically latched. Figure 4 shows the circuit configuration in detail. Each line is continuously pulled up to V_{CC} through a resistive device of relatively high impedance.

This pullup is sufficient to provide the source current for a TTL high level yet can be pulled low by a standard TTL gate thus allowing the same pin to be used for both input and output. To provide fast switching times in a ' 0 ' to " 1 " transition a relatively low impedance device is switched in momentarily ($\approx 1 / 5$ of a machine cycle) whenever a " 1 " is written to the line. When a " 0 " is written to the line a low impedance device overcomes the light pullup and provides TTL current sinking capability. Since the pulldown transistor is a low impedance device a " 1 " must first be written to any line which is to be used as an input. Reset initializes all lines to the high impedance " 1 "' state.

It is important to note that the ORL and the ANL are read/ write operations. When executed, the $\mu \mathrm{C}$ "reads" the port, modifies the data according to the instruction, then "writes" the data back to the port. The "writing" (essentially an OUTL instruction) enables the low impedance pull-up momentarily again even if the data was unchanged from a " 1 ." This specifically applies to configurations that have inputs and outputs mixed together on the same port. See also section 8 in the Expanded MCS-48 System chapter.

BUS

Bus is also an 8-bit port which is a true bidirectional port with associated input and output strobes. If the bidirectional feature is not needed, Bus can serve as either a
statically latched output port or non-latching input port. Input and output lines on this port cannot be mixed however.

As a static port, data is written and latched using the OUTL instruction and inputted using the INS instruction. The INS and OUTL instructions generate pulses on the corresponding $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ output strobe lines; however, in the static port mode they are generally not used. As a bidirectional port the MOVX instructions are used to read and write the port. A write to the port generates a pulse on the $\overline{\mathrm{WR}}$ output line and output data is valid at the trailing edge of WR. A read of the port generates a pulse on the $\overline{\mathrm{RD}}$ output line and input data must be valid at the trailing edge of $\overline{\mathrm{RD}}$. When not being written or read, the BUS lines are in a high impedance state. See also sections 7 and 8 in the Expanded MCS-48 System chapter.

2.5 Test and INT Inputs

Three pins serve as inputs and are testable with the conditional jump instruction. These are T0, T1, and INT. These pins allow inputs to cause program branches without the necessity to load an input port into the accumulator. The T0, T1, and INT pins have other possible functions as well. See the pin description in Section 3.

2.6 Program Counter and Stack

The Program Counter is an independent counter while the Program Counter Stack is implemented suing pairs of registers in the Data Memory Array. Only 10, 11, or 12 bits of the Program Counter are used to address the 1024, 2048, or 4096 words of on-board program memory of the 8048AH, 8049AH, or 8050AH, while the most significant bits can be used for external Program Memory fetches. See Figure 5. The Program Counter is initialized to zero by activating the Reset line.

Figure 5. Program Counter

An interrupt or CALL to a subroutine causes the contents of the program counter to be stored in one of the 8 register pairs of the Program Counter Stack as shown in Figure 6. The pair to be used is determined by a 3-bit Stack Pointer which is part of the Program Status Word (PSW).

Figure 6. Program Counter Stack
Data RAM locations 8-23 are available as stack registers and are used to store the Program Counter and 4 bits of PSW as shown in Figure 6. The Stack Pointer when initialized to 000 points to RAM locations 8 and 9. The first subroutine jump or interrupt results in the program counter contents being transferred to locations 8 and 9 of the RAM array. The stack pointer is then incremented by one to point to locations 10 and 11 in anticipation of another CALL. Nesting of subroutines wihtin subroutines can continue up to 8 times without overflowing the stack. If overflow does occur the deepest address stored (locations 8 and 9) will be overwritten and lost since the stack pointer overflows from 111 to 000 . It also underflows from 000 to 111 .

The end of a subroutine, which is signalled by a return instruction (RET or RETR), causes the Stack Pointer to b decremented and the contents of the resulting register pair to be transferred to the Program Counter.

2.7 Program Status Word

An 8-bit status word which can be loaded to and from the accumulator exists called the Program Status Word (PSW). Figure 7 shows the information available in
the word. The Program Status Word is actually a collection of flip-flops throughout the machine which can be read or written as a whole. The ability to write to PSW allows for easy restoration of machine status after a power down sequence.

Figure 7. Program Status Word (PSW)

The upper four bits of PSW are stored in the Program Counter Stack with every call to subroutine or interrupt vector and are optionally restored upon return with the RETR instruction. The RET return instruction does not update PSW.

The PSW bit definitions are as follows:
Bits 0-2: Stack Pointer bits ($\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$)
Bit 3: Not used ("1'' level when read)
Bit 4: Working Register Bank Switch Bit (BS)
$0=$ Bank 0
$1=$ Bank 1
Bit 5: Flag 0 bit (F0) user controlled flag which can be complemented or cleared, and tested with the conditional jump instruction JF0.

Bit 6: Auxiliary Carry (AC) carry bit generated by an ADD instruction and used by the decimal adjust instruction DA A.

Bit 7: \quad Carry (CY) carry flag which indicates that the previous operation has resulted in overflow of the accumulator.

2.8 Conditional Branch Logic

The conditional branch logic within the processsor enables several conditions internal and external to the processor to be tested by the users program. By using the conditional jump instruction the conditions that are listed in Table 1 can effect a change in the sequence of the program execution.

Table 1

Device Testable	Jump Conditions (Jump On)	
		not all
Accumulator	All zeros	zeros
Accumulator Bit	-	1
Carry Flag	0	1
User Flags (F0, F1)	-	1
Timer Overflow Flag	-	1
Test Inputs (T0, T1)	0	1
Interrupt Input (INT)	0	-

2.9 Interrupt

An interrupt sequence is initiated by applying a low " 0 "' level input to the INT pin. Interrupt is level triggered and active low to allow "WIRE ORing' of several interrupt sources at the input pin. Figure 8 shows the interrupt logic of the 8048 AH . The Interrupt line is sampled every instruction cycle and when detected causes a "call to subroutine'" at location 3 in program memory as soon as all cycles of the current instruction are complete. On 2cycle instructions the interrupt line is sampled on the 2nd cycle only. INT must be held low for at least 3 machine cycles to ensure proper interrupt operations. As in any CALL to subroutine, the Program Counter and Program Status word are saved in the stack. For a description of this operation see the previous section, Program Counter and Stack. Program Memory location 3 usually contains an unconditional jump to an interrupt service subroutine elsewhere in program memory. The end of an interrupt service subroutine is signalled by the execution of a Return and Restore Status instruction RETR. The interrupt system is single level in that once an interrupt is detected all further interrupt requests are ignored until execution of an RETR reenables the interrupt input logic. This occurs at the beginning of the second cycle of the RETR instruction. This sequence holds true also for an internal interrupt generated by timer overflow. If an internal timer/counter generated interrupt and an external interrupt are detected at the same time, the external source will be recognized. See the following Timer/Counter section for a description of timer interrupt. If needed, a second external interrupt can be created by enabling the timer/counter interrupt, loading FFH in the Counter (ones less than terminal count), and enabling the event counter mode. A " 1 " to " 0 " transition on the Tl input will then cause an interrupt vector to location 7.

INTERRUPT TIMING

The interrupt input may be enabled or disabled under Program Control using the EN I and DIS I instructions. Interrupts are disabled by Reset and remain so until en-
abled by the users program. An interrupt request must be removed before the RETR instruction is executed upon return from the service routine otherwise the processor will re-enter the service routine immediately. Many peripheral devices prevent this situation by resetting their interrupt request line whenever the processor accesses (Reads or Writes) the peripherals data buffer register. If the interrupting device does not require access by the processor, one output line of the 8048AH may be designated as an "interrupt acknowledge" which is activated by the service subroutine to reset the interrupt request. The $\overline{\mathrm{INT}}$ pin may also be tested using the conditional jump instruction JNI. This instruction may be used to detect the presence of a pending interrupt before interrupts are enabled. If interrupt is left disabled, INT may be used as another test input like T0 and T1.

2.10 Timer/Counter

The 8048 AH contains a counter to aid the user in counting extemal events and generating accurate time delays without placing a burden on the processor for these functions. In both modes the counter operation is the same, the only difference being the source of the input to the counter. The timer/event counter is shown in Figure 9.

COUNTER

The 8-bit binary counter is presettable and readable with two MOV instructions which transfer the contents of the accumulator to the counter and vice versa. The counter content may be affected by Reset and should be initialized by software. The counter is stopped by a Reset or STOP TCNT instruction and remains stopped until started as a timer by a START T instruction or as an event counter by a START CNT instruction. Once started the counter will increment to this maximum count (FF) and overflow to zero continuing its count until stopped by a STOP TCNT instruction or Reset.

The increment from maximum count to zero (overflow) results in the setting of an overflow flag flip-flop and in the generation of an interrupt request. The state of the overflow flag is testable with the conditional jump instruction JTF. The flag is reset by executing a JTF or by Reset. The interrupt request is stored in a latch and then ORed with the external interrupt input INT. The timer interrupt may be enabled or disabled independently of external interrupt by the EN TCNT1 and DIS TCNT1 instructions. If enabled, the counter overflow will cause a subroutine call to location 7 where the timer or counter service routine may be stored.

If timer and external interrupts occur simultaneously, the external source will be recognized and the Call will be to

Figure 8. Interrupt Logic

Figure 9. Timer/Event Counter
location 3. Since the timer interrupt is latched it will remain pending until the external device is serviced and immediately be recognized upon return from the service routine. The pending timer interrupt is reset by the Call to location 7 or may be removed by executing a DIS TCNT1 instruction.

AS AN EVENT COUNTER

Execution of a START CNT instruction connects the T1 input pin to the counter input and enables the counter. The T 1 input is sampled at the beginning of state 3 or in later MCS-48 devices in state time 4. Subsequent high to low transitions on Tl will cause the counter to increment. T1 must be-held low for at least 1 machine cycle to insure it won't be missed. The maximum rate at which the counter may be incremented is once per three instruction cycles (every $5.7 \mu \mathrm{sec}$ when using an 8 MHz crystal) there is no minimum frequency. Tl input must remain high for at least $1 / 5$ machine cycle after each transition.

AS A TIMER

Eexcution of a START T instruction connects an internal clock to the counter input and enables the counter. The internal clock is derived bypassing the basic machine cycle clock through a $\div 32$ prescaler. The prescaler is reset during the START T instruction. The resulting clock increments the counter every 32 machine cycles. Various delays from 1 to 256 counts can be obtained by presetting the counter and detecting overflow. Times longer than 256 counts may be achieved by accumulating multiple overflows in a register under software control. For time res-
olution less than 1 count an external clock can be applied to the Tl input and the counter operated in the event counter mode. ALE divided by 3 or more can serve as this external clock. Very small delays or "fine tuning" of larger delays can be easily accomplished by software delay loops.

Often a serial link is desirable in an MCS-48 family member. Table 2 lists the timer counts and cycles needed for a specific baud rate given a crystal frequency.

2.11 Clock and Timing Circuits

Timing generation for the 8048AH is completely selfcontained with the exeception of a frequency reference which can be XTAL, ceramic resonator, or external clock source. The Clock and Timing circuitry can be divided into the following functional blocks.

OSCILLATOR

The on-board oscillator is a high gain parallel resonant circuit with a frequency range of 1 to 11 MHz . The X1 external pin is the input to the amplifier stage while X2 is the output. A crystal or ceramic resonator connected between X1 and X2 provides the feedback and phase shift required for oscillation. If an accurate frequency reference is not required, ceramic resonator may be used in place of the crystal.

For accurate clocking, a crystal should be used. An externally generated clock may also be applied to X1-X2 as the frequency source. See the data sheet for more information.

Table 2. Baud Rate Generation

	Frequency (MHz)	$\mathrm{T}_{\text {cy }}$	To $\operatorname{Prr}\left(1 / 5 \mathrm{~T}_{\mathbf{c y}}\right.$)	Timer Prescaler ($32 \mathrm{~T}_{\mathrm{cy}}$)
	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 11 \end{array}$	$\begin{aligned} & 3.75 \mu \mathrm{~s} \\ & 2.50 \mu \mathrm{~s} \\ & 1.88 \mu \mathrm{~s} \\ & 1.36 \mu \mathrm{~s} \end{aligned}$	750ns 500ns 375ns 275ns	$\begin{array}{r} 120 \mu \mathrm{~s} \\ 80 \mu \mathrm{~s} \\ 60.2 \mu \mathrm{~s} \\ 43.5 \mu \mathrm{~s} \end{array}$
Baud Rate	4 MHz Timer Counts + Instr. Cycles	6 MHz Timer Counts + Instr. Cycles	8 MHz Timer Counts + Instr. Cycles	11 MHz Timer Counts + Instr. Cycles
110	$\begin{gathered} 75+24 \text { Cycles } \\ .01 \% \text { Error } \end{gathered}$	$\begin{gathered} 113+20 \text { Cycles } \\ .01 \% \text { Error } \end{gathered}$	$\begin{gathered} 151+3 \text { Cycles } \\ .01 \% \text { Error } \end{gathered}$	$\begin{gathered} 208+28 \text { Cycles } \\ .01 \% \text { Error } \end{gathered}$
300	$\begin{gathered} 27+24 \text { Cycles } \\ .1 \% \text { Error } \\ \hline \end{gathered}$	$41+21$ Cycles .03\% Error	$\begin{gathered} 55+13 \text { Cycles } \\ .01 \% \text { Error } \end{gathered}$	$\begin{gathered} 76+18 \text { Cycles. } \\ .04 \% \text { Error } \end{gathered}$
1200	$\begin{gathered} 6+30 \text { Cycles } \\ .1 \% \text { Error } \end{gathered}$	$\begin{gathered} 10+13 \text { Cycles } \\ .1 \% \text { Error } \end{gathered}$	$\begin{gathered} 12+27 \text { Cycles } \\ .06 \% \text { Error } \end{gathered}$	$\begin{gathered} 19+4 \text { Cycles } \\ .12 \% \text { Error } \end{gathered}$
1800	$\begin{gathered} 4+20 \text { Cycles } \\ .1 \% \text { Error } \end{gathered}$	$\begin{gathered} 6+30 \text { Cycles } \\ .1 \% \text { Error } \end{gathered}$	$\begin{gathered} 9+7 \text { Cycles } \\ .17 \% \text { Error } \\ \hline \end{gathered}$	$12+24$ Cycles .12\% Error
2400	$\begin{gathered} 3+15 \text { Cycles } \\ .1 \% \text { Error } \end{gathered}$	$\begin{gathered} \hline 5+6 \text { Cycles } \\ .4 \% \text { Error } \\ \hline \end{gathered}$	$\begin{gathered} 6+24 \text { Cycles } \\ .29 \% \text { Error } \end{gathered}$	$\begin{gathered} 9+18 \text { Cycles } \\ .12 \% \text { Error } \end{gathered}$
4800	$\begin{gathered} 1+23 \text { Cycles } \\ \text { 1.0\% Error } \end{gathered}$	$\begin{gathered} 2+19 \text { Cycles } \\ .4 \% \text { Error } \end{gathered}$	$\begin{aligned} & 3+14 \text { Cycles } \\ & .74 \% \text { Error } \end{aligned}$	$\begin{gathered} 4+25 \text { Cycles } \\ .12 \% \text { Error } \end{gathered}$

STATE COUNTER

The output of the oscillator is divided by 3 in the State Counter to create a clock which defines the state times of the machine (CLK). CLK can be made available on the external pin T0 by executing an ENTO CLK instruction. The output of CLK on T0 is disabled by Reset of the processor.

CYCLE COUNTER

CLK is then divided by 5 in the Cycle Counter to provide a clock which defines a machine cycle consisting of 5 machine states as shown in Figure 10. Figure 11 shows the different internal operations as divided into the machine states. This clock is called Address Latch Enable (ALE) because of its function in MCS-48 systems with external memory. It is provided continuously on the ALE output pin.

2.12 Reset

The reset input provides a means for initialization for the processor. This Schmitt-trigger input has an internal pullup device which in combination with an external $1 \mu \mathrm{fd}$ capacitor provides an internal reset pulse of sufficient length to guarantee all circuitry is reset, as shown in Figure 12. If the reset pulse is generated externally the RESET pin must be held low for at least 10 milliseconds after the
power supply is within tolerance. Only 5 machine cycles ($6.8 \mu \mathrm{~s} @ 11 \mathrm{MHz}$) are required if power is already on and the oscillator has stabilized. ALE and PSEN (if EA $=1$) are active while in Reset.

Reset performs the following functions:

1) Sets program counter to zero.
2) Sets stack pointer to zero.
3) Selects register bank 0 .
4) Selects memory bank 0 .
5) Sets BUS to high impedance state (except when $E A=5 V$).
6) Sets Ports 1 and 2 to input mode.
7) Disables interrupts (timer and external).
8) Stops timer.
9) Clears timer flag.
10) Clears F0 and F1.
11) Disables clock output from TO.

Figure 10. MCS ${ }^{6}-48$ Timing Generation and Cycle Timing

2.13 Single-Step

This feature, as pictured in Figure 13, provides the user with a debug capability in that the processor can be stepped through the program one instruction at a time. While stopped, the address of the next instruction to be fetched is available concurrently on BUS and the lower
half of Port 2. The user can therefore follow the program through each of the instruction steps. A timing diagram, showing the interaction between output ALE and input $\overline{\mathrm{SS}}$, is shown. The BUS buffer contents are lost during single step; however, a latch may be added to reestablish the lost I/O capability if needed. Data is valid at the leading edge of ALE.

	CYCLE 1					CYCLE 2				
INSTRUCTION	S1	S2	S3	S4	S5	S1	S2	S3	S4	S5
IN A,P	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	*INCREMENT TIMER	-	-	READ PORT	-	-	-
OUTL P,A	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	*INCREMENT TIMER	OUTPUT TO PORT	-	-	-	- -	-
ANL P, = DATA	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	-INCREMENT TIMER	READ PORT	FETCH	-	INCREMENT PROGRAM COUNTER	-OUTPUT TO PORT	-
ORL P, = DATA	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	*INCREMENT TIMER	READ PORT	$\begin{aligned} & \text { FETCH } \\ & \text { IMMEDIATE DATA } \\ & \hline \end{aligned}$	-	INCREMENT PROGRAM COUNTER	*OUTPUT TO PORT	-
INS A, BUS	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	INCREMENT TIMER	-	-	$\begin{aligned} & \text { READ } \\ & \text { PORT } \end{aligned}$	-	- -	-
OUTL BUS, A	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	INCREMENT TIMER	OUTPUT TO PORT	-	-	-	* -	-
ANL BUS, = DATA	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	*INCREMENT TIMER	READ PORT	$\begin{gathered} \text { FETCH } \\ \text { IMMEDIATE DATA } \end{gathered}$	-	INCREMENT PROGRAM COUNTER	*OUTPUT TO PORT	-
ORL BUS, = DATA	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	*INCREMENT TIMER	READ PORT	FETCH	-	INCREMENT PROGRAM COUNTER	*OUTPUT TO PORT	-
MOVX @ R,A	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT RAM ADDRESS	INCREMENT TIMER	OUTPUT DATA TO RAM	-	-	-	*	-
MOVX A,@R	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT RAM ADDRESS	INCREMENT TIMER	-	-	$\begin{aligned} & \text { READ } \\ & \text { DATA } \end{aligned}$	-	*	-
MOVD A, P_{i}	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT OPCODE/ADDRESS	INCREMENT TIMER	-	-	$\begin{aligned} & \text { READ P2 } \\ & \text { LOWER } \end{aligned}$	-	-	-
MOVD $\mathrm{P}_{\mathrm{j}}, \mathrm{A}$	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT OPCODE/ADDRESS	INCREMENT TIMER	OUTPUT DATA TO P2 LOWER	-	-	-	*	-
ANLD P,A	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT OPCODE/ADDRESS	INCREMENT TIMER	OUTPUT DATA	-	-	- .	*	-
ORLD P,A	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT OPCODE/ADDRESS	INCREMENT TIMER	OUTPUT DATA	-	-	- -	*	-
J(CONDITIONAL)	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	SAMPLE CONDITION	*INCREMENT SAMPLE	-	FETCH IMMEDIATE DATA	-	UPDATE PROGRAM COUNTER	-	-
STRT T STRT CNT	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	* -	START COUNTER	*VALID INSTRUCTION ADDRESSES ARE OUTPUT AT THIS TIME IF EXTERNAL PROGRAM MEMORY IS BEING ACCESSED. (1) IN LATER MCS-48 DEVICES T1 IS SAMPLED IN S4.				
STOP TCNT	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	* -	STOP COUNTER					
ENI	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	ENABLE INTERRUPT	-					
DIS I	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	-	- DISABLE INTERRUPT	-					
ENTO CLK	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER		$\begin{aligned} & \text { ENABLE } \\ & \text { CLOCK } \end{aligned}$	-					

Figure 12.

TIMING

The 8048AH operates in a single-step mode as follows:

1) The processor is requested to stop by applying a low level on $\overline{\mathrm{SS}}$.
2) The processor responds by stopping during the address fetch portion of the next instruction. If a double cycle instruction is in progress when the single step command is received, both cycles will be completed before stopping.
3) The processor acknowledges it has entered the stopped state by raising ALE high. In this state (which can be maintained indefinitely) the address of the next instruction to be fetched is present on BUS and the lower half of port 2.
4) $\overline{\mathrm{SS}}$ is then raised high to bring the processor out of the stopped mode allowing it to fetch the next instruction. The exit from stop is indicated by the processor bringing ALE low.
5) To stop the processor at the next instruction $\overline{\mathrm{SS}}$ must be brought low again soon after ALE goes low. If $\overline{\mathrm{SS}}$ is left high the processor remains in a "Run" mode.
A diagram for implementing the single-step function of the 8748 H is shown in Figure 13. D-type flip-flop with preset and clear is used to generate $\overline{\mathrm{SS}}$. In the run mode SS is held high by keeping the flip-flop preset (preset has precedence over the clear input). To enter single step, preset is removed allowing ALE to bring $\overline{\mathrm{SS}}$ low via the
clear input. ALE should be buffered since the clear input of an SN7474 is the equivalent of 3 TTL loads. The processor is now in the stopped state. The next instruction is initiated by clocking a " 1 " into the flip-flop. This " 1 ", will not appear on $\overline{\mathrm{SS}}$ unless ALE is high removing clear from the flip-flop. In response to $\overline{\mathrm{SS}}$ going high the processor begins an instruction fetch which brings ALE low resetting $\overline{\mathrm{SS}}$ through the clear input and causing the processor to again enter the stopped state.

2.14 Power Down Mode (8048AH, 8049AH, 8050AH, 8039AHL, 8035AHL, 8040AHL)

Extra circuitry has been added to the 8048AH/8049AH/ 8050AH ROM version to allow power to be removed from all but the data RAM array for low power standby operation. In the power down mode the contents of data RAM can be maintained while drawing typically 10% to 15% of normal operating power requirements.
V_{CC} serves as the 5 V supply pin for the bulk of circuitry while the $V_{D D}$ pin supplies only the RAM array. In normal operation both pins are a 5 V while in standby, V_{CC} is at ground and $V_{D D}$ is maintained at its standby value. Applying Reset to the processor through the $\overline{\mathrm{RESET}}$ pin inhibits any access to the RAM by the processor and guarantees that RAM cannot be inadvertently altered as power is removed from $V_{C C}$.

A typical power down sequence (Figure 14) occurs as follows:

1) Imminent power supply failure is detected by user defined circuitry. Signal must be early enough to allow 8048AH to save all necessary data before $V_{C C}$ falls below normal operating limits.
2) Power fail signal is used to interrupt processor and vector it to a power fail service routine.
3) Power fail routine saves all important data and machine status in the internal data RAM array. Routine may also initiate transfer of backup supply to the $V_{D D}$ pin and indicate to external circuitry that power fail routine is complete.
4) Reset is applied to guarantee data will not be altered as the power supply falls out of limits. Reset must be held low until V_{CC} is at ground level.

Recovery from the Power Down mode can occur as any other power-on sequence with an external capacitor on the Reset input providing the necessary delay. See the previous section on Reset.

Figure 13. Single Step Operation

Figure 14. Power Down Sequence

2.15 External Access Mode

Normally the first 1 K (8048 AH), 2 K (8049AH), or 4 K (8050 AH) words of program memory are automatically fetched from internal ROM or EPROM. The EA input pin however allows the user to effectively disable internal program memory by forcing all program memory fetches to reference external memory. The following chapter explains how access to external program memory is accomplished.

The External Access mode is very useful in system test and debug because it allows the user to disable his internal applications program and substitute an external program of his choice - a diagnostic routine for instance. In addition, the date sheet shows how internal program memory can be read externally, independent of the processor. A "1" level on EA initiates the external accesss mode. For proper operation, Reset should be applied while the EA input is changed.

2.16 Sync Mode

The 8048AH, 8049AH, 8050AH has incorporated a new SYNC mode. The Sync mode is provided to ease the design of multiple controller circuits by allowing the designer to force the device into known phase and state time. The SYNC mode may also be utilized by automatic test equipment (ATE) for quick, easy, and efficient synchronizing between the tester and the DUT (device under test).

SYNC mode is enabled when SS' $^{\prime}$ pin is raised to high voltage level of +12 volts. To begin synchronization, T0 is raised to 5 volts at least four clocks cycles after SS'. T0 must be high for at least four X1 clock cycles to fully
reset the prescaler and time state generators. T0 may then be brought down with the rising edge of X1. Two clock cycles later, with the rising edge of X1, the device enters into Time State 1, Phase 1, $\mathbf{S S}^{\prime}$ is then brought down to 5 volts 4 clocks later after T0. RESET' is allowed to go high 5 tCY (75 clocks) later for normal execution of code. See Figure 15.

Figure 15. Sync Mode Timing

Figure 16. 8048AH and 8049AH Logic Symbol

3.0 PIN DESCRIPTION

The MCS-48 processors are packaged in 40 pin Dual InLine Packages (DIP's). Table 3 is a summary of the functions of each pin. Figure 16 is the logic symbol for the 8048AH product family. Where it exists, the second paragraph describes each pin's function in an expanded MCS-48 system. Unless otherwise specified, each input is TTL compatible and each output will drive one standard TTL load.

Table 3. Pin Description

Designation	Pin Number*	Function
v_{SS}	20	Circuit GND potential
$\mathrm{v}_{\text {DI }}$	26	Programming power supply; 21 V during program for the $8748 \mathrm{H} / 8749 \mathrm{H}:+5 \mathrm{~V}$ during operation for both ROM and EPROM. Low power standby pin in 8048AH and 8049AH/8050AH ROM versions.
V_{CC}	40	Main power supply; +5 V during operation and during 8748 H and 8749 H programming.
PROG	25	Program pulse; +18 V input pin during $8748 \mathrm{H}, 8749 \mathrm{H}$ programming. Output strobe for 82431 O expander.
P10-P17 (Port I)	27-34	8 -bit quasi-bidirectional port. (Internal Pullup $\approx 50 \mathrm{~K} \Omega$)
$\begin{aligned} & \text { P20. P27 } \\ & \text { (Port 2) } \end{aligned}$	$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	8 -bit quasi-bidirectional port. (Internal Pullup $\approx 50 \mathrm{~K} \Omega$) P20-P23 contain the four high order program counter bits during an external program memory fetch and serve as a 4-bit I O expander bus for 8243.
$\begin{aligned} & \mathrm{D}(0 . \mathrm{D} 7 \\ & \text { (BUS) } \end{aligned}$	12-19	True bidirectional port which can be written or read synchronously using the $\overline{\mathrm{RI}}$. $\overline{\mathrm{WR}}$ strobes. The port can also be statically latched. Contains the 8 low order program counter bits during an external program memory fetch, and receives the addressed instruction under the control of PSEN. Also contains the address and data during an external RAM data store instruction. under control of ALE, $\overline{\mathrm{RD}}$, and $\overline{W R}$.
T0)	1	Input pin testable using the conditional transfer instructions. ITO and INTO. T0 can be designated as a clock output using ENTO CLK instruction. T0 is also used during programming and sync mode.
TI	39	Input pin testable using the JTI, and JNTI instructions. Can be designated the event counter input using the STRT CNT instruction. (See Section 2.10).
$\overline{\mathrm{INT}}$	6	Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset. (Active low) Interrupt must remain low for at least 3 machine cycles to ensure proper operation.
$\overline{\mathrm{R}} \overline{\mathrm{D}}$	8	Output strobe activated during a BUS read. Can be used to enable data onto the BUS from an external device. (Active low) Used as a Read Strobe to External Data Memory.
$\overline{\text { RESET }}$	4	Input which is used to initialize the processor. Also used during EPROM programming and verification. (Active low) (Internal pullup $\approx 80 \mathrm{~K} \Omega$)
$\overline{\mathrm{WR}}$	10	Output strobe during a BUS write. (Active low) Used as write strobe to external data memors.
ALE	11	Address L.atch Enable. This signal occurs once during each cicle and is useful as a clock output. The negative edge of ALE strobes address into external data and program memory.

Table 3. Pin Description (Continued)

Designation	Pin Number*	Function
PSEN	9	Program Store Enable. This output occurs only during a fetch to external program memory. (Active low)
$\overline{\mathrm{SS}}$	5	Single step input can be used in conjunction with ALE to "single step" the processor through each instruction. (Active low) (Internal pullup $\approx 300 \mathrm{~K} \Omega$) +12 V for sync modes (See 2.16).
EA	7	External Access input which forces all program memory fetches to reference external memory. U'seful for emulation and debug, and essential for testing and program verification. (Active high) +12 V for 8048 AH 8049 AH 8050 AH program verification and +18 V for $8748 \mathrm{H}: 8749 \mathrm{H}$ program verification (Internal pullup \approx $10 \mathrm{M} \Omega$ on $8048 \mathrm{AH}: 8049 \mathrm{AH} 8035 \mathrm{AHL} 8039 \mathrm{AHL}$ 8050AH 8040AHL)
XTALI	2	One side of crystal input for internal oscillator. Also input for external source.
XTAL2	3	Other side of crystal external source input.

*Unless otherwise stated. inputs do not have internal pullup resistors. 8048 AH .8748 H .8049 AH .8050 AH .8040 AHI .

4.0 PROGRAMMING, VERIFYING AND ERASING EPROM

The internal Program Memory of the 8748 H and the 8749 H may be erased and reprogrammed by the user as explained in the following sections. See also the 8748 H and 8749 H data sheets.

4.1 Programming/Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. This programming algorithm applies to both the 8748 H and 8749 H . Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a descsription of their functions:

Pin	Function
XTAL 1	Clock Input (3 to 4 MHz)
Reset	Initialization and Address Latching
Test 0	Selection of Program (0V) or Verify (5V) Mode
EA	Activation of Program/Verify Modes
BUS	Address and Data Input Data Output
	During Verify
P20-1	Address Input for 8748H
P20-2	Address Input for 8749H
V $_{\text {DD }}$	Programming Power Supply
PROG	Program Pulse Input
P10-P11	Tied to ground (8749H only)

Function

Reset Initialization and Address Latching
Test 0 Selection of Program (0V) or Verify (5V) Mode
EA Activation of Program/Verify Modes
BUS Address and Data Input Data Output During Verify
20-1 Address Input for 8748 H
$\mathrm{V}_{\mathrm{DD}} \quad$ Programming Power Supply
PROG Program Pulse Input
P10-P11 Tied to ground (8749 H only)

8748H AND 8749H ERASURE CHARACTERISTICS

The erasure characteristics of the 8748 H and 8749 H are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (A). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000A range. Data show that constant exposure to room level fluorescent lighting could erase the typical 8748 H and 8749 H in approximately 3 years while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the 8748 H or 8749 H is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the 8748 H window to prevent unintentional erasure.

When erased, bits of the 8748 H and 8749 H Program Memory are in the logic " 0 ' state.

The recommended erasure procedure for the 8748 H and 8749 H is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (A). The integrated dose (i.e., UV intensity X exposure time) for erasure should be a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The 8748 H and 8749 H should be placed within one inch from the lamp tubes during erasure. Some lamps have a filter in their tubes and this filter should be removed before erasure.

COMBINATION PROGRAM/VERIFY MODE (EPROM'S ONLY)

VERIFY MODE (ROM/EPROM)

NOTES:

1. PROG MUST FLOAT IF EA IS LOW (I.E., $\neq 18 \mathrm{~V}$).
*TO ON EPROM ONLY.

Figure 17. Program/Verify Sequence for $\mathbf{8 7 4 9 H} / 8748 \mathrm{H}$

MCS ${ }^{\circledR}$-48 Expanded
 System

EXPANDED MCS®-48 SYSTEM

1.0 INTRODUCTION

If the capabilities resident on the single-chip $8048 \mathrm{AH} /$ $8748 \mathrm{H} / 8035 \mathrm{AHL} / 8049 \mathrm{AH} / 8749 \mathrm{H} / 8039 \mathrm{AHL}$ are not sufficient for your system requirements, special on-board circuitry allows the addition of a wide variety of external memory, I/O, or special peripherals you may require. The processors can be directly and simply expanded in the following areas:

- Program Memory to 4 K words
- Data Memory to 320 words (384 words with 8049AH)
- I/O by unlimited amount
- Special Functions using 8080/8085AH peripherals

By using bank switching techniques, maximum capability is essentially unlimited. Bank switching is discussed later in the chapter. Expansion is accomplished in two ways:

1) Expander I/O - A special I/O Expander circuit, the 8243, provides for the addition of four 4-bit Input/ Output ports with the sacrifice of only the lower half (4-bits) of port 2 for inter-device communication. Multiple 8243's may be added to this 4 -bit bus by generating the required "chip select" lines.
2) Standard 8085 Bus - One port of the $8048 \mathrm{AH} /$ 8049AH is like the 8 -bit bidirectional data bus of the 8085 microcomputer system allowing interface to the numerous standard memories and peripherals of the MCS ${ }^{\star}$-80/85 microcomputer family.

MCS-48 systems can be configured using either or both of these expansion features to optimize system capabilities to the application.

Both expander devices and standard memories and peripherals can be added in virtually any number and combination required.

2.0 EXPANSION OF PROGRAM MEMORY

Program Memory is expanded beyond the resident 1 K or 2 K words by using the 8085 BUS feature of the MCS ${ }^{\circledR}$ 48. All program memory fetches from the addresses less than 1024 on the 8048 AH and less than 2048 on the 8049AH occur internally with no external signals being generated (except ALE which is always present). At address 1024 on the 8048 AH , the processor automatically initiates extemal program memory fetches.

2.1 Instruction Fetch Cycle (External)

As shown in Figure 1, for all instruction fetches from addresses of 1024 (2048) or greater, the following will occur:

1) The contents of the 12 -bit program counter will be output on BUS and the lower half of port 2.
2) Address Latch Enable (ALE) will indicate the time at which address is valid. The trailing edge of ALE is used to latch the address externally.
3) Program Store Enable ($\overline{\mathrm{PSEN}}$) indicates that an external instruction fetch is in progress and serves to enable the external memory device.
4) BUS reverts to input (floating) mode and the processor accepts its 8 -bit contents as an instruction word.

Figure 1. Instruction Fetch from External Program Memory

All instruction fetches, including internal addresses, can be forced to be external by activating the EA pin of the 8048AH/ 8049AH/8050AH. The 8035AHL/8039AHL 8040AHL processors without program memory always operate in the external program memory mode ($\mathrm{EA}=5 \mathrm{~V}$).

2.2 Extended Program Memory Addressing (Beyond 2K)

For programs of 2 K words or less, the 8048AH/8049AH addresses program memory in the conventional manner. Addresses beyond 2047 can be reached by executing a program memory bank switch instruction (SEL MB0, SEL MB1) followed by a branch instruction (JMP or CALL). The bank switch feature extends the range of branch instructions beyond their normal 2 K range and at the same time prevents the user from inadvertently crossing the 2 K boundary.

PROGRAM MEMORY BANK SWITCH

The switching of 2 K program memory banks is accomplished by directly setting or resetting the most significant bit of the program counter (bit 11); see Figure 2. Bit 11 is not altered by normal incrementing of the program counter but is loaded with the contents of a special flipflop each time a JMP or CALL instruction is executed. This special flip-flop is set by executing an SEL MB1
instruction and reset by SEL MB0. Therefore, the SEL MB instruction may be executed at any time prior to the actual bank switch which occurs during the next branch instruction encountered. Since all twelve bits of the program counter, including bit 11, are stored in the stack, when a Call is executed, the user may jump to subroutines across the 2 K boundary and the proper bank will be restored upon return. However, the bank switch flip-flop will not be altered on return.

Figure 2. Program Counter

INTERRUPT ROUTINES

Interrupts always vector the program counter to location 3 or 7 in the first 2 K bank, and bit 11 of the program
counter is held at " 0 ' during the interrupt service routine. The end of the service routine is signalled by the execution of an RETR instruction. Interrupt service routines should therefore be contained entirely in the lower 2 K words of program memory. The execution of a SEL MB0 or SEL MB1 instruction within an interrupt routine is not recommended since it will not alter PC1 1 while in the routine, but will change the internal flip-flop.

2.3 Restoring I/O Port Information

Although the lower half of Port 2 is used to output the four most significant bits of address during an external program memory fetch, the I/O information is still outputed during certain portions of each machine cycle. I/O information is always present on Port 2's lower 4 bits at the rising edge of ALE and can be sampled or latched at this time.

2.4 Expansion Examples

Shown in Figure 3 is the addition of 2 K words of program memory using an 2716A $2 \mathrm{~K} \times 8$ ROM to give a total of 3 K words of program memory. In this case no chip select decoding is required and PSEN enables the memory directly through the chip select input. If the system requires only 2 K of program memory, the same configuration can be used with an 8035AHL substituted for the 8048 AH . The 8049AH would provide 4 K of program memory with the same configuration.

Figure 3. Expanding MCSe-48 Program Memory Using Standard Memory Products

Figure 4. External Program Memory Interface

Figure 4 shows how the $8755 / 8355$ EPROM/ROM with I/O interfaces directly to the 8048AH without the need for an address latch. The $8755 / 8355$ contains an internal 8 -bit address latch eliminating the need for an 8212 latch. In addition to a $2 \mathrm{~K} \times 8$ program memory, the $8755 / 8355$ also contains $16 \mathrm{I} / \mathrm{O}$ lines addressable as two 8 -bit ports. These ports are addressed as external RAM; therefore the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ outputs of the 8048AH are required. See the following section on data memory expansion for more detail. The subsequent section on I/O expansion explains the operation of the 16 I/O lines.

3.0 EXPANSION OF DATA MEMORY

Data Memory is expanded beyond the resident 64 words by using the 8085 AH type bus feature of the $\mathrm{MCS}^{\circledR}-48$.

3.1 Read/Write Cycle

All address and data is transferred over the 8 lines of BUS. As shown in Figure 5, a read or write cycle occurs as follows:

READ FROM EXTERNAL DATA MEMORY

Bus

WRITE TO EXTERNAL DATA MEMORY

Figure 5. External Data Memory Timings

1) The contents of register R0 or R1 is outputed on BUS.
2) Address Latch Enable (ALE) indicates addresss is valid. The trailing edge of ALE is used to latch the address externally.
3) A read ($\overline{\mathrm{RD}}$) or write ($\overline{\mathrm{WR}}$) pulse on the corresponding output pins of the 8048AH indicates the type of data memory access in progress. Output data is valid at the trailing edge of $\widehat{W R}$ and input data must be valid at the trailing edge of $\overline{\mathrm{RD}}$.
4) Dat (8 bits) is transferred in or out over BUS.

3.2 Addressing External Data Memory

External Data Memory is accessed with its own two-cycle move instructions. MOVXA, @R and MOVX@R, A, which transfer 8 bits of data between the accumulator and the external memory location addressed by the contents of one of the RAM Pointer Registers R0 and R1. This allows 256 locations to be addressed in addition to the resident locations. Additional pages may be added by "bank switching" with extra output lines of the 8048AH.

3.3 Examples of Data Memory Expansion

Figure 6 shows how the 8048-AH can be expanded using the 8155 memory and I/O expanding device. Since the 8155 has an internal 8 -bit address latch, it can interface directly to the 8048AH without the use of an external latch. The 8155 provides an additional 256 words of static data memory and also includes 22 I/O lines and a 14-bit timer. See the following section on I/O expansion and the 8155 data sheet for more details on these additional features.

4.0 EXPANSION OF INPUT/OUTPUT

There are four possible modes of I/O expansion with the 8048AH: one using a special low-cost expander, the 8243; another using standard MCS-80/85 I/O devices; and a third using the combination memory I/O expander devices the 8155, 8355, and 8755. It is also possible to expand using standard TTL devices.

4.1 I/O Expander Device

The most efficient means of I/O expansion for smail systems is the 8243 I/O Expander Device which requires only 4 port lines (lower half of Port 2) for communication with the 8048AH. The 8243 contains four 4 -bit 1/O ports which serve as an extension of the on-chip I/O and are addressed as ports \#4-7 (see Figure 13-7). The following operations may be performed on these ports:

- Transfer Accumulator to Port
- Transfer Port to Accumulator
- AND Accumulator to Port
- OR Accumulator to Port

A 4-bit transfer from a port to the lower half of the Accumulator sets the most significant four bits to zero. All communication between the 8048 AH and the 8243 occurs over Port 2 lower (P20-P23) with timing provided by an output pulse on the PROG pin of the processor. Each transfer consists of two 4 -bit nibbles: The first containing the ' op code"' and port address, and the second containing the actual 4 bits of data.

Figure 6. 8048AH Interface to 256×8 Standard Memories

Figure 7. 8243 Expander I/O Interface

A high to low transition of the PROG line indicates that address is present, while allow to high transition indicates the presence of data. Additional 8243 's may be added to the four-bit bus and chip selected using additional output lines from the 8048AH/8748H.

I/O PORT CHARACTERISTICS

Each of the four 4-bit ports of the 8243 can serve as either input or output and can provide high drive capability in both the high and low state.

4.2 I/O Expansion with Standard Peripherals

Standard MCS-80/85 type I/O devices may be added to the $\mathrm{MCS}^{\circledR}-48$ using the same bus and timing used for Data Memory expansion. Figure 8 shows an example of how an 8048 AH can be connected to an MCS-85 peripheral. I/O devices reside on the Data Memory bus and in the data memory address space and are accessed with the same MOVX instructions. (See the previous section on data memory expansion for a description of timing.) The following are a few of the Standard MCS-80 devices which are very useful in MCS ${ }^{\circledR}$ - 48 systems:

- 8214 Priority Interrupt Encoder
- 8251 Serial Communications Interface
- 8255 General Purpose Programmable I/O
- 8279 Keyboard/Display Interface
- 8254 Interval Timer

4.3 Combination Memory and I/O Expanders

As mentioned in the sections on program and data memory expansion, the 8355/8755 and 8155 expanders also contain I/O capability.

Figure 8. Keyboard/Display Interface

8355/8755: These two parts of ROM and EPROM equivalents and therefore contain the same I/O structure. I/O consists of two 8 -bit ports which normally reside in the external data memory address space and are accessed with MOVX instructions. Associated with each port is an 8bit Data Direction Register which defines each bit in the port as either an input or an output. The data direction registers are directly addressable, thereby allowing the user to define under software control each individual bit of the ports as either input or output. All outputs are statically latched and double buffered. Inputs are not latched.
8155/8156: I/O on the $8155 / 8156$ is configured as two 8 -bit programmable I/O ports and one 6-bit programmable
port. These three registers and a Control/Status register are accessible as external data memory with the MOVX instructions. The contents of the control register determines the mode of the three ports. The ports can be programmed as input or output with or without associated handshake communication lines. In the handshake mode, lines of the six-bit port become input and output strobes for the two 8 -bit ports. Also included in the 8155 is a 14 -bit programmable timer. The clock input to the timer and the timer overfiow output are available on external pins. The timer can be programmed to stop on terminal count or to continuously reload itself. A square wave or pulse output on terminal count can also be specified.

Figure 9. Low Cost I/O Expansion

I/O EXPANSION EXAMPLES

Figure 9 shows the expansion of I/O using multiple 8243's. The only difference from a single 8243 system is the addition of chip selects provided by additional 8048AH output lines. Two output liens and a decoder could also be used to address the four chips. Large numbers of 8243 's would require a chip select decoder chip such as the 8205 to save I/O pins.

Figure 10 shows the 8048 AH interface to a standard MCS ${ }^{\star}-80$ peripheral; in this case, the 8255 Programmable Peripheral Interface, a 40 -pin part which provides three 8 -bit programmable I/O ports. The 8255 bus interface is typical of programmable MCS ${ }^{\circledR}-80$ peripherals with an 8 -bit bidirectional data bus, a RD and WR input for Read/ Write control, a CS (chip select) input used to enable the Read/Write control logic and the address inputs used to select various internal registers.

Interconnection to the 8048 AH is very straightforward with BUS, $\overline{R D}$, and $\overline{W R}$ connecting directly to the corresponding pins on the 8255 . The only design consideration is the way in which the internal registers of the 8255 are to be addressed. If the registers are to be addressed as external data memory using the MOVX instructions, the appropriate number of address bits (in this case, 2) must be latched on BUS using ALE as described in the section on external data memories. If only a single device is connected to BUS, the 8255 may be continuously selected by grounding $\overline{\mathrm{CS}}$. If multiple 8255 's are used, additional address bits can be latched and used as chip selects.

A second addressing method eliminates external latches and chip select decoders by using output port lines as address and chip select lines directly. This method, of course, requires the setting of an output port with address information prior to executing a MOVX instruction.

5.0 MULTI-CHIP MCS®-48 SYSTEMS

Figure 11 shows the addition of two memory expanders to the 8048AH, one 8355/8755 ROM and one 8156 RAM. The main consideration in designing such a system is the
addressing of the various memories and I/O ports. Note that in this configuration address lines A_{10} and A_{11} have been ORed to chip select the 8355 . This ensures that the chip is active for all external program memory fetches in the 1 K to 3 K range and is disabled for all other addresses. This gating has been added to allow the 1/O port of the 8355 to be used. If the chip was left selected all the time, there would be conflict between these ports and the RAM and I/O of the 8156. The NOR gate could be eliminated and A_{11} connected directly to the $C E$ (instead of $\overline{C E}$) input of the 8355 ; however, this would create a 1 K word "hole" in the program memory by causing the 8355 to be active in the 2 K and 4 K range instead of the normal 1 K to 3 K range.

In this system the various locations are addressed as follows:

- Data RAM - Addresses 0 to 255 when Port 2 Bit 0 has been previously set $=1$ and $\mathrm{Bit} 1 \mathrm{set}=0$
- RAM I/O - Addresses 0 to 3 when Port 2 Bit $0=$ 1 and Bit $1=1$
- ROM I/O - Addresses 0 to 3 when Port 2 Bit 2 or Bit $3=1$

See the memory map in Figure 12.

Figure 11. The Three-Component MCS ${ }^{\circledR}$

6.0 MEMORY BANK SWITCHING

Certain systems may require more than the 4 K words of program memory which are directly addressable by the program counter or more than the 256 data memory and 1/O locations directly addressable by the pointer registers R0 and R1. These systems can be achieved using "bank switching' techniques. Bank switching is merely the selection of various blocks of "banks" of memory using dedicated output port lines from the processor. In the case of the 8048 AH , program memory is selected in blocks of 4 K words at a time, while data memory and I/O are enabled 256 words at a time.

The most important consideration in implementing two or more banks is the software required to cross the bank boundaries. Each crossing of the boundary requires that the processor first write a control bit to an output port before accessing memory or I/O in the new bank. If program memory is being switched, programs should be organized to keep boundary crossings to a minimum.

Jumping to subroutines across the boundary should be avoided when possible since the programmer must keep track of which bank to return to after completion of the subroutine. If these subroutines are to be nested and accessed from either bank, a software "stack" should be implemented to save the bank switch bit just as if it were another bit of the program counter.

From a hardware standpoint bank switching is very straightforward and involves only the connection of an I/O line or lines as bank enable signals. These enables are ANDed with normal memory and I/O chip select signals to activate the proper bank.

7.0 CONTROL SIGNAL SUMMARY

Table 1 summarizes the instructions which activate the various control outputs of the MCS ${ }^{\circledR}-48$ processors. During all other instructions these outputs are driven to the active state.

Table 1. MCS" 48 Control Signals

Control Signal	When Active
$\overline{\mathrm{RD}}$	During MOVX, A, @R or INS Bus
$\overline{\mathrm{WR}}$	During MOVX @R, A or OUTL Bus
ALE	Every Machine Cycle
$\overline{\text { PSEN }}$	During Fetch of external program mem- ory (instruction or immediate data)
PROG	During MOVD, A,P ANLD P,A MOVD P,A ORLD P,A

8.0 PORT CHARACTERISTICS

8.1 BUS Port Operations

The BUS port can operate in three different modes: as a latched I/O port, as a bidirectional bus port, or as a program memory address output when external memory is used. The BUS port lines are either active high, active low, or high impedance (floating).

The latched mode (INS, OUTL) is intended for use in the single-chip configuration where BUS is not begin used as an expander port. OUTL and MOVX instructions can be mixed if necessary. However, a previously latched output will be destroyed by executing a MOVX instruction and BUS will be left in the high impedance state. INS does not put the BUS in a high impedance state. Therefore, the use of MOVX after OUTL to put the BUS in a high impedance state is necessary before an INS instruction intended to read an external word (as opposed to the previously latched value).

OUTL should never be used in a system with external program memory, since latching BUS can cause the next instruction, if external, to be fetched improperly.

8.2 Port 2 Operations

The lower half of Port 2 can be used in three different ways: as a quasi-bidirectional static port, as an 8243 expander port, and to adddress external program memory.

Figure 12. Memory Map for Three-Component MCS ${ }^{\text {c-48 }}$ Family

In all cases outputs are driven low by an active device and driven high momentarily by a low impedance device and held high by a high impedance device to VCC.

The port may contain latched I/O data prior to its use in another mode without affecting operation of either. If lower Port 2 (P20-3) is used to output address for an external program memory fetch, the I/O information pre-
viously latched will be automatically removed temporarily while address is present, then retored when the fetch is complete. However, if lower Port 2 is used to communicate with an 8243, previously latched I/O information will be removed and not restored. After an input from the 8243, P20-3 will be left in the input mode (floating). After an output to the $8243, \mathrm{P} 20-3$ will contain the value written, ANDed, or ORed to the 8243 port.

Figure 13. MCS ${ }^{6}-48$ Expansion Capability

MCS ${ }^{\circledR}$-48 Instruction Set

MCS®-48 INSTRUCTION SET

1.0 INTRODUCTION

The MCS ${ }^{\circledR}$ - 48 instruction set is extensive for a machine of its size and has been tailored to be straightforward and very efficient in its use of program memory. All instructions are either one or two bytes in length and over 80% are only one byte long. Also, all instructions execute in either one or two cycles and over 50% of all instructions execute in a single cycle. Double cycle instructions include all immediate instructions, and all I/O instructions.

The MCS-48 microcomputers have been designed to handle arithmetic operations efficiently in both binary and BCD as well as handle the single-bit operations required in control applications. Special instructions have also been included to simplify loop counters, table look-up routines, and N -way branch routines.

1.1 Data Transfers

As can be seen in Figure 1 the 8 -bit accumulator is the central point for all data transfers within the 8048. Data can be transferred between the 8 registers of each working register bank and the accumulator directly, i.e., the source or destination register is specified by the instruction. The remaining locations of the internal RAM array are referred to as Data Memory and are addressed indirectly via an address stored in either R0 or R1 of the active register bank. R0 and R1 are also used to indirecly address external data memory when it is present. Transfers to and from internal RAM require one cycle, while transfers to external RAM require two. Constants stored in Program Memory can be loaded directly to the accumulator and to the 8 working registers. Data can also be transferred directly between the accumulator and the on-

Figure 1. Data Transfer Instructions
board timer counter or the accumulator and the Program Status word (PSW). Writing to the PSW alters machine status accordingly and provides a means of restoring status after an interrupt or of altering the stack pointer if necessary.

1.2 Accumulator Operations

Immediate data, data memory, or the working registers can be added with or without carry to the accumulator. These sources can also be ANDed, ORed, or Exclusive ORed to the accumulator. Data may be moved to or from the accumulator and working registers or data memory. The two values can also be exchanged in a single operation.

In addition, the lower 4 bits of the accumulator can be exchanged with the lower 4-bits of any of the internal RAM locations. This instruction, along with an instruction which swaps the upper and lower 4-bit halves of the accumulator, provides for easy handling of 4-bit quantities, including BCD numbers. To facilitate BCD arithmetic. a Decimal Adjust instruction is included. This instruction is used to correct the result of the binary addition of two 2-digit BCD numbers. Performing a decimal adjust on the result in the accumulator produces the required BCD result.

Finally, the accumulator can be incremented, decremented, cleared, or complemented and can be rotated left or right 1 bit at a time with or without carry.

Although there is no subtract instruction in the 8048 AH , this operation can be easily implemented with three singlebyte single-cycle instructions.

A value may be subtracted from the accumulator with the result in the accumulator by:

- Complementing the accumulator
- Adding the value to the accumulator
- Complementing the accumulator

1.3 Register Operations

The working registers can be accessed via the accumulator as explained above, or can be loaded immediate with constants from program memory. In addition, they can be incremented or decremented or used as loop counters using the decrement and jump, if not zero instruction, as explained under branch instructions.

All Data Memory including working registers can be accessed with indirect instructions via R0 and R1 and can be incremented.

1.4 Flags

There are four user-accessible flags in the 8048AH: Carry, Auxiliary Carry, F0 and F1. Carry indicates overflow of the accumulator, and Auxiliary Carry is used to indiate overflow between BCD digits and is used during decimaladjust operation. Both Carry and Auxiliary Carry are accessible as part of the program status word and are stored on the stack during subroutines. F0 and F1 are undedicated general-purpose flags to be used as the programmer desires. Both flags can be cleared or complemented and tested by conditional jump instructions. F0 is also accessible via the Program Status word and is stored on the stack with the carry flags.

1.5 Branch Instructions

The unconditional jump instruction is two bytes and allows jumps anywhere in the first 2 K words of program memory. Jumps to the second 2 K of memory (4 K words are directly addressable) are made first by executing a select memory bank instruction, then executing the jump instruction. The 2 K boundary can only be crossed via a jump or subroutine call instruction, i.e., the bank switch does not occur until a jump is executed. Once a memory bank has been selected all subsequent jumps will be to the selected bank until another select memory bank instruction is executed. A subroutine in the opposite bank can be accessed by a select memory bank instruction followed by a call instruction. Upon completion of the subroutine, execution will automatically return to the original bank; however, unless the original bank is reselected, the next jump instruction encountered will again transfer execution to the opposite bank.

Conditional jumps can test the following inputs and machine status:

- T0 Input Pin
- T1 Input Pin
- INT Input Pin
- Accumulator Zero
- Any bit of Accumulator
- Carry Flag
- F0 Flag
- F1 Flag

Conditional jumps allow a branch to any address within the current page (256 words) of execution. The conditions tested are the instantaneous values at the time the conditional jump is executed. For instance, the jump on accumulator zero instruction tests the accumulator itself, not an intermediate zero flag.

The decrement register and jump if not zero instruction combines a decrement and a branch instruction to create an instruction very useful in implementing a loop counter. This instruction can designate any one of the 8 working registers as a counter and can effect a branch to any address within the current page of execution.

A single-byte indirect jump instruction allows the program to be vectored to any one of several different locations based on the contents of the accumulator. The contents of the accumulator points to a location in program memory which contains the jump address. The 8 -bit jump address refers to the current page of execution. This instruction could be used, for instance, to vector to any one of several routines based on an ASCII character which has been loaded in the accumulator. In this way ASCII key inputs can be used to initiate various routines.

1.6 Subroutines

Subroutines are entered by executing a call instruction. Calls can be made like unconditional jumps to any address in a 2 K word bank, and jumps across the 2 K boundary are executed in the same manner. Two separate return instructions determine whether or not status (upper 4-bits of PSW) is restored upon return from the subroutine.

The return and restore status instruction also signals the end of an interrupt service routine if one has been in progress.

1.7 Timer Instructions

The 8-bit on board timer/counter can be loaded or read via the accumulator while the counter is stopped or while counting. The counter can be started as a timer with an internal clock source or an event counter or timer with an external clock applied to the T1 input pin. The instruction executed determines which clock source is used. A single instruction stops the counter whether it is operating with an internal or an external clock source. In addition, two instructions allow the timer interrupt to be enabled or disabled.

1.8 Control Instructions

Two instructions allow the external interrupt source to be enabled or disabled. Interrupts are initially disabled and are automatically disabled while an interrupt service routines is in progress and re-enabled afterward.

There are four memory bank select instructions, two to designate the active working register bank and two to control program memory banks. The operation of the program memory bank switch is explained in Section 2.2 in the Expanded MCS-48 System chapter.

The working register bank switch instructions allow the programmer to immediately substitute a second 8 -register working register bank for the one in use. This effectively provides 16 working registers or it can be used as a means of quickly saving the contents of the registers in response to an interrupt. The user has the option to switch or not to switch banks on interrupt. However, if the banks are switched, the original bank will be automatically restored upon execution of a return and restore status instruction at the end of the interrupt service routine.

A special instruction enables an internal clock, which is the XTAL frequency divided by three to be output on pin T0. This clock can be used as a general-purpose clock in the user's system. This instruction should be used only to initialize the system since the clock output can be disabled only by application of system reset.

1.9 Input/Output Instructions

Ports 1 and 2 are 8-bit static I/O ports which can be loaded to and from the accumulator. Outputs are statically latched but inputs are not latched and must be read while inputs are present. In addition, immediate data from program memory can be ANDed or ORed directly to Port 1 and Port 2 with the result remaining on the port. This allows "masks" stored in program memory to selectively set or reset individual bits of the I/O ports. Ports 1 and 2 are configured to allow input on a given pin by first writing a " 1 " out to the pin.

An 8-bit port called BUS can also be accessed via the accumulator and can have statically latched outputs as well. It too can have immediate data ANDed or ORed directly to its outputs, however, unlike ports 1 and 2, all eight lines of BUS must be treated as either input or output at any one time. In addition to being a static port, BUS can be used as a true synchronous bi-directional port using the Move External instructions used to access external data memory. When these instructions are executed, a corresponding $\overline{\text { READ }}$ or WRITE pulse is generated and data is valid only at that time. When data is not being transferred, BUS is in a high impedance state. Note that the OUTL, ANL, and the ORL instructions for the BUS are for use with internal program memory only.

The basic three on-board I/O ports can be expanded via a 4-bit expander bus using half of port 2. 1/O expander devices on this bus consist of four 4-bit ports which are addressed as ports 4 through 7. These ports have their own AND and OR instructions like the on-board ports as well as move instructions to transfer data in or out. The expander AND and OR instructions, however, combine the contents of accumulator with the selected port rather than immediate data as is done with the on-board ports.

I/O devices can also be added externally using the BUS port as the expansion bus. In this case the I/O ports become "memory mapped", i.e., they are addressed in the same way as external data memory and exist in the external data memory address space addressed by pointer register R0 or R1.

2.0 INSTRUCTION SET DESCRIPTION

The following pages describe the $\mathrm{MCS}^{\circledR}-48$ instruction set in detail. The instruction set is first summarized with instructions grouped functionally. This summary page is followed by a detailed description listed alphabetically by mnemonic opcode.

The alphabetical listing includes the following information.

- Mnemonic
- Machine Code
- Verbal Description
- Symbolic Description
- Assembly Language Example

The machine code is represented with the most significant bit (7) to the left and two byte instructions are represented with the first byte on the left. The assembly language examples are formulated as follows:

Arbitrary
Label: Mnemonic, Operand;
Descriptive Comment

8048AH/8748H/8049AH/8050AH/8749H Instruction Set Summary

Mnemonic	Description	Bytes	Cycle
Accumulator			
ADD A, R	Add register to A	1	1
ADD A, @R	Add data memory to A	1	1
ADD A, \# data	Add immediate to A	2	2
ADDC A, R	Add register with carry	1	1
ADDC A, @R	Add data memory with carry	1	1
$\begin{aligned} & \text { ADDC A, } \\ & \text { \# data } \end{aligned}$	Add immediate with carry	2	2
ANL A, R	And register to A	1	1
ANL A, @R	And data memory to A	1	1
ANL A, \# data	And immediate to A	2	2
ORL A, R	Or register to A	1	1
ORL A @R	Or data memory to A	1	1
ORL A, \# data	Or immediate to A	2	2
XRL A, R	Exclusive Or register to A	1	1
XRL A, @R	Exclusive or data memory to A	1	1
XRL, A, \# data	Exclusive or immediate to A	2	2
INC A	Increment A	1	1
DEC A	Decrement A	1	1
CLR A	Clear A	1	1
CPL A	Complement A	1	1
DA A	Decimal adjust A	1	1
SWAP A	Swap nibbles of A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1
Input/Output			
IN A, P	Input port to A	1	2
OUTL P, A	Output A to port	1	2
ANL P, \# data	And immediate to port	2	2
ORL P, \# data	Or immediate to port	2	2
*INS A, BUS	Input BUS to A	1	2
- OUTL BUS, A	Output A to BUS	1	2
*ANL BUS, \# data	And immediate to BUS	2	2
*ORL BUS, \# data	Or immediate to BUS	2	2
MOVD A, P	Input Expander port to A	1	2
MOVD P, A	Output A to Expander port	1	2
ANLD P, A	And A to Expander port	1	2
ORLD P, A	Or A to Expander port	1	2

Mnemonics copyright Intel Corporation 1983.
-For use with internal memory only.

Mnemonic	Description	Bytes	Cycles
Registers			
INC R	Increment register	1	1
INC@R	Increment data memory	1	1
DEC R	Decrement register	1	1
Branch			
JMP addr	Jump unconditional	2	2
JMPP @A	Jump indirect	1	2
DJNZ R, addr	Decrement register and jump	2	2
JC addr	Jump on carry = 1	2	2
JNC addr	Jump on carry $=0$	2	2
JZ addr	Jump on A Zero	2	2
JNZ addr	Jump on A not Zero	2	2
JTO addr	Jump on T0 = 1	2	2
JNT0 addr	Jump on T0 $=0$	2	2
JT1 addr	Jump on T1 = 1	2	2
JNT1 addr	Jump on T1 $=0$	2	2
JFO addr	Jump on F0 = 1	2	2
JF1 addr	Jump on F1 = 1	2	2
JTF addr	Jump on timer flag $=1$	2	2
JNI addr	Jump on INT = 0	2	2
JBb addr	Jump on Accumulator Bit	2	2
Subroutine			
CALL addr	Jump to subroutine	2	2
RET	Return	1	2
RETR	Return and restore status	1	2
Flags			
CLR C	Clear Carry	1	1
CPL C	Complement Carry	1	1
CLR FO	Clear Flag 0	1	1
CPL FO	Complement Flag 0	1	1
CLR F1	Clear Flag 1	1	1
CPL F1	Complement Flag 1	1	1
Data Moves			
MOV A, R	Move register to A	1	1
MOV A, @R	Move data memory to A	1	1
MOV A, \# data	Move immediate to A	2	2
MOV R, A	Move A to register	1	1
MOV @R, A	Move A to data memory	1	1
MOV R, \# data	Move immediate to register	2	2
MOV @R, \# data	Move immediate to data memory	2	2
MOV A, PSW	Move PSW to A	1	1
MOV PSW, A	Move A to PSW	1	1

8048AH/8748H/8049AH/8050AH/8749H Instruction Set Summary (Con't)

Mnemonic	Description	Bytes	Cycle
Data Moves (Cont'd)			
XCH A, R	Exchange A and register	1	1
XCH A, @R	Exchange A and data memory	1	1
XCHD A, @R	Exchange nibble of A and register	1	1
MOVX A, @R	Move external data memory to A	1	2
MOVX @ R, A	Move A to external data memory	1	2
MOVP A, @A	Move to A from current page	1	2
MOVP3 A, @A	Move to A from Page 3	1	2
Timer/Counter MOV A. T	Read Timer/Counter	1	1
MOV T, A	Load Timer/Counter	1	1
STRT T	Start Timer	1	1
STRT CNT	Start Counter	1	1
STOP TCNT	Stop Timer/Counter	1	1
EN TCNTI	Enable Timer/Counter Interrupt	1	1
DIS TCNTI	Disable Timer/Counter Interrupt	1	- 1

Mnemonic	Description	Bytes	Cycle
Control	Enable external	1	1
EN I	Interrupt		
DIS I	Disable external	1	1
SEL RB0	Interrupt	Select register bank 0	1
SEL RB1	Select register bank 1	1	1
SEL MB0	Select memory bank 0	1	1
SEL MB1	Select memory bank 1	1	1
ENTO CLK	Enable clock output	1	1
on T0			
NOP	No Operation	$\mathbf{1}$	1

MCS®-48 INSTRUCTION SET Symbols and Abbreviations Used

A	Accumulator
AC	Auxiliary Carry
addr	12-Bit Program Memory Address
Bb	Bit Designator ($b=0-7$)
BS	Bank Switch
BUS	BUS Port
C	Carry
CLK	Clock
CNT	Event Counter
CRR	Conversion Result Register
D	Mnemonic for 4-Bit Digit (Nibble)
data	8-Bit Number or Expression
DBF	Memory Bank Flip-Flop
F0, F1	Flag 0, Flag 1
1	Interrupt
P	Mnemonic for "in-page" Operation
PC	Program Counter
Pp	Port Designator ($\mathrm{p}=1,2$ or 4-7)
PSW	Program Status Word
Ri	Data memory Pointer ($\mathrm{i}=0$, or 1)
Rr	Register Designator ($\mathrm{r}=0-7$)
SP	Stack Pointer
T	Timer
TF	Timer Flag
T0, T1	Test 0, Test 1
X	Mnemonic for External RAM
\#	Immediate Data Prefix
@	Indirect Address Prefix
\$	Current Value of Program Counter
(X)	Contents of X
(X) $)$	Contents of Location Addressed by X
\leftarrow	Is Replaced by

ADD A, $\mathbf{R}_{\mathbf{r}}$ Add Register Contents to Accumulator

Encoding: | 0 | 1 | 1 | 0 | 1 | r |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad 68 \mathrm{H}-6 \mathrm{FH}$

Description: The contents of register ' r ' are added to the accumulator. Carry is affected.
Operation: $(A) \leftarrow(A)+(R r)$
Example: ADDREG: ADD A,R6
$r=0-7$
;ADD REG 6 CONTENTS
;TO ACC

ADD A,@R, Add Data Memory Contents to Accumulator

Encoding; | 0 | 1 | 1 | 0 | 0 | 0 | 0 | i |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 60 \mathrm{H}-61 \mathrm{H}$

Description: The contents of the resident data memory location addressed by register 'i' bits $0-5^{* *}$ are added to the accumulator. Carry is affected.

Operation: $(A) \leftarrow(A)+((R i))$
Example: ADDM: MOV RO, \#01FH
ADD A, @RO
$\mathrm{i}=0-1$
;MOVE '1F' HEX TO REG 0
;ADD VALUE OF LOCATION
;31 TO ACC

ADD A,\#data Add Immediate Data to Accumulator

Encoding: \begin{tabular}{|llll|lllll}
0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1

\hline

\quad

d_{7} \& d_{6} \& d_{5} \& d_{4} \& d_{3} \& d_{2} \& d_{1} \& d_{0}

\hline
\end{tabular}$\quad 03 \mathrm{H}$

Description: This is a 2-cycle instruction. The specified data is added to the accumulator. Carry is affected.
Operation: $\quad(A) \leftarrow(A)+$ data
Example: ADDID: ADD A,\#ADDER: ;ADD VALUE OF SYMBOL ;ADDER' TO ACC

ADDC A,R Add Carry and Register Contents to Accumulator

Encoding: | 0 | 1 | 1 | 1 | 1 | r | r |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 78 \mathrm{H}-7 \mathrm{FH}$

Description: The content of the carry bit is added to accumulator location 0 and the carry bit cleared. The contents of register ' r ' are then added to the accumulator. Carry is affected.
Operation: $(A) \leftarrow(A)+(R r)+(C)$
Example: ADDRGC: ADDC A,R4
$r=0-7$
;ADD CARRY AND REG 4 ;CONTENTS TO ACC
** 0-5 in 8048AH/8748H
$0-6$ in 8049AH/8749H
$0-7$ in 8050AH

MCS®-48 INSTRUCTION SET

ADDC A,@data Add Carry and Immediate Data to Accumulator
Encoding: \square

d_{7}	d_{6}	d_{5}	d_{4}	d_{3}	d_{2}	d_{1}
d_{0}						

Description: This is a 2-cycle instruction. The content of the carry bit is added to accumulator location 0 and the carry bit cleared. Then the specified data is added to the accumulator. Carry is affected.
Operation: $(A) \leftarrow(A)+$ data $+(C)$
Example: ADDC A,\#225
;ADD CARRY AND '225' DEC ;TO ACC

ANL A, $\mathbf{R}_{\mathbf{r}}$ Logical AND Accumulator with Register Mask

Encoding: | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | $1 \mathrm{rrr} \quad 58 \mathrm{H}-5 \mathrm{FH}$ | | |

Description: Data in the accumulator is logically ANDed with the mask contained in working register ' r '.

Operation: $(A) \leftarrow(A)$ AND (Rr)
Example: ANDREG: ANL A,R3

$$
r=0-7
$$

;'AND' ACC CONTENTS WITH MASK ;IN REG 3

ANL A,@R \mathbf{R}_{i} Logical AND Accumulator with memory Mask

Encoding: | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 50 \mathrm{H}-51 \mathrm{H}$

Description: Data in the accumulator is logically ANDed with the mask contained in the data memory location referenced by register ' i ' bits $0-5^{* *}$.

Operation: $(A) \leftarrow(A)$ AND $((R i))$
Example: ANDDM: MOV RO,\#03FH ANL A, @RO
** 0-5 in 8048AH/8748H $0-6$ in 8049AH/8749H $0-7$ in 8050AH
$i=0-1$
;MOVE '3F' HEX TO REG 0
;'AND' ACC CONTENTS WITH ;MASK IN LOCATION 63

ANL A,\#data

 Logical AND Accumulator with Immediate Mask
Description: This is a 2-cycle instruction. Data in the accumulator is logically ANDed with an immediately-specified mask.
Operation: $(A) \leftarrow(A)$ AND data
Examples: ANDID: ANL A,\#OAFH ;'AND' ACC CONTENTS ;WITH MASK 10101111
ANL A, \#3 $+X / Y$
;'AND' ACC CONTENTS
;WITH VALUE OF EXP
;'3 + XY/Y’

ANL BUS,\#data* Logical AND BUS with Immediate Mask

Encoding:

1	0	0	1	1	0	0

$\begin{array}{lllllll}d_{7} & d_{6} & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} \\ d_{0}\end{array}$
98H
Description: This is a 2-cycle instruction. Data on the BUS port is logically ANDed with an immediately-specified mask. This instruction assumes prior specification of an 'OUTL BUS, A' instruction.
Operation: $(B U S) \leftarrow$ (BUS) AND data
Example: ANDBUS: ANL BUS,\#MASK ;'AND' BUS CONTENTS ;WITH MASK EQUAL VALUE ;OF SYMBOL 'MASK'

ANL Pp,\#data Logical AND Port 1-2 with Immediate Mask

Description: This is a 2-cycle instruction. Data on port ' p ' is logically ANDed with an immediately-specified mask.

Operation: $(P p) \leftarrow(P p)$ AND DATA
Example: ANDP2: ANL P2,\#OFOH

* For use with internal program memory ONLY.
$p=1-2$
;'AND' PORT 2 CONTENTS ;WITH MASK 'FO' HEX
;(CLEAR P20-23)

ANLD Pp,A Logical AND Port 4-7 with Accumulator Mask

Encoding:

| 100 | 1 | 1 | $\mathrm{p} p$ |
| :--- | :--- | :--- | :--- | :--- |$\quad 9 \mathrm{CH}-9 \mathrm{FH}$

Description: This is a 2-cycle instruction. Data on port ' p ' is logically ANDed with the digit mask contained in accumulator bits 0-3.
Operation: $(\mathrm{Pp}) \leftarrow(\mathrm{Pp})$ AND $(\mathrm{A} 0-3) \quad \mathrm{p}=4-7$
Note: The mapping of port ' p ' to opcode bits $0-1$ is as follows:

$\frac{10}{00}$	Port	
01		4
01	5	
10	6	
11		7

Example: ANDP4: ANLD P4,A
;'AND’ PORT 4 CONTENTS
;WITH ACC BITS 0-3

CALL address Subroutine Call

Page		Hex Op Code
0		14
1	34	
2	54	
3		74
4	94	
5	B4	
6	D4	
7	F4	

Description: This is a 2-cycle instruction. The program counter and PSW bits 4-7 are saved in the stack. The stack pointer (PSW bits 0-2) is updated. Program control is then passed to the location specified by 'address'. PC bit 11 is determined by the most recent SEL MB instruction.

A CALL cannot begin in locations 2046-2047 or 4094-4095. Execution continues at the instruction following the CALL upon return from the subroutine.

Operation: $((S P)) \leftarrow(P C),\left(\mathrm{PSW}_{4-7}\right)$
$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$
$\left(\mathrm{PC}_{8-10}\right) \leftarrow\left(\right.$ addr $\left._{8-10}\right)$
$\left(\mathrm{PC}_{0-7}\right) \leftarrow\left(\right.$ addr $\left._{0-7}\right)$
$\left(\mathrm{PC}_{11}\right) \leftarrow \mathrm{DBF}$

Example: Add three groups of two numbers. Put subtotals in locations 50,51 and total in location 52.

	MOV R0,\#50	;MOVE '50' DEC TO ADDRESS ;REG 0
BEGADD:	MOV A,R1	;MOVE CONTENTS OF REG 1 ;TO ACC
	ADD A,R2	;ADD REG 2 TO ACC
	CALL SUBTOT	;CALL SUBROUTINE 'SUBTOT'
	ADDC A R3	;ADD REG 3 TO ACC
	ADDC A,R4	;ADD REG 4 TO ACC
	CALL SUBTOT	;CALL SUBROUTINE 'SUBTOT’
	ADDC A,R5	;ADD REG 5 TO ACC
	ADDC A,R6	;ADD REG 6 TO ACC
	CALL SUBTOT	;CALL SUBROUTINE 'SUBTOT'
SUBTOT:	MOV @RO,A	;MOVE CONTENTS OF ACC TO
		;LOCATION ADDRESSED BY ;REG 0
	INC RO	;INCREMENT REG 0
	RET	;RETURN TO MAIN PROGRAM

CLR A Clear Accumulator

Encoding: | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 27 \mathrm{H}$

Description: The contents of the accumulator are cleared to zero.
Operation: $A \leftarrow 0$

CLR Clear Carry Bit

Encoding: | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 97 \mathrm{H}$

Description: During normal program execution, the carry bit can be set to one by the ADD, ADDC, RLC, CPL C, RRC, and DAA insructions. This instruction resets the carry bit to zero.
Operation: $\mathrm{C} \leftarrow 0$

CLR F1 Clear Flag 1

Encoding: | 1010 | 0101 |
| :--- | :--- | :--- | :--- | :--- |

Description: Flag 1 is cleared to zero.
Operation: $(F 1) \leftarrow 0$

CLR FO Clear Flag 0

Encoding:	1000	0101	85H
Description: Operation:	$\begin{aligned} & \text { Flag } 0 \text { is } o \\ & (\mathrm{FO}) \leftarrow 0 \end{aligned}$	leared to	

CPL A Complement Accumulator

Encoding: | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 37 \mathrm{H}$

Description: The contents of the accumulator are complemented. This is strictly a one's complement. Each one is changed to zero and vice-versa.

Operation: $(A) \leftarrow$ NOT (A)
Example: Assume accumulator contains 01101010.
CPLA: CPL A
;ACC CONTENTS ARE CIJMPLE;MENTED TO 10010101

CPL Complement Carry Bit

Encoding:

| 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad A 7 H$

Description: The setting of the carry bit is complemented; one is changed to zero, and zero is changed to one.
Operation: $(\mathrm{C}) \leftarrow$ NOT (C)
Example: Set C to one; current setting is unknown.
CTO1: CLR C
CPL C
;C IS CLEARED TO ZERO
;C IS SET TO ONE

CPL FO Complement Flag 0

Encoding: | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 95 \mathrm{H}$

Description: The setting of flag 0 is complemented; one is changed to zero, and zero is changed to one.
Operation: FO - NOT (FO)

CPL F1 Complement Flag 1

Encoding:

| 10 | 0 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad \mathrm{~B} 5 \mathrm{H}$

Description: The setting of flag 1 is complemented; one is changed to zero, and zero is changed to one.
Operation: $(F 1) \leftarrow$ NOT $(F 1)$

DA A Decimal Adjust Accumulator

Encoding: | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 57 \mathrm{H}$

Description: The 8-bit accumulator value is adjusted to form two 4-bit Binary Coded Decimal (BCD) digits following the binary addition of BCD numbers.
The carry bit C is affected. If the contents of bits 0-3 are greater than nine, or if AC is one, the accumulator is incremented by six.
The four high-order bits are then checked. If bits 4-7 exceed nine, or if C is one, these bits are increased by six. If an overflow occurs, C is set to one.

Example: Assume accumulator contains 10011011.

DA A
;ACC Adjusted to 00000001
;WITH C SET
CAC $7 \quad 430$
$0 \quad 0 \quad 10011011$
$00000110 \quad$ ADD SIX TO BITS 0-7
01110100001
0110
1000000001

ADD SIX TO BITS 4-7
OVERFLOW TO C

DEC A Decrement Accumulator

Encoding:

| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 07H

Description: The contents of the accumulator are decremented by one. The carry flag is not affected.

Operation: $(A) \leftarrow(A)-1$
Example: Decrement contents of external data memory location 63.
MOV R0,\#3FH ;MOVE '3F' HEX TO REG 0
MOVX A, @R0 ;MOVE CONTENTS OF ;LOCATION 63 TO ACC
DEC A MOVX @RO,A ;MOVE CONTENTS OF ACC TO ;LOCATION 63 IN EXPANDED ;MEMORY

DEC Rr Decrement Register

Encoding: | 1.1 | 0 | 0 | 1 rrr |
| :--- | :--- | :--- | :--- |$\quad \mathrm{C} 8 \mathrm{H}-\mathrm{CFH}$

Description: The contents of working register ' r ' are decremented by one.

Operation: $(\mathrm{Rr}) \leftarrow(\mathrm{Rr})-1$
Example: DECR1: DEC R1
$r=0-7$
;DECREMENT CONTENTS OF REG 1

DIS I External Interrupt

Encoding: | 0001 | 0101 |
| :--- | :--- | :--- | :--- |

Description: External interrupts are disabled. A low signal on the interrupt input pin has no effect.

DIS TCNTI Disable Timer/Counter Interrupt

Encoding: | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 35 \mathrm{H}$

Description: Timer/counter interrupts are disabled. Any pending timer interrupt request is cleared. The interrupt sequence is not initiated by an overflow, but the timer flag is set and time accumulation continues.

DJNZ R R_{r}, address Decrement Register and Test

Description: This is a 2-cycle instruction. Register ' r ' is decremented, then tested for zero. If the register contains all zeros, program control falls through to the next instruction. If the register contents are not zero, control jumps to the specified 'address'.

The address in this case must evaluate to 8 -bits, that is, the jump must be to a location within the current 256-location page.

Example: $(\mathrm{Rr}) \leftarrow(\mathrm{Rr})-1$

$$
r=0-7
$$

If Rr not 0
$\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr
Note: A 12-bit address specification does not cause an error if the DJNZ instruction and the jump target are on the same page. If the DJNZ instruction begins in location 255 of a page, it must jump to a target address on the following page.
Example: Increment values in data memory locations 50-54.

MOV RO,\#50
MOV R3,\#5
INCRT: INC@RO

INC RO DJNZ R3, INCRT

NEXT -
;MOVE ‘50' DEC TO ADDRESS ;REG 0 ;MOVE ‘5' DEC TO COUNTER ;REG 3
;INCREMENT CONTENTS OF ;LOCATION ADDRESSED BY ;REG 0 ;INCREMENT ADDRESS IN REG 0 ;DECREMENT REG 3-JUMP TO ;'INCRT' IF REG 3 NONZERO ;'NEXT' ROUTINE EXECUTED ;IF R3 IS ZERO

EN I Enable External Interrupt

Encoding: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Description: External interrupts are enabled. A low signal on the interrupt input pin initiates the interrupt sequence.

EN TCNTI Enable TImer/Counter Interrupt

Encoding: | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2 H$ | | | | | | | |

Description: Timer/counter interrupts are enabled. An overflow of the timer/counter initiates the interrupt sequence.

ENTO CLK Enable Clock Output

Encoding: | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 75 \mathrm{H}$

Description: The test 0 pin is enabled to act as the clock output. This function is disabled by a system reset.

Example: EMTSTO: ENTO CLK ;ENABLE TO AS CLOCK OUTPUT
IN A,Pp Input Port or Data to Accumulator

Encoding: | 0 | 0 | 0 | 0 | 10 |
| :--- | :--- | :--- | :--- | :--- |\quad p p $\quad 09 \mathrm{H}-0 \mathrm{AH}$

Description: This is a 2-cycle instruction. Data present on port ' p ' is transferred (read) to the accumulator.

Operation: $(A) \leftarrow(P p)$ INP12: IN A,P1 MOV R6,A IN A,P2 MOV R7,A
$p=1-2$
;INPUT PORT 1 CONTENTS TO ACC ;MOVE ACC CONTENTS TO REG 6 ;INPUT PORT 2 CONTENTS TO ACC ;MOVE ACC CONTENTS TO REG 7

INC A Increment Accumulator

Encoding: | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 17 \mathrm{H}$

Description: The contents of the accumulator are incremented by one. Carry is not affected.

Operation: $(A) \leftarrow(A)+1$

Example: Increment contents of location 100 in external data memory.

INCA: MOV RO,\#100
MOVX A,@RO
INC A MOVX @RO,A
;MOVE '100' DEC TO ADDRESS REG 0 ;MOVE CONTENTS OF LOCATION ;100 TO ACC
;INCREMENT A ;MOVE ACC CONTENTS TO ;LOCATION 101

INC R $\mathbf{r r}_{\text {Increment Register }}$

Encoding:	0	0	0	1	$1 \mathrm{r} r$
$\quad 18 \mathrm{H}-1 \mathrm{FH}$					

Description: The contents of working register ' r ' are incremented by one.
Operation: $(\mathrm{Rr}) \leftarrow(\mathrm{Rr})+1 \quad r=0-7$
Example: INCRO: INC RO ;INCREMENT CONTENTS OF REG 0

INC @R1 Increment Data Memory Location

Encoding: | 0 | 0 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad 10 \mathrm{H}-11 \mathrm{H}$

Description: The contents of the resident data memory location addressed by register ' i ' bits $0-5^{* *}$ are incremented by one.

Operation: $\{(\mathrm{Ri})) \leftarrow((\mathrm{Ri}))+1 \quad \mathrm{i}=0-1$
Example: INCDM: MOV R1,\#03FH ;MOVE ONES TO REG 1 INC @R1 ;INCREMENT LOCATION 63

INS A,BUS* Strobed Input of BUS Data to Accumulator

Encoding: | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 08 \mathrm{H}$

Description: This is a 2-cycle instruction. Data present on the BUS port is transferred (read) to the accumulator when the RD pulse is dropped. (Refer to section on programming memory expansion for details.)
Operation: $(A) \leftarrow$ (BUS)
Example: INPBUS: INS A,BUS
;INPUT BUS CONTENTS TO ACC

* For use with internal program memory ONLY.
** 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H
$0-7$ in 8050AH

JBb address Jump If Accumulator Bit is Set

Accumulator Bit	Hex Op Code
0	12
1	32
2	52
3	72
4	92
5	B2
6	D2
7	F2

Description: This is a 2-cycle instruction. Control passes to the specified address if accumulator bit ' b ' is set to one.

Operation:
$\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr
$(P C)=(P C)+2$
Example: JB4IS1: JB4 NEXT
$b=0-7$
If $B b=1$
If $B b=0$
;JUMP TO 'NEXT' ROUTINE
;IF ACC BIT $4=1$

JC address Jump If Carry Is Set

Description: This is a 2-cycle instruction. Control passes to the specified address if the carry bit is set to one.

Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr
$(P C)=(P C)+2$
Example: JC1: JC OVFLOW

If $C=1$
If $C=0$
;JUMP TO 'OVFLOW' ROUTINE ; IF C = 1

JFO address Jump If Flag 0 Is Set

Description: This is a 2-cycle instruction. Control passes to the specified address if flag 0 is set to one.
Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr \quad If $\mathrm{FO}=1$
$(P C)=(P C)+2$
Example: JFOIS1: JFO TOTAL

If $F O=0$
;JUMP TO 'TOTAL' ROUTINE IF FO $=1$

JF1 address Jump If Flag 1 Is Set

Encoding: \begin{tabular}{|llll|lllll}
0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 0

\hline

\quad

a_{7} \& a_{6} \& a_{5} \& a_{4} \& a_{3} \& a_{2} \& a_{1} \& a_{0}

\hline
\end{tabular}$\quad 76 \mathrm{H}$

Description: This is a 2-cycle instruction. Control passes to the specified address if flag 1 is set to one.
Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr

$$
(P C)=(P C+2)
$$

$$
\begin{aligned}
& \text { If } F 1=1 \\
& \text { If } F 1=0 \\
& \text {;JUMP TO 'FILBUF' } \\
& \text {;ROUTINE IF F1 = }
\end{aligned}
$$

JMP address Direct Jump within 2K Block
Encoding:

| a_{7} | a_{6} | a_{5} | a_{4} | a_{3} | a_{2} | a_{1} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |a_{0}.

Page	Hex Op Code
0	04
1	24
2	44
3	64
4	84
5	A4
6	C4
7	E4

Description: This is a 2 -cycle instruction. Bits $0-10$ of the program counter are replaced with the directly-specified address. The setting of PC bit 11 is determined by the most recent SELECT MB instruction.
Operation: $\left(\mathrm{PC}_{8-10}\right) \leftarrow \operatorname{addr} 8-10$
$\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr 0-7
$\left(\mathrm{PC}_{11}\right)-\mathrm{DBF}$
Example: JJMP SUBTOT JMP \$-6
;JUMP TO SUBROUTINE 'SUBTOT' ;JUMP TO INSTRUCTION SIX ;LOCATIONS BEFORE CURRENT ;LOCATION
JMP 2FH ;JUMP TO ADDRESS '2F' HEX

JMPP @A Indirect Jump within Page
Encoding:

| 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | B3H

Description: This is a 2 -cycle insruction. The contents of the program memory location pointed to by the accumulator are substituted for the 'page' portion of the program counter (PC bits 0-7).

Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow((\mathrm{A}))$
Example: Assume accumulator contains OFH.
JMPPAG: JMPP @A
;JUMP TO ADDRESS STORED IN ;LOCATION 15 IN CURRENT PAGE

JNC address Jump If Carry Is Not Set
Encoding:

1	1	1	0	0	1	1	0

a_{7}	a_{6}	a_{5}	a_{4}	a_{3}
a_{2}	a_{1}	a_{0}		

E6H
Description: This is a 2-cycle instruction. Control passes to the specified address if the carry bit is not set, that is, equals zero.

Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr $(\mathrm{PC})=(\mathrm{PC})+2$

Example: JCO: JNC NOVFLO

If $\mathrm{C}=0$
If $C=1$
;JUMP TO 'NOVFLO' ROUTINE ; $\mathrm{FF} \mathrm{C}=0$

JNI address Jump If Interrupt Input Is Low
Encoding:

1	0	0	0	0	1	1	0

| a_{7} | a_{6} | a_{5} | a_{4} | a_{3} | a_{2} | a_{1} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |a_{0}.

86 H
Description: This is a 2-cycle instruction. Control passes to the specified address if the interrupt input signal is low ($=0$), that is, an external interrupt has been signaled. (This signal initiates an interrupt service sequence if the external interrupt is enabled.)
Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr

$$
(P C)=(P C)+2
$$

$$
\begin{aligned}
& \text { If } \mid=0 \\
& \text { If } \mid=1 \\
& ; J U M P ~ T O ~ ' E X T I N T ' ~ R O U T I N E ~ \\
& ; I F I=0
\end{aligned}
$$

Example: LOC 3: JNI EXTINT

JNTO address Jump If Test 0 is Low

Encoding: | 0010 | 0110 |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad \begin{array}{llllll}a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2}\end{array} a_{1} a_{0} \quad 26 H$

Description: This is a 2-cycle instruction. Control passes to the specified address, if the test 0 signal is low.
Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr

$$
\text { If } T 0=0
$$

$$
(P C)=(P C)+2
$$

Example: JTOLOW: JNTO 60

If $\mathrm{TO}=1$
;JUMP TO LOCATION 60 DEC
; IF TO = 0

JNT1 address Jump If Test 1 Is Low

Description: This is a 2-cycle instruction. Control passes to the specified address, if the test 1 signal is low.
Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr \quad If $\mathrm{T} 1=0$
$(P C)=(P C)+2 \quad$ If $T 1=1$
JNZ Address Jump If Accumulator Is Not Zero

Encoding: \begin{tabular}{|llll|lllll}
1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 0

\hline

\quad

a_{7} \& a_{6} \& a_{5} \& a_{4} \& a_{3} \& a_{2} \& a_{1} \& a_{0}

\hline
\end{tabular}$\quad 96 H$

Description: This is a 2-cycle instruction. Control passes to the specified address if the accumulator contents are nonzero at the time this instruction is executed.
Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow \mathrm{addr}$
If $A \neq 0$
$(P C)=(P C)+2$
If $A=0$
Example: JACCNO: JNZ OABH
;JUMP TO LOCATION ‘AB' HEX ;IF ACC VALUE IS NONZERO

JTF address Jump If Timer Flag Is Set

Encoding:

0	0	0	1	0	1	1	0

$\begin{array}{llllll}a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2}\end{array} a_{1} \quad a_{0}$
16 H
Description: This is a 2-cycle instruction. Control passes to the specified address if the timer flag is set to one, that is, the timer/counter register has overflowed. Testing the timer flag resets it to zero. (This overflow initiates an interrupt service sequence if the timer-overflow interrupt is enabled.)

Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr $(P C)=(P C)+2$
Example: JTF1: JTF TIMER

If $T F=1$
If $T F=0$
;JUMP TO ‘TIMER' ROUTINE
;IF TF = 1

JTO address Jump If Test 0 Is High

Encoding: \begin{tabular}{|llll|lllll|lllll}
0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 0

\hline

\quad

a_{7} \& a_{6} \& a_{5} \& a_{4} \& a_{3} \& a_{2} \& a_{1} \& a_{0}

\hline
\end{tabular}

Description: This is a 2-cycle instruction. Control passes to the specified address if the test 0 signal is high (= 1).
Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr
If TO = 1
$(P C)=(P C)+2$
If $\mathrm{TO}=0$
Example: JTOHI: JTO 53
;JUMP TO LOCATION 53 DEC
;IF TO = 1

JT1 address Jump If Test 1 Is High

Encoding: \begin{tabular}{|llll|lllll}
0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 0

\hline

\quad

a_{7} \& a_{6} \& a_{5} \& a_{4} \& a_{3} \& a_{2} \& a_{1} \& a_{0}

\hline
\end{tabular}$\quad 56 \mathrm{H}$

Description: This is a 2-cycle instruction. Control passes to the specified address if the test 1 signal is high $(=1)$.
Operation:

$\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr	If $\mathrm{T} 1=1$
$(\mathrm{PC})=(\mathrm{PC})+2$	If $\mathrm{T} 1=0$

Example: JT1HI: JT1 COUNT

$$
\begin{aligned}
& \text {;JUMP TO ‘COUNT' ROUTINE } \\
& \text {;IF T1 = } 1
\end{aligned}
$$

JZ address Jump If Accumulator Is Zero
Encoding:

1	1	0	0	0	1	1	0

| a_{7} | a_{6} | a_{5} | a_{4} | a_{3} | a_{2} |
| :--- | :--- | :--- | :--- | :--- | :--- |$a_{1} a_{0}$

C 6 H
Description: This is a 2-cycle instruction. Control passes to the specified address if the accumulator contains all zeros at the time this instruction is executed.
Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow$ addr
If $A=0$
$(P C)=(P C)+2$
Example: JACCO: JZ OA3H

If $A \neq 1$
;JUMP TO LOCATION 'A3' HEX
;IF ACC VALUE IS ZERO

MOV A,\#data Move Immediate Data to Accumulator

Encoding: \begin{tabular}{|llllllll|l|llllll}
0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1

\hline

\quad

a_{7} \& a_{6} \& a_{5} \& a_{4} \& a_{3} \& a_{2} \& a_{1} \& a_{0}

\hline
\end{tabular}$\quad 23 H$

Description: This is a 2 -cycle instruction. The 8 -bit value specified by 'data' is loaded in the accumulator.

Operation: $(A) \leftarrow$ data
Example: MOV A,\#OA3H ;MOVE 'A3' HEX TO ACC

MOV A,PSW Move PSW Contents to Accumulator

Encoding: | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |$\quad \mathrm{C} 11 \mathrm{H}$

Description: The contents of the program status word are moved to the accumulator.
Operation: $(A) \leftarrow(P S W)$
Example: Jump to 'RB1SET' routine if PSW bank switch, bit 4, is set. BSCHK: MOV A,PSW ;MOVE PSW CONTENTS TO ACC JB4 RB1SET ;JUMP TO 'RB1SET' IF ACC BIT 4 = 1

MOV A,R Move Register Contents to Accumulator

Encoding: | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |$\quad \mathrm{r} \quad \mathrm{F} H-\mathrm{FFH}$

Description: 8-bits of data are removed from working register ' r ' into the accumulator.

Operation: $(A) \leftarrow(R r)$
Example: MAR: MOV A,R3
$r=0-7$
;MOVE CONTENTS OF REG 3 TO ACC

MOV A,@R i $_{\mathbf{i}}$ Move Data Memory Contents to Accumulator

Encoding | 1 | 1 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad FOH-F1H

Description: The contents of the resident data memory location addressed by bits $0-5^{* *}$ of register ' i ' are moved to the accumulator. Register ' i ' contents are unaffected.

Operation: $(A) \leftarrow((R i))$
$i=0-1$
Example: Assume R1 contains 00110110.
MADM: MOV A,@R1
;MOVE CONTENTS OF DATA MEM ;LOCATION 54 TO ACC

MOV A,T Move Timer/Counter Contents to Accumulator

Encoding: \square 42H
Description: The contents of the timer/event-counter register are moved to the accumulator.

Operation: $(A) \leftarrow(T)$
Example: Jump to "EXIT" routine when timer reaches ' 64 ', that is, when bit 6 setassuming initialization 64,
TIMCHK: MOV A,T ;MOVE TIMER CONTENTS TO ACC JB6 EXIT ;JUMP TO 'EXIT' IF ACC BIT $6=1$

MOV PSW,A
 Move Accumulator Contents to PSW

Encoding: \square D7H
Description: The contents of the accumulator are moved into the progam status word. All condition bits and the stack pointer are affected by this move.
Operation: $(P S W) \leftarrow(A)$
Example: Move up stack pointer by two memory locations, that is, increment the pointer by one.

INCPTR: MOV A,PSW
INC A MOV PSW,A
;MOVE PSW CONTENTS TO ACC ;INCREMENT ACC BY ONE ;MOVE ACC CONTENTS TO PSW
** 0-5 in 8048AH/8748H
$0-6$ in 8049AH/8749H
$0-7$ in 8050AH

MOV R r_{r} A Move Accumulator Contents to Register

Encoding:	10	1	0	$1 \mathrm{rrr} \quad \mathrm{A}$

Description: The contents of the accumulator are moved to register ' r '.

Operation: (Rr) $\leftarrow(A)$
Example: MRA: MOV RO,A
$r=0-7$
;MOVE CONTENTS OF ACC TO REG 0

MOV R $\mathbf{r}_{\mathbf{r}}$ \#data Move Immediate Data to Register

Encoding: | 1 | 0 | 1 | 1 | 1 | r_{2} | r_{1} | r_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \quad | | | | | | | |\(\quad \begin{array}{llllll}d_{7} \& d_{6} \& d_{5} \& d_{4} \& d_{3} \& d_{2}

d_{1} \& d_{0}

\quad B 8 H-B F H\end{array}\)
Description: This is a 2-cycle instruction. The 8-bit value specified by 'data' is moved to register ' r '.

Operation: $(\mathrm{Rr}) \longleftarrow$ data
Examples: MIR4: MOV R4,\#HEXTEN
MIR 5: MOV R5,\#PI*(R*R)
MIR 6: MOV R6, \#OADH
$r=0-7$
;THE VALUE OF THE SYMBOL ;'HEXTEN' IS MOVED INTO REG 4 ;THE VALUE OF THE EXPRESSION ;'PI*(R*R)’ IS MOVED INTO REG 5 ;'AD' HEX IS MOVED INTO REG 6

MOV @ $\mathbf{R}_{\mathbf{i}}, \mathbf{A}$ Move Accumulator Contents to Data Memory

Encoding: $10100000 \mathrm{i} \quad \mathrm{AOH}-\mathrm{A} 1 \mathrm{H}$
Description: The contents of the accumulator are moved to the resident data memory location whose address is specified by bits 0-5** of register 'i'. Register 'i' contents are unaffected.

Operation: $((\mathrm{Ri})) \leftarrow(\mathrm{A}) \quad \mathrm{i}=0-1$
Example: Assume RO contains 00000111.
MDMA: MOV @RO,A
;MOVE CONTENTS OF ACC TO ;LOCATION 7 (REG 7)

MOV @ R_{i},\#data Move Immediate Data to Data memory

Encoding: \begin{tabular}{|llll|llll|llll}
1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& i

\hline

\quad

d_{7} \& d_{6} \& d_{5} \& d_{4} \& d_{3} \& d_{2}

d_{1} \& d_{0}

\hline
\end{tabular}$\quad B O H-B 1 H$

Description: This is a 2 -cycle instruction. The 8 -bit value specified by 'data' is moved to the resident data memory location addressed by register ' i ', bits $0-5^{* *}$.
Operation: $\quad(($ Ri $)) \longleftarrow$ data
$i=0-1$
Examples: Move the hexadecimal value AC3F to locations 62-63.
MIDM: MOV RO,\#62
;MOVE '62' DEC TO ADDR REG 0
MOV @RO,\#OACH
INC RO
MOV @RO,\#3FH ;MOVE 'AC' HEX TO LOCATION 62 ;INCREMENT REG 0 to '63' ;MOVE '3F' HEX TO LOCATION 63

MOV T,A Move Accumulator Contents to Timer/Counter

Encoding:	0	1	1	0	0	011
6						

Description: The contents of the accumulator are moved to the timer/event-counter register.

Operation: $(T) \leftarrow(A)$
Example: Initialize and start event counter.
INITEC: CLR A
MOV T,A
START CNT
;CLEAR ACC TO ZEROS
;MOVE ZEROS TO EVENT COUNTER ;START COUNTER

MOVD A,Pp Move Port 4-7 Data to Accumulator
Encoding:

0	0	0	0	1

OCH-OFH
Description: This is a 2 -cycle instruction. Data on 8243 port ' p ' is moved (read) to accumulator bits 0-3. Accumulator bits 4-7 are zeroed.

Operation: $(0-3) \leftarrow(P p)$

$$
p=4-7
$$

$(4-7) \leftarrow 0$
Note: Bits $0-7$ of the opcode are used to represent ports 4-7. If you are coding in binary rather than assembly language, the mapping is as follows:

Bits 10	Port
00	4
01	5
10	6
11	7

Example: INPPT5: MOVD A,P5
;MOVE PORT 5 DATA TO ACC ;BITS 0-3, ZERO ACC BITS 4-7

MOVD Pp,A
Move Accumulator Data to Port 4-7
Encoding:

| 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | 1 pp.

$3 \mathrm{CH}-3 \mathrm{FH}$
Description: This is a 2-cycle instruction. Data in accumulator bits 0-3 is moved (written) to 8243 port ' p '. Accumulator bits 4-7 are unaffected. (See NOTE above regarding port mapping.)
Operation: $(\mathrm{Pp}) \leftarrow\left(\mathrm{A}_{0-3}\right) \quad \mathrm{P}=4-7$
Example: Move data in accumulator to ports 4 and 5.

OUTP45: MOVD P4,A SWAP A MOVD P5,A
;MOVE ACC BITS 0-3 TO PORT 4 ;EXCHANGE ACC BITS 0-3 and 4-7 ;MOVE ACC BITS 0-3 TO PORT 5

MOVP A,@A Move Current Page Data to Accumulator

Encoding: | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad A 3 H$

Description: The contents of the program memory location addressed by the accumulator are moved to the accumulator. Only bits 0-7 of the program counter are affected, limiting the program memory reference to the current page. The program counter is restored following this operation.
Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow(\mathrm{A})$
$(A) \leftarrow((P C))$
Note: This is a 1-byte, 2-cycle instruction. If it appears in location 255 of a program memory page, @A addresses a location in the following page.

Example: MOV128: MOV A,\#128
;MOVE '128' DEC TO ACC
MOVP A,@A ;CONTENTS OF 129th LOCATION IN ;CURRENT PAGE ARE MOVED TO ACC

MOVP3 A,@A Move Page 3 Data to Accumulator

Encoding: | 1 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad E3H

Description: This is a 2-cycle instruction. The contents of the program memory location (within page 3) addressed by the accumulator are moved to the accumulator. The program counter is restored following this operation.
Operation: $\left(\mathrm{PC}_{0-7}\right) \leftarrow(\mathrm{A})$
$\left(\mathrm{PC}_{8-11}\right) \leftarrow 0011$
$(A) \leftarrow((P C))$
Example: Look up ASCII equivalent of hexadecimal code in table contained at the beginning of page 3 . Note that ASCII characters are designated by a 7-bit code; the eighth bit is always reset.
TABSCH: MOV A,\#OB8H ANL A,\#7FH ;LOGICAL AND ACC TO MASK BIT ;7 (00111000) MOVP3 A,@A ;MOVE CONTENTS OF LOCATION '38' ;HEX IN PAGE 3 TO ACC (ASCII '8')
Access contents of location in page 3 labelled TAB1.
Assume current program location is not in page 3.
TABSCH: MOV A,\#LOW TAB 1 ;ISOLATE BITS 0-7 OF LABEL
;ADDRESS VALUE
MOVP3 A,@A ;MOVE CONTENTS OF PAGE 3 ;LOCATION LABELED ‘TAB1’ TO ACC

MOVX A,@R $\mathbf{R}_{\mathbf{i}}$ Move External-Data-Memory Contents to Accumulator

Encoding: | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 80 \mathrm{H}-81 \mathrm{H}$

Description: This is a 2-cycle instruction. The contents of the external data memory location addressed by register ' i ' are moved to the accumulator. Register ' i ' contents are unaffected. A read pulse is generated.

Operation: $(\mathrm{A}) \leftarrow((\mathrm{Ri}))$
$i=0-1$
Example: Assume R1 contains 01110110.
MAXDM: MOVX A,@R1
;MOVE CONTENTS OF LOCATION ;118 TO ACC

MOVX @ $\mathbf{R}_{\mathbf{i}}, \mathbf{A}$ Move Accumulator Contents to External Data Memory

Encoding: | 1 | 0 | 0 | 1 | 0 | 0 | 0 | i |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\quad 90 H$ | | | | | | | |
| $-91 H$ | | | | | | | |

Description: This is a 2-cycle instruction. The contents of the accumulator are moved to the external data memory location addressed by register ' i '. Register ' i ' contents are unaffected. A write pulse is generated.
Operation: $((R i)) \leftarrow A \quad i=0-1$
Example: Assume R0 contains 11000111.
MXDMA: MOVX @R0,A ;MOVE CONTENTS OF ACC TO ;LOCATION 199 IN EXPANDED ;DATA MEMORY

NOP The NOP Instruction

Encoding: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $00 H$ | | | | | | | |

Description: No operation is performed. Execution continues with the following instruction.

ORL A, $\mathbf{R}_{\mathbf{r}}$ Logical OR Accumulator With Register Mask

Encoding: | 0 | 1 | 0 | 0 | 1 | $\mathrm{r} r$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\quad 48$ | | | | | |$\quad 48 \mathrm{H}-4 \mathrm{FH}$

Description: Data in the accumulator is logically ORed with the mask contained in working register ' r '.

Operation: $(A) \leftarrow(A) O R(R r)$
$r=0-7$
Example: ORREG: ORL A,R4
;'OR' ACC CONTENTS WITH ;MASK IN REG 4

ORL A,@R Logical OR Accumulator With Memory Mask

Encoding: | 0100 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |$\quad 40 \mathrm{H}-41 \mathrm{H}$

Description: Data in the accumulator is logically ORed with the mask contained in the resident data memory location referenced by register " i ", bits $0-5^{* *}$.
Operation: $(A) \leftarrow(A) O R((R i)) \quad i=0-1$.
Example: ORDM: MOV RO,\#3FH ;MOVE '3F' HEX TO REG 0 ORL A,@RO ;'OR’ AC CONTENTS WITH MASK ;IN LOCATION 63

ORL A,\#data Logical OR Accumulator With Immediate Mask
Encoding:

0	1	0	0	0	0	1	1

d_{7}	d_{6}	d_{5}	d_{4}	d_{3}	d_{2}
d_{1}	d_{0}	$43 H$			

Description: This is a 2-cycle instruction. Data in the accumulator is logically ORed with an immediately-specified mask.
Operation: $(A) \leftarrow(A)$ OR data
Example: ORID: ORL A,\#‘X’
;'OR’ ACC CONTENTS WITH MASK ;01011000 (ASCII VALUE OF 'X')

ORL BUS,\#data* Logical OR BUS With Immediate Mask

Encoding: \begin{tabular}{|llll|llll}
1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0

\hline

\quad

d_{7} \& d_{6} \& d_{5} \& d_{4} \& d_{3} \& d_{2} \& d_{1} \& d_{0}

\hline
\end{tabular}$\quad 88 \mathrm{H}$

Description: This is a 2-cycle instruction. Data on the BUS port is logically ORed with an immediately-specified mask. This instruction assumes prior specification on an 'OUTL BUS,A' instruction.
Operation: (BUS) \leftarrow (BUS) OR data
Example: ORBUS: ORL BUS,\#HEXMSK :'OR’ BUS CONTENTS WITH MASK
;EQUAL VALUE OF SYMBOL 'HEXMSK'

ORL Pp, \#data Logical OR Port 1 or 2 With Immediate Mask

Description: This is a 2-cycle instruction. Data on port ' p ' is logically ORed with an immediately-specified mask.
Operation: $(P p) \leftarrow(P p)$ OR data $p=1-2$
Example: ORP1: ORL P1, \#OFFH
;'OR' PORT 1 CONTENTS WITH MASK ;'FF' HEX (SET PORT 1 TO ALL ONES)

* For use with internal program memory ONLY.
** 0-5 in 8048AH/8748H
$0-6$ in 8049AH/8749H
$0-7$ in 8050AH

ORLD Pp,A Logical OR Port 4-7 With Accumulator Mask

Encoding: | 1000 | 1 | 1 | $\mathrm{p} p$ |
| :--- | :--- | :--- | :--- | :--- |$\quad 8 \mathrm{CH}-8 \mathrm{FH}$

Description: This is a 2-cycle instruction. Data on port ' p ' is logically ORed with the digit mask contained in accumulator bits 0-3.
Operation: $(P p) \leftarrow(P p)$ OR $\left(A_{0-3}\right)$

$$
p=4-7
$$

Example: ORP7: ORLD P7,A
;'OR’ PORT 7 CONTENTS WITH ACC
;BITS 0-3

OUTL BUS,A* Output Accumulator Data to BUS

Encoding: $000000 \mid 01010002 H$
Description: This is a 2 -cycle instruction. Data residing in the accumulator is transferred (written) to the BUS port and latched. The latched data remains valid until altered by another OUTL instruction. Any other instruction requiring use of the BUS port (except INS) destroys the contents of the BUS latch. This includes expanded memory operations (such as the MOVX instruction). Logical operations on BUS data (AND, OR) assume the OUTL BUS,A instruction has been issued previously.

Operation: $(B U S) \leftarrow(A)$
Example: OUTLBP: OUTL BUS, A ;OUTPUT ACC CONTENTS TO BUS

OUTL Pp,A Output Accumulator Data to Port 1 or 2

Encoding: $\left.\begin{array}{|lll|l|l|}\hline 0 & 0 & 1 & 1 & 1\end{array}\right) \mathrm{p} \mathrm{p} \quad 39 \mathrm{H}-3 \mathrm{AH}$
Description: This is a 2-cycle instruction. Data residing in the accumulator is transferred (written) to port ' p ' and latched.

Operation: $(\mathrm{Pp}) \leftarrow(\mathrm{A})$
Example: OUTLP: MOV A,R7
OUTL P2,A
MOV A, R6
OUTL P1,A
$p=1-2$
;MOVE REG 7 CONTENTS TO ACC ;OUTPUT ACC CONTENTS TO PORT 2 ;MOV REG 6 CONTENTS TO ACC ;OUTPUT ACC CONTENTS TO PORT 1

* For use with internal program memory ONLY.

RET Return Without PSW Restore

Encoding: | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 83 \mathrm{H}$

Description: This is a 2-cycle instruction. The stack pointer (PSW bits 0-2) is decremented. The program counter is then restored from the stack. PSW bits 4-7 are not restored.
Operation: $(S P) \leftarrow(S P)-1$ $(P C) \leftarrow((S P))$

RETR Return with PSW Restore

Encoding: | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 93 \mathrm{H}$

Description: This is a 2-cycle instruction. The stack pointer is decremented. The program counter and bits 4-7 of the PSW are then restored from the stack. Note that RETR should be used to return from an interrupt, but should not be used within the interrupt service routine as it signals the end of an interrupt routine by resetting the Interrupt in Progress flip-flop.
Operation: $(S P) \leftarrow(S P)-1$
$(P C) \leftarrow((S P))$
(PSW 4-7) $\leftarrow((S P))$

RL A Rotate Left without Carry

Encoding: | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad E7H

Description: The contents of the accumulator are rotated left one bit. Bit 7 is rotated into the bit 0 position.
Operation: $(A n+1) \leftarrow(A n)$
$(A 0) \leftarrow(A 7) \quad n=0-6$
Example: Assume accumulator contains 10110001.
RLNC: RL A ;NEW ACC CONTENTS ARE 01100011
RLC A Rotate Left through Carry

Encoding: | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad F7H

Description: The contents of the accumulator are rotated left one bit. Bit 7 replaces the carry bit; the carry bit is rotatd into the bit 0 position.
Operation: $(A n+1) \leftarrow(A n)$

$$
n=0-6
$$

$(\mathrm{AO}) \leftarrow(\mathrm{C})$
$(C) \leftarrow(A 7)$
Example: Assume accumulator contains a 'signed' number; isolate sign without changing value.
RLTC: CLR C ;CLEAR CARRY TO ZERO
RLC A ;ROTATE ACC LEFT, SIGN ;BIT (7) IS PLACED IN CARRY
RR A ;ROTATE ACC RIGHT - VALUE ;(BITS 0-6) IS RESTORED, ;CARRY UNCHANGED, BIT 7 ;IS ZERO

RR A Rotate Right without Carry

Encoding: | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 77 \mathrm{H}$

Description: The contents of the accumulator are rotated right one bit. Bit 0 is rotated into the bit 7 position.
Operation: $(A n) \leftarrow(A n+1) \quad n=0-6$ $(A 7) \leftarrow(A 0)$
Example: Assume accumulator contains 10110001.
RRNC: RR A
;NEW ACC CONTENTS ARE 11011000

MCS®-48 INSTRUCTION SET

RRC A Rotate Right through Carry

Encoding: | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 67 \mathrm{H}$

Description: The contents of the accumulator are rotated right one bit. Bit 0 replaces the carry bit; the carry bit is rotated into the bit 7 position.
Operation: $(A n) \leftarrow(A n+1)$
$n=0-6$
$(A 7) \leftarrow(C)$
$(C) \leftarrow\left(A_{0}\right)$
Example: Assume carry is not set and accumulator contains 10110001.
RRTC: RRC A ;CARRY IS SET AND ACC ;CONTAINS 01011000

SEL MBO Select Memory Bank 0

Encoding:

| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad E5H

Description: PC bit 11 is set to zero on next JMP or CALL instruction. All references to program memory addresses fall within the range 0-2047.
Operation: $(\mathrm{DBF}) \leftarrow 0$
Example: Assume program counter contains 834 Hex.
SEL MBO ;SELECT MEMORY BANK 0
JMP \$+20 ;JUMP TO LOCATION 58 HEX

SEL MB1 Select Memory Bank 1

Encoding:

| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad \mathrm{~F} 5 \mathrm{H}$

Description: PC bit 11 is set to one on next JMP or CALL instruction. All references to program memory addresses fall within the range 2048-4095.
Operation: $(D B F) \leftarrow 1$

SEL RBO Select Register Bank 0

Encoding: | 1 | 1 | 0 | 0 | 0 | 1 | 01 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad \mathrm{C} 5 \mathrm{H}$

Description: PSW bit 4 is set to zero. References to working registers 0-7 address data memory locations $0-7$. This is the recommended setting for normal program execution.
Operation: $\quad(B S) \leftarrow 0$

SEL RB1 Select Register Bank 1

Encoding:

1	1	0	1	0	1	0

D5H
Description: PSW bit 4 is set to one. References to working registers 0-7 address data memory locations 24-31. This is the recommended setting for interrupt service routines, since locations 0-7 are left intact. The setting of PSW bit 4 in effect at the time of an interrupt is restored by the RETR instruction when the interrupt service routine is completed.
Operation: $\quad(B S) \leftarrow 1$
Example: Assume an external interrupt has occurred, control has passed to program memory location 3, and PSW bit 4 was zero before the interrupt.

Operation: LOC3: JNI INIT
INIT: MOV R7,A
SEL RB1 MOV R7,\#OFAH
;JUMP TO ROUTINE 'INIT' IF ;INTERRUPT INPUT IS ZERO ;MOVE ACC CONTENTS TO ;LOCATION 7 ;SELECT REG BANK 1 ;MOVE 'FA' HEX TO LOCATION 31

SEL RB0	;SELECT REG BANK 0
MOV A,R7	;RESTORE ACC FROM LOCATION 7
RETR	;RETURN - RESTORE PC AND PSW

STOP TCNT Stop Timer/Event-Counter

Encoding: | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 65 \mathrm{H}$

Description: This instruction is used to stop both time accumulation and event counting.

STRT CNT Start Event Conter

Encoding: | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 45 \mathrm{H}$

Description: The test 1 (T1) pin is enabled as the event-counter input and the counter is started. The event-counter register is incremented with each high-to-low transition on the T1 pin.
Example: Initialize and start event counter. Assume overflow is desired with first T1 input.
STARTC: EN TCNTI
MOV A,\#OFFH
MOV T,A
STRT CNT
;ENABLE COUNTER INTERRUPT ;MOVE 'FF'HEX (ONES) TO ACC ;MOVES ONES TO COUNTER ;ENABLE T1 AS COUNTER ;INPUT AND START

STRT T Start Timer

Encoding: | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 55 \mathrm{H}$

Description: Timer accumulation is initiated in the timer register. The register is incremented every 32 instruction cycles. The prescaler which counts the 32 cycles is cleared but the timer register is not.
Example: Initialize and start timer.
STARTT: CLRA ;CLEAR ACC TO ZEROS MOV T,A ;MOVE ZEROS TO TIMER EN TCNTI ;ENABLE TIMER INTERRUPT STRT T ;START TIMER

SWAP A Swap Nibbles within Accumulator

Encoding: | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 47 \mathrm{H}$

Description: Bits 0-3 of the accumulator are swapped with bits 4-7 of the accumulator.
Operation: $\left(\mathrm{A}_{4-7}\right) \leftrightarrows\left(\mathrm{A}_{0-3}\right)$
Example: Pack bits 0-3 of locations 50-51 into location 50.
PCKDIG: MOV RO, \#50 ;MOVE '50' DEC TO REG 0
MOV R1, \#51 ;MOVE '51' DEC TO REG 1
XCHD A,@RO ;EXCHANGE BITS 0-3 OF ACC ;AND LOCATION 50
SWAP A ;SWAP BITS 0-3 AND 4-7 OF ACC
XCHD A,@R1 ;EXCHANGE BITS 0-3 OF ACC AND ;LOCATION 51
MOV @RO,A ;MOVE CONTENTS OF ACC TO ;LOCATION 50

XCH A, $\mathbf{R}_{\mathbf{r}}$ Exchange Accumulator-Register Contents

Encoding: | 0 | 0 | 1 | 0 | 1 | $\mathrm{r} r$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 28 \mathrm{H}-2 \mathrm{FH}$

Description: The contents of the accumulator and the contents of working register ' r ' are exchanged.
Operation: $(\mathrm{A}) \leftrightarrows$ (Rr)

$$
r=0-7
$$

Example: Move PSW contents to Reg 7 without losing accumulator contents.

XCHAR7: $\mathrm{XCH} A, R 7$
MOV A, PSW
$\mathrm{XCH} A, R 7$
;EXCHANGE CONTENTS OF REG 7 ;AND ACC
;MOVE PSW CONTENTS TO ACC
;EXCHANGE CONTENTS OF REG 7 'AND ACC AGAIN

XCH A,@R $\mathbf{i}_{\mathbf{i}}$ Exchange Accumulator and Data Memory Contents

Encoding: | 0 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |\(\quad \begin{aligned} \& i

\& 20 H

\& -21 H\end{aligned}\)
Description: The contents of the accumulator and the contents of the resident data memory location addressed by bits $0-5^{* *}$ of register ' i ' are exchanged.
Register ' i ' contents are unaffected.
Operation: $(\mathrm{A}) \leftrightarrows((\mathrm{Ri}))$
$i=0-1$
Example: Decrement contents of location 52.

DEC52: MOV R0,\#52
XCH A,@RO
DEC A
XCH A,@R0
;MOVE '52' DEC TO ADDRESS REG 0 ;EXCHANGE CONTENTS OF ACC ;AND LOCATION 52
;DECREMENT ACC CONTENTS ;EXCHANGE CONTENTS OF ACC ;AND LOCATION 52 AGAIN

XCHD A,@R $\mathbf{i}_{\mathbf{i}}$ Exchange Accumulator and Data Memory 4-Bit Data

Encoding: | 0 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\quad 3$ | $30 H-31 H$ | | | | |

Description: This instruction exchanges bits 0-3 of the accumulator with bits 0-3 of the data memory location addressed by bits 0-5** of register 'i'. Bits 4-7 of the accumulator, bits 4-7 of the data memory location, and the contents of register 'i' are unaffected.

Operation: $\left(\mathrm{A}_{0-3}\right) \leftrightarrows((\mathrm{RiO}-3)) \quad \mathrm{i}=0-1$
Example: Assume program counter contents have been stacked in locations 22-23.

XCHNIB: MOV R0,\#23	;MOVE '23' DEC TO REG 0
CLR A	;CLEAR ACC TO ZEROS
XCHD A,@R0	;EXCHANGE BITS 0-3 OF ACC AND
	;LOCATION 23 (BTS 8-11 OF PC ARE
	;ZEROED, ADDRESS REFERS
	:TO PAGE 0)

XRL A, $\mathbf{R}_{\mathbf{r}}$ Logical XOR Accumulator With Register Mask

Encoding: | 1 | 1 | 0 | 1 | $1 \mathrm{rrr} \quad \mathrm{D}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\quad \mathrm{CH}-\mathrm{DFH}$ | | | | |

Description: Data in the accumulator is EXCLUSIVE ORed with the mask contained in working register ' r '.

Operation: $(A) \leftarrow(A)$ XOR $(R r)$
Example: XORREG: XRL A,R5
** $0-5$ in 8048AH/8748H
$0-6$ in 8049AH/8749H
$0-7$ in 8050AH
$r=0-7$
;'XOR' ACC CONTENTS WITH
;MASK IN REG 5

XRL A,@R $\mathbf{R}_{\mathbf{i}}$ Logical XOR Accumulator With Memory Mask

Encoding:

| 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad DOH-D1H

Description: Data in the accumulator is EXCLUSIVE ORed with the mask contained in the data memory location addressed by register ' i ', bits $0-5$.**

Operation: $(A) \leftarrow(A) X O R((R i))$
Example: XORDM: MOV R1,\#20H XRLA,@R1
$\mathrm{i}=0-1$
;MOVE '20' HEX TO REG 1
;'XOR' ACC CONTENTS WITH MASK ;IN LOCATION 32

XRL A,\#data Logical XOR Accumulator With Immediate Mask

Encoding: \begin{tabular}{|llll|lllll}
\hline 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1

\hline

\quad

d_{7} \& d_{6} \& d_{5} \& d_{4} \& d_{3} \& d_{2} \& d_{1} \& d_{0}

\hline
\end{tabular}$\quad D 3 H$

Description: This is a 2-cycle instruction. Data in the accumulator is EXCLUSIVE ORed with an immediately-specified mask.
Operation: $(A) \leftarrow(A)$ XOR data

Example: XORID: XOR A,\#HEXTEN
** $0-5$ in 8048AH/8748H
$0-6$ in $8049 \mathrm{AH} / 8749 \mathrm{H}$
$0-7$ in 8050 AH
;XOR CONTENTS OF ACC WITH MASK ;EQUAL VALUE OF SYMBOL 'HEXTEN'
-

MCS ${ }^{\circledR}$-48 Data Sheets
4

8243 MCS®-48 INPUT/OUTPUT EXPANDER

- $0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ Operation

Figure 2. 8243 Pin Configuration

Figure 1. 8243 Block Diagram

Table 1. Pin Description

Symbol	Pin No.	Function
PROG	7	Clock Input. A high to low transition on PROG signifies that address and control are available on P20-P23, and a low to high transition signifies that data is available on P20-P23.
$\overline{\text { CS }}$	6	Chip Select Input. A high on CS inhibits any change of output or internal status.
P20-P23	$11-8$	Four (4) bit bi-directional port contains the address and control bits on a high to low transition of PROG. During a low to high transition, P2 contains the data for a selected output port if a write operation, or the data from a selected port before the low to high transition if a read operation.
GND	12	OV supply.
P40-P43	$2-5$	Four (4) bit bi-directional I/O ports.
P50-P53 P60-P63 P70-P73	$1,23-21$	May be programmed to be input (during read), low impedance latched output (after write), or a tri-state (after read). Data on pins P20-P23 may be directly written, ANDed or ORed with previous data.
VCC	$24-16$	+5V supply.

FUNCTIONAL DESCRIPTION

General Operation

The 8243 contains four 4-bit I/O ports which serve as an extension of the on-chip 1/O and are addressed as Ports 4-7. The following operations may be performed on these ports:

- Transfer Accumulator to Port.
- Transfer Port to Accumulator.
- AND Accumulator to Port.
- OR Accumulator to Port.

All communication between the 8048 and the 8243 occurs over Port 2 (P20-P23) with timing provided by an output pulse on the PROG pin of the processor. Each transfer consists of two 4-bit nibbles:

The first containing the "op code" and port address and the second containing the actual 4-bits of data. A high to low transition of the PROG line indicates that address is present while a low to high transition indicates the presence of data. Additional 8243's may be added to the 4-bit bus and chip selected using additional output lines from the 8048/8748/8035.

Power On Initialization

Initial application of power to the device forces input/output Ports 4,5,6, and 7 to the tri-state and Port 2 to the input mode. The PROG pin may be
either high or low when power is applied. The first high to low transition of PROG causes the device to exit power on mode. The power on sequence is initiated if V_{CC} drops below 1V.

P21	P20	Address Code	P23	P22	Instruction Code
0	0	Port 4	0	0	Read
0	1	Port 5	0	1	Write
1	0	Port 6	1	0	ORLD
1	1	Port 7	1	1	ANLD

Write Modes

The device has three write modes. MOVD Pi, A directly writes new data into the selected port and old data is lost. ORLD Pi, A takes new data, OR's it with the old data and then writes it to the port. ANLD Pi, A takes new data, AND's it with the old data and then writes it to the port. Operation code and port address are latched from the input Port 2 on the high to low transition of the PROG pin. On the low to high transition of PROG data on Port 2 is transferred to the logic block of the specified output port.

After the logic manipulation is performed, the data is latched and outputed. The old data remains latched untii new valid outputs are entered.

Read Mode

The device has one read mode. The operation code and port address are latched from the input Port 2
on the high to low transition of the PROG pin. As soon as the read operation and port address are decoded, the appropriate outputs are tri-stated, and the input buffers switched on. The read operation is terminated by a low to high transition of the PROG pin. The port (4, 5, 6 or 7) that was selected is switched to the tri-stated mode while Port 2 is returned to the input mode.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
with Respect to Ground -0.5 V to +7 V
Power Dissipation . 1 Watt

Normally, a port will be in an output (write mode) or input (read mode). If modes are changed during operation, the first read following a write should be ignored; all following reads are valid. This is to allow the external driver on the port to settle after the first read instruction removes the low impedance drive from the 8243 output. A read of any port will leave that port in a high impedance state.

[^0]D.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min	Typ	Max	Units	Test Conditions
V_{IL}	Input Low Voltage	-0.5		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{OL} 1}$	Output Low Voltage Ports 4-7			0.45	V	$\mathrm{I}_{\mathrm{OL}}=4.5 \mathrm{~mA}^{*}$
$\mathrm{~V}_{\mathrm{OL} 2}$	Output Low Voltage Port 7			1	V	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH} 1}$	Output High Voltage Ports 4-7	2.4			V	$\mathrm{I}_{\mathrm{OH}}=240 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{IL} 1}$	Input Leakage Ports 4-7	-10		20	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}$ to OV
$\mathrm{I}_{\mathrm{IL} 2}$	Input Leakage Port 2, CS, PROG	-10		10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}$ to OV
$\mathrm{V}_{\mathrm{OL} 3}$	Output Low Voltage Port 2			0.45	V	$\mathrm{I}_{\mathrm{OL}}=0.6 \mathrm{~mA}$
I_{CC}	V_{CC} Supply Current		10	20	mA	$($ Note 1)
$\mathrm{V}_{\mathrm{OH} 2}$	Output Voltage Port 2	2.4				$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$
I_{OL}	Sum of All IOL From 16 Outputs			72	mA	4.5 mA Each Pin

[^1]A.C. CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min	Max	Units	Test Conditions
t_{A}	Code Valid before PROG	50		$n s$	80 pF Load
t_{B}	Code Valid after PROG	60		ns	20 pF Load
t_{C}	Data Valid before PROG	200		ns	80 pF Load
t_{D}	Data Valid after PROG	20		ns	20 pF Load
t_{H}	Floating after PROG	0	150	ns	20 pF Load
t_{K}	PROG Negative Pulse Width	700		ns	
$t_{C S}$	CS Valid before/after PROG	50		ns	
$t_{\text {PO }}$	Ports 4-7 Valid after PROG		700	ns	100 pF Load
$t_{L P 1}$	Ports 4-7 Valid before/after PROG	100		ns	
$t_{A C C}$	Port 2 Valid after PROG		650	ns	80 pF Load

NOTE:

1. ICC $\left(-40^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}$ EXPRESS options) 15 mA typical $/ 25 \mathrm{~mA}$ maximum.

270161-3
A.C. Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ". Output timing measurements are made at 2.0 V for Logic " 1 " and 0.8 V for a Logic " 0 ".

WAVEFORMS

Figure 3. 8243 Current Sink Capability

Sink Capability

The 8243 can sink $5 \mathrm{~mA} @ 0.45 \mathrm{~V}$ on each of its 16 I/O lines simultaneously. If, however, all lines are not sinking simultaneously or all lines are not fully loaded, the drive capability of any individual line increases as is shown by the accompanying curve.

For example, if only 5 of the 16 lines are to sink current at one time, the curve shows that each of those 5 lines is capable of sinking $9 \mathrm{~mA} @ 0.45 \mathrm{~V}$ (if any lines are to sink $9 . \mathrm{mA}$ the total lol must not exceed 45 mA or five 9 mA loads).
Example: How many pins can drive 5 TTL loads (1.6 mA) assuming remaining pins are unloaded?
$\mathrm{lOL}=5 \times 1.6 \mathrm{~mA}=8 \mathrm{~mA}$
$\epsilon \mathrm{loi}=60 \mathrm{~mA}$ from curve
\# pins $=60 \mathrm{~mA} \div 8 \mathrm{~mA} /$ pin $=7.5=7$
In this case, 7 lines can sink 8 mA for a total of 56 mA . This leaves 4 mA sink current capability which can be divided in any way among the remaining 8 I/O lines of the 8243.

NOTE:

A10 to $50 \mathrm{~K} \Omega$ pullup resistor to +5 V should be added to 8243 outputs when driving to 5 V CMOS directly.
Example: This example shows how the use of the 20 mA sink capability of Port 7 affects the sinking capability of the other I/O lines.
An 8243 will drive the following loads simultaneously.
2 loads-20 mA @ 1V (Port 7 only)
8 loads-4 mA @ 0.45V
6 loads-3.2 mA @ 0.45V
Is this within the specified limits?
$\epsilon \mathrm{lOL}_{\mathrm{O}}=(2 \times 20)+(8 \times 4)+(6 \times 3.2)$ $=91.2 \mathrm{~mA}$.
From the curve: for $\mathrm{lOL}=4 \mathrm{~mA}, \epsilon \mathrm{lOL}_{\mathrm{OL}} \cong$ 93 mA . Since $91.2 \mathrm{~mA}<93 \mathrm{~mA}$ the loads are within specified limits.
Although the 20 mA @ 1 V loads are used in calculating l_{OL}, it is the largest current required @ 0.45 V which determines the maximum allowable cloL.

270161-6
Figure 4. Expander Interface

Figure 5. Output Expander Timing

Figure 6. Using Multiple 8243's

P8748H/P8749H
 8048AH/8035AHL/8049AH/8039AHL/8050AH/8040AHL HMOS SINGLE-COMPONENT 8-BIT MICROCONTROLLER

■ High Performance HMOS II

- Interval Time/Event Counter
- Two Single Level Interrupts
- Single 5-Volt Supply
- Over 96 Instructions; 90\% Single Byte

The Intel MCS ${ }^{\circledR}-48$ family are totally self-sufficient, 8-bit parallel computers fabricated on single silicon chips using Intel's advanced N -channel silicon gate HMOS process.
The family contains 27 I/O lines, an 8-bit timer/counter, and on-board oscillator/clock circuits. For systems that require extra capability, the family can be expanded using MCS ${ }^{\circledR}-80 /$ MCS $^{\circledR}-85$ peripherals.

These microcontrollers are available in both masked ROM and ROMless versions as well as a new version, The Programmable ROM. The Programmable ROM provides the user with the capability of a masked ROM while providing the flexibility of a device that can be programmed at the time of requirement and to the desired data. Programmable ROM's allow the user to lower inventory levels while at the same time decreasing delay times and code risks.

These microcomputers are designed to be efficient controllers as well as arithmetic processors. They have extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting of mostly single byte instructions and no instructions over 2 bytes in length.

Device	Internal	Memory	RAM STANDBY
8050 AH	$4 \mathrm{~K} \times 8 \mathrm{ROM}$	256×8 RAM	yes
8049 AH	$2 \mathrm{~K} \times 8 \mathrm{ROM}$	$128 \times 8 \mathrm{RAM}$	yes
8048 AH	$1 \mathrm{~K} \times 8 \mathrm{ROM}$	$64 \times 8 \mathrm{RAM}$	yes
8040 AHL	None	$256 \times 8 \mathrm{RAM}$	yes
8039 AHL	None	$128 \times 8 \mathrm{RAM}$	yes
8035 AHL	None	$64 \times 8 \mathrm{RAM}$	yes
P8749H	$2 \mathrm{~K} \times 8$ Programmable ROM	$128 \times 8 \mathrm{RAM}$	no
P8748H	$1 \mathrm{~K} \times 8$ Programmable ROM	$64 \times 8 \mathrm{RAM}$	no

270053-1

Figure 1. Block Diagram

■ Programmable ROMs Using 21V
 ■ Easily Expandable Memory and I/O
 - Up to $1.36 \mu \mathrm{~s}$ Instruction Cycle All Instructions 1 or 2 Cycles

Figure 3. Pin Configuration

Figure 4. Pad Configuration

Table 1. Pin Description

Symbol	Pin No.	Function	Device
$\mathrm{V}_{\text {SS }}$	20	Circuit GND potential.	All
$V_{D D}$	26	+5 V during normal operation.	All
		Low power standby pin.	$\begin{aligned} & 8048 \mathrm{AH} \\ & 8035 \mathrm{AHL} \\ & 8049 \mathrm{AH} \\ & \text { 8039AHL } \\ & \text { 8050AH } \\ & \text { 8040AHL } \end{aligned}$
		Programming power supply (+21 V).	$\begin{aligned} & \mathrm{P} 8748 \mathrm{H} \\ & \mathrm{P} 8749 \mathrm{H} \end{aligned}$
$V_{C C}$	40	Main power supply; +5 V during operation and programming.	All
PROG	25	Output strobe for $8243 \mathrm{I} / \mathrm{O}$ expander.	All
		Program pulse (+18 V) input pin During Programming.	$\begin{aligned} & \mathrm{P} 8748 \mathrm{H} \\ & \mathrm{P} 8749 \mathrm{H} \end{aligned}$
P10-P17 Port 1	27-34	8-bit quasi-bidirectional port.	All
$\begin{aligned} & \text { P20-P23 } \\ & \text { P24-P27 } \\ & \text { Port } 2 \end{aligned}$	$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	8-bit quasi-bidirectional port. P20-P23 contain the four high order program counter bits during an external program memory fetch and serve as a 4-bit I/O expander bus for 8243.	All
DB0-DB7	12-19	True bidirectional port which can be written or read synchronously using the $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ strobes. The port can also be statically latched. Contains the 8 low order program counter bits during an external program memory fetch, and receives the addressed instruction under the control of PSEN. Also contains the address and data during an external RAM data store instruction, under control of ALE, $\overline{R D}$, and WR.	All
T0	1	Input pin testable using the conditional transfer instruction JTO and JNTO. TO can be designated as a clock output using ENTO CLK instruction.	All
		Used during programming.	$\begin{aligned} & \text { P8748H } \\ & \text { P8749H } \end{aligned}$

Table 1. Pin Description (Continued)

Symbol	PIn No.	Function	Device
T1	39	Input pin testable using the JT1, and JNT1 instructions. Can be designated the timer/counter input using the STRT CNT instruction.	All
$\overline{\text { INT }}$	6	Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset. Also testable with conditional jump instruction. (Active low) interrupt must remain low for at least 3 machine cycles for proper operation.	All
$\overline{\mathrm{RD}}$	8	Output strobe activated during a BUS read. Can be used to enable data onto the bus from an external device. Used as a read strobe to external data memory. (Active low)	All
$\overline{\text { RESET }}$	4	Input which is used to initialize the processor. (Active low) (Non TTL V_{IH})	All
		Used during power down.	8048AH 8035AHL 8049AH 8039AHL 8050AH 8040AHL
		Used during programming.	$\begin{aligned} & \text { P8748H } \\ & \text { P8749H } \end{aligned}$
		Used during ROM verification.	8048AH P8748H 8049AH P8749H 8050AH
$\overline{\text { WR }}$	10	Output strobe during a bus write. (Active low) Used as write strobe to external data memory.	All
ALE	11	Address latch enable. This signal occurs once during each cycle and is useful as a clock output. The negative edge of ALE strobes address into external data and program memory.	All
PSEN	9	Program store enable. This output occurs only during a fetch to external program memory. (Active low)	All
$\overline{\text { SS }}$	5	Single step input can be used in conjunction with ALE to "single step" the processor through each instruction.	All
		(Active low) Used in sync mode.	8048AH 8035AHL 8049AH 8039AHL 8050AH 8040AHL
EA	7	External access input which forces all program memory fetches to reference external memory. Useful for emulation and debug. (Active high)	All
		Used during (18V) programming.	$\begin{aligned} & \hline \text { P8748H } \\ & \text { P8749H } \end{aligned}$
		Used during ROM verification (12V).	8048AH 8049AH 8050AH
XTAL1	2	One side of crystal input for internal oscillator. Also input for external source. (Non TTL. V_{IH})	All
XTAL2	3	Other side of crystal input.	All

Table 2. Instruction Set

Accumulator			
Mnemonic	Description	Bytes	ycles
ADD A, R	Add register to A	1	1
ADD A, @R	Add data memory to A	1	1
ADD A, \# data	Add immediate to A	2	2
ADDC A, R	Add register with carry	1	1
ADDC A, @R	Add data memory with carry	1	1
ADDC A, \# data	Add immediate with carry	2	2
ANL A, R	And register to A	1	1
ANL A, @R	And data memory to A	1	1
ANL A, \# data	And immediate to A	2	2
ORL A, R	Or register to A	1	1
ORL A, @R	Or data memory to A	1	1
ORL A, \# data	Or immediate to A	2	2
XRL A, R	Exclusive or register to A	1	1
XRL A, @R	Exclusive or data memory to A	1	1
XRL A, \# data	Exclusive or immediate to A	2	2
INC A	Increment A	1	1
DEC A	Decrement A	1	1
CLR A	Clear A	1	1
CPLA	Complement A	1	1
DA A	Decimal adjust A	1	1
SWAP A	Swap nibbles of A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1

Input/Output			
Mnemonic	Description	Bytes Cycles	
IN A, P	Input port to A	1	2
OUTL P, A	Output A to port	1	2
ANL P, \# data	And immediate to port	2	2
ORL P, \# data	Or immediate to	2	2
port		1	2
INS A, BUS	Input BUS to A	1	2
OUTL BUS, A	Output A to BUS	1	2
ANL BUS, \# data And immediate to	2	2	
ORL BUS, \# data OU immediate to	2	2	
MOVD A, P	BUS Input expander port to A	1	2
MOVD P, A	Output A to expander port	1	2
ANLD P, A	And A to expander port	1	2
ORLD P, A	Or A to expander	1	2
	port		

Registers			
Mnemonic	\quad Description	Bytes	Cycles
INC R	Increment register	1	1
INC @R	Increment data memory	1	1
DEC R	Decrement register	1	1

Branch			
Mnemonic	Description	Bytes	Cycles
JMP addr	Jump unconditional	2	2
JMPP @A	Jump indirect	1	2
DJNZ R, addr	Decrement register	2	2
	and skip		
JC addr	Jump on carry $=1$	2	2
JNC addr	Jump on carry $=0$	2	2
JZ addr	Jump on A zero	2	2
JNZ addr	Jump on A not zero	2	2
JT0 addr	Jump on T0 $=1$	2	2
JNTO addr	Jump on TO $=0$	2	2
JT1 addr	Jump on T1 $=1$	2	2
JNT1 addr	Jump on T1 $=0$	2	2
JFO addr	Jump on FO $=1$	2	2
JF1 addr	Jump on F1 $=1$	2	2
JTF addr	Jump on timer flag	2	2
JNI addr	Jump on INT $=0$	2	2
JBb addr	Jump on accumulator	2	2
	bit		

Table 2. Instruction Set (Continued)

Subroutine			
Mnemonic	Description	Bytes	Cycles
CALL addr	Jump to subroutine	2	2
RET	Return	1	2
RETR	Return and restore status	1	2

Flags			
Mnemonic	Description	Bytes	Cycles
CLR C	Clear carry	1	1
CPL C	Complement carry	1	1
CLR FO	Clear flag 0	1	1
CPL FO	Complement flag 0	1	1
CLR F1	Clear flag 1	1	1
CPLF1	Complement flag 1	1	1

Data Moves			
Mnemonic	Description	Bytes Cycles	
MOV A, R	Move register to A	1	1
MOV A, @R	Move data memory to A	1	1
MOV A, \#data	Move immediate to A	2	2
MOV R, A	Move A to register	1	1
MOV @R, A	Move A to data memory	1	1
MOV R, \#data	Move immediate to register	2	2
MOV @R, \#data	Move immediate to data memory	2	2
MOV A, PSW	Move PSW to A	1	1
MOV PSW, A	Move A to PSW	1	1
XCH A, R	Exchange A and register	1	1
XCH A, @R	Exchange A and data memory	1	1
XCHD A, @R	Exchange nibble of A and data memory	1	1
MOVX A, @R	Move external data memory to A	1	2
MOVX @R, A	Move A to external data memory	1	2
MOVP A, @A	Move to A from current page	1	2
MOVP3 A, @A	Move to A from page 3	1	2

Timer/Counter			
Mnemonic	Description	Bytes Cycles	
MOV A, T	Read timer/counter	1	1
MOV T, A	Load timer/counter	1	1
STRT T	Start timer	1	1
STRT CNT	Start counter	1	1
STOP TCNT	Stop timer/counter	1	1
EN TCNTI	Enable timer/	1	1
	counter interrupt	1	1
DIS TCNTI	Disable timer/ counter interrupt	1	

| Control | | | |
| :--- | :--- | :---: | :---: | :---: |
| Mnemonic | Description | Bytes | Cycles |
| ENI | Enable external
 interrupt | 1 | 1 |
| DIS I | Disable external | 1 | 1 |
| | interrupt | | |
| SEL RB0 | Select register bank 0 | 1 | 1 |
| SEL RB1 | Select register bank 1 | 1 | 1 |
| SEL MBO | Select memory bank 0 | 1 | 1 |
| SEL MB1 | Select memory bank 1 | 1 | 1 |
| ENTO CLK | Enable clock output | 1 | 1 |
| | on TO | | |

Mnemonic	Description	Bytes	Cycles
NOP	No operation	1	1

ABSOLUTE MAXIMUM RATINGS*

Case Temperature Under Bias $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $\ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin with Respect
to Ground. -0.5 V to +7 V
Power Dissipation.
1.5 W

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
D.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

Symbol	Parameter	Limits			Unit	Test Conditions	Device
		Min	Typ	Max			
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (All Except RESET, X1, X2)	-0.5		0.8	V		All
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (RESET, X1, X2)	-0.5		0.6	V		All
V_{IH}	Input High Voltage (All Except XTAL1, XTAL2, RESET)	2.0		V_{CC}	V		All
$\mathrm{V}_{1 \mathrm{H} 1}$	Input High Voltage (X1, X2, RESET)	3.8		V_{CC}	V		All
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (BUS)			0.45	V	$\mathrm{loL}=2.0 \mathrm{~mA}$	All
VoL1	Output Low Voltage ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PSEN}}, \mathrm{ALE})$			0.45	V	$\mathrm{loL}=1.8 \mathrm{~mA}$	All
$\mathrm{V}_{\text {OL2 }}$	Output Low Voltage (PROG)			0.45	V	$\mathrm{l}_{\mathrm{OL}}=1.0 \mathrm{~mA}$	All
VoL3	Output Low Voltage (All Other Outputs)			0.45	V	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	All
V_{OH}	Output High Voltage (BUS)	2.4			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	All
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PSEN}}, \mathrm{ALE})$	2.4			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	All
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage (All Other Outputs)	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$	All

D.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$ (Continued)

Symbol	Parameter	Limits			Unit	Test Conditions	Device
		Min	Typ	Max			
$\mathrm{I}_{\text {L1 }}$	Leakage Current (T1, INT).			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$	All
${ }_{\text {LII }}$	Input Leakage Current (P10-P17, P20-P27, EA, $\overline{S S}$)			-500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}}+0.45 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	All
Ll2	Input Leakage Current RESET	-10		-300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq 3.8$	All
Lo	Leakage Current (BUS, TO) (High Impedance State)			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	All
IDD	$V_{D D}$ Supply Current (RAM Standby)		3	5	mA		$\begin{aligned} & \text { 8048AH } \\ & 8035 \mathrm{AHL} \end{aligned}$
			4	7	mA		$\begin{aligned} & \text { 8049AH } \\ & \text { 8039AHL } \end{aligned}$
			5	10	mA		$\begin{aligned} & 8050 \mathrm{AH} \\ & 8040 \mathrm{AHL} \end{aligned}$
$\begin{aligned} & \mathrm{IDD}+ \\ & \mathrm{ICC} \end{aligned}$	Total Supply Current*		30	65	mA		$\begin{aligned} & 8048 \mathrm{AH} \\ & 8035 \mathrm{AHL} \end{aligned}$
			35	70	mA		$\begin{aligned} & \text { 8049AH } \\ & \text { 8039AHL } \end{aligned}$
			40	80	mA		$\begin{aligned} & \text { 8050AH } \\ & \text { 8040AHL } \end{aligned}$
			30	100	mA		P8748H
			50	110	mA		P8749H
$V_{D D}$	RAM Standby Voltage	2.2		5.5	V	Standby Mode Reset $\leq \mathrm{V}_{\mathrm{IL} 1}$	8048AH 8035AH
		2.2		5.5	V		8049AH 8039AH
		2.2		5.5	V		$\begin{aligned} & 8050 \mathrm{AH} \\ & 8040 \mathrm{AHL} \end{aligned}$

${ }^{*} \mathrm{I}_{\mathrm{CC}}+\mathrm{I}_{\mathrm{DD}}$ are measured with all outputs in their high impedance state; $\overline{\text { RESET }}$ low; 11 MHz crystal applied; $\overline{\mathbb{N T}}, \overline{\mathrm{SS}}$, and EA floating.
A.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

Symbol	Parameter	$f(t)$ (Note 3)	11 MHz		Unit	Conditions (Note 1)
			Min	Max		
t	Clock Period	1/xtal freq	90.9	1000	ns	(Note 3)
$t_{\text {LL }}$	ALE Pulse Width	$3.5 t-170$	150		ns	
$t_{\text {AL }}$	Addr Setup to ALE	2t-110	70		ns	(Note 2)
$t_{\text {LA }}$	Addr Hold from ALE	t-40	50		ns	
${ }_{\text {teC1 }}$	Control Pulse Width ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$)	$7.5 t-200$	480		ns	
${ }^{\text {CCC2 }}$	Control Pulse Width ($\overline{\text { PSEN }}$)	6t-200	350		ns	
$t_{\text {DW }}$	Data Setup before $\overline{W R}$	$6.5 t-200$	390		ns	
twD	Data Hold after $\overline{W R}$	t-50	40		ns	
$t_{\text {DR }}$	Data Hold ($\overline{\mathrm{RD}}, \overline{\text { PSEN }}$)	$1.5 t-30$	0	110	ns	
$t_{\text {RD1 }}$	$\overline{\mathrm{RD}}$ to Data in	$6 \mathrm{t}-170$		375	ns	
$t_{\text {RD2 }}$	$\overline{\text { PSEN }}$ to Data in	$4.5 t-170$		240	ns	
$t_{\text {AW }}$	Addr Setup to WR	5t-150	300		ns	
$t_{\text {AD1 }}$	Addr Setup to Data ($\overline{\mathrm{RD}}$)	10.5t-220		730	ns	
$t_{A D 2}$	Addr Setup to Data ($\overline{\text { PSEN }}$)	$7.5 \mathrm{t}-200$		460	ns	
$\mathrm{t}_{\text {AFC1 }}$	Addr Float to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$	2t-40	140		ns	(Note 2)
$t_{\text {AFCR }}$	Addr Float to $\overline{\text { PSEN }}$	0.5t-40	10		ns	(Note 2)
t LAFC1	ALE to Control ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$)	3t-75	200		ns	
t ${ }_{\text {LAFC2 }}$	ALE to Control ($\overline{\text { PSEN }}$)	1.5t-75	60		ns	
$t_{\text {CA1 }}$	Control to ALE ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{PROG}$)	t-65	25		ns	
$\mathrm{t}_{\text {CA2 }}$	Control to ALE ($\overline{\text { PSEN }}$)	4t-70	290		ns	
t_{CP}	Port Control Setup to PROG	$1.5 t-80$	50		ns	
$t_{P C}$	Port Control Hold to PROG	4t-260	100		ns	
tPR	PROG to P2 Input Valid	8.5t-120		650	ns	
$t_{\text {PF }}$	Input Data Hold from PROG	1.5 t	0	140	ns	
$t_{\text {DP }}$	Output Data Setup	6t-290	250		ns	
tpD	Output Data Hold	$1.5 t-90$	40		ns	
tpp	PROG Pulse Width	10.5t-250	700		ns	
$t_{\text {PL }}$	Port 2 1/O Setup to ALE	4t-200	160		ns	
$t_{\text {LP }}$	Port 2 I/O Hold to ALE	$0.5 t-30$	15		ns	
tPV	Port Output from ALE	$4.5 t+100$		5.0	ns	
toprr	T0 Rep Rate	3 t	270		ns	
$\mathrm{t}_{\mathrm{C} Y}$	Cycle Time	15 t	1.36	15.0	$\mu \mathrm{s}$	

NOTES:

1. Control outputs: $C_{L}=80 \mathrm{pF}$. BUS Outputs: $C_{L}=150 \mathrm{pF}$.
2. BUS High Impedance Load 20 pF
3. $\mathrm{f}(\mathrm{t})$ assumes 50% duty cycle on $\mathrm{X} 1, \mathrm{X} 2$. Max clock period is for a 1 MHz crystal input.

WAVEFORMS

INSTRUCTION FETCH FROM PROGRAM MEMORY

WRITE TO EXTERNAL DATA MEMORY

READ FROM EXTERNAL DATA MEMORY

INPUT AND OUTPUT FOR A.C. TESTS

270053-7
A.C. testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Output timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

PORT 1/PORT 2 TIMING

CRYSTAL OSCILLATOR MODE

CERAMIC RESONATOR MODE

DRIVING FROM EXTERNAL SOURCE

270053-11
For XTAL1 and XTAL2 define "high" as voltages above 1.6 V and "low" as voltages below 1.6 V . The duty cycle requirements for externally driving XTAL1 and XTAL2 using the circuits shown above are as follows: XTAL1 must be high 35-65\% of the period and XTAL2 must be high $35-65 \%$ of the period. Rise and fall times must be faster than 20 ns .

PROGRAMMING AND VERIFYING THE P8749H/48H PROGRAMMABLE ROM

Programming Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a description of their functions:

Pin	Function
XTAL1	Clock Input (3 to 4.0 MHz)
XTAL2	
RESET	Initialization and Address Latching
T0	Selection of Program or Verifying Mode
EA	Activation of Program/Verify Modes
BUS	Address and Data Input
	Data Output During Verify
P20-P22	Address Input
VDD	Programming Power Supply
PROG	Program Pulse Input

WARNING:

An attempt to program a missocketed $\mathrm{P} 8749 \mathrm{H} / 48 \mathrm{H}$ will result in severe damage to the part. An indication of a properly socketed part is the appearance of the ALE clock output. The lack of this clock may be used to disable the programmer.

The Program/Verify sequence is:

1. $V_{D D}=5 \mathrm{~V}$, Clock applied or internal oscillator operating, $\overline{\operatorname{RESET}}=0 \mathrm{~V}, \mathrm{TO}=5 \mathrm{~V}, \mathrm{EA}=5 \mathrm{~V}$, BUS and PROG floating. P10 and P11 must be tied to ground.
2. Insert $\mathrm{P} 8749 \mathrm{H} / 48 \mathrm{H}$ in programming socket
3. $\mathrm{TO}=\mathrm{OV}$ (select program mode)
4. $E A=18 \mathrm{~V}$ (activate program mode)
5. Address applied to BUS and P20-22
6. $\overline{\text { RESET }}=5 \mathrm{~V}$ (latch address)
7. Data applied to BUS
8. $V_{D D}=21 \mathrm{~V}$ (programming power)
9. $\mathrm{PROG}=\mathrm{V}_{\mathrm{CC}}$ or float followed by one 50 ms pulse to 18 V
10. $V_{D D}=5 \mathrm{~V}$
11. $\mathrm{TO}=5 \mathrm{~V}$ (verify mode)
12. Read and verify data on BUS
13. $\mathrm{TO}=\mathrm{OV}$
14. $\overline{\operatorname{RESET}}=\mathrm{OV}$ and repeat from step 5
15. Programmer should be at conditions of step 1 when $\mathrm{P} 8749 \mathrm{H} / 48 \mathrm{H}$ is removed from socket.

NOTE:
Once programmed the $\mathrm{P} 8749 \mathrm{H} / 48 \mathrm{H}$ cannot be erased.

A.C. TIMING SPECIFICATION FOR PROGRAMMING P8748H/P8749H ONLY

$T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=21 \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Min	Max	Unit	Test Conditions
$t_{\text {AW }}$	Address Setup Time to RESET	$4 \mathrm{t}_{\mathrm{CY}}$			
twa	Address Hold Time After RESET	$4 \mathrm{t}_{\text {CY }}$			
tow	Data in Setup Time to PROG	$4 t_{C Y}$			
two	Data in Hold Time After PROG	$4 \mathrm{t}_{\text {CY }}$			
$t_{\text {PH }}$	$\overline{\text { RESET }}$ Hold Time to Verify	$4 \mathrm{t}_{\mathrm{CY}}$			
tvodw	$V_{\text {DD }}$ Hold Time Before PROG	0	1.0	ms	
$t_{\text {VDDH }}$	$V_{\text {DD }}$ Hold Time After PROG	0	1.0	ms	
tpw	Program Pulse Width	50	60	ms	
$\mathrm{t}_{\text {Tw }}$	TO Setup Time for Program Mode	$4 \mathrm{t}_{\mathrm{CY}}$			
${ }^{\text {tw }}$ T	TO Hold Time After Program Mode	$4 \mathrm{t}_{\mathrm{CY}}$			
$t_{\text {Do }}$	T0 to Data Out Delay		$4 t_{C Y}$		
tww	$\overline{\text { RESET Pulse Width to Latch Address }}$	$4 \mathrm{t}_{\mathrm{CY}}$			
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\mathrm{V}_{\text {DD }}$ and PROG Rise and Fall Times	0.5	100	$\mu \mathrm{S}$	
$t_{\text {cr }}$	CPU Operation Cycle Time	3.75	5	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {RE }}$	$\overline{\text { RESET Setup Time before EA }}$	$4 \mathrm{t}_{\mathrm{CY}}$			

NOTE:
If Test 0 is high, too can be triggered by RESET.

D.C. CHARACTERISTICS FOR PROGRAMMING P8748H/P8749H ONLY

$T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=21 \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Min	Max	Unit	Test Conditions
$V_{D D H}$	$V_{D D}$ Program Voltage High Level	20.5	21.5	V	
$V_{D D L}$	$V_{D D}$ Voltage Low Level	4.75	5.25	V	
$V_{P H}$	PROG Program Voltage High Level	17.5	18.5	V	
$V_{P L}$	PROG Voltage Low Level	4.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\text {EAH }}$	EA Program or Verify Voltage High Level	17.5	18.5	V	
I_{DD}	V $_{\text {DD }}$ High Voltage Supply Current		20.0	mA	
$I_{P R O G}$	PROG High Voltage Supply Current		1.0	mA	
$\mathrm{I}_{\text {EA }}$	EA High Voltage Supply Current		1.0	mA	

SUGGESTED ROM VERIFICATION ALGORITHM FOR ROM DEVICE ONLY

	48 H	49 H	50 H
A10	0	ADDR	ADDR
A11	0	0	ADDR

270053-12

ALE is function of $X 1, X 2$ inputs.

COMBINATION PROGRAM/VERIFY MODE (PROGRAMMABLE ROMS ONLY)

D8748H/D8749H HMOS-E SINGLE-COMPONENT 8-BIT MICROCONTROLLER

High Performance HMOS-E

- Interval Timer/Event Counter
- Two Single Level Interrupts

Single 5-Volt Supply
Over 96 Instructions; 90\% Single Byte

Compatible with 8080/8085 Peripherals
Easily Expandable Memory and I/O
■ Up to $1.35 \mu \mathrm{~s}$ Instruction Cycle;
All Instructions 1 or 2 Cycles

The Intel D8749H/D8748H are totally self-sufficient, 8-bit parallel computers fabricated on single silicon chips using Intel's advanced N -channel silicon gate HMOS-E process.

The family contains 27 I/O lines, an 8-bit timer/counter, on-chip RAM and on-board oscillator/clock circuits. For systems that require extra capability, the family can be expanded using MCS ${ }^{\circledR}-80 /$ MCS ${ }^{\oplus}-85$ peripherals.

These microcomputers are designed to be efficient controllers as well as arithmetic processors. They have extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting mostly of single byte instructions and no instructions over 2 bytes in length.

Device	Internal Memory	
D8749H	$2 \mathrm{~K} \times 8$ EPROM	128×8 RAM
D8748H	$1 \mathrm{~K} \times 8$ EPROM	64×8 RAM

Figure 1. Block Diagram

210983-2
Figure 2.
Logic Symbol

210983-3
Figure 3. Pin Configuration
Table 1. Pin Description (40-Pin DIP)

Symbol	Pin No.	Function
$V_{\text {SS }}$	20	Circuit GND potential.
$\mathrm{V}_{\text {DD }}$	26	+5V during normal operation.
		Programming power supply (+21V).
$\mathrm{V}_{\text {CC }}$	40	Main power supply; +5V during operation and programming.
PROG	25	Output strobe for 8243 I/O expander.

Table 1. Pin Description (40-Pin DIP) (Continued)

Symbol	Pin No.	Function
$\overline{\text { RESET }}$	4	Input which is used to initialize the processor. (Active low) (Non TTL VIH)
		Used during programming.
$\overline{\mathrm{WR}}$	10	Output strobe during a bus write. (Active low) Used as write strobe to external data memory.
ALE	11	Address latch enable. This signal occurs once during each cycle and is useful as a clock output. The negative edge of ALE strobes address into external data and program memory.
$\overline{\text { PSEN }}$	9	Program store enable. This output occurs only during a fetch to external program memory. (Active low.)
$\overline{\mathrm{SS}}$	5	Single step irput can be used in conjunction with ALE to "single step" the processor through each instruction.
EA	7	External access input which forces all program memory fetches to reference external memory. Useful for emulation and debug. (Active high.)
	Used during (18V) programming.	
XTAL1	2	One side of crystal input for internal oscillator. Also input for external source. (Non TTL $V_{\text {IH. }}$
XTAL2	3	Other side of crystal input.

Table 2. Instruction Set

Mnemonic	Description	Bytes	Cycles
ACCUMULATOR			
ADD A, R	Add register to A	1	1
ADD A,@R	Add data memory to A	1	1
ADD A, \# data	Add immediate to A	2	2
ADDC A, R	Add register with carry	1	1
ADDC A, @R	Add data memory with carry	1	1
ADDC A, \# data	Add immediate with carry	2	2
ANL A, R	And register to A	1	1
ANLA, @R	And data memory to A	1	1
ANL A, \# data	And immediate to A	2	2
ORL A, R	Or register to A	1	1
ORL A, @R	Or data memory to A	1	1
ORL A, \# data	Or immediate to A	2	2
XRL A, R	Exclusive or register to A	1	1
XRL A, @R	Exclusive or data memory to A	1	1
XRL A, \# data	Exclusive or immediate to A	2	2

Mnemonic	Description	Bytes	Cycles
ACCUMULATOR (Continued)			
INC A	Increment A	1	1
DEC A	Decrement A	1	1
CLR A	Clear A	1	1
CPLA	Complement A	1	1
DA A	Decimal adjust A	1	1
SWAP A	Swap nibbles of A	1	1
RLA	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1
INPUT/OUTPUT			
IN A, P	Input port to A	1	2
OUTL P, A	Output A to port	1	2
ANL P, \# data	And immediate to port	2	2
ORL P, \#data	Or immediate to port	2	2
INS A, BUS	Input BUS to A	1	2
OUTL BUS, A	Output A to BUS	1	2
ANL BUS, \# data	And immediate to BUS	2	2
ORL BUS, \# data	Or immediate to BUS	2	2
MOVD A, P	Input expander port to A	1	2

Table 2. Instruction Set (Continued)

Mnemonic INPUT/OUTPUT	Description (Continued)	Bytes	Cycles	Mnemonic DATA MOVES (C	Description ontinued)	Bytes	Cycles
MOVD P, A	Output A to	1	2	MOV R, A	Move A to register	1	1
	expander port			MOV @R, A	Move A to data	1	1
ANLD P, A	And A to expander port	1	2	MOV R, \# data	memory Move immediate to	2	2
ORLD P, A	Or A to expander port	1	2	MOV @R, \#data	register Move immediate to data memory	2	2
REGISTERS				MOV A, PSW	Move PSW to A	1	1
INCR	Increment register	1	1	MOV PSW, A	Move A to PSW	1	1
INC @R	Increment data memory	1	1	XCH A, R	Exchange A and register	1	1
DEC R	Decrement register	1	1	XCH A, @R	Exchange A and	1	1
BRANCH					data memory		
JMP addr	Jump unconditional	2	2	XCHD A, @R	Exchange nibble	1	1
JMPP @A	Jump indirect	1	2		of A and register		
DJNZ R, addr	Decrement register and skip	2	2	MOVX A, @R	Move external data memory to A	1	2
JC addr	Jump on carry = 1	2	2	MOVX @R, A	Move A to external	1	2
JNC addr	Jump on carry $=0$	2	2		data memory		
JZ addr	Jump on A zero	2	2	MOVP A, @A	Move to A from	1	2
JNZ addr	Jump on A not zero	2	2		current page		
JTO addr	Jump on T0 $=1$	2	2	MOVP3 A, @A	Move to A from	1	2
JNT0 addr	Jump on T0 $=0$	2	2		page 3		
JT1 addr	Jump on T1 $=1$	2	2	TIMER/COUNTER			
JNT1 addr	Jump on T1 $=0$	2	2	MOV A, T	Read	1	1
JFO addr	Jump on F0 $=1$	2	2	MOV A, T	timer/counter		
JF1 addr	Jump on F1 = 1	2	2	MOV T, A	Load	1	1
JTF addr	Jump on timer flag	2	2		timer/counter		
JNI addr	Jump on INT $=0$	2	2	STRT T	Start timer	1	1
JBb addr	Jump on accumulator bit	2	2	STRT CNT	Start counter	1	1
				STOP TCNT	Stop timer/counter	1	1
SUBROUTINE				EN TCNTI	Enable timer/ counter interrupt	1	1
CALL addr	Jump to subroutine	2	2	DIS TCNTI	Disable timer/	1	1
RET	Return	1	2		counter interrupt		
RETR	Return and restore status	1	2	CONTROL			
				ENI	Enable external interrupt	1	1
FLAGS				DIS I	Disable external	1	1
CLR C	Clear carry	1	1		interrupt		
CPLC	Complement carry	1	1	SEL RBO	Select register	1	1
CLR FO	Clear flag 0	1	1		bank 0		
CPLFO	Complement flag 0	1	1	SEL RB1	Select register	1	1
CLR F1	Clear flag 1	1	1		bank 1		
CPLF1	Complement flag 1	1	1	SEL MBO	Select memory	1	1
DATA MOVES					bank 0		
MOV A, R	Move register to A	1	1	SEL MB1	Select memory	1	1
MOV A, @R	Move data memory	1	1		bank 1		
	to A			ENTO CLK	Enable clock	1	1
MOV A, \#data	Move immediate to A	2	2	NOP	output on TO	1	1

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $\ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin With Respect to Ground \qquad ..-0.5 V to +7 V
Power Dissipation

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

DC CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

Symbol	Parameter	Limits			Unit	Test Conditions	Device
		Min	Typ	Max			
VIL	Input Low Voltage (All Except RESET, X1, X2)	-0.5		0.8	V		All
$\mathrm{V}_{\text {LL1 }}$	Input Low Voltage (RESET, X1, X2)	-0.5		0.6	V		All
V_{IH}	Input High Voltage (All Except XTAL1, XTAL2, RESET	2.0		V_{CC}	V		All
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage (X1, X2, RESET)	3.8		V_{CC}	V		All
V_{OL}	Output Low Voltage (BUS)			0.45	V	$\mathrm{loL}=2.0 \mathrm{~mA}$	All
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PSEN}}, \mathrm{ALE})$			0.45	V	$\mathrm{l} \mathrm{LL}=1.8 \mathrm{~mA}$	All
V ${ }_{\text {OL2 }}$	Output Low Voltage (PROG)			0.45	v	$\mathrm{IOL}=1.0 \mathrm{~mA}$	All
$\mathrm{V}_{\text {OL3 }}$	Output Low Voltage (All Other Outputs)			0.45	V	$\mathrm{l} \mathrm{OL}=1.6 \mathrm{~mA}$	All
V_{OH}	Output High Voltage (BUS)	2.4			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	All
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PSEN}}, \mathrm{ALE})$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	All
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage (All Other Outputs)	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$	All
${ }_{\text {L1 }}$	Leakage Current (T1, INT)			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	All
${ }_{\text {Lli }}$	Input Leakage Current (P10-P17, P20-P27, EA, $\overline{S S}$)			-500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}}+0.45 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	All
ILI2	Input Leakage Current RESET	-10		-300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq 3.8 \mathrm{~V}$	All
Lo	Leakage Current (BUS, TO) (High Impedance State)			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	All
$\mathrm{I}_{\mathrm{DD}}+\mathrm{I}_{\text {CO }}$	Total Supply Current*		80	100	mA		8748H
			95	110	mA		8749 H

NOTE:

${ }^{*} I_{C C}+I_{D D}$ is measured with all outputs disconnected; $\overline{\mathrm{SS}}, \overline{\operatorname{RESET}}$, and $\overline{\mathrm{NT}}$ equal to V_{CC}; EA equal to V_{SS}.

AC CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

Symbol	Parameter	$f(t)$ (Note 3)	11 MHz		Unit	Conditions (Note 1)
			Min	Max		
t	Clock Period	1/xtal freq	90.9	1000	ns	(Note 3)
$t_{L L}$	ALE Pulse Width	3.5 t - 170	150		ns	
$t_{\text {AL }}$	Addr Setup to ALE	$2 \mathrm{t}-110$	70		ns	(Note 2)
t LA	Addr Hold from ALE	$t-40$	50		ns	
$\mathrm{t}_{\mathrm{CC} 1}$	Control Pulse Width ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$)	$7.51-200$	480		ns	
$\mathrm{t}_{\mathrm{CC} 2}$	Control Pulse Width ($\overline{\text { PSEN }}$)	$6 \mathrm{t}-200$	350		ns	
$t_{\text {bW }}$	Data Setup before $\overline{\mathrm{WR}}$	6.5t-200	390		ns	
two	Data Hold after WR	$t-50$	40		ns	
$t_{\text {DR }}$	Data Hold ($\overline{\mathrm{RD}}, \overline{\text { PSEN }}$)	1.5t-30	0	110	ns	
$\mathrm{t}_{\text {RD1 }}$	$\overline{\mathrm{RD}}$ to Data In	$6 \mathrm{t}-170$		375	ns	
$\mathrm{t}_{\text {RD2 }}$	PSEN to Data In	4.5t-170		240	ns	
t_{AW}	Addr Setup to WR	5t-150	300		ns	
$t_{\text {AD1 }}$	Addr Setup to Data ($\overline{\mathrm{RD}}$)	10.5t-220		730	ns	
$t_{\text {AD2 }}$	Addr Setup to Data ($\overline{\text { PSEN }}$)	7.5t-200		460	ns	
$\mathrm{t}_{\text {AFC1 }}$	Addr Float to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$	$2 \mathrm{t}-40$	140		ns	(Note 2)
$t_{\text {AFC2 }}$	Addr Float to PSEN	0.5t-40	10		ns	(Note 2)
$t_{\text {LAFC1 }}$	ALE to Control ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$)	$3 \mathrm{t}-75$	200		ns	
t LAFC2	ALE to Control ($\overline{\text { PSEN }}$)	1.5t-75	60		ns	
$\mathrm{t}_{\text {CA1 }}$	Control to ALE ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{PROG}$)	$t-65$	25		ns	
$\mathrm{t}_{\text {CA2 }}$	Control to ALE ($\overline{\text { PSEN }}$)	$4 \mathrm{t}-70$	290		ns	
t_{CP}	Port Control Setup to PROG	1.5t-80	50		ns	
tPC	Port Control Hold to PROG	4t - 260	100		ns	
$t_{\text {PR }}$	PROG to P2 Input Valid	$8.5 \mathrm{t}-120$		650	ns	
tpF	Input Data Hold from PROG	1.5 t	0	140	ns	
$t_{\text {DP }}$	Output Data Setup	$6 \mathrm{t}-290$	250		ns	
$t_{\text {PD }}$	Output Data Hold	1.5t-90	40		ns	
$t_{\text {PP }}$	PROG Pulse Width	10.5t - 250	700		ns	
$t_{\text {PL }}$	Port 2 I/O Setup to ALE	$4 \mathrm{t}-200$	160		ns	
tLP	Port 2 I/O Hold to ALE	0.5t-30	15		ns	
tpv	Port Output from ALE	$4.5 \mathrm{t}+100$		510	ns	
topRR	TO Rep Rate	3 t	270		ns	
t_{CY}	Cycle Time	15t	1.36	15.0	$\mu \mathrm{s}$	

NOTES:

1. Control outputs $\mathrm{CL}=80 \mathrm{pF}$; BUS outputs $\mathrm{CL}=150 \mathrm{pF}$.
2. BUS High Impedance Load 20 pF .
3. $\mathrm{f}(\mathrm{t})$ assumes 50% duty cycle on $\mathrm{X} 1, \mathrm{X} 2$. Max clock period is for a 1 MHz crystal input.

WAVEFORMS

INSTRUCTION FETCH FROM PROGRAM

 MEMORY

READ FROM EXTERNAL DATA MEMORY

WRITE TO EXTERNAL DATA MEMORY

INPUT AND OUTPUT FOR AC TESTS

PORT 1/PORT 2 TIMING

CRYSTAL OSCILLATOR MODE

CERAMIC RESONATOR MODE

DRIVING FROM EXTERNAL SOURCE

210983-11
For XTAL1 and XTAL2 define "high" as voltages above 1.6 V and "low" as voltages below 1.6 V . The duty cycle requirements for externally driving XTAL1 and XTAL2 using the circuit shown above are as follows: XTAL1 must be high $35-65 \%$ of the period and XTAL2 must be high $36-65 \%$ of the period. Rise and fall times must be faster than 20 ns .

PROGRAMMING, VERIFYING AND ERASING THE 8749H (8748H) EPROM

Programming Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a description of their functions:

Pin	Function
XTAL 1	Clock Input (3 to 4.0 MHz)
XTAL 2	
RESET	Initialization and Address Latching
TEST 0	Selection of Program or Verify Mode
EA	Activation of Program/Verify Modes
BUS	Address and Data Input
	Data Output During Verify
P20-P22	Address Input
VDD	Programming Power Supply
PROG	Program Pulse Input

WARNING

An attempt to program a missocketed 8749 H (8748 H) will result in severe damage to the part. An indication of a properly socketed part is the appearance of the ALE clock output. The lack of this clock may be used to disable the programmer.

The Program/Verify sequence is:

1) $V_{D D}=5 \mathrm{~V}$, Clock applied or internal oscillator operating. RESET $=0 \mathrm{~V}, \mathrm{TEST} 0=5 \mathrm{~V}, \mathrm{EA}=5 \mathrm{~V}$, BUS and PROG floating. P10 and P11 must be tied to ground,
2) Insert $8749 \mathrm{H}(8748 \mathrm{H})$ in programming socket.
3) TEST $0=O V$ (select program mode)
4) $\mathrm{EA}=18 \mathrm{~V}$ (activate program mode)
5) Address applied to BUS and P20-22
6) RESET $=5 \mathrm{~V}$ (latch address)
7) Data applied to BUS
8) $V_{D D}=21 \mathrm{~V}$ (programming power)
9) $\mathrm{PROG}=\mathrm{V}_{\mathrm{CC}}$ or float followed by one 50 ms pulse to 18 V
10) $V_{D D}=5 \mathrm{~V}$
11) TEST $0=5 \mathrm{~V}$ (verify mode)
12) Read and verify data on BUS
13) TEST $0=O V$
14) RESET $=O V$ and repeat from step 5
15) Programmer should be at conditions of step 1 when $8749 \mathrm{H}(8748 \mathrm{H})$ is removed from socket.

AC TIMING SPECIFICATION FOR PROGRAMMING 8748H/8749H

$T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=21 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Min	Max	Unit	Test Conditions
$t_{\text {AW }}$	Address Setup Time to $\overline{\text { RESET }} \uparrow$	$4 t_{C Y}$			
tWA	Address Hold Time after RESET \uparrow	$4 t_{C Y}$			
tDW	Data in Setup Time to PROG \uparrow	$4 t_{C Y}$			
twD	Data in Hold Time after PROG \downarrow	$4 t_{C Y}$			
$t_{\text {PH }}$	RESET Hold Time to Verify	$4 t_{C Y}$			
tVDDW	$\mathrm{V}_{\text {DD }}$ Hold Time before PROG \uparrow	0	1.0	ms	
$t_{\text {VDDH }}$	V ${ }_{\text {DD }}$ Hold Time after PROG \downarrow	0	1.0	ms	
tpw	Program Pulse Width	50	60	ms	
$\mathrm{t}_{\text {TW }}$	TEST 0 Setup Time for Program Mode	$4 t_{C Y}$			
$t_{W T}$	TEST 0 Hold Time after Program Mode	$4 t_{C Y}$			
$t_{\text {DO }}$	TEST 0 to Data Out Delay		$4 t_{C Y}$		
twW	RESET Pulse Width to Latch Address	$4 t_{C Y}$			
t_{r}, t_{f}	$V_{D D}$ and PROG Rise and Fall Times	0.5	100	$\mu \mathrm{s}$	
${ }^{\text {t }}$ CY	CPU Operation Cycle Time	3.75	5	$\mu \mathrm{s}$	
$t_{\text {RE }}$		$4 t_{C Y}$			

NOTE:
If TEST 0 is high, $t_{D O}$ can be triggered by $\overline{\text { RESET }} \uparrow$.

DC SPECIFICATION FOR PROGRAMMING 8748H/8749H

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=21 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Min	Max	Unit	Test Conditions
$\mathrm{V}_{\text {DDH }}$	V_{DD} Program Voltage High Level	20.5	21.5	V	
$\mathrm{V}_{\text {DDL }}$	$V_{\text {DD }}$ Voltage Low Level	4.75	5.25	V	
V_{PH}	PROG Program Voltage High Level	17.5	18.5	V	
V_{PL}	PROG Voltage Low Level	4.0	V_{CC}	V	
$\mathrm{V}_{\text {EAH }}$	EA Program or Verify Voltage High Level	17.5	18.5	V	
IDD	$V_{\text {DD }}$ High Voltage Supply Current		20.0	mA	
IPROG	PROG High Voltage Supply Current		1.0	mA	
I_{EA}	EA High Voltage Supply Current		1.0	mA	

WAVEFORMS

COMBINATION PROGRAM/VERIFY MODE (EPROMs ONLY)

VERIFY MODE

SUGGESTED EPROM VERIFICATION ALGORITHM FOR HMOS-E DEVICE ONLY

P8049KB

HMOS SINGLE-COMPONENT 8-BIT MICROCONTROLLER

Four 10 mA LED Drivers
Interval Time/Event Counter

- Two Single Level Interrupts

■ Single 5V Supply
■ Over 96 Instructions

E Easily Expandable Memory and I/O

- 1 to 8 MHz Operation
- $1.87 \mu \mathrm{~s}$ Instruction Cycle
- 1 or 2 Cycle Instructions
- $2 \mathrm{~K} \times 8$ ROM
- 128×8 RAM

The Intel 8049 KB is a totally self-sufficient, 8 -bit parallel computer fabricated on a single silicon chip using Intel's advanced N -channel silicon gate HMOS process. This microcontroller is available in the masked ROM version and runs at a maximum XTAL frequency of 8 MHz .

This microcomputer is designed to be an efficient controller as well as arithmetic processor. It has extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting of mostly single byte instructions and no instruction over 2 bytes in length.

270790-1
Figure 1. Block Diagram

270790-2
Figure 2. Logic Symbol

Pin Configuration
Table 1. Pin Description

Symbol	Pin No.	Function
$V_{\text {SS }}$	20	Circuit GND potential.
$V_{D D}$	26	+5 V during normal operation.
		Low power standby pin.
		Programming power supply (+21 V).
$V_{C C}$	40	Main power supply; +5 V during operation and programming.
P10-P17 Port 1	27-34	8 -bit quasi-bidirectional port.
$\begin{aligned} & \hline \text { P20-P23 } \\ & \text { P24-P27 } \\ & \text { Port } 2 \end{aligned}$	$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	8-bit quasi-bidirectional port. P20-P23 contain the four high order program counter bits during an external program memory fetch and serve as a 4-bit 1/O expander bus for 8243.
$\begin{aligned} & \text { DB0-DB7 } \\ & \text { BUS } \end{aligned}$	12-19	True bidirectional port which can be written or read synchronously using the $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ strobes. The port can also be statically latched. Contains the 8 low order program counter bits during an external program memory fetch, and receives the addressed instruction under the control of $\overline{\text { PSEN }}$. Also contains the address and data during an external RAM data store instruction, under control of ALE, $\overline{R D}$, and WR.
T0	1	Input pin testable using the conditional transfer instruction JTO and JNTO. TO can be designated as a clock output using ENTO CLK instruction.
		Used during programming.

Table 1. Pin Description (Continued)

Symbol	Pin No.	Function
T1	39	Input pin testable using the JT1, and JNT1 instructions: Can be designated the timer/counter input using the STRT CNT instruction.
INT	6	Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset. Also testable with conditional jump instruction. (Active low) interrupt must remain low for at least 3 machine cycles for proper operation.
$\overline{\mathrm{RD}}$	8	Output strobe activated during a BUS read. Can be used to enable data onto the bus from an external device. Used as a read strobe to external data memory. (Active low)
$\overline{\text { RESET }}$	4	Input which is used to initialize the processor. (Active low) (Non TTL $\mathrm{V}_{1 H}$)
		Used during power down.
		Used during programming.
		Used during ROM verification.
$\overline{\mathrm{WR}}$	10	Output strobe during a bus write. (Active low) Used as write strobe to external data memory.
ALE	11	Address latch enable. This signal occurs once during each cycle and is useful as a clock output. The negative edge of ALE strobes address into external data and program memory.
PSEN	9	Program store enable. This output occurs only during a fetch to external program memory. (Active low)
$\overline{\text { SS }}$	5	Single step input can be used in conjunction with ALE to "single step" the processor through each instruction.
		(Active low) Used in sync mode.
EA	7	External access input which forces all program memory fetches to reference external memory. Useful for emulation and debug. (Active high)
		Used during (18V) programming.
		Used during ROM verification (12V).
XTAL1	2	One side of crystal input for internal oscillator. Also input for external source. (Non TTL $V_{I H}$)
XTAL2	3	Other side of crystal input.

Table 2. Instruction Set

Accumulator			
Mnemonic	Description	Bytes	ycles
ADD A, R	Add register to A	1	1
ADD A, @R	Add data memory to A	1	1
ADD A, \# data	Add immediate to A	2	2
ADDC A, R	Add register with carry	1	1
ADDC A, @R	Add data memory with carry	1	1
ADDC A, \#data	Add immediate with carry	2	2
ANL A, R	And register to A	1	1
ANL A, @R	And data memory to A	1	1
ANL A, \# data	And immediate to A	2	2
ORLA, R	Or register to A	1	1
ORL A, @R	Or data memory to A	1	1
ORL A, \#data	Or immediate to A	2	2
XRL A, R	Exclusive or register to A	1	1
XRL A, @R	Exclusive or data memory to A	1	1
XRL A, \# data	Exclusive or immediate to A	2	2
INC A	Increment A	1	1
DEC A	Decrement A	1	1
CLR A	Clear A	1	1
CPLA	Complement A	1	1
DA A	Decimal adjust A	1	1
SWAP A	Swap nibbles of A	1	1
RL A	Rotate A left	1	1
RLCA	Rotate A left through carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1

Input/Output			
Mnemonic	Description	Bytes	ycles
IN A, P	Input port to A	1	2
OUTL P, A	Output A to port	1	2
ANL P; \# data	And immediate to port	2	2
ORL P, \# data	Or immediate to port	2	2
INS A, BUS	Input BUS to A	1	2
OUTL BUS, A	Output A to BUS	1	2
ANL BUS, \#data	And immediate to BUS	2	2
ORL BUS, \# data	Or immediate to BUS	2	2
MOVD A, P	Input expander port to A	1	2
MOVD P, A	Output A to expander port	1	2
ANLD P, A	And A to expander port	1	2
ORLD P, A	Or A to expander port	1	2

Registers			
Mnemonic	\quad Description	Bytes	Cycles
INC R	Increment register	1	1
INC @ R	Increment data memory	1	1
DEC R	Decrement register	1	1

Branch			
Mnemonic	Description	Bytes	Cycles
JMP addr	Jump unconditional	2	2
JMPP @A	Jump indirect	1	2
DJNZ R, addr	Decrement register and skip	2	2
JC addr	Jump on carry $=1$	2	2
JNC addr	Jump on carry $=0$	2	2
JZ addr	Jump on A zero		2
JNZ addr	Jump on A not zero	2	2
JTO addr	Jump on T0 $=1$	2	2
JNTO addr	Jump on T0 $=0$	2	2
JT1 addr	Jump on T1 $=1$	2	2
JNT1 addr	Jump on $\mathrm{T} 1=0$	2	2
JFO addr	Jump on F0 $=1$	2	2
JF1 addr	Jump on F1 = 1	2	2
JTF addr	Jump on timer flag	2	2
JNI addr	Jump on $\overline{\text { NT }}=0$	2	2
JBb addr	Jump on accumulator bit	2	2

Table 2. Instruction Set (Continued)

Subroutine			
Mnemonic	Description	Bytes	Cycles
CALL addr	Jump to subroutine	2	2
RET	Return	1	2
RETR	Return and restore Status	1	2

Flags			
Mnemonic	Description	Bytes	Cycles
CLR C	Clear carry	1	1
CPL C	Complement carry	1	1
CLR F0	Clear flag 0	1	1
CPL FO	Complement flag 0	1	1
CLR F1	Clear flag 1	1	1
CPL F1	Complement flag 1	1	1

Data Moves			
Mnemonic	Description	Bytes Cycles	
MOV A, R	$\begin{array}{l}\text { Move register to A } \\ \text { Move data memory }\end{array}$	1	1
MOV A, @R			
to A			

Timer/Counter			
Mnemonic	Description		Bytes Cycles
MOV A, T	Read timer/counter	1	1
MOV T, A	Load timer/counter	1	1
STRT T	Start timer	1	1
STRT CNT	Start counter	1	1
STOP TCNT	Stop timer/counter	1	1
EN TCNTI	Enable timer/	1	1
DIS TCNTI	counter interrupt	1	1
	Disable timer/ counter interrupt	1	1

Control			
Mnemonic	Description	Bytes	Cycles
EN I	Enable external interrupt	1	1
DISI	Disable external	1	1
	interrupt		
SEL RBO	Select register bank 0	1	1
SEL RB1	Select register bank 1	1	1
SEL MBO	Select memory bank 0	1	1
SEL MB1	Select memory bank 1	1	1
ENTO CLK	Enable clock output	1	1
	on TO		

ABSOLUTE MAXIMUM RATINGS*

Case Temperature Under Bias $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin with Respect
to Ground \qquad
Power Dissipation. 1.5 W

NOTICE: This data sheet contains preliminary information on new products in production. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

D.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (All Except RESET, X1, X2)	-0.5		0.8	V	
$\mathrm{V}_{\text {ILI }}$	Input Low Voltage (RESET, X1, X2)	-0.5		0.6	V	
V_{IH}	Input High Voltage (All Except XTAL1, XTAL2, RESET)	2.0		V_{Cc}	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage (X1, X2, RESET)	3.8		V_{CC}	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (BUS)			0.45	V	$\mathrm{loL}=2.0 \mathrm{~mA}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PSEN}}, \mathrm{ALE})$			0.45	V	$\mathrm{l} \mathrm{OL}=1.8 \mathrm{~mA}$
Vol2	Output Low Voltage (PROG)			0.45	V	$\mathrm{loL}=1.0 \mathrm{~mA}$
V ${ }_{\text {OL3 }}$	Output Low Voltage (All Other Outputs)			0.45	V	$\mathrm{l} \mathrm{OL}=1.6 \mathrm{~mA}$
VOL4	Output Low Voltage (Any Four Port Outputs)			0.45	V	$\mathrm{IOL}^{\prime}=10 \mathrm{~mA}$
V_{OH}	Output High Voltage (BUS)	2.4			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PSEN}}, \mathrm{ALE})$	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage (All Other Outputs)	2.4			V	$\mathrm{IOH}=-40 \mu \mathrm{~A}$

D.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (Continued)

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
$L_{L 1}$	Leakage Current ($\mathrm{T} 1, \overline{\mathrm{~N} T}$)			± 10	$\mu \dot{A}$	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\text {LI } 1}$	Input Leakage Current (P10-P17, P20-P27, EA, $\overline{\mathrm{SS}}$)			-500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }}+0.45 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {CC }}$
lı12	Input Leakage Current RESET	-10		-300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq 3.8$
ILO	Leakage Current (BUS, TO) (High Impedance State)			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
IDD	$V_{D D}$ Supply Current (RAM Standby)		3	5	mA	
			4	7	mA	
			5	10	mA	
$\begin{aligned} & \hline \operatorname{ldD}+ \\ & \mathrm{I} \mathrm{IC} \end{aligned}$	Total Supply Current*		30	65	mA	
			35	70	mA	
			40	80	mA	
			30	100	mA	
			50	110	mA	
$V_{D D}$	RAM Standby Voltage	2.2		5.5	V	Standby Mode Reset $\leq \mathrm{V}_{\text {IL1 }}$
		2.2		5.5	V	
		2.2		5.5	V	

${ }^{*} I_{C C}+I_{D D}$ are measured with all outputs in their high impedance state; RESET low; 8 MHz crystal applied; $\overline{\mathbb{N T}}$, $\overline{\mathrm{SS}}$, and EA floating.
\dagger Any four Port Outputs can be loaded to a 10 mA maximum. Excessive heating and dissipation will result if more than four outputs are loaded to 10 mA .
A.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

Symbol	Parameter	$f(t)$ (Note 3)	8 MHz		Unit	Conditions (Note 1)
			Min	Max		
t	Clock Period	1/xtal freq	125	1000	ns	(Note 3)
$t_{\text {LL }}$	ALE Pulse Width	3.5t-170	268		ns	
$t_{\text {AL }}$	Addr Setup to ALE	2t-110	140		ns	(Note 2)
tLA	Addr Hold from ALE	t-40	85		ns	
$\mathrm{t}_{\mathrm{CC} 1}$	Control Pulse Width ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$)	7.5t-200	675		ns	
$\mathrm{t}_{\mathrm{CC} 2}$	Control Pulse Width ($\overline{\text { PSEN }}$)	6t-200	550		ns	
t ${ }_{\text {DW }}$	Data Setup before \bar{W}	$6.5 t-200$	613		ns	
twD	Data Hold after $\overline{W R}$	t-50	75		ns	
$t_{\text {DR }}$	Data Hold ($\overline{\mathrm{RD}}, \overline{\mathrm{PSEN}}$)	$1.5 t-30$	0	158	ns	
trin	$\overline{\mathrm{RD}}$ to Data in	6t-170		580	ns	
$\mathrm{t}_{\text {RD2 }}$	PSEN to Data in	4.5t-170		393	ns	
$\mathrm{t}_{\text {AW }}$	Addr Setup to WR	5t-150	475		ns	
$t_{\text {AD1 }}$	Addr Setup to Data ($\overline{\mathrm{RD}})$	10.5t-220		1093	ns	
$t_{\text {AD2 }}$	Addr Setup to Data ($\overline{\text { PSEN }}$)	7.5t-200		738	ns	
$t_{\text {AFC1 }}$	Addr Float to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$	$2 t-40$	210		ns	(Note 2)
$t_{\text {AFC2 }}$	Addr Float to PSEN	0.5t-40	23		ns	(Note 2)
t ${ }_{\text {LAFC1 }}$	ALE to Control ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$)	3t-75	300		ns	
tLAFC2	ALE to Control ($\overline{\text { PSEN }}$)	1.5t-75	113		ns	
$\mathrm{t}_{\text {CA1 }}$	Control to ALE ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{PROG}$)	t-65	60		ns	
t_{CA}	Control to ALE ($\overline{\text { PSEN }}$)	4t-70	430		ns	
${ }^{\text {t }}$ CP	Port Control Setup to PROG	1.5t-80	108		ns	
$t_{P C}$	Port Control Hold to PROG	4t-260	240		ns	
t_{PR}	PROG to P2 Input Valid	$8.5 \mathrm{t}-120$		943	ns	
$t_{P F}$	Input Data Hold from PROG	1.5 t	0	188	ns	
$t_{\text {DP }}$	Output Data Setup	6t-290	460		ns	
$t_{P D}$	Output Data Hold	1.5t-90	98		ns	
$t_{\text {PP }}$	PROG Pulse Width	10.5t-250	1063		ns	
$t_{\text {PL }}$	Port 2 I/O Setup to ALE	4t-200	300		ns	
$t_{\text {LP }}$	Port 2 I/O Hold to ALE	0.5t-30	33		ns	
tPV	Port Output from ALE	$4.5 t+100$		663	ns	
toprr	T0 Rep Rate	3 t	375		ns	
$t_{C Y}$	Cycle Time	$15 t$	1.87	28	$\mu \mathrm{S}$	

NOTES:

1. Control outputs: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$. BUS Outputs: $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$.
2. BUS High Impedance Load 20 pF
3. $\mathrm{f}(\mathrm{t})$ assumes 50% duty cycle on $\mathrm{X} 1, \mathrm{X} 2$. Max clock period is for a 1 MHz crystal input.

WAVEFORMS

INSTRUCTION FETCH FROM PROGRAM MEMORY

WRITE TO EXTERNAL DATA MEMORY

READ FROM EXTERNAL DATA MEMORY

INPUT AND OUTPUT FOR A.C. TESTS

270790-6
A.C. testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Output timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

PORT 1/PORT 2 TIMING

CRYSTAL OSCILLATOR MODE

$\mathrm{C} 1=5 \mathrm{pF} \pm 1 / 2 \mathrm{pF}+(\mathrm{STRAY}<5 \mathrm{pF})$
$\mathrm{C} 2=($ CRYSTAL + STAY $)<8 \mathrm{pF}$
$\mathrm{C} 3=20 \mathrm{pF} \pm 1 \mathrm{pF}+(\mathrm{STRAY}<5 \mathrm{pF})$
Crystal series resistance should be less than 50Ω at 8 MHz ; less than 75Ω at 6 MHz ; less than 180Ω at 3.6 MHz .

CERAMIC RESONATOR MODE

DRIVING FROM EXTERNAL SOURCE

270790-10
For XTAL1 and XTAL2 define "high" as voltages above 1.6 V and "low" as voltages below 1.6 V . The duty cycle requirements for externally driving XTAL1 and XTAL2 using the circuits shown above are as follows: XTAL1 must be high 35-65\% of the period and XTAL2 must be high 35-65\% of the period. Rise and fall times must be faster than 20 ns .

VERIFYING THE 8049KB ROM

Programming Verification

The following is a list of the pins used for verification and a description of their functions:

Pin	Function
XTAL1	Clock Input (3 to 4.0 MHz)
XTAL2	
$\overline{\text { RESET }}$	Initialization and Address Latching
T0	Selection of Program or Verifying Mode
EA	Activation Verify Modes
BUS	Address and Data Output During Verify
P20-P22	Address Input

WARNING:

An indication of a properly socketed part is the appearance of the ALE clock output. The lack of this clock may be used to disable the programmer.

The Verify sequence is:

1. $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, Clock applied or internal oscillator operating, $\overline{\text { RESET }}=0 \mathrm{~V}, \mathrm{EA}=5 \mathrm{~V}$, BUS floating.
2. Insert 8049 KB in verify socket
3. $E A=12 \mathrm{~V}$ (activate verify mode)
4. Address applied to BUS and P20-23
5. $\overline{\text { RESET }}=5 \mathrm{~V}$ (latch address)
6. Read and verify Data on BUS
7. $\overline{\text { RESET }}=O V$ and repeat from step 4
8. Verify socket should be at conditions of step 1 for removal from socket.

SUGGESTED ROM VERIFICATION ALGORITHM FOR ROM DEVICE ONLY

	48 H	49 H	50 H
A10	0	ADDR	ADDR
A11	0	0	ADDR

270790-11

NOTE:
ALE is function of $X 1, X 2$ inputs.

MCS ${ }^{\circledR}$-48

EXPRESS

The new Intel EXPRESS family of single-component 8 -bit microcomputers offers enhanced processing options to the familiar $8048 \mathrm{AH} / 8035 \mathrm{AHL}, 8748 \mathrm{H}, 8049 \mathrm{AH} / 8039 \mathrm{AHL}, 8749 \mathrm{H}, 8050 \mathrm{AH} / 8040 \mathrm{AHL}$ Intel components. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards, but fall short of military conditions.

The EXPRESS options include the commercial standard and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation with or without 168 ± 8 hours of dynamic burn-in at $125^{\circ} \mathrm{C}$ per MIL-STD-883, method 1015. Figure 1 summarizes the option marking designators and package selections.

For a complete description of $8048 \mathrm{AH} / 8035 \mathrm{AHL}, 8748 \mathrm{H}, 8049 \mathrm{AH} / 8309 \mathrm{AHL}, 8749 \mathrm{H}, 8040 \mathrm{AHL}$ and 8050 AH features and operating characteristics, refer to the respective standard commercial grade data sheet. This document highlights only the electrical specifications which differ from the respective commercial part.

Temp Range ${ }^{\circ} \mathbf{C}$	$\mathbf{0 - 7 0}$	$-\mathbf{4 0}-\mathbf{+ 8 5}$	$\mathbf{0 - 7 0}$	$-\mathbf{4 0 - + 8 5}$
Burn In	$\mathbf{0} \mathbf{H r s}$	$\mathbf{0 H r s}$	$\mathbf{1 6 8 ~ H r s}$	$\mathbf{1 6 8 ~ H r s}$
	P8048AH	TP8048AH	QP8048AH	LP8048AH
	D8048AH	TD8048AH	QD8048AH	LD8048AH
	D8748H	TD8748H	QD8748H	LD8748H
	P8035AHL	TP8035AHL	QP8035AHL	LP8035AHL
	D8035AHL	TD8035AHL	QD8035AHL	LD8035AHL
	P8049AH	TP8049AH	QP8049AH	LP8049AH
	D8049AH	TD8049AH	QD8049AH	LD8049AH
	D8749H	TD8749AH	QD8749H	LD8749AH
	P8039AHL	TP8039AHL	QP8039AHL	LP8039AHL
	D8039AHL	TD8039AHL	QD8039AHL	LD8039AHL
	P8050AH	TP8050AH	QP8050AH	LP8050AH
	D8850AH	TD8050AH	QD8050AH	LD8050AH
	P8040AHL	TP8040AHL	QP8040AHL	LP8040AHL
	D8840AHL	TD8040AHL	QD8040AHL	LD8040AHL
	P8243	TP8243	QP8243	-
	D8243	TD8243	QD8243	LD8243

[^2]Extended Temperature Electrical Specification Deviations*

TP8048AH/TP8035AHL/LP8048AH/LP8035AHL TD8048AH/TD8035AHL/LD8048AH/LD8035AHL
D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
V_{IH}	Input High Voltage (All Except XTAL1, XTAL2, RESET)	2.2		V_{CC}	V	
IDD	$\mathrm{V}_{\text {DD }}$ Supply Current		4	8	mA	
$I_{D D}+I_{C C}$	Total Supply Current		40	80	mA	

TP8049AH/TP8039AHL/LP8049AH/LP8039AHL TD8049AH/TD8039AHL/LD8049AH/LD8039AHL
D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
V_{IH}	Input High Voltage (All Except XTAL1, XTAL2, RESET)	2.2		$\mathrm{~V}_{\mathrm{CC}}$	V	
I_{DD}	V 2 DD Supply Current		5	10	mA	
$\mathrm{I}_{\mathrm{DD}}+\mathrm{I}_{\mathrm{CC}}$	Total Supply Current		50	100	mA	

TP8050AH/TP8040AHL/LP8050AHL/LP8040AHL TD8050AH/TD8040AHL/LD8050AH/LD8040AHL
D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| Symbol | Parameter | | Limits | | | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | Test Conditions

Extended Temperature Electrical Specification Deviations*

TD8748H/LD8748H

D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

| Symbol | Parameter | | Limits | | | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | Test Conditions.

TD8749H/LD8749H

D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
V_{IH}	Input High Voltage (All Except XTAL1, XTAL2, RESET)	2.2		$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{I}_{\mathrm{DD}}+\mathrm{I}_{\mathrm{CC}}$	Total Supply Current		75	150	mA	

TP8743/TD8243/LD8243

D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
ICC	$V_{C C}$ Supply Current		15	25	mA	

[^3]
MCS ${ }^{\circledR}$-51 Architectural Overview

MCS ${ }^{\circledR-51}$ Family of Microcontrollers Architectural Overview

MCS®-51 FAMILY OF MICROCONTROLLERS ARCHITECTURAL OVERVIEW

CONTENTS PAGE
INTRODUCTION 5-3
CHMOS Devices 5-5
MEMORY ORGANIZATION IN MCS®-51 DEVICES 5-5
Logical Separation of Program and Data Memory 5-5
Program Memory 5-6
Data Memory 5-7
THE MCS®-51 INSTRUCTION SET 5-8
Program Status Word 5-8
Addressing Modes 5-9
Arithmetic Instructions 5-9
Logical Instructions 5-11
Data Transfers 5-11
Boolean Instructions 5-13
Jump Instructions 5-15
CPU TIMING 5-16
Machine Cycles 5-17
Interrupt Structure 5-19
ADDITIONAL REFERENCES 5-21

INTRODUCTION

The 8051 is the original member of the MCS ${ }^{\circledR}-51$ family, and is the core for all MCS-51 devices. The features of the 8051 core are:

- 8-bit CPU optimized for control applications
- Extensive Boolean processing (single-bit logic) capabilities
- 64K Program Memory address space
- 64K Data Memory address space
- 4K bytes of on-chip Program Memory
- 128 bytes of on-chip Data RAM
- 32 bidirectional and individually addressable I/O lines
- Two 16-bit timer/counters
- Full duplex UART
- 6-source/5-vector interrupt structure with two priority levels
- On-chip clock oscillator

The basic architectural structure of this 8051 core is shown in Figure 1.

Figure 1. Block Diagram of the 8051 Core

Each device on the MCS-51 family consists of all the core features plus some additional features. A feature comparison of all the MCS-51 devices is shown in Table 1.

Table 1. The MCS®-51 Family of Microcontrollers

Device	ROMIess Version	EPROM Version	ROM Bytes	RAM Bytes	$\begin{aligned} & \text { 8-Bit } \\ & \text { I/O } \\ & \text { Ports } \end{aligned}$	16-Bit Timer/ Counters	Programmable Counter Array (PCA)	UART	Serial Expansion Port (SEP)	Global Serial Channel (GSC)	DMA Channels	A/D Channels	Interrupt Sources/ Vectors	Power Down and Idle Modes
8051	8031	-	4K	128	4	2		\checkmark					6/5	
8051AH	8031AH	$\begin{gathered} 8751 \mathrm{H} \\ 8751 \mathrm{BH} \end{gathered}$	4K	128	4	2		\checkmark					6/5	
8052AH	8032AH	8752BH	8K	256	4	3		\checkmark					8/6	
80 C 51 BH	80C31BH	87C51	4K	128	4	2		ν					6/5	ν
80C52	80C32	-	8K	256	4	3		ν					8/6	ν
83C51FA	80C51FA	87C51FA	8K	256	4	3	ν	\checkmark					14/7	ν
83C51FB	80C51FA	87C51FB	16K	256	4	3	\checkmark	\checkmark					14/7	\checkmark
83C152JA	80C152JA	-	8K	256	5	2		ν		v	2		19/11	\checkmark
-	80C152JB	-	-	256	7	2		ν		ν	2		19/11	ν
83C152JC	80C152JC	-	8K	256	5	2		ν		ν	2		19/11	ν
-	80C152JD	-	-	256	7	2		\checkmark		ν	2		19/11	ν
$83 C 452$	80C452	87C452P	8K	256	5	2		ν					9/8	ν

Figure 2. MCS ${ }^{-}$-51 Memory Structure

CHMOS Devices

Functionally, the CHMOS devices (designated with "C" in the middle of the device name) are all fully compatible with the 8051, but being CMOS, draw less current than an HMOS counterpart. To further exploit the power savings available in CMOS circuitry, two reduced power modes are added:

- Software-invoked Idle Mode, during which the CPU is turned off while the RAM and other on-chip peripherals continue operating. In this mode, current draw is reduced to about 15% of the current drawn when the device is fully active.
- Software-invoked Power Down Mode, during which all on-chip activities are suspended. The on-chip RAM continues to hold its data. In this mode the device typically draws less than $10 \mu \mathrm{~A}$.

Although the 80 C 51 BH is functionally compatible with its HMOS counterpart, specific differences between the two types of devices must be considered in the design of an application circuit if one wishes to ensure complete interchangeability between the HMOS and CHMOS devices. These considerations are discussed in the Application Note AP-252, "Designing with the 80C51BH".

For more information on the individual devices and features listed in Table 1, refer to the Hardware Descriptions and Data Sheets of the specific device.

MEMORY ORGANIZATION IN MCS®-51 DEVICES

Logical Separation of Program and Data Memory

All MCS-51 devices have separate address spaces for Program and Data Memory, as shown in Figure 2. The logical separation of Program and Data Memory allows the Data Memory to be accessed by 8 -bit addresses, which can be more quickly stored and manipulated by an 8 -bit CPU. Nevertheless, 16-bit Data Memory addresses can also be generated through the DPTR register.

Program Memory can only be read, not written to. There can be up to 64 K bytes of Program Memory. In the ROM and EPROM versions of these devices the lowest $4 \mathrm{~K}, 8 \mathrm{~K}$ or 16 K bytes of Program Memory are provided on-chip. Refer to Table 1 for the amount of on-chip ROM (or EPROM) on each device. In the ROMless versions all Program Memory is external. The read strobe for external Program Memory is the signal PSEN (Program Store Enable).

Data Memory occupies a separate address space from Program Memory. Up to 64 K bytes of external RAM can be addressed in the external Data Memory space. The CPU generates read and write signals, $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$, as needed during external Data Memory accesses.

External Program Memory and external Data Memory may be combined if desired by applying the $\overline{R D}$ and $\overline{\text { PSEN }}$ signals to the inputs of an AND gate and using the output of the gate as the read strobe to the external Program/Data memory.

Program Memory

Figure 3 shows a map of the lower part of the Program Memory. After reset, the CPU begins execution from location 0000 H .

As shown in Figure 3, each interrupt is assigned a fixed location in Program Memory. The interrupt causes the CPU to jump to that location, where it commences execution of the service routine. External Interrupt 0, for example, is assigned to location 0003 H . If External Interrupt 0 is going to be used, its service routine must begin at location 0003 H . If the interrupt is not going to be used, its service location is available as general purpose Program Memory.

Figure 3. MCS ${ }^{\circledR}-51$ Program Memory
The interrupt service locations are spaced at 8-byte intervals: 0003 H for External Interrupt $0,000 \mathrm{BH}$ for Timer 0, 0013 H for External Interrupt $1,001 \mathrm{BH}$ for Timer 1, etc. If an interrupt service routine is short enough (as is often the case in control applications), it can reside entirely within that 8 -byte interval. Longer service routines can use a jump instruction to skip over subsequent interrupt locations, if other interrupts are in use.

The lowest 4 K (or 8 K or 16 K) bytes of Program Memory can be either in the on-chip ROM or in an external ROM. This selection is made by strapping the EA (External Access) pin to either V_{CC} or V_{SS}.

In the 4 K byte ROM devices, if the $\overline{\mathrm{EA}}$ pin is strapped to V_{CC}, then program fetches to addresses 0000 H through OFFFH are directed to the internal ROM. Program fetches to addresses 1000 H through FFFFH are directed to external ROM.

In the 8 K byte ROM devices, $\overline{\mathrm{EA}}=\mathrm{V}_{\mathrm{CC}}$ selects addresses 0000 H through 1 FFFH to be internal, and addresses 2000 H through FFFFH to be external.

In the 16 K byte ROM devices, $\overline{\mathrm{EA}}=\mathrm{V}_{\mathrm{CC}}$ selects addresses 0000 H through 3 FFFH to be internal, and addresses 4000 H through FFFFH to be external.

If the $\overline{\mathrm{EA}}$ pin is strapped to V_{SS}, then all program fetches are directed to external ROM. The ROMless parts must have this pin externally strapped to V_{SS} to enable them to execute properly.

The read strobe to external ROM, $\overline{\text { PSEN, }}$, is used for all external program fetches. $\overline{\text { PSEN }}$ is not activated for internal program fetches.

Figure 4. Executing from External Program Memory

The hardware configuration for external program execution is shown in Figure 4. Note that 16 I/O lines (Ports 0 and 2) are dedicated to bus functions during external Program Memory fetches. Port 0 (P0 in Figure 4) serves as a multiplexed address/data bus. It emits the low byte of the Program Counter (PCL) as an address, and then goes into a float state awaiting the arrival of the code byte from the Program Memory. During the time that the low byte of the Program Counter is valid on P0, the signal ALE (Address Latch Enable) clocks this byte into an address latch. Meanwhile, Port 2 (P2 in Figure 4) emits the high byte of the Program Counter (PCH). Then PSEN strobes the EPROM and the code byte is read into the microcontroller.

Program Memory addresses are always 16 bits wide, even though the actual amount of Program Memory used may be less than 64 K bytes. External program execution sacrifices two of the 8-bit ports, P0 and P2, to the function of addressing the Program Memory.

Data Memory

The right half of Figure 2 shows the internal and external Data Memory spaces available to the MCS-51 user.

Figure 5 shows a hardware configuration for accessing up to 2 K bytes of external RAM. The CPU in this case is executing from internal ROM. Port 0 serves as a multiplexed address/data bus to the RAM, and 3 lines of Port 2 are being used to page the RAM. The CPU generates $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals as needed during external RAM accesses.

Figure 5. Accessing External Data Memory. If the Program Memory is Internal, the Other Bits of P2 are Available as I/O.

There can be up to 64 K bytes of external Data Memory. External Data Memory addresses can be either 1 or 2 bytes wide. One-byte addresses are often used in conjunction with one or more other I/O lines to page the RAM, as shown in Figure 5. Two-byte addresses can also be used, in which case the high address byte is emitted at Port 2.

Figure 6. Internal Data Memory

Internal Data Memory is mapped in Figure 6. The memory space is shown divided into three blocks, which are generally referred to as the Lower 128, the Upper 128, and SFR space.

Internal Data Memory addresses are always one byte wide, which implies an address space of only 256 bytes. However, the addressing modes for internal RAM can in fact accommodate 384 bytes, using a simple trick. Direct addresses higher than 7FH access one memory space, and indirect addresses higher than 7FH access a different memory space. Thus Figure 6 shows the Upper 128 and SFR space occupying the same block of addresses, 80 H through FFH , although they are physically separate entities.

Figure 7. The Lower 128 Bytes of Internal RAM
The Lower 128 bytes of RAM are present in all MCS-51 devices as mapped in Figure 7. The lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word (PSW) select which register bank is in use. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing.

Figure 8. The Upper 128 Bytes of Internal RAM

Figure 10. PSW (Program Status Word) Register in MCS®-51 Devices

The next 16 bytes above the register banks form a block of bit-addressable memory space. The MCS- 51 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00 H through 7 FH .

All of the bytes in the Lower 128 can be accessed by either direct or indirect addressing. The Upper 128 (Figure 8) can only be accessed by indirect addressing. The Upper 128 bytes of RAM are not implemented in the 8051 , but are in the devices with 256 bytes of RAM. (See Table 1).

Figure 9 gives a brief look at the Special Function Register (SFR) space. SFRs include the Port latches, timers, peripheral controls, etc. These registers can only be accessed by direct addressing. In general, all MCS-51 microcontrollers have the same SFRs as the 8051, and at the same addresses in SFR space. However, enhancements to the 8051 have additional SFRs that are not present in the 8051, nor perhaps in other proliferations of the family.

Sixteen addresses in SFR space are both byte- and bitaddressable. The bit-addressable SFRs are those whose address ends in 000B. The bit addresses in this area are 80H through FFH.

THE MCS®-51 INSTRUCTION SET

All members of the MCS-51 family execute the same instruction set. The MCS-51 instruction set is optimized for 8 -bit control applications. It provides a variety of fast addressing modes for accessing the internal RAM to facilitate byte operations on small data structures. The instruction set provides extensive support for one-bit variables as a separate data type, allowing direct bit manipulation in control and logic systems that require Boolean processing.

An overview of the MCS-51 instruction set is presented below, with a brief description of how certain instructions might be used. References to "the assembler" in this discussion are to Intel's MCS-51 Macro Assembler, ASM51. More detailed information on the instruction set can be found in the MCS-51 Macro Assembler User's Guide (Order No. 9800937 for ISIS Systems, Order No. 122752 for DOS Systems).

Program Status Word

The Program Status Word (PSW) contains several status bits that reflect the current state of the CPU. The PSW, shown in Figure 10, resides in SFR space. It contains the Carry bit, the Auxiliary Carry (for BCD operations), the two register bank select bits, the Overflow flag, a Parity bit, and two user-definable status flags.

The Carry bit, other than serving the functions of a Carry bit in arithmetic operations, also serves as the "Accumulator" for a number of Boolean operations.

Figure 9. SFR Space

The bits RS0 and RS1 are used to select one of the four register banks shown in Figure 7. A number of instructions refer to these RAM locations as R0 through R7. The selection of which of the four banks is being referred to is made on the basis of the bits RS0 and RS1 at execution time.

The Parity bit reflects the number of 1 s in the Accumulator: $\mathrm{P}=1$ if the Accumulator contains an odd number of 1 s , and $\mathrm{P}=0$ if the Accumulator contains an even number of 1 s . Thus the number of 1 s in the Accumulator plus \mathbf{P} is always even.

Two bits in the PSW are uncommitted and may be used as general purpose status flags.

Addressing Modes

The addressing modes in the MCS-51 instruction set are as follows:

DIRECT ADDRESSING

In direct addressing the operand is specified by an 8-bit address field in the instruction. Only internal Data RAM and SFRs can be directly addressed.

INDIRECT ADDRESSING

In indirect addressing the instruction specifies a register which contains the address of the operand. Both internal and external RAM can be indirectly addressed.

The address register for 8 -bit addresses can be R0 or R1 of the selected register bank, or the Stack Pointer. The address register for 16 -bit addresses can only be the 16-bit "data pointer" register, DPTR.

REGISTER INSTRUCTIONS

The register banks, containing registers R0 through R7, can be accessed by certain instructions which carry a 3-bit register specification within the opcode of the instruction. Instructions that access the registers this way are code efficient, since this mode eliminates an address byte. When the instruction is executed, one of the eight registers in the selected bank is accessed. One of four banks is selected at execution time by the two bank select bits in the PSW.

REGISTER-SPECIFIC INSTRUCTIONS

Some instructions are specific to a certain register. For example, some instructions always operate on the Accumulator, or Data Pointer, etc., so no address byte is needed to point to it. The opcode itself does that. Instructions that refer to the Accumlator as A assemble as accumulator-specific opcodes.

IMMEDIATE CONSTANTS

The value of a constant can follow the opcode in Program Memory. For example,

$$
\text { MOV A, \# } 100
$$

loads the Accumulator with the decimal number 100. The same number could be specified in hex digits as 64 H .

INDEXED ADDRESSING

Only Program Memory can be accessed with indexed addressing, and it can only be read. This addressing mode is intended for reading look-up tables in Program Memory. A 16-bit base register (either DPTR or the Program Counter) points to the base of the table, and the Accumulator is set up with the table entry number. The address of the table entry in Program Memory is formed by adding the Accumulator data to the base pointer.

Another type of indexed addressing is used in the "case jump" instruction. In this case the destination address of a jump instruction is computed as the sum of the base pointer and the Accumulator data.

Arithmetic Instructions

The menu of arithmetic instructions is listed in Table 2. The table indicates the addressing modes that can be used with each instruction to access the <byte> operand. For example, the ADD A, <byte> instruction can be written as:

ADD	A,7FH	(direct addressing)
ADD	A,@R0	(indirect addressing)
ADD	A,R7	(register addressing)
ADD	A,\# 127	(immediate constant)

The execution times listed in Table 2 assume a 12 MHz clock frequency. All of the arithmetic instructions execute in 1μ s except the INC DPTR instruction, which takes $2 \mu \mathrm{~s}$, and the Multiply and Divide instructions, which take $4 \mu \mathrm{~s}$.

Note that any byte in the internal Data Memory space can be incremented or decremented without going through the Accumulator.

One of the INC instructions operates on the 16-bit Data Pointer. The Data Pointer is used to generate 16-bit addresses for external memory, so being able to increment it in one 16 -bit operation is a useful feature.

The MUL AB instruction multiplies the Accumulator by the data in the B register and puts the 16 -bit product into the concatenated B and Accumulator registers.

MCS ${ }^{\circledR}$-51 ARCHITECTURAL OVERVIEW

Table 2. A List of the MCS ${ }^{\circledR}$ - 51 Arithmetic Instructions

Mnemonic	Operation	Addressing Modes				Execution Time ($\mu \mathrm{s}$)
		Dir	Ind	Reg	Imm	
ADD A, < byte>	$A=A+<$ byte $>$	X	X	X	X	1
ADDC A, <byte>	$A=A+<$ byte $\rangle+C$	X	X	X	X	1
SUBB A, < byte>	$A=A-<$ byte $>-C$	X	X	X	X	1
INC A	$A=A+1$	Accumulator only				1
INC < byte>	<byte> = <byte> + 1	X	X	X		1
INC DPTR	DPTR = DPTR + 1	Data Pointer only				2
DEC A	$A=A-1$	Accumulator only				1
DEC <byte>	<byte> = <byte> -1	X	X	X		1
MUL AB	$B: A=B \times A$	ACC and B only				4
DIV AB	$\begin{aligned} & A=\operatorname{Int}[A / B] \\ & B=\operatorname{Mod}[A / B] \end{aligned}$	ACC and B only				4
DA A	Decimal Adjust	Accumulator only				1

The DIV AB instruction divides the Accumulator by the data in the \mathbf{B} register and leaves the 8 -bit quotient in the Accumulator, and the 8 -bit remainder in the B register.

Oddly enough, DIV AB finds less use in arithmetic "divide" routines than in radix conversions and programmable shift operations. An example of the use of DIV $A B$ in a radix conversion will be given later. In shift operations, dividing a number by 2^{n} shifts its n bits to the right. Using DIV AB to perform the division
completes the shift in 4μ s and leaves the B register holding the bits that were shifted out.

The DA A instruction is for BCD arithmetic operations. In BCD arithmetic, ADD and ADDC instructions should always be followed by a DA A operation, to ensure that the result is also in BCD. Note that DA A will not convert a binary number to BCD. The DA A operation produces a meaningful result only as the second step in the addition of two BCD bytes.

Table 3. A List of the MCS ${ }^{\circledR-51}$ Logical Instructions

Mnemonic	Operation	Addressing Modes				ExecutionTime $(\mu \mathrm{s})$
		Dir	Ind	Reg	Imm	
ANL A, <byte>	A = A .AND. <byte>	X	X	X	X	1
ANL <byte>,A	<byte> = <byte> .AND. A	X				1
ANL < byte>, \#data	<byte> = <byte> .AND. \#data	X				2
ORL A, <byte>	A = A OR. <byte>	X	X	X	X	1
ORL <byte>,A	<byte> = <byte> .OR.A	X				1
ORL < byte>, \#data	<byte> = <byte> .OR. \# data	X				2
XRL A, < byte>	A = A.XOR. < byte>	X	X	X	X	1
XRL < byte>,A	<byte> = < byte> .XOR. A	X				1
XRL < byte>, \#data	<byte> = <byte> .XOR. \#data	X				2
CRL A	$\mathrm{A}=00 \mathrm{H}$	Accumulator only				1
CPL A	A = .NOT. A	Accumulator only				1
RL A	Rotate ACC Left 1 bit	Accumulator only				1
RLC A	Rotate Left through Carry	Accumulator only				1
RR A	Rotate ACC Right 1 bit	Accumulator only				1
RRC A	Rotate Right through Carry	Accumulator only				1
SWAP A	Swap Nibbles in A	Accumulator only				1

Logical Instructions

Table 3 shows the list of MCS-51 logical instructions. The instructions that perform Boolean operations (AND, OR, Exclusive OR, NOT) on bytes perform the operation on a bit-by-bit basis. That is, if the Accumulator contains 00110101B and <byte> contains 01010011 B , then

ANL A, <byte>
will leave the Accumulator holding 00010001B.
The addressing modes that can be used to access the <byte> operand are listed in Table 3. Thus, the ANL A, <byte $>$ instruction may take any of the forms

ANL	A,7FH	(direct addressing)
ANL	A,@R1	(indirect addressing)
ANL	A,R6	(register addressing)
ANL	A,\#53H	(immediate constant)

All of the logical instructions that are Accumulatorspecific execute in $1 \mu \mathrm{~s}$ (using a 12 MHz clock). The others take $2 \mu \mathrm{~s}$.

Note that Boolean operations can be performed on any byte in the lower 128 internal Data Memory space or the SFR space using direct addressing, without having to use the Accumulator. The XRL < byte>, \# data instruction, for example, offers a quick and easy way to invert port bits, as in

$$
\text { XRL } \quad \text { P1,\#0FFH }
$$

If the operation is in response to an interrupt, not using the Accumulator saves the time and effort to stack it in the service routine.

The Rotate instructions (RL A, RLC A, etc.) shift the Accumulator 1 bit to the left or right. For a left rotation, the MSB rolls into the LSB position. For a right rotation, the LSB rolls into the MSB position.

The SWAP A instruction interchanges the high and low nibbles within the Accumulator. This is a useful operation in BCD manipulations. For example, if the Accumulator contains a binary number which is known to be less than 100, it can be quickly converted to BCD by the following code:

MOV	B, \# 10
DIV	AB
SWAP	A
ADD	A,B

Dividing the number by 10 leaves the tens digit in the low nibble of the Accumulator, and the ones digit in the B register. The SWAP and ADD instructions move the tens digit to the high nibble of the Accumulator, and the ones digit to the low nibble.

Data Transfers

INTERNAL RAM

Table 4 shows the menu of instructions that are available for moving data around within the internal memory spaces, and the addressing modes that can be used with each one. With a 12 MHz clock, all of these instructions execute in either 1 or $2 \mu \mathrm{~s}$.

The MOV <dest>, <src> instruction allows data to be transferred between any two internal RAM or SFR locations without going through the Accumulator. Remember the Upper 128 byes of data RAM can be accessed only by indirect addressing, and SFR space only by direct addressing.

Note that in all MCS-51 devices, the stack resides in on-chip RAM, and grows upwards. The PUSH instruction first increments the Stack Pointer (SP), then copies the byte into the stack. PUSH and POP use only direct addressing to identify the byte being saved or restored,

Table 4. A List of the MCS ${ }^{\circledR}-51$ Data Transfer Instructions that Access Internal Data Memory Space

Mnemonic	Operation	Addressing Modes				Execution Time ($\mu \mathrm{s}$)
		Dir	Ind	Reg	Imm	
MOV A, <src>	$\mathrm{A}=<$ src>	X	X	X	X	1
MOV <dest>,A	<dest> $=\mathrm{A}$	X	X	X		1
MOV <dest>, <src>	<dest> = <src>	X	X	X	X	2
MOV DPTR, \#data16	DPTR $=16$-bit immediate constant.				X	2
PUSH <src>	INC SP : MOV "@SP", <src>	X				2
POP <dest>	MOV <dest>, "@SP": DEC SP	X				2
XCH A, <byte>	ACC and < byte> exchange data	X	X	X		1
XCHD A,@Ri	ACC and @Ri exchange low nibbles		X			1

but the stack itself is accessed by indirect addressing using the SP register. This means the stack can go into the Upper 128, if they are implemented, but not into SFR space.

In devices that do not implement the Upper 128, if the SP points to the Upper 128, PUSHed bytes are lost, and POPped bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV that can be used to initialize the Data Pointer (DPTR) for look-up tables in Program Memory, or for 16-bit external Data Memory accesses.

The XCH A, <byte> instruction causes the Accumulator and addressed byte to exchange data. The XCHD $\mathrm{A}, @ \mathrm{Ri}$ instruction is similar, but only the low nibbles are involved in the exchange.

To see how XCH and XCHD can be used to facilitate data manipulations, consider first the problem of shifting an 8-digit BCD number two digits to the right. Figure 11 shows how this can be done using direct MOVs, and for comparison how it can be done using XCH instructions. To aid in understanding how the code works, the contents of the registers that are holding the BCD number and the content of the Accumulator are shown alongside each instruction to indicate their status after the instruction has been executed.

		2A	2B	2 C	2D	2E	ACC
MOV	A,2EH	00	12	34	56	78	78
MOV	2EH,2DH	00	12	34	56	56	78
MOV	2DH,2CH	00	12	34	34	56	78
MOV	2CH,2BH	00	12	12	34	56	78
MOV	2BH,\# 0	00	00	12	34	56	78
(a) Using direct MOVs: 14 bytes, $9 \mu \mathrm{~s}$							
		2A	2B	2 C	2D	2 E	ACC
CLR	A	00	12	34	56	78	00
XCH	A,2BH	00	00	34	56	78	12
XCH	A,2CH	00	00	12	56	78	34
XCH	A,2DH	00	00	12	34	78	56
XCH	A,2EH	00	00	12	34	56	78

Figure 11. Shifting a BCD Number Two Digits to the Right

After the routine has been executed, the Accumulator contains the two digits that were shifted out on the right. Doing the routine with direct MOVs uses 14 code bytes and $9 \mu \mathrm{~s}$ of execution time (assuming a 12 MHz clock). The same operation with XCHs uses less code and executes almost twice as fast.

To right-shift by an odd number of digits, a one-digit shift must be executed. Figure 12 shows a sample of code that will right-shift a BCD number one digit, using the XCHD instruction. Again, the contents of the registers holding the number and of the Accumulator are shown alongside each instruction.

			2A	2B	2C	2 D	2E	ACC
	MOV	R1,\#2EH	00	12	34	56	78	XX
	MOV	R0, \# 2DH	00	12	34	56	78	XX
loop for R1 = 2EH:								
LOOP:	MOV	A,@R1	00	12	34	56	78	78
	XCHD	A,@RO	00	12	34	58	78	76
	SWAP	A	00	12	34	58	78	67
	MOV	@R1,A	00	12	34	58	67	67
	DEC	R1	00	12	34	58	67	67
	DEC	Ro	00	12	34	58	67	67
	CJNE	R1, \#2AH,						
	$\begin{aligned} & \text { loop for R1 }=2 D H \text { : } \\ & \text { loop for R1 }=2 C H \text { : } \\ & \text { loop for R1 }=2 B H \text { : } \end{aligned}$		00	12	38	45	67	45
			00	18	23	45	67	23
			08	01	23	45	67	01
	CLR	A	08	01	23	45	67	00
	XCH	A,2AH	00	01	23	45	67	08

Figure 12. Shifting a BCD Number One Digit to the Right

First, pointers R1 and R0 are set up to point to the two bytes containing the last four BCD digits. Then a loop is executed which leaves the last byte, location 2 EH , holding the last two digits of the shifted number. The pointers are decremented, and the loop is repeated for location 2DH. The CJNE instruction (Compare and Jump if Not Equal) is a loop control that will be described later.

The loop is executed from LOOP to CJNE for R1 = $2 \mathrm{EH}, 2 \mathrm{DH}, 2 \mathrm{CH}$ and 2 BH . At that point the digit that was originally shifted out on the right has propagated to location 2AH. Since that location should be left with Os, the lost digit is moved to the Accumulator.

EXTERNAL RAM

Table 5 shows a list of the Data Transfer instructions that access external Data Memory. Only indirect addressing can be used. The choice is whether to use a one-byte address, @Ri, where Ri can be either R0 or R1 of the selected register bank, or a two-byte address, @DPTR. The disadvantage to using 16 -bit addresses if only a few K bytes of external RAM are involved is that 16 -bit addresses use all 8 bits of Port 2 as address bus. On the other hand, 8 -bit addresses allow one to address a few K bytes of RAM, as shown in Figure 5, without having to sacrifice all of Port 2.

All of these instructions execute in $2 \mu \mathrm{~s}$, with a 12 MHz clock.

Table 5. A List of the MCS ${ }^{\circledR}-51$ Data Transfer Instructions that Access External Data Memory Space

Address Width	Mnemonic	Operation	Execution Time $(\mu \mathbf{s})$
8 bits	MOVX A,@Ri	Read external RAM @Ri	2
8 bits	MOVX @Ri,A	Write external RAM @Ri	2
16 bits	MOVX A,@DPTR	Read external RAM @DPTR	2
16 bits	MOVX @DPTR,A	Write external RAM @DPTR	2

Note that in all external Data RAM accesses, the Accumulator is always either the destination or source of the data.

The read and write strobes to external RAM are activated only during the execution of a MOVX instruction. Normally these signals are inactive, and in fact if they're not going to be used at all, their pins are available as extra I/O lines. More about that later.

LOOKUP TABLES

Table 6 shows the two instructions that are available for reading lookup tables in Program Memory. Since these instructions access only Program Memory, the lookup tables can only be read, not updated. The mnemonic is MOVC for "move constant".

If the table access is to external Program Memory, then the read strobe is PSEN.

Table 6. The MCS ${ }^{\circledR}$-51 Lookup
Table Read Instructions

Mnemonic	Operation	Execution Time $(\mu \mathbf{s})$
MOVC A,@A+DPTR	Read Pgm Memory at (A+DPTR)	2
MOVC A,@A+PC	Read Pgm Memory at (A+PC)	2

The first MOVC instruction in Table 6 can accommodate a table of up to 256 entries, numbered 0 through 255. The number of the desired entry is loaded into the Accumulator, and the Data Pointer is set up to point to beginning of the table. Then

MOVC A,@A+DPTR
copies the desired table entry into the Accumulator.
The other MOVC instruction works the same way, except the Program Counter (PC) is used as the table base, and the table is accessed through a subroutine. First the number of the desired entry is loaded into the Accumulator, and the subroutine is called:

MOV A,ENTRY__NUMBER CALL TABLE

The subroutine "TABLE" would look like this:
TABLE: MOVC A,@A + PC
RET
The table itself immediately follows the RET (return) instruction in Program Memory. This type of table can have up to 255 entries, numbered 1 through 255. Number 0 can not be used, because at the time the MOVC instruction is executed, the PC contains the address of the RET instruction. An entry numbered 0 would be the RET opcode itself.

Boolean Instructions

MCS-51 devices contain a complete Boolean (single-bit) processor. The internal RAM contains 128 addressable bits, and the SFR space can support up to 128 other addressable bits. All of the port lines are bit-addressable, and each one can be treated as a separate singlebit port. The instructions that access these bits are not just conditional branches, but a complete menu of move, set, clear, complement, OR, and AND instructions. These kinds of bit operations are not easily obtained in other architectures with any amount of byteoriented software.

Table 7. A List of the MCS ${ }^{\text {®-5 }} 51$
Boolean Instructions

Mnemonic	Operation	Execution Time $(\mu \mathbf{s})$	
ANL	C,bit	C $=$ C .AND. bit	2
ANL	C,/bit	C $=$ C .AND. .NOT. bit	2
ORL	C,bit	C $=$ C .OR. bit	2
ORL	C,/bit	C $=$ C . OR. .NOT. bit	2
MOV	C,bit	C $=$ bit	1
MOV	bit,C	bit $=$ C	2
CLR	C	C $=0$	1
CLR	bit	bit $=0$	1
SETB	C	C $=1$	1
SETB	bit	bit $=1$	1
CPL	C	C $=$.NOT. C	1
CPL	bit	bit $=$.NOT. bit	1
JC	rel	Jump if C $=1$	2
JNC	rel	Jump if C $=0$	2
JB	bit,rel	Jump if bit $=1$	2
JNB	bittrel	Jump if bit $=0$	2
JBC	bit,rel	Jump if bit $=1 ;$ CLR bit	2

The instruction set for the Boolean processor is shown in Table 7. All bit accesses are by direct addressing. Bit addresses 00 H through 7 FH are in the Lower 128, and bit addresses 80 H through FFH are in SFR space.

Note how easily an internal flag can be moved to a port pin:

$$
\begin{array}{ll}
\text { MOV } & \text { C,FLAG } \\
\text { MOV } & \text { P1.0,C }
\end{array}
$$

In this example, FLAG is the name of any addressable bit in the Lower 128 or SFR space. An I/O line (the LSB of Port 1, in this case) is set or cleared depending on whether the flag bit is 1 or 0 .

The Carry bit in the PSW is used as the single-bit Accumulator of the Boolean processor. Bit instructions that refer to the Carry bit as C assemble as Carry-specific instructions (CLR C, etc). The Carry bit also has a direct address, since it resides in the PSW register, which is bit-addressable.

Note that the Boolean instruction set includes ANL and ORL operations, but not the XRL (Exclusive OR) operation. An XRL operation is simple to implement in software. Suppose, for example, it is required to form the Exclusive OR of two bits:

$$
\mathrm{C}=\text { bit1 } . \mathrm{XRL} . \text { bit } 2
$$

The software to do that could be as follows:

	MOV	C,bit1
	JNB	bit2,OVER
OVER:	CPL	(continue)

First, bit1 is moved to the Carry. If bit2 $=0$, then C now contains the correct result. That is, bit 1 .XRL. bit2 $=$ bit 1 if bit $2=0$. On the other hand, if bit $2=1 \mathrm{C}$ now contains the complement of the correct result. It need only be inverted (CPL C) to complete the operation.

This code uses the JNB instruction, one of a series of bit-test instructions which execute a jump if the addressed bit is set (JC, JB, JBC) or if the addressed bit is not set (JNC, JNB). In the above case, bit2 is being tested, and if bit2 $=0$ the CPL C instruction is jumped over.

JBC executes the jump if the addressed bit is set, and also clears the bit. Thus a flag can be tested and cleared in one operation.

All the PSW bits are directly addressable, so the Parity bit, or the general purpose flags, for example, are also available to the bit-test instructions.

RELATIVE OFFSET

The destination address for these jumps is specified to the assembler by a label or by an actual address in Program Memory. However, the destination address assembles to a relative offset byte. This is a signed (two's complement) offset byte which is added to the PC in two's complement arithmetic if the jump is executed.

The range of the jump is therefore -128 to +127 Program Memory bytes relative to the first byte following the instruction.

Jump Instructions

Table 8 shows the list of unconditional jumps.
Table 8. Unconditional Jumps
in MCS ${ }^{\circledR-51 \text { Devices }}$

Minemonic	Operation	Execution Time $(\mu \mathbf{s})$
JMP addr	Jump to addr	2
JMP @A + DPTR	Jump to A + DPTR	2
CALL addr	Call subroutine at addr	2
RET	Return from subroutine	2
RETI	Return from interrupt	2
NOP	No operation	1

The Table lists a single "JMP addr" instruction, but in fact there are three-SJMP, LJMP and AJMP-which differ in the format of the destination address. JMP is a generic mnemonic which can be used if the programmer does not care which way the jump is encoded.

The SJMP instruction encodes the destination address as a relative offset, as described above. The instruction is 2 bytes long, consisting of the opcode and the relative offset byte. The jump distance is limited to a range of -128 to +127 bytes relative to the instruction following the SJMP.

The LJMP instruction encodes the destination address as a 16 -bit constant. The instruction is 3 bytes long, consisting of the opcode and two address bytes. The destination address can be anywhere in the 64 K Program Memory space.

The AJMP instruction encodes the destination address as an 11-bit constant. The instruction is 2 bytes long, consisting of the opcode, which itself contains 3 of the 11 address bits, followed by another byte containing the low 8 bits of the destination address. When the instruction is executed, these 11 bits are simply substituted for the low 11 bits in the PC. The high 5 bits stay the same. Hence the destination has to be within the same 2 K block as the instruction following the AJMP.

In all cases the programmer specifies the destination address to the assembler in the same way: as a label or as a 16 -bit constant. The assembler will put the destination address into the correct format for the given instruction. If the format required by the instruction will not support the distance to the specified destination address, a "Destination out of range" message is written into the List file.

The JMP @A+DPTR instruction supports case jumps. The destination address is computed at execution time as the sum of the 16 -bit DPTR register and
the Accumulator. Typically, DPTR is set up with the address of a jump table, and the Accumulator is given an index to the table. In a 5 -way branch, for example, an integer 0 through 4 is loaded into the Accumulator. The code to be executed might be as follows:

```
MOV DPTR,#JUMP__TABLE
MOV A,INDEX__NUMBER
RL A
JMP @A+DPTR
```

The RL A instruction converts the index number (0 through 4) to an even number on the range 0 through 8 , because each entry in the jump table is 2 bytes long:

JUMP	
AJMP	CASE__0
AJMP	CASE_1
AJMP	CASE_-2
AJMP	CASE_3
AJMP	CASE_4

Table 8 shows a single "CALL addr" instruction, but there are two of them-LCALL and ACALL-which differ in the format in which the subroutine address is given to the CPU. CALL is a generic mnemonic which can be used if the programmer does not care which way the address is encoded.

The LCALL instruction uses the 16-bit address format, and the subroutine can be anywhere in the 64 K Program Memory space. The ACALL instruction uses the 11-bit format, and the subroutine must be in the same 2 K block as the instruction following the ACALL.

In any case the programmer specifies the subroutine address to the assembler in the same way: as a label or as a 16 -bit constant. The assembler will put the address into the correct format for the given instructions.

Subroutines should end with a RET instruction, which returns execution to the instruction following the CALL.

RETI is used to return from an interrupt service routine. The only difference between RET and RETI is that RETI tells the interrupt control system that the interrupt in progress is done. If there is no interrupt in progress at the time RETI is executed, then the RETI is functionally identical to RET.

Table 9 shows the list of conditional jumps available to the MCS-51 user. All of these jumps specify the destination address by the relative offset method, and so are limited to a jump distance of -128 to +127 bytes from the instruction following the conditional jump instruction. Important to note, however, the user specifies to the assembler the actual destination address the same way as the other jumps: as a label or a 16 -bit constant.

Table 9. Conditional Jumps in MCS®-51 Devices

Mnemonic	Operation	Addressing Modes				Execution Time ($\mu \mathrm{s}$)
		Dir	Ind	Reg	Imm	
JZ \quad rel	Jump if $A=0$	Accumulator only				2
JNZ rel	Jump if $A \neq 0$	Accumulator only				2
DJNZ < byte>,rel	Decrement and jump if not zero	x		X		2
CJNE A, <byte>,rel	Jump if $A \neq$ < byte>	X			X	2
CJNE < byte>, \#data,rel	Jump if < byte> \neq \# data		X	X		2

There is no Zero bit in the PSW. The JZ and JNZ instructions test the Accumulator data for that condition.

The DJNZ instruction (Decrement and Jump if Not Zero) is for loop control. To execute a loop N times, load a counter byte with N and terminate the loop with a DJNZ to the beginning of the loop, as shown below for $\mathrm{N}=10$:

$$
\text { MOV COUNTER,\# } 10
$$

LOOP: (begin loop)
${ }^{*}{ }^{*}$
$*$
(end loop)
DJNZ COUNTER,LOOP
(continue)

The CJNE instruction (Compare and Jump if Not Equal) can also be used for loop control as in Figure 12. Two bytes are specified in the operand field of the instruction. The jump is executed only if the two bytes are not equal. In the example of Figure 12, the two bytes were the data in R1 and the constant 2AH. The initial data in R1 was 2EH. Every time the loop was executed, R1 was decremented, and the looping was to continue until the R1 data reached 2AH.

Another application of this instruction is in "greater than, less than" comparisons. The two bytes in the operand field are taken as unsigned integers. If the first is less than the second, then the Carry bit is set (1). If the first is greater than or equal to the second, then the Carry bit is cleared.

CPU TIMING

All MCS-51 microcontrollers have an on-chip oscillator which can be used if desired as the clock source for the CPU. To use the on-chip oscillator, connect a crystal or ceramic resonator between the XTAL1 and XTAL2 pins of the microcontroller, and capacitors to ground as shown in Figure 13.

Figure 13. Using the On-Chip Oscillator

A. HMOS or CHMOS

270251-13
B. HMOS Only

270251-14
C. CHMOS Only

Figure 14. Using an External Clock

Examples of how to drive the clock with an external oscillator are shown in Figure 14. Note that in the HMOS devices (8051, etc.) the signal at the XTAL2 pin actually drives the internal clock generator. In the CHMOS devices (80 C 51 BH , etc.) the signal at the XTAL1 pin drives the internal clock generator. If only one pin is going to be driven with the external oscillator signal, make sure it is the right pin.

The internal clock generator defines the sequence of states that make up the MCS-51 machine cycle.

Machine Cycles

A machine cycle consists of a sequence of 6 states, numbered S1 through S6. Each state time lasts for two oscillator periods. Thus a machine cycle takes 12 oscillator periods or $1 \mu \mathrm{~s}$ if the oscillator frequency is 12 MHz .

Each state is divided into a Phase 1 half and a Phase 2 half. Figure 15 shows the fetch/execute sequences in

Figure 15. State Sequences in MCS®-51 Devices
states and phases for various kinds of instructions. Normally two program fetches are generated during each machine cycle, even if the instruction being executed doesn't require it. If the instruction being executed doesn't need more code bytes, the CPU simply ignores the extra fetch, and the Program Counter is not incremented.

Execution of a one-cycle instruction (Figure 15A and B) begins during State 1 of the machine cycle, when the opcode is latched into the Instruction Register. A second fetch occurs during S4 of the same machine cycle. Execution is complete at the end of State 6 of this machine cycle.

The MOVX instructions take two machine cycles to execute. No program fetch is generated during the second cycle of a MOVX instruction. This is the only time program fetches are skipped. The fetch/execute sequence for MOVX instructions is shown in Figure 15(D).

The fetch/execute sequences are the same whether the Program Memory is internal or external to the chip. Execution times do not depend on whether the Program Memory is internal or external.

Figure 16 shows the signals and timing involved in program fetches when the Program Memory is external. If Program Memory is external, then the Program Memory read strobe $\overline{\text { PSEN }}$ is normally activated twice per machine cycle, as shown in Figure 16(A).

If an access to external Data Memory occurs, as shown in Figure 16(B), two PSENs are skipped, because the address and data bus are being used for the Data Memory access.

Note that a Data Memory bus cycle takes twice as much time as a Program Memory bus cycle. Figure 16 shows the relative timing of the addresses being emitted at Ports 0 and 2, and of ALE and PSEN. ALE is used to latch the low address byte from P0 into the address latch.

Figure 16. Bus Cycles in MCS®-51 Devices Executing from External Program Memory

When the CPU is executing from internal Program Memory, $\overline{\text { PSEN }}$ is not activated, and program addresses are not emitted. However, ALE continues to be activated twice per machine cycle and so is available as a clock output signal. Note, however, that one ALE is skipped during the execution of the MOVX instruction.

Interrupt Structure

The 8051 core provides 5 interrupt sources: 2 external interrupts, 2 timer interrupts, and the serial port interrupt. What follows is an overview of the interrupt structure for the 8051 . Other MCS-51 devices have additional interrupt sources and vectors as shown in Table 1. Refer to the appropriate chapters on other devices for further information on their interrupts.

INTERRUPT ENABLES

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the SFR

Figure 17. IE (Interrupt Enable) Register in the 8051
named IE (Interrupt Enable). This register also contains a global disable bit, which can be cleared to disable all interrupts at once. Figure 17 shows the IE register for the 8051 .

INTERRUPT PRIORITIES

Each interrupt source can also be individually programmed to one of two priority levels by setting or clearing a bit in the SFR named IP (Interrupt Priority). Figure 18 shows the IP register in the 8051.

A low-priority interrrupt can be interrupted by a highpriority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Figure 19 shows, for the 8051, how the IE and IP registers and the polling sequence work to determine which if any interrupt will be serviced.

Figure 18. IP (Interrupt Priority) Register in the $\mathbf{8 0 5 1}$

Figure 19. 8051 Interrupt Control System

In operation, all the interrupt flags are latched into the interrupt control system during State 5 of every machine cycle. The samples are polled during the following machine cycle. If the flag for an enabled interrupt is found to be set (1), the interrupt system generates an LCALL to the appropriate location in Program Memory, unless some other condition blocks the interrupt. Several conditions can block an interrupt, among them that an interrupt of equal or higher priority level is already in progress.

The hardware-generated LCALL causes the contents of the Program Counter to be pushed onto the stack, and reloads the PC with the beginning address of the service routine. As previously noted (Figure 3), the service routine for each interrupt begins at a fixed location.

Only the Program Counter is automatically pushed onto the stack, not the PSW or any other register. Having only the PC be automatically saved allows the programmer to decide how much time to spend saving which other registers. This enhances the interrupt response time, albeit at the expense of increasing the programmer's burden of responsibility. As a result, many interrupt functions that are typical in control applica-tions-toggling a port pin, for example, or reloading a timer, or unloading a serial buffer-can often be com-
pleted in less time than it takes other architectures to commence them.

SIMULATING A THIRD PRIORITY LEVEL IN SOFTWARE

Some applications require more than the two priority levels that are provided by on-chip hardware in MCS-51 devices. In these cases, relatively simple software can be written to produce the same effect as a third priority level.

First, interrupts that are to have higher priority than 1 are assigned to priority 1 in the IP (Interrupt Priority) register. The service routines for priority 1 interrupts that are supposed to be interruptible by "priority 2 " interrupts are written to include the following code:

As soon as any priority 1 interrupt is acknowledged, the IE (Interrupt Enable) register is re-defined so as to disable all but "priority 2 " interrupts. Then, a CALL to LABEL executes the RETI instruction, which clears the priority 1 interrupt-in-progress flip-flop. At this point any priority 1 interrupt that is enabled can be serviced, but only "priority 2 " interrupts are enabled.

POPping IE restores the original enable byte. Then a normal RET (rather than another RETI) is used to terminate the service routine. The additional software adds $10 \mu \mathrm{~s}$ (at 12 MHz) to priority 1 interrupts.

ADDITIONAL REFERENCES

The following application notes are found in the Embedded Control Applications handbook. (Order Number: 270648)

1. AP-69 "An Introduction to the Intel MCS ${ }^{\circledR}$-51 Sin-gle-Chip Microcomputer Family"
2. AP-70 "Using the Intel MCS®-51 Boolean Processing Capabilities"

MCS ${ }^{\circledR}$-51 Programmer's Guide and Instruction Set

MCS ${ }^{\circledR}$-51 Programmer’s Guide and Instruction Set

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

CONTENTS PAGE
MEMORY ORGANIZATION 6-4
PROGRAM MEMORY 6-4
Data Memory 6-5
INDIRECT ADDRESS AREA $6-7$
DIRECT AND INDIRECT ADDRESS AREA 6-7
SPECIAL FUNCTION REGISTERS 6-9
WHAT DO THE SFRs CONTAIN JUST AFTER POWER-ON OR A RESET $6-10$
SFR MEMORY MAP 6-11
PSW: PROGRAM STATUS WORD. BIT ADDRESSABLE 6-12
PCON: POWER CONTROL REGISTER. NOT BIT ADDRESSABLE 6-12
INTERRUPTS 6-13
IE: INTERRUPT ENABLE REGISTER. BIT ADDRESSABLE 6-13
ASSIGNING HIGHER PRIORITY TO ONE OR MORE INTERRUPTS 6-14
PRIORITY WITHIN LEVEL 6-14
IP: INTERRUPT PRIORITY REGISTER. BIT ADDRESSABLE 6-14
TCON: TIMER/COUNTER CONTROL REGISTER. BIT ADDRESSABLE 6-15
TMOD: TIMER/COUNTER MODE CONTROL REGISTER. NOT BIT ADDRESSABLE $6-15$
TIMER SET-UP 6-16
TIMER/COUNTER 0 6-16
TIMER/COUNTER 1 6-17
T2CON: TIMER/COUNTER 2 CONTROL REGISTER. BIT ADDRESSABLE 6-18
TIMER/COUNTER 2 SET-UP 6-19
SCON: SERIAL PORT CONTROL REGISTER. BIT ADDRESSABLE 6-20
CONTENTS
SERIAL PORT SET-UP 6-20
GENERATING BAUD RATES 6-20
Serial Port in Mode 0 6-20
Serial Port in Mode 1 6-20
USING TIMER/COUNTER 1 TOGENERATE BAUD RATES 6-21
CONTENTS PAGE
USING TIMER/COUNTER 2 TO GENERATE BAUD RATES 6-21
SERIAL PORT IN MODE 2 6-21
SERIAL PORT IN MODE 3 6-21
MCS®-51 INSTRUCTION SET 6-22
INSTRUCTION DEFINITIONS 6-29

The information presented in this chapter is collected from the MCS ${ }^{\circledR}$ - 51 Architectural Overview and the Hardware Description of the 8051,8052 and 80 C 51 chapters of this book. The material has been selected and rearranged to form a quick and convenient reference for the programmers of the MCS-51. This guide pertains specifically to the 8051, 8052 and 80C51.

MEMORY ORGANIZATION

PROGRAM MEMORY

The 8051 has separate address spaces for Program Memory and Data Memory. The Program Memory can be up to 64 K bytes long. The lower 4 K (8 K for the 8052) may reside on-chip.

Figure 1 shows a map of the 8051 program memory, and Figure 2 shows a map of the 8052 program memory.

Figure 1. The 8051 Program Memory

Figure 2. The 8052 Program Memory

Data Memory:

The 8051 can address up to 64 K bytes of Data Memory external to the chip. The "MOVX" instruction is used to access the external data memory. (Refer to the MCS-51 Instruction Set, in this chapter, for detailed description of instructions).

The 8051 has 128 bytes of on-chip RAM (256 bytes in the 8052) plus a number of Special Function Registers (SFRs). The lower 128 bytes of RAM can be accessed either by direct addressing (MOV data addr) or by indirect addressing (MOV @Ri). Figure 3 shows the 8051 and the 8052 Data Memory organization.

Figure 3a. The 8051 Data Memory

Figure 3b. The 8052 Data Memory

INDIRECT ADDRESS AREA:

Note that in Figure 3b the SFRs and the indirect address RAM have the same addresses ($80 \mathrm{H}-0 \mathrm{FFH}$). Nevertheless, they are two separate areas and are accessed in two different ways.

For example the instruction

$$
\text { MOV } \quad 80 \mathrm{H}, \# 0 \mathrm{AAH}
$$

writes OAAH to Port 0 which is one of the SFRs and the instruction
MOV RO, \#80H
MOV @R0,\#0BBH
writes 0 BBH in location 80 H of the data RAM. Thus, after execution of both of the above instructions Port 0 will contain OAAH and location 80 of the RAM will contain OBBH.

Note that the stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space in those devices which implement 256 bytes of internal RAM.

DIRECT AND INDIRECT ADDRESS AREA:

The 128 bytes of RAM which can be accessed by both direct and indirect addressing can be divided into 3 segments as listed below and shown in Figure 4.

1. Register Banks 0-3: Locations 0 through 1FH (32 bytes). ASM-51 and the device after reset default to register bank 0 . To use the other register banks the user must select them in the software (refer to the MCS-51 Micro Assembler User's Guide). Each register bank contains 8 one-byte registers, 0 through 7.

Reset initializes the Stack Pointer to location 07 H and it is incremented once to start from location 08 H which is the first register (RO) of the second register bank. Thus, in order to use more than one register bank, the SP should be intialized to a different location of the RAM where it is not used for data storage (ie, higher part of the RAM).
2. Bit Addressable Area: 16 bytes have been assigned for this segment, $20 \mathrm{H}-2 \mathrm{FH}$. Each one of the 128 bits of this segment can be directly addressed ($0-7 \mathrm{FH}$).

The bits can be referred to in two ways both of which are acceptable by the ASM-51. One way is to refer to their addresses, ie. 0 to 7 FH . The other way is with reference to bytes 20 H to 2 FH . Thus, bits $0-7$ can also be referred to as bits $20.0-20.7$, and bits $8-\mathrm{FH}$ are the same as $21.0-21.7$ and so on.

Each of the 16 bytes in this segment can also be addressed as a byte.
3. Scratch Pad Area: Bytes 30 H through 7FH are available to the user as data RAM. However, if the stack pointer has been initialized to this area, enough number of bytes should be left aside to prevent SP data destruction.

Figure 4 shows the different segments of the on-chip RAM.

Figure 4. 128 Bytes of RAM Direct and Indirect Addressable

SPECIAL FUNCTION REGISTERS:

Table 1 contains a list of all the SFRs and their addresses.
Comparing Table 1 and Figure 5 shows that all of the SFRs that are byte and bit addressable are located on the first column of the diagram in Figure 5.

Table 1

Symbol	Name	Address
${ }^{*}$ ACC	Accumulator	0 EOH
${ }^{*}$ B	B Register	0 FOH
*PSW	Program Status Word	0 DOH
SP	Stack Pointer	81 H
DPTR	Data Pointer 2 Bytes	
DPL	Low Byte	82 H
DPH	High Byte	83 H
*P0	Port 0	80 H
*P1	Port 1	90 H
*P2	Port 2	0 AOH
*P3	Port 3	0 BOH
*IP	Interrupt Priority Control	$0 \mathrm{B8H}$
*IE	Interrupt Enable Control	$0 \mathrm{A8H}$
TMOD	Timer/Counter Mode Control	89 H
*TCON	Timer/Counter Control	88 H
+T2CON	Timer/Counter 2 Control	$0 \mathrm{C8H}$
TH0	Timer/Counter 0 High Byte	8 CH
TL0	Timer/Counter 0 Low Byte	8 HH
TH1	Timer/Counter 1 High Byte	8 DH
TL1	Timer/Counter 1 Low Byte	8 BH
+TH2	Timer/Counter 2 High Byte	0 CDH
+TL2	Timer/Counter 2 Low Byte	0 CCH
+RCAP2H	T/C 2 Capture Reg. High Byte	0 CBH
+RCAP2L	T/C 2 Capture Reg. Low Byte	0 CAH
*SCON	Serial Control	98 H
SBUF	Serial Data Buffer	99 H
PCON	Power Control	87 H

[^4]
WHAT DO THE SFRs CONTAIN JUST AFTER POWER-ON OR A RESET?

Table 2 lists the contents of each SFR after power-on or a hardware reset.
Table 2. Contents of the SFRs after reset

Register	Value in Binary
*ACC	00000000
*B	00000000
*PSW	00000000
SP	00000111
DPTR	00000000
DPH	00000000
DPL	11111111
*P1	11111111
*P2	1111111
*P3	1111111
*IP	8051 XXX00000,
	8052 XXO00000
*IE	$80510 \times$ X00000,
	80520×000000
TMOD	00000000
*TCON	00000000
+T2CON	00000000
THO	00000000
TLO	00000000
TH1	00000000
TL1	00000000
+TH2	00000000
+TL2	00000000
+RCAP2H	00000000
+RCAP2L	00000000
*SCON	00000000
SBUF	Indeterminate
PCON	HMOS 0XXXXXXX

$X=$ Undefined

* = Bit Addressable
$+=8052$ only

Those SFRs that have their bits assigned for various functions are listed in this section. A brief description of each bit is provided for quick reference. For more detailed information refer to the Architecture Chapter of this book.

PSW: PROGRAM STATUS WORD. BIT ADDRESSABLE.

CY	AC	F0	RS1	RS0	OV	-	P

CY PSW. $7 \quad$ Carry Flag.

AC PSW. 6 Auxiliary Carry Flag.
F0 PSW. 5 Flag 0 available to the user for general purpose.
RS1 PSW. 4 Register Bank selector bit 1 (SEE NOTE 1).
RS0 PSW. 3 Register Bank selector bit 0 (SEE NOTE 1).
OV PSW. 2 Overflow Flag.

- PSW. 1 User definable flag.

P PSW. $0 \quad$ Parity flag. Set/cleared by hardware each instruction cycle to indicate an odd/even number of ' 1 ' bits in the accumulator.

NOTE:

1. The value presented by RS0 and RS1 selects the corresponding register bank.

RS1	RS0	Register Bank	Address
0	0	0	$00 \mathrm{H}-07 \mathrm{H}$
0	1	1	$08 \mathrm{H}-0 \mathrm{FH}$
1	0	2	$10 \mathrm{H}-17 \mathrm{H}$
1	1	3	$18 \mathrm{H}-1 \mathrm{FH}$

PCON: POWER CONTROL REGISTER. NOT BIT ADDRESSABLE.

SMOD	-	-	-	GF1	GF0	PD	IDL

SMOD Double baud rate bit. If Timer 1 is used to generate baud rate and SMOD $=1$, the baud rate is doubled when the Serial Port is used in modes 1, 2, or 3.

- Not implemented, reserved for future use.*
- Not implemented, reserved for future use.*
- Not implemented, reserved for future use.*

GF1 General purpose flag bit.
GF0 General purpose flag bit.
PD Power Down bit. Setting this bit activates Power Down operation in the 80C51BH. (Available only in CHMOS).
IDL Idle Mode bit. Setting this bit activates Idle Mode operation in the 80 C 51 BH . (Available only in CHMOS).
If 1 s are written to PD and IDL at the same time, PD takes precedence.
*User software should not write 1 s to reserved bits. These bits may be used in future MCS-51 products to invoke new features. In that case, the reset or inactive value of the new bit will be 0 , and its active value will be 1 .

INTERRUPTS:

In order to use any of the interrupts in the MCS-51, the following three steps must be taken.

1. Set the EA (enable all) bit in the IE register to 1 .
2. Set the corresponding individual interrupt enable bit in the IE register to 1 .
3. Begin the interrupt service routine at the corresponding Vector Address of that interrupt. See Table below.

Interrupt Source	Vector Address
IE0	0003 H
TF0	000 BH
IE1	0013 H
TF1	001 BH
RI TI	0023 H
TF2 \& EXF2	002 BH

In addition, for external interrupts, pins $\overline{\mathrm{INT0}}$ and $\overline{\mathrm{INT}}$ (P3.2 and P3.3) must be set to 1, and depending on whether the interrupt is to be level or transition activated, bits IT0 or IT1 in the TCON register may need to be set to 1.

ITx = 0 level activated
ITx $=1$ transition activated

IE: INTERRUPT ENABLE REGISTER. BIT ADDRESSABLE.

If the bit is 0 , the corresponding interrupt is disabled. If the bit is 1 , the corresponding interrupt is enabled.

$E A$	-	$E T 2$	$E S$	ET1	EX1	ET0	EX0

EA IE. 7 Disables all interrupts. If $\mathrm{EA}=0$, no interrupt will be acknowledged. If $\mathrm{EA}=1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.

- IE. 6 Not implemented, reserved for future use.*

ET2 IE. 5 Enable or disable the Timer 2 overflow or capture interrupt (8052 only).
ES IE. 4 Enable or disable the serial port interrupt.
ET1 IE. 3 Enable or disable the Timer 1 overflow interrupt.
EX1 IE. 2 Enable or disable External Interrupt 1.
ET0 IE. 1 Enable or disable the Timer 0 overflow interrupt.
EX0 - IE. 0 Enable or disable External Interrupt 0.
*User software should not write 1s to reserved bits. These bits may be used in future MCS-51 products to invoke new features. In that case, the reset or inactive value of the new bit will be 0 , and its active value will be 1 .

ASSIGNING HIGHER PRIORITY TO ONE OR MORE INTERRUPTS:

In order to assign higher priority to an interrupt the corresponding bit in the IP register must be set to 1 .
Remember that while an interrupt service is in progress, it cannot be interrupted by a lower or same level interrupt.

PRIORITY WITHIN LEVEL:

Priority within level is only to resolve simultaneous requests of the same priority level.
From high to low, interrupt sources are listed below:
IE0
TF0
IE1
TF1
RI or TI
TF2 or EXF2

IP: INTERRUPT PRIORITY REGISTER. BIT ADDRESSABLE.

If the bit is 0 , the corresponding interrupt has a lower priority and if the bit is 1 the corresponding interrupt has a higher priority.

-	-	PT2	PS	PT1	PX1	PT0	PX0

- IP. 7 Not implemented, reserved for future use.*
- IP. 6 Not implemented, reserved for future use.*

PT2 IP. 5 Defines the Timer 2 interrupt priority level'(8052 only).
PS IP. 4 Defines the Serial Port interrupt priority level.
PT1 IP. 3 Defines the Timer 1 interrupt priority level.
PX1 IP. 2 Defines External Interrupt 1 priority level.
PT0 IP. 1 Defines the Timer 0 interrupt priority level.
PX0 IP. 0 Defines the External Interrupt 0 priority level.
*User software should not write 1 s to reserved bits. These bits may be used in future MCS- 51 products to invoke
new features. In that case, the reset or inactive value of the new bit will be 0 , and its active value will be 1 .

TCON: TIMER/COUNTER CONTROL REGISTER. BIT ADDRESSABLE.

TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

TF1 TCON. 7 Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by hardware as processor vectors to the interrupt service routine.
TR1 TCON. 6 Timer 1 run control bit. Set/cleared by software to turn Timer/Counter 1 ON/OFF.
TF0 TCON. 5 Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by hardware as processor vectors to the service routine.
TR0 TCON. 4 Timer 0 run control bit. Set/cleared by software to turn Timer/Counter 0 ON/OFF.
IE1 TCON. 3 External Interrupt 1 edge flag. Set by hardware when External Interrupt edge is detected. Cleared by hardware when interrupt is processed.
IT1 TCON. 2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered External Interrupt.
IEO TCON. 1 External Interrupt 0 edge flag. Set by hardware when External Interrupt edge detected. Cleared by hardware when interrupt is processed.
ITO TCON. 0 Interrupt 0 type control bit. Set/cleared by software to specify falling edge/low level triggered External Interrupt.

TMOD: TIMER/COUNTER MODE CONTROL REGISTER. NOT BIT ADDRESSABLE.

GATE	$\mathrm{C} / \overline{\mathrm{T}}$	M 1	M0	GATE	$\mathrm{C} / \overline{\mathrm{T}}$	M1	M0

TIMER 1
TIMER 0
GATE When TRx (in TCON) is set and GATE = 1, TIMER/COUNTERx will run only while INTx pin is high (hardware control). When GATE $=0$, TIMER/COUNTERx will run only while TRx $=1$ (software control).
$\mathrm{C} / \overline{\mathrm{T}} \quad$ Timer or Counter selector. Cleared for Timer operation (input from internal system clock). Set for Counter operation (input from Tx input pin).
M1 Mode selector bit. (NOTE 1)
M0 Mode selector bit. (NOTE 1)
NOTE 1:

M1	M0	Operating Mode	
0	0	0	13-bit Timer (MCS-48 compatible)
0	1	1	16-bit Timer/Counter
1	0	2	8-bit Auto-Reload Timer/Counter
1	1	3	(Timer 0) TLO is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits, THO is an 8-bit Timer and is controlled by Timer 1 control bits.
1	1	3	(Timer 1) Timer/Counter 1 stopped.

TIMER SET-UP

Tables 3 through 6 give some values for TMOD which can be used to set up Timer 0 in different modes.
It is assumed that only one timer is being used at a time. If it is desired to run Timers 0 and 1 simultaneously, in any mode, the value in TMOD for Timer 0 must be ORed with the value shown for Timer 1 (Tables 5 and 6).

For example, if it is desired to run Timer 0 in mode 1 GATE (external control), and Timer 1 in mode 2 COUNTER, then the value that must be loaded into TMOD is $69 \mathrm{H}(09 \mathrm{H}$ from Table 3 ORed with 60 H from Table 6).

Moreover, it is assumed that the user, at this point, is not ready to turn the timers on and will do that at a different point in the program by setting bit TRx (in TCON) to 1.

TIMER/COUNTER 0

As a Timer:

Table 3

| MODE | $\begin{array}{c}\text { TIMER 0 } \\ \text { FUNCTION }\end{array}$ | $\begin{array}{c}\|c\| \\$\end{array} | $\begin{array}{c}\text { INTERNAL } \\ \text { CONTROL } \\ \text { (NOTE 1) }\end{array}$ |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}EXTERNAL

CONTROL

(NOTE 2)\end{array}\right]\)| 0 | 13-bit Timer | 00 H | 08 H |
| :---: | :---: | :---: | :---: |
| 1 | 16-bit Timer | 01 H | 09 H |
| 2 | 8-bit Auto-Reload | 02 H | OAH |
| 3 | two 8-bit Timers | 03H | OBH |

As a Counter:

Table 4

MODE	COUNTER 0		
	FUNCTION	$\|c\|$ INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)
0	13-bit Timer	04 H	OCH
1	16-bit Timer	05 H	ODH
2	8-bit Auto-Reload	06 H	OEH
3	one 8-bit Counter	07 H	OFH

NOTES:

1. The Timer is turned ON/OFF by setting/clearing bit TRO in the software.
2. The Timer is turned ON/OFF by the 1 to 0 transition on INTO (P3.2) when TRO $=1$
(hardware control).

TIMER/COUNTER 1

As a Timer:

Table 5

MODE	-	TMOD	
	TIMER 1 FUNCTION	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)
0	13-bit Timer	00 H	80 H
1	16-bit Timer	10 H	90 H
2	8-bit Auto-Reload	20 H	AOH
3	does not run	30 H	BOH

As a Counter:

Table 6

MODE	TMOD		
		INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)
0		40 H	COH
1	13-bit Timer	16-bit Timer	50 H
2	8-bit Auto-Reload	60 H	DOH
3	not available	-	EOH

NOTES:

1. The Timer is turned ON/OFF by setting/clearing bit TR1 in the software.
2. The Timer is turned ON/OFF by the 1 to 0 transition on $\overline{N T 1}$ (P3.3) when TR1 $=1$ (hardware control).

T2CON: TIMER/COUNTER 2 CONTROL REGISTER. BIT ADDRESSABLE

8052 Only

TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/Tर2	CP/ㅎR2

TF2 T2CON. 7 Timer 2 overflow flag set by hardware and cleared by software. TF2 cannot be set when either RCLK $=1$ or CLK $=1$
EXF2 T2CON. 6 Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX, and EXEN2 $=1$. When Timer 2 interrupt is enabled, EXF2 $=1$ will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.
RCLK T2CON. 5 Receive clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its receive clock in modes $1 \& 3$. RCLK $=0$ causes Timer 1 overflow to be used for the receive clock.
TLCK T2CON. 4 Transmit clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its transmit clock in modes $1 \& 3$. TCLK $=0$ causes Timer 1 overflows to be used for the transmit clock.
EXEN2 T2CON. 3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of negative transition on T2EX if Timer 2 is not being used to clock the Serial Port. EXEN2 $=0$ causes Timer 2 to ignore events at T2EX.
TR2 T2CON. 2 Software START/STOP control for Timer 2. A logic 1 starts the Timer.
C/T2 T2CON. 1 Timer or Counter select.
$0=$ Internal Timer. $1=$ External Event Counter (falling edge triggered).
$\mathrm{CP} / \overline{\mathrm{RL} 2}$ T2CON. 0 Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 $=1$. When cleared, Auto-Reloads will occur either with Timer 2 overflows or negative transitions at T2EX when EXEN2 $=1$. When either RCLK $=1$ or TCLK $=1$, this bit is ignored and the Timer is forced to Auto-Reload on Timer 2 overflow.

TIMER/COUNTER 2 SET-UP

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the Timer on.

As a Timer:

Table 7

MODE	T2CON	
	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)
16-bit Auto-Reload	00 H	08 H
16-bit Capture	01 H	09 H
BAUD rate generator receive \&	34 H	36 H
transmit same baud rate	24 H	26 H
receive only	14 H	16 H
transmit only		

As a Counter:

Table 8

MODE	TMOD	
	INTERNAL	EXTERNAL
	CONTROL (NOTE 1)	CONTROL (NOTE 2)
16-bit Auto-Reload	02H	OAH
16-bit Capture	03 H	OBH

NOTES:

1. Capture/Reload occurs only on Timer/Counter overflow.
2. Capture/Reload occurs on Timer/Counter overflow and a 1 to 0 transition on T2EX
(P1.1) pin except when Timer 2 is used in the baud rate generating mode.

SCON: SERIAL PORT CONTROL REGISTER. BIT ADDRESSABLE.

SM0	SM1	SM2	REN	TB8	RB8	TI	RI

SM0 SCON. 7 Serial Port mode specifier. (NOTE 1).
SM1 SCON. 6 Serial Port mode specifier. (NOTE 1).
SM2 - SCON. 5 Enables the multiprocessor communication feature in modes $2 \& 3$. In mode 2 or 3, if SM2 is set to 1 then RI will not be activated if the received 9th data bit (RB8) is 0 . In mode 1, if SM2 $=1$ then RI will not be activated if a valid stop bit was not received. In mode 0 , SM2 should be 0 . (See Table 9).

REN SCON. 4 Set/Cleared by software to Enable/Disable reception.
TB8 SCON. 3 The 9th bit that will be transmitted in modes $2 \& 3$. Set/Cleared by software.
RB8 SCON. 2 In modes $2 \& 3$, is the 9th data bit that was received. In mode 1, if SM2 $=0$, RB8 is the stop bit that was received. In mode 0, RB8 is not used.
TI SCON. 1 Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the stop bit in the other modes. Must be cleared by software.
RI SCON. 0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or halfway through the stop bit time in the other modes (except see SM2). Must be cleared by software.

NOTE 1:

SM0	SM1	Mode	Description	Baud Rate
0	0	0	SHIFT REGISTER	Fosc./12
0	1	1	8-Bit UART	Variable
1	0	2	9-Bit UART	Fosc./64 OR
1	1	3	9-Bit UART	Fosc./32
			Variable	

SERIAL PORT SET-UP:

Table 9

MODE	SCON	SM2 VARIATION
0	10 H	Single Processor
1	50H	Environment
2	90 H	(SM2 $=0$)
3	DOH	
0	NA	Multiprocessor
1	70 H	Environment
2	BOH	(SM2 $=1$)
	FOH	

GENERATING BAUD RATES

Serial Port in Mode 0:

Mode 0 has a fixed baud rate which is $1 / 12$ of the oscillator frequency. To run the serial port in this mode none of the Timer/Counters need to be set up. Only the SCON register needs to be defined.

$$
\text { Baud Rate }=\frac{\text { Osc Freq }}{12}
$$

Serial Port in Mode 1:

Mode 1 has a variable baud rate. The baud rate can be generated by either Timer 1 or Timer 2 (8052 only).

USING TIMER/COUNTER 1 TO GENERATE BAUD RATES:

For this purpose, Timer 1 is used in mode 2 (Auto-Reload). Refer to Timer Setup section of this chapter.

$$
\text { Baud Rate }=\frac{K \times \text { Oscillator Freq. }}{32 \times 12 \times[256-(\mathrm{TH} 1)]}
$$

If $\operatorname{SMOD}=0$, then $K=1$.
If $\mathrm{SMOD}=1$, then $\mathrm{K}=2$. (SMOD is the PCON register).
Most of the time the user knows the baud rate and needs to know the reload value for TH1.
Therefore, the equation to calculate TH1 can be written as:

$$
\mathrm{TH} 1=256-\frac{\mathrm{K} \times \text { Osc Freq. }}{384 \times \text { baud rate }}
$$

TH1 must be an integer value. Rounding off TH1 to the nearest integer may not produce the desired baud rate. In this case, the user may have to choose another crystal frequency.

Since the PCON register is not bit addressable, one way to set the bit is logical ORing the PCON register. (ie, ORL PCON, \# 80 H). The address of PCON is 87 H .

USING TIMER/COUNTER 2 TO GENERATE BAUD RATES:

For this purpose, Timer 2 must be used in the baud rate generating mode. Refer to Timer 2 Setup Table in this chapter. If Timer 2 is being clocked through pin T 2 (P 1.0) the baud rate is:

$$
\text { Baud Rate }=\frac{\text { Timer 2 Overflow Rate }}{16}
$$

And if it is being clocked internally the baud rate is:

$$
\text { Baud Rate }=\frac{\text { Osc Freq }}{32 \times[65536-(\text { RCAP2H, RCAP2L })]}
$$

To obtain the reload value for RCAP2H and RCAP2L the above equation can be rewritten as:

$$
\text { RCAP2H, RCAP2L }=65536-\frac{\text { Osc Freq }}{32 \times \text { Baud Rate }}
$$

SERIAL PORT IN MODE 2:

The baud rate is fixed in this mode and is $1 / 32$ or $1 / 64$ of the oscillator frequency depending on the value of the SMOD bit in the PCON register.

In this mode none of the Timers are used and the clock comes from the internal phase 2 clock.
SMOD $=1$, Baud Rate $=1 / 32$ Osc Freq.
SMOD $=0$, Baud Rate $=1 / 64$ Osc Freq.
To set the SMOD bit: ORL PCON, \#80H. The address of PCON is 87 H .

SERIAL PORT IN MODE 3:

The baud rate in mode 3 is variable and sets up exactly the same as in mode 1.

MCS ${ }^{\circledR-51}$ INSTRUCTION SET

Table 10. 8051 Instruction Set Summary

Mnemonic		Description	Byte	Oscillator Period
ARITHMETIC OPERATIONS				
ADD	A,Rn	Add register to Accumulator	1	12
ADD	A, direct	Add direct byte to Accumulator	2	12
ADD	A,@Ri	Add indirect RAM to Accumulator	1	12
ADD	A, \# data	Add immediate data to Accumulator	2	12
ADDC	A,Rn	Add register to Accumulator with Carry	1	12
ADDC	A, direct	Add direct byte to Accumulator with Carry	2	12
ADDC	A,@Ri	Add indirect RAM to Accumulator with Carry	1	12
ADDC	A, \# data	Add immediate data to Acc with Carry	2	12
SUBB	A,Rn	Subtract Register from Acc with borrow	1	12
SUBB	A, direct	Subtract direct byte from Acc with borrow	2	12
SUBB	A,@Ri	Subtract indirect RAM from ACC with borrow	1	12
SUBB	A, \# data	Subtract immediate data from Acc with borrow	2	12
INC	A	Increment Accumulator	1	12
INC	Rn	Increment register	1	12
INC	direct	Increment direct byte	2	12
INC	@Ri	Increment direct RAM	1	12
DEC	A	Decrement Accumulator	1	12
DEC	Rn	Decrement Register	1	12
DEC	direct	Decrement direct byte	2	12
DEC	@Ri	Decrement indirect RAM	1	12

All mnemonics copyrighted © Intel Corporation 1980

Table 10. 8051 Instruction Set Summary (Continued)

Table 10. 8051 Instruction Set Summary (Continued)

Mnemonic		Description	Byte	Oscillator Period	Mne	onic	Description	Byte	Oscillator Period
DATA TRANSFER (Continued)					BOOLEAN VARIABLE MANIPULATION				
MOV	@Ri,direct	Move direct	2	24	CLR	C	Clear Carry	1	12
		byte to			CLR	bit	Clear direct bit	2	12
		indirect RAM			SETB	C	Set Carry	1	12
MOV	@Ri, \# data	Move	2	12	SETB	bit	Set direct bit	2	12
		immediate			CPL	C	Complement	1	12
		data to indirect RAM			CPL	bit	Carry Complement	2	12
MOV	DPTR, \# data16	Load Data	3	24			direct bit		
		Pointer with a 16-bit constant			ANL	C,bit	AND direct bit to CARRY	2	24
MOVC	A,@A+DPTR	Move Code byte relative to DPTR to Acc	1	24	ANL	C,/bit	AND complement of direct bit to Carry	2	24
MOVC	$A, @ A+P C$	Move Code byte relative to	1	24	ORL	C, bit	OR direct bit to Carry	2	24
		PC to Acc			ORL	C,/bit	OR complement	2	24
MOVX	A,@Ri	Move External	1	24			of direct bit to Carry		
		RAM (8-bit addr) to Acc			MOV	C,bit	Move direct bit to Carry	2	12
MOVX	A,@DPTR	Move External	1	24	MOV	bit,C	Move Carry to direct bit	2	24
		RAM (16-bit addr) to Acc			JC	rel	Jump if Carry is set	2	24
MOVX	@Ri,A	Move Acc to External RAM	1	24	JNC	rel	Jump if Carry not set	2	24
		(8-bit addr)			JB	bit,rel	Jump if direct	3	24
MOVX	@DPTR,A	Move Acc to	1	24			Bit is set		
		External RAM (16-bit addr)			JNB	bit,rel	Jump if direct Bit is Not set	3	24
PUSH	direct	Push direct byte onto stack	2	24	JBC	bit,rel	Jump if direct Bit is set \& clear bit	3	24
POP	direct	Pop direct byte from stack	2	24	PROGR ACALL	AM BRA addr11	CHING Absolute Subroutine	2	24
XCH	$A, R n$	Exchange register with Accumulator	1	12	LCALL	addr16	Call Long Subroutine	3	24
XCH	A,direct	Exchange direct byte with	2	12	RET		Call Return from Subroutine	1	24
		Accumulator			RETI		Return from	1	24
XCH	A,@Ri	Exchange indirect RAM with	1	12	AJMP	addr11	interrupt Absolute Jump	2	24
		Accumulator			LJMP	addr16	Long Jump	3	24
XCHD	A,@Ri	Exchange loworder Digit	1	12	SJMP	rel	Short Jump (relative addr)	2	24

All mnemonics copyrighted ©Intel Corporation 1980

Table 10. 8051 Instruction Set Summary (Continued)

Mnemonic	Description	Byte	Oscillator Period	
PROGRAM BRANCHING (Continued) JMP @A + DPTR	Jump indirect relative to the	1	24	
JNZ	rel	DPTR Jump if	2	24
CJNE A, direct,rel	Accumulator is Zero Jump if Accumulator is Not Zero Compare direct byte to Acc and Jump if Not Equal	2	24	
CJNE A, \# data,rel	Compare immediate to	3	24	
Acc and Jump if Not Equal		24		

| Mnemonic | Description | Byte | Oscillator
 Period |
| :---: | :---: | :--- | :---: | :---: |
| PROGRAM BRANCHING (Continued)
 CJNE
 Rn, \# data,rel
 Compare
 immediate to
 register and
 Jump if Not | 3 | 24 | |
| CJNE @Ri, \# data,rel | Equal
 Compare
 immediate to
 indirect and
 Jump if Not | 3 | 24 |
| DJNZ Rn,rel | Equal
 Decrement
 register and
 Jump if Not
 Zero
 Decrement
 direct byte
 and Jump if | 2 | 24 |
| DJNZ direct,rel | Not Zero
 No Operation | 1 | 12 |

All mnemonics copyrighted ©Intel Corporation 1980

Table 11. Instruction Opcodes in Hexadecimal Order

Hex Code	Number of Bytes	Mnemonic	Operands	Hex Code	Number of Bytes	Mnemonic	Operands
00	1	NOP		33	1	RLC	A
01	2	AJMP	code addr	34	2	ADDC	A, \# data
02	3	LJMP	code addr	35	2	ADDC	A,data addr
03	1	RR	A	36	1	ADDC	A,@R0
04	1	INC	A	37	1	ADDC	A,@R1
05	2	INC	data addr	38	1	ADDC	A,Ro
06	1	INC	@R0	39	1	ADDC	A,R1
07	1	INC	@R1	3A	1	ADDC	A,R2
08	1	INC	R0	3B	1	ADDC	A,R3
09	1	INC	R1	3C	1	ADDC	A,R4
OA	1	INC	R2	3D	1	ADDC	A,R5
OB	1	INC	R3	3E	1	ADDC	A,R6
OC	1	INC	R4	3F	1	ADDC	A,R7
OD	1	INC	R5	40	2	JC	code addr
OE	1	INC	R6	41	2	AJMP	code addr
OF	1	INC	R7	42	2	ORL	data addr, A
10	3	JBC	bit addr, code addr	43	3	ORL	data addr, \# data
11	2	ACALL	code addr	44	2	ORL	A, \# data
12	3	LCALL	code addr	45	2	ORL	A,data addr
13	1	RRC	A	46	1	ORL	A,@RO
14	1	DEC	A	47	1	ORL	A,@R1
15	2	DEC	data addr	48	1	ORL	A,R0
16	1	DEC	@R0	49	1	ORL	A,R1
17	1	DEC	@R1	4A	1	ORL	A,R2
18	1	DEC	R0	4B	1	ORL	A,R3
19	1	DEC	R1	4 C	1	ORL	A,R4
1A	1	DEC	R2	4D	1	ORL	A,R5
1 B	1	DEC	R3	4E	1	ORL	A,R6
1 C	1	DEC	R4	4F	1	ORL	A,R7
1 D	1	DEC	R5	50	2	JNC	code addr
1 E	1	DEC	R6	51	2	ACALL	code addr
1 F	1	DEC	R7	52	2	ANL	data addr, A
20	3	JB	bit addr, code addr	53	3	ANL	data addr, \# data
21	2	AJMP	code addr	54	2	ANL	A, \# data
22	1	RET		55	2	ANL	A,data addr
23	1	RL	A	56	1	ANL	A,@R0
24	2	ADD	A, \# data	57	1	ANL	A,@R1
25	2	ADD	A,data addr	58	1	ANL	A,RO
26	1	ADD	A,@RO	59	1	ANL	A,R1
27	1	ADD	A,@R1	5A	1	ANL	A,R2
28	1	ADD	A,RO	5B	1	ANL	A,R3
29	1	ADD	A,R1	5C	1	ANL	A,R4
2A	1	ADD	A,R2	5D	1	ANL	A,R5
2B	1	ADD	A,R3	5E	1	ANL	A,R6
2 C	1	ADD	A,R4	5F	1	ANL	A,R7
2D	1	ADD	A,R5	60	2	JZ	code addr
2E	1	ADD	A,R6	61	2	AJMP	code addr
2F	1	ADD	A,R7	62	2	XRL	data addr, A
30	3	JNB	bit addr, code addr	63	3	XRL	data addr, \# data
31	2	ACALL	code addr	64	2	XRL	A, \# data
32	1	RETI		65	2	XRL	A,data addr

Table 11. Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code	Number of Bytes	Mnemonic	Operands	Hex Code	Number of Bytes	Mnemonic	Operands
66	1	XRL	A,@R0	99	1	SUBB	A,R1
67	1	XRL	A,@R1	9A	1	SUBB	A,R2
68	1	XRL	A,RO	9 B	1	SUBB	A,R3
69	1	XRL	A,R1	9C	1	SUBB	A,R4
6A	1	XRL	A,R2	9 D	1	SUBB	A,R5
6B	1	XRL	A,R3	9 E	1	SUBB	A,R6
6C	1	XRL	A,R4	9F	1	SUBB	A,R7
6D	1	XRL	A,R5	AO	2	ORL	C,/bit addr
6E	1	XRL	A,R6	A1	2	AJMP	code addr
6F	1	XRL	A,R7	A2	2	MOV	C,bit addr
70	2	JNZ	code addr	A3	1	INC	DPTR
71	2	ACALL	code addr	A4	1	MUL	$A B$
72	2	ORL	C,bit addr	A5		reserved	
73	1	JMP	@A+DPTR	A6	2	MOV	@R0,data addr
74	2	MOV	A, \# data	A7	2	MOV	@R1,data addr
75	3	MOV	data addr, \# data	A8	2	MOV	R0,data addr
76	2	MOV	@RO, \# data	A9	2	MOV	R1, data addr
77	2	MOV	@R1, \# data	AA	2	MOV	R2,data addr
78	2	MOV	RO,\# data	$A B$	2	MOV	R3, data addr
79	2	MOV	R1, \# data	AC	2	MOV	R4,data addr
7A	2	MOV	R2, \# data	AD	2	MOV	R5,data addr
7B	2	MOV	R3,\# data	AE	2	MOV	R6, data addr
7C	2	MOV	R4, \# data	AF	2	MOV	R7,data addr
7D	2	MOV	R5, \# data	B0	2	ANL	C,/bit addr
7E	2	MOV	R6, \# data	B1	2	ACALL	code addr
7F	2	MOV	R7, \# data	B2	2	CPL	bit addr
80	2	SJMP	code addr	B3	1	CPL	C
81	2	AJMP	code addr	B4	3	CJNE	A, \# data,code addr
82	2	ANL	C,bit addr	B5	3	CJNE	A,data addr,code addr
83	1	MOVC	A,@A+PC	B6	3	CJNE	@RO, \# data,code addr
84	1	DIV	AB	B7	3	CJNE	@R1, \# data,code addr
85	3	MOV	data addr, data addr	B8	3	CJNE	RO, \# data,code addr
86	2	MOV	data addr,@R0	B9	3	CJNE	R1, \# data, code addr
87	2	MOV	data addr,@R1	BA	3	CJNE	R2,\#data,code addr
88	2	MOV	data addr,R0	BB	3	CJNE	R3, \# data,code addr
89	2	MOV	data addr,R1	BC	3	CJNE	R4, \# data,code addr
8A	2	MOV	data addr,R2	BD	3	CJNE	R5, \# data,code addr
8B	2	MOV	data addr,R3	BE	3	CJNE	R6, \# data,code addr
8C	2	MOV	data addr,R4	BF	3	CJNE	R7, \# data,code addr
8D	2	MOV	data addr,R5	C0	2	PUSH	data addr
8E	2	MOV	data addr,R6	C1	2	AJMP	code addr
8F	2	MOV	data addr,R7	C2	2	CLR	bit addr
90	3	MOV	DPTR, \# data	C3	1	CLR	C
91	2	ACALL	code addr	C4	1	SWAP	A
92	2	MOV	bit addr,C	C5	2	XCH	A, data addr
93	1	MOVC	A,@A+DPTR	C6	1	XCH	A,@R0
94	2	SUBB	A, \# data	C7	1	XCH	A,@R1
95	2	SUBB	A,data addr	C8	1	XCH	A, RO
96	1	SUBB	A,@RO	C9	1	XCH	A,R1
97	1	SUBB	A,@R1	CA	1	XCH	A,R2
98	1	SUBB	A,RO	CB	1	XCH	A,R3

Table 11. Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code	Number of Bytes	Mnemonic	Operands	Hex Code	Number of Bytes	Mnemonic	Operands
CC	1	XCH	A,R4	E6	1	MOV	A,@R0
CD	1	XCH	A,R5	E7	1	MOV	A,@R1
CE	1	XCH	A,R6	E8	1	MOV	A,R0
CF	1	XCH	A,R7	E9	1	MOV	A,R1
DO	2	POP	data addr	EA	1	MOV	A,R2
D1	2	ACALL	code addr	EB	1	MOV	A,R3
D2	2	SETB	bit addr	EC	1	MOV	A,R4
D3	1	SETB	C	ED	1	MOV	A,R5
D4	1	DA	A	EE	1	MOV	A,R6
D5	3	DJNZ	data addr,code addr	EF	1	MOV	A,R7
D6	1	XCHD	A,@R0	F0	1	MOVX	@DPTR,A
D7	1	XCHD	A,@R1	F1	2	ACALL	code addr
D8	2	DJNZ	R0,code addr	F2	1	MOVX	@RO,A
D9	2	DJNZ	R1,code addr	F3	1	MOVX	@R1,A
DA	2	DJNZ	R2,code addr	F4	1	CPL	A
DB	2	DJNZ	R3,code addr	F5	2	MOV	data addr, A
DC	2	DJNZ	R4,code addr	F6	1	MOV	@RO,A
DD	2	DJNZ	R5, code addr	F7	1	MOV	@R1,A
DE	2	DJNZ	R6,code addr	F8	1	MOV	R0,A
DF	2	DJNZ	R7, code addr	F9	1	MOV	R1,A
E0	1	MOVX	A,@DPTR	FA	1	MOV	R2,A
E1	2	AJMP	code addr	FB	1	MOV	R3, A
E2	1	MOVX	A, @R0	FC	1	MOV	R4,A
E3	1	MOVX	A,@R1	FD	1	MOV	R5,A
E4	1	CLR	A	FE	1	MOV	R6,A
E5	2	MOV	A,data addr	FF	1	MOV	R7,A

INSTRUCTION DEFINITIONS

ACALL addr11

Function: Absolute Call
Description: ACALL unconditionally calls a subroutine located at the indicated address. The instruction increments the PC twice to obtain the address of the following instruction, then pushes the 16 -bit result onto the stack (low-order byte first) and increments the Stack Pointer twice. The destination address is obtained by successively concatenating the five high-order bits of the incremented PC, opcode bits 7-5, and the second byte of the instruction. The subroutine called must therefore start within the same 2 K block of the program memory as the first byte of the instruction following ACALL. No flags are affected.

Example: Initially SP equals 07 H . The label "SUBRTN" is at program memory location 0345 H . After executing the instruction,

ACALL SUBRTN

at location 0123 H , SP will contain 09 H , internal RAM locations 08 H and 09 H will contain 25 H and 01 H , respectively, and the PC will contain 0345 H .

Bytes: 2

Cycles: 2

Encoding: \quad\begin{tabular}{|l|llll|}
\hline a10 a9 a8 1 \& 0 \& 0 \& 0 \& 1

\hline

\quad

\hline a7 a6 a5 a4 \& a3 a2 a1 a0

\hline
\end{tabular}

Operation: ACALL

$(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$
$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$
$((\mathrm{SP})) \leftarrow\left(\mathrm{PC}_{7-0}\right)$
$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$
$((S P)) \leftarrow\left(\mathrm{PC}_{15-8}\right)$
$\left(\mathrm{PC}_{10-0}\right) \leftarrow$ page address

ADD A,<src-byte>

Function: Add
Description: ADD adds the byte variable indicated to the Accumulator, leaving the result in the Accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7 , or a carry-out of bit 7 but not bit 6 ; otherwise OV is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C3H (11000011B) and register 0 holds OAAH (10101010B). The instruction,
ADD A,R0
will leave 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry flag and OV set to 1 .

ADD A,Rn
Bytes: 1
Cycles: 1

Encoding: | 0 | 0 | 1 | 0 | 1 rrr |
| :--- | :--- | :--- | :--- | :--- |

Operation: ADD
$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Rn})$
ADD A,direct
Bytes: 2
Cycles: 1

Encoding: | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad direct address

Operation: ADD
$(\mathrm{A}) \leftarrow(\mathrm{A})+($ direct $)$

```
ADD A,@Ri
    Bytes: 1
    Cycles: 1
    Encoding: }\begin{array}{lllll:llll}{0}&{0}&{1}&{0}&{0}&{1}&{1}&{1}\\{\hline}
Operation: ADD
    (A)}\leftarrow(\textrm{A})+((\mp@subsup{\textrm{R}}{\textrm{i}}{})
ADD A,#data
    Bytes: 2
    Cycles: 1
    Encoding: }\begin{array}{lllll:llll}{0}&{0}&{1}&{0}&{0}&{1}&{0}&{0}\\{\hline}\end{array}\quad\begin{array}{l}{\mathrm{ immediate data}}\\{\hline}
    Operation: ADD
    (A)}\leftarrow(A)+ #data
```

ADDC A,<src-byte>

Function: Add with Carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator contents, leaving the result in the Accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) with the carry flag set. The instruction,

ADDC A,R0
will leave 6EH (01101110B) in the Accumulator with AC cleared and both the Carry flag and OV set to 1 .

ADDC A,Rn

Bytes: 1
Cycles: 1

Encoding: | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |

Operation: ADDC

$$
(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{C})+\left(\mathrm{R}_{\mathrm{n}}\right)
$$

ADDC A,direct
Bytes: 2
Cycles: 1

Encoding: \begin{tabular}{|llllllll|}
\hline 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1

\hline

\quad

direct address

\hline
\end{tabular}

Operation: ADDC
$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{C})+($ direct $)$
ADDC A,@Ri
Bytes: 1
Cycles: 1

Encoding: | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: ADDC
$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{C})+\left(\left(\mathrm{R}_{\mathrm{i}}\right)\right)$
ADDC A,\#data
Bytes: 2
Cycles: 1

Encoding: \begin{tabular}{|llll|llll|}
\hline 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 0

\hline

\quad

immediate data

\hline
\end{tabular}

Operation: ADDC
$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{C})+$ \# data

Function:	Absolute Jump			
Description:	AJMP transfers program execution to the indicated address, which is formed at run-time by concatenating the high-order five bits of the PC (after incrementing the PC twice), opcode bits $7-5$, and the second byte of the instruction. The destination must therefore be within the same 2 K block of program memory as the first byte of the instruction following AJMP.			
Example:	The label "JMPADR" is at program memory location 0123H. The instruction,			
	AJMP JMPADR			
	is at location 0345 H and will load the PC with 0123 H .			
Bytes:	2			
Cycles:	2			
Encoding:	a10 a9 a8 0	0001	a7 a6 a5 a4	a3 a2 a1 a0
Operation:	AJMP $(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$ $\left(\mathrm{PC}_{10-0}\right) \leftarrow$ page address			

ANL <dest-byte>,<src-byte>

Function: Logical-AND for byte variables
Description: ANL performs the bitwise logical-AND operation between the variables indicated and stores the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.

Example: If the Accumulator holds $0 \mathrm{C} 3 \mathrm{H}(11000011 \mathrm{~B})$ and register 0 holds 55 H (01010101 B) then the instruction,

ANL A,R0

will leave $41 \mathrm{H}(01000001 \mathrm{~B})$ in the Accumulator.
When the destination is a directly addressed byte, this instruction will clear combinations of bits in any RAM location or hardware register. The mask byte determining the pattern of bits to be cleared would either be a constant contained in the instruction or a value computed in the Accumulator at run-time. The instruction,

ANL P1,\#01110011B
will clear bits 7,3 , and 2 of output port 1.

ANL A,Rn
Bytes: 1
Cycles: 1

Encoding: | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |$\quad \mathrm{rr}$.

Operation: ANL
$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge(\mathrm{Rn})$
ANL A,direct
Bytes: 2
Cycles: 1

Encoding: \begin{tabular}{|llll|llll|}
\hline 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1

\hline

\quad

\hline direct address

\hline
\end{tabular}

Operation: ANL
$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge$ (direct)
ANL A,@Ri
Bytes: 1
Cycles: 1

Encoding: | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: ANL
$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge(\mathrm{Ri}))$
ANL A, \#data
Bytes: 2
Cycles: 1
Encoding:

0	1	0	1	0	1	0

immediate data
Operation: ANL
$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge \#$ data
ANL direct,A
Bytes: 2
Cycles: 1

Encoding: \begin{tabular}{|lll|llll|}
\hline 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1

\hline

\quad

direct address

\hline
\end{tabular}

Operation: ANL
$($ direct $) \leftarrow($ direct $) \wedge(A)$

ANL direct, \# data
Bytes: 3
Cycles: 2

Encoding: \begin{tabular}{|llll|llll|}
\hline 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1

\hline

\quad

\hline direct address

\hline
\end{tabular}

Operation: ANL
(direct) $\leftarrow($ direct $) \wedge$ \# data
ANL C,<src-bit>
Function: Logical-AND for bit variables
Description: If the Boolean value of the source bit is a logical 0 then clear the carry flag; otherwise leave the carry flag in its current state. A slash ("/") preceding the operand in the assembly language indicates that the logical complement of the addressed bit is used as the source value, but the source bit itself is not affected. No other flags are affected.

Only direct addressing is allowed for the source operand.
Example: \quad Set the carry flag if, and only if, $\mathrm{P} 1.0=1, \mathrm{ACC} .7=1$, and $\mathrm{OV}=0$:
MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN STATE
ANL C,ACC. 7 ;AND CARRY WITH ACCUM. BIT 7
ANL C,/OV ;AND WITH INVERSE OF OVERFLOW FLAG
ANL C,bit
Bytes: 2
Cycles: 2

Encoding: | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad bit address

Operation: ANL
(C) \leftarrow (C) \wedge (bit)

ANL C,/bit
Bytes: 2
Cycles: 2

Encoding: \begin{tabular}{|lll|llll|}
\hline 1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0

\hline

\quad

bit address

\hline
\end{tabular}

Operation: ANL
$(\mathrm{C}) \leftarrow(\mathrm{C}) \wedge \neg$
(bit)

CJNE <dest-byte>,<src-byte>, rel

Function: Compare and Jump if Not Equal.
Description: CJNE compares the magnitudes of the first two operands, and branches if their values are not equal. The branch destination is computed by adding the signed relative-displacement in the last instruction byte to the PC, after incrementing the PC to the start of the next instruction. The carry flag is set if the unsigned integer value of <dest-byte> is less than the unsigned integer value of \langle src-byte>; otherwise, the carry is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations: the Accumulator may be compared with any directly addressed byte or immediate data, and any indirect RAM location or working register can be compared with an immediate constant.

Example: The Accumulator contains 34 H . Register 7 contains 56 H . The first instruction in the sequence,

	CJNE	R7, \# 60H, NOT__EQ	
;			; $\mathrm{R} 7=60 \mathrm{H}$.
NOT__EQ:	JC	REQ__LOW	IF R7<60H.
;	R7 > 60H.

sets the carry flag and branches to the instruction at label NOT__EQ. By testing the carry flag, this instruction determines whether R 7 is greater or less than 60 H .

If the data being presented to Port 1 is also 34 H , then the instruction,
WAIT: CJNE A,P1,WAIT
clears the carry flag and continues with the next instruction in sequence, since the Accumulator does equal the data read from P1. (If some other value was being input on P1, the program will loop at this point until the P1 data changes to 34 H .)

CJNE A,direct,rel

Bytes: 3
Cycles: 2

Encoding: \begin{tabular}{|llllllll|}
\hline 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1

\hline

\quad

direct address

\hline
\end{tabular}

Operation: $\quad(\mathrm{PC}) \leftarrow(\mathrm{PC})+3$
IF (A) <> (direct)
THEN
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ relative offset
IF $(\mathrm{A})<($ direct $)$
THEN
(C) $\leftarrow 1$

ELSE
(C) $\leftarrow 0$

CJNE A,\#data,rel

Bytes: 3
Cycles: 2

CJNE Rn,\#data,rel
Bytes: 3
Cycles: 2

Encoding: \begin{tabular}{|lll|l|l|}
\hline 1 \& 0 \& 1 \& 1 \& 1 r r

\hline

\quad

immediate data $\quad \begin{array}{r}\text { rel. address } \\
\hline\end{array}$

\hline
\end{tabular}

Operation: $\quad(\mathrm{PC}) \leftarrow(\mathrm{PC})+3$
IF (Rn) <> data
THEN
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ relative offset
IF (Rn) < data THEN
(C) $\leftarrow 1$

ELSE
(C) $\leftarrow 0$

CJNE @Ri,\#data,rel
Bytes: 3
Cycles: 2

Encoding: \begin{tabular}{|llll|lll|}
\hline 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1

\hline

\quad

\hline immediate data

\hline

\quad

rel. address

\hline
\end{tabular}

Operation: $\quad(\mathrm{PC}) \leftarrow(\mathrm{PC})+3$
IF ((Ri)) <> data
THEN
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ relative offset
IF ((Ri)) < data
THEN
(C) $\leftarrow 1$

ELSE
(C) $\leftarrow 0$

CLR A

Function: Clear Accumulator
Description: The Accumulator is cleared (all bits set on zero). No flags are affected.
Example: The Accumulator contains $5 \mathrm{CH}(01011100 \mathrm{~B})$. The instruction, CLR A will leave the Accumulator set to 00 H (00000000 B).
Bytes: 1
Cycles: 1

Encoding: \quad| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: CLR
(A) $\leftarrow 0$

CLR bit
Function: Clear bit
Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on the carry flag or any directly addressable bit.
Example: Port 1 has previously been written with 5DH (01011101B). The instruction,
CLR P1.2
will leave the port set to $59 \mathrm{H}(01011001 \mathrm{~B})$.

CLR C

Bytes: 1
Cycles: 1

Encoding: \quad| 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: CLR
(C) $\leftarrow 0$

CLR bit
Bytes: 2
Cycles: 1

Encoding: | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad bit address

Operation: CLR
(bit) $\leftarrow 0$

CPL A

Function: Complement Accumulator
Description: Each bit of the Accumulator is logically complemented (one's complement). Bits which previously contained a one are changed to a zero and vice-versa. No flags are affected.

Example: The Accumulator contains $5 \mathrm{CH}(01011100 \mathrm{~B})$. The instruction,
CPL A
will leave the Accumulator set to 0A3H (10100011B).
Bytes: 1
Cycles: 1

Encoding: \quad| 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: CPL
$(\mathrm{A}) \leftarrow\urcorner(\mathrm{A})$

CPL bit
Function: Complement bit
Description: The bit variable specified is complemented. A bit which had been a one is changed to zero and vice-versa. No other flags are affected. CLR can operate on the carry or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as the original data will be read from the output data latch, not the input pin.
Example: Port 1 has previously been written with 5BH (01011101B). The instruction sequence,
CPL P1.1
CPL P1.2
will leave the port set to 5 BH (01011011 B).
CPL C

Bytes: 1

Cycles: 1

Encoding: \quad	1	0	1	1	0	0	1.1

Operation:
CPL
(C) $\leftarrow 7$ (C)

CPL bit

Bytes: 2

Cycles: 1

Operation: CPL
(bit) $\leftarrow\urcorner$ (bit)

DA A

Function: Decimal-adjust Accumulator for Addition
Description: DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two variables (each in packed-BCD format), producing two four-bit digits. Any ADD or ADDC instruction may have been used to perform the addition.

If Accumulator bits $3-0$ are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one, six is added to the Accumulator producing the proper BCD digit in the low-order nibble. This internal addition would set the carry flag if a carry-out of the low-order four-bit field propagated through all high-order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-111xxxx), these high-order bits are incremented by six, producing the proper BCD digit in the high-order nibble. Again, this would set the carry flag if there was a carry-out of the high-order bits, but wouldn't clear the carry. The carry flag thus indicates if the sum of the original two BCD variables is greater than 100 , allowing multiple precision decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the decimal conversion by adding $00 \mathrm{H}, 06 \mathrm{H}, 60 \mathrm{H}$, or 66 H to the Accumulator, depending on initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD notation, nor does DA A apply to decimal subtraction.

Example: The Accumulator holds the value 56 H (01010110B) representing the packed BCD digits of the decimal number 56. Register 3 contains the value 67 H (01100111 B) representing the packed BCD digits of the decimal number 67. The carry flag is set. The instruction sequence.

ADDC A,R3
DA
A
will first perform a standard twos-complement binary addition, resulting in the value 0 BEH (10111110) in the Accumulator. The carry and auxiliary carry flags will be cleared.

The Decimal Adjust instruction will then alter the Accumulator to the value 24 H (00100100 B), indicating the packed BCD digits of the decimal number 24, the low-order two digits of the decimal sum of 56,67 , and the carry-in. The carry flag will be set by the Decimal Adjust instruction, indicating that a decimal overflow occurred. The true sum 56,67 , and 1 is 124.

BCD variables can be incremented or decremented by adding 01 H or 99 H . If the Accumulator initially holds 30 H (representing the digits of 30 decimal), then the instruction sequence,

ADD A, \# 99H
DA A
will leave the carry set and 29 H in the Accumulator, since $30+99=129$. The low-order byte of the sum can be interpreted to mean $30-1=29$.

Bytes: 1

Cycles: 1

Encoding: \quad| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: DA
-contents of Accumulator are BCD
IF $\quad\left[\left[\left(\mathbf{A}_{3-0}\right)>9\right] \vee[(A C)=1]\right]$
$\operatorname{THEN}\left(\mathrm{A}_{3-0}\right) \leftarrow\left(\mathrm{A}_{3-0}\right)+6$
AND
IF $\quad\left[\left[\left(\mathrm{A}_{7-4}\right)>9\right] \vee[(\mathrm{C})=1]\right]$
THEN $\left(\mathrm{A}_{7-4}\right) \leftarrow\left(\mathrm{A}_{7-4}\right)+6$

DEC byte

Function: Decrement
Description: The variable indicated is decremented by 1 . An original value of 00 H will underflow to 0 FFH . No flags are affected. Four operand addressing modes are allowed: accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.

Example: Register 0 contains 7FH (01111111 B). Internal RAM locations 7EH and 7FH contain $\mathbf{0 0 H}$ and 40 H , respectively. The instruction sequence,

DEC @RO
DEC R0
DEC @R0
will leave register 0 set to 7 EH and internal RAM locations 7 EH and 7 FH set to 0 FFH and 3 FH .

DEC, A
Bytes: 1
Cycles: 1

Encoding: | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: DEC
$(\mathrm{A}) \leftarrow(\mathrm{A})-1$

DEC Rn

Bytes: 1
Cycles: 1

Encoding: | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |

Operation: DEC
$(\mathbf{R n}) \leftarrow(\mathbf{R n})-1$

DEC direct

Bytes:	2		
Cycles:	1		
Encoding:	0001	0101	direct address
Operation:	DEC (direct) \leftarrow (direct) -1		
@Ri			
Bytes:	1		
Cycles:	1		
Encoding:	0001	011 i	
Operation:	$\begin{aligned} & \mathrm{DEC} \\ & ((\mathrm{Ri})) \leftarrow((\mathrm{Ri}))-1 \end{aligned}$		

DIV AB

Function: Divide
Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit integer in register B. The Accumulator receives the integer part of the quotient; register B receives the integer remainder. The carry and OV flags will be cleared.

Exception: if B had originally contained 00 H , the values returned in the Accumulator and Bregister will be undefined and the overflow flag will be set. The carry flag is cleared in any case.

Example: The Accumulator contains 251 (0 FBH or 11111011B) and B contains 18 (12 H or 00010010 B). The instruction,

DIV AB
will leave 13 in the Accumulator (0 DH or 00001101 B) and the value 17 (11 H or 00010001 B) in B, since $251=(13$ X 18) +17 . Carry and OV will both be cleared.

Bytes: 1
Cycles: 4
Encoding:

Operation: DIV
${ }_{(\mathrm{B})_{7-0}}^{(\mathrm{A})_{15-8}} \leftarrow(\mathrm{~A}) /(\mathrm{B})$

DJNZ < byte>,<rel-addr>
Function: Decrement and Jump if Not Zero
Description: DJNZ decrements the location indicated by 1, and branches to the address indicated by the second operand if the resulting value is not zero. An original value of 00 H will underflow to 0 FFH. No flags are affected. The branch destination would be computed by adding the signed relative-displacement value in the last instruction byte to the PC , after incrementing the PC to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.
Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.
Example: Internal RAM locations $40 \mathrm{H}, 50 \mathrm{H}$, and 60 H contain the values $01 \mathrm{H}, 70 \mathrm{H}$, and 15 H , respectively. The instruction sequence,

DJNZ 40H,LABEL_1
DJNZ 50H,LABEL_2
DJNZ 60H,LABEL_3
will cause a jump to the instruction at label LABEL_ 2 with the values $00 \mathrm{H}, 6 \mathrm{FH}$, and 15 H in the three RAM locations. The first jump was not taken because the result was zero.

This instruction provides a simple way of executing a program loop a given number of times, or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction. The instruction sequence,

	MOV	R2,\#8
TOGGLE:	CPL	P1.7
	DJNZ	R2,TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each pulse will last three machine cycles; two for DJNZ and one to alter the pin.

DJNZ Rn,rel

Bytes: 2
Cycles: 2

Encoding: \begin{tabular}{|llll|l|}

\hline 1 \& 1 \& 0 \& 1 \& $1 \mathrm{rrr} \quad$| rel. address |
| ---: | :--- |\quad

\hline
\end{tabular}

Operation: DJNZ
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$
$(\mathrm{Rn}) \leftarrow(\mathrm{Rn})-1$
IF $(\mathrm{Rn})>0$ or (Rn) <0
THEN
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ rel

DJNZ direct,rel

Bytes:	3
Cycles:	2

Encoding: \begin{tabular}{|lllllllll|}
\hline 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1

\hline

\quad

direct address

\hline
\end{tabular}\quad rel. address

Operation: DJNZ
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$
(direct) \leftarrow (direct) -1
IF (direct) >0 or (direct) <0
THEN

$$
(\mathrm{PC}) \leftarrow(\mathrm{PC})+\text { rel }
$$

INC <byte>
Function: Increment
Description: INC increments the indicated variable by 1. An original value of 0 FFH will overflow to 00 H . No flags are affected. Three addressing modes are allowed: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.
Example: Register 0 contains 7EH (011111110 B). Internal RAM locations 7EH and 7FH contain 0FFH and 40 H , respectively. The instruction sequence,

INC @RO
INC R0
INC @R0
will leave register 0 set to 7 FH and internal RAM locations 7 EH and 7 FH holding (respectively) 00 H and 41 H .

INC A
Bytes: 1
Cycles: 1
Encoding: 00000
Operation: INC
(A) $\leftarrow(\mathrm{A})+1$

INC Rn
Bytes: 1
Cycles: 1

Encoding: | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |

Operation: INC
$(\mathrm{Rn}) \leftarrow(\mathrm{Rn})+1$
INC direct
Bytes: 2
Cycles: 1

Operation: INC
(direct) \leftarrow (direct) +1
INC @Ri
Bytes: 1
Cycles: 1

Encoding: \quad| 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: INC
$((\mathrm{Ri})) \leftarrow((\mathrm{Ri}))+1$

INC DPTR
Function: Increment Data Pointer
Description: Increment the 16 -bit data pointer by 1. A 16 -bit increment (modulo 2^{16}) is performed; an overflow of the low-order byte of the data pointer (DPL) from OFFH to 00 H will increment the high-order byte (DPH). No flags are affected.

This is the only 16 -bit register which can be incremented.
Example: Registers DPH and DPL contain 12H and 0FEH, respectively. The instruction sequence,
INC DPTR
INC DPTR
INC DPTR
will change DPH and DPL to 13 H and 01 H .
Bytes: 1
Cycles: 2

Encoding: \quad| 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: INC
$($ DPTR $) \leftarrow($ DPTR $)+1$

JB bit,rel

Function: Jump if Bit set
Description: If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags are affected.

Example: The data present at input port 1 is 11001010 B . The Accumulator holds 56 (01010110 B). The instruction sequence,

JB P1.2,LABEL1
JB ACC.2,LABEL2
will cause program execution to branch to the instruction at label LABEL2.
Bytes: 3
Cycles: 2

Encoding: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad bit address \quad rel. address

Operation: JB
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+3$
IF (bit) $=1$
THEN

$$
(\mathrm{PC}) \leftarrow(\mathrm{PC})+\text { rel }
$$

JBC bit,rel
Function: Jump if Bit is set and Clear bit
Description: If the indicated bit is one, branch to the address indicated; otherwise proceed with the next instruction. The bit will not be cleared if it is already a zero. The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the original data will be read from the output data latch, not the input pin.
Example: The Accumulator holds 56 H (01010110 B). The instruction sequence,

```
JBC ACC.3,LABEL1
JBC ACC.2,LABEL2
```

will cause program execution to continue at the instruction identified by the label LABEL2, with the Accumulator modified to $52 \mathrm{H}(01010010 \mathrm{~B})$.

Bytes: 3
Cycles: 2

Encoding:	0001	0000	bit address	rel. address

Operation: JBC
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+3$
IF (bit) $=1$
THEN
(bit) $\leftarrow 0$
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ rel
rel
Function: Jump if Carry is set
Description: - If the carry flag is set, branch to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. No flags are affected.
Example: The carry flag is cleared. The instruction sequence,
JC LABEL1
CPL C
JC LABEL 2
will set the carry and cause program execution to continue at the instruction identified by the label LABEL2.

Bytes: 2
Cycles: 2

Encoding: \begin{tabular}{|llll|llll|}
\hline 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

\quad

rel. address

\hline
\end{tabular}

Operation: JC
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$
IF $(\mathrm{C})=1$
THEN

$$
(\mathrm{PC}) \leftarrow(\mathrm{PC})+\text { rel }
$$

JMP @A+DPTR

Function: Jump indirect
Description: Add the eight-bit unsigned contents of the Accumulator with the sixteen-bit data pointer, and load the resulting sum to the program counter. This will be the address for subsequent instruction fetches. Sixteen-bit addition is performed (modulo 216): a carry-out from the low-order eight bits propagates through the higher-order bits. Neither the Accumulator nor the Data Pointer is altered. No flags are affected.

Example: An even number from 0 to 6 is in the Accumulator. The following sequence of instructions will branch to one of four AJMP instructions in a jump table starting at JMP__TBL:

	MOV	DPTR, \# JMP_TBL
JMP_TBL:	JMP	@A+DPTR
	AJMP	LABEL0
	AJMP	LABEL1
	AJMP	LABEL2
	AJMP	LABEL3

If the Accumulator equals 04 H when starting this sequence, execution will jump to label LABEL2. Remember that AJMP is a two-byte instruction, so the jump instructions start at every other address.

Bytes: 1
Cycles: 2

Encoding: \quad| 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: JMP
$(\mathrm{PC}) \leftarrow(\mathrm{A})+(\mathrm{DPTR})$

Function: Jump if Bit Not set

Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags are affected.

Example: The data present at input port 1 is 11001010B. The Accumulator holds 56 H (01010110 B). The instruction sequence,

JNB P1.3,LABEL1
JNB ACC.3,LABEL2
will cause program execution to continue at the instruction at label LABEL2.
Bytes: 3
Cycles: 2

Encoding: \begin{tabular}{|lll|llll|}
\hline 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0

\hline

\quad bit address \quad

rel. address

\hline
\end{tabular}

Operation: JNB
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+3$
IF (bit) $=0$
THEN $(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ rel.
rel
Function: Jump if Carry not set
Description: If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice to point to the next instruction. The carry flag is not modified.

Example: The carry flag is set. The instruction sequence,
JNC LABEL1
CPL C
JNC LABEL2
will clear the carry and cause program execution to continue at the instruction identified by the label LABEL2.

Bytes: 2
Cycles: 2

Encoding:

0	1	0	1	0	0	0	0

rel. address
Operation: JNC
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$
IF (C) $=0$
THEN $($ PC $) \leftarrow($ PC $)+$ rel

Function: Jump if Accumulator Not Zero
Description: If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are affected.
Example: The Accumulator originally holds 00 H . The instruction sequence,
JNZ LABEL1
INC A
JNZ LABEL2
will set the Accumulator to 01H and continue at label LABEL2.
Bytes: 2
Cycles: 2

Encoding: | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: JNZ
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$
IF (A) $\neq 0$
THEN $(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ rel
JZ rel
Function: Jump if Accumulator Zero
Description: If all bits of the Accumulator are zero, branch to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are affected.
Example: The Accumulator originally contains 01H. The instruction sequence,

JZ LABEL1

DEC A
JZ LABEL2
will change the Accumulator to 00 H and cause program execution to continue at the instruction identified by the label LABEL2.

Bytes: 2
Cycles: 2

Encoding: \begin{tabular}{|llll|llll|}
\hline 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

\quad

rel. address

\hline
\end{tabular}

Operation: JZ
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$
IF (A) $=0$
THEN $(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ rel

LCALL addr16

Function: Long call
Description: LCALL calls a subroutine located at the indicated address. The instruction adds three to the program counter to generate the address of the next instruction and then pushes the 16 -bit result onto the stack (low byte first), incrementing the Stack Pointer by two. The high-order and low-order bytes of the PC are then loaded, respectively, with the second and third bytes of the LCALL instruction. Program execution continues with the instruction at this address. The subroutine may therefore begin anywhere in the full 64K-byte program memory address space. No flags are affected.

Example: Initially the Stack Pointer equals 07H. The label "SUBRTN" is assigned to program memory location 1234 H . After executing the instruction,

LCALL SUBRTN

at location 0123 H , the Stack Pointer will contain 09 H , internal RAM locations 08 H and 09 H will contain 26 H and 01 H , and the PC will contain 1234 H .

Bytes: 3
Cycles: 2
Encoding:

| 0001 | 0010 |
| :--- | :--- | :--- |

addr15-addr8
addr7-addr0
Operation: LCALL
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+3$
$(\mathbf{S P}) \leftarrow(\mathbf{S P})+1$
$(\mathbf{S P})) \leftarrow\left(\mathrm{PC}_{7-0}\right)$
$(\mathbf{S P}) \leftarrow(\mathbf{S P})+1$
$((S P)) \leftarrow\left(\mathrm{PC}_{15-8}\right)$
$(\mathrm{PC}) \leftarrow \operatorname{addr}_{15-0}$

LJMP addr16
Function: Long Jump
Description: LJMP causes an unconditional branch to the indicated address, by loading the high-order and low-order bytes of the PC (respectively) with the second and third instruction bytes. The destination may therefore be anywhere in the full 64 K program memory address space. No flags are affected.

Example: The label "JMPADR" is assigned to the instruction at program memory location 1234H. The instruction,

LJMP JMPADR
at location 0123 H will load the program counter with 1234 H .
Bytes: 3
Cycles: 2

Encoding: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad addr15-addr8 \quad addr7-addr0

Operation: LJMP
(PC) $\leftarrow \operatorname{addr}_{15-0}$

MOV <dest-byte>,<src-byte>

Function: Move byte variable
Description: The byte variable indicated by the second operand is copied into the location specified by the first operand. The source byte is not affected. No other register or flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and destination addressing modes are allowed.

Example: Internal RAM location 30 H holds 40 H . The value of RAM location 40 H is 10 H . The data present at input port 1° is 11001010 B (0CAH).

MOV RO, \# 30H ;R0 < = 30H
MOV A,@R0 ;A $<=40 \mathrm{H}$
MOV R1,A \quad R1 $<=40 \mathrm{H}$
MOV B,@R1 ;B $<=10 \mathrm{H}$
MOV @R1,P1 ;RAM (40H) $<=0 \mathrm{CAH}$
MOV P2,P1 ;P2 \#0CAH
leaves the value 30 H in register $0,40 \mathrm{H}$ in both the Accumulator and register $1,10 \mathrm{H}$ in register B, and OCAH (11001010B) both in RAM location 40 H and output on port 2.

MOV A,Rn

Bytes: 1
Cycles: 1

Encoding: | 1 | 1 | 1 |
| :--- | :--- | :--- |

Operation: MOV
$(\mathrm{A}) \leftarrow(\mathrm{Rn})$

*MOV A,direct

Bytes:

Cycles: 1

Encoding: | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad direct address

Operation: MOV
$(\mathrm{A}) \leftarrow$ (direct)

MOV A,ACC is not a valid instruction.

MOV A,@Ri
Bytes:
1

Cycles: 1

Encoding: | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |

Operation: MOV
$(\mathrm{A}) \leftarrow((\mathrm{Ri}))$
MOV A, \#data
Bytes: 2
Cycles: 1

Encoding: \begin{tabular}{|llll|llll|}
\hline 0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 0

\hline

\quad

immediate data

\hline
\end{tabular}

Operation: MOV
(A) \leftarrow \#data

MOV Rn,A
Bytes: 1
Cycles: 1

Encoding: | 1 | 1 | 1 | 1 | 1 rrr |
| :--- | :--- | :--- | :--- | :--- |

Operation: MOV
$(\mathrm{Rn}) \leftarrow(\mathrm{A})$
MOV Rn,direct
Bytes: 2
Cycles: 2

Encoding: \begin{tabular}{|lll|l|}
\hline 10 \& 1 \& 0 \& 1 rrr

\hline

\quad

\hline direct addr.

\hline
\end{tabular}

Operation: , MOV
$(\mathrm{Rn}) \leftarrow$ (direct)
MOV Rn,\#data
Bytes: 2
Cycles: 1

Encoding: \begin{tabular}{|lll|ll|}
\hline 0 \& 1 \& 1 \& 1 \& 1 rr

\hline

\quad

\hline immediate data

\hline
\end{tabular}

Operation: MOV
$(\mathrm{Rn}) \leftarrow$ \#data

```
MOV direct,A
        Bytes: 2
    Cycles: 1
    Encoding: \1 1
    Operation: MOV
                (direct) }\leftarrow\mathrm{ (A)
MOV direct,Rn
        Bytes: 2
    Cycles: 2
    Encoding: < 10000
    Operation: MOV
        (direct) }\leftarrow(\textrm{Rn}
MOV direct,direct
        Bytes: 3
    Cycles: 2
    Encoding: \1 0
    Operation: MOV
        (direct) }\leftarrow\mathrm{ (direct)
MOV direct,@Ri
        Bytes: 2
    Cycles: 2
    Encoding: \10000
    Operation: MOV
        (direct) \leftarrow ((Ri))
MOV direct,# data
        Bytes: 3
    Cycles: 2
    Encoding: \0 1 1 1 0
    Operation: MOV
        (direct) \leftarrow #data
```

```
MOV @RI,A
    Bytes: 1
    Cycles: 1
    Encoding: \1 1 1 1 1 
    Operation: MOV
            ((Ri))}\leftarrow(A
MOV @Ri,direct
    Bytes: 2
    Cycles: 2
```



```
    Operation: MOV
            ((Ri)) \leftarrow (direct)
MOV @Ri,#data
    Bytes: 2
    Cycles: 1
    Encoding:
                    |0111
                            immediate data
Operation: MOV
            ((RI)) \leftarrow #data
MOV <dest-bit>,<src-blt>
Function: Move bit data
Description: The Boolean variable indicated by the second operand is copied into the location specified by the first operand. One of the operands must be the carry flag; the other may be any directly addressable bit. No other register or flag is affected.
Example: The carry flag is originally set. The data present at input Port 3 is 11000101B. The data previously written to output Port 1 is 35 H ( 00110101 B ).
MOV P1.3,C
MOV C,P3.3
MOV P1.2,C
will leave the carry cleared and change Port 1 to 39 H ( 00111001 B ).
```

MOV C,bit
Bytes: 2
Cycles: 1
Encoding:

\square bit address
Operation: MOV
(C) \leftarrow (bit)
MOV bit,C
Bytes: 2
Cycles: 2
Encoding:

| 1001 | 0010 |
| :--- | :--- | :--- | bit address

Operation: MOV

$$
(\mathrm{bit}) \leftarrow(\mathrm{C})
$$

MOV DPTR,\#data16
Function: Load Data Pointer with a 16 -bit constant
Description: The Data Pointer is loaded with the 16 -bit constant indicated. The 16 -bit constant is loadedinto the second and third bytes of the instruction. The second byte (DPH) is the high-orderbyte, while the third byte (DPL) holds the low-order byte. No flags are affected.
This is the only instruction which moves 16 bits of data at once.
Example: The instruction,
MOV DPTR, \# 1234H

MOVC A,@A+ <base-reg>

Function:	Move Code byte
Description:	The MOVC instructions load the A memory. The address of the byte fet lator contents and the contents of Pointer or the PC. In the latter cas instruction before being added with tered. Sixteen-bit addition is perfo propagate through higher-order bits
Example:	A value between 0 and 3 is in the value in the Accumulator to one of
	REL_PC: INC A A

If the subroutine is called with the Accumulator equal to 01 H , it will return with 77 H in the Accumulator. The INC A before the MOVC instruction is needed to "get around" the RET instruction above the table. If several bytes of code separated the MOVC from the table, the corresponding number would be added to the Accumulator instead.

MOVC A,@A+DPTR

Bytes: 1
Cycles: 2

Encoding: \quad| 100 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Operation: MOVC
$(\mathrm{A}) \leftarrow((\mathrm{A})+(\mathrm{DPTR}))$
MOVC A,@A + PC
Bytes: 1
Cycles: 2

Encoding: \quad| 100 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: MOVC
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+1$
$(\mathrm{A}) \leftarrow((\mathrm{A})+(\mathrm{PC}))$

MOVX <dest-byte>,<src-byte>

Abstract

Function: Move External Description: The MOVX instructions transfer data between the Accumulator and a byte of external data memory, hence the " X " appended to MOV. There are two types of instructions, differing in whether they provide an eight-bit or sixteen-bit indirect address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank provide an eight-bit address multiplexed with data on PO. Eight bits are sufficient for external I/O expansion decoding or for a relatively small RAM array. For somewhat larger arrays, any output port pins can be used to output higher-order address bits. These pins would be controlled by an output instruction preceding the MOVX.

In the second type of MOVX instruction, the Data Pointer generates a sixteen-bit address. P2 outputs the high-order eight address bits (the contents of DPH) while P0 multiplexes the loworder eight bits (DPL) with data. The P2 Special Function Register retains its previous contents while the P2 output buffers are emitting the contents of DPH. This form is faster and more efficient when accessing very large data arrays (up to 64 K bytes), since no additional instructions are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM array with its high-order address lines driven by P2 can be addressed via the Data Pointer, or with code to output high-order address bits to P2 followed by a MOVX instruction using R0 or R1.

Example: An external 256 byte RAM using multiplexed address/data lines (e.g., an Intel 8155 RAM/ I/O/Timer) is connected to the 8051 Port 0 . Port 3 provides control lines for the external RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12 H and 34 H . Location 34 H of the external RAM holds the value 56 H . The instruction sequence,

MOVX A,@R1
MOVX @RO,A
copies the value 56 H into both the Accumulator and external RAM location 12 H .

MOVX A,@Ri

Bytes: 1
Cycles: 2

Encoding: . | 1 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Operation: MOVX
$(\mathrm{A}) \leftarrow((\mathrm{Ri}))$
MOVX A,@DPTR
Bytes: 1
Cycles: 2

Encoding: | 1 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Operation: MOVX
$(\mathrm{A}) \leftarrow((\mathrm{DPTR}))$
MOVX @Ri,A
Bytes: 1
Cycles: 2

Encoding: \quad| 1 | 1 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | 1

Operation: MOVX
$((\mathrm{Ri})) \leftarrow(\mathrm{A})$
MOVX @DPTR,A
Bytes: 1
Cycles: 2

Encoding: | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: MOVX
$(\mathrm{DPTR}) \leftarrow(\mathrm{A})$

MUL AB

Function: Multiply
Description: MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The low-order byte of the sixteen-bit product is left in the Accumulator, and the high-order byte in B. If the product is greater than $255(0 \mathrm{FFH})$ the overflow flag is set; otherwise it is cleared. The carry flag is always cleared.

Example: Originally the Accumulator holds the value $80(50 \mathrm{H})$. Register B holds the value $160(0 \mathrm{AOH})$. The instruction,

MUL AB
will give the product $12,800(3200 \mathrm{H})$, so B is changed to $32 \mathrm{H}(00110010 \mathrm{~B})$ and the Accumulator is cleared. The overflow flag is set, carry is cleared.

Bytes: 1
Cycles: 4

Encoding: \quad| 1 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Operation: MUL
(A) 7-0 $^{4} \leftarrow$ (A) $\mathrm{X}(\mathrm{B})$
(B) $15-8$

NOP

Function:	No Operation
Description:	Execution continues at the following instruction. Other than the PC, no registers or flags are affected.
Example:	It is desired to produce a low-going output pulse on bit 7 of Port 2 lasting exactly 5 cycles. A simple SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles must be inserted. This may be done (assuming no interrupts are enabled) with the instruction sequence,

CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7
Bytes: 1
Cycles: 1

Encoding:

Operation: NOP
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+1$

ORL <dest-byte> <src-byte>

Function: Logical-OR for byte variables
Description: ORL performs the bitwise logical-OR operation between the indicated variables, storing the results in the destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.

Example: If the Accumulator holds 0 C3H (11000011B) and R0 holds 55 H (01010101 B) then the instruction,

ORL A,R0
will leave the Accumulator holding the value 0D7H (11010111B).
When the destination is a directly addressed byte, the instruction can set combinations of bits in any RAM location or hardware register. The pattern of bits to be set is determined by a mask byte, which may be either a constant data value in the instruction or a variable computed in the Accumulator at run-time. The instruction,

ORL P1,\#00110010B
will set bits 5, 4, and 1 of output Port 1.

ORL A,Rn

Bytes: 1
Cycles: 1

Encoding: | 0 | 1 | 0 | 0 | 1 rrr |
| :--- | :--- | :--- | :--- | :--- |

Operation: ORL
$(\mathrm{A}) \leftarrow(\mathrm{A}) \vee(\mathrm{Rn})$

ORL A,direct
Bytes: 2
Cycles: 1

Encoding: \begin{tabular}{|llll|lll|}
\hline 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0

\hline

\quad

\hline direct address

\hline
\end{tabular}

Operation: ORL
$(\mathrm{A}) \leftarrow(\mathrm{A}) \vee$ (direct)
ORL A,@Ri
Bytes: 1
Cycles: 1

Encoding: | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | 1110

Operation: ORL
$(\mathrm{A}) \leftarrow(\mathrm{A}) \vee((\mathrm{Ri}))$
ORL A, \#data
Bytes: 2
Cycles: 1

Encoding: \begin{tabular}{|lll|llll|}
\hline 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0

\hline

\quad

\hline
\end{tabular}

Operation: ORL
(A) \leftarrow (A) \vee \#data

ORL direct,A
Bytes: 2
Cycles: 1

Encoding: \begin{tabular}{|lll|llll|}
\hline 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1

\hline

\quad

\hline
\end{tabular}

Operation: ORL
(direct) \leftarrow (direct) $\vee(\mathrm{A})$
ORL direct, \# data
Bytes: 3
Cycles: 2

Encoding: | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad direct addr. \quad immediate data

Operation: ORL
(direct) \leftarrow (direct) \vee \#data

ORL C,<src-bit>
Function: Logical-OR for bit variables
Description: Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state otherwise. A slash ("/") preceding the operand in the assembly language indicates that the logical complement of the addressed bit is used as the source value, but the source bit itself is not affected. No other flags are affected.
Example: Set the carry flag if and only if $\mathrm{P} 1.0=1, \mathrm{ACC} 7=1$, or $\mathrm{OV}=0$:
MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL C,ACC. 7 ;OR CARRY WITH THE ACC. BIT 7
ORL C,/OV ;OR CARRY WITH THE INVERSE OF OV.
ORL C,bit
Bytes: 2
Cycles: 2

Encoding: \begin{tabular}{|llll|llll|}
\hline 0 \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 0

\hline

\quad

bit address

\hline
\end{tabular}

Operation: ORL
(C) \leftarrow (C) \vee (bit)

ORL C,/bit
Bytes: 2
Cycles: 2

Encoding: | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad bit address

Operation: ORL
(C) $\leftarrow(\mathrm{C}) \vee(\overline{\mathrm{bit}})$

Function: Pop from stack.
Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the Stack Pointer is decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags are affected.

Example: The Stack Pointer originally contains the value 32 H , and internal RAM locations 30 H through 32 H contain the values $20 \mathrm{H}, 23 \mathrm{H}$, and 01 H , respectively. The instruction sequence,

POP DPH
POP DPL
will leave the Stack Pointer equal to the value 30 H and the Data Pointer set to 0123 H . At this point the instruction,

POP SP
will leave the Stack Pointer set to $\mathbf{2 0 H}$. Note that in this special case the Stack Pointer was decremented to 2 FH before being loaded with the value popped (20 H).

Bytes:	2		
Cycles:	2		
Encoding:	1101	0000	direct address
Operation:	POP (direct) $\leftarrow((S P))$ (SP) $\leftarrow(\mathbf{S P})-1$		

PUSH direct
Function: Push onto stack
Description: The Stack Pointer is incremented by one. The contents of the indicated variable is then copied into the internal RAM location addressed by the Stack Pointer. Otherwise no flags are affected.

Example: On entering an interrupt routine the Stack Pointer contains 09H. The Data Pointer holds the value 0123 H . The instruction sequence,

PUSH DPL
PUSH DPH
will leave the Stack Pointer set to 0 BH and store 23 H and 01 H in internal RAM locations OAH and 0 BH , respectively.

Bytes: 2
Cycles: 2

Encoding: | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | $0^{2} 00 \quad$ direct address

Operation: PUSH

$$
\begin{aligned}
& (\mathrm{SP}) \leftarrow \text { (SP) }+1 \\
& (\text { (SP) })
\end{aligned} \text { (direct) }
$$

RET

Function: Return from subroutine
Description: RET pops the high- and low-order bytes of the PC successively from the stack, decrementing the Stack Pointer by two. Program execution continues at the resulting address, generally the instruction immediately following an ACALL or LCALL. No flags are affected.
Example: The Stack Pointer originally contains the value OBH. Internal RAM locations OAH and OBH contain the values 23 H and 01 H , respectively. The instruction,

RET

will leave the Stack Pointer equal to the value 09 H . Program execution will continue at location 0123 H .

Bytes: 1
Cycles: 2

Encoding: | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: RET
$\left(\mathrm{PC}_{15-8)} \leftarrow((\mathrm{SP}))\right.$
(SP) $\leftarrow(\mathrm{SP})-1$
$\left(\mathrm{PC}_{7-0}\right) \leftarrow((\mathrm{SP}))$
$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$

RETI

Function: Return from interrupt
Description: RETI pops the high- and low-order bytes of the PC successively from the stack, and restores the interrupt logic to accept additional interrupts at the same priority level as the one just processed. The Stack Pointer is left decremented by two. No other registers are affected; the PSW is not automatically restored to its pre-interrupt status. Program execution continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or same-level interrupt had been pending when the RETI instruction is executed, that one instruction will be executed before the pending interrupt is processed.
Example: The Stack Pointer originally contains the value OBH. An interrupt was detected during the instruction ending at location 0122 H . Internal RAM locations 0 AH and OBH contain the values 23 H and 01 H , respectively. The instruction,

RETI

will leave the Stack Pointer equal to 09 H and return program execution to location 0123 H .
Bytes: 1
Cycles: 2

Encoding: | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: RETI
$\left(\mathrm{PC}_{15-8}\right) \leftarrow((\mathrm{SP}))$
(SP) $\leftarrow(\mathrm{SP})-1$
$\left(\mathrm{PC}_{7-0}\right) \leftarrow((\mathrm{SP}))$
$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$

RL A

Function: Rotate Accumulator Left
Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position. No flags are affected.
Example: The Accumulator holds the value 0C5H (11000101B). The instruction,
RL A
leaves the Accumulator holding the value 8 BH (10001011B) with the carry unaffected.
Bytes: 1
Cycles: 1

Encoding: \quad	0	0	1	0	0	0	1	1

Operation: RL
$\left(\mathrm{A}_{\mathrm{n}}+1\right) \leftarrow(\mathrm{An}) \quad \mathrm{n}=0-6$
(A0) \leftarrow (A7)

RLC A

Function: Rotate Accumulator Left through the Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into the carry flag; the original state of the carry flag moves into the bit 0 position. No other flags are affected.

Example: The Accumulator holds the value $0 \mathrm{C} 5 \mathrm{H}(11000101 \mathrm{~B})$, and the carry is zero. The instruction, RLC A
leaves the Accumulator holding the value $8 \mathrm{BH}(10001010 \mathrm{~B})$ with the carry set.
Bytes: 1
Cycles: 1

Encoding: \quad| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: RLC
$(\mathrm{An}+1) \leftarrow(\mathrm{An}) \quad \mathrm{n}=0-6$
(A0) \leftarrow (C)
(C) \leftarrow (A7)

RR A

Function: Rotate Accumulator Right
Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 position. No flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The instruction,

RR A

leaves the Accumulator holding the value $0 \mathrm{E} 2 \mathrm{H}(11100010 \mathrm{~B})$ with the carry unaffected.
Bytes: 1
Cycles: 1

Encoding: \quad| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: RR
$(\mathrm{An}) \leftarrow\left(\mathrm{A}_{\mathrm{n}}+1\right) \quad \mathrm{n}=0-6$
$(\mathrm{A} 7) \leftarrow(\mathrm{A} 0)$

RRC A

Function: Rotate Accumulator Right through Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves into the carry flag; the original value of the carry flag moves into the bit 7 position. No other flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B), the carry is zero. The instruction,
RRC A
leaves the Accumulator holding the value 62 (01100010B) with the carry set.
Bytes: 1
Cycles: 1

Encoding: \quad| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: RRC
$(\mathrm{An}) \leftarrow(\mathrm{An}+1) \quad \mathrm{n}=0-6$
(A7) \leftarrow (C)
$(\mathrm{C}) \leftarrow(\mathrm{A} 0)$

SETB <bit>

Function: Set Bit
Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No other flags are affected.

Example: The carry flag is cleared. Output Port 1 has been written with the value $34 \mathrm{H}(00110100 \mathrm{~B})$. The instructions,

SETB C
SETB P1.0
will leave the carry flag set to 1 and change the data output on Port 1 to 35 H (00110101B).

SETB C

Bytes: 1
Cycles: 1

Operation: SETB
(C) $\leftarrow 1$

SETB bit

Bytes: 2
Cycles: 1

Encoding: | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad bit address

Operation: SETB
(bit) $\leftarrow 1$

SJMP rel

Function: Short Jump

Description: Program control branches unconditionally to the address indicated. The branch destination is computed by adding the signed displacement in the second instruction byte to the PC, after incrementing the PC twice. Therefore, the range of destinations allowed is from 128 bytes preceding this instruction to 127 bytes following it.

Example: The label "RELADR" is assigned to an instruction at program memory location 0123H. The instruction,

SJMP RELADR
will assemble into location 0100 H . After the instruction is executed, the PC will contain the value 0123 H .
(Note: Under the above conditions the instruction following SJMP will be at 102 H . Therefore, the displacement byte of the instruction will be the relative offset $(0123 \mathrm{H}-0102 \mathrm{H})=21 \mathrm{H}$. Put another way, an SJMP with a displacement of OFEH would be a one-instruction infinite loop.)

Bytes: 2

Cycles: 2

Encoding: \begin{tabular}{|llll|llll|}
\hline 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

\quad

\hline rel. address

\hline
\end{tabular}

Operation: SJMP
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$
$(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ rel

SUBB A,<src-byte>

Function: Subtract with borrow
Description: SUBB subtracts the indicated variable and the carry flag together from the Accumulator, leaving the result in the Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7, and clears C otherwise. (If C was set before executing a SUBB instruction, this indicates that a borrow was needed for the previous step in a multiple precision subtraction, so the carry is subtracted from the Accumulator along with the source operand.) AC is set if a borrow is needed for bit 3 , and cleared otherwise. OV is set if a borrow is needed into bit 6 , but not into bit 7, or into bit 7, but not bit 6 .

When subtracting signed integers OV indicates a negative number produced when a negative value is subtracted from a positive value, or a positive result when a positive number is subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0 C 9 H (11001001B), register 2 holds $54 \mathrm{H}(01010100 \mathrm{~B})$, and the carry flag is set. The instruction,

SUBB A,R2

will leave the value $74 \mathrm{H}(01110100 \mathrm{~B})$ in the accumulator, with the carry flag and AC cleared but OV set.

Notice that 0 C 9 H minus 54 H is 75 H . The difference between this and the above result is due to the carry (borrow) flag being set before the operation. If the state of the carry is not known before starting a single or multiple-precision subtraction, it should be explicitly cleared by a CLR C instruction.

SUBB A,Rn

Bytes:	1	
Cycles:	1	
Encoding:	1001	1 rrr
Operation:	SUBB$(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{C})-(\mathrm{Rn})$	

SUBB A,direct
Bytes: 2
Cycles: 1

Encoding: \quad\begin{tabular}{|llll|llll|}
\hline 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1

\hline

\quad

direct address

\hline
\end{tabular}

Operation: SUBB
$(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{C})-$ (direct)

SUBB A,@Ri
Bytes: 1
Cycles: 1

Encoding: \quad| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: SUBB
$(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{C})-((\mathrm{Ri}))$

SUBB A,\#data
Bytes: 2
Cycles: 1

Encoding: \quad\begin{tabular}{|llll|llll|}
\hline 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0

\hline

\quad

immediate data

\hline
\end{tabular}

Operation: SUBB
$(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{C})-$ \# data

SWAP A
Function: Swap nibbles within the Accumulator
Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator (bits 3-0 and bits 7-4). The operation can also be thought of as a four-bit rotate instruction. No flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The instruction,
SWAP A
leaves the Accumulator holding the value 5CH (01011100B).
Bytes: 1
Cycles: 1

Encoding: \quad| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operation: SWAP
$\left(\mathrm{A}_{3-0}\right) \rightleftarrows\left(\mathrm{A}_{7-4}\right)$

XCH A, <byte>
Function: Exchange Accumulator with byte variable
Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time writing the original Accumulator contents to the indicated variable. The source/destination operand can use register, direct, or register-indirect addressing.
Example: \quad R0 contains the address 20 H . The Accumulator holds the value 3 FH (00111111 B). Internal RAM location 20 H holds the value 75 H (01110101 B). The instruction,

XCH A,@R0
will leave RAM location 20 H holding the values 3 FH (00111111 B) and 75 H (01110101 B) in the accumulator.

XCH A,Rn
Bytes: 1
Cycles: 1

Encoding: | 1 | 1 | 0 |
| :--- | :--- | :--- | $0^{1} \mathrm{rrr}$.

Operation: XCH
$(\mathrm{A}) \rightleftarrows(\mathrm{Rn})$
XCH A,direct
Bytes: 2
Cycles: 1

Operation: XCH
$(\mathrm{A}) \underset{ }{\rightleftarrows}$ (direct)
XCH A,@Ri
Bytes:
Cycles: 1

Encoding: \quad| 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | $\mathbf{0} 111 \mathrm{i}$

Operation: XCH
$(\mathrm{A}) \rightleftarrows((\mathrm{Ri}))$

XCHD A,@Ri

Function: Exchange Digit
Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3-0), generally representing a hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by the specified register. The high-order nibbles (bits 7-4) of each register are not affected. No flags are affected.

Example: R0 contains the address 20 H . The Accumulator holds the value 36 H (00110110 B). Internal RAM location 20 H holds the value 75 H (01110101 B). The instruction,

XCHD A,@R0

will leave RAM location 20 H holding the value $76 \mathrm{H}(01110110 \mathrm{~B})$ and $35 \mathrm{H}(00110101 \mathrm{~B})$ in the Accumulator.

Bytes: 1
Cycles: 1

Encoding:

Operation: XCHD
$\left(\mathrm{A}_{3-0}\right) \rightleftarrows\left(\left(\mathrm{Ri}_{3-0}\right)\right)$

XRL <dest-byte>,<src-byte>
Function: Logical Exclusive-OR for byte variables
Description: XRL performs the bitwise logical Exclusive-OR operation between the indicated variables, storing the results in the destination. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be the Accumulator or immediate data.
(Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.)

Example: If the Accumulator holds $0 \mathrm{C} 3 \mathrm{H}(11000011 \mathrm{~B})$ and register 0 holds $0 \mathrm{~A} \AA \mathrm{H}$ (10101010B) then the instruction,

XRL A,R0
will leave the Accumulator holding the value 69 H (01101001 B).
When the destination is a directly addressed byte, this instruction can complement combinations of bits in any RAM location or hardware register. The pattern of bits to be complemented is then determined by a mask byte, either a constant contained in the instruction or a variable computed in the Accumulator at run-time. The instruction,

XRL P1,\#00110001B
will complement bits 5,4 , and 0 of output Port 1 .

XRL A,Rn
Bytes: 1
Cycles: 1

Encoding: | 0 | 1 | 1 | 0 | 1 rrr |
| :--- | :--- | :--- | :--- | :--- |

Operation: XRL
$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{Rn})$
XRL A,direct
Bytes: 2
Cycles: 1

Encoding: | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad direct address

Operation: XRL
$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall$ (direct)
XRL A,@Ri
Bytes: 1
Cycles: 1

Encoding: | 0 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | 1

Operation: XRL
$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall((\mathrm{Ri}))$
XRL A, \#data
Bytes: 2
Cycles: 1

Encoding: \begin{tabular}{|lll|llll|}
\hline 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 0

\quad

\hline immediate data

\hline
\end{tabular}

Operation: XRL
$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall$ \#data
XRL direct,A
Bytes: 2
Cycles: 1

Encoding: | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad direct address

Operation: XRL
(direct) $\leftarrow($ direct $) \forall(A)$

XRL direct,\#data

Bytes: 3
Cycles: 2

Encoding: \begin{tabular}{|lllllllll}
0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1

\hline

\quad direct address \quad

immediate data

\hline
\end{tabular}

Operation: XRL
(direct) \leftarrow (direct) \forall \#data

MCS® ${ }^{\circledR} 51$ Hardware Descriptions and Data Sheets

8051, 8052 and 80C51 Hardware Description

8051, 8052 and 80C51 Hardware Description CONTENTS PAGE

CONTENTS

CONTENTS PAGE PAGE
INTRODUCTION
INTRODUCTION 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3
Special Function Registers
Special Function Registers 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3
PORT STRUCTURES AND
PORT STRUCTURES AND OPERATION 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6
I/O Configurations
I/O Configurations 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7
Writing to a Port
Writing to a Port 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7
Port Loading and Interfacing
Port Loading and Interfacing 7-8 7-8 7-8 7-8 7-8 7-8 7-8 7-8 7-8 7-8 7-8 7-8 7-8 7-8 7-8 7-8 7-8 7-8
Read-Modify-Write Feature
Read-Modify-Write Feature 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9
ACCESSING EXTERNAL MEMORY
ACCESSING EXTERNAL MEMORY 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9
TIMER/COUNTERS
TIMER/COUNTERS 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9
Timer 0 and Timer 1
Timer 0 and Timer 1 7-10 7-10 7-10 7-10 7-10 7-10 7-10 7-10 7-10 7-10 7-10 7-10 7-10 7-10 7-10 7-10 7-10 7-10
Timer 2
Timer 2 7-12 7-12 7-12 7-12 7-12 7-12 7-12 7-12 7-12 7-12 7-12 7-12 7-12 7-12 7-12 7-12 7-12 7-12
SERIAL INTERFACE
SERIAL INTERFACE 7-13 7-13 7-13 7-13 7-13 7-13 7-13 7-13 7-13 7-13 7-13 7-13 7-13 7-13 7-13 7-13 7-13 7-13
Multiprocessor Communications
Multiprocessor Communications 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14
Serial Port Control Register
Serial Port Control Register 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14 7-14
Baud Rates
Baud Rates 7-15 7-15 7-15 7-15 7-15 7-15 7-15 7-15 7-15 7-15 7-15 7-15 7-15 7-15 7-15 7-15 7-15 7-15
More About Mode 0
More About Mode 0 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17
More About Mode 1
More About Mode 1 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17 7-17
More About Modes 2 and 3
More About Modes 2 and 3 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-20
CONTENTS
INTERRUPTS 7-23
Priority Level Structure 7-24
How Interrupts Are Handled 7-24
External Interrupts 7-25
Response Time 7-25
SINGLE-STEP OPERATION 7-26
RESET 7-26
POWER-ON RESET 7-27
POWER-SAVING MODES OF OPERATION 7-27
CHMOS Power Reduction Modes 7-27
EPROM VERSIONS 7-29
Exposure to Light 7-29
Program Memory Locks 7-29
ONCE Mode 7-30
THE ON-CHIP OSCILLATORS 7-30
HMOS Versions 7-30
CHMOS Versions 7-32
INTERNAL TIMING 7-33

8051, 8052 AND 80C51 HARDWARE DESCRIPTION

INTRODUCTION

This chapter presents a comprehensive description of the on-chip hardware features of the $\mathrm{MCS}^{\circledR}-51$ microcontrollers. Included in this description are

- The port drivers and how they function both as ports and, for Ports 0 and 2, in bus operations
- The Timer/Counters
- The Serial Interface
- The Interrupt System
- Reset
- The Reduced Power Modes in the CHMOS devices
- The EPROM versions of the $8051 \mathrm{AH}, 8052 \mathrm{AH}$ and 80C51BH

The devices under consideration are listed in Table 1. As it becomes unwieldy to be constantly referring to each of these devices by their individual names, we will adopt a convention of referring to them generically as 8051 s and 8052 s , unless a specific member of the group is being referred to, in which case it will be specifically named. The "8051s" include the 8051AH, 80C51BH, and their ROMless and EPROM versions. The " 8052 s " are the $8052 \mathrm{AH}, 8032 \mathrm{AH}$ and 8752 BH .

Figure 1 shows a functional block diagram of the 8051 s and 8052s.

Table 1. The MCS-51 Family of Microcontrollers

Device Name	ROMless Version	EPROM Version	ROM Bytes	RAM Bytes	16-bit Timers	Ckt Type
8051AH	8031 AH	$8751 \mathrm{H}, 8751 \mathrm{BH}$	4 K	128	2	HMOS
8052AH	8032 AH	8752 BH 80 C 51 BH	80 C 31 BH	87 C 51	8 K	256
3	HMOS					

Special Function Registers

A map of the on-chip memory area called SFR (Special Function Register) space is shown in Figure 2. SFRs marked by parentheses are resident in the 8052 s but not in the 8051 s .

Figure 1. MCS-51 Architectural Block Diagram

	8 Bytes							
F8								FF
F0	B							F7
E8								EF
E0	ACC							E7
D8								DF
DO	PSW							D7
C8	(T2CON)		(RCAP2L)	(RCAP2H)	(TL2)	(TH2)		CF
CO								C7
B8	IP							BF
B0	P3							B7
A8	IE							AF
AO	P2							A7
98	SCON	SBUF						9F
90	P1							97
88	TCON	TMOD	TLO	TL1	TH0	TH1		8F
80	PO	SP	DPL	DPH			PCON	87

Figure 2. SFR Map. (. . .) Indicates Resident in 8052s, not in 8051s

Note that not all of the addresses are occupied. Unoccupied addresses are not implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have no effect.

User software should not write 1s to these unimplemented locations, since they may be used in future MCS-51 products to invoke new features. In that case the reset or inactive values of the new bits will always be 0 , and their active values will be 1 .

The functions of the SFRs are outlined below.

ACCUMULATOR

ACC is the Accumulator register. The mnemonics for Accumulator-Specific instructions, however, refer to the Accumulator simply as A.

B REGISTER

The B register is used during multiply and divide operations. For other instructions it can be treated as another scratch pad register.

PROGRAM STATUS WORD

The PSW register contains program status information as detailed in Figure 3.

STACK POINTER

The Stack Pointer Register is 8 bits wide. It is incremented before data is stored during PUSH and CALL executions. While the stack may reside anywhere in onchip RAM, the Stack Pointer is initialized to 07 H after a reset. This causes the stack to begin at location 08 H .

DATA POINTER

The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is
to hold a 16 -bit address. It may be manipulated as a 16 -bit register or as two independent 8 -bit registers.

PORTS 0 TO 3

P0, P1, P2 and P3 are the SFR latches of Ports 0, 1, 2 and 3 , respectively.

SERIAL DATA BUFFER

The Serial Data Buffer is actually two separate registers, a transmit buffer and a receive buffer register. When data is moved to SBUF, it goes to the transmit buffer where it is held for serial transmission. (Moving a byte to SBUF is what initiates the transmission.) When data is moved from SBUF, it comes from the receive buffer.

TIMER REGISTERS

Register pairs (THO, TLO), (TH1, TL1), and (TH2, TL2) are the 16 -bit Counting registers for Timer/Counters 0,1 , and 2 , respectively.

CAPTURE REGISTERS

The register pair (RCAP2H, RCAP2L) are the Capture registers for the Timer 2 "Capture Mode." In this mode, in response to a transition at the 8052's T2EX pin, TH2 and TL2 are copied into RCAP2H and RCAP2L. Timer 2 also has a 16 -bit auto-reload mode, and RCAP2H and RCAP2L hold the reload value for this mode. More about Timer 2's features in a later section.

CONTROL REGISTERS

Special Function Registers IP, IE, TMOD, TCON, T2CON, SCON, and PCON contain control and status bits for the interrupt system, the Timer/Counters, and the serial port. They are described in later sections.

Figure 3. PSW: Program Status Word Register

Figure 4. 8051 Port Bit Latches and I/O Buffers
*See Figure 5 for details of the internal pullup.

PORT STRUCTURES AND OPERATION

All four ports in the 8051 are bidirectional. Each consists of a latch (Special Function Registers P0 through P3), an output driver, and an input buffer.

The output drivers of Ports 0 and 2, and the input buffers of Port 0 , are used in accesses to external memory. In this application, Port 0 outputs the low byte of the
external memory address, time-multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory address when the address is 16 bits wide. Otherwise the Port 2 pins continue to emit the P2 SFR content.

All the Port 3 pins, and (in the 8052) two Port 1 pins are multifunctional. They are not only port pins, but also serve the functions of various special features as listed on the following page.
Port Pin
*P1.0
*P1.1

P3.0
P3.1
P3.2
P3.3
P3.4

P3.5

P3. 6

P3. 7

Alternate Function
T2 (Timer/Counter 2 external input)
T2EX (Timer/Counter 2
Capture/Reload trigger)
RXD (serial input port)
TXD (serial output port)
$\overline{\text { INTO }}$ (external interrupt)
$\overline{\mathrm{INT} 1}$ (external interrupt)
T0 (Timer/Counter 0 external input)
T1 (Timer/Counter 1 external input)
$\overline{\text { WR (external Data Memory }}$ write strobe)

P3.
${ }^{*}$ P1.0 and P1.1 serve these alternate functions only on the 8052.

The alternate functions can only be activated if the corresponding bit latch in the port SFR contains a 1 . Otherwise the port pin is stuck at 0.

I/O Configurations

Figure 4 shows a functional diagram of a typical bit latch and I/O buffer in each of the four ports. The bit latch (one bit in the port's SFR) is represented as a Type \mathbf{D} flip-flop, which will clock in a value from the internal bus in response to a "write to latch" signal from the CPU. The Q output of the flip-flop is placed on the internal bus in response to a "read latch" signal from the CPU. The level of the port pin itself is placed on the internal bus in response to a "read pin" signal from the CPU. Some instructions that read a port activate the "read latch" signal, and others activate the "read pin" signal. More about that later.

As shown in Figure 4, the output drivers of Ports 0 and 2 are switchable to an internal ADDR and ADDR/ DATA bus by an internal CONTROL signal for use in external memory accesses. During external memory accesses, the P2 SFR remains unchanged, but the P0 SFR gets 1 s written to it.

Also shown in Figure 4, is that if a P3 bit latch contains a 1 , then the output level is controlled by the signal labeled "alternate output function." The actual P3.X pin level is always available to the pin's alternate input function, if any.

Ports 1, 2, and 3 have internal pullups. Port 0 has open drain outputs. Each I/O line can be independently used as an input or an output. (Ports 0 and 2 may not be used as general purpose I/O when being used as the

ADDR/DATA BUS). To be used as an input, the port bit latch must contain a 1 , which turns off the output driver FET. Then, for Ports 1, 2, and 3, the pin is pulled high by the internal pullup, but can be pulled low by an external source.

Port 0 differs in not having internal pullups. The pullup FET in the P0 output driver (see Figure 4) is used only when the Port is emitting 1s during external memory accesses. Otherwise the pullup FET is off. Consequently P0 lines that are being used as output port lines are open drain. Writing a 1 to the bit latch leaves both output FETs off, so the pin floats. In that condition it can be used a high-impedance input.

Because Ports 1, 2, and 3 have fixed internal pullups they are sometimes called "quasi-bidirectional" ports. When configured as inputs they pull high and will source current (IIL, in the data sheets) when externally pulled low. Port 0 , on the other hand, is considered "true" bidirectional, because when configured as an input it floats.

All the port latches in the 8051 have 1 s written to them by the reset function. If a 0 is subsequently written to a port latch, it can be reconfigured as an input by writing a 1 to it.

Writing to a Port

In the execution of an instruction that changes the value in a port latch, the new value arrives at the latch during S6P2 of the final cycle of the instruction. However, port latches are in fact sampled by their output buffers only during Phase 1 of any clock period. (During Phase 2 the output buffer holds the value it saw during the previous Phase 1). Consequently, the new value in the port latch won't actually appear at the output pin until the next Phase 1, which will be at S1P1 of the next machine cycle. See Figure 39 in the Internal Timing section.

If the change requires a 0 -to- 1 transition in Port 1,2 , or 3, an additional pullup is turned on during S1P1 and S1P2 of the cycle in which the transition occurs. This is done to increase the transition speed. The extra pullup can source about 100 times the current that the normal pullup can. It should be noted that the internal pullups are field-effect transistors, not linear resistors. The pullup arrangements are shown in Figure 5.

In HMOS versions of the 8051, the fixed part of the pullup is a depletion-mode transistor with the gate wired to the source. This transistor will allow the pin to source about 0.25 mA when shorted to ground. In parallel with the fixed pullup is an enhancement-mode transistor, which is activated during S1 whenever the port bit does a 0 -to- 1 transition. During this interval, if the port pin is shorted to ground, this extra transistor will allow the pin to source an additional 30 mA .

Figure 5. Ports 1 And 3 HMOS And CHMOS Internal Pullup Configurations. Port 2 is Similar Except That It Holds The Strong Pullup On While Emitting 1s That Are Address Bits. (See Text, "Accessing External Memory".)

In the CHMOS versions, the pullup consists of three pFETs. It should be noted that an n-channel FET (nFET) is turned on when a logical 1 is applied to its gate, and is turned off when a logical 0 is applied to its gate. A p-channel FET (pFET) is the opposite: it is on when its gate sees a 0 , and off when its gate sees a 1 .
pFET1 in Figure 5 is the transistor that is turned on for 2 oscillator periods after a 0-to-1 transition in the port latch. While it's on, it turns on pFET3 (a weak pullup), through the inverter. This inverter and pFET form a latch which hold the 1 .

Note that if the pin is emitting a 1, a negative glitch on the pin from some external source can turn off pFET3, causing the pin to go into a float state. pFET 2 is a very weak pullup which is on whenever the nFET is off, in traditional CMOS style. It's only about $1 / 10$ the strength of pFET 3 . Its function is to restore a 1 to the pin in the event the pin had a 1 and lost it to a glitch.

Port Loading and Interfacing

The output buffers of Ports 1, 2, and 3 can each drive 4 LS TTL inputs. These ports on HMOS versions can be driven in a normal manner by any TTL or NMOS circuit. Both HMOS and CHMOS pins can be driven by open-collector and open-drain outputs, but note that 0 -to- 1 transitions will not be fast. In the HMOS device, if the pin is driven by an open-collector output, a 0-to-1 transition will have to be driven by the relatively weak depletion mode FET in Figure 5(A). In the CHMOS device, an input 0 turns off pullup pFET3, leaving only the very weak pullup pFET 2 to drive the transition.

In external bus mode, Port 0 output buffers can each drive 8 LS TTL inputs. As port pins, they require external pullups to drive any inputs.

Read-Modify-Write Feature

Some instructions that read a port read the latch and others read the pin. Which ones do which? The instructions that read the latch rather than the pin are the ones that read a value, possibly change it, and then rewrite it to the latch. These are called "read-modify-write" instructions. The instructions listed below are read-mod-ify-write instructions. When the destination operand is a port, or a port bit, these instructions read the latch rather than the pin:

```
ANL (logical AND, e.g., ANL P1, A)
ORL (logical OR, e.g., ORL P2, A)
XRL (logical EX-OR, e.g., XRL P3, A)
JBC (jump if bit = 1 and clear bit, e.g.,
    JBC P1.1, LABEL)
CPL (complement bit, e.g., CPL P3.0)
INC (increment, e.g., INC P2)
DEC (decrement, e.g., DEC P2)
DJNZ (decrement and jump if not zero, e.g.,
    DJNZ P3, LABEL)
```

MOV, PX.Y, C (move carry bit to bit Y of Port X)
CLR PX.Y (clear bit Y of Port X)
SETB PX.Y (set bit Y of Port X)
It is not obvious that the last three instructions in this list are read-modify-write instructions, but they are. They read the port byte, all 8 bits, modify the addressed bit, then write the new byte back to the latch.

The reason that read-modify-write instructions are directed to the latch rather than the pin is to avoid a possible misinterpretation of the voltage level at the pin. For example, a port bit might be used to drive the base of a transistor. When a 1 is written to the bit, the transistor is turned on. If the CPU then reads the same port bit at the pin rather than the latch, it will read the base voltage of the transistor and interpret it as a 0 . Reading the latch rather than the pin will return the correct value of 1 .

ACCESSING EXTERNAL MEMORY

Accesses to external memory are of two types: accesses to external Program Memory and accesses to external Data Memory. Accesses to external Program Memory use signal PSEN (program store enable) as the read strobe. Accesses to external Data Memory use $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ (alternate functions of P3.7 and P3.6) to strobe the memory. Refer to Figures 36 through 38 in the Internal Timing section.

Fetches from external Program Memory always use a 16 -bit address. Accesses to external Data Memory can use either a 16 -bit address (MOVX @DPTR) or an 8 -bit address (MOVX @Ri).

Whenever a 16 -bit address is used, the high byte of the address comes out on Port 2, where it is held for the duration of the read or write cycle. Note that the Port 2 drivers use the strong pullups during the entire time that they are emitting address bits that are 1s. This is during the execution of a MOVX @DPTR instruction. During this time the Port 2 latch (the Special Function Register) does not have to contain 1s, and the contents of the Port 2 SFR àre not modified. If the external memory cycle is not immediately followed by another external memory cycle, the undisturbed contents of the Port 2 SFR will reappear in the next cycle.

If an 8 -bit address is being used (MOVX @Ri), the contents of the Port 2 SFR remain at the Port 2 pins throughout the external memory cycle. This will facilitate paging.
In any case, the low byte of the address is time-multiplexed with the data byte on Port 0 . The ADDR/ DATA signal drives both FETs in the Port 0 output buffers. Thus, in this application the Port 0 pins are not open-drain outputs, and do not require external pullups. Signal ALE (Address Latch Enable) should be used to capture the address byte into an external latch. The address byte is valid at the negative transition of ALE. Then, in a write cycle, the data byte to be written appears on Port 0 just before $\overline{W R}$ is activated, and remains there until after $\overline{W R}$ is deactivated. In a read cycle, the incoming byte is accepted at Port 0 just before the read strobe is deactivated.
During any access to external memory, the CPU writes 0 FFH to the Port 0 latch (the Special Function Register), thus obliterating whatever information the Port 0 SFR may have been holding. If the user writes to Port 0 during an external memory fetch, the incoming code byte is corrupted. Therefore, do not write to Port 0 if external program memory is used.
External Program Memory is accessed under two conditions:

1) Whenever signal $\overline{E A}$ is active; or
2) Whenever the program counter (PC) contains a number that is larger than 0 FFFH (1 FFFH for the 8052).

This requires that the ROMless versions have $\overline{E A}$ wired low to enable the lower 4 K (8 K for the 8032) program bytes to be fetched from external memory.
When the CPU is executing out of external Program Memory, all 8 bits of Port 2 are dedicated to an output function and may not be used for general purpose I/O. During external program fetches they output the high byte of the PC. During this time the Port 2 drivers use the strong pullups to emit PC bits that are 1s.

TIMER/COUNTERS

The 8051 has two 16-bit Timer/Counter registers: Timer 0 and Timer 1. The 8052 has these two plus one
more: Timer 2. All three can be configured to operate either as timers or event counters.

In the "Timer" function, the register is incremented every machine cycle. Thus, one can think of it as counting machine cycles. Since a machine cycle consists of 12 oscillator periods, the count rate is $1 / 12$ of the oscillator frequency.

In the "Counter" function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T0, T1 or (in the 8052) T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since it takes 2 machine cycles (24 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is $1 / 24$ of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

In addition to the "Timer" or "Counter" selection, Timer 0 and Timer 1 have four operating modes from which to select. Timer 2, in the 8052, has three modes of operation: "Capture," "Auto-Reload" and "baud rate generator."

Timer 0 and Timer 1

These Timer/Counters are present in both the 8051 and the 8052. The "Timer" or "Counter" function is selected by control bits $\mathrm{C} / \overline{\mathrm{T}}$ in the Special Function Register TMOD (Figure 6). These two Timer/Counters have
four operating modes, which are selected by bit-pairs (M1, M0) in TMOD. Modes 0, 1, and 2 are the same for both Timer/Counters. Mode 3 is different. The four operating modes are described in the following text.

MODE 0

Either Timer in Mode 0 is an 8 -bit Counter with a divide-by- 32 prescaler. This 13 -bit timer is MCS-48 compatible. Figure 7 shows the Mode 0 operation as it applies to Timer 1.

In this mode, the Timer register is configured as a 13-Bit register. As the count rolls over from all 1 s to all 0s, it sets the Timer interrupt flag TF1. The counted input is enabled to the Timer when TR1 $=1$ and either GATE $=0$ or $\overline{\text { INT1 }}=1$. (Setting GATE $=1$ allows the Timer to be controlled by external input INT1, to facilitate pulse width measurements.) TR1 is a control bit in the Special Function Register TCON (Figure 8). GATE is in TMOD.

The 13-Bit register consists of all 8 bits of TH1 and the lower 5 bits of TL1. The upper 3 bits of TL1 are indeterminate and should be ignored. Setting the run flag (TR1) does not clear the registers.

Mode 0 operation is the same for Timer 0 as for Timer 1. Substitute TR0, TF0 and $\overline{\mathrm{INTO}}$ for the corresponding Timer 1 signals in Figure 7. There are two different GATE bits, one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).

MODE 1

Mode 1 is the same as Mode 0 , except that the Timer register is being run with all 16 bits.

	(MSB)				(LSB)				
	GATE	C/T	M1	M0	GATE	C/T	M1	M0	
	Timer 1				Timer 0				
GATE	Gating control when set. Timer/Counter " x " is enabled only while "INTx" pin is high and "TRx" control pin is set. When cleared Timer " x " is enabled whenever "TRx" control bit is set.				M1	M0	Operating Mode 8-bit Timer/Counter "THx" with "TLx" as 5 -bit prescaler.		
					0	0			
	Timer or Counter Selector cleared for Timer operation (input from internal system clock). Set for Counter operation (input fróm "Tx" input pin).				0	1	16-bit Timer/Counter "THx" and "TLx" are cascaded; there is no prescaler. 8-bit auto-reload Timer/Counter "THx" holds a value which is to be reloaded into "TLX" each time it overflows.		
C/T					1	0			
					1	1	(Timer 0) TLO is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits. THO is an 8-bit timer only controlled by Timer 1 control bits.		
					1	1	(Time	imer/C	Counter 1 stopped.

Figure 6. TMOD: Timer/Counter Mode Control Register

Figure 7. Timer/Counter 1 Mode 0: 13-Bit Counter

Figure 8.TCON: Timer/Counter Control Register

MODE 2

Mode 2 configures the Timer register as an 8 -bit Counter (TL1) with automatic reload, as shown in Figure 9. Overflow from TL1 not only sets TF1, but also reloads TL1 with the contents of TH1, which is preset by software. The reload leaves TH1 unchanged.

Mode 2 operation is the same for Timer/Counter 0.

MODE 3

Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TR1 $=0$.

Timer 0 in Mode 3 establishes TLO and TH0 as two separate counters. The logic for Mode 3 on Timer 0 is shown in Figure 10. TLO uses the Timer 0 control bits: $\mathrm{C} / \overline{\mathrm{T}}, \mathrm{GATE}, \mathrm{TRO}, \overline{\mathrm{INTO}}$, and TFO. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus, TH0 now controls the "Timer 1 " interrupt.

Mode 3 is provided for applications requiring an extra 8 -bit timer or counter. With Timer 0 in Mode 3, an 8051 can look like it has three Timer/Counters, and an 8052, like it has four. When Timer 0 is in Mode 3, Timer 1 can be turned on and off by switching it out of and into its own Mode 3, or can still be used by the serial port as a baud rate generator, or in fact, in any application not requiring an interrupt.

Figure 9. Timer/Counter 1 Mode 2: 8-Bit Auto-Reload

Figure 10. Timer/Counter 0 Mode 3: Two 8-Bit Counters

Timer 2

Timer 2 is a 16 -bit Timer/Counter which is present only in the 8052. Like Timers 0 and 1, it can operate either as a timer or as an event counter. This is selected by bit C/ $\overline{\mathrm{T} 2}$ in the Special Function Register T2CON (Figure 11). It has three operating modes: "capture," "auto-load" and "baud rate generator," which are selected by bits in T2CON as shown in Table 2.

Table 2. Timer 2 Operating Modes

RCLK + TCLK	CP/RL2	TR2	Mode
0	0	1	16-bit Auto-Reload
0	1	1	16-bit Capture
1	X	1	Baud Rate Generator
X	X	0	(off)

	(MSB)						(LSB)	
	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	$\mathrm{C} / \overline{\mathrm{T} 2}$	CP/ $\overline{\mathrm{RL} 2}$
	Symbol	Position	Name and Significance					
	TF2	T2CON. 7	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK $=1$ or TCLK $=1$.					
	EXF2	T2CON. 6	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 $=1$. When Timer 2 interrupt is enabled, EXF2 $=1$ will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.					
	RCLK	T2CON. 5	Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in Modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.					
	TCLK	T2CON. 4	Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in modes 1 and 3 . TCLK $=0$ causes Timer 1 overflows to be used for the transmit clock.					
	EXEN2	T2CON. 3	Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 $=0$ causes Timer 2 to ignore events at T2EX.					
	TR2	T2CON. 2	Start/stop control for Timer 2. A logic 1 starts the timer.					
	C/T2	T2CON. 1	Timer or counter select. (Timer 2) $0=$ Internal timer (OSC/12) 1 = External event counter (falling edge triggered).					
	CP/ $\overline{\mathrm{RL}}$ 2	T2CON. 0	Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 $=1$. When cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when EXEN2 $=1$. When either RCL.K $=1$ or TCLK = 1 , this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.					

Figure 11. T2CON: Timer/Counter 2 Control Register

In the Capture Mode there are two options which are selected by bit EXEN2 in T2CON. If EXEN2 $=0$, then Timer 2 is a 16 -bit timer or counter which upon overflowing sets bit TF2, the Timer 2 overflow bit, which can be used to generate an interrupt. If EXEN2 $=1$, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. (RCAP2L and RCAP2H are new Special Function Registers in the 8052.) In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2, like TF2, can generate an interrupt.

The Capture Mode is illustrated in Figure 12.
In the auto-reload mode there are again two options, which are selected by bit EXEN2 in T2CON. If EXEN2 $=0$, then when Timer 2 rolls over it not only sets TF2 but also causes the Timer 2 registers to be reloaded with the 16 -bit value in registers RCAP2L and RCAP2H, which are preset by software. If EXEN2 $=1$, then Timer 2 still does the above, but with the
added feature that a 1-to-0 transition at external input T2EX will also trigger the 16 -bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 13.
The baud rate generator mode is selected by RCLK = 1 and/or TCLK $=1$. It will be described in conjunction with the serial port.

SERIAL INTERFACE

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register. (However, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost). The serial port receive and transmit registers are both accessed at Special Function Register SBUF. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.

Figure 12. Timer 2 in Capture Mode

The serial port can operate in 4 modes:
Mode 0: Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at $1 / 12$ the oscillator frequency.

Mode 1: 10 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in Special Function Register SCON. The baud rate is variable.

Mode 2: 11 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On Transmit, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1 . Or, for example, the parity bit (\mathbf{P}, in the PSW) could be moved into TB8. On receive, the 9th data bit goes into RB8 in Special Functon Register SCON, while the stop bit is ignored. The baud rate is programmable to either $1 / 32$ or $1 / 64$ the oscillator frequency.

Mode 3: 11 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI $=0$ and REN $=1$. Reception is initiated in the other modes by the incoming start bit if REN $=1$.

Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor communications. In these modes, 9 data bits are received. The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 $=1$. This feature is enabled by setting bit SM2 in SCON. A way to use this feature in multiprocessor systems is as follows.

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 $=1$, no slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming. The slaves that weren't being addressed leave their SM2s set and go on about their business, ignoring the coming data bytes.

SM2 has no effect in Mode 0 , and in Mode 1 can be used to check the validity of the stop bit. In a Mode 1 reception, if SM2 $=1$, the receive interrupt will not be activated unless a valid stop bit is received.

Serial Port Control Register

The serial port control and status register is the Special Function Register SCON, shown in Figure 14. This register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8 and RB8), and the serial port interrupt bits (TI and RI).

270252-13
Figure 13. Timer 2 in Auto-Reload Mode

Figure 14. SCON: Serial Port Control Register

Baud Rates

The baud rate in Mode 0 is fixed:

$$
\text { Mode } 0 \text { Baud Rate }=\frac{\text { Oscillator Frequency }}{12}
$$

The baud rate in Mode 2 depends on the value of bit SMOD in Special Function Register PCON. If SMOD $=0$ (which is the value on reset), the baud rate $1 / 64$ the oscillator frequency. If $S M O D=1$, the baud rate is $1 / 32$ the oscillator frequency.

Mode 2 Baud Rate $=\frac{2 \text { SMOD }}{64} \times($ Oscillator Frequency $)$
In the 8051, the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate. In the 8052, these baud rates can be determined by Timer 1, or by Timer 2 , or by both (one for transmit and the other for receive).

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD as follows:

Modes 1, 3
Baud Rate $=\frac{2 \text { SMOD }}{32} \times($ Timer 1 Overflow Rate $) ~$
The Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In the most typical applications, it is configured for "timer" operation, in the auto-reload
mode (high nibble of TMOD $=0010 \mathrm{~B}$). In that case, the baud rate is given by the formula

Modes 1, 3
Baud Rate $=\frac{2 \text { SMOD }}{32} \times \frac{\text { Oscillator Frequency }}{12 \times[256-(T H 1)]}$
One can achieve very low baud rates with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the Timer to run as a 16 -bit timer (high nibble of TMOD $=0001 \mathrm{~B}$), and using the Timer 1 interrupt to do a 16-bit software reload.

Figure 15 lists various commonly used baud rates and how they can be obtained from Timer 1.

Baud Rate	fosc	SMOD	Timer 1		
			C/T	Mode	Reload Value
Mode 0 Max: 1 MHZ	12 MHZ		X	X	X
Mode 2 Max: 375K	12 MHZ	1	X	X	X
Modes 1, 3: 62.5 K	12 MHZ	1	0	2	FFH
19.2 K	11.059 MHZ	1	0	2	FDH
9.6 K	11.059 MHZ	0	0	2	FDH
4.8 K	11.059 MHZ	0	0	2	FAH
2.4 K	11.059 MHZ	0	0	2	F 4 H
1.2 K	11.059 MHZ	0	0	2	EBH
137.5	11.986 MHZ	0	0	2	1 DH
110	6 MHZ	0	0	2	72 H
110	12 MHZ	0	0	1	FEEBH

Figure 15. Timer 1 Generated Commonly Used Baud Rates

Using Timer 2 to Generate Baud Rates

In the 8052, Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Figure
11). Note then the baud rates for transmit and receive can be simultaneously different. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 16.

Figure 16. Timer 2 in Baud Rate Generator Mode

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16 -bit value in registers RCAP2H and RCAP2L, which are preset by software.

Now, the baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate as follows:

Modes 1, 3 Baud Rate $=\frac{\text { Timer 2 Overflow Rate }}{16}$
The Timer can be configured for either "timer" or "counter" operation. In the most typical applications, it is configured for "timer" operation $(\mathrm{C} / \mathrm{T} 2=0)$. "Timer" operation is a little different for Timer 2 when it's being used as a baud rate generator. Normally, as a timer it would increment every machine cycle (thus at $1 / 12$ the oscillator frequency). As a baud rate generator, however, it increments every state time (thus at $1 / 2$ the oscillator frequency). In that case the baud rate is given by the formula
$\underset{\text { Bodes 1, } 3}{\text { Baud }}=\frac{\text { Oscillator Frequency }}{32 \times[65536-(\text { RCAP2H, RCAP2L })]}$
where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 16. This Figure is valid only if RCLK + TCLK $=1$ in T2CON. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Therefore, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt, if desired.
It should be noted that when Timer 2 is running (TR2 $=1$) in "timer" function in the baud rate generator mode, one should not try to read or write TH2 or TL2. Under these conditions the Timer is being incremented every state time, and the results of a read or write may not be accurate. The RCAP registers may be read, but shouldn't be written to, because a write might overlap a reload and cause write and/or reload errors. Turn the Timer off (clear TR2) before accessing the Timer 2 or RCAP registers, in this case.

More About Mode 0

Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at $1 / 12$ the oscillator frequency.

Figure 17 shows a simplified functional diagram of the serial port in Mode 0 , and associated timing.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal at S6P2 also loads a 1 into the 9th position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write to SBUF," and activation of SEND.

SEND enables the output of the shift register to the alternate output function line of P3.0, and also enables SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK is low during S3, S4, and S5 of every machine cycle, and high during S6, S1 and S2. At S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift register are shifted to the right one position.

As data bits shift out to the right, zeroes come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9 th position, is just to the left of the MSB, and all positions to the left of that contain zeroes. This condition flags the TX Control block to do one last shift and then deactivate SEND and set TI. Both of these actions occur at S1P1 of the 10th machine cycle after "write to SBUF."

Reception is initiated by the condition REN $=1$ and R1 $=0$. At S6P2 of the next machine cycle, the RX Control unit writes the bits 11111110 to the receive shift register, and in the next clock phase activates RECEIVE.

RECEIVE enables SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK makes transitions at S3P1 and S6P1 of every machine cycle. At S6P2 of every machine cycle in which RECEIVE is active, the contents of the receive shift register are shifted to the left one position. The value that comes in from the right is the value that was sampled at the P3.0 pin at S5P2 of the same machine cycle.

As data bits come in from the right, 1s shift out to the left. When the 0 that was initially loaded into the rightmost position arrives at the leftmost position in the shift register, it flags the RX Control block to do one last shift and load SBUF. At S1P1 of the 10th machine cycle after the write to SCON that cleared RI, RECEIVE is cleared and RI is set.

More About Mode 1

Ten bits are transmitted (through TXD), or received (through RXD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in SCON. In the 8051 the baud rate is determined by the Timer 1 overflow rate. In the 8052 it is determined either by the Timer 1 overflow rate, or the Timer 2 overflow rate, or both (one for transmit and the other for receive).

Figure 18 shows a simplified functional diagram of the serial port in Mode 1, and associated timings for transmit receive.

Figure 17. Serial Port Mode 0

Figure 18. Serial Port Mode 1. TCLK, RCLK and Timer 2 are Present in the 8052/8032 Only.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads a 1 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission actually commences at S1P1 of the machine cycle following the next rollover in the divide-by- 16 counter. (Thus, the bit
times are synchronized to the divide-by- 16 counter, not to the "write to SBUF" signal).

The transmission begins with activation of $\overline{\text { SEND }}$, which puts the start bit at TXD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TXD. The first shift pulse occurs one bit time after that.

As data bits shift out to the right, zeroes are clocked in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position is just to the left of the MSB, and all positions to the left of that contain zeroes. This condition flags the TX Control unit to do one last shift and then deactivate $\overline{\text { SEND }}$ and set TI. This occurs at the 10 th divide-by- 16 rollover after "write to SBUF."

Reception is initiated by a detected 1-to-0 transition at RXD. For this purpose RXD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by- 16 counter is immediately reset, and 1 FFH is written into the input shift register. Resetting the divide-by- 16 counter aligns its rollovers with the boundaries of the incoming bit times.

The 16 states of the counter divide each bit time into 16 ths. At the 7 th, 8 th, and 9 th counter states of each bit time, the bit detector samples the value of RXD. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the value accepted during the first bit time is not 0 , the receive circuits are reset and the unit goes back to looking for another 1 -to- 0 transition. This is to provide rejection of false start bits. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed.

As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register, (which in mode 1 is a 9-bit register), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated.

1) $\mathrm{RI}=0$, and
2) Either $\mathrm{SM} 2=0$, or the received stop bit $=1$

If either of these two conditions is not met, the received frame is irretrievably lost. If both conditions are met, the stop bit goes into RB8, the 8 data bits go into SBUF, and RI is activated. At this time, whether the above conditions are met or not, the unit goes back to looking for a 1-to-0 transition in RXD.

More About Modes 2 and 3

Eleven bits are transmitted (through TXD), or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On trans-
mit, the 9th data bit (TB8) can be assigned the value of 0 or 1 . On receive, the 9th data bit goes into RB8 in SCON. The baud rate is programmable to either $1 / 32$ or $1 / 84$ the oscillator frequency in Mode 2. Mode 3 may have a variable baud rate generated from either Timer 1 or 2 depending on the state of TCLK and RCLK.

Figures 19 and 20 show a functional diagram of the serial port in Modes 2 and 3. The receive portion is exactly the same as in Mode 1 . The transmit portion differs from Mode 1 only in the 9th bit of the transmit shift register.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads TB8 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission commences at S1P1 of the machine cycle following the next rollover in the divide-by- 16 counter. (Thus, the bit times are synchronized to the divide-by- 16 counter, not to the "write to SBUF" signal.)

The transmission begins with activation of SEND, which puts the start bit at TXD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TXD. The first shift pulse occurs one bit time after that. The first shift clocks a 1 (the stop bit) into the 9th bit position of the shift register. Thereafter, only zeroes are clocked in. Thus, as data bits shift out to the right, zeroes are clocked in from the left. When TB8 is at the output position of the shift register, then the stop bit is just to the left of TB8, and all positions to the left of that contain zeroes. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 11 th divide-by- 16 rollover after "write to SBUF."

Reception is initiated by a detected 1-to-0 transition at RXD. For this purpose RXD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by- 16 counter is immediately reset, and 1 FFH is written to the input shift register.

At the 7th, 8th and 9th counter states of each bit time, the bit detector samples the value of RXD. The value accepted is the value that was seen in at least 2 of the 3 samples. If the value accepted during the first bit time is not 0 , the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed.

Figure 19. Serial Port Mode 2

Figure 20. Serial Port Mode 3. TCLK, RCLK, and Timer 2 are Present in the 8052/8032 Only.

As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register (which in Modes 2 and 3 is a 9 -bit register), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated:

1) $\mathrm{RI}=0$, and
2) Either SM2 $=0$ or the received 9 th data bit $=1$

If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set. If both conditions are met, the received 9 th data bit goes into RB8, and the first 8 data bits go into SBUF. One bit time later, whether the above conditions were met or not, the unit goes back to looking for a 1-to-0 transition at the RXD input.

Note that the value of the received stop bit is irrelevant to SBUF, RB8, or RI.

INTERRUPTS

The 8051 provides 5 interrupt sources. The 8052 provides 6. These are shown in Figure 21.

The External Interrupts $\overline{\text { INTO }}$ and $\overline{\text { INT1 }}$ can each be either level-activated or transition-activated, depending on bits IT0 and IT1 in Register TCON. The flags that actually generate these interrupts are bits IEO and IE1 in TCON. When an external interrupt is generated, the flag that generated it is cleared by the hardware when the service routine is vectored to only if the interrupt

Figure 21. MCS ${ }^{\circledR-51}$ Interrupt Sources
was transition-activated. If the interrupt was level-activated, then the external requesting source is what controls the request flag, rather than the on-chip hardware.

The Timer 0 and Timer 1 Interrupts are generated by TF0 and TF1, which are set by a rollover in their respective Timer/Counter registers (except see Timer 0 in Mode 3). When a timer interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to.

The Serial Port Interrupt is generated by the logical OR of RI and TI. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine will normally have to determine whether it was RI or TI that generated the interrupt, and the bit will have to be cleared in software.

In the 8052, the Timer 2 Interrupt is generated by the logical OR of TF2 and EXF2. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and the bit will have to be cleared in software.

All of the bits that generate interrupts can be set or cleared by software, with the same result as though it had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be canceled in software.

User software should never write 1s to unimplemented bits, since they may be used in future MCS-51 products.

Figure 22. IE: Interrupt Enable Register

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE (Figure 22). IE contains also a global disable bit, EA, which disables all interrupts at once.

Note in Figure 22 that bit position IE. 6 is unimplemented. In the 8051 s , bit position IE. 5 is also unimplemented. User software should not write 1s to these bit positions, since they may be used in future MCS-51 products.

Priority Level Structure

Each interrupt source can also be individually programmed to one of two priority levels by setting or clearing a bit in Special Function Register IP (Figure 23). A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

(MS							SB)
-	-	PT2	PS	PT1	PX1	PTO	PX0
	Priorit Priorit	$\begin{aligned} & \text { bit }= \\ & \text { bit }= \end{aligned}$	$\begin{aligned} & 1 \text { ass } \\ & 0 \text { ass } \end{aligned}$	gns	gh pri w prio	rity. rity.	
Symbol	Positi				Fun	ction	
-	IP. 7		reser				
-	IP. 6		reser				
PT2	IP. 5		Time	2 inte	rupt p	iority	
PS	IP. 4		Seria	Port	terrup	prior	bit.
PT1	IP. 3		Time	1 inte	rupt p	iority	
PX1	IP. 2		External interrupt 1 priority bit.				
PT0	IP. 1 - Timer 0 interrupt priority bit.						
PX0	IP. 0		External interrupt 0 priority bit.				
User software should never write is to unimplemented bits, since they may be used in future MCS-51 products.							

Figure 23. IP: Interrupt Priority Register
If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If requests of the same priority level are re-
ceived simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence, as follows:

1.	Source IE0	Priority Within Level (highest)
2.	TF0	
3.	IE1	
4.	TF1	
5.	RI + TI	
6.	TF2 + EXF2	(lowest)

Note that the "priority within level" structure is only used to resolve simultaneous requests of the same priority level.

The IP register contains a number of unimplemented bits. IP. 7 and IP. 6 are vacant in the 8052s, and in the 8051s these and IP. 5 are vacant. User software should not write 1s to these bit positions, since they may be used in future MCS-51 products.

How Interrupts Are Handled

The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during the following machine cycle. The 8052's Timer 2 interrupt cycle is different, as described in the Response Time Section. If one of the flags was in a set condition at S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:

1. An interrupt of equal or higher priority level is already in progress.
2. The current (polling) cycle is not the final cycle in the execution of the instruction in progress.
3. The instruction in progress is RETI or any write to the IE or IP registers.

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Condition 2 ensures that the instruction in progress will be

270252-20
This is the fastest possible response when C 2 is the final cycle of an instruction other than RETI or an access to IE or IP.
Figure 24. Interrupt Response Timing Diagram
completed before vectoring to any service routine. Condition 3 ensures that if the instruction in progress is RETI or any access to IE or IP, then at least one more instruction will be executed before any interrupt is vectored to.

The polling cycle is repeated with each machine cycle, and the values polled are the values that were present at S5P2 of the previous machine cycle. Note then that if an interrupt flag is active but not being responded to for one of the above conditions, and is not still active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag was once active but not serviced is not remembered. Every polling cycle is new.

The polling cycle/LCALL sequence is illustrated in Figure 24.

Note that if an interrupt of higher priority level goes active prior to S5P2 of the machine cycle labeled C3 in Figure 24, then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases it doesn't. It never clears the Serial Port or Timer 2 flags. This has to be done in the user's software. It clears an external interrupt flag (IE0 or IE1) only if it was transition-activated. The hardware-generated LCALL pushes the contents of the Program Counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown below.

Source	Vector Address
IE0	0003 H
TF0	000 BH
IE1	0013 H
TF1	001 BH
RI + TI	0023 H
TF2 + EXF2	002 BH

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt was still in progress.

External Interrupts

The external sources can be programmed to be level-activated or transition-activated by setting or clearing bit IT1 or IT0 in Register TCON. If ITx $=0$, external interrupt x is triggered by a detected low at the INTx pin. If $\operatorname{ITx}=1$, external interrupt x is edge-triggered. In this mode if successive samples of the INTx pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least one machine cycle, and then hold it low for at least one machine cycle to ensure that the transition is seen so that interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called.

If the external interrupt is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

Response Time

The $\overline{\text { INT0 }}$ and INT1 levels are inverted and latched into the interrupt flags IEO and IE1 at S5P2 of every machine cycle. Similarly, the Timer 2 flag EXF2 and the Serial Port flags RI and TI are set at. S5P2. The values are not actually polled by the circuitry until the next machine cycle.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag TF2 is set at S2P2 and is polled in the same cycle in which the timer overflows.

If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two cycles. Thus, a minimum of three complete machine cycles elapse between activation of an external interrupt request and the beginning of execution of the first instruction of the service routine. Figure 24 shows interrupt response timings.

A longer response time would result if the request is blocked by one of the 3 previously listed conditions. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more than 3 cycles, since the longest instructions (MUL and DIV) are only 4
cycles long, and if the instruction in progress is RETI or an access to IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one more cycle to complete the instruction in progress, plus 4 cycles to complete the next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is always more than 3 cycles and less than 9 cycles.

SINGLE-STEP OPERATION

The 8051 interrupt structure allows single-step execution with very little software overhead. As previously noted, an interrupt request will not be responded to while an interrupt of equal priority level is still in progress, nor will it be responded to after RETI until at least one other instruction has been executed. Thus, once an interrupt routine has been entered, it cannot be re-entered until at least one instruction of the interrupted program is executed. One way to use this feature for single-stop operation is to program one of the external interrupts (say, $\overline{\text { INT0 }}$) to be level-activated. The service routine for the interrupt will terminate with the following code:

JNB P3.2,\$;Wait Here Till INTO Goes High
 JB P3.2,\$;Now Wait Here Till it Goes Low RETI :Go Back and Execute One Instruction

Now if the $\overline{\text { INT0 }}$ pin, which is also the P3.2 pin, is held normally low, the CPU will go right into the External Interrupt 0 routine and stay there until INT0 is pulsed (from low to high to low). Then it will execute RETI, go back to the task program, execute one instruction, and immediately re-enter the External Interrupt 0 routine to await the next pulsing of P3.2. One step of the task program is executed each time P3.2 is pulsed.

RESET

The reset input is the RST pin, which is the input to a Schmitt Trigger.

A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. The CPU responds by generating an internal reset, with the timing shown in Figure 25.

The external reset signal is asynchronous to the internal clock. The RST pin is sampled during State 5 Phase 2 of every machine cycle. The port pins will maintain their current activities for 19 oscillator periods after a logic 1 has been sampled at the RST pin; that is, for 19 to 31 oscillator periods after the external reset signal has been applied to the RST pin.

While the RST pin is high, ALE and PSEN are weakly pulled high. After RST is pulled low, it will take 1 to 2 machine cycles for ALE and PSEN to start clocking. For this reason, other devices can not be synchronized to the internal timings of the 8051 .

Driving the ALE and $\overline{\text { PSEN }}$ pins to 0 while reset is active could cause the device to go into an indeterminate state.

The internal reset algorithm writes Os to all the SFRs except the port latches, the Stack Pointer, and SBUF. The port latches are initialized to FFH, the Stack Pointer to 07 H , and SBUF is indeterminate. Table 3 lists the SFRs and their reset values.

The internal RAM is not affected by reset. On power up the RAM content is indeterminate.

Figure 25. Reset Timing

Table 3. Reset Values of the SFRs

SFR Name	Reset Value
PC	0000 H
ACC	00 H
B	00 H
PSW	00 H
SP	07 H
DPTR	0000 H
PO-P3	FFH
IP (8051)	$\mathrm{XXX00000B}$
IP (8052)	$\mathrm{XX000000B}$
IE (8051)	$0 \times \times 00000 \mathrm{~B}$
IE (8052)	$0 \times 000000 \mathrm{~B}$
TMOD	00 H
TCON	00 H
THO	00 H
TLO	00 H
TH1	00 H
TL1	00 H
TH2 (8052)	00 H
TL2 (8052)	00 H
RCAP2H (8052)	00 H
RCAP2L (8052)	00 H
SCON	00 H
SBUF	Indeterminate
PCON (HMOS)	$0 X X X X X X B$
PCON (CHMOS)	$0 X X X 0000 B$

Figure 26. Power on Reset Circuit

POWER-ON RESET

For HMOS devices when V_{CC} is turned on an automatic reset can be obtained by connecting the RST pin to V_{CC} through a $10 \mu \mathrm{~F}$ capacitor and to V_{SS} through an $8.2 \mathrm{~K} \Omega$ resistor (Figure 26). The CHMOS devices do not require this resistor although its presence does no harm. In fact, for CHMOS devices the external resistor can be removed because they have an internal pulldown on the RST pin. The capacitor value could then be reduced to $1 \mu \mathrm{~F}$.

When power is turned on, the circuit holds the RST pin high for an amount of time that depends on the capacitor value and the rate at which it charges. To ensure a valid reset the RST pin must be held high long enough to allow the oscillator to start up plus two machine cycles.

On power up, V_{CC} should rise within approximately ten milliseconds. The oscillator start-up time will depend on the oscillator frequency. For a 10 MHz crystal, the start-up time is typically 1 ms . For a 1 MHz crystal, the start-up time is typically 10 ms .

With the given circuit, reducing V_{CC} quickly to 0 causes the RST pin voltage to momentarily fall below 0 V . However, this voltage is internally limited and will not harm the device.

NOTE:
The port pins will be in a random state until the oscillator has started and the internal reset algorithm has written 1s to them.

Powering up the device without a valid reset could cause the CPU to start executing instructions from an indeterminate location. This is because the SFRs, specifically the Program Counter, may not get properly initialized.

POWER-SAVING MODES OF OPERATION

For applications where power consumption is critical the CHMOS version provides power reduced modes of operation as a standard feature. The power down mode in HMOS devices is no longer a standard feature and is being phased out.

CHMOS Power Reduction Modes

CHMOS versions have two power-reducing modes, Idle and Power Down. The input through which backup power is supplied during these operations is VCC. Figure 27 shows the internal circuitry which implements these features. In the Idle mode (IDL $=1$), the oscillator continues to run and the Interrupt, Serial Port, and Timer blocks continue to be clocked, but the
clock signal is gated off to the CPU. In Power Down ($\mathrm{PD}=1$), the oscillator is frozen. The Idle and Power Down modes are activated by setting bits in Special Function Register PCON. The address of this register is 87 H . Figure 28 details its contents.

In the HMOS devices the PCON register only contains SMOD. The other four bits are implemented only in the CHMOS devices. User software should never write 1s to unimplemented bits, since they may be used in future MCS-51 products.

IDLE MODE

An instruction that sets PCON. 0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the Interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON. 0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into Idle.

Figure 27. Idle and Power Down Hardware

Figure 28. PCON: Power Control Register
The flag bits GF0 and GF1 can be used to give an indication if an interrupt occurred during normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.
The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

The signal at the RST pin clears the IDL bit directly and asynchronously. At this time the CPU resumes program execution from where it left off; that is, at the instruction following the one that invoked the Idle Mode. As shown in Figure 25, two or three machine cycles of program execution may take place before the internal reset algorithm takes control. On-chip hardware inhibits access to the internal RAM during this time, but access to the port pins is not inhibited. To eliminate the possibility of unexpected outputs at the port pins, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external Data RAM.

POWER DOWN MODE

An instruction that sets PCON. 1 causes that to be the last instruction executed before going into the Power Down mode. In the Power Down mode, the on-chip oscillator is stopped. With the clock frozen, all func-

Table 4. EPROM Versions of the $\mathbf{8 0 5 1}$ and $\mathbf{8 0 5 2}$

Device Name	EPROM Version	EPROM Bytes	Ckt Type	VPP	Time Required to Program Entire Array
8051 AH	$8751 \mathrm{H} / 8751 \mathrm{BH}$	4 K	HMOS	$21.0 \mathrm{~V} / 12.75 \mathrm{~V}$	4 minutes
80 C 51 BH	87 C 51	4 K	CHMOS	12.75 V	13 seconds
8052 AH	8752 BH	8 K	HMOS	12.75 V	26 seconds

tions are stopped, but the on-chip RAM and Special Function Registers are held. The port pins output the values held by their respective SFRs. ALE and PSEN output lows.

The only exit from Power Down for the 80 C 51 is a hardware reset. Reset redefines all the SFRs, but does not change the on-chip RAM.

In the Power Down mode of operation, VCC can be reduced to as low as 2 V . Care must be taken, however, to ensure that VCC is not reduced before the Power Down mode is invoked, and that VCC is restored to its normal operating level, before the Power Down mode is terminated. The reset that terminates Power Down also frees the oscillator. The reset should not be activated before VCC is restored to its normal operating level, and must be held active long enough to allow the oscillator to restart and stabilize (normally less than 10 $\mathrm{msec})$.

EPROM VERSIONS

The EPROM versions of these devices are listed in Table 4. The 8751H programs at VPP $=21 \mathrm{~V}$ using one 50 msec PROG pulse per byte programmed. This results in a total programming time (4 K bytes) of approximately 4 minutes.

The $8751 \mathrm{BH}, 8752 \mathrm{BH}$ and 87 C 51 use the faster "Quick-Pulse" programmingTM algorithm. These devices program at VPP $=12.75 \mathrm{~V}$ using a series of twenty-five $100 \mu \mathrm{~s} \overline{\text { PROG }}$ pulses per byte programmed: This results in a total programming time of approximately 26 seconds for the 8752 BH (8 Kbytes) and 13 seconds for the 87C51 (4 Kbytes).

Detailed procedures for programming and verifying each device are given in the data sheets.

Exposure to Light

It is good practice to cover the EPROM window with an opaque label when the device is in operation. This is not so much to protect the EPROM array from inadvertent erasure, but to protect the RAM and other onchip logic. Allowing light to impinge on the silicon die while the device is operating can cause logical malfunction.

Program Memory Locks

In some microcontroller applications it is desirable that the Program Memory be secure from software piracy. Intel has responded to this need by implementing a Program Memory locking scheme in some of the MCS51 devices. While it is impossible for anyone to guarantee absolute security against all levels of technological sophistication, the Program Memory locks in the MCS51 devices will present a substantial barrier against illegal readout of protected software.

One Lock Bit Scheme on 8751H

The 8751 H contains a lock bit which, once programmed, denies electrical access by any external means to the on-chip Program Memory. The effect of this lock bit is that while it is programmed the internal Program Memory can not be read out, the device can not be further programmed, and it can not execute external Program Memory. Erasing the EPROM array deactivates the lock bit and restores the device's full functionality. It can then be re-programmed.

The procedure for programming the lock bit is detailed in the 8751 H data sheet.

Two Program Memory Lock Schemes

The 8751BH, 8752BH and 87C51 contain two Program Memory locking schemes: Encrypted Verify and Lock Bits.

Encryption Array: Within the EPROM is an array of encryption bytes that are initially unprogrammed (ail 1's). The user can program the array to encrypt the code bytes during EPROM verification. The verification procedure sequentially XNORs each code byte with one of the key bytes. When the last key byte in the array is reached, the verify routine starts over with the first byte of the array for the next code byte. If the key bytes are unprogrammed, the XNOR process leaves the code byte unchanged. With the key bytes programmed, the code bytes are encrypted and can be read correctly only if the key bytes are known in their proper order. Table 6 lists the number of encryption bytes available on the various products.

When using the encryption array, one important factor should be considered. If a code byte has the value

0 FFH , verifying the byte will produce the encryption byte value. If a large block of code is left unprogrammed, a verification routine will display the encryption array contents. For this reason all unused code bytes should be programmed with some value other than 0FFH, and not all of them the same value. This will ensure maximum program protection.

Program Lock Bits: Also included in the Program Lock scheme are Lock Bits which can be enabled to provide varying degrees of protection. Table 5 lists the Lock Bits and their corresponding effect on the microcontroller. Refer to Table 6 for the Lock Bits available on the various products.

Erasing the EPROM also erases the Encryption Array and the Lock Bits, returning the part to full functionality.

Table 5. Program Lock Bits and their Features

Program Lock Bits			Protection Type	
	LB1	LB2		
1	U	U	U	$\begin{array}{l}\text { No program lock features } \\ \text { enabled. (Code verify will }\end{array}$
still be encrypted by the				
encryption array if				
programmed.)				

P-Programmed
U-Unprogrammed
Any other combination of the Lock Bits is not defined.
Table 6. Program Protection

Device	Lock Bits	Encrypt Array
8751 BH	LB1, LB2	32 Bytes
$8752 B H$	LB1, LB2	32 Bytes
87 C51	LB1, LB2, LB3	64 Bytes

When Lock Bit 1 is programmed, the logic level at the $\overline{\mathrm{EA}}$ pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.

ROM PROTECTION

The 8051AHP and 80C51BHP are ROM Protected versions of the 8051 AH and 80 C 51 BH , respectively. To incorporate this Protection Feature, program verification has been disabled and external memory accesses have been limited to 4 K . Refer to the data sheets on these parts for more information.

ONCETM Mode

The ONCE ("on-circuit emulation") mode facilitates testing and debugging of systems using the device without the device having to be removed from the circuit. The ONCE mode is invoked by:

1. Pull ALE low while the device is in reset and $\overline{\text { PSEN }}$ is high;
2. Hold ALE low as RST is deactivated.

While the device is in ONCE mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored after a normal reset is applied.

THE ON-CHIP OSCILLATORS

HMOS Versions

The on-chip oscillator circuitry for the HMOS (HMOS-I and HMOS-II) members of the MCS-51 family is a single stage linear inverter (Figure 29), intended for use as a crystal-controlled, positive reactance oscillator (Figure 30). In this application the crystal is operated in its fundamental response mode as an inductive reactance in parallel resonance with capacitance external to the crystal.

Figure 29. On-Chip Oscillator Circuitry in the HMOS Versions of the MCS ${ }^{\circledR}-51$ Family

Figure 30. Using the HMOS On-Chip Oscillator
The crystal specifications and capacitance values (C 1 and C 2 in Figure 30) are not critical. 30 pF can be used in these positions at any frequency with good quality crystals. A ceramic resonator can be used in place of the crystal in cost-sensitive applications. When a ceramic resonator is used, C 1 and C 2 are normally selected to be of somewhat higher values, typically, 47 pF . The manufacturer of the ceramic resonator should be consulted for recommendations on the values of these capacitors.

In general, crystals used with these devices typically have the following specifications:

ESR (Equivalent Series Resistance)	see Figure 31
C $_{\mathrm{O}}$ (Shunt Capacitance)	7.0 pF max.
C $_{\mathrm{L}}$ (Load Capacitance)	$30 \mathrm{pF} \pm 3 \mathrm{pF}$
Drive Level	1 mW

Frequency, tolerance and temperature range are determined by the system requirements.

A more in-depth discussion of crystal specifications, ceramic resonators, and the selection of values for C 1 and C2 can be found in Application Note AP-155, "Oscillators for Microcontrollers," which is included in the Embedded Applications Handbook.

To drive the HMOS parts with an external clock source, apply the external clock signal to XTAL2, and ground XTAL1, as shown in Figure 32. A pullup resistor may be used (to increase noise margin), but is optional if VOH of the driving gate exceeds the VIH MIN specification of XTAL2.

Figure 32. Driving the HMOS MCS ${ }^{\circledR}$ - 51 Parts with an External Clock Source

CHMOS Versions

The on-chip oscillator circuitry for the 80 C 51 BH , shown in Figure 33, consists of a single stage linear inverter intended for use as a crystal-controlled, positive reactance oscillator in the same manner as the HMOS parts. However, there are some important differences.

One difference is that the 80 C 51 BH is able to turn off its oscillator under software control (by writing a 1 to the PD bit in PCON). Another difference is that in the 80 C 51 BH the internal clocking circuitry is driven by the signal at XTAL1, whereas in the HMOS versions it is by the signal at XTAL2.

The feedback resistor \mathbf{R}_{f} in Figure 33 consists of paralleled n - and p - channel FETs controlled by the PD bit, such that R_{f} is opened when $\mathrm{PD}=1$. The diodes D 1 and D2, which act as clamps to VCC and VSS, are parasitic to the R_{f} FETs.

The oscillator can be used with the same external components as the HMOS versions, as shown in Figure 34. Typically, $\mathbf{C 1}=\mathbf{C} 2=30 \mathrm{pF}$ when the feedback element is a quartz crystal, and $\mathrm{Cl}=\mathrm{C} 2=47 \mathrm{pF}$ when a ceramic resonator is used.

To drive the CHMOS parts with an external clock source, apply the external clock signal to XTAL1, and leave XTAL2 float, as shown in Figure 35.

Figure 33. On-Chip Oscillator Circuitry in the CHMOS Versions of the MCS ${ }^{\text {- }} \mathbf{5 1}$ Family

Figure 34. Using the CHMOS On-Chip Oscillator

Figure 35. Driving the CHMOS MCS ${ }^{\text {® }}-51$ Parts with an External Clock Source

The reason for this change from the way the HMOS part is driven can be seen by comparing Figures 29 and 33. In the HMOS devices the internal timing circuits are driven by the signal at XTAL2. In the CHMOS devices the internal timing circuits are driven by the signal at XTAL1.

INTERNAL TIMING

Figures 36 through 39 show when the various strobe and port signals are clocked internally. The figures do not show rise and fall times of the signals, nor do they show propagation delays between the XTAL signal and events at other pins.

Rise and fall times are dependent on the external loading that each pin must drive. They are often taken to be something in the neighborhood of 10 nsec , measured between 0.8 V and 2.0 V .

Propagation delays are different for different pins. For a given pin they vary with pin loading, temperature, VCC, and manufacturing lot. If the XTAL waveform is taken as the timing reference, prop delays may vary from 25 to 125 nsec.

The AC Timings section of the data sheets do not reference any timing to the XTAL waveform. Rather, they relate the critical edges of control and input signals to each other. The timings published in the data sheets include the effects of propagation delays under the specified test conditions.

Figure 36. External Program Memory Fetches

Figure 37. External Data Memory Read Cycle

Figure 38. External Data Memory Write Cycle

Figure 39. Port Operation

ADDITIONAL REFERENCES

The following application notes and articles are found in the Embedded Applications handbook. (Order Number: 270648)

1. AP-125 "Designing Microcontroller Systems for Electrically Noisy Environments".
2. AP-155 "Oscillators for Microcontrollers".
3. AP-252 "Designing with the 80 C 51 BH ".
4. AR-517 "Using the 8051 Microcontroller with Resonant Transducers".

8XC52/54/58 HARDWARE DESCRIPTION

INTRODUCTION

The $8 \mathrm{XC} 52 / 54 / 58$ is a highly integrated 8 -bit microcontroller based on the MCS ${ }^{\oplus}-51$ architecture. The key features are an enhanced serial port for multi-processor communications and an up/down timer/counter. As this product is CHMOS, it has two software selectable reduced power modes: Idle Mode and Power Down Mode. Being a member of the MCS-51 family, the $8 \mathrm{XC} 52 / 54 / 58$ is optimized for control applications.

This document presents a comprehensive description of the on-chip hardware features of the $8 \mathrm{XC} 52 / 54 / 58$ as they differ from the 80 C 51 BH . It begins by describing how the I/O functions are different and then discusses each of the peripherals as follows:

- 256 Bytes On-Chip RAM
- Special Function Registers (SFR)
- Timer 2
- Capture Timer/Counter
- Up/Down Timer/Counter
- Baud Rate Generator
- Full-Duplex Programmable Serial Interface with
- Framing Error Detection
- Automatic Address Recognition
- 6 Interrupt Sources
- Enhanced Power Down Mode
- Power Off Flag
- ONCE Mode

The $8 \mathrm{XC} 52 / 54 / 58$ uses the standard 8051 instruction set and is pin-for-pin compatible with the existing MCS-51 family of products. Table 1 summarizes the product names and memory differences of the various $8 \mathrm{XC} 52 / 54 / 58$ products currently available. Throughout this document, the products will generally be referred to as the 8 XC 5 X .

Table 1. 8XC52/54/58 Microcontrollers

ROM Device	EPROM Version	ROMIess Version	ROM/EPROM Bytes	RAM Bytes
80 C 52	87 C 52	80 C 32	8 K	256
80 C 54	87 C 54	$80 \mathrm{C32}$	16 K	256
80 C 58	87 C 58	80 C 32	32 K	256

For a description of the features that are the same as the 80C51, the reader should refer to the MCS-51 Architectural Overview, MCS-51 Programmers Guide/ Instruction Set, and the Hardware Description of the 80C51 in the Embedded Microcontrollers and Processors Handbook (Order \#270645).

PIN DESCRIPTION

The 8XC5X pin-out is the same as the 80C51. The only difference is the alternate function of pins P1.0 and P1.1. P1.0 is the external clock input for Timer 2. P1.1 is the Reload/Capture/Direction Control for Timer 2.

DATA MEMORY

The 8XC5X implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. That means they have the same addresses, but they are physically separate from SFR space.

When an instruction accesses an internal location above address 7 FH , the CPU knows whether the access is to the upper 128 bytes of RAM or the SFR space by the addressing mode used in the instruction. Instructions that use direct addressing access SFR space. For example,

> MOV 0AOH, \# data (Direct Addressing)
accesses the SFR at location 0 AOH (which is P2). Instructions that use indirect addressing access the upper 128 bytes of RAM. For example,

> MOV @R0, \# data (Indirect Addressing)
where R0 contains 0 AOH , accesses the data byte at address 0 AOH , rather than P 2 (whose address is 0 AOH). Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.

SPECIAL FUNCTION REGISTERS

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 2.

Note that not all of the addresses are occupied. Unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

User software should not write 1s to these unlisted locations, since they may be used in future MCS-51 products to invoke new features. In that case the reset or inactive values of the new bits will always be 0 .

Table 2. 8XC5X SFR Map and Reset Values

0F8H								OFFH
OFOH	$\begin{gathered} \text { B } \\ 00000000 \end{gathered}$							0F7H
OE8H								OEFH
OEOH	$\begin{gathered} \text { ACC } \\ 00000000 \end{gathered}$							0E7H
0D8H								ODFH
ODOH	$\begin{gathered} \text { PSW } \\ 00000000 \end{gathered}$							0D7H
0 C 8 H	$\begin{gathered} \text { T2CON } \\ 00000000 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { T2MOD } \\ \text { XXXXXXOO } \end{array}$	$\begin{array}{\|l\|} \hline \text { RCAP2L } \\ 00000000 \end{array}$	$\begin{aligned} & \text { RCAP2H } \\ & \text { 00000000 } \end{aligned}$	$\begin{gathered} \text { TL2 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TH2 } \\ 00000000 \end{gathered}$		OCFH
OCOH								0C7H
OB8H	$\begin{array}{\|c\|} \hline \text { IP } \\ \times 0000000 \end{array}$	$\begin{aligned} & \text { SADEN } \\ & 00000000 \end{aligned}$						OBFH
OBOH	$\begin{gathered} \text { P3 } \\ 11111111 \end{gathered}$						$\begin{gathered} \text { IPH } \\ \text { X0000000 } \end{gathered}$	0B7H
0A8H	$\begin{gathered} \mathrm{IE} \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { SADDR } \\ & 00000000 \end{aligned}$						OAFH
OAOH	$\begin{gathered} \text { P2 } \\ 11111111 \end{gathered}$							0A7H
98H	$\begin{gathered} \text { SCON } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SBUF } \\ \text { XXXXXXX } \end{gathered}$						9 FH
90 H	$\begin{gathered} \text { P1 } \\ 11111111 \end{gathered}$							97H
88H	$\begin{gathered} \text { TCON } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { TMOD } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { TLO } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TL1 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { THO } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TH1 } \\ 00000000 \end{gathered}$		8FH
80 H	$\begin{gathered} \text { PO } \\ 11111111 \end{gathered}$	$\begin{gathered} \text { SP } \\ 00000111 \end{gathered}$	$\begin{gathered} \text { DPL } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DPH } \\ 00000000 \end{gathered}$			$\begin{gathered} \text { PCON } \\ 00000000 \end{gathered}$	87H

Timer Registers-Control and status bits are contained in registers T2CON and T2MOD for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16bit auto-reload mode.

Serial Port Registers-Registers SADDR and SADEN are used to define the Given and the Broadcast addresses for the Automatic Address Recognition feature.

Interrupt Registers-The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the 6 interrupt sources in the IP register. The IPH register allows four priorities.

TIMER 2

Timer 2 is a 16 -bit Timer/Counter which can operate either as a timer or an event counter. This is selectable by bit C/T2 in the SFR T2CON (Table 3). It has three
operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON as shown in Table 4.

Timer 2 consists of two 8 -bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Thus one can think of it as counting machine cycles. Since a machine cycle consists of 12 oscillator periods, the count rate is $1 / 12$ of the oscillator frequency.

In the Counter function, the register is incremented in response to a 1 -to- 0 transition at its corresponding ex-
ternal input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since it takes 2 machine cycles (24 oscillator periods) to recognize a 1 -to- 0 transition, the maximum count rate is $1 / 24$ of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

Table 3. T2CON-Timer/Counter 2 Control Register

$\begin{aligned} & \text { T2CON Address }=0 \mathrm{C} 8 \mathrm{H} \\ & \text { Bit Addressable } \end{aligned}$					Reset Value $=00000000 \mathrm{~B}$		
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	$\mathrm{CP} / \mathrm{T} 2$	CP/ $\overline{\mathrm{RL}}$ 2
Bit 7	6	5	4	3	2	1	0
Symbol	Function						
TF2	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK $=1$ or TCLK $=1$.						
EXF2	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 $=1$. When Timer 2 interrupt is enabled, EXF2 $=1$ will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).						
RCLK	Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3. RCLK $=0$ causes Timer 1 overflow to be used for the receive clock.						
TCLK	Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3. TCLK $=0$ causes Timer 1 overflows to be used for the transmit clock.						
EXEN2	Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 $=0$ causes Timer 2 to ignore events at T2EX.						
TR2	Start/Stop control for Timer 2. TR2 $=1$ starts the timer.						
$\mathrm{C} / \overline{\mathrm{T} 2}$	Timer or counter select for Timer 2. $\mathrm{C} / \overline{\mathrm{T} 2}=0$ for timer function. $\mathrm{C} / \overline{\mathrm{T} 2}=1$ for external event colinter (falling edge triggered).						
CP/ $/ \overline{\mathrm{RL}}$ 2	Capture/Reload select. $\mathrm{CP} / \overline{\mathrm{RL} 2}=1$ causes captures to occur on negative transitions at T2EX if EXEN2 $=1 . \mathrm{CP} / \overline{\mathrm{RL} 2}=0$ causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2 $=1$. When either RCLK or TCLK $=1$, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.						

Table 4. Timer 2 Operating Modes

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16-Bit Auto-Ŕeload
0	1	1	16-Bit Capture
1	X	1	Baud Rate Generator
X	X	0	(Off)

CAPTURE MODE

In the capture mode there are two options selected by bit EXEN2 in T2CON. If EXEN2 $=0$, Timer 2 is a 16-bit timer or counter which upon overflow sets bit TF2 in T2CON. This bit can then be used to generate an interrupt. If EXEN2 $=1$, Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX causes the current value in TH2 and TL2 to be captured into RCAP2H and RCAP2L, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. The capture mode is illustrated in Figure 1.

AUTO-RELOAD (Up or Down Counter)

Timer 2 can be programmed to count up or down when configured in its 16 -bit auto-reload mode. This feature
is invoked by a bit named DCEN (Down Counter Enable) located in the SFR T2MOD (see Table 5). Upon reset the DCEN bit is set to 0 so that Timer 2 will default to count up. When DCEN is set, Timer 2 can count up or down depending on the value of the T2EX pin.

Figure 2 shows Timer 2 automatically counting up when DCEN $=0$. In this mode there are two options selected by bit EXEN2 in T2CON. If EXEN2 $=0$, Timer 2 counts up to OFFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16 -bit value in RCAP2H and RCAP2L. The values in RCAP2H and RCAP2L are preset by software. If EXEN2 $=1$, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if enabled.

Figure 1. Timer 2 in Capture Mode

Table 5. T2MOD-Timer 2 Mode Control Register

Figure 2. Timer 2 Auto Reload Mode (DCEN = 0)

Figure 3. Timer 2 Auto Reload Mode (DCEN = 1)

Figure 4. Timer 2 in Clock-Out Mode

Setting the DCEN bit enables Timer 2 to count up or down as shown in Figure 3. In this mode the T2EX pin controls the direction of count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at OFFFFH and set the TF2 bit. This overflow also causes the 16 -bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.

A logic 0 at T2EX makes Timer 2 count down. Now the timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer 2 overflows or underflows. This bit can be used as a 17 th bit of resolution if desired. In this operating mode, EXF2 does not flag an interrupt.

BAUD RATE GENERATOR

Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table 3). Note that the baud rates for transmit and receive can be different. This is accomplished by using Timer 2 for the receiver or transmitter and using Timer 1 for the other function. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 5.

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16 -bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate as follows:

$$
\text { Modes } 1 \text { and } 3 \text { Baud Rates }=\frac{\text { Timer } 2 \text { Overflow Rate }}{16}
$$

The Timer can be configured for either "timer" or "counter" operation. In most applications, it is configured for "timer" operation $(\mathrm{CP} / \mathrm{T} 2=0)$. The "timer" operation is different for Timer 2 when it's being used as a baud rate generator. Normally, as a timer, it increments every machine cycle (thus at $1 / 12$ the oscillator frequency). As a baud rate generator, however, it increments every state time (thus at $1 / 2$ the oscillator frequency). The baud rate formula is given below:

$$
\underset{\text { Maud Rate } 1 \text { and } 3}{\text { Moder }}=\frac{\text { Oscillator Frequency }}{32 \times[65536-(\text { RCAP2H, RCAP2L })]}
$$

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 5. This figure is valid only if RCLK or TCLK $=1$ in T2CON. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt, if desired.

It should be noted that when Timer 2 is running (TR2 $=1$) in "timer" function in the baud rate generator mode, one should not try to read or write TH2 or TL2. Under these conditions the Timer is being incremented every state time, and the results of a read or write may not be accurate. The RCAP2 registers may be read, but shouldn't be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

PROGRAMMABLE CLOCK OUT

A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed (1) to input the external clock for Timer/Counter 2 or (2) to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a 16 MHz operating frequency.

To configure the Timer/Counter 2 as a clock generator, bit C/T2 (T2CON.1) must be cleared and bit T2OE (T2MOD.1) must be set. Bit TR2 (T2CON.2) starts and stops the timer.

The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, TCAP2L) as shown in this equation:

Clock-Out Frequency $=\frac{\text { Oscillator Frequency }}{4 \times(65536-\text { RCAP2H, RCAP2L })}$
In the clock-out mode, Timer 2 roll-overs will not generate an interrupt. This is similar to when Timer 2 is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and clock-out frequencies can not be determined independently from one another since they both use RCAP2H and RCAP2L.

UART

The UART in the 8XC5X operates identically to the UART in the 80C51 except for the following enhancements. For a complete understanding of the 8 XC 5 X UART please refer to the description in the 80C51 Hardware Description chapter in the Embedded Microcontrollers and Processors Handbook.

Framing Error Detection-Framing Error Detection allows the serial port to check for valid stop bits in modes 1,2 or 3 . A missing stop bit can be caused, for example, by noise on the serial lines, or transmission by two CPUs simultaneously.

If a stop bit is missing a Framing Error bit (FE) is set. The FE bit can be checked in software after each reception to detect communication errors. Once set, the FE bit must be cleared in software. A valid stop bit will not clear FE.

The FE bit is located in SCON and shares the same bit address as SM0. Control bit SMOD0 in the PCON register (location PCON.6) determines whether the SM0 or FE bit is accessed. If SMOD0 $=0$, then accesses to SCON. 7 are to SMO. If SMOD0 $=1$, then accesses to SCON. 7 are to FE.

Automatic Address Recognition-Automatic Address Recognition reduces the CPU time required to service the serial port. Since the CPU is only interrupted when it receives its own address, the software overhead to compare addresses is eliminated. With this feature enabled in one of the 9-bit modes, the Receive Interrupt (RI) flag will only get set when the received byte corresponds to either a Given or Broadcast address.

Figure 5. Timer 2 in Baud Rate Generator Mode

A way to use this feature in multiprocessor systems is as follows:

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. Remember, an address byte has its 9 th bit set to 1 , whereas a data byte has its 9 th bit set to 0 . All the slave processors should have their SM2 bits set to 1 so they will only be interrupted by an address byte. The Automatic Address Recognition feature allows only the addressed slave to be interrupted. In this mode, the address comparison occurs in hardware, not software. (On the 80C51 serial port, an address byte interrupts all slaves for an address comparison).

The addressed slave then clears its SM2 bit and prepares to receive the data bytes that will be coming. The other slaves are unaffected by these data bytes as they are still waiting to receive an address byte.

The feature works the same way in the 8 -bit mode (Mode 1) as in the 9-bit modes, except that the stop bit takes the place of the 9th data bit. If SM2 is set, the RI flag is set only if the received byte matches the Given or Broadcast Address and is terminated by a valid stop bit. Setting the SM2 bit has no effect on Mode 0.

The master can selectively communicate with groups of slaves by using the Given Address. Addressing all slaves at once is possible with the Broadcast Address. These addresses are defined for each slave by two Special Function Registers: SADDR and SADEN.

A slave's individual address is specified in SADDR. SADEN is a mask byte that defines don't-care bits to form the Given Address. These don't-cares allow flexibility in the user-defined protocol to address one or more slaves at a time. The following is an example of how the user could define Given Addresses to selectively address different slaves.

Slave 1:

SADDR	$=$	11110001
SADEN	$=$	11111010
GIVEN	$=$	$11110 \times 0 X$

Slave 2:

SADDR	$=$	11110011
SADEN	$=$	11111001
GIVEN	$=$	$11110 \times X 1$

The SADEN bits are selected such that each slave can be addressed separately. Notice that bit 0 (LSB) is a don't-care for Slave 1's Given Address, but bit $0=1$ for Slave 2. Thus, to selectively communicate with just Slave 1 the master must send an address with bit $0=0$ (e.g., 11110000).

Similarly, bit $1=0$ for Slave 1, but is a don't-care for Slave 2. Now to communicate with just Slave 2 an address with bit $1=1$ must be used (e.g., 11110111).

Finally, for a master to communicate with both slaves at once the address must have bit $0=1$ and bit $1=0$. Notice, however, that bit 2 is a don't-care for both slaves. This allows two different addresses to select both slaves (11110001 or 11110101). If a third slave was added that required its bit $2=0$, then the latter address could be used to communicate with Slave 1 and 2 but not Slave 3.

The master can also communicate with all slaves at once with the Broadcast Address. It is formed from the logical OR of the SADDR and SADEN registers with zeroes defined as don't-cares. The don't-cares also allow flexibility in defining the Broadcast Address, but in most applications a Broadcast Address will be OFFH.

SADDR and SADEN are located at address 0A9H and $0 B 9 H$, respectively. On reset, the SADDR and SADEN registers are initialized to 00 H which defines the Given and Broadcast Addresses as XXXX XXXX (all don't-cares). This assures the 8XC5X serial port to be backwards compatible with other MCS ${ }^{@}$-51 products which do not implement automatic address recognition.

INTERRUPTS

The 8XC5X has a total of 6 interrupt vectors: two external interrupts ($\overline{\mathrm{INTO}}$ and $\overline{\mathrm{INT1}}$), three timer inter-
rupts (Timers 0,1 and 2) and the serial port interrupt. These interrupts are all shown in Figure 6.

Timer 2 Interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt and that bit will have to be cleared in software.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2 is set at S2P2 and is polled in the same cycle in which the timer overflows.

Interrupt Priority Structure

A second Interrupt Priority register (IPH) has been added, increasing the number of priority levels to four. Table 6 shows this second register. The added register becomes the MSB of the priority select bits and the existing IP register acts as the LSB. This scheme maintains compatibility with the rest of the MCS-51 family. Table 7 shows the bit values and priority levels associated with each combination.

Table 6. IPH: Interrupt Priority High Register

IPH Address $=0 \mathrm{OB7H}$					Reset Value $=$ X000 0000		
-	PPCH	PT2H	PSH	PT1H	PX1H	PTOH	PXOH
7	6	$5 \quad 4$		3	2	1	0
Symbol	Function						
-	Not Implemented, reserved for future use.						
PPCH	PCA interrupt priority high bit.						
PT2H	Timer 2 interrupt priority high bit.						
PSH	Serial Port interrupt priority high bit.						
PT1H	Timer 1 interrupt priority high bit.						
PX1H	External interrupt 1 priority high bit.						
PTOH	Timer 0 interrupt priority high bit.						
PXOH	External interrupt priority high bit.						

Table 7. Priority Level Bit Values

Priority Bits		Interrupt Priority Level
IPH.x	IP. \mathbf{x}	
0	0	Level 0 (Lowest)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (Highest)

POWER DOWN MODE

The 8XC5X can exit Power Down with either a hardware reset or external interrupt. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs (except PD in PCON) and the on-chip RAM to retain their values.

Figure 6. Interrupt Sources
To properly terminate Power Down the reset or external interrupt should not be applied before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 msec).

With an external interrupt, $\overline{\text { INT0 }}$ or $\overline{\text { INT1 }}$ must be enabled and configured as level-sensitive before entering Power Down. Holding the pin low restarts the oscillator and bringing the pin back high completes the exit. After the RETI instruction is executed in the interrupt service routine, the next instruction will be the one following the instruction that put the device in Power Down.

POWER OFF FLAG

The Power Off Flag (POF) located at PCON. 4 is set by hardware when V_{CC} rises from 0 to approximately 5 V . POF can also be set or cleared by software. This allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is one that is coincident with V_{CC} being turned on to the device after it was turned off. A warm start reset occurs while V_{CC} is still applied to the device and could be generated, for example, by an exit from Power Down.

Immediately after reset, the user's software can check the status of the POF bit. POF $=1$ would indicate a cold start. The software then clears POF and commences its tasks. POF $=0$ immediately after reset would indicate a warm start.
V_{CC} must remain above 3V for POF to retain a 0 .

Program Memory Lock

In some microcontroller applications it is desirable that the Program Memory be secure from software piracy. The 8XC5X has varying degrees of program protection depending on the device. Table 8 outlines the lock schemes available for each device.

Encryption Array: Within the EPROM/ROM is an array of encryption bytes that are initially unprogrammed (all 1's). For EPROM devices, the user can program the encryption array to encrypt the program code bytes during EPROM verification. For ROM devices, the user submits the encryption array to be programmed by the factory. If an encryption array is submitted, LB1 will also be programmed by the factory. The encryption array is not available without the Lock Bit. Program code verification is performed as usual except that each code byte comes out exclusive-NOR'ed (XNOR) with one of the key bytes. Therefore, to read the ROM/EPROM code, the user has to know the encryption key bytes in their proper sequence.

Unprogrammed bytes have the value OFFH. If the Encryption Array is left unprogrammed, all the key bytes have the value OFFH. Since any code byte XNOR'ed
with OFFH leaves the byte unchanged, leaving the Encryption Array unprogrammed in effect bypasses the encryption feature.

Program Lock Bits: Also included in the Program Lock scheme are Lock Bits which can be enabled to provide varying degrees of protection. Table 9 lists the Lock Bits and their corresponding influence on the microcontroller. Refer to Table 8 for the Lock Bits available on the various products. The user is responsible for programming the Lock Bits on EPROM devices. On ROM devices, LB1 is automatically set by the factory when the encryption array is submitted. The Lock Bit is not available without the encryption array on ROM devices.

Erasing the EPROM also erases the Encryption Array and the Lock Bits, returning the part to full functionality.

Table 8. Program Protection

Device	Lock Bits	Encrypt Array
$80 C 52$	LB1	64 Bytes
$80 C 54$	LB1	64 Bytes
$80 C 58$	LB1	64 Bytes
$87 C 52$	LB1, LB2, LB3	64 Bytes
87C54	LB1, LB2, LB3	64 Bytes
$87 C 58$	LB1, LB2, LB3	64 Bytes

ONCE MODE

The ON-Circuit Emulation (ONCE) mode facilitates testing and debugging of systems using the 8XC5X without having to remove the device from the circuit. The ONCE mode is invoked by either:

1. Pulling ALE low while the device is in reset and PSEN is high;
2. Holding ALE low as RESET is deactivated.

While the device is in ONCE mode, the Port 0 pins go into a float state, and the other port pins, ALE, and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit.

Normal operation is restored after a valid reset is applied.

ADDITIONAL REFERENCES

The following application notes provide supplemental information to this document and can be found in the Embedded Applications handbook (Order No. 270648).

1. AP-125 "Designing Microcontroller Systems for Electrically Noisy Environments"
2. AP-155 "Oscillators for Microcontrollers"
3. AP-252 "Designing with the 80 C 51 BH "
4. AP-410 "Enhanced Serial Port on the 83C51FA"

Table 9. Lock Bits

Program Lock Bits				Protection Type	
	LB1	LB2	LB3		
1	U	U	U	No program lock features enabled. (Code verify will still be encrypted by the encryption array if programmed.)	
2	P	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled.	
3	P	P	U	Same as 2, also verify is disabled.	
4	P	P	P	Same as 3, also external execution is disabled.	

$P=$ Programmed
$\mathrm{U}=$ Unprogrammed
Any other combination of Lock Bits is not defined.

MCS®-51
 8-BIT CONTROL-ORIENTED MICROCONTROLLERS 8031AH/8051AH 8032AH/8052AH 8751H/8751H-8

- High Performance HMOS Process

■ Internal Timers/Event Counters

- 2-Level Interrupt Priority Structure

■ 32 I/O Lines (Four 8-Bit Ports)
■ 64K Program Memory Space

- Security Feature Protects EPROM Parts Against Software Piracy
- Boolean Processor
- Bit-Addressable RAM
- Programmable Full Duplex Serial Channel
111 Instructions (64 Single-Cycle)
- 64K Data Memory Space

The MCS ${ }^{\circledR}-51$ products are optimized for control applications. Byte-processing and numerical operations on small data structures are facilitated by a variety of fast addressing modes for accessing the internal RAM. The instruction set provides a convenient menu of 8-bit arithmetic instructions, including multiply and divide instructions. Extensive on-chip support is provided for one-bit variables as a separate data type, allowing direct bit manipulation and testing in control and logic systems that require Boolean processing.

The 8751 H is an EPROM version of the 8051 AH . It has 4 Kbytes of electrically programmable ROM which can be erased with ultraviolet light. It is fully compatible with the 8051 AH but incorporates one additional feature: a Program Memory Security bit that can be used to protect the EPROM against unauthorized readout. The $8751 \mathrm{H}-8$ is identical to the 8751 H but only operates up to 8 MHz .

The 8052 AH is an enhanced version of the 8051 AH . It is backwards compatible with the 8051 AH and is fabricated with HMOS II technology. The 8052AH enhancements are listed in the table below. Also refer to this table for the ROM, ROMless and EPROM versions of each product.

Device	Internal Memory		Timers/ Event Counters	Interrupts
	Program	Data		6
8052 AH	$8 \mathrm{~K} \times 8 \mathrm{ROM}$	$256 \times 8 \mathrm{RAM}$	$2 \times 16-\mathrm{Bit}$	5
8051 AH	$4 \mathrm{~K} \times 8 \mathrm{ROM}$	$128 \times 8 \mathrm{RAM}$	$3 \times 16-\mathrm{Bit}$	6
8032 AH	none	$256 \times 8 \mathrm{RAM}$	$2 \times 16-\mathrm{Bit}$	5
8031 AH	none	$128 \times 8 \mathrm{RAM}$	$2 \times 16-\mathrm{Bit}$	5
8751 H	$4 \mathrm{~K} \times 8 \mathrm{EPROM}$	$128 \times 8 \mathrm{RAM}$	$2 \times 16-\mathrm{Bit}$	5
$8751 \mathrm{H}-8$	$4 \mathrm{~K} \times 8 \mathrm{EPROM}$	$128 \times 8 \mathrm{RAM}$		

Figure 1. MCS ${ }^{\oplus-51 ~ B l o c k ~ D i a g r a m ~}$

PROCESS INFORMATION

The 8031AH/8051AH and 8032AH/8052AH devices are manufactured on P414.1, an HMOS II process. The $8751 \mathrm{H} / 8751 \mathrm{H}-8$ devices are manufactured on P421.X, an HMOS-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
$8051 \mathrm{AH} /$	P	$40-$-Pin Plastic DIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
8031 AH	D	$40-$ Pin CERDIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
	N	$44-$-in PLCC	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$8052 \mathrm{AH} /$	P	$40-$-Pin Plastic DIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
8032 AH	D	40 -Pin CERDIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
	N	$44-$ Pin PLCC	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$8751 \mathrm{H} /$	D	$40-$ Pin CERDIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
$8751 \mathrm{H}-8$				

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Iniel's thermal impedance test methodology.

Figure 2. MCS ${ }^{\text {- }} 51$ Connections

PIN DESCRIPTIONS

$\mathbf{V}_{\mathbf{C}}$: Supply voltage.
$\mathbf{V}_{\mathbf{S s}}$ Circuit ground.
Port 0: Port 0 is an 8 -bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs.

Port 0 pins that have 1 's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1's and can source and sink 8 LS TTL inputs.

Port 0 also receives the code bytes during programming of the EPROM parts, and outputs the code bytes during program verification of the ROM and EPROM parts. External pullups are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/ source 4 LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current (l/IL on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address bytes during programming of the EPROM parts and during program verification of the ROM and EPROM parts.

In the 8032AH and 8052AH, Port 1 pins P1.0 and P1.1 also serve the T2 and T2EX functions, respectively.

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/ source 4 LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current (IIL on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during
accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1 's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits during programming of the EPROM parts and during program verification of the ROM and EPROM parts.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/ source 4 LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current (IIL on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

Port Pin	Alternative Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { INT0 }}$ (external interrupt 0)
P3.3	$\overline{\text { INT1 }}$ (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR (external data memory write strobe) }}$
P3.7	$\overline{\text { RD (external data memory read strobe) }}$

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE/िROG: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input ($\overline{\text { PROG }}$) during programming of the EPROM parts.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN: Program Store Enable is the read strobe to external Program Memory.

When the device is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{E A} / V_{p P:}$ External Access enable $\overline{E A}$ must be strapped to $\mathrm{V}_{\text {SS }}$ in order to enable any MCS-51 device to fetch code from external Program memory locations starting at 0000 H up to FFFFH. $\overline{E A}$ must be strapped to V_{CC} for internal program execution.

Note, however, that if the Security Bit in the EPROM devices is programmed, the device will not fetch code from any location in external Program Memory.

This pin also receives the 21 V programming supply voltage (VPP) during programming of the EPROM parts.

270048-4
$\mathrm{C} 1, \mathrm{C} 2=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
For Ceramic Resonators contact resonator manufacturer.
Figure 3. Oscillator Connections

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be grounded, while XTAL2 is driven, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

Figure 4. External Drive Configuration

DESIGN CONSIDERATIONS

If an 8751 BH or 8752 BH may replace an 8751 H in a future design, the user should carefully compare both data sheets for DC or AC Characteristic differences. Note that the $\mathrm{V}_{I H}$ and I_{IH} specifications for the EA pin differ significantly between the devices.

Exposure to light when the EPROM device is in operation may cause logic errors. For this reason, it is suggested that an opaque label be placed over the window when the die is exposed to ambient light.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias.$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on $\overline{E A} / V_{\text {PP }}$ Pin to $V_{S S} \ldots-0.5 \mathrm{~V}$ to +21.5 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +7 V
Power Dissipation. 1.5 W

NOTICE: This is a production data sheet. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Operating Conditions: T_{A} (Under Bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
DC CHARACTERISTICS (Over Operating Conditions)

Symbol	Parameter	Min	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (Except EA Pin of 8751 H \& $8751 \mathrm{H}-8)$	-0.5	0.8	V	
$\mathrm{V}_{\text {IL } 1}$	Input Low Voltage to EA Pin of 8751H \& 8751H-8	0	0.7	V	
V_{IH}	Input High Voltage (Except XTAL2, RST)	2.0	$V_{C C}+0.5$	V	
$\mathrm{V}_{\mathrm{IH} 1}$	Input High Voltage to XTAL2, RST	2.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	XTAL1 $=\mathrm{V}_{\text {SS }}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Ports 1, 2, 3)*		0.45	V	$\mathrm{l} \mathrm{OL}=1.6 \mathrm{~mA}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Port 0, ALE, $\overline{\text { PSEN }}$)*				
	$8751 \mathrm{H}, 8751 \mathrm{H}-8$		$\begin{aligned} & 0.60 \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=3.2 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{LL}}=2.4 \mathrm{~mA} \\ & \hline \end{aligned}$
	All Others		0.45	V	$\mathrm{l} \mathrm{OL}=3.2 \mathrm{~mA}$
V_{OH}	Output High Voltage (Ports 1, 2, 3, ALE, P- $\overline{\text { SEN }}$)	2.4		V	$\mathrm{IOH}=-80 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	2.4		V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
I/L	Logical 0 Input Current (Ports 1, 2, 3, RST) 8032AH, 8052AH All Others		$\begin{aligned} & -800 \\ & -500 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V} \end{aligned}$
ILL	Logical 0 Input Current to $\overline{E A}$ Pin of 8751H \& 8751H-8 Only		-15	mA	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
ILL2	Logical 0 Input Current (XTAL2)		-3.2	mA	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
LII	Input Leakage Current (Port 0) 8751H \& 8751H-8 All Others		$\begin{gathered} \pm 100 \\ \pm 10 \end{gathered}$	$\underset{\mu \mathrm{A}}{\mu \mathrm{~A}}$	$\begin{aligned} & 0.45 \leq V_{\text {IN }} \leq V_{C C} \\ & 0.45 \leq V_{\text {IN }} \leq V_{C C} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Logical 1 Input Current to $\overline{E A}$ Pin of 8751H \& 8751H-8		500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$
$\mathrm{l}_{\mathrm{IH} 1}$	Input Current to RST to Activate Reset		500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}<\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$
ICC	Power Supply Current: 8031AH/8051AH 8032AH/8052AH 8751H/8751H-8		$\begin{aligned} & 125 \\ & 175 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	All Outputs Disconnected; $\overline{E A}=V_{C C}$
ClO_{10}	Pin Capacitance		10	pF	Test freq $=1 \mathrm{MHz}$

*NOTE:

Capacitive loading on Ports 0 and 2 may cause noise pulses to be superimposed on the Vols of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8 V . In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

MCS®-51

AC CHARACTERISTICS
Over Operating Conditions;
Load Capacitance for Port 0, ALE, and PSEN $=100 \mathrm{pF}$;
Load Capacitance for All Other Outputs $=80 \mathrm{pF}$

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min.	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	12.0	MHz
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold after ALE Low	48		TCLCL-35		ns
TLLIV	ALE Low to Valid Instr In 8751H All Others		$\begin{array}{r} 183 \\ 233 \\ \hline \end{array}$		$\begin{aligned} & \text { 4TCLCL-150 } \\ & \text { 4TCLCL-100 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
TLLPL	ALE Low to PSEN Low	58		TCLCL-25		ns
TPLPH	$\overline{\text { PSEN }}$ Pulse Width 8751H All Others	$\begin{aligned} & 190 \\ & 215 \end{aligned}$		$\begin{aligned} & 3 \text { TCLCL-60 } \\ & 3 \text { TCLCL-35 } \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
TPLIV	$\overline{\text { PSEN }}$ Low to Valid Instr In 8751H All Others		$\begin{array}{r} 100 \\ 125 \\ \hline \end{array}$		$\begin{aligned} & \text { 3TCLCL-150 } \\ & \text { 3TCLCL-125 } \end{aligned}$	ns ns
TPXIX	Input Instr Hold after PSEN	0		0		ns
TPXIZ	Input Instr Float after $\overline{\text { PSEN }}$		63		TCLCL-20	ns
TPXAV	$\overline{\text { PSEN }}$ to Address Valid	75		TCLCL-8		ns
TAVIV	Address to Valid Instr In 8751H All Others		$\begin{aligned} & 267 \\ & 302 \end{aligned}$		$\begin{aligned} & \text { 5TCLCL-150 } \\ & \text { 5TCLCL-115 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$
TPLAZ	PSEN Low to Address Float		20		20	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400		6TCLCL-100		ns
TWLWH	WR Pulse Width	400		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold after $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float after $\overline{\mathrm{RD}}$		97		2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	200	300	3TCLCL-50	3 TCLCL+50	ns
TAVWL	Address to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	203		4TCLCL-130		ns
TQVWX	Data Valid to $\overline{\mathrm{WR}}$ Transition 8751H All Others	$\begin{aligned} & 13 \\ & 23 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { TCLCL-70 } \\ & \text { TCLCL-60 } \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
TQVWH	Data Valid to $\overline{\text { WR }}$ High	433		7TCLCL- 150		ns
TWHQX	Data Hold after \bar{W}	33		TCLCL-50		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		20		20	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE High 8751H All Others	$\begin{aligned} & 33 \\ & 43 \end{aligned}$	$\begin{aligned} & 133 \\ & 123 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TCLCL-50 } \\ & \text { TCLCL-40 } \end{aligned}$	$\begin{aligned} & \text { TCLCL+50 } \\ & \text { TCLCL+40 } \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTE:

*This table does not include the 8751-8 AC characteristics (see next page).

This Table is only for the 8751H-8
AC CHARACTERISTICS Over Operating Conditions;
Load Capacitance for Port 0, ALE, and PSEN $=100 \mathrm{pF}$;
Load Capacitance for All Other Outputs $=80 \mathrm{pF}$

Symbol	Parameter	8 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	8.0	MHz
TLHLL	ALE Pulse Width	210		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	85		TCLCL-40		ns
TLLAX	Address Hold after ALE Low	90		TCLCL-35		ns
TLLIV	ALE Low to Valid Instr In		350		4TCLCL-150	ns
TLLPL	ALE Low to PSEN Low	100		TCLCL-25		ns
TPLPH	PSEN Pulse Width	315		3TCLCL-60		ns
TPLIV	$\overline{\text { PSEN }}$ Low to Valid Instr In		225		3TCLCL-150	ns
TPXIX	Input Instr Hold after PSEN	0		0		ns
TPXIZ	Input Instr Float after $\overline{\text { PSEN }}$		105		TCLCL-20	ns
TPXAV	$\overline{\text { PSEN }}$ to Address Valid	117		TCLCL-8		ns
TAVIV	Address to Valid Instr In		475		5TCLCL-150	ns
TPLAZ	PSEN Low to Address Float		20		20	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	650		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	650		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		460		5TCLCL-165	ns
TRHDX	Data Hold after $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float after $\overline{\mathrm{RD}}$		180		2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In		850		8TCLCL-150	ns
TAVDV	Address to Valid Data In		960		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	325	425	3TCLCL-50	$3 T C L C L+50$	ns
TAVWL	Address to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	370		4TCLCL-130		ns
TQVWX	Data Valid to $\overline{\text { WR }}$ Transition	55		TCLCL-70		ns
TQVWH	Data Valid to WR High	725		7TCLCL-150		ns
TWHQX	Data Hold after WR	75		TCLCL-50		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		20		20	ns
TWHLH	$\overline{\mathrm{RD}}$ or WR High to ALE High	75	175	TCLCL-50	TCLCL+50	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING-SHIFT REGISTER MODE
Test Conditions: Over Operating Conditions; Load Capacitance $=80 \mathrm{pF}$

Symbol Parameter	$\mathbf{1 2 ~ M H z ~ O s c i l l a t o r ~}$		Variable Oscillator		Units	
		$\mathbf{M i n}$	Max	Min		
TXLXL	Serial Port Clock Cycle Time	1.0		12 TCLCL		$\mu \mathrm{s}$
TQVXH	Output Data Setup to Clock Rising Edge	700		10 TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-117		ns
TXHDX	Input Data Hold after Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL-133	ns

SHIFT REGISTER TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency (except 8751H-8)	3.5	12	$\mathbf{M H z}$
	$8751 \mathrm{H}-8$	3.5	8	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

AC TESTING INPUT, OUTPUT WAVEFORM

AC Testing: Inputs are driven at 2.4V for a Logic "1" and 0.45 V
for a Logic "0". Timing measurements are made at 2.0V for a
Logic "1" and 0.8 V for a Logic " 0 ".

EPROM CHARACTERISTICS

Table 3. EPROM Programming Modes

Mode	RST	$\overline{\text { PSEN }}$	ALE	$\overline{\text { EA }}$	P2.7	P2.6	P2.5	P2.4
Program	1	0	0^{*}	VPP	1	0	X	X
Inhibit	1	0	1	X	1	0	X	X
Verify	1	0	1	1	0	0	X	X
Security Set	1	0	0^{*}	VPP	1	1	X	X

NOTE:
" 1 " = logic high for that pin
" 0 " = logic low for that pin
" X " = "don't care"

Programming the EPROM

To be programmed, the part must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate internal registers.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0-P2.3 of Port 2, while the code byte to be programmed into that location is applied to Port 0. The other Port 2 pins, and RST, PSEN, and EA should be held at the "Program" levels indicated in Table 3. ALE is pulsed low for 50 ms to program the code byte into the addressed EPROM location. The setup is shown in Figure 5.

Normally $\overline{E A}$ is held at a logic high until just before ALE is to be pulsed. Then $\overline{E A}$ is raised to +21 V , ALE is pulsed, and then $\overline{E A}$ is returned to a logic high. Waveforms and detailed timing specifications are shown in later sections of this data sheet.

Figure 5. Programming Configuration
"VPP" $=+21 \mathrm{~V} \pm 0.5 \mathrm{~V}$
*ALE is pulsed low for 50 ms .

Note that the $\overline{E A} / V P P$ pin must not be allowed to go above the maximum specified VPP level of 21.5 V for any amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The VPP source should be well regulated and free of glitches.

Program Verification

If the Security Bit has not been programmed, the onchip Program Memory can be read out for verification purposes, if desired, either during or after the programming operation. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0-P2.3. The other pins should be held at the "Verify" levels indicated in Table 3. The contents of the addressed location will come out on Port 0 . External pullups are required on Port 0 for this operation.

The setup, which is shown in Figure 6, is the same as for programming the EPROM except that pin P2.7 is held at a logic low, or may be used as an activelow read strobe.

Figure 6. Program Verification

EPROM Security

The security feature consists of a "locking" bit which when programmed denies electrical access by any external means to the on-chip Program Memory. The bit is programmed as shown in Figure 7. The setup and procedure are the same as for normal EPROM programming, except that P2.6 is held at a logic high. Port 0, Port 1 and pins P2.0-P2.3 may be in any state. The other pins should be held at the "Security" levels indicated in Table 3.

Once the Security Bit has been programmed, it can be cleared only by full erasure of the Program Memory. While it is programmed, the internal Program Memory can not be read out, the device can not be further programmed, and it can not execute out of external program memory. Erasing the EPFOM, thus clearing the Security Bit, restores the device's full functionality. It can then be reprogrammed.

Erasure Characteristics

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelengths shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

Figure 7. Programming the Security Bit
The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 20 to 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the array in an all 1's state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{VSS}=0 \mathrm{~V}$

Symbol	Parameter	Min	Max	Units
VPP	Programming Supply Voltage	20.5	21.5	V
IPP	Programming Supply Current		30	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold after PROG	48TCLCL		
TDVGL	Data Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	P2.7 (ENABLE) High to VPP	48TCLCL		
TSHGL	VPP Setup to PROG Low	10		$\mu \mathrm{S}$
TGHSL	VPP Hold after PROG	10		$\mu \mathrm{s}$
TGLGH	PROG Width	45	55	ms
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION HISTORY

This data sheet (270048-007) is valid for 8051AH/8031AH and 8052AH/8032AH devices with an "A" at the end of the topside tracking number. It is also valid for $8751 \mathrm{H} / 8751 \mathrm{H}-8$ devices without an " A " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following differences exist between this data sheet (270048-007) and the previous version (270048-006):

1. Data sheet title was changed from:

MCS-51 8-Bit Control-Oriented Microcomputers 8031AH/8051AH 8032AH/8052AH 8751H/8751H-8 to:
MCS-51 8-Bit Control-Oriented Microcontrollers 8031AH/8051AH 8032AH/8052AH 8751H/8751H-8
2. The Operating Temperature Range has been changed to: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The following differences exist between the -006 and the -005 version of this data sheet.

1. $8051 / 8031$ device offering deleted.
2. θ_{ja} and θ_{jc} specifications added to the "Packages" table.
3. Capacitor values for ceramic resonators deleted from Figure 3.

The following are the key differences between the -005 and the -004 version of this data sheet.

1. Data sheet status changed from "Preliminary" to "Production".
2. LCC package offering deleted.
3. Maximum Ratings Warning and Data Sheet Revision History revised.

The following are the key differences between the -004 and the -003 version of this data sheet:

1. Introduction was expanded to include product descriptions.
2. Package table was added.
3. Design Considerations added.
4. Test Conditions for $\mathrm{I}_{\mathrm{IL} 1}$ and I_{IH} specifications added to the DC Characteristics.
5. Data Sheet Revision History added.

8051AHP
 MCS ${ }^{\circledR}$-51 FAMILY
 8-BIT CONTROL-ORIENTED MICROCONTROLLER WITH PROTECTED ROM

\author{

- High Performance HMOS Process
 ■ Internal Timers/Event Counters
 - 2-Level Interrupt Priority Structure
 - 32 I/O Lines (Four 8-Bit Ports)
 ■ 4K Program Memory Space
 - Protection Feature Protects ROM Parts Against Software Piracy
}

■ Boolean Processor

- Bit-Addressable RAM

■ Programmable Full Duplex Serial Channel

■ 111 Instructions (64 Single-Cycle)

- 4K Data Memory Space*
*Expandable to 64 K
- Available in 40 Pin Plastic and CERDIP Packages
(See Packaging Outlines and Dimensions Order \#231369)

The MCS®-51 products are optimized for control applications. Byte-processing and numerical operations on small data structures are facilitated by a variety of fast addressing modes for accessing the internal RAM. The instruction set provides a convenient menu of 8 -bit arithmetic instructions, including multiply and divide instructions. Extensive on-chip support is provided for one-bit variables as a separate data type, allowing direct bit manipulation and testing in control and logic systems that require Boolean processing.

MCS-51 HMOS Family Device	Internal Memory		Timers/ Event Counters	Interrupts
	Program	Data		
8051 AH	$4 \mathrm{~K} \times 8$ ROM	128×8 RAM	2×16-Bit	5
8051 AHP	$4 \mathrm{~K} \times 8$ ROM	128×8 RAM	20	

The 8051AHP is identical to the 8051AH with the exception of the Protection Feature. To incorporate this Protection Feature, program verification has been disabled and external memory accesses have been limited to 4 K .

Figure 1. MCS ${ }^{\circledR-51 ~ B l o c k ~ D i a g r a m ~}$

PACKAGES

Part	Prefix	Package Type
8051AHP	P	40-Pin Plastic DIP
	D	40-Pin CERDIP

Figure 2. MCS ${ }^{\circledR}-51$ Connections

PIN DESCRIPTIONS

V_{cc}

Supply voltage.

$\mathbf{V}_{\mathbf{S S}}$

Circuit ground.

Port 0

Port 0 is an 8 -bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs.

Port 0 pins that have 1 s written to them float, and in that state can be used as high-impedance inputs.

Furt 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting is and can source and sink 8 LS TTL inputs.

Port 1

Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink source 4

LS TTL inputs. Port 1 pins that have 1 s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (l_{IL}, on the data sheet) because of the internal pullups.

Port 2

Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source 4 LS TTL inputs. Port 2 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (1_{IL} on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s. Bits P2.4 through P2.7 are forced to 0, effectively limiting external Data and Code space to 4 K each in the 8051AHP during external accesses*. During accesses to external Data Memory that use 8 -bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 3

Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source 4 LS TTL inputs. Port 3 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (l/IL on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

Port Pin	Alternative Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { INT0 }}$ (external interrupt 0)
P3.3	$\overline{\text { INT1 }}$ (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR }}$ (external data memory write strobe)
P3.7	$\overline{\text { RD (external data memory read strobe) }}$

RST

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE

Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

$\overline{\text { PSEN }}$

Program Store Enable is the read strobe to external Program Memory.

When the device is executing code from external Program Memory, $\overline{\text { PSEN }}$ is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.

$\overline{E A}$

External Access enable $\overline{E A}$ should be strapped to $V_{C C}$ for internal program executions. $\overline{E A}$ must be strapped to V_{SS} in order to enable any MCS-51 device to fetch code from external Program memory locations starting at 0000H up to FFFFH.

Figure 3. Oscillator Connections

XTAL2

Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be grounded, while XTAL2 is driven, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 4. External Drive Configuration

DESIGN CONSIDERATION

The 8051AHP cannot access external Program or Data memory above 4K. This means that the following instructions that use the Data Pointer only read/ write data at address locations below OFFFH:

```
MOVX A, @DPTR
MOVX @DPTR, A
```

When the Data Pointer contains an address above the 4K limit, those locations will not be accessed.

To access Data Memory above 4K, the MOVX, @Ri, A or MOVX A, @Ri instructions must be used.

XTAL1

Input to the inverting oscillator amplifier.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on $\overline{E A} / V_{P P}$ Pin to $V_{S S} \ldots-0.5 \mathrm{~V}$ to +21.5 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots . .0 .5 \mathrm{~V}$ to +7 V
Power Dissipation
1.5W

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Operating Conditions: T_{A} (Under Bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
D.C. CHARACTERISTICS (Under Operating Conditions)

Symbol	Parameter	Min	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5	0.8	V	
V_{IH}	Input High Voltage (Except XTAL2, RST)	2.0	$V_{C C}+0.5$	V	
$\mathrm{V}_{\mathrm{HH} 1}$	Input High Voltage to XTAL2, RST	2.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	XTAL1 $=\mathrm{V}_{\text {SS }}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Ports 1, 2, 3)*		0.45	V	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Port 0, ALE, PSEN)*		0.45	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
V_{OH}	Output High Voltage (Ports 1, 2, 3, ALE, PSEN)	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-80 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
ILL	Logical 0 Input Current		-500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
ILL2	Logical 0 Input Current (XTAL2)		-3.2	mA	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
l_{LI}	Input Leakage Current (Port 0)		± 10	$\mu \mathrm{A}$	$0.45 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$
${ }_{1 H}$	Input Current to RST to Activate Reset		500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}<\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$
ICC	Power Supply Current		125	mA	All Outputs Disconnected; $\overline{E A}=V C C$
ClO	Pin Capacitance		10	pF	Test freq $=1 \mathrm{MHz}$

*NOTE:

Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the Vols of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8 V . In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

8051AHP

A.C. CHARACTERISTICS
 Under Operating Conditions;
 Load Capacitance for Port 0, ALE, and PSEN $=100 \mathrm{pF}$;
 Load Capacitance for All Other Outputs $=80 \mathrm{pF}$.

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	12.0	MHz
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold after ALE Low	48		TCLCL-35		ns
TLLIV	ALE Low to Valid Instr In		233		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	58		TCLCL-25		ns
TPLPH	PSEN Pulse Width	215		3TCLCL-35		ns
TPLIV	$\overline{\text { PSEN }}$ Low to Valid Instr In		125		3TCLCL-125	ns
TPXIX	Input Instr Hold after PSEN	0		0		ns
TPXIZ	Input Instr Float after PSEN		63		TCLCL-20	ns
TPXAV	$\overline{\text { PSEN }}$ to Address Valid	75		TCLCL-8		ns
TAVIV	Address to Valid Instr In		302		5TCLCL-115	ns
TPLAZ	$\overline{\text { PSEN Low to Address Float }}$		20		20	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	400		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold after $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float after $\overline{\mathrm{RD}}$		97		2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL- 165	ns
TLLWL	ALE Low to $\overline{\text { RD }}$ or $\overline{\text { WR }}$ Low	200	300	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	203		4TCLCL-130		ns
TQVWX	Data Valid to WR Transition	23		TCLCL-60		ns
TQVWH	Data Valid to WR High	433		7TCLCL-150		ns
TWHQX	Data Hold after WR	33		TCLCL-50		ns
TRLAZ	$\overline{\text { RD Low to Address Float }}$		20		20	ns
TWHLH	$\overline{\mathrm{RD}}$ or WR High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING-SHIFT REGISTER MODE

Test Conditions: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{1 2 ~ M H z ~ O s c i l l a t o r ~}$		Variable Oscillator		Units
		Max	Min	Max		
TXLXL	Serial Port Clock Cycle Time	1.0		12 TCLCL		$\mu \mathrm{s}$
TQVXH	Output Data Setup to Clock Rising Edge	700		10 TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-117		ns
TXHDX	Input Data Hold after Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL-133	ns

SHIFT REGISTER TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency	3.5	12	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

270279-10

A.C. TESTING INPUT, OUTPUT WAVEFORM

Program Verification

The program verification test mode has been eliminated on the 8051AHP. It is not possible to verify the ROM contents using this mode, the way EPROM programmers typically do. Also, the ROM contents cannot be verified by a program executing out of external program memory due to the restricted addressing on the 8051AHP.

DATA SHEET REVISION HISTORY

The following are the key differences between this and the -003 version of the 8051AHP data sheet:

1. Data sheet status changed from "Preliminary" to "Production".
2. Revised Maximum Ratings Warning and Data Sheet Status Notice.

The following are the key differences between this and the -002 version of 8051 AHP data sheet:

1. Package Table was added.
2. Added clearer explanation to DESIGN CONSIDERATION.
3. Data Sheet Revision History was added.

8751BH
 SINGLE-CHIP 8-BIT MICROCONTROLLER WITH 4 KBYTES OF EPROM PROGRAM MEMORY

- Program Memory Lock
- 128 Bytes Data Ram
- Quick Pulse Programming Algorithm
- 12.75 Volt Programming Voltage
- Boolean Processor

Two 16-Bit Timer/Counters

- 5 Interrupt Sources
- Programmable Serial Channel

■ 64K External Program Memory Space

- 64K External Data Memory Space

32 Programmable I/O Lines

Figure 1. 8751BH Block Diagram

PACKAGES

Part	Prefix	Package Type
8751 BH	P	40-Pin Plastic DIP
	N	44-Pin PLCC

Pad (PLCC)
Figure 2. Pin Connections

PIN DESCRIPTIONS

$\mathbf{V}_{\mathbf{C C}}$: Supply voltage.
$\mathbf{V}_{\mathbf{S s}}$: Circuit ground.
Port 0: Port 0 is an 8 -bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs. Port 0 pins that have 1 s written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1s, and can source and sink 8 LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullups are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/ source 4 LS TTL inputs. Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (l/L, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address bytes during EPROM programming and program verification.

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/ source 4 LS TTL inputs. Port 2 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IL, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/ source 4 LS TTL inputs. Port 3 pins that have is written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IL, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS®-51 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INT0 (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	$\overline{\text { RD (external data memory read strobe) }}$

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE/ $\overline{\text { PROG: }}$ Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during EPROM programming.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN: Program Store Enable is the Read strobe to External Program Memory.

When the 8751 BH is executing code from external Program Memory, $\overline{\text { PSEN }}$ is activated twice each machine cycle, except that two PSEN activations are skipped during each access to External Data Memory.
$\overline{E A} / V_{p p}$: External Access enable. $\overline{E A}$ must be strapped to $V_{S S}$ in order to enable the device to fetch code from External Program Memory locations starting at 0000 H up to FFFFH. Note, however, that if either of the Lock Bits are programmed, EA will be internally latched on reset.
$\overline{E A}$ should be strapped to $V_{C C}$ for internal program executions.

This pin also receives the 12.75 V programming supply voltage ($V_{P P}$) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Applications Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be grounded, while XTAL2 is driven, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

270248-3
C1, C2 $=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
For Ceramic Resonators, contact resonator manufacturer.
Figure 3. Oscillator Connections

Figure 4. External Clock Drive Configuration

DESIGN CONSIDERATIONS

If an 8751 BH is replacing an 8751 H in an existing design, the user should carefully compare both data sheets for DC or AC Characteristic differences. Note that the V_{IH} and I_{H} specifications for the EA pin differ significantly between the 8751 H and 8751 BH .

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $\ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on $\overline{E A} / V_{\text {PP }}$ Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots .-0.5 \mathrm{~V}$ to +7 V
Maximum lol Per I/O Pin 15 mA
Power Dissipation. 1.5 W
(based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Operating Conditions: T_{A} (Under Bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
DC CHARACTERISTICS (Under Operating Conditions)

Symbol	Parameter	Min	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (Except $\overline{\mathrm{EA}}$)	-0.5	0.8	V	
$\mathrm{V}_{\mathrm{IL} 1}$	Input Low Voltage EA	$\mathrm{V}_{\text {SS }}$	0.7	V	
V_{IH}	Input High Voltage (Except XTAL2, RST, $\overline{E A}$)	2.0	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{HH} 1}$	Input High Voltage XTAL2, RST	2.5	$\mathrm{V}_{C C}+0.5$	V	XTAL1 = VSS
$\mathrm{V}_{1 \mathrm{H} 2}$	Input High Voltage to EA	4.5	5.5	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Note 3) (Ports 1, 2 and 3)		0.45	V	$\mathrm{loL}=1.6 \mathrm{~mA}($ Note 1$)$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Note 3) (Port 0, ALE/PROG, $\overline{\text { PSEN }}$)		0.45	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}($ Notes 1, 2)
V_{OH}	Output High Voltage (Ports 1, 2, 3, ALE/둥 and $\overline{\text { PSEN }}$)	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-80 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
IIL	Logical 0 Input Current (Ports 1, 2, 3 and RST)		-1	mA	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
IL1	Logical 0 Input Current ($\overline{\mathrm{EA}}$)		-10	mA	$\mathrm{V}_{\text {IN }}=\mathrm{VSS}$
ILL2	Logical 0 Input Current (XTAL2)		-3.2	mA	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$ XTAL1 $=\mathrm{V}_{\text {SS }}$
LII	Input Leakage Current (Port 0)		± 10	$\mu \mathrm{A}$	$0.45<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$
$\mathrm{IIH}^{\text {H }}$	Logical 1 Input Current ($\overline{\mathrm{EA}}$)		1	mA	$4.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5.5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{H} 1}$	Input Current to RST to Activate Reset		500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}<\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$
ICC	Power Supply Current		175	mA	All Outputs Disconnected
ClO_{10}	Pin Capacitance		10	pF	Test Freq $=1 \mathrm{MHz}$

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the $V_{O L} S$ of ALE/PROG and Ports 1 and 3 . The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading $>100 \mathrm{pF}$), the noise pulse on the ALE/PROG pin may exceed 0.8 V . In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.
2. ALE/ $\overline{\text { PROG }}$ refers to a pin on the 8751 BH . ALE refers to a timing signal that is output on the ALE/ $\overline{\operatorname{PROG}}$ pin.
3. Under steady state (non-transient) conditions, loL must be externally limited as follows:

Maximum lol per port pin:
10 mA
Maximum lol per 8-bit port -
Port 0: $\quad 26 \mathrm{~mA}$
Ports 1, 2, and 3: $\quad 15 \mathrm{~mA}$
Maximum total lol for all output pins: $\quad 71 \mathrm{~mA}$
If lol exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

AC CHARACTERISTICS (Under Operating Conditions; Load Capacitance for Port 0, ALE/ $\overline{\text { PROG }}$, and $\overline{\text { PSEN }}=100 \mathrm{pF}$; Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Osc		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	12.0	MHz
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	48		TCLCL-35		ns
TLLIV	ALE Low to Valid Instruction In		233		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	58		TCLCL-25		ns
TPLPH	PSEN Pulse Width	215		3TCLCL-35		ns
TPLIV	$\overline{\text { PSEN Low to Valid Instruction In }}$		125		3TCLCL-125	ns
TPXIX	Input Instr Hold After PSEN	0		0		ns
TPXIZ	Input Instr Float After PSEN		63		TCLCL-20	ns
TPXAV	PSEN to Address Valid	75		TCLCL-8		ns
TAVIV	Address to Valid Instruction In		302		5TCLCL-115	ns
TPLAZ	$\overline{\text { PSEN }}$ Low to Address Float		20		20	ns
TRLRH	$\overline{\text { RD Pulse Width }}$	400		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	400		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		97		2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	200	300	3TCLCL-50	3 TCLCL +50	ns
TAVWL	Address to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	203		4TCLCL-130		ns
TQVWX	Data Valid to WR Transition	23		TCLCL-60		ns
TQVWH	Data Valid to WR High	433		7TCLCL-150		ns
TWHQX	Data Held After WR	33		TCLCL-50		ns
TRLAZ	$\overline{\text { RD }}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING - SHIFT REGISTER MODE

TEST CONDITIONS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; Load Capacitance $=80 \mathrm{pF}$)

Symbol	Parameter	12MHz Osc		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1.0		12 TCLCL		$\mu \mathrm{s}$
TQVXH	Output Data Setup to Clock Rising Edge	700		10 TCLCL-133		ns
TXHQX	Output Data Hold After Clock Rising Edge	50		2 TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0	ns	
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE WAVEFORMS

$\xrightarrow{2}$

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency	3.5	12	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EPROM CHARACTERISTICS

Programming the EPROM

To be programmed, the part must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate internal registers.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0-P2.3 of Port 2, while the code byte to be programmed into that location is applied to Port 0. The other Port 2 and 3 pins, and RST, PSEN, and $\overline{E A} / V_{P P}$ should be held at the "Program" levels indicated in Table 1. ALE/ $\overline{\text { PROG }}$ is pulsed low to program the code byte into the addressed EPROM location. The setup is shown in Figure 5.

Normally $\overline{E A} / V_{P P}$ is held at a logic high until just before ALE/PROG is to be pulsed. Then $\overline{E A} / V_{P P}$ is raised to $V_{P P}$, ALE/PROG is pulsed low, and then $\overline{E A} / V_{P P}$ is returned to a valid high voltage. The voltage on the $\overline{E A} / V_{P P}$ pin must be at the valid $\overline{E A} / V_{P P}$ high level before a verify is attempted. Waveforms and detailed timing specifications are shown in later sections of this data sheet.

Note that the $\overline{E A} / V_{\text {Pp }}$ pin must not be allowed to go above the maximum specified $V_{P P}$ level for any

AC TESTING INPUT/OUTPUT WAVEFORMS
AC inputs during testing are driven at 2.4 V for a logic " 1 " and
0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for
a logic " 1 " and 0.8 V for a logic " 0 ".
amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The VPp source should be well regulated and free of glitches.

Figure 5. Programming the EPROM

Table 1. EPROM Programming Modes

MODE	RST	$\overline{\text { PSEN }}$	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{\mathrm{EA} /} \\ & \mathbf{V}_{\mathrm{PP}} \end{aligned}$	P2.7	P2.6	P3.6	P3.7
Program Code Data	1	0	0*	VPp	1	0	1	1
Verify Code Data	1	0	1	1	0	0	1	1
Program Encryption Table Use Addresses 0-1FH	1	0	0*	V_{PP}	1	0	0	1
$\begin{array}{cl} \hline \text { Program Lock } & x=1 \\ \text { Bits (LBx) } & x=2 \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0^{*} \\ & 0^{*} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}} \\ & \mathrm{~V}_{\mathrm{PP}} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$
Read Signature	1	0	1	1	0	0	0	0

NOTES:

"1" = Valid high for that pin
" 0 " = Valid low for that pin
$" V_{P P}$ " $=+12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$

* ALE/PROG is pulsed low for $100 \mu \mathrm{~s}$ for programming. (Quick-Pulse Programming)

QUICK-PULSE PROGRAMMING ALGORITHM

The 8751 BH can be programmed using the QuickPulse Programming Algorithm for microcontrollers. The features of the new programming method are a lower VPP (12.75 volts as compared to 21 volts) and a shorter programming pulse. It is possible to program the entire 4 Kbytes of EPROM memory in less than 13 seconds with this algorithm

To program the part using the new algorithm, V_{PP} must be 12.75 ± 0.25 Volts. ALE/PROG is pulsed low for 100μ seconds, 25 times. Then, the byte just programmed may be verified. After programming, the entire array should be verified. The Program Lock features are programmed using the same method, but with the setup as shown in Table 1. The only difference in programming Lock features is that the Lock features cannot be directly verified. Instead, verification of programming is by observing that their features are enabled.

PROGRAM VERIFICATION

If the Lock Bits have not been programmed, the onchip Program Memory can be read out for verification purposes, if desired, either during or after the programming operation. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0-P2.3. The other pins should be held at the "Verify" levels indicated in Table 1. The con-
tents of the addressed location will come out on Port 0 . External pullups are required on Port 0 for this operation. (If the Encryption Array in the EPROM has been programmed, the data present at Port 0 will be Code Data XNOR Encryption Data. The user must know the Encryption Array contents to manually "unencrypt" the data during verify.)

The setup, which is shown in Figure 6, is the same as for programming the EPROM except that pin P2.7 is held at a logic low, or may be used as an active low read strobe.

Figure 6. Verifying the EPROM

PROGRAM MEMORY LOCK

The two-level Program Lock system consists of 2 Lock bits and a 32-byte Encryption Array which are used to protect the program memory against software piracy.

Encryption Array

Within the EPROM array are 32 bytes of Encryption Array that are initially unprogrammed (all 1s). Every time that a byte is addiressed during a verify, 5 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NORed (XNOR) with the code byte, creating an Encrypted Verify byte. The algorithm, with the array in the unprogrammed state (all 1s), will return the code in its original, unmodified form.

It is recommended that whenever the Encryption Array is used, at least one of the Lock Bits be programmed as well.

Lock Bits

Also included in the EPROM Program Lock scheme are two Lock Bits which function as shown in Table 2.

Table 2. Lock Bits and their Features

Lock Bits		Logic Enabled
LB1	LB2	
U	U	Minimum Program Lock features enabled. (Code Verify will still be encrypted by the Encryption Array)
P	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled
P	P	Same as above, but Verify is also disabled
U	P	Reserved for Future Definition

[^5]To ensure proper functionality of the chip, the internally latched value of the EA pin must agree with its external state.

ERASURE CHARACTERISTICS

This device is in a plastic package without a window and, therefore, cannot be erased.

Reading the Signature Bytes

The signature bytes are read by the same procedure as a normal verification of locations 030 H and 031 H , except that P3.6 and P3.7 need to be pulled to a logic low. the values returned are:
$(030 \mathrm{H})=89 \mathrm{H}$ indicates manufactured by Intel $(031 \mathrm{H})=51 \mathrm{H}$ indicates 8751 BH

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS
$\left(T_{A}=21^{\circ} \mathrm{C}\right.$ to $27^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
$V_{P P}$	Programming Supply Voltage	12.5	13.0	V
IPP	Programming Supply Current		50	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold After $\overline{\text { PROG }}$	48TCLCL		
TDVGL	Data Setup to PROG Low	48TCLCL		
TGHDX	Data Hold After PROG	48TCLCL		
TEHSH	P2.7 (ENABLE) High to VPP	48TCLCL		
TSHGL	$V_{\text {PP }}$ Setup to $\overline{\text { PROG }}$ Low	10		$\mu \mathrm{sec}$
TGHSL	VPP Hold After $\overline{\text { PROG }}$	10		$\mu \mathrm{sec}$
TGLGH	PROG Width	90	110	$\mu \mathrm{sec}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float After ENABLE	0	48 TCLCL	
TGHGL	$\overline{\text { PROG High to } \overline{\text { PROG }} \text { Low }}$	10		$\mu \mathrm{sec}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION HISTORY

The following is the key difference between this and the -004 version of the 8751BH data sheet:
Data sheet title was changed from:
8751BH Single-Chip 8-Bit Microcomputer with 4K Bytes of EPROM Program Memory
to:
8751BH Single-Chip 8-Bit Microcontroller with 4 Kbytes of EPROM Program Memory
The following are the key differences between the -004 and the -003 version of the 8751 BH data sheet:

1. Data sheet status changed from "Preliminary" to "Production".
2. Revised Maximum Ratings Warning and data sheet status notice.

The following are the key differences between the -003 and the -002 version of the 8751BH data sheet:

1. Status went from ADVANCE INFORMATION to PRELIMINARY.
2. Package Table was added.
3. PLCC pin connections shown.
4. Design Considerations section replaced with reference to previous designs using the 8751 H .
5. Note 3 on maximum current specification was added to DC Characteristics.
6. Table 1 updated to show Read Signature Mode.
7. ERASING THE EPROM paragraph deleted.
8. ERASURE CHARACTERISTICS section changed to indicate plastic packages only.
9. Signature Bytes added.
10. Data Sheet Revision History was added.

8751BH

EXPRESS

Extended Temperature Range

Burn-In
The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program is an extended temperature range with or without burn-in.
With the commercial standard temperature range operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The optional burn-in is dynamic, for a minimum time of 160 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.
D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Min	Max	Unit	Test Conditions
V_{IH}	Input High Voltage (Except XTAL2, RST, EA)	2.1	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range	Burn-In
P	plastic	commercial	no
N	PLCC	commercial	no
TP	plastic	extended	no
TN	PLCC	extended	no
LP	plastic	extended	yes

Please note:

- Commercial temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Extended temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- Burn-in is dynamic, for a minimum time of 160 hours at $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).

Examples: N8751BH indicates 8751BH in a PLCC package and specified for commercial temperature range, without burn-in. LP8751BH indicates 8751BH in a plastic package and specified for extended temperature range with burn-in.

8752BH
 SINGLE-CHIP 8-BIT MICROCONTROLLER WITH 8 KBYTES OF EPROM PROGRAM MEMORY

- 2-Bit Program Memory Lock
- 256 Bytes Data Ram

■ Quick Pulse Programming Algorithm

- 12.75 Volt Programming Voltage
- Boolean Processor
- 32 Programmable I/O Lines
- Three 16-Bit Timer/Counters
- 6 Interrupt Sources
- Programmable Serial Channel
- Separate Transmit/Receive Baud Rate Capability
■ 64K External Program Memory Space
- 64K External Data Memory Space

Figure 1. Block Diagram

PACKAGES

Part	Prefix	Package Type
8752BH	P	40-Pin Plastic DIP
	D	40-Pin CERRDIP
	N	44-Pin PLCC

Figure 2. Pin Connections

PIN DESCRIPTION

VCc: Supply voltage.
$\mathbf{V}_{\mathbf{S s}}$: Circuit ground.
Port 0: Port 0 is an 8 -bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs. Port 0 pins that have is written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1s, and can source and sink 8 LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullups are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/ source 4 LS TTL inputs. Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IL, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address bytes during EPROM programming and program verification.

In addition, P1.0 and P1.1 serve the functions of the following special features of the MCS ${ }^{\oplus}-51$ Family:

Port Pin	Alternate Function
P1.0	T2 (Timer/Counter 2 External Input)
P1.1	T2EX (Timer/Counter 2
	Capture/Reload Trigger)

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/ source 4 LS TTL inputs. Port 2 pins that have is written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (l/L, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/ source 4 LS TTL inputs. Port 3 pins that have 1 s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (l/L, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS®-51 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { INT0 }}$ (external interrupt 0)
P3.3	$\overline{\text { INT1 (external interrupt 1) }}$
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE/PROG: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during EPROM programming on the 8752 BH .

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.
PSEN: Program Store Enable is the Read strobe to External Program Memory.

When the device is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to External Data Memory.
$\overline{E A} / V_{p p}$: External Access enable. $\overline{E A}$ must be strapped to $V_{S S}$ in order to enable the device to fetch code from External Program Memory locations starting at 0000 H up to FFFFH. Note, however, that if either of the Lock Bits are programmed, EA will be internally latched on reset.
$\overline{E A}$ should be strapped to $V_{C C}$ for internal program executions.
This pin also receives the 12.75 V programming supply voltage (V_{PP}) during EPROM programming.
XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator
may be used. More detailed information concerning the use of the on-chip oscillator is available in Applications Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be grounded, while XTAL2 is driven, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

270429-3
$\mathrm{C} 1, \mathrm{C} 2=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
For Ceramic Resonators, Contact Resonator Manufacturer.
Figure 3. Oscillator Connections

Figure 4. External Clock Drive Configuration

DESIGN CONSIDERATIONS

Exposure to light when the 8752BH is in operation may cause logic errors. For this reason, it is suggested that an opaque label be placed over the window of the 8752 BH when the die is exposed to ambient light.

Due to a timing problem in the Timer/Counter 2 interrupt circuitry; the device may vector to location 03H (External Interrupt 0 vector address). It happens when a low priority interrupt has been in progress for either 1 or 2 machine cycles and Timer/Counter 2 generates a priority 1 interrupt. Therefore, Timer/ Counter 2 should only be assigned priority level 0.

If an 8752 BH is replacing an 8751 H in an existing design, the user should carefully compare both data sheets for DC or AC characteristic differences. Note that the V_{IH} and I_{H} specifications for the EA pin differ significantly between the 8751 H and 8752 BH .

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on $\overline{E A} / V_{P P}$ Pin to $V_{S S} \ldots-0.5 \mathrm{~V}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots .,-0.5 \mathrm{~V}$ to +7 V
Maximum lol Per I/O Pin 15 mA
Power Dissipation. 5 . W
(based on PACKAGE heat transfer limitations, not
device power consumption)
Operating Conditions: T_{A} (under Bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
DC CHARACTERISTICS (Under Operating Conditions)

Symbol	Parameter	Min	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (Except $\overline{E A}$)	-0.5	0.8	V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage EA	$V_{S S}$	0.7	V	
V_{IH}	Input High Voltage (Except XTAL2, RST, $\overline{E A}$)	2.0	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{1 \mathrm{H}_{1}}$	Input High Voltage XTAL2, RST	2.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	$\mathrm{XTAL1}=\mathrm{V}_{\text {SS }}$
$\mathrm{V}_{\mathrm{IH} 2}$	Input High Voltage to EA	4.5	5.5	V	
V_{OL}	Output Low Voltage (Note 3) (Ports 1, 2 and 3)		0.45	V	$\mathrm{lOL}^{\prime}=1.6 \mathrm{~mA}($ Note 1)
$\mathrm{V}_{\mathrm{OL} 1}$	Output Low Voltage (Note 3) (Port 0, ALE/ㅈROG, $\overline{\text { PSEN }}$)		0.45	V	$\mathrm{lOL}=3.2 \mathrm{~mA}($ Note 1, 2)
V_{OH}	Output High Voltage (Ports 1, 2, 3, ALE//िRG and $\overline{\text { PSEN }}$)	2.4		V	$\mathrm{l}^{\mathrm{OH}}=-80 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	2.4	\cdot	V	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
IIL	Logical 0 Input Current (Ports 1, 2, 3 and RST)		-500	$\mu \mathrm{A}$	$V_{I N}=0.45 \mathrm{~V}$
ILL	Logical 0 Input Current ($\overline{E A}$)	-10	500	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$
ILL2	Logical 0 Input Current (XTAL2)		-3.2	mA	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$ XTAL1 $=\mathrm{V}_{\text {SS }}$
I_{LI}	Input Leakage Current (Port 0)		± 10	$\mu \mathrm{A}$	$0.45<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$
$\mathrm{IIH}^{\text {H }}$	Logical 1 Input Current ($\overline{E A}$)		1	mA	$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<5.5 \mathrm{~V}$
$\mathrm{IIH1}$	Input Current to RST to activate Reset		500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}<\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$
ICC	Power Supply Current		175	mA	All Outputs Disconnected
C_{10}	Pin Capacitance		10	pF	Test freq $=1 \mathrm{MHz}$

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VoLs of ALE/PROG and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading $>100 \mathrm{pF}$), the noise pulse on the ALE/PROG pin may exceed 0.8 V . In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.
2. ALE/ $\overline{\operatorname{PROG}}$ refers to a pin on the device. ALE refers to a timing signal that is output on the ALE/PROG pin.
3. Under steady state (non-transient) conditions, loL must be externally limited as follows:

Maximum lol per port pin:
10 mA
Maximum IOL per 8-bit port-

Port 0: $\quad 26 \mathrm{~mA}$

Ports 1, 2, and 3: 15 mA
Maximum total loL for all output pins: 71 mA
If lol exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

```
A:Address
C:Clock
D:Input Data
H:Logic level HIGH
I:Instruction (program memory contents)
```

L:Logic level LOW, or ALE
P:PSEN
Q:Output data
$\mathrm{R}: \overline{\mathrm{RD}}$ signal
T:Time
V :Valid
$\mathrm{W}: \mathrm{WR}$ signal
$X:$ No longer a valid logic level
Z:Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low. TLLPL $=$ Time from ALE Low to PSEN Low.

AC CHARACTERISTICS (Under Operating Conditions; Load Capacitance for Port 0, ALE/ $\overline{\text { PROG }}$, and $\overline{\text { PSEN }}=100 \mathrm{pF}$; Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Osc		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	12.0	MHz
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	48		TCLCL-35		ns
TLLIV	ALE Low to Valid Instruction In		233		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	58		TCLCL-25		ns
TPLPH	PSEN Pulse Width	215		3TCLCL-35		ns
TPLIV	$\overline{\text { PSEN }}$ Low to Valid Instruction In		125		3TCLCL-125	ns
TPXIX	Input Instr Hold After PSEN	0		0		ns
TPXIZ	Input Instr Float After $\overline{\text { PSEN }}$		63		TCLCL-20	ns
TPXAV	PSEN to Address Valid	75		TCLCL-8		ns
TAVIV	Address to Valid Instruction In		302		5TCLCL-115	ns
TPLAZ	$\overline{\text { PSEN Low to Address Float }}$		20		20	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	400		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		97		2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data in		585		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	200	300	3TCLCL-50	3 TCLCL+50	ns
TAVWL	Address to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	203		4TCLCL-130		ns
TQVWX	Data Valid to $\overline{\text { WR }}$ Transition	23		TCLCL-60		ns
TQVWH	Data Valid to WR High	433		7TCLCL-150		ns
TWHQX	Data Held After WR	33		TCLCL-50		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\text { WR }}$ High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING-SHIFT REGISTER MODE

TEST CONDITIONS $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{1 2 ~ M H z ~ O s c ~}$		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1.0		12 TCLCL		$\mu \mathrm{s}$
TQVXH	Output Data Setup to Clock Rising Edge	700		10 TCLCL-133		ns
TXHQX	Output Data Hold After Clock Rising Edge	50		2 TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0	ns	
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency	3.5	12	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EPROM CHARACTERISTICS

Table 1 shows the logic levels for programming the Program Memory, the Encryption Table, and the Lock Bits and for reading the signature bytes.

Programming the EPROM

To be programmed, the $8752 B H$ must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate internal registers.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0-P2.4 of Port 2, while the code byte to be programmed into that location is applied to Port 0 . The other Port 2 and 3 pins, and RST, $\overline{\text { PSEN, }}$, and EA/VPP should be held at the "Pro-

AC TESTING INPUT/OUTPUT WAVEFORMS

AC inputs during testing are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
gram" levels indicated in Table 1. ALE/PROG is pulsed low to program the code byte into the addressed EPROM location. The setup is shown in Figure 5 .

Normally $\overline{E A} / V_{P P}$ is held at a logic high until just before $A L E / \overline{P R O G}$ is to be pulsed. Then $\overline{E A} / V_{P P}$ is raised to $V_{P P}$, ALE/PROG is pulsed low, and then $\overline{E A} / V_{P P}$ is returned to a valid high voltage. The voltage on the $\overline{E A} / V_{P P}$ pin must be at the valid $\overline{E A} / V_{P P}$ high level before a verify is attempted. Waveforms and detailed timing specifications are shown in later sections of this data sheet.

Note that the $\overline{E A} / V_{\text {PP }}$ pin must not be allowed to go above the maximum specified VPp level for any amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The VPP source should be well regulated and free of glitches.

270429-11
Figure 5. Programming the EPROM

Table 1. EPROM Programming Modes

MODE	RST	PSEN	$\frac{\text { ALE/ }}{\text { PROG }}$	$\overline{\mathrm{EA} /}$ $V_{P P}$	P2.7	P2.6	P3.6	P3.7
Program Code Data	1	0	0*	$V_{P P}$	1	0	1	1
Verify Code Data	1	0	1	1	0	0	1	1
Program Encryption Table Use Addresses 0-1FH	1	0	0*	V_{PP}	1	0	0	1
$\begin{array}{cl}\text { Program Lock } & x=1 \\ \text { Bits (LBx) } & x=2\end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0^{*} \\ & 0^{*} \end{aligned}$	$\begin{aligned} & V_{P P} \\ & V_{P P} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$
Read Signature	1	0	1	1	0	0	0	0

NOTES:

"1" = Valid high for that pin
" 0 " = Valid low for that pin
$" \mathrm{Vpp} "=+12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$
*ALE/PROG is pulsed low for 100 uS for programming. (Quick-Pulse Programming)

QUICK-PULSE PROGRAMMING ALGORITHM

The 8752BH can be programmed using the QuickPulse Programming Algorithm for microcontrollers. The features of the new programming method are a lower VPP (12.75 volts as compared to 21 volts) and a shorter programming pulse. It is possible to program the entire 8 Kbytes of EPROM memory in less than 25 seconds with this algorithm!

To program the part using the new algorithm, V_{PP} must be 12.75 ± 0.25 Volts. ALE/PROG is pulsed low for 100μ seconds, 25 times as shown in Figure 6. Then, the byte just programmed may be verified. After programming, the entire array should be verified. The Program Lock features are programmed using the same method, but with the setup as shown in Table 1. The only difference in programming Lock features is that the Lock features cannot be directly verified. Instead, verification of programming is by observing that their features are enabled.

PROGRAM VERIFICATION

If the Lock Bits have not been programmed, the onchip Program Memory can be read out for verification purposes, if desired, either during or after the programming operation. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0-P2.4. The other pins should be held at the "Verify" levels indicated in Table 1. The contents of the addressed location will come out on Port 0 . External pullups are required on Port 0 for this operation. (If the Encryption Array in the EPROM has been programmed, the data present at Port 0 will be Code Data XNOR Encryption Data. The user must know the Encryption Array contents to manually "unencrypt" the data during verify.)

The setup, which is shown in Figure 7, is the same as for programming the EPROM except that pin P2.7 is held at a logic low, or may be used as an active low read strobe.

270429-12
Figure 6. $\overline{\text { PROG }}$ Waveforms

270429-13
Figure 7. Verifying the EPROM

PROGRAM MEMORY LOCK

The two-level Program Lock system consists of 2 Lock bits and a 32-byte Encryption Array which are used to protect the program memory against software piracy.

ENCRYPTION ARRAY

Within the EPROM array are 32 bytes of Encryption Array that are initially unprogrammed (all 1s). Every time that a byte is addressed during a verify, 5 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NORed (XNOR) with the code byte, creating an Encrypted Verify byte. The algorithm, with the array in the unprogrammed state (all 1s), will return the code in its original, unmodified form.

It is recommended that whenever the Encryption Array is used, at least one of the Lock Bits be programmed as well.

LOCK BITS

Also included in the EPROM Program Lock scheme are two Lock Bits which function as shown in Table 2.

Erasing the EPROM also erases the Encryption Array and the Lock Bits, returning the part to full unlocked functionality.

To ensure proper functionality of the chip, the internally latched value of the EA pin must agree with its external state.

Table 2. Lock Bits and their Features

Lock Bits		Logic Enabled	
LB1	LB2		
U	U	Minimum Program Lock features enabled. (Code Verify will still be encrypted by the Encryption Array)	
P	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled	
P	P	Same as above, but Verify is also disabled	
U	P	Reserved for Future Definition	

$P=$ Programmed
$U=$ Unprogrammed

READING THE SIGNATURE BYTES

The signature bytes are read by the same procedure as a normal verification of locations 030 H and 031 H , except that P3. 6 and P3.7 need to be pulled to a logic low. The values returned are:
$(030 \mathrm{H})=89 \mathrm{H}$ indicates manufactured by Intel
$(031 \mathrm{H})=52 \mathrm{H}$ indicates 8752 BH

ERASURE CHARACTERISTICS

Erasure of the EPROM begins to occur when the 8752 BH is exposed to light with wavelengths shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to
this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at lease 15 W -sec/cm. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the array in an all 1s state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

$\left(T_{A}=21^{\circ} \mathrm{C}\right.$ to $27^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
$V_{P P}$	Programming Supply Voltage	12.5	13.0	V
Ipp	Programming Supply Current		50	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHAX	Address Hold After PROG	48TCLCL		
TDVGL	Data Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHDX	Data Hold After PROG	48TCLCL		
TEHSH	P2.7 (ENABLE) High to VPP	48TCLCL		
TSHGL	$\mathrm{V}_{\text {PP }}$ Setup to $\overline{\text { PROG }}$ Low	10		$\mu \mathrm{S}$
TGHSL	VPP Hold After $\overline{\text { PROG }}$	10		$\mu \mathrm{s}$
TGLGH	PROG Width	90	110	$\mu \mathrm{s}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float After ENABLE	0	48TCLCL	
TGHGL	$\overline{\text { PROG }}$ High to $\overline{\text { PROG Low }}$	10		$\mu \mathrm{S}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION HISTORY

The following is the key difference between this and the -003 version of the 8752BH data sheet:
Data sheet title was changed from:
8752BH Single-Chip 8-Bit Microcomputer with 8K Bytes of EPROM Program Memory
to:
8752BH Single-Chip 8-Bit Microcontroller with 8 Kbytes of EPROM Program Memory.
The following are the key differences between the -003 and the -002 version of the 8752BH data sheet.

1. Data sheet status changed from "Preliminary" to "Production".
2. Deleted LCC Package offering.
3. Revised Maximum Ratings warning and data sheet status notice.

The following are the key differences between the -002 and the -001 version of the 8752BH data sheet.

1. PLCC pin connection diagram was added.
2. Package table was added.
3. Timer/Counter 2 Design Consideration was added.
4. Design Consideration was added referring to previous designs using the 8751H.
5. Note 3 was added to DC Characteristics to explain the maximum current specification.
6. Signature Byte was corrected.
7. Data Sheet Revision History was added.

8752BH

EXPRESS

Extended Temperature Range

Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in, and an extended temperature range with or without burn-in.

With the commercial standard temperature range operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The optional burn-in is dynamic, for a minimum time of 160 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.
D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Min	Max	Unit	Test Conditions
V_{IH}	Input High Voltage (Except XTAL2, RST, $\overline{\mathrm{EA}})$	2.1	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range	Burn-In
P	plastic	commercial	no
D	cerdip	commercial	no
N	PLCC	commercial	no
R	LCC	commercial	no
TD	cerdip	extended	no
QP	plastic	commercial	yes
LD	cerdip	extended	yes

Please note:

- Commercial temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Extended temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- Burn-in is dynamic, for a minimum time of 160 hours at $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).

Examples: N8752BH indicates 8752BH in a PLCC package and specified for commercial temperature range, without burn-in. LD8752BH indicates 8752BH in a cerdip package and specified for extended temperature range with burn-in.

DATA SHEET REVISION SUMMARY

The following are the key differences between this and the -001 version of the 8752BH Express data sheet: 1. $\mathrm{V}_{I H}$ parameter changed to read "(Except XTAL2, RST, $\overline{E A}$)".
2. QD option removed.
3. Data Sheet Revision Summary added.

80C31BH/80C51BH
 EXPRESS

- Extended Temperature Range
 3.5 to $12 \mathrm{MHz} \mathrm{V}_{\mathrm{CC}}=\mathbf{5 V} \pm \mathbf{2 0 \%}$

- Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The optional burn-in is dynamic for a minimum time of 160 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here. This data sheet is valid in conjunction with the commercial $80 \mathrm{C} 51 \mathrm{BH} / 80 \mathrm{C} 31 \mathrm{BH}$ data sheet, 270064-008.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.
D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits		Test	
	Test Conditions				
V_{IL}	Input Low Voltage (Except EA)	-0.5	$0.2 \mathrm{~V}_{\mathrm{CC}}-0.15$	V	
$\mathrm{~V}_{\mathrm{IL} 1}$	EA	-0.5 V	$0.2 \mathrm{~V}_{\mathrm{CC}}-0.35$	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+1$	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{IH} 1}$	Input High Voltage to XTAL1, RST	$0.7 \mathrm{~V}_{\mathrm{CC}}+0.1$	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
I_{IL}	Logical 0 Input Current (Port 1, 2, 3)		-75	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{in}}=0.45 \mathrm{~V}$
I_{TL}	Logical 1 to 0 transition Current (Ports 1, 2, 3)		-750	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {in }}=2.0 \mathrm{~V}$

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range	Burn-In
P	Plastic	Commercial	No
D	Cerdip	Commercial	No
N	PLCC	Commercial	No
TP	Plastic	Extended	No
TD	Cerdip	Extended	No
TN	PLCC	Extended	No
QP	Plastic	Commercial	Yes
QD	Cerdip	Commercial	Yes
QN	PLCC	Extended	Yes
LP	Plastic	Extended	Yes
LD	Cerdip	Extended	Yes
LN	PLCC	Yes	

NOTE:

- Commercial temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Extended temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- Burn-in is dynamic for a minimum time of 160 hours at $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).

Examples:

P80C31BH indicates 80C31BH in a plastic package and specified for commercial temperature range, without burn-in.
LD80C51BH indicates 80C51BH in a cerdip package and specified for extended temperature range with burnin.

DATA SHEET REVISION HISTORY

The following are the key differences between this and the -002 version of the $80 \mathrm{C} 31 \mathrm{BH} / 80 \mathrm{C} 51 \mathrm{BH}$ express data sheet:

1. Data sheet status changed from "Preliminary" to "Production".
2. Added this revision history.

80C51BHP
 CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH PROTECTED ROM

80C51BHP-3.5-12 MHz, $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 20 \%$
80C51BHP-1-3.5-16 MHz, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$
80C51BHP-2-0.5-12 MHz, $V_{C C}=5 \mathrm{~V} \pm 20 \%$

- Power Control Modes
- 128×8-Bit RAM
- 32 Programmable I/O Lines
- Two 16-Bit Timer/Counters
- 4K Program Memory Space
- Protection Feature Protects ROM Parts Against Software Piracy
- High Performance CHMOS Process
- Boolean Processor
- 5 Interrupt Sources
- Programmable Serial Port
- 4K Data Memory Space (Expandable to 64K)
- ONCE (On-Circuit Emulation) Mode

The MCS®-51 family of CHMOS products is fabricated on Intel's CHMOS III process and is functionally compatible with the standard 8051 HMOS and EPROM products. CHMOS III is a technology which combines the high speed and density characteristics of HMOS with the low power attributes of CMOS. This combination expands the effectiveness of the powerful 8051 architecture and instruction set.

Like the 8051 HMOS versions, the 80C51BHP has the following features: 4 Kbytes of ROM; 128 bytes of RAM; 32 I/O lines; two 16-bit timer/counters; a five-source two-level interrupt structure; a full duplex serial port; and on-chip oscillator and clock circuitry. In addition, the 80C51BHP has two software selectable modes of reduced activity for further power reduction-Idle and Power Down.

The Idle mode freezes the CPU while allowing the RAM, timer/counters serial port and interrupt system to continue functioning. The Power Down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative.

The 80 C 51 BHP is identical to the 80 C 51 BH with the exception of the Protection Feature. To incorporate this Protection Feature, program verification has been disabled and external memory accesses have been limited to 4 K .

Figure 1. Block Diagram

IDLE MODE

In the Idle mode, the CPU puts itself to sleep while all the on chip peripherals stay active. The instruction that invokes the Idle mode is the last instruction executed in the normal operating mode before Idle mode is activated. The content of the on-chip RAM and all the Special Function Registers remain intact during this mode. The Idle mode can be terminated either by any enabled interrupt, at which time the process is picked up at the interrupt service routine and continued, or by a hardware reset which starts the processor the same as a power on reset.

POWER DOWN MODE

In the Power Down mode the oscillator is stopped, and the instruction that invokes Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

The only exit from Power Down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

The control bits for the reduced power modes are in the Special Function Register PCON.

NOTE:

For more detailed information on these reduced power modes refer to Application Note AP-252, "Designing with the 80 C 51 BH ".

ONCE MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 80 C 51 BHP without removing the device from the circuit. The ONCE Mode is invoked by:

1. Pull ALE low while the device is in reset and PSEN is high;
2. Hold ALE low as RST is deactivated.

Table 1. Status of the external pins during Idle and Power Down modes

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORT 0	PORT 1	PORT 2	PORT 3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 80C51BHP is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

PACKAGES

Part	Prefix	Package Type
$80 C 51$ BHP	P	40-Pin Plastic DIP
	N	44-Pin PLCC

PIN DESCRIPTIONS

$V_{c c}$
Supply voltage during normal, Idle, and Power Down operations.

$V_{\mathbf{S S}}$

Circuit ground.

Port 0

Port 0 is an 8 -bit open drain bidirectional I/O port. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting is.

Port 1

Port 1 is an 8 -bit bidirectional I/O port with internal pullups. Port 1 pins that have 1 s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the internal pullups.

Port 2

Port 2 is an 8 -bit bidirectional I/O port with internal pullups. Port 2 pins that have 1 s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (l/L, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s. In the 80 C 51 BHP , Bits 2.4 through 2.7 are forced to 0 , effectively limiting external data and code space to 4 K each during external accesses (see Design Considerations). During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 3

Port 3 is an 8 -bit bidirectional I/O port with internal pullups. Port 3 pins that have is written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (l/L, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { NT0 }}$ (external interrupt 0)
P3.3	$\overline{\text { INT1 (external interrupt 1) }}$
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR }}$ (external data memory write
strobe)	
P3.7	$\overline{\text { RD (external data memory read }}$strobe)

RST

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. An internal diffused resistor to $V_{S S}$ permits PowerOn reset using only an external capacitor to V_{CC}.

ALE

Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN

Program Store Enable is the read strobe to external Program Memory.

When the device is executing code from external Program Memory, $\overline{\text { PSEN }}$ is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory. $\overline{\text { PSEN }}$ is not activated during fetches from internal program memory.

$\overline{E A}$

External Access enable. $\overline{E A}$ must be strapped to $V_{S S}$ in order to enable the device to fetch code from external Program Memory locations starting at 0000 H up to FFFFH . If $\overline{\mathrm{EA}}$ is strapped to V_{CC} the device executes from internal Program Memory unless the program counter contains an address greater than OFFFH.

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock generator circuits.

XTAL2

Output from the inverting oscillator amplifier.

Figure 3. Crystal Oscillator

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillator for Microcontrollers".

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

Design Considerations

- The 80C51BHP cannot access external Program or Data memory above 4K. This means that the following instructions that use the Data Pointer only read/write data at address locations below OFFFH:

```
MOVX A, @DPTR
MOVX @DPTR, A
```

When the Data Pointer contains an address above the 4 K limit, those locations will not be accessed. To access Data Memory above 4K, the MOVX @Ri, A or MOVX A, @Ri instructions must be used.

- Before entering the Power Down mode the contents of the Carry Bit and B. 7 must be equal.
- When the Idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $\ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any
Pin to $V_{S S}$
. -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Voltage on V_{CC} to $\mathrm{V}_{\mathrm{SS}} \ldots \ldots$.
Maximum Iol per I/O Pin 15 mA
Power Dissipation. 1.0W*
*This value is based on the maximum allowable die temperature and the thermal resistance of the package.

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Operating Conditions: T_{A} (Under Bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
DC CHARACTERISTICS (Under Operating Conditions)

Symbol	Parameter	Min	Typ(3)	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (Except $\overline{E A}$)	-0.5		$0.2 \mathrm{~V}_{C C}-0.1$	V	
$\mathrm{V}_{\text {IL, }}$	Input Low Voltage ($\overline{\mathrm{EA}}$)	-0.5		$0.2 V_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 V_{C C}+0.9$		$V_{C C}+0.5$	V	
$\mathrm{V}_{\mathrm{IH} 1}$	Input High Voltage (XTAL1, RST)	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$V_{C C}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (6) (Ports 1, 2, 3)			0.45	V	$\mathrm{lOL}^{\prime}=1.6 \mathrm{~mA}{ }^{(1)}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (6) (Port 0, ALE, PSEN)			0.45	V	$\mathrm{IOL}=3.2 \mathrm{~mA}{ }^{(1)}$
$\mathrm{VOH}_{\mathrm{OH}}$	Output High Voltage (Ports 1, 2, 3, ALE, PSEN)	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A} \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
		$0.75 \mathrm{~V}_{\mathrm{CC}}$			V	$\mathrm{IOH}^{\prime}=-25 \mu \mathrm{~A}$
		0.9 V CC			V	$\mathrm{IOH}=-10 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
		$0.75 \mathrm{~V}_{\mathrm{CC}}$			V	$\mathrm{l}_{\mathrm{OH}}=-300 \mu \mathrm{~A}$
		$0.9 \mathrm{~V}_{\text {CC }}$			V	$\mathrm{IOH}=-80 \mu \mathrm{~A}$ (2)
IIL	Logical 0 Input Current (Ports 1, 2, 3)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$
$I_{\text {TL }}$	Logical 1 to 0 Transition Current (Ports 1, 2, 3)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$
ILI^{\prime}	Input Leakage Current (Port 0, EA $)$			± 10	$\mu \mathrm{A}$	$0.45<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$
RRST	Reset Pulldown Resistor	50		150	K Ω	
ClO	Pin Capacitance			10	pF	Test Freq $=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Icc	Power Supply Current: Active Mode, 12 MHz (4) Idle Mode, 12 MHz (4) Power Down Mode		$\begin{gathered} 11 \\ 1.7 \\ 5 \end{gathered}$	$\begin{gathered} 20 \\ 5 \\ 50 \end{gathered}$	mA mA $\mu \mathrm{A}$	(5)

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the $V_{\text {OLS }}$ of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to- 0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8 V . In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.
2. Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and $\overline{\text { PSEN }}$ to momentarily fall below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address bits are stabilizing.
3. "Typicals" are based on a limited number of samples taken from early manufacturing lots and are not guaranteed. The values listed are at room temperature, 5 V .
4. ICCMAX at other frequencies is given by

Active Mode: ICCMAX $=1.47 \times$ FREQ +2.35
Idle Mode: $\operatorname{ICCMAX~}=0.33 \times$ FREQ +1.05
where FREQ is the external oscillator frequency in MHz. ICCMAX is given in mA. See Figure 5.
5. See Figures 6 through 9 for ICC test conditions. Minimum $V_{C C}$ for Power Down is 2 V .
6. Under steady state (non-transient) conditions, lol must be externally limited as follows:

Maximum lol per Port Pin:	10 mA
Maximum lol per 8-Bit Port - Port 0:	26 mA
Ports 1, 2 and 3:	15 mA
Maximum Total lol for all output pins:	71 mA

If IOL exceeds the test condition, $V_{\text {OL }}$ may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 5. Icc vs. Frequency Valid only within frequency specifications of the device under test.

Figure 6. Icc Test Condition, Active Mode All other pins are disconnected.

Figure 7. Icc Test Condition, Idle Mode All other pins are disconnected.

Figure 8. Clock Signal Waveform for Icc Tests in Active and Idle Modes. TCLCH=TCHCL=5 ns

270603-10
Figure 9. Icc Test Condition, Power Down Mode. All other pins are disconnected. $\mathrm{V}_{\mathbf{C c}}=\mathbf{2 V}$ to $\mathbf{6 V}$

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address.
C: Clock.
D: Input data.
H: Logic level HIGH.
I: Instruction (program memory contents).
L: Logic level LOW, or ALE.

P: $\overline{\text { PSEN }}$.
Q: Output data.
R: $\overline{\mathrm{RD}}$ signal.
T: Time.
V: Valid.
W: WR signal.
X : No longer a valid logic level.
Z: Float.

EXAMPLE:

TAVLL $=$ Time for Address Valid to ALE Low. TLLPL $=$ Time for ALE Low to PSEN Low.

AC CHARACTERISTICS

(Under Operating Conditions: Load Capacitance for Port 0, ALE, and PSEN $=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Osc		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency $80 \mathrm{C} 51 \mathrm{BH} / 80 \mathrm{C} 31 \mathrm{BH}$ $80 \mathrm{C} 51 \mathrm{BH}-1 / 80 \mathrm{C} 31 \mathrm{BH}-1$ 80C51BH-2/80C31BH-2			$\begin{aligned} & 3.5 \\ & 3.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \\ & 12 \end{aligned}$	MHz
TLHLL	ALE Pulse Width	127		2TCLCL - 40		ns
TAVLL	Address Valid to ALE Low	28		TCLCL - 55		ns
TLLAX	Address Hold After ALE Low	48		TCLCL - 35		ns
TLLIV	ALE Low to Valid Instr In		234		4TCLCL - 100	ns
TLLPL	ALE Low to PSEN Low	43		TCLCL - 40		ns
TPLPH	PSEN Pulse Width	205		3TCLCL - 45		ns
TPLIV	$\overline{\text { PSEN }}$ Low to Valid Instr In		145		3TCLCL - 105	ns
TPXIX	Input Instr Hold After PSEN	0		0		ns
TPXIZ	Input Instr Float After $\overline{\text { PSEN }}$		59		TCLCL - 25	ns
TAVIV	Address to Valid Instr In		312		5TCLCL - 105	ns
TPLAZ	PSEN Low to Address Float		10		10	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400		6TCLCL - 100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	400		6TCLCL - 100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL - 165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\text { RD }}$		97		2TCLCL - 70	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL - 150	ns
TAVDV	Address to Valid Data In		585		9TCLCL - 165	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	200	300	3TCLCL - 50	3 3TCLCL + 50	ns
TAVWL	Address Valid to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	203		4TCLCL - 130		ns
TQVWX	Data Valid to $\overline{\mathrm{WR}}$ Transition	23		TCLCL-60		ns
TWHQX	Data Hold After $\overline{\mathrm{WR}}$	33		TCLCL - 50		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\text { WR }}$ High to ALE High	43	123	TCLCL - 40	TCLCL + 40	ns

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency			MHz
	80C51BHP	3.5	12	
	80C51BHP-1	3.5	16	
TCHCX	H0C51BHP-2	0.5	12	ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time	20		ns
TCHCL	Fall Time		20	ns

SERIAL TIMING—SHIFT REGISTER MODE

Test Conditions: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{1 2 ~ M H z ~ O s c}$		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1.0		12 TCLCL		$\mu \mathrm{s}$
TQVXH	Output Data Setup to Clock Rising Edge	700		$10 T C L C L-133$		ns
TXHQX	Output Data Hold After Clock Rising Edge	50		2 TCLCL -117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL - 133	ns

EXTERNAL CLOCK DRIVE WAVEFORM

0.45 V

AC TESTING INPUT, OUTPUT WAVEFORMS

AC Inputs during testing are driven at $V_{C C}-0.5$ for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at V_{IH} \min. for a logic " 1 " and V_{IL} max. for a logic " 0 ".

FLOAT WAVEFORMS

270603-17
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{IOL}_{\mathrm{OH}} \geq \pm 20 \mathrm{~mA}$.

DATA SHEET REVISION HISTORY

The following is the key difference between this and the -003 version of the 80C51BHP data sheet:
Data sheet title was changed from:
80C51BHP CHMOS Single-Chip 8-Bit Microcomputer with Protected ROM
to:
80C51BHP CHMOS Single-Chip 8-Bit Microcontroller with Protected ROM
The following are the key differences between the -003 and the -002 version of the 80C51BHP data sheet:

1. Data sheet status changed from "Preliminary" to "Production".
2. Revised Maximum Ratings Warning and Data Sheet Status Notice.
3. ONCE Mode feature added.

The following are the key differences between the -002 and the -001 version of the 80C51BHP data sheet:

1. Package Table was added.
2. Note 6 on Maximum Current Specifications was added to DC Characteristics.
3. Data Sheet Revision History was added.

87C51/80C51BH/80C31BH CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH 4 KBYTES INTERNAL PROGRAM MEMORY

> 87C51/80C51BH/80C31BH-3.5 to $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$ $87 \mathrm{C} 51-1 / 80 \mathrm{C} 51 \mathrm{BH}-1 / 80 \mathrm{C} 31 \mathrm{BH}-1-3.5$ to $16 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$ $87 \mathrm{C} 51-2 / 80 \mathrm{C} 51 \mathrm{BH}-2 / 80 \mathrm{C} 31 \mathrm{BH}-2-0.5$ to $12 \mathrm{MHz} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$ $87 \mathrm{C} 51-\mathrm{L}-3.5 \mathrm{MHz}$ to $8 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

■ High Performance CHMOS EPROM

- Low Voltage Operation (-L Only)
- Improved Quick-Pulse Programming Algorithm

■ 3-Level Program Memory Lock

- Boolean Processor
- 128-Byte Data RAM
- 32 Programmable I/O Lines
- Two 16-Bit Timer/Counters

■ 5 Interrupt Sources
■ Programmable Serial Port

- TTL- and CMOS-Compatible Logic Levels
- 64K External Program Memory Space
- 64K External Data Memory Space
- Idle and Power Down Modes
- ONCE Mode Facilitates System Testing
- Power Control Modes

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 4 Kbytes of the program memory can reside on-chip (except 80C31BH). In addition the device can address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 128×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 87C51 is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. The Intel $80 \mathrm{C} 51 \mathrm{BH} / 80 \mathrm{C} 31 \mathrm{BH}$ is fabricated on CHMOS III technology. Being a member of the MCS $\odot-51$ family, the $87 \mathrm{C} 51 / 80 \mathrm{C} 51 \mathrm{BH} / 80 \mathrm{C} 31 \mathrm{BH}$ uses the same powerful instruction set, has the same architecture, and is pin-for-pin compatible with the existing MCS-51 family of products.

Applications that require low voltage can use the $87 \mathrm{C} 51-\mathrm{L}$. The $87 \mathrm{C} 51-\mathrm{L}$ will operate at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz .

The extremely low operating power, along with the two reduced power modes, Idle and Power Down, make this part very suitable for low power applications. The Idle mode freezes the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power Down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative.

For the remainder of this document, the $87 \mathrm{C} 51,80 \mathrm{C} 51 \mathrm{BH}$, and 80 C 31 BH will be referred to as the $87 \mathrm{C} 51 / \mathrm{BH}$, unless information applies to a specific device.

Figure 1. 87C51/BH Block Diagram

PROCESS INFORMATION

The 87C51 is manufactured on P629.0, a CHMOS III-E process. The $80 \mathrm{C} 51 \mathrm{BH} / 80 \mathrm{C} 31 \mathrm{BH}$ are manufactured on P645, a CHMOS III process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
87 C 51	P	$40-$-Pin Plastic	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
		DIP (OTP)		
	D	$40-$-Pin CERDIP (EPROM)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
	N	$44-$ Pin PLCC (OTP)	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
	S	$44-$-Pin QFP (OTP)	$98^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{W}$

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
$80 \mathrm{C} 51 \mathrm{BH} /$	P	$40-$-Pin Plastic DIP	$75^{\circ} \mathrm{C} / \mathrm{W}$	$23^{\circ} \mathrm{C} / \mathrm{W}$
80 C 31 BH	D	$40-$ Pin CERDIP	$36^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
	N	44 -Pin PLCC	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
	S	$44-$ Pin QFP	$98^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

Figure 2. Pin Connections

PIN DESCRIPTION

$\mathbf{V}_{\text {cc: }}$ Supply voltage during normal, Idle and Power Down operations.
$\mathbf{V}_{\mathbf{S S}}$: Circuit ground.
Port 0: Port 0 is an 8 -bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs. Port 0 pins that have 1 's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed.low-order address and data bus during accesses to external memory. In this application it uses strong internal pullups when emitting 1 's.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullups are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current (llL, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address bytes during EPROM programming and program verification.

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current (ll, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program memory and during accesses to external Data Memory that use 16-bit address (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's.

During accesses to external Data Memory that use 8 -bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives some control signals and the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current (IL, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

Pin	Name	Alternate Function
P3.0	RXD	Serial input line
P3.1	TXD	Serial output line
P3.2	$\overline{\text { INT0 }}$	External Interrupt 0
P3.3	$\overline{\text { INT1 }}$	External Interrupt 1
P3.4	T0	Timer 0 external input
P3.5	T1	Timer 1 external input
P3.6	$\overline{\text { WR }}$	External Data Memory Write strobe
P3.7	$\overline{\text { RD }}$	External Data Memory Read strobe

Port 3 also receives some control signals for EPROM programming and program verification.

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. The port pins will be driven to their reset condition when a minimum $\mathrm{V}_{\mathrm{H} 1}$ voltage is applied whether the oscillator is running or not (87C51 only). An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC}.

ALE/ㅍROG: Address Latch Enable output signal for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input ($\overline{\mathrm{PROG}}$) during EPROM programming.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8 EH . With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN: Program Store Enable is the Read strobe to External Program Memory. When the 87C51/BH is executing from Internal Program Memory, PSEN is inactive (high). When the device is executing code from External Program Memory, PSEN is activated
twice each machine cycle, except that two PSEN activations are skipped during each access to External Data Memory.
$\overline{E A} / V_{P P}$: External Access enable. $\overline{E A}$ must be strapped to $V_{\text {SS }}$ in order to enable the 87C51/BH to fetch code from External Program Memory locations starting at 0000 H up to FFFFH. Note, however, that if either of the Lock Bits is programmed, the logic level at $\overline{E A}$ is internally latched during reset.
$\overline{E A}$ must be strapped to $V_{C C}$ for internal program execution.

This pin also receives the 12.75 V programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

Figure 3. Using the On-Chip Oscillator

Figure 4. External Clock Drive

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3.

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and $\mathrm{V}_{I H}$ specifications the capacitance will not exceed 20 pF .

IDLE MODE

In Idle Mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the Special Functions Registers remain unchanged during this mode. The Idle Mode can be terminated by any enabled interrupt or by a hardware reset.

It should be noted that when Idle is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles beíore the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORTO	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80C51BH."

POWER DOWN MODE

In the Power Down mode the oscillator is stopped, and the instruction that invokes Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

The only exit from Power Down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before $V_{C C}$ is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

DESIGN CONSIDERATIONS

- The $87 \mathrm{C} 51-\mathrm{L}$ will operate at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz . Operating beyond these specifications could cause improper device functionality. (To program the 87C51-L, follow the same procedure as the 87C51.)
- Exposure to light when the device is in operation may cause logic errors. For this reason, it is suggested that an opaque label be placed over the window when the die is exposed to ambient light.
- The 87C51 has some additional features that are not available on the $80 \mathrm{C} 51 \mathrm{BH} / 80 \mathrm{C} 31 \mathrm{BH}$. The features are: asynchronous port reset, 4 interrupt priority levels, power off flag, ALE disable, serial port automatic address recognition, serial port framing error detection, 64-byte encryption array, and 3 program lock bits. These features cannot be used with the $80 \mathrm{C} 51 \mathrm{BH} / 80 \mathrm{C} 31 \mathrm{BH}$.

ONCE MODE

The ONCE ("On-Circuit Emulation") mode facilitates testing and debugging of systems using the 87C51/BH without the 87C51/BH having to be removed from the circuit. The ONCE mode is invoked by:

1. Pull ALE low while the device is in reset and PSEN is high;
2. Hold ALE low as RST is deactivated.

While the device is in ONCE mode, the Port 0 pins float, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 87C51BH is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on $\overline{E A} / V_{P P}$ Pin to $V_{S S} \ldots . . .0 \mathrm{~V}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +6.5 V
Maximum lol per I/O Pin
15 mA
Power Dissipation. 1.5W
(Based on package heat transfer limitations, not device power consumption).

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

T_{A} (under Bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\left(87 \mathrm{C} 51-\mathrm{L}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\right.$)

DC CHARACTERISTICS (Over Operating Conditions)
All parameter values apply to all devices unless otherwise indicated.

Symbol	Parameter	Min	Typ(1)	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.2 \mathrm{~V}_{C C}-0.1$	V	
$\mathrm{V}_{\text {IL } 1}$	Input Low Voltage EA	0		$0.2 V_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V} \mathrm{CC}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage (XTAL1, RST)	0.7 VCC		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage(6) (Ports 1, 2, 3)			0.3	V	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}(2)$
				0.45	V	$\mathrm{lOL}=1.6 \mathrm{~mA}{ }^{(2)}$
				1.0	V	$\mathrm{loL}=3.5 \mathrm{~mA}$ (2)
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage(6) (Port 0, ALE, PSEN)			0.3	V	$\mathrm{l}_{\mathrm{OL}}=200 \mu \mathrm{~A}(2)$
				0.45	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}{ }^{(2)}$
				1.0	V	$\mathrm{l}_{\mathrm{OL}}=7.0 \mathrm{~mA}{ }^{(2)}$
V OH	Output High Voltage (Ports 1, 2, 3, ALE, $\overline{\text { PSEN }}$) 87C51	$\mathrm{V}_{\mathrm{CC}}-0.3$			V	$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}(3)$
		$\mathrm{V}_{\text {CC }}-0.7$			V	$\mathrm{l}_{\mathrm{OH}}=-30 \mu \mathrm{~A}(3)$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{IOH}^{\text {a }}=-60 \mu \mathrm{~A}(3)$
V_{OH}	Output High Voltage (Ports 1, 2, 3, ALE, PSEN) $80 \mathrm{C} 51 \mathrm{BH} / 31 \mathrm{BH}$	$0.9 \mathrm{~V}_{\text {cc }}$			V	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-10 \mu \mathrm{~A}(3) \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \end{aligned}$
		$0.75 \mathrm{~V}_{\mathrm{CC}}$			V	$\mathrm{I}_{\mathrm{OH}}=-25 \mu \mathrm{~A}$
		2.4			V	$\mathrm{IOH}=-60 \mu \mathrm{~A}(3)$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode) 87C51	$\mathrm{V}_{\mathrm{CC}}-0.3$			V	$\mathrm{IOH}^{\text {a }}=-200 \mu \mathrm{~A}(3)$
		$\mathrm{V}_{\mathrm{CC}}-0.7$			V	$\mathrm{IOH}=-3.2 \mathrm{~mA}$ (3)
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{IOH}^{\prime}=-7.0 \mathrm{~mA}{ }^{(3)}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode) $80 \mathrm{C} 51 \mathrm{BH} / 31 \mathrm{BH}$	0.9 V Cc			V	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-80 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \end{aligned}$
		$0.75 \mathrm{~V}_{\mathrm{CC}}$			V	$\mathrm{IOH}=-300 \mu \mathrm{~A}$
		2.4			V	$\mathrm{l}_{\mathrm{OH}}=-800 \mu \mathrm{~A}$

DC CHARACTERISTICS (Over Operating Conditions) (Continued)

Symbol	Parameter	Min	Typ(1)	Max	Unit	Test Conditions
IIL	Logical 0 Input Current (Ports 1, 2, 3)			-50	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {IN }}=2 V(87 C 51) \\ & V_{\text {IN }}=0.45 \mathrm{~V} \end{aligned}$
I_{LI}	Input Leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$0.45<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$
$I_{\text {TL }}$	Logical 1-to-0 Transition Current (Ports 1, 2, 3)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$
RRST	RST Pulldown Resistor	50		300	K Ω	
ClO_{10}	Pin Capacitance		10		pF	@ $1 \mathrm{MHz}, 25^{\circ} \mathrm{C}$
Icc	Power Supply Current Active Mode $87 \mathrm{C} 51-\mathrm{L}$ at 8 MHz All Others at $12 \mathrm{MHz}(4)$ Idle Mode @ $12 \mathrm{MHz}{ }^{(4)}$ Power Down Mode		$\begin{gathered} 11.5 \\ 1.7 \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ 20 \\ 5 \\ 50 \end{gathered}$	mA mA mA $\mu \mathrm{A}$	(Note 5)

NOTES:

1. "Typicals" are based on a limited number of samples taken from early manufacturing lots and are not guaranteed. The values listed are at room temp, 5 V .
2. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\mathrm{OL}} \mathrm{s}$ of ALE and Ports 1, 2 and 3 . The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with a Schmitt Trigger, or CMOS-level input logic.
3. Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the $0.9 \mathrm{~V}_{\text {CC }}$ specification when the address bits are stabilizing.
4. ICCMAX at other frequencies is given by:

$$
\begin{aligned}
& \text { Active Mode: } \operatorname{ICC} \text { MAX }=0.94 \times \text { FREQ }+13.71 \\
& \text { Idle Mode: } \quad I_{C C} M A X=0.14 \times \text { FREQ }+2.31
\end{aligned}
$$

- where FREQ is the external oscillator frequency in MHz. IccMAX is given in mA. See Figure 5.

5. See Figures 6 through 9 for Icc test conditions. Minimum $V_{C C}$ for Power Down is 2 V .
6. Under 'steady state (non-transient) conditions, Iol must be externally limited as follows:

If $\mathrm{IOL}_{\mathrm{OL}}$ exceeds the test condition, V_{OL} may exceed the related specification.
Pins are not guaranteed to sink greater than the listed test conditions.

Figure 5. Icc vs. FREQ. Valid only within frequency specifications of the device under test.

270147-17

270147-18
Figure 7. Icc Test Condition, Idle Mode. All other pins are disconnected.

270147-20
Figure 9. Icc Test Condition, Power Down Mode. All other pins are disconnected.

$$
\mathrm{V}_{\mathrm{Cc}}=2 \mathrm{~V} \text { to } 5.5 \mathrm{~V}
$$

Figure 6. Icc Test Condition, Active Mode. All other pins are disconnected.

Figure 8. Clock Signal Waveform for Icc tests in Active and Idle Modes.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A:Address.
C:Clock.
D:Input data.
H:Logic level HIGH.
I:Instruction (program memory contents).

L:Logic level LOW, or ALE.
$P: \overline{P S E N}$.
Q:Output data.
R: $\overline{\mathrm{RD}}$ signal.
T:Time.
V :Valid.
$\mathrm{W}: \overline{\mathrm{WR}}$ signal.
X:No. longer a valid logic level.
Z:Float.
For example,
TAVLL $=$ Time from Address Valid to ALE Low.
TLLPL $=$ Time from ALE Low to PSEN Low.

AC CHARACTERISTICS: (Over Operating Conditions; Load Capacitance for Port 0, ALE, and $\overline{\text { PSEN }}=100 \mathrm{pF}$; Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	$\begin{aligned} & \text { Oscillator Frequency } \\ & 87 \mathrm{C} 51 / \mathrm{BH} \\ & 87 \mathrm{C} 51-1 / \mathrm{BH}-1 \\ & 87 \mathrm{C} 51-2 / \mathrm{BH}-2 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 3.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \\ & 12 \end{aligned}$	MHz
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low $\begin{aligned} & 87 \mathrm{C} 51 \\ & 80 \mathrm{C} 51 \mathrm{BH} / \mathrm{C} 31 \mathrm{BH} \end{aligned}$	$\begin{aligned} & 43 \\ & 28 \end{aligned}$		$\begin{aligned} & \text { TCLCL-40 } \\ & \text { TCLCL-55 } \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TLLAX	```Address Hold After ALE Low 87C51 80C51BH/C31BH```	$\begin{aligned} & 53 \\ & 48 \end{aligned}$		$\begin{aligned} & \text { TCLCL-30 } \\ & \text { TCLCL-35 } \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TLLIV	ALE Low to Valid Instr In		234		4TCLCL-100	ns
TLLPL	```ALE Low to PSEN Low 87C51 80C51BH/C31BH```	$\begin{aligned} & 53 \\ & 43 \end{aligned}$		$\begin{aligned} & \text { TCLCL-30 } \\ & \text { TCLCL-40 } \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TPLPH	PSEN Pulse Width	205		3TCLCL-45		ns
TPLIV	$\overline{\text { PSEN }}$ Low to Valid Instr In		145		3TCLCL-105	ns
TPXIX	Input Instr Hold After PSEN	0		0		ns
TPXIZ	Input Instr Float After PSEN		59		TCLCL-25	ns
TAVIV	Address to Valid Instr In		312		5TCLCL-105	ns
TPLAZ	$\overline{\text { PSEN Low to Address Float }}$		10		10	ns
TRLRH	$\overline{R D}$ Pulse Width	400		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	400		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns

EXTERNAL MEMORY CHARACTERISTICS (Continued)

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
TRHDZ	$\begin{aligned} & \text { Data Float After } \overline{\mathrm{RD}} \\ & 87 \mathrm{C} 51 \\ & 80 \mathrm{C} 51 \mathrm{BH} / \mathrm{C} 31 \mathrm{BH} \end{aligned}$		$\begin{gathered} 107 \\ 97 \end{gathered}$		$\begin{aligned} & \text { 2TCLCL-60 } \\ & \text { 2TCLCL-70 } \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{W R}$ Low	200	300	3TCLCL-50	$3 T C L C L+50$	ns
TAVWL	Address to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	203		4TCLCL-130		ns
TQVWX	$\begin{aligned} & \text { Data Valid to } \overline{\mathrm{WR}} \text { Transition } \\ & \text { 87C51 } \\ & 80 \mathrm{C} 51 \mathrm{BH} / \mathrm{C} 31 \mathrm{BH} \end{aligned}$	$\begin{array}{r} 33 \\ 23 \\ \hline \end{array}$		$\begin{aligned} & \text { TCLCL-50 } \\ & \text { TCLCL-60 } \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TWHQX	Data Hold After WR	33		TCLCL-50		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{W R}$ High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$/$ TCLCL	Oscillator Frequency			
	87C51/BH	3.5	12	MHz
	87C51-1/BH-1	3.5	16	
	$87 \mathrm{C} 51-2 / \mathrm{BH}-2$	0.5	12	
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

SERIAL PORT TIMING-SHIFT REGISTER MODE

Symbol	Parameter		$12 ~ M H z$ Oscillator		Variable Oscillator	
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1.0		12 TCLCL		$\mu \mathrm{n}$
TQVXH	Output Data Setup to Clock Rising Edge	700		10 TCLCL-133		ns
TXHQX	Output Data Hold After Clock Rising Edge	50		2 TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

AC TESTING INPUT, OUTPUT WAVEFORMS

AC inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5$ for a Logic " 1 " and 0.45 V for a Logic " 0 ." Timing measurements are made at V_{IH} \min for a Logic " 1 " and $V_{\text {IL }} \max$ for a Logic " 0 ".

PROGRAMMING THE EPROM

The part must be running with a 4 MHz to 6 MHz oscillator. The address of an EPROM location to be programmed is applied to address lines while the code byte to be programmed in that location is applied to data lines. Control and program signals must be held at the levels indicated in Table 2. Normally $E A / V_{P P}$ is held at logic high until just before ALE/ PROG is to be pulsed. The $\overline{E A} / V_{P P}$ is raised to $V_{P P}$, ALE/PROG is pulsed low and then $\overline{E A} / V_{P P}$ is returned to a high (also refer to timing diagrams).

NOTE:

- Exceeding the VPP maximum for any amount of time could damage the device permanently. The V_{PP} source must be well regulated and free of glitches.
- Programming specifications for the 87C51-L are the same as the standard 87C51.

FLOAT WAVEFORMS

270147-11
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{IOH}= \pm 20 \mathrm{~mA} .\left(-\mathrm{L}, \mathrm{IOL} / \mathrm{I}_{\mathrm{OH}}= \pm 10 \mathrm{~mA}\right)$

DEFINITION OF TERMS

ADDRESS LINES: P1.0-P1.7, P2.0-P2.5, P3.4 respectively for A0-A14.

DATA LINES: PO.0-P0.7 for D0-D7.
CONTROL SIGNALS: RST, PSEN, P2.6, P2.7, P3.6, P3.7.

PROGRAM SIGNALS: ALE/ $\overline{P R O G}, \overline{E A} / V_{P P}$.

Table 2. EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE } /}{\text { PROG }}$	$\begin{aligned} & \overline{\mathrm{EA} /} \\ & \mathbf{V}_{\mathbf{P P}} \end{aligned}$	P2.6	P2.7	P3.6	P3.7
Program Code Data		H	L	Ч	12.75 V	L	H	H	H
Verify Code Data		H	L	H	H	L	L	H	H
Program Encryption Array Address 0-3F		H	L	Ч	12.75 V	L	H	L	H
Program Lock Bits	Bit 1	H	L	Ч	12.75 V	H	H	H	H
	Bit 2	H	L	凹	12.75 V	H	H	L	L
	Bit 3	H	L'	บ	12.75 V	H	L	H	L
Read Signature Byte		H	L	H	H	L	L	L	L

270147-12
*See Table 2 for proper input on these pins
Figure 10. Programming the EPROM

270147-13
*For compatibility, 25 pulses may be used.
Figure 11. Programming Waveforms

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the 87C51 the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from $V_{C C}$ to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse ALE/ $\overline{\text { PROG }} 5$ times* for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

Program Verify

Verification may be done after programming either one byte or a block of bytes. In either case a complete verify of the array will ensure reliable programming of the 87C51.

The lock bits cannot be directly verified. Verification of the lock bits is done by observing that their features are enabled.

EPROM Lock System

The 87C51 program lock system, when programmed, protects the onboard program against software piracy.

The 87C51 has a 3-level program lock system and a 64-byte encryption array. Since this is an EPROM device, all locations are user-programmable. See Table 3.

Encryption Array

Within the EPROM array are 64 bytes of Encryption Array that are initially unprogrammed (all 1's). Every time that a byte is addressed during a verify, 6 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an Encryption Verify byte. The algorithm, with the array in the unprogrammed state (all 1's), will return the code in its original, unmodified form. For programming the Encryption Array, refer to Table 2 (Programming the EPROM).

When using the encryption array, one important factor needs to be considered. If a code byte has the value OFFH, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the contents of the encryption array. For this reason all unused code bytes should be programmed with some value other than OFFH, and not all of them the same value. This will ensure maximum program protection.

Program Lock Bits

The 87C51 has 3 programmable lock bits that when programmed according to Table 3 will provide different levels of protection for the on-chip code and data.

Erasing the EPROM also erases the encryption array and the program lock bits, returning the part to full functionality.

Reading the Signature Bytes

The 87 C 51 has 3 signature bytes in locations 30 H , 31 H , and 60 H . To read these bytes follow the procedure for EPROM verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Contents
	87 C 51
30 H	89 H
31 H	58 H
60 H	51 H

Erasure Characteristics (Windowed Devices Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelengths shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least 15 W -sec/cm². Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the array in an all 1's state.

Table 3. Program Lock Bits and the Features

Program Lock Bits				Protection Type
	LB1	LB2	LB3	
1	U	U	U	No program lock features enabled. (Code verify will still be encrypted by the encryption array if programmed.)
2	P	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled.
3	P	P	U	Same as 2, also verify is disabled.
4	P	P	P	Same as 3, also external execution is disabled.

87C51/80C51BH/80C31BH

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS:
($\mathrm{T}_{\mathrm{A}}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
$V_{\text {PP }}$	Programming Supply Voltage	12.5	13.0	V
IPP	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold After PROG	48TCLCL		
TDVGL	Data Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHDX	Data Hold After $\overline{\text { PROG }}$	48TCLCL		
TEHSH	P2.7 (ENABLE) High to VPP	48TCLCL		
TSHGL	$\mathrm{V}_{\text {PP }}$ Setup to $\overline{\text { PROG }}$ Low	10		$\mu \mathrm{s}$
TGHSL	VPP Hold After $\overline{\text { PROG }}$	10		$\mu \mathrm{s}$
TGLGH	PROG Width	90	110	$\mu \mathrm{s}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48 TCLCL	
TEHQZ	Data Float After ENABLE	0	48 TCLCL	
TGHGL	$\overline{\text { PROG High to } \overline{\text { PROG }} \text { Low }}$	10		$\mu \mathrm{S}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

*For programming conditions see Figure 10.
**5 pulses for the EPROM array, 25 pulses for the encryption table and lock bits.

DATA SHEET REVISION HISTORY

This data sheet (271047-008) is valid for devices with an " A " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following differences exist between this data sheet (271047-008) and the previous version (271047-007):

1. The $80 \mathrm{C} 51 \mathrm{BH} / 80 \mathrm{C} 31 \mathrm{BH}$ CHMOS Single-Chip 8 -Bit Microcomputer data sheet (270064-008) has been combined with the 87C51 CHMOS Single-Chip 8-Bit Microcontroller with 4 Kbytes of EPROM Program Memory data sheet (271047-001) to create this new data sheet.
2. $80 \mathrm{C} 51 \mathrm{BH} / 80 \mathrm{C} 31 \mathrm{BH}$ specs have been added to the Package Table, DC Characteristics Table and AC Characteristics Table.
3. Added 3.3V device to data sheet.
4. EPROM Programming Information has been added.
5. The Operating Temperature Range has been changed to: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The following are the key differences between the -007 and the -006 versions of the 87C51 data sheet.

1. Pins labeled "NC" and " $\mathrm{V}_{S S 1}$ " changed to "Reserved" in Figure 2.
2. θ_{ja} and θ_{jc} specifications added to "Packages" table.
3. $\mathrm{V}_{\mathrm{SS} 1}$ pin description deleted.
4. Capacitor values for ceramic resonators deleted from Figure 3.
5. Second paragraph added to "Encrypted Verify" under "Program Memory Lock" section.
6. All pin numbers and the P3.3 control line deleted from Figure 10.

The following differences exist between the -006 and the -005 versions of the 87C51 data sheet:

1. Technology changed from CHMOS II-E to CHMOS III-E.
2. QFP package offering added.
3. Asynchronous Reset added.
4. ALE disable added.
5. Program Memory Lock feature changes:

- Third lock bit added
- Encryption array enhanced to 64 bytes

6. Data sheet status notice and Absolute Maximum Ratings warning revised.
7. DC Characteristics changes:

- Additional V_{OL} entries added (0.3 V @ $\mathrm{IOL}=100 \mu \mathrm{~A}, 1.0 \mathrm{~V} @ \mathrm{IOL}^{2}=3.5 \mathrm{~mA}$).
- Additional $\mathrm{V}_{\mathrm{OL} 1}$ entries added (0.3 V @ $\mathrm{l}_{\mathrm{OL}}=200 \mu \mathrm{~A}, 1.0 \mathrm{~V} @ \mathrm{l}_{\mathrm{OL}}=7.0 \mathrm{~mA}$).
$-\mathrm{V}_{\mathrm{OH}}$ entries changed from 2.4 V @ $\mathrm{l}_{\mathrm{OH}}=-60 \mu \mathrm{~A}, 0.75 \mathrm{~V}_{\mathrm{CC}} @ \mathrm{l}_{\mathrm{OH}}=-25 \mu \mathrm{~A}$, and $0.9 \mathrm{~V}_{\mathrm{CC}} @ \mathrm{I}_{\mathrm{OH}}=$ $-10 \mu \mathrm{~A}$ to the current values.
$-\mathrm{V}_{\mathrm{OH} 1}$ entries changed from $2.4 \mathrm{~V} @ \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}, 0.75 \mathrm{~V}_{\mathrm{CC}} @ \mathrm{I}_{\mathrm{OH}}=-300 \mu \mathrm{~A}$, and $0.9 \mathrm{~V}_{\mathrm{CC}} @ \mathrm{I}_{\mathrm{OH}}$ $=-80 \mu \mathrm{~A}$ to the current values.
- RRST changed from $50 \mathrm{~K} \Omega \mathrm{~min}$ and $300 \mathrm{~K} \Omega$ max to the current values.
- C_{IO} changed from 10 pF max to 10 pF typical

8. Note 2 reworded (ALE noise pulses).
9. Note 4 deleted (transition current sourcing).

DATA SHEET REVISION HISTORY (Continued)

10. AC Timings improved for:

TAVLL changed from TCLCL-55 to TCLCL-40
TLLAX changed from TCLCL-35 to TCLCL-30
TLLPL changed from TCLCL-40 to TCLCL-30
TRHDZ changed from 2 TCLCL-70 to 2 TCLCL-60
TQVWX changed from TCLCL-60 to TCLCL-50
11. EPROM programming control line (P3.3) added to Figure 10.
12. Programming Algorithm paragraph reworded to describe programming changes.
13. Figure 11 changed to show 5 programming pulses rather than 25.
14. Figure 12 deleted (Program Verification).
15. Program Verification paragraph reworded.
16. Third signature byte added; location and definition included.
17. Program/Verify Algorithms paragraph deleted.
18. Ipp programming spec changed from 50 mA to 75 mA .

The following are the key differences between -005 and the -004 versions of the 87C51 data sheet:

1. Package table was added.
2. Note 7 on maximum current specifications added to DC Characteristics.
3. Data Sheet Revision Summary was added.

87C51

EXPRESS

Extended Temperature Range

- 3.5 MHz to $12 \mathrm{MHz} \mathrm{V}_{\mathrm{CC}}=\mathbf{5 V} \pm \mathbf{1 0 \%}$

Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The optional burn-in is dynamic for a minimum time of 160 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.
D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits		Unit Test Conditions	
		Min	Max		
$V_{I L}$	Input Low Voltage (Except EA)	-0.5	$0.2 \mathrm{~V}_{\mathrm{CC}}-0.15$	V	
$\mathrm{~V}_{\mathrm{IL} 1}$	EA	0	$0.2 \mathrm{~V}_{\mathrm{CC}}-0.35$	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+1$	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{IH} 1}$	Input High Voltage to XTAL1, RST	$0.7 \mathrm{~V}_{\mathrm{CC}}+0.1$	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
I_{IL}	Logical 0 Input Current (Port 1, 2, 3)		-75	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
I_{TL}	Logical 1 to 0 transition Current (Ports 1, 2, 3)		-750	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
I_{CC}	Power Supply Current Active Mode Idle Mode Power Down Mode		35	mA	

NOTE:

1. $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$, Frequency Range $=3.5 \mathrm{MHz}-12 \mathrm{MHz}$.

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range(2)	Burn-In(3)
P	Plastic	Commercial	No
D	Cerdip	Commercial	No
N	PLCC	Commercial	No
TP	Plastic	Extended	No
TD	Cerdip	Extended	No
TN	PLCC	Comtended	No
QP	Plastic	Commercial	Yes
QD	Cerdip	Commercial	Yes
QN	PLCC	Extended	Yes
LP	Plastic	Extended	Yes
LD	Cerdip	Extended	Yes
LN	PLCC		Yes

NOTES:

2. Commercial temperature range is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Extended temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
3. Burn-in is dynamic for a minimum time of 160 hours at $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD883 Method 1015 (Test Condition D).

Examples:

P87C51 indicates 87C51 in a plastic package and specified for commercial temperature range, without burn-in. LD87C51 indicates 87C51 in a cerdip package and specified for extended temperature range with burn-in.

87C51-20/-3
 COMMERCIAL/EXPRESS 20 MHz CHMOS MICROCONTROLLER

> 87C51-20-3.5 to $20 \mathrm{MHz}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 20 \%$ 87C51-3-24 MHz Internal Operation, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$

- High Performance CHMOS EPROM

■ 24 MHz Internal Operation (-3 only)

- Improved Quick-Pulse Programming Algorithm
- 3-Level Program Memory Lock

■ Boolean Processor

- 128-Byte Data RAM
- 32 Programmable I/O Lines
- Two 16-Bit Timer/Counters

■ 5 Interrupt Sources

- Programmable Serial Channel

■ TTL- and CMOS-Compatible Logic Levels

■ 64K External Program Memory Space

- 64K External Data Memory Space
- IDLE and POWER DOWN Modes

■ ONCE Mode Facilitates System Testing

The $87 \mathrm{C} 51-20$ is the EPROM version of the 80 C 51 BH . It is fabricated on Intel's CHMOS III-E process. It contains 4 Kbytes of on-chip Program memory that can be electrically programmed, and can be erased by exposure to ultraviolet light.

The 87C51-20 EPROM array uses an improved Quick-Pulse programming algorithm, by which the entire 4 Kbyte array can be programmed in less than 3 seconds.

The 87C51-3 has the same 3.5 MHz to 20 MHz frequency range as the $87 \mathrm{C} 51-20$ when operating out of external program/data memory. When running out of internal program/data memory, the 87C51-3 can operate up to 24 MHz .

The extremely low operating power, along with the two reduced power modes, Idle and Power Down, make this part very suitable for low power applications. The Idle mode freezes the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power Down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative.

Throughout this document 87C51-20 will refer to both the 87C51-20 and the 87C51-3.

Figure 1. 87C51-20 Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {JA }}$	$\theta_{\text {JC }}$
$87 \mathrm{C} 51-20$	P	40 -Pin Plastic DIP (OTP)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
	D	40 -Pin CERDIP (EPROM)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
	N	44 -Pin PLCC (OTP)	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
	S	44 -Pin QFP (OTP)	$98^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

PIN DESCRIPTIONS

Symbol	Name and Function
$V_{C C}$	Main supply voltage (5V).
$\mathrm{V}_{\text {SS }}$	Circuit ground.
Port 0	8 -bit, open drain, bidirectional I/O port. These pins are shared with the multiplexed address/data bus which has strong internal pullups. Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during verification. When used as an I/O port, pullups to V_{CC} may be needed.
Port 1	8 -bit bidirectional I/O port. All of the port 1 pins are shared with other functions in the 87C51-20. Port 1 is also used as the low-order address byte input during EPROM programming.
Port 2	8 -bit bidirectional I/O port. Port 2 also emits the high-order address byte during accesses to 16-bit external memory locations. Some of the Port 2 pins are also used as address bits for EPROM programming.
Port 3	8-bit bidirectional I/O port. All of the port 3 pins are shared with other functions in the 87C51-20. Two of the pins are used as control lines ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$) for accessing external RAM.
RESET	Reset input to the chip. A high Input for a minimum of two machine cycles with the oscillator running resets the device. The port pins will be reset when a voltage above V_{IH} is applied whether the oscillator is running or not. RST has an internal pulldown.
ALE/PROG	Address Latch Enable. Provides a signal to demultiplex the address from the address/data bus. In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency. Note, however, that one ALE pulse is skipped during each access to external data memory. If desired, ALE can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode. This pin is also the program pulse input during EPROM programming.
PSEN	Program Store Enable. Acts as read strobe for external program memory fetches.
$\overline{\mathrm{EA}} / \mathrm{V}_{\mathrm{PP}}$	External Access Enable. $\overline{\text { EA }}$ must be strapped to $V_{S S}$ in order to enable the device to fetch code from external program memory locations 0000 H to OFFFFFH. EA should be strapped to V_{CC} for internal program executions. If any of the lock bits are programmed, EA will be internally latched on reset. This pin also receives the programming supply voltage (VPP) during EPROM programming.
XTAL1	Input to the inverting oscillator amplifier.
XTAL2	Output from the inverting oscillator amplifier.

DESIGN CONSIDERATION

When running out of internal program/data memory, the 87C51-3 can be operated using a 24 MHz clock. If the $87 C 51-3$ is running out of external program/data memory, the operating frequency must be between 3.5 MHz to 20 MHz . The 87C51-3 will not function properly at 24 MHz when running out of external program/data memory.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature
Under Bias $-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on $\overline{E A} / V_{P P}$ Pin to $V_{S S} \ldots . . .0 \mathrm{~V}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} . .-0.5 \mathrm{~V}$ to +6.5 V
Maximum lol per I/O Pin 15 mA
Power Dissipation. 1.5W
(Based on package heat transfer limitations, not device power consumption).

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
T_{A}	Ambient Temperature Under Bias Commercial Express	0	+70	${ }^{\circ} \mathrm{C}$
	Supply Voltage	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Oscillator Frequency	4.0	6.0	V
FOSC	3.5	.0	MHz	

DC CHARACTERISTICS (Over Operating Conditions)

All parameter values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	Typ(1)	Max	Unit	Test Conditions
V_{IL}	Input Low Voltage (Except $\overline{E A}$) Commercial Express	$\begin{array}{r} -0.5 \\ -0.5 \\ \hline \end{array}$		$\begin{gathered} 0.2 \mathrm{~V}_{C C}-0.1 \\ 0.2 \mathrm{~V}_{C C}-0.15 \end{gathered}$	V	
$\mathrm{V}_{\text {LL } 1}$	Input Low Voltage ($\overline{\mathrm{EA}}$) Commercial Express	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{gathered} 0.2 V_{C C}-0.3 \\ 0.2 V_{C C}-0.35 \end{gathered}$	v	
V_{IH}	Input High Voltage (Except XTAL1, RST) Commercial Express	$\begin{array}{r} 0.2 V_{C C}+0.9 \\ 0.2 V_{C C}+1.0 \\ \hline \end{array}$		$\begin{aligned} & V_{C C}+0.5 \\ & V_{C C}+0.5 \\ & \hline \end{aligned}$	v	
$\mathrm{V}_{\mathrm{HH} 1}$	Input High Voltage (XTAL1, RST) Commercial Express	$\begin{aligned} & 0.7 \mathrm{~V}_{C C} \\ & 0.7 \mathrm{~V}_{C C}+0.1 \\ & \hline \end{aligned}$		$\begin{aligned} & V_{C C}+0.5 \\ & V_{C C}+0.5 \\ & \hline \end{aligned}$	V	
VoL	$\begin{aligned} & \text { Output Low Voltage(5) } \\ & \text { (Ports } 1,2,3 \text {) } \end{aligned}$			0.3	V	$\mathrm{lOL}=100 \mu \mathrm{~A}$ (2)
				0.45	V	$\mathrm{l} \mathrm{OL}=1.6 \mathrm{~mA}{ }^{(2)}$
				1.0	V	$\mathrm{l} \mathrm{OL}^{\prime}=3.5 \mathrm{~mA}{ }^{(5)}$
VOL1	Output Low Voltage(5) (Port 0, ALE, PSEN)			0.3	V	$\mathrm{IOL}=200 \mu \mathrm{~A}$ (2)
				0.45	V	$\mathrm{lOL}=3.2 \mathrm{~mA}$ (2)
				1.0	V	$\mathrm{l}^{\mathrm{OL}}=7.0 \mathrm{~mA}{ }^{(2)}$
V_{OH}	Output High Voltage (Ports 1, 2, 3)	$V_{C C}-0.3$			V	$\mathrm{IOH}^{\text {O }}=-10 \mu \mathrm{~A}(3)$
		$V_{\text {CC }}-0.7$			V	$\mathrm{IOH}^{\prime}=-30 \mu \mathrm{~A}(3)$
		$V_{C C}-1.5$			V	$\mathrm{IOH}^{\prime}=-60 \mu \mathrm{~A}(3)$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode, ALE, PSEN)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{IOH}^{(1)}=-200 \mu \mathrm{~A}{ }^{(3)}$
		$\mathrm{V}_{\text {CC }}-0.7$			V	$\mathrm{IOH}^{(1)}$
		$\mathrm{V}_{\text {CC }}-1.5$			V	$1 \mathrm{OHH}=-7.0 \mathrm{~mA}{ }^{(3)}$
ILL	Logical 0 Input Current (Ports 1, 2, 3) Commercial Express			$\begin{aligned} & -50 \\ & -75 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$

DC CHARACTERISTICS (Over Operating Conditions) (Continued)
All parameter values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	Typ(1)	Max	Unit	Test Conditions
ILI	Input Leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\text {CC }}$
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, 3) Commercial Express			$\begin{aligned} & -650 \\ & -750 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
RRST	RST Pulldown Resistor	50		300	K Ω	
ClO_{10}	Pin Capacitance		10		pF	@ $1 \mathrm{MHz} \mathrm{C}^{2} 5^{\circ} \mathrm{C}$
Icc	Power Supply Current Active Mode Commercial Express Idle Mode Commercial Express Power Down Mode		18 2.5 3.0	$\begin{gathered} 32.5 \\ 45.5 \\ 5 \\ 7.5 \\ 50 \\ \hline \end{gathered}$	mA mA mA mA $\mu \mathrm{A}$	(Note 4)

NOTES:

1. "Typicals" are based on a limited number of samples taken from early manufacturing lots and are not guaranteed. The values listed are at room temp, 5V.
2. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\text {OLS }}$ of ALE and Ports 1, 2 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with a Schmitt Trigger, or CMOS-level input logic.
3. Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and $\overline{\text { PSEN }}$ to momentarily fall below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address bits are stabilizing.
4. See Figures 6 through 9 for Icc test conditions. Minimum $V_{C C}$ for Power Down is 2V.
5. Under steady state (non-transient) conditions, loL must be externally limited as follows:

Maximum lol per port pin: Maximum lol per 8-bit port-		10 mA
	Port 0:	26 mA
Ports 1, 2	2; and 3:	15 mA
aximum total $\mathrm{IOL}^{\text {for all outp }}$	put pins	71 mA

If $\mathrm{lOL}_{\mathrm{OL}}$ exceeds the test condition, V_{OL} may exceed the related specification.
Pins are not guaranteed to sink greater than the listed test conditions.

272082-7
Icc Max at other frequencies is given by:
Active Mode
Icc Max $=0.94 \times$ FREQ +13.71
Idle Mode
ICC Max $=0.14 \times$ FREQ +2.31
Where Osc Freq is in $\mathrm{MHz}, \mathrm{Icc}_{\mathrm{cc}}$ is in mA

Figure 4. Icc Test Condition, Active Mode. All other pins are disconnected.

Figure 5. Icc Test Condition, Idle Mode. All other pins are disconnected.

272082-10
Figure 6. Icc Test Condition, Power Down Mode. All other pins are disconnected. $\mathrm{V}_{\mathrm{CC}}=\mathbf{2 V}$ to $\mathbf{5 . 5 \mathrm { V }}$.

Figure 7. Clock Signal Waveform for Icc Tests in Active and Idie Modes.

$$
\text { TCLCH }=\text { TCHCL = } 5 \mathrm{~ns} .
$$

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock
D: Input data
H: Logic level HIGH
I: Instruction (program memory contents)

L: Logic level LOW, or ALE
P: $\overline{\text { PSEN }}$
Q: Output data
R: $\overline{\mathrm{DD}}$ signal
T: Time
V: Valid
W: $\overline{W R}$ signal
X: No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low.
TLLPL $=$ Time from ALE Low to PSEN Low.

AC CHARACTERISTICS (Over Operating Conditions; Load Capacitance for Port O, ALE and $\overline{\text { PSEN }}=100 \mathrm{pF}$; Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	20 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	20	MHz
TLHLL	ALE Pulse Width	60		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	10		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	20		TCLCL-30		ns
TLLIV	ALE Low to Valid Instr In		125		4TCLCL-75	ns
TLLPL	ALE Low to PSEN Low	20		TCLCL-30		ns
TPLPH	PSEN Pulse Width	105		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instr In		60		3TCLCL-90	ns
TPXIX	Input Instr Hold After PSEN	0		0		ns
TPXIZ	Input Instr Float After $\overline{\text { PSEN }}$		30		TCLCL-20	ns
TAVIV	Address to Valid Instr In		145		5TCLCL-105	ns
TPLAZ	PSEN Low to Address Float		10		10	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	200		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	200		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		155		5TCLCL-95	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		40		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		310		8TCLCL-90	ns
TAVDV	Address to Valid Data In		360		9TCLCL-90	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	100	200	3TCLCL-50	3 TCLCL +50	ns
TAVWL	Address to $\overline{\mathrm{R}}$ or $\overline{\mathrm{WR}}$ Low	110		4TCLCL-130		ns
TQVWX	Data Valid to $\overline{\text { WR }}$ Transition	15		TCLCL-35		ns
TWHQX	Data Hold After WR	10		TCLCL-40		ns
TQVWH	Data Valid to WR High	280		7TCLCL-70		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE High	10	90	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

Figure 8. Using the On-Chip Oscillator

Figure 9. External Clock Drive

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency	3.5	20	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

SERIAL PORT TIMING-SHIFT REGISTER MODE

Symbol	Parameter	20 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	600		12TCLCL		ns
TQVXH	Output Data Setup to Clock Rising Edge	367		10TCLCL-133		ns
TXHQX	Output Data Hold After Clock Rising Edge	50		2TCLCL-50		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		367		10TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

AC TESTING INPUT，OUTPUT WAVEFORMS
$\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$（ $0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$
$0.2 \mathrm{~V}_{\mathrm{CC}}-0.1$

FLOAT WAVEFORMS

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs，and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs． $\mathrm{l}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ $z \pm 20 \mathrm{~mA}$ ．

PROGRAMMING THE EPROM

Table 1．EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{E A /} / \\ & \mathbf{V P P}^{2} \end{aligned}$	P2．6	P2．7	P3．6	P3．7
Program Code Data		H	L	工	12．75V	L	H	H	H
Verify Code Data		H	L	H	H	L	L	H	H
Program Encryption Array Address 0－3F		H	L	工	12.75 V	L	H	L	H
Program Lock Bits	Bit 1	H	L	Ч	12.75 V	H	H	H	H
	Bit 2	H	L	Ч	12.75 V	H	H	L	L
	Bit 3	H	L	凹	12.75 V	H	L	H	L
Read Signature Byte		H	L	H	H	L	L	L	L

272082-19
*See Table 1 for proper input on these pins
Figure 10. EPROM Programming Configuration

*5 Pulses for EPROM array, 25 pulses for encryption array and lock bits.
For compatibility, 25 pulses may be used to program the EPROM array.
Figure 11. Programming Waveforms

Signature Bytes

Location	Contents	Description
30 H	89 H	Indicates Intel Device
31 H	58 H	Indicates FX-Core Product
60 H	51 H	Indicates 87C51 Device

Erasure Characteristics (Windowed Devices Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelengths shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this
range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, shauld be sufficient.

Erasure leaves the array in an all 1's state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

($T_{A}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
$V_{P P}$	Programming Supply Voltage	12.5	13.0	V
IPP	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold After PROG	48TCLCL		
TDVGL	Data Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHDX	Data Hold After PROG	48TCLCL		
TEHSH	P2.7 (ENABLE) High to $\mathrm{V}_{\text {PP }}$	48TCLCL		
TSHGL	$\mathrm{V}_{\text {PP }}$ Setup to PROG Low	10		$\mu \mathrm{s}$
TGHSL	VPP Hold After $\overline{\text { PROG }}$	10		$\mu \mathrm{s}$
TGLGH	PROG Width	90	110	$\mu \mathrm{S}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float After ENABLE	0	48 TCLCL	
TGHGL		10	.	$\mu \mathrm{S}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

*For programming conditions see Figure 10.
**5 pulses for EPROM array, 25 pulses for encryption table and lock bits. For compatibility, 25 pulses may be used to program the EPROM array.

DATA SHEET REVISION HISTORY

This data sheet (272082-002) is valid for devices with an " A " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following differences exist between this data sheet (272082-002) and the previous version (272082-001):

1. Added $87 \mathrm{C} 51-3$ to 20 MHz data sheet.
2. References to second functions of Port 1 pins have been removed.
3. Variable Oscillator equations in External Memory Characteristics Table changed as follows:

	From	To
TLLIV	120	125
	4TCLCL-80	4 TCLCL-75
TPLIV	3TCLCL-95	3TCLCL-90
TQVWX	TCLCL-50	TCLCL-35
TWHQX	0	10
	TCLCL-50	TCLCL-40

TQVWH has been added.
The following differences exist between version -001 of this data sheet (272082-001) and the 87C51 (270147-006) data sheet.

1. All explanatory wording duplicated in the device user's guide was deleted.
2. Variable Oscillator equations in External Memory Characteristics Table changed as follows:

From
TLLIV
TPLIV
TPXIZ
TRLDV
TLLDV
TAVDV
TAVWL
TQVWX

4TCLCL-100
3TCLCL-105
TCLCL-25
5TCLCL-165
8TCLCL-150
9TCLCL-165
4TCLCL-130
TCLCL-50

To
4TCLCL-80
3TCLCL-95
TCLCL-20
5TCLCL-95
8TCLCL-90
9TCLCL-90
4TCLCL-90
TCLCL-35
3. TXHQX in the Serial Port Timing Table changed from (2TCLCL-117) to (2TCLCL-50).

8XC51SL/LOW VOLTAGE 8XC51SL KEYBOARD CONTROLLER

80C51SL - CPU with RAM and I/O; $V_{C C}=5 \mathrm{~V} \pm 10 \%$
81C51SL - 16K ROM Preprogrammed with SystemSoft Keyboard Controller and Scanner Firmware. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$.
83C51SL - 16K Factory Programmed ROM. VCC $=5 \mathrm{~V} \pm 10 \%$.
87C51SL - 16K OTP ROM. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$.
Low Voltage 80C51SL— CPU with RAM and I/O; $V_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Low Voltage 81C51SL- 16K ROM Preprogrammed with SystemSoft Keyboard Controller and Scanner Firmware. $\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
Low Voltage 83C51SL- 16K Factory Programmed ROM. $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
Low Voltage 87C51SL- 16K OTP ROM. $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
- Proliferation of 8051 Architecture
- Complete 8042 Keyboard Control Functionality
- 8042 Style Host Interface
- Optional Hardware Speedup of GATEA20 and RCL
- Local 16×8 Keyboard Switch Matrix Support
■ Two Industry Standard Serial Keyboard Interfaces; Supported via Four High Drive Outputs
- 5 LED Drivers
\section*{- Low Power CHMOS Technology}
- 4-Channel, 8-Bit A/D
- Interface for up to 32 Kbytes of External Memory
- Slew Rate Controlled I/O Buffers Used to Minimize Noise
- 256 Bytes Data RAM
- Three Multifunction I/O Ports
- 10 Interrupt Sources with 6 UserDefinable External Interrupts
- $2 \mathrm{MHz}-16 \mathrm{MHz}$ Clock Frequency
- 100-Pin PQFP (8XC51SL) 100-Pin SQFP (Low Voltage 8XC51SL)

The 8XC51SL, based on Intel's industry-standard MCS ${ }^{\circledR-51}$ microcontroller family, is designed for keyboard control in laptop and notebook PCs. The highly integrated keyboard controller incorporates an 8042-style UPI host interface with expanded memory, keyboard scan, and power management. The 8XC51SL supports both serial and scanned keyboard interfaces and is available in pre-programmed versions to reduce time to market. The Low Voltage 8XC51SL is the 3.3V version optimized for even further power savings. Throughout the remainder of this document, both devices will generally be referred to as 51SL.

The 8XC51SL is a pin-for-pin compatible replacement for the 8XC51SL-BG. It does, however have some additional functionality. Those additional functions are as follows:

1. 16K OTP ROM: The 8XC51SL-BG had only 8 K of ROM.
2. New Register Set: The 8XC51SL adds a second set of host interface registers available for use in supporting power management. This required an additional address line (A1) for decoding. To accommodate this, one V_{CC} pin was removed. However, in order to maintain compatibility with the -BG version, an enable bit for this new register set was added in configuration register 0 . This allows the 8XC51SL to be drop in compatible to existing 8XC51SL-BG designs; no software modifications required.
3. Interrupt Enable: The 10 available interrupts on the 8XC51SL-BG were split into two groups of five, each with its own global enable. The 8XC51SL combines those two groups into a single group with one global enable for all 10 interrupts.

For the complete data sheet on this product, refer to the 1993 Mobile Computer Products handbook.

87C52/80C52/80C32 CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH 8 KBYTES INTERNAL PROGRAM MEMORY
87C52/80C52/80C32-3.5 MHz to $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 20 \%$ 87C52-1/80C52-1/80C32-1-3.5 MHz to $16 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$ $87 \mathrm{C} 52-\mathrm{L}-3.5 \mathrm{MHz}$ to $8 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
- High Performance CHMOS EPROM/ ROM/CPU
- Low Voltage Operation (-L Only)
- Three 16-Bit Timer/Counters
- Programmable Clock Out
■ Up/Down Timer/Counter
- Three Level Program Lock System
- 8K On-Chip EPROM/ROM
■ 256 Bytes of On-Chip Data RAM
- Improved Quick Pulse Programming Algorithm
- Boolean Processor
- 32 Programmable I/O Lines
- 6 Interrupt Sources
- Programmable Serial Channel with:
- Framing Error Detection
- Automatic Address Recognition
- TTL and CMOS Compatible Logic Levels
■ 64K External Program Memory Space
■ 64K External Data Memory Space
- MCS®-51 Compatible Instruction Set
- Power Saving Idle and Power Down Modes
- ONCE (On-Circuit Emulation) Mode
- Four-Level Interrupt Priority

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 8 Kbytes of the program memory can reside on-chip, (except 80C32). The device can also address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 87C52/80C52/80C32 is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS-51 family, the 87C52/80C52/80C32 uses the same powerful instruction set, has the same architecture, and is pin-for-pin compatible with the existing MCS51 family of products. The $87 \mathrm{C} 52 / 80 \mathrm{C} 52 / 80 \mathrm{C} 32$ is an enhanced version of the $87 \mathrm{C} 51 / 80 \mathrm{C} 51 \mathrm{BH} / 80 \mathrm{C} 31 \mathrm{BH}$. It's added features make it an even more powerful microcontroller for applications that require clock output, and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

Applications that require low voltage operation can use the 87 C 52 -L. The 87 C 52 -L will operate at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz .

Throughout this document 8XC52 will refer to the 87C52, 80C52 and 80C32.

Figure 1. 8XC52 Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
$8 \times C 52$	P	40 -Pin Plastic DIP (OTP)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$87 C 52$	D	40 -Pin CERDI (EPROM)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times C 52$	N	44 -Pin PLCC (OTP)	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times C 52$	S	44 -Pin QFP (OTP)	$87^{\circ} \mathrm{C} / \mathrm{W}$	$18^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

Figure 2. Pin Connections

PIN DESCRIPTIONS

V_{C} : Supply voltage.
$V_{S S}$: Circuit ground.
$\mathrm{V}_{\mathrm{SS} 1}$: Secondary ground (not on DIP). Provided to reduce ground bounce and improve power supply by-passing.

NOTE:

This pin is not a substitute for the V_{SS} pin (pin 22).
Port 0: Port 0 is an 8 -bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1 's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting1's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current (IL, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 8XC52:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2), Clock-Out
P1.1	T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current (l/L, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during
accesses to external Data Memory that use 16 -bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8 -bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current (IL, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { NT0 }}$ (external interrupt 0)
P3.3	$\overline{\text { NT1 (external interrupt 1) }}$
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR }}$ (external data memory write strobe)
P3.7	$\overline{\text { RD (external data memory read strobe) }}$

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. The port pins will be driven to their reset condition when a minimum V_{IH} voltage is applied whether the oscillator is running or not. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during EPROM programming for the 87C52.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8 EH . With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/PROG pin, and the pin will be referred to as the ALE/ $\overline{\text { PROG }}$ pin.
$\overline{\text { PSEN: Program Store Enable is the read strobe to }}$ external Program Memory.

When the 8XC52 is executing code from external Program Memory, $\overline{\text { PSEN }}$ is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{\mathrm{EA}} / \mathrm{V}_{\mathrm{Pp}}$: External Access enable. $\overline{\mathrm{EA}}$ must be strapped to VSS in order to enable the device to fetch code from external Program Memory locations 0000 H to 0FFFFH. Note, however, that if any of the Lock bits are programmed, $\overline{E A}$ will be internally latched on reset.
$\overline{E A}$ should be strapped to $V_{C C}$ for internal program executions.

This pin also receives the programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

Figure 3. Oscillator Connections
To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a di-vide-by-two flip-flop, but minimum and maximum
high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications the capacitance will not exceed 20 pF .

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 8XC52 either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the onchip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INTO and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80C51BH."

DESIGN CONSIDERATION

- The $87 \mathrm{C} 52-\mathrm{L}$ will operate at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz . Operating beyond these specifications could cause improper device functionality. (To program the 87C52-L, follow the same procedure as the 87C52.)
- The window on the 87C52 must be covered by an opaque label. Otherwise, the DC and AC characteristics may not be met, and the device may functionally be impaired.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 8XC52 without the 8XC52 having to be removed from the circuit. The ONCE Mode is invoked by:

1) Pull ALE low while the device is in reset and PSEN is high;
2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins float and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 8XC52 is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature.........$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/VPP Pin to $\mathrm{V}_{\mathrm{SS}} \ldots0 \mathrm{~V}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +6.5 V
lol Per I/O Pin
15 mA
Power Dissipation \qquad (based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This data sheet contains preliminary information on new products in production. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Operating Conditions:

T_{A} (under bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\left(87 \mathrm{C} 52-\mathrm{L}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\right)$
DC CHARACTERISTICS (Over Operating Conditions)
All parameter values apply to both 5 V and 3.3 V devices unless otherwise indicated.

Symbol	Parameter	Min	Typ (Note 4)	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.1$	V	
$\mathrm{V}_{\text {IL } 1}$	Input Low Voltage EA	0		$0.2 \mathrm{~V}_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{IH} 1}$	Input High Voltage (XTAL1, RST)	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
V OL	Output Low Voltage (Note 5) (Ports 1, 2 and 3)			0.3	V	IOL $=100 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{loL}=1.6 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{loL}=3.5 \mathrm{~mA}$ (Note 1)
VOL1	Output Low Voltage (Note 5) (Port 0, ALE, PSEN)			0.3	V	$\mathrm{IOL}=200 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{loL}=3.2 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{IOL}=7.0 \mathrm{~mA}$ (Note 1)
V_{OH}	Output High Voltage (Ports 1, 2 and 3, ALE, $\overline{\text { PSEN }}$)	$\mathrm{V}_{\mathrm{CC}}-0.3$			V	$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
		$\mathrm{V}_{\text {CC }}-0.7$			V	$\mathrm{I}^{\mathrm{OH}}=-30 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{IOH}=-3.2 \mathrm{~mA}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{I}_{\mathrm{OH}}=-7.0 \mathrm{~mA}$
ILL	Logical 0 Input Current (Ports 1, 2 and 3)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
lıI	Input leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$
${ }_{\text {ITL }}$	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$

DC CHARACTERISTICS (Over Operating Conditions) (Continued)
All parameter values apply to both 5 V and 3.3 V devices unless otherwise indicated.

Symbol	Parameter	Min	Typ (Note 4)	Max	Unit	Test Conditions
RRST	RST Pulldown Resistor	50		300	$\mathrm{~K} \Omega$	
CIO	Pin Capacitance		10		pF	$@ 1 \mathrm{MHz}, 25^{\circ} \mathrm{C}$
ICC	Power Supply Current:					(Note 3)
	Active Mode					
	87C52-L at 8 MHz		12	mA		
	All Others at 12 MHz (Figure 5)		15	30	mA	
	Idle Mode at 12 MHz (Figure 5)		5	7.5	mA	
	Power Down Mode	5	75	$\mu \mathrm{~A}$		

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\mathrm{OL}} \mathrm{s}$ of ALE and Ports 1, 2 and 3 . The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with a Schmitt Triggers, or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures 6-9 for test conditions. Minimum $V_{C C}$ for Power Down is 2V.
4. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, lol must be externally limited as follows:

$$
\begin{array}{ll}
\begin{array}{l}
\text { Maximum IOL per port pin: } \\
\text { Maximum IOL per 8-bit port- }
\end{array} & 10 \mathrm{~mA} \\
& \text { Port 0: } \\
\text { Ports 1, } 2 \text { and 3: } & 26 \mathrm{~mA} \\
\text { Maximum total lol for all output pins: } & 71 \mathrm{~mA}
\end{array}
$$

If loL exceeds the test condition, $V_{O L}$ may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 5. Icc vs Frequency

Figure 7. Icc Test Condition Idle Mode

Figure 8. Icc Test Condition, Power Down Mode $\mathbf{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to 6.0 V

Figure 9. Clock Signal Waveform for Icc Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock.
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)

L: Logic level LOW, or ALE
P: PSEN
Q: Output Data
R: $\overline{\operatorname{RD}}$ signal
T: Time
V: Valid
W: WR signal
X: No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low
TLLPL $=$ Time from ALE Low to PSEN Low

AC CHARACTERISTICS (Over Operating Conditions, Load Capacitance for Port 0, ALE/PROG and $\overline{\text { PSEN }}=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	16	MHz
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	53		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		234		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	53		TCLCL-30		ns
TPLPH	$\overline{\text { PSEN Pulse Width }}$	205		3TCLCL-45		ns
TPLIV	$\overline{\text { PSEN }}$ Low to Valid Instruction In		145		3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After $\overline{\text { PSEN }}$		59		TCLCL-25	ns
TAVIV	Address to Valid Instruction In		312		5TCLCL-105	ns
TPLAZ	$\overline{\text { PSEN }}$ Low to Address Float		10		10	ns
TRLRH	$\overline{R D}$ Pulse Width	400		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	400		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		107		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	200	300	3TCLCL-50	$3 T C L C L+50$	ns
TAVWL	Address Valid to WR Low	203		4TCLCL-130		ns
TQVWX	Data Valid before $\overline{W R}$	33		TCLCL-50		ns
TWHQX	Data Hold after $\overline{W R}$	33		TCLCL-50		ns
TQVWH	Data Valid to $\overline{\text { WR }}$ High	433		7TCLCL-150		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{W R}$ High to ALE High	43	123	TCLCL-40	TCLCL + 40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMAING - SHIFT REGISTER MODE

Test Conditions: Over Operating Conditions; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{1 2 ~ M H z ~ O s c i l l a t o r ~}$		Variable Oscillator		Units
		Rain	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1		$12 T C L C L$		$\mu \mathrm{~ns}$
TQVXH	Output Data Setup to Clock Rising Edge	700		10 TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency			
	8XC52	3.5	12	MHz
8XC52-1	3.5	16		ns
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	

EXTERNAL CLOCK DRIVE WAVEFORM

270757-14

AC TESTING INPUT, OUTPUT WAVEFORMS

270757-15
AC inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing measurements are made at V_{IH} \min for a Logic " 1 " and V_{IL} max for a Logic " 0 ".

PROGRAMMING THE EPROM

The part must be running with a 4 MHz to 6 MHz oscillator. The address of an EPROM location to be programmed is applied to address lines while the code byte to be programmed in that location is applied to data lines. Control and program signals must be held at the levels indicated in Table 2. Normally $\overline{E A} / V_{P}$ is held at logic high until just before ALE/ $\overline{\text { PROG }}$ is to be pulsed. The EA/ $V_{P P}$ is raised to $V_{P P}$, ALE/PROG is pulsed low and then EA/VPp is returned to a high (also refer to timing diagrams).

NOTES:

- Exceeding the VPP maximum for any amount of time could damage the device permanently. The Vpp source must be well regulated and free of glitches.
- Programming specifications for the 87C52-L are the same as the standard 87C52.

FLOAT WAVEFORMS

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}= \pm 20 \mathrm{~mA}\left(-\mathrm{L}, \mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}= \pm 10 \mathrm{~mA}\right)$.

DEFINITION OF TERMS

ADDRESS LINES: P1.0-P1.7, P2.0-P2.5 respectively for AO-A13.

DATA LINES: P0.0-P0.7 for D0-D7.
CONTROL SIGNALS: RST, $\overline{\text { PSEN, P2.6, P2.7, P3.3, }}$ P3.6, P3. 7

PROGRAM SIGNALS: ALE/PROG, $\overline{E A} / V_{P P}$

Table 2. EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE } /}{\text { PROG }}$	$\begin{aligned} & \overline{E A /} \\ & \mathbf{V P P}^{\prime} \end{aligned}$	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code Data		H	L	ப	12.75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0-3FH		H	L	-	12.75V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	Ч	12.75V	H	H	H	H	H
	Bit 2	H	L	ป	12.75 V	H	H	H	L	L
	Bit 3	H	L	凹	12.75 V	H	L	H	H	L
Read Signature Byte		H	L	H	H	L	L	L	L	L

Figure 10. Programming the EPROM

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the 87C52 the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{\mathrm{EA}} / \mathrm{V}_{\mathrm{PP}}$ from V_{CC} to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse ALE/PROG 5 times for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Program verify may be done after each byte or block of bytes is programmed. In either case a complete verify of the programmed array will ensure reliable programming of the 87C52.

The lock bits cannot be directly verified. Verification of the lock bits is done by observing that their features are enabled.

Figure 11. Programming Signal's Waveforms

Reading the Signature Bytes

The 87C52/80C52 each has 3 signature bytes in locations $30 \mathrm{H}, 31 \mathrm{H}$, and 60 H . To read these bytes follow the procedure for EPROM verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Content	
	87 C 52	80 C 52
30 H	89 H	89 H
31 H	58 H	$58 \mathrm{H} / 53 \mathrm{H}$
60 H	52 H	$52 \mathrm{H} / 12 \mathrm{H}$

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than
approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves all the EPROM Cells in a 1's state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS
($T_{A}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
VPP	Programming Supply Voltage	12.5	13.0	V
lpp	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHAX	Address Hold after PROG	48TCLCL		
TDVGL	Data Setup to PROG Low	48TCLCL		
TGHDX	Data Hold after PROG	48 TCLCL		
TEHSH	(Enable) High to VPP	48TCLCL		
TSHGL	$\mathrm{V}_{\text {PP }}$ Setup to $\overline{\text { PROG }}$ Low	10		$\mu \mathrm{s}$
TGHSL	$V_{\text {PP }}$ Hold after PROG	10		$\mu \mathrm{s}$
TGLGH	PROG Width	90	110	$\mu \mathrm{s}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	$\overline{\text { PROG }}$ High to PROG Low	10		$\mu \mathrm{s}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION HISTORY

The following differences exist between this data sheet (270757-003) and the previous version (270757-002):

1. Data sheet title was changed from:

80C52/80C32 CHMOS Single-Chip 8-Bit Microcomputer.
to:
87C52/80C52/80C32 CHMOS Single-Chip 8-Bit Microcontroller with 8 Kbytes Internal Program Memory.
2. Added 3.3 V device to data sheet.
3. Revision History added to data sheet.

87C52/80C52/80C32 EXPRESS

> 87C52/80C52/80C32-3.5 MHz to $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 20 \%$ $87 \mathrm{C} 52-1 / 80 \mathrm{C} 52-1 / 80 \mathrm{C} 32-1-3.5 \mathrm{MHz}$ to $16 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$

- Extended Temperature Range
 - Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The optional burn-in is dynamic for a minimum time of 168 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here. This data sheet is valid in conjunction with the commercial 87C52/80C52/80C32 data sheet 270757-003.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

DC and AC parameters not included here are the same as in the commercial temperature range data sheets.

DC CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits		Unit	Test Conditions
		Min	Max		
liL	Logical 0 Input Current (Port 1, 2, 3)		-75	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$
ILI	Input Leakage Current (Port 0 and $\overline{E A}$)		± 15	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, 3)		-750	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
Icc	Power Supply Currrent Active Mode Idle Mode Power Down Mode		$\begin{array}{r} 35 \\ 7.5 \\ 150 \\ \hline \end{array}$	mA mA $\mu \mathrm{A}$	(Note 1)

NOTE:

1. $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$, Frequency Range $=3.5 \mathrm{MHz}-12 \mathrm{MHz}$.

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range	Burn-In
P	Plastic	Commercial	No
D^{*}	Cerdip	Commercial	No
N	PLCC	Commercial	No
TP	Plastic	Extended	No
TD*	Cerdip	Extended	No
TN	PLCC	Extended	No
LP	Plastic	Extended	Yes
LD*	Cerdip	Extended	Yes
LN	PLCC	Yes	

*Available for 87C52 only.

NOTE:

- Commercial temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Extended temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- Burn-in is dynamic for a minimum time of 168 hours at $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).

Examples:

P80C52 indicates 80C52 in a plastic package and specified for commercial temperature range, without burn-in. LD80C52 indicates 80C52 in a cerdip package and specified for extended temperature range with burn-in.

87C52-20/80C52-20/80C32-20 COMMERCIAL/EXPRESS 20 MHz MICROCONTROLLER

87C52-20/80C52-20/80C32-20-3.5 MHz to $20 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 20 \%$

 87C52-3/80C52-3-24 MHz Internal Operation, VCc = 5V $\pm \mathbf{2 0 \%}$- High Performance CHMOS EPROM
- 24 MHz Internal Execution (-3 only)
- Three 16-Bit Timer/Counters
- Programmable Clock Out
- Up/Down Timer/Counter
- Three Level Program Lock System

图 8K On-Chip EPROM/ROM

- 256 Bytes of On-Chip Data RAM
- Improved Quick Pulse Programming Algorithm
- Boolean Processor
- 32 Programmable I/O Lines

6 Interrupt Sources

Programmable Serial Channel with:

- Framing Error Detection
- Automatic Address Recognition
© TTL and CMOS Compatible Logic Levels

64K External Program Memory Space
64K External Data Memory Space
MCS ${ }^{\text {®-51 }}$ Compatible Instruction Set

- Power Saving Idle and Power Down Modes

ONCE (On-Circuit Emulation) Mode
Four-Level Interrupt Priority

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 8 Kbytes of the program memory can reside on-chip (except 80C32). The device can also address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 87C52-20/80C52-20/80C32-20 is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS-51 family, the 87C52-20/80C52-20/ 80C32-20 uses the same powerful instruction set, has the same architecture, and is pin-for-pin compatible with the existing MCS-51 family of products. The 87C52-20/80C52-20/80C32-20 is an enhanced version of the $87 \mathrm{C} 51 / 80 \mathrm{C} 51 \mathrm{BH} / 80 \mathrm{C} 31 \mathrm{BH}$. Its added features make it an even more powerful microcontroller for applications that require clock output, and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

The 87C52-3/80C52-3 has the same 3.5 to 20 MHz frequency range as the 87C52-20/80C52-20 when operating out of external program/data memory. When running out of internal program/data memory, the $87 \mathrm{C} 52-3 / 80 \mathrm{C} 52-3$ can operate up to 24 MHz .

Throughout this document, 8XC52-20 will refer to the 87C52-20, 80C52-20, 80C32-20, 87C52-3 and 80C52-3.

Figure 1. 8XC52-20 Block Dlagram

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {JA }}$	$\theta_{\text {JC }}$
$8 \times C 52-20$	P	40 -Pin Plastic DIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$87 \mathrm{C} 52-20$	D	40 -Pin CERDIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times \mathrm{C} 52-20$	N	44 -Pin PLCC	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times \mathrm{C} 52-20$	S	44-Pin QFP	$87^{\circ} \mathrm{C} / \mathrm{W}$	$18^{\circ} \mathrm{C} / \mathrm{W}$

Figure 2. Pin Connections

PIN DESCRIPTIONS

V_{CC} : Supply voltage.
$V_{S s}$: Circuit ground.
$\mathrm{V}_{\mathrm{SS} 1}$: Secondary ground (not on DIP). Provided to reduce ground bounce and improve power supply by-passing.

NOTE:

This pin is not a substitute for the V_{SS} pin (pin 22).
Port 0: Port 0 is an 8 -bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting1's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1 's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current (l/L, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the $8 \times C 52-20$:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2), Clock-Out P1.1 T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current (ILL, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16 -bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1 's. During accesses to external Data Memory that use 8 -bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current (ILL, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INT0 (external interrupt 0)
P3.3	$\overline{\text { INT1 (}}$ (external interrupt 1)
P3.4	T0 (Timer 0 external input)
PP3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	$\overline{\text { RD (external data memory read strobe) }}$

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. The port pins will be driven to their reset condition when a minimum $\mathrm{V}_{I H I}$ voltage is applied whether the oscillator is running or not. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{C}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during EPROM programming for the 87C52-20.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8 EH . With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/PROG pin, and the pin will be referred to as the ALE/PROG pin.
$\overline{\text { PSEN: }}$ Program Store Enable is the read strobe to external Program Memory.

When the $8 \times C 52-20$ is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{E A} / V_{P P}$: External Access enable. $\overline{E A}$ must be strapped to $V_{S S}$ in order to enable the device to fetch code from external Program Memory locations 0000 H to OFFFFH. Note, however, that if any of the Lock bits are programmed, EA will be internally latched on reset.
$\overline{E A}$ should be strapped to $V_{C C}$ for internal program executions.

This pin also receives the programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a di-vide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications the capacitance will not exceed 20 pF .

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 8XC52-20 either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INTO and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

TIMER 2 PROGRAMMABLE CLOCK OUT

The 8XC52-20 has a new Timer 2 feature. A 50\% duty cycle clock can be programmed to come out on P1.0. The output frequency ranges from 61 Hz to 4 MHz depending on the oscillator frequency and the reload value of the Timer 2 capture registers (RCAP2H, RCAP2L) as shown in the equation below:
$*$ Clock-Out Frequency $=\frac{\text { Oscillator Frequency }}{4 \times(65536-\text { RCAP2H, RCAP2L })}$
To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in T2CON) must be cleared, and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) starts and stops the timer.

For a complete description of all Timer 2 functions, please reference the 8XC52/54/58 Hardware Description of the 8 -Bit Embedded Controllers Handbook.
*NOTE:
Even though the equation permits a maximum clock-out frequency of 5 MHz using a 20 MHz oscillator, the maximum device output frequency is 4 MHz . When using a 20 MHz oscillator, RCAP2L must be limited to a maximum value of FEH .

DESIGN CONSIDERATION

- When running out of internal program/data memory, the 87C52-3/80C52-3 can be operated using a 24 MHz clock. If the $87 \mathrm{C} 52-3 / 80 \mathrm{C} 52-3$ is running out of external program/data memory, the operating frequency must be between 3.5 to 20 MHz . The 87C52-3/80C52-3 will not function properly at 24 MHz when running out of external program/data memory.
- The window on the 87C52-20 must be covered by an opaque label. Otherwise, the DC and AC characteristics may not be met, and the device may functionally be impaired.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 8XC52-20 without the 8XC52-20 having to be removed from the circuit. The ONCE Mode is invoked by:

1) Pull ALE low while the device is in reset and PSEN is high;
2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins float and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 8XC52-20 is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORTO	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature..........$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/V $\mathrm{V}_{\text {PP }}$ Pin to $\mathrm{V}_{\mathrm{SS}} \ldots0 \mathrm{~V}$ to +13.0 V
Voltage on Any Other Pin to VSS .. -0.5 V to +6.5 V
lol Per I/O Pin
15 mA
Power Dissipation
.1.5W
(based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This data sheet contains preliminary information on new products in production. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
T_{A}	Ambient Temperature Under Bias			
	Commercial			
	Express	0	+70	${ }^{\circ} \mathrm{C}$
	Supply Voltage	-40	+85	${ }^{\circ} \mathrm{C}$
V_{CC}	Oscillator Frequency	3.0	6.0	V
fosC		20	MHz	

DC CHARACTERISTICS (Over Operating Conditions)
All parameter values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 4) } \\ \hline \end{array}$	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.2 \mathrm{~V}_{C C}-0.1$	V	
$\mathrm{V}_{\text {IL1 }}$	Input Low Voltage EA	0		$0.2 \mathrm{~V}_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{C C}+0.5$	V	
$\mathrm{V}_{\mathrm{HH} 1}$	Input High Voltage (XTAL1, RST)	0.7. VCC		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
V_{OL}	Output Low Voltage (Note 5) (Ports 1, 2 and 3)			0.3	V	$\mathrm{loL}=100 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{loL}=3.5 \mathrm{~mA}$ (Note 1)
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Note 5) (Port 0, ALE, PSEN)			0.3	V	loL $=200 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{loL}=7.0 \mathrm{~mA}$ (Note 1)
V_{OH}	Output High Voltage (Ports 1, 2 and 3, ALE, PSEN)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{IOH}^{\prime}=-10 \mu \mathrm{~A}$
		$\mathrm{V}_{\mathrm{CC}}-0.7$			V	$\mathrm{IOH}=-30 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{IOH}=-60 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$
		$\mathrm{V}_{\mathrm{CC}}-0.7$			V	$\mathrm{IOH}=-3.2 \mathrm{~mA}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{I}_{\mathrm{OH}}=-7.0 \mathrm{~mA}$

DC CHARACTERISTICS (Over Operating Conditions) (Conținued)

All parameter values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	Typ (Note 4)	Max	Unit	Test Conditions
IIL	Logical 0 Input Current (Ports 1, 2 and 3) Commercial Express			$\begin{aligned} & -50 \\ & -75 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }_{\text {LII }}$	Input Leakage Current (Port 0) Commercial Express			$\begin{array}{r} \pm 10 \\ \pm 15 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}
$I_{\text {TL }}$	Logical 1 to 0 Transition Current (Ports 1, 2 and 3) Commercial Express			$\begin{aligned} & -650 \\ & -750 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V}$
RRST	RST Pulldown Resistor	50		300	K Ω	
ClO	Pin Capacitance		10		pF	@1 MHz, $25^{\circ} \mathrm{C}$
lcc	Power Supply Current: Active Mode Commercial Express Idle Mode (Figure 5) Power Down Mode		$\begin{gathered} 24 \\ 8 \\ 5 \end{gathered}$	$\begin{gathered} 47.1 \\ 55 \\ 11.4 \\ 75 \end{gathered}$	mA mA mA $\mu \mathrm{A}$	(Note 3)

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\mathrm{OL}} \mathrm{s}$ of ALE and Ports 1, 2 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with a Schmitt Triggers, or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures 6-9 for test conditions. Minimum $V_{C C}$ for Power Down is 2V.
4. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, lol must be externally limited as follows:

Maximum lol per port pin:
10 mA
Maximum loL per 8-bit port-
Port 0: $\quad 26 \mathrm{~mA}$
Ports 1, 2 and 3: $\quad 15 \mathrm{~mA}$
Maximum total l_{OL} for all output pins: $\quad 71 \mathrm{~mA}$
If lol exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Icc Max at other frequencies is given by:
Active Mode
Icc Max $=2.2 \times$ FREQ +3.14
Idle Mode
Icc Max $=0.49 \times$ FREQ +1.6
Where Osc Freq is in MHz , I_{Cc} is in mA .

Figure 6. Icc Test Condition, Active Mode

Figure 5. Icc vs Frequency

272272-9
All other pins disconnected
$\mathrm{TCLCH}=\mathrm{TCHCL}=5 \mathrm{~ns}$

Figure 8. Icc Test Condition, Power Down Mode

$$
V_{C C}=2.0 \mathrm{~V} \text { to } 6.0 \mathrm{~V}
$$

FIgure 7. Icc Test Condition Idle Mode

272272-11

Figure 9. Clock Signal Waveform for Icc Tests in Active and Idie Modes. TCLCH = TCHCL = 5 ns

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)

L: Logic level LOW, or ALE
P: PSEN
Q: Output Data
R: $\overline{R D}$ signal
T: Time
V: Valid
W: WR signal
X : No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low TLLPL $=$ Time from ALE Low to PSEN Low

AC CHARACTERISTICS (Over Operating Conditions) Load Capacitance for Port 0, ALE/PROG and $\overline{\text { PSEN }}=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	20 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	20	MHz
TLHLL	ALE Pulse Width	60		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	10		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	20		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		125		4TCLCL-75	ns
TLLPL	ALE Low to PSEN Low	20		TCLCL-30		ns
TPLPH	PSEN Pulse Width	105		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		60		3TCLCL-90	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		30		TCLCL-20	ns
TAVIV	Address to Valid Instruction In		145		5TCLCL-105	ns
TPLAZ	PSEN Low to Address Float		10		10	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	200		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	200		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		155		5TCLCL-95	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		40		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		310		8TCLCL-90	ns
TAVDV	Address to Valid Data In		360		9TCLCL-90	ns
TLLWL	ALE Low to $\overline{\text { RD }}$ or WR Low	100	200	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address Valid to $\overline{\text { WR }}$ Low	110		4TCLCL-90		ns
TQVWX	Data Valid before $\overline{\mathrm{WR}}$	15		TCLCL-35		ns
TWHQX	Data Hold after $\bar{W} \bar{R}$	10		TCLCL-40		ns
TQVWH	Data Valid to $\overline{\text { WR }}$ High	280		7TCLCL-70		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE High	10	90	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING-SHIFT REGISTER MODE

Test Conditions: Over Operating Conditions; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{2 0 ~ M H z ~ O s c i l l a t o r ~}$		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	600		12 TCLCL		ns
TQVXH	Output Data Setup to Clock Rising Edge	367		10 TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-50		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		367		10TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency	3.5	20	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

AC TESTING INPUT, OUTPUT WAVEFORMS

272272-16
AC Inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing measurements are made at V_{IH} \min for a Logic " 1 " and V_{IL} max for a Logic " 0 ".

PROGRAMMING THE EPROM

The part must be running with a 4 MHz to 6 MHz oscillator. The address of an EPROM location to be programmed is applied to address lines while the code byte to be programmed in that location is applied to data lines. Control and program signals must be held at the levels indicated in Table 2. Normally $E \mathrm{EA} / \mathrm{V}_{\mathrm{PP}}$ is held at logic high until just before ALE/ $\overline{\text { PROG }}$ is to be pulsed. The $\overline{E A} / V_{P P}$ is raised to $V_{P P}$, ALE/PROG is pulsed low and then EA/VPP is returned to a high (also refer to timing diagrams).

NOTE:
Exceeding the VPP maximum for any amount of time could damage the device permanently. The V_{PP} source must be well regulated and free of glitches.

FLOAT WAVEFORMS

272272-17
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{lOL}_{\mathrm{OL}} /_{\mathrm{OH}} \geq \pm 20 \mathrm{~mA}$.

DEFINITION OF TERMS

ADDRESS LINES: P1.0-P1.7, P2.0-P2.5 respectively for A0-A13.

DATA LINES: P0.0-P0.7 for D0-D7.
CONTROL SIGNALS: RST, $\overline{\text { PSEN, P2.6, P2.7, P3.3, }}$ P3.6, P3. 7

PROGRAM SIGNALS: ALE/ $\overline{\operatorname{PROG}}, \overline{E A} / \mathrm{V}_{\mathrm{PP}}$

Table 2. EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{E A /} / \\ & \mathbf{V P P}^{\prime} \end{aligned}$	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code Data		H	L	ப	12.75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0-3FH		H	L	工	12.75 V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	Ч	12.75V	H	H	H	H	H
	Bit 2	H	L	บ	12.75 V	H	H	H	L	L
	Bit 3	H	L	い	12.75 V	H	L	H	H	L
Read Signature Byte		H	L	H	H	L	L	L	L	L

Figure 10. Programming the EPROM

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the 87C52-20 the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from $V_{C C}$ to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse ALE/ $\overline{\text { PROG }} 5$ times for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Program verify may be done after each byte or block of bytes is programmed. In either case a complete verify of the programmed array will ensure reliable programming of the $87 \mathrm{C} 52-20$.

The lock bits cannot be directly verified. Verification of the lock bits is done by observing that their features are enabled.

Figure 11. Programming Signal's Waveforms

Reading the Signature Bytes

The 87C52-20/80C52-20 each has 3 signature bytes in locations $30 \mathrm{H}, 31 \mathrm{H}$, and 60 H . To read these bytes follow the procedure for EPROM verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Content	
	$\mathbf{8 7 C 5 2 - 2 0}$	$\mathbf{8 0 C 5 2 - 2 0}$
30 H	89 H	89 H
31 H	58 H	$58 \mathrm{H} / 53 \mathrm{H}$
60 H	52 H	$52 \mathrm{H} / 12 \mathrm{H}$

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than
approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves all the EPROM Cells in a 1's state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

($T_{A}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
$V_{\text {PP }}$	Programming Supply Voltage	12.5	13.0	\checkmark
$l_{\text {PP }}$	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold after PROG	48TCLCL		
TDVGL	Data Setup to PROG Low	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	(Enable) High to V_{PP}	48TCLCL		
TSHGL	$V_{\text {PP }}$ Setup to $\overline{\text { PROG }}$ Low	10		$\mu \mathrm{s}$
TGHSL	$V_{\text {PP }}$ Hold after PROG	10		$\mu \mathrm{s}$
TGLGH	PROG Width	90	110	$\mu \mathrm{s}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	PROG High to PROG Low	10		$\mu \mathrm{s}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION HISTORY

This is Rev. 1 of the 87C52-20/80C52-20/80C32-20 data sheet.

- High Performance CHMOS EPROM
- Low Voltage Operation (-L only)
- Three 16-Bit Timer/Counters
- Programmable Clock Out
: Up/Down Timer/Counter
- Three Level Program Lock System

16K On-Chip EPROM/ROM

- 256 Bytes of On-Chip Data RAM
- Improved Quick Pulse Programming Algorithm
国 Boolean Processor
- 32 Programmable I/O Lines
- 6 Interrupt Sources
- Programmable Serial Channel with:
- Framing Error Detection
- Automatic Address Recognition
- TTL and CMOS Compatible Logic Levels
- 64K External Program Memory Space
- 64K External Data Memory Space
- MCS ${ }^{\circledR-51 ~ C o m p a t i b l e ~ I n s t r u c t i o n ~ S e t ~}$
- Power Saving Idle and Power Down Modes
- ONCE (On-Circuit Emulation) Mode
- Four-Level Interrupt Priority

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 16 Kbytes of the program memory can reside in the on-chip EPROM. The device can also address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 87C54/80C54 is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS-51 family, the 87C54/80C54 uses the same powerful instruction set, has the same architecture, and is pin-for-pin compatible with the existing MCS-51 family of products. The $87 \mathrm{C} 54 / 80 \mathrm{C} 54$ is an enhanced version of the $87 \mathrm{C} 51 / 80 \mathrm{C} 51 \mathrm{BH}$. It's added features make it an even more powerful microcontroller for applications that require clock output, and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

Applications that require low voltage can use the $87 \mathrm{C} 54-\mathrm{L} / 80 \mathrm{C} 54-\mathrm{L}$. The $8 \mathrm{XC} 54-\mathrm{L}$ will operate at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz .

Throughout this document $8 \times C 54$ will refer to both the 87C54 and the 80C54.

Figure 1. 8XC54 Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
$8 \times C 54$	P	40 -Pin Plastic DIP (OTP)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
87554	D	40 -Pin CERDIP (EPROM)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times C 54$	N	44 -Pin PLCC (OTP)	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times \mathrm{C} 54$	S	44 -Pin QFP (OTP)	$96^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

Figure 2. Pin Connections

PIN DESCRIPTIONS

$V_{C C}$: Supply voltage.
$V_{S s}$: Circuit ground.
$\mathrm{V}_{\text {SS1 }}$: Secondary ground (not on DIP). Provided to reduce ground bounce and improve power supply by-passing.

NOTE:

This pin is not a substitute for the V_{SS} pin (pin 22).
Port 0: Port 0 is an 8-bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting1's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current (ILL, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 8XC54:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2), Clock-Out P1.1T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current (ILL, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during
accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8 -bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1 's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current (IL, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output tort)
P3.2	$\overline{\text { INT0 }}$ (external interrupt 0)
P3.3	$\overline{\text { INT1 (external interrupt 1) }}$
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR (external data memory write strobe) }}$
P3.7	$\overline{\text { RD (external data memory read strobe) }}$

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. The port pins will be driven to their reset condition when a minimum $\mathrm{V}_{\mathrm{IHI}}$ voltage is applied whether the oscillator is running or not. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during EPROM programming for the 87C54.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8 EH . With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/PROG pin, and the pin will be referred to as the ALE/PROG pin.

PSEN: Program Store Enable is the read strobe to external Program Memory.

When the 8XC54 is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{E A} / V_{p p}$: External Access enable. $\overline{E A}$ must be strapped to VSS in order to enable the device to fetch code from external Program Memory locations 0000 H to OFFFFH. Note, however, that if any of the Lock bits are programmed, EA will be internally latched on reset.
$\overline{E A}$ should be strapped to $V_{C C}$ for internal program executions.

This pin also receives the programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

Figure 3. Oscillator Connections
To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a di-vide-by-two flip-flop, but minimum and maximum
high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications the capacitance will not exceed 20 pF .

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 8XC54 either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the onchip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INT0 and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:
For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80C51BH."

DESIGN CONSIDERATION

- The $8 \times C 54-L$ will operate at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz . Operating beyond these specifications could cause improper device functionality. (To program the 87C54-L, follow the same procedure as the 87C54.)
- The window on the 87C54 must be covered by an opaque label. Otherwise, the DC and AC characteristics may not be met, and the device may functionally be impaired.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 8XC54 without the 8XC54 having to be removed from the circuit. The ONCE Mode is invoked by:

1) Pull ALE low while the device is in reset and PSEN is high;
2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins float and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 8XC54 is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/VPP Pin to $V_{S S} \ldots . .$.
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +6.5 V
Iol Per I/O Pin . 15 mA
Power Dissipation. 1.5W
(based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions". may affect device reliability.

Operating Conditions:

T_{A} (under bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\left(8 \mathrm{XC} 54-\mathrm{L}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\right.$)
DC CHARACTERISTICS (Over Operating Conditions)
All parameter values apply to both 5 V and 3.3 V devices unless otherwise indicated.

Symbol	Parameter	Min	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 4) } \\ \hline \end{array}$	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.2 V_{C C}-0.1$	V	
$\mathrm{V}_{\mathrm{IL} 1}$	Input Low Voltage $\overline{\mathrm{EA}}$	0		$0.2 V_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage (XTAL1, RST)	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Note 5) (Ports 1, 2 and 3)			0.3	V	$\mathrm{loL}=100 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{IOL}=1.6 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{lOL}=3.5 \mathrm{~mA}$ (Note 1)
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Note 5) (Port 0, ALE, PSEN)			0.3	V	$\mathrm{I}_{\text {OL }}=200 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{IOL}=3.2 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{loL}=7.0 \mathrm{~mA}$ (Note 1)
V OH	Output High Voltage (Ports 1, 2 and 3, ALE, $\overline{\text { PSEN }}$)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{IOH}=-10 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{IOH}^{\text {O }}=-30 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{l}^{\mathrm{OH}}=-60 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{IOH}=-200 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{IOH}^{\prime}=-3.2 \mathrm{~mA}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{I}_{\mathrm{OH}}=-7.0 \mathrm{~mA}$
IIL	Logical 0 Input Current (Ports 1, 2 and 3)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
LII	Input leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$0.45<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$
$I_{\text {TL }}$	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$

DC CHARACTERISTICS (Over Operating Conditions) (Continued)
All parameter values apply to both 5 V and 3.3 V devices unless otherwise indicated.

Symbol	Parameter	Min	Typ (Note 4)	Max	Unit	Test Conditions
RRST	RST Pulldown Resistor	40		225	$\mathrm{~K} \Omega$	
CIO	Pin Capacitance		10		pF	@1 MHz, $25^{\circ} \mathrm{C}$
ICC	Power Supply Current:					(Note 3)
	Active Mode					
	8XC54-L at 8 MHz		20	12	mA	
	all others at 12 MHz (Figure 5)		40	mA		
	Idle Mode at 12 MHz (Figure 5)		5	10	mA	
	Power Down Mode		15	100	$\mu \mathrm{~A}$	

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\mathrm{OL}} \mathrm{s}$ of ALE and Ports 1, 2 and 3 . The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with a Schmitt Triggers, or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures 6-9 for test conditions. Minimum V_{CC} for Power Down is 2 V .
4. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, IOL must be externally limited as follows:

Maximum lol per port pin:
Maximum lol per 8-bit port-
Port 0: $\quad 26 \mathrm{~mA}$
Ports 1, 2 and 3: $\quad 15 \mathrm{~mA}$
Maximum total lol for all output pins: $\quad 71 \mathrm{~mA}$
If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 5. Icc vs Frequency

Figure 6. Icc Test Condition, Active Mode

Figure 7. Icc Test Condition Idle Mode

270816-9

Figure 8. Icc Test Condition, Power Down Mode $\mathbf{V}_{\mathbf{c c}}=\mathbf{2 . 0 V}$ to 6.0 V

Figure 9. Clock Signal Waveform for Icc Tests in Active and Idle Modes. TCLCH = TCHCL = $\mathbf{5} \mathbf{n s}$

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)

L: Logic level LOW, or ALE
P: $\overline{\text { PSEN }}$
Q: Output Data
R: $\overline{R D}$ signal
T: Time
V : Valid
W: $\overline{W R}$ signal
X : No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low
TLLPL $=$ Time from ALE Low to PSEN Low

AC CHARACTERISTICS (Over Operating Conditions.) Load Capacitance for Port 0, ALE/PROG and $\overline{\text { PSEN }}=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHzz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	16	MHz
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	53		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		234		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	53		TCLCL-30		ns
TPLPH	PSEN Pulse Width	205		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		145		3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		59		TCLCL-25	ns
TAVIV	Address to Valid Instruction In		312		5TCLCL-105	ns
TPLAZ	$\overline{\text { PSEN Low to Address Float }}$		10		10	ns
TRLRH	$\overline{\text { RD Pulse Width }}$	400		6TCLCL-100		ns
TWLWH	WR Pulse Width	400		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		107		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\text { RD }}$ or $\overline{\text { WR }}$ Low	200	300	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address Valid to $\overline{\mathrm{WR}}$ Low	203		4TCLCL-130		ns
TQVWX	Data Valid before $\overline{\text { WR }}$	33		TCLCL-50		ns
TWHQX	Data Hold after WR	33		TCLCL-50		ns
TQVWH	Data Valid to WR High	433		7TCLCL-150		ns
TRLAZ	$\overline{R D}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING - SHIFT REGISTER MODE

Test Conditions: Over Operating Conditions; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{1 2 ~ M H z ~ O s c i l l a t o r ~}$		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1		$12 T C L C L$		$\mu \mathrm{~s}$
TQVXH	Output Data Setup to Clock Rising Edge	700		$10 T C L C L-133$		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency			
	$8 \times C 54$	3.5	12	MHz
8XC54-1	3.5	16		ns
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	

EXTERNAL CLOCK DRIVE WAVEFORM

AC TESTING INPUT，OUTPUT WAVEFORMS

270816－16
$A C$ inputs during testing are driven at $V_{C C}-0.5 \mathrm{~V}$ for a Logic＂ 1 ＂ and 0.45 V for a Logic＂ 0 ＂．Timing measurements are made at V_{IH} \min for a Logic＂ 1 ＂and $V_{I L}$ max for a Logic＂ 0 ＂．

PROGRAMMING THE EPROM

The part must be running with a 4 MHz to 6 MHz oscillator．The address of an EPROM location to be programmed is applied to address lines while the code byte to be programmed in that location is ap－ plied to data lines．Control and program signals must be held at the levels indicated in Table 2．Normally $E \overline{E A} / V_{p}$ is held at logic high until just before ALE／ $\overline{\text { PROG }}$ is to be pulsed．The $\overline{E A} / V_{P P}$ is raised to $V_{P P}$ ， ALE／PROG is pulsed low and then $\overline{E A} / V_{P P}$ is re－ turned to a high（also refer to timing diagrams）．

NOTE：
Exceeding the VPP maximum for any amount of time could damage the device permanently．The $V_{\text {Pp }}$ source must be well regulated and free of glitches．

FLOAT WAVEFORMS

270816－17
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs，and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs． $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}= \pm 20 \mathrm{~mA} .\left(-\mathrm{L}, \mathrm{l}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}= \pm 10 \mathrm{~mA}\right)$

DEFINITION OF TERMS

ADDRESS LINES：P1．0－P1．7，P2．0－P2．5 respec－ tively for A0－A13．

DATA LINES：P0．0－P0．7 for D0－D7．
CONTROL SIGNALS：RST，$\overline{\text { PSEN，P2．6，P2．7，P3．3，}}$ P3．6，P3． 7

PROGRAM SIGNALS：ALE／／$\overline{\text { PROG }}, \overline{E A} / V_{P P}$

Table 2．EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{\mathrm{EA} /} \\ & \mathbf{V}_{\mathrm{PP}} \end{aligned}$	P2．6	P2．7	P3． 3	P3．6	P3．7
Program Code Data		H	L	工	12．75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0－3FH		H	L	工	12.75 V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	ป	12.75 V	H	H	H	H	H
	Bit 2	H	L	บ	12.75 V	H	H	H	L	L
	Bit 3	H	L	工	12.75 V	H	L	H	H	L
Read Signature Byte		H	i L	H	H	L	L	L	L	L

Figure 10. Programming the EPROM

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the 87C54 the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from $V_{C C}$ to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse ALE/PROG 5 times for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Program verify may be done after each byte or block of bytes is programmed. In either case a complete verify of the programmed array will ensure reliable programming of the 87C54.

The lock bits cannot be directly verified. Verification of the lock bits is done by observing that their features are enabled.

Figure 11. Programming Signal's Waveforms

Reading the Signature Bytes

The 87C54/80C54 each has 3 signature bytes in locations $30 \mathrm{H}, 31 \mathrm{H}$, and 60 H . To read these bytes follow the procedure for EPROM verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Content	
	87 C 54	80 C 54
30 H	89 H	89 H
31 H	58 H	58 H
60 H	54 H	$54 \mathrm{H} / 14 \mathrm{H}$

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than
approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves all the EPROM Cells in a 1's state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
$V_{\text {PP }}$	Programming Supply Voltage	12.5	13.0	V
IPP	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold after $\overline{\text { PROG }}$	48TCLCL		
TDVGL	Data Setup to PROG Low	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	(Enable) High to VPP	48TCLCL		
TSHGL	$\mathrm{V}_{\text {PP }}$ Setup to PROG Low	10		$\mu \mathrm{s}$
TGHSL	$V_{\text {PP }}$ Hold after PROG	10		$\mu \mathrm{s}$
TGLGH	PROG Width	90	110	$\mu \mathrm{s}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	$\overline{\text { PROG High to PROG Low }}$	10		$\mu \mathrm{s}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION HISTORY

The following differences exist between this data sheet (270816-004) and the previous version (270816-003):

1. Added 3.3 V device to data sheet.
2. Data sheet status changed from "Preliminary" to "Production".
3. References to second functions of Port 1.2 thru Port 1.7 pins have been removed.
4. The Operating Temperature Range has been changed to: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The following differences exist between the -003 and -002 versions of this data sheet:

1. QFP package type added.
2. "NC" pin labels changed to "Reserved" in Figure 2.
3. θ_{ja} and θ_{jc} information added to Packages table.
4. Capacitor value for ceramic resonators deleted in Figure 3.
5. Pin numbers deleted from Figure 10.
6. Second paragraph under "Encryption Array" section added.
7. All references to Program Lock Bit and Encryption Array deleted from "Program Verification" section. This information is available in the hardware description.

The following differences exist between the -002 and the -001 versions of the 87C54/80C54 data sheet:

1. Changed data sheet status from "Advanced" to "Preliminary".
2. Added "Four-Level Interrupt Priority" feature bullet.
3. Revised RST pin description.
4. Changed Figure 3 to read " $=40 \mathrm{pF} \pm 10 \mathrm{pF}$ for Ceramic Resonators".
5. Added $\mathrm{V}_{\mathrm{IL} 1}$ specification to DC Characteristics table.
6. Changed test conditions under I_{LI} from OV to 0.45 V for V_{IN} minimum.
7. Revised Absolute Maximum Ratings warning and data sheet status notice.
8. Reworded DC Characteristics Note 1.
9. Changed $1 /$ TCLCL Minimum specification from 0.5 MHz to 3.5 MHz .
10. Deleted -2 reference in "External Clock Drive" table.
11. Revised "ROM and EPROM Lock System" section.

87C54/80C54
 EXPRESS

87C54/80C54-3.5 MHz to $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 20 \%$ 87C54-1/80C54-1-3.5 MHz to $16 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$

- Extended Temperature Range

© Burn-In
The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The optional burn-in is dynamic for a minimum time of 168 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here. This data sheet is valid in conjunction with the commercial 87C54/80C54 data sheet, 270816-002.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.

D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter		Limits		Unit
		Min	Max		$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range	Burn-In
P	Plastic	Commercial	No
D^{*}	Cerdip	Commercial	No
N	PLCC	Commercial	No
TP	Plastic	Extended	No
TD*	Cerdip	Extended	No
TN	PLCC	Extended	No
LP	Plastic	Extended	Yes
LD*	Cerdip	Extended	Yes
LN	PLCC	Yes	

*Available for 87C54 only.
NOTE:

- Commercial temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Extended temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- Burn-in is dynamic for a minimum time of 168 hours at $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MLL-STD-883 Method 1015 (Test Condition D).

Examples:

P80C54 indicates 80C54 in a plastic package and specified for commercial temperature range, without burn-in. LD80C54 indicates 80C54 in a cerdip package and specified for extended temperature range with burn-in.

DATA SHEET REVISION SUMMARY

This is Rev. 1 of the 80C54/87C54 Express data sheet.

COMMERCIAL/EXPRESS 20 MHz MICROCONTROLLER

87C54-20/80C54-20-3.5 MHz to $20 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 20 \%$ 87C54-3/80C54-3-24 MHz Internal Operation, VCc $=5 \mathrm{~V} \pm 20 \%$

- High Performance CHMOS EPROM
- 24 MHz Internal Operation (-3 only)

■ Three 16-Bit Timer/Counters

- Programmable Clock Out

■ Up/Down Timer/Counter

- Three Level Program Lock System
- 16K On-Chip EPROM/ROM
- 256 Bytes of On-Chip Data RAM
- Improved Quick Pulse Programming Algorithm
■ Boolean Processor
■ 32 Programmable I/O Lines
- 6 Interrupt Sources
- Programmable Serial Channel with:
- Framing Error Detection
- Automatic Address Recognition

TTL and CMOS Compatible Logic Levels
64K External Program Memory Space
64K External Data Memory Space
MCS ${ }^{\circledR-51}$ Compatible Instruction Set

- Power Saving Idle and Power Down Modes
ONCE (On-Circuit Emulation) Mode
Four-Level Interrupt Priority

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 16 Kbytes of the program memory can reside in the on-chip EPROM. The device can also address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 8XC54-20/-3 is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS-51 family, the $8 \times C 54-20 /-3$ uses the same powerful instruction set, has the same architecture, and is pin-for-pin compatible with the existing MCS-51 family of products. The $8 \times C 54-20 /-3$ is an enhanced version of the $87 \mathrm{C} 51 / 80 \mathrm{C} 51 \mathrm{BH}$. Its added features make it an even more powerful microcontroller for applications that require clock output, and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

The 87C54-3/80C54-3 has the same 3.5 MHz to 20 MHz frequency range as the 87C54-20/80C54-20 when operating out of external program/data memory. When running out of internal program/data memory, the 87C54-3/80C54-3 can operate up to 24 MHz .'

Throughout this document $8 \mathrm{XC} 54-20$ will refer to the $87 \mathrm{C} 54-20,80 \mathrm{C} 54-20,87 \mathrm{C} 54-3$ and the 80C54-3.

Figure 1. 8XC54-20 Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\boldsymbol{\theta}_{\text {jc }}$
$8 \times C 54-20$	P	$40-$-Pin Plastic DIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$87 \mathrm{C} 54-20$	D	$40-$ Pin CERDIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times C 54-20$	N	$44-$-Pin PLCC	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times C 54-20$	S	$44-$ Pin QFP	$96^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

PIN DESCRIPTIONS

V_{CC} : Supply voltage.
$V_{S s}$: Circuit ground.
$\mathrm{V}_{\mathrm{SS} 1}$: Secondary ground (not on DIP). Provided to reduce ground bounce and improve power supply by-passing.

NOTE:

This pin is not a substitute for the V_{SS} pin (pin 22).
Port 0: Port 0 is an 8 -bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting1's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current (l_{L}, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the $8 \times C 54-20$:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2), Clock-Out
P1.1	T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current ($I_{L L}$, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1 's. During accesses to external Data Memory that use 8 -bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current (IL, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { NT0 }}$ (external interrupt 0)
P3.3	$\overline{\text { NT1 }}$ (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR }}$ (external data memory write strobe)
P3.7	$\overline{\text { RD (external data memory read strobe) }}$

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. The port pins will be driven to their reset condition when a minimum $\mathrm{V}_{\mathrm{IHI}}$ voltage is applied whether the oscillator is running or not. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during EPROM programming for the 87C54-20.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/PROG pin, and the pin will be referred to as the ALE/PROG pin.
$\overline{\text { PSEN: Program Store Enable is the read strobe to }}$ external Program Memory.

When the 8XC54-20 is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{E A} / V_{\text {pp }}$: External Access enable. $\overline{E A}$ must be strapped to V_{SS} in order to enable the device to fetch code from external Program Memory locations 0000 H to OFFFFH. Note, however, that if any of the Lock bits are programmed, EA will be internally latched on reset.
$\overline{E A}$ should be strapped to V_{CC} for internal program executions.

This pin also receives the programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

Figure 3. Oscillator Connections

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a di-vide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{H} specifications the capacitance will not exceed 20 pF .

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 8XC54-20 either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INTO and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

TIMER 2 PROGRAMMABLE CLOCK OUT

The 8XC54-20 has a new Timer 2 feature. A 50\% duty cycle clock can be programmed to come out on P1.0. The output frequency ranges from 61 Hz to 4 MHz depending on the oscillator frequency and the reload value of the Timer 2 capture registers (RCAP2H, RCAP2L) as shown in the equation below:
*Clock-Out Frequency $=\frac{\text { Oscillator Frequency }}{4 \times(65536-\text { RCAP2H, RCAP2L) }}$
To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in T2CON) must be cleared, and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) starts and stops the timer.

For a complete description of all Timer 2 functions, please reference the 8 XC52/54/58 Hardware Description of the 8 -Bit Embedded Controllers Handbook.
*NOTE:
Even though the equation permits a maximum clock-out frequency of 5 MHz using a 20 MHz oscillator, the maximum device output frequency is 4 MHz . When using a 20 MHz oscillator, RCAP2L must be limited to a maximum value of FEH.

DESIGN CONSIDERATION

- When running out of internal program/data memory, the 87C54-3/80C54-3 can be operated using a 24 MHz clock. If the $87 \mathrm{C} 54-3 / 80 \mathrm{C} 54-3$ is running out of external program/data memory, the operating frequency must be between 3.5 MHz to 20 MHz . The 87C54-3/80C54-3 will not function properly at 24 MHz when running out of external program/data memory.
- The window on the 87C54-20 must be covered by an opaque label. Otherwise, the DC and AC characteristics may not be met, and the device may functionally be impaired.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 8XC54-20 without the 8XC54-20 having to be removed from the circuit. The ONCE Mode is invoked by:

1) Pull ALE low while the device is in reset and PSEN is high;
2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins float and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 8XC54-20 is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORTO	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/V $\mathrm{VPP}_{\text {P }}$ Pin to $\mathrm{V}_{\mathrm{SS}} \ldots0 \mathrm{~V}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +6.5 V
lol Per I/O Pin 15 mA
Power Dissipation.
.1.5W
(based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This data sheet contains preliminary information on new products in production. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
T_{A}	Ambient Temperature Under Bias			${ }^{\circ} \mathrm{C}$
	Commercial	0	+70	${ }^{\circ} \mathrm{C}$
	Express	-40	+85	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.0	6.0	V
$\mathrm{f}_{\mathrm{OSC}}$	Oscillator Frequency	3.5	20	MHz

DC CHARACTERISTICS (Over Operating Conditions)
All parameter values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	Typ (Note 4)	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.1$	V	
$V_{\text {ILI }}$	Input Low Voltage EA	0		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage (XTAL1, RST)	0.7 VCC		$\mathrm{V}_{\mathrm{Cc}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Note 5) (Ports 1, 2 and 3)			0.3	V	$\mathrm{IOL}_{\text {O }}=100 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$ (Note 1)
				1.0	V	$1 \mathrm{OL}=3.5 \mathrm{~mA}$ (Note 1)
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Note 5) (Port 0, ALE, PSEN)			0.3	V	$\mathrm{loL}=200 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$1 \mathrm{OL}=3.2 \mathrm{~mA}$ (Note 1)
				1.0	V	$1 \mathrm{loL}=7.0 \mathrm{~mA}$ (Note 1)
V_{OH}	Output High Voltage (Ports 1, 2 and 3, ALE, PSEN)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{IOH}^{\prime}=-10 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{lOH}^{\text {O }}=-30 \mu \mathrm{~A}$
		$\mathrm{V}_{\mathrm{CC}}-1.5$			V	$\mathrm{IOH}=-60 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{l}^{\mathrm{OH}}=-200 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{IOH}=-3.2 \mathrm{~mA}$
		$\mathrm{V}_{\mathrm{CC}}-1.5$			V	$\mathrm{l}_{\mathrm{OH}}=-7.0 \mathrm{~mA}$
IL	Logical 0 Input Current (Ports 1, 2 and 3)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$

DC CHARACTERISTICS (Over Operating Conditions) (Continued)

All parameter values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	Typ (Note 4)	Max	Unit	Test Conditions
lıl	Input Leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$0.45<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$
${ }_{\text {ITL }}$	Logical 1 to 0 Transition Current (Ports 1, 2 and 3) Commercial Express			$\begin{aligned} & -650 \\ & -750 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$
RRST	RST Pulldown Resistor	40		225	$\mathrm{K} \Omega$	
ClO	Pin Capacitance		10		pF	@1 MHz, $25^{\circ} \mathrm{C}$
Icc	Power Supply Current: Running at 12 MHz (Figure 5) Idle Mode at 12 MHz (Figure 5) Power Down Mode		$\begin{gathered} 20 \\ 5 \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 10 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$	(Note 3)

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\text {OLS }}$ of ALE and Ports 1, 2 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with a Schmitt Triggers, or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures 6-9 for test conditions. Minimum V V_{CC} for Power Down is 2V.
4. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, lol must be externally limited as follows:

Maximum lol per port pin:		10 mA
Maximum lol per 8-bit port-		
	Port 0:	26 mA
Ports 1, 2	2 and 3:	15 mA
Maximum total lol for all outp	ut pins:	71 mA

If loL exceeds the test condition, $V_{\text {OL }}$ may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Icc Max at other frequencies is given by:
Active Mode
Icc Max $=($ Osc Freq $\times 3)+4$
Idle Mode
Icc Max $=($ Osc Freq $\times 0.5)+4$
Where Osc Freq is in MHz , I_{Cc} is in mA .
Figure 5. Icc vs Frequency

Figure 7. Icc Test Condition Idle Mode

Figure 6. Icc Test Condition, Active Mode

Figure 8. Icc Test Condition, Power Down Mode $\mathbf{V} \mathbf{c c}=\mathbf{2 . 0 V}$ to 6.0 V

Figure 9. Clock Signal Waveform for Icc Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)

L: Logic level LOW, or ALE
P: PSEN
Q: Output Data
R: $\overline{R D}$ signal
T: Time
V: Valid
W: WR signal
X: No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low
TLLPL $=$ Time from ALE Low to PSEN Low

AC CHARACTERISTICS (Over Operating Conditions) Load Capacitance for Port 0, ALE/PROG and $\overline{\text { PSEN }}=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	20 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	20	MHz
TLHLL	ALE Pulse Width	60		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	10		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	20		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		125		4TCLCL-75	ns
TLLPL	ALE Low to PSEN Low	20		TCLCL-30		ns
TPLPH	PSEN Pulse Width	105		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		60		3TCLCL-90	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		30		TCLCL-20	ns
TAVIV	Address to Valid Instruction In		145		5TCLCL-105	ns
TPLAZ	$\overline{\text { PSEN }}$ Low to Address Float		10		10	ns
TRLRH	$\overline{R D}$ Pulse Width	200		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	200		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		155		5TCLCL-95	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		40		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		310		8TCLCL-90	ns
TAVDV	Address to Valid Data In		360		9TCLCL-90	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	100	200	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address Valid to WR Low	110		4TCLCL-90		ns
TQVWX	Data Valid before $\overline{\mathrm{WR}}$	15		TCLCL-35		ns
TWHQX	Data Hold after $\overline{W R}$	10		TCLCL-40		ns
TQVWH	Data Valid to $\overline{\text { WR }}$ High	280		7TCLCL-70		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or WR High to ALE High	10	90	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING-SHIFT REGISTER MODE

Test Conditions: Over Operating Conditions; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{2 0 ~ M H z ~ O s c i l l a t o r ~}$		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	600		12 TCLCL		ns
TQVXH	Output Data Setup to Clock Rising Edge	367		10 TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-50		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		367		$10 T C L C L-133$	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency	3.5	20	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

(

AC TESTING INPUT，OUTPUT WAVEFORMS

270941－17
AC Inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic＂ 1 ＂ and 0.45 V for a Logic＂ 0 ＂．Timing measurements are made at V_{IH} \min for a Logic＂1＂and $V_{I L} \max$ for a Logic＂ 0 ＂．

PROGRAMMING THE EPROM

The part must be running with a 4 MHz to 6 MHz oscillator．The address of an EPROM location to be programmed is applied to address lines while the code byte to be programmed in that location is ap－ plied to data lines．Control and program signals must be held at the levels indicated in Table 2．Normally $\overline{E A} / V_{P P}$ is held at logic high until just before ALE／ $\overline{\text { PROG }}$ is to be pulsed．The $\overline{E A} / V_{P P}$ is raised to $V_{P P}$ ， ALE／PROG is pulsed low and then EA／VPP is re－ turned to a high（also refer to timing diagrams）．

NOTE：
Exceeding the VPP maximum for any amount of time could damage the device permanently．The V_{PP} source must be well regulated and free of glitches．

FLOAT WAVEFORMS

270941－18
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs，and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs． $\mathrm{lOL}_{\mathrm{OH}} \geq \pm 20 \mathrm{~mA}$ ．

DEFINITION OF TERMS

ADDRESS LINES：P1．0－P1．7，P2．0－P2．5 respec－ tively for A0－A13．

DATA LINES：P0．0－P0．7 for D0－D7．
CONTROL SIGNALS：RST，$\overline{\text { PSEN，P2．6，P2．7，P3．3，}}$ P3．6，P3． 7

PROGRAM SIGNALS：ALE／／$\overline{\text { ROGG }}, \overline{E A} / V_{P P}$

Table 2．EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{\mathrm{EA} /} / \\ & \mathbf{V}_{\mathbf{P P}} \end{aligned}$	P2．6	P2．7	P3．3	P3．6	P3．7
Program Code Data		H	L	Ч	12．75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0－3FH		H	L	工	12.75 V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	凹	12.75 V	H	H	H	H	H
	Bit 2	H	L	บ	12.75 V	H	H	H	L	L
	Bit 3	H	L	工	12.75 V	H	L	H	H	L
Read Signature Byte		H	L	H	H	L	L	L	L	L

Figure 10. Programming the EPROM

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the $87 \mathrm{C} 54-20$ the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from $V_{C C}$ to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse ALE/PROG 5 times for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Program verify may be done after each byte or block of bytes is programmed. In either case a complete verify of the programmed array will ensure reliable programming of the 87C54-20.

The lock bits cannot be directly verified. Verification of the lock bits is done by observing that their features are enabled.

Figure 11. Programming Signal's Waveforms

Reading the Signature Bytes

The 87C54-20/80C54-20 each has 3 signature bytes in locations $30 \mathrm{H}, 31 \mathrm{H}$, and 60 H . To read these bytes follow the procedure for EPROM verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Content	
	$87 \mathrm{C} 54-20$	$80 \mathrm{C} 54-20$
30 H	89 H	89 H
31 H	58 H	58 H
60 H	54 H	$54 \mathrm{H} / 14 \mathrm{H}$

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than
approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least 15 W -sec $/ \mathrm{cm}^{2}$. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves all the EPROM Cells in a 1's state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

($T_{A}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
VPP	Programming Supply Voltage	12.5	13.0	V
$I_{\text {PP }}$	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHAX	Address Hold after $\overline{\text { PROG }}$	48TCLCL		
TDVGL	Data Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHDX	Data Hold after $\overline{\text { PROG }}$	48TCLCL		
TEHSH	(Enable) High to VPP	48TCLCL		
TSHGL	$V_{\text {PP }}$ Setup to PROG Low	10		$\mu \mathrm{s}$
TGHSL	VPP Hold after $\overline{\text { PROG }}$	10		$\mu \mathrm{s}$
TGLGH	PROG Width	90	110	$\mu \mathrm{s}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	PROG High to PROG Low	10		$\mu \mathrm{s}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

NOTE:

* 5 pulses for the EPROM array, 25 pulses for the encryption table and lock bits

DATA SHEET REVISION HISTORY

The following differences exist between this data sheet (270941-003) and the previous version (270941-002):

1. Added $87 \mathrm{C} 54-3 / 80 \mathrm{C} 54-3$ to 20 MHz data sheet.
2. Added EXPRESS version of $8 \times C 54-20 /-3$ to 20 MHz data sheet.
3. References to second functions of Port 1.2 thru Port 1.7 pins have been removed.
4. Variable Oscillator equations in External Memory Characteristics Table changed as follows:

	From	To
TLLIV	120	125
	4TCLCL-80	4TCLCL-75
TPLIV	3TCLCL-95	3TCLCL-90
TWHQX	0	10
	TCLCL-50	TCLCL-40
TQVWH	200	280
	7TCLCL-150	7TCLCL-70

The following differences exist between the -002 and -001 versions of this data sheet:

1. "NC" pin labels changed to "Reserved" in Figure 2.
2. θ_{ja} and θ_{jc} information added to Packages table.
3. Capacitor value for ceramic resonators deleted in Figure 3.
4. Serial Port Timings under " 20 MHz Oscillator" corrected to agree with the variable oscillator equations for TXLXL, TQVXH and TXHDV.
5. Pin numbers deleted from Figure 10.
6. Second paragraph under "Encryption Array" section added
7. All references to Program Lock Bit and Encryption Array deleted from "Program Verification" section. This information is available in the hardware description.

- High Performance CHMOS EPROM
- Low Voltage Operation (-L only)

■ Three 16-Bit Timer/Counters

- Programmable Clock Out

■ Up/Down Timer/Counter

- Three Level Program Lock System

■ 32K On-Chip EPROM/ROM

- 256 Bytes of On-Chip Data RAM
- Improved Quick Pulse Programming Algorithm
■ Boolean Processor
- 32 Programmable I/O Lines
- 6 Interrupt Sources

■ Four Level Interrupt Priority Structure
■ Programmable Serial Channel with: - Framing Error Detection - Automatic Address Recognition

- TTL and CMOS Compatible Logic Levels
- 64K External Program Memory Space

■ 64K External Data Memory Space
■ MCS ${ }^{\circledR}$-51 Compatible Instruction Set

- Power Saving Idle and Power Down Modes
- ONCE (On-Circuit Emulation) Mode

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 32 Kbytes of the program memory can reside in the on-chip EPROM. The device can also address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 87C58/80C58 is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS-51 family, the 87C58/80C58 uses the same powerful instruction set, has the same architecture, and is pin-for-pin compatible with the existing MCS-51 family of products. The $87 \mathrm{C} 58 / 80 \mathrm{C} 58$ is an enhanced version of the $87 \mathrm{C} 51 / 80 \mathrm{C} 51 \mathrm{BH}$. It's added features make it an even more powerful microcontroller for applications that require clock output, and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

Applications that require low voltage can use the $87 \mathrm{C} 58-\mathrm{L} / 80 \mathrm{C} 58-\mathrm{L}$. The $8 \mathrm{XC} 58-\mathrm{L}$ will operate at $3.3 \mathrm{~V} \pm .3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz .

Throughout this document $8 \times C 58$ will refer to both the 87 C 58 and the 80 C 58 .

Figure 1. 8XC58 Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
$8 \times C 58$	P	40-Pin Plastic DIP (OTP)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
87 C 58	D	40 -Pin CERDIP (EPROM)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times C 58$	N	44 -Pin PLCC (OTP)	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times \mathrm{C} 58$	S	44 -Pin QFP (OTP)	$90^{\circ} \mathrm{C} / \mathrm{W}$	$22^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

Figure 2. Pin Connections

PIN DESCRIPTIONS

V_{C} : Supply voltage.
$V_{S s}$: Circuit ground.
$\mathrm{V}_{\mathrm{SS} 1}$: Secondary ground (not on DIP). Provided to reduce ground bounce and improve power supply by-passing.

NOTE:

This pin is not a substitute for the V_{SS} pin (pin 22).
Port 0: Port 0 is an 8-bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1 's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current (ILL, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 8XC58:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2), Clock-Out
P1.1	T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8 -bit-bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current (ILL, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current (l_{L}, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { NT0 }}$ (external interrupt 0)
P3.3	$\overline{\text { NT1 }}$ (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR }}$ (external data memory write strobe)
P3.7	$\overline{\text { RD }}$ (external data memory read strobe)

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. The port pins will be driven to their reset condition when a minimum $\mathrm{V}_{\mathrm{H} 11}$ voltage is applied whether the oscillator is running or not. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{Cc}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during EPROM programming for the 87C58.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8 EH . With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/ $\overline{\text { PROG }}$ pin, and the pin will be referred to as the ALE/ $\overline{\text { PROG }}$ pin.
$\overline{\text { PSEN: Program Store Enable is the read strobe to }}$ external Program Memory.

When the $8 \times C 58$ is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{\mathrm{EA}} / \mathrm{V}_{\mathrm{Pp}}$: External Access enable. $\overline{\mathrm{EA}}$ must be strapped to VSS in order to enable the device to fetch code from external Program Memory locations 0000 H to OFFFFFH. Note, however, that if any of the Lock bits are programmed, EA will be internally latched on reset.
$\overline{E A}$ should be strapped to $V_{C C}$ for internal program executions.

This pin also receives the programming supply voltage ($V_{P P}$) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

270900-4
$\mathrm{C} 1, \mathrm{C} 2=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
For Ceramic Resonators, contact resonator manufacturer.
Figure 3. Oscillator Connections
To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as
shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a di-vide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications the capacitance will not exceed 20 pF .

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 8XC58 either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the onchip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INT0 or INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

DESIGN CONSIDERATION

- The $8 \times C 58-\mathrm{L}$ will operate at $3.3 \mathrm{~V} \pm .3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz . Operating beyond these specifications could cause improper device functionality. (To program the 87C58-L, follow the same procedure as the 87C58.)
- The window on the 87C58 must be covered by an opaque label. Otherwise, the DC and AC characteristics may not be met, and the device may functionally be impaired.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to inter-
nal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes idle should not be one that writes to a port pin or to external memory.

ONCE MODE

The ONCE ("On-Circuit Emulation') Mode facilitates testing and debugging of systems using the 8XC58 without the 8XC58 having to be removed from the circuit. The ONCE Mode is invoked by:

1) Pull ALE low while the device is in reset and PSEN is high;
2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins float and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 8XC58 is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORTO	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias : $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/VPP Pin to $V_{S S} \ldots . .$.
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +6.5 V
Iol Per I/O Pin
.15.mA
Power Dissipation. 1.5W (based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Operating Conditions T_{A} (Under Bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ ($8 \mathrm{XC} 58-\mathrm{L}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm .3 \mathrm{~V}$)

DC CHARACTERISTICS (Over Operating Conditions)
All parameter values apply to both 5 V and 3.3 V devices unless otherwise indicated.

Symbol	Parameter	Min	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 4) } \end{array}$	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.2 \mathrm{~V}_{C C}-0.1$	V	
$V_{\text {ILI }}$	Input Low Voltage EA	0		$0.2 V_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{HH} 1}$	Input High Voltage (XTAL1, RST)	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Note 5) (Ports 1, 2 and 3)			0.3	V	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{lOL}=1.6 \mathrm{~mA}$ (Note 1)
				1.0	V	$1 \mathrm{OL}=3.5 \mathrm{~mA}$ (Note 1)
VoL1	Output Low Voltage (Note 5) (Port 0, ALE, PSEN)			0.3	V	$\mathrm{IOL}=200 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{l}^{\mathrm{OL}}=7.0 \mathrm{~mA}$ (Note 1)
V_{OH}	Output High Voltage (Ports 1, 2 and 3, ALE, $\overline{\text { PSEN }}$)	$\mathrm{V}_{\mathrm{CC}}-0.3$			V	$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{l}^{\mathrm{OH}}=-30 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{I}^{\mathrm{OH}}=-60 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OH1 }}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{V}_{\mathrm{CC}}-0.3$			V	$\mathrm{IOH}=-200 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{IOH}=-3.2 \mathrm{~mA}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{IOH}=-7.0 \mathrm{~mA}$
ILL	Logical 0 Input Current (Ports 1, 2 and 3)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
LIL	Input leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$0.45<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$

DC CHARACTERISTICS (Over Operating Conditions) (Continued)
All parameter values apply to both 5 V and 3.3 V devices unless otherwise indicated.

Symbol	Parameter	Main	Typ (Note 4)	Max	Unit	Test Conditions
RRST	RST Pulldown Resistor	40		225	$\mathrm{~K} \Omega$	
CIO	Pin Capacitance		10		pF	@1 MHz, $25^{\circ} \mathrm{C}$
ICC	Power Supply Current:					(Note 3)
	Active Mode					
	8XC58-L at 8 MHz			12	mA	
	All others at 12 MHz (Figure 5)		20	40	mA	
	Idle Mode at 12 MHz (Figure 5)		5	10	mA	
	Power Down Mode		15	100	$\mu \mathrm{~A}$	

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\text {OLS }}$ of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with Schmitt triggers or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures 6-9 for test conditions. Minimum $V_{C C}$ for Power Down is 2V.
4. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, loL must be externally limited as follows:

Maximum lol per port pin:
Maximum lol per 8-bit port-
Port 0:
Maximum total loL for all output pins: $\quad 71 \mathrm{~mA}$
If loL exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

270900-6
ICC Max at other frequencies is given by:
Active Mode
Icc Max $=($ Osc Freq $\times 3)+4$
Idie Mode
Icc Max $=($ Osc Freq $\times 0.5)+4$
Where Osc Freq is in MHz, Icc is in mA.

Figure 6. ICc Test Condition, Active Mode

Figure 7. Icc Test Condition Idle Mode

Figure 8. Icc Test Condition, Power Down Mode

$$
\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V} \text { to } 6.0 \mathrm{~V}
$$

Figure 9. Clock Signal Waveform for Icc Tests in Active and Idle Modes. TCLCH $=$ TCHCL $=5 \mathrm{~ns}$

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)
L: Logic level LOW, or ALE

P: $\overline{\text { PSEN }}$
Q: Output Data
R: $\overline{\mathrm{RD}}$ signal
T: Time
V : Valid
W : $\overline{\mathrm{WR}}$ signal
X: No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low
TLLPL $=$ Time from ALE Low to PSEN Low

AC CHARACTERISTICS (Over Operating Conditions, Load Capacitance for Port 0, ALE/ $\overline{\text { PROG }}$ and $\overline{\text { PSEN }}=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	16	M Hz
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	53		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		234		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	53		TCLCL-30		ns
TPLPH	PSEN Pulse Width	205		3TCLCL-45		ns
TPLIV	$\overline{\text { PSEN }}$ Low to Valid Instruction In		145		3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		59		TCLCL-25	ns
TAVIV	Address to Valid Instruction In		312		5TCLCL-105	ns
TPLAZ	PSEN Low to Address Float		10		10	ns
TRLRH	$\overline{\text { RD Pulse Width }}$	400		6TCLCL-100		ns
TWLWH	WR Pulse Width	400		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After RD		107		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\text { RD }}$ or $\overline{W R}$ Low	200.	300	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address Valid to $\overline{W R}$ Low	203		4TCLCL-130		ns
TQVWX	Data Valid before $\overline{W R}$	33		TCLCL-50		ns
TWHQX	Data Hold after WR	33		TCLCL-50		ns
TQVWH	Data Valid to WR High	433		7TCLCL-150		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\text { WR }}$ High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING - SHIFT REGISTER MODE

Test Conditions: Over Operating Conditions; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{1 2 ~ M H z ~ O s c i l l a t o r ~}$		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1		12 TCLCL		$\mu \mathrm{s}$
TQVXH	Output Data Setup to Clock Rising Edge	700		$10 T C L C L-133$		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency			
	8XC58	3.5	12	MHz
8XC58-1	3.5	16	ns	
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCHCL	Rise Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

270900-15

AC TESTING INPUT, OUTPUT WAVEFORMS

270900-16
AC Inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing measurements are made at V_{IH} min for a Logic " 1 " and $V_{\text {IL }} \max$ for a Logic " 0 ".

PROGRAMMING THE EPROM

The part must be running with a 4 MHz to 6 MHz oscillator. The address of an EPROM location to be programmed is applied to address lines while the code byte to be programmed in that location is applied to data lines. Control and program signals must be held at the levels indicated in Table 2. Normally $E A / V_{P P}$ is held at logic high until just before ALE/ $\overline{\text { PROG }}$ is to be pulsed. The $\overline{E A} / V_{P P}$ is raised to $V_{P P}$, ALE/PROG is pulsed low and then EA/VPP is returned to a high (also refer to timing diagrams).

NOTE:
Exceeding the VPP maximum for any amount of time could damage the device permanently. The $V_{\text {Pp }}$ source must be well regulated and free of glitches.

FLOAT WAVEFORMS

270900-17
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $I_{O L} / I_{O H}= \pm 20 \mathrm{~mA}\left(-L, I_{O L} / I_{O H}= \pm 10 \mathrm{~mA}\right)$.

DEFINITION OF TERMS

ADDRESS LINES: P1.0-P1.7, P2.0-P2.5, P3.4 respectively for AO-A14.

DATA LINES: P0.0-P0.7 for D0-D7.
CONTROL SIGNALS: RST, $\overline{\text { PSEN, P2.6, P2.7, P3.3, }}$ P3.6, P3. 7

PROGRAM SIGNALS: ALE/ $\overline{\text { PROG }}, \overline{E A} / V_{P P}$

Table 2. EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{\mathbf{E A} /} \\ & \mathbf{V P P}^{2} \end{aligned}$	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code Data		H	L	乙	12.75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0-3FH		H	L	-	12.75 V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	Ч	12.75 V	H	H	H	H	H
	Bit 2	H	L	ᄃ	12.75 V	H	H	H	L	L
	Bit 3	H	L	Ч	12.75 V	H	L	H	H	L
Read Signature Byte		H	L	H	H	L	L	L	L	L

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the 87 C 58 the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from $V_{C C}$ to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse ALE/PROG 5 times for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Program verify may be done after each byte or block of bytes is programmed. In either case a complete verify of the programmed array will ensure reliable programming of the 87C58.

The lock bits cannot be directly verified. Verification of the lock bits is done by observing that their features are enabled.

*See Table 2 for proper input on these pins
Figure 10. Programming the EPROM

Figure 11. Programming Signal's Waveforms

Reading the Signature Bytes

The 87C58/80C58 each has 3 signature bytes in locations $30 \mathrm{H}, 31 \mathrm{H}$ and 60 H . To read these bytes follow the procedure for EPROM verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Content	
	$87 C 58$	$80 C 58$
30 H	89 H	89 H
31 H	58 H	58 H
60 H	58 H	$58 \mathrm{H} / 18 \mathrm{H}$

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than
approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves all the EPROM Cells in a.1's state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS
($T_{A}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
$V_{P P}$	Programming Supply Voltage	12.5	13.0	V
lpp	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold after $\overline{\text { PROG }}$	48TCLCL		
TDVGL	Data Setup to $\overline{\text { PROG Low }}$	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	(Enable) High to VPP	48TCLCL		
TSHGL	$V_{\text {PP }}$ Setup to PROG Low	10		$\mu \mathrm{s}$
TGHSL	VPP Hold after $\overline{\text { PROG }}$	10		$\mu \mathrm{S}$
TGLGH	PROG Width	90	110	$\mu \mathrm{S}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48 TCLCL	
TGHGL	$\overline{\text { PROG High to } \overline{\text { PROG }} \text { Low }}$	10		$\mu \mathrm{S}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

NOTE:

*5 pulses for the EPROM array, 25 pulses for the encryption table and lock bits.

REVISION HISTORY

The following differences exist between this data sheet (270900-003) and the previous version (270900-002):

1. Added 3.3 V device to data sheet.
2. Data sheet status changed from "Preliminary" to "Production".
3. The Operating Temperature Range has been changed to: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The following differences exist between the -002 and -001 versions of this data sheet:

1. Data sheet status changed from "Advanced" to "Preliminary".
2. QFP package type added.
3. "NC" pin labels changed to "Reserved" in Figure 2.
4. $\theta_{\mathrm{j} \mathrm{a}}$ and θ_{jc} information added to Packages table.
5. Capacitor value for ceramic resonators deleted in Figure 3.
6. Pin numbers deleted from Figure 10.
7. Second paragraph under "Encryption Array" section added.
8. All references to Program Lock Bit and Encryption Array deleted from "Program Verification" section. This information is available in the hardware description.

87C58/80C58

EXPRESS

87C58/80C58-3.5 MHz to $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$ $87 \mathrm{C} 58-1 / 80 \mathrm{C} 58-1-3.5 \mathrm{MHz}$ to $16 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$
 Extended Temperature Range
 Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The optional burn-in is dynamic for a minimum time of 168 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

This data sheet is valid in conjunction with the commercial 87C58/80C58 data sheet, 270900-001.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.
D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits		Unit	Test Conditions
		Min	Max		

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range	Burn-In
P	Plastic	Commercial	No
D^{*}	Cerdip	Commercial	No
N	PLCC	Commercial	No
TP	Plastic	Extended	No
TD*	Cerdip	Extended	No
TN	PLCC	Extended	No
LP	Plastic	Extended	Yes
LD*	Cerdip	Extended	Yes
LN	PLCC		Yes

NOTE:

- Commercial temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Extended temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- Burn-in is dynamic for a minimum time of 168 hours at $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).

EXAMPLES:

P80C58 indicates 80C58 in a plastic package and specified for commercial temperature range, without burn-in. LD80C58 indicates 80C58 in a cerdip package and specified for extended temperature range with burn-in.
*Available in EPROM version only.

DATA SHEET REVISION SUMMARY

This is the -001 version of the $87 \mathrm{C} 58 / 80 \mathrm{C} 58$ Express data sheet.

87C58-20/-3
 80C58-20/-3

COMMERCIAL/EXPRESS 20 MHz MICROCONTROLLER

> 87C58-20/80C58-20-3.5 MHz-20 MHz VCC $=5 \mathrm{~V} \pm 20 \%$
> 87C58-3/80C58-3-24 MHz Internal Operation, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$

■ High Performance CHMOS EPRO

- 24 MHz Internal Operation (-3 only)

■ Three 16-Bit Timer/Counters

- Programmable Clock Out
- Up/Down Timer/Counter
- Three Level Program Lock System
- 32K On-Chip EPROM/ROM
- 256 Bytes of On-Chip Data RAM
- Improved Quick Pulse Programming Algorithm
- Boolean Processor
- 32 Programmable I/O Lines
- 6 Interrupt Sources
- Programmable Serial Channel with:
- Framing Error Detection
- Automatic Address Recognition
- TTL and CMOS Compatible Logic Levels
- 64K External Program Memory Space
- 64K External Data Memory Space
- MCS ${ }^{\circledR}$-51 Compatible Instruction Set
- Power Saving Idle and Power Down Modes
- ONCE (On-Circuit Emulation) Mode
- Four-Level Interrupt Priority

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 32 Kbytes of the program memory can reside in the on-chip EPROM. The device can also address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel $8 \times C 58-20 /-3$ is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS-51 family, the $8 \times C 58-20 /-3$ uses the same powerful instruction set, has the same architecture, and is pin-for-pin compatible with the existing MCS-51 family of products. The $8 \times 588-20 /-3$ is an enhanced version of the $87 \mathrm{C} 51 / 80 \mathrm{C} 51 \mathrm{BH}$. Its added features make it an even more powerful microcontroller for applications that require clock output and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

The 87C58-3/80C58-3 has the same 3.5 MHz to 20 MHz frequency range as the $87 \mathrm{C} 58-20 / 80 \mathrm{C} 58-20$ when operating out of external program/data memory. When running out of internal program/data memory, the $87 \mathrm{C} 58-3 / 80 \mathrm{C} 58-3$ can operate up to 24 MHz .

Throughout this document $8 \mathrm{XC} 58-20$ will refer to the $87 \mathrm{C} 58-20,80 \mathrm{C} 58-20,87 \mathrm{C} 58-3$ and the 80C58-3.

Figure 1. 8XC58-20 Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
$8 \times C 58-20$	P	$40-$ Pin Plastic DIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$87 \mathrm{C} 58-20$	D	$40-$ Pin CERDIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times \mathrm{C} 58-20$	N	$44-$ Pin PLCC	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times C 58-20$	S	$44-$ Pin QFP	$90^{\circ} \mathrm{C} / \mathrm{W}$	$22^{\circ} \mathrm{C} / \mathrm{W}$

Figure 2. Pin Connections

PIN DESCRIPTIONS

V_{CC} : Supply voltage.
$V_{\text {Ss: }}$ Circuit ground.
$\mathrm{V}_{\text {SS1 }}$: Secondary ground (not on DIP). Provided to reduce ground bounce and improve power supply by-passing.

NOTE:
This pin is not a substitute for the $V_{S S}$ pin. Connect $\mathrm{V}_{\text {SS }}$ and $\mathrm{V}_{\text {SS } 1}$ with the lowest impedance path possible.

Port 0: Port 0 is an 8 -bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1 's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting1's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 8XC58-20:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2), Clock-Out
P1.1	T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2
pins that are externally being pulled low will source current (l/IL, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IL, on the data sheet) because of the pullups.

Port' 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { NTO }}$ (external interrupt 0)
P3.3	$\overline{\text { NT1 }}$ (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR }}$ (external data memory write strobe)
P3.7	$\overline{\text { RD (external data memory read strobe) }}$

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. The port pins will be driven to their reset condition when a voltage above $\mathrm{V}_{\mathrm{IHI}}$ voltage is applied whether the oscillator is running or not. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during EPROM programming for the 87C58-20.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX instruction. Otherwise, the pin is weakly pulled high.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/ $\overline{\text { PROG }}$ pin, and the pin will be referred to as the ALE/ $\overline{\text { PROG }}$ pin.
$\overline{\text { PSEN: Program Store Enable is the read strobe to }}$ external Program Memory.

When the 8XC58-20 is executing code from external Program Memory, $\overline{\text { PSEN }}$ is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{E A} / V_{p p}$: External Access enable. $\overline{E A}$ must be strapped to $V_{S S}$ in order to enable the device to fetch code from external Program Memory locations 0000 H to OFFFFH. Note, however, that if any of the Lock bits are programmed, $\overline{E A}$ will be internally latched on reset.
$\overline{E A}$ should be strapped to $V_{C C}$ for internal program executions.

This pin also receives the programming supply voltage ($V_{P P}$) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

Figure 3. Oscillator Connections

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a di-vide-by-two flip-flop, but the minimum and maximum high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications the capacitance will not exceed 20 pF .

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 8XC58-20 either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power down the reset or external interrupt should not be executed before $V_{C C}$ is restored to its normal operating level. The external interrupt or reset signal must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INTO and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

TIMER 2 PROGRAMMABLE CLOCK OUT

The 8XC58-20 has a new Timer 2 feature. A 50\% duty cycle clock can be programmed to come out on P1.0. The output frequency ranges from 61 Hz to 4 MHz depending on the oscillator frequency and the reload value of the Timer 2 capture registers (RCAP2H, RCAP2L) as shown in the equation below:
*Clock-Out Frequency $=\frac{\text { Oscillator Frequency }}{4 \times(65536-\text { RCAP2H, RCAP2L })}$
To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in T2CON) must be cleared, and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) starts and stops the timer.

For a complete description of all Timer 2 functions, please reference the 8XC52/54/58 Hardware Description of the 8 -Bit Embedded Controllers Handbook.
*NOTE:
Even though the equation permits a maximum clock-out frequency of 5 MHz using a 20 MHz oscillator, the maximum device output frequency is 4 MHz . When using a 20 MHz oscillator, RCAP2L must be limited to a maximum value of FEH .

DESIGN CONSIDERATION

- When running out of internal program/data memory, the 87C58-3/80C58-3 can be operated using a 24 MHz clock. If the $87 \mathrm{C} 58-3 / 80 \mathrm{C} 58-3$ is running out of external program/data memory, the operating frequency must be between 3.5 MHz to 20 MHz . The 87C58-3/80C58-3 will not function properly at 24 MHz when running out of external program/data memory.
- The window on the 87C58-20 must be covered by an opaque label. Otherwise, the DC and AC characteristics may not be met, and the device may functionally be impaired.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 8XC54-20 without the 8XC58-20 having to be removed from the circuit. The ONCE Mode is invoked by:

1) Pull ALE low while the device is in reset and PSEN is high;
2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins float, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 8XC58-20 is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins During Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORTO	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/V ${ }_{\text {PP }}$ Pin to $\mathrm{V}_{\text {SS }} \ldots0 \mathrm{O}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +6.5 V
loLPer I/O Pin 15 mA
Power Dissipation.
.1.5W
(based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
T_{A}	Ambient Temperature Under Bias Commercial Express	0 \quad+70	${ }^{\circ} \mathrm{C}$	
	Supply Voltage	40	6.0	${ }^{\circ} \mathrm{C}$
V_{CC}	Oscillator Frequency	3.5	20	MHz

DC CHARACTERISTICS (Over Operating Conditions)
All parameter values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	Typ(4)	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.1$	V	
$\mathrm{V}_{\text {IL1 }}$	Input Low Voltage EA	0		$0.2 V_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage (XTAL1, RST)	0.7 V CC		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (5) (Ports 1, 2, and 3)			0.3	V	$\mathrm{I}^{\text {OL }}=100 \mu \mathrm{~A}^{(1)}$
				0.45	V	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}{ }^{(1)}$
				1.0	V	$\mathrm{IOL}=3.5 \mathrm{~mA}(1)$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (5) (Port 0, ALE, PSEN)			0.3	V	$\mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A}(1)$
				0.45	V	$\mathrm{IOL}^{\text {a }}=3.2 \mathrm{~mA}(1)$
				1.0	V	$\mathrm{IOL}=7.0 \mathrm{~mA}(1)$
V_{OH}	Output High Voltage (Ports 1, 2, and 3, ALE, PSEN)	$\mathrm{V}_{\mathrm{CC}}-0.3$			V	$\mathrm{IOH}^{\text {a }}=-10 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{IOH}=-30 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{IOH}^{\prime}=-60 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{IOH}=-7.0 \mathrm{~mA}$
ILL	Logical 0 Input Current (Ports 1, 2, and 3)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
lıI	Input leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$0.45<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$

DC CHARACTERISTICS (Over Operating Conditions) (Continued)
All parameters values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	Typ(4)	Max	Unit	Test Conditions
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, and 3) Commercial Express					
				-650	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}$
RRST	RST Pulldown Resistor	40		225	$\mathrm{~K} \Omega$	
ClO	Pin Capacitance		10		pF	@1 MHz, 25
ICC	Power Supply Current:					(Note 3)
	Running at 12 MHz (Figure 5)		20	40	mA	
	Ide Mode at 12 MHz (Figure 5)		5	10	mA	
	Power Down Mode		15	100	$\mu \mathrm{~A}$	

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\mathrm{OL}} \mathrm{s}$ of ALE and Ports 1, 2 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with a Schmitt Triggers, or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures 6-9 for test conditions. Minimum VCC for Power Down is 2V.
4. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, loL must be externally limited as follows:

Maximum lol per port pin:
Maximum lol per 8-bit port-
Port 0: $\quad 26 \mathrm{~mA}$
Ports 1, 2 and 3: $\quad 15 \mathrm{~mA}$
Maximum total loL for all output pins: $\quad 71 \mathrm{~mA}$
If IOL exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

272029-7
ICC Max at other frequencies is given by: Active Mode

Icc Max $=($ Osc Freq $\times 3)+4$
Idle Mode
Icc Max $=($ Osc Freq $\times 0.5)+4$
Where Osc Freq is in MHz, Icc is in mA.

Figure 6. Icc Test Condition, Active Mode

272029-9
All other pins disconnected
TCLCH $=$ TCHCL $=5 \mathrm{~ns}$
Figure 7. Icc Test Condition Idle Mode

Figure 8. Icc Test Condition, Power Down Mode
$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to 6.0 V

Figure 9. Clock Signal Waveform for Icc Tests in Active and Idie Modes

$$
\mathrm{TCLCH}=\mathrm{TCHCL}=5 \mathrm{~ns}
$$

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)
L: Logic level LOW, or ALE

P: $\overline{\text { PSEN }}$
Q: Output Data
R: $\overline{\mathrm{RD}}$ signal
T : Time
V: Valid
W : $\overline{\mathrm{WR}}$ signal
X: No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low
TLLPL $=$ Time from ALE Low to $\overline{\text { PSEN }}$ Low

AC CHARACTERISTICS (Over Operating Conditions.) Load Capacitance for Port 0, ALE/ $\overline{\text { PROG }}$ and $\overline{\text { PSEN }}=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	20 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	20	MHz
TLHLL	ALE Pulse Width	60		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	10		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	20		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		125		4TCLCL-75	ns
TLLPL	ALE Low to PSEN Low	20		TCLCL-30		ns
TPLPH	PSEN Pulse Width	105		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		60		3TCLCL-90	ns
TPXIX	Input Instruction Hold After PSEN	0		0	,	ns
TPXIZ	Input Instruction Float After $\overline{\text { PSEN }}$		30		TCLCL-20	ns
TAVIV	Address to Valid Instruction In		145		5TCLCL-105	ns
TPLAZ	$\overline{\text { PSEN Low to Address Float }}$		10		10	ns
TRLRH	$\overline{\text { RD Pulse Width }}$	200		6TCLCL-100		ns
TWLWH	WR Pulse Width	200		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		155		5TCLCL-95	ns
TRHDX	Data Hold After $\overline{\text { RD }}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		40		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		310		8TCLCL-90	ns
TAVDV	Address to Valid Data In		360		9TCLCL-90	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	100	200	3TCLCL-50	3 TCLCL + 50	ns
TAVWL	Address Valid to WR Low	110		4TCLCL-90		ns
TQVWX	Data Valid before $\overline{\mathrm{WR}}$	15		TCLCL-35		ns
TWHQX	Data Hold after $\overline{W R}$	10		TCLCL-40		ns
TQVWH	Data Valid to WR High	280		7TCLCL-70		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{W R}$ High to ALE High	10	90	TCLCL-40	TCLCL + 40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING-SHIFT REGISTER MODE

Test Conditions $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	20 MHz Oscillator		Variable Oscillator		Units
		Min		Max	Min	
TXLXL	Serial Port Clock Cycle Time	600		12 TCLCL		ns
TQVXH	Output Data Setup to Clock Rising Edge	367		10 TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-50		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		367		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency	3.5	20	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

-		272029-16

AC TESTING INPUT, OUTPUT WAVEFORMS

AC Inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing measurements are made at V_{IH} \min for a Logic " 1 " and $V_{\mathrm{IL}} \max$ for a Logic " 0 ".

PROGRAMMING THE EPROM

The part must be running with a 4 MHz to 6 MHz oscillator. The address of an EPROM location to be programmed is applied to address lines while the code byte to be programmed in that location is applied to data lines. Control and program signals must be held at the levels indicated in Table 2. Normally $\mathrm{EA} / \mathrm{V}_{\mathrm{PP}}$ is held at logic high until just before ALE/ $\overline{\text { PROG }}$ is to be pulsed. The $\overline{E A} / V_{P P}$ is raised to $V_{P P}$, ALE/PROG is pulsed low and then EA/VPP is returned to a high (also refer to timing diagrams).

NOTE:
Exceeding the VPP maximum for any amount of time could damage the device permanently. The $V_{\text {Pp }}$ source must be well regulated and free of glitches.

FLOAT WAVEFORMS

272029-18
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{VOH}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{IOL}^{\prime} / \mathrm{IOH}_{\mathrm{OH}} \geq \pm 20 \mathrm{~mA}$.

DEFINITION OF TERMS

ADDRESS LINES: P1.0-P1.7, P2.0-P2.5, P3.4 respectively for A0-A14.

DATA LINES: P0.0-P0.7 for D0-D7.
CONTROL SIGNALS: RST, $\overline{\text { PSEN, P2.6, P2.7, P3.3, }}$ P3.6, P3.7

PROGRAM SIGNALS: ALE/PROG, $\overline{E A} / V_{P P}$

Table 2. EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{E A} / \\ & \mathbf{V P P}^{2} \end{aligned}$	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code Data		H	L	い	12.75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0-3FH		H	L	ப	12.75V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	Ч	12.75 V	H	H	H	H	H
	Bit 2	H	L	Ч	12.75 V	H	H	H	L	L
	Bit 3	H	L	T	12.75 V	H	L	H	H	L
Read Signature Byte		H	L	H	H	L	L	L	L	L

*See Table 2 for proper input on these pins
Figure 10. Programming the EPROM

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the 87C58-20 the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from $V_{C C}$ to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse ALE/PROG 5 times for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Program verify may be done after each byte or block of bytes that is programmed. A complete verify of the array will ensure reliable programming of the 87C58-20.

The lock bits cannot be directly verified. They are verified by observing that their features are enabled. Refer to the EPROM Program Lock section in this data sheet.

Figure 11. Programming Signal's Waveforms

ROM and EPROM Lock System

The 87C58-20 and the 80C58-20 program lock systems, when programmed, protect the onboard-program against software piracy.

The 80C58-20 has a one-level program lock system and a 64-byte encryption table. See line 2 of Table 3. If program protection is desired, the user submits the encryption table with their code, and both the lock-bit and encryption array are programmed by the factory. The encryption array is not available without the lock bit. For the lock bit to be programmed, the user must submit an encryption table.

The 87C58-20 has a 3-level program lock system and a 64-byte encryption array. Since this is an EPROM device, all locations are user programmable. See Table 3.

Encryption Array

Within the EPROM array are 64 bytes of Encryption Array that are initially unprogrammed (all 1's). Every time that a byte is addressed during a verify, 6 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an Encryption Verify byte. The algorithm, with the array in the unprogrammed state (all 1's), will return the code in it's original, unmodified form. For programming the Encryption Array, refer to Table 2 (Programming the EPROM).

When using the encryption array, one important factor needs to be considered. If a code byte has the value of OFFH, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the contents of the encryption array. For this reason all unused code bytes should be programmed with some value other than OFFH, and not all of them the same value. This will ensure maximum program protection.

Program Lock Bits

The 87C58-20 has 3 programmable lock bits that when programmed according to Table 3 will provide different levels of protection for the on-chip code and data.

Erasing the EPROM also erases the encryption array and the program lock bits, returning the part to full functionality.

Reading the Signature Bytes

The 8XC58-20 has 3 signature bytes in locations $30 \mathrm{H}, 31 \mathrm{H}$, and 60 H . To read these bytes follow the procedure for EPROM verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Content	
	$87 \mathrm{C} 58-20$	$80 \mathrm{C} 58-20$
30 H	89 H	89 H
31 H	58 H	58 H
60 H	58 H	$58 \mathrm{H} / 18 \mathrm{H}$

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves all the EPROM Cells in a 1's state.

Table 3. Program Lock Bits and the Features

Program Lock Bits				Protection Type
	LB1	LB2	LB3	
1	U	U	U	
2	P	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.
3	P	P	U	Same as 2, also verify is disabled.
4	P	P	P	Same as 3, also external execution is disabled.

Any other combination of the lock bits is not defined.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

($T_{A}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
VPP	Programming Supply Voltage	12.5	13.0	V
Ipp	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHAX	Address Hold after PROG	48TCLCL		
TDVGL	Data Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	(Enable) High to $\mathrm{V}_{\text {PP }}$	48 TCLCL		
TSHGL	V_{PP} Setup to PROG Low	10		$\mu \mathrm{s}$
TGHSL	$\mathrm{V}_{\text {PP }}$ Hold after $\overline{\text { PROG }}$	10		$\mu \mathrm{s}$
TGLGH	PROG Width	90	110	$\mu \mathrm{s}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	1
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	$\overline{\text { PROG }}$ High to $\overline{\text { PROG Low }}$	10		$\mu \mathrm{s}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION SUMMARY

The following differences exist between this data sheet (272029-002) and the previous version (272029-001):

1. Added $87 \mathrm{C} 58-3 / 80 \mathrm{C} 58-3$ to 20 MHz data sheet.
2. Added EXPRESS version of $8 \mathrm{XC} 58-20 /-3$ to 20 MHz data sheet.
3. θ_{ja} and θ_{jc} information added to Packages table.
4. References to second functions of Port 1.2 thru Port 1.7 pins have been removed.
5. Variable Oscillator equations in External Memory Characteristics Table changed as follows:

	From	To
TLLIV	120	125
	4TCLCL -80	4 TCLCL -75
TPLIV	3TCLCL -95	3TCLCL -90
TWHQX	0	10
	TCLCL -50	TCLCL -40
TQVWH	200	280
	$7 T C L C L-150$	7TCLCL -70

The following differences exist between version -001 of the 87C58-20/80C58-20 data sheet and the 87C58/ 80C58 (270900-001) data sheet:

1. QFP package added.
2. Timer 2 Programmable Clock Out paragraph added.
3. 20 MHz extension added to Figure 5.
4. 12 MHz Oscillator timings changed to 20 MHz Oscillator timings in External Program Memory Characteristics and Serial Port Timing tables.
5. Variable Oscillator equations in External Program Memory Characteristics Table changed as follows:

From
To
TLLIV 4TCLCL - 100
4TCLCL - 80
TPLIV 3 TCLCL - 105 3TCLCL - 95
TPXIZ TCLCL-25 TCLCL - 20
TRLDV 5TCLCL-165 5TCLCL - 95
TLLDV 8TCLCL-150 8TCLCL-90
TAVDV 9TCLCL - 165 9TCLCL - 90
TAVWL 4TCLCL-130 4TCLCL-90
TQVWX TCLCL-50 TCLCL-35
6. TXHQX in the Serial Port Timing Table changed from (2TCLCL - 117) to (2TCLCL - 50).
7. RRST Specification in DC Characteristics table changed from $40 \mathrm{~K} \Omega \min , 225 \mathrm{~K} \Omega \max$ to $50 \mathrm{~K} \Omega \min$, $300 \mathrm{~K} \Omega$ max.

8XC51FX Hardware
 Description and Data Sheets

8XC51FX Hardware Description

HARDWARE DESCRIPTION OF THE 8XC51FX

CONTENTS PAGE
1.0 INTRODUCTION 8-3
2.0 MEMORY 8-3
2.1 Program Memory 8-3
2.2 Data Memory 8-3
3.0 SPECIAL FUNCTION REGISTERS 8-4
4.0 PORT STRUCTURES AND OPERATION 8-7
4.1 I/O Configurations 8-7
4.2 Writing to a Port 8-8
4.3 Port Loading and Interfacing 8-10
4.4 Read-Modify-Write Feature 8-10
4.5 Accessing External Memory 8-10
5.0 TIMERS/COUNTERS 8-12
5.1 TIMER 0 AND TIMER 1 8-12
5.2 TIMER 2 8-15
6.0 PROGRAMMABLE COUNTER ARRAY 8-18
6.1 PCA 16-Bit Timer/Counter 8-20
6.2 Capture/Compare Modules 8-22
6.3 16-Bit Capture Mode 8-24
6.4 16-Bit Software Timer Mode 8-24
6.5 High Speed Output Mode 8-25
6.6 Watchdog Timer Mode 8-25
6.7 Pulse Width Modulator Mode 8-26
7.0 SERIAL INTERFACE 8-27
7.1 Framing Error Detection 8-28
7.2 Multiprocessor Communications 8-28
7.3 Automatic Address Recognition 8-28
CONTENTS PAGE
7.4 Baud Rates 8-30
7.5 Using Timer 1 to Generate Baud Rates 8-30
7.6 Using Timer 2 to Generate Baud Rates 8-30
8.0 INTERRUPTS 8-32
8.1 External Interrupts 8-33
8.2 Timer Interrupts 8-33
8.3 PCA Interrupt 8-33
8.4 Serial Port Interrupt 8-33
8.5 Interrupt Enable 8-33
8.6 Priority Level Structure 8-33
8.7 Responṣe Time 8-37
9.0 RESET 8-37
9.1 Power-On Reset 8-38
10.0 POWER-SAVING MODES OF OPERATION 8-38
10.1 Idle Mode 8-38
10.2 Power Down Mode 8-40
10.3 Power Off Flag 8-40
11.0 EPROM VERSIONS 8-40
12.0 PROGRAM MEMORY LOCK 8-40
13.0 ONCE MODE $8-41$
14.0 ON-CHIP OSCILLATOR $8-42$
15.0 CPU TIMING $8-43$

1.0 INTRODUCTION

The 8 XC 51 FX is a highly integrated 8 -bit microcontroller based on the MCS-51 architecture. As a member of the MCS- 51 family, the 8 XC 51 FX is optimized for control applications. Its key feature is the programmable counter array (PCA) which is capable of measuring and generating pulse information on five I/O pins. Also included are an enhanced serial port for multi-processor communications, an up/down timer/counter, and a program lock scheme for the on-chip program memory. Since the 8 XC 51 FX products are CHMOS, they have two software selectable reduced power modes: Idle Mode and Power Down Mode.

The 8XC51FX uses the standard 8051 instruction set and is pin-for-pin compatible with the existing MCS-51 family of products.

This document presents a comprehensive description of the on-chip hardware features of the 8 XC 51 FX . It begins with a discussion of the on-chip memory and then discusses each of the peripherals listed below.

Please note that 8XC51FX does not include the 80C51FA and 83C51FA. Therefore, these devices do not have some of the features found on the 8XC51FX. These features are: programmable clock out, four level interrupt priority structure, enhanced program lock scheme and asynchronous port reset.

- Four 8-Bit Bidirectional Parallel Ports
- Three 16-Bit Timer/Counters with
- One Up/Down Timer/Counter
- Clock Out
- Programmable Counter Array with
- Compare/Capture
- Software Timer
- High Speed Output
- Pulse Width Modulator
- Watchdog Timer
- Full-Duplex Programmable Serial Port with
- Framing Error Detection
- Automatic Address Recognition
- Interrupt Structure with
- Seven Interrupt Sources
- Four Priority Levels
- Power-Saving Modes
- Idle Mode
- Power Down Mode

Table 1 summarizes the product names and memory differences of the various 8 XC 51 FX products currently available. Throughout this document, the products will generally be referred to as the C51FX.

Table 1. C51FX Family of Microcontrollers

ROM Device	EPROM Version	ROMless Version	ROM/ EPROM Bytes	RAM Bytes
83C51FA	87C51FA	80 C 51 FA	8 K	256
83C51FB	87 C 51 FB	80 C 51 FA	16 K	256
83 C 51 FC	87 C 51 FC	80 C 51 FA	32 K	256

2.0 MEMORY ORGANIZATION

All MCS-51 devices have a separate address space for Program and Data Memory. Up to 64 Kbytes each of external Program and Data Memory can be addressed.

2.1 Program Memory

If the $\overline{\mathrm{EA}}$ pin is connected to V_{SS}, all program fetches are directed to external memory. On the 83C51FA (or 87C51FA), if the EA pin is connected to V_{CC}, then program fetches to addresses 0000 H through 1FFFH are directed to internal ROM and fetches to addresses 2000 H through FFFFH are to external memory.

On the 83 C 51 FB (or 87 C 51 FB) if $\overline{\mathrm{EA}}$ is connected to VCC, program fetches to addresses 0000 H through 3FFFH are directed to internal ROM, and fetches to addresses 4000 H through FFFFH are to external memory.

On the 83 C 51 FC (or 87 C 51 FC) if $\overline{\mathrm{EA}}$ is connected to $\mathrm{V}_{\text {CC }}$, program fetches to addresses 0000 H through 7FFFH are directed to internal ROM or EPROM and fetches to addresses 8000 H through FFFFH are to external memory.

2.2 Data Memory

The C51FX implements 256 bytes of on-chip data RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. That means they have the same addresses, but are physically separate from SFR space. address 7 FH , the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction. Instructions that use direct addressing access SFR space. For example:

MOV 0A0H, \# data

270653-1
Figure 1. 8XC51FX Functional Block Diagram
accesses the SFR at location OAOH (which is P2). Instructions that use indirect addressing access the upper 128 bytes of data RAM. For example:
MOV @R0, \#data
where $\mathbf{R 0}$ contains 0 AOH , accesses the data byte at address 0 A 0 H , rather than $\mathbf{P} 2$ (whose address is 0 A 0 H). Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.

3.0 SPECIAL FUNCTION REGISTERS

A map of the on-chip memory area called the SFR (Special Function Register) space is shown in Table 2.

Note that not all of the addresses are occupied. Unoccupied addresses are not implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have no effect.

User software should not write 1 s to these unimplemented locations, since they may be used in future MCS-51 products to invoke new features. In that case the reset or inactive values of the new bits will always be 0 , and their active values will be 1 .

The functions of the SFRs are outlined below. More information on the use of specific SFRs for each peripheral is included in the description of that peripheral.

Accumulator: ACC is the Accumulator register. The mnemonics for Accumulator-Specific instructions, however, refer to the Accumulator simply as A.

Table 2. SFR Mapping and Reset Values

F8		$\begin{gathered} \mathrm{CH} \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ССАРОН } \\ \text { XXXXXXX } \end{gathered}$	CCAP1H XXXXXXXX	$\begin{aligned} & \text { ССАР2H } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{gathered} \text { ССАРЗН } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { CCAP4H } \\ X X X X X X X \end{gathered}$		FF
F0	$\begin{aligned} & * B \\ & 00000000 \end{aligned}$								F7
E8		$\begin{gathered} C L \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCAPOL } \\ X X X X X X X \end{gathered}$	$\begin{gathered} \text { CCAP1L } \\ X X X X X X X \end{gathered}$	$\begin{gathered} \text { CCAP2L } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { CCAP3L } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { CCAP4L } \\ \text { XXXXXXXX } \end{gathered}$		EF
E0	$\begin{aligned} & \text { * ACC } \\ & 00000000 \end{aligned}$								E7
D8	$\begin{gathered} \text { CCON } \\ 00 \times 00000 \\ \hline \end{gathered}$	$\begin{gathered} \text { CMOD } \\ 00 \times X \times 000 \\ \hline \end{gathered}$	$\begin{array}{r} \text { CCAPMO } \\ \times 0000000 \\ \hline \end{array}$	$\begin{gathered} \text { CCAPM1 } \\ \times 0000000 \\ \hline \end{gathered}$	$\begin{array}{r} \text { CCAPM2 } \\ \times 0000000 \\ \hline \end{array}$	$\begin{array}{r} \hline \text { CCAPM3 } \\ \times 0000000 \\ \hline \end{array}$	$\begin{array}{r} \hline \text { CCAPM4 } \\ \times 0000000 \\ \hline \end{array}$		F
D0	$\begin{aligned} & \text { *PSW } \\ & 00000000 \\ & \hline \end{aligned}$		1						D7
C8	$\begin{gathered} \text { T2CON } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { T2MOD } \\ \text { XXXXXX00 } \end{gathered}$	$\begin{aligned} & \text { RCAP2L } \\ & 00000000 \end{aligned}$	RCAP2H 00000000	$\begin{gathered} \text { TL2 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TH2 } \\ 00000000 \end{gathered}$			CF
C0									C7
B8	$\begin{aligned} & \text { *IP } \\ & \text { X0000000 } \end{aligned}$	$\begin{gathered} \text { SADEN } \\ 00000000 \end{gathered}$							BF
B0	$\begin{aligned} & \text { * P3 } \\ & 11111111 \end{aligned}$							$\begin{array}{\|c\|} \text { IPH } \\ \times 0000000 \\ \hline \end{array}$	B7
A8	$\begin{aligned} & \text { * IE } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { SADDR } \\ & 00000000 \end{aligned}$							AF
A0	$\begin{aligned} & \text { * P2 } \\ & 11111111 \end{aligned}$								A7
98	$\begin{aligned} & * \text { SCON } \\ & 00000000 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { *SBUF } \\ \text { XXXXXXXX } \\ \hline \end{array}$,		9 F
90	$\begin{aligned} & \text { * P1 } \\ & 11111111 \end{aligned}$								97
88	$\begin{aligned} & \text { * TCON } \\ & 00000000 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} * \\ \text { *MOD } \\ 00000000 \\ \hline \end{array}$	$\begin{array}{\|l} * \\ \text { TLO } \\ 00000000 \\ \hline \end{array}$	$\begin{array}{\|l\|} * \\ \text { TL1 } \\ 00000000 \\ \hline \end{array}$	$\begin{aligned} & \text { * TH0 } \\ & 00000000 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { * TH1 } \\ & 00000000 \\ & \hline \end{aligned}$			8F
80	$\begin{aligned} & \text { * PO } \\ & 11111111 \end{aligned}$	$\begin{array}{\|l} * \\ \hline \\ 00000111 \end{array}$	$\begin{aligned} & \text { * DPL } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { * DPH } \\ & 00000000 \end{aligned}$				$\begin{aligned} & \text { * PCON ** } \\ & 00 X X 0000 \end{aligned}$	87

[^6]Table 3. PSW: Program Status Word Register

B Register: The B register is used during multiply and divide operations. For other instructions it can be treated as another scratch pad register.

Stack Pointer: The Stack Pointer Register is 8 bits wide. It is incremented before data is stored during PUSH and CALL executions. The stack may reside anywhere in on-chip RAM. On reset, the Stack Pointer is initialized to 07 H causing the stack to begin at location 08 H .

Data Pointer: The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is to hold a 16 -bit address, but it may be manipulated as a 16 -bit register or as two independent 8 -bit registers.

Program Status Word: The PSW register contains program status information as detailed in Table 3.

Ports 0 to 3 Registers: P0, P1, P2, and P3 are the SFR latches of Port 0, Port 1, Port 2, and Port 3 respectively.

Timer Registers: Register pairs (TH0, TL0), (TH1, TL1), and (TH2, TL2) are the 16 -bit count registers for Timer/Counters 0,1 , and 2 respectively. Control and status bits are contained in registers TCON and TMOD for Timers 0 and 1 and in registers T2CON and T2MOD for Timer 2. The register pair (RCAP2H,

RCAP2L) are the capture/reload registers for Timer 2 in 16 -bit capture mode or 16 -bit auto-reload mode.

Programmable Counter Array (PCA) Registers: The 16-bit PCA timer/counter consists of registers CH and CL. Registers CCON and CMOD contain the control and status bits for the PCA. The CCAPMn ($\mathrm{n}=0,1$, 2,3 , or 4) registers control the mode for each of the five PCA modules. The register pairs (CCAPnH, CCAPnL) are the 16 -bit compare/capture registers for each PCA module.

Serial Port Registers: The Serial Data Buffer, SBUF, is actually two separate registers: a transmit buffer and a receive buffer register. When data is moved to SBUF, it goes to the transmit buffer where it is held for serial transmission. (Moving a byte to SBUF initiates the transmission). When data is moved from SBUF, it comes from the receive buffer. Register SCON contains the control and status bits for the Serial Port. Registers SADDR and SADEN are used to define the Given and the Broadcast addresses for the Automatic Address Recognition feature.

Interrupt Registers: The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the 7 interrupts in the IP register.

Power Control Register: PCON controls the Power Reduction Modes. Idle and Power Down Modes.

4.0 PORT STRUCTURES AND OPERATION

All four ports in the C51FX are bidirectional. Each consists of a latch (Special Function Registers PO through P3), an output driver, and an input buffer.

The output drivers of Ports 0 and 2, and the input buffers of Port 0 , are used in accesses to external memory. In this application, Port 0 outputs the low byte of the external memory address, time-multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory address when the address is 16 bits wide. Otherwise the Port 2 pins continue to emit the P2 SFR content.

All the Port 1 and Port 3 pins are multifunctional. They are not only port pins, but also serve the functions of various special features as listed in Table 4.

The alternate functions can only be activated if the corresponding bit latch in the port SFR contains a 1 . Otherwise the port pin is stuck at 0 .

4.1 I/O Configurations

Figure 2 shows a functional diagram of a typical bit latch and I/O buffer in each of the four ports. The bit latch (one bit in the port's SFR) is represented as a Type D flip-flop, which clocks in a value from the internal bus in response to a "write to latch" signal from the CPU. The Q output of the flip-flop is placed on the internal bus in response to a "read latch" signal from the CPU. The level of the port pin itself is placed on the internal bus in response to a "read pin" signal from the CPU. Some instructions that read a port activate the "read latch" signal, and others activate the "read pin" signal. See the Read-Modify-Write Feature section.

As shown in Figure 2, the output drivers of Ports 0 and 2 are switchable to an internal ADDRESS and ADDRESS/DATA bus by an internal CONTROL signal for use in external memory accesses. During external memory accesses, the P2 SFR remains unchanged, but the P0 SFR gets 1 s written to it.

Table 4. Alternate Port Functions

Port Pin	Alternate Function
P0.0/AD0-	Multiplexed Byte of Address/Data for
P0.7/AD7	External Memory
P1.0/T2	Timer 2 External Clock Input/Clock-
	Out
P1.1/T2EX	Timer 2 Reload/Capture/Direction
	Control
P1.2/ECI	PCA External Clock Input
P1.3/CEX0	PCA Module 0 Capture Input,
	Compare/PWM Output
P1.4/CEX1	PCA Module 1 Capture Input,
	Compare/PWM Output
P1.5/CEX2	PCA Module 2 Capture Input,
	Compare/PWM Output
P1.6/CEX3	PCA Module 3 Capture Input,
	Compare/PWM Output
P1.7/CEX4	PCA Module 4 Capture Input,
	Compare/PWM Output
P2.0/A8-	High Byte of Address for External
P2.7/A15	Memory
P3.0/RXD	Serial Port Input
P3.1/TXD	Serial Port Output
P3.2/INTO	External Interrupt 0
P3.3/INT	External Interrupt 1
P3.4/T0	Timer 0 External Clock Input
P3.5/T1	Timer 1 External Clock Input
P3.6/WR	Write Strobe for External Memory
P3.7/RD	Read Strobe for External Memory

Figure 2. C51FX Port Bit Latches and I/O Buffers

Also shown in Figure 2 is that if a P1 or P3 latch contains a 1 , then the output level is controlled by the signal labeled "alternate output function." The actual pin level is always available to the pin's alternate input function, if any.

Ports 1, 2, and 3 have internal pullups. Port 0 has open drain outputs. Each I/O line can be independently used as an input or an output (Ports 0 and 2 may not be used as general purpose I / O when being used as the ADDRESS/DATA BUS). To be used as an input, the port bit latch must contain a 1 , which turns off the output driver FET. On Ports 1, 2, and 3, the pin is pulled high by the internal pullup, but can be pulled low by an external source.

Port 0 differs from the other ports in not having internal pullups. The pullup FET in the PO output driver (see Figure 2) is used only when the Port is emitting 1s during external memory accesses. Otherwise the pullup FET is off. Consequently P0 lines that are being used as output port lines are open drain. Writing a 1 to the bit latch leaves both output FETs off, which floats the pin and allows it to be used as a high-impedance input. Because Ports 1 through 3 have fixed internal pullups they are sometimes call "quasi-bidirectional" ports.

When configured as inputs they pull high and will source current (IIL in the data sheets) when externally pulled low. Port 0 , on the other hand, is considered "true" bidirectional, because it floats when configured as an input.

All the port latches have 1s written to them by the reset function. If a 0 is subsequently written to a port latch, it can be reconfigured as an input by writing a 1 to it.

4.2 Writing to a Port

In the execution of an instruction that changes the value in a port latch, the new value arrives at the latch during State 6 Phase 2 of the final cycle of the instruction. However, port latches are in fact sampled by their output buffers only during Phase 1 of any clock period. (During Phase 2 the output buffer holds the value it saw during the previous Phase 1). Consequently, the new value in the port latch won't actually appear at the output pin until the next Phase 1, which will be at S1P1 of the next machine cycle. Refer to Figure 3. For more information on internal timings refer to the CPU Timing section.

Figure 3. Port Operation

If the change requires a $0-$ to -1 transition in Ports 1,2 , and 3, an additional pullup is turned on during S1P1 and S1P2 of the cycle in which the transition occurs. This is done to increase the transition speed. The extra pullup can source about 100 times the current that the normal pullup can. The internal pullups are field-effect transistors, not linear resistors. The pull-up arrangements are shown in Figure 4.

The pullup consists of three pFETs. Note that an n -channel FET (nFET) is turned on when a logical 1 is applied to its gate, and is turned off when a logical 0 is applied to its gate. A p-channel FET (pFET) is the opposite: it is on when its gate sees a 0 , and off when its gate sees a 1 .
pFET 1 in is the transistor that is turned on for 2 oscillator periods after a 0-to-1 transition in the port latch. A 1 at the port pin turns on pFET3 (a weak pull-up), through the invertor. This invertor and pFET form a latch which hold the 1.

If the pin is emitting a 1 , a negative glitch on the pin from some external source can turn off pFET 3 , causing the pin to go into a float state. pFET 2 is a very weak pullup which is on whenever the nFET is off, in traditional CMOS style. It's only about $1 / 10$ the strength of pFET3. Its function is to restore a 1 to the pin in the event the pin had a 1 and lost it to a glitch.

CHMOS Configuration. pFET 1 is turned on for 2 osc. periods after \bar{Q} makes a 0 -to- 1 transition. During this time, pFET 1 also turns on pFET 3 through the inverter to form a latch which holds the 1. PFET 2 is also on. Port 2 is similar except that it holds the strong pullup on while emitting 1s that are address bits. (See text, "Accessing External Memory".)

Figure 4. Ports 1 and 3 Internal Pullup Configurations

4.3 Port Loading and Interfacing

The output buffers of Ports 1,2 , and 3 can each sink 1.6 mA at 0.45 V . These port pins can be driven by open-collector and open-drain outputs although 0-to-1 transitions will not be fast since there is little current pulling the pin up. An input 0 turns off pullup pFET3, leaving only the very weak pullup pFET2 to drive the transition.

In external bus mode, Port 0 output buffers can each sink 3.2 mA at 0.45 V . However, as port pins they require external pullups to be able to drive any inputs.

See the latest revision of the data sheet for design-in information.

4.4 Read-Modify-Write Feature

Some instructions that read a port read the latch and others read the pin. Which ones do which? The instructions that read the latch rather than the pin are the ones that read a value, possibly change it, and then rewrite it to the latch. These are called "read-modify-write" instructions. Listed below are the read-modify-write instructions. When the destination operand is a port, or a port bit, these instructions read the latch rather than the pin:

ANL	(logical AND, e.g., ANL P1, A)
ORL	(logical OR, e.g., ORL P2, A)
XRL	(logical EX-OR, e.g., XRL P3, A)
JBC	(jump if bit $=1$ and clear bit, e.g.,
	JBC P1.1, LABEL)
CPL	(complement bit, e.g., CPL P3.0)
INC	(increment, e.g., INC P2)
DEC	(decrement, e.g., DEC P2)

(logical AND, e.g., ANL P1, A)

ORL (logical OR, e.g., ORL P2, A)
XRL (logical EX-OR, e.g., XRL P3, A)
JBC (jump if bit $=1$ and clear bit, e.g., JBC P1.1, LABEL)
(
Figure 5. External Program Memory Fetches

Figure 6. External Data Memory Read Cycle

Figure 7. External Data Memory Write Cycle

Whenever a 16 -bit address is used, the high byte of the address comes out on Port 2, where it is held for the duration of the read or write cycle. The Port 2 drivers use the strong pullups during the entire time that they are emitting address bits that are 1 s . This occurs when the MOVX @ DPTR instruction is executed. During this time the Port 2 latch (the Special Function Register) does not have to contain 1s, and the contents of the Port 2 SFR are not modified. If the external memory cycle is not immediately followed by another external memory cycle, the undisturbed contents of the Port 2 SFR will reappear in the next cycle.

If an 8-bit address is being used (MOVX @ Ri), the contents of the Port 2 SFR remain at the Port 2 pins throughout the external memory cycle. In this case, Port 2 pins can be used to page the external data memory.

In either case, the low byte of the address is time-multiplexed with the data byte on Port 0. The ADDRESS/ DATA signal drives both FETs in the Port 0 output buffers. Thus, in external bus mode the Port 0 pins are not open-drain outputs and do not require external pullups. The ALE (Address Latch Enable) signal should be used to capture the address byte into an external latch. The address byte is valid at the negative transition of ALE. Then, in a write cycle, the data byte to be written appears on Port 0 just before $\overline{\mathrm{WR}}$ is activated, and remains there until after $\overline{\mathrm{WR}}$ is deactivated. In a read cycle, the incoming byte is accepted at Port 0 just before the read strobe ($\overline{R D}$) is deactivated.

During any access to external memory, the CPU writes OFFH to the Port 0 latch (the Special Function Register), thus obliterating the information in the Port 0 SFR. Also, a MOV PO instruction must not take place during external memory accesses. If the user writes to Port 0 during an external memory fetch, the incoming code byte is corrupted. Therefore, do not write to Port 0 if external program memory is used.

External Program Memory is accessed under two conditions:

1. Whenever signal $\overline{\mathrm{EA}}$ is active, or
2. Whenever the program counter (PC) contains an address greater than $1 \mathrm{FFFH}(8 \mathrm{~K})$ for the 8 XC 51 FA or 3 FFFH (16 K) for the 8 XC 51 FB , or 7 FFFH (32 K) for the 87 C 51 FC .

This requires that the ROMless versions have $\overline{\mathrm{EA}}$ wired to V_{SS} enable the lower $8 \mathrm{~K}, 16 \mathrm{~K}$, or 32 K program bytes to be fetched from external memory.

When the CPU is executing out of external Program Memory, all 8 bits of Port 2 are dedicated to an output function and may not be used for general purpose I/O. During external program fetches they output the high byte of the PC with the Port 2 drivers using the strong pullups to emit bits that are 1 s .

5.0 TIMERS/COUNTERS

The C51FX has three 16-bit Timer/Counters: Timer 0, Timer 1, and Timer 2. Each consists of two 8-bit registers, THx and TLx, ($x=0,1$, and 2). All three can be configured to operate either as timers or event counters.

In the Timer function, the TLx register is incremented every machine cycle. Thus one can think of it as counting machine cycles. Since a machine cycle consists of 12 oscillator periods, the count rate is $1 / 12$ of the oscillator frequency.

In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin-T0, T1, or T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since it takes 2 machine cycles (24 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is $1 / 24$ of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

In addition to the Timer or Counter selection, Timer 0 and Timer 1 have four operating modes from which to select: Modes $0-3$. Timer 2 has three modes of operation: Capture, Auto-Reload, and Baud Rate Generator.

5.1 Timer 0 and Timer 1

The Timer or Counter function is selected by control bits $\mathrm{C} / \overline{\mathrm{T}}$ in the Special Function Register TMOD (Table 5). These two Timer/Counters have four operating modes, which are selected by bit-pairs (M1, M0) in TMOD. Modes 0,1, and 2 are the same for both Timer/Counters. Mode 3 operation is different for the two timers.

MODE 0

Either Timer 0 or Timer 1 in Mode 0 is an 8 -bit Counter with a divide-by- 32 prescaler. Figure 8 shows the Mode 0 operation for either timer.

In this mode, the Timer register is configured as a 13-bit register. As the count rolls over from all 1s to all Os, it sets the Timer interrupt flag TFx. The counted input is enabled to the Timer when TRx $=1$ and either GATE $=0$ or $\overline{\text { INTx }}=1$. (Setting GATE $=1$ allows the Timer to be controlled by external input $\overline{\text { INTx }}$, to facilitate pulse width measurements). TRx and TFx are
control bits in SFR TCON (Table 6). The GATE bit is in TMOD. There are two different GATE bits, one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).

The 13-bit register consists of all 8 bits of THx and the lower 5 bits of TLx. The upper 3 bits of TLx are indeterminate and should be ignored. Setting the run flag (TRx) does not clear these registers.

MODE 2

Mode 2 configures the Timer register as an 8-bit Counter (TLx) with automatic reload, as shown in Figure 10. Overflow from TLx not only sets TFx, but also reloads TLx with the contents of THx, which is preset by software. The reload leaves THx unchanged.

MODE 1

Mode 1 is the same as Mode 0 , except that the Timer register uses all 16 bits. Refer to Figure 9. In this mode, THx and TLx are cascaded; there is no prescaler.

Table 5. TMOD: Timer/Counter Mode Control Register

Figure 8. Timer/Counter 0 or 1 in Mode 0: 13-Bit Counter

Table 6. TCON: Timer/Counter Control Register

Figure 9. Timer/Counter 0 or 1 in Mode 1: 16-Bit Counter

MODE 3

Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TR1 $=0$.

Timer 0 in Mode 3 establishes TLO and THO as two separate counters. The logic for Mode 3 on Timer 0 is shown in Figure 11. TL0 uses the Timer 0 control bits: $\mathrm{C} / \overline{\mathrm{T}}, \mathrm{GATE}, \mathrm{TR} 0, \overline{\mathrm{INTO}}$, and TFO. TH0 is locked into
a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus TH0 now controls the Timer 1 interrupt.

Mode 3 is provided for applications requiring an extra 8 -bit timer or counter. When Timer 0 is in Mode 3, Timer 1 can be turned on and off by switching it out of and into its own Mode 3, or can still be used by the serial port as a baud rate generator, or in any application not requiring an interrupt.

Figure 10. Timer/Counter 1 Mode 2: 8-Bit Auto-Reload

Figure 11. Timer/Counter 0 Mode 3: Two 8-Bit Counters

5.2 Timer 2

Timer 2 is a 16 -bit Timer/Counter which can operate either as a timer or as an event counter. This is selected by bit C/ $\overline{\mathrm{T} 2}$ in the Special Function Register T2CON (Table 8). It has three operating modes: capture, autoreload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON as shown in Table 7.

Table 7. Timer 2 Operating Modes

RCLK + TCLK	CP/RL2	T2*OE	TR2	Mode
0	0	0	1	16-Bit Auto-Reload 16 -Bit
0	1	0	1	16 Capture Baud_Rate
X	X	X	1	Baneator Generato
X	X	X	0	1
Clock-Out				
on P1.0				
Timer Off				

Table 8. T2CON: Timer/Counter 2 Control Register

T2CON	$\begin{array}{ll}\text { Address }=0 \mathrm{C8H} & \text { Reset Value }=0000 \text { 0000B } \\ \text { Bit Addressable } & \end{array}$							
	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/VL2
	Bit 7	6	5	4	3	2	1	0
Symbol	Function							
TF2	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK $=1$ or TCLK $=1$.							
EXF2	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 $=1$. When Timer 2 interrupt is enabled EXF2 $=1$ will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).							
RCLK	Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3. RCLK $=0$ causes Timer 1 overflow to be used for the receive clock.							
TCLK	Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.							
EXEN2	Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 $=0$ causes Timer 2 to ignore events at T2EX.							
TR2	Start/stop control for Timer 2. A logic 1 starts the timer.							
C/T2	$0=$ Internal timer (OSC/12 or OSC/2 in baud rate generator mode).$1=$ External event counter (falling edge triggered).							
CP/RL2	Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 $=1$. When cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when EXEN2 $=1$. When either RCLK $=1$ or TCLK $=1$, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.							

CAPTURE MODE

In the capture mode there are two options selected by bit EXEN2 in T2CON. If EXEN2 $=0$, Timer 2 is a

16-bit timer or counter which upon overflow sets bit TF2 in T2CON. This bit can then be used to generate an interrupt. If EXEN2 $=1$, Timer 2 still does the above, but with the added feature that a 1-to-0 tran-

Figure 12. Timer 2 in Capture Mode
sition at external input T2EX causes the current value in the Timer 2 registers, TH2 and TL2, to be captured into registers RCAP2H and RCAP2L, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. The capture mode is illustrated in Figure 12.

AUTO-RELOAD MODE (UP OR DOWN COUNTER)

Timer 2 can be programmed to count up or down when configured in its 16 -bit auto-reload mode. This feature is invoked by a bit named DCEN (Down Counter Enable) located in the SFR T2MOD (see Table 9). Upon reset the DCEN bit is set to 0 so that Timer 2 will
default to count up. When DCEN is set, Timer 2 can count up or down depending on the value of the T2EX pin.

Figure 13 shows Timer 2 automatically counting up when DCEN $=0$. In this mode there are two options selected by bit EXEN2 in T2CON. If EXEN2 $=0$, Timer 2 counts up to OFFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16 -bit value in RCAP2H and RCAP2L. The values in RCAP2H and RCAP2L are preset by software. If EXEN2 $=1$, a 16bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Either the TF2 or EXF2 bit can generate the Timer 2 interrupt if it is enabled.

Table 9. T2MOD: Timer 2 Mode Control Register

Figure 13. Timer 2 Auto Reload Mode (DCEN = 0)

Setting the DCEN bit enables Timer 2 to count up or down as shown in Figure 14. In this mode the T2EX pin controls the direction of count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at OFFFFH and set the TF2 bit which can then generate an interrupt if it is enabled. This overflow also causes a the 16 -bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.

A logic 0 at T2EX makes Timer 2 count down. Now the timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes OFFFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer 2 overflows or underflows. This bit can be used as a 17th bit of resolution if desired. In this operating mode, EXF2 does not generate an interrupt.

BAUD RATE GENERATOR MODE

The baud rate generator mode is selected by setting the RCLK and/or TCLK bits in T2CON. Timer 2 in this mode will be described in conjunction with the serial port.

PROGRAMMABLE CLOCK OUT

A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed (1) to input the external clock for Timer/Counter 2 or (2) to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a 16 MHz operating frequency.

To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in T2CON) must be cleared and bit T2OE in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer (see Table 6 for operating modes).

The Clock-out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:

Clock-out Frequency $=$

$$
\frac{\text { Oscillator Frequency }}{4 \times(65536-\text { RCAP2H, RCAP2L })}
$$

In the Clock-Out mode Timer 2 roll-overs will not generate an interrupt. This is similar to when Timer 2 is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and Clock-out frequencies cannot be determined independently of one another since they both use the values in RCAP2H and RCAP2L.

6.0 PROGRAMMABLE COUNTER ARRAY

The Programmable Counter Array (PCA) consists of a 16-bit timer/counter and five 16-bit compare/capture modules as shown in Figure 15a. The PCA timer/counter serves as a common time base for the five modules and is the only timer which can service the PCA. Its clock input can be programmed to count any one of the following signals:

- oscillator frequency $\div 12$
- oscillator frequency $\div 4$
- Timer 0 overflow
- external input on ECI (P1.2).

Each compare/capture module can be programmed in any one of the following modes:

- rising and/or falling edge capture
- software timer
- high speed output
- pulse width modulator.
- Module 4 can also be programmed as a watchdog timer.

When the compare/capture modules are programmed in the capture mode, software timer, or high speed output mode, an interrupt can be generated when the module executes its function. All five modules plus the PCA timer overflow share one interrupt vector (more about this in the PCA Interrupt section).

Figure 14. Timer 2 Auto Reload Mode (DCEN = 1)

Figure 15. Timer 2 in Clock-Out Mode

Figure 15a. Programmable Counter Array

The PCA timer/counter and compare/capture modules share Port 1 pins for external I/O. These pins are listed below. If the port pin is not used for the PCA, it can still be used for standard I/O.

PCA Component	External I/O Pin
16-bit Counter	P1.2 / ECl
16-bit Module 0	P1.3 / CEX0
16-bit Module 1	P1.4 / CEX1
16-bit Module 2	P1.5 / CEX2
16-bit Module 3	P1.6 / CEX3
16-bit Module 4	P1.7 / CEX4

6.1 PCA 16-Bit Timer/Counter

The PCA has a free-running 16-bit timer/counter consisting of registers CH and CL (the high and low bytes of the count value). These two registers can be read or written to at any time. Figure 16 shows a block dia-
gram of this timer. The clock input can be selected from the following four modes:

- Oscillator frequency $\div 12$

The CL register is incremented at S5P2 of every machine cycle. With a 16 MHz crystal, the timer increments every 750 nanoseconds.

- Oscillator frequency $\div 4$

The CL register is incremented at S1P2, S3P2 and S5P2 of every machine cycle. With a 16 MHz crystal, the timer increments every 250 nanoseconds.

- Timer 0 overflows

The CL register is incremented at S5P2 of the machine cycle when Timer 0 overflows. This mode allows a programmable input frequency to the PCA.

- External input

The CL register is incremented at the first one of S1P2, S3P2 and S5P2 after a 1-to-0 transition is detected on the ECI pin (P1.2). P1.2 is sampled at S1P2, S3P2 and S5P2 of every machine cycle. The maximum input frequency in this mode is oscillator frequency $\div 8$.

Figure 16. PCA Timer/Counter

CH is incremented after two oscillator periods when CL overflows.

The mode register CMOD contains the Count Pulse Select bits (CPS1 and CPS0) to specify the clock input. CMOD is shown in Table 10. This register also contains the ECF bit which enables the PCA counter overflow to generate the PCA interrupt. In addition, the user has the option of turning off the PCA timer during Idle Mode by setting the Counter Idle bit (CIDL). The Watchdog Timer Enable bit (WDTE) will be discussed in a later section.

The CCON register, shown in Table 11, contains two more bits which are associated with the PCA timer/ counter. The CF bit gets set by hardware when the counter overflows, and the CR bit is set or cleared to turn the counter on or off. The other five bits in this register are the event flags for the compare/capture modules and will be discussed in the next section.

Table 10. CMOD: PCA Counter Mode Register

```
CMOD
Address = 0D9H
                                    Reset Value = 00XX X000B
Not Bit Addressable
```



```
Symbol Function
CIDL Counter Idle control: CIDL \(=0\) programs the PCA Counter to continue functioning during idle Mode. CIDL = 1 programs it to be gated off during idle.
WDTE Watchdog Timer Enable: WDTE \(=0\) disables Watchdog Timer function on PCA Module 4. WDTE \(=1\) enables it.
- Not implemented, reserved for future use.*
CPS1 PCA Count Pulse Select bit 1.
CPSO PCA Count Pulse Select bit 0.
CPS1 CPS0 Selected PCA Input**
\(0 \quad 0 \quad\) Internal clock, Fosc \(\div 12\)
\(0 \quad 1 \quad\) Internal clock, Fosc \(\div 4\)
10 Timer 0 overflow
11 External clock at ECI/P1. 2 pin (max. rate \(=\) Fosc \(\div 8\) )
ECF PCA Enable Counter Overflow interrupt: ECF \(=1\) enables CF bit in CCON to generate an interrupt. ECF \(=0\) disables that function of CF.
```


NOTE:

```
*User software should not write 1 s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0 , and its active value will be 1 . The value read from a reserved bit is indeterminate.
**Fosc \(=\) oscillator frequency
```

Table 11. CCON: PCA Counter Control Register

```
CCON Address = 0D8H Reset Value = 00X0 0000B
    Bit Addressable
Bit \begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CF & CR & - & CCF4 & CCF3 & CCF2 & CCF1 & CCF0 \\
\hline
\end{tabular}
Symbol Function
\begin{tabular}{|c|c|}
\hline CF & PCA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but can only be cleared by software. \\
\hline CR & PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared by software to turn the PCA counter off. \\
\hline - & Not implemented, reserved for future use*. \\
\hline CCF4 & PCA Module 4 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software. \\
\hline CCF3 & PCA Module 3 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software. \\
\hline CCF2 & PCA Module 2 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software. \\
\hline CCF1 & PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software. \\
\hline CCFO & PCA Module 0 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software. \\
\hline \begin{tabular}{l}
*NOTE: \\
User sof new feat read fro
\end{tabular} & should not write is to reserved bits. These bits may be used in future 8051 family products to invoke In that case, the reset or inactive value of the new bit will be 0 , and its active value will be 1 . The value served bit is indeterminate. \\
\hline
\end{tabular}
```


6.2 Capture/Compare Modules

Each of the five compare/capture modules has six possible functions it can perform:

- 16-bit Capture, positive-edge triggered
- 16-bit Capture, negative-edge triggered
- 16-bit Capture, both positive and negative-edge triggered
- 16-bit Software Timer
- 16-bit High Speed Output
- 8-bit Pulse Width Modulator.

In addition, module 4 can be used as a Watchdog Timer. The modules can be programmed in any combination of the different modes.

Each module has a mode register called CCAPMn ($\mathrm{n}=0,1,2,3$, or 4) to select which function it will perform. The CCAPMn register is shown in Table 12. Note the ECCFn bit which enables the PCA interrupt
when a module's event flag is set. The event flags (CCFn) are located in the CCON register and get set when a capture event, software timer, or high speed output event occurs for a given module.

Table 13 shows the combinations of bits in the CCAPMn register that are valid and have a defined function. Invalid combinations will produce undefined results.

Each module also has a pair of 8-bit compare/capture registers (CCAPnH and CCAPnL) associated with it. These registers store the time when a capture event occurred or when a compare event should occur. For the PWM mode, the high byte regiser CCAPnH controls the duty cycle of the waveform.

The next five sections describe each of the compare/ capture modes in detail.

Table 12. CCAPMn: PCA Modules Compare/Capture Registers

Symbol Function

- Not implemented, reserved for future use*.

ECOMn Enable Comparator. $\mathrm{ECOMn}=1$ enables the comparator function.
CAPPn Capture Positive, CAPPn = 1 enables positive edge capture.
CAPNn Capture Negative, CAPNn $=1$ enables negative edge capture.
MATn Match. When MATn = 1, a match of the PCA counter with this module's compare/capture register causes the CCFn bit in CCON to be set, flagging an interrupt.
TOGn Toggle. When TOGn = 1, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to toggle.
PWMn Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.
ECCFn Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate an interrupt.
NOTE:
*User software should not write 1 s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0 , and its active value will be 1 . The value read from a reserved bit is indeterminate.

Table 13. PCA Module Modes (CCAPMn Register)

-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	Module Function
X	0	0	0	0	0	0	0	No operation
X	X	1	0	0	0	0	X	16-bit capture by a postive-edge trigger on CEXn
X	X	0	1	0	0	0	X	16-bit capture by a negative-edge trigger on CEXn
X	X	1	1	0	0	0	X	16-bit capture by a transition on CEXn
X	1	0	0	1	0	0	X	16-bit Software Timer
X	1	0	0	1	1	0	X	16-bit High Speed Output
X	1	0	0	0	0	1	0	8-bit PWM
X	1	0	0	1	x	0	X	Watchdog Timer

$\mathrm{X}=$ Don't Care

6.3 16-Bit Capture Mode

Both positive and negative transitions can trigger a capture with the PCA. This gives the PCA the flexibility to measure periods, pulse widths, duty cycles, and phase differences on up to five separate inputs. Setting the CAPPn and/or CAPNn in the CCAPMn mode register select the input trigger-positive and/or negative tran-sition-for module n. Refer to Figure 17.

The external input pins CEX0 through CEX4 are sampled for a transition. When a valid transition is detected (positive and/or negative edge), hardware loads the 16-bit value of the PCA timer (CH, CL) into the module's capture registers (CCAPnH, CCAPnL). The resulting value in the capture registers reflects the PCA timer value at the time a transition was detected on the CEXn pin.

Upon a capture, the module's event flag (CCFn) in CCON is set, and an interrupt is flagged if the ECCFn bit in the mode register CCAPMn is set. The PCA interrupt will then be generated if it is enabled. Since the hardware does not clear an event flag when the interrupt is vectored to, the flag must be cleared in software.

In the interrupt service routine, the 16 -bit capture value must be saved in RAM before the next capture event occurs. A subsequent capture on the same CEXn pin will write over the first capture value in CCAPnH and CCAPnL.

6.4 16-Bit Software Timer Mode

In the compare mode, the 16 -bit value of the PCA timer is compared with a 16 -bit value pre-loaded in the module's compare registers (CCAPnH, CCAPnL). The comparison occurs three times per machine cycle in order to recognize the fastest possible clock input (i.e. $1 / 4 \times$ oscillator frequency). Setting the ECOMn bit in the mode register CCAPMn enables the comparator function as shown in Figure 18.

For the Software Timer mode, the MATn bit also needs to be set. When a match occurs between the PCA timer and the compare registers, a match signal is generated and the module's event flag (CCFn) is set. An interrupt is then flagged if the ECCFn bit is set. The PCA interrupt is generated only if it has been properly enabled. Software must clear the event flag before the next interrupt will be flagged.

Figure 17. PCA 16-Bit Capture Mode

During the interrupt routine, a new 16 -bit compare value can be written to the compare registers (CCAPnH and CCAPnL). Notice, however, that a write to CCAPnL clears the ECOMn bit which temporarily disables the comparator function while these registers are being updated so an invalid match does not occur. A write to CCAPnH sets the ECOMn bit and re-enables the comparator. For this reason, user software should write to CCAPnL first, then CCAPnH.

6.5 High Speed Output Mode

The High Speed Output (HSO) mode toggles a CEXn pin when a match occurs between the PCA timer and a pre-loaded value in a module's compare registers. For this mode, the TOGn bit needs to be set in addition to the ECOMn and MATn bits as seen in Figure 18. By setting or clearing the pin in software, the user can select whether the CEXn pin will change from a logical 0 to a logical 1 or vice versa. The user also has the option of flagging an interrupt when a match event occurs by setting the ECCFn bit.

The HSO mode is more accurate than toggling port pins in software because the toggle occurs before branching to an interrupt. That is, interrupt latency will not effect the accuracy of the output. If the user does not change the compare registers in an interrupt routine, the next toggle will occur when the PCA timer rolls over and matches the last compare value.

6.6 Watchdog Timer Mode

A Watchdog Timer is a circuit that automatically invokes a reset unless the system being watched sends
regular hold-off signals to the Watchdog. These circuits are used in applications that are subject to electrical noise, power glitches, electrostatic discharges, etc., or where high reliability is required.

The Watchdog Timer function is only available on PCA module 4 . In this mode, every time the count in the PCA timer matches the value stored in module 4's compare registers, an internal reset is generated. (See Figure 19.) The bit that selects this mode is WDTE in the CMOD register. Module 4 must be set up in either compare mode as a Software Timer or High Speed Output.

When the PCA Watchdog Timer times out, it resets the chip just like a hardware reset, except that it does not drive the reset pin high.

To hold off the reset, the user has three options:
(1) periodically change the compare value so it will never match the PCA timer,
(2) periodically change the PCA timer value so it will never match the compare value,
(3) disable the Watchdog by clearing the WDTE bit before a match occurs and then later re-enable it.

The first two options are more reliable because the Watchdog Timer is never disabled as in option \#3. The second option is not recommended if other PCA modules are being used since this timer is the time base for all five modules. Thus, in most applications the first solution is the best option.

If a Watchdog Timer is not needed, module 4 can still be used in other modes.

Figure 18. PCA 16-Bit Comparator Mode: Software Timer and High Speed Output

6.7 Pulse Width Modulator Mode

Any or all of the five PCA modules can be programmed to be a Pulse Width Modulator. The PWM output can be used to convert digital data to an analog signal by simple external circuitry. The frequency of the PWM depends on the clock sources for the PCA timer. With a 16 MHz crystal the maximum frequency of the PWM waveform is 15.6 KHz .

The PCA generates 8-bit PWMs by comparing the low byte of the PCA timer (CL) with the low byte of the module's compare registers (CCAPnL). Refer to Figure 20. When CL < CCAPnL the output is low. When CL \geq CCAPnL the output is high. The value in CCAPnL controls the duty cycle of the waveform. To change the value in CCAPnL without output glitches, the user must write to the high byte register (CCAPnH). This value is then shifted by hardware into CCAPnL when CL rolls over from 0 FFH to 00 H which corresponds to the next period of the output.

270653-16
Figure 19. Watchdog Timer Mode

Figure 20. PCA 8-Bit PWM Mode

Figure 21. CCAPnH Varies Duty Cycle

CCAPnH can contain any integer from 0 to 255 to vary the duty cycle from a 100% to 0.4% (see Figure 21).

7.0 SERIAL INTERFACE

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register. (However, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost). The serial port receive and transmit registers are both accessed through Special Function Register SBUF. Actually, SBUF is two separate registers, a transmit buffer and a receive buffer. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.

The serial port control and status register is the Special Function Register SCON, shown in Table 14. This register contains the mode selection bits (SM0 and SM1); the SM2 bit for the multiprocessor modes (see Multiprocessor Communications section); the Receive Enable bit (REN); the 9th data bit for transmit and receive (TB8 and RB8); and the serial port interrupt bits (TI and RI).

The serial port can operate in 4 modes:
Mode 0: Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at $1 / 12$ the oscillator frequency.

Mode 1: 10 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in Special Function Register SCON. The baud rate is variable.

Mode 2: 11 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). Refer to Figure 22. On Transmit, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1 . Or, for example, the parity bit (P in the PSW) could be moved into TB8. On receive, the 9th data bit goes into RB8 in SCON, while the stop bit is ignored. (The validity of the stop bit can be checked with Framing Error Detection.) The baud rate is programmable to either $1 / 32$ or $1 / 64$ the oscillator frequency.

270653-19
Figure 22. Data Frame: Modes 1, 2 and 3

Mode 3: 11 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9 th data bit and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI $=0$ and REN $=1$. Reception is initiated in the other modes by the incoming start bit if REN $=1$. For more detailed information on each serial port mode, refer to the "Hardware Description of the 8051, 8052, and 80C51."

7.1 Framing Error Detection

Framing Error Detection allows the serial port to check for valid stop bits in modes 1,2 , or 3 . A missing stop bit can be caused, for example, by noise on the serial lines, or transmission by two CPUs simultaneously.

If a stop bit is missing, a Framing Error bit FE is set. The FE bit can be checked in software after each reception to detect communication errors. Once set, the FE bit must be cleared in software. A valid stop bit will not clear FE.

The FE bit is located in SCON and shares the same bit address as SM0. Control bit SMOD0 in the PCON register (location PCON.6) determines whether the SM0 or FE bit is accessed. If SMODO $=0$, then accesses to SCON. 7 are to SMO. If SMOD0 $=1$, then accesses to SCON. 7 are to FE.

7.2 Multiprocessor Communications

Modes 2 and 3 provide a 9-bit mode to facilitate multiprocessor comunication. The 9th bit allows the controller to distinguish between address and data bytes. The 9 th bit is set to 1 for address bytes and set to 0 for data bytes. When receiving, the 9 th bit goes into RB8 in SCON. When transmitting, TB8 is set or cleared in software.

The serial port can be programmed such that when the stop bit is received the serial port interrupt will be activated only if the received byte is an address byte (RB8 $=1$). This feature is enabled by setting the SM2 bit in SCON. A way to use this feature in multiprocessor systems is as follows.

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. Remember, an address byte has its 9 th bit set to 1 , whereas a data
byte has its 9 th bit set to 0 . All the slave processors should have their SM2 bits set to 1 so they will only be interrupted by an address byte. In fact, the C51FX has an Automatic Address Recognition feature which allows only the addressed slave to be interrupted. That is, the address comparison occurs in hardware, not software. (On the 8051 serial port, an address byte interrupts all slaves for an address comparison.)

The addressed slave's software then clears its SM2 bit and prepares to receive the data bytes that will be coming. The other slaves are unaffected by these data bytes. They are still waiting to be addressed since their SM2 bits are all set.

7.3 Automatic Address Recognition

Automatic Address Recognition reduces the CPU time required to service the serial port. Since the CPU is only interrupted when it receives its own address, the software overhead to compare addresses is eliminated. With this feature enabled in one of the 9-bit modes, the Receive Interrupt (RI) flag will only get set when the received byte corresponds to either a Given or Broadcast address.

The feature works the same way in the 8 -bit mode (Mode 1) as in the 9-bit modes, except that the stop bit takes the place of the 9th data bit. If SM2 is set, the RI flag is set only if the received byte matches the Given or Broadcast Address and is terminated by a valid stop bit. Setting the SM2 bit has no effect in Mode 0.

The master can selectively communicate with groups of slaves by using the Given Address. Addressing all slaves at once is possible with the Broadcast Address. These addresses are defined for each slave by two Special Function Registers: SADDR and SADEN.

A slave's individual address is specified in SADDR. SADEN is a mask byte that defines don't-cares to form the Given Address. These don't-cares allow flexibility in the user-defined protocol to address one or more slaves at a time. The following is an example of how the user could define Given Addresses to selectively address different slaves.

Slave 1:

SADDR	$=11110001$
SADEN	$=11111010$
GIVEN	$=11110 \times 0 X$

Slave 2:

SADDR	$=11110011$
SADEN	$=1111$
	1001
GIVEN	$=11100 \times X 1$

Table 14. SCON: Serial Port Control Register

SCON	Address $=98 \mathrm{H}$						Reset Value $=00000000 \mathrm{~B}$	
	Bit Addressable							
	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI
	$\begin{array}{cc} \text { Bit: } \\ \left.\begin{array}{cc} 7 & 6 \\ (\text { SMODO } & =0 / 1 \end{array}\right) \end{array}$		5	4	3	2	1	0
Symbol	Function							
FE	Framing Error bit. This bit is set by the receiver when an invalid stop bit is detected. The FE bit is not cleared by valid frames but should be cleared by software. The SMODO* bit must be set to enable access to the FE bit.							
SMO	Serial Port Mode Bit 0, (SMODO must $=0$ to access bit SMO)							
SM1	Serial Port Mode Bit 1							
	SMO SN	1	Mode	Desc	tion		Ra	
	00			shift	ister		/12	
	0			8-bit				
	10			9-bit			/64	OsC
	1		3	9 -bit				
SM2	Enables the Automatic Address Recognition feature in Modes 2 or 3 . If SM2 $=1$ then RI will not be set unless the received 9th data bit (RB8) is 1, indicating an address, and the received byte is a Given or Broadcast Address. In Mode 1, if SM2 $=1$ then RI will not be activated unless a valid stop bit was received, and the received byte is a Given or Broadcast Address. In Mode 0, SM2 should be 0.							
REN	Enables serial reception. Set by software to enable reception. Clear by software to disable reception.							
TB8	The 9th data bit that will be transmitted in Modes 2 and 3 . Set or clear by software as desired.							
RB8	In modes 2 and 3, the 9th data bit that was received. In Mode 1, if SM2 $=0$, RB8 is the stop bit that was received. In Mode 0, RB8 is not used.							
TI	Transmit interrupt flag. Set by hardware at the end of the 8 th bit time in Mode 0 , or at the beginning of the stop bit in the other modes, in any serial transmission. Must be cleared by software.							
RI	Receive interrupt flag. Set by hardware at the end of the 8 th bit time in Mode 0 , or halfway through the stop bit time in the other modes, in any serial reception (except see SM2). Must be cleared by software.							
NOTE: *SMODO is located at PCON6. **Fosc = oscillator frequency								

The SADEN byte are selected such that each slave can be addressed separately. Notice that bit 1 (LSB) is a don't-care for Slave 1's Given Address, but bit $1=1$ for Slave 2. Thus, to selectively communicate with just Slave 1 the master must send an address with bit $1=0$ (e.g. 11110000).

Similarly, bit $2=0$ for Slave 1 , but is a don't-care for Slave 2. Now to communicate with just Slave 2 an address with bit $2=1$ must be used (e.g. 11110111).

Finally, for a master to communicate with both slaves at once the address must have bit $1=1$ and bit $2=0$.

Notice, however, that bit 3 is a don't-care for both slaves. This allows two different addresses to select both slaves (11110001 or 11110101). If a third slave was added that required its bit $3=0$, then the latter address could be used to communicate with Slave 1 and 2 but not Slave 3.

The master can also communicate with all slaves at once with the Broadcast Address. It is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-cares. The don't-cares also allow
flexibility in defining the Broadcast Address, but in most applications a Broadcast Address will be 0FFH.

SADDR and SADEN are located at address A9H and B9H, respectively. On reset, the SADDR and SADEN registers are initialized to 00 H which defines the Given and Broadcast Addresses as XXXX XXXX (all don'tcares). This assures the C51FX serial port to be backwards compatibility with other MCS ${ }^{@}-51$ products which do not implement Automatic Addressing.

7.4 Baud Rates

The baud rate in Mode 0 is fixed:

$$
\text { Mode } 0 \text { Baud Rate }=\frac{\text { Oscillator Frequency }}{12}
$$

The baud rate in Mode 2 depends on the value of bit SMOD1 in Special Function Register PCON. If SMOD1 $=0$ (which is the value on reset), the baud rate is $1 / 64$ the oscillator frequency. If SMOD1 $=1$, the baud rate is $1 / 32$ the oscillator frequency.

$$
\text { Mode } 2 \text { Baud Rate }=2^{\text {SMOD1 }} \times \frac{\text { Oscillator Frequency }}{64}
$$

The baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate, or by Timer 2 overflow rate, or by both (one for transmit and the other for receive).

7.5 Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD1 as follows:
$\begin{gathered}\text { Modes } 1 \text { and } 3 \\ \text { Baud Rate }\end{gathered}=2^{\text {SMOD1 }} \times \frac{\text { Timer } 1 \text { Overflow Rate }}{32}$

The Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In most applications, it is configured for "timer" operation in the auto-reload mode (high nibble of TMOD $=0010 \mathrm{~B}$). In this case, the baud rate is given by the formula:
$\begin{gathered}\text { Modes } 1 \text { and } 3 \\ \text { Baud Rate }\end{gathered}=\frac{2 \text { SMOD1 } \times \text { Oscillator Frequency }}{32 \times 12 \times[256-(\mathrm{TH} 1)]}$
One can achieve very low baud rates with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the Timer to run as a 16 -bit timer (high nibble of TMOD $=0001 \mathrm{~B}$), and using the Timer 1 interrupt to do a 16 -bit software reload.

Table 15 lists various commonly used baud rates and how they can be obtained from Timer 1.

7.6 Using Timer 2 to Generate Baud Rates

Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table 7). Note that the baud rates for transmit and receive can be simultaneously different. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 23.

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16 -bit value in registers RCAP2H and RCAP2L, which are preset by software.

Table 15. Timer 1 Generated Commonly Used Baud Rates

Baud Rate	fosc	SMOD	Timer 1		
			C/T	Mode	Reload Value
Mode 0 Max: 1 MHz	12 MHz	X	X	X	X
Mode 2 Max: 375K	12 MHz	1	X	X	X
Modes 1, 3: 62.5 K	12 MHz	1	0	2	FFH
19.2 K	11.059 MHz	1	0	2	FDH
9.6 K	11.059 MHz	0	0	2	FDH
4.8 K	11.059 MHz	0	0	2	FAH
2.4 K	11.059 MHz	0	0	2	F4H
1.2 K	11.059 MHz	0	0	2	E8H
137.5	11.986 MHz	0	0	2	$1 D H$
110	6 MHz	0	0	2	$72 H$
110	12 MHz	0	0	1	FEEBH

The baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate as follows:

$$
\text { Modes } 1 \text { and } 3 \text { Baud Rates }=\frac{\text { Timer } 2 \text { Overflow Rate }}{16}
$$

The Timer can be configured for either "timer" or "counter" operation. In most applications, it is configured for "timer" operation ($\mathrm{C} / \mathrm{T} 2=0$). The "Timer" operation is different for Timer 2 when it's being used as a baud rate generator. Normally, as a timer, it increments every machine cycle ($1 / 12$ the oscillator frequency). As a baud rate generator, however, it increments every state time ($1 / 2$ the oscillator frequency). The baud rate formula is given below:
$\begin{gathered}\text { Modes } 1 \text { and } 3 \\ \text { Baud Rate }\end{gathered}=\frac{\text { Oscillator Frequency }}{32 \times[65536-(\text { RCAP2H, RCAP2L })]}$
where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 23. This figure is valid only if RCLK and/or TCLK $=1$ in T2CON. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Therefore, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use
as a baud rate generator, T2EX can be used as an extra external interrupt, if desired.

It should be noted that when Timer 2 is running (TR2 $=1$) in "timer" function in the baud rate generator mode, one should not try to read or write TH2 or TL2. Under these conditions the Timer is being incremented every state time, and the results of a read or write may not be accurate. The RCAP2 registers may be read, but shouldn't be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

Table 16 lists commonly used baud rates and how they can be obtained from Timer 2.

Table 16. Timer 2 Generated Commonly Used Baud Rates

Baud Rate	Osc Freq	Timer 2	
		RCAP2L	
375 K	12 MHz	FF	FF
9.6 K	12 MHz	FF	D9
4.8 K	12 MHz	FF	B2
2.4 K	12 MHz	FF	64
1.2 K	12 MHz	FE	C8
300	12 MHz	FB	1 E
110	12 MHz	F2	AF
300	6 MHz	FD	$8 F$
110	6 MHz	F9	57

Figure 23. Timer 2 in Baud Rate Generator Mode

8.0 INTERRUPTS

The C51FX has a total of 7 interrupt vectors: two external interrupts ($\overline{\mathrm{INT0}}$ and $\overline{\mathrm{INT}}$), three timer interrupts (Timers 0, 1, and 2), the PCA interrupt, and the serial port interrupt. These interrupts are all shown in Figure 24.

All of the bits that generate interrupts can be set or cleared by software, with the same result as though it had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled in software.

Each of these interrupts will be briefly described followed by a discussion of the interrupt enable bits and the interrupt priority levels.

Figure 24. Interrupt Sources

8.1 External Interrupis

External Interrupts $\overline{\text { INT0 }}$ and $\overline{\text { INT1 }}$ can each be either level-activated or transition-activated, depending on bits IT0 and IT1 in register TCON. If ITx $=0$, external interrupt x is triggered by a detected low at the $\overline{\text { INTx }}$ pin. If ITx $=1$, external interrupt x is negative edge-triggered. The flags that actually generate these interrupts are bits IEO and IE1 in TCON. These flags are cleared by hardware when the service routine is vectored to only if the interrupt was transition-activated. If the interrupt was level-activated, then the external requesting source is what controls the request flag, rather than the on-chip hardware.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least one cycle, and then hold it low for at least one cycle to ensure that the transition is seen so that interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called.

If external interrupt $\overline{\mathrm{INT0}}$ or $\overline{\mathrm{INT1}}$ is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

8.2 Timer Interrupts

Timer 0 and Timer 1 Interrupts are generated by TFO and TF1 in register TCON, which are set by a rollover in their respective Timer/Counter registers (except see Timer 0 in Mode 3). When a timer interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to.

Timer 2 Interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and the bit will have to be cleared in software.

8.3 PCA Interrupt

The PCA interrupt is generated by the logical OR of CF, CCF0, CCF1, CCF2, CCF3, and CCF4 in register CCON. None of these flags is cleared by hardware when the service routine is vectored to. Normally the service routine will have to determine which bit flagged the interrupt and clear that bit in software. The PCA interrupt is enabled by bit EC in the Interrupt Enable register (see Table 16). In addition, the CF flag and each of the CCFn flags must also be enabled by bits ECF and ECCFn in registers CMOD and CCAPMn respectively, in order for that flag to be able to cause an interrupt.

8.4 Serial Port Interrupt

The serial port interrupt is generated by the logical OR of bits RI and TI in register SCON. Neither of these flags is cleared by hardware when the service routine is vectored to. The service routine will normally have to determine whether it was RI or TI that generated the interrupt, and the bit will have to be cleared in software.

8.5 Interrupt Enable

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable (IE) register. (See Table 17.) Note that IE also contains a global disable bit, EA. If EA is set (1), the interrupts are individually enabled or disabled by their corresponding bits in IE. If EA is clear (0), all interrupts are disabled.

8.6 Priority Level Structure

Each interrupt source can also be individually programmed to one of two priority levels, by setting or clearing a bit in the Interrupt Priority (IP) register shown in Table 18. A low-priority interrupt can itself be interrupted by a higher priority interrupt, but not by another low-priority interrupt. A high priority interrupt cannot be interrupted by any other interrupt

Table 17. IE: Interrupt Enable Register

Table 18. IP: Interrupt Priority Registers

If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence shown in Table 19.

Note that the "priority within level" structure is only used to resolve simultaneous requests of the same priority level.

Table 19. Interrupt Priority within Level Polling Sequence

1 (Highest)	$\overline{\text { NT0 }}$
2	Timer 0
3	$\overline{\text { INT1 }}$
4	Timer 1
5	PCA
6	Serial Port
7 (Lowest)	Timer 2

8XC51FX Interrupt Priority Structure

In the 8XC51FX, a second Interrupt Priority register (IPH) has been added, increasing the number of priority levels to four. Table 20 shows this second register. The added register becomes the MSB of the priority select bits and the existing IP register acts as the LSB. This scheme maintains compatibility with the rest of the MCS- 51 family. Table 21 shows the bit values and priority levels associated with each combination.

Table 21. Priority Level Bit Values

Priority Bits		Interrupt Priority Level
IPH.x	IP.x	
0	0	Level 0 (Lowest)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (Highest)

How Interrupts are Handled

The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during the following machine cycle. The Timer 2 interrupt cycle is slightly different, as described in the Response Time section. If one of the flags was in a set condition at S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine, provided this hard-ware-generated LCALL is not blocked by any of the following conditions:

1. An interrupt of equal or higher priority level is already in progress.
2. The current (polling) cycle is not the final cycle in the execution of the instruction in progress.
3. The instruction in progress is RETI or any write to the IE or IP registers.

Table 20. IPH: Interrupt Priority High Register

IPH	Address $=087 \mathrm{H}$						Reset Value $=\mathbf{X 0 0 0} 0000$		
	Not Bit	ddressab							
	-	PPCH	PT2H	PSH	PT1H	PX1H	PTOH	PXOH	
	Bit 7	6	5	4	3	2	1	0	
Symbol	Function								
-	Not implemented, reserved for future use.								
PPCH	PCA interrupt priority high bit.								
PT2H	Timer 2 interrupt priority high bit.								
PSH	Serial Port interrupt priority high bit.								
PT1H	Timer 1 interrupt priority high bit.								
PX1H	External interrupt 1 priority high bit.								
PTOH	Timer 0 interrupt priority high bit.								
PXOH	External interrupt priority high bit.								

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Condition 2 ensures that the instruction in progress will be completed before vectoring to any service routine. Condition 3 ensures that if the instruction in progress is RETI or any write to IE or IP, then at least one more instruction will be executed before any interrupt is vectored to.

The polling cycle is repeated with each machine cycle, and the values polled are the values that were present at S5P2 of the previous machine cycle. If the interrupt flag for a level-sensitive external interrupt is active but not being responded to for one of the above conditions and is not still active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag was once active but not serviced is not remembered. Every polling cycle is new.

The polling cycle/LCALL sequence is illustrated in Figure 25.

Note that if an interrupt of a higher priority level goes active prior to S5P2 of the machine cycle labeled C3 in Figure 25, then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. The hardware-generated LCALL pushes the contents of the Program Counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown in Table 22.

Table 22. Interrupt Vector Address

Interrupt Source	Interrupt Request Bits	Cleared by Hardware	Vector Address
$\overline{\text { INTO }}$	IE0	No (level) Yes (trans.)	0003 H
TIMER 0	TF0	Yes	000 BH
$\overline{\text { INT1 }}$	IE1	No (level) Yes (trans.)	0013 H
TIMER 1	TF1	Yes	001 BH
SERIAL PORT	RI, TI	No	0023 H
TIMER 2	TF2, EXF2	No	002 BH
PCA	CF, CCFn (n = 0-4)	No	0033 H

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking interrupt was still in progress.

Note that the starting addresses of consecutive interrupt service routines are only 8 bytes apart. That means if consecutive interrupts are being used (IE0 and TF0, for example, or TF0 and IE1), and if the first interrupt routine is more than 7 bytes long, then that routine will have to execute a jump to some other memory location where the service routine can be completed without overlapping the starting address of the next interrupt routine.

Figure 25. Interrupt Response Timing Diagram

8.7 Response Time

The $\overline{\text { INT0 }}$ and $\overline{\text { INT1 }}$ levels are inverted and latched into the Interrupt Flags IE0 and IE1 at S5P2 of every machine cycle. Similarly, the Timer 2 flag EXF2 and the Serial Port flags RI and TI are set at S5P2. The values are not actually polled by the circuitry until the next machine cycle.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag TF2 is set at S2P2 and is polled in the same cycle in which the timer overflows.

If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two cycles. Thus, a minimum of three complete machine cycles elapses between activation of an external interrupt request and the beginning of execution of the service routine's first instruction. Figure 25 shows interrupt response timing.

A longer response time would result if the request is blocked by one of the 3 previously listed conditions. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more than 3 cycles, since the longest instructions (MUL and DIV) are only 4 cycles long, and if the instruction in progress is RETI
or write to IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one or more cycle to complete the instruction in progress, plus 4 cycles to complete the next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is always more than 3 cycles and less than 9 cycles.

9.0 RESET

The reset input is the RST pin, which has a Schmitt Trigger input. A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods) while the oscillator is running. The CPU responds by generating an internal reset, with the timing shown in Figure 26.

The external reset signal is asynchronous to the internal clock. The RST pin is sampled during State 5 Phase 2 of every machine cycle. ALE and PSEN will maintain their current activities for 19 oscillator periods after a logic 1 has been sampled at the RST pin; that is, for 19 to 31 oscillator periods after the external reset signal has been applied to the RST pin. The port pins are driven to their reset state as soon as a valid high is detected on the RST pin, regardless of whether the clock is running.

Figure 26. Reset Timing

While the RST pin is high, the port pins, ALE and PSEN are weakly pulled high. After RST is pulled low, it will take 1 to 2 machine cycles for ALE and PSEN to start clocking. For this reason, other devices can not be synchronized to the internal timings of the 8XC51FX.

Driving the ALE and $\overline{\text { PSEN }}$ pins to 0 while reset is active could cause the device to go into an indeterminate state.

The internal reset algorithm redefines all the SFRs. Table 1 lists the SFRs and their reset values. The internal RAM is not affected by reset. On power up the RAM content is indeterminate.

9.1 Power-On Reset

For CHMOS devices, when VCC is turned on, an automatic reset can be obtained by connecting the RST pin to VCC through a $1 \mu \mathrm{~F}$ capacitor (Figure 27). The CHMOS devices do not require an external resistor like the HMOS devices because they have an internal pulldown on the RST pin.

When power is turned on, the circuit holds the RST pin high for an amount of time that depends on the capacitor value and the rate at which it charges. To ensure a valid reset the RST pin must be held high long enough to allow the oscillator to start up plus two machine cycles.

Figure 27. Power on Reset Circuitry
On power up, V_{CC} should rise within approximately ten milliseconds. The oscillator start-up time will depend on the oscillator frequency. For a 10 MHz crystal, the start-up time is typically 1 msec . For a 1 MHz crystal, the start-up time is typically 10 msec .

With the given circuit, reducing V_{CC} quickly to 0 causes the RST pin voltage to momentarily fall below 0 V . However, this voltage is internally limited and will not harm the device.

Note that the port pins will be in a random state until the oscillator has started and the internal reset algorithm has written 1s to them.

Powering up the device without a valid reset could cause the CPU to start executing instructions from an indeterminate location. This is because the SFRs, specifically the Program Counter, may not get properly initialized.

10.0 POWER-SAVING MODES OF OPERATION

For applications where power consumption is critical, the C51FX provides two power reducing modes of operation: Idle and Power Down. The input through which backup power is supplied during these operations is V_{CC}. Figure 28 shows the internal circuitry which implements these features. In the Idle mode (IDL $=1$), the oscillator continues to run and the Interrupt, Serial Port, PCA, and Timer blocks continue to be clocked, but the clock signal is gated off to the CPU. In Power Down (PD = 1), the oscillator is frozen. The Idle and Power Down modes are activated by setting bits in Special Function Register PCON (Table 23).

10.1 Idle Mode

An instruction that sets PCON. 0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the Interrupt, Timer, and Serial Port functions. The PCA can be programmed either to pause or continue operating during Idle (refer to the PCA section for more details). The CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels:

There are two ways to terminate the Idle Mode. Activation of any enabled interrupt will cause PCON. 0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into Idle.

The flag bits (GF0 and GF1) can be used to give an indication if an interrupt occurred during normal operation or during Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

The signal at the RST pin clears the IDL bit directly and asynchronously. At this time the CPU resumes program execution from where it left off; that is, at the instruction following the one that invoked the Idle Mode. As shown in Figure 26, two or three machine cycles of program execution may take place before the

270653-25
Figure 28. Idle and Power Down Hardware
Table 23. PCON: Power Control Register

PCON	Address $=87 \mathrm{H}$						Reset Value $=00 \times \mathrm{X} 0000 \mathrm{~B}$		
	Not Bit Addressable								
	SMOD1	SMODO	-	POF	GF1	GF0	PD	IDL	
	Bit 7	6	5	4	3	2	1	0	
Symbol	Function								
SMOD1	Double Baud rate bit. When set to a 1 and Timer 1 is used to generate baud rates, and the Serial Port is used in modes 1,2 , or 3.								
SMODO	When set, Read/Write accesses to SCON. 7 are to the FE bit. When clear, Read/Write accesses to SCON. 7 are to the SMO bit.								
-	Not implemented, reserved for future use.*								
POF	Power Off Flag. Set by hardware on the rising edge of V_{CC}. Set or cleared by software. This flag allows detection of a power failure caused reset. V_{CC} must remain above 3 V to retain this bit.								
GF1	General-purpose flag bit.								
GFO	General-purpose flag bit.								
PD	Power Down bit. Setting this bit activates Power Down operation.								
IDL	Idle mode bit. Setting this bit activates idle modes operation. If 1s are written to PD and IDL at the same time, PD takes precedence.								
NOTE: *User software should not write 1s to unimplemented bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0 , and its active value will be 1 . The value read from a reserved bit is indeterminate									

internal reset algorithm takes control. On-chip hardware inhibits access to the internal RAM during this time, but access to the port pins is not inhibited. To eliminate the possibility of unexpected outputs at the port pins, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external Data RAM.

10.2 Power Down Mode

An instruction that sets PCON. 1 causes that to be the last instruction executed before going into the Power Down mode. In this mode the on-chip oscillator is stopped. With the clock frozen, all functions are stopped, but the on-chip RAM and Special Function Registers are held. The port pins output the values held by their respective SFRs, and ALE and $\overline{\text { PSEN }}$ output lows. In Power Down V_{CC} can be reduced to as low as 2 V . Care must be taken, however, to ensure that V_{CC} is not reduced before Power Down is invoked.

The C51FX can exit Power Down with either a hardware reset or external interrupt. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power Down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 msec).

With an external interrupt, $\overline{\text { INTO }}$ or $\overline{\text { INT1 }}$ must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator and bringing the pin back high completes the exit. After the RETI instruction is executed in the interrupt service routine, the next instruction will be the one following the instruction that put the device in Power Down.

10.3 Power Off Flag

The Power Off Flag (POF) located at PCON.4, is set by hardware when $V_{C C}$ rises from 0 to 5 Volts. POF can also be set or cleared by software. This allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is one that is coincident with V_{CC} being turned on to the device after it was turned off. A
warm start reset occurs while V_{CC} is still applied to the device and could be generated, for example, by a Watchdog Timer or an exit from Power Down.

Immediately after reset, the user's software can check the status of the POF bit. POF $=1$ would indicate a cold start. The software then clears POF and commences its tasks. POF $=0$ immediately after reset would indicate a warm start.
V_{CC} must remain above 3 volts for POF to retain a 0.

11.0 EPROM VERSIONS

The 8XC51FX uses the Improved "Quick-Pulse" programmingTM algorithm. These devices program at V_{PP} $=12.75 \mathrm{~V}$ (and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$) using a series of five $100 \mu \mathrm{~s} \overline{\text { PROG }}$ pulses per byte programmed. This results in a total programming time of approximately 5 seconds for the 87C51FA's 8 Kbytes, 10 seconds for the 87C51FB's 16 Kbytes, and 20 seconds for the 87C51FC's 32 Kbytes.

Exposure to Light: The EPROM window must be covered with an opaque label when the device is in operation. This is not so much to protect the EPROM array from inadvertent erasure, but to protect the RAM and other on-chip logic. Allowing light to impinge on the silicon die while the device is operating can cause logical malfunction.

12.0 PROGRAM MEMORY LOCK

In some microcontroller applications, it is desirable that the Program Memory be secure from software piracy. The C51FX has varying degrees of program protection depending on the device. Table 24 outlines the lock schemes available for each device.

Encryption Array: Within the EPROM/ROM is an array of encryption bytes that are initially unprogrammed (all 1's). For EPROM devices, the user can program the encryption array to encrypt the program code bytes during EPROM verification. For ROM devices, the user submits the encryption array to be programmed by the factory. If an encryption array is submitted, LB1 will also be programmed by the factory. The encryption array is not available without the Lock Bit. Program code verification is performed as usual, except that each code byte comes out exclusive-NOR'ed (XNOR) with
one of the key bytes. Therefore, to read the ROM/EPROM code, the user has to know the encryption key bytes in their proper sequence.

Unprogrammed bytes have the value 0FFH. If the Encryption Array is left unprogrammed, all the key bytes have the value OFFH. Since any code byte XNOR'ed with OFFH leaves the byte unchanged, leaving the Encryption Array unprogrammed in effect bypasses the encryption feature.

When using the encryption array feature, one important factor should be considered. If a code byte has the value 0 FFH , verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the encryption array contents. For this reason all unused code bytes should be programmed with some value other than OFFH, and not all of them the same value. This will ensure maximum program protection.

Program Lock Bits: Also included in the Program Lock scheme are Lock Bits which can be enabled to provide varying degrees of protection. Table 25 lists the Lock Bits and their corresponding influence on the microcontroller. Refer to Table 24 for the Lock Bits available on the various products. The user is responsible for programming the Lock Bits on EPROM devices. On ROM devices, LB1 is automatically set by the factory when the encryption array is submitted. The Lock Bit is not available without the encryption array on ROM devices.

Erasing the EPROM also erases the Encryption Array and the Lock Bits, returning the part to full functionality.

Table 24. C51FX Program Protection

Device	Lock Bits	Encrypt Array
83C51FA	None	None
83C51FB	LB1	64 Bytes
83C51FC	LB1	64 Bytes
87C51FA	LB1, LB2, LB3	64 Bytes
87C51FB	LB1, LB2, LB3	64 Bytes
87C51FC	LB1, LB2, LB3	64 Bytes

13.0 ONCETM MODE

The ONCE (ON-Circuit Emulation) mode facilitates testing and debugging of systems using the C51FX without having to remove the device from the circuit. The ONCE mode is invoked by:

1. Pulling ALE low while the device is in reset and PSEN is high;
2. Holding ALE low as RST is deactivated.

While the device is in ONCE mode, the Port 0 pins go into a float state, and the other port pins, ALE, and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit.

Normal operation is restored after a valid reset is applied.

Table 25. Lock Blts

Program Lock Bits				Protection Type
	LB1	LB2	LB3	
1	U	U	U	
2	P	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memor, EA is sampled and latched on reset, and further programming of the EPROM is disabled.
3	P	P	U	Same as 2, also verify is disabled.
4	P	P	P	Same as 3, also external execution is disabled.

$P=$ Programmed
$\mathrm{U}=$ Unprogrammed
Any other combination of the Lock Bits is not defined.

14.0 ON-CHIP OSCILLATOR

The on-chip oscillator for the CHMOS devices, shown in Figure 29, consists of a single stage linear inverter intended for use as a crystal-controlled, positive reactance oscillator. In this application the crystal is operating in its fundamental response mode as an inductive reactance in parallel resonance with capacitance external to the crystal (Figure 30).

The oscillator on the CHMOS devices can be turned off under software control by setting the PD bit in the PCON register. The feedback resistor $\mathbf{R}_{\mathbf{f}}$ in Figure 29 consists of paralleled n - and p-channel FETs controlled by the PD bit, such that R_{f} is opened when $P D=1$. The diodes D1 and D2, which act as clamps to V_{CC} and $V_{S S}$, are parasitic to the R_{f} FETs.

The crystal specifications and capacitance values (C 1 and C 2 in Figure 30) are not critical. 30 pF can be used in these positions at any frequency with good quality crystals. In general, crystals used with these devices typically have the following specifications:
ESR (Equivalent Series Resistance) see Figure 32
C_{O} (shunt capacitance)
C_{L} (load capacitance)
Drive Level
7.0 pF maximum
$30 \mathrm{pF} \pm 3 \mathrm{pF}$
1 MW

Frequency, tolerance, and temperature range are determined by the system requirements.

A ceramic resonator can be used in place of the crystal in cost-sensitive applications. When a ceramic resonator is used, C1 and C2 are normally selected as higher values, typically 47 pF . The manufacturer of the ceramic resonator should be consulted for recommendations on the values of these capacitors.

A more in-depth discussion of crystal specifications, ceramic resonators, and the selection of values for C 1 and C2 can be found in Application Note AP-155, "Oscillators for Microcontrollers" in the Embedded Applications handbook.

To drive the CHMOS parts with an external clock souice, apply the external clock signal to XTAL1 and leave XTAL2 floating as shown in Figure 31. This is an important difference from the HMOS parts. With HMOS, the external clock source is applied to XTAL2, and XTAL1 is grounded.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the $V_{\text {IL }}$ and V_{IH} specifications the capacitance will not exceed 20 pF .

Figure 29. On-Chip Oscillator Circuitry

270653-27
Figure 30. Using the CHMOS On-Chip Oscillator

Figure 31. Driving the CHMOS Parts with an External Clock Source

15.0 CPU TIMING

The internal clock generator defines the sequence of states that make up a machine cycle. A machine cycle consists of 6 states, numbered S1 through S6. Each state time lasts for two oscillator periods. Thus a machine cycle takes 12 oscillator periods or 1 microsecond if the oscillator frequency is 12 MHz . Each state is then divided into a Phase 1 and Phase 2 half.

Rise and fall times are dependent on the external loading that each pin must drive. They are approximately 10 nsec , measured between 0.8 V and 2.0 V .

Propagation delays are different for different pins. For a given pin they vary with pin loading, temperature, V_{CC}, and manufacturing lot. If the XTAL1 waveform is taken as the timing reference, propagation delays may vary from 25 to 125 nsec .

The AC Timings section of the data sheets do not reference any timing to the XTAL1 waveform. Rather, they relate the critical edges of control and input signals to

Figure 32. ESR vs Frequency
each other. The timings published in the data sheets include the effects of propagation delays under the specified test condition.

ADDITIONAL REFERENCES

The following application notes provide supplemental information to this document and can be found in the Embedded Applications handbook.

1. AP-125 "Designing Microcontroller Systems for Electrically Noisy Environments"
2. AP-155 "Oscillators for Microcontrollers"
3. AP-252 "Designing with the 80 C 51 BH "
4. AP-410 "Enhanced Serial Port on the 83C51FA"
5. AP-415 "83C51FA/FB PCA Cookbook"
6. AB-41 "Software Serial Port Implemented with the PCA"
7. AP-425 "Small DC Motor Control"
8. The appropriate data sheet.

83C51FA/80C51FA

EXPRESS

83C51FA/80C51FA- 3.5 MHz to $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ 83C51FA-1/80C51FA-1-3.5 MHz to $16 \mathrm{MHz}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 10 \%$ 83C51FA-2/80C51FA-2- 0.5 MHz to $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
Extended Temperature Range
Burn-In
The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The optional burn-in is dynamic for a minimum time of 168 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.
D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits		Unit	Test Conditions
		Min	Max		
IIL	Logical 0 Input Current (Port 1, 2, 3)		-75	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0.45 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{V}_{\mathrm{CC}}-1.5$		V	$\mathrm{I}_{\mathrm{OH}}=-6.0 \mathrm{~mA}$

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range	Burn-In
P	Plastic	Commercial	No
D	Cerdip	Commercial	No
N	PLCC	Commercial	No
TP	Plastic	Extended	No
TD	Cerdip	Extended	No
TN	PLCC	Extended	No
LP	Plastic	Extended	Yes
LD	Cerdip	Extended	Yes
LN	PLCC	Yes	

NOTE:

- Commercial temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Extended temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- Burn-in is dynamic for a minimum time of 168 hours at $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).

Examples:

P83C51FA indicates 83C51FA in a plastic package and specified for commercial temperature range, without burn-in.
LD80C51FA indicates 80C51FA in a cerdip package and specified for extended temperature range with burnin.

> 87C51FA/83C51FA/80C51FA CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH 8 KBYTES INTERNAL PROGRAM MEMORY

87C51FA/83C51FA/80C51FA- 3.5 MHz to $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 20 \%$ 87C51FA-1/83C51FA-1/80C51FA-1- 3.5 MHz to $16 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$ 83C51FA-2/80C51FA-2- 0.5 MHz to $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$ 87C51FA-L—3.5 MHz to $8 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
- High Performance CHMOS EPROM
- Low Voltage Operation (-L only)
■ Power Control Modes
- Three 16-Blt Timer/Counters
- Programmable Counter Array with:
- High Speed Output,
- Compare/Capture,
- Pulse Width Modulator,
- Watchdog Timer Capabilities
■ Up/Down Timer/Counter
- Three Level Program Lock System
- 8K On-Chip Program Memory
- 256 Bytes of On-Chip Data RAM
- Improved Quick Pulse Programming Algorithm
- Boolean Processor
- 32 Programmable I/O Lines
■ 7 Interrupt Sources
- Programmable Serial Channel with:
- Framing Error Detection
- Automatic Address Recognition
- TTL Compatible Logic Levels
■ 64K External Program Memory Space
- 64K External Data Memory Space
- MCS ${ }^{\oplus}$-51 Compatible Instruction Set
- Power Saving Idle and Power Down Modes
■ ONCE (On-Circuit Emulation) Mode

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 8 Kbytes of the program memory can reside on-chip (except 80C51FA). In addition the device can address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 87C51FA is a single-chip control oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. The Intel 83C51FA/80C51FA is fabricated on CHMOS III technology. Being a member of the MCS $\begin{aligned} & -51 \text { family, the 87C51FA/83C51FA/80C51FA uses the same powerful instruction set, has the }\end{aligned}$ same architecture, and is pin-for-pin compatible with the existing MCS-51 products. The 87C51FA/83C51FA/ 80C51FA is an enhanced version of the $87 C 52 / 80 C 52 / 80 \mathrm{C} 32$. Its added features make it an even more powerful microcontroller for applications that require Pulse Width Modulation, High Speed I/O and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multiprocessor communications.

Applications that require low voltage operation can use the 87C51FA-L. The 87C51FA-L will operate at 3.3 V $\pm 0.3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz .

For the remainder of this document, the 87C51FA, 83C51FA, 80C51FA will be referred to as the 8XC51FA, unless information applies to a specific device.

8

Figure 1. 8XC51FA Block Diagram

PROCESS INFORMATION

The 87C51FA is manufactured on P629.0, a CHMOS III-E process. The 83C51FA/80C51FA are manufactured on P645, a CHMOS III process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\boldsymbol{\theta}_{\text {jc }}$
87C51FA	P	$40-$ Pin Plastic DIP (OTP)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
	D	$40-$ Pin CERDIP (EPROM) $45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$	
N	44-Pin PLCC (OTP) $44-$ Pin QFP (OTP)	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$	

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
83 C 51 FA	P	40 -Pin Plastic	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
80 C 51 FA		DIP		
	D	40 -Pin CERDIP	$36^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
	N	44 -Pin PLCC	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
	S	$44-$-Pin QFP	$97^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

Figure 2. Pin Connections

PIN DESCRIPTIONS

$V_{C C}$ Supply voltage.
$V_{S s}$: Circuit ground.
$\mathrm{V}_{\mathrm{SS} 1}$: Secondary ground (only on PLCC and QFP of 87C51FA). Provided to reduce ground bounce and improve power supply by-passing.

NOTE:
This pin is not a substitution for the V_{SS} pin.
Port 0: Port 0 is an 8-bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1 's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current (ILL, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 8XC51FA:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2), Clock Out P1.1
T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control) P1.2 ECI (External Count Input to the PCA)	
P1.3	CEX0 (External I/O for Compare/ Capture Module 0) CEX1 (External I/O for Compare/ Capture Module 1)
P1.5	CEX2 (External I/O for Compare/ Capture Module 2) CEX3 (External I/O for Compare/ Capture Module 3) CEX4 (External I/O for Compare/ Capture Module 4)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current ((l/L, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16 -bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current (IL, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { INT }}$ (external interrupt 0)
P3.3	$\overline{\text { NTT (}}$ (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR }}$ (external data memory write strobe)
P3.7	$\overline{\text { RD (external data memory read strobe) }}$

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. The port pins will be driven to their reset condition when a minimum $\mathrm{V}_{\mathrm{HH} 1}$ voltage is applied whether the oscillator is running or not (87C51FA only). An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{Cc}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during EPROM programming for the 87C51FA.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8 EH . With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/PROG pin, and the pin will be referred to as the ALE/PROG pin.
$\overline{\text { PSEN: }}$ Program Store Enable is the read strobe to external Program Memory.

When the 8XC51FA is executing code from external Program Memory, $\overline{\text { PSEN }}$ is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{\mathrm{EA}} / \mathrm{V}_{\mathrm{PP}}$: External Access enable. $\overline{\mathrm{EA}}$ must be strapped to VSS in order to enable the device to fetch code from external Program Memory locations 0000 H to 0 FFFFH. Note, however, that if either of the Program Lock bits are programmed, EA will be internally latched on reset.
$\overline{E A}$ should be strapped to V_{CC} for internal program executions.

This pin also receives the programming supply voltage ($V_{P P}$) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the in-
put to the internal clocking circuitry is through a di-vide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications the capacitance will not exceed 20 pF .

270258-3
C1, C2 $=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
For Ceramic Resonators, contact resonator manufacturer.
Figure 3. Oscillator Connections

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs. The PCA timer/counter can optionally be left running or paused during Idle Mode.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power

Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 8XC51FA either hardware reset or external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the onchip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power Down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INTO or INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

DESIGN CONSIDERATION

- The 87 C 51 FA -L will operate at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ with a frequency range of 3.5 MHz to 8 MHz . Operating beyond these specifications could cause improper device functionality. (To program the 87C51FA-L, follow the same procedure as the 87C51FA).
- Ambient light is known to affect the internal RAM contents during operation. If the 87C51FA application requires the part to be run under ambient lighting, an opaque label should be placed over the window to exclude light.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.
- The 87C51FA has some additional features that are not available on the 83C51FA/80C51FA. The features are: Timer 2 clockout, 4 interrupt priority levels, asynchronous port reset, 64-byte encryption array, and 3 program lock bits. These features cannot be used with the 83C51FA/ 80C51FA.

ONCE MODE

The ONCE ("On-Circuit Emulation') Mode facilitates testing and debugging of systems using the 8XC51FA without the 8XC51FA having to be removed from the circuit. The ONCE Mode is invoked by:

1) Pull ALE low while the device is in reset and PSEN is high;
2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins float, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 8XC51FA is in this mode, an emulator or test CPU cani be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias.$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/VPP Pin to $V_{S S} \ldots . .$.
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +6.5 V
lol per I/O Pin 15 mA
Power Dissipation
.1.5W (based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS T_{A} (Under Bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

$$
\left(87 \mathrm{C} 51 \mathrm{FA}-\mathrm{L}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\right)
$$

DC CHARACTERISTICS (Over Operating Conditions)

All parameter values apply to all devices unless otherwise indicated.

Symbol	Parameter	Min	Typical (Note 4)	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.2 V_{C C}-0.1$	V	
$\mathrm{V}_{\text {IL } 1}$	Input Low Voltage EA	0		$0.2 V_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathbf{H} \mathbf{H}}$	Input High Voltage (XTAL1, RST)	0.7 VCC		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
VOL	Output Low Voltage (Note 5) (Ports 1, 2 and 3)			$\begin{gathered} 0.3 \\ 0.45 \\ 1.0 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{lOL}=1.6 \mathrm{~mA}(\text { Note } 1) \\ & \mathrm{l}_{\mathrm{OL}}=3.5 \mathrm{~mA} \end{aligned}$
VOL1	Output Low Voltage (Note 5) (Port 0, ALE/PROG, $\overline{\text { PSEN }}$)			$\begin{gathered} 0.3 \\ 0.45 \\ 1.0 \end{gathered}$	V	$\begin{aligned} & \mathrm{IOL}=200 \mu \mathrm{~A} \\ & \mathrm{l} \mathrm{OL}=3.2 \mathrm{~mA}(\text { Note 1) } \\ & \mathrm{I}_{\mathrm{OL}}=7.0 \mathrm{~mA} \end{aligned}$
V_{OH}	Output High Voltage (Ports 1, 2 and 3 ALE/ $\overline{\text { PROG }}$ and $\overline{\text { PSEN }})$	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.7 \\ & V_{C C}-1.5 \end{aligned}$			V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-30 \mu \mathrm{~A} \text { (Note 2) } \\ & \mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.7 \\ & V_{C C}-1.5 \end{aligned}$			V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}(\text { Note } 2) \\ & \mathrm{I}_{\mathrm{OH}}=-7.0 \mathrm{~mA} \end{aligned}$
IIL	Logical 0 Input Current (Ports 1, 2 and 3)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
ILI	Input leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}
${ }^{\prime} \mathrm{TL}$	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)	.	.	-650	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$

DC CHARACTERISTICS (Over Operating Conditions)

All parameter values apply to all devices unless otherwise indicated.

Symbol	Parameter	Min	Typical (Note 4)	Max	Units	Test Conditions
RRST	RST Pulldown Resistor 87C51FA	50		300	$\mathrm{~K} \Omega$	
	83C51FA/80C51FA	40		225	$\mathrm{~K} \Omega$	
CIO	Pin Capacitance		10		pF	$@ 1 \mathrm{MHz}, 25^{\circ} \mathrm{C}$
ICC	Power Supply Current:					(Note 3)
	Active Mode					
	87C51FA-L at 8 MHz		20	40	mA	
	All Others at 12 MHz (Figure 5)		5	7.5	mA	
	Idle Mode at 12 MHz (Figure 5)		5	75	$\mu \mathrm{~A}$	

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\mathrm{OL}} \mathrm{S}$ of ALE and Ports 1,2 and 3 . The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitance loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with a Schmitt Trigger, or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures 6-9 for test conditions. Minimum V_{Cc} for power down is 2 V .
4. Typicals are based on limited number of samples, and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, loL must be externally limited as follows:

Maximum Iol per port pin:
10 mA
Maximum Iol per 8-bit port -
Port 0: $\quad 26 \mathrm{~mA}$
Ports 1, 2, and 3: $\quad 15 \mathrm{~mA}$
Maximum total lol for all output pins: $\quad 71 \mathrm{~mA}$
If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

270258-5
$I_{C C}$ Max at other frequencies is given by:
Active Mode

$$
\operatorname{ICC} M A X=2.2 \times \text { FREQ }+3.1
$$

Idle Mode
Icc MAX $=0.49 \times$ FREQ +1.6
Where FREQ is in MHz, ICCMAX is given in mA.
Figure 5. Icc vs Frequency

Figure 6. Icc Test Condition, Active Mode

Figure 7. Icc Test Condition Idle Mode

Figure 8. Icc Test Condition, Power Down Mode.

$$
\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}
$$

270258-19
Figure 9. Clock Signal Waveform for Icc Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)

L: Logic level LOW, or ALE
P: $\overline{\text { PSEN }}$
Q: Output Data
R: $\overline{\mathrm{RD}}$ signal
T : Time
V: Valid
W: $\overline{W R}$ signal
X : No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low
TLLPL $=$ Time from ALE Low to PSEN Low

AC CHARACTERISTICS (Over Operating Conditions, Load Capacitance for Port 0, ALE/PROG and PSEN $=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1	$\begin{aligned} & \text { Oscillator Frequency } \\ & \text { 8XC51FA } \\ & \text { 8XC51FA-1 } \\ & \text { 8XC51FA-2 } \\ & \hline \end{aligned}$					MHz
$\overline{\text { TCLCL }}$				3.5	12	
				3.5	16	
				0.5	12	
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	53		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		234		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	53		TCLCL-30		ns
TPLPH	PSEN Pulse Width	205		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		145		3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		59		TCLCL-25	ns
TAVIV	Address to Valid Instruction In		312		5TCLCL-105	ns
TPLAZ	$\overline{\text { PSEN }}$ Low to Address Float		10		10	ns
TRLRH	$\overline{\text { RD Pulse Width }}$	400		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	400		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		107		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns

AC CHARACTERISTICS (Over Operating Conditions, Load Capacitance for Port 0, ALE/PROG and PSEN $=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$) (Continued)

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{W R}$ Low	200	300	3TCLCL-50	$3 T C L C L+50$	ns
TAVWL	Address Valid to WR Low	203		4TCLCL-130		ns
TQVWX	Data Valid to \bar{W} Transition	33		TCLCL-50		ns
TWHQX	Data Hold after $\overline{W R}$	33		TCLCL-50		ns
TQVWH	Data Valid to WR High	433		7TCLCL-150		ns
TRLAZ	$\overline{R D}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{W R}$ High to ALE High	43	123	TCLCL-40	TCLCL + 40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING-SHIFT REGISTER MODE

Test Conditions: Over Operating Conditions; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{1 2 ~ M H z ~ O s c i l l a t o r ~}$		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1		12 TCLCL		$\mu \mathrm{s}$
TQVXH	Output Data Setup to Clock Rising Edge	700		10 TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency			
	8XC51FA	3.5	12	
	8XC51FA-1	3.5	16	MHz
	8XC51FA-2	0.5	12	ns
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	

EXTERNAL CLOCK DRIVE WAVEFORM

270258-13

AC TESTING INPUT, OUTPUT WAVEFORMS

AC Inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing measurements are made at $\mathrm{V}_{I H}$ min for a Logic " 1 " and $V_{\text {OL max for }}$ m Logic " 0 ".

PROGRAMMING THE EPROM

To be programmed, the part must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate internal EPROM locations.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0-P2.4 of Port 2, while the code byte to be programmed into that location is applied to Port 0. The other Port 2 and 3 pins, RST PSEN, and $\overline{E A} / V_{P P}$ should be held at the "Program" levels indicated in Table 2. ALE/PROG is pulsed low to program the code byte into the addressed EPROM location. The setup is shown in Figure 10.

FLOAT WAVEFORMS

270258-15
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{l}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}= \pm 20 \mathrm{~mA}\left(-\mathrm{L}, \mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}= \pm 10 \mathrm{~mA}\right)$.

Normally $\overline{E A} / V_{P P}$ is held at logic high until just before ALE/PROG is to be pulsed. Then $\overline{E A} / V_{P P}$ is raised to $V_{P P}$, ALE/PROG is pulsed low, and then $\overline{E A} / V_{P P}$ is returned to a valid high voltage. The voltage on the $\overline{E A} / V_{P P}$ pin must be at the valid $\overline{E A} / V_{P P}$ high level before a verify is attempted. Waveforms and detailed timing specifications are shown in later sections of this data sheet.

NOTE:

- $\overline{E A} / V_{\text {PP }}$ pin must not be allowed to go above the maximum specified $V_{P P}$ level for any amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The VPP source should be well regulated and free of glitches.
- Programming specifications for the 87C51FA-L are the same as the standard 87C51FA.

Table 2. EPROM Programming Modes

Mode		RST	$\overline{\text { PSEN }}$	$\frac{\text { ALE/ }}{\text { PROG }}$	EA/ VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code Data		H	L	ப	12.75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0-3FH		H	L	-	12.75 V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	ป	12.75 V	H	H	H	H	H
	Bit 2	H	L	Ч	12.75 V	H	H	H	L	L
	Bit 3	H	L	บ	12.75 V	H	L	H	H	L
Read Signature Byte		H	L	H	H	L	L	L	L	L

*See Table 2 for proper input on these pins
Figure 10. Programming the EPROM

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the 87C51FA the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from $V_{C C}$ to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse, ALE/ $\overline{\text { PROG }} 5$ times for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Program verify may be done after each byte or block of bytes is programmed. In either case a complete verify of the programmed array will ensure reliable programming of the 87C51FA.

The lock bits cannot be directly verified. Verification of the lock bits is done by observing that their features are enabled.

Figure 11. Programming Signals Waveforms

EPROM Lock System

The 87C51FA program lock system, when programmed, protects the onboard program against software piracy.

The 87C51FA has a 3 -level program lock system and a 64-byte encryption array. Since this is an EPROM device, all locations are user-programmable. See Table 3. The 83C51FA does not have protection features.

Encryption Array

Within the EPROM array are 64 bytes of Encryption Array that are initially unprogrammed (all 1's). Every time that a byte is addressed during a verify, 6 address lines are used to select a byte of the Encryp-
tion Array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an Encryption Verify byte. The algorithm, with the array in the unprogrammed state (all 1's), will return the code in its original, unmodified form. For programming the Encryption Array, refer to Table 2 (Programming the EPROM).

When using the encryption array, one important factor needs to be considered. If a code byte has the value $0 F F F$, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the contents of the encryption array. For this reason all unused code bytes should be programmed with some value other than OFFH, and not all of them the same value. This will ensure maximum program protection.

Table 3. Program Lock Bits and the Features

Program Lock Bits			Protectlon Type	
	LB1	LB2		
1	U	U		No Program Lock features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.)
2	P	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.
3	P	P	U	Same as 2, also verify is disabled.
4	P	P	P	Same as 3, also external execution is disabled.

[^7]
Program Lock Bits

The 87C51FA has 3 programmable lock bits that when programmed according to Table 3 will provide different levels of protection for the on-chip code and data.

Erasing the EPROM also erases the encryption array and the program lock bits, returning the part to full functionality.

Reading the Signature Bytes

The 87C51FA has 3 signature bytes in locations $30 \mathrm{H}, 31 \mathrm{H}$, and 60 H . The 83C51FA has 2 signature bytes in locations 30 H and 31 H . To read these bytes follow the procedure for EPROM verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Contents	
	87C51FA	83C51FA
30 H	89 H	89 H
31 H	58 H	53 H
60 H	FAH	

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least 15 W -sec/cm. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the all EPROM Cells in a 1's state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
VPP	Programming Supply Voltage	12.5	13.0	V
IPP	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold after $\overline{\text { PROG }}$	48TCLCL		
TDVGL	Data Setup to PROG Low	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	P2.7 (ENABLE) High to VPP	48 TCLCL		
TSHGL	VPP Setup to PROG Low	10		$\mu \mathrm{s}$
TGHSL	VPP Hold after $\overline{\text { PROG }}$. 10		$\mu \mathrm{S}$
TGLGH	$\overline{\text { PROG Width }}$	90	110	$\mu \mathrm{S}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	PROG High to PROG Low	10		μs

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION HISTORY

This data sheet (270258-007) is valid for devices with an " A " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following differences exist between this data sheet (270258-007) and the previous version (270258-006):

1. The 83C51FA/80C51FA CHMOS Single-Chip 8-Bit Microcontroller data sheet (270538-004) has been combined with the 87C51FA CHMOS Single-Chip 8-Bit Microcontroller with 8 Kbytes User Programmable EPROM data sheet (270258-006) to create this new data sheet.
2. 83C51FA/80C51FA specs have been added to the Package Table and DC Characteristics Table.
3. Added 3.3 V device to data sheet.
4. EPROM Programming Information has been added.
5. The Operating Temperature Range has been changed to: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The following differences exist between the -006 and the -005 versions of the 87C51FA data sheet.

1. "NC" pin labels changed to "Reserved" in Figure 2.
2. θ_{ja} and θ_{jc} information added to Packages table.
3. Capacitor value for ceramic resonators deleted in Figure 3.
4. Maximum Power Down current spec corrected to $75 \mu \mathrm{~A}$ from $7.5 \mu \mathrm{~A}$.
5. Pin numbers deleted from Figure 10.
6. Absolute Maximum Ambient Temperature under Bias changed from " $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ " to " $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{\prime \prime}$.
7. All references to Program Lock Bit and Encryption Array deleted from "Program Verification" section. This information is available in the hardware description.

The following differences exist between the -005 and the -004 versions of the 87C51FA data sheet:

1. Voltage tolerance changed from $\pm 10 \%$ to $\pm 20 \%$.
2. Technology changed from CHMOS II-E to CHMOS III-E.
3. QFP package offering added.
4. Asynchronous port reset added.
5. ALE disable paragraph added.
6. $\mathrm{C} 1, \mathrm{C} 2$ guideline clarified in Figure 3.
7. Data sheet status notice and absolute maximum ratings warning reworded.
8. Operating Conditions heading added.
9. RRST changed from $40 \mathrm{~K} \Omega \min , 225 \mathrm{~K} \Omega \max$ to $50 \mathrm{~K} \Omega \min , 300 \mathrm{k} \Omega \max$
10. Typical values deleted for $I_{I L}, I_{L I}, I_{T L}$ and RRST.
11. Note 1 (ALE noise pulses) reworded.
12. Figure 5 I IC graph lines extended from 12 MHz to 16 MHz .
13. Various EPROM programming algorithm changes implemented:

- P3.3 control line added to Table 2
— Lock Bit 3 added to Table 2
- Number of programming pulses decreased from 25 to 5
- Figure 12 deleted

14. Number of Signature Bytes changed from 2 to 3.
15. Programming Supply Current changed from 50 mA to 75 mA Max.
16. Program Lock System changed from 2 Lock Bits to 3, and from 32 Encryption Bytes to 64.

DATA SHEET REVISION HISTORY (Continued)

The following are the key differences between the -004 and the -003 versions of the 87C51FA data sheet:

1. Included the 16 MHz device.
2. Deleted the word Maximum from the lol line of ABSOLUTE MAXIMUM RATINGS.
3. Deleted the $\overline{E A}$ from $V_{\mathbb{I H}}$ line of $D C$ Table.
4. Pin capacitance now specified as Typical only.

The following are the key differences between the -003 and the -002 version of the 87C51FA data sheet:

1. Data sheet was upgraded from ADVANCE INFORMATION to PRELIMINARY.
2. The old device name (87C252) was removed from the title.
3. PLCC pin connection diagram was added.
4. Package table was added.
5. Exit from Power Down Mode was clarified.
6. Maximum lol per I/O was added to ABSOLUTE MAXIMUM RATINGS.
7. Note 4 was added to explain the maximum safe current specification.
8. IPD was improved from $100 \mu \mathrm{~A}$ to $75 \mu \mathrm{~A}$.
9. Typical DC Characteristics were added for $I_{L L}, I_{L I}, I_{T L}, R R S T$ and $I_{C C}$.
10. Note 5 was added to explain the test conditions for typical values.
11. Timing specifications improved for:

TAVLL changed from TCLCL-55 to TCLCL-40
TLLAX changed from TCLCL-35 to TCLCL-30
TLLPL changed from TCLCL-40 to TCLCL-30
TRHDZ changed from TCLCL-70 to TCLCL-60
TQVWX changed from "Address Valid Before WR" to "Data Valid to WR Transition" and changed from TCLCL-60 to TCLCL-50
TQVWH was added.
12. Data sheet revision summary was added.
13. EA Leakage current not specified.

87C51FA

EXPRESS

■ Extended Temperature Range
 3.5 MHz to $12 \mathrm{MHz} \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$

■ Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the 8051 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The optional burn-in is dynamic for a minimum time of 168 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.
D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits		Unit	Test Conditions
		Min	Max		
ILL	Logical 0 Input Current (Port 1, 2, 3)		-75	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\mathbf{L}}$	Input Leakage Current (Port 0 and $\overline{E A}$)		± 15	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$
ITL	Logical 1 to 0 transition Current (Ports 1, 2, 3)		-750	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
ICC	Power Supply Current Active Mode Idle Mode Power Down Mode		$\begin{array}{r} 35 \\ 7.5 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$	(Note 1)

NOTE:

1. $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$, Frequency Range $=3.5 \mathrm{MHz}-12 \mathrm{MHz}$.

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range(2)	Burn-in(3)
P	Plastic	Commercial	No
D	Cerdip	Commercial	No
N	PLCC	Commercial	No
TP	Plastic	Extended	No
TD	Cerdip	Extended	No
TN	PLCC	Extended	No
LP	Plastic	Extended	Yes
LD	Cerdip	Extended	Yes
LN	PLCC	Yes	

NOTES:

2. Commercial temperature range is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Extended temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
3. Burn-in is dynamic for a minimum time of 168 hours at $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD883 Method 1015 (Test Condition D).

Examples:

P87C51FA indicates 87C51FA in a plastic package and specified for commercial temperature range, without burn-in.
LD87C51FA indicates 87C51FA in a cerdip package and specified for extended temperature range with burnin.

87C51FA-20/-3
 COMMERCIAL/EXPRESS 20 MHz CHMOS MICROCONTROLLER

> 87C51FA-20-3.5 MHz to $20 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$ 87C51FA-3-24 MHz Internal Operation, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$

■ High Performance CHMOS EPROM

- 24 MHz Internal Operation (-3 only)
- Power Control Modes
- Three 16-Bit Timer/Counters
- Programmable Counter Array with:
- High Speed Output,
- Compare/Capture,
- Pulse Width Modulator,
- Watchdog Timer Capabilities
- Up/Down Timer/Counter
- Three Level Program Lock System
- 8K On-Chip EPROM

■ 256 Bytes of On-Chip Data RAM

- Improved Quick Pulse Programming Algorithm

■ Boolean Processor

- 32 Programmable I/O Lines
- 7 Interrupt Sources
- Programmable Serial Channel with: - Framing Error Detection
- Automatic Address Recognition
- TTL Compatible Logic Levels
- 64K External Program Memory Space
- 64K External Data Memory Space
- MCS ${ }^{\circledR-51 ~ C o m p a t i b l e ~ I n s t r u c t i o n ~ S e t ~}$

■ Power Saving Idle and Power Down Modes

- ONCE (On-Circuit Emulation) Mode

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 8 Kbytes of the program memory can reside in the on-chip EPROM. In addition the device can address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 87C51FA-20 is a single-chip control oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS®-51 family, the 87C51FA-20 uses the same powerful instruction set, has the same architecture, and is pin for pin compatible with the existing MCS-51 products. The 87C51FA-20 is an enhanced version of the 87C51. It's added features make it an even more powerful microcontroller for applications that require Pulse Width Modulation, High Speed I/O and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

The 87C51FA-3 has the same 3.5 MHz to 20 MHz frequency range as the 87C51FA-20 when operating out of external program/data memory. When running out of internal program/data memory, the 87C51FA-3 can operate up to 24 MHz .

Throughout this document 87C51FA-20 will refer to both the 87C51FA-20 and the 87C51FA-3.

Figure 1. 87C51FA-20 Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
87 C 51 FA-20	P	40 -Pin Plastic DIP (OTP)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
	D	40 -Pin CERDIP (EPROM)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
	N	44 -Pin PLCC (OTP)	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
	S	44 -Pin QFP (OTP)	$97^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

Figure 2. Pin Connections

PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (5V).
$\mathrm{V}_{\text {SS }}$	Circuit ground.
$\mathrm{V}_{\text {SS } 1}$	Secondary ground (connection not necessary). Provided to reduce ground bounce and improve power supply bypassing. NOTE: This pin is not a substitute for the V_{SS} pin. Connect V_{SS} and $\mathrm{V}_{\mathrm{SS} 1}$ with the lowest impedance path possible.
Port 0	8-bit, open drain, bidirectional I/O port. These pins are shared with the multiplexed address/data bus which has strong internal pullups. Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during verification. When used as an I/O port, pullups to V_{CC} may be needed.
Port 1	8 -bit bidirectional I/O port. All of the port 1 pins are shared with other functions in the 87C51FA-20. Port 1 is also used as the low-order address byte input during EPROM programming.
Port 2	8 -bit bidirectional I/O port. Port 2 also emits the high-order address byte during accesses to 16-bit external memory locations. Some of the Port 2 pins are also used as address bits for EPROM programming.
Port 3	8 -bit bidirectional I/O port. All of the port 3 pins are shared with other functions in the 87C51FA-20. Two of the pins are used as control lines ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$) for accessing external RAM.
RESET	Reset input to the chip. A high Input for a minimum of two machine cycles with the oscillator running resets the device. The port pins will be reset when a voltage above $\mathrm{V}_{\mathbb{H}}$ is applied whether the oscillator is running or not. RST has an internal pulldown.
ALE/PROG	Address Latch Enable. Provides a signal to demultiplex the address from the address/data bus. In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency. Note, however, that one ALE pulse is skipped during each access to external data memory. If desired, ALE can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode. This pin is also the program pulse input during EPROM programming.
PSEN	Program Store Enable. Acts as read strobe for external program memory fetches.
$\overline{E A} / V_{\text {PP }}$	External Access Enable. $\overline{E A}$ must be strapped to $V_{S S}$ in order to enable the device to fetch code from external program memory locations 0000 H to OFFFFH. EA should be strapped to V_{CC} for internal program executions. If any of the lock bits are programmed, EA will be internally latched on reset. This pin also receives the programming supply voltage (V_{PP}) during EPROM programming.
XTAL1	Input to the inverting oscillator amplifier.
XTAL2	Output from the inverting oscillator amplifier.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature
Under Bias $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/VPp Pin to $\mathrm{V}_{\mathrm{SS}} \ldots \ldots .0 \mathrm{~V}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +6.5 V
lol per I/O Pin
15 mA
Power Dissipation
. 1.5 W (based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\text {A }}$	Ambient Temperature Under Bias Commercial Express	$\begin{gathered} 0 \\ -40 \end{gathered}$	$\begin{aligned} & +70 \\ & +85 \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.0	6.0	V
fosc	Oscillator Frequency	3.5	20	MHz

DC CHARACTERISTICS (Over Operating Conditions)
All parameter values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	Typical (Note 4)	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.2 \mathrm{~V}_{C C}-0.1$	V	
$\mathrm{V}_{\mathrm{IL} 1}$	Input Low Voltage $\overline{\mathrm{EA}}$	0		$0.2 V_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{C C}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage (XTAL1, RST)	0.7 V CC		$\mathrm{V}_{\mathrm{CC}}+0.5$	v	
VoL	Output Low Voltage (Note 5) (Ports 1, 2 and 3)			$\begin{gathered} 0.3 \\ 0.45 \\ 1.0 \end{gathered}$	V	$\begin{aligned} & \mathrm{lOL}=100 \mu \mathrm{~A} \\ & \mathrm{lOL}=1.6 \mathrm{~mA}(\text { Note } 1) \\ & \mathrm{loL}=3.5 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Note 5) (Port 0, ALE/PROG, $\overline{\text { PSEN }}$)			$\begin{gathered} 0.3 \\ 0.45 \\ 1.0 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{IOL}=200 \mu \mathrm{~A} \\ & \mathrm{lOL}=3.2 \mathrm{~mA}(\text { Note } 1) \\ & \mathrm{lOL}=7.0 \mathrm{~mA} \\ & \hline \end{aligned}$
V_{OH}	Output High Voltage (Ports 1, 2 and 3 ALE/PROG and PSEN	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-0.3 \\ & \mathrm{~V}_{\mathrm{CC}}-0.7 \\ & \mathrm{~V}_{\mathrm{CC}}-1.5 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-30 \mu \mathrm{~A} \text { (Note 2) } \\ & \mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External bus Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-0.3 \\ & \mathrm{~V}_{\mathrm{CC}}-0.7 \\ & \mathrm{~V}_{\mathrm{CC}}-1.5 \end{aligned}$			$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \\ & \mathrm{IOH}^{2}=-3.2 \mathrm{~mA}(\text { Note } 2) \\ & \mathrm{I}_{\mathrm{OH}}=-7.0 \mathrm{~mA} \\ & \hline \end{aligned}$
ILI	Logical 0 Input Current (Ports 1, 2 and 3) Commercial Express			$\begin{aligned} & -50 \\ & -75 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }_{\text {LII }}$	Input Leakage Current (Port 0) Commercial Express			$\begin{aligned} & \pm 10 \\ & \pm 15 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}

DC CHARACTERISTICS (Over Operating Conditions) (Continued)
All parameter values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	Typical (Note 4)	Max	Units	Test Conditions
I_{TL}	Logical 1 to 0 Transition Current (Ports 1, 2 and 3) Commercial Express			-650 -750	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
RRST	RST Pulldown Resistor	50		300	K Ω	
ClO	Pin Capacitance		10		pF	@ $1 \mathrm{MHz}, 25^{\circ} \mathrm{C}$
I_{CC}	Power Supply Current Active Mode Commercial Express Idle Mode Power Down Mode		$\begin{gathered} 24 \\ 8 \\ 5 \end{gathered}$	$\begin{gathered} 47.1 \\ 55 \\ 11.4 \\ 75 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$	(Note 3)

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\mathrm{OL}} \mathrm{s}$ of ALE and Ports 1, 2 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitance loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with a Schmitt Trigger, or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures 4-7 for test conditions. Minimum V_{Cc} for power down is 2 V .
4. Typicals are based on limited number of samples, and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, loL must be externally limited as follows:

Maximum lol per port pin:
Maximum IOL per 8-bit port -
Port 0: $\quad 26 \mathrm{~mA}$
Ports 1, 2 and 3: $\quad 15 \mathrm{~mA}$
Maximum total loL for all output pins: $\quad 71 \mathrm{~mA}$
If $I_{O L}$ exceeds the test condition, $V_{O L}$ may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

272081-7
Icc Max at other frequencies is given by:
Active Mode
ICC Max $=2.2 \times$ FREQ +3.14
Idle Mode
Icc Max $=0.49 \times$ FREQ +1.6
Where Osc Freq is in MHz, Icc is in mA
Figure 3. Icc vs Frequency

Figure 4. Icc Test Condition, Active Mode

Figure 5. Icc Test Condition Idle Mode

272081-10

All other pins disconnected
Figure 6. Icc Test Condition, Power Down Mode.

$$
\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}
$$

272081-11
Figure 7. Clock Signal Waveform for Icc Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

```
A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)
```

L: Logic level LOW, or ALE
P: $\overline{\text { PSEN }}$
Q: Output Data
R: $\overline{R D}$ signal
T: Time
V: Valid
W: $\overline{\mathrm{WR}}$ signal
X : No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low
TLLPL $=$ Time from ALE Low to PSEN Low

AC CHARACTERISTICS: (Under Operating Conditions, Load Capacitance for Port 0, ALE/产ROG and PSEN $=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	20 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1	Oscillator Frequency					
$\overline{\text { TCLCL }}$	87C51FA-20			3.5	20	MHz
TLHLL	ALE Pulse Width	60		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	10		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	20		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		125		4TCLCL-75	ns
TLLPL	ALE Low to $\overline{\text { PSEN }}$ Low	20		TCLCL-30		ns
TPLPH	PSEN Pulse Width	105		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		60		3TCLCL-90	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		30		TCLCL-20	ns
TAVIV	Address to Valid Instruction In		145		5TCLCL-105	ns
TPLAZ	PSEN Low to Address Float		10		10	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	200		6TCLCL-100		ns
TWLWH	WR Pulse Width	200		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		155		5TCLCL-95	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		40		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		310		8TCLCL-90	ns
TAVDV	Address to Valid Data In		360		9TCLCL-90	ns

AC CHARACTERISTICS: (Under Operating Conditions, Load Capacitance for Port 0, ALE/ $\overline{\text { PROG }}$ and PSEN $=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$) (Continued)

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	20 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{W R}$ Low	100	200	3TCLCL-50	$3 T C L C L+50$	ns
TAVWL	Address Valid to WR Low	110		4TCLCL-90		ns
TQVWX	Data Valid to $\bar{W} \mathrm{CR}$ Transition	15		TCLCL-35		ns
TWHQX	Data Hold after \bar{W}	10		TCLCL-40		ns
TQVWH	Data Valid to WR High	280		7TCLCL-70		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		, 0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\bar{W} \mathrm{R}$ High to ALE High	10	123	TCLCL-40	TCLCL +40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING - SHIFT REGISTER MODE

Test Conditions: Over Operating Conditions; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{2 0} \mathbf{M H z}$ Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	600		$12 T C L C L$		ns
TQVXH	Output Data Setup to Clock Rising Edge	367		10 TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-50		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		367		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

272081-5
$\mathrm{C} 1, \mathrm{C} 2=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
For Ceramic Resonators contact resonator manufacturer.

Figure 9. External Clock Drive Configuration

Figure 8. Oscillator Connections

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency	3.5	20	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

AC TESTING INPUT, OUTPUT WAVEFORMS

272081-17
AC inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic " 1 " and 0.45 V for a Logic " 0 '. Timing measurements are made at V_{IH} min for a Logic " 1 " and $V_{\text {OL max }}$ for a Logic " 0 ".

FLOAT WAVEFORMS

272081-18
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{IOL} / \mathrm{I}_{\mathrm{OH}} \geq \pm 20 \mathrm{~mA}$.

EPROM CHARACTERISTICS

Table 1．EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{E A /} \\ & \mathbf{V}_{P P} \end{aligned}$	P2．6	P2．7	P3．3	P3．6	P3．7
Program Code Data		H	L	い	12．75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0－3FH		H	L	工	12.75 V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	い	12.75 V	H	H	H	H	H
	Bit 2	H	L	ᄃ	12.75 V	H	H	H	L	L
	Bit 3	H	L	工	12.75 V	H	L	H	H	L
Read Signature Byte		H	L	H	H	L	L	L	L	L

[^8]Figure 10．EPROM Programming Configuration

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the 87C51FA-20 the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from V_{CC} to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse, ALE/ $\overline{\text { PROG }} 5$ times for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Program verify may be done after each byte that is programmed, or after a block of bytes that is programmed. In either case a complete verify of the entire array that has been programmed will ensure a reliable programming of the 87C51FA-20.

The lock bits cannot be directly verified. Verification of the lock bits is done by observing that their features are enabled.

Figure 11. Programming Waveforms

Signature Bytes

Location	Contents	Description
30 H	89 H	Indicates Intel Devices
31 H	58 H	Indicates FX-Core Product
60 H	FAH	Indicates 87C51FA Device

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended
time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}$. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the all EPROM Cells in a 1's state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

（ $T_{\mathrm{A}}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ ）

Symbol	Parameter	Min	Max	Units
V_{PP}	Programming Supply Voltage	12.5	13.0	V
Ipp	Programming Supply Current		75	mA
1／TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold after PROG	48TCLCL		
TDVGL	Data Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	P2．7（ENABLE）High to VPP	48TCLCL		
TSHGL	$V_{\text {PP }}$ Setup to $\overline{\text { PROG }}$ Low	10		$\mu \mathrm{s}$
TGHSL	$V_{\text {PP }}$ Hold after $\overline{\text { PROG }}$	10		$\mu \mathrm{s}$
TGLGH	$\overline{\text { PROG Width }}$	90	110	$\mu \mathrm{S}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48 TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	$\overline{\text { PROG High to PROG Low }}$	10		$\mu \mathrm{s}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DESIGN CONSIDERATION

- When running out of internal program/data memory, the 87C51FA-3 can be operated using a 24 MHz clock. If the 87C51FA-3 is running out of external program/data memory, the operating frequency must be between 3.5 MHz to 20 MHz . The 87C51FA-3 will not function properly at 24 MHz when running out of external program/ data memory.
- Ambient light is known to affect the internal RAM contents during operation. If the 87C51FA-20 application requires the part to be run under ambient lighting, an opaque label should be placed over the window to exclude light.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes
control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.
- The Timer 2 clock out frequency on the 8XC51FA-20 is determined by the equation in the 8XC51FX Hardware Description as shown below:

$$
\text { Clock-Out Frequency }=\frac{\text { Oscillator Frequency }}{4 \times(65536-\text { RCAP2H, RCAP2L })}
$$

Even though the equation permits a clock-out frequency of 5 MHz with a 20 MHz oscillator, the maximum output frequency is 4 MHz . When operating the device above 16 MHz , RCAP2L must be limited to FEH.

DATA SHEET REVISION HISTORY

This data sheet (272081-002) is valid for devices with an " A " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following differences exist between this data sheet (272081-002) and the previous version (272081-001):

1. Added $87 \mathrm{C} 51 \mathrm{FA}-3$ to 20 MHz data sheet.
2. Variable Oscillator equations in External Memory Characteristics Table changed as follows:

	From	To
TLLIV	120	125
	4TCLCL-80	4 TCLCL-75
TPLIV	3TCLCL-95	3 TCLCL-90
TWHQX	0	10
	TCLCL-50	TCLCL-40
TQVWH	200	280
	$7 T C L C L-150$	$7 T C L C L-70$

The following differences exist between revision 1 of the 87C51FA-20 (272081-001) data sheet and the 87C51FA (270258-005) data sheet.

1. All explanatory wording duplicated in the device user's guide was deleted.
2. Variable Oscillator equations in External Memory Characteristics Table changed as follows:

	From	To
TLLIV	4TCLCL-100	4TCLCL-80
TPLIV	3TCLCL-105	3TCLCL-95
TPXIZ	TCLCL-25	TCLCL-20
TRLDV	5TCLCL-165	5TCLCL-95
TLLDV	8TCLCL-150	8TCLCL-90
TAVDV	9TCLCL-165	9TCLCL-90
TAVWL	4TCLCL-130	4TCLCL-90
TQVWX	TCLCL-50	TCLCL-35

3. TXHQX in the Serial Port Timing Table changed from (2TCLCL - 117) to (2TCLCL - 50).
4. All references to Program Lock Bit and Encryption Array deleted from "Program Verification" section. This information is available in the hardware description.

> 87C51FB/83C51FB-3.5 MHz to $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$ 87C51FB-1/83C51FB-1- 3.5 MHz to $16 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$ 87C51FB-L/83C51FB-L-3.5 MHz to $8 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

- High Performance CHMOS EPROM

- Low Voltage Operation (-L Only)

■ Three 16-Bit Timer/Counters

- Programmable Clock Out
- Programmable Counter Array with:
- High Speed Output,
- Compare/Capture,
- Pulse Width Modulator,
- Watchdog Timer capabilities

■ Up/Down Timer/Counter

- Three Level Program Lock System
- 16K On-Chip EPROM
- 256 Bytes of On-Chip Data RAM
- Improved Quick Pulse Programming Algorithm
- Boolean Processor
- 32 Programmable I/O Lines
- 7 Interrupt Sources
- Four Level Interrupt Priority

■ Programmable Serial Channel with: -Framing Error Detection - Automatic Address Recognition

- TTL and CMOS Compatible Logic Levels
- 64K External Program Memory Space
- 64K External Data Memory Space
- MCS ${ }^{\circledR}$-51 Fully Compatible Instruction Set
- Power Saving Idle and Power Down Modes
- ONCE (On-Circuit Emulation) Mode

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 16 Kbytes of the program memory can reside in the on-chip EPROM. In addition the device can address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 87C51FB/83C51FB is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS-51 family, the 87C51FB/83C51FB uses the same powerful instruction set, has the same architecture, and is pin for pin compatible with the existing MCS-51 family of products. The $87 \mathrm{C} 51 \mathrm{FB} / 83 \mathrm{C} 51 \mathrm{FB}$ is an enhanced version of the $87 \mathrm{C} 51 / 80 \mathrm{C} 51 \mathrm{BH}$. It's added features make it an even more powerful microcontroller for applications that require Pulse Width Modulation, High Speed I/O, and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

Applications that require low voltage operation can use the 87C51FB-L/83C51FB-L. The 8XC51FB-L will operate at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz .

Throughout this document 8XC51FB will refer to both the 83C51FB and the 87C51FB.

Figure 1. 8XC51FB Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
$8 \times C 51 \mathrm{FB}$	P	$40-$-Pin Plastic DIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
87 C 51 FB	D	$40-$ Pin CERDIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times \mathrm{C} 51 \mathrm{FB}$	N	$44-$ Pin PLCC	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times \mathrm{C} 51 \mathrm{FB}$	S	44 -Pin QFP	$96^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

Figure 2. Pin Connections

PIN DESCRIPTIONS

$V_{C C}$ Supply voltage.
$V_{S s}$: Circuit ground.
$\mathrm{V}_{\mathrm{SS} 1}$: Secondary ground (not on DIP). Provided to reduce ground bounce and improve power supply by-passing.

NOTE:
This pin is not a substitute for the $V_{S S}$ pin. Connect V_{SS} and $\mathrm{V}_{\mathrm{SS} 1}$ with the lowest impedance path possible.

Port 0: Port 0 is an 8 -bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1 's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (l/IL, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 8XC51FB:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2), Clock-Out P2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control)
P1.2	ECl (External Count Input to the PCA)
P1.3	CEX0 (External I/O for Compare/ Capture Module 0)
P1.4	CEX1 (External I/O for Compare/ Capture Module 1) P1.5
PEX2 (External I/O for Compare/	
Capture Module 2)	
P1.6	CEX3 (External I/O for Compare/ Capture Module 3) CEX4 (External I/O for Compare/ Capture Module 4)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1 's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current ($\mathrm{IIL}_{\mathrm{L}}$, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { NTO }}$ (external interrupt 0)
P3.3	$\overline{\text { INT1 (external interrupt 1) }}$
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR }}$ (external data memory write strobe)
P3.7	$\overline{\text { RD (external data memory read strobe) }}$

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. The Port Pins will be driven to their reset condition when a voltage above $\mathrm{V}_{\mathrm{IH} 1}$ is applied whether the oscillator is running or not. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/ $\overline{\text { PROG }}$) is also the program pulse input during EPROM programming for the 87C51FB.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8 EH . With the bit set, ALE is active only during a MOVX instruction. Otherwise the pin is weakly pulled high.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/PROG pin, and the pin will be referred to as the ALE/PROG pin.
$\overline{\text { PSEN: }}$ Program Store Enable is the read strobe to external Program Memory.

When the 8XC51FB is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{\mathrm{EA}} / \mathrm{V}_{\mathrm{PP}}$: External Access enable. $\overline{\mathrm{EA}}$ must be strapped to VSS in order to enable the device to fetch code from external Program Memory locations 0000 H to OFFFFH. Note, however, that if either of the Program Lock bits are programmed, EA will be internally latched on reset.
$\overline{E A}$ should be strapped to $V_{C C}$ for internal program executions.

This pin also receives the programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a di-vide-by-two flip-flop, but the minimum and maximum high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications the capacitance will not exceed 20 pF .

270563-5
C1; $\mathrm{C} 2=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
For Ceramic Resonators contact resonator manufacturer

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs. The PCA timer/counter can optionally be left running or paused during Idle Mode.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 8XC51FB either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level. The external interrupt or. Reset signal must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INTO or INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

DESIGN CONSIDERATION

- The 8CX51FB-L will operate at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz . Operating beyond these specifications could cause improper device functionality. (To program the 87C51FB-L, follow the same procedure as the 87C51FB.)
- The window on the 87C51FB must be covered by an opaque label. Otherwise, the DC and AC characteristics may not be met, and the device may functionally be impaired.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 8XC51FB without the 8XC51FB having to be removed from the circuit. The ONCE Mode is invoked by:

1) Pull ALE low while the device is in reset and PSEN is high;
2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins float and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 8XC51FB is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $\ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $\ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/VPP Pin to $\mathrm{V}_{\mathrm{SS}} \ldots . . . \mathrm{OV}^{2}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} . .-0.5 \mathrm{~V}$ to +6.5 V
lol Per I/O Pin . 15 mA
Power Dissipation.................................1.5W (based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This is a production data sheet. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Operating Conditions:

T_{A} (under Bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}\left(8 \mathrm{XC} 51 \mathrm{FB}-\mathrm{L}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\right)$
DC CHARACTERISTICS: (Over Operating Conditions)
All parameter values apply to both 5 V and 3.3 V devices unless otherwise indicated.

Symbol	Parameter	Min	$\begin{array}{\|c\|} \hline \text { Typ 4) } \\ \hline \end{array}$	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.2 \mathrm{~V}_{C C}-0.1$	V	
$\mathrm{V}_{\text {IL1 }}$	Input Low Voltage EA	0		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.3$	V	
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	v	
$\mathrm{V}_{\mathrm{IH} 1}$	Input High Voltage (XTAL1, RST)	0.7 V CC		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
V_{OL}	Output Low Voltage (Note 5) (Ports 1, 2, and 3)			0.3	V	$\mathrm{I}_{\text {OL }}=100 \mu \mathrm{~A}($ Note 1)
				0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \mathrm{(Note} \mathrm{1)}$
				1.0	V	$\mathrm{I}_{\text {OL }}=3.5 \mathrm{~mA}$ (Note 1)
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Note 5) (Port 0, ALE, PSEN)			0.3	V	$\mathrm{I}_{\text {OL }}=200 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{IOL}=3.2 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{IOL}=7.0 \mathrm{~mA}$ (Note 1)
V OH	Output High Voltage (Ports 1, 2, and 3, ALE, PSEN)	$\mathrm{V}_{\text {CC }}-0.3$			V	$\mathrm{IOH}=-10 \mu \mathrm{~A}$
		$\mathrm{V}_{\text {CC }}-0.7$			V	$\mathrm{IOH}=-30 \mu \mathrm{~A}$
		$\mathrm{V}_{\text {CC }}-1.5$			V	$\mathrm{IOH}=-60 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$
		$\mathrm{V}_{\text {CC }}-0.7$			V	$\mathrm{IOH}=-3.2 \mathrm{~mA}$
		$\mathrm{V}_{\text {CC }}-1.5$			V	$\mathrm{IOH}=-7.0 \mathrm{~mA}$
I/L	Logical 0 Input Current (Ports 1, 2, and 3)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
LII	Input leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$0.45 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$
${ }_{\text {TLL }}$	Logical 1 to 0 Transition Current (Ports 1, 2, and 3)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$
RRST	RST Pulldown Resistor	50		300	K Ω	
ClO	Pin Capacitance		10		pF	@1 $\mathrm{MHz}, 25^{\circ} \mathrm{C}$
Icc	Power Supply Current: Active Mode $8 \times C 51 F B-L$ at 8 MHz All Others at 12 MHz (Figure 5) Idle Mode at 12 MHz (Figure 5) Power Down Mode		$\begin{gathered} 20 \\ 5 \\ 15 \end{gathered}$	$\begin{array}{r} 12 \\ 40 \\ 10 \\ 100 \\ \hline \end{array}$	mA mA mA $\mu \mathrm{A}$	(Note 3)

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\mathrm{OL}} \mathrm{s}$ of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with Schmitt triggers or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures 6-9 for test conditions. Minimum V_{CC} for Power Down is 2 V .
4. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, lol must be externally limited as follows:

Maximum lol per port pin:
Maximum lol per 8-bit port-
Port 0
Ports 1, 2 and 3: $\quad 15 \mathrm{~mA}$
Maximum total I_{OL} for all output pins: $\quad 71 \mathrm{~mA}$

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 6. Icc Test Condition, Active Mode

Figure 5. Icc vs Frequency

Figure 7. Icc Test Condition Idle Mode

Figure 8. Icc Test Condition, Power Down Mode $\mathrm{V}_{\mathbf{C C}}=2.0 \mathrm{~V}$ to 6.0 V

270563-11
Figure 9. Clock Signal Waveform for Icc Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)

L: Logic level LOW, or ALE
P: PSEN
Q: Output Data
R: $\overline{\mathrm{RD}}$ signal
T: Time
V: Valid
W: WR signal
X : No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low TLLPL $=$ Time from ALE Low to PSEN Low

AC CHARACTERISTICS (Over Operating Conditions, Load Capacitance for Port 0, ALE/PROG and $\overline{\text { PSEN }}=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	16	MHz
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	53		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		234		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	53		TCLCL-30		ns
TPLPH	PSEN Pulse Width	205		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		145		3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		59		TCLCL-25	ns
TAVIV	Address to Valid Instruction In		312		5TCLCL-105	ns
TPLAZ	$\overline{\text { PSEN }}$ Low to Address Float		10		10	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	400		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		107		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\bar{W} \mathrm{R}$ Low	200	300	3TCLCL-50	3TCLCL + 50	ns
TAVWL	Address Valid to $\overline{W R}$ Low	203		4TCLCL-130		ns
TQVWX	Data Valid before \bar{W}	33		TCLCL-50		ns
TWHQX	Data Hold after WR	33		TCLCL-50		ns
TQVWH	Data Valid to WR High	433		7TCLCL-150		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\text { WR }}$ High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING - SHIFT REGISTER MODE

Test Conditions: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{1 2 ~ M H z ~ O s c i l l a t o r ~}$		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1		12 TCLCL		$\mu \mathrm{ss}$
TQVXH	Output Data Setup to Clock Rising Edge	700		$10 T C L C L-133$.	ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency			
	8XC51FB	3.5	12	MHz
TCHCX	HXC51FB-1	3.5	16	ns
TCLCX	Low Time Time	20		ns
TCLCH	Rise Time	20		ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

VCC $0.5 \cdots$

AC TESTING INPUT, OUTPUT WAVEFORMS

270563-17
AC Inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing measurements are made at V_{IH} \min for a Logic "1" and V_{IL} max for a Logic " 0 ".

PROGRAMMING THE EPROM

The part must be running with a 4 MHz to 6 MHz oscillator. The address of an EPROM location to be programmed is applied to address lines while the code byte to be programmed in that location is applied to data lines. Control and program signals must be held at the levels indicated in Table 2. Normally $E A / V_{p P}$ is held at logic high until just before ALE/ PROG is to be pulsed. The EA $/ V_{P P}$ is raised to $V_{P P}$, ALE/PROG is pulsed low and then $\overline{E A} / V_{P P}$ is returned to a high (also refer to timing diagrams).

NOTE:

- Exceeding the $V_{P P}$ maximum for any amount of time could damage the device permanently. The V_{PP} source must be well regulated and free of glitches.
- Programming specifications for the 87C51FB-L are the same as the standard 87C51FB.

FLOAT WAVEFORMS

270563-18
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{l}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}= \pm 20 \mathrm{~mA} .\left(-\mathrm{L}, \mathrm{l}_{\mathrm{OL}} / \mathrm{IOH}_{\mathrm{OH}}= \pm 10 \mathrm{~mA}.\right)$

DEFINITION OF TERMS

ADDRESS LINES: P1.0-P1.7, P2.0-P2.5, respectively for A0-A13.

DATA LINES: P0.0-P0.7 for D0-D7.
CONTROL SIGNALS: RST, $\overline{\text { PSEN, P2.6, P2.7, P3.3, }}$ P3.6, P3. 7

PROGRAM SIGNALS: ALE/ $\overline{P R O G}, \overline{E A} / V_{P P}$

Table 2. EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{E A} / \\ & \mathbf{V P P P}^{2} \end{aligned}$	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code Data		H	L	Ч	12.75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0-3FH		H	L	い	12.75 V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	Ч	12.75 V	H	H	H	H	H
	Bit 2	H	L	■	12.75 V	H	H	H	L	L
	Bit 3	H	L	い	12.75 V	H	L	H	H	L
Read Signature Byte		H	L	H	H	L	L	L	L	L

Figure 10. Programming the EPROM

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the 87 C 51 FB the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from $V_{C C}$ to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse ALE/PROG 5 times for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Verification may be done after programming either one byte or a block of bytes. A complete verify of the array will ensure reliable programming of the 87C51FB.

The lock bits cannot be directly verified. They are verified by observing that their features are enabled. Refer to the EPROM Program Lock section in this data sheet for a description of the lock bit features.

ROM and EPROM Lock System

The 87C51FB and the 83C51FB program lock systems, when programmed, protect the onboard program against software piracy.

Figure 11. Programming Signal's Waveforms

The 83C51FB has a one-level program lock system and a 64 -byte encryption table. See line 2 of Table 3. If program protection is desired, the user submits the encryption table with their code, and both the lock-bit and encryption array are programmed by the factory. The encryption array is not available without the lock bit. For the lock bit to be programmed, the user must submit an encryption table.

The 87C51FB has a 3 -level program lock system and a 64-byte encryption array. Since this is an EPROM device, all locations are user-programmable. See Table 3.

Encryption Array

Within the EPROM array are 64 bytes of Encryption Array that are initially unprogrammed (all 1's). Every time that a byte is addressed during a verify, 6 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an Encryption Verify byte. The algorithm, with the array in the unprogrammed state (all 1's), will return the code in it's original, unmodified form. For programming the Encryption Array, refer to Table 2 (Programming the EPROM).

When using the encryption array, one important factor needs to be considered. If a code byte has the value 0 FFH , verification of the byte will produce the encryption byte value. If a large block (> 64 bytes) of code is left unprogrammed, a verification routine will display the contents of the encryption array. For this reason it is strongly recommended that all unused code bytes be programmed with some value other than OFFH, and not all of them the same value. This practice will ensure the maximum possible program protection for this feature.

Program Lock Bits

The 87C51FB has 3 programmable lock bits that when programmed according to Table 3 will provide different levels of protection for the on-chip code and data.

Erasing the EPROM also erases the encryption array and the program lock bits, returning the part to full functionality.

Reading the Signature Bytes

The 8XC51FB has 3 signature bytes in locations $30 \mathrm{H}, 31 \mathrm{H}$, and 60 H . To read these bytes follow the procedure for EPROM verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Contents	
	87C51FB	83C51FB
30 H	89 H	89 H
31 H	58 H	58 H
60 H	FBH	$\mathrm{FBH} / 7 \mathrm{BH}$

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-

Table 3. Program Lock Bits and the Features

| Program Lock Bits | | | | Protection Type |
| :---: | :---: | :---: | :---: | :--- | :--- |
| | LB1 | LB2 | LB3 | |
| 1 | U | U | U | |
| 2 | P | U | U | MOVC instructions executed from external program memory are disabled
 from fetching code bytes from internal memory, EA is sampled and latched on
 Reset, and further programming of the EPROM is disabled. |
| 3 | P | P | U | Same as 2, also verify is disabled. |
| 4 | P | P | P | Same as 3, also external execution is disabled. |

Any other combination of the lock bits is not defined.
level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrat-
ed dose of at least 15 W -sec/cm². Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves all the EPROM Cells in a 1's state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS
($T_{A}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$; $\mathrm{V}_{S S}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
VPP	Programming Supply Voltage	12.5	13.0	V
IPP	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold after $\overline{\text { PROG }}$	48TCLCL		
TDVGL	Data Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	(Enable) High to VPP	48TCLCL		
TSHGL	$V_{P P}$ Setup to PROG Low	10		$\mu \mathrm{S}$
TGHSL	Vpp Hold after PROG	10		$\mu \mathrm{s}$
TGLGH	$\overline{\text { PROG Width }}$	90	110	$\mu \mathrm{s}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	$\overline{\text { PROG High to } \overline{\text { PROG }} \text { Low }}$	10		$\mu \mathrm{S}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION HISTORY

This data sheet (270563-005) is valid for devices with an " A " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following differences exist between this data sheet (270563-005) and the previous version (270563-004):

1. Added 3.3 V device to data sheet.
2. Data sheet title was changed from:

87C51FB/83C51FB CHMOS Single-Chip 8-Bit Microcontroller 16 Kbytes User Programmable EPROM to:
87C51FB/83C51FB CHMOS Single-Chip 8-Bit Microcontroller with 16 Kbytes Internal Program Memory
3. Data sheet status changed from "Preliminary" to "Production".
4. Added process information after block diagram.
5. θ_{ja} and θ_{jc} information added to Packages table.
6. Signature byte location $60 \mathrm{H}, 83 \mathrm{C} 51 \mathrm{FB}$ changed to $\mathrm{FBH} / 7 \mathrm{BH}$.

The following differences exist between the -004 and -003 versions of this data sheet.

1. Name changed from 87 C 51 FB to $87 \mathrm{C} 51 \mathrm{FB} / 83 \mathrm{C} 51 \mathrm{FB}$.
2. Data sheet status changed from "ADVANCE" to "PRELIMINARY".'
3. Device -2 version deleted.
4. 4 Level Interrupt Priority added.
5. QFP package offering added.
6. $\mathrm{V}_{\mathrm{SS} 1}$ pin description added.
7. Asynchronous Reset added.
8. ALE disable added.
9. RRST spec changed from $40 \mathrm{~K} \Omega \min , 225 \mathrm{~K} \Omega \max$ to $50 \mathrm{~K} \Omega \min , 300 \mathrm{~K} \Omega$ max.
10. Note 1 reworded (ALE noise pulses).
11. Control line (P3.3) added to Table 2 and Figure 10.
12. Programming Algorithm and verification paragraphs reworded to describe programming changes.
13. Figure 11 changed to show 5 programming pulses rather than 25.
14. Figure 12 deleted (Program Verification).
15. Program Memory Lock feature changes:

- Third lock bit added
- Encryption array enhanced to 64 bytes

16. Third signature byte added; location and definition included.
17. Ipp programming spec changed from 50 mA to 75 mA .

The following are the key differences between the -003 and -002 version of the 87C51FB data sheet:

1. Word "Maximum" was deleted from the lol line in the Absolute Maximum Ratings.
2. Parameter $\mathrm{V}_{\mathrm{IL} 1}$ was deleted from the DC Characteristics.
3. Note 4, "Care must be taken not to exceed the maximum allowable power dissipation" was deleted from DC Characteristics and from the list of notes and notes were resequenced.
4. Parameter $\mathrm{l}_{\mathrm{LI} 1}$ was deleted from the DC Characteristics.
5. Figure 5 was replaced to show correct $l_{C C}$ curves.
6. External clock capacitive loading note was added.

The following are the differences between the -002 and -001 version of the 87C51FB data sheet:

1. Title changed to include -1 and -2 version of the device.
2. PLCC pin connection diagram was added.
3. Package table was added.
4. Exit from power down mode was clarified.
5. Maximum lol per I/O pin was added to the Absolute Maximum Ratings.
6. Note 6 was added to explain the maximum safe current specification.
7. Typical values for ICc table were added.
8. Note 5 was added to explain the test conditions for typical values.
9. Timing specifications improved for:

TLLAX changed from TCLCL - 35 to TCLCL -30
TLLPL changed from TCLCL - 40 to TCLCL - 30
TRHDZ changed from TCLCL - 70 to TCLCL - 60 TQVWX changed from TCLCL - 60 to TCLCL - 50 TQVWH was added.
10. Data sheet revision summary was added.

87C51FB-20/-3 83C51FB-20/-3 COMMERCIAL/EXPRESS 20 MHz MICROCONTROLLER
 87C51FB-20/83C51FB-20-3.5 MHz to $20 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm \mathbf{2 0 \%}$ 87C51FB-3/83C51FB-3-24 MHz Internal Operation, $V_{C C}=5 \mathrm{~V} \pm 20 \%$

■ High Performance CHMOS EPROM

- 24 MHz Internal Operation (-3 only)

■ Three 16-Bit Timer/Counters

- Programmable Clock Out
- Programmable Counter Array with:
- High Speed Output,
- Compare/Capture,
- Pulse Width Modulator,
- Watchdog Timer Capabilities

■ Up/Down Timer/Counter

- Three Level Program Lock System
- 16K On-Chip EPROM
- 256 Bytes of On-Chip Data RAM
- Improved Quick Pulse Programming Algorithm
■ Boolean Processor
- 32 Programmable I/O Lines

■ 7 Interrupt Sources

- Four Level Interrupt Priority
- Programmable Serial Channel with:
- Framing Error Detection
- Automatic Address Recognition
- TTL and CMOS Compatible Logic Levels
- 64K External Program Memory Space
- 64K External Data Memory Space

■ MCS ${ }^{\circledR}$-51 Fully Compatible Instruction Set

- Power Saving Idle and Power Down Modes
- ONCE (On-Circuit Emulation) Mode

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 16 Kbytes of the program memory can reside in the on-chip EPROM. In addition the device can address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 8 XC51FB-20/-3 is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS-51 family, the 8XC51FB-20/-3 uses the same powerful instruction set, has the same architecture, and is pin-for-pin compatible with the existing MCS-51 family of products. The $8 \mathrm{XC} 51 \mathrm{FB}-20 /-3$ is an enhanced version of the $87 \mathrm{C} 51 / 80 \mathrm{C} 51 \mathrm{BH}$. It's added features make it an even more powerful microcontroller for applications that require Pulse Width Modulation, High Speed I/O and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

The 87C51FB-3/83C51FB-3 has the same 3.5 to 20 MHz frequency range as the 87C51FB-20/83C51FB-20 when operating out of external program/data memory. When running out of internal program/data memory, the 87C51FB-3/83C51FB-3 can operate up to 24 MHz .

Throughout this document 8 XC51FB-20 will refer to the $83 \mathrm{C} 51 \mathrm{FB}-20,87 \mathrm{C} 51 \mathrm{FB}-20,83 \mathrm{C} 51 \mathrm{FB}-3$ and the 87C51FB-3.

Figure 1. 8XC51FB-20 Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
$8 \times C 51 \mathrm{FB}-20$	P	40 -Pin Plastic DIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$87 \mathrm{C} 51 \mathrm{FB}-20$	D	40 -Pin CERDIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times \mathrm{C} 51 \mathrm{FB}-20$	N	44 -Pin PLCC	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times \mathrm{C} 51 \mathrm{FB}-20$	S	44 -Pin QFP	$96^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

Figure 2. Pin Connections

PRELOMONARY

PIN DESCRIPTIONS

Symbol	Name and Function
V_{CC}	Main supply voltage (5V).
$V_{S S}$	Circuit ground.
$\mathrm{V}_{\text {SS } 1}$	Secondary ground (connection not necessary). Provided to reduce ground bounce and improve power supply bypassing. NOTE: This pin is not a substitute for the V_{SS} pin. Connect V_{SS} and $\mathrm{V}_{\mathrm{SS} 1}$ with the lowest impedance path possible.
Port 0	8-Bit, open drain, bidirectional I/O port. These pins are shared with the multiplexed address/data bus which has strong internal pullups. Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during verification. When used as an I/O port, pullups to V_{CC} may be needed.
Port 1	8 -Bit bidirectional I/O port. All of the port 1 pins are shared with other functions in the 8×51 FB-20. Port 1 is also used as the low-order address byte input during EPROM programming.
Port 2	8-Bit bidirectional I/O port. Port 2 also emits the high-order address byte during accesses to 16 -bit external memory locations. Some of the Port 2 pins are also used as address bits for EPROM programming.
Port 3	8 -Bit bidirectional I/O port. All of the port 3 pins are shared with other functions in the $8 \mathrm{XC} 51 \mathrm{FB}-20$. Two of the pins are used as control lines ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$) for accessing external RAM.
RESET	Reset input to the chip. A high input for a minimum of two machine cycles with the oscillator running resets the device. The port pins will be reset when a voltage above $\mathrm{V}_{\mathbb{I}}$ is applied whether the oscillator is running or not. RST has an internal pulldown.
ALE/PROG	Address Latch Enable. Provides a signal to demultiplex the address from the address/data bus. In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency. Note, however, that one ALE pulse is skipped during each access to external data memory. If desired, ALE can be disabled by setting bit 0 of SFR location 8 EH . With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode. This pin is also the program pulse input during EPROM programming.
PSEN	Program Store Enable. Acts as read strobe for external program memory fetches.
$\overline{\mathrm{EA}} / \mathrm{V}_{\mathrm{PP}}$	External Access Enable. $\overline{E A}$ must be strapped to $V_{S S}$ in order to enable the device to fetch code from external program memory locations 0000 H to OFFFFH. EA should be strapped to V_{CC} for internal program executions. If any of the lock bits are programmed, EA will be internally latched on reset. This pin also receives the programming supply voltage (V_{PP}) during EPROM programming.
XTAL1	Input to the inverting oscillator amplifier.
XTAL2	Output from the inverting oscillator amplifier.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature
Under Bias \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/VPP Pin to $V_{S S} \ldots . . .0 \mathrm{~V}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +6.5 V
lol Per I/O Pin
15 mA
Power Dissipation .1.5W
(based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
T_{A}	Ambient Temperature Under Bias Commercial Express	0 -40	+70 +85	${ }^{\circ} \mathrm{C}$
	${ }^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.0	6.0	V
$\mathrm{~F}_{\text {OSC }}$	Oscillator Frequency	3.5	20	MHz

DC CHARACTERISTICS (Over Operating Conditions)

Symbol	Parameter	Min	Typ (Note 4)	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.1$	V	
$\mathrm{V}_{\text {IL1 }}$	Input Low Voltage EA	0		$0.2 V_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage (XTAL1, RST)	$0.7 \mathrm{~V}_{\text {CC }}$		$\mathrm{V}_{C C}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Note 5) (Ports 1, 2 and 3)			0.3	V	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}($ Note 1)
				0.45	V	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{loL}=3.5 \mathrm{~mA}$ (Note 1)
VOL1	Output Low Voltage (Note 5) (Port 0, ALE, PSEN)			0.3	V	$\mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{I}_{\mathrm{OL}}=7.0 \mathrm{~mA}$ (Note 1)
V_{OH}	Output High Voltage (Ports 1, 2 and 3)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{IOH}=-30 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{IOH}=-60 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode, ALE, $\overline{\text { PSEN }}$)	$\mathrm{V}_{C C}-0.3$			V	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{IOH}=-3.2 \mathrm{~mA}$
		$\mathrm{V}_{C C}-1.5$			V	$\mathrm{IOH}=-7.0 \mathrm{~mA}$
ILL	Logical 0 Input Current (Ports 1, 2 and 3)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
LII	Input Leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$0.45 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$

DC CHARACTERISTICS (Over Operating Conditions) (Continued)

Symbol	Parameter	Min	Typ (Note 4)	Max	Unit	Test Conditions
1 TL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3) Commercial Express			$\begin{array}{r} -650 \\ -750 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$
$\mathrm{R}_{\text {RST }}$	RST Pulldown Resistor	50		300	K Ω	
ClO_{10}	Pin Capacitance		10		pF	@1 MHz, $25^{\circ} \mathrm{C}$
Icc	Power Supply Current: Running at 20 MHz (Figure 5) Idle Mode at 20 MHz (Figure 5) Power Down Mode		$\begin{gathered} 32 \\ 7 \\ 15 \end{gathered}$	$\begin{gathered} 64 \\ 14 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$	(Note 3)

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\mathrm{OL}} \mathrm{s}$ of ALE and Ports 1,2 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with Schmitt triggers or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures 4-7 for test conditions. Minimum $V_{C C}$ for Power Down is 2 V .
4. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, lol must be externally limited as follows:

Maximum lol per port pin:
Maximum IOL per 8 -bit port-

$$
\text { Port 0: } \quad 26 \mathrm{~mA}
$$

Ports 1, 2 and 3: $\quad 15 \mathrm{~mA}$
Maximum total lol for all output pins: $\quad 71 \mathrm{~mA}$
If l_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

All other pins disconnected
TCLCH $=$ TCHCL $=5 \mathrm{~ns}$
Figure 4. Icc Test Condition, Active Mode

Figure 3. Icc vs Frequency

Figure 6. Icc Test Condition, Power Down Mode Vcc $=\mathbf{2 . 0 V}$ to 6.0 V

Figure 5. Icc Test Condition Idle Mode

272080-11
Figure 7. Clock Signal Waveform for Icc Tests in Active and Idle Modes. TCLCH $=$ TCHCL $=5 \mathrm{~ns}$

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)

L: Logic level LOW, or ALE
P: PSEN
Q: Output Data
R: $\overline{\text { RD }}$ signal
T: Time
V: Valid
W: WR signal
X : No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low TLLPL $=$ Time from ALE Low to PSEN Low

AC CHARACTERISTICS (Over Operating Conditions, Load Capacitance for Port 0, ALE/ $\overline{\text { PROG }}$ and $\overline{\text { PSEN }}=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	20 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	20	MHz
TLHLL	ALE Pulse Width	60		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	10		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	20		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		125		4TCLCL-75	ns
TLLPL	ALE Low to PSEN Low	20		TCLCL-30		ns
TPLPH	PSEN Pulse Width	105		3TCLCL-45		ns
TPLIV	$\overline{\text { PSEN }}$ Low to Valid Instruction In		60		3TCLCL-90	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		30		TCLCL-20	ns

EXTERNAL MEMORY CHARACTERISTICS (Continued)

Symbol	Parameter	20 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
TAVIV	Address to Valid Instruction In		145		5TCLCL-105	ns
TPLAZ	$\overline{\text { PSEN Low to Address Float }}$		10		10	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	200		6TCLCL-100		ns
TWLWH	WR Pulse Width	200		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		155		5TCLCL-95	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\text { RD }}$		40		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		310		8TCLCL-90	ns
TAVDV	Address to Valid Data In		360		9TCLCL-90	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{W R}$ Low	100	200	3TCLCL-50	3 TCLCL +50	ns
TAVWL	Address Valid to $\overline{W R}$ Low	110		4TCLCL-90		ns
TQVWX	Data Valid before $\bar{W} \mathrm{R}$	15		TCLCL-35		ns
TWHQX	Data Hold after WR.	10		TCLCL-40		ns
TQVWH	Data Valid to WR High	280		7TCLCL-70		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{W R}$ High to ALE High	10	90	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM REMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING—SHIFT REGISTER MODE

Test Conditions: Over Operating Conditions; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{2 0 ~ M H z ~ O s c i l l a t o r ~}$		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	600		12 TCLCL		ns
TQVXH	Output Data Setup to Clock Rising Edge	367		10 TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-50		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		367		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

272080-5
$\mathrm{C} 1, \mathrm{C} 2=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
For Ceramic Resonators, contact resonator manufacturer.
Figure 8. Oscillator Connections

Figure 9. External Clock Drive Configuration

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency	3.5	20	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

AC TESTING INPUT, OUTPUT WAVEFORMS

272080-17
AC Inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing measurements are made at V_{IH} \min for a Logic " 1 " and $V_{I L} \max$ for a Logic " 0 ".

FLOAT WAVEFORMS

272080-18
For tirning purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{l}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}} \geq \pm 20 \mathrm{~mA}$.

PROGRAMMING THE EPROM

Table 1. EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{E A} / \\ & \mathbf{V P P}^{\prime} \end{aligned}$	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code Data		H	L	Ч	12.75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0-3FH		H	L	บ	12.75 V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	■	12.75 V	H	H	H	H	H
	Bit 2	H	L	Ч	12.75 V	H	H	H	L	L
	Bit 3	H	L	ป	12.75 V	H	L	H	H	L
Read Signature Byte		H	L	H	H	L	L	L	L	L

Figure 10. Programming the EPROM

Figure 11. Programming Waveforms

Signature Bytes

Location	Contents	Description
30 H	89 H	Indicates Intel Device
31 H	58 H	Indicates FX-Core Product
60 H	FBH	Indicates 87C51FB-20 Device
60 H	7 BH	Indicates 83C51FB-20 Device

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Angstroms. Since sunlight and
fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves all the EPROM Cells in a 1's state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

($T_{A}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
VPP	Programming Supply Voltage	12.5	13.0	V
Ipp	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHAX	Address Hold after $\overline{\text { PROG }}$	48TCLCL		
TDVGL	Data Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	(Enable) High to VPP	48TCLCL		
TSHGL	$V_{\text {PP }}$ Setup to PROG Low	10		$\mu \mathrm{s}$
TGHSL	VPP Hold after $\overline{\text { PROG }}$	10		$\mu \mathrm{S}$
TGLGH	$\overline{\text { PROG Width }}$	90	110	$\mu \mathrm{S}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	$\overline{\text { PROG High to } \overline{\text { PROG }} \text { Low }}$	10		$\mu \mathrm{s}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DESIGN CONSIDERATIONS

- When running out of internal program/data memory, the 87C51FB-3/83C51FB-3 can be operated using a 24 MHz clock. If the 87C51FB$3 / 83 \mathrm{C} 51 \mathrm{FB}-3$ is running out of external program/ data memory, the operating frequency must be between 3.5 to 20 MHz . The 87C51FB$3 / 83 \mathrm{C} 51$ FB-3 will not function properly at 24 MHz when running out of external program/data memory.
- The window on the 87C51FB-20 must be covered by an opaque label. Otherwise, the DC and AC characteristics may not be met, and the device may functionally be impaired.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins
is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

Timer 2 Programmable Clock Out

- The Timer 2 clock out frequency on the $8 \mathrm{XC} 51 \mathrm{FB}-20$ is determined by the equation in the 8XC51FX Hardware Description as shown below.

Clock-out Frequency $=\frac{\text { Oscillator Frequency }}{4 \times(65536-\text { RCAP2H, RCAP2L })}$
Even though the equation permits a maximum clock-out frequency of 5 MHz using a 20 MHz oscillator, the maximum output frequency is 4 MHz . When operating the part above 16 MHz , RCAP2L must be limited to a maximum value of FEH.

DATA SHEET REVISION HISTORY

This data sheet (272080-002) is valid for devices with an "A" at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following differences exist between this data sheet (272080-002) and the previous version (272080-001):

1. Added 87C51FB-3/83C51FB-3 to 20 MHz data sheet.
2. Variable Oscillator equations in External Memory Characteristics Table changed as follows:

	From	To
TLLIV	120	125
	4 TCLCL -80	4 TCLCL -75
TPLIV	$3 T C L C L-95$	3 TCLCL -90
TWHQX	0	10
	TCLCL-50	TCLCL -40
TQVWH	200	280
	$7 T C L C L-150$	$7 T C L C L-70$

The following differences exist between revision 1 of the 87C51FB-20/83C51FB-20 (272080-001) data sheet and the 87C51FB/83C51FB (270563-004) data sheet.

1. All explanatory wording duplicated in the device user's guide was deleted.
2. Pins labeled "NC" changed to "Reserved" in Figure 2.
3. Timer 2 Programmable Clock Out paragraph added.
4. RRST specification in DC Characteristics Table changed from $40 \mathrm{~K} \Omega \mathrm{~min}, 225 \mathrm{~K} \Omega \max$ to $50 \mathrm{~K} \Omega \min$, $300 \mathrm{~K} \Omega$ max.
5. 20 MHz extension added to Figure 3.
6. Variable Oscillator equations in External Memory Characteristics Table changed as follows:

	From	To
TLLIV	4TCLCL - 100	4TCLCL - 80
TPLIV	3TCLCL - 105	3TCLCL - 95
TPXIZ	TCLCL - 25	TCLCL - 20
TRLDV	5TCLCL - 165	5TCLCL - 95
TLLDV	8TCLCL - 150	8TCLCL - 90
TAVDV	9TCLCL - 165	9TCLCL - 90
TAVWL	4TCLCL - 130	4TCLCL - 90
TQVWX	TCLCL-50	TCLCL - 35

7. TXHQX in the Serial Port Timing Table changed from (2TCLCL - 117) to (2 TCLCL - 50).

- High Performance CHMOS EPROM
- Low Voltage Operation (-L only)

■ Three 16-Bit Timer/Counters
■ Programmable Clock Out

- Programmable Counter Array with:
- High Speed Output,
- Compare/Capture,
- Pulse Width Modulator,
- Watchdog Timer capabilities
- Up/Down Timer/Counter

䧃 Three Level Program Lock System
■ 32K On-Chip EPROM
■ 256 Bytes of On-Chip Data RAM

- Improved Quick Pulse Programming Algorithm
- Boolean Processor
- 32 Programmable I/O Lines
- 7 Interrupt Sources
- Four Level Interrupt Priority
- Programmable Serial Channel with:
- Framing Error Detection
- Automatic Address Recognition
- TTL and CMOS Compatible Logic Levels
- 64K External Program Memory Space
- 64K External Data Memory Space
- MCS ${ }^{\circledR}$-51 Fully Compatible Instruction Set
- Power Saving Idle and Power Down Modes
- ONCE (On-Circuit Emulation) Mode

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 32 Kbytes of the program memory can reside in the on-chip EPROM. In addition the device can address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 87C51FC/83C51FC is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS-51 family, the 87C51FC/83C51FC uses the same powerful instruction set, has the same architecture, and is pin-for-pin compatible with the existing MCS-51 family of products. The 87C51FC/83C51FC is an enhanced version of the 87C51/80C51BH. It's added features make it an even more powerful microcontroller for applications that require Pulse Width Modulation, High Speed I/O and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

Applications that require low voltage can use the 87C51FC-L/83C51FC-L. The 8XC51FC-L will operate at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz .

Throughout this document 8XC51FC will refer to both the 83C51FC and the 87C51FC.

Figure 1. 8XC51FC Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
$8 \times C 51 F C$	P	$40-$ Pin Plastic DIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
87 C 51 FC	D	$40-$ Pin CERDIP	$36^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times \mathrm{C} 51 \mathrm{FC}$	N	$44-$ Pin PLCC	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
8XC51FC	S	44 -Pin QFP	$87^{\circ} \mathrm{C} / \mathrm{W}$	$18^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

Figure 2. Pin Connections

PIN DESCRIPTIONS

V_{CC} : Supply voltage.
$V_{S S}$: Circuit ground.
$\mathrm{V}_{\text {SS1 }}$: Secondary ground (not on DIP). Provided to reduce ground bounce and improve power supply by-passing.

NOTE:
This pin is not a substitute for the $V_{S S}$ pin. Connect $V_{S S}$ and $V_{S S 1}$ with the lowest impedance path possible.

Port 0: Port 0 is an 8-bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1 's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I) on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 8XC51FC:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2), Clock-Out
P1.1	T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control) E1.2 (External Count Input to the PCA)
P1.3 P1.4	CEX0 (External I/O for Compare/ Capture Module 0) CEX1 (External I/O for Compare/ Capture Module 1)
P1.5	CEX2 (External I/O for Compare/ Capture Module 2) CEX3 (External I/O for Compare/ Capture Module 3) CEX4 (External I/O for Compare/ Capture Module 4)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during
accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (l I_{L}, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { INT0 }}$ (external interrupt 0)
P3.3	$\overline{\text { INT1 (external interrupt 1) }}$
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR }}$ (external data memory write strobe)
P3.7	$\overline{\text { RD }}$ (external data memory read strobe)

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. The Port Pins will be driven to their reset condition when a voltage above $\mathrm{V}_{\mathrm{IH} 1}$ is applied whether the oscillator is running or not. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{C}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during EPROM programming for the 87C51FC.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8 EH . With the bit set, ALE is active only during a MOVX instruction. Otherwise the pin is weakly pulled high.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/ $\overline{\text { PROG }}$ pin, and the pin will be referred to as the ALE/PROG pin.
$\overline{\text { PSEN: Program Store Enable is the read strobe to }}$ external Program Memory.

When the $8 \times C 51 F C$ is executing code from external Program Memory, $\overline{\text { PSEN }}$ is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{E A} / V_{\mathrm{Pp}}$: External Access enable. $\overline{\mathrm{EA}}$ must be strapped to VSS in order to enable the device to fetch code from external Program Memory locations 0000 H to $0 F F F F H$. Note, however, that if either of the Program Lock bits are programmed, $\overline{\mathrm{EA}}$ will be internally latched on reset.
$\overline{\mathrm{EA}}$ should be strapped to V_{CC} for internal program executions.

This pin also receives the programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a di-vide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications the capacitance will not exceed 20 pF .

Figure 3. Oscillator Connections

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs. The PCA timer/counter can optionally be left running or paused during Idle Mode.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 8XC51FC either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level. The external interrupt or reset signal must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt; INTO or INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

DESIGN CONSIDERATION

- The 8XC51FC-L will operate at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ at a frequency range of 3.5 MHz to 8 MHz . Operating beyond these specifications could cause improper device functionality. (To program the 87C51FC-L, follow the same procedure as the 87C51FC.)
- The window on the 87C51FC must be covered by an opaque label. Otherwise, the DC and AC characteristics may not be met, and the device may functionally be impaired.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 8XC51FC without the 8XC51FC having to be removed from the circuit. The ONCE Mode is invoked by:

1) Pull ALE low while the device is in reset and PSEN is high;
2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins float, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 8XC51FC is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins During Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80C51BH".

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $\ldots 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/VPP Pin to $\mathrm{V}_{\mathrm{SS}} \ldots . . .0 \mathrm{~V}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +6.5 V lol Per I/O Pin 15 mA
Power Dissipation. 1.5 W (based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This is a production data sheet. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.

[^9]Operating Conditions: T_{A} (under Bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$
($8 \mathrm{XC} 51 \mathrm{FC}-\mathrm{L}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$)

DC CHARACTERISTICS: (Over Operating Conditions)
All parameter values apply to both 5 V and 3.3 V devices unless otherwise indicated.

Symbol	Parameter	Min	Typ (Note 4)	Max	Unit	Test Conditions
V_{IL}	Input Low Voltage	-0.5		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.1$	V	
$\mathrm{V}_{\text {IL } 1}$	Input Low Voltage $\overline{\mathrm{EA}}$	0		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{IH} 1}$	Input High Voltage (XTAL1, RST)	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
V_{OL}	Output Low Voltage (Note 5) (Ports 1, 2, and 3)			0.3	V	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{l}_{\mathrm{OL}}=3.5 \mathrm{~mA}$ (Note 1)
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Note 5) (Port 0, ALE, PSEN)			0.3	V	$\mathrm{l}_{\mathrm{OL}}=200 \mu \mathrm{~A}$ (Note 1)
				0.45	V	$\mathrm{lOL}_{\text {O }}=3.2 \mathrm{~mA}$ (Note 1)
				1.0	V	$\mathrm{lOL}^{\prime}=7.0 \mathrm{~mA}$ (Note 1)

DC CHARACTERISTICS: (Over Operating Conditions)

All parameter values apply to both 5 V and 3.3 V devices unless otherwise indicated. (Continued)

Symbol	Parameter	Min	Typ (Note 4)	Max	Unit	Test Conditions
V_{OH}	Output High Voltage (Ports 1, 2, and 3, ALE, $\overline{\text { PSEN }}$)	$\mathrm{V}_{\mathrm{CC}}-0.3$			V	$\mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
		$V_{C C}-0.7$			V	$\mathrm{IOH}=-30 \mu \mathrm{~A}$
		$\mathrm{V}_{\mathrm{CC}}-1.5$			V	$\mathrm{IOH}=-60 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{V}_{\mathrm{CC}}-0.3$			V	$\mathrm{IOH}=-200 \mu \mathrm{~A}$
		$\mathrm{V}_{\mathrm{CC}}-0.7$			V	$\mathrm{IOH}=-3.2 \mathrm{~mA}$
		$\mathrm{V}_{\text {CC }}-1.5$			\checkmark	$\mathrm{IOH}=-7.0 \mathrm{~mA}$
ILL	Logical 0 Input Current (Ports 1, 2, and 3)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
I_{LI}	Input leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$0.45 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$
$\mathrm{I}_{\text {TL }}$	Logical 1 to 0 Transition Current (Ports 1, 2, and 3)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$
RRST	RST Pulldown Resistor	40		225	K Ω	
ClO	Pin Capacitance		10		pF	@1 MHz, $25^{\circ} \mathrm{C}$
ICC	Power Supply Current: Active Mode $8 \mathrm{XC} 51 \mathrm{FC}-\mathrm{L}$ at 8 MHz All others at 12 MHz (Figure 5) Idle Mode at 12 MHz (Figure 5) Power Down Mode		$\begin{gathered} 20 \\ 5 \\ 15 \end{gathered}$	$\begin{gathered} 12 \\ 40 \\ 10 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$	(Note 3)

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\mathrm{OL}} \mathrm{s}$ of ALE and Ports 1, 2 and 3 . The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with Schmitt triggers or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures $6-9$ for test conditions. Minimum $V_{C C}$ for Power Down is 2 V .
4. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, loL must be externally limited as follows:

Maximum IoL per port pin:
Maximum lol per 8-bit port-

Port 0: $\quad 26 \mathrm{~mA}$

Ports 1, 2 and 3: 15 mA
Maximum total loL for all output pins: $\quad 71 \mathrm{~mA}$
If lol exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 5. Icc vs Frequency

Figure 6. Icc Test Condition, Active Mode

Figure 7. Icc Test Condition Idle Mode

270789-9
All other pins disconnected

Figure 8. Icc Test Condition, Power Down Mode. $\mathbf{V}_{\mathbf{C C}}=\mathbf{2 . 0 V}$ to $\mathbf{6 . 0 V}$

Figure 9. Clock Signal Waveform for Icc Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)
L: Logic level LOW, or ALE

P: $\overline{\text { PSEN }}$
Q: Output Data
R: $\overline{\mathrm{RD}}$ signal
T: Time
V: Valid
$\mathrm{W}: \overline{\mathrm{WR}}$ signal
X: No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low
TLLPL $=$ Time from ALE Low to $\overline{\text { PSEN }}$ Low

AC CHARACTERISTICS (Over Operating Conditions, Load Capacitance for Port 0, ALE/PROG and $\overline{\text { PSEN }}=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	16	MHz
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	53		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		234		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	53		TCLCL-30		ns
TPLPH	PSEN Pulse Width	205		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		145		3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After $\overline{\text { PSEN }}$		59		TCLCL-25	ns
TAVIV	Address to Valid Instruction In		312		5TCLCL-105	ns
TPLAZ	$\overline{\text { PSEN Low to Address Float }}$		10		10	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400		6TCLCL-100		ns
TWLWH	WR Pulse Width	400		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{R D}$		107		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	200	300	3TCLCL-50	3 TCLCL +50	ns
TAVWL	Address Valid to $\overline{W R}$ Low	203		4TCLCL-130		ns
TQVWX	Data Valid before $\overline{\mathrm{WR}}$	33		TCLCL-50		ns
TWHQX	Data Hold after $\overline{W R}$	33		TCLCL-50		ns
TQVWH	Data Valid to WR High	433		7TCLCL-150		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE High	43	123	TCLCL-40	TCLCL + 40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING - SHIFT REGISTER MODE

Test Conditions: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{1 2 ~ M H z ~ O s c i l l a t o r ~}$		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1		12 TCLCL		$\mu \mathrm{s}$
TQVXH	Output Data Setup to Clock Rising Edge	700		10 TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency			
	8XC51FC	3.5	12	MHz
8XC51FC-1	3.5	16	ns	
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	

EXTERNAL CLOCK DRIVE WAVEFORM
20.45

AC TESTING INPUT, OUTPUT WAVEFORMS

AC Inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing measurements are made at V_{IH} \min for a Logic " 1 " and $V_{\text {IL }}$ max for a Logic " 0 ".

FLOAT WAVEFORMS

270789-17
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}= \pm 20 \mathrm{~mA} .\left(-\mathrm{L}, \mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}= \pm 10 \mathrm{~mA}\right)$

DEFINITION OF TERMS

ADDRESS LINES: P1.0-P1.7, P2.0-P2.5, P3.4. respectively for A0-A14.

DATA LINES: P0.0-P0.7 for D0-D7.
CONTROL SIGNALS: RST, $\overline{\text { PSEN }}, \mathrm{P} 2.6, \mathrm{P} 2.7, \mathrm{P} 3.3$, P3.6, P3.7

PROGRAM SIGNALS: ALE/ $\overline{\text { PROG }}, \overline{E A} / V_{P P}$

NOTE:
Exceeding the V_{PP} maximum for any amount of time could damage the device permanently. The $V_{P P}$ source must be well regulated and free of glitches.

Table 2. EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE } /}{\text { PROG }}$	$\begin{aligned} & \overline{\mathrm{EA} /} \\ & \mathbf{V}_{\mathbf{P P}} \end{aligned}$	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code Data		H	L	ப	12.75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0-3FH		H	L	-	12.75 V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	Ч	12.75 V	H	H	H	H	H
	Bit 2	H	L	Ч	12.75 V	H	H	H	L	L
	Bit 3	H	L	工	12.75 V	H	L	H	H	L
Read Signature Byte		H	L	H	H	L	L	L	L	L

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the 87C51FC the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from $V_{C C}$ to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse ALE/ $\overline{\text { PROG }} 5$ times for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Program verify may be done after each byte or block of bytes is programmed. A complete verify of the array will ensure reliable programming of the 87C51FC.

The lock bits cannot be directly verified. They are verified by observing that their features are enabled. Refer to the EPROM Program Lock section in this data sheet.

*See Table 2 for proper input on these pins
Figure 10. Programming the EPROM

Figure 11. Programming Signal's Waveforms

ROM and EPROM Lock System

The 87C51FC and the 83C51FC program lock systems, when programmed, protect the onboard program against software piracy.

The 83C51FC has a one-level program lock system and a 64-byte encryption table. See line 2 of Table 3. If program protection is desired, the user submits the encryption table with their code, and both the lock-bit and encryption array are programmed by the factory. The encryption array is not available without the lock bit. For the lock bit to be programmed, the user must submit an encryption table.

The 87C51FC has a 3-level program lock system and a 64-byte encryption array. Since this is an EPROM device, all locations are user-programmable. See Table 3.

Encryption Array

Within the EPROM array are 64 bytes of Encryption Array that are initially unprogrammed (all 1's). Every time that a byte is addressed during a verify, 6 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an Encryption Verify byte. The algorithm, with the array in the unprogrammed state (all 1's), will return the code in it's original, unmodified form. For programming the Encryption Array, refer to Table 2 (Programming the EPROM).

When using the encryption array, one important factor needs to be considered. If a code byte has the value OFFH, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the contents of the encryption array. For this reason all unused code bytes should be programmed with some value other than OFFH, and not all of them the same value. This will ensure maximum program protection.

Program Lock Bits

The 87C51FC has 3 programmable lock bits that when programmed according to Table 3 will provide different levels of protection for the on-chip code and data.

Erasing the EPROM also erases the encryption array and the program lock bits, returning the part to full functionality.

Reading the Signature Bytes

The 8XC51FC has 3 signature bytes in locations $30 \mathrm{H}, 31 \mathrm{H}$, and 60 H . To read these bytes follow the procedure for EPROM verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Contents	
	87 C 51 FC	83 C 51 FC
30 H	89 H	89 H
31 H	58 H	58 H
60 H	FCH	$\mathrm{FCH} / 7 \mathrm{CH}$

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least 15 W -sec/cm². Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves all the EPROM Cells in a 1's state.

Table 3. Program Lock Bits and the Features

| Program Lock Bits | | | | Protection Type |
| :---: | :---: | :---: | :---: | :--- | :--- |
| | LB1 | LB2 | LB3 | |
| 1 | U | U | U | |
| 2 | P | U | U | MOVC instructions executed from external program memory are disabled
 from fetching code bytes from internal memory, EA is sampled and latched on
 Reset, and further programming of the EPROM is disabled. |
| 3 | P | P | U | Same as 2, also verify is disabled. |
| 4 | P | P | P | Same as 3, also external execution is disabled. |

Any other combination of the lock bits is not defined.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

($T_{A}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
VPP	Programming Supply Voltage	12.5	13.0	V
lpp	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold after PROG	48TCLCL		
TDVGL	Data Setup to PROG Low	48 TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	(Enable) High to VPP	48TCLCL		
TSHGL	$V_{\text {PP }}$ Setup to PROG Low	10		$\mu \mathrm{s}$
TGHSL	$V_{\text {PP }}$ Hold after PROG	10		$\mu \mathrm{s}$
TGLGH	PROG Width	90	110	$\mu \mathrm{s}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	$\overline{\text { PROG }}$ High to $\overline{\text { PROG }}$ Low	10		$\mu \mathrm{s}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION HISTORY

The following differences exist between this data sheet (270789-004) and the previous version (270789-003):

1. Added 3.3 V device to data sheet.
2. Data sheet title was changed from:

87C51FC/83C51FC CHMOS Single-Chip 8-Bit Microcontroller 32 Kbytes User Programmable EPROM
to:
87C51FC/83C51FC CHMOS Single-Chip 8-Bit Microcontroller with 32 Kbytes Internal Program Memory
3. Data sheet status changed from "Preliminary" to "Production".
4. Added process information after block diagram.
5. θ_{ja} and θ_{jc} information added to Packages table.

The following differences exist between the -003 and -002 versions of this data sheet.

1. QFP package type added.
2. Changed "NC" pin labels to "Reserved".
3. Added second paragraph under "Encryption Array" section.

The following differences exist between the 270789-002 data sheet and the 270789-001 version:

1. Changed title from "87C51FC" to "87C51FC/ 83C51FC".
2. Changed data sheet status from "Advanced" to "Preliminary".
3. Deleted all references to -2 version.
4. Added "Four Level Interrupt Priority" feature bullet.
5. Changed feature bullet, "Two Level Program Lock System" to read, "Three Level Program Lock System".
6. Revised RST pin description to include asynchronous port reset feature.
7. Changed Figure 3 to read, " $=40 \mathrm{pF} \pm 10 \mathrm{pF}$ for Ceramic Resonators".
8. Added VIL1 specification to DC Characteristics Table.
9. Changed test conditions under $\mathrm{ILI}_{\mathrm{I}}$ from OV to 0.45 V for V_{IN} minimum.
10. Changed V_{CC} maximum from 5.5 V to 6.0 V for ICC Test Condition under Figure 8.
11. Revised Absolute Maximum Ratings warning and data sheet status notice.
12. Reworded DC Characteristics Note 1.
13. Changed $1 /$ TCLCL Minimum specification from 0.5 MHz to 3.5 MHz .
14. Revised "EPROM Program Lock" section to include ROM lock description.
15. Deleted all references to A15 in "Definition of Terms" and Figure 10.
16. Changed number of encryption array address lines from 5 to 6 under "Encryption Array" section.
17. Added signature byte table to "Reading the Signature Bytes" section.
18. Added this revision summary.

87C51FC/83C51FC
 EXPRESS

> 87C51FC/83C51FC-3.5 MHz to $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$ 87C51FC-1/83C51FC-1-3.5 MHz to $16 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The optional burn-in is dynamic for a minimum time of 168 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here. This data sheet is valid in conjunction with the commercial 87C51FC/83C51FC data sheet, 270789-002.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.
D.C. CHARACTERISTICS $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits		Unit	Test Conditions
		Min	Max		
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)		-750	A	$\mathrm{~V}_{\text {IN }}=2 \mathrm{~V}$

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range	Burn-In
P	Plastic	Commercial	No
D^{*}	Cerdip	Commercial	No
N	PLCC	Commercial	No
TP	Plastic	Extended	No
TD*	Cerdip	Extended	No
TN	PLCC	Extended	No
LP	Plastic	Extended	Yes
LD*	Cerdip	Extended	Yes
LN	PLCC	Yes	

NOTE:

- Commercial temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Extended temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- Burn-in is dynamic for a minimum time of 168 hours at $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.9 \mathrm{~V} \pm 0.25 \mathrm{~V}$, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).
*Available for 87C51FC only.

Examples:

P87C51FC indicates 87C51FC in a plastic package and specified for commercial temperature range, without burn-in.
LD87C51FC indicates 87C51FC in a cerdip package and specified for extended temperature range with burnin.

DATA SHEET REVISION SUMMARY

\square COMMERCIAL/EXPRE 87C51FC-20/83C51FC-2 87C51FC-3/83C51FC-3-24	$\begin{gathered} \mathrm{C}-20 /-3 \\ \mathrm{C}-20 /-3 \end{gathered}$ MHz MICROCONTROLLER Hz to $20 \mathrm{MHz}, \mathrm{V}_{\mathrm{Cc}}=\mathbf{5 V} \pm \mathbf{2 0 \%}$ ernal Operation, $V_{C C}=5 \mathrm{~V} \pm 20 \%$
- High Performance CHMOS EPROM	- 32 Programmable I/O Lines
- 24 MHz Internal Operation (-3 only)	- 7 Interrupt Sources
ree 16-Bit Timer/Counters	- Four Level Interrupt Priority
- Programmable Clock Out	Programmable Serial Channel with: - Framing Error Detection
- High Speed Output, - Compare/Capture, - Pulse Width Modulator, - Watchdog Timer capabilities	- Automatic Address Recognition - TTL and CMOS Compatible Logic Levels - 64K External Program Memory Spac
Down Timer/Counter	■ 64K External Data Memory Space
- Three Level Program Lock System - 32K On-Chip EPROM	MCS®-51 Fully Compatible Instruction Set
256 Bytes of On-Chip Data RAM	- Power Saving Idle and Power D
Improved Quick Pulse Programming Algorithm	Modes - ONCE (On-Circuit Emulation) Mode
Boolean Processor	

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 32 Kbytes of the program memory can reside in the on-chip EPROM. In addition the device can address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 8XC51FC-20/-3 is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS-51 family, the 8XC51FC-20/-3 uses the same powerful instruction set, has the same architecture, and is pin-for-pin compatible with the existing MCS-51 family of products. The 8XC51FC-20/-3 is an enhanced version of the $87 \mathrm{C} 51 / 80 \mathrm{C} 51 \mathrm{BH}$. Its added features make it an even more powerful microcontroller for applications that require Pulse Width Modulation, High Speed I/O and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

[^10]

Figure 1. 8XC51FC-20 Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
$8 \times C 51 F C-20$	P	$40-$-Pin Plastic DIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$87 \mathrm{C} 51 \mathrm{FC}-20$	D	$40-$ Pin CERDIP	$36^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times C 51 F \mathrm{C}-20$	N	$44-$ Pin PLCC	$46^{\circ} \mathrm{C} / \mathrm{W}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
$8 \times C 51 \mathrm{FC}-20$	S	$44-$ Pin QFP	$87^{\circ} \mathrm{C} / \mathrm{W}$	$18^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

*Do not connect reserved pins.
Figure 2. Pin Connections

PIN DESCRIPTIONS

V_{CC} : Supply voltage.
$V_{S S}$: Circuit ground.
$\mathrm{V}_{\mathrm{SS} 1}$: Secondary ground (not on DIP). Provided to reduce ground bounce and improve power supply by-passing.

NOTE:

This pin is not a substitute for the $V_{S S}$ pin. Connect V_{SS} and $\mathrm{V}_{\mathrm{SS} 1}$ with the lowest impedance path possible.

Port 0: Port 0 is an 8 -bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1 's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 8XC51FC-20:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2), Clock-Out P1.1
T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control) P1.2 ECI (External Count Input to the PCA)	
P1.3	CEX0 (External I/O for Compare/ Capture Module 0)
P1.4	CEX1 (External I/O for Compare/ Capture Module 1)
P1.5	CEX2 (External I/O for Compare/ Capture Module 2) PEX3 (External I/O for Compare/
P1.7	Capture Module 3) CEX4 (External I/O for Compare/ Capture Module 4)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (1_{IL}, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it
uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (l/IL, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{\text { NTO }}$ (external interrupt 0)
P3.3	$\overline{\text { NT1 }}$ (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	$\overline{\text { WR }}$ (external data memory write strobe)
P3.7	$\overline{\text { RD (external data memory read strobe) }}$

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. The Port Pins will be driven to their reset condition when a voltage above $\mathrm{V}_{\mathrm{H} H}$ is applied whether the oscillator is running or not. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during EPROM programming for the 87C51FC-20.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8 EH . With the bit set, ALE is active only during a MOVX instruction. Otherwise the pin is weakly pulled high.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/PROG
pin, and the pin will be referred to as the ALE/PROG pin.
$\overline{\text { PSEN: }}$ Program Store Enable is the read strobe to external Program Memory.

When the $8 \mathrm{XC} 51 \mathrm{FC}-20$ is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{E A} / V_{P P}$: External Access enable. $\overline{E A}$ must be strapped to VSS in order to enable the device to fetch code from external Program Memory locations 0000 H to OFFFFH. Note, however, that if either of the Program Lock bits are programmed, EA will be internally latched on reset.
$\overline{E A}$ should be strapped to $V_{C C}$ for internal program executions.

This pin also receives the programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a di-vide-by-two flip-flop, but the minimum and maximum high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{H} specifications the capacitance will not exceed 20 pF .

272028-5
$\mathrm{C} 1, \mathrm{C} 2=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
For Ceramic Resonators contact resonator manufacturer.
Figure 3. Oscillator Connections

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs. The PCA timer/counter can optionally be left running or paused during Idle Mode.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 8XC51FC-20 either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level. The external interrupt or reset signal must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INTO or INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

TIMER 2 PROGRAMMABLE CLOCK OUT

The maximum Timer 2 clock out frequency on the 8 XC 51 FC -20 cannot be determined by the equation in the 8XC51FX Hardware Description as shown below.

Clock-Out Frequency $=\frac{\text { Oscillator Frequency }}{4 \times(65536-\text { RCAP2H, RCAP2L })}$
Even though the equation permits a maximum clockout frequency of 5 MHz using a 20 MHz oscillator, the maximum device output frequency is 4 MHz . When using a 20 MHz oscillator, RCAP2L must be limited to a maximum value of FEH.

For a complete description of all Timer 2 functions, please reference the 8XC51FX Hardware Description in the Embedded Microcontrollers and Processors Handbook Volume I.

DESIGN CONSIDERATION

- When running out of internal program/data memory, the 87C51FC-3/83C51FC-3 can be operated using a 24 MHz clock. If the $87 \mathrm{C} 51 \mathrm{FC}-3 / 83 \mathrm{C} 51 \mathrm{FC}-3$ is running out of external program/data memory, the operating frequency must be between 3.5 MHz to 20 MHz . The 87C51FC-3/83C51FC-3 will not function properly at 24 MHz when running out of external program/ data memory.
- The window on the 87C51FC-20 must be covered by an opaque label. Otherwise, the DC and AC characteristics may not be met, and the device may functionally be impaired.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 8XC51FC-20 without the 8XC51FC-20 having to be removed from the circuit. The ONCE Mode is invoked by:

1) Pull ALE low while the device is in reset and PSEN is high;
2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins float, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 8XC51FC-20 is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins During Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORTO	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/VPP Pin to $V_{S S} \ldots . . .0 \mathrm{~V}$ to +13.0 V
Voltage on Any Other Pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to +6.5 V
lol Per I/O Pin
15 mA
Power Dissipation. 1.5 W (based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
T_{A}	Ambient Temperature Under Bias			
	Commercial			
	Express	0	+70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{f}_{\mathrm{OSC}}$	Oscillator Frequency	4.0	6.0	V

DC CHARACTERISTICS Over Operating Conditions
All parameter values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	Typ(4)	Max	Unit	Test Conditions
V_{IL}	Input Low Voltage	-0.5		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.1$	V	
$\mathrm{V}_{\text {IL1 }}$	Input Low Voltage EA	0		$0.2 \mathrm{~V}_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{HH} 1}$	Input High Voltage (XTAL1, RST)	$0.7 \mathrm{~V}_{\text {CC }}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage(5) (Ports 1, 2, and 3)			0.3	V	$\mathrm{I}^{\mathrm{OL}}=100 \mu \mathrm{~A}(1)$
				0.45	V	$\mathrm{IOL}^{\prime}=1.6 \mathrm{~mA}(1)$
				1.0	V	$\mathrm{IOL}^{2}=3.5 \mathrm{~mA}(1)$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage(5) (Port O, ALE, PSEN)			0.3	V	$\mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A}$ (1)
				0.45	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}(1)$
				1.0	V	$1 \mathrm{LL}=7.0 \mathrm{~mA}(1)$
V_{OH}	Output High Voltage (Ports 1, 2, and 3, ALE, PSEN)	$\mathrm{V}_{\text {CC }}-0.3$			V	$\mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
		$\mathrm{V}_{\text {CC }}-0.7$			V	$\mathrm{l}^{\mathrm{OH}}=-30 \mu \mathrm{~A}$
		$\mathrm{V}_{\text {CC }}-1.5$			V	$\mathrm{l}_{\mathrm{OH}}=-60 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{V}_{\text {CC }}-0.3$			V	$\mathrm{IOH}=-200 \mu \mathrm{~A}$
		$\mathrm{V}_{\text {CC }}-0.7$			V	$\mathrm{IOH}=-3.2 \mathrm{~mA}$
		$\mathrm{V}_{\text {CC }}-1.5$			V	$\mathrm{I}_{\mathrm{OH}}=-7.0 \mathrm{~mA}$

DC CHARACTERISTICS Over Operating Conditions (Continued)
All parameter values apply to both Commercial and Express devices unless otherwise indicated.

Symbol	Parameter	Min	Typ(4)	Max	Unit	Test Conditions
IIL	Logical 0 Input Current (Ports 1, 2, and 3)			-50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
ILI	Input leakage Current (Port 0)			± 10	$\mu \mathrm{~A}$	$0.45 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, and 3) Commercial					
	Express			-650	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}$
RRST	RST Pulldown Resistor	40		225	$\mathrm{~K} \Omega$	
CIO	Pin Capacitance		10		pF	@1 MHz, 250
ICC	Power Supply Current:					(Note 3)
	Running at 12 MHz (Figure 5)					
	Idle Mode at 12 MHz (Figure 5)		20	40	mA	
	Power Down Mode		15	10	mA	

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses above 0.4 V to be superimposed on the $\mathrm{V}_{\text {OLS }}$ of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with Schmitt triggers or CMOS-level input logic.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3. See Figures 6-9 for test conditions. Minimum $V_{c c}$ for Power Down is 2 V .
4. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and 5 V .
5. Under steady state (non-transient) conditions, loL must be externally limited as follows:

Maximum lol per port pin:
Maximum lol per 8-bit port-
Port 0: $\quad 26 \mathrm{~mA}$
Ports 1, 2 and 3: $\quad 15 \mathrm{~mA}$
Maximum total lol for all output pins: $\quad 71 \mathrm{~mA}$
If lol exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 5. Icc vs Frequency

Figure 6. Icc Test Condition, Active Mode

Figure 7. Icc Test Condition Idle Mode

Figure 8. Icc Test Condition, Power Down Mode
$\mathbf{V}_{\mathbf{C C}}=\mathbf{2 . 0 V}$ to $\mathbf{6 . 0 V}$

Figure 9. Clock Signal Waveform for Icc Tests in Active and Idle Modes
TCLCH $=$ TCHCL $=5 \mathrm{~ns}$

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)
L: Logic level LOW, or ALE

P: $\overline{\text { PSEN }}$
Q: Output Data
R: $\overline{\mathrm{RD}}$ signal
T: Time
V: Valid
W: $\overline{W R}$ signal
X: No longer a valid logic level
Z: Float
For example,
TAVLL $=$ Time from Address Valid to ALE Low
TLLPL $=$ Time from ALE Low to PSEN Low
 $\overline{\text { PSEN }}=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	20 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	20	MHz
TLHLL	ALE Pulse Width	60		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	10		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	20		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		125		4TCLCL-75	ns
TLLPL	ALE Low to PSEN Low	20		TCLCL-30		ns
TPLPH	PSEN Pulse Width	105		3TCLCL-45		ns
TPLIV	$\overline{\text { PSEN }}$ Low to Valid Instruction In		60		3TCLCL-90	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		30		TCLCL-20	ns
TAVIV	Address to Valid Instruction In		145		5TCLCL-105	ns
TPLAZ	$\overline{\text { PSEN Low to Address Float }}$		10		10	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	200		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	200		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		155		5TCLCL-95	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		40		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		310		8TCLCL-90	ns
TAVDV	Address to Valid Data In		360		9TCLCL-90	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{W R}$ Low	100	200	3TCLCL-50	$3 T C L C L+50$	ns
TAVWL	Address Valid to $\overline{W R}$ Low	110		4TCLCL-90		ns
TQVWX	Data Valid before $\overline{\mathrm{WR}}$	15		TCLCL-35		ns
TWHQX	Data Hold after \bar{W}	10		TCLCL-40		ns
TQVWH	Data Valid to WR High	280		7TCLCL-70		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or WR High to ALE High	10	90	TCLCL-40	TCLCL + 40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

272028-12

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING-SHIFT REGISTER MODE

Test Conditions: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$\mathbf{2 0}$ MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	600		12 TCLCL		ns
TQVXH	Output Data Setup to Clock Rising Edge	367		10 TCLCL -133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2 TCLCL -50		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		
TXHDV	Clock Rising Edge to Input Data Valid		367		10 TCLCL -133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency	3.5	20	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

AC TESTING INPUT，OUTPUT WAVEFORMS

272028－17
AC Inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic＂ 1 ＂ and 0.45 V for a Logic＂ 0 ＂．Timing measurements are made at V_{IH} min for a Logic＂ 1 ＂and $V_{I L}$ max for a Logic＂ 0 ＂．

PROGRAMMING THE EPROM

The part must be running with a 4 MHz to 6 MHz oscillator．The address of an EPROM location to be programmed is applied to address lines while the code byte to be programmed in that location is ap－ plied to data lines．Control and program signals must be held at the levels indicated in Table 2．Normally EA／VPP is held at logic high until just before ALE／ $\overline{\text { PROG }}$ is to be pulsed．The EA／$V_{P P}$ is raised to $V_{P P}$ ， ALE／PROG is pulsed low and then EA／VPP is re－ turned to a high（also refer to timing diagrams）．

NOTE：
Exceeding the $V_{P P}$ maximum for any amount of time could damage the device permanently．The V_{PP} source must be well regulated and free of glitches．

FLOAT WAVEFORMS

272028－18
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs，and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs． $\mathrm{l}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}}= \pm 20 \mathrm{~mA}$ ．

DEFINITION OF TERMS

ADDRESS LINES：P1．0－P1．7，P2．0－P2．5，P3．4 re－ spectively for AO－A14．

DATA LINES：P0．0－P0．7 for D0－D7．
CONTROL SIGNALS：RST，$\overline{\text { PSEN，P2．6，P2．7，P3．3，}}$ P3．6，P3． 7

PROGRAM SIGNALS：ALE／$\overline{\text { PROG }}, \overline{E A} / V_{P P}$

Table 2．EPROM Programming Modes

Mode		RST	PSEN	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{\mathbf{E A} /} \\ & \mathbf{V}_{\mathbf{P P}} \end{aligned}$	P2．6	P2．7	P3．3	P3．6	P3．7
Program Code Data		H	L	工	12．75V	L	H	H	H	H
Verify Code Data		H	L	H	H	L	L	L	H	H
Program Encryption Array Address 0－3FH		H	L	工	12.75 V	L	H	H	L	H
Program Lock Bits	Bit 1	H	L	Ч	12.75 V	H	H	H	H	H
	Bit 2	H	L	凹	12.75 V	H	H	H	L	L
	Bit 3	H	L	บ	12.75 V	H	L	H	H	L
Read Signature Byte		H	L	H	H	L	L	L	L	L

Figure 10. Programming the EPROM

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 10 and 11 for address, data, and control signals set up. To program the 87C51FC-20 the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from $V_{C C}$ to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse ALE/ $\overline{\text { PROG }} 5$ times for the EPROM array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Program verify may be done after each byte, or block of bytes that is programmed. A complete verify of the array will ensure reliable programming of the 87C51FC-20.

The lock bits cannot be directly verified. They are verified by observing that their features are enabled. Refer to the EPROM Program Lock section in this data sheet.

Figure 11. Programming Signal's Waveforms

ROM and EPROM Lock System

The 87C51FC-20 and the 83C51FC-20 program lock systems, when programmed, protect the onboard program against software piracy.

The 83C51FC-20 has a one-level program lock system and a 64-byte encryption table. See line 2 of Table 3. If program protection is desired, the user submits the encryption table with their code, and both the lock-bit and encryption array are programmed by the factory. The encryption array is not available without the lock bit. For the lock bit to be programmed, the user must submit an encryption table.

The 87C51FC-20 has a 3-level program lock system and a 64-byte encryption array. Since this is an EPROM device, all locations are user-programmable. See Table 3.

Encryption Array

Within the EPROM array are 64 bytes of Encryption Array that are initially unprogrammed (all 1's). Every time that a byte is addressed during a verify, 6 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an Encryption Verify byte. The algorithm, with the array in the unprogrammed state (all 1's), will return the code in it's original, unmodified form. For programming the Encryption Array, refer to Table 2 (Programming the EPROM).

When using the encryption array, one important factor needs to be considered. If a code byte has the value $0 F F H$, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the contents of the encryption array. For this reason all unused code bytes should be programmed with some value other than OFFH, and not all of them the same value. This will ensure maximum program protection.

Program Lock Bits

The 87C51FC-20 has 3 programmable lock bits that when programmed according to Table 3 will provide different levels of protection for the on-chip code and data.

Erasing the EPROM also erases the encryption array and the program lock bits, returning the part to full functionality.

Reading the Signature Bytes

The $8 \times C 51 F C-20$ has 3 signature bytes in locations $30 \mathrm{H}, 31 \mathrm{H}$, and 60 H . To read these bytes follow the procedure for EPROM verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Contents	
	$87 C 51 F C-20$	$83 C 51 F C-20$
30 H	89 H	89 H
31 H	58 H	58 H
60 H	FCH	$\mathrm{FCH} / 7 \mathrm{CH}$

Erasure Characteristics (Windowed Packages Only)

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. Exposing the EPROM to an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves all the EPROM Cells in a 1's state.

87C51FC-20/-3 83C51FC-20/-3

Table 3. Program Lock Bits and the Features

Program Lock Bits				Protection Type	
	LB1	LB2	LB3		
1	U	U	U	No Program Lock features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.)	
2	P	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.	
3	P	P	U	Same as 2, also verify is disabled.	
4	P	P	P	Same as 3, also external execution is disabled.	

Any other combination of the lock bits is not defined.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

($T_{A}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
VPP	Programming Supply Voltage	12.5	13.0	V
lpp	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to $\overline{\text { PROG }}$ Low	48TCLCL		
TGHAX	Address Hold after PROG	48TCLCL		
TDVGL	Data Setup to PROG Low	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	(Enable) High to $\mathrm{V}_{\text {PP }}$	48 TCLCL		
TSHGL	$V_{\text {PP }}$ Setup to $\overline{\text { PROG }}$ Low	10		$\mu \mathrm{S}$
TGHSL	$V_{\text {PP }}$ Hold after PROG	10		$\mu \mathrm{s}$
TGLGH	PROG Width	90	110	$\mu \mathrm{s}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	$\overline{\text { PROG }}$ High to $\overline{\text { PROG }}$ Low	10		$\mu \mathrm{s}$

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION SUMMARY

The following differences exist between this data sheet (272028-002) and the previous version (272028-001):

1. Added $87 \mathrm{C} 51 \mathrm{FC}-3 / 83 \mathrm{C} 51 \mathrm{FC}-3$ to 20 MHz data sheet.
2. Added EXPRESS version of $8 \mathrm{XC} 51 \mathrm{FC}-20 /-3$ to 20 MHz data sheet.
3. Data sheet title was changed from:

87C51FC-20/83C51FC-20 20 MHz CHMOS Single-Chip 8-Bit Microcontroller with 32 Kbytes User Programmable EPROM
to:
87C51FC-20/-3 83C51FC-20/-3 Commercial/Express 20 MHz Microcontroller
4. Added process information after block diagram.
5. θ_{ja} and θ_{jc} information added to Packages Table.
6. Variable Oscillator equations in External Memory Characteristics Table changed as follows:

	From	To
TLLIV	120	125
	4 TCLCL-80	4 TCLCL-75
TPLIV	3TCLCL-95	3 TCLCL-90
TWHQX	0	10
	TCLCL-50	TCLCL-40
TQVWH	200	280
	$7 T C L C L-150$	$7 T C L C L-70$

The following differences exist between revision 1 of the 87 C51FC-20/83C51FC-20 (272028-001) data sheet and the 87C51FC/83C51FC (270789-002) data sheet:

1. QFP package added.
2. Pins labeled "NC" changed to "Reserved" on the PLCC pinout.
3. Timer 2 Programmable Clock Out paragraph added.
4. RRST specification in DC Characteristics Table changed from $40 \mathrm{~K} \Omega \min , 225 \mathrm{~K} \Omega \max$ to $50 \mathrm{~K} \Omega \mathrm{~min}$, $300 \mathrm{~K} \Omega$ max.
5. 20 MHz extension added to Figure 3.
6. 12 MHz Oscillator timings changed to 20 MHz in External Program Memory Characteristics and Serial Port Timing Tables.
7. Variable Oscillator equations in External Program Memory Characteristics Table changed as follows:

	From	To
TLLIV	4TCLCL - 100	4TCLCL - 80
TPLIV	3TCLCL - 105	3TCLCL - 95
TPXIZ	TCLCL - 25	TCLCL - 20
TRLDV	5TCLCL - 165	5TCLCL-95
TLLDV	8TCLCL - 150	8TCLCL - 90
TAVDV	9TCLCL - 165	9TCLCL - 90
TAVWL	4TCLCL - 130	4TCLCL - 90
TQVWX	TCLCL - 50	TCLCL

8. TXHQX in the Serial Port Timing Table changed from (2TCLCL - 117) to (2TCLCL - 50).

8XC51GB Hardware
 Description and Data Sheets

\cdots

87C51GB Hardware Description

87C51GB Hardware Description

CONTENTS
1.0 INTRODUCTION TO THE 8XC51GB 9-4
2.0 MEMORY ORGANIZATION 9-4
2.1 Program Memory 9-4
2.2 Data Memory 9-4
3.0 SPECIAL FUNCTION REGISTERS 9-6
4.0 I/O PORTS 9-9
4.1 I/O Configurations 9-9
4.2 Writing to a Port 9-10
4.3 Port Loading and Interfacing 9-11
4.4 Read-Modify-Write Instructions 9-11
4.5 Accessing External Memory 9-12
5.0 TIMER/COUNTERS 9-14
5.1 Timer 0 and Timer 1 9-14
Mode 0 9-15
Mode 1 9-16
Mode 2 9-17
Mode 3 9-17
5.2 Timer 2 9-18
Timer 2 Capture Mode 9-19
Timer 2 Auto-Reload Mode 9-19
5.3 Programmable Clock-Out 9-21
6.0 A/D CONVERTER 9-22
6.1 A/D Special Function Registers 9-22
6.2 A/D Comparison Mode 9-23
6.3 A/D Trigger Mode 9-23
6.4 A/D Input Modes 9-23
6.5 Using the A/D with Fewer than 8 Inputs 9-23
6.6 A/D in Power Down 9-24CONTENTSPAGE
7.0 PROGRAMMABLE COUNTER ARRAY 9-24
7.1 PCA Timer/Counter 9-25
Reading the PCA Timer 9-27
7.2 Compare/Capture Modules 9-27
7.3 PCA Capture Mode 9-28
7.4 Software Timer Mode 9-30
7.5 High Speed Output Mode 9-31
7.6 Watchdog Timer Mode 9-31
7.7 Pulse Width Modulator Mode 9-32
8.0 SERIAL PORT 9-34
8.1 Framing Error Detection 9-36
8.2 Multiprocessor Communications 9-36
8.3 Automatic Address Recognition 9-37
8.4 Baud Rates 9-37
8.5 Timer 1 to Generate Baud Rates 9-37
8.6 Timer 2 to Generate Baud Rates 9-38
9.0 SERIAL EXPANSION PORT 9-39
9.1 Programmable Modes and Clock Options 9-40
9.2 SEP Transmission or Reception 9-41
10.0 HARDWARE WATCHDOG TIMER 9-41
10.1 Using the WDT 9-41
10.2 WDT During Power Down and Idle 9-41
11.0 OSCILLATOR FAIL DETECT 9-41
11.1 OFD During Power Down 9-42

CONTENTS

12.0 INTERRUPTS
PAGE
12.1 External Interrupts 9-42
12.2 Timer Interrupts 9-44
12.3 PCA Interrupt 9-44
12.4 Serial Port Interrupt 9-44
12.5 Interrupt Enable 9-44
12.6 Interrupt Priorities 9-46
12.7 Interrupt Processing 9-48
12.8 Interrupt Response Time 9-49
13.0 RESET 9-50
13.1 Power-On Reset 9-50
CONTENTS14.0 POWER-SAVING MODES9-50
14.1 Idle Mode 9-52
14.2 Power Down Mode 9-52
14.3 Power Off Flag 9-52
15.0 EPROM/OTP PROGRAMMING 9-53
15.1 Program Memory Lock 9-53
Program Lock Bits 9-53
16.0 ONCE MODE 9-53
17.0 ON-CHIP OSCILLATOR 9-53
18.0 CPU TIMING 9-55

1.0 INTRODUCTION TO THE 8XC51GB

The 8 XC 51 GB is a highly integrated 8 -bit microcontroller based on the MCS ${ }^{\circledR}-51$ architecture. As a member of the MCS-51 family, the 8 XC 51 GB is optimized for control applications. Its key features are an analog to digital converter and two programmable counter arrays (PCA) capable of measuring and generating pulse information on ten I/O pins. Also included are an enhanced serial port for multi-processor communications, a serial expansion port, hardware watchdog timer, oscillator fail detection, an up/down timer/counter and a program lock scheme for the on-chip program memory. Since the 8 XC 51 GB is CHMOS, it has two software selectable reduced power modes: Idle Mode and Power Down Mode.

The 8 XC 51 GB used the standard 8051 instruction set and is functionally compatible with the existing MCS-51 family of products.

This document presents a comprehensive description of the on-chip hardware features of the 8 XC 51 GB . It begins with a discussion of how the memory is organized, followed by the instruction set, and then discusses each of the peripherals listed below.

- Six 8-bit Bidirectional Parallel Ports
- Three 16-bit Timer/Counters with
- One Up/Down Timer/Counter
- Programmable Clock Output
- Analog to Digital Converter with
- 8 channels
- 8-bit resolution
- compare mode
- Two Programmable Counter Arrays with
- Compare/Capture
- Software Timer
- High Speed Output
- Pulse Width Modulator
- Watchdog Timer (PCA only)
- Full-Duplex Programmable Serial Port with
- Framing Error Detection
- Automatic Address Recognition
- Serial Expansion Port
- four programmable modes
- four selectable frequencies
- Hardware Watchdog Timer
- Reset
- asynchronous
- active low
- Oscillator Fail Detection
- Interrupt Structure with
- 15 interrupt sources
- Four priority levels
- Power-Saving Modes
- Idle Mode
- Power Down Mode

The table below summarizes the product names of the various 8 XC 51 GB products currently available. Throughout this document, the products will generally be referred to as the 8 XC 51 GB . Figure 1 shows a functional block diagram of the 8 XC 51 GB .

ROM Device	OTP Version	ROMless Version	ROM/ OTP Bytes	RAM Bytes
87 C 51 GB	87 C 51 GB	80 C 51 GB	8 K	256

2.0 MEMORY ORGANIZATION

All MCS-51 devices have a separate address space for Program Memory and Data Memory. The logical separation of Program and Data Memory allows the Data Memory to be accessed by 8 -bit addresses, which can be more quickly stored and manipulated by an 8-bit CPU. Nevertheless, 16-bit Data Memory addresses can also be generated through the DPTR register. Up to 64 Kbytes each of external Program and Data Memory can be addressed.

2.1 Program Memory

Program Memory can only be read, not written to. There can be up to 64 Kbytes of Program Memory. The read strobe for external Program Memory is the signal PSEN (Program Store Enable). $\overline{\text { PSEN }}$ is not activated for internal program fetches.

If the $\overline{\mathrm{EA}}$ (External Access) pin is connected to V_{SS}, all program fetches are directed to external memory. For the ROMless devices, all program fetches must be to external memory. If the $\overline{\mathrm{EA}}$ pin is connected to V_{CC}, then program fetches greater than 8 K are to external addresses for the 8 XC 51 GB products.

On the 87 C 51 GB with $\overline{\mathrm{EA}}$ connected to V_{CC}, program fetches to addresses 0000 H through 1 FFFH are to internal ROM, and fetches to addresses 2000 H through FFFFH are to external memory.

2.2 Data Memory

The 8XC51GB implements 256 bytes of on-chip data RAM. The memory space is divided into three blocks,

Figure 1. 87C51GB Block Diagram
which are generally referred to as the Lower 128, the Upper 128, and SFR space. The Upper 128 bytes occupy a parallel address space to the Special Function Registers. That means they have the same addresses, but they are physically separate from SFR space.

The Lower 128 bytes of RAM are present in all MCS-51 devices. All of the bytes in the Lower 128 can be accessed by either direct or indirect addressing. The lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word (PSW) select which register bank is in use. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing.

When an instruction accesses an internal location above address 7 FH , the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction. Instructions that use direct addressing access SFR space. For example,
MOV OAOH, data
accesses the SFR at location OA0H (which is P2). Instructions that use indirect addressing access the upper 128 bytes of data RAM. For example,
MOV @RO, data
where R0 contains 0 AOH , accesses the data byte at address 0 AOH , rather than P 2 (whose address is 0 AOH). Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.

3.0 SPECIAL FUNCTION REGISTERS

A map of the on-chip memory area called by the SFR (Special Function Register) space is shown in Table 1. Special Function Registers (SFRs) include the Port
latches, timers, peripheral controls, etc. These registers can only be accessed by direct addressing. Sixteen addresses in SFR space are both byte- and bit-addressable. The bit-addressable SFRs are those whose address ends in 000B. The bit addresses in this area are 80 H through OFFH.

Not all of the addresses are occupied. Unoccupied addresses are not implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have no effect.

Table 1. SFR Mapping and Reset Values

F8	$\begin{array}{\|c\|} \hline \text { P5 } \\ 00000000 \end{array}$	$\begin{gathered} \mathrm{CH} \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ССАРОН } \\ X X X X X X X \end{gathered}$	$\begin{gathered} \text { CCAP1H } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { CCAP2H } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { ССАРЗН } \\ X X X X X X X \end{gathered}$	$\begin{gathered} \text { CCAP4H } \\ X X X X X X X X \end{gathered}$	
F0	$\begin{gathered} * B \\ 00000000 \end{gathered}$				$\begin{gathered} \text { AD7 } \\ 00000000 \end{gathered}$			$\begin{aligned} & \text { SEPSTAT } \\ & \text { XXXXX000 } \end{aligned}$
E8	$\begin{array}{\|c\|} \hline \text { C1CON } \\ 00000000 \end{array}$	$\begin{gathered} \mathrm{CL} \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCAPOL } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CCAP1L } \\ \text { XXXXXXXX } \end{array}$	$\begin{gathered} \text { CCAP2L } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { CCAP3L } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { CCAP4L } \\ \text { XXXXXXXX } \end{gathered}$	
E0	$\begin{array}{\|c\|} \hline * \text { ACC } \\ 00000000 \end{array}$				$\begin{gathered} \text { AD6 } \\ 00000000 \end{gathered}$			$\begin{gathered} \text { SEPDAT } \\ \text { XXXXXXXX } \end{gathered}$
D8	CCON 00×00000	$\begin{gathered} \text { CMOD } \\ 00 X X X 000 \end{gathered}$	$\begin{aligned} & \text { CCAPMO } \\ & \text { X0000000 } \end{aligned}$	$\begin{aligned} & \text { CCAPM1 } \\ & \text { X0000000 } \end{aligned}$	$\begin{aligned} & \text { CCAPM2 } \\ & \text { X0000000 } \end{aligned}$	$\begin{aligned} & \text { CCAPM3 } \\ & \text { X0000000 } \end{aligned}$	$\begin{aligned} & \text { CCAPM4 } \\ & \text { X0000000 } \end{aligned}$	
D0	*PSW 00000000				$\begin{gathered} \text { AD5 } \\ 00000000 \end{gathered}$			$\begin{aligned} & \text { SEPCON } \\ & \text { XX000000 } \end{aligned}$
C8	$\begin{array}{\|c\|} \hline \text { T2CON } \\ 00000000 \end{array}$	$\begin{array}{\|c\|} \hline \text { T2MOD } \\ \text { XXXXXX00 } \\ \hline \end{array}$	RCAP2L	$\begin{aligned} & \text { RCAP2H } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { TL2 } \\ 00000000 \end{gathered}$	$\begin{gathered} \mathrm{TH} 2 \\ 00000000 \end{gathered}$		
C0	$\begin{array}{\|c\|} \hline \text { P4 } \\ 00000000 \\ \hline \end{array}$				$\begin{gathered} \text { AD4 } \\ 00000000 \end{gathered}$		$\begin{aligned} & \text { EXICON } \\ & \text { X0000000 } \end{aligned}$	$\begin{gathered} \text { ACMP } \\ 00000000 \end{gathered}$
B8	$\begin{array}{\|c\|} \hline * \text { IP } \\ \times 0000000 \end{array}$	$\begin{aligned} & \text { SADEN } \\ & 00000000 \end{aligned}$	$\left\lvert\, \begin{gathered} \text { C1CAPOH } \\ X X X X X X X \end{gathered}\right.$	$\begin{array}{\|c\|} \hline \text { C1CAP1H } \\ \text { XXXXXXXX } \end{array}$	$\begin{aligned} & \text { C1CAP2H } \\ & X X X X X X X X \end{aligned}$	$\begin{gathered} \text { С1САРЗН } \\ X X X X X X X \end{gathered}$	$\begin{array}{\|c\|} \hline \text { C1CAP4H } \\ \text { XXXXXXXX } \end{array}$	$\begin{gathered} \mathrm{CH1} \\ 00000000 \end{gathered}$
B0	*P3 11111111				$\begin{gathered} \hline \text { AD3 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { IPAH } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { IPA } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { IPH } \\ \times 0000000 \end{gathered}$
A8	$\begin{gathered} \text { *IE } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { SADDR } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { C1CAPOL } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { C1CAP1L } \\ \text { XXXXXXXX } \\ \hline \end{array}$	$\begin{gathered} \text { C1CAP2L } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { C1CAP3L } \\ & \text { XXXXXXX } \end{aligned}$	$\begin{array}{\|c\|} \text { C1CAP4L } \\ X X X X X X X X \\ \hline \end{array}$	$\begin{gathered} \text { CL1 } \\ 00000000 \end{gathered}$
AO	$\begin{gathered} \text { *P2 } \\ 00000000 \end{gathered}$				$\begin{gathered} \text { AD2 } \\ 00000000 \\ \hline \end{gathered}$	$\begin{gathered} \text { OSCR } \\ X X X X X X 0 \\ \hline \end{gathered}$	$\begin{gathered} \text { WDTRST } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { IEA } \\ 00000000 \end{gathered}$
98	*SCON 00000000	$\begin{gathered} \text { *SBUF } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { C1CAPM0 } \\ & \text { X0000000 } \end{aligned}$	C1CAPM1 X0000000	C1CAPM2 X0000000	$\begin{aligned} & \text { C1CAPM3 } \\ & \text { X0000000 } \end{aligned}$	C1CAPM4 X0000000	$\begin{aligned} & \text { C1MOD } \\ & \text { XXXX0000 } \end{aligned}$
90	$\begin{array}{\|c\|} \hline \text { *P1 } \\ 00000000 \\ \hline \end{array}$				$\begin{gathered} \hline \text { AD1 } \\ 00000000 \\ \hline \end{gathered}$			$\begin{array}{\|c\|} \hline \text { ACON } \\ \times \times 000000 \\ \hline \end{array}$
88	$\begin{array}{\|c\|} \hline \text { *TCON } \\ 00000000 \end{array}$	$\begin{gathered} \text { *TMOD } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { *TLO } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { *TL1 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { *THO } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { *TH1 } \\ 00000000 \end{gathered}$		
80	$\begin{array}{\|c\|} \text { *PO } \\ 11111111 \\ \hline \end{array}$	$\begin{gathered} \text { *SP } \\ 00000111 \end{gathered}$	$\begin{gathered} \text { *DPL } \\ 00000000 \end{gathered}$	*DPH 00000000	$\begin{gathered} \text { AD0 } \\ 00000000 \end{gathered}$			$\begin{aligned} & \text { *PCON** } \\ & 00 X X 0000 \end{aligned}$

* = Found in the 8051 core (see 8051 Hardware Description for explanations of these SFRs).
${ }^{* *}=$ See description of PCON SFR. Bit PCON. 4 is not affected by reset.
X $=$ Undefined.

User software should not write 1's to these unimplemented locations, since they may be used in future MCS-51 products to invoke new features. In that case the reset or inactive values of the new bits will always be 0 , and their active values will be 1 .

The functions of the SFRs are outlined below. More information on the use of specific SFRs for each peripheral is included in the description of that peripheral.

Accumulator: ACC is the Accumulator register. The mnemonics for Accumulator-Specific instructions, however, refer to the Accumulator simply as A.

B Register: The B register is used during multiply and divide operations. For other instructions it can be treated as another scratch pad register.

Stack Pointer: The Stack Pointer Register is 8 bits wide. It is incremented before data is stored during PUSH and CALL executions. The stack may reside anywhere in on-chip RAM. On reset, the Stack Pointer is initialized to 07 H causing the stack to begin at location 08 H .

Data Pointer: The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is to hold a 16-bit address, but it may be manipulated as a 16 -bit register or as two independent 8 -bit registers.

Program Status Word: The PSW register contains program status information as detailed in Table 2.

Ports 0 to 5 Registers: P0, P1, P2, P3, P4, and P5 are the SFR latches of Ports 0 through 5 respectively.

Timer Registers: Register pairs (THO, TLO), (TH1, TL1) and (TH2, TL2) are the 16 -bit count registers for Timer/Counters 0,1 , and 2 respectively. Control and status bits are contained in registers TCON and TMOD for Timers 0 and 1 and in registers T2CON and T2MOD for Timer 2. The register pair (RCAP2H, RCAP2L) are the capture/reload registers for Timer 2 in 16-bit capture mode or 16 -bit auto-reload mode.

Programmable Counter Array (PCA and PCA1) Registers: The 16-bit PCA and PCA1 timer/counters consist of register CH (CH1) and CL (CL1). Registers CCON (C1CON) and CMOD (C1MOD) contain the control and status bits for the PCA (and PCA1). The CCAPMn ($\mathrm{n}=0,1,2,3$, or 4) and the C1CAPMn registers control the mode for each of the five PCA and the five PCA1 modules. The register pairs (CCAPnH, CCAPnL and C1CAPnH, C1CAPnL) are the 16-bit compare/capture registers for each PCA and PCA1 module.

Serial Port Registers: The Serial Data Buffer, SBUF, is actually two separate registers: a transmit buffer and a receive buffer register. When data is moved to SBUF, it comes from the receive buffer. Register SCON contains the control and status bits for the Serial Port. Registers SADDR and SADEN are used to define the Given and the Broadcast addresses for the Automatic Address Recognition feature.

Table 2. PSW: Program Status Word Register

Serial Expansion Port Registers: The Serial Expansion Port is controlled through the register SEPCON. SEPDAT contains data for the Serial Expansion Port and SEPSTAT is used to monitor its status.

Interrupt Registers: The individual interrupt enable bits are in the IE and IEA registers. One of four priority levels can be selected for each interrupt using the IP, IPH, IPA and IPAH registers. The EXICON register controls the selection of the activation polarity for external interrupts two and three.

Analog to Digital Converter Registers: The results of A/D conversions are placed in registers AD0, AD1, AD2, AD3, AD4, AD5, AD6, and AD7 for analog
channels 0 through 7 respectively. The register ACMP contains the results of the A / D comparison feature. ACON is the control register for A/D conversions.

Power Control Register: PCON controls the Power Reduction Modes, Idle and Power Down.

Oscillator Fail Detect Register: The OSCR register is used both to monitor the status of the OFD circuitry and to disable the feature.

Watchdog Timer Register: The WatchDog Timer ReSeT (WDTRST) register is used to keep the watchdog timer from periodically resetting the part.

Table 3. Alternate Port Functions

Port Pin	Alternate Function
P0.0/AD0-P0.7/AD7	Multiplexed Byte of Address/Data for external memory.
P1.0/T2	Timer 2 External Clock Input/Clockout
P1.1/T2EX	Timer 2 Reload/Capture/Direction Control
P1.2/ECI	PCA External Clock Input
P1.3/CEX0	PCA Module 0 Capture Input, Compare/PWM Output
P1.4//EX1	PCA Module 1 Capture Input, Compare/PWM Output
P1.5/CEX2	PCA Module 2 Capture Input, Compare/PWM Output
P1.6/CEX3	PCA Module 3 Capture Input, Compare/PWM Output
P1.7/CEX4	PCA Module 4 Capture Input, Compare/PWM Output
P2.0/A8-P2.7/A15	High Byte of Address for External Memory
P3.0/RXD	Serial Port Input
P3.1/TXD	Serial Port Output
P3.2/INT0	External Interrupt 0
P3.3/INT1	External Interrupt 1
P3.4/T0	Timer 0 External Clock Input
P3.5/T1	Timer 1 External Clock Input
P3.6/WR	Write Strobe for External Memory
P3.7/RD	Read Strobe for External Memory
P4.0/SEPCLK	Clock Source for SEP
P4.1/SEPDAT	Data I/O for SEP
P4.2/EC11	PCA1 External Clock Input
P4.3/C1EX0	PCA1 Module 0, Capture Input, Compare/PWM Output
P4.4/C1EX1	PCA1 Module 1, Capture Input, Compare/PWM Output
P4.5/C1EX2	PCA1 Module 2, Capture Input, Compare/PWM Output
P4.6/C1EX3	PCA1 Module 3, Capture Input, Compare/PWM Output
P4.7/C1EX4	PCA1 Module 4, Capture Input, Compare/PWM Output
P5.2/INT2	External Interrupt 2
P5.3/NT3	External Interrupt 3
P5.4//NT4	External Interrupt 4
P5.5/NT5	External Interrupt5
P5.6/INT6	

NOTE:

The alternate functions can only be activated if the corresponding bit latch in the port SFR contains a 1 . Otherwise the port pin will not go high.

4.0 I/O PORTS

All six ports in the 8 XC 51 GB are bidirectional. Each consists of a latch (Special Function Register P0 through P5), output driver and an input buffer. All the ports, except for Port 0, have Schmitt Trigger inputs.

The output drivers of Ports 0 and 2, and the input buffers of Port 0 , are used in accesses to external memory. In this application, Port 0 outputs the low byte of the external memory address, time-multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory address when the address is 16 bits wide. Otherwise the Port 2 pins continue to emit the P2 SFR content.

All the Port 1, Port 3, Port 4 and most of Port 5 pins are multi-functional. They are not only port pins, but also serve the functions of various special features as shown in Table 3.

4.1 I/O Configurations

Functional diagrams of a bit latch and I/O buffer in each of the four ports are shown in Figure 2.

The bit latch (one bit in the port's SFR) is represented as a Type D flip-flop, which clocks in a value from the internal bus in response to a "write to latch" signal from the CPU. The Q output of the flip-flop is placed on the internal bus in response to a "read latch" signal from the CPU. The level of the port pin itself is placed on the internal bus in response to a "read pin" signal from the CPU. Some instructions that read a port activate the "read latch" signal, and others activate the "read pin" signal. Those that read the latch are the Read-Modify-Write instructions.

The output drivers of Ports 0 and 2 are switchable to an internal ADDRESS and ADDRESS/DATA bus by an internal control signal for use in external memory accesses. During external memory accesses, the P2 SFR

Figure 2. 8XC51GB Port Bit Latches and I/O Buffers
remains unchanged, but the PO SFR gets 1s written to it.

If a P1 through P5 latch contains a 1, then the output level is controlled by the signal labeled "alternate output function." The pin level is always available to the pin's alternate input function, if any.

Ports 1 through 5 have internal pullups. Port 0 has open drain outputs. Each I/O line can be independently used as an input or an output (Ports 0 and 2 may not be used as general purpose I/O when being used as the ADDRESS/DATA BUS). To be used as an input, the port bit latch must contain a 1 , which turns off the output driver FET. On Ports 1 through 5 the pin is pulled high by the internal pullup, but can be pulled low by an external source.

P1, P2, P4, and P5 reset to a low state. While in reset these pins can sink large amounts of current. If these ports are to be used as inputs and externally driven high while in reset, the user should be aware of possible contention. A simple solution is to use open collector interfaces with these port pins or to buffer the inputs.

Port 0 differs from the other ports in not having internal pullups. The pullup FET in the P0 output driver is used only when the port is emitting 1s during external memory accesses. Otherwise the pullup FET is off. Consequently PO lines that are being used as output
port lines are open drain. Writing a 1 to the bit latch leaves both output FETs off, which floats the pin and allows it to be used as a high-impedance input. Because Ports 1 through 5 have fixed internal pullups they are sometimes called "quasi-bidirectional" ports.

When configured as inputs they pull high and will source current ($\mathrm{I}_{\text {IL }}$ in the data sheets) when externally pulled low. Port 0 , on the other hand, is considered "true" bidirectional, because it floats when configured as an input.

The latches for ports 0 and 3 have 1 s written to them by the reset function. If a 0 is subsequently written to a port latch, it can be reconfigured as an input by writing a 1 to it.

4.2 Writing to a Port

In the execution of an instruction that changes the value in a port latch, the new value arrives at the latch during State 6, Phase 2 of the final cycle of the instruction. However, port latches are sampled by their output buffers only during Phase 1 of any clock period. (During Phase 2 the output buffer holds the value it saw during the previous Phase 1). Consequently, the new value in the port latch won't actually appear at the output pin until the next Phase 1, which will be at S1P1 of the next machine cycle. Refer to Figure 3.

Figure 3. Port Operation

For more information on internal timings refer to the CPU Timing section.

If the change requires a 0 -to- 1 transition in Ports 1 through 5, an additional pullup is turned on during S1P1 and S1P2 of the cycle in which the transition occurs. This is done to increase the transition speed. The extra pullup can source about 100 times the current that the normal pullup can. The internal pullups are field-effect transistors, not linear resistors. The pullup arrangements are shown in Figure 4.

The pullup consists of three pFETs. Note that an n -channel FET (nFET) is turned on when a logical 1 is applied to its gate, and is turned off when a logical 0 is applied to its gate. A p-channel FET (pFET) is the opposite: it is on when its gate sees a 0 , and off when its gate sees a 1 .
pFET 1 is the transistor that is turned on for 2 oscillator periods after a 0 -to- 1 transition in the port latch. A 1 at the port pin turns on pFET3 (a weak pullup), through the inverter. This inverter and pFET form a latch which hold the 1 .

If the pin is emitting a 1 , a negative glitch on the pin from some external source can turn off pFET 2 , causing the pin to go into a float state. pFET2 is a very weak pullup which is on whenever the nFET is off, in traditional CMOS style. It's only about $1 / 10$ the strength of pFET2. Its function is to restore a 1 to the pin in the event the pin had a 1 and lost it to a glitch.

4.3 Port Loading and Interfacing

The output buffers of Ports 1 through 5 can each sink at least the amount of current specified by V_{OL} in the data sheet. These port pins can be driven by open-collector and open-drain outputs although 0-to-1 transitions will not be fast since there is little current pulling the pin up. An input 0 turns off pullup pFET2, leaving only the very weak pullup pFET 2 to drive the transition.

In external bus mode, Port 0 output buffers can each sink the amount of current specified at the test conditions for VOL1 in the data sheet. However, as port pins they require external pullups to be able to drive any inputs.

See the latest revision of the data sheet for design-in information.

4.4 Read-Modify-Write Instructions

Some instructions that read a port read the latch and others read the pin. Which ones do which? The instructions that read the latch rather than the pin are the ones that read a value, possibly change it, and then rewrite it to the latch. These are called "read-modify-write" instructions. Listed on the following page, are the read-modify-write instructions. When the destination

270897-6
NOTE:
CHMOS Configuration. pFET 1 is turned on for 2 osc. periods after \bar{Q} mades a $0-$ to- 1 transition. During this time, pFET 1 also turns on pFET 3 through the inverter to form a latch which holds the 1. PFET 2 is also on. Port 2 is similar except that it holds the strong pullup on while emitting is that are address bits. (See text, "Accessing External Memory".)

Figure 4. Ports 1, 3, 4, and 5 Internal Pullup Configuration
operand is a port, or a port bit, these instructions read the latch rather than the pin:

ANL	(logical AND, e.g. ANL P1, A)
ORL	(logical OR, e.g. ORL P2, A)
XRL	(logical EX-OR, e.g. XRL P3, A)
JBC	(jump if bit $=1$ and clear bit, e.g. JBC
	P1.1, LABEL)
CPL	(complement bit, e.g. CPL P3.0)
INC	(increment, e.g. INC P2)
DEC	(decrement, e.g. DEC P2)
DJNZ	(decrement and jump if not zero, e.g.
	DJNZ P3, LABEL)

MOV PX.Y, C (move carry bit to bit Y of Port X)
CLR PX.Y (clear bit Y of Port X)
SETB PX.Y (set bit Y of Port X)
It is not obvious that the last three instructions in this list are read-modify-write instructions, but they are.

They read the port byte, all 8 bits, modify the addressed bit, then write the new byte back to the latch.

The reason that read-modify-write instructions are directed to the latch rather than the pin is to avoid a possible misinterpretation of the voltage level at the pin. For example, a port bit might be used to drive the base of a transistor. When a 1 is written to the bit, the transistor is turned on. If the CPU then reads the same port bit at the pin rather than the latch, it will read the base voltage of the transistor and interpret it as a 0. Reading the latch rather than the pin will return the correct value of 1 .

4.5 Accessing External Memory

Accesses to external memory are of two types: accesses to external Program Memory and accesses to external Data Memory. Accesses to external Program Memory use signal PSEN (program store enable) as the read strobe. Accesses to external Data Memory use $\overline{R D}$ or $\overline{\mathrm{WR}}$ (alternate functions of P3.7 and P3.6) to strobe the memory. Refer to Figures 5 through 7.

Figure 5. External Program Memory Fetches

Figure 6. External Data Memory Read Cycle

Figure 7. External Data Memory Write Cycle

Fetches from external Program Memory always use a 16-bit address. Accesses to external Data Memory can use either a 16-bit address (MOVX @ DPTR) or an 8-bit address (MOVX @ Ri).

Whenever a 16-bit address is used, the high byte of the address comes out on Port 2, where it is held for the duration of the read or write cycle. The Port 2 drivers use the strong pullups during the entire time that they are emitting address bits that are 1s. This occurs when the MOVX @ DPTR instruction is executed. During this time the Port 2 latch (the Special Function Register) does not have to contain 1 s , and the contents of the Port 2 SFR are not modified. If the external memory cycle is not immediately followed by another external memory cycle, the undisturbed contents of the Port 2 SFR will reappear in the next cycle.

If an 8 -bit address is being used (MOVX @ Ri), the contents of the Port 2 SFR remain at the Port 2 pins throughout the external memory cycle. In this case, Port 2 pins can be used to page the external data memory.

In either case, the low byte of the address is time-multiplexed with the data byte on Port 0. The ADDRESS/ DATA signal drives both FETs in the Port 0 output buffers. Thus, in external bus mode the Port 0 pins are not open-drain outputs and do not require external pullups. The ALE (Address Latch Enable) signal should be used to capture the address byte into an external latch. The address byte is valid at the negative transition of ALE. Then, in a write cycle, the data byte to be written appears on Port 0 just before $\overline{W R}$ is activated, and remains there until after $\overline{\mathrm{WR}}$ is deactivated. In a read cycle, the incoming byte is accepted at Port 0 just before the read strobe (RD) is deactivated.

During any access to external memory, the CPU writes OFFH to the Port 0 latch (the Special Function Register), thus obliterating the information in the Port 0 SFR. Also, a MOV P0 instruction must not take place during external memory accesses. If the user writes to Port 0 during an external memory fetch, the incoming code byte is corrupted. Therefore, do not write to Port 0 if external program memory is used.

External Program Memory is accessed under two conditions:

1. Whenever signal $\overline{\mathrm{EA}}$ is high, or
2. Whenever the program counter (PC) contains an address greater than 1FFFH (8K).

This requires that the ROMless versions have $\overline{\mathrm{EA}}$ wired to V_{SS} to enable the lower 8 K of program bytes to be fetched from external memory.

When the CPU is executing out of external Program Memory, all 8 bits of Port 2 are dedicated to an output
function and may not be used for general purpose I/O. During external program fetches they output the high byte of the PC with the Port 2 drivers using the strong pullups to emit bits that are 1 s .

5.0 TIMER/COUNTERS

The 8 XC 51 GB has three 16 -bit Timer/Counters: Timer 0 , Timer 1, and Timer 2. Each consists of two 8-bit registers: THx and TLx with $x=0$, 1 , or 2 . All three can be configured to operate either as timers or event counters.

In the Timer function, the TLx register is incremented every machine cycle. Thus, you can think of it as counting machine cycles. Since a machine cycle consists of 12 oscillator periods, the count rate is $1 / 12$ of the oscillator frequency.

In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin: T0, T1, or T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since it takes 2 machine cycles (24 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is $1 / 24$ of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

Timer 0 and Timer 1 have four operating modes:
Mode 0: 13-bit timer
Mode 1: 16-bit timer
Mode 2: 8-bit auto-reload timer
Mode 3: Timer 0 as two separate 8 -bit timers
Also, its possible to use Timer 1 to generate baud rates.
Timer 2 has three modes of operation:
Timer 2 Capture
Timer 2 Auto-Reload (up or down counting), and
Timer 2 as a Baud Rate Generator

5.1 Timer 0 and Timer 1

The Timer/Counter function is selected by control bits C__Tx in TMOD (Table 4). These two Timer/Counters have four operating modes, which are selected by bit-pairs (M1x, M0x) also in TMOD. Mode 0, Mode 1, and Mode 2 are the same for both Timer/Counters. Mode 3 operation is different for the two timers.

Table 4. TMOD: Timer/Counter Mode Control Register

MODE 0

Either Timer 0 or Timer 1 in Mode 0 is an 8 -bit counter with a divide-by- 32 prescaler. In this mode, the Timer register is configured as a 13 -bit register. Figure 8 shows the Mode 0 operation for either timer.

As the count rolls over from all 1 s to all 0 s , it sets the timer interrupt flag TF0 or TF1. The counted input is enabled to the timer when TR0 or TR1 $=1$, and either GATEx $=0$ or $\overline{\text { INTx }}$ pin $=1$. (Setting GATEx $=1$ allows the Timer to be controlled by external input $\overline{\text { INTx }}$ pin, to facilitate pulse width measurements).

Figure 8. Timer/Counter 0 or 1 in Mode 0: 13-Bit Counter

TRx and TFx are control bits in the SFR TCON. The GATEx bits are in TMOD. There are two different GATE bits: one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).

The 13-bit register consists of all 8 bits of THx and the lower 5 bits of TLx. The upper 3 bits of TLx are indeterminate and should be ignored. Setting the run flag (TRx) does not clear these registers.

MODE 1

Mode 1 is the same as Mode 0 , except that the Timer register uses all 16-bits. In this mode, THx and TLx are cascaded; there is no prescaler. Refer to Figure 9.

As the count rolls over from all 1s to all 0s, it sets the timer interrupt flag TF0 or TF1. The counted input is enabled to the timer when TR0 or TR1 $=1$, and either GATEx $=0$ or $\overline{\text { INTx }}$ pin $=1$. (Setting GATEx $=1$

Table 5. TCON: Timer/Counter Control Register

TCON	Address $=88 \mathrm{H}$								Reset $=00000000 \mathrm{~B}$	
	Bit Addressable									
	TF1	TR1	TF0	TRO	IE1	IT1	IEO	ITO		
	Bit 7. 6			43		21		0		
Symbol	Function									
TF1	Timer 1 overflow Flag. Set by hardware on Timer/Counter overflow. Cleared by hardware when processor vectors to interrupt routine.									
TR1	Timer 1 Run control bit. Set/cleared by software to turn Timer/Counter 1 on/off. Timer 0 overflow Flag. Set by hardware on Timer/Counter 0 overflow. Cleared by hardware when processor vectors to interrupt routine.									
TFO										
TRO	Timer 0 Run control bit. Set/cleared by software to turn Timer/Counter 0 on/off. Interrupt 1 flag. Set by hardware when external interrupt 1 edge is detected (transmitted or level-activated). Cleared when interrupt processed only if transition-activated.									
IE1										
IT1	Interrupt 1 Type control bit. Set/cleared by software to specifiy falling edge/low level triggered external interrupt 1.									
IEO	Interrupt 0 flag: Set by hardware when external interrupt 0 edge is detected (transmitted or level-activated). Cleared when interrupt processed only if transition-activated.									
ITO	Interrupt 0 Type control bit. Set/cleared by software to specify falling edge/low level triggered external interrupt 0 .									

Figure 9. Timer/Counter 0 or 1 in Mode 1: 16-Bit Counter
allows the Timer to be controlled by external input INTx pin to facilitate pulse width measurements).

TRx and TFx are control bits in the SRF TCON. The GATEx bits are in TMOD. There are two different GATE bits: one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).

MODE 2

Mode 2 configures the Timer register as an 8-bit Counter (TLx) with automatic reload as shown in Figure 10. Overflow from TLx not only sets TFx, but also reloads TLx with the contents of THx, which is preset by software. The reload leaves THx unchanged.

The counted input is enabled to the timer when TR0 or TR1 $=1$, and either GATEx $=0$ or $\overline{\text { INTx }}$ pin $=1$.
(Setting GATEx $=1$ allows the Timer to be controlled by external input $\overline{\text { INTx }}$ pin, to facilitate pulse width measurements).

TRx and TFx are control bits in the SFR TCON. The GATEx bits are in TMOD. There are two different GATE bits: one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).

MODE 3

Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TR1 $=0$.

Timer 0 in Mode 3 establishes TLO and THO as two separate counters. TLO uses the Timer 0 control bits: C_TO, GATEO, TRO, and TFO. THO is locked into a

270897-12
Figure 10. Timer/Counter 1 Mode 2: 8-Bit Auto-Reload

timer function (counting machine cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus TH0 now controls the Timer 1 interrupt. The logic for Mode 3 on Timer 0 is shown in Figure 11.

Mode 3 is provided for applications requiring an extra 8 -bit timer or counter. When Timer 0 is in Mode 3, Timer 1 can be turned on and off by switching it out of and into its own Mode 3, or can still be used by the serial port as a baud rate generator, or in any application not requiring an interrupt.

5.2 Timer 2

Timer 2 is a 16 -bit Timer/Counter which can operate either as a timer or as an event counter. This is selected by bit C__T2 in the SFR T2CON (Table 7). It has the following three operating modes:

Timer 2 Capture,

Timer 2 Auto-Reload (up or down counting), and Timer 2 as a Baud Rate Generator.

The modes are also selected by bits in T2CON as shown in Table 6.

Table 6. Timer 2 Operating Modes

RCLK + TCLK	CP/RL2	T2*OE	TR2	Mode
0	0	0	1	16-Bit Auto-Reload $16-B i t ~$
0	1	0	1	16 Capture
X	X	X	1	Baud_Rate Generator
X	0	1	1	Clock-Out on P1.0*

*Present only on the 87C51FC.

Table 7. T2CON: Timer/Counter 2 Control Register

T2CON	Address $=0 \mathrm{C} 8 \mathrm{H}$ Bit Addressable						Reset Value $=$	
	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP//̄L2
	Bit 7	6	5	4	3	2	1	0

Symbol Function

TF2 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK $=1$ or TCLK $=1$.
EXF2 Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 $=1$. When Timer 2 interrupt is enabled EXF2 $=1$ will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).
RCLK Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3 . RCLK $=0$ causes Timer 1 overflow to be used for the receive clock.
TCLK Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3. TCLK $=0$ causes Timer 1 overflows to be used for the transmit clock.
EXEN2 Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 $=0$ causes Timer 2 to ignore events at T2EX.
TR2 Start/stop control for Timer 2. A logic 1 starts the timer.
$\mathrm{C} / \overline{\mathrm{T} 2}$ Timer or counter select, (Timer 2)
$0=$ Internal timer (OSC/12 or OSC/2 in baud rate generator mode.)
1 = External event counter (falling edge triggered).
CP/RL2 Capture/Reload flag. When set, captures will occur on negative transition at T2EX if EXEN2
$=1$. When cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when EXEN2 $=1$. When either RCLK $=1$ or TCLK $=1$, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.

The T2 Pin has another alternate function on the 87C51GB. It can be configured as a Programmable Clock Out.

TIMER 2 CAPTURE MODE

In the capture mode there are two options selected by bit EXEN2 in T2CON. If EXEN2 $=0$, Timer 2 is a 16 -bit timer on counter which, upon overflow, sets bit TF2 in T2CON. This bit can then be used to generate an interrupt. If EXEN2 $=1$, Timer 2 still does the above, but with the added feature that a 1 -to- 0 transition at external input T2EX causes the current value in the Timer 2 registers (TH2 and TL2) to be captured into registers RCAP2H and RCAP2L, respectively. In
addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. Figure 12 illustrates this.

TIMER 2 AUTO-RELOAD (UP OR DOWN COUNTER)

Timer 2 can be programmed to count up or down when configured in its 16 -bit auto-reload mode. This feature is invoked by a bit named DCEN (Down Counter Enable) located in the SFR T2MOD (see Table 8). Upon reset the DCEN bit is set to 0 so that Timer 2 will default to count up. When DCEN is set, Timer 2 can count up or down depending on the value of the T2EX pin.

Figure 12. Timer 2 in Capture Mode
Table 8. T2MOD: Timer 2 Mode Control Register

T2MOD

Not Bit Addressable

Symbol Function

- Not implemented, reserved for future use.*

T2OE Timer 2 Output Enable bit.
DECN . Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down counter
*User software should not write is to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0 , and its active value will be 1 . The value read from a reserved bit is indeterminate.

In the auto-reload mode with DCEN $=0$, there are two options selected by bit EXEN2 in T2CON. If EXEN2 $=0$, Timer 2 counts up to OFFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16 -bit value in RCAP2H and RCAP2L. The values in RCAP2H and RCAP2L are preset by software. If EXEN2 $=1$, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Either the TF2 or EXF2 bit can generate the Timer 2 interrupt if it is enabled. Figure 13 shows timer 2 automatically counting up when DCEN $=0$.

Setting the DCEN bit enables Timer 2 to count up or down as shown in Figure 14. In this mode the T2EX pin controls the direction of count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at OFFFFH and set the TF2 bit which can then generate an interrupt if it is enabled. This overflow also causes the 16 -bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.

A logic 0 at T2EX makes Timer 2 count down. Now the timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The under-

Figure 13. Timer 2 Auto Reload Mode (DCEN = 0)

Figure 14. Timer 2 Auto Reload Mode (DCEN = 1)
flow sets the TF2 bit and causes OFFFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer 2 overflows or underflows. This bit can be used as a 17th bit of resolution if desired. In this operating mode, EXF2 does not generate an interrupt.

5.3 Programmable Clock Out

The 87 C 51 GB has a new feature. A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed (1) to input the external clock for Timer/Counter 2, or (2) to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a 16 MHz operating frequency. Figure 15 shows Timer 2 in clock-out mode.

To configure the Timer/Counter 2 as a clock generator, bit C_T2 (in T2CON) must be cleared and bit T2OE (in T2MOD) must be set. Bit TR2 (in T2CON) also must be set to start the timer.

The Clock Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:
$\underset{\text { Frequency }}{\text { Clock Out }}=\frac{\text { Oscillator Frequency }}{4 \times[65536-(\text { RCAP2H, RCAP2L) })]}$
In the Clock Out mode, Timer 2 roll-overs wi: generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and the clock-out frequency will be the same.

Figure 15. Timer 2 in Clock-Out Mode

6.0 A/D CONVERTER

The A/D converter on the 8 XC 51 GB consists of: 8 analog inputs ($\mathrm{ACH} 0-\mathrm{ACH} 7$), an external trigger input (TRIGIN), separate analog voltage supplies (AV ${ }_{\text {SS }}$ and $A V_{\text {REF }}$), a comparison reference input (COMPREF) and internal circuitry. The internal circuitry includes: an 8 channel multiplexer, a 256 element resistive ladder, a comparator, sample-and-hold capacitor, successive approximation register, A/D trigger control, a comparison result register and $8 \mathrm{~A} / \mathrm{D}$ result registers as shown in the A / D block diagram, Figure 16.
$A V_{\text {REF }}$ must be held within the tolerances stated on the 8 XC 51 GB data sheet. The accuracy of the A/D cannot be improved, for instance, by tying $A V_{\text {REF }}$ to $1 / 2$ the voltage on V_{CC}.

6.1 A/D Special Function Registers

The A/D has 10 SFRs associated with it. The SFRs are shown in Table 9.

Table 9. A/D SFRs

AD0 through AD7 contain the results of the 8 analog conversion. Each SFR is updated as each conversion is complete, starting with the lowest channel and ending with channel 7.

ACMP is the comparison result register. ACMP is organized differently than all the other SFRs in that CMP0 occupies the MSB and CMP7 the LSB. CMP0

Figure 16. A/D Block Diagram
through CMP7 correspond to analog inputs 0 through 7. CMPn is set to a 1 if the analog input is greater than COMPREF. CMPn is cleared if the analog input is less than or equal to COMPREF.

ACON is the A / D control register and contains the A/D Interrupt Flag (AIF), A/D Conversion Enable (ACE), A/D Channel Select (ACS0 and ACS1), A/D Input Mode (AIM), and A/D Trigger Mode (ATM).

6.2 A/D Comparison Mode

The A/D Comparison mode is always active while the A/D converter is enabled. The Comparison mode is used to compare each analog input against an external reference voltage applied to COMPREF. Whenever the A/D converter is triggered, each bit in ACMP is updated as each analog conversion is completed, starting with channel 0 up to channel 7 regardless of whether Select or Scan mode is invoked. The comparison mode can provide a quicker "greater-than or less-than" decision than can be performed with software and it is more code efficient. It can also be used to convert the analog inputs into digital inputs with a variable threshold. If the comparison mode is not used, COMPREF should be tied to V_{CC} or V_{SS}.

6.3 A/D Trigger Mode

The analog converter can be triggered either internally or externally. To enable internal trigger mode, ATM should be cleared.

When in internal trigger mode, A/D conversions begin in the machine cycle which follows the setting of the ACE bit. The lowest channel (see "A/D Input Modes" below) is converted first, followed by all the other channels in sequence. The AIF flag is set upon completion of the channel 7 conversion. AIF will flag an interrupt if the A / D interrupt is enabled. Once a conversion cycle is completed, a new cycle begins, starting with the lowest channel. If the user wishes each channel to be converted only once, the ACE bit should be cleared. Clearing ACE stops all A/D conversion activity. If a new A/D cycle begins, the result of the previous conversion will be overwritten.

In external mode, the A/D conversions begin when a falling edge is detected at the TRIGIN pin. There is no edge detector on the TRIGIN pin; is it sampled once every machine cycle.

A negative edge is recognized when TRIGIN is high in one machine cycle and low in the next. For this reason, TRIGIN should be held high for at least one machine cycle and low for one machine cycle. Once the falling
edge is detected, the A / D conversions begin on the next machine cycle and complete when channel 7 is converted. After channel 7 is converted, AIF is set and the conversions halt until another trigger is detected while $\mathrm{ACE}=1$. External triggers are ignored while a conversion cycle is in progress.

6.4 A/D Input Modes

The 8 XC 51 GB has two input modes: Scan mode and Select mode. Clearing AIM places the 8 XC 51 GB in Scan mode. In Scan mode the analog conversions occur in the sequence $\mathrm{ACH} 0, \mathrm{ACH} 1, \mathrm{ACH} 2, \mathrm{ACH} 3, \mathrm{ACH} 4$, $\mathrm{ACH} 5, \mathrm{ACH} 6$, and ACH7. The result of each analog conversion is placed in the corresponding analog result register: AD0, AD1, AD2, AD3, AD4, AD5, AD6, and AD7.

Setting AIM activates Select mode. In Select mode, one of the lower 4 analog inputs ($\mathrm{ACH} 0-\mathrm{ACH} 3$) is converted four times. After the first four conversions are complete the cycle continues with ACH4 through ACH 7 . The results of the first four conversion are placed in the lower four result registers (AD0 through AD3). The rest of the conversions are placed in their matching result register. ACSO and ACS1 determine which analog inputs are used as shown in Table 10.

Table 10. A/D Channel Selection

ACS1	ACS0	Selected Channel
0	0	ACHO
0	1	ACH1
1	0	ACH2
1	1	ACH3

6.5 Using the A/D with Fewer than 8 Inputs

There are several options for a user who wishes to convert fewer than eight analog input channels. If time is not critical the user can simply wait for the A/D interrupt to be generated by the AIF bit after channel 7 is converted and can ignore the results for unused channels. If a user needs to know the results of a conversion immediately after it occurs, a timer should be used to generate an interrupt. The amount of time required for each A/D conversion is specified in the 8 XC 51 GB data sheet. The user could also periodically poll the result registers, provided he or she is looking only for a change in the analog voltage. Using the Select mode (see above) does not reduce the time required for a conversion cycle but will convert a given channel more frequently.

6.6 A/D in Power Down

The A/D on the 8 XC 51 GB contains circuitry that limits the amount of current dissipated during Power Down mode to leakage current only. For this circuitry to function properly, $A V_{\text {REF }}$ should be tied to V_{CC} during power down. The IPD specification in the data sheet includes the current for the entire chip. While $A V_{\text {REF }}$ is tied to $V_{\text {CC }}$ during Power Down, the voltage may be reduced to the minimum voltage as shown in the data sheet.

7.0 PROGRAMMABLE COUNTER ARRAY

Programmable Counter Arrays (PCAs) provide more timing capabilities with less CPU intervention than the standard timer/counters. Their advantages include reduced software overhead and improved accuracy. For example, a PCA can provide better resolution than Timers 0,1 , and 2 because the PCA clock rate can be three times faster. A PCA can also perform many tasks that these hardware timers cannot (i.e. measure phase differences between signals or generate PWMs).

The 8XC51GB has two PCAs called PCA and PCA1. The following text and figures address only PCA but are also applicable to PCA1 with the following exceptions:

1. PCA1, Module 4 does not support the Watchdog Timer
2. All the SFRs and bits have 1s added to their names (see Table 11).
3. Port 4 is the interface for PCA1:

P4.2 ECI1
P4.3 C1EX1
P4.4 C1EX2
P4.5 C1EX2
P4.6 C1EX3
P4.7 C1EX4

Table 11. PCA and PCA1 SFRs

PCA	PCA1
SFRs:	
CCON	C1CON
CMOD	C1MOD
CCAPMO	C1CAPM0
CCAPM1	C1CAPM1
CCAPM2	C1CAPM2
CCAPM3	C1CAPM3
CCAPM4	C1CAPM4
CL	CL1
CCAPOL	C1CAP0L
CCAP1L	C1CAP1L
CCAP2L	C1CAP2L
CCAP3L	C1CAP3L
CCAP4L	C1CAP4L
CH	CH1
CCAPOH	C1CAPOH
CCAP1H	C1CAP1H
ССАР2H	C1CAP2H
ССАРЗН	C1CAP3H
CCAP4H	C1CAP4H
BITS:	
ECI.	ECl1
CEXO	C1EX0
CEX1	C1EX1
CEX2	C1EX2
CEX3	C1EX3
CEX4	C1EX4
CCFO	C1CF0
CCF1	C1CF1
CCF2	C1CF2
CCF3	C1CF3
CCF4.	C1CF4
CR	CR1
CF	CF1

Figure 17. PCA Block Diagram
4. There has been one additional bit added to C1CON to allow both PCAs to be enabled simultaneously.
The bit is called CRE and occupies bit position 5 of C1CN. Its bit address is OEDH. When CRE is set, both CR and CR1 must be set to enable PCA1.

Each PCA consists of a 16 -bit timer/counter and five 16-bit compare/capture modules as shown in Figure 17. The PCA timer/counter serves as a common time base for the five modules and is the only timer which can service the PCA. Its clock input can be programmed to count any one of the following signals:
Oscillator frequency / 12
Oscillator frequency / 4
Timer 0 overflow
External input on ECI (P1.2).
The compare/capture modules can be programmed in any one of the following modes:
rising and/or falling edge capture
software timer
high speed output
pulse width modulator.
Module 4 can also be programmed as a watchdog timer.

When the compare/capture modules are programmed in the capture mode, software timer, or high speed output mode, an interrupt can be generated whenever the module executes its function. All five modules plus the PCA timer overflow share one PCA interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 pins for external I/O. These pins are listed below. If the port pin is not used for the PCA, it can still be used for standard I/O.

PCA Component	External I/O Pin
16-bit Counter	P1.2 / ECI
16-bit Module 0	P1.3 / CEX0
16-bit Module 1	P1.4 / CEX1
16-bit Module 2	P1.5 CEX2
16-bit Module 3	P1.6 / CEX3
16-bit Module 4	P1.7 / CEX4

7.1 PCA Timer/Counter

The PCA has a free-running 16 -bit timer/counter consisting of registers CH and CL (the high and low bytes of the count value). These two registers can be read or written to at any time. Reading the PCA timer as a full 16 -bit value simultaneously requires using one of the PCA modules in the capture mode and toggling a port pin in software.

Figure 18. PCA Timer/Counter

The clock input can be selected from the following four modes:

Oscillator frequency / 12:

The PCA timer increments once per machine cycle. With a 16 MHz crystal, the timer increments every 750 ns .

Oscillator frequency / 4:

The PCA timer increments three times per machine cycle. With a 16 MHz crystal, the timer increments every 250 ns.

Timer 0 overflows:

The PCA timer increments whenever Timer 0 overflows. This mode allows a programmable input frequency to the PCA.

External input:

The PCA timer increments when a 1 -to- 0 transition is detected on the ECI pin (P1.2). The maximum input frequency in this mode is oscillator frequency $/ 8$.

The mode register CMOD (Table 12) contains the Count Pulse Select bits (CPS1 and CPSO) to specify the clock input. This register also contains the ECF bit which enables the PCA counter overflow to generate the PCA interrupt. In addition, the user has the option of turning off the PCA timer during Idle Mode by setting the Counter Idle bit (CIDL). This can further reduce power consumption by an additional 30%.

The CCON (Table 13) register contains two more bits which are associated with the PCA timer/counter. The CF bit gets set by hardware when the counter overflows, and the CR bit is set or cleared to turn the counter on or off.

Table 12. CMOD: PCA Counter Mode Register
CMOD Address $=0 \mathrm{D9H} \quad: \quad$ Reset Value $=00 \mathrm{XX}$ X000B
Not Bit Addressable

Symbol Function

CIDL Counter Idle control: CIDL $=0$ programs the PCA Counter to continue functioning during idle Mode. CIDL = 1 programs it to be gated off during idle.
WDTE Watchdog Timer Enable: WDTE $=0$ disables Watchdog Timer function on PCA Module 4. WDTE $=1$ enables it.

- Not implemented, reserved for future use.*

CPS1 PCA Count Pulse Select bit 1.
CPSO PCA Count Pulse Select bit 0.
CPS1 CPS0 Selected PCA Input**
$0 \quad 0 \quad$ Internal clock, Fosc $\div 12$
$0 \quad 1 \quad$ Internal clock, Fosc $\div 4$
10 Timer 0 overflow
11 External clock at ECI/P1.2 pin (max. rate $=$ Fosc $\div 8$)
ECF PCA Enable Counter Overflow interrupt: ECF $=1$ enables CF bit in CCON to generate an interrupt. ECF $=0$ disables that function of CF.
NOTE:
*User software should not write 1 s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0 , and its active value will be 1 . The value read from a reserved bit is indeterminate.
**Fosc $=$ oscillator frequency

Table 13. CCON: PCA Counter Control Register

READING THE PCA TIMER

Some applications may require that the full 16-bit PCA timer value be read simultaneously. Since the timer consists of two 8 -bit registers (CH, CL), it would normally take two MOV instructions to read the whole timer value. An invalid read could occur if the registers rolled over in between the execution of the two MOVs.

However, with the PCA Capture Mode the 16 -bit timer value can be loaded into the capture registers by toggling a port pin. For example, configure Module 0 to capture falling edges and initialize P1.3 to be high. Then, when the user wants to read the PCA timer, clear P1.3 and the full 16 -bit timer value will be saved in the capture registers. It's still optional whether the user wants to generate an interrupt with the capture.

7.2 Compare/Capture Modules

Each of the five compare/capture modules has six possible functions it can perform:

16-bit Capture, positive-edge triggered
16-bit Capture, negative-edge triggered
16-bit Capture, both positive and negative-edge triggered
16-bit Software Timer
16-bit High Speed Output
8-bit Pulse Width Modulator.
In addition, module 4 can be used as a Watchdog Timer. The modules can be programmed in any combina-

Each module has a mode register called CCAPMn ($\mathrm{n}=0,1,2,3$, or 4) to select which function it will perform. The ECCF n bit enables the PCA interrupt when a module's event flag is set. The event flags (CCFn) are located in the CCON register and get set when a capture event, software timer, or high speed output event occurs for a given module.

Each module also has a pair of 8-bit compare/capture registers (CCAPnH and CCAPnL) associated with it. These registers store the time when a capture event occurred or when a compare event should occur. For the PWM mode, the high byte register CCAPnH controls the duty cycle of the waveform.

7.3 PCA Capture Mode

Both positive and negative transitions can trigger a capture with the PCA. This gives the PCA the flexibility to measure periods, pulse widths, duty cycles, and phase differences on up to five separate inputs. Setting the CAPPn and/or CAPNn bits in the CCAPMn mode register (Table 14) selects the input trigger-positive and/or negative transition-for module n. Refer to Figure 19.

Table 15 shows the combinations of bits in the CCAPMn register that are valid and have a defined function. Invalid combinations will produce undefined results.

Table 14. CCAPMn: PCA Modules Compare/Capture Registers

CCAPMn Addres $(n=0-4)$ Not Bit		APM0 0 APM1 0 APM2 0 APM3 0 APM 0 ssable	DAH DBH DCH DDH DEH				Reset Value $=$	
	-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn
Bit	7	6	5	4	3	2	1	0

Symbol Function

- Not implemented; reserved for future use*.

ECOMn Enable Comparator. ECOMn = 1 enables the comparator function.
CAPPn Capture Positive, CAPPn = 1 enables positive edge capture.
CAPNn Capture Negative, CAPNn $=1$ enables negative edge capture.
MATn Match. When MATn = 1, a match of the PCA counter with this module's compare/capture register causes the CCFn bit in CCON to be set, flagging an interrupt.
TOGn Toggle. When TOGn $=1$, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to toggle.
PWMn Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.
ECCFn Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate an interrupt.

NOTE:

*User software should not write 1 s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case,the reset or inactive value of the new bit will be 0 , and its active value will be 1 . The value read from a reserved bit is indeterminate.

Table 15. PCA Module Modes (CCAPMn Register)

-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	Module Function
X	0	0	0	0	0	0	0	No operation
X	X	1	0	0	0	0	X	16-bit capture by a postive-edge trigger on CEXn
X	X	0	1	0	0	0	X	16-bit capture by a negative-edge trigger on CEXn
X	X	1	1	0	0	0	X	16-bit capture by a transition on CEXn
X	1	0	0	1	0	0	X	16-bit Software Timer
X	1	0	0	1	1	0	X	16-bit High Speed Output
X	1	0	0	0	0	1	0	8-bit PWM
X	1	0	0	1	x	0	X	Watchdog Timer

X = Don't Care

Figure 19. PCA 16-Bit Capture Mode

The external input pins CEX0 through CEX4 are sampled for a transition. When a valid transition is detected (positive and/or negative edge), hardware loads the 16 -bit value of the PCA timer (CH, CL) into the module's capture registers (CCAPnH, CCAPnL). The resulting value in the capture registers reflects the PCA timer value at the time a transition was detected on the CEXn pin.

Upon a capture, the module's event flag (CCFn) in CCON is set, and an interrupt is flagged if the ECCFn bit in the mode register CCAPMn is set. The PCA interrupt will then be generated if it is enabled. Since the hardware does not clear an event flag when the interrupt is vectored to, the flag must be cleared in software.

In the interrupt service routine, the 16 -bit capture value must be saved in RAM before the next capture event occurs. A subsequent capture on the same CEXn pin will write over the first capture value in CCAPnH and CCAPnL.

The time it takes to service this interrupt routine determines the resolution of back-to-back events with the same PCA module. To store two 8-bit registers and clear the event flags takes at least 9 machine cycles. That includes the call to the interrupt routine. At 12 MHz , this routine would take less than $10 \mu \mathrm{~s}$. However, depending on the frequency and interrupt latency, the resolution will vary with each application.

7.4 Software Timer Mode

In most applications a software timer is used to trigger interrupt routines which must occur at periodic intervals. The user preloads a 16 -bit value in a module's compare registers. When a match occurs between this compare value and the PCA timer value, an event flag is set and an interrupt can then be generated.

In the PCA compare mode, the 16 -bit value of the PCA timer is compared with a 16 -bit value pre-loaded in the module's compare registers (CCAPnH, CCAPnL) as seen in Figure 20. The comparison occurs three times per machine cycle in order to recognize the fastest possible clock input (i.e. $1 / 4 \times$ oscillator frequency). Setting the ECOMn bit in the mode register CCAPMn enables the comparator function.

For the Software Timer mode, the MATn bit also needs to be set. When a match occurs between the PCA timer and the compare registers, a match signal is generated and the module's event flag (CCFn) is set. An interrupt is then flagged if the ECCFn bit is set. The PCA interrupt is generated only if it has been properly enabled. Software must clear the event flag before the next interrupt will be flagged.

During the interrupt routine, a new 16-bit compare value can be written to the compare registers (CCAPnH and CCAPnL). Notice, however, that a write to CCAPnL clears the ECOMn bit which temporarily disables the comparator function while these registers are being updated so an invalid match does not occur. A write to CCAPnH sets the ECOMn bit and re-enables the comparator. For this reason, user software should write to CCAPnL first, then CCAPnH.

Figure 20. PCA 16-Bit Comparator Mode: Software Timer

7.5 High Speed Output Mode

The High Speed Output (HSO) mode toggles a CEXn pin when a match occurs between the PCA timer and a pre-loaded value in a module's compare registers. For this mode, the TOGn bit needs to be set in addition to the ECOMn and MATn bits in the CCAPMn mode register. By setting or clearing the pin in software, the user can select whether the CEXn pin will change from a logical 0 to a logical 1 or vice versa. The user also has the option of flagging an interrupt when a match event occurs by setting the ECCFn bit. See Figure 21.

The HSO mode is more accurate than toggling port pins in software because the toggle occurs before branching to an interrupt. That is, interrupt latency will not effect the accuracy of the output. In fact, the interrupt is optional. Only if the user wants to change the time for the next toggle is it necessary to update the compare registers. Otherwise, the next toggle will occur when the PCA timer rolls over and matches the last compare value.

Without any CPU intervention, the fastest waveform the PCA can generate with the HSO mode is a 30.5 Hz signal at 16 MHz .

7.6 Watchdog Timer Mode

A Watchdog Timer is a circuit that automatically invokes a reset unless the system being watched sends regular hold-off signals to the Watchdog. These circuits are used in applications that are subject to electrical noise, power glitches, electrostatic discharges, etc., or where high reliability is required.

The Watchdog Timer function is only available on PCA Module 4. If a Watchdog Timer is not needed, Module 4 can still be used in other modes.

As a Watchdog timer, every time the count in the PCA timer matches the value stored in module 4's compare registers, an internal reset is generated (see Figure 22). The bit that selects this mode is WDTE in the CMOD register. Module 4 must be set up in either compare mode as a "Software Timer" or High Speed Output.

Figure 21. PCA 16-Bit Comparator Mode: High Speed Output

270897-24
Figure 22. Watchdog Timer Mode

To hold off the reset, the user has three options:

1. periodically change the compare value so it will never match the PCA timer,
2. periodically change the PCA timer value so it will never match the compare value,
3. disable the Watchdog by clearing the WDTE bit before a match occurs and then later re-enable it.

The first two options are more reliable because the Watchdog Timer is never disabled as in option \#3. The second option is not recommended if other PCA modules are being used since this timer is the time base for all five modules. Thus, in most applications the first solution is the best option.

The watchdog routine should not be part of an interrupt service routine. Why? Because if the program
counter goes astray and gets stuck in an infinite loop, interrupts will still be serviced, and the watchdog will not reset the controller. Thus, the purpose of the watchdog would be defeated. Instead, call this subroutine from the main program within 65536 counts of the PCA timer.

7.7 Pulse Width Modulator Mode

Any or all of the five PCA modules can be programmed to be a Pulse Width Modulator. The PWM output can be used to convert digital data to an analog signal by simple external circuitry. The frequency of the PWM depends on the clock source for the PCA timer. With a 16 MHz crystal the maximum frequency of the PWM waveform is 15.6 KHz . Table 16 shows the various frequencies that are possible.

Table 16. PWM Frequencies

PCA Timer Mode	PWM Frequency	
	$\mathbf{1 2 ~ M H z}$	$\mathbf{1 6 ~ M H z}$
1/12 Osc. Frequency	3.9 KHz	5.2 KHz
1/4 Osc. Frequency	11.8 KHz	15.6 KHz
Timer 0 Overflow:		
8-bit	15.5 Hz	20.3 Hz
16-bit	0.06 Hz	0.08 Hz
8-bit Auto-Reload	3.9 KHz to 15.3 Hz	5.2 KHz to 20.3 Hz
External Input (Max)	5.9 KHz	7.8 KHz

For this mode, the ECOMn bit and the PWMn bits in the CCAPMn mode register need to be set. The PCA generates 8 -bit PWMs by comparing the low byte of the PCA timer (CL) with the low byte of the module's compare registers (CCAPnL). When CL < CCAPnL the output is low. When CL $>$ CCAPnL the output is high. Refer to Figure 23.

The value in CCAPnL controls the duty cycle of the waveform. To change the value in CCAPnL without output glitches, the user must write to the high byte register (CCAPnH). This value is then shifted by hardware into CCAPnL when CL rolls over from OFFH to 00 H which corresponds to the next period of the output.

Figure 23. PCA 8-Bit PWM Mode

CCAPnH can contain any integer from 0 to 255 to vary the duty cycle from a 100% to 0.4%. A 0% duty cycle can be obtained by writing directly to the port pin with the CLR bit instruction. To calculate the CCAPnH value for a given duty cycle, use the following equation:

$$
\text { CCAPnH }=256 \times(1-\text { Duty Cycle })
$$

where CCAPnH is an 8-bit integer and Duty Cycle is expressed as a fraction. See Figure 24.

8.0 SERIAL PORT

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from
the receive register. (However, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost).

The serial port receive and transmit registers are both accessed through Special Function Register SBUF. Actually, SBUF is two separate registers, a transmit buffer and a receive buffer. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.

The serial port control and status register is the Special Function Register SCON (Table 17). This register contains the mode selection bits (SM0 and SM1); the SM2 bit for the multiprocessor modes; the Receive Enable bit (REN); the 9th data bit for transmit and receive (TB8 and RB8); and the serial port interrupt bits (TI and RI).

Figure 24. CCAPnH Varies Duty Cycle

Table 17. SCON: Serial Port Control Register
SCON Address $=98 \mathrm{H} \quad$ Reset Value $=0000$ 0000B
Bit Addressable

Bit: \begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SM0/FE \& SM1 \& SM2 \& REN \& TB8 \& RB8 \& TI \& RI

\hline | 7 |
| :---: |
| $(\text { SMOD0 }=0 / 1)^{*}$ | \& 5 \& 4 \& 3 \& 2 \& 1 \& 0

\& \& \& \& \& \&

\hline
\end{tabular}

Symbol Function

FE Framing Error bit. This bit is set by the receiver when an invalid stop bit is detected. The FE bit is not cleared by valid frames but should be cleared by software. The SMODO* bit must be set to enable access to the FE bit.
SMO Serial Port Mode Bit 0, (SMODO must $=0$ to access SMO)
SM1 Serial Port Mode Bit 1

SMO	SM1	Mode	Description	Baud Rate**
0	0	0	shift register	FOSC $^{*} / 12$
0	1	1	8-bit UART	variable
1	0	0	9-bit UART	$\mathrm{FOSC}^{\prime} / 64$ or Fosc $/ 32$
1	1	3	9-bit UART	variable

SM2 Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 $=1$ then RI will not be set unless the received byte is a Given or Broadcast Address. In Mode 1, if SM2 $=1$ then RI will not be activated unless a valid stop bit was received, and the received byte is a Given or Broadcast Address. In Mode 0, SM2 should be 0.
REN Enables serial reception. Set by software to enable reception. Cleared by software to disable reception.
TB8 The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired.
RB8 In modes 2 and 3, the 9th data bit that was received. In Mode 1 if $\operatorname{SM2}=0$, RB8 is the stop bit that was received. In Mode 0, RB8 is not used.
$\mathrm{TI} \quad$ Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission. Must be cleared by software.
RI Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0 or halfway through the stop bit time in the other modes, in any serial reception (except see SM2). Must be cleared by software.

NOTE:
*SMODO is located at PCON6.
**Fosc $=$ oscillator frequency

The serial port can operate in 4 modes:
Mode 0: Shift Register, fixed frequency
Mode 1: 8-Bit UART, variable frequency
Mode 2: 9-Bit UART, fixed frequency
Mode 3: 9-Bit UART, variable frequency
The baud rate in some modes is fixed and in others is generated by Timer 1 or Timer 2.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI $=0$ and REN $=1$. Reception is initiated in the other modes by the incoming start bit if REN $=1$.

Mode 0: Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at $1 / 12$ the oscillator frequency.

Mode 1: 10 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in SCON. The baud rate in Mode 1 is variable: you can use either Timer 1 to generate baud rates and/or Timer 2 to generate baud rates. Figure 25 shows the mode 1 Data Frame.

Figure 25. Mode 1 Data Frame
Mode 2: 11 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On Transmit, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1 . Or, for example, the parity bit (\mathbf{P} in the PSW) could be moved into TB8. On receive, the 9th data bit goes into RB8 in SCON, while the stop bit is ignored. (The validity of the stop bit can be checked with Framing Error Detection.) The baud rate is programmable to either $1 / 32$ or $1 / 64$ the oscillator frequency. See Figure 26.

Figure 26. Mode 2 Data Frame
Mode 3: 11 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode 3 is variable: you can use Timer 1 and/or Timer 2 to generate baud rates. See Figure 27.

Figure 27. Mode 3 Data Frame

8.1 Framing Error Detection

Framing Error Detection allows the serial port to check for valid stop bits in modes 1,2 , or 3 . A missing stop bit can be caused, for example, by noise on the serial lines, or transmission by two CPUs simultaneously.

If a stop bit is missing, a Framing Error bit (FE) is set. The FE bit can be checked in software after each reception to detect communication errors. Once set, the FE bit must be cleared in software. A valid stop bit will not clear FE.

The FE bit is located in SCON and shares the same bit address as SM0. Control bit SMODO in the PCON register determines whether the SMO or FE bit is accessed. If SMODO $=0$, then accesses to SCON. 7 are to SMO. If SMODO $=1$, then accesses to SCON. 7 are to FE.

8.2 Multiprocessor Communications

Modes 2 and 3 provide a 9 -bit mode to facilitate multiprocessor communication. The 9th bit allows the controller to distinguish between address and data bytes. The 9 th bit is set to 1 for address and set to 0 for data bytes. When receiving, the 9th bit goes into RB8 in SCON. When transmitting, the ninth bit TB8 is set or cleared in software.

The serial port can be programmed such that when the stop bit is received the serial port interrupt will be activated only if the received byte is an address byte (RB8 $=1$). This feature is enabled by setting the SM2 bit in SCON. A way to use this feature in multiprocessor systems is as follows.

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. Remember, an address byte has its 9 th bit set to 1 , whereas a data byte has its 9 th bit set to 0 . All the slave processors should have their SM2 bits set to 1 so they will only be interrupted by an address byte. In fact, the 8XC51GB has an Automatic Address Recognition feature which allows only the addressed slave to be interrupted. That is, the address comparison occurs in hardware, not software. (On the 8051 serial port, an address byte interrupts all slaves for an address comparison.)

The addressed slave then clears its SM2 bit and prepares to receive the data bytes that will be coming. The other slaves are unaffected by these data bytes. They are still waiting to be addressed since their SM2 bits are all set.

8.3 Automatic Address Recognition

Automatic Address Recognition reduces the CPU time required to service the serial port. Since the CPU is only interrupted when it receives its own address, the software overhead to compare addresses is eliminated. Automatic address recognition is enabled by setting the SM2 bit in SCON. With this feature enabled in one of the 9 -bit modes, the Receive Interrupt (RI) flag will only get set when the received byte corresponds to either a Given or Broadcast address.

The master can selectively communicate with groups of slaves by using the Given Address. Addressing all slaves at once is possible with the Broadcast Address. These addresses are defined for each slave by two Special Function Registers: SADDR and SADEN.

A slave's individual address is specified in SADDR. SADEN is a mask byte that defines don't-cares to form the Given Address. These don't-cares allow flexibility in the user-defined protocol to address one or more slaves at a time. The following is an example of how the user could define Given Addresses to selectively address different slaves.

Slave 1:

SADDR $=11110001$
SADEN $=111101010$
GIVEN $=11110 \times 0 \times$

Slave 2:

$$
\begin{array}{lll}
\text { SADDR }= & 1111 & 0011 \\
\text { SADEN }= \\
\text { GIVEN }= & 1111 & 1001 \\
\hline 1111 & 0 \times X 1
\end{array}
$$

The SADEN bytes are selected such that each slave can be addressed separately. Notice that bit 1 (LSB) is a don't-care for Slave 1's Given Address, but bit $1=1$ for Slave 2. Thus, to selectively communicate with just Slave 1 the master must send an address with bit $1=0$ (e.g. 11110000). Similarly, bit $2=0$ for Slave 1, but is a don't-care for Slave 2. Now to communicate with just Slave 2 an address with bit $2=1$ must be used (e.g. 1111 0111). Finally, for a master to communicate with both slaves at once the address must have bit $1=1$ and bit $2=0$.

Notice, however, that bit 3 is a don't-care for both slaves. This allows two different addresses to select both slaves (11110001 or 11110101). If a third slave was added that required its bit $3=0$, then the latter address could be used to communicate with Slave 1 and 2 but not Slave 3.

The master can also communicate with all slaves at once with the Broadcast Address. It is formed from the logical OR of the SADDR and SADEN registers with
zeros defined as don't-cares. The don't-cares also allow flexibility in defining the Broadcast Address, but in most applications a Broadcast Address will be 0FFH.

The feature works the same way in the 8 -bit mode (Mode 1) as in the 9 -bit modes, except that the stop bit takes the place of the 9th data bit. If SM2 is set, the RI flag is set only if the received byte matches the Given or Broadcast Address and is terminated by a valid stop bit. Setting the SM2 bit has no effect in Mode 0.

On reset, the SADDR and SADEN registers are initialized to 00 H , which defines the Given and Broadcast Addresses as XXXX XXXX (all don't-cares). This assures the 8 XC 51 GB serial port to be backwards compatibility with other MCS-51 products which do not implement Automatic Addressing.

8.4 Baud Rates

The baud rate in Mode 0 is fixed:

$$
\text { Mode } 0 \text { Baud Rate }=\frac{\text { Oscillator Frequency }}{12}
$$

The baud rate in Mode 2 depends on the value of bit SMOD1 in Special. Function Register PCON. If SMOD1 $=0$ (which is the value on reset), the baud rate is $1 / 64$ the oscillator frequency. If SMOD1 $=1$, the baud rate is $1 / 32$ the oscillator frequency.

$$
\text { Mode } 2 \text { Baud Rate }=2 \text { SMOD1 } \times \frac{\text { Oscillator Frequency }}{64}
$$

The baud rates in Mode 1 and Mode 3 are determined by the Timer 1 overflow rate, or by Timer 2 overflow rate, or by both (one for transmit and the other for receive).

8.5 Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD1 as follows:

Figure 28 shows how commonly used Baud Rates may be generated. The Timer 1 interrupt should be disabled in this application. Timer 1 can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In most applications, it is configured for "timer" operation in the auto-reload mode (high
nibble of TMOD $=0010 \mathrm{~B}$). In this case, the baud rate is given by the formula:

$$
\begin{aligned}
& \text { Modes } 1 \text { and } 3 \\
& \text { Baud Rate }
\end{aligned}=2 \text { SMOD1 } \times \frac{\text { Oscillator Frequency }}{32 \times 12 \times[256-(\mathrm{TH} 1)]}
$$

One can achieve very low baud rates with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the Timer to run as a 16 -bit timer (high nibble of TMOD $=0001 \mathrm{~B}$), and using the Timer 1 interrupt to do a 16-bit software reload.

8.6 Timer 2 to Generate Baud Rates

Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON. Note that the baud rates for transmit and receive can be simultaneously different. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode as shown in Figure 29.

Baud Rate	Fosc	SMOD	Timer 1		
			C__T	Mode	Reload Value
Mode 0 Max: 1 MHz	12 MHz	X	X	X	X
Mode 2 Max: 375K	12 MHz	1	X	X	X
Modes 1 \& 3: 62.5K	12 MHz	1	0	2	FFH
19.2K	- 11.059 MHz	1	0	2	FDH
9.6K	11.059 MHz	0	0	2	FDH
4.8K	11.059 MHz	0	0	2	FAH
2.4 K	11.059 MHz	0	0	2	F4H
1.2 K	11.059 MHz	0	0	2	E8H
137.5	11.986 MHz	0	0	2	1DH
110	6 MHz	0	0	2	72H
110	12 MHz	0	0	1	FEEBH

Figure 28. Timer 1 Generated Commonly Used Baud Rates

Figure 29. Timer 2 in Baud Rate Generator Mode

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate as follows:

$$
\begin{aligned}
& \text { Modes } 1 \text { and } 3 \\
& \text { Baud Rates }
\end{aligned}=\frac{\text { Timer } 2 \text { Overflow Rate }}{16}
$$

Timer 2 can be configured for either "timer" or "counter" operation. In most applications, it is configured for "timer" operation (C__T2 $=0$). The "Timer" operation is different for Timer 2 when it's being used as a baud rate generator. Normally, as a timer, it increments every machine cycle ($1 / 12$ the oscillator frequency). As a baud rate generator, however, it increments every state time ($1 / 2$ the oscillator frequency). The baud rate formula is given below:

$$
\begin{aligned}
& \text { Modes } 1 \text { and } 3 \\
& \text { Baud Rate }
\end{aligned}=\frac{\text { Oscillator Frequency }}{32 \times[65536-(\text { RCAP2H, RCAP2L })]}
$$

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is valid only if RCLK and/or TCLK $=1$ in T2CON. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Therefore, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Note too, that if EXEN2 is set, a 1-to-0 transition on the T2EX pin will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt, if desired.

Table 18 lists commonly used baud rates and how they can be obtained from Timer 2.

It should be noted that when Timer 2 is running (TR2 $=1$) in "timer" function in the baud rate generator mode, one should not try to read or write TH2 or TL2. Under these conditions the Timer is being incremented every state time, and the results of a read or write may not be accurate. The RCAP2 registers may be read, but shouldn't be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

Table 18. Timer 2 Generated Baud Rates

Baud Rate	Fosc	Timer 2	
		RCAP2H	RCAP2L
375 K	12 MHz	FFH	FFH
9.6 K	12 MHz	FFH	D9H
4.8 K	12 MHz	FFH	B2H
2.4 K	12 MHz	FFH	64 H
1.2 K	12 MHz	FEH	C8H
300	12 MHz	FBH	1 EH
110	12 MHz	F2H	AFH
300	6 MHz	FDH	8 FH
110	6 MHz	F9H	57 H

9.0 SERIAL EXPANSION PORT

The Serial Expansion Port (SEP) allows a wide variety of serially hosted peripherals to be connected to the 8XC51GB. The SEP has four programmable modes and four clock options. There is a single bi-directional data pin (P4.1) and a clock output pin (P4.0). Data transfers consist of 8 clocks with 8 bits of data received or transmitted. When not transmitting or receiving the data and clock pins are inactive. There are 3 SFRs associated with the SEP as shown in Figure 30.

Figure 30. SEP SFRs

None of the SEP SFRs are bit addressable. However, the individual bits of SEPSTAT and SEPCON are significant and have symbolic names associated with them as shown. The meaning of these bits are:
SEPE - SEP Enable bit
SEPREN - SEP Receive ENable
CLKPOL - CLocK POLarity
CLKPH - CLocK PHase
SEPS1 - SEP Speed select 1
SEPSO - SEP Speed select 0
SEPFWR - SEP Fault during WRite
SEPFRD - SEP Fault during ReaD
SEPIF - SEP Interrupt Flag

9.1 Programmable Modes and Clock Options

The four programmable modes determine the inactive level of the clock pin and which edge of the clock is used for transmission or reception. These four modes are shown in Figure 31. Table 19 shows how the modes are determined.

Table 19. Determination of SEP Modes

CLKPOL	CLKPH	SEP Mode
0	0	SEPMODE0
0	1	SEPMODE1*
1	0	SEPMODE2
1	1	SEPMODE3*

The four clock options determine the rate at which data is shifted out of or into the SEP. All four rates are fractions of the oscillator frequency. Table 20 shows the various rates that can be selected for the SEP.

Table 20. SEP Data Rates

SEPS1	SEPS0	Data Rate
0	0	$\mathrm{FOSC}^{\prime} / 12$
0	1	$\mathrm{FOSC}^{\prime} / 24$
1	0	$\mathrm{FOSC} / 48$
1	1	$\mathrm{FOSC}_{\mathrm{OS}} / 96$

Figure 31. SEP Modes

9.2 SEP Transmission or Reception

To transmit or receive a byte the user should initialize the SEP mode (CLKPOL and CLKPH), clock frequency (SEPS1 and SEPSO), and enable the SEP (SEPE). A transmission then occurs if the user loads data into SEPDATA. A reception occurs if the user sets SEPREN while SEPDATA is empty and a transmission is not in progress. When 8 bits have been received SEPREN will be cleared by hardware. Once the transmission or reception is complete, SEPIF will be set. SEPIF remains set until cleared by software. SEPIF is also the source of the SEP interrupt. Data is transmitted and received MSB first.

If the user attempts to read or write the SEPDATA register or write to the SEPCON register while the SEP is transmitting or receiving an error bit is set. The SEPFWR bit is set if the action occurred while the SEP was transmitting. The SEPFRD bit is set if the action occurred while the SEP was receiving. There is no interrupt associated with these error bits. The bit remains set until cleared by software. The attempted read or write of the register is ignored. The reception of transmission that was in progress will not be affected.

10.0 HARDWARE WATCHDOG TIMER

The hardware WatchDog Timer (WDT) resets the 8 XC 51 GB when it overflows. The WDT is intended as a recovery method in situations where the CPU may be subjected to a software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is always enabled and increments while the oscillator is running. There is no way to disable the WDT. This means that the user must still service the WDT while testing or debugging an application. The WDT is loaded with 0 when the 8XC51GB exits reset. The WDT described in this section is not the Watchdog Timer associated with PCA module 4. The WDT does not drive the Reset pin.

10.1 Using the WDT

Since the WDT is automatically enabled while the processor is running, the user only needs to be concerned with servicing it. The 14-bit counter overflows when it reaches 16383 (3FFFH). The WDT increments once every machine cycle. This means the user must reset the WDT at least every 16383 machine cycles. If the user does not wish to use the functionality of the WDT in an application, a timer interrupt can be used to reset the WDT. To reset the WDT the user must write 01EH and OE1H to WDTRST. WDTRST is a write only register. The WDT count cannot be read or written. Using a timer interrupt is not recommended in applications that make use of the WDT because inter-
rupts may still be serviced, even after a software upset. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

10.2 WDT During Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down the user does not need to service the WDT. There are two methods of exiting Power Down: by a reset or via a level activated external interrupt which is enabled prior to entering Power Down. If Power Down is exited with reset, servicing of the WDT should occur as it normally does whenever the 8XC51GB is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low which brings the device out of Power Down and starts the oscillator. The user must hold the interrupt low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine for the interrupt used to exit Power Down.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In Idle mode, the oscillator continues to run. To prevent the WDT from resetting the 8XC51GB while in Idle, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

11.0 OSCILLATOR FAIL DETECT

The Oscillator Fail Detect (OFD) circuitry keeps the 8 XC 51 GB in reset when the oscillator speed is below the OFD trigger frequency. The OFD trigger frequency is shown in the data sheet as a minimum and maximum. If the oscillator frequency is below the minimum, the device is held in reset. If the oscillator frequency is greater than the maximum, the device will not be held in reset. If the frequency is between the minimum and maximum, it is indeterminate whether the device will be held in reset or not.

The OFD is automatically enabled when the device comes out of reset or when Power Down is exited with a reset or an interrupt.

The OFD is intended to function only in situations where there is a gross failure of the oscillator, such as a
broken crystal. To fulfill this need the OFD trigger frequency is significantly below the normal operating frequency. The OFD will not reset the 8XC51GB if the oscillator frequency should change to another point within the operating range.

11.1 OFD During Power Down

In Power Down, the 8XC51GB oscillator stops in order to conserve power. To prevent the 8 XC 51 GB from immediately resetting itself out of power down the OFD must be disabled prior to setting the PD bit. Writing the sequence " $0 \mathrm{E} 1 \mathrm{H}, 01 \mathrm{EH}$ " to the OSCillatoR (OSCR) SFR, turns the OFD off. Once disabled, the OFD can only be re-enabled by a reset or exit from Power Down with an interrupt. The status of the OFD (whether on or off) can be determined by reading OSCR. The LSB indicates the status of the OFD. The upper 7 bits of OSCR will always be 1s when read. If OSCR $=0 \mathrm{FFH}$, the OFD is enabled. If OSCR $=$ OFEH, the OFD is disabled.

12.0 INTERRUPTS

The 8 XC 51 GB has a total of 15 interrupt vectors: seven external interrupts ($\overline{\mathrm{INTO}}, \overline{\mathrm{INT}} 1$, INT2, INT3, INT4, INT5, and INT6), three timer interrupts (Timers 0,1 , and 2), two PCA interrupts (PCA0 and PCA1), the A/ D interrupt, the SEP interrupt, and the serial port interrupt. Figure 32 shows the interrupt sources.

All of the bits that generate interrupts can be set or cleared by software, with the same result as though it had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be canceled in software.

12.1 External Interrupts

External Interrupts $\overline{\text { INT0 }}$ and $\overline{\text { INT1 }}$ can each be either level-activated or negative edge-triggered, depending on bits IT0 and IT1 in register TCON. If ITx $=0$, external interrupt x is triggered by a detected low at the $\overline{\text { INTx }}$ pin. If ITx $=1$, external interrupt x is negative edge-triggered.

INT2 and INT3 can each be either negative or positive edge-triggered, depending on bits IT2 and IT3 in register EXICON. If ITx $=0$, external interrupt x is negative edge-triggered. If ITx $=1$, external interrupt x is positive edge-triggered.

INT4, INT5, and INT6 are positive edge-triggered only.

Figure 32. Interrupt Sources

Table 21. EXICON: External Interrupt Control Register
EXICON

	Address $=0 \mathrm{C} 6 \mathrm{H}$			Not Bit Addressable				
Bit	7	6	5	4	3	2	1	0
EXICON	-	IE6	IE5	IE4	IE3	IE2	IT3	IT2
Symbol	Function							

Symbol Function

- Not implemented, reserved for future use.*

IE6 Ințerrupt 6 Edge flag. This bit is set by hardware when an external interrupt edge is detected.
IE5 Interrupt 5 Edge flag. This bit is set by hardware when an external interrupt edge is detected.
IE4 Interrupt 4 Edge flag. This bit is set by hardware when an external interrupt edge is detected.
IE3 Interrupt 3 Edge flag. This bit is set by hardware when an external interrupt edge is detected.
IE2 Interrupt 2 Edge flag. This bit is set by hardware when an external interrupt edge is detected.
IT3 . Interrupt 3 Type control bit. This bit is set or cleared by software to control whether INT3 is positive or negative transition activated. When IT3 is high, IE3 is set by a positive transition on pin INT3. When IT3 is low, IE3 is set by a negative transition on pin INT3.
IT2 Interrupt 2 Type control bit. This bit is set or cleared by software to control whether INT2 is positive or negative transition activated. When IT2 is high, IE2 is set by a positive transition on pin INT2. When IT2 is low, IE2 is set by a negative transition on pin INT2.
*Using software should not write 1 s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0 , and its active value will be 1 . The value read from reserved bit is indeterminate.

The flags that actually generate the interrupts are bits IE0 and IE1 in TCON and IE2, IE3, IE4, IE5, and IE6 in EXICON. These flags are cleared by hardware when the service routine is vectored to if the interrupt was transition-activated. If the interrupt was level-activated, then the external requesting source is what controls the request flag, rather than the on-chip hardware. The external interrupts are enabled through bits EXO and EX1 in the IE register and EX2, EX3, EX4, EX5, and EX6 in the IEA register.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the
external interrupt is transition-activated, the external source has to hold the request pin high for at least one cycle, and then hold it low for at least one cycle to ensure that the transition is seen so that interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called.

If external interrupt $\overline{\text { INT0 }}$ or INT1 is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

12.2 Timer Interrupts

Timer 0 and Timer 1 interrupts are generated by TF0 and TF1 in register TCON, which are set by a rollover in their respective Timer/Counter registers; the exception is Timer 0 in Mode 3. When a timer interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to. These timer interrupts are enabled by bits ETO and ET1 in the IE register.

Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and the bit will have to be cleared in software. The Timer 2 interrupt is enabled by the ET2 bit in the IE register.

12.3 PCA Interrupt

The PCA interrupts are generated by the logical OR of five event flags (CCFn, C1CFn) and the PCA timer overflow flag (CF, CF1) in the registers CCON and C1CON. None of these flags are cleared by hardware when the service routine is vectored to. Normally the service routine will have to determine which bit flagged the interrupt and clear that bit in software. This allows the user to define the priority of servicing each PCA module.

The PCA interrupt is enabled by bit EC in the IE register. The PCA1 interrupt is enabled by bit EC1 in the IEA register. In addition, the CF (CF1) flag and each of the CCFn (C1CFn) flags must also be individually enabled by bits ECF (ECF1) and ECCFn (EC1CFn) in registers CMOD (C1MOD) and CCAPMn (C1CAPMn), respectively, in order for that flag to be able to cause an interrupt.

12.4 Serial Port Interrupt

The serial port interrupt is generated by the logical OR of bits RI and TI in register SCON. Neither of these flags is cleared by hardware when the service routine is vectored to. The service routine will normally have to determine whether it was RI or TI that generated the interrupt, and the bit will have to be cleared in software. The serial port interrupt is enabled by bit ES in the IE register.

12.5 Interrupt Enable

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable (IE and IEA) registers as shown in Table 22. Note that IE also contains a global disable bit, EA. If EA is set (1), the interrupts are individually enabled or disabled by their corresponding bits in IE and IEA. If EA is clear (0), all interrupts are disabled. Figure 33 shows the interrupt control system.

Figure 33. Interrupt Control System

Table 22. Interrupt Enable Registers

12.6 Interrupt Priorities

Each interrupt source on the 8 XC 51 GB can be individually programmed to one of four priority levels, by setting or clearing the bits in the Interrupt Priority (IP and IPA) registers and the Interrupt Priority High (IPH and IPAH) registers. See Table 23. The IPH registers have the same bit map as the IP registers with an "H" added to each bit's name. This gives each interrupt source two bits for setting the priority levels. The LSB of the Priority Select Bits is in the IP SFR, and the MSB is in the IPH SFR.

A low-priority interrupt can itself be interrupted by a higher priority interrupt, but not by another interrupt of the same priority. The highest priority interrupt cannot be interrupted by any other interrupt source.

If two or more requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence shown in Table 24.

Table 23. Interrupt Priority Registers

Table 24. Interrupt Polling Sequence

1 (Highest)	INTO
2	SEP
3	INT2
4	Timer 0
5	PCA1
6	INT3
7	INT1
8	A/D
9	INT4
10	Timer 1
11	PCA
12	INT5
13	PCA
14	Timer 2
15 (Lowest)	INT6

Note that the "priority within level" structure is only used to resolve simultaneous requests of the same priority level.

12.7 Interrupt Processing

The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during the following machine cycle. The Timer 2 overflow interrupt is slightly different, as described in the Interrupt Response Time section. If one of the flags was in a set condition at S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:

1. An interrupt of equal or higher priority level is already in progress.
2. The current (polling) cycle is not the final cycle in the execution of the instruction in progress.
3. The instruction in progress is RETI or any write to the IE or IP registers.

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Condition 2 ensures that the instruction in progress will be completed before vectoring to any service routine. Condition 3 ensures that if the instruction in progress is RETI or any write to IE or IP, then at least one more instruction will be executed before any interrupt is vectored to.

The polling cycle is repeated with each machine cycle, and the values polled are the values that were present at S5P2 of the previous machine cycle. If the interrupt flag for a level-sensitive external interrupt is active but
not being responded to for one of the above conditions and is not still active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag was once active but not serviced is not remembered. Every polling cycle is new.

The polling cycle/LCALL sequence is illustrated in the Interrupt Response Timing Diagram.

Note that if an interrupt of a higher priority level goes active prior to S5P2 of the machine cycle labeled C3 in the diagram, then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine having been executed. This is the fastest possible response when C 2 is the final cycle of an instruction other than RETI or write IE or IP.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. The hardware-generated LCALL pushes the contents of the Program Counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to. Table 25 shows the interrupt vector addresses.

Table 25. Interrupt Vector Addresses

Interrupt Source	Interrupt Request Bits	Cleared by Hardware	Vector Address
$\overline{\text { INT0 }}$	IE0	No (level) Yes (trans.)	0003 H
Timer 0	TF0	Yes	000 BH
INT1	IE1	No (level) Yes (trans.)	0013 H
Timer 1	TF1	Yes	001 BH
Serial Port	RI, TI	No	0023 H
Timer 2	TF2, EXF2	No	002 BH
PCA	CF, CCFn (n = 0-4)	No	0033 H
A/D	AIF	No	003 BH
PCA1	CF1, C.1CCFn (n = 0-4)	No	0043 H
SEP	SEPIF	No	004 BH
INT2	IE2	Yes	0053 H
INT3	IE3	Yes	005 BH
INT4	IE4	Yes	0063 H
INT5	IE5	Yes	006 BH
INT6	IE6	Yes	0073 H

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking interrupt was still in progress.

The starting addresses of consecutive interrupt service routines are only 8 bytes apart. That means if consecutive interrupts are being used (IEO and TFO, for example, or TF0 and IE1), and if the first interrupt routine is more than 7 bytes long, then that routine will have to execute a jump to some other memory location where the service routine can be completed without overlapping the starting address of the next interrupt routine.

12.8 Interrupt Response Time

The $\overline{\text { INTO }}$ and $\overline{\text { INT1 }}$ levels are inverted and latched into the Interrupt Flags IE0, and IE1 at S5P2 of every machine cycle. The level of interrupts 2 through 6 are also latched into the appropriate flags (IE2-IE6) in S5P2. Similarly, the Timer 2 flag EXF2 and the Serial Port flags RI and TI are set at S5P2. The values are not actually polled by the circuitry until the next machine cycle.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag TF2 is set at S2P2 and is polled in the same cycle in which the timer overflows.

If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two cycles. Thus, a minimum of three complete machine cycles elapses between activation of an external interrupt request and the beginning of execution of the service routine's first instruction. See Figure 34.

A longer response time would result if the request is blocked by one of the 3 conditions discussed in the Interrupt Processing section. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more than 3 cycles, since the longest instructions (MUL and DIV) are only 4 cycles long, and if the instruction in progress is RETI or write to IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one or more cycles to complete the instruction in progress, plus 4 cycles to complete the next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is always more than 3 cycles and less than 9 cycles.

Figure 34. Interrupt Response Timing Diagram

13.0 RESET

The reset input is the RESET pin, which has a Schmitt Trigger input. A reset is accomplished by holding the $\overline{\text { RESET }}$ pin low for at least two machine cycles (24 oscillator periods). On the 8 XC 51 GB , reset is asynchronous to the CPU clock. This means that the oscillator does not have to be running for the I/O pins to be in their reset condition. However, V_{CC} has to be within the specified operating conditions.

Once Reset has reached a high level, the 8 XC 51 GB may remain in its reset state for up to 5 machine cycles. This is caused by the OFD circuitry.

While the RESET pin is low, the port pins, ALE and PSEN are weakly pulled high. After RESET is pulled high, it will take up to 5 machine cycles for ALE and PSEN to start clocking. For this reason, other devices can not be synchronized to the internal timings of the 8XC51GB.

Driving the ALE and PSEN pins to 0 while reset is active could cause the device to go into an indeterminate state.

The internal reset algorithm redefines most of the SFRs. Refer to individual SFRs for their reset values. The internal RAM is not affected by reset. On power up the RAM content is indeterminate.

13.1 Power-On Reset

For CHMOS devices, when V_{CC} is turned on, an automatic reset can be obtained by connecting the $\overline{\text { RESET }}$ pin to $\mathrm{V}_{\text {SS }}$ through a $1 \mu \mathrm{~F}$ capacitor. The CHMOS devices do not require an external resistor like the HMOS devices because they have an internal pullup on the RESET pin. Figure 35 shows this.

Figure 35. Power-On Reset Circuitry

When power is turned on, the circuit holds the RESET pin high for an amount of time that depends on the capacitor value and the rate at which it charges. To ensure a valid reset the RESET pin must be held low long enough to allow the oscillator to start up plus two machine cycles.

On power up, V_{CC} should rise within approximately ten milliseconds. The oscillator start-up time will depend on the oscillator frequency. For a 10 MHz crystal, the start-up time is typically 1 ms . For a 1 MHz crystal, the start-up time is typically 10 ms .

Powering up the device without a valid reset could cause the CPU to start executing instructions from an indeterminate location. This is because the SFRs, specifically the Program Counter, may not get properly initialized.

14.0 POWER-SAVING MODES

For applications where power consumption is critical, the 8 XC 51 GB provides two power reducing modes of operation: Idle and Power Down. The input through which backup power is supplied during these operations is V_{CC}. The Idle and Power Down modes are activated by setting bits IDL and PD, respectively, in the SFR PCON (Table 26). Figure 36 shows the Idle and Power Down circuitry.

In the Idle mode (IDL $=1$), the oscillator continues to run and the Interrupt, Serial Port, PCA, and Timer blocks continue to be clocked, but the clock signal is gated off to the CPU. In Power Down (PD = 1), the oscillator is frozen.

Table 26. PCON: Power Control Register
PCON Address $=87 \mathrm{H} \quad$ Reset Value $=00 X X$ 0000B
Not Bit Addressable

SMOD1	SMODO	-	POF	GF1	GF0	PD	IDL
Bit	7	6	5	4	3	2	1

Symbol Function
SMOD1 Double Baud rate bit. When set to a 1 and Timer 1 is used to generate baud rates, and the Serial Port is used in modes 1,2 , or 3 .
SMODO When set, Read/Write accesses to SCON. 7 are to the FE bit. When clear, Read/Write accesses to SCON. 7 are to the SMO bit.

- Not implemented, reserved for future use.*

POF Power Off Flag. Set by hardware on the rising edge of V_{CC}. Set or cleared by software. This flag allows detection of a power failure caused reset. $V_{C C}$ must remain above 3 V to retain this bit.
GF1 General-purpose flag bit.
GFO General-purpose flag bit.
PD Power Down bit. Setting this bit activates Power Down operation.
IDL Idle mode bit. Setting this bit activates idle modes operation.
If 1s are written to PD and IDL at the same time, PD takes precedence.
NOTE:
*User software should not write 1s to unimplemented bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0 , and its active value will be 1 . The value read from a reserved bit is indeterminate.

Figure 36. Idle and Power Down Hardware

14.1 Idle Mode

An instruction that sets the IDL bit causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the Interrupt, Timer, and Serial Port functions. The PCA and PCA1 timers can be programmed either to pause or continue operating during Idle with the CIDL (C1IDL) bit in CMOD (C1MOD). The CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels. Refer to Table 27.

Table 27. Status of the External Pins during Idle Mode

Program Memory	ALE	PSEN	Port 0	Port 1	Port 2	Ports $3,4,5$
Internal	1	1	Data	Data	Data	Data
External	1	1	Float	Data	Address	Data

There are two ways to terminate the Idle Mode. Activation of any enabled interrupt will cause the IDL bit to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into Idle.

The flag bits (GF0 and GF1 in PCON) can be used to give an indication if an interrupt occurred during normal operation or during Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

The signal at the $\overline{\text { RESET }}$ pin clears the IDL bit directly and asynchronously. At this time the CPU resumes program execution from where it left off; that is, at the instruction following the one that invoked the Idle Mode. As shown in the Reset Timing diagram, two or three machine cycles of program execution may take place before the internal reset algorithm takes control. On-chip hardware inhibits access to the internal RAM during this time, but access to the port pins is not inhibited. To eliminate the possibility of unexpected outputs at the port pins, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external Data RAM.

14.2 Power Down Mode

An instruction that sets the PD bit causes that to be the last instruction executed before going into the Power Down mode. In this mode the on-chip oscillator is stopped. With the clock frozen, all functions are stopped, but the on-chip RAM and Special Function Registers are held. The port pins output the values held by their respective SFRs, and ALE and PSEN output lows. In Power Down, V_{CC} can be reduced to as low as 2 V . Care must be taken, however, to ensure that V_{CC} is not reduced before Power Down is invoked. If the Oscillator Fail Detect circuitry is not disabled before entering powerdown, the part will reset itself (see Section 11.0 "Oscillator Fail Detect"). Table 28 shows the status of external pins during Power Down mode.

Table 28. Status of the External Pins during Power Down Mode

Program Memory	ALE	PSEN	Port 0	Port 1	Port 2	Ports $\mathbf{3 , 4 , 5}$
Internal	0	0	Data	Data	Data	Data
External	0	0	Float	Data	Data	Data

The 8XC51GB can exit Power Down with either a hardware reset or external interrupt. Reset redefines most of the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power Down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, $\overline{\text { INT0 }}$ or $\overline{\text { INT1 }}$ must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator and bringing the pin back high completes the exit. After the RETI instruction is executed in the interrupt service routine, the next instruction will be the one following the instruction that put the device in Power Down.

14.3 Power Off Flag

The Power Off Flag (POF) located at PCON. 4 is set by hardware when V_{CC} rises from 0 V to 5 V . POF can also be set or cleared by software. This allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is one that is coincident with V_{CC} being turned on to the device after it was turned off. \mathbf{A} warm start reset occurs while V_{CC} is still applied to the device and could be generated, for example, by a Watchdog Timer or an exit from Power Down.

Immediately after reset, the user's software can check the status of the POF bit. POF = 1 would indicate a cold start. The software then clears POF and commences its tasks. POF $=0$ immediately after reset would indicate a warm start.
V_{CC} must remain above 3 V for POF to retain a 0 .

15.0 EPROM/OTP PROGRAMMING

The 8XC51GB uses the fast "Quick-Pulse" Programming algorithm. The devices program at $\mathrm{V}_{\mathrm{PP}}=$ 12.75 V (and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$) using a series of five $100 \mu \mathrm{~s}$ PROG pulses per byte programmed.

15.1 Program Memory Lock

In some microcontroller applications it is desirable that the Program Memory be secure from software piracy. The 8 XC 51 GB has a three-level program lock feature which protects the code of the on-chip EPROM/OTP or ROM.

Within the EPROM/OTP/ROM are 64 bytes of Encryption Array that are initially unprogrammed (all 1s). The user can program the Encryption Array to encrypt the program code bytes during EPROM/OTP/ ROM verification. The verification procedure is performed as usual except that each code byte comes out exclusive-NOR'ed (XNOR) with one of the key bytes. Therefore, to read the ROM code the user has to know the 64 key bytes in their proper sequence.

Unprogrammed bytes have the value 0FFH. So if the Encryption Array is left unprogrammed, all the key bytes have the value OFFH. Since any code byte XNORed with OFFH leaves the byte unchanged, leaving the Encryption Array unprogrammed in effect bypasses the encryption feature.

PROGRAM LOCK BITS

Also included in the Program Lock scheme are three Lock Bits which can be programmed to disable certain functions as shown in Table 29.

To obtain maximum security of the on-board program and data, all 3 Lock Bits and the Encyption Array must be programmed.

Erasing the EPROM also erases the Encryption Array and the Lock Bits, returning the part to full functionality:

Table 29. EPROM/OTP Lock Bits

Program Lock Bits			Logic Enabled
LB1	LB2	LB3	
U	U	U	No Program Lock features enabled. (Code Verify will still be encrypted by the Encryption Array.)
P	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory. EA is sampled and latched on reset, and further programming of EPROM is disabled.
P	P	U	Same as above, but Verify is also disabled (option available on EPROM only).
P	P	P	Same as above and all external program execution is inhibited and internal RAM cannot be read externally.

NOTE:

All other combinations of lock bits may produce indeterminate results and should not be used.

16.0 ONCE MODE

The ONCE (ON-Circuit Emulation) mode facilitates testing and debugging of systems using the 8 XC 51 GB without having to remove the device from the circuit. The ONCE mode is invoked by:

1. Pulling ALE low while the device is in reset and PSEN is high;

2. Holding ALE low as RST is deactivated.

While the device is in ONCE mode, the Port 0 pins go into a float state, and the other port pins, ALE, and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit.

Normal operation is restored after a valid reset is applied.

17.0 ON-CHIP OSCILLATOR

The on-chip oscillator for the CHMOS devices consists of a single stage linear inverter intended for use as a
crystal-controlled, positive reactance oscillator. In this application the crystal is operating in its fundamental response mode as an inductive reactance in parallel resonance with capacitance external to the crystal. Figure 37 shows the on-chip oscillator circuitry.

The oscillator on the CHMOS devices can be turned off under software control by setting the PD bit in the PCON register (Figure 38). The feedback resistor $\mathbf{R}_{\mathbf{f}}$ shown in the figure consists of parallel n - and p-channel FETs controlled by the PD bit, such that R_{f} is opened when PD $=1$. The diodes D1 and D2, which act as clamps to V_{CC} and V_{SS}, are parasitic to the R_{f} FETs.

The crystal specifications and capacitance values (C 1 and C 2 in Figure 39) are not critical. 30 pF can be used in these positions at any frequency with good quality crystals. In general, crystals used with these devices typically have the following specifications:

ESR (Equivalent Series Resistance)

CO (shunt capacitance)	7.0 pF maximum
CL (load capacitance)	$30 \mathrm{pF} \pm 3 \mathrm{pF}$
Drive Level	1 MW

270897-37
Figure 37. On-Chip Oscillator Circuitry

270897-38
Figure 38. Using the CHMOS On-Chip Oscillator

Figure 39. ESR vs Frequency
Frequency, tolerance, and temperature range are determined by the system requirements.

A ceramic resonator can be used in place of the crystal in cost-sensitive applications. When a ceramic resonator is used, C 1 and C 2 are normally selected as higher values, typically 47 pF . The manufacturer of the ceramic resonator should be consulted for recommendations on the values of these capacitors.

A more in-depth discussion of crystal specifications, ceramic resonators, and the selection of values for C 1 and C2 can be found in Application Note AP-155, "Oscillators for Microcontrollers" in the Embedded Control Applications handbook.

To drive the CHMOS parts with an external clock source, apply the external clock signal to XTAL1 and leave XTAL2 floating. Refer to the External Clock Source diagram. This is an important difference from the HMOS parts. With HMOS, the external clock source is applied to XTAL2, and XTAL1 is grounded. See Figure 40.

There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop. However, minimum and maximum high and low times specified in the data sheets must be observed. Refer to the External Clock Specifications for this information.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications, the capacitance will not exceed 20 pF .

18.0 CPU TIMING

The internal clock generator defines the sequence of states that make up a machine cycle. A machine cycle consists of 6 states, numbered S1 through S6. Each state time lasts for two oscillator periods. Thus a machine cycle takes 12 oscillator periods or $1 \mu \mathrm{~s}$ if the oscillator frequency is 12 MHz . Each state is then divided into a Phase 1 and Phase 2 half.

Rise and fall times are dependent on the external loading that each pin must drive. They are approximately 10 ns , measured between 0.8 V and 2.0 V .

Propagation delays are different for different pins. For a given pin they vary with pin loading, temperature, V_{CC}, and manufacturing lot. If the XTAL1 waveform is taken as the timing reference, propagation delays may vary from 25 ns to 125 ns .

The AC Timings section of the data sheets do not reference any timing to the XTAL1 waveform. Rather, they relate the critical edges of control and input signals to each other. The timings published in the data sheets include the effects of propagation delays under the specified test condition.

Figure 40. Driving the CHMOS Devices with an External Clock Sources

87C51GB/83C51GB/80C51GB CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLER

87C51GB-8 Kbytes OTP/8 Kbytes Internal Program Memory
83C51GB-8 Kbytes Factory Programmable ROM 80C51GB-CPU with RAM and I/O 8XC51GB- 3.5 MHz to $12 \mathrm{MHz} \pm 20 \%$ Vcc $8 \mathrm{XC} 51 \mathrm{~GB}-1-3.5 \mathrm{MHz}$ to $16 \mathrm{MHz} \pm 20 \% \mathrm{Vcc}$

- 8 Kbytes On-Chip ROM/OTP ROM
- 256 Bytes of On-Chip Data RAM
- Two Programmable Counter Arrays with:
- 2×5 High Speed Input/Output Channels Compare/Capture
- Pulse Width Modulators
- Watchdog Timer Capabilities
- Three 16-Bit Timer/Counters with - Four Programmable Modes:
- Capture, Baud Rate Generation (Timer 2)
- Dedicated Watchdog Timer
- 8-Bit, 8-Channel A/D with:
— Eight 8-Bit Result Registers
- Four Programmable Modes

■ Programmable Serial Channel with:

- Framing Error Detection
- Automatic Address Recognition

Serial Expansion Port

- Programmable Clock Out
- 48 Programmable I/O Lines with 40 Schmitt Trigger Inputs
■ 15 Interrupt Sources with: - 7 External, 8 Internal Sources - 4 Programmable Priority Levels

■ Pre-Determined Port States on Reset
■ High Performance CHMOS Process
■ TTL and CHMOS Compatible Logic Levels
■ Power Saving Modes

- 64K External Data Memory Space
- 64K External Program Memory Space
- Three Level Program Lock System

■ ONCETM (ON-Circuit Emulation) Mode

- Quick Pulse ProgrammingTM Algorithm
- MCS ${ }^{\circledR}$-51 Fully Compatible Instruction Set
- Boolean Processor
- Oscillator Fail Detect
- Available in 68-Pin PLCC

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 8 Kbytes of the program memory can reside in the on-chip ROM. Also, the device can address up to 64 K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256×8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 8XC51GB is a single-chip control oriented microcontroller which is fabricated on Intel's CHMOS III-E technology. The 8XC51GB is an enhanced version of the 8XC51FA and uses the same powerful instruction set and architecture as existing MCS ${ }^{-}-51$ products. Added features make it an even more powerful microcontroller for applications that require On-Chip A/D, Pulse Width Modulation, High Speed I/O, up/down counting capabilities and memory protection features. It also has a more versatile serial channel that facilitates multiprocessor communications.

Figure 1. 8XC51GB Block Diagram

PROCESS INFORMATION

This device is manufactured on P629.0, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	$\theta_{\text {JA }}$	$\theta_{\text {JC }}$
$8 \times C 51 G B$	N	68 -Pin PLCC	N/A	N/A

PARALLEL I/O PORTS

The 8XC51GB contains six 8 -bit parallel I/O ports. All six ports are bidirectional and consist of a latch, an output driver, and an input buffer. Many of the port pins have multiplexed I/O and control functions.

Port Pins as Outputs

Port 0 has open drain outputs when it is not serving as the external data bus. The internal pullup is active only when the pin is outputting a logic 1 during external memory access. An external pullup resistor is required on Port 0 when it is serving as an output port.

Ports 1, 2, 3, 4, and 5 have quasi-bidirectional outputs. A strong pullup provides a fast rise time when the pin is set to a logic 1. This pullup turns on for two oscillator periods to drive the pin high and then turns off. The pin is held high by a weak pullup.

Writing the P0, P1, P2, P3, P4 or P5 Special Function Register sets the corresponding port pins. All six port registers are bit addressable.

Port Pins as Inputs

The pins of all six ports are configured as inputs by writing a logic 1 to them. Since Port 0 is an open drain port, it provides a very high input impedance. Since pins of Port 1, 2, 3, 4 and 5 have weak pullups (which are always on), they source a small current when driven low externally. All ports except Port 0 have Schmitt trigger inputs.

Port States During Reset

Ports 0 and 3 reset asynchronously to a one and Ports 1, 2, 4, and 5 reset to a zero asynchronously.

PIN DESCRIPTIONS

The 8XC51GB will be packaged in the 68-lead PLCC package. Its pin assignment is shown in Figure 2.
$V_{\text {cc: }}$ Supply Voltage.
$\mathbf{V S S}_{\text {: }}$ Circuit Ground.

Figure 2. Pin Connections

ALTERNATE PORT FUNCTIONS

Ports $0,1,2,3,4$ and 5 have alternate functions as well as their I / O function as described below.

Port Pin	Alternate Function
P0.0/ADO-P0.7/AD7	Multiplexed Address/Data for External Memory
P1.0/T2	Timer 2 External Clock Input/Clock-Out
P1.1/T2EX	Timer 2 Reload/Capture/Direction Control
P1.2/ECl	PCA External Clock Input
P1.3/CEXO-P1.7/CEX4	PCA Capture Input, Compare/PWM Output
P2.0/A8-P2.7/A15	High Byte of Address for External Memory
P3.0/RXD	Serial Port Input
P3.1/TXD	Serial Port Output
P3.2/̄NT0	External Interrupt 0
P3.3/ $\overline{\text { NT1 }}$	External Interrupt 1
P3.4/T0	Timer 0 External Clock Input
P3.5/T1	Timer 1 External Clock Input
P3.6/ $\overline{\text { WR }}$	Write Strobe for External Memory
P3.7/ $\overline{\text { RD }}$	Read Strobe for External Memory
P4.0/SEPCLK	Clock Source for Serial Expansion Port
P4.1/SEPDAT	Data I/O for the Serial Expansion Port
P4.2/ECI1	PCA1 External Clock Input
P4.3/C1EX0-P4.7/C1EX4	PCA1 Capture Input, Compare/PWM Output
P5.2/INT2-P5.6/INT6	External Interrupt INT2-INT6

$\overline{\text { RST: }}$ Reset input. A low on this pin for two machine cycles while the oscillator is running resets the device. The port pins will be driven to their reset condition when a voltage below V_{IL} max voltage is applied, whether the oscillator is running or not. An internal pullup resistor permits a power-on reset with only a capacitor connected to $V_{S S}$.

ALE/PROG: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during programming of the 87C51GB.

In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to externa! Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX instruction. Otherwise the pin is weakly pulled high.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/PROG
pin, and the pin will be referred to as the ALE/PROG pin.

PSEN: Program Store Enable is the read strobe to external Program Memory.

When the 8XC51GB is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.
$\overline{E A} / V_{p p}$: External Access enable. $\overline{E A}$ must be strapped to $V_{S S}$ in order to enable the device to fetch code from external Program Memory locations 0000 H to 1 1FFFH. Note, however, that if either of the Program Lock bits are programmed, EA will be internally latched on reset.
$\overline{E A}$ should be strapped to $V_{C C}$ for internal program executions.

This pin also receives the 12.75 V programming supply voltage (V_{PP}) during programming (OTP only).

XTAL1: Input to the inverting oscillator amplifier.
XTAL2: Output from the inverting oscillator amplifier.

A/D CONVERTER

The 8XC51GB A/D converter has a resolution of 8 bits and an accuracy of ± 1 LSB (± 2 LSB for channels 0 and 1). The conversion time for a single channel is $20 \mu \mathrm{~s}$ at a clock frequency of 16 MHz with the sample and hold function included. Independent supply voltages are provided for the A/D. Also, the A/D operates both in Normal Mode or in Idle Mode.

The A/D has 8 analog input pins; ACHO (A/D CHannel 0) ... ACH7, 1 reference input pin; COMPREF (COMParison REFerence), 1 control input pin; TRIGIN (TRIGger IN), and 2 power pins; AVREF (Voltage REFerence) and analog ground (ANalog GrouND). In addition, the A/D has 8 conversion result registers; ADRESO (A/D result for channel 0) . . . ADRES7, 1 comparison result register; ACMP (Analog Comparison), and 1 control register; ACON (A/D Control).

The control bit ACE (A/D Conversion Enable) in ACON controls whether the A/D is in operation or not. $A C E=0$ idles the $A / D . A C E=1$ enables A / D conversion. The control bit AIM (A/D Input mode) in ACON controls the mode of channel selection. AIM $=0$ is the Scan Mode, and AIM $=1$ is the Select Mode. The result registers ADRES4 . . . ADRES7 always contain the result of a conversion from the corresponding channels ACH4 ... CH7. However, the result registers ADRESO . . ADRES3 depend on the mode selected. In the scan mode, ADRESO ... ADRES3 contain the values from ACHO ... ACH3. In the Select Mode, one of the four channels ACHO . . . ACH3 is converted four times, and the four values are stored sequentially in locations ADRESO . . . ADRES3. Its channel is selected by bits ACS1 and ACSO (A/D Channel Select 1 and 0) in ACON.

PROGRAMMABLE COUNTER ARRAYS

The Programmable Counter Arrays (PCA-PCA1) are each made up of a Counter Module and five Register/Comparator Modules as shown below. The 16 -bit output of the counter module is available to all five Register/Comparator Modules, providing one common timing reference. Each Register/Comparator Module is associated with a pin of Port 1 or Port 4 and is capable of performing input capture, output compare and pulse width modulation functions. The PCAs are exactly the same in function except for the addition of clock input sources on PCA1.

The PCA Counter and five Register/Comparator Modules each have a status bit in the CCON/ C1CON Special Function Registers. These six status bits are set according to the selected modes of operation described below. The CCON/C1CON Register provides a convenient means to determine
which of the six PCA/PCA1 interrupts has occurred. The EC Bit in the IE (Interrupt Enable) Special Function Register is a global interrupt enable for the PCA.

Figure 3. Programmable Counter Arrays

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 4. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL should be driven, while XTAL2 floats, as shown in Figure 5. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a di-vide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

270869-5
$\mathrm{C} 1, \mathrm{C} 2=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
For Ceramic Resonators contact resonator manufacturer.

Figure 4. Oscillator Connections

Figure 5. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during idle, peripherals continue to operate, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs. The PCA timer/counter can optionally be left running or paused during Idle Mode. The Watchdog Timer continues to count in Idle Mode and must be serviced to prevent a device RESET while in Idle.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 8XC51GB either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt does not redefine the SFR's or change the on-chip RAM. An external interrupt will modify the interrupt associated SFR's in the same way an interrupt will in all other
modes. The interrupt must be enabled and configured as level sensitive. To properly terminate Power Down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level. The reset or external interrupt must be held active long enough for the oscillator to restart and stabilize. The Oscillator Fail Detect must be disabled prior to entering Power Down.

DESIGN CONSIDERATIONS

- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.
- As $\overline{\text { RESET }}$ rises, the 8XC51GB will remain in reset for up to 5 machine cycles (60 oscillator periods) after RESET reaches $\mathrm{V}_{\mathrm{IH} 1}$.

ONCE MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 8XC51GB without removing it from the circuit. The ONCE Mode is invoked by:

1) Pulling ALE low while the device is in reset and PSEN is high;
2) Holding ALE low as RESET is deactivated.

While the device is in ONCE Mode, the Port 0 pins float, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 8XC51GB is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook Volume I, and Application Note AP-252 (Embedded Applications Handbook), "Designing with the 80 C 51 BH ."

Watchdog Timer (WDT)

The 8XC51GB contains a dedicated Watchdog Timer (WDT) to allow recovery from a software or hardware upset. The WDT consists of a 14-bit counter which is cleared on Reset, and subsequently incremented every machine cycle. While the oscillator is running, the WDT will be incrementing and cannot be disabled. The counter may be reset by writing 1 EH and E1H in sequence to the WDTRST Special Function Register. If the counter is not reset before it reaches 3FFFH (16383D), the chip will be forced into a reset sequence by the WDT. This works out to 12.28 ms @ 16 MHz . WDTRST is a write only register. The WDT does not force the external reset pin low.

While in Idle mode the WDT continues to count. If the user does not wish to exit Idle with a reset, then the processor must be periodically "woken up" to service the WDT. In Power Down mode, the WDT stops counting and holds its current value.

Serial Expansion Port (SEP)

The Serial Expansion Port is a half-duplex synchronous serial interface with the following features:

Four Clock Frequencies- XTAL/12, 24, 48, 96.

Four Interface Modes- High/Low/Falling/Rising Edges.
Interrupt Driven.

Oscillator Fail Detect (OFD)

The Oscillator Fail Detect circuitry triggers a reset if the oscillator frequency is lower than the OFD trigger frequency. It can be disabled by software by writing E1H followed by 1 EH to the OFDCON register. Before going into Power Down Mode, the OFD must be disabled or it will force the GB out of Power Down. The OFD has the following features.

OFD Trigger Frequency: Below 20 KHz , the $8 \times C 51 \mathrm{~GB}$ will be held in reset. Above 400 KHz , the 8XC51GB will not be held is reset.
Functions in Normal and Idle Modes.
Reactivated by Reset (or External Interrupt Zero/One Pins) after Software Disable.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature under Bias $\ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on EA/VPP
Pin to $V_{S s}$.0 V to $+13.0 \mathrm{~V}^{*}$
lol per I/O Pin 15 mA
Voltage on Any Other
Pin to $\mathrm{V}_{\mathrm{SS}} \ldots \ldots \ldots \ldots \ldots \ldots . .-0.5 \mathrm{~V}$ to +6.5 V
Power Dissipation................................. 1.5 W (Based on Package heat transfer limitations, not device power consumption)
*OTP only.

NOTICE: This data sheet contains preliminary information on new products in production. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Operating Conditions: T_{A} (under bias) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 20 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

DC CHARACTERISTICS (Over Operating Conditions)

Symbol	Parameter	Targeted Min	Targeted Typ(1)	Targeted Max	Unit	Test Conditions
$V_{\text {IL }}$	Input Low Voltage (except Port 2 and $\overline{E A}$)	-0.5		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.1$	V	
$\mathrm{V}_{\mathrm{LL} 1}$	Input Low Voltage (Port 2)	-0.5		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.3$	V	
VIL2	Input Low Voltage (EA)	0		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.3$	V	
V_{1}	Input High Voltage (except XTAL1 and $\overline{\text { RST }}$)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage (XTAL1, $\overline{\text { RST }}$)	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Ports 1, 2, 3, 4 and 5)			0.3	V	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}(2,3)$
				0.45	V	$\mathrm{l} \mathrm{OL}=1.6 \mathrm{~mA}(2,3)$
				1.0	V	$\mathrm{l}_{\mathrm{OL}}=3.5 \mathrm{~mA}(2,3)$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Port 0, $\overline{\text { PSEN }}$, ALE)			0.3	V	$\mathrm{l}_{\mathrm{OL}}=200 \mu \mathrm{~A}(2,3)$
				0.45	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}(2,3)$
				1.0	V	$\mathrm{l}_{\mathrm{OL}}=7.0 \mathrm{~mA}(2,3)$
V_{OH}	Output High Voltage (Ports 1, 2, 3, 4 and 5, ALE, $\overline{\text { SSEN }}$)	$\mathrm{V}_{\mathrm{CC}}-0.3$			V	$\mathrm{IOH}^{\text {a }}=-10 \mu \mathrm{~A}(4)$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{IOH}^{\text {a }}=-30 \mu \mathrm{~A}(4)$
		$V_{C C}-1.5$			V	$\mathrm{IOH}^{\text {O }}=-60 \mu \mathrm{~A}(4)$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External Bus Mode)	$\mathrm{V}_{\text {CC }}-0.3$			V	$\mathrm{IOH}=-200 \mu \mathrm{~A}$
		$\mathrm{V}_{C C}-0.7$			V	$\mathrm{IOH}=-3.2 \mathrm{~mA}$
		$\mathrm{V}_{\mathrm{CC}}-1.5$			V	$\mathrm{IOH}=-7.0 \mathrm{~mA}$

DC CHARACTERISTICS (Over Operating Conditions) (Continued)

Symbol	Parameter	Min	Typ(1)	Max	Unit	Test Conditions
I_{IL}	Logical 0 Input Current (Ports 1, 2, 3, 4, 5)			-50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
I_{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3, 4,5)			-650	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
I_{LI}	Input Leakage Current (Port 0)			± 10	$\mu \mathrm{~A}$	$0.45<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$
RRST	RST Pullup Resistor	50		300	$\mathrm{k} \Omega$	
$\mathrm{C}_{\text {IO }}$	Pin Capacitance		10		pF	$\mathrm{Freq}=1 \mathrm{MHz}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {PD }}$	Power Down Current			50	$\mu \mathrm{~A}$	(5)
I_{DL}	Idle Mode Current			18	mA	(5)
I_{CC}	Operating Current			50	mA	(5)
$\mathrm{I}_{\mathrm{REF}}$	A/D Converter Reference Current			5	mA	

NOTES:

1. Typical values are obtained using $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and are not guaranteed.
2. Under steady state (non-transient) conditions, loL must be externally limited as follows:

Maximum IOL per Port Pin:
Maximum loL per 8 -Bit Port-

$$
\begin{array}{ll}
\text { Port 0: } & 26 \mathrm{~mA} \\
\text { Ports 1-5: } & \\
\hline
\end{array}
$$

Maximum Total lol for All Outputs Pins: 101 mA
If lol exceeds the test conditions, $V_{O L}$ may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.
3. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low level outputs of ALE and Ports 1, 2 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0 . In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with a Schmitt Trigger, or CMOS-level input logic.
4. Capacitive loading on Ports 0 and 2 cause the $\mathrm{V}_{O H}$ on ALE and PSEN to drop below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
5. See Figures 6-10 for test conditions. Minimum V_{CC} for Power Down is 2 V .

Figure 7. Icc Test Condition, Active Mode

ICC Max at other frequencies is given by:
Active Mode
Icc Max $=($ Osc Freq $\times 3)+4$
Idle Mode

270869-7

ICC Max $=($ Osc Freq $\times 0.5)+4$
Where Osc Freq is in MHz , $\mathrm{ICc}_{\mathrm{cc}}$ is in $\mathrm{mA} . \mathrm{T}_{\mathrm{CLCH}}=\mathrm{T}_{\mathrm{CHCL}}=5 \mathrm{~ns}$

Figure 6. Icc vs Frequency

270869-9
All other pins disconnected.
TCLCH $=$ TCHCL $=5 \mathrm{~ns}$
Figure 8. Icc Test Condition Idle Mode

Figure 9. Icc Test Condition, Power Down Mode $\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}$ to 5.5 V

270869-11
Figure 10. Clock Signal Waveform for Icc Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

AC SPECIFICATIONS

Over Operating Conditions, Load Capacitance on Port 0, ALE, and PSEN $=100 \mathrm{pF}$, Load Capacitance on all other outputs $=80 \mathrm{pF}$

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS

Symbol	Parameter		12 MHz Osc.		Variable Osc.	
		Min	Max	Min	Max	
$1 /$ TCLCL	Osc. Freq.			3.5	16	$\mathbf{M H z}$
TLHLL	ALE Pulse Width	127		$2 T C L C L-40$		ns
TAVLL	ADDR Valid to ALE Low	43		TCLCL -40		ns
TLLAX	ADDR Hold after ALE Low	53		TCLCL -30		ns

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS (Continued)

Symbol	Parameter	12 MHz Osc.		Variable Osc.		Units
		Min	Max	Min	Max	
TLLIV	ALE Low to Valid Inst. IN		234		4TCLCL - 100	ns
TLLPL	ALE LOW to PSEN LOW	53		TCLCL - 30		ns
TPLPH	PSEN Pulse Width	205		3TCLCL - 45		ns
TPLIV	$\overline{\text { PSEN Low to Valid Instr In }}$		145		3TCLCL - 105	ns
TPXIX	Input Instr. Hold after PSEN	0		0		ns
TPXIZ	Input Instr. Float after PSEN		59		TCLCL - 25	ns
TAVIV	ADDR to Valid Instr. In		312		5TCLCL - 105	ns
TPLAZ	$\overline{\text { PSEN Low to ADDR Float }}$		10		10	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400		6TCLCL - 100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	400		6TCLCL - 100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		5TCLCL - 165	ns
TRHDX	Data Hold after $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float after $\overline{R D}$		107		2TCLCL - 60	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL - 150	ns
TAVDV	ADDR to Valid Data In		585		9TCLCL - 165	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	200	300	3TCLCL - 50	$3 T C L C L+50$	ns
TAVWL	ADDR Valid to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	203		4TCLCL - 130		ns
TQVWX	Data Valid to \bar{W} Transition	33		TCLCL - 50		ns
TWHQX	Data Hold after $\overline{W R}$	33		TCLCL - 50		ns
TQVWH	Data Valid to WR High	433		7 TCLCL - 150		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Addr Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{W R}$ High to ALE High	43	123	TCLCL - 40	TCLCL +40	ns

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a " T " (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for:

A: Address
C: Clock
D: Input Data
H: Logic Level HIGH
I: Instruction (Program Memory Contents)

L: Logic Level LOW, or ALE
P: $\overline{\text { PSEN }}$
Q: Output Data
R: $\overline{\mathrm{RD}}$ Signal
T : Time
V: Valid
W: $\overline{W R}$ Signal
X: No Longer a Valid Logic Level
Z: Float
For Example:
TAVLL $=$ Time from Address Valid to ALE Low TLLPL $=$ Time from ALE Low to $\overline{\text { PSEN }}$ Low

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING-SHIFT REGISTER MODE

Test Conditions: Over Operating Conditions, Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Miax	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1		12TCLCL		μs
TQVXH	Output Data Setup to Clock Rising Edge	700		10TCLCL - 133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2TCLCL - 117		ns
TXHDX	Input Data Hold after Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10TCLCL - 133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency	3.5	16	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

270869-16

SEP AC TIMING SPECIFICATIONS

Test Conditions: Over Operating Conditions, Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	$12 ~ M H z$ Cscillator		Variable Oscillator		Units
		Main	Max	Min	\cdot	
TXSXL	SEPCLK Cycle Time	1		12 TCLCL		$\mu \mathrm{ms}$
TXSST	Output Data Setup to SEPCLK	435		6 TCLCL -65		ns
TXSOH	Output Data Hold after SEPCLK	445		6 TCLCL -55		ns
TXSIH	Input Data Hold after SEPCLK Sampling Edge	210		2 TCLCL +43		ns
TXSDV	Input Data Valid to SEPCLK Sampling Edge		947		12 TCLCL -53	ns

SEP Waveform (SEPS $1=0 ; \operatorname{SEPSO}=0 ; C L K P O L=0 ; C L K P H=0$)

AC TESTING INPUT, OUTPUT WAVEFORMS

AC inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a Logic " 1 " and 0.5 V for a Logic " 0 ". Timing measurements are made at $V_{I H}$ for a Logic " 1 " and $V_{O L}$ max for a Logic " 0 ".

A TO D CHARACTERISTICS

The absolute conversion accuracy is dependent on the accuracy of $A V_{\text {REF }}$. The specifications given below assume adherence to the Operating Conditions section of this data sheet. Testing is done at $A V_{\mathrm{REF}}=5.12 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

FLOAT WAVEFORMS

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{I}_{\mathrm{OL}} / \mathrm{IOH}_{\mathrm{OH}} \geq \pm 20$ mA.

OPERATING CONDITIONS

$\mathrm{V}_{\mathrm{CC}} .4 .0 \mathrm{~V}$ to 6.0 V

ACH0-7 $\mathrm{AV}_{\text {SS }}$ to $\mathrm{V}_{\text {REF }}$
$\mathrm{T}_{\mathrm{A}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Ambient
FOSC (STD Version) 3.5 MHz to 12 MHz
FOSC (-1 Version) 3.5 MHz to 16 MHz

A/D CONVERTER SPECIFICATIONS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Parameter	Min	Typ*	Max	Units**	Notes
Resolution	256 8		256	Levels Bits	
Absolute Error (Ch 2-7)	0		± 1	LSB	
Absolute Error (Ch 0 and 1)	0		± 2	LSB	
Full Scale Error		± 1		LSB	
Zero Offset Error		± 1		LSB	
Non-Linearity	0		± 1	LSB	
Differential Non-Linearity	0		± 1	LSB	
Channel-to-Channel Matching	0		± 1	LSB	
Repeatability		± 0.25		LSB	

A/D CONVERTER SPECIFICATIONS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Continued)

Parameter	Min	Typ *	Max	Units**	Notes
Temperature Coefficients: Offset					
Full Scale		0.003		$\mathrm{LSB} /{ }^{\circ} \mathrm{C}$	
Differential Non-Linearity		0.003		$\mathrm{LSB} /{ }^{\circ} \mathrm{C}$	
Input Capacitance		0.003			pF
Off Isolation	-60			dB	$(8,9)$
Feedthrough		-60		dB	(8)
VCC Power Supply Rejection		-60		dB	(8)
Input Resistance to	750		1.2 K	Ω	
Sample-and-Hold Capacitor					
DC Input Leakage	0		3.0	$\mu \mathrm{~A}$	

NOTES:

*These values are expected for most parts at $25^{\circ} \mathrm{C}$
**AN "LSB" as used here, has a value of approximately 20 mV .
8. DC to 100 KHz
9. Multiplexer Break-Before-Make Guaranteed.
10. There is no indication when a single A/D conversion is complete. Please refer to the 8XC51GB Hardware Description on how to read a single A/D conversion.
11. $T_{C Y}=12$ TCLCL

A/D Conversion Time		Notes
Per Channel	$26 \mathrm{~T}_{\mathrm{CY}}$	$(10,11)$
8 Conversions	$208 \mathrm{~T}_{\mathrm{CY}}$	(11)

PROGRAMMING THE OTP

The part must be running with a 4 MHz to 6 MHz oscillator. The address of a location to be programmed is applied to address lines while the code byte to be programmed in that location is applied to data lines. Control and program signals must be held at the levels indicated in Table 2. Normally EA/VPP is held at logic high until just before ALE/PROG is to be pulsed. The $\overline{E A} / V_{P P}$ is raised to $V_{P P}$, ALE/ $\overline{P R O G}$ is pulsed low and then $\overline{E A} / V_{P P}$ is returned to a high (also refer to timing diagrams).

DEFINITION OF TERMS

ADDRESS LINES: P1.0-P1.7, P2.0-P2.4, respectively for A0-A12.

DATA LINES: P0.0-P0.7 for D0-D7.
CONTROL SIGNALS: $\overline{\mathrm{RST}}, \overline{\mathrm{PSEN}}, \mathrm{P} 2.6, \mathrm{P} 2.7$, P3.3, P3.6, P3.7

PROGRAM SIGNALS: ALE/PROG, $\overline{E A} / V_{P P}$

NOTE:
Exceeding the VPP maximum for any amount of time could damage the device permanently. The VPP source must be well regulated and free of glitches.

*See Table 2 for proper input on these pins.

Figure 11. Programming the OTP
Table 2. OTP Programming Modes

Mode		$\overline{\mathrm{RST}}$	$\overline{\text { PSEN }}$	$\frac{\text { ALE/ }}{\text { PROG }}$	$\begin{aligned} & \overline{E A /} \\ & \mathbf{V}_{\mathbf{P P}} \end{aligned}$	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code Data		L	L	い	12.75V	L	H	H	H	H
Verify Code Data		L	L	H	H	L	L	L	H	H
Program Encryption Array Address 0-3FH		L	L	T	12.75V	L	H	H	L	H
Program Lock Bits	Bit 1	L	L	Ч	12.75 V	H	H	H	H	H
	Bit 2	L	L	Ч	12.75 V	H	H	H	L	L
	Bit 3	L	L	工	12.75 V	H	L	H	H	L
Read Signature Byte		L	H	H	H	L	L	L	L	L

PROGRAMMING ALGORITHM

Refer to Table 2 and Figures 11 and 12 for address, data, and control signals set up. To program the 87C51GB the following sequence must be exercised.

1. Input the valid address on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} / V_{P P}$ from $V_{C C}$ to $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
5. Pulse ALE/PROG 5 times for the OTP array, and 25 times for the encryption table and the lock bits.

Repeat 1 through 5 changing the address and data for the entire array or until the end of the object file is reached.

PROGRAM VERIFY

Program verify may be done after each byte that is programmed, or after a block of bytes that is programmed. In either case a complete verify of the array will ensure that it has been programmed correctly.

The lock bits cannot be directly verified. Verification of the lock bits is done by observing that their features are enabled. Refer to the Program Lock section in this data sheet.

Figure 12. Programming Signal's Waveforms

ROM and EPROM Lock System

The 87C51GB and the 83C51GB program lock systems, when programmed, protect the on-board program against software piracy.

The 83C51GB has a one-level program lock system and a 64 -byte encryption table. See line 2 of Table 3. If program protection is desired, the user submits the encryption table with their code, and both the lock bit and encryption array are programmed by the factory. The encryption array is not available without the lock bit. For the lock bit to be programmed, the user must submit an encryption table.

The 87C51GB has a 3 -level program lock system and a 64-byte encryption array. Since this is an EPROM device, all locations are user programmable. See Table 3.

Encryption Array

Within the programmable array are 64 bytes of Encryption Array that are initially unprogrammed (all 1 's). Every time that a byte is addressed during a verify, 5 address lines are used to select a byte of the Encryption Array. This byte is then exclusiveNOR'ed (XNOR) with the code byte, creating an Encryption Verify byte. The algorithm, with the array in the unprogrammed state (all 1 's), will return the code in its original, unmodified form. For programming the Encryption Array, refer to Table 2.

When using the encryption array feature, one important factor needs to be considered. If a code byte has the value OFFH, verification of the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the contents of the encryption array. For this reason it is strongly recommended that all unused code bytes be programmed with some value other than OFFH, and not all of them the same value. This practice will ensure the maximum possible program protection.

Program Lock Bits

The 87C51GB has 3 programmable lock bits that when programmed according to Table 3 will provide different levels of protection for the on-chip code and data. The 83C51GB has 1 program lock bit. See line 2 of Table 3.

Reading the Signature Bytes

The 8XC51GB has 3 signature bytes in locations $30 \mathrm{H}, 31 \mathrm{H}$, and 60 H . To read these bytes follow the procedure for verify, but activate the control lines provided in Table 2 for Read Signature Byte.

Location	Contents	
	87C51GB	83C51GB
30 H	89 H	89 H
31 H	58 H	58 H
60 H	EBH	$\mathrm{EBH} / 6 \mathrm{BH}$

Table 3. Program Lock Bits and the Features

*Program Lock Bits				Protection Type
	LB1	LB2	LB3	
1	U	U	U	No Program Lock features enabled. (Code verify will still be encrypted by the Encryption Array if programmed).
2	P	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.
3	P	P	U	Same as 2, also verify is disabled.
4	P	P	P	Same as 3, also external execution is disabled.

[^11]OTP PROGRAMMING AND VERIFICATION CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Units
$V_{\text {PP }}$	Programming Supply Voltage	12.5	13.0	V
IPP	Programming Supply Current		75	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold after $\overline{\text { PROG }}$	48TCLCL		
TDVGL	Data Setup to PROG Low	48TCLCL		
TGHDX	Data Hold after $\overline{\text { PROG }}$	48TCLCL		
TEHSH	(Enable) High to VPP	48TCLCL		
TSHGL	$V_{\text {PP }}$ Setup to PROG Low	10		$\mu \mathrm{s}$
TGHSL	$V_{\text {PP }}$ Hold after $\overline{\text { PROG }}$	10		$\mu \mathrm{s}$
TGLGH	$\overline{\text { PROG Width }}$	90	110	$\mu \mathrm{s}$
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	$\overline{\text { PROG High to PROG Low }}$	10		μs

PROGRAMMING AND VERIFICATION WAVEFORMS

A/D Glossary of Terms

Absolute Error-The maximum difference between corresponding actual and ideal code transitions. Absolute Error accounts for all deviations of an actual converter from an ideal converter.

Actual Characteristic-The characteristic of an actual converter. The characteristic of a given converter may vary over temperature, supply voltage, and frequency conditions. An actual characteristic rarely has ideal first and last transition locations or ideal code widths. It may even vary over multiple conversions under the same conditions.

Break-Before-Make-The property of a multiplexer which guarantees that a previously selected channel will be deselected before a new channel is selected (e.g., the converter will not short inputs together).

Channel-to-Channel Matching-The difference between corresponding code transitions of actual characteristics taken from different channels under the same temperature, voltage and frequency conditions.

Characteristic-A graph of input voltage versus the resultant output code for an A/D converter. It describes the transfer function of the A/D converter.

Code-The digital value output by the converter.
Code Center-The voltage corresponding to the midpoint between two adjacent code transitions.

Code Transition-The point at which the converter changes from an output code of Q, to a code of $Q+$ 1. The input voltage corresponding to a code transition is defined to be that voltage which is equally likely to produce either of two adjacent codes.

Code Width-The voltage corresponding to the difference between two adjacent code transitions.

Crosstalk—See "Off-Isolation".
DC Input Leakage-Leakage current to ground from an analog input pin.

Differential Non-Linearity-The difference between the ideal and actual code widths of the terminal based characteristic.

Feedthrough-Attenuation of a voltage applied on the selected channel of the A/D Converter after the sample window closes.

Full Scale Error-The difference between the expected and actual input voltage corresponding to the full scale code transition.

Ideal Characteristic-A characteristic with its first code transition at $\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{LSB}$, its last code transition at $\mathrm{V}_{\mathrm{IN}}=\left(\mathrm{V}_{\mathrm{REF}}-1.5\right.$ LSB $)$ and all code widths equal to one LSB.

Input Resistance-The effective series resistance from the analog input pin to the sample capacitor.

LSB-Least Significant Bit-The voltage corresponding to the full scale voltage divided by 2 , where n is the number of bits of resolution of the converter. For an 8 -bit converter with a reference voltage of 5.12 V , one LSB is 20 mV . Note that this is different than digital LSBs since an uncertainty of two LSBs, when referring to an A/D converter, equals 40 mV . (This has been confused with an uncertainty of two digital bits, which would mean four counts, or 80 mV).

Monotonic-The property of successive approximation converters which guarantees that increasing input voltages produce adjacent codes of increasing value, and that decreasing input voltages produce adjacent codes of decreasing value.

No Missed Codes-For each and every output code, there exists a unique input voltage range which produces that code only.

Non-Linearity-The maximum deviation of code transitions of the terminal based characteristic from the corresponding code transitions of the ideal characteristic.

Off-Isolation-Attenuation of a voltage applied on a deselected channel of the A/D converter. (Also referred to as Crosstalk.)

Repeatability-The difference between corresponding code transitions from different actual characteristics taken from the same converter on the same channel at the same temperature, voltage and frequency conditions.

Resolution-The number of input voltage levels that the converter can unambiguously distinguish between. Also defines the number of useful bits of information which the converter can return.

Sample Delay-The delay from receiving the start conversion signal to when the sample window opens.

Sample Delay Uncertainty-The variation in the sample delay.

Sample Time-The time that the sample window is open.

Sample Time Uncertainty-The variation in the sample time.

Sample Window-Begins when the sample capacitor is attached to a selected channel and ends when the sample capacitor is disconnected from the selected channel.

Successive Approximation-An A/D conversion method which uses a binary search to arrive at the best digital representation of an analog input.

Temperature Coefficients-Change in the stated variable per degree centrigrade temperature change. Temperature coefficients are added to the typical values of a specification to see the effect of temperature drift.

Terminal Based Characteristic-An actual characteristic which has been rotated and translated to remove zero offset and full scale error.
$V_{C c}$ Rejection-Attenuation of noise on the $V_{C C}$ line to the A / D converter.

Zero Offset-The difference between the expected and actual input voltage corresponding to the first code transition.

DATA SHEET REVISION SUMMARY

The following differences exist between this data sheet and the previous version (270869-002):

1. Changed data sheet status from "Advance Information" to "Preliminary" and updated associated notices.
2. Added 83C51GB throughout.
3. Added Package and Process Information.
4. Clarified ± 2 LSB accuracy for channels 0 and 1 in A/D Converter Section.
5. Added "ROM and EPROM Lock System" section and added 83C51GB to "Program Lock Bits" section.
6. Modified Signature Bytes Table.

The following differences exist between the 270869002 data sheet and the previous version (270869001):

1. Changed data sheet status from "Product Preview" to "Advance Information" and updated associated notices.
2. Asynchronous port reset was added to $\overline{\text { RESET }}$ pin description.
3. ALE disable paragraph was added to ALE pin description.
4. $\mathrm{C}_{1}, \mathrm{C}_{2}$ guidelines clarified in Figure 4.
5. Operating Conditions heading was added.
6. Maximum loL per I/O pin was added to Absolute Maximum Ratings.
7. $V T_{+}, V T_{-}, V_{H Y S}, V_{O L 2}$, and $V_{T L}$ removed.
8. $V_{O L}$ value for $A L E$ included with $V_{O L 1}$.
9. $\mathrm{V}_{\mathrm{IL} 1}$ and $\mathrm{V}_{\mathrm{IL} 2}$ added.
10. RRST minimum changed from 40 K to 50 K . RRST maximum changed from 225 K to 300 K .
11. IPD maximum changed from $200 \mu \mathrm{~A}$ to $50 \mu \mathrm{~A}$.
12. I_{DL} maximum changed from 15 mA to 18 mA .
13. Typical values for $I_{P D} I_{D L}, I_{C C}$, and $I_{\text {REF }}$ removed.
14. Note 3 (page 9) was reworded.
15. SEP AC Timings added.
16. A / D Absolute Error for Channels 0 and 1 changed to ± 2 LSB.
17. $T_{C Y}$ clarified.
18. Encryption array paragraph was added.
19. Corrected pin numbers on Figure 11 to reflect PLCC package.

87C51GB/80C51GB CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLER

Express

87C51GB-8K Bytes OTP/Factory Programmable ROM
80C51GB-CPU with RAM and I/O
3.5 MHz—16 MHz $\pm 20 \% V_{c C}$
- Extended Temperature Range
$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- 8K Bytes On-Chip ROM/OTP ROM
- 256 Bytes of On-Chip Data RAM
- Two Programmable Counter Arrays with:
- 2×5 High Speed Input/Output
Channels Compare/Capture
- Pulse Width Modulators
- Watchdog Timer Capabilities
Three 16-Bit Timer/Counters with
- Four Programmable Modes:
- Capture, Baud Rate Generation (Timer 2)
- Dedicated Watchdog Timer
- 8-Bit, 8-Channel A/D with:
- Eight 8-Bit Result Registers
- Four Programmable Modes
- Programmable Serial Channel with:
- Framing Error Detection
- Automatic Address Recognition
- Serial Expansion Port
- Programmable Clock Out
48 Programmable I/O Lines with: - 40 Schmitt Trigger Inputs
- 15 Interrupt Sources with:
- 7 External, 8 Internal Sources
- 4 Programmable Priority Levels
Pre-Determined Port States
■ High Performance CHMOS Process
- TTL and CHMOS Compatible Logic Levels
- Power Saving Modes
- 64K External Data Memory Space
■ 64K External Program Memory Space
- Three Level Program Lock System
ONCETM (ON-Circuit Emulation) Mode
Quick Pulse ProgrammingTM Algorithm
- MCS®-51 Fully Compatible Instruction Set
- Boolean Processor
■ Oscillator Fall Detect
- Available in 68-Pin PLCC

The Intel EXPRESS system offers enhancements to the operation specifications of the MCS-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

[^12]
83C152 Hardware Description and Data Sheet

83C152 Hardware Description

83C152 HARDWARE DESCRIPTION

CONTENTS PAGE
1.0 INTRODUCTION 10-3
2.0 COMPARISON OF 80C152 AND 80C51BH FEATURES 10-3
2.1 Memory Space 10-3
2.2 Interrupt Structure 10-11
2.3 Reset 10-12
2.4 Ports 4, 5 and 6 10-13
2.5 Timers/Counters 10-13
2.6 Package 10-13
2.7 Pin Description 10-14
2.8 Power Down and Idle 10-17
2.9 Local Serial Channel 10-17
3.0 GLOBAL SERIAL CHANNEL 10-17
3.1 Introduction 10-17
3.2 CSMA/CD Operation 10-20
3.3 SDLC Operation 10-27
3.4 User Defined Protocols 10-34
3.5 Using the GSC 10-34
3.6 GCS Operation 10-42
3.7 Register Descriptions 10-44
3.8 Serial Backplane vs Network Environment 10-47
4.0 DMA OPERATION 10-47
4.1 DMA with the 80C152 10-47
4.2 Timing Diagrams 10-50
4.3 Hold/Hold Acknowledge 10-50
4.4 DMA Arbitration 10-55
4.5 Summary of DMA Control Bits 10-59
5.0 INTERRUPT STRUCTURE 10-60
5.1 GSC Transmitter Error Conditions 10-62
5.2 GSC Receiver Error Conditions 10-63
6.0 GLOSSARY 10-64

83C152 HARDWARE DESCRIPTION

1.0 INTRODUCTION

The 83 C 152 Universal Communications Controller is an 8 -bit microcontroller designed for the intelligent management of peripheral systems or components. The 83 C 152 is a derivative of the 80 C 51 BH and retains the same functionality. The 83 C 152 is fabricated on the same CHMOS III process as the 80 C 51 BH . What makes the 83 C 152 different is that it has added functions and peripherals to the basic 80 C 51 BH architecture that are supported by new Special Function Registers (SFRs). These enhancements include: a high speed multi-protocol serial communication interface, two channels for DMA transfers, HOLD/HLDA bus control, a fifth I/O port, expanded data memory, and expanded program memory.

In addition to a standard UART, referred to here as Local Serial Channel (LSC), the 83C152 has an onboard multi-protocol communication controller called the Global Serial Channel (GSC). The GSC interface supports SDLC, CSMA/CD, user definable protocols, and a subset of HDLC protocols. The GSC capabilities include: address recognition, collision resolution, CRC generation, flag generation, automatic retransmission, and a hardware based acknowledge feature. This high speed serial channel is capable of implementing the Data Link Layer and the Physical Link Layer as shown in the OSI open systems communication model. This model can be found in the document "Reference Model for Open Systems Interconnection Architecture", ISO/TC97/SC16 N309.

The DMA circuitry consists of two 8-bit DMA channels with 16 -bit addressability. The control signals; $\overline{\text { Read }} \overline{\text { (RD) }}$, $\overline{\text { Write }}$ (WR), hold and hold acknowledge (HOLD/HLDA) are used to access external memory. The DMA channels are capable of addressing up to 64 K bytes (16 bits). The destination or source address can be automatically incremented. The lower 8 bits of the address are multiplexed on the data bus Port 0 and the upper eight bits of address will be on Port 2. Data is transmitted over an 8-bit address/data bus. Up to 64 K bytes of data may be transmitted for each DMA activation.

The new I/O port (P 4) functions the same as Ports 1-3, found on the 80 C 51 BH .

Internal memory has been doubled in the 83C152. Data memory has been expanded to 256 bytes, and internal program memory has been expanded to 8 K bytes.

There are also some specific differences between the 83 C 152 and the 80 C 51 BH . The first is that the numbering system between the 83 C 152 and the 80 C 51 BH is slightly different. The 83 C 152 and the 80 C 51 BH are factory masked ROM devices. The 80 C 152 and the 80C31BH are ROMless devices which require the
use of external program memory. The second difference is that RESET is active low in the 83 C 152 and active high in the 80 C 51 BH . This is very important to designers who may currently be using the 80 C 51 BH and plan-1 ning to use the 83 C 152 , or are planning on using both devices on the same board. The third difference is that GF0 and GF1, general purpose flags in PCON, have been renamed GFIEN and XRCLK. GFIEN enables idle flags to be generated in SDLC mode, and XRCLK enables the receiver to be externally clocked. All of the previously unused bits are now being used and interrupt vectors have been added to support the new enhancements. Programmers using old code generated for the 80 C 51 BH will have to examine their programs to ensure that new bits are properly loaded, and that the new interrupt vectors will not interfere with their program.

Throughout the rest of this manual the 80 C 152 and the 83 C 152 will be referred to generically as the "C152".

The C152 is based on the 80 C 51 BH architecture and utilizes the same 80 C 51 BH instruction set. Figure 1.1 is a block diagram of the C152. Readers are urged to compare this block diagram with the 80C51BH block diagram. There have been no new instructions added. All the new features and peripherals are supported by an extension of the Special Function Registers (SFRs). Very little of the information pertaining specifically to the 80 C 51 BH core will be discussed in this chapter. The detailed information on such functions as: the instruction set, port operation, timer/counters, etc., can be found in the MCS ${ }^{\oplus}$ - 51 Architecture chapter in the Intel Embedded Controller Handbook. Knowledge of the 80 C 51 BH is required to fully understand this manual and the operation of the C152. To gain a basic understanding on the operation of the 80 C 51 BH , the reader should familiarize himself with the entire MCS51 chapter of the Embedded Controller Handbook.

Another source of information that the reader may find helpful is Intel's LAN Components User's Manual, order number 230814. Inside are descriptions of various protocols, application examples, and application notes dealing with different serial communication environments.

2.0 COMPARISON OF $80 C 152$ AND 80C51BH FEATURES

2.1 Memory Space

A good understanding of the memory space and how it is used in the operation of MCS-51 products is essential. All the enhancements on the C152 are implemented by accessing Special Function Registers (SFRs), added data memory, or added program memory.

2.1.1 SPECIAL FUNCTION REGISTERS (SFRs)

The following list contains all the SFRs, their names and function. All of the SFRs of the 80C51BH are retained and for a detailed explanation of their operation, please refer to the chapter, "Hardware Description of the 8051 and 8052" that is found in the Embedded Controller Handbook. An overview of the new SFRs is found in Section 2.1.1.1, with a detailed explanation in Section 3.7, Section 4.5, and 6.0.

2.1.1.1 New SFRs

The following descriptions are quick overviews of the new SFRs, and not intended to give a complete understanding of their use. The reader should refer to the detailed explanation in Section 3 for the GSC SFRs, and Section 4 for the DMA SFRs.

ADR $0,1,2,3-(95 H, 0 A 5 H, 0 B 5 H, 0 C 5 H)$ Contains the four bytes for address matching during GSC operation.

AMSK0 - (OD5H) Selects "don't care" bits to be used with ADRO.

AMSK1 - (0E5H) Selects "don't care" bits to be used with ADR1.

BAUD - $(94 \mathrm{H})$ Contains the programmable value for the baud rate generator for the GSC. The baud rate will equal (fosc) $/(($ BAUD +1$) \times 8)$.

BCRLO - $(0 \mathrm{E} 2 \mathrm{H})$ Contains the low byte of a countdown counter that determines when the DMA access for Channel 0 is complete.

BCRHO - (0 E 3 H) Contains the high byte for countdown counter for Channel 0 .

BCRL1 - (0 F2H) Same as BCRLO except for DMA Channel 1.

BCRH1 - (0 F 3 H) Same as BCRH0 except for DMA Channel 1.

BKOFF - $(0 \mathrm{C} 4 \mathrm{H})$ An 8 -bit count-down timer used with the CSMA/CD resolution algorithm.

DARLO - $(0 \mathbf{C} 2 \mathrm{H})$ Contains the low byte of the destination address for DMA Channel 0.

DARH0 - $(0 \mathrm{C} 3 \mathrm{H})$ Contains the high byte of the destination address for DMA Channel 0.

DARL1 - (0D2H) Same as DARL0 except for DMA Channel 1.

DARH1 - (0D3H) Same as DARH0 except for DMA Channel 1.

DCONO - (92H) Contains the Destination Address Space bit (DAS), Increment Destination Address bit
(IDA), Source Address Space bit (SAS), Increment Source Address bit (ISA), DMA Channel Mode bit (DM), Transfer Mode bit (TM), DMA Done bit (DONE), and the GO bit (GO). DCONO is used to control DMA Channel 0.

DCON1 - (93H) Same as DCON0 except this is for DMA Channel 1.

GMOD - (84 H) Contains the Protocol bit (PR), the Preamble Length (PL1,0), CRC Type (CT), Address Length (AL), Mode select (M1,0), and External Transmit Clock (TXC). This register is used for GSC operation only.
IEN1 - (0 C 8 H) Interrupt enable register for DMA and GSC interrupts.

IFS - (0A4H) Determines the number of bit times separating transmitted frames.

IPN1 - (0 F 8 H) Interrupt priority register for DMA and GSC interrupts.

MYSLOT - (0 F 5 H) Contains the Jamming mode bit (DCJ), the Deterministic Collision Resolution Algorithm bit (DCR), and the DCR slot address for the GSC.

P4- $(0 \mathrm{COH})$ Contains the memory "image" of Port 4.
PRBS - (0 E 4 H) Contains a pseudo-random number to be used in CSMA/CD backoff algorithms. May be read or written to by user software.

RFIFO - (F4H) RFIFO is used to access a 3-byte FIFO that contains the receive data from the GSC.

RSTAT - (0 E 8 H) Contains the Hardware Based Acknowledge Enable bit (HABEN), Global Receive Enable bit (GREN), Receive FIFO Not Empty bit (RFNE), Receive Done bit (RDN), CRC Error bit (CRCE), Alignment Error bit (AE), Receiver Collision/Abort detect bit (RCABT), and the Overrun bit (OVR), used with both DMA and GSC.

SARLO - (0A2H) Contains the low byte of the source address for DMA transfers.

SARHO - (0A3H) Contains the high byte of the source address for DMA transfers.

SARL1 - (0B2H) Same as SARL0 but for DMA Channel 1.

SARH1 - (0B3H) Same as SARH1 but for DMA Channel 1.

SLOTTM - (0B4H) Determines the length of the slot time in CSMA/CD.

TCDCNT - (0 D 4 H) Contains the number of collisions in the current frame if using CSMA/CD GSC.

Old(0)/New(N)	Name	Addr	Function
0	A	OEOH	ACCUMULATOR
N	ADRO	095H	GSC MATCH ADDRESS 0
N	ADR1	OA5H	GSC MATCH ADDRESS 1
N	ADR2	OB5H	GSC MATCH ADDRESS 2
N	ADR3	${ }^{0} \mathrm{CO} 5 \mathrm{H}$	GSC MATCH ADDRESS 3
N	AMSKO	OD5 ${ }^{\text {H }}$	GSC ADDRESS MASK 0
N	AMSK1	0E5H	GSC ADDRESS MASK 1
0	B	OFOH	B REGISTER
N	BAUD	094H	GSC BAUD RATE
N	BCRLO	OE2H	DMA BYTE COUNT 0 (LOW)
N	BCRHO	OE3H	DMA BYTE COUNT 0 (HIGH)
N	BCRL1	OF2H	DMA BYTE COUNT 1 (LOW)
N	BCRH1	OF3H	DMA BYTE COUNT 1 (HIGH)
N	BKOFF	0 C 4 H	GSC BACKOFF TIMER
N	DARLO	0 C 2 H	DMA DESTINATION ADDR 0 (LOW)
N	DARHO	0C3H	DMA DESTINATION ADDR 0 (HIGH)
N	DARL1	0D2H	DMA DESTINATION ADDR 1 (LOW)
N	DARH1	OD3H	DMA DESTINATION ADDR 1 (HIGH)
N	DCONO	092H	DMA CONTROL 0
N	DCON1	093H	DMA CONTROL 1
0	DPH	083H	DATA POINTER (HIGH)
\bigcirc	DPL	082H	DATA POINTER (LOW)
N	GMOD	084H	GSC MODE
\bigcirc	IE	0A8H	INTERRUPT ENABLE REGISTER 0
N	IEN1	0 CBH	INTERRUPT ENABLE REGISTER 1
N	IFS	0A4H	GSC INTERFRAME SPACING
O	IP	OB8H	INTERRUPT PRIORITY REGISTER 0
N	IPN1	0 F 8 H	INTERRUPT PRIORITY REGISTER 1
N	MYSLOT	0 F 5 H	GSC SLOT ADDRESS
O	PO	080H	PORT 0
0	P1	090H	PORT 1
0	P2	OAOH	PORT 2
0	P3	OBOH	PORT 3
N	P4	OCOH^{-}	PORT 4
N	P5	091H	PORT 5
N	P6	0A1H	PORT 6
O	PCON	087H	POWER CONTROL
N	PRBS	0E4H	GSC PSEUDO-RANDOM SEQUENCE
O	PSW	ODOH	PROGRAM STATUS WORD
N	RFIFO	0 F 4 H	GSC RECEIVE BUFFER
N	RSTAT	OE8H	RECEIVE STATUS (DMA \& GSC)
N	SARLO	OA2H	DMA SOURCE ADDR 0 (LOW)
N	SARHO	OA3H	DMA SOURCE ADDR 0 (HIGH)
N	SARL1	OB2H	DMA SOURCE ADDR 1 (LOW)
N	SARH1	OB3H	DMA SOURCE ADDR 1 (HIGH)
0	SBUF	099H	LOCAL SERIAL CHANNEL (LSC) BUFFER
O	SCON	098H	LOCAL SERIAL CHANNEL (LSC) CONTROL
N	SLOTTM	0B4H	GSC SLOT TIME
\bigcirc	SP	081H	STACK POINTER
N	TCDCNT	0D4H	GSC TRANSMIT COLLISION COUNTER
O	TCON	088H	TIMER CONTROL
N	TFIFO	085H	GSC TRANSMIT BUFFER
O	THO	08CH	TIMER 0 (HIGH)
0	TH1	08DH	TIMER 1 (HIGH)
0	TLO	08AH	TIMER 0 (LOW)
0	TL1	08BH	TIMER 1 (LOW)
0	TMOD	089H	TIMER MODE
N	TSTAT	0D8H	TRANSMIT STATUS (DMA \& GSC)

TFIFO - (85H) TFIFO is used to access a 3-byte FIFO that contains the transmission data for the GSC.

TSTAT - (0D8H) Contains the DMA Service bit (DMA), Transmit Enable bit (TEN), Transmit FIFO Not Full bit (TFNF), Transmit Done bit (TDN), Transmit Collision Detect bit (TCDT), Underrun bit (UR), No Acknowledge bit (NOACK), and the Receive Data Line Idle bit (LNI). This register is used with both DMA and GSC.

The general purpose flag bits (GF0 and GF1) that exist on the 80 C 51 BH are no longer available on the C152. GFO has been renamed GFIEN (GSC Flag Idle Enable) and is used to enable idle fill flags. Also GF1 has been renamed XRCLK (External Receive Clock Enable) and is used to enable the receiver to be clocked externally.

2.1.2 DATA MEMORY

Internal data memory consists of 256 bytes as shown in Figure 2.1. The first 128 bytes are addressed exactly like an 80 C 51 BH , using direct addressing.

The addresses of the second 128 bytes of data memory happen to overlap the SFR addresses. The SFRs and their memory locations are shown in Figure 2.2. This means that internal data memory spaces have the same address as the SFR address. However, each type of memory is addressed differently. To access data memory above 80 H , indirect addressing or the DMA channels must be used. To access the SFRs, direct addressing is used. When direct addressing is used, the address is the source or destination, e.g. MOV A, 10H, moves the contents of location 10 H into the accumulator. When indirect addressing is used, the address of the destination or source exists within another register, e.g. MOV A, @R0. This instruction moves the contents of the memory location addressed by R0 into the accumulator. Directly addressing the locations 80 H to 0 FFH will access the SFRs. Another form of indirect addressing is with the use of Stack Pointer Operations. If the Stack Pointer contains an address and a PUSH or POP instruction is executed, indirect addressing is actually used. Directly accessing an unused SFR address will give undefined results.

Physically, there are separate SFR memory and data memory spaces allocated on the chip. Since there are separate spaces, the SFRs do not diminish the available data memory space.

*NOTE:

User data memory above 80 H must be addressed indirectly. Using direct addressing above 80 H accesses the Special Function Registers.

External data memory is accessed like an 80 C 51 BH , with "MOVX" instructions. Addresses up to 64 K may be accessed when using the Data Pointer (DPTR). When accessing external data memory with the DPTR, the address appears on Port 0 and 2. When using the DPTR, if less than 64 K of external data memory is used, the address is emitted on all sixteen pins. This means that when using the DPTR, the pins of Port 2 not used for addresses cannot be used for general purpose I/O. An alternative to using 16-bit addresses with the DPTR is to use R0 or R1 to address the external data memory. When using the registers to address external data memory, the address range is limited to 256 bytes. However, software manipulation of I/O Port 2 pins as normal I/O, allows this 256 bytes restriction to be expanded via bank switching. When using R0 or R1 as data pointers, Port 2 pins that are not used for addressing, can be used as general purpose I/O.

2.1.2.1 Bit Addressable Memory

The C152 has several memory spaces in which the bits are directly addressed by their location. The directly addressable bits and their symbolic names are shown in Figure 2.3A, 2.3B, and 2.3C.

Bit addresses 0 to 7 FH reside in on-board user data RAM in byte addresses 20 H to 2 FH (see Figure 2.3A).

Bit addresses 80 H to 0 FFH reside in the SFR memory space, but not every SFR is bit addressable, see Figure 2.3B. The addressable bits are scattered throughout the SFRs. The addressable bits occur every eighth SFR address starting at 80 H and occupy the entire byte. Most of the bits that are addressable in the SFRs have been given symbolic names. These names will often be referred to in this or other documentation on the C152. Most assemblers also allow the use of the symbolic names when writing in assembly language. These names are shown in Figure 2.3C.

Figure 2.2. Special Function Registers

Data Memory Map (bits):

Byte Address	(MSB)			BIT ADDRESSES			(LSB)	
020 H	07	06	05	04	03	02	01	00
021H	OF	OE	OD	OC	OB	OA	09	08
022H	17	16	15	14	13	12	11	10
023H	1F	1E	1D	1 C	1B	1A	19	18
024H	27	26	25	24	23	22	21	20
025H	2 F	2 E	2D	2 C	2B	2A	29	28
026H	37	36	35	34	33	32	31	30
027H	3F	3 E	3D	3 C	3B	3A	39	38
028H	47	46	45	44	43	42	41	40
029H	4F	4 E	4D	4C	4B	4A	49	48
O2AH	57	56	55	54	53	52	51	50
02BH	5F	5E	5D	5C	5B	5A	59	58
02CH	67	66	65	64	63	62	61	60
02DH	6F	6E	6D	6C	6B	6A	69	68
02EH	77	76	75	74	73	72	71	70
02FH	7F	7E	7D	7C	7B	7A	79	78

Figure 2.3A. Bit Addresses

Byte Address	(MSB)			BIT ADDRESSES			(LSB)		
080H	87	86	85	84	83	82	81	80	(PO)
088H	8F	8E	8D	8C	8B	8A	89	88	(TCON)
O90H	97	96	95	94	93	92	91	90	(P1)
098H	9F	9E	9D	9 C	9B	9A	99	98	(SCON)
OAOH	A7	A6	A5	A4	A3	A2	A1	AO	(P2)
OA8H	AF	-	-	AC	AB	AA	A9	A8	(IE)
OBOH	B7	B6	B5	B4	B3	B2	B1	B0	(P3)
OB8H	-	-	-	BC	BB	BA	B9	B8	(IP)
OCOH	C7	C6	C5	C4	C3	C2	C1	C0	(P4)
$0 \mathrm{C8H}$	-	-	CD	CC	CB	CA	C9	C8	(IEN1)
ODOH	D7	D6	D5	D4	D3	D2	D1	D0	(PSW)
OD8H	DF	DE	DD	DC	DB	DA	D9	D8	(TSTAT)
OEOH	E7	E6	E5	E4	E3	E2	E1	E0	(A)
0E8H	EF	EE	ED	EC	EB	EA	E9	E8	(RSTAT)
OFOH	F7	F6	F5	F4	F3	F2	F1	F0	(B)
0F8H	-	-	FD	FC	FB	FA	F9	F8	(IPN1)

Figure 2.3B. Bit Addresses

Byte	SYMBOLIC NAME BIT MAP								
080H	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	$\begin{gathered} \text { (PO) } \\ (\mathrm{TCON}) \end{gathered}$
088H	TF1	TR1	TFO	TRO	IE1	IT1	IEO	ITO	
090H	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	(P1)
098H	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	(SCON)
OAOH	P2.7	P2.6	P2.5	P2.4	P2.3	P2. 2	P2.1	P2.0	(P2)
OA8H	EA	-	-	ES	ET1	EX1	ETO	EXO	(IE)
OBOH	P3.7	P3. 6	P3. 5	P3.4	P3.3	P3. 2	P3. 1	P3.0	(P3)
OB8H	-	-	-	PS	PT1	PX1	PTO	PX0	(IP)
OCOH	P4.7	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0	(P4)
OC8H	-	-	EGSTE	EDMA1	EGSTV	EDMAO	EGSRE	EGSRV	(IEN1)
ODOH	CY	AC	F0	RS1	RSO	OV	-	P	(PSW)
OD8H	LNI	NOACK	UR	TCDT	TDN	TFNF	TEN	DMA	(TSTAT)
OEOH									(A)
0E8H	OVR	RCABT	AE	CRCE	RDN	RFNE	GREN	HABEN	(RSTAT)
OFOH									(B)
OF8H	-	-	PGSTE	PDMA1	PGSTV	PDMAO	PGSRE	PGSRV	(IPN1)

Figure 2.3C. Bit Addresses

2.1.3 PROGRAM MEMORY

The 83 C 152 contains 8 K of ROM program memory, and the 80 C 152 uses only external program memory. Figure 2.4 shows the program memory locations and where they reside. The user is allowed a maximum of 64 K of program memory. In the 83 C 152 program memory fetches beyond 8 K automatically access external program memory. When program memory is externally addressed, all of the Port 2 pins emit the address. Since all of Port 2 is affected by the address, unused address pins cannot be used as normal I/O ports even if less than 64 K of memory is being accessed.

Figure 2.4. Program Memory

2.2 Interrupt Structure

The C152 retains all five interrupts of the 80 C 51 BH . In addition, six new interrupts have been added for a total of 11 available interrupts. Two SFRs have been added to the C152 for control of the new interrupts. These added SFRs are IEN1 (C 8 H) for enabling the
interrupts and IPN1 (F8H) for setting the priority. For an explanation on how the priority of interrupts affects their operation please refer to the MCS-51 Architecture and Hardware Chapters in the Intel Embedded Controller Handbook. A detailed description on how the interrupts function is in the $\mathrm{MCS}^{\text {® }}-51$ Architectural Overview.

IEN1 FUNCTIONS			
Symbol	Position	Vector	Function
-	IEN1.7		RESERVED and do not exist on chip.
-	IEN1.6		RESERVED and do not exist on chip.
EGSTE	IEN1.5	$04 B H$	GSC TRANSMIT ERROR-The interrupt service routine at 4BH is invoked if NOACK or TCDT is set when the GSC is under CPU control and EGSTE is enabled. This interrupt service routine is invoked if NOACK, TCDT, or UR is set when the GSC is under DMA control and EGSTE is enabled.
EDMA1	IEN1.4	053H	DMA CHANNEL REQUEST 1-The interrupt service routine at 53H is invoked when DCON1.1 (DONE) is set and EDMA1 is enabled.
EGSTV	IEN1.3	043H	GSC TRANSMIT VALID-The interrupt service routine at 43H is invoked if TFNF is set when the GSC is under CPU control and EGSTV is enabled. This interrupt service routine is invoked if TDN is set when the GSC is under DMA control and EGSTV is enabled.
EDMA0	IEN1.2	03BH	DMA CHANNEL REQUEST 0-The interrupt service routine at 3BH will be invoked when DCONO.1 (DONE) is set and EDMAO is enabled.
EGSRE	IEN1.1	033H	GSC RECEIVE ERROR-The interrupt service routine at 33H is invoked if CRCE, OVR, RCABT, or AE is set when the GSC is under CPU or DMA control and EGSRE is enabled.
EGSRV	IEN1.0	02BH	GSC RECEIVE VALID-The interrupt service routine at 2BH is invoked if RFNE is set when the GSC is under CPU control and EGSRV is enabled. This interrupt service routine is invoked if RDN is set when the GSC is under DMA control and EGSRV is enabled.

IPN1 is used the same way the current 80 C51BH interrupt priority register (IP) is. By assigning a " 1 " to the appropriate bit, that interrupt has a higher priority than an interrupt with a " 0 " assigned to it in the priority register.

The new interrupt priority register (IPN1) contents are:

Symbol	Position	Function
PGSTE	IPN1.5	GSC TRANSMIT ERROR
PDMA1	IPN1.4	DMA CHANNEL REQUEST 1
PGSTV	IPN1.3	GSC TRANSMIT VALID
PDMA0	IPN1.2	DMA CHANNEL REQUEST 0
PGSRE	IPN1.1	GSC RECEIVE ERROR
PGSRV	IPN1.0	GSC RECEIVE VALID

The eleven interrupts are sampled in the following order when assigned the same priority level in the IP and IPN1 registers:

Priority Sequence	Priority Symbolic Address	Priority Symbolic Name	Interrupt Symbolic Address	Interrupt Symbolic Name	Vector Address
1	IP.0	PX0	IE.0	EX0	$03 H$
2	IPN1.0	PGSRV	IEN1.0	EGSRV	$2 B H$
3	IP.1	PT0	IE.1	ET0	OBH
4	IPN1.1	PGSRE	IEN1.1	EGSRE	$33 H$
5	IPN1.2	PDMA0	IEN1.2	EDMA0	$3 B H$
6	IP.2	PX1	IE.2	EX1	$13 H$
7	IPN1.3	PGSTV	IEN1.3	EGSTV	$43 H$
8	IPN1.4	PDMA1	IEN1.4	EDMA1	$53 H$
9	IP.3	PT1	IE.3	ET1	$1 B H$
10	IPN1.5	PGSTE	IEN1.5	EGSTE	$4 B H$
11	IP.4	PS	IE.4	ES	$23 H$

(LAST)

2.3 Reset

RESET performs the same operations in both the 80 C 51 BH and the C 152 and those conditions that exist at the end of a valid RESET are:

Register	Contents	Register	Contents
ACC	OOH	P0-P6	OFFH
ADRO-3	OOH	PCON	OXXX0000B
AMSKO	OOH	PRBS	OOH
AMSK1	OOH	PSW	OOH
B	00 H	RFIFO	INDETERMINATE
BAUD	OOH	RSTAT	00000000B
BCRHO	INDETERMINATE	SARHO	INDETERMINATE
BCRH1	INDETERMINATE	SARH1	INDETERMINATE
BCRLO	INDETERMINATE	SARLO	INDETERMINATE
CRL1	INDETERMINATE	SARL1	INDETERMINATE
BKOFF	INDETERMINATE	SBUF	INDETERMINATE
DARHO	INDETERMINATE	SCON	OOH
DARH1	INDETERMINATE	SLOTTM	OOH
DARLO	INDETERMINATE	SP	07H
DARL1	INDETERMINATE	TCDCNT	INDETERMINATE
DCONO	OOH	TCON	OOH
DCON1	00H	TFIFO	INDETERMINATE
DPTR	0000H	TH0	OOH
GMOD	X0000000B	TH1	00H
IE	OXX00000B	TLO	OOH
IEN1	XX000000B	TL1	OOH
IFS	OOH	TMOD	OOH
IP	XXX00000B	TSTAT	XX000100B
IPN1 MYSLOT	XX000000B 00000000 B	PC	0000H

The same conditions apply for both the 80 C 51 BH and C152 for a correct reset pulse or "power-on" reset except that $\overline{\text { Reset }}$ is active low on the C152. Please refer to the 8051/52 Hardware Description Chapter of the Intel Embedded Controller Handbook for an explanation on how to provide a proper power-on reset. Since $\overline{\text { Reset }}$ is active low on the C152, the resistor should be tied to VCC and the capacitor should be tied to VSS.

Because the clocking on part of the GSC circuitry is independent of the processor clock, data may still be transmitted and DEN active for some time after reset is applied. The transmission may continue for a maximum of four machine cycles after reset is first pulled low. Although Reset has to be held low for only three machine cycles to be recognized by the GSC hardware, all of the GSC circuitry may not be reset until four machine cycles have passed. If it is important in the user application that all transmission and $\overline{\text { DEN }}$ becomes inactive at the end of a reset, then Reset will have to be held low for a minimum of four machine cycles.

2.4 Ports 4, 5 and 6

Ports 4,5 and 6 operation is identical to Ports $1-3$ on the 80 C 51 BH . The description of port operation can be found in the 8051/52 Hardware Description Chapter of the Intel Embedded Controller Handbook. Ports 5 and 6 exist only on the "JB" and "JD" version of the C152 and can either function as standard I/O ports or can be configured so that program memory fetches are performed with these two ports. To configure ports 5 and 6 as standard I/O ports, EBEN is tied to a logic low. When in this configuration, ports 5 and 6 operation is identical to that of port 4 except they are not bit addressable. To configure ports 5 and 6 to fetch program memory, EBEN is tied to a logic high. When using ports 5 and 6 to fetch the program memory, the signal EPSEN is used to enable the external memory device instead of PSEN. Regardless of which ports are used to fetch program memory, all data memory fetches occur over ports 0 and 2. The 80 C 152 JB and 80 C 152 JD are available as ROMless devices only. ALE is still used to latch the address in all configurations. Table 2.1 summarizes the control signals and how the ports may be used.
to the Intel Embedded Controller Handbook which describes the timer/counters and their use. The user should bear in mind, when reading the Intel Embedded Controller Handbook that the C152 does not have the third event timer named Timer 2, which is in the 8052.

2.6 Package

The 83 C 152 is packaged in a 48 pin DIP and a 68 lead PLCC. This differs from the 40 pin DIP and 44 pin PLCC of the 80 C 51 BH . The larger package is required to accommodate the extra 8 bit I/O port (P4). Figures $2.5 \mathrm{~A}, 2.5 \mathrm{~B}$ and 2.5 C show the packages and the pin names.

Figure 2.5A. DIP Pin Out

2.5 Timer/Counters

The 80 C 51 BH and C 152 have the same pair of 16 -bit general purpose timer/counters. The user should refer

Table 2.1 Program Memory Fetches

EBEN	$\overline{\text { EA }}$	Program Fetch via	$\overline{\text { PSEN }}$	$\overline{\text { EPSEN }}$	Comments
0	0	P0, P2	Active	Inactive	Addresses 0-0FFFFH
0	1	N/A	N/A	N/A	Invalid Combination
1	0	P5, P6	Inactive	Active	Addresses 0-0FFFFH
1	1	P5, P6 P0, P2	Inactive Active	Active Inactive	Addresses 0-1FFFH Addresses 2 2000H

Figure 2.5B. PLCC Pin Out

Figure 2.5C. PLCC Pin Out

2.7 Pin Description

The pin description for the 80 C51BH also applies to the C152 and is listed below. Changes have been made to the descriptions as they apply to the C152.

PIN DESCRIPTION

Pin \#		. Description
DIP	PLCC(1)	
48	2	VCC-Supply voltage.
24	3,33(2)	VSS-Circuit ground.
$\begin{aligned} & 18-21, \\ & 25-28 \end{aligned}$	$\begin{aligned} & 27-30, \\ & 34-37 \end{aligned}$	Port 0-Port 0 is an 8-bit open drain bi-directional I/O port. As an output port each pin can sink 8 LS TTL inputs. Port 0 pins that have is written to them float, and in that state can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program memory if EBEN is pulled low. During accesses to external Data Memory, Port 0 always emits the low-order address byte and serves as the multiplexed data bus. In these applications it uses strong internal pullups when emitting 1 s . Port 0 also outputs the code bytes during program verification. External pullups are required during program verification.

NOTES:

1. N.C. pins on PLCC package may be connected to internal die and should not be used in customer applications.
2. It is recommended that both Pin 3 and Pin 33 be grounded for PLCC devices.

PIN DESCRIPTION (Continued)

Pin \#		Description		
DIP	PLCC(1)			
1-8	4-11	Port 1—Port 1 is an 8-bit bidirectional I/O port with internal pullups. Port 1 pins that have is written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (ILL, on the data sheet) because of the internal pullups. Port 1 also serves the functions of various special features of the $8 \times C 152$, as listed below:		
		Pin	Name	Alternate Function
		P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6		GSC data input pin GSC data output pin GSC enable signal for an external driver GSC input pin for external transmit clock GSC input pin for external receive clock DMA hold input/output DMA hold acknowledge input/output
29-36	41-48	Port 2-Port 2 is an 8-bit bi-directional I/O port with internal pullups. Port 2 pins that have 1 s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (l/IL, on the data sheet) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external Program Memory if EBEN is pulled low. During accesses to external Data Memory that use 16-bit addresses (MOVX @ DPTR and DMA operations), Port 2 emits the high-order address byte. In these applications it uses strong internal pullups when emitting 1 s . During accesses to external Data Memory that use 8-bit addresses (MOVX @ Ri), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits during program verification.		
10-17	$\begin{aligned} & 14-16, \\ & 18,19, \\ & 23-25 \end{aligned}$	Port 3-Port 3 is an 8 -bit bi-directional I/O port with internal pullups. Port 3 pins that have 1 s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{L}, on the data sheet) because of the pullups. Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:		
		Pin	Name	Alternate Function
		P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7	RXD TXD INTO INT1 TO T1 $\overline{W R}$ RD	Serial input line Serial output line External interrupt 0 External interrupt 1 Timer 0 external input Timer 1 external input External Data Memory Write strobe External Data Memory Read strobe
47-40	65-58	Port 4-Port 4 is an 8-bit bi-directional I/O port with internal pullups. Port 4 pins that have 1 s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 4 pins that are externally being pulled low will source current (l/L, on the data sheet) because of the internal pullups. In addition, Port 4 also receives the low-order address bytes during program verification.		

NOTES:

1. N.C. pins on PLCC package may be connected to internal die and should not be used in customer applications.
2. It is recommended that both Pin 3 and Pin 33 be grounded for PLCC devices.

PIN DESCRIPTION (Continued)

Pin \#		\quad Description	

NOTES:

1. N.C. pins on PLCC package may be connected to internal die and should not be used in customer applications.
2. It is recommended that both Pin 3 and Pin 33 be grounded for PLCC devices.

2.8 Power Down and Idle

Both of these operations function identically as in the 80C51BH. Application Note 252, "Designing with the 80 C 51 BH " gives an excellent explanation on the use of the reduced power consumption modes. Some of the items not covered in AP-252 are the considerations that are applicable when using the GSC or DMA in conjunction with the power saving modes.

The GSC continues to operate in Idle as long as the interrupts are enabled. The interrupts need to be enabled, so that the CPU can service the FIFO's. In order to properly terminate a reception or transmission the C152 must not be in idle when the EOF is transmitted or received. After servicing the GSC, user software will need to again invoke the Idle command as the CPU does not automatically re-enter the Idle mode after servicing the interrupts.

The GSC does not operate while in Power Down so the steps required prior to entering Power Down become more complicated. The sequence when entering Power Down and the status of the I/O is of major importance in preventing damage to the C152 or other components in the system. Since the only way to exit Power Down is with a Reset, several problem areas become very significant. Some of the problems that merit careful consideration are cases where the Power Down occurs during the middle of a transmission, and the possibility that other stations are not or cannot enter this same mode. The state of the GSC I/O pins becomes critical and the GSC status will need to be saved before power down is entered. There will also need to be some method of identifying to the CPU that the following Reset is probably not a cold start and that other stations on the link may have already been initialized.

The DMA circuitry stops operation in both Idle and Power Down modes. Since operation is stopped in both modes, the process should be similar in each case. Specific steps that need to be taken include: notification to other devices that DMA operation is about to cease for a particular station or network, proper withdrawal from DMA operation, and saving the status of the DMA channels. Again, the status of the I/O pins during Power Down needs careful consideration to avoid damage to the C152 or other components.

Port 4 returns to its input state, which is high level using weak pullup devices.

2.9 Local Serial Channel

The Local Serial Channel (LSC) is the name given to the UART that exists on all MCS-51 devices. The LSC's function and operation is exactly the same as on the 80 C51BH. For a description on the use of the LSC, refer to the 8051/52 Hardware Description Chapter in the Intel Embedded Controller Handbook, under Serial Interface.

3.0 GLOBAL SERIAL CHANNEL

3.1 Introduction

The Global Serial Channel (GSC) is a multi-protocol, high performance serial interface targeted for data rates up to 2 MBPS with on-chip clock recovery, and 2.4 MBPS using the external clock options. In applications using the serial channel, the GSC implements the Data Link Layer and Physical Link Layer as described in the ISO reference model for open systems interconnection.

The GSC is designed to meet the requirements of a wide range of serial communications applications and is optimized to implement Carrier-Sense Multi-Access with Collision Detection (CSMA/CD) and Synchronous Data Link Control (SDLC) protocols. The GSC architecture is also designed to provide flexibility in defining non-standard protocols. This provides the ability to retrofit new products into older serial technologies, as well as the development of proprietary interconnect schemes for serial backplane environments.

The versatility of the GSC is demonstrated by the wide range of choices available to the user. The various modes of operation are summarized in Table 3.1. In subsequent sections, each available choice of operation will be explained in detail.

In using Table 3.1, the parameters listed vertically (on the left hand side) represent an option that is selected (X): The parameters listed horizontally (along the top of the table) are all the parameters that could theoretically be selected (Y). The symbol at the junction of both X and Y determines the applicability of the option Y.

Note, that not all combinations are backwards compatible. For example, Manchester encoding requires half duplex, but half duplex does not require Manchester encoding.

Table 3.1

$\begin{aligned} & \text { AVAILABLE } \\ & \text { OPTIONS } \rightarrow \end{aligned}$		$\begin{aligned} & \text { DAT/ } \\ & \text { COD } \end{aligned}$			GS		CRC					KN						CK			
$\begin{aligned} & \mathrm{N}=\text { NOT AVAILABLE } \\ & \mathrm{M}=\text { MANDATORY } \\ & \mathrm{O}=\text { OPTIONAL } \\ & \mathrm{P}=\text { NORMALLY PREFERRED } \\ & \mathrm{X}=\mathrm{N} / \mathrm{A} \\ & \\ & \\ & \\ & \text { SELECTED } \\ & \downarrow \text { FUNCTION } \end{aligned}$	M \mathbf{A} \mathbf{N} \mathbf{C} \mathbf{H} \mathbf{E} \mathbf{S} \mathbf{T} \mathbf{E} \mathbf{R}	$\begin{array}{\|l\|} \hline \mathbf{N} \\ \mathbf{R} \\ \mathbf{Z} \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{N} \\ \mathbf{R} \\ \mathbf{Z} \\ \mathbf{l} \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ 1 \\ D \\ L \\ E \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{N} \\ \mathbf{O} \\ \mathbf{N} \\ \mathbf{E} \end{array}$	1 6 B 1 T C C 1		$\begin{array}{\|l} \hline \mathbf{H} \\ \mathbf{A} \\ \mathbf{L} \\ \mathbf{F} \end{array}$	$\begin{aligned} & \mathbf{F} \\ & \mathbf{U} \\ & \mathbf{L} \\ & \mathbf{L} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathbf{N} \\ \mathbf{O} \\ \mathbf{N} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{H} \\ \text { A } \\ \text { R } \\ \mathbf{D} \\ \mathbf{W} \\ \mathbf{A} \\ \mathbf{R} \\ \hline \end{array}$	U S E R D E \mathbf{F} \mathbf{I} \mathbf{N} \mathbf{E} \mathbf{D}	$\begin{array}{\|c\|} \hline N \\ \mathbf{O} \\ \mathbf{N} \\ \mathbf{E} \\ \hline \\ \mathbf{A} \\ \mathbf{L} \\ \hline \end{array}$	$\begin{aligned} & \hline 8 \\ & \mathbf{B} \\ & 1 \\ & \mathbf{T} \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \\ & B \\ & 1 \\ & T \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{O} \\ & R \\ & \mathbf{M} \\ & \mathbf{A} \\ & \mathbf{L} \end{aligned}$			$\begin{aligned} & \hline \mathbf{N} \\ & \mathbf{O} \\ & \mathbf{N} \\ & \mathbf{E} \end{aligned}$	8 8 1
DATA ENCODING:																					
MANCHESTER(CSMA/CD)	X	N	N	1	P	1	0	0	M	N	0	0	0	0	0	0	0	0	0	N	0
NRZI (SDLC)	N	X	N	P	1	1	0	0	0	0	0	N	P	0	0	0	N	N	N	0	0
NRZ (EXT CLK)	N	N	X	0	0	1	0	0	0	0	0	N	0	0	0	0	0	0	0	0	0
FLAGS:01111110 (SDLC)	N	P	0	X	1	1	0	0	0	0	0	N	P	0	0	0	N	N	N	0	0
11/IDLE	P	N	0	1	X	1	0	0	0	N	0	0	0	0	0	0	0	0	0	1	0
CRC:NONE	1	1	1	1	1	X	N	N	1	N	1	1	1	1	1	1	N	N	N	1	1
16-BIT CCITT	0	0	0	0	0	N	X	N	0	0	0	0	0	0	0	0	0	0	0	0	0
32-BIT AUTODIN II	0	0	0	0	0	N	N	X	0	N	0	0	0	0	0	0	0	0	0	0	0
DUPLEX:HALF	0	0	0	0	0	1	0	0	X	N	0	0	0	0	0	0	0	0	0	0	0
FULL	N	0	0	M	N	N	M	N	N	X	0	N	P	0	0	0	N	N	N	0	0
ACKNOWLEDGEMENT:NONE	0	0	0	0	0	1	0	0	0	0	X	N	N	0	0	0	0	0	0	0	0
HARDWARE	0	N	N	N	0	1	0	0	0	N	N	X	N	0	0	0	N	0	0	N	0
USER DEFINED	0	P	0	0	0	1	0	0	0	P	N	N	X	0	0	0	0	0	0	0	0
ADDRESS RECOGNITION:																					
NONE/ALL	0	0	0	0	0	1	0	0	0	0	0	0	0	X	N	N	0	0	0	0	0
8 -BIT	0	0	0	0	0	1	0	0	0	0	0	0	0	N	X	N	0	0	0	0	0
16-BIT	0	0	0	0	0	1	0	0	0	0	0	0	0	N	N	X	0	0	0	0	0
COLLISION RESOLUTION:																					
NORMAL	0	N	0	N	0	N	0	0	M	N	0	N	0	0	0	0	X	N	N	N	0
ALTERNATE	0	N	0	N	0	N	0	0	M	N	0	0	0	0	0	0	N	X	N	N	0
DETERMINISTIC	0	N	0	N	0	N	0	0	M	N	0	0	0	0	0	0	N	N	X	N	0
PREAMBLE:NONE	N	0	0	0	1	1	0	0	0	0	0	N	0	0	0	0	N	N	N	X	N
8-BIT	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	N	X
32-BIT	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	N	N
64-BIT	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	N	N
JAM:D.C.	M	N	N	N	0	N	0	0	M	N	0	0	0	0	0	0	0	0	0	N	0
CRC	M	N	N	N	0	N	0	0	M	N	0	0	0	0	0	0	0	0	0	N	0
CLOCKING:EXTERNAL	N	M	N	0	0	N	0	0	0	0	0	N	0	0	0	0	N	N	N	0	0
INTERNAL	0	0	N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONTROL: CPU	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DMA	0	0	0	0	0	1	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0
RAW RECEIVE:	1	1	1	1	1	1	1	1	1	N	1	1	1	1	1	1	0	0	0	1	1
RAW TRANSMIT:	1	1	1	1	1	1	1	1	1	N	1	1	1	1	1	1	N	N	N	1	1
CSMA/CD:	0	N	N	1	P	1	0	0	M	N	0	0	0	0	0	0	0	0	0	N	0
SDLC:	N	0	0	P	1	1	0	0	0	0	0	N	0	0	0	0	N	N	N	P	0

Table 3.1 (Continued)

AVAILABLE \rightarrow OPTIONS N = NOT AVAILABLE M $=$ MANDATORY $\mathbf{O}=$ OPTIONAL $\mathbf{P}=$ NORMALLY PREFERRED $\mathbf{X}=$ N/A SELECTED \downarrow FUNCTION	$\begin{aligned} & \text { PRE- } \\ & \text { AMBLE } \end{aligned}$		JAM		CLOCK		CONTROL					
	$\begin{aligned} & 3 \\ & 2 \\ & B \\ & 1 \\ & \mathbf{T} \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & B \\ & 1 \\ & T \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{R} \\ & \mathrm{C} \\ & \mathrm{f} \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathbf{X} \\ & \mathbf{T} \\ & \mathrm{E} \\ & \mathbf{R} \\ & \mathbf{N} \\ & \mathbf{A} \\ & \mathbf{L} \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathbf{N} \\ & \mathbf{T} \\ & \mathbf{E} \\ & \mathbf{R} \\ & \mathbf{N} \\ & \mathbf{A} \\ & \mathbf{L} \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{P} \\ & \mathbf{U} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{M} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & \mathbf{R} \\ & \mathbf{A} \\ & \mathbf{W} \\ & \mathbf{R} \\ & \mathbf{E} \\ & \mathbf{C} \\ & \mathbf{E} \\ & \mathbf{I} \\ & \mathbf{V} \end{aligned}$	$\begin{aligned} & \text { R } \\ & \mathbf{A} \\ & \mathbf{W} \\ & \mathbf{T} \\ & R \\ & \mathbf{A} \\ & \mathbf{N} \\ & \mathbf{S} \\ & \mathbf{M} \\ & \mathbf{I} \\ & \hline \end{aligned}$	$\begin{gathered} C \\ C \\ \text { S } \\ \text { A } \\ \text { C } \\ \text { C } \end{gathered}$	S D L
DATA ENCODING:												
- MANCHESTER	0	0	0	0	N	M	0	0	0	0	M	N
NRZI	0	0	N	N	N	M	0	0	0	0	N	M
NRZ	0	0	0	0	M	N	0	0	0	0	0	0
$\begin{gathered} \text { FLAGS:01111110 } \\ \text { 11/IDLE } \\ \hline \end{gathered}$	0	0	N	N	0	0	0	0	0	1	1	P
	0	0	0	0	0	0	0	0	0	1	P	1
CRC:NONE16-BIT CCITT32-BIT AUTODIN II	1	1	N	N	1	1	1	1	1	1	1	1
	0	0	0	0	0	0	0	0	1	1	0	0
	0	0	0	0	0	0	0	0	1	1	0	0
DUPLEX:HALF FULL	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	N	N	0	0	0	0	N	N	N	P
ACKNOWLEDGEMENT:NONE HARDWARE USER DEFINED	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	N	0	0	0	N	N	0	N
	0	0	0	0	0	0	0	0	0	0	0	1
ADDRESS RECOGNITION: NONE 8-BIT 16-BIT												
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	1	0	0
	0	0	0	0	0	0	0	0	1	1	0	- 0
COLLISION RESOLUTION: NORMAL ALTERNATE DETERMINISTIC												
	0	0	0	0	N	0	0	0	0	N	M	N
	0	0	0	0	N	0	0	0	0	N	M	N
	0	O	0	0	N	0	0	0	0	N	M	N
PREAMBLE:NONE 8-BIT 32-BIT 64-BIT	N	N	N	N	0	0	0	0	0	0	N	P
	N	N	0	0	0	0	0	0	1	1	0	0
	X	N	0	0	0	0	0	0	1	1	0	0
	N	X	0	0	0	0	0	0	1	1	0	0
JAM:D.C. $\overline{\text { CRC }}$	0	0	X	N	N	0	0	0	0	N	M	N
	0	0	N	X	N	0	0	0	0	N	M	N
CLOCKING:EXTERNAL INTERNAL	0	0	N	N	X	N	0	0	0	0	N	0
	0	0	0	0	N	X	0	0	0	0	0	0
CONTROL:CPU DMA	0	0	0	0	0	0	X	N	0	0	0	0
	0	0	0	0	0	0	N	X	0	0	0	0
RAW RECEIVE:	1	1	0	0	1	1	1	1	X	N	1	1
RAW TRANSMIT:	1	1	N	N	1	1	1	1	N	X	1	1
CSMA/CD:	0	0	0	0	N	0	0	0	0	0	X	N
SDLC:	0	0	N	N	0	0	0	0	0	0	N	X

Note 1: Programmable in Raw transmit or receive mode.

Abstract

Almost all the options available from Table 3.1 can be implemented with the proper software to perform the functions that are necessary for the options selected. In Table 3.1, a judgment has been made by the authors on which options are practical and which are not. What this means is that in Table 3.1, an " N " should be interpreted as meaning that the option is either not practical when implemented with user software or that it cannot be done. An " O " is used when that function is one of several that can be implemented with the GSC without additional user software.

The GSC is targeted to operate at bit rates up to 2.4 MBps using the external clock options and up to 2 MBps using the internal baud rate generator, internal data formatting and on-chip clock recovery. The baud rate generator allows most standard rates to be achieved. These standards include the proposed IEEE802.3 LAN standard (1.0MBps) and the T1 standard (1.544 MBps). The baud rate is derived from the crystal frequency. This makes crystal selection important when determining the frequency and accuracy of the baud rate.

The user needs to be aware that after reset, the GSC is in CSMA/CD mode, IFS $=256$ bit times, and a bit time equals 8 oscillator periods. The GSC will remain in this mode until the interframe space expires. If the user changes to SDLC mode or the parameters used in CSMA/CD, these changes will not take effect until the interframe space expires. A requirement for the interframe space timer to begin is that the receiver be in an idle state. This makes it possible for the GSC to be in some other mode than the user intends for a significant amount of time after reset. To prevent unwanted GSC errors from occurring, the user should not enable the GSC or the GSC interrupts for 170 machine cycles $((256 \times 8) / 12)$ after LNI bit is set.

3.2 CSMA/CD Operation

3.2.1 CSMA/CD OVERVIEW

CSMA/CD operates by sensing the transmission line for a carrier, which indicates link activity. At the end of link activity, a station must wait a period of time, called the deference period, before transmission may begin. The deference period is also known as the interframe space. The interframe space is explained in Section 3.2.3.

With this type of operation, there is always the possibility of a collision occurring after the deference period due to line delays. If a collision is detected after transmission is started, a jamming mechanism is used to ensure that all stations monitoring the line are aware of the collision. A resolution algorithm is then executed to
resolve the contention. There are three different modes of collision resolution made available to the user on the C152. Re-transmission is attempted when a resolution algorithm indicates that a station's opportunity has arrived.

Normally, in CSMA/CD, re-transmission slot assignments are intended to be random. This method gives all stations an equal opportunity to utilize the serial communication link but also leaves the possibility of another collision due to two stations having the same slot assignment. There is an option on the C152 which allows all the stations to have their slot assignments previously determined by user software. This pre-assignment of slots is called the deterministic resolution mode. This method allows resolution after the first collision and ensures the access of the link to each station during the resolution. Deterministic resolution can be advantageous when the link is being heavily used and collisions are frequently occurring and in real time applications where determinism is required. Deterministic resolution may also be desirable if it is known beforehand that a certain station's communication needs to be prioritized over those of other stations if it is involved in a collision.

3.2.2 CSMA/CD FRAME FORMAT

The frame format in CSMA/CD consists of a preamble, Beginning of Frame flag (BOF), address field, information field, CRC, and End of Frame flag (EOF) as shown in Figure 3.1.

\section*{| PREAMBLE | BOF | ADDRESS | INFO | CRC | EOF |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Figure 3.1 Typical CSMA/CD Frame
PREAMBLE - The preamble is a series of alternating 1 s and 0 s . The length of the preamble is programmable to be $0,8,32$, or 64 bits. The purpose of the preamble is to allow all the receivers to synchronize to the same clock edges and identifies to the other stations on-line that there is activity indicating the link is being used. For these reasons zero preamble length is not compatible with standard CSMA/CD, protocols. When using CSMA/CD, the BOF is considered part of the preamble compared to SDLC, where the BOF is not part of the preamble. This means that if zero preamble length were to be used in CSMA/CD mode, no BOF would be generated. It is strongly recommended that zero preamble length never be used in CSMA/CD mode. If the preamble contains two consecutive 0 s , the preamble is considered invalid. If the C152 detects an invalid preamble, the frame is ignored.

BOF - In CSMA/CD the Beginning-Of-Frame is a part of the preamble and consists of two sequential 1s. The purpose of the BOF is to identify the end of the preamble and indicate to the receiver(s) that the address will immediately follow.

ADDRESS - The address field is used to identify which messages are intended for which stations. The user must assign addresses to each destination and source. How the addresses are assigned, how they are maintained, and how each transmitter is made aware of which addresses are available is an issue that is left to the user. Some suggestions are discussed in Section 3.5.5. Generally, each address is unique to each station but there are special cases where this is not true. In these special cases, a message is intended for more than one station. These multi-targeted messages are called broadcast or multicast-group addresses. A broadcast address consisting of all 1 s will always be received by all stations. A multicast-group address usually is indicated by using a las the first address bit. The user can choose to mask off all or selective bits of the address so that the GSC receives all messages or multicast-group messages. The address length is programmable to be 8 or 16 bits. An address consisting of all 1 s will always be received by the GSC on the C152. The address bits are always passed from the GSC to the CPU. With user software, the address can be extended beyond 16 bits, but the automatic address recognition will only work on a maximum of 16 bits. User software will have to resolve any remaining address bits.

INFO - This is the information field and contains the data that one device on the link wishes to transmit to another device. It can be of any length the user wishes but needs to be in multiples of 8 bits. This is because multiples of 8 bits are used to transfer data into or out of the GSC FIFOs. The information field is delineated from the rest of the components of the frame by the preceding address field and the following CRC. The receiver determines the position of the end of the information field by passing the bytes through a temporary storage space. When the EOF is received the bytes in temporary storage are the CRC, and the last bit received previous to the CRC constitute the end of the information field.

CRC - The Cyclic Redundancy Check (CRC) is an error checking algorithm commonly used in serial communications. The C152 offers two types of CRC algorithms, a 16 -bit and a 32 -bit. The 16 -bit algorithm is normally used in the SDLC mode and will be described in the SDLC section. In CSMA/CD applications either
algorithm can be used but IEEE 802.3 uses a 32 -bit CRC. The generation polynomial the C152 uses with the 32 -bit CRC is:

$$
\begin{aligned}
\mathrm{G}(\mathrm{X})= & \mathrm{X}^{32}+\mathrm{X}^{26}+\mathrm{X}^{23}+\mathrm{X}^{22}+\mathrm{X}^{16}+\mathrm{X}^{12}+ \\
& \mathrm{X}^{11}+\mathrm{X}^{10}+\mathrm{X}^{8}+\mathrm{X}^{7}+\mathrm{X}^{5}+\mathrm{X}^{4}+\mathrm{X}^{2} \\
& +\mathrm{X}+1
\end{aligned}
$$

The CRC generator, as shown in Figure 3.2, operates by taking each bit as it is received and XOR'ing it with bit 31 of the current CRC. This result is then placed in temporary storage. The result of XOR'ing bit 31 with the received bit is then XOR'd with bits $0,1,3,4,6,7$, $9,10,11,15,21,22,25$ as the CRC is shifted right one position. When the CRC is shifted right, the temporary storage space holding the result of XOR'ing bit 31 and the incoming bit is shifted into position 0 . The whole process is then repeated with the next incoming or outgoing bit.

The user has no access to the CRC generator or the bits which constitute the CRC while in CSMA/CD. On transmission, the CRC is automatically appended to the data being sent, and on reception, the CRC bits are not normally loaded into the receive FIFO. Instead, they are automatically stripped. The only indication the user has for the status of the CRC is a pass/fail flag. The pass/fail flag only operates during reception. A CRC is considered as passing when the the CRC generator has 11000111000001001101101001111011 B as a remainder after all of the data, including the CRC checksum, from the transmitting station has been cycled through the CRC generator. The preamble, BOF and EOF are not included as part of the CRC algorithm. An interrupt is available that will interrupt the CPU if the CRC of the receiver is invalid. The user can enable the CRC to be passed to the CPU by placing the receiver in the raw receive mode.

This method of calculating the CRC is compatible with IEEE 802.3.

EOF - The End Of Frame indicates when the transmission is completed. The end flag in CSMA/CD consists of an idle condition. An idle condition is assumed when there is no transitions and the link remains high for 2 or more bit times.

Figure 3.2. CRC Generator

3.2.3 INTERFRAME SPACE

The interframe space is the amount of time that transmission is delayed after the link is sensed as being idle and is used to separate transmitted frames. In alternate backoff mode, the interframe space may also be included in the determination of when retransmissions may actually begin. The C152 allows programmable interframe spaces of even numbers of bit times from 2 to 256. The hardware enforces the interframe space in SDLC mode as well as in CSMA/CD mode.

The period of the interframe space is determined by the contents of IFS. IFS is an SFR that is programmable from 0 to 254 . The interframe space is measured in bit times. The value in IFS multiplied by the bit time equals the interframe space unless IFS equals 0 . If IFS does equal 0 , then the interframe space will equal 256 bit times. One of the considerations when loading the IFS is that only even numbers (LSB must be 0) can be used because only the 7 most significant bits are loaded into IFS. The LSB is controlled by the GSC and determines which half of the IFS is currently being used. In some modes, the interframe space timer is re-triggered if activity is detected during the first half of the period. The GSC determines which half of the interframe space is currently being used by examining the LSB. A one indicates the first half and zero indicates the second half of the IFS.

After reset IFS is 0 , which delays the first transmission for both SDLC and CSMA/CD by 256 bit times (after reset, a bit time equals 8 oscillator clock periods).

In most applications, the period of the interframe space will be equal to or greater than the amount of time needed to turn-around the received frame. The turnaround period is the amount of time that is needed by user software to complete the handling of a received frame and be prepared to receive the next frame. An interframe space smaller than the required turn-around period could be used, but would allow some frames to be missed.

When a GSC transmitter has a new message to send, it will first sense the link. If activity is detected, transmission will be deferred to allow the frame in progress to complete. When link activity ceases, the station continues deferring for one interframe space period.

As mentioned earlier, the interframe space is used during the collision resolution period as well as during normal transmission. The backoff method selected affects how the deference period is handled during normal transmission. If normal backoff mode is selected, the interframe space timer is reset if activity occurs during approximately the first half of the interframe space. If alternate backoff or deterministic backoff is selected, the timer is not reset. In all cases when the interframe space timer expires, transmission may begin, regardless if there is activity on the link or not. Although the C152 resets the interframe space timer if activity is detected during the first one-half of the interframe space, this is not necessarily true of all CSMA/CD systems. (IEEE 802.3 recommends that the interframe space be reset if activity is detected during the first two-thirds or less of the interframe space.)

3.2.4 CSMA/CD DATA ENCODING

Manchester encoding/decoding is automatically selected when the user software selects CSMA/CD transmission mode (See Figure 3.3). In Manchester encoding the value of the bit is determined by the transition in the middle of the bit time, a positive transition is decoded as a 1 and a negative transition is decoded as a 0. The Address and Info bytes are transmitted LSB first. The CRC is transmitted MSB first.

If the external 1 X clock feature is chosen the transmission mode is always NRZ (see Section 3.5.11). Using CSMA/CD with the external clock option is not supported because the data needs reformatting from NRZ to Manchester for the receiver to be able to detect code violations and collisions.

3.2.5 COLLISION DETECTION

The GSC hardware detects collisions by detecting Manchester waveform violations at its GRXD pin. Three kinds of waveform violations are detected: a missing 0 -to-1 transition where one was expected, a 1-to-0 transition where none was expected, and a waveform that stays low (or high) for too short a time.

Jitter Tolerance

A valid Manchester waveform must have a transition at the midpoint of any bit cell, and may have a transition at the edge of any bit cell. Therefore, transitions will nominally be separated by either $1 / 2$ bit-time or 1 bittime.

The GSC samples the GRXD pin at the rate of $8 \times$ the bit rate. The sequence of samples for the received bit sequence 001 would nominally be:
samples:11110000:11110000:00001111: bit value : $0:<-$ bit cell-> $\quad:<-$ bit cell-> $:<-$ bit cell-> $:$

The sampling system allows a jitter tolerance of ± 1 sample for transitions that are $1 / 2$ bit-time apart, and ± 2 samples for transitions that are 1 bit-time apart.

Narrow Pulses

A valid Manchester waveform must stay high or low for at least a half bit-time, nominally 4 sample-times. Jitter tolerance allows a waveform which stays high or low for 3 sample-times to also be considered valid. A sample sequence which shows a second transition only 1 or 2 sample-times after the previous transition is considered to be the result of a collision. Thus, sample sequences such as 0000110000 and 111101111 are interpreted as collisions.

The GSC hardware recognizes the collision to have occurred within $3 / 8$ to $1 / 2$ bit-time following the second transition.

Missing 0-to-1 Transition

A 0-to-1 transition is expected to occur at the center of any bit cell that begins with 0 . If the previous 1 -to- 0 transition occurred at the bit cell edge, a jitter tolerance of ± 1 sample is allowed. Sample sequences such as 1111:00001111 and 1111:000001111 are valid, where ":" indicates a bit cell edge. Sequences of the form 1111:000000XXX are interpreted as collisions.

For these kinds of sequences, the GSC recognizes the collision to have occurred within 1 to $1 / 8$ bit-times after the previous 1-to-0 transition.

If the previous 1-to-0 transition occurred at the center of the previous bit cell, a jitter tolerance of ± 2 samples is allowed. Thus, sample sequences such as 11110000:00001111 and 111100000:000001111 are valid. Sequences of the form 111100000:000000XXX are interpreted as collisions.

For these kinds of sequences, the GSC recognizes the collision to have occurred within $15 / 8$ to $13 / 4$ bittimes after the previous 1-to-0 transition.

Unexpected 1-to-0 Transition

If the line is at a logic 1 during the first half of a bit cell, then it is expected to make a 1-to-0 transition at the midpoint of the bit cell. If the transition is missed, it is assumed that this bit cell is the first half of an EOF flag

Figure 3.3. Manchester Encoding
(line idle for two bit-times). One bit-time later (which marks the midpoint of the next bit cell), if there is still no 1 -to-0 transition, a valid EOF is assumed and the line idle bit (LNI in TSTAT) gets set.

However, if the assumed EOF flag is interrupted by a 1-to-0 transition in the bit-time following the first missing transition, a collision is assumed. In that case the GSC hardware recognizes the collision to have occurred within $1 / 2$ to $5 / 8$ bit-time after the unexpected transition.

3.2.6 RESOLUTION OF COLLISIONS

How the GSC responds to a detected collision depends on what it was doing at the time the collision was detected. What it might be doing is either transmitting or receiving a frame, or it might be inactive.

GSC Inactive

The collision is detected whether the GSC is active or not. If the GSC is neither transmitting nor receiving at the time the collision is detected, it takes no action unless user software has selected the Deterministic Collision Resolution (DCR) algorithm. If DCR has been selected, the GSC will participate in the resolution algorithm.

GSC Receiving

If the GSC is already in the process of receiving a frame at the time the collision is detected, its response depends on whether the first byte of the frame has been transferred into RFIFO yet or not. If that hasn't occurred, the GSC simply aborts the reception, but takes no other action unless DCR has been selected. If DCR has been selected, the GSC participates in the resolution algorithm.

If the reception has already progressed to the point where a byte has been transferred to RFIFO by the time the collision is detected, the receiver is disabled
(GREN $=0$), and the Receive Error Interrupt flag RCABT is set. If DCR has been selected, the GSC participates in the resolution algorithm.

Incoming bits take $1 / 2$ bit time to get from the GRXD pin to the bit decoder. The bit decoder strips off the preamble/BOF bits, and the first bit after BOF is shifted into a serial strip buffer. The length of the strip buffer is equal to the number of bits in the selected CRC. It is within this buffer that address recognition takes place. If the address is recognized as one for which reception should proceed, then when the first address bit exits the strip buffer it is shifted into an 8-bit shift register. When the shift register is full, its content is transferred to RFIFO. That is the event that determines whether a collision sets RCABT or not.

GSC Transmitting

If the GSC is in the process of transmitting a frame at the time the collision is detected, it will in every case execute its jam/backoff procedure. Its reponse beyond that depends on whether the first byte of the frame has been transferred from TFIFO to the output shift register yet or not. That transfer takes place at the beginning of the first bit of the BOF; that is, 2 bit-times before the end of the preamble/BOF sequence.

If the transfer from TFIFO hasn't occurred yet, the GSC hardware will try again to gain access to the line after its backoff time has expired. Up to 8 automatic restarts can be attempted. If the 8th restart is interrupted by yet another collision, the transmitter is disabled (TEN ${ }^{\prime}=0$) and the Transmit Error Interrupt flag TCDT is set.

If the transfer from TFIFO occurs before a collision is detected, the transmitter is disabled (TEN $=0$) and the TCDT flag is set.

The response of the GSC to detected collisions is summarized in Figure 3.4.

What the GSC was doing	Response
nothing	None, unless DCR $=1$. If DCR $=1$, begin DCR countdown.
Receiving a Frame, first byte not in RFIFO yet.	None, unless DCR $=1$. If DCR $=1$, begin DCR countdown.
Receiving a Frame, first byte already in RFIFO.	Set RCABT, clear GREN. If DCR $=1$, begin DCR countdown.
Transmitting a Frame, first byte still in TFIFO	Execute jam/backoff. Restart if collision count ≤ 8.
Transmitting a Frame, first byte already taken from TFIFO	Execute jam/backoff. Set TCDT, clear TEN.

Figure 3-4. Response to a Detected Collision. References to DCR and the DCR Countdown Have to Do with the Deterministic Collision Resolution Algorithm.

Jam

The jam signal is generated by any 8 XC 152 that is involved in transmitting a frame at the time a collision is detected at its GRXD pin. This is to ensure that if one transmitting station detects a collision, all the other stations on the network will also detect a collision.

If a transmitting 8 XC 152 detects a collision during the preamble/BOF part of the frame that it is trying to transmit, it will complete the preamble/BOF and then begin the jam signal in the first bit time after BOF. If the collision is detected later in the frame, the jam signal will begin in the next bit time after the collision was detected.

The jam signal lasts for the same number of bit times as the selected CRC length-either 16- or 32-bit times.

The 8XC152 provides two types of jam signals that can be selected by user software. If the node is DC-coupled to the network, the DC jam can be selected. In this case the GTXD pin is pulled to a logic 0 for the duration of the jam. If the node is AC-coupled to the network, then AC jam must be selected. In this case the GSC takes the CRC it has calculated thus far in the transmission, inverts each bit, and transmits the inverted CRC. The selection of DC or AC jam is made by setting or clearing the DCJ bit, which resides in the SFR named MYSLOT.

When the jam signal is completed, the 8 XCl 52 goes into an idle state. Presumeably, other stations on the network are also generating their own jam signals, after which they too go into an idle state. When the 8XC152 detects the idle state at its own GRXD pin, the backoff sequence begins.

Backoff

There are three software selectable collision resolution algorithms in the 8 XC 152 . The selection is made by writing values to 3 bits:

DCR	M1	M0	Algorithm
0	0	0	Normal Random
0	1	1	Alternate Random
1	1	1	Deterministic

M1 and M0 reside in GMOD, and DCR is in MYSLOT.

In the Normal Random algorithm, the GSC backs off for a random number of slot times and then decides whether to restart the transmission. The backoff time begins as soon as a line idle condition is detected.

The Alternate Random algorithm is the same as the Normal Random except the backoff time doesn't start until an IFS has transpired.

In the Deterministic algorithm, the GSC backs off to await its pre-determined turn.

Random Backoff

In either of the random algorithms, the first thing that happens after a collision is detected is that a 1 gets shifted into the TCDCNT (Transmit Collision Detect Count) register, from the right.

Thus if the software cleared TCDCNT before telling the GSC to transmit, then TCDCNT keeps track of how many times the transmission had to be aborted because of collisions:

$$
\begin{aligned}
& \text { TCDCNT }=00000000 \quad \text { first attempt } \\
& 00000001 \text { first collision } \\
& 00000011 \text { second collision } \\
& 00000111 \text { third collision } \\
& 00001111 \text { fourth collision } \\
& 11111111 \text { eighth collision }
\end{aligned}
$$

After TCDCNT gets a 1 shifted into it, the logical AND of TCDCNT and PRBS is loaded into a countdown timer named BKOFF. PRBS is the name of an SFR which contains the output of a pseudo-random binary sequence generator. Its function is to provide a random number for use in the backoff algorithm.

Thus on the first collision BKOFF gets loaded randomly with either 00000000 or 00000001 . If there is a second collision it gets loaded with the random selection of $00000000,00000001,00000010$, or 00000011 . On the third collision there will be a random selection among 8 possible numbers. On the fourth, among 16, etc. Figure 3.5 shows the logical arrangement of PRBS, TCDCNT, and BKOFF.

BKOFF starts counting down from its preload value, counting slot times. At any time, the current value in BKOFF can be read by the CPU, but CPU writes to BKOFF have no effect. While BKOFF is counting down, if its current value is not 0 , transmission is disabled. The output signal "BKOFF $=0$ ". is asserted when BKOFF reaches 0 , and is used to re-enable transmission.

At that time transmission can proceed, subject of course to IFS enforcement, unless:

- shifting a 1 into TCDCNT from the right caused a 1 to shift out from the MSB of TCDCNT, or
- the collision was detected after TFIFO had been accessed by the transmit hardware.

Figure 3.5. Backoff Timer Logic

In either of these cases, the transmitter is disabled (TEN $=0$) and the Transmit Error flag TCDT is set. The automatic restart is canceled.

Where the Normal and Alternate Random backoff algorithms differ is that in Normal Random backoff the BKOFF timer starts counting down as soon as a line idle condition is detected, whereas in Alternate Random backoff the BKOFF timer doesn't start counting down till the IFS expires.

The Alternate Random mode was designed for networks in which the slot time is less than the IFS. If the randomly assigned backoff time for a given transmitter happens to be 0 , then it is free to transmit as soon as the IFS ends. If the slot time is shorter than the IFS, Normal Random mode would nearly guarantee that if there's a first collision there will be a second collision. The situation is avoided in Alternate Random mode, since the BKOFF countdown doesn't start till the IFS is over.

The unit of count to the BKOFF timer is the slot time. The slot time is measured in bit-times, and is determined by a CPU write to the register SLOTTM. The slot time clock is a 1-byte downcounter which starts its countdown from the value written to SLOTTM. It is decremented each bit time when a backoff is in progress, and when it gets to 1 it generates one tick in the slot time clock. The next state after 1 is the reload value which was written to SLOTTM. If 0 is the value written to SLOTTM, the slot time clock will equal 256 bit times.

A CPU write to SLOTTM accesses the reload register. A CPU read of SLOTTM accesses the downcounter. In
most protocols, the slot period must be equal to or greater than the longest round trip propagation time plus the jam time.

Deterministic Backoff

In the Deterministic backoff mode, the GSC is assigned (in software) a slot number. The slot assignment is written to the low 6 bits of the register MYSLOT. This same register also contains, in the 2 high bit positions, the control bits DCJ and DCR.

Slot assignments therefore can run from 0 to 63 . It will turn out that the higher the slot assignment, the sooner the GSC will get to restart its transmission in the event of a collision.

The highest slot assignment in the network is written by each station's software into its TCDCNT register. Normally the highest slot assignment is just the total number of stations that are going to participate in the backoff algorithm.

In deterministic backoff mode a collision will not cause a 1 to be shifted into TCDCNT. TCDCNT will still be ANDed with PRBS and the result loaded into BKOFF. In order to insure that all stations have the same value loaded into BKOFF, which determines the first slot number to occur, the PRBS should be loaded with 0 FFH ; the PRBS will maintain this value until either the 8 XC 152 is reset or the user writes some other value into PRBS. After BKOFF is loaded it begins counting down slot times as soon as the IFS ends. Slot times are defined by the user, the same way as before, by loading SLOTTM with the number of bit times per slot.

When BKOFF equals the slot assignment (as defined in MYSLOT), the signal "BKOFF = MYSLOT" in Figure 3.5 is asserted for one slot time, during which the GSC can restart its transmission.

While BKOFF is counting down, if any activity is detected at the GRXD pin, the countdown is frozen until the activity ends, a line idle condition is detected, and an IFS transpires. Then the countdown resumes from where it left off.

If a collision is detected at the GRXD pin while BKOFF is counting down, the collision resolution algorithm is restarted from the beginning.

In effect, the GSC "owns" its assigned slot number, but with one exception. Nobody owns slot number 0. Therefore if the GSC is assigned slot number 0 , then when BKOFF $=0$, this station and any other station that has something to say at this time will have an equal chance to take the line.

3.2.7 HARDWARE BASED ACKNOWLEDGE

Hardware Based Acknowledge (HBA) is a data link packet acknowledging scheme that the user software can enable with CSMA/CD protocol. It is not an option with SDLC protocol however.

In general HBA can give improved system response time and increased effective transmission rates over acknowledge schemes implemented in higher layers of the network architecture. Another benefit is the possibility of early release of the transmit buffer as soon as the acknowledge is received.

The acknowledge consists of a preamble followed by an idle condition. A receiving station with HABEN enabled will send an acknowledge only if the incoming address is unique to the receiving station and if the frame is determined to be correct with no errors. For the acknowledge to be sent, TEN must be set. For the transmitting station to recognize the acknowledge GREN must be set. A zero as the LSB of the address indicates that the address is unique and not a group or broadcast address. Errors can be caused by collisions, incorrect CRC, misalignment, or FIFO overflow. The receiver sends the acknowledge as soon as the line is sensed to be idle. The user must program the interframe space and the preamble length such that the acknowledge is completed before IFS expires. This is normally done by programming IFS larger than the preamble.

A transmitting station with HABEN enabled expects an acknowledge. It must receive one prior to the end of the interframe space, or else an error is assumed and the NOACK bit is set. Setting of the TDN bit is also delayed until the end of the interframe space. Collisions detected during the interframe space will also cause NOACK to be set.

If the user software has enabled DMA servicing of the GSC, an interrupt is generated when TDN is set. TDN will be set at the end of the interframe space if a hardware based acknowledge is required and received. If the GSC is serviced by the CPU, the user must time out the interframe space and then check TDN before disabling the transmitter or transmit error interrupts. NOACK will generate a transmit error interrupt if the transmitter and interrupts are enabled during the interframe space.

3.3 SDLC Operation

3.3.1 SDLC OVERVIEW

SDLC is a communication protocol developed by IBM and widely used in industry. It is based on a primary/ secondary architecture and requires that each secondary station have a unique address. The secondary stations can only communicate to the primary station, and then, only when the primary station allows communication to take place. This eliminates the possibility of contention on the serial line caused by the secondary station's trying to transmit simultaneously.

In the C152, SDLC can be configured to work in either full or half duplex. When adhering to strict SDLC protocol, full duplex is required. Full duplex is selected whenever a 16 -bit CRC is selected. At the end of a valid reset the 16 -bit CRC is selected. To select half duplex with a 16-bit CRC, the receiver must be turned off by user software before transmission. The receiver is turned off by clearing the GREN bit (RSTAT.1). The receiver needs to be turned off because the address that is transmitted is the address of the secondary station's receiver. If not turned off, the receiver could mistake the outgoing message as being intended for itself. When 32 -bit CRCs are used, half duplex is the only method available for transmission.

3.3.2 SDLC Frame Format

The format of an SDLC frame is shown in Figure 3.6. The frame consists of a Beginning of Frame flag, Address field, Control Field, Information field (optional), a CRC, and the End of Frame flag.

BOF	ADDRESS	CONTROL	INFO	CRC	EOF

Figure 3.6. Typical SDLC Frame
BOF - The begin of frame flag for SDLC is 01111110. It is only one of two possible combinations that have six consecutive ones in SDLC. The other possibility is an abort character which consists of eight or more consecutive ones. This is because SDLC utilizes a process called bit stuffing. Bit stuffing is the insertion of a 0 as the next bit every time a sequence of five consecutive is is detected. The receiver automatically removes a 0 after every consecutive group of five ones. This removal of the 0 bit is referred to as bit stripping. Bit stuffing is discussed in Section 3.3.4. All the procedures required for bit stuffing and bit stripping are automatically handled by the GSC.

In standard SDLC protocol the BOF signals the start of a frame and is limited to 8 bits in length. Since there is no preamble in SDLC the BOF is considered an entire separate field and marks the beginning of the frame. The BOF also serves as the clock synchronization mechanism and the reference point for determining the position of the address and control fields.

ADDRESS - The address field is used to identify which stations the message is intended for. Each secondary station must have a unique address. The primary station must then be made aware of which addresses are assigned to each station. The address length is specified as 8 -bits in standard SDLC protocols but it is expandable to 16 -bits in the C152. User software can further expand the number of address bits, but the automatic address recognition feature works on a maximum of 16bits.

In SDLC the addresses are normally unique for each station. However, there are several classes of messages that are intended for more than one station. These messages are called broadcast and group addressed frames. An address consisting of all 1 s will always be automatically received by the GSC, this is defined as the broadcast address in SDLC. A group address is an address that is common to more than one station. The GSC provides address masking bits to provide the capability of receiving group addresses.

If desired, the user software can mask off all the bits of the address. This type of masking puts the GSC in a promiscuous mode so that all addresses are received.

CONTROL - The control field is used for initialization of the system, identifying the sequence of a frame, to identify if the message is complete, to tell secondary stations if a response is expected, and acknowledgement of previously sent frames. The user software is responsible for insertion of the control field as the GSC hardware has no provisions for the management of this field. The interpretation and formation of the control field must also be handled by user software. The information following the control field is typically used for information transfer, error reporting, and various other functions. These functions are accomplished by the format of the control field. There are three formats available. The types of formats are Informational, Supervisory, or Unnumbered. Figure 3.7 shows the various format types and how to identify them.

Since the user software is responsible for the implementation of the control field, what follows is a simple explanation on the control field and its functions. For a complete understanding and proper implementation of SDLC, the user should refer to the IBM document, GA27-3093-2, IBM Synchronous Data Link Control General Information. Within that document, is another list of IBM documents which go into detail on the SDLC protocol and its use.

The control field is eight bits wide and the format is determined by bits 0 and 1 . If bit 0 is a zero, then the frame is an informational frame. If bit 0 is a one and bit 1 a zero, then it is a supervisory frame, and if bit 0 is a one and bit 1 a one then the frame is an unnumbered frame.

In an informational frame bits $3,2,1$ contain the sequence count of the frame being sent.

Bit 4 is the P / F (Poll/Final) bit. If bit 4 equals 1 and originates from the primary, then the secondary station is expected to initiate a transmission. If bit 4 equals 1 and originates from a secondary station, then the frame is the final frame in a transmission.

Bits 7,6,5 contain the sequence count a station expects on the next transmission to it. The sequence count can vary from 000B to 111B. The count then starts over again at 000 B after the value 111B is incremented. The acknowledgement is recognized by the receiving station when it decodes bits $7,6,5$ of an incoming frame. The station sending the transmission is acknowledging the frames received up to the count represented in bits $7,6,5$ (sequence count-1). With this method, up to seven sequential frames may be transmitted prior to an acknowledgement being received. If eight frames were allowed to pass before an acknowledgement, the sequence count would roll over and this would negate the purpose of the sequence numbers.

270427-15
RECEPTION SEQUENCE - The sequence expected in the SENDING SEQUENCE portion of the control byte in the next received frame. This also confirms correct reception of up to seven frames prior to the sequence given. POLL/FINAL - Identifies the frame as being a polling request from the master station or the last in a series of frames from the master or secondary.
SENDING SEQUENCE - Identifies the sequence of the frame being transmitted.
0 - If bit $0=0$ the frame is identified as a informational format type.

RECEPTION SEQUENCE - Expected sequence of frame for next reception.
POLL/FINAL - Identifies frame as being a polling request from the master station or the last in a series of frames from the master or secondary.
MODE - Identifies whether receiver is ready (00), not ready (10) or a frame was rejected (01). The rejected frame is identified by the reception sequence.
0,1 - If bits $1,0=0,1$ the frame is identified as a supervisory format type.

270427-17
COMMAND/RESPONSE - Identifies the type of command or response.
POLL/FINAL - Identifies frame as being a polling request from the master station or the last in a series of frames from the master or secondary.
1,1 - If bits $1,0=1,1$ the frame is identified as an unnumbered format type.
NONSEQUENCED FORMAT
Figure 3.7. SDLC Control Field

Following the informational control field comes the information to be transferred.

In the supervisory format (bits $1,0=0,1$) bits 3,2 determine which mode is being used.

When the mode is 00 it indicates that the receive line of the station that sent the supervisory frame is enabled and ready to accept frames.

When the mode is 01 , it indicates that previously a received frame was rejected. The value in the receive count identifies which frame(s) need to be retransmitted.

When the mode is 10 , the sending station is indicating that its receiver is not ready to accept frames.

Mode 11 is an illegal mode in SDLC protocol.
Bits $7,6,5$ represent the value of the sequence the station expects when the next transfer occurs for that station. There is no information following the control field when the supervisory format is used.

In the unnumbered format (bits $1,0=1,1$) bits $7,6,5$, 3 , 2 (notice bit 4 is missing) indicate commands from the primary to secondary stations or requests of secondary stations to the primary.

The standard commands are:

BITS	7	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{2}$	Command
0	0	0	0	0	Unnumbered Information (UI)	
0	0	0	0	1	Set initialization mode (SIM)	
0	1	0	0	0	Disconnect (DISC)	
0	0	1	0	0	Response optional (UP)	
1	1	0	0	1	Function descriptor in information field (CFGR)	
				1	Identification in information field. (XID)	
1	0	1	1	1	Test pattern in information field. (TEST)	

The standard responses are:

BITS	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{2}$	Command
0	0	0	0	0	Unnumbered information (UI)	
0	0	0	0	1	Request for initialization (RIM)	
0	0	0	1	1	Station in disconnected mode (DM)	
1	0	0	0	1	Invalid frame received (FRMR)	
0	1	1	0	0	Unnumbered acknowledgement (UA)	
1	1	1	1	1	Signal loss of input (BCN)	
1	1	0	0	1	Function descriptor in information field (CFGR)	
0	1	0	0	0	Station wants to disconnect (RD)	
1	0	1	1	1	Identification in information field (XID)	
1	1	1	0	0	Test pattern in information field (TEST)	

In an unnumbered frame, information of variable length may follow the control field if UI is used, or information of fixed length may follow if FRMR is used.

As stated earlier, the user software is responsible for the proper management of the control field. This portion of the frame is passed to or from the GSC FIFOs as basic informational type data.

INFO - This is the information field and contains the data that one device on the link wishes to transmit to another device. It can be of any length the user wishes, but must be a multiple of 8 bits. It is possible that some frames may contain no information field. The information field is identified to the receiving stations by the preceding control field and the following CRC. The GSC determines where the last of the information field is by passing the bits through the CRC generator. When the last bit or EOF is received the bits that remain constitute the CRC.

CRC - The Cyclic Redundancy Check (CRC) is an error checking sequence commonly used in serial communications. The C152 offers two types of CRC algo-
rithms, a 16 -bit and a 32 -bit. The 32 -bit algorithm is normally used in CSMA/CD applications and is described in section 3.2.2. In most SDLC applications a 16 -bit CRC is used and the hardware configuration that supports 16 -bit CRC is shown in Figure 3.8. The generating polynomial that the CRC generator uses with the 16-bit CRC is:
$G(X)=X^{16}+X^{12}+X^{5}+1$
The way the CRC operates is that as a bit is received it is XOR'd with bit 15 of the current CRC and placed in temporary storage. The result of XOR'ing bit 15 with the received bit is then XOR'd with bit 4 and bit 11 as the CRC is shifted one position to the right. The bit in temporary storage is shifted into position 0 .

The required CRC length for SDLC is 16 bits. The CRC is automatically stripped from the frame and not passed on to the CPU. The last 16 bits are then run though the CRC generator to insure that the correct remainder is left. The remainder that is checked for is 001110100001111 B (1D0F Hex). If there is a mismatch, an error is generated. The user software has the option of enabling this interrupt so the CPU is notified.

Figure 3.8. 16-Bit CRC

EOF - The End Of Frame (EOF) indicates when the transmission is complete. The EOF is identified by the end flag. An end flag consists of the bit pattern 01111110 . The EOF can also serve as the BOF for the next frame.

3.3.3 DATA ENCODING

The transmission of data in SDLC mode is done via NRZI encoding as shown in Figure 3.9. NRZI encoding transmits data by changing the state of the output whenever a 0 is being transmitted. Whenever a 1 is transmitted the state of the output remains the same as the previous bit and remains valid for the entire bit time. When SDLC mode is selected it automatically enables the NRZI encoding on the transmit line and NRZI decoding on the receive line. The Address and Info bytes are transmitted LSB first. The CRC is transmitted MSB first.

3.3.4 BIT STUFFING/STRIPPING

In SDLC mode one of the primary rules of the protocol is that in any normal data transmission, there will never be an occurrence of more than 5 consecutive 1 s . The GSC takes care of this housekeeping chore by automatically inserting a 0 after every occurrence of 5 consecutive 1 s and the receiver automatically removes a zero after receiving 5 consecutive 1 s . All the necessary steps required for implementing bit stuffing and stripping are incorporated into the GSC hardware. This makes the operation transparent to the user. About the only time this operation becomes apparent to the user, is if the actual data on the transmission medium is being monitored by a device that is not aware of the automatic insertion of 0 s . The bit stuffing/stripping guarantees that there will be at least one transition every 6 bit times while the line is active.

3.3.5 SENDING ABORT CHARACTER

An abort character is one of the exceptions to the rule that disallows more than 5 consecutive 1s. The abort character consists of any occurrence of seven or more consecutive ones. The simplest way for the C152 to send an abort character is to clear the TEN bit. This causes the output to be disabled which, in turn, forces it to a constant high state. The delay necessary to insure that the link is high for seven bit times is a task that needs to be handled by user software. Other methods of sending an abort character are using the IFS register or using the Raw Transmit mode. Using IFS still entails clearing the TEN bit, but TEN can be immediately reenabled. The next message will not begin until the IFS expires. The IFS begins timing out as soon as $\overline{\text { DEN }}$ goes high which identifies the end of transmission. This also requires that IFS contain a value equal to or greater than 8. This method may have the undesirable effect that $\overline{\mathrm{DEN}}$ goes high and disables the external drivers. The other alternative is to switch to Raw Transmit mode. Then, writing OFFH to TFIFO would generate a high output for 8 bit times. This method would leave $\overline{\mathrm{DEN}}$ active during the transmission of the abort character.

When the receiver detects seven or more consecutive 1 s and data has been loaded into the receive FIFO, the RCABT flag is set in RSTAT and that frame is ignored. If no data has been loaded into the receive FIFO, there are no abort flags set and that frame is just ignored. A retransmitted frame may immediately follow an abort character, provided the proper flags are used.

Figure 3.9. NRZI Encoding

3.3.6 LINE IDLE

If 15 or more consecutive 1 s are detected by the receiver the Line Idle bit (LNI) in TSTAT is set. The seven 1 s from the abort character may be included when sensing for a line idle condition. The same methods used for sending the Abort character can be used for creating the Idle condition. However, the values would need to be changed to reflect 15 bit times, instead of seven bit times.

3.3.7 ACKNOWLEDGEMENT

Acknowledgment in SDLC is an implied acknowledge and is contained in the control field. Part of the control frame is the sequence number of the next expected frame. This sequence number is called the Receive Count. In transmitting the Receive Count, the receiver is in fact acknowledging all the previous frames prior to the count that was transmitted. This allows for the transmission of up to seven frames before an acknowledge is required back to the transmitter. The limitation of seven frames is necessary because the Receive Count in the control field is limited to three binary digits. This means that if an eighth transmission occurred this would cause the next Receive Count to repeat the first count that still is waiting for an acknowledge. This would defeat the purpose of the acknowledgement. The processing and general maintenance of the sequence count must be done by the user software. The Hardware Based Acknowledge option that is provided in the C152 is not compatible with standard SDLC protocol.

3.3.8 PRIMARY/SECONDARY STATIONS

All SDLC networks are based upon a primary/secondary station relationship. There can be only one primary station in a network and all the other stations are considered secondary. All communication is between the primary and secondary station. Secondary station to secondary station direct communication is prohibited. If there is a need for secondary to secondary communication, the user software will have to make allowances for the master to act as an intermediary. Secondary stations are allowed use of the serial line only when the master permits them. This is done by the master polling the secondary stations to see if they have a need to access the serial line. This should prevent any collisions from occurring, provided each secondary station has its own unique address. This arrangement also partially determines the types of networks supported. Normal SDLC networks consist of point-to-point, multi-drop, or ring configurations and the C152 supports all of these. However, some SDLC processors support an automatic one bit delay at each node that is not supported by the C152. In a "Loop Mode" configuration, is is necessary that the transmission be delayed from the reception of the frames from the upstream station before
passing the message to the downstream station. This delay is necessary so that a station can decode its own address before the message is passed on. The various networks are shown in Figure 3.10.

3.3.9 HDLC/SDLC COMPARISON

HDLC (High level Data Link Control) is a standard adopted by the International Standards Organization (ISO). The HDLC standard is defined in the ISO document \# ISO 6159 - HDLC unbalanced classes of procedures. IBM developed the SDLC protocol as a subset of HDLC. SDLC conforms to HDLC protocol requirements, but is more restrictive. SDLC contains a more precise definition on the modes of operation.

The C152 does not support HDLC implementation requiring data alignment other than byte alignment. The user will find that many of the protocol parameters are programmable in the C152 which allows easy implementation of proprietary or standard HDLC network. User software needs to implement the control field functions.

3.3.10 USING A PREAMBLE IN SDLC

When transmitting a preamble in SDLC mode, the user should be aware that the pattern of 10101010 . . . is should be aware that the pattern of $10101010 \ldots$ is
output. NRZI encoding is used in SDLC when the internal baud rate generator is the clock source and this
means that a transition will occur every two bit times, ternal baud rate generator is the clock source and this
means that a transition will occur every two bit times, when a 0 is transmitted. This compares with some othwhen a 0 is transmitted. This compares with some oth-
er SDLC devices, most of which transmit the pattern 00000000 . . . which will cause a transition every bit
time. Our past experience has shown that the C152 pre00000000 . . . which will cause a transition every bit
time. Our past experience has shown that the C152 preamble does not cause a problem with most other devicamb. This is because the preamble is used only to define the relative bit time boundaries within some variation allowed by the receiving station, and the C152 preamble fulfills this function. The C152 does not have any problems with receiving a preamble consisting of all 0 s . One note of caution however. If idle fill flags are used in conjunction with a preamble, the addresses $00(00) \mathrm{H}$ and $55(55) \mathrm{H}$ should not be assigned to any C152 as the and $55(55) \mathrm{H}$ should not be assigned to any C 152 as the
preamble following the idle fill flags will be interpreted as an address.

Some of the major differences between SDLC and	
HDLC are:	
SDLC	HDLC
Unbalanced (primary/	Balanced
secondary)	(peer to peer)
Modulo 8 (no extensions	Modulo 128 (up to 127
allowed, up to 7 out-	outstanding frames
standing frames before	before acknowledge
acknowledge is required)	is required)
8-bit addressing only	Extended addressing
Byte aligned data	Variable size of data

Some of the major differences between SDLC and HDLC are:

SDLC
Unbalanced (primary/ secondary)
llowed, up to 7 out standing frames before acknowledge is required bit addressing only Byte aligned data

HDLC
Balanced
(peer to peer) outstanding frames before acknowledge

Extended addressing
Variable size of data

3.4 User Defined Protocols

The explanation on the implementation of user defined protocols would go beyond the scope of this manual, but examining Table 3.1 should give the reader a consolidated list of most of the possibilities. In this manual, any deviation from the documents that cover the implementation of CSMA/CD or SDLC are considered user defined protocols. Examples of this would be the use of SDLC with the 32-bit CRC selected or CSMA/CD with hardware based acknowledge.

3.5 Using the GSC

3.5.1 LINE DISCIPLINE

Line discipline is how the management of the transfer of data over the physical medium is controlled. Two types of line discipline will be discussed in this section: full duplex and half duplex.

Figure 3.10. SDLC Networks

Full duplex is the simultaneous transmission and reception of data. Full duplex uses anywhere from two to four wires. At least one wire is needed for transmission and one wire for reception. Usually there will also be a ground reference on each signal if the distance from station to station is relatively long. Full-duplex operation in the C152 requires that both the receive and the transmit portion of the GSC are functioning at the same time. Since both the transmitter and receiver are operating, two CRC generators are also needed. The C152 handles this problem by having one 32-bit CRC generator and one 16 -bit CRC generator. When supporting full-duplex operation, the 32 -bit CRC generator is modified to work as a 16-bit CRC generator. Whenever the 16 -bit CRC is selected, the GSC automatically enters the full duplex mode. Half duplex with a 16 -bit CRC is discussed in the following paragraph.

Half duplex is the alternate transmission and reception of data over a single common wire. Only one or two wires are needed in half-duplex systems. One wire is needed for the signal and if the distance to be covered is long there will also be a wire for the ground reference. In half-duplex mode, only the receiver or transmitter can operate at one time. When the receiver or transmitter operates is determined by user software, but typically the receiver will always be enabled unless the GSC is transmitting. When using the C152 in half-duplex and the receiver is connected to the transmitter it is possible that a station will receive its' own transmission. This can occur if a broadcast address is sent, the address mask register(s) are filled with all 1 s , or the address being sent matches the sending stations address through the use of the address masking registers. The receiver must be disabled by the user while transmitting if any of these conditions will occur, unless the user wants a station to receive its own transmission. The receiver is disabled by clearing GREN (and GAREN if used). Half-duplex operation in the C152 is supported with either 16 -bit or 32 -bit CRCs. Whenever a 32 -bit CRC is selected, only half-duplex operation can be supported by the GSC. It is possible to simulate full-duplex operation with a 32 -bit CRC, but this would require that the CRC be performed with software. Calculating the CRC with the CPU would greatly reduce the data rates that could be used with the GSC. Whenever a 16bit CRC is selected, full-duplex operation is automatically chosen and the GSC must be reconfigured if halfduplex operation is preferred.

3.5.2 PLANNING FOR NETWORK CHANGES AND EXPANSIONS

A complete explanation on how to plan for network expansion will not be covered in this manual as there are far too many possibilities that would need to be discussed. But there are several areas that will have major impact when allowing for changes in the system. In cases where there will never be any changes allowed,
expansion plans become a mute issue. However, it is strongly suggested that there always be some allowance for future modifications.

Some of the general areas that will impact the overall scheme on how to incorporate future changes to the system are:

1) Communication of the change to all the stations or the primary station.
2) Maximum distance for communication. This will affect the drivers used and the slot time.
3) More stations may be on the line at one time. This may impact the interframe space or the collision resolution used.
4) If using CSMA/CD without deterministic resolution, any increase in network size will have a negative impact on the average throughput of the network and lower the efficiency. The user will have to give careful consideration when deciding how large a system can ultimately be and still maintain adequate performance.

3.5.3 DMA SERVICING OF GSC CHANNELS

There are two sources that can be used to control the GSC. The first is CPU control and the second is DMA control.

CPU control is used when user software takes care of the tasks such as: loading the TFIFO, reading the RFIFO, checking the status flags, and general tracking of the transmission process. As the number of tasks grow and higher data transfer rates are used, the overhead required by the CPU becomes the dominant consumption of time. Eventually, a point is reached where the CPU is spending 100% of its time responding to the needs of the GSC. An alternative is to have the DMA channels control the GSC.

A detailed explanation on the general use of the DMA channels is covered in Section 4. In this section only those details required for the use of the DMA channels with the GSC will be covered.

The DMA channels can be configured by user software so that the GSC data transfers are serviced by the DMA controller. Since there are two DMA channels, one channel can be used to service the receiver, and one channel can be used to service the transmitter. In using the DMA channels, the CPU is relieved of much of the time required to do the basic servicing of the GSC buffers. The types of servicing that the DMA channels can provide are: loading of the transmit FIFO, removing data from the receive FIFO, notification of the CPU when the transmission or reception has ended, and response to certain error conditions. When using the

DMA channels the source or destination of the data intended for serial transmission can be internal data memory, external data memory, or any of the SFRs.

The only tasks required after initialization of the DMA and GSC registers are enabling the proper interrupts and informing the DMA controller when to start. After the DMA channels are started all that is required of the CPU is to respond to error conditions or wait until the end of transmission.

Initialization of the DMA channels requires setting up the control, source, and destination address registers. On the DMA channel servicing the receiver, the control register needs to be loaded as follows: DCONn. $2=$ 0 , this sets the transfer mode so that response is to GSC interrupts and put the DMA control in alternate cycle mode; DCONn. $3=1$, this enables the demand mode; DCONn. $4=0$, this clears the automatic increment option for the source address; and DCONn. $5=1$, this defines the source as SFR. The DMA channel servicing the receiver also needs its source address register to contain the address of RFIFO (SARHN $=$ XXH, SARLN $=0 \mathrm{~F} 4 \mathrm{H}$). On the DMA channel servicing the transmitter, the control register needs to be loaded as follows: DCONn. $2=0 ;$ DCONn. $3=1 ;$ DCONn. $6=$ 0 , this clears the automatic increment option for the destination address; and DCONn. $7=1$, this sets the destination as SFR. The DMA channel serving the transmitter also requires that its destination address register contains the address of TFIFO (DARHN = XXH, DARLN $=85 \mathrm{H}$). Assuming that DCONO would be serving the receiver and DCON1 the transmitter, DCONO would be loaded with XX1010X0B and DCON1 would be loaded with 10XX10X0B. The contents of SARH0 and DARH1 do not have any impact when using internal SFRs as the source or destination.

When using the DMA channels to service the GSC, the byte count registers will also need to be initialized.

The Done flag for the DMA channel servicing the receiver should be used if fixed packet lengths only are being transmitted or to insure that memory is not overwritten by long received data packets. Overwriting of data can occur when using a smaller buffer than the packet size. In these cases the servicing of the DMA and/or GSC would be in response to the DMA Done flag when the byte count reaches zero.

In some cases the buffer size is not the limiting factor and the packet lengths will be unknown. In these cases it would be desirable to eliminate the function of the Done flag. To effectively disable the Done flag for the DMA channel servicing the receiver, the byte count should be set to some number larger than any packet
that will be received, up to 64 K . If not using the Done flag, then GSC servicing would be driven by the receive Done (RDN) flag and/or interrupt. RDN is set when the EOF is detected. When using the RDN flag, RFNE should also be checked to insure that all the data has been emptied out of the receive FIFO.

The byte count register is used for all transmissions and this means that all packets going out will have to be of the same length or the length of the packet to be sent will have to be known prior to the start of transmission. When using the DMA channels to service the GSC transmitter, there is no practical way to disable the Done flag. This is because the transmit done flag (TDN) is set when the transmit FIFO is empty and the last message bit has been transmitted. But, when using the DMA channel to service the transmitter, loads to the TFIFO continue to occur until the byte count reaches 0 . This makes it impossible to use TDN as a flag to stop the DMA transfers to TFIFO. It is possible to examine some other registers or conditions, such as the current byte count, to determine when to stop the DMA transfers to TFIFO, but this is not recommended as a way to service the DMA and GSC when transmitting because frequent reading of the DMA registers will cause the effective DMA transfer rate to slow down.

When using the DMA channels, initialization of the GSC would be exactly the same as normal except that TSTAT. $0=1$ (DMA), this informs the GSC that the DMA channels are going to be used to service the GSC. Although only TSTAT is written to, both the receiver and transmitter use this same DMA bit.

The interrupts EGSTE (IEN1.5), GSC transmit error; EGSTV (IEN1.3), GSC transmit valid; EGSRE (IEN1.1), GSC receive error; and EGSRV (IEN1.0), GSC receive valid; need to be enabled. The DMA interrupts are normally not used when servicing the GSC with the DMA channels. To ensure that the DMA interrupts are not responded to is a function of the user software and should be checked by the software to make sure they are not enabled. Priority for these interrupts can also be set at this time. Whether to use high or low priority needs to be decided by the user. When responding to the GSC interrupts, if a buffer is being used to store the GSC information, then the DMA registers used for the buffer will probably need updating.

After this initialization, all that needs to be done when the GSC is actually going to be used is: load the byte count, set-up the source addresses for the DMA channel servicing the transmitter, set-up the destination addresses for the DMA channel servicing the receiver, and start the DMA transfer. The GSC enable bits should be set first and then the GO bits for the DMA. This initiates the data transfers.

This simplifies the maintenance of the GSC and can make the implementation of an external buffer for packetized information automatic.

An external buffer can be used as the source of data for transmission, or the destination of data from the receiver. In this arrangement, the message size is limited to the RAM size or 64 K , whichever is smaller. By using an external buffer, the data can be accessed by other devices which may want access to the serial data. The amount of time required for the external data moves will also decrease. Under CPU control, a "MOVX" command would take 24 oscillator periods to complete. Under DMA control, external to internal, or internal to external, data moves take only 12 oscillator periods.

3.5.4 BAUD RATE

The GSC baud rate is determined by the contents of the SFR, BAUD, or the external clock. The formula used to determine the baud rate when using the internal clock is:

$$
(f o s c) /\left((\text { BAUD }+1)^{*} 8\right)
$$

For example if a 12 MHz oscillator is used the baud rate can vary from:

$$
12,000,000 /((0+1) * 8)=1.5 \mathrm{MBPS}
$$

to:

$$
12,000,000 /((255+1) * 8)=5.859 \mathrm{KBPS}
$$

There are certain requirements that the external clock will need to meet. These requirements are specified in the data sheet. For a description of the use of the GSC with external clock please read Section 3.5.11.

3.5.5 INITIALIZATION

Initialization can be broken down into two major components, 1) initialization of the component so that its serial port is capable of proper communication; and 2) initialization of the system or a station so that intelligible communication can take place.

Most of the initialization of the component has already been discussed in the previous sections. Those items not covered are the parameters required for the component to effectively communicate with other components. These types of issues are common to both system and component initialization and will be covered in the following text.

Initialization of the system can be broken down into several steps. First, are the assumptions of each network station.

The first assumption is that the type of data encoding to be used is predetermined for the system and that each station will adhere to the same basic rules defining that encoding. The second assumption is that the basic protocol and line discipline is predetermined and known. This means that all stations are using CSMA/ CD or SDLC or whatever, and that all stations are either full or half duplex. The third assumption is that the baud rate is preset for the whole system. Although the baud rate could probably be determined by the microprocessor just by monitoring the link, it will make it much simpler if the baud rate is known in advance.

One of the first things that will be required during system initialization is the assignment of unique addresses for each station. In a two-station only environment this is not necessary and can be ignored. However, keep in mind, that all systems should be constructed for easy future expansions. Therefore, even in only a two station system, addresses should be assigned. There are three basic ways in which addresses can be assigned. The first, and most common is preassigned addresses that are loaded into the station by the user. This could be done with a DIP-switch, through a keyboard. The second method of assigning addresses is to randomly assign an address and then check for its uniqueness throughout the system, and the third method is to make an inquiry to the system for the assignment of a unique address. Once the method of address assignment is determined, the method should become part of the specifications for the system to which all additions will have to adhere. This, then, is the final assumption.

The negotiation process may not be clear for some readers. The following two procedures are given as a guideline for dynamic address assignment.

In the first procedure, a station assumes a random address and then checks for its uniqueness throughout the system. As a station is initialized into the system it sends out a message containing its assumed address. The format of the message should be such that any station decoding the address recognizes it as a request for initialization. If that address is already used, the receiving station returns a message, with its own address stating that the address in question is already taken. The initializing station then picks another address. When the initializing station sends its inquiry for the address check, a timer is also started. If the timer expires before the inquiry is responded to, then that station assumes the address chosen is okay.

In the second procedure, an initializing station asks for an address assignment from the system. This requires that some station on the link take care of the task of maintaining a record of which addresses are used. This station will be called station-1. When the initializing station, called station-2, gets on the link, it sends out a message with a broadcast address. The format of the message should be such that all other stations on the link recognize it as a request for address assignment. Part of the message from station-2 is a random number generated by the station requesting the address. Sta-tion-2 then examines all received messages for this random number. The random number could be the address of the received message or could be within the information section of a broadcast frame. All the stations, except station-1, on the link should ignore the initialization request. Station-1, upon receiving the initialization request, assigns an address and returns it to station- 2 . Station-1 will be required to format the message in such a manner so that all stations on the link recognize it as a response to initialization. This means that all stations except station- 2 ignore the return message.

3.5.6 TEST MODES

There are two test modes associated with the GSC that are made available to the user. The test modes are named Raw Receive and Raw Transmit. The test modes are selected by the proper setting of the two mode bits in GMOD (M0 = GMOD.5, M1 = GMOD.6). If M1,M0 $=0,1$ then Raw Transmit is selected. If $\mathrm{M} 1, \mathrm{M} 0=1,0$ then Raw Receive is enabled. The 32 -bit CRC cannot be used in any of the test modes, or else CRC errors will occur.

In Raw Transmit, the transmit output is internally connected to the Receiver input. This is intended to be used as a local loop-back test mode, so that all data written to the transmitter will be returned by the receiver. Raw Transmit can also be used to transmit user data. If Raw Transmit is used in this way the data is emitted with no preamble, flag, address, CRC, and no bit insertion. The data is still encoded with whatever format is selected, Manchester with CSMA/CD, NRZI with SDLC or as NRZ if external clocks are used. The receiver still operates as normal and in this mode most of the receive functions can be tested.

In Raw Receive, the transmitter should be externally connected to the receiver. To do this a port pin should be used to enable an external device to connect the two pins together. In Raw Receive mode the receiver acts as normal except that all bytes following the BOF are loaded into the receive FIFO, including the CRC. Also address recognition is not active but needs to be performed in software. If SDLC is selected as the protocol, zero-bit deletion is still enabled. The transmitter still operates as normal and in this mode most of the transmitter functions and an external transceiver can be tested. This is also the only way that the CRC can be read by the CPU, but the CRC error bit will not be set.

3.5.7 EXTERNAL DRIVER INTERFACE

A signal is provided from the C152 to enable transmitter drivers for the serial link. This is provided for systems that require more than what the GSC ports are capable of delivering. The voltage and currents that the GSC is capable of providing are the same levels as those for normal port operation. The signal used to enable the external drivers is $\overline{\mathrm{DEN}}$. No similar signal is needed for the receiver.
$\overline{\mathrm{DEN}}$ is active one bit time before transmission begins. In CSMA/CD $\overline{\text { DEN }}$ remains active for two bit times after the CRC is transmitted. In SDLC $\overline{\text { DEN }}$ remains active until the last bit of the EOF is transmitted.

3.5.8 JITTER (RECEIVE)

Data jitter is the difference between the actual transmitted waveform and the exact calculated value(s). In NRZI, data jitter would be how much the actual waveform exceeds or falls short of one calculated bit time. A bit time equals $1 /$ baud rate. If using Manchester encoding, there can be two transitions during one bit time as shown in Figure 3.11. This causes a second parameter to be considered when trying to figure out the complete data jitter amount. This other parameter is the half-bit jitter. The half-bit jitter is comprised of the difference in time that the half-bit transition actually occurs and the calculated value. Jitter is important because if the transition occurs too soon it is considered noise, and if the transition occurs too late, then either the bit is missed or a collision is assumed.

3.5.9 Transmit Waveforms

The GSC is capable of three types of data encoding, Manchester, NRZI, and NRZ. Figure 3.12 shows examples of all three types of data encoding.

3.5.10 Receiver Clock Recovery

The receiver is always monitored at eight times the baud rate frequency, except when an external clock is used. When using an external clock the receiver is loaded during the clock cycle.

In CSMA/CD mode the receiver synchronizes to the transmitted data during the preamble. If a pulse is detected as being too short it is assumed to be noise or a collision. If a pulse is too long it is assumed to be a collision or an idle condition.

In SDLC the synchronization takes place during the BOF flag. In addition, pulses less than four sample periods are ignored, and assumed to be noise. This sets a lower limit on the pulse size of received zeros.

In CSMA/CD the preamble consists of alternating is and 0 s. Consequently, the preamble looks like the waveform in Figure 3.13A and 3.13B.

3.5.11 External Clocking

To select external clocking, the user is given three choices. External clocking can be used with the transmitter, with the receiver, or with both. To select external clocking for the transmitter, XTCLK (GMOD.7) has to be set to a 1 . To select external clocking for the receiver, XRCLK (PCON.3) has to be set to a 1. Setting both bits to 1 forces external clocking for the receiver and transmitter. The minimum frequency the GSC can be externally clocked at is 0 Hz (D.C.).

The external transmit clock is applied to pin 4 ($\overline{\text { TXC }}$), P1.3. The external receive clock is applied to pin 5 $(\overline{\mathrm{RXC}}), \mathrm{P} 1.4$. To enable the external clock function on the port pin, that pin has to be set to a 1 in the appropriate SFR, P1.

Figure 3.12. Transmit Waveforms

Whenever the external clock option is used, the format of the transmitted and received data is restricted to NRZ encoding and the protocol is restricted to SDLC. With external clock, the bit stuffing/stripping is still active with SDLC protocol.

3.5.12 Determining Receiver Errors

It is possible that several receiver error bits will be set in response to a single cause. The multiple errors that can occur are:

AE and CRCE may both be set when an alignment error occurs due to a bad CRC caused by the misaligned frame.

RCABT, AE, and CRCE may be set when an abort occurs.

OVR, AE, and CRCE may be set when a overrun occurs.

In order to determine the correct cause of the error a specific order should be followed when examining the error bits. This order is:

1) OVR
2) RCBAT
3) $A E$
4) CRCE

3.5.13 Addressing

There are four 8 -bit address registers (ADR0, ADR1, ADR2, ADR3) and two 8-bit address mask registers
(AMSK0, AMSK1) in the C152. These function with the GSC receiver only. The transmitted address is treated like any other data. The address is transmitted under software control by placing the address byte(s) at the proper location (usually first) in the sequence of bytes to be output in the outgoing packet.

The C152 can have up to four different 8-bit addresses or two different 16 -bit addresses assigned to each station. When using 16-bit addressing, ADR0:ADR1 form one address and ADR2:ADR3 form the second address. If the receiver is enabled, it looks for a matching address after every BOF flag is detected. As the data is received, if the 8 th (or 16 th) bit does not match the address recognition circuitry, the rest of the frame is ignored and the search continues for another flag. If the address does match the address recognition circuitry, the address and all subsequent data is passed into the receive FIFO until the EOF flag or an error occurs. The address is not stripped and is also passed to RFIFO.

The address masking registers, AMSK0 and AMSK1, work in conjunction with ADR0 and ADR1 respectively to identify "don't care" bits. A 1 in any position in the AMSKn register makes the respective bit in the ADRn register irrelevant. These combinations can then be used for form group addresses. If the masking registers are filled with all 1 s , the C 152 will receive all packets, which is called the promiscuous mode. If 16 -bit addressing is used, AMSK0:AMSK1 form one 16-bit address mask.

CSMA/CD Clock Recovery

Figure 3.13A. Clock Recovery

Figure 3.13B. Clock Recovery

3.6 GSC Operation

3.6.1 Determining Line Discipline

In normal operation the GSC uses full or half duplex operation. When using a 32-bit CRC (GMOD. $3=1$), operation can only be half duplex. If using a 16 -bit CRC (GMOD. $3=0$), full duplex is selected by default. When using a 16 -bit CRC the receiver can be turned off while transmitting (RSTAT. $1=0$), and the transmitter can be turned off during reception (TSTAT. $1=0$). This simulates half-duplex operation when using a 16 -bit CRC.

Normally, HDLC uses a 16 -bit CRC, so half duplex is determined by turning off the receiver or transmitter. This is so that the receiver will not detect its own address as transmission takes place. This also needs to be done when using CSMA/CD with a 16 -bit CRC for the same reason.

3.6.2 CPU/DMA CONTROL OF THE GSC

The data for transmission or reception can be handled by either the CPU (TSTAT. $0=0$) or DMA controller (TSTAT. $0=1$). This allows the user two sets of flags to control the FIFO. Associated with these flags are interrupts, which may be enabled by the user software. Either one or both sets of flags may be used at the same time.

In CPU control mode the flags (RFNE,TFNF) are generated by the condition of the receive or transmit FIFO's. After loading a byte into the transmit FIFO, there is a one machine cycle latency until the TFNF flag is updated. Because of this latency, the status of TFNF should not be checked immediately following the instruction to load the transmit FIFO. If using the interrupts to service the transmit FIFO, the one machine cycle of latency must be considered if the TFNF flag is checked prior to leaving the subroutine.

When using the CPU for control, transmission normally is initiated by setting the TEN bit (TSTAT.1) and then writing to TFIFO. TEN must be set before loading the transmit FIFO, as setting TEN clears the transmit FIFO. TCDCNT should also be checked by user software and cleared if a collision occurred on a prior transmission.

To enable the receiver, GREN (RSTAT.1) is set. After GREN is set, the GSC begins to look for a valid BOF. After detecting a valid BOF the GSC attempts to match the received address byte(s) against the address match registers. When a match occurs the frame is loaded into the GSC. Due to the CRC strip hardware, there is a 40 or 24 bit time delay following the BOF until the first data byte is loaded into RFIFO if the 32 or 16 bit CRC is chosen. If the end of frame is detected before data is loaded into the receive FIFO, the receiver ignores that frame.

If the receiver detects a collision during reception in CSMA/CD mode and if any bytes have been loaded into the receive FIFO, the RCABT flag is set. The GSC hardware then halts reception and resets GREN. The user software needs to filter any collision fragment data which may have been received. If the collision occurred prior to the data being loaded into RFIFO the CPU is not notified and the receiver is left enabled. At the end of a reception the RDN bit is set and GREN is cleared. In HABEN mode this causes an acknowledgement to be transmitted if the frame did not have a broadcast or multi-cast address. The user software can enable the interrupt for RDN to determine when a frame is completed.

In DMA mode the interrupts are generated by the internal "transmit/receive done" (TDN,RDN) conditions. When the CPU responds to TDN or RDN, checks are performed to see if the transmit underrun error has occurred. The underrun condition is only checked when using the DMA channels.

Upon power up the CPU mode is initialized. General DMA control is covered in Section 4.0. DMA control of the GSC is covered in Section 3.5.4. If DMA is to be used for serving the GSC, it must be configured into the serial channel demand mode and the DMA bit in TSTAT has to be set.

3.6.3 COLLISIONS AND BACKOFF

The actions that are taken by the GSC if a collision occurs while transmitting depend on where the collision occurs. If a collision occurs in CSMA/CD mode following the preamble and BOF flag, the TCDT flag is set and the transmit hardware completes a jam. When this type of collision occurs, there will be no automatic retry at transmission. After the jam, control is returned to the CPU and user software must then initiate whatever actions are necessary for a proper recovery. The possibility that data might have been loaded into or from the GSC deserves special consideration. If these fragments of a message have been passed on to other devices, user software may have to perform some extensive error handling or notification. Before starting a new message, the transmit and receive FIFOs will need to be cleared. If DMA servicing is being used the pointers must also be reinitialized. It should be noted that a collision should never occur after the BOF flag in a well designed system, since the system slot time will likely be less than the preamble length. The occurrence of such a situation is normally due to a station on the link that is not adhering to proper CSMA/CD protocol or is not using the same timings as the rest of the network.

A collision occurring during the preamble or BOF flag is the normal type of collision that is expected. When this type of collision occurs the GSC automatically handles the retransmission attempts for as many as eight tries. If on the eighth attempt a collision occurs,
the transmitter is disabled, although the jam and backoff are performed. If enabled, the CPU is then interrupted. The user software should then determine what action to take. The possibilities range from just reporting the error and aborting transmission to reinitializing the serial channel registers and attempt retransmission.

If less than eight attempts are desired TCDCNT can be loaded with some value which will reduce the number of collisions possible before TCDCNT overflows. The value loaded should consist of all 1 s as the least significant bits, e.g. 7, $0 \mathrm{FH}, 3 \mathrm{FH}$. A solid block of 1 s is suggested because TCDCNT is used as a mask when generating the random slot number assignment. The TCDCNT register operates by shifting the contents one bit position to the left as each collision is detected. As each shift occurs a 1 is loaded into the LSB. When TCDCNT overflows, GSC operation stops and the CPU is notified by the setting of the TCDT bit which can flag an interrupt.

The amount of time that the GSC has before it must be ready to retransmit after a collision is determined by the mode which is selected. The mode is determined M0 (GMOD.5) and M1 (GMOD.6). If M0 and M1 equal 0,0 (normal backoff) then the minimum period before retransmission will be either the interframe space or the backoff period, whichever is longer. If M0 and M1 equal 1,1 (alternate backoff) then the minimum period before retransmission will be the interframe space plus the backoff period. Both of these are shown in Figure 3.4. Alternate backoff must be enabled if using deterministic resolution. If the GSC is not ready to retransmit by the time its assigned slot becomes available, the slot time is lost and the station must wait until the collision resolution time period has passed.

Instead of waiting for the collision resolution to pass, the transmission could be aborted. The decision to abort is usually dependent on the number of stations on the link and how many collisions have already occurred. The number of collisions can be obtained by examining the register, TCDCNT. The abort is normally implemented by clearing TEN. The new transmission begins by setting TEN and loading TFIFO. The minimum amount of time available to initiate a retransmission would be one interframe space period after the line is sensed as being idle.

As the number of stations approach 256 the probability of a successful transmission decreases rapidly. If there
are more than 256 stations involved in the collision there would be no resolution since at least two of the stations will always have the same backoff interval selected.

All the stations monitor the link as long as that station is active, even if not attempting to transmit. This is to ensure that each station always defers the minimum amount of time before attempting a transmission and so that addresses are recognized. However, the collision detect circuitry operates slightly differently.

In normal back-off mode, a transmitting station always monitors the link while transmitting. If a collision is detected one or more of the transmitting stations apply the jam signal and all transmitting stations enter the back-off algorithm. The receiving stations also constantly monitor for a collision but do not take part in the resolution phase. This allows a station to try to transmit in the middle of a resolution period. This in turn may or may not cause another collision. If the new station trying to transmit on the link does so during an unused slot time then there will probably not be a collision. If trying to transmit during a used slot time, then there will probably be a collision. The actions the receiver does take when detecting a collision is to just stop receiving data if data has not been loaded into RFIFO or to stop reception, clear receiver enable (REN) and set the receiver abort flag (RCABT RSTAT.6).

If deterministic resolution is used, the transmitting stations go through pretty much the same process as in normal back-off, except that the slots are predetermined. All the receivers go through the back-off algorithm and may only transmit during their assigned slot.

3.6.4 SUCCESSFUL ENDING OF TRANSMISSIONS AND RECEPTIONS

In both CSMA/CD and SDLC modes, the TDN bit is set and TEN cleared at the end of a successful transmission. The end of the transmission occurs when the TFIFO is empty and the last byte has been transmitted. In CSMA/CD the user should clear the TCDCNT register after successful transmission.

At the end of a successful reception, the RDN bit is set and GREN is cleared. The end of reception occurs when the EOF flag is detected by the GSC hardware.

3.7 Register Descriptions

ADR0,1,2,3 (95H, 0A5H, 0B5H, 0C5H) - Address Match Registers $0,1,2,3$ - Contains the address match values which determines which data will be accepted as valid. In 8 bit addressing mode, a match with any of the four registers will trigger acceptance. In 16 bit addressing mode a match with ADR1:ADR0 or ADR3:ADR2 will be accepted. Addressing mode is determined in GMOD (AL).

AMSK0,1 (0D5H, 0E5H) - Address Match Mask 0,1Identifies which bits in ADR0,1 are "don't care" bits. Writing a one to a bit in AMSK0,1 masks out that corresponding bit in ADDR0,1.

BAUD (94H) - GSC Baud Rate Generator - Contains the value of the programmable baud rate. The data rate will equal (frequency of the oscillator)/((BAUD +1$)$ \times (8)). Writing to BAUD actually stores the value in a reload register. The reload register contents are copied into the BAUD register when the Baud register decrements to 00 H . Reading BAUD yields the current timer value. A read during GSC operation will give a value that may not be current because the timer could decrement between the time it is read by the CPU and by the time the value is loaded into its destination.

BKOFF (0C4H) - Backoff Timer - The backoff timer is an eight bit count-down timer with a clock period equal to one slot time. The backoff time is used in the CSMA/CD collision resolution algorithm. The user software may read the timer but the value may be invalid as the timer is clocked asynchronously to the CPU. Writing to 0 C 4 H will have no effect.

GMOD (84H)							
7	6	5	4	3	2	1	0
XTCLK	M1	M0	AL	CT	PL1	PLO	PR

Figure 3.14. GMOD
GMOD. 0 (PR) - Protocol - If set, SDLC protocols with NRZI encoding and SDLC flags are used. If cleared, CSMA/CD link access with Manchester encoding is used. The user software is responsible for setting or clearing this flag.

GMOD.1,2 (PL0,1) - Preamble length
PL1 PL0 LENGTH (BITS)

0	0	0
0	1	8
1	0	32
1	1	64

The length includes the two bit Begin Of Frame (BOF) flag in CSMA/CD but does not include the SDLC flag. In SDLC mode, the BOF is an SDLC flag, otherwise it is two consecutive ones. Zero length is not compatible in CSMA/CD mode. The user software is responsible for setting or clearing these bits.

GMOD. 3 (CT) - CRC Type - If set, 32 bit AUTODIN-II- 32 is used. If cleared, 16 bit CRC-CCITT is used. The user software is responsible for setting or clearing this flag.

GMOD. 4 (AL) - Address Length - If set, 16 bit addressing is used. If cleared, 8 bit addressing is used. In 8 bit mode a match with any of the 4 address registers will be accepted (ADR0, ADR1, ADR2, ADR3). "Don't Care" bits may be masked in ADR0 and ADR1 with AMSK0 and AMSK1. In 16 bit mode, addresses are matched against "ADR1:ADR0" or "ADR3: ADR2". Again, "Don't Care" bits in ADR1:ADR0 can be masked in AMSK 1:AMSK0. A received address of all ones will always be recognized in any mode. The user software is responsible for setting or clearing this flag.

GMOD.5,6 (M0,M1) - Mode Select - Two test modes, an optional "alternate backoff" mode, or normal backoff can be enabled with these two bits. The user software is responsible for setting or clearing the mode bits.

M1	M0	Mode
0	0	Normal
0	1	Raw Transmit
1	0	Raw Receive
1	1	Alternate Backoff

In raw receive mode, the receiver operates as normal except that all the bytes following the BOF are loaded into the receive FIFO, including the CRC. The transmitter operates as normal.

In raw transmit mode the transmit output is internally connected to the receiver input. The internal connection is not at the actual port pin, but inside the port latch. All data transmitted is done without a preamble, flag or zero bit insertion, and without appending a CRC. The receiver operates as normal. Zero bit deletion is performed.

In alternate backoff mode the standard backoff process is modified so the the backoff is delayed until the end of the IFS. This should help to prevent collisions constantly happening because the IFS time is usually larger than the slot time.

GMOD. 7 (XTCLK) - External Transmit Clock - If set an external 1 X clock is used for the transmitter. If cleared the internal baud rate generator provides the transmit clock. The input clock is applied to P1.3 ($\overline{\mathrm{T} \times \mathrm{C}}$). The user software is responsible for setting or clearing this flag. External receive clock is enabled by setting PCON.3.

IFS (0A4H) - Interframe Spacing - Determines the number of bit times separating transmitted frames in CSMA/CD and SDLC. A bit time is equal to $1 /$ baud rate. Only even interframe space periods can be used. The number written into this register is divided by two and loaded in the most significant seven bits. Complete interframe space is obtained by counting this seven bit number down to zero twice. A user software read of this register will give a value where the seven most significant bits gives the current count value and the least significant bit shows a one for the first count-down and a zero for the second count. The value read may not be valid as the timer is clocked in periods not necessarily associated with the CPU read of IFS. Loading this register with zero results in 256 bit times.

MYSLOT (0F5H) - Slot Address Register							
7	6	5	4	3	2	1	0
DCJ	DCR	SA5	SA4	SA3	SA2	SA1	SAO
SAn = SLOT ADDRESS (BITS $5-0$)							

Figure 3.15. MYSLOT
MYSLOT.0, 1, 2, 3, 4, 5 - Slot Address - The six address bits choose 1 of 64 slot addresses. Address 63 has the highest priority and address 1 has the lowest. A value of zero will prevent a station from transmitting during the collision resolution period by waiting until all the possible slot times have elapsed. The user software normally initializes this address in the operating software.

MYSLOT. 6 (DCR) - Deterministic Collision Resolution Algorithm - When set, the alternate collision resolution algorithm is selected. Retriggering of the IFS on reappearance of the carrier is also disabled. When using this feature Alternate Backoff Mode must be selected and several other registers must be initialized. User software must initialize TCDCNT with the maximum number of slots that are most appropriate for a particular application. The PRBS register must be set to all ones. This disables the PRBS by freezing it's contents at 0 FFH . The backoff timer is used to count down the number of slots based on the slot timer value setting the period of one slot. The user software is responsible for setting or clearing this flag.

MYSLOT. 7 (DCJ) - D.C. Jam - When set selects D.C. type jam, when clear, selects A.C. type jam. The user software is responsible for setting or clearing this flag.

PCON (087H)						
7	6	5	4	3	2	1

PCON contains bits for power control, LSC control, DMA control, and GSC control. The bits used for the GSC are PCON.2, PCON.3, and PCON.4.

PCON. 2 (GFIEN) - GSC Flag Idle Enable - Setting GFIEN to a 1 caused idle flags to be generated between transmitted frames in SDLC mode. SDLC idle flags consist of 01111110 flags creating the sequence $01111110011111110 \ldots . .011111110$. A possible side effect of enabling GFIEN is that the maximum possible latency from writing to TFIFO until the first bit is transmitted increased from approximately 2 bit-times to around 8 bit-times. GFIEN has no effect with CSMA/CD.

PCON. 3 (XRCLK) - GSC External Receive Clock Enable - Writing a 1 to XRCLK enables an external clock to be applied to pin 5 (Port 1.4). The external clock is used to determine when bits are loaded into the receiver.

PCON. 4 (GAREN) - GSC Auxiliary Receiver Enable Bit - This bit needs to be set to a 1 to enable the reception of back-to-back SDLC frames. A back-to-back SDLC frame is when the EOF and BOF is shared between two sequential frames intended for the same station on the link. If GAREN contains a 0 then the receiver will be disabled upon reception of the EOF and by the time user software re-enables the receiver the first bit(s) may have already passed, in the case of back-to-back frames. Setting GAREN to a 1 , prevents the receiver from being disabled by the EOF but GREN will be cleared and can be checked by user software to determine that an EOF has been received. GAREN has no effect if the GSC is in CSMA/CD mode.

PRBS (0E4H) - Pseudo-Random Binary Sequence This register contains a pseudo-random number to be used in the CSMA/CD backoff algorithm. The number is generated by using a feedback shift register clocked by the CPU phase clocks. Writing all ones to the PRBS will freeze the value at all ones. Writing any other value to it will restart the PRBS generator. The PRBS is initialized to all zero's during RESET. A read of location 0 E 4 H will not necessarily give the seed used in the backoff algorithm because the PRBS counters are clocked by internal CPU phase clocks. This means the contents of the PRBS may have been altered between the time when the seed was generated and before a READ has been internally executed.

RFIFO (0F4H) - Receive FIFO - RFIFO is a 3 byte buffer that is loaded each time the GSC receiver has a byte of data. Associated with RFIFO is a pointer that is automatically updated with each read of the FIFO. A read of RFIFO fetches the oldest data in the FIFO.

RSTAT (0E8H) - Receive Status Register							
7	6	5	4	3	2	1	0
OR	RCABT	AE	CRCE	RDN	RFNE	GREN	HABEN

Figure 3.16. RSTAT
RSTAT. 0 (HABEN) - Hardware Based Acknowledge Enable - If set, enables the hardware based acknowledge feature. The user software is responsible for setting or clearing this flag.

RSTAT. 1 (GREN) - Receiver Enable - When set, the receiver is enabled to accept incoming frames. The user must clear RFIFO with software before enabling the receiver. RFIFO is cleared by reading the contents of RFIFO until RFNE $=0$. After each read of RFIFO, it takes one machine cycle for the status of RFNE to be updated. Setting GREN also clears RDN, CRCE, AE, and RCABT. GREN is cleared by hardware at the end of a reception or if any receive errors are detected. The user software is responsible for setting this flag and the GSC or user software can clear it. The status of GREN has no effect on whether the receiver detects a collision in CSMA/CD mode as the receiver input circuitry always monitors the receive pin.

RSTAT. 2 (RFNE) - Receive FIFO Not Empty - If set, indicates that the receive FIFO contains data. The receive FIFO is a three byte buffer into which the receive data is loaded. A CPU read of the FIFO retrieves the oldest data and automatically updates the FIFO pointers. Setting GREN to a one will clear the receive FIFO. The status of this flag is controlled by the GSC. It is cleared if user empties receive FIFO.

RSTAT. 3 (RDN) - Receive Done - If set, indicates the successful completion of a receiver operation. Will not be set if a CRC, alignment, abort, or FIFO overrun error occurred. The status of this flag is controlled by the GSC.

RSTAT. 4 (CRCE) - CRC Error - If set, indicates that a properly aligned frame was received with a mismatched CRC. The status of this flag is controlled by the GSC.

RSTAT. 5 (AE) - Alignment Error - In CSMA/CD mode, $A E$ is set if the receiver shift register (an internal serial-to-parallel converter) is not full and the CRC is bad when an EOF is detected. In CSMA/CD the EOF is a line idle condition (see LNI) for two bit times. If the CRC is correct while in CSMA/CD mode, AE is not set and any mis-alignment is assumed to be caused by dribble bits as the line went idle. In SDLC mode, AE is set if a non-byte-aligned flag is received. CRCE may also be set. The setting of this flag is controlled by the GSC.

RSTAT. 6 (RCABT) - Receiver Collision/Abort Detect - If set, indicates that a collision was detected after data had been loaded into the receive FIFO in CSMA/CD mode. In SDLC mode, RCABT indicates that 7 consecutive ones were detected prior to the end flag but after data has been loaded into the receive FIFO. AE may also be set. The setting of this flag is controlled by the GSC.

RSTAT. 7 (OVR) - Overrun - If set, indicates that the receive FIFO was full and new shift register data was written into it. AE and/or CRCE may also be set. The setting of this flag is controlled by the GSC and it is cleared by user software.

SLOTTM (0BH) - Slot Time - Determines the length of the slot time used in CSMA/CD. A slot time equals (SLOTTM) $\times(1 /$ baud rate $)$. A read of SLOTTM will give the value of the slot time timer but the value may be invalid as the timer is clocked asynchronously to the CPU. Loading SLOTTM with 0 results in 256 bit times.

TCDCNT (0D4H) - Transmit Collision Detect Count Contains the number of collisions that have occurred if probabilistic CSMA/CD is used. The user software must clear this register before transmitting a new frame so that the GSC backoff hardware can accurately distinguish a new frame from a retransmit attempt.

In deterministic backoff mode, TCDCNT is used to hold the maximum number of slots.

TFIFO (85 H) - GSC Transmit FIFO - TFIFO is a 3 byte buffer with an associated pointer that is automatically updated for each write by user software. Writing a byte to TFIFO loads the data into the next available location in the transmit FIFO. Setting TEN clears the transmit FIFO so the transmit FIFO should not be written to prior to setting TEN. If TEN is already set transmission begins as soon as data is written to TFIFO.

TSTAT (0D8) - Transmit Status Register

| 1 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LNI | NOACK | UR | TCDT | TDN | TFNF | TEN | DMA |

Figure 3.17. TSTAT
TSTAT. 0 (DMA) - DMA Select - If set, indicates that DMA channels are used to service the GSC FIFO's and GSC interrupts occur on TDN and RDN, and also enables UR to become set. If cleared, indicates that the GSC is operating in its normal mode and interrupts occur on TFNF and RFNE. For more information on DMA servicing please refer to the DMA section on DMA serial demand mode (4.2.2.3). The user software is responsible for setting or clearing this flag.

TSTAT. 1 (TEN) - Transmit Enable - When set causes TDN, UR, TCDT, and NOACK flag to be reset and the TFIFO cleared. The transmitter will clear TEN after a successful transmission, a collision during the data, CRC, or end flag. The user software is responsible for setting but the GSC or user software may clear this flag. If cleared during a transmission the GSC transmit pin goes to a steady state high level. This is the method used to send an abort character in SDLC. Also $\overline{\text { DEN }}$ is forced to a high level. The end of transmission occurs whenever the TFIFO is emptied.

TSTAT. 2 (TFNF) - Transmit FIFO not full - When set, indicates that new data may be written into the transmit FIFO. The transmit FIFO is a three byte buffer that loads the transmit shift register with data. The status of this flag is controlled by the GSC.

TSTAT. 3 (TDN) - Transmit Done - When set, indicates the successful completion of a frame transmission. If HABEN is set, TDN will not be set until the end of the IFS following the transmitted message, so that the acknowledge can be checked. If an acknowledge is expected and not received, TDN is not set. An acknowledge is not expected following a broadcast or multi-cast packet. The status of this flag is controlled by the GSC.

TSTAT. 4 (TCDT) - Transmit Collision Detect - If set, indicates that the transmitter halted due to a collision. It is set if a collision occurs during the data or CRC or if there are more than eight collisions. The status of this flag is controlled by the GSC.

TSTAT. 5 (UR) - Underrun - If set, indicates that in DMA mode the last bit was shifted out of the transmit register and that the DMA byte count did not equal zero. When an underrun occurs, the transmitter halts without sending the CRC or the end flag. The status of this flag is controlled by the GSC.

TSTAT. 6 (NOACK) - No Acknowledge - If set, indicates that no acknowledge was received for the previous frame. Will be set only if HABEN is set and no acknowledge is received prior to the end of the IFS. NOACK is not set following a broadcast or a multicast packet. The status of this flag is controlled by the GSC.

TSTAT. 7 (LNI) - Line Idle - If set, indicates the receive line is idle. In SDLC protocol it is set if 15 consecutive ones are received. In CSMA/CD protocol, line idle is set if GR $\times \mathrm{D}$ remains high for approximately 1.6 bit times. LNI is cleared after a transition on GR $\times D$. The status of this flag is controlled by the GSC.

3.8 Serial Backplane vs. Network Environment

The C152 GSC port is intended to fulfill the needs of both serial backplane environment and the serial communication network environment. The serial backplane is where typically, only processor to processor communications take place within a self contained box. The communication usually only encompasses those items which are necessary to accomplish the dedicated task for the box. In these types of applications there may not be a need for line drivers as the distance between the transmitter and receiver is relatively short. The network environment; however, usually requires transmission of data over large distances and requires drivers and/or repeaters to ensure the data is received on both ends.

4.0 DMA Operation

The C152 contains DMA (Direct Memory Accessing) logic to perform high speed data transfers between any two of

Internal Data RAM
Internal SFRs
External Data RAM

If external RAM is involved, the Port 2 and Port 0 pins are used as the address/data bus, and $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals are generated as required.

Hardware is also implemented to generate a Hold Request signal and await a Hold Acknowledge response before commencing a DMA that involves external RAM.

Alternatively, the Hold/Hold Acknowledge hardware can be programmed to accept a Hold Request signal from an external device and generate a Hold Acknowledge signal in response, to indicate to the requesting device that the C152 will not commence a DMA to or from external RAM while the Hold Request is active.

4.1 DMA with the 80C152

The C152 contains two identical general purpose 8-bit DMA channels with 16-bit addressability: DMA0 and DMA1: DMA transfers can be executed by either channel independent of the other, but only by one channel at a time. During the time that a DMA transfer is being executed, program execution is suspended. A DMA transfer takes one machine cycle (12 oscillator

Figure 4.1. DMA Registers
periods) per byte transferred, except when the destination and source are both in External Data RAM. In that case the transfer takes two machine cycles per byte. The term DMA Cycle will be used to mean the transfer of a single data byte, whether it takes 1 or 2 machine cycles.

Associated with each channel are seven SFRs, shown in Figure 4.1. SARLn and SARHn holds the low and high bytes of the source address. Taken together they form a 16-bit Source Address Register. DARLn and DARHn hold the low and high bytes of the destination address, and together form the Destination Address Register. BCRLn and BCRHn hold the low and high bytes of the number of bytes to be transferred, and together form the Byte Count Register. DCONn contains control and flag bits.

Two bits in DCONn are used to specify the physical destination of the data transfer. These bits are DAS (Destination Address Space) and IDA (Increment Destination Address). If DAS $=0$, the destination is in data memory external to the C152. If DAS $=1$, the destination is internal to the C152. If DAS $=1$ and IDA $=0$, the internal destination is a Special Function Register (SFR). If DAS $=1$ and IDA $=1$, the internal destination is in the 256-byte data RAM.

In any case, if IDA $=1$, the destination address is automatically incremented after each byte transfer. If IDA $=0$, it is not.

Two other bits in DCONn specify the physical source of the data to be transferred. These are SAS (Source Address Space) and ISA (Increment Source Address). If SAS $=0$, the source is in data memory external to the C152. If SAS $=1$, the source is internal. If SAS $=$ 1 and ISA $=0$, the internal source is an SFR. If SAS $=1$ and ISA $=1$, the internal source is in the 256 -byte data RAM.

In any case, if ISA $=1$, the source address is automatically incremented after each byte transfer. If ISA $=0$, it is not.

The functions of these four control bits are summarized below:

DAS	IDA	Destination	Auto-Increment
0	0	External RAM	no
0	1	External RAM	yes
1	0	SFR	no
1	1	Internal RAM	yes
SAS	ISA	Source	Auto-Increment
0	0	External RAM	no
0	1	External RAM	yes
1	0	SFR	no
1	1	Internal RAM	yes

There are four modes in which the DMA channel can operate. These are selected by the bits DM and TM (Demand Mode and Transfer Mode) in DCONn:

DM	TM	Operating Mode
0	0	Alternate Cycles Mode
0	1	Burst Mode
1	0	Serial Port Demand Mode
1	1	External Demand Mode

The operating modes are described below.

4.1.1 ALTERNATE CYCLE MODE

In Alternate Cycles Mode the DMA is initiated by setting the GO bit in DCONn. Following the instruction that set the GO bit, one more instruction is executed, and then the first data byte is transferred from the source address to the destination address. Then another instruction is executed, and then another byte of data is transferred, and so on in this manner.

Each time a data byte is transferred, BCRn (Byte Count Register for DMA Channel n) is decremented. When it reaches 0000 H , on-chip hardware clears the GO bit and sets the DONE bit, and the DMA ceases. The DONE bit flags an interrupt.

4.1.2 BURST MODE

Burst Mode differs from Alternate Cycles mode only in that once the data transfer has begun, program execution is entirely suspended until BCRn reaches 0000 H , indicating that all data bytes that were to be transferred have been transferred. The interrupt control hardware remains active during the DMA, so interrupt flags may get set, but since program execution is suspended, the interrupts will not be serviced while the DMA is in progress.

4.1.3 SERIAL PORT DEMAND MODE

In this mode the DMA can be used to service the Local Serial Channel (LSC) or the Global Serial Channel (GSC).

In Serial Port Demand Mode the DMA is initiated by any of the following conditions, if the GO bit is set:

Source Address $=$ SBUF	.AND. $\quad \mathrm{RI}=1$
Destination Address $=$ SBUF	.AND. $\mathrm{TI}=1$
Source Address $=$ RFIFO	.AND. $\mathrm{RFNE}=1$
Destination Address $=$ TFIFO	.AND. \quad TFNF $=1$

Each time one of the above conditions is met, one DMA Cycle is executed; that is, one data byte is transferred from the source address to the destination ad-
dress. On-chip hardware then clears the flag (RI, TI, RFNE, or TFNF) that initiated the DMA, and decrements BCRn. Note that since the flag that initiated the DMA is cleared, it will not generate an interrupt unless DMA servicing is held off or the byte count equals 0 . DMA servicing may be held off when alternate cycle is being used or by the status of the HOLD/HLDA logic. In these situations the interrupt for the LSC may occur before the DMA can clear the RI or TI flag. This is because the LSC is serviced according to the status of RI and TI, whether or not the DMA channels are being used for the transferring of data. The GSC does not use RFNE or TFNF flags when using the DMA channels so these do not need to be disabled. When using the DMA channels to service the LSC it is recommended that the interrupts (RI and TI) be disabled. If the decremented BCRn is 0000 H , on-chip hardware then clears the GO bit and sets the DONE bit. The DONE bit flags an interrupt.

4.1.4 EXTERNAL DEMAND MODE

In External Demand Mode the DMA is initiated by one of the External Interrupt pins, provided the GO bit is set. $\overline{\text { INT0 }}$ initiates a Channel 0 DMA, and $\overline{\mathrm{INT}}$ initiates a Channel 1 DMA.

If the external interrupt is configured to be transitionactivated, then each 1-to-0 transition at the interrupt pin sets the corresponding external interrupt flag, and generates one DMA Cycle. Then, BCRn is decremented. No more DMA Cycles take place until another 1 -to- 0 transition is seen at the external interrupt pin. If the decremented $\mathrm{BCRn}=0000 \mathrm{H}$, on-chip hardware clears the GO bit and sets the DONE bit. If the external interrupt is enabled, it will be serviced.

If the external interrupt is configured to be level-activated, then DMA Cycles commence when the interrupt pin is pulled low, and continue for as long as the pin is held low and BCRn is not 0000 H . If BCRn reaches 0 while the interrupt pin is still low, the GO bit is cleared, the DONE bit is set, and the DMA ceases. If the external interrupt is enabled, it will be serviced.

If the interrupt pin is pulled up before BCRn reaches 0000 H , then the DMA ceases, but the GO bit is still 1 and the DONE bit is still 0 . An external interrupt is not generated in this case, since in level-activated mode, pulling the pin to a logical 1 clears the interrupt flag. If the interrupt pin is then pulled low again, DMA transfers will continue from where they were previously stopped.

The timing for the DMA Cycle in the transition-activated mode, or for the first DMA Cycle in the level-activated mode is as follows: If the 1-to-0 transition is
detected before the final machine cycle of the instruction in progress, then the DMA commences as soon as the instruction in progress is completed. Otherwise, one more instruction will be executed before the DMA starts. No instruction is executed during any DMA Cycle.

4.2 Timing Diagrams

Timing diagrams for single-byte DMA transfers are shown in Figures 4.2 through 4.5 for four kinds of DMA Cycles: internal memory to internal memory, internal memory to external memory, external memory to internal memory, and external memory to external memory. In each case we assume the C152 is executing out of external program memory. If the C 152 is executing out of internal program memory, then PSEN is inactive, and the Port 0 and Port 2 pins emit P0 and P2 SFR data. If External Data Memory is involved, the Port 0 and Port 2 pins are used as the address/data bus;
and $\overline{\mathrm{RD}}$ and/or $\overline{\mathrm{WR}}$ signals are generated as needed, in the same manner as in the execution of a MOVX @DPTR instruction.

4.3 Hold/Hold Acknowledge

Two operating modes of Hold/Hold Acknowledge logic are available, and either or neither may be invoked by software. In one mode, the C152 generates a Hold Request signal and awaits a Hold Acknowledge response before commencing a DMA that involves external RAM. This is called the Requester Mode.

In the other mode, the $\mathbf{C 1 5 2}$ accepts a Hold Request signal from an external device and generates a Hold Acknowledge signal in response, to indicate to the requesting device that the C152 will not commence a DMA to or from external RAM while the Hold Request is active. This is called the Arbiter mode.

270427-29
Figure 4.2. DMA Transfer from Internal Memory to Internal Memory

Figure 4.3. DMA Transfer from Internal Memory to External Memory

Figure 4.4. DMA Transfer from External Memory to Internal Memory

Figure 4.5. DMA Transfer from External Memory to External Memory

4.3.1 REQUESTER MODE

The Requester Mode is selected by setting the control bit REQ, which resides in PCON. In that mode, when the C152 wants to do a DMA to External Data Memory, it first generates a Hold Request signal, $\overline{\mathrm{HLD}}$, and waits for a Hold Acknowledge signal, $\overline{\mathrm{HLDA}}$, before commencing the DMA operation. Note that program execution continues while $\overline{\text { HLDA }}$ is awaited. The DMA is not begun until a logical 0 is detected at the $\overline{\text { HLDA }}$ pin. Then, once the DMA has begun, it goes to completion regardless of the logic level at HLDA.

The protocol is activated only for DMAs (not for program fetches or MOVX operations), and only for DMAs to or from External Data Memory. If the data destination and source are both internal to the C152, the $\overline{\mathrm{HLD}} / \overline{\mathrm{HLDA}}$ protocol is not used.

The $\overline{\mathrm{HLD}}$ output is an alternate function of port pin P1.5, and the HLDA input is an alternate function of port pin P1.6.

4.3.2 ARBITER MODE

For DMAs that are to be driven by some device other than the C152, a different version of the Hold/Hold Acknowledge protocol is available. In this version, the device which is to drive the DMA sends a Hold Request signal, $\overline{\mathrm{HLD}}$, to the C 152 . If the C 152 is currently performing a DMA to or from External Data Memory, it will complete this DMA before responding to the Hold Request. When the C152 responds to the Hold Request, it does so by activating a Hold Acknowledge signal, HLDA. This indicates that the C152 will not commence a new DMA to or from External Data Memory while $\overline{\mathrm{HLD}}$ remains active.

Note that in the Arbiter Mode the C152 does not suspend program execution at all, even if it is executing from external program memory. It does not surrender use of its own bus.

The Hold Request input, $\overline{H L D}$, is at P1.5. The Hold Acknowledge output, $\overline{\text { HLDA, }}$, is at P1.6. This
version of the Hold/Hold Acknowledge feature is selected by setting the control bit ARB in PCON.

The functions of the ARB and REQ bits in PCON, then, are

ARB	REQ	Hold/Hold Acknowledge Logic
0	0	Disabled
0	1	C152 generates $\overline{\text { HLD }}$, detects $\overline{\text { HLDA }}$
1	0	C152 detects $\overline{H L D}$, generates HLDA
1	1	Invalid

4.3.3 USING THE HOLD/HOLD ACKNOWLEDGE

The $\overline{H O L D} / \overline{H O L D A}$ logic only affects DMA operation with external RAM and doesn't affect other operations with external RAM, such as MOVX instruction.

Figure 4.6 shows a system in which two 83C152s are sharing a global RAM. In this system, both CPUs are executing from internal ROM. Neither CPU uses the bus except to access the shared RAM, and such access-
es are done only through DMA operations, not by MOVX instructions.

One CPU is programmed to be the Arbiter and the other, to be the Requester. The ALE Switch selects which CPU's ALE signal will be directed to the address latch. The Arbiter's ALE is selected if HLDA is high, and the Requester's ALE is selected if HLDA is low.

Figure 4.7. ALE Switch Select
The ALE Switch logic can be implemented by a single 74HC00, as shown in Figure 4.7.

270427-33
Figure 4.6. Two 83C152s Sharing External RAM

4.3.4 INTERNAL LOGIC OF THE ARBITER

The internal logic of the arbiter is shown in Figure 4.8. In operation an input low at $\overline{H L D}$ sets Q2 if the arbiter's internal signal DMXRQ is low. DMXRQ is the arbiter's "DMA to XRAM Request". Setting Q2 activates HLDA through Q3. Q2 being set also disables any DMAs to XRAM that the arbiter might decide to do during the requester's DMA.

Figure 4.9 shows the minimum response time, 4 to 7 CPU oscillator periods, between a transition at the $\overline{\mathrm{HLD}}$ input and the response at $\overline{\mathrm{HLDA}}$.

When the arbiter wants to DMA the XRAM, it first activates DMXRQ. This signal prevents Q2 from being set if it is not already set. An output low from Q2 enables the arbiter to carry out its DMA to XRAM, and maintains an output high at HLDA. When the arbiter completes its DMA, the signal DMXRQ goes to O, which enables Q2 to accept signals from the HLD input again.

Figure 4.8. Internal Logic of the Arbiter

Figure 4.9. Minimum $\overline{\text { HLD/ }}$ / $\overline{\text { LDA }}$ Response Time

Figure 4.10. Internal Logic of the Requester (Clock 1 and Clock 2 are Shown in Figure 4.9)

4.3.5 Internal Logic of the Requester

The internal logic of the requester is shown in Figure 4.10. Initially, the requester's internal signal DMXRQ (DMA to XRAM Request) is at 0 , so Q2 is set and the HLD output is high. As long as Q2 stays set, the requester is inhibited from starting any DMA to XRAM.

When the requester wants to DMA the XRAM, it first activates DMXRQ. This signal enables Q2 to be cleared (but doesn't clear it), and, if HLDA is high, also activates the $\overline{\text { HLD }}$ output.

A 1-to-0 transition from $\overline{\text { HLDA }}$ can now clear Q2, which will enable the requester to commence its DMA to XRAM. Q2 being low also maintains an output low at HLD. When the DMA is completed, DMXRQ goes to 0 , which sets Q 2 and de-activates HLD .

Only DMXRQ going to 0 can set Q 2 . That means once Q2 gets cleared, enabling the requester's DMA to proceed, the arbiter has no way to stop the requester's DMA in progress. At this point, de-activating HLDA will have no effect on the requester's use of the bus. Only the requester itself can stop the DMA in progress, and when it does, it de-activates both DMXRQ and HLD.

If the DMA is in alternate cycles mode, then each time a DMA cycle is completed DMXRQ goes to 0 , thus deactivating HLD. Once HLD has been de-activated, it can't be re-asserted till after HLDA has been seen to go high (through flip-flop Q1A). Thus every time the DMA is suspended to allow an instruction cycle to proceed, the requester gives up the bus and must renew
the request and receive another acknowledge before another DMA cycle to XRAM can proceed. Obviously in this case, the "alternate cycles" mode may consist of single DMA cycles separated by any number of instruction cycles, depending on how long it takes the requester to regain the bus.

A channel 1 DMA in progress will always be overridden by a DMA request of any kind from channel 0 . If a channel 1 DMA to XRAM is in progress and is overridden by a channel 0 DMA which does not require the bus, DMXRQ will go to 0 during the channel 0 DMA, thus de-activating HLD. Again, the requester must renew its request for the bus, and must receive a new 1-to-0 transition in HLDA before channel 1 can continue

4.4 DMA Arbitration

The DMA \mid Arbitration described in this section is not arbitration between two devices wanting to access a shared RAM, but on-chip arbitration between the two DMA channels on the 8XC152.

The 8 XC 152 provides two DMA channels, either of which may be called into operation at any time in response to real time conditions in the application circuit. Since a DMA cycle always uses the 8 XC152's internal bus, and there's only one internal bus, only one DMA channel can be serviced during a single DMA cycle. Executing program instructions also requires the internal bus, so program execution will also be suspended in order for a DMA to take place.

270427-42
Figure 4.11. Internal Bus Usage

Figure 4.11 shows the three tasks to which the internal bus of the 8 XCl 52 can be dedicated. In this figure, Instruction Cycle means the complete execution of a single instruction, whether it takes 1,2 or 4 machine cycles. DMA Cycle means the transfer of a single data byte from source to destination, whether it takes 1 or 2 machine cycles. Each time a DMA Cycle or an Instruction Cycle is executed, on-chip arbitration logic determines which type of cycle is to be executed next.

Note that when an instruction is executed, if the instruction wrote to a DMA register (defined in Figure 4.1 but excluding PCON), then another instruction is executed without further arbitration. Therefore, a single write or a series of writes to DMA registers will prevent a DMA from taking place, and will continue to prevent a DMA from taking place until at least one instruction is executed which does not write to any DMA register.

The logic that determines whether the next cycle will be a DMA0 cycle, a DMA1 cycle, or an Instruction Cycle is shown in Figure 4.12 as a pseudo-HLL function. The statements in Figure 4.12 are executed sequentially unless an "if" condition is satisfied, in which case the corresponding "return" is executed and the remainder of the function is not. The return value of 0,1 , or 2 is passed to the arbitration logic block in Figure 4.11 to determine which exit path from the block is used.

The return value is based on the condition of the GO bit for each channel, and on the value returned by another function, named mode_logic (). The algorithm for mode_logic () is the same for both channels. The function is shown in Figure 4.13 as a pseudo-HLL function, mode_logic (n), where $\mathrm{n}=0$ when the function is invoked for DMA channel 0 , and $\mathrm{n}=1$ when it's invoked for DMA channel 1 . The value returned by this function is either 0 or 1 , and will be passed on to the DMA arbitration logic in Figure 4.12.

Note that the arbitration logic as shown in Figure 4.12 always gives precedence to channel 0 over channel 1 . If GOO is set and mode__logic (0) returns a 1 , then a DMA0 cycle is called without further reference to the situation in channel 1. That is not to say a DMA1 Cycle will be interrupted once it has begun. Once a cycle has begun, be it an Instruction Cycle or a DMA Cycle, it will be completed without interruption.

The statements in mode__logic (n), Figure 4.13, are executed sequentially until an "if" condition, based on the DMA mode programmed into DCONn, is satisfied. For example, if the channel is configured to Burst mode, then the first if-condition is satisfied, so the "return 1 " expression is executed and the remainder of the function is not.

```
arbitration_logic:
    if (GOO = 1 .AND. mode_logic(0) = l) return 0;
    if (GO1 = 1 .AND. mode_logic(1) = 1) return 1;
    else return 2;
    end arbitration_logic;
```

Figure 4.12. DMA Arbitration Logic

```
mode_logic(n):
    if (DCONn indicates burst_mode) return l;
    if (DCONn indicates extern_demand_mode)
        {
        if (demand_flag = l) return l;
        else return 0;
        }
    if (DCONn indicates SP_demand_mode)
        {
        if (SARn = SBUF .AND. RI = l) return l;
        if (DARn = SBUF .AND. TI = l) return l;
        if (SARn = RFIFO .AND. RFNE = l) return 1;
        if (DARn = TFIFO .AND. TFNF = 1 .AND.
            previous_cycle = instruction_cycle) return l;
        else return 0;
        }
    if (DCONn indicates alt_cycles_mode)
        {
        if (DCONm indicates .NOT. alt_cycles_mode
            .OR. GOm = 0)
            {
            if (previous_cycle = instruction_cycle)
                return l;
            else return 0;
            }
        if (previous_cycle = instruction_cycle
            .AND. previous_dma_cycle = .NOT. DMAn)
            return l;
        }
    return 0;
    end mode_logic(n);
```

Figure 4.13. DMA Mode Logic

If the channel is configured to External Demand mode, then the first if-condition is not satisfied but the second one is. In that case the block of statements following that if-condition and delimited by $\{\ldots\}$ is executed: if the demand flag (IEO for channel 0 and IE1 for channel 1) is set, the "return 1" expression is executed and the remainder of the function is not. If the demand flag is not set, the "return 0 " expression is executed and the remainder of the function is not.

If the channel is configured to Serial Port Demand mode, the source and destination addresses, SARn and DARn, have to be checked to see which Serial Port buffer is being addressed, and whether its demand flag is set.

SARn refers to the 16-bit source address for "this channel." Note that the condition

$$
\mathrm{SARn}=\mathrm{SBUF}
$$

cannot be true unless the SAS and ISA bits in DCONn are configured to select SFR space. If SARn is numerically equal to the address of SBUF (99H), and SAS and ISA are configured to select internal RAM rather than SFR space, then SARn refers to location 99 H in the "upper 128" of internal RAM, not to SBUF.

If the test for SARn = SBUF is true, and if the flag RI is set, mode_logic (n) returns as 1 and the remainder of the function is not executed. Otherwise, execution proceeds to the next if-condition, testing DARn against SBUF and T1 against 1.

The same considerations regarding SAS and ISA in the SARn test are now applied to DAS and IDA in the DARn test. If SFR space isn't selected, no Serial Port buffer is being addressed.

Note that if DMA channel n is configured to Alternate Cycles mode, the logic must examine the other DCON register, $D C O N m$, to determine if the other channel is also configured to Alternate Cycles mode and whether its GO bit is set. In Figure 4.13, the symbol DCONn refers to the DCON register for "this channel," and DCONm refers to "the other channel."

A careful examination of the logic in Figure 4.13 will reveal some idiosyncracies that the user should be aware of. First, the logic allows sequential DMA cycles to be generated to service RFIFO, but not to service TFIFO. This idiosyncracy is due to internal timing conflicts, and results in each individual DMA cycle to TFIFO having to be immediately preceded by an Instruction cycle. The logic disallows that there be two DMAs to TFIFO in a row.

If the user is unaware of this idiosyncracy, it can cause problems in situations where one DMA channel is servicing TFIFO and the other is configured to a completely different mode of operation.

For example, consider the situation where channel 0 is configured to service TFIFO and channel 1 is configured to Alternate Cycles mode. Then DMAs to TFIFO will always override the alternate cycles of channel 1 . If TFIFO needs more than 1 byte it will receive them in precendence over channel 1, but each DMA to TFIFO must be preceded by an Instruction cycle. The sequence of cycles might be:

DMA1 cycle

Instruction cycle
DMA1 cycle, during which TFNF gets set
Instruction cycle
DMA0 cycle
Instruction cycle
DMA0 cycle, as a result of which TFNF gets cleared
Instruction cycle
DMA1 cycle
Instruction cycle
DMA1 cycle
Instruction cycle

The requirement that a DMA to TFIFO be preceded by an Instruction cycle can result in the normal precedence of channel 0 over channel 1 being thwarted. Consider for example the situation where channel 0 is configured to service TFIFO, and is in the process of doing so, and channel 1 decides it wants to do a Burst mode DMA. The sequence of events might be:

Instruction cycle (sets GO bit in DCON1) Instruction cycle (during which TFNF gets set)
DMA0 cycle
DMA1 cycle
DMA1 cycle
DMA1 cycle
DMA1 cycle (completes channel 1 burst)
Instruction cycle
DMA0 cycle
Instruction cycle

This sequence begins with two Instruction cycles. The first one accesses a DMA register (DCON1), and therefore is followed by another Instruction cycle, which presumably does not access a DMA register. After the second Instruction cycle both channels are ready to generate DMA cycles, and channel 0 of course takes precedence. After the DMA0 cycle, channel 0 must wait for an Instruction cycle before it can access TFIFO again. Channel 1, being in Burst mode, doesn't have that restriction, and is therefore granted a DMA1 cycle. After the first DMA1 cycle, channel 0 is still waiting for an Instruction cycle and channel 1 still does not have that restriction. There follows another DMA1 cycle.

The result is that in this particular case channel 0 has to wait until channel 1 completes its Burst mode DMA, and then has to wait for an Instruction cycle to be generated, before it can continue its own DMA to TFIFO. The delay in servicing TFIFO can cause an Underflow condition in the GSC transmission.

The delay will not occur if channel 1 is configured to Alternate Cycles mode, since channel 0 would then see the Instruction cycles it needs to complete its logic requirements for asserting its request.

4.4.1 DMA Arbitration with Hold/Hold Ack

The Hold/Hold Acknowledge feature is invoked by setting either the ARB or REQ bit in PCON. Their effect is to add the requirements of the Hold/Hold Ack protocol to mode__logic (). This amounts to replacing every expression "return 1"' in Figure 4.13 with the expression "return hld_hlda_logic ()", where hld__hlda__logic () is a function which returns 1 if the Hold/Hold Ack protocol is satisfied, and returns 0 otherwise. A suitable definition for hld__hlda__logic () is shown in Figure 4.14.

4.5 Summary of DMA Control Bits

DCON | DAS | IDA | SAS | ISA | DM | TM | DONE | GO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DAS specifies the Destination Address Space. If DAS $=0$, the destination is in External Data Memory. If DAS $=1$ and IDA $=0$, the destination is a Special

Function Register (SFR). If DAS $=1$ and IDA $=1$, the destination is in Internal Data RAM.

IDA (Increment Destination Address) If IDA $=1$, the destination address is automatically incremented after each byte transfer. If IDA $=0$, it is not.

SAS specifies the Source Address Space. If $S A S=0$, the source is in External Data Memory. If SAS $=1$ and ISA $=0$, the source is an SFR. If SAS $=1$ and ISA $=1$, the source is Internal Data RAM.

ISA (Increment Source Address) If ISA $=1$, the source address is automatically incremented after each byte transfer. If ISA $=0$, it is not.

DM (Demand Mode) If $\mathbf{D M}=1$, the DMA Channel operates in Demand Mode. In Demand Mode the DMA is initiated either by an external signal or by a Serial Port flag, depending on the value of the TM bit. If $\mathrm{DM}=0$, the DMA is requested by setting the GO bit in software.

TM (Transfer Mode) If DM $=1$ then TM selects whether a DMA is initiated by an external signal (TM $=1$) or by a Serial Port flag (TM $=0$). If $\mathbf{D M}=0$ then TM selects whether the data transfers are to be in bursts ($\mathrm{TM}=1$) or in alternate cycles ($\mathrm{TM}=0$).

DONE indicates the completion of a DMA operation and flags an interrupt. It is set to 1 by on-chip hardware when $\operatorname{BCRn}=0$, and is cleared to 0 by on-chip hardware when the interrupt is vectored to. It can also be set or cleared by software.

```
hold_holda( ):
if (ARB = 0 .AND. REQ = 0) return 1;
if SARn = XRAM .OR. DARn = XRAM)
        {
        if (ARB = 1 .AND. \overline{HLDA}=1) return 1;
        if (REQ = 1 .AND. }\overline{HLDA}=0) return 1; 
        else return 0;
        }
    return l;
    end hold_holda( );
```

Figure 4.14. Hold/Hold Acknowledge Logic as a Pseudo-HLL Function

GO is the enable bit for the DMA Channel itself. The DMA Channel is inactive if $\mathrm{GO}=0$.

PCON | SMOD | ARB | REQ | GAREN | XRCLK | GFIEN | PDN | IDL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ARB enables the DMA logic to detect $\overline{\text { HLD }}$ and generate HLDA. After it has activated HLDA, the C152 will not begin a new DMA to or from External Data Memory as long as HLD is seen to be active. This logic is disabled when $\mathrm{ARB}=0$, and enabled when $\mathrm{ARB}=1$.

REQ enables the DMA logic to generate $\overline{\text { HLD }}$ and detect HLDA before performing a DMA to or from External Data Memory. After it has activated $\overline{\text { HLD }}$, the C152 will not begin the DMA until HLDA is seen to be active. This logic is disabled when REQ $=0$, and enabled when REQ $=1$.

5.0 INTERRUPT STRUCTURE

The 8 XC 152 retains all five interrupts of the 80 C 51 BH . Six new interrupts are added in the $8 \mathrm{XC152}$, to support its GSC and the DMA features. They are as listed below, and the flags that generate them are shown in Figure 5.1.

GSCRV - GSC Receive Valid
GSCRE - GSC Receive Error
GSCTV - GSC Transmit Valid
GSCTE - GSC Transmit Error
DMA0 - DMA Channel 0 Done
DMA1 - DMA Channel 1 Done
As shown in Figure 5.1, the Receive Valid interrupt can be signaled either by the RFNE flag (Receive FIFO Not Empty), or by the RDN flag (Receive Done). Which one of these flags causes the interrupt depends on the setting of the DMA bit in the SFR named TSTAT.

DMA $=0$ means the DMA hardware is not configured to service the GSC, so the CPU will service it in software in response to the Receive FIFO not being empty. In that case, RFNE generates the Receive Valid interrupt.

DMA $=1$ means the DMA hardware is configured to service the GSC, in which case the CPU need not be interrupted till the receive is complete. In that case, RDN generates the Receive Valid interrupt.

Similarly the Transmit Valid interrupt can be signaled either by the TFNF flag (Transmit FIFO Not Full), or by the TDN flag (Transmit Done), depending on whether the DMA bit is 0 or 1 .

Note that setting the DMA bit does not itself configure the DMA channels to service the GSC. That job must be done by software writes to the DMA registers. The DMA bit only selects whether the GSCRV and GSCTV interrupts are flagged by a FIFO needing service or by an "operation done" signal.

The Receive and Transmit Error interrupt flags are generated by the logical OR of a number of error conditions, which are described in Section 3.6.5.

Each interrupt is assigned a fixed location in Program Memory, and the interrupt causes the CPU to jump to that location. All the interrupt flags are sampled at S5P2 of every machine cycle, and then the samples are sequentially polled during the next machine cycle. If more than one interrupt of the same priority is active, the one that is highest in the polling sequence is serviced first. The interrupts and their fixed locations in Program Memory are listed below in the order of their polling sequence.

Figure 5.1. Six New Interrupts in the 8XC152

Interrupt	Location	Name
IE0	0003 H	External Interrupt 0
GSCRV	002 BH	GSC Receive Valid
TFO	000 BH	Timer 0 Overflow
GSCRE	0033 H	GSC Receive Error
DMA0	003 BH	DMA Channel 0 Done
IE1	0013 H	External Interrupt 1
GSCTV	0043 H	GSC Transmit Valid
DMA1	0053 H	DMA Channel 1 Done
TF1	001 BH	Timer 1 Overflow
GSCTE	004 BH	GSC Transmit Error
TI+RI	0023 H	UART Transmit/Receive

Note that the locations of the basic 8051 interrupts are the same as in the rest of the MCS-51 Family. And relative to each other they retain their same positions in the polling sequence.

The locations of the new interrupts all follow the locations of the basic 8051 interrupts in Program Memory, but they are interleaved with them in the polling sequence.

To support the new interrupts a second Interrupt Enable register and a second Interrupt Priority register are implemented in bit-addressable SFR space. The two Interrupt Enable registers in the 8XC152 are as follows:

Address of IE in SFR space $=0 \mathrm{~A} 8 \mathrm{H}$ (bit-addressable)

Address pF IE1 in SFR space $=0 \mathrm{C} 8 \mathrm{H}$ (bit-addressable)

The bits in IE are unchanged from the standard 8051 IE register. The bits in IEN1 are as follows:
EGSTE $=1$ Enable GSC Transmit Error Interrupt $=0$ Disable
EDMA1 $=1$ Enable DMA Channel 1 Done Interrupt $=0$ Disable
EGSTV $=1$ Enable GSC Transmit Valid Interrupt $=0$ Disable
EDMAO $=1$ Enable DMA Channel 0 Done Interrupt $=0$ Disable
EGSRE $=1$ Enable GSC Receive Error Interrupt $=0$ Disable
EGSRV = 1 Enable GSC Receive Valid Interrupt $=0$ Disable

The two Interrupt Priority registers in the 8 XCl 52 are as follows:

IP: | 7 | 6 | 5 | 4 | 3 | | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | - | - | PS | PT1 | PX1 | PT0 | PX0 | |

Address of IP in SFR space $=0 \mathrm{~B} 8 \mathrm{H}$ (bit-addressable)

Address of IPN1 in SFR space $=0 \mathrm{~F} 8 \mathrm{H}$ (bit-addressable)

The bits in IP are unchanged from the standard 8051 IP register. The bits in IPN1 are as follows:
PGSTE $=1$ GSC Transmit Error Interrupt Priority to High
$=0$ Priority to Low
PDMA1 $=1$ DMA Channel 1 Done Interrupt Priority to High
$=0$ Priority to Low
PGSTV $=1$ GSC Transmit Valid Interrupt Priority to High
$=0$ Priority to Low
PDMA0 $=1$ DMA Channel 0 Done Interrupt Priority to High
$=0$ Priority to Low
PGSRE $=1$ GSC Receive Error Interrupt Priority to High
$=0$ Priority to Low
PGSRV $=1$ GSC Receive Valid Interrupt Priority to High
$=0$ Priority to Low
Note that these registers all have unimplemented bits ("-"). If these bits are read, they will return unpredictable values. If they are written to, the value written goes nowhere.

It is recommended that user software should never write 1s to unimplemented bits in MCS-51 devices. Future versions of the device may have new bits installed in these locations. If so, their reset value will be 0 . Old software that writes 1s to newly implemented bits may unexpectedly invoke new features.

The MCS-51 interrupt structure provides hardware support for only two priority levels, High and Low. With as many interrupt sources as the 8 XCl 52 has, it may be helpful to know how to augment the priority structure in software. Any number of priority levels can be implemented in software by saving and redefining the interrupt enable registers within the interrupt service routines. The technique is described in the "MCS51 " Architectural Overview" chapter in this handbook.

5.1 GSC Transmitter Error Conditions

The GSC Transmitter section reports three kinds of error conditions:
TCDT - Transmitter Collision Detector
UR - Underrun in Transmit FIFO
NOACK - No Acknowledge
These bits reside in the TSTAT register. User software can read them, but only the GSC hardware can write to them. The GSC hardware will set them in response to the various error conditions that they represent. When user software sets the TEN bit, the GSC hardware will at that time clear these flags. This is the only way these flags can be cleared.

The logical OR of these three bits flags the GSC Transmit Error interrupt (GSCTE) and clears the TEN bit, as shown in Figure 5.2. Thus any detected error condition aborts the transmission. No CRC bits are transmitted. In SDLC mode, no EOF flag is generated. In CSMA/CD mode, an EOF is generated by default, since the GTXD pin is pulled to a logic 1 and held there.

The TCDT bit can get set only if the GSC is configured to CSMA/CD mode. In that case, the GSC hardware sets TCDT when a collision is detected during a transmission, and the collision was detected after TFIFO has been accessed. Also, the GSC hardware sets TCDT when a detected collision causes the TCDCNT register to overflow.

The UR bit can get set only if the DMA bit in TSTAT is set. The DMA bit being set informs the GSC hardware that TFIFO is being serviced by DMA. In that case, if the GSC goes to fetch another byte from TFIFO and finds it empty, and the byte count register of the DMA channel servicing TFIFO is not zero, it sets the UR bit.

If the DMA hardware is not being used to service TFIFO, the UR bit cannot get set. If the DMA bit is 0 , then when the GSC finds TFIFO empty, it assumes that the transmission of data is complete and the transmission of CRC bits can begin.

The NOACK bit is functional only in CSMA/CD mode, and only when the HABEN bit in RSTAT is set. The HABEN bit turns on the Hardware Based Acknowledge feature, as described in Section 3.2.6. If this feature is not invoked, the NOACK bit will stay at 0 .

270427-49
Figure 5.2. Transmit Error Flags (Logic for Clearing TEN, Setting TDN)

270427-50
Figure 5.3. Receive Error Flag (Logic for Clearing GREN, setting RDN)

If the NOACK bit gets set, it means the GSC has completed a transmission, and was expecting to receive a hardware based acknowledge from the receiver of the message, but did not receive the acknowledge, or at least did not receive it cleanly. There are three ways the NOACK bit can get set:

1. The acknowledge signal (an unattached preamble) was not received before the IFS was completed.
2. A collision was detected during the IFS.
3. The line was active during the last bit-time of the IFS.

The first condition is an obvious reason for setting the NOACK bit, since that's what the hardware based acknowledge is for. The other two ways the NOACK bit can get set are to guard against the possibility that the transmitting station might mistake an unrelated transmission or transmission fragment for an acknowledge signal.

5.2 GSC Receiver Error Conditions

The GSC Receiver section reports four kinds of error conditions:
CRCE - CRC Error
AE - Alignment Error
RCABT - Receive Abort
OVR - Overrun in Receive FIFO
These bits reside in the RSTAT register. User software can read them, but only the GSC hardware can write to them. The GSC hardware will set them in response to the various error conditions that they represent. When user software sets the GREN bit, the GSC hardware will at that time clear these flags. This is the only way these flags can be cleared.

The logical OR of these four bits flags the GSC Receive Error interrupt (GSCRE) and clears the GREN bit, as shown in Figure 5.3. Note in this figure that any error condition will prevent RDN from being set.

A CRC Error means the CRC generator did not come to its correct value after calculating the CRC of the message plus received CRC. An Alignment Error means the number of bits received between the BOF and EOF was not a multiple of 8 .

In SDLC mode, the CRCE bit gets set at the end of any frame in which there is a CRC Error, and the AE bit gets set at the end of any frame in which there is an Alignment Error.

In CSMA/CD mode, if there is no CRC Error, neither CRCE nor AE will get set. If there is a CRC Error and no Alignment Error, the CRCE bit will get set, but not the AE bit. If there is both a CRC Error and an Alignment Error, the AE bit will get set, but not the CRCE bit. Thus in CSMA/CD mode, the CRCE and AE bits are mutually exclusive.

The Receive Abort flag, RCABT, gets set if an incoming frame was interrupted after received data had already passed to the Receive FIFO. In SDLC mode, this can happen if a line idle condition is detected before an EOF flag is. In CSMA/CD mode, it can happen if there is a collision. In either case, the CPU will have to re-initialize whatever pointers and counters it might have been using.

The Overrun Error flag, OVR, gets set if the GSC Receiver is ready to push a newly received byte onto the Receive FIFO, but the FIFO is full.

Up to 7 "dribble bits" can be received after the EOF without causing an error condition.

6.0 GLOSSARY

ADR0, 1,2,3 $(95 \mathrm{H}, 0 \mathrm{~A} 5 \mathrm{H}, 0 \mathrm{~B} 5 \mathrm{H}, 0 \mathrm{C} 5 \mathrm{H})$ - Address Match Registers $0,1,2,3$ - The contents of these SFRs are compared against the address bits from the serial data on the GSC. If the address matches the SFR, then the C152 accepts that frame. If in 8 bit addressing mode, a match with any of the four registers will trigger acceptance. In 16 bit addressing mode, a match with ADR1:ADR0 or ADR3:ADR2 will be accepted. Address length is determined by GMOD (AL).

AE - Alignment Error, see RSTAT.
AL - Address Length, see GMOD.
AMSK0,1 (0D5H, 0E5H) - Address Match Mask 0,1Identifies which bits in ADRO,1 are "don't care" bits. Setting a bit to 1 in AMSK0,1 identifies the corresponding bit in ADDR0,1 as not to be examined when comparing addresses.

BAUD - (94H) Contains the programmable value for the baud rate generator for the GSC. The baud rate will equal (fosc) $/(($ BAUD +1$) \times 8)$.

BCRL0, 1 (0E2H, 0F2H) - Byte Count Register Low 0,1 - Contains the lower byte of the byte count. Used during DMA transfers to identify to the DMA channels when the transfer is complete.

BCRH0,1 (0E3H, 0F3H) - Byte Count Register High 0,1 - Contains the upper byte of the byte count.

BKOFF $(0 \mathrm{C} 4 \mathrm{H})$ - Backoff Timer - The backoff timer is an eight bit count-down timer with a clock period equal to one slot time. The backoff time is used in the CSMA/CD collision resolution algorithm.

BOF - Beginning of Frame flag - A term commonly used when dealing with packetized data. Signifies the beginning of a frame.

CRC - Cyclic Redundancy Check - An error checking routine that mathematically manipulates a value dependent on the incoming data. The purpose is to identify when a frame has been received in error.

CRCE - CRC Error, see RSTAT.
CSMA/CD - Stands for Carrier Sense, Multiple Access, with Collision Detection.

CT - CRC Type, see GMOD.
DARLO/1 (0C2H, 0D2H) - Destination Address Register Low 0/1 - Contains the lower byte of the destinations' address when performing DMA transfers.

DARH0/1 (0C3H, 0D3H) - Destination Address Register Low 0/1 - Contains the upper byte of the destinations' address when performing DMA transfers.

DAS - Destination Address Space, see DCON.
DCJ - D.C. Jam, see MYSLOT.
DCONO/1 $(092 \mathrm{H}, 093 \mathrm{H})$

7	6	5	4	3	2	1	0
DAS	IDA	SAS	ISA	DM	TM	DONE	GO

The DCON registers control the operation of the DMA channels by determining the source of data to be transferred, the destination of the data to be transfer, and the various modes of operation.

DCON. 0 (GO) - Enables DMA Transfer - When set it enables a DMA channel. If block mode is set then DMA transfer starts as soon as possible under CPU control. If demand mode is set then DMA transfer starts when a demand is asserted and recognized.

DCON. 1 (DONE) - DMA Transfer is Complete When set the DMA transfer is complete. It is set when BCR equals 0 and is automatically reset when the DMA vectors to its interrupt routine. If DMA interrupt is disabled and the user software executes a jump on the DONE bit, then the user software must also reset the done bit. If DONE is not set, then the DMA transfer is not complete.

DCON. 2 (TM) - Transfer Mode - When set, DMA burst transfers are used if the DMA channel is configured in block mode or external interrupts are used to initiate a transfer if in Demand Mode. When TM is cleared, Alternate Cycle Transfers are used if DMA is in the Block Mode, or Local Serial channel/GSC interrupts are used to initiate a transfer if in Demand Mode.

DCON. 3 (DM) - DMA Channel Mode - When set, Demand Mode is used and when cleared, Block Mode is used.

DCON. 4 (ISA) - Increment Source Address - When set, the source address registers are automatically incremented during each transfer. When cleared, the source address registers are not incremented.

DCON. 5 (SAS) - Source Address Space - When set, the source of data for the DMA transfers is internal data memory if autoincrement is also set. If autoincrement is not set but SAS is, then the source for data will be one of the Special Function Registers. When SAS is cleared, the source for data is external data memory.

DCON. 6 (IDA) - Increment Destination Address Space - When set, destination address registers are incremented once after each byte is transferred. When cleared, the destination address registers are not automatically incremented.

DCON. 7 (DAS) - Destination Address Space - When set, destination of data to be transferred is internal data memory if autoincrement mode is also set. If autoincrement is not set the destinationwill be one of the Special Function Registers. When DAS is cleared then the destination is external data memory.

DCR - Deterministic Resolution, see MYSLOT.
$\overline{\mathrm{DEN}}$ - An alternate function of one of the port 1 pins (P 1.2). Its purpose is to enable external drivers when the GSC is transmitting data. This function is always active when using the GSC and if P1.2 is programmed to a 1 .

DM - DMA Mode, see DCON0.
DMA - Direct Memory Access mode, see TSTAT.
DONE - DMA done bit, see DCON0.
DPH - Data Pointer High, an SFR that contains the high order byte of a general purpose pointer called the data pointer (DPTR).

DPL - Data Pointer Low, an SFR that contains the low order byte of the data pointer.

EDMA0 - Enable DMA Channel 0 interrupt, see IEN1.

EDMA1 - Enable DMA Channel 1 interrupt, see IEN1.

EGSRE - Enable GSC Receive Error interrupt, see IEN1.

EGSRV - Enable GSC Receive Valid interrupt, see IEN1.

EGSTE - Enable GSC Transmit Error interrupt, see IEN1.

EGSTV - Enable GSC Transmit Valid interrupt, see IEN1.

EOF - A general term used in serial communications. EOF stands for End Of Frame and signifies when the last bits of data are transmitted when using packetized data.

ES - Enable LSC Service interrupt, see IE.
ET0 - Enable Timer 0 interrupt, see IE.
ET1 - Enable Timer 1 interrupt, see IE.
EX0 - Enable External interrupt 0, see IE.
EX1 - Enable External interrupt 1, see IE.

| GMOD (84H) | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| XTCLK | M1 | M0 | AL | CT | PL1 | PLO | PR |

The bits in this SFR, perform most of the configuration on the type of data transfers to be used with the GSC. Determines the mode, address length, preamble length, protocol select, and enables the external clocking of the transmit data.

GMOD. 0 (PR) - Protocol - If set, SDLC protocols with NRZI encoding, zero bit insertion, and SDLC flags are used. If cleared, CSMA/CD link access with Manchester encoding is used.

GMOD.1,2 (PLO,1) - Preamble length
PL1 PL0 LENGTH (BITS)

0	0	0
0	1	8
1	0	32
1	1	64

The length includes the two bit Begin Of frame (BOF) flag in CSMA/CD but does not include the SDLC flag. In SDLC mode, the BOF is an SDLC flag, otherwise it is two consecutive ones. Zero length is not compatible in CSMA/CD mode.

GMOD. 3 (CT) - CRC Type - If set, 32-bit AUTODIN-II- 32 is used. If cleared, 16 -bit CRC-CCITT is used.

GMOD. 4 (AL) - Address Length - If set, 16-bit addressing is used. If cleared, 8 -bit addressing is used. In 8 -bit mode, a match with any of the 4 address registers will allow that frame to be accepted (ADR0, ADR1, ADR2, ADR3). "Don't Care" bits may be masked in ADR0 and ADR1 with AMSK0 and AMSK1. In 16bit mode, addresses are matched against "ADR1:ADR0" or "ADR3:ADR2". Again, "Don't Care" bits in ADR1:ADR0 can be masked in AMSK1:AMSK0. A received address of all ones will always be recognized in any mode.

GMOD.5, 6 (M0,M1) - Mode Select - Two test modes, an optional "alternate backoff" mode, or normal backoff can be enabled with these two bits.

M1	M0	Mode
0	0	Normal
0	1	Raw Transmit
1	0	Raw Receive
1	1	Alternate Backoff

GMOD 7 (XTCLK) - External Transmit Clock - If set an external 1 X clock is used for the transmitter. If cleared the internal baud rate generator provides the
transmit clock. The input clock is applied to P1.3 (TxC). The user software is responsible for setting or clearing this flag. External receive clock is enabled by setting PCON.3.

GO - DMA Go bit, see DCONO.
GRxD - GSC Receive Data input, an alternate function of one of the port 1 pins (P1.0). This pin is used as the receive input for the GSC. P1.0 must be programmed to a 1 for this function to operate.

GSC - Global Serial Channel - A high-level, multi-protocol, serial communication controller added to the 80 C 51 BH core to accomplish high-speed transfers of packetized serial data.

GTxD - GSC Transmit Data output, an alternate function of one of the port 1 pins (P1.1). This pin is used as the transmit output for the GSC. P1.1 must be programmed to a 1 for this function to operate.

HBAEN - Hardware Based Acknowledge Enable, see RSTAT.

HLDA - Hold Acknowledge, an alternate function of one of the port 1 pins ($\mathbf{P} 1.6$). This pin is used to perform the "HOLD ACKNOWLEDGE" function for DMA transfers. HLDA can be an input or an output, depending on the configuration of the DMA channels. P1.6 must be programmed to a 1 for this function to operate.

HOLD - Hold, an alternate function of one of the port 1 pins (P 1.5). This pin is used to perform the "HOLD" function for DMA transfers. HOLD can be an input or an output, depending on the configuration of the DMA channels. P1.5 must be programmed to a 1 for this function to operate.

IDA - Increment Destination Address, see DCONO.
IE (0A8H)

7	6	5	4	3		2	1
EA			ES	ET1	EX1	ET0	EX0

Interrupt Enable SFR, used to individually enable the Timer and Local Serial Channel interrupts. Also contains the global enable bit which must be set to a 1 to enable any interrupt to be automatically recognized by the CPU.

IE. 0 (EX0) - Enables the external interrupt $\overline{\text { INT0 }}$ on P3.2.

IE. 1 (ET0) - Enables the Timer 0 interrupt.

IE. 2 (EX1) - Enables the external interrupt $\overline{\text { INT1 }}$ on P3.3.

IE. 3 (ET1) - Enables the Timer 1 interrupt.
IE. 4 (ES) - Enables the Local Serial Channel interrupt.
IE. 7 (EA) - The global interrupt enable bit. This bit must be set to a 1 for any other interrupt to be enabled.
IEN1-(0C8H)

| 76 | 5 | 4 | \mathbf{c} | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | EGSTE | EDMA1 | EGSTV | EDMAO | EGSRE | EGSRV |

Interrupt enable register for DMA and GSC interrupts. A 1 in any bit position enables that interrupt.

IEN1.0 (EGSRV) - Enables the GSC valid receive interrupt.

IEN1.1 (EGSRE) - Enables the GSC receive error interrupt.

IEN 1.2 (EDMA0) - Enables the DMA done interrupt for Channel 0.

IEN1.3 (EGSTV) - Enables the GSC valid transmit interrupt.

IEN 1.4 (EDMA1) - Enables the DMA done interrupt for Channel 1.

IEN1.5 (EGSTE) - Enables the GSC transmit error interrupt

IFS - (0A4H) Interframe Space, determines the number of bit times separating transmitted frames in CSMA/ CD and SDLC.

IP (0B8H)

Allows the user software two levels of prioritization to be assigned to each of the interrupts in IE. A 1 assigns the corresponding interrupt in IE a higher interrupt than an interrupt with a corresponding 0.

IP. 0 (PX0) - Assigns the priority of external interrupt, INTO.

IP. 1 (PT0) - Assigns the priority of Timer 0 interrupt, T0.

IP. 2 (PX1) - Assigns the priority of external interrupt, $\overline{\text { INT1. }}$

IP. 3 (PT1) - Assigns the priority of Timer 1 interrupt, T1.

IP. 4 (PS) - Assigns the priority of the LSC interrupt, SBUF.

IPN1-(0F8H)							
7	6	5	4	3	2	1	0
		PGSTE	PDMA1	PGSTV	PDMAO	PGSRE	PGSRV

Allows the user software two levels of prioritization to be assigned to each of the interrupts in IEN1. A 1 assigns the corresponding interrupt in IEN1 a higher interrupt than an interrupt with a corresponding 0.

IPN1.0 (PGSRV) - Assigns the priority of GSC receive valid interrupt.

IPN1.1 (PGSRE) - Assigns the priority of GSC error receive interrupt.

IPN1.2 (PDMA0) - Assigns the priority of DMA done interrupt for Channel 0 .

IPN1.3 (PGSTV) - Assigns the priority of GSC transmit valid interrupt.

IPN1.4 (PDMA1) - Assigns the priority of DMA done interrupt for Channel 1.

IPN1.5 (PGSTE) - Assigns the priority of GSC transmit error interrupt.

ISA - Increment Source Address, see DCON0.
LNI - Line Idle, see TSTAT.

LSC - Local Serial Channel - The asynchronous serial port found on all MCS-51 devices. Uses start/stop bits and can transfer only 1 byte at a time.

M0 - One of two GSC mode bits, see TMOD.
M1 - One of two GSC mode bits, see TMOD

> MYSLOT - (0F5H)

7	6	5	4	3	2	1	0
DCJ	DCR	SA5	SA4	SA3	SA2	SA1	SAO

Determines which type of Jam is used, which backoff algorithm is used, and the DCR slot address for the GSC.

MYSLOT.0,1,2,3,4,5 (SA0,1,2,3,4,5) - These bits determine which slot address is assigned to the C152 when using deterministic backoff during CSMA/CD operations on the GSC. Maximum slots available is 63. An address of 00 H prevents that station from participating in the backoff process.

MYSLOT. 6 (DCR) - Determines which collision resolution algorithm is used. If set to a 1 , then the deterministic backoff is used. If cleared, then a random slot assignment is used.

MYSLOT. 7 (DCJ) - Determines the type of Jam used during CSMA/CD operation when a collision occurs. If set to a 1 then a low D.C. level is used as the jam signal. If cleared, then $\overline{\mathrm{CRC}}$ is used as the jam signal. The jam is applied for a length of time equal to the CRC length.

NOACK - No Acknowledgment error bit, see TSTAT.
NRZI - Non-Return to Zero inverted, a type of data encoding where a 0 is represented by a change in the level of the serial link. A 1 is represented by no change.

OVR - Overrun error bit, see RSTAT.
PR - Protocol select bit, see GMOD. PCON (87H)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMOD | ARB | REQ | GAREN | XRCLK | GFIEN | PD | IDL |

PCON. 0 (IDL) - Idle bit, used to place the C152 into the idle power saving mode.

PCON. 1 (PD) - Power Down bit, used to place the C152 into the power down power saving mode.

PCON. 2 (GFIEN) - GSC Flag Idle Enable bit, when set, enables idle flags (01111110) to be generated between transmitted frames in SDLC mode.

PCON. 3 (XRCLK) - External Receive Clock bit, used to enable an external clock to be used for only the receiver portion of the GSC.

PCON. 4 (GAREN) - GSC Auxiliary Receive Enable bit, used to enable the GSC to receive back-to-back SDLC frames. This bit has no effect in CSMA/CD mode.

PCON. 5 (REQ) - Requester mode bit, set to a 1 when C152 is to be operated as the requester station during DMA transfers.

PCON. 6 (ARB) - Arbiter mode bit, set to a 1 when C152 is to be operated as the arbiter during DMA transfers.

PCON 7 (SMOD) - LSC mode bit, used to double the baud rate on the LSC.

PDMA0 - Priority bit for DMA Channel 0 interrupt, see IPN1.

PDMA1 - Priority bit for DMA Channel 1 interrupt, see IPN1.

PGSRE - Priority bit for GSC Receive Error interrupt, see IPN1.

PGSRV - Priority bit for GSC Receive Valid interrupt, see IPN1.

PGSTE - Priority bit for GSC Transmit Error interrupt, see IPN1.

PGSTV - Priority bit for GSC Transmit Valid interrupt, see IPN1.

PLO - One of two bits that determines the Preamble Length, see GMOD.

PL1 - One of two bits that determines the Preamble Length, see GMOD.

PRBS - (0E4H) Pseudo-Random Binary Sequence, generates the pseudo-random number to be used in CSMA/CD backoff algorithms.

PS - Priority bit for the LSC service interrupt, see IP.
PT0 - Priority bit for Timer 0 interrupt, see IP.
PT1 - Priority bit for Timer 1 interrupt, see IP.
PX0 - Priority bit for External interrupt 0, see IP.
PX1 - Priority bit for External interrupt 1, see IP.
RCABT - GSC Receiver Abort error bit, see RSTAT.
RDN - GSC Receiver Done bit, see RSTAT.
GREN - GSC Receiver Enable bit, see RSTAT.
RFNE - GSC Receive FIFO Not Empty bit, see RSTAT.

RI - LSC Receive Interrupt bit, see SCON.
RFIFO - (F 4 H) RFIFO is a 3-byte FIFO that contains the receive data from the GSC.

RSTAT (0E8H) - Receive Status Register

7	6	5	4	3	2	1	0
OVR	RCABT	AE	CRCE	RDN	RFNE	GREN	HABEN

RSTAT. 0 (HBAEN) - Hardware Based Acknowledge Enable - If set, enables the hardware based acknowledge feature.

RSTAT. 1 (GREN) - Receiver Enable - When set, the receiver is enabled to accept incoming frames. The user must clear RFIFO with software before enabling the receiver. RFIFO is cleared by reading the contents of RFIFO until RFNE $=0$. After each read of RFIFO, it takes one machine cycle for the status of RFNE to be updated. Setting GREN also clears RDN, CRCE, AE, and RCABT. GREN is cleared by hardware at the end of a reception or if any receive errors are detected. The status of GREN has no effect on whether the receiver detects a collision in CSMA/CD mode as the receiver input circuitry always monitors the receive pin.

RSTAT. 2 (RFNE) - Receive FIFO Not Empty - If set, indicates that the receive FIFO contains data. The receive FIFO is a three byte buffer into which the receive data is loaded. A CPU read of the FIFO retrieves the oldest data and automatically updates the FIFO pointers. Setting GREN to a one will clear the receive FIFO. The status of this flag is controlled by the GSC. This bit is cleared if user software empties receive FIFO.

RSTAT. 3 (RDN) - Receive Done - If set, indicates the successful completion of a receiver operation. Will not be set if a CRC, alignment, abort, or FIFO overrun error occurred.

RSTAT. 4 (CRCE) - CRC Error - If set, indicates that a properly aligned frame was received with a mismatched CRC.

RSTAT. 5 (AE) - Alignment Error - In CSMA/CD mode, AE is set if the receiver shift register (an internal serial-to-parallel converter) is not full and the CRC is bad when an EOF is detected. In CSMA/CD the EOF is a line idle condition (see LNI) for two bit times. If the CRC is correct while in CSMA/CD mode, AE is not set and any mis-alignment is assumed to be caused by dribble bits as the line went idle. In SDLC mode, AE is set if a non-byte-aligned flag is received. CRCE may also be set. The setting of this flag is controlled by the GSC.

RSTAT. 6 (RCABT) - Receiver Collision/Abort Detect - If set, indicates that a collision was detected after data had been loaded into the receive FIFO in CSMA/CD mode. In SDLC mode, RCABT indicates that 7 consecutive ones were detected prior to the end flag but after data has been loaded into the receive FIFO. AE may also be set if RCABT is set.

RSTAT. 7 (OVR) - Overrun - If set, indicates that the receive FIFO was full and new shift register data was written into it. It is cleared by user software. AE and/or CRCE may also be set if OVR is set.

SARH0 (0A3H) - Source Address Register High 0, contains the high byte of the source address for DMA Channel 0.

SARH1 (0B3H) - Source Address Register High 1, contains the high byte of the source address for DMA Channel 1.

SARLO (0A2H) - Source Address Register Low 0, contains the low byte of the source address for DMA Channel 0.

SARL1 (0B2H) - Source Address Register Low 1, contains the low byte of the source address for DMA Channel 1.

SAS - Source Address Space bit, see DCONO.
SBUF (099H) - Serial Buffer, both the receive and transmit SFR location for the LSC.

SCON (098 H)							
7	6	5	4	3	2	1	0
SM0	SM1	SM2	REN	TB8	RB8	TII	RI

SCON. 0 (RI) - Receive Interrupt flag.
SCON. 1 (TI) - Transmit Interrupt flag.
SCON. 2 (RB8) - Receive Bit 8, contains the ninth bit that was received in Modes 2 and 3 or the stop bit in Mode 1 if SM20. Not used in Mode 0.

SCON 3 (TB8) - Transmit Bit 8, the ninth bit to be transmitted in Modes 2 and 3.

SCON. 4 (REN) - Receiver Enable, enables reception for the LSC.

SCON. 5 (SM2) - Enables the multiprocessor communication feature in Modes 2 and 3 for the LSC.

SCON. 6 (SM1) - LSC mode specifier.

SCON. 7 (SM2) - LSC mode specifier.
SDLC - Stands for Synchronous Data Link Communication and is a protocol developed by IBM.

SLOTTM - (0B4H) Determines the length of the slot time in CSMA/CD.

SP (081H) - Stack Pointer, an eight bit pointer register used during a PUSH, POP, CALL, RET, or RETI.

TCDCNT - (0D4H) Contains the number of collisions in the current frame if using probabilistic CSMA/CD and contains the maximum number of slots in the deterministic mode.

TCDT - Transmit Collision Detect, see TSTAT.
TCON $(088 \mathrm{H})$

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

TCON. 0 (IT0) - Interrupt 0 mode control bit.
TCON. 1 (IE0) - External interrupt 0 edge flag.
TCON. 2 (IT1) - Interrupt 1 mode control bit.
TCON. 3 (IE1) - External interrupt 1 edge flag.
TCON. 4 (TR0) - Timer 0 run control bit.
CON. 5 (TFO) - Timer 0 overflow flag.
TCON. 6 (TR1) - Timer 1 run control bit.
TCON 7 (TF1) - Timer 1 overflow flag.
TDN - Transmit Done flag, see TSTAT.
TEN - Transmit Enable bit, see TSTAT.
TFNF - Transmit FIFO Not Full flag, see TSTAT.
TFIFO - $(85 \mathrm{H})$ TFIFO is a 3-byte FIFO that contains the transmission data for the GSC.

THO (08 CH) - Timer 0 High byte, contains the high byte for timer/counter 0 .

TH1 (08DH) - Timer 1 High byte, contains the high byte for timer/counter 1 .

TI - Transmit Interrupt, see SCON.
TL0 (08AH) - Timer 0 Low byte, contains the low byte for timer/counter 0 .

TL1 (08BH) - Timer 1 Low byte, contains the low byte for timer/counter 1.

TM - Transfer Mode, see, DCONO.

| TMOD (089H) | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| GATE | C/T | M1 | M0 | GATE | C/T | M1 | M0 |

TMOD. 0 (M0) - Mode selector bit for Timer 0.
TMOD. 1 (M1) - Mode selector bit for Timer 0.
TMOD. $2(\mathrm{C} / \overline{\mathrm{T}}$) - Timer/Counter selector bit for Timer 0.

TMOD. 3 (GATE) - Gating Mode bit for Timer 0.
TMOD. 4 (M0) - Mode selector bit for Timer 1.
TMOD. 5 (M1) - Mode selector bit for Timer 1.
TMOD. 6 (C/ $\overline{\mathrm{T}}$) - Timer/Counter selector bit for Timer 1.

TMOD. 7 (GATE) - Gating Mode bit for Timer 1.
TSTAT (0D8) - Transmit Status Register

1	6	5	4	3	2	1	0
LNI	NOACK	UR	TCDT	TDN	TFNF	TEN	DMA

TSTAT. 0 (DMA) - DMA Select - If set, indicates that DMA channels are used to service the GSC FIFO's and GSC interrupts occur on TDN and RDN, and also enables UR to become set. If cleared, indicates that the GSC is operating in it normal mode and interrupts occur on TFNE and RFNE.For more information on DMA servicing please refer to the DMA section on DMA serial demand mode (4.2.2.3).

TSTAT. 1 (TEN) - Transmit Enable - When set causes TDN, UR, TCDT, and NOACK flags to be reset and the TFIFO cleared. The transmitter will clear TEN af-
ter a successful transmission, a collision during the data, CRC, or end flag. If cleared during a transmission the GSC transmit pin goes to a steady state high level. This is the method used to send an abort character in SDLC. Also $\overline{\mathrm{DEN}}$ is forced to a high level. The end of transmission occurs whenever the TFIFO is emptied.

TSTAT. 2 (TFNF) - Transmit FIFO not full - When set, indicates that new data may be written into the transmit FIFO. The transmit FIFO is a three byte buffer that loads the transmit shift register with data.

TSTAT. 3 (TDN) - Transmit Done - When set, indicates the successful completion of a frame transmission. If HBAEN is set, TDN will not be set until the end of the IFS following the transmitted message, so that the acknowledge can be checked. If an acknowledge is expected and not received, TDN is not set. An acknowledge is not expected following a broadcast or multi-cast packet.

TSTAT. 4 (TCDT) - Transmit Collision Detect - If set, indicates that the transmitter halted due to a collision. It is set if a collision occurs during the data or CRC or if there are more than eight collisions.

TSTAT. 5 (UR) - Underrun - If set, indicates that in DMA mode the last bit was shifted out of the transmit register and that the DMA byte count did not equal zero. When an underrun occurs, the transmitter halts without sending the CRC or the end flag.

TSTAT. 6 (NOACK) - No Acknowledge - If set, indicates that no acknowledge was received for the previous frame. Will be set only if HBAEN is set and no acknowledge is received prior to the end of the IFS. NOACK is not set following a broadcast or a multicast packet.

TSTAT. 7 (LNI) - Line Idle - If set, indicates the receive line is idle. In SDLC protocol it is set if 15 consecutive ones are received. In CSMA/CD protocol, line idle is set if GR $\times \mathrm{D}$ remains high for approximately 1.6 bit times. LNI is cleared after a transition on GR $\times D$.

TxC - External Clock input for GSC transmitter.
UR - Underrun flag, see TSTAT.
XRCLK - External GSC Receive Clock Enable bit, see PCON.

XTCLK - External GSC Transmit Clock Enable bit, see GMOD.

8XC152JA/JB/JC/JD
 UNIVERSAL COMMUNICATION CONTROLLER 8-BIT MICROCONTROLLER

8K Factory Mask Programmable ROM Available

- Superset of 80C51 Architecture

■ Multi-Protocol Serial Communication
I/O Port (2.048 Mbps/2.4 Mbps Max)
— SDLC/HDLC Only
-CSMA/CD and SDLC/HDLC

- User Definable Protocols

■ Full Duplex/Half Duplex

- MCS ${ }^{\oplus}$-51 Compatible UART
- 16.5 MHz Maximum Clock Frequency
- Multiple Power Conservation Modes
- 64KB Program Memory Addressing
- 64KB Data Memory Addressing
- 256 Bytes On-Chip RAM

■ Dual On-Chip DMA Channels
■ Hold/Hold Acknowledge

- Two General Purpose Timer/Counters
- 56 Special Function Registers
- 11 Interrupt Sources
- Available in 48 Pin Dual-in-Line Package and 68 Pin Surface Mount PLCC Package
(See Packaging Spec. Order \#231369)

The 80C152, which is based on the MCS ${ }^{\circledR}$-51 CPU, is a highly integrated single-chip 8-bit microcontroller designed for cost-sensitive, high-speed, serial communications. It is well suited for implementing Integrated Services Digital Networks (ISDN), emerging Local Area Networks, and user defined serial backplane applications. In addition to the multi-protocol communication capability, the 80 C 152 offers traditional microcontroller features for peripheral I/O interface and control.

Silicon implementations are much more cost effective than multi-wire cables found in board level parallel-toserial and serial-to-parallel converters. The 83C152 contains, in silicon, all the features needed for the serial-to-parallel conversion. Other 83C152 benefits include: 1) better noise immunity through differential signaling or fiber optic connections, 2) data integrity utilizing the standard, designed in CRC checks, and 3) better modularity of hardware and software designs. All of these-cost, network parameter and real estate improvementsapply to 83 C 152 serial links between boards or systems and 83 C 152 serial links on a single board.

Figure 1. Connection Diagrams

Figure 2. Block Diagram

80C152JB/JD General Description

The $80 \mathrm{C} 152 \mathrm{JB} / \mathrm{JD}$ is a ROMless extension of the 80 C 152 Universal Communication controller. The 80 C 152 JB has the same five 8 -bit I/O ports of the 80C152, plus an additional two 8 -bit I/O ports, Port 5 and Port 6. The 80C152JB/JD also has two additional control pins, EBEN (EPROM Bus ENable), and EPSEN (EPROM bus Program Store ENable).

EBEN selects the functionality of Port 5 and Port 6. When EBEN is low, these ports are strictly I/O, similar to Port 4. The SFR location for Port 5 is 91 H and Port 6 is 0 A 1 H . This means Port 5 and Port 6 are not bit addressable. With EBEN low, all program memory fetches take place via Port 0 and Port 2. (The 80 C 152 is a ROMless only product). When EBEN is high, Port 5 and Port 6 form an address/data bus called the E-Bus (EPROM-Bus) for program memory operations.

EPSEN is used in conjunction with Port 5 and Port 6 program memory operations. EPSEN functions like PSEN during program memory operation, but supports Port 5 and Port 6. EPSEN is the read strobe to external program memory for Port 5 and Port 6. EPSEN is activated twice during each machine cycle unless an external data memory operation occurs on Port(s) 0 and Port 2. When external data memory is accessed the second activation of EPSEN is skipped, which is the same as when using PSEN. Note that data memory fetches cannot be made through Ports 5 and 6.

When EBEN is high and EA is low, all program memory operations take place via Ports 5 and 6 . The high byte of the address goes out on Port 6, and the low byte is output on Port 5. ALE is still used to latch the address on Port 5. Next, the op code is read on Port 5. The timing is the same as when using Ports 0 and 2 for external program memory operations.

Table 1. Program Memory Fetches

EBEN	$\overline{\text { EA }}$	Program Fetch via	$\overline{\text { PSEN }}$	$\overline{\text { EPSEN }}$	Comments
0	0	P0, P2	Active	Inactive	Addresses 0-0FFFFH
0	1	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	Invalid Combination
1	0	P5, P6	Inactive	Active	Addresses 0-0FFFFH
1	1	P5, P6 P0, P2	Inactive Active	Active Inactive	Addresses 0-1FFFH Addresses 2 2000H

Table 2. 8XC152 Product Differences

ROMIess Version	CSMA/CD and HDLC/SDLC	HDLC/SDLC Only	ROM Version Available	PLCC and DIP	PLCC Only	5 I/O Ports	7 I/0 Ports
80C152JA	$*$		$*$ (83C152JA)	$*$		$*$	
80C152JB	$*$				$*$		$*$
80 C 152 JC		$*$	$*$ (83C152JC)	$*$		$*$	
80 C 152 JD		$*$			$*$		$*$

NOTES:

* $=$ options available

0 standard frequency range 3.5 MHz to 12 MHz
0 "-1" frequency range 3.5 MHz to 16.5 MHz

Pin \#		Pin Description		
DIP	PLCC(1)			
48	2	$\mathbf{V}_{\text {cc-Supply voltage. }}$		
24	3,33(2)	$\mathbf{V}_{\text {SS }}$-Circuit ground.		
$\begin{aligned} & 18-21, \\ & 25-28 \end{aligned}$	$\begin{aligned} & 27-30, \\ & 34-37 \end{aligned}$	Port 0-Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs. Port 0 pins that have 1 s written to them float, and in that state can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program memory if EBEN is pulled low. During accesses to external Data Memory, Port 0 always emits the low-order address byte and serves as the multiplexed data bus. In these applications it uses strong internal pullups when emitting 1 s . Port 0 also outputs the code bytes during program verification. External pullups are required during program verification.		
1-8	4-11	Port 1-Port 1 is an 8-bit bidirectional I/O port with internal pullups. Port 1 pins that have 1 s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{L}, on the data sheet) because of the internal pullups. Port 1 also serves the functions of various special features of the 8XC152, as listed below:		
		Pin	Name	Alternate Function
		$\begin{aligned} & \hline \text { P1.0 } \\ & \text { P1.1 } \\ & \text { P1.2 } \\ & \text { P1.3 } \\ & \text { P1.4 } \\ & \text { P1.5 } \\ & \text { P1.6 } \\ & \hline \end{aligned}$	GRXD GTXD $\frac{\text { DEN }}{\text { TXC }}$ $\frac{\text { RXC }}{}$ $\frac{H L D}{\text { HLDA }}$	GSC data input pin GSC data output pin GSC enable signal for an external driver GSC input pin for external transmit clock GSC input pin for external receive clock DMA hold input/output DMA hold acknowledge input/output
29-36	41-48	Port 2-Port 2 is an 8-bit bidirectional I/O port with internal pullups. Port 2 pins that have 1 s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{L}, on the data sheet) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external Program Memory if EBEN is pulled low. During accesses to external Data Memory that use 16bit addresses (MOVX @ DPTR and DMA operations), Port 2 emits the high-order address byte. In these applications it uses strong internal pullups when emitting 1 s . During accesses to external Data Memory that use 8 -bit addresses (MOVX @ Ri), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits during program verification.		
10-17	$\begin{aligned} & \text { 14-16, } \\ & 18,19, \\ & 23-25 \end{aligned}$	Port 3-Port 3 is an 8-bit bidirectional I/O port with internal pullups. Port 3 pins that have 1 s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IL, on the data sheet) because of the pullups. Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:		
		Pin	Name	Alternate Function
		P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7	RXD TXD $\frac{1 N T 0}{}$ INT1 T0 T1 $\frac{W R}{}$ RD	Serial input line Serial output line External Interrupt 0 External Interrupt 1 Timer 0 external input Timer 1 external input External Data Memory Write strobe External Data Memory Read strobe

Pin Description (Continued)

Pin \#		Pin Description
47-40	65-58	Port 4-Port 4 is an 8-bit bidirectional I/O port with internal pullups. Port 4 pins that have 1s written to them are pulled high by the internal 'pullups, and in that state can be used as inputs. As inputs, Port 4 pins that are externally being pulled low will source current (l\|L, on the data sheet) because of the internal pullups. In addition, Port 4 also receives the low-order address bytes during program verification.
9	13	$\overline{\text { RST}}$-Reset input. A logic low on this pin for three machine cycles while the oscillator is running resets the device. An internal pullup resisior permits a power-on reset to be generated using only an external capacitor to V_{SS}. Although the GSC recognizes the reset after three machine cycles, data may continue to be transmitted for up to 4 machine cycles after Reset is first applied.
38	55	ALE-Address Latch Enable output signal for latching the low byte of the address during accesses to external memory. In normal operation ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory. While in Reset, ALE remains at a constant high level.
37	54	$\overline{\text { PSEN-Program Store Enable is the Read strobe to External Program Memory. }}$ When the 8XC152 is executing from external program memory, PSEN is active (low). When the device is executing code from External Program Memory, $\overline{\text { PSEN }}$ is activated twice each machine cycle, except that two PSEN activations are skipped during each access to External Data Memory. While in Reset, PSEN remains at a constant high level.
39	56	$\overline{E A}$-External Access enable. $\overline{\mathrm{EA}}$ must be externally pulled low in order to enable the 8XC152 to fetch code from External Program Memory locations 0000 H to OFFFH. EA must be connected to $V_{C C}$ for internal program execution.
23	32	XTAL1-Input to the inverting oscillator amplifier and input to the internal clock generating circuits.
22	31	XTAL2-Output from the inverting oscillator amplifier.
N/A	$\begin{aligned} & 17,20 \\ & 21,22 \\ & 38,39 \\ & 40,49 \end{aligned}$	Port 5-Port 5 is an 8-bit bidirectional I/O port with internal pullups. Port 5 pins that have is written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 5 pins that are externally being pulled low will source current (l\|L, on the data sheet) because of the internal pullups. Port 5 is also the multiplexed low-order address and data bus during accesses to external program memory if EBEN is pulled high. In this application it uses strong pullups when emitting 1 s .
N/A	$\begin{aligned} & 67,66 \\ & 52,57 \\ & 50,68 \\ & 1,51 \end{aligned}$	Port 6-Port 6 is an 8-bit bidirectional I/O port with internal pullups. Port 6 pins that have is written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 6 pins that are externally pulled low will source current (ILL, on the data sheet) because of the internal pullups. Port 6 emits the high-order address byte during fetches from external Program Memory if EBEN is pulled high. In this application it uses strong pullups when emitting 1 s .
N/A	12	EBEN-E-Bus Enable input that designates whether program memory fetches take place via Ports 0 and 2 or Ports 5 and 6 . Table 1 shows how the ports are used in conjunction with EBEN.
N/A	53	EPSEN-E-bus Program Store Enable is the Read strobe to external program memory when EBEN is high. Table 2 shows when EPSEN is used relative to PSEN depending on the status of EBEN and EA.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3.

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts-up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications the capacitance will not exceed 20 pF .

Figure 4. External Clock Drive

IDLE MODE

In Idle Mode, the CPU puts itself to sleep while most of the on-chip peripherals remain active. The major peripherals that do not remain active during Idle, are the DMA channels. The Idle Mode is invoked by software. The content of the on-chip RAM and all the Special Function Registers remain unchanged during this mode. The Idle Mode can be terminated by any enabled interrupt or by a hardware reset.

POWER DOWN MODE

In Power Down Mode, the oscillator is stopped and all on-chip functions cease except that the on-chip RAM contents are maintained. The mode Power Down is invoked by software. The Power Down Mode can be terminated only by a hardware reset.

Figure 3. Using the On-Chip Oscillator
Table 3. Status of the External Pins During Idle and Power Down Modes 80C152JA/83C152JA/80C152JC/83C152JC

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	Port 0	Port 1	Port 2	Port 3	Port 4
Idle	Internal	1	1	Data	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data	Data
Power Down	Internal	0	0	Data	Data	Data	Data	Data
Power Down	External	0	$0 \dagger$	Float	Data	Data	Data	Data

80C152JB/80C152JD

Mode	Instruction Bus	ALE	$\overline{\text { PSEN }}$	$\overline{\text { EPSEN }}$	Port 0	Port 1	Port 2	Port 3	Port 4	Port 5	Port $\mathbf{6}$
Idle	P0, P2	1	1	1	Float	Data	Address	Data	Data	OFFH	OFFH
Idle	P5, P6	1	1	1	Data	Data	Data	Data	Data	OFFH	Address
Power Down	P0, P2	0	0	1	Float	Data	Data	Data	Data	OFFH	OFFH
Power Down	P5, P6	0	$1 \dagger$	0	Data	Data	Data	Data	Data	OFFH	OFFH

NOTE:

For more detailed information on the reduced power modes refer to the Embedded Controller Handbook, and Application Note AP-252, "Designing with the 80C51BH."
\dagger Note difference of logic level of PSEN during Power Down for ROM JA/JC and ROM emulation mode for JC/JD.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $\ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any pin to $\mathrm{V}_{\mathrm{SS}} \ldots-0.5 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$

Power Dissipation \qquad $1.0 \mathrm{~W}(9)$

NOTICE: This data sheet contains preliminary information on new products in production. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
D.C. CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 3) } \end{gathered}$	Max	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (All Except $\overline{\mathrm{EA}}, \mathrm{EBEN}$)	-0.5		$0.2 \mathrm{~V}_{C C}-0.1$	V	
$\mathrm{V}_{\text {IL } 1}$	Input Low Voltage (EA, EBEN)	-0.5		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.3$	V	
V_{1}	Input High Voltage (Except XTAL1, $\overline{\text { RST }}$)	$0.2 V_{c c}+0.9$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage (XTAL1, $\overline{\text { RST }}$)	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V.	
V OL	Output Low Voltage (Ports 1, 2, 3, 4, 5, 6)			0.45	V	$\begin{gathered} \mathrm{lOL}=1.6 \mathrm{~mA} \\ (\text { Note } 4) \end{gathered}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Port 0, ALE, $\overline{\text { PSEN, }}$, EPSEN)			0.45	V	$\begin{gathered} \mathrm{lOL}=3.2 \mathrm{~mA} \\ (\text { Note } 4) \end{gathered}$
$\mathrm{VOH}_{\mathrm{OH}}$	Output High Voltage (Ports 1, 2, 3, 4, 5, 6 COMM9	2.4			V	$\begin{gathered} \mathrm{IOH}_{\mathrm{OH}}=-60 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \hline \end{gathered}$
	ALE, PSEN, EPSEN)	$0.9 \mathrm{~V}_{\mathrm{CC}}$			V	$\mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Port 0 in External	2.4			V	$\begin{aligned} \mathrm{I}_{\mathrm{OH}} & =-400 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \end{aligned}$
	Bus Mode)	$0.9 \mathrm{~V}_{\mathrm{CC}}$			V	$\mathrm{l}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$ (Note 5)
ILL	Logical 0 Input Current (Ports 1, 2, 3, 4, 5, 6)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {TL }}$	Logical 1 to 0 Transition Current (Ports 1, 2, 3, 4, 5, 6)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$
${ }_{\text {LII }}$	Input Leakage (Port 0, $\overline{E A}$)			± 10	$\mu \mathrm{A}$	$0.45<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$
RRST	Reset Pullup Resistor	40			k Ω	
$\mathrm{IIH}^{\text {H }}$	Logical 1 Input Current (EBEN)			+60	$\mu \mathrm{A}$	
ICC	Power Supply Current : Active (16.5 MHz) Idle (16.5 MHz) Power Down Mode		$\begin{gathered} 31 \\ 8 \\ 10 \end{gathered}$	$\begin{aligned} & 41.1 \\ & 15.4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$	(Note 6) (Note 6) $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to 5.5 V

Figure 5. Icc vs Frequency

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a ' T ' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address.
C: Clock
D: Input data.
H: Logic level HIGH.
I: Instruction (program memory contents).
L: Logic level LOW, or ALE.

P: $\overline{\text { PSEN }}$
Q: Output data.
R: READ signal.
T: Time.
V: Valid.
W: WRITE signal.
X : No longer a valid logic level.
Z: Float.
For example,
TAVLL $=$ Time for Address Valid to ALE Low. TLLPL $=$ Time for ALE Low to PSEN Low.
A.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; Load Capacitance for Port 0, ALE, and PSEN $=100 \mathrm{pF}$; Load Capacitance for All Other Outputs $=80 \mathrm{pF}$)

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS (Note 7, 10)

Symbol	Parameter	16.5 MHz		Variable Oscillator		Unit
		Min	Max	Min	Max	
1/TCLCL				3.5	12	MHz
	80C152JA/JC-1 83C152JA/JC-1 80C152JB/JD-1			3.5	16.5	MHz
TLHLL	ALE Pulse Width	81		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	5		TCLCL-55		ns
TLLAX	Address Hold After ALE Low	25		TCLCL-35		ns
TLLIV	ALE Low to Valid Instruction In		142		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	20		TCLCL-40		ns
TPLPH	$\overline{\text { PSEN }}$ Pulse Width	137		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		77		3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		35		TCLCL-25	ns
TAVIV	Address to Valid Instruction In		198		5TCLCL-105	ns
TPLAZ	$\overline{\text { PSEN }}$ Low to Address Float		10		10	ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	263		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	263		6TCLCL-100		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data In		138		5TCLCL-165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		51		2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In		335		8TCLCL-150	ns
TAVDV	Address to Valid Data In		380		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\text { RD }}$ or WR Low	132	232	3TCLCL-50	3 TCLCL+50	ns
TAVWL	Address to $\overline{\mathrm{RD}}$ or WR Low	112		4TCLCL-130		ns
TQVW ${ }^{(8)}$	Data Valid to $\overline{\mathrm{WR}}$ Transition	196		6TCLCL-167		ns
TWHQX	Data Hold After WR	10		TCLCL-50		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE High	20	100	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TCLCL	Oscillator Frequency	3.5	16.5	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

LOCAL SERIAL CHANNEL TIMING-SHIFT REGISTER MODE

Symbol	Parameter		$16.5 \mathbf{M H z}$		Variable Oscillator	
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	727		12 TCLCL		ns
TQVXH	Output Data Setup to Clock Rising Edge	473		10 TCLCL-133		ns
TXHQX	Output Data Hold After Clock Rising Edge	4		2 TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0	ns	
TXHDV	Clock Rising Edge to Input Data Valid		473		10 TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

A.C. TESTING:

INPUT, OUTPUT WAVEFORMS

AC Inputs During Testing are Driven at $V_{C C}-0.5$ for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing Measurements are made at V_{IH} Min for a Logic " 1 " and $V_{I L}$ Max for a Logic " 0 ".

FLOAT WAVEFORM

270431-14
For Timing Purposes a Port Pin is no Longer Floating when a 100 mV change from Load Voltage Occurs, and Begins to Float when a 100 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{l}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}} \geq \pm 20 \mathrm{~mA}$.

8XC152JA/JB/JC/JD

GLOBAL SERIAL PORT TIMINGS-Internal Baud Rate Generator

Symbol	Parameter	16.5 MHz (BAUD $=0$)		Variable Oscillator		Unit
		Min	Max	Min	Max	
HBTJR	Allowable jitter on the Receiver for $1 / 2$ bit time (Manchester encoding only)		0.0375		$\begin{gathered} (0.125 \times \\ (B A U D+1) \times \\ \text { 8TCLCL) } \\ -25 \mathrm{~ns} \end{gathered}$	μs
FBTJR	Allowable jitter on the Receiver for one full bit time (NRZI and Manchester)		0.10		$\begin{gathered} (0.25 \times \\ (B A U D+1) \times \\ 8 T C L C L) \\ -25 \mathrm{~ns} \end{gathered}$	$\mu \mathrm{S}$
HBTJT	Jitter of data from Transmitter for $1 / 2$ bit time (Manchester encoding only)		± 10		± 10	ns
FBTJT	Jitter of data from Transmitter for one full bit time (NRZI and Manchester)		± 10		± 10	ns
DRTR	Data rise time for Receiver(11)		20		20	ns
DFTR	Data fall time for Receiver(12)		20		20	ns

GSC RECEIVER TIMINGS (INTERNAL BAUD RATE GENERATOR)

GSC TRANSMIT TIMINGS (INTERNAL BAUD RATE GENERATOR)

GLOBAL SERIAL PORT TIMINGS-External Clock

Symbol	Parameter	16.5 MHz		Variable Oscillator		Unit
		Min	Max	Min	Max	
1/ECBT	GSC Frequency with an External Clock		2.4	0.009	Fosc $\times 0.145$	MHz
ECH	External Clock High	170		$\begin{aligned} & 2 \text { TCLCL } \\ & +45 \mathrm{~ns} \end{aligned}$		ns
ECL(13)	External Clock Low	170		$\begin{aligned} & 2 \text { TCLCL } \\ & +45 \mathrm{~ns} \end{aligned}$		ns
ECRT	External Clock Rise Time (11)		20		20	ns
ECFT	External Clock Fall Time ${ }^{(12)}$		20		20	ns
ECDVT	External Clock to Data Valid Out - Transmit (to External Clock Negative Edge)		150	.	150	ns
ECDHT	External Clock Data Hold - Transmit (to External Clock Negative Edge)	0		0		ns
ECDSR	External Clock Data Set-up - Receiver (to External Clock Positive Edge)	45		45		ns
ECDHR	External Clock to Data Hold - Receiver (to External Clock Positive Edge)	50		50		ns

GSC TIMINGS (EXTERNAL CLOCK)

NOTES:

1. N.C. pins on PLCC package may be connected to internal die and should not be used in customer applications.
2. It is recommended that both Pin 3 and Pin 33 be grounded for PLCC devices.
3. "Typicals" are based on samples taken from early manufacturing lots and are not guaranteed. The measurements were made with $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ at room temperature.
4. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL} of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to- 0 transitions during bus operations. In the worst cases (capacitive loading $>100 \mathrm{pF}$), the noise pulse on the ALE pin may exceed 0.8 V . In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.
5. Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and $\overline{\text { PSEN }}$ to momentarily fall below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address bits are stabilizing.
6. ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL $=5 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=$ $\mathrm{V}_{C C}-0.5 \mathrm{~V}$; XTAL2 N.C.; Port 0 pins connected to V_{CC}. "Operating" current is measured with EA connected to V_{CC} and RST connected to $\mathrm{V}_{\text {SS }}$. "Idle" current is measured with EA connected to $\mathrm{V}_{\text {SS }}$, RST connected to V_{CC} and GSC inactive.
7. The specifications relating to external data memory characteristics are also applicable to DMA operations.
8. TQVWX should not be confused with TQVWX as specified for 80 C 51 BH . On 80C152, TQVWX is measured from data valid to rising edge of $\overline{W R}$. On $80 C 51 B H, T Q V W X$ is measured from data valid to falling edge of $\overline{W R}$. See timing diagrams. 9 . This value is based on the maximum allowable die temperature and the thermal resistance of the package.
9. All specifications relating to external program memory characteristics are applicable to:

EPSEN for PSEN

Port 5 for Port 0
Port 6 for Port 2
when EBEN is at a Logical 1 on the 80C152JB/JD.
11. Same as TCLCH, use External Clock Drive Waveform.
12. Same as TCHCL, use External Clock Drive Waveform.
13. When using the same external clock to drive both the receiver and transmitter, the minimum ECL spec effectively becomes 195 ns at all frequencies (assuming 0 ns propagation delay) because ECDVT (150 ns) plus ECDSR (45 ns) requirements must also be met ($150+45=195 \mathrm{~ns}$). The 195 ns requirement would also increase to include the maximum propagation delay between receivers and transmitters.

DESIGN NOTES

Within the $8 \times C 152$ there exists a race condition that may set both the RDN and AE bits at the end of a valid reception. This will not cause a problem in the application as long as the following steps are followed:
-Never give the receive error interrupt a higher priority than the valid reception interrupt
-Do not leave the valid reception interrupt service routine when AE is set by using a RETI instruction until AE is cleared. To clear AE set the GREN bit, this enables the receiver. If the user desires that the receiver remain disabled, clear GREN after setting it before leaving the interrupt service routine.
-If the AE bit is checked by user software in response to a valid reception interrupt, the status of $A E$ should be considered invalid.

The race condition is dependent upon both the temperature that the device is currently operating at and the processing the device received during the wafer fabrication.

When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

DATA SHEET REVISION SUMMARY

The following represent the key differences between the "-003" and the "-002" version of the 80C152/83C152 data sheet. Please review this summary carefully.

1. Removed minimum GSC frequency spec when used with an external clock.
2. Change figure "External Program Memory Read Cycle" to show Port 0/Port 5 address floating after PSEN goes low.
3. Added design note on terminating idle with reset.
4. Added status of PSEN during Power Down mode to Table 3.
5. Moved all notes to back of data sheet.
6. Changed microcomputer to microcontroller.
7. Added External Oscillator start-up capacitance note.

The following represent the key differences between the "-002" and the "-001" version of the 80C152/ 83C152 data sheet. Please review this summary carefully.

1. Status of data sheet changed from "ADVANCED" to "PRELIMINARY".
2. 80C152JC, 83C152JC, and 80C152JD were added.
3. Added AE/RDN design note.
4. This revision summary was added.
5. Note \#13 was added (Effective ECL spec at higher clock rates).
6. Table \#2 changed to Table \#3 (Status of pins during Idle/Power Down).
7. Current Table \#2 was added (JA vs. JB vs. JC vs. JD matrix).
8. Transmit jitter spec changed from $\pm 35 \mathrm{~ns}$ and $\pm 70 \mathrm{~ns}$ to $\pm 10 \mathrm{~ns}$.

MCS ${ }^{\circledR}$-51 Development Support Tools

DEVELOPMENT TOOLS FOR THE MCS®. 51 FAMILY OF MICROCONTROLLERS

CUT COSTS, NOT CORNERS

Intel supports application development for its MCS-51 family of microcontrollers with a complete set of tools. Development Tools for the MCS-51 include in-circuit emulators, languages, and utilities.
The ICETM-51/PC in circuit emulators are easy to use, powerful, and attractive in price. A windowed user interface and source level debugging simplify use. The sophisticated event recognition features, ability to access debug information during emulation, and performance analysis functions provide debugging power.
The software development tools consist of a macro assembler, PL/M compiler, linker/ relocator program, librarian utility, and object-to-hex utility. C compilers for the MCS-51 architecture are available from several vendors. Develop code in the languages you desire, then combine object modules from different languages into a single, fast program. These tools were designed to work with each other, with the MCS-51 architecture, and with the Intel line of MCS-51 emulators.

FEATURES

Software Support Tools

- ASM-51 macro assembler
- PL/M-51 high-level language
- Linker/relocator program
- Librarian Utility
- Object to hexadecimal converter
- Hosted on IBM PC XT/AT running DOS V 3.0 or later
- Worldwide service and support

Emulator Family

- Color windowed user interface
- Source level debugging with symbolic referencing and display
- Recognition of internal data write, external data read/write, instruction fetch, execution address, external input line state, and trace buffer full events
- AND/OR combination of events
- Qualification of an event by number of occurrences
- Arming of an event conditional on the occurrence of another event
- Access to microcontroller contents/memory during emulation
- 4096 frame trace buffer accessible during emulation
- Emulation and event timers for performance analysis
- User-definable debug and test procedures with variables and literal definitions
- Mappable emulator memory: 64 Kbytes code plus 64 Kbytes xdata
- On-circuit emulation of surface mounted components
- Four input logic pins to capture external events
- Supports component speeds up to 20 MHz

ICE ${ }^{\text {TM-51/PC }}$

For ease of use and learning, the ICE-51/PC emulators feature a windowed interface. Each window, such as Memory, Source, Register, and Watch (user variable display), presents a different view of the system. A Custom
Window allows a user-defined function. Within each window, option menus, pop-up fill-in-theblank forms, and scroll keys control the view. Windows may be added, sized, zoomed to full screen, or completely removed.
Pull down menus and function keys streamline emulator use by providing convenient access to common functions. The Command Line Window provides the power user with the most efficient access to all emulator functions.

Augmenting command entry is a syntax guide and recall/editing of prior commands. Of course, command syntax is compatible with ṕrior non-windowed Intel emulators.
Help is at your fingertips. One keystroke pops up the help menu. Help is available for a variety of topics, including emulator commands, window operation, function keys, pull-down menus, and error messages. In addition, a Key Reference Line displays a list of the currently active function keys as well as brief help text for menus and forms.

Source Level Debugging

Source level debugging features complement the windowed user interface. For example, simply use a pull-down menu to load the program. Breakpoints are set by highlighting a line of code within the Source Window and pressing a function key. Set trace specifications through the pop-up fill-in-theblank form in the Trace Window. And with the current execution point and breakpoints highlighted in color, press a function key to begin emulation.
Scroll to another line in the Source Window and press a function key to execute to that point, bypassing yet retaining the previously set breakpoints. From there, use a pull-down menu to add a variable, referenced symbolically, to the Watch Window. With each press of another function key the program is executed one source line at a time and the Watch Window display is updated.
Source statements and symbolic information are also displayed when memory is disassembled (in the Memory Window) or within the trace buffer (in the Trace Window).

Event Recognition and Trace

To speed the debugging process, the ICE-51/PC user has access to sophisticated event recognition capabilities. Internal data write, external data read/write, instruction fetch, execution address, external input line state, and trace buffer full events may be used as triggers. Compound triggers may be constructed through AND/OR combinations of events. The recognition of an event may be armed based on the occurrence of another event. Events may be further qualified by a number of occurrences. Since this sophistication may lead to complex break/ trace definitions, four Break Registers are available to store definitions for reuse.

The Fastbreaks feature of the ICE-51/PC emulators allows the user to execute emulator commands with minimal intrusion on emulation. Fastbreaks are typically used for accesses to microcontroller contents or memory. A Fastbreak halts emulation, performs the requested memory access, resumes emulation, and reports back to the user. Emulation is halted only for the few machine cycles necessary to perform the access.
Similarly, the trace buffer is accessible during emulation. The buffer produces 4096 frames of execution address, opcode in hex and mnemonic formats, operands in hex and symbolic formats, bus activity, external line (clips) states, and source code.
To aid performance analysis, an event timer records the time from/to specified events while an emulation timer records the total duration of emulation.

Genuine Intel Tools

The ICE-51/PC provides the most comprehensive support for the Intel MCS-51 family of microcontrollers. When you trust your component selection to Intel, why trust its emulation to someone else? And the ICE-51/PC emulators work better because they work together with products such as C compilers, from leading independent software vendors as well as Intel's own software tools.

Emulator Electrical Characteristics

The AC characteristics for all pins except PO, P2, ALE, and PSEN \# are maintained with a maximum capacitive target load 15 pF less than specified in the component data sheet for the $8 \mathrm{xC51GB}$.

The AC timing degradations for P0, P2, ALE, and PSEN \# are maintained with a maximum capacitive target load of 70 pF .
The maximum rise and fall times for ALE and PSEN \# with a target load of 20 pF are 7 ns and 2 ns respectively.
The maximum rise and fall times for P 0 and P 2 with a target load of 50 pF are 27 ns and 10 ns respectively. Rise and fall times are specified at the 10% and 90% points.

The emulation processor requires 2 to 3 clock cycles longer to respond to reset.
For external program memory characteristics involving RD\# and WR\#, observe the following degradations:

- Setup time to RD\# is 11 ns longer (max.).
- It takes 30 ns longer for data to appear on the bus with respect to WR\# (max.).
- The falling edges of RD\# and WR\# can be delayed by 70 ns (max.).

Table C-1 shows the characteristics for external program memory.

Table C-1. External Program Memory Characteristics

Symbol	Parameter	Minimum	Maximum	Units
$\mathrm{T}_{\text {AVLL }}$	Address Valid to ALE Low	$0.85 \mathrm{~T}_{\mathrm{CLCL}}-19$		ns
$\mathrm{~T}_{\text {LLAX }}$	Address Hold after ALE Low	10		ns
$\mathrm{~T}_{\text {LLIV }}$	ALE Low to Valid Instruction In		$3.15 \mathrm{~T}_{\text {CLCL }}-18$	ns
$\mathrm{~T}_{\text {LLPL }}$	ALE Low to PSEN \# Low	$0.85 \mathrm{~T}_{\text {CLCL }}-1$		ns
$\mathrm{~T}_{\text {PLIV }}$	PSEN \# Low to Valid Instruction In		$2.15 \mathrm{~T}_{\mathrm{CLCL}}-18$	ns
$\mathrm{~T}_{\text {PXIZ }}$	Input Instr Float after PSEN\#		24	ns
$\mathrm{~T}_{\text {PXAV }}$	PSEN \# to Address Valid	$\mathrm{T}_{\text {CLCL }}+20$		ns
$\mathrm{~T}_{\text {AVIV }}$	Address to Valid Instruction In		$4.15 \mathrm{~T}_{\mathrm{CLCL}}-66$	ns
$\mathrm{~T}_{\text {PLAZ }}$	PSEN \# Low to Address Float		4	ns
$\mathrm{~T}_{\text {LLDV }}$	ALE Low to Valid Data In		$7.15 \mathrm{~T}_{\mathrm{CLCL}}-18$	ns
$\mathrm{~T}_{\text {AVDV }}$	Address to Valid Data In		$8.15 \mathrm{~T}_{\mathrm{CLCL}}-66$	ns

Note: \# indicates active-low logic.

intel.

SPECIFICATIONS

Figure 1: Processor Module Dimensions

Figure 2: MCS®-51 Application Development Process

ASM-51 Macro Assembler

The ASM-51 Macro Assembler provides full and accurate support for the MCS-51 family of microcontrollers. Symbolic access to the many features of the component, an "include" file with appropriate component registers, and memory space definition are a few of the features of the assembler. With the macro facility of ASM-51 common code sequences need only be developed once, saving time in both development and maintenance.

PL/M-51 Compiler

$\mathrm{PL} / \mathrm{M}-51$ is a high-level language designed to support the software requirements of the MCS-51 family of microcontrollers. The PL/M-51 compiler translates PL/M high-level language statements into MCS-51 relocatable object code. Major features of the PL/M-51 compiler include:

- Structured programming for ease of maintenance and enhancement. The PL/M-51 language supports modular and structured programming, making programs easier to understand, maintain, and debug.
- Data types to facilitate a variety of common functions. PL/M-51 supports three data types to facilitate various arithmetic, logic, and address functions. The language also uses BASED variables that map more than one variable to the same memory location to save memory space.
- Interrupt attribute to speed coding effort. The INTERRUPT attribute allows you to easily define interrupt handling procedures. The compiler will generate code to save and restore the program status word for INTERRUPT procedures.
- Code optimization for minimizing memory requirements. The PL/M-51 compiler has four different levels of optimization for significantly reducing the size of programs.
- Language compatibility for faster development. PL/M-51 object modules are compatible with object modules generated by all other MCS-51 language translators. This compatibility allows for easy linking of all modules and the ability to do symbolic debugging with the Intel MCS-51 In-Circuit Emulators.

RL-51 Linker/Relocator

Intel's RL-51 utility is used to link multiple MCS-51 object modules into a single program, resolve all references between modules and assign absolute addresses to all relocatable
segments. Modules can be written in either ASM-51 or PL/M-51.

LIB-51

The Intel LIB-51 utility creates and maintains libraries of software object modules. Standard modules can be placed in a library and linked to your application programs using RL-51. When using libraries, the linker will link only those modules that are required to satisfy external references.

OH Object to Hexidecimal Converter

The OH utility converts Intel OMF-51 object modules into standard hexidecimal format. This allows the code to be loaded directly into PROM via non-Intel PROM programmers.

Third Party Vendor Tools for MCS ${ }^{\text {® }} 51$

The MCS-51 architecture is supported by a growing number of vendors providing C language compilers. The following vendors provide C language compilers for the Intel MCS-51 Arċhitecture.
Archimedes Software, Inc 415-567-4010 (U.S.)
RSO Tasking 617-894-7800 (U.S.), 31-33-55-8584 (Europe)
Franklin Software, Inc 408-296-8051 (U.S.)
IAR 46-18-15-7920 (Europe)
Microtec Research, Inc 408-980-1300 (U.S.)

Worldwide Service, Support, and Training

To augment its development tools, Intel offers field application engineering expertise and hotline technical support.
Intel also offers a Software Support Contract which includes technical software information, automatic distributions of software and documentation updates, i COMMENTS publication, remote diagnostic software, and a development tools troubleshooting guide.
Intel's 90-day Hardware Support package includes technical hardware information, telephone support, warranty on parts, labor, material, and on-site hardware support.
Intel Development Tools also offers a 30-day, money-back guarantee to customers who are not satisfied after purchasing any Intel development tool.

Configuration and Ordering Information

The ICE-51/PC emulator utilizes an IBM PC XT, PC AT, or compatible personal computer with hard disk drive, 640 Kbytes of memory, and DOS 3.3 or 5.0 as the host system. Emulator host software is provided on both 5.25 and 3.5 inch flexible disk media.

The ICE-51/PC emulators utilize a common emulation controller card with interchangeable target interface boards (TIB). An ICE-51FX/PC may be converted to support the 87C51GB microcontroller by installing a probe kit. Likewise, an ICE-51GX/PC may be converted to an ICE-51FX/PC by installing a probe kit.
A Crystal Power Accessory (CPA) is optionally available for testing the TIB to target system connection. Standalone software execution does not require a CPA.

Emulator Kits

pICE51FXPC ICE-51FX/PC emulator kit. Contains all required emulator hardware and software to execute stand-alone or in-target. Kit includes emulation controller board (8-bit, PC-card form factor), $36^{\prime \prime}$ cable (connects controller to probe), target probe fitted with a 40 -pin male DIP adapter, and a 44-lead PLCC target adapter. Supports the following components:

form factor), $36^{\prime \prime}$ cable (connects controller to probe), and target probe fitted with a 68 -lead male PLCC adapter. Supports 87C51GB components (MCS-51 microcontrollers with on-chip A/D).
Note: 1. PC host software is delivered on $51 / 4^{\prime \prime}(360 \mathrm{~KB})$ and $31 / 2^{\prime \prime}(720 \mathrm{~KB})$ diskettes
2. Emulator kits do NOT include a CPA (Crystal Power Accessory)
pICE51FXCPA Crystal Power Accessory for ICE-51FX/PC (used to run confidence tests on probe's pin circuitry)
pICE51GXCPA Crystal Power Accessory for ICE-51GX/PC (used to run confidence tests on probe's pin circuitry)

Upgrade Kits

pICE51FXPROBE Conversion kit for existing ICE-51GX/PC emulators (kit includes FX target probe and PC host software)
pICE51GXPROBE Conversion kit for existing ICE-51FX/PC emulators (kit includes GX target probe and PC host software)

Target Adapter

HADPTONC44PLCC target: 44-lead PLCC components (surfacemounted)

Software Tools

D86PLM51NL DOS-hosted PL/M crosscompiler. Language features allow direct architecture access. Optimized for real-time, embedded applications.
D86ASM5INL DOS-hosted macro assembler. Supports all MCS-51 components.
Note: All software tool packages include a relocator/linker (RL-51), an object-to-hex converter (OH), and a librarian (LIB-51).

ACE51TMFx SOFTWARE

To order ACE51 TMFx Software, contact your local Intel Sales Office.

ACE51 TMFx SOFTWARE MAKES YOU AN ARCHITECTURAL WIZARD-INSTANTLY

If you want to learn 80 C 51 Fx architecture as fast as possible, so that you can develop hardware and software in parallel, Intel has the perfect solution. We call it ACE51TMFx Software.

PC-BASED SOFTWARE TRAINING SPEEDS LEARNING

ACE51TMFx Software is a PC-Based Expert System that uses artificial intelligence technology to guide you through detailed product training.
Its menu-driven software is designed to speed up your learning curve-and reduce your total design time, no matter what level of MCS-51 experience you have. ACE51TMFx software includes:

- A Hypertext Manual
- Peripheral Design Modules
- Application Development Modules

It uses "Hypertext" to efficiently present 80C51Fx documentation by providing highlighted links to related topics. You can follow these links several layers into the documentation-without having to search through hundreds of cross-referenced pages.

CONCENTRATE ON APPLICATIONS INSTEAD OF BIT-BY-BIT PROGRAMMING

After learning the basics of the architecture, you can use the ACE51TMFx design module to program peripherals. So, you can concentrate on application needs versus bit-by-bit programming materials. You'll save design time and minimize programming errors.
Also, ACE51TMFx Software generates fully commented initialization code and features scoreboards to document just how each peripheral has been programmed. The application development modules provide examples of generating customized code for the Programmable Counter Array (PCA). Application examples include High-Speed Outputs, Software Timers, and measurement of frequency, duty cycle, pulse width and phase differences.
System requirements: IBM compatible XT or AT**, EGA Monitor, hard disk, 1.2 meg floppy drive, 640 K memory.

[^13]
EV80C51FX EVALUATION BOARD

270972-1

LOW COST CODE EVALUATION TOOL

Intel's EV80C51FX evaluation board provides a hardware environment for code execution and software debugging at a relatively low cost. The board features the 80C51FC, single chip, CHMOS*, 8-bit microcontrollers, the newest member of the industry standard 8051 family. The board allows the user to take full advantage of the power of the 8051 . The EV80C51FX provides up to 16 MHz execution of a user's code. Plus, its memory (ROMsim) can be reconfigured to match the user's planned memory system, allowing for exact analysis of code execution speeds in a particular application.
Popular features such as a single line assembler/disassembler, single-step program execution and sixteen software breakpoints are standard on the EV80C51FX. Intel provides a complete code development environment using assembly language (ASM-51) as well as Intel's high-level language $\mathrm{PL} / \mathrm{M}-51$ to accelerate development schedules.
The evaluation board is hosted on an IBM PC** or BIOS-compatible clone, already a standard development solution in most of today's engineering environments. The source code for the on-board monitor (written in ASM-51) is public domain. The program is about 3 Kbytes and can be easily modified to be included in the user's target hardware. In this way, the provided PC host software can be used throughout the development phase.

EV80C51FX FEATURES

- Up to 16 MHz Execution Speed
- 32 Kbytes of ROMsim
- Flexible Chip-Select Controller
- Totally CMOS, Low Power Board
- Concurrent Interrogation of Memory and Registers
- Sixteen Software Breakpoints
- Program Step Mode
- High-Level Language Support
- Single Line Assembler/Disassembler
- RS-232-C Communication Link

EV80C51FX EVALUATION BOARD

FULL SPEED EXECUTION

The EV80C51FX executes the user's code from on-board ROMsim at up to 16 MHz . By changing crystals on the 80C51FC, any slower execution speed can be evaluated. The board's host interface timing is not affected by this crystal change.

32 KBYTES OF ROMSIM

The board comes with 32 Kbytes of SRAM to be used as ROMsim for the user's code and as data memory if needed.

FLEXIBLE MEMORY DECODING

By changing the Programmable Logic Device (PLD) on the board, the memory on the board can be made to look like the memory system planned for the user's hardware application. The PLD controls the chip-select inputs on the board with 128 byte boundaries of resolution.

TOTALLY CMOS BOARD

The EV80C51FX board is built totally with CMOS components. Its power consumption is therefore very low, requiring 5 V at only 225 mA . If the on board LEDs are disabled, the current drops to only 80 mA . The board also requires $\pm 12 \mathrm{~V}$ at 10 mA .

CONCURRENT
 INTERROGATION

 OF MEMORY AND REGISTERSThe monitor for the EV80C51FX allows the user to read and modify internal registers and external memory while the user's code is running in the board.

SIXTEEN SOFTWARE BREAKPOINTS

There are sixteen breakpoints available which automatically substitute an LCALL instruction for a user's instruction at the breakpoint location. The substitution occurs when execution is started. If the code is halted
or a breakpoint is reached, the user's code is restored in the ROMsim.

PROGRAM STEP MODE

The stepping mode redirects the external interrupt 1 vector for use by the monitor. All other interrupts are available to the user, and will function as normal.

HIGH-LEVEL LANGUAGE SUPPORT

The host software for the EV80C51FX board is able to load absolute object code generated by ASM-51, PL/M-51 or RL-51, all of which are available from Intel.

SINGLE LINE ASSEMBLER/DISASSEMBLER
The host has a Single Line Assembler, and a Disassembler, to simplify modification and examination of code loaded on the board.

RS-232-C

 COMMUNICATION LINKThe EV80C51FX communicates with the host using an Intel 82510 UART provided on board. This frees the on-chip UART of the 80C51FC; or for the user's application.

PERSONAL COMPUTER REQUIREMENTS

The EV80C51FX Evaluation Board is hosted on an IBM PC ${ }^{* *}, \mathrm{XT}^{* *}, \mathrm{AT}^{* *}$ or BIOS compatible clone. The PC must meet the following minimum requirements.

- 512 Kbytes of Memory
- One 360 Kbyte floppy Disk Drive
- PC DOS** 3.1 or Later
- A Serial Port (COM1 or COM2) at 9600 Baud
- ASM-51 or PL/M-51
- A text editor such as AEDIT

EV80C51FX EVALUATION BOARD

EV80C51GX EVALUATION BOARD

LOW COST CODE EVALUATION TOOL

Intel's EV80C51GX evaluation board provides a hardware environment for code execution and software debugging at a relatively low cost. The board features the 80C51GB, single chip, CHMOS*, 8-bit microcontrollers, the newest member of the industry standard 8051 family. The board allows the user to take full advantage of the power of the 8051 . The EV80C51GX provides up to 16 MHz execution of a user's code. Plus, its memory (ROMsim) can be reconfigured to match the user's planned memory system, allowing for exact analysis of code execution speeds in a particular application.
Popular features such as a single line asembler/disassembler, single-step program execution and sixteen software breakpoints are standard on the EV80C51GX. Intel provides a complete code development environment using assembly language (ASM-51) as well as Intel's high-level language PL/M-51 to accelerate develpment schedules.
The evaluation board is hosted on an IBM PC** or BIOS-compatible clone, already a standard development solution in most of today's engineering environments. The source code for the on-board monitor (written in ASM-51) is public domain. The program is about 3 Kbytes and can be easily modified to be included in the user's target hardware. In this way, the provided PC host software can be used throughout the development phase.

EV80C51GX FEATURES

- Up to 16 MHz Execution Speed
- 32 Kbytes of ROMsim
- Flexible Chip-Select Controller
- Totally CMOS, Low Power Board
- Concurrent Interrogation of Memory and Registers
- Sixteen Software Breakpoints
- Program Step Mode
- High-Level Language Support
- Single Line Assembler/Disassembler
- RS-232-C Communication Link

[^14]
EV80C51GX EVALUATION BOARD

FULL SPEED EXECUTION

The EV80C51GX executes the user's code from on-board ROMsim at up to 16 MHz . By changing crystals on the 80C51GB any slower execution speed can be evaluated. The board's host interface timing is not affected by this crystal change.

32 KBYTES of ROMSIM

The board comes with 32 Kbytes of SRAM to be used as ROMsim for the user's code and as data memory if needed.

FLEXIBLE MEMORY DECODING

By changing the Programmable Logic Device (PLD) on the board, the memory on the board can be made to look like the memory system planned for the user's hardware application. The PLD controls the chip-select inputs on the board with 128 byte boundaries of resolution.

TOTALLY CMOS BOARD

The EV80C51GX board is built totally with CMOS components. Its power consumption is therefore very low, requiring 5 V at only 250 mA . If the on board LEDs are disabled, the current drops to only 80 mA . The board also requires $\pm 12 \mathrm{~V}$ at 10 mA .

CONCURRENT INTERROGATION OF MEMORY AND REGISTERS

The monitor for the EV80C51GX allows the user to read and modify internal registers and external memory while the user's code is running in the board.

SIXTEEN SOFTWARE BREAKPOINTS

There are sixteen breakpoints available which automatically substitute an LCALL instruction for a user's instruction at the breakpoint location. The substitution occurs when execution is started. If the code is halted
or a breakpoint is reached, the user's code is restored in the ROMsim.

PROGRAM STEP MODE

The stepping mode redirects the external interrupt 1 vector for use by the monitor. All other interrupts are available to the user, and will function as normal.

HIGH-LEVEL LANGUAGE SUPPORT

The host software for the EV80C51GX board is able to load absolute object code generated by ASM-51, PL/M-51 or RL-51, all of which are available from Intel.

SINGLE LINE ASSEMBLER/DISASSEMBLER

The host has a Single Line Assembler, and a Disassembler, to simplify modification and examination of code loaded on the board.

RS-232-C
 COMMUNICATION LINK

The EV80C51GX communicates with the host using an Intel 82510 UART provided on board. This frees the on-chip UART of the 80C51FC; or for the user's application.

PERSONAL COMPUTER REQUIREMENTS

The EV80C51GX Evaluation Board is hosted on an IBM PC**, XT**, AT** or BIOS compatible clone. The PC must meet the following minimum requirements:

- 512 Kbytes of Memory
- One 360 Kbyte Floppy Disk Drive
- PC DOS** 3.1 or Later
- A Serial Port (COM1 or COM2) at 9600 Baud
- ASM-51 or PL/M-51
- A text editor such as AEDIT

EV80C51GX EVALUATION BOARD

RUPI-44 Family

12

The RUPITM-44 Family: Microcontroller with On-Chip Communication Controller

> THE RUPITM-44 FAMILY: MICROCONTROLLER WITH ON-CHIP COMMUNICATION CONTROLLER
CONTENTS PAGE
INTRODUCTION 12-3
1.0 ARCHITECTURE OVERVIEW 12-3
2.0 THE HDLC/SDLC PROTOCOLS 12-5
2.1 HDLC/SDLC Advantages over Async 12-5
2.2 HDLC/SDLC Networks 12-6
2.3 Frames 12-6
2.4 Zero Bit Insertion 12-6
2.5 Non-Return to Zero Inverted (NR21) 12-7
2.6 References 12-7
3.0 RUPITM-44 DESIGN SUPPORT 12-7
3.1 Design Tool Support 12-7
3.2 8051 Workshop 12-8

INTRODUCTION

The RUPI-44 family is designed for applications requiring local intelligence at remote nodes, and communication capability among these distributed nodes. The RUPI-44 integrates onto a single chip Intel's highest performance microcontroller, the 8051 -core, with an intelligent and high performance Serial communication controller, called the Serial Interface Unit, or SIU. See Figure 1. This dual controller architecture allows complex control and high speed data communication functions to be realized cost effectively.

The RUPI-44 family consists of three pin compatible parts:

- 8344-8051 Microcontroller with SIU
- 8044-An 8344 with 4 K bytes of on-chip ROM program memory
- 8744 -An 8344 with 4 K bytes of on-chip EPROM program memory

1.0 ARCHITECTURE OVERVIEW

The 8044's dual controller architecture enables the RUPI to perform complex control tasks and high speed communication in a distributed network environment.

The 8044 microcontroller is the 8051 -core, and maintains complete software compatibility with it. The microcontroller contains a powerful CPU with on-chip peripherals, making it capable of serving sophisticated
real-time control applications such as instrumentation, industrial control, and intelligent computer peripherals. The microcontroller features on-chip peripherals such as two 16-bit timer/counters and 5 source interrupt capability with programmable priority levels. The microcontroller's high performance CPU executes most instructions in 1 microsecond, and can perform an 8×8 multiply in 4 microseconds. The CPU features a Boolean processor that can perform operations on 256 directly addressable bits. 192 bytes of on-chip data RAM can be extended to 64 K bytes externally. 4 K bytes of onchip program ROM can be extended to 64 K bytes externally. The CPU and SIU run concurrently. See Figure 2.

The SIU is designed to perform serial communications with little or no CPU involvement. The SIU supports data rates up to 2.4 Mbps , externally clocked, and 375 Kbps self clocked (i.e., the data clock is recovered by an on-chip digital phase locked loop). SIU hardware supports the HDLC/SDLC protocol: zero bit insertion/deletion, address recognition, cyclic redundancy check, and frame number sequence check are automatically performed.

The SIU's Auto mode greatly reduces communication software overhead. The AUTO mode supports the SDLC Normal Response Mode, by performing secondary station responses in hardware without any CPU involvement. The Auto mode's interrupt control and frame sequence numbering capability eliminates software overhead normally required in conventional systems. By using the Auto mode, the CPU is free to concentrate on real time control of the application.

Figure 1. RUPITM-44 Dual Controller Architecture

2.0 THE HDLC/SDLC PROTOCOLS

2.1 HDLC/SDLC Advantages over Async

The High Level Data Link Control, HDLC, is a standard communication link control established by the International Standards Organization (ISO). SDLC is a subset of HDLC.

HDLC and SDLC are both well recognized standard serial protocols. The Synchronous Data Link Control, SDLC, is an IBM standard communication protocol. IBM originally developed SDLC to provide efficient, reliable and simple communication between terminals and computers.

The major advantages of SDLC/HDLC over Asynchronous communications protocol (Async):

- SIMPLE: Data Transparency
- EFFICIENT: Well Defined Message-Level Operation
- RELIABLE: Frame Check Sequence and Frame Numbering

The SDLC reduces system complexity. HDLC/SDLC are "data transparent" protocols. Data transparency means that an arbitrary data stream can be sent without concern that some of the data could be mistaken for a protocol controller. Data transparency relieves the communication controller having to detect special characters.

SDLC/HDLC provides more data throughout than Async. SDLC/HDLC runs at Message-level Operation which transmits multiple bytes within the frame, whereas Async is based on character-level operation. Async transmits or receives a character at a time. Since Async requires start and stop bits in every transmission, there is a considerable waste of overhead compared to SDLC/HDLC.

Figure 3. RUPITM-44 Supported Network Configurations

Due to SDLC/HDLC's well delineated field (see Figure 4) the CPU does not have to interpret character by character to determine control field and information field. In the case of Async, CPU must look at each character to interpret what it means. The practical advantage of such feature is straight forward use of DMA for information transfer.

In addition, SDLC/HDLC further improves Data throughput using implied Acknowledgement of transferred information. A station using SDLC/HDLC may acknowledge previously received information while transmitting different information in the same frame. In addition, up to 7 messages may be outstanding before an acknowledgement is required.

The HDLC/SDLC protocol can be used to realize reliable data links. Reliable Data transmission is ensured at the bit level by sending a frame check sequence, cyclic redudancy checking, within the frame. Reliable frame transmission is ensured by sending a frame number identification with each frame. This means that a receiver can sequentially count received frames and at any time infer what the number of the next frame to be received should be. More important, it provides a means for the receiver to identify to the sender some particular frame that it wishes to have resent because of errors.

2.2 HDLC/SDLC Networks

In both the HDLC and SDLC line protocols a (Master) primary station controls the overall network (data link) and issues commands to the secondary (Slave) stations. The latter complies with instructions and responds by sending appropriate responses. Whenever a transmitting station must end transmission prematurely, it sends an abort character. Upon detecting an abort character, a receiving station ignores the transmission block called a frame.

RUPI-44 supported HDLC/SDLC network configurations are point to point (half duplex) multipoint (half duplex), and loop. In the loop configuration the stations themselves act as repeaters, so that long links can be easily realized, see Figure 3.

2.3 Frames

An HDLC/SDLC frame consists of five basic fields: Flag, Address, Control, Data and Error Detection. A frame is bounded by flags-opening and closing flags. An address field is 8 bits wide in SDLC, extendable to 2 or more bytes in HDLC. The control field is also 8 bits wide, extendable to two bytes in HDLC. The SDLC data field or information field may be any number of bytes. The HDLC data field may or may not be on an 8 bit boundary. A powerful error detection code called Frame Check Sequence contains the calculated CRC (Cycle Redundancy Code) for all the bits between the flags. See Figure 4.

In HDLC and SDLC are three types of frames; an Information Frame is used to transfer data, a Supervisory Frame is used for control purposes, and a Nonsequenced Frame is used for initialization and control of the secondary stations.

For a more detailed discussion of higher level protocol functions interested readers may refer to the references listed in Section 2.6.

2.4 Zero Bit Insertion

In data communications, it is desirable to transmit data which can be of arbitrary content. Arbitrary data transmission requires that the data field cannot contain characters which are defined to assist the transmission protocol (like opening flag in HDLC/SDLC communications). This property is referred to as "data transparency". In HDLC/SDLC, this code transparency is made possible by Zero Bit Insertion (ZBI).

The flag has a unique bit pattern: 01111110 (7E HEX). To eliminate the possibility of the data field containing a 7E HEX pattern, a bit stuffing technique called Zero Bit Insertion is used. This technique specifies that during transmission, a binary 0 be inserted by the transmitter after any succession of five contiguous binary 1 's. This will ensure that no pattern of 01111110 is ever transmitted between flags. On the receiving side, after receiving the flag, the receiver hardware automatically deletes any 0 following five consecutive 1's. The 8044 performs zero bit insertion and deletion automatically.

Figure 4. Frame Format

2.5 Non-return to Zero Inverted (NR21)

NRZI is a method of clock and data encoding that is well suited to the HDLC/SDLC protocol. It allows HDLC/SDLC protocols to be used with low cost asynchronous modems. NRZI coding is done at the transmitter to enable clock recovery from the data at the receiver terminal by using standard digital phase locked loop (DPLL) techniques. NRZI coding specifies that the signal condition does not change for transmitting a 1 , while a 0 causes a change of state. NRZI coding ensures that an active data line will have a transition at least every 5-bit times (recall Zero Bit Insertion), while contiguous 0's will cause a change of state. Thus, ZBI and NRZI encoding makes it possible for the 8044's onchip DPLL to recover a receive clock (from received data) synchronized to the received data and at the same time ensure data transparency.

2.6 References

1. IBM Synchronous Data Link Control General Information GA27-3093-2 File No. GENL-09.
2. Standard Network Access Protocol Specification, DATAPAC Trans-Canada Telephone System CCG111.
3. IBM 3650 Retail Store System Loop Interface OEM Information, IBM, GA27-3098-0.
4. Guidebook to Data Communications, Training Manual, Hewlett-Packard 5955-1715.
5. "Serial Backplane Suits Multiprocessor Architectures", Mike Webb, Computer Design, July 1984, pp. 85-96.
6. "Serial Bus Simplifies Distributed Control", P.D. MacWilliams, Control Engineering, June 1984, pp. 101-104.
7. "Chips Support Two Local Area Networks", Bob Dahlberg, Computer Design, May 1984, pp. 107-114.
8. "Build a VLSI-based Workstation for the Ethernet Environment", Mike Webb, EDN, 23 February 1984, pp. 297-307.
9. "Networking With the 8044", Young Sohn \& Charles Gopen, Digital Design, May 1984, pp. 136-137.

3.0 RUPITM-44 DESIGN SUPPORT

3.1 Design Tool Support

A critical design consideration is time to market. Intel provides a sophisticated set of design tools to speed hardware and software development time of 8044 based products. These include ICE-44, ASM-51, PL/M-51, and EMV-44.

Figure 5. RUPITM-44 Development Support Configuration Intellec ${ }^{\circledR}$ System, ICETM-44 Buffer Box, and ICE-44 Module Plugged into a User Prototype Board

A primary tool is the 8044 In Circuit Emulator, called ICE-44. See Figure 5. In conjunction with Intel's Intellec ${ }^{\circledR}$ Microprocessor Development System, the ICE-44 emulator allows hardware and software development to proceed interactively. This approach is more effective than the traditional method of independent hardware and software development followed by system integration. With the ICE-44 module, prototype hardware can be added to the system as it is designed. Software and hardware integration occurs while the product is being developed.

The ICE-44 emulator assists four stages of development:

1) Software Debugging

It can be operated without being connected to the user's system before any of the user's hardware is available. In this stage ICE-44 debugging capabilities can be used in conjunction with the Intellec text editor and 8044 macroassembler to facilitate program development.
2) Hardware Development

The ICE-44 module's precise emulation characteristics and full-speed program RAM make it a valuable tool for debugging hardware, including the time-critical SDLC serial port, parallel port, and timer interfaces.

3) System Integration

Integration of software and hardware can begin when, any functional element of the user system hardware is connected to the 8044 socket. As each section of the user's hardware is completed, it is added to the prototype. Thus, each section of the hardware and software is system tested in real-time operation as it becomes available.
4) System Test

When the user's prototype is complete, it is tested with the final version of the user system software. The ICE-44 module is then used for real-time emulation of the 8044 to debug the system as a completed unit.
The final product verification test may be performed using the 8744 EPROM version of the 8044 microcomputer. Thus, the ICE-44 module provides the user with the ability to debug a prototype or production system at any stage in its development.

A conversion kit, ICE-44 CON, is available to upgrade an ICE-51 module to ICE-44.

Intel's ASM-51 Assembler supports the 8044 special function registers and assembly program development. PL/M-51 provides designers with a high level language for the 8044. Programming in PL/M can greatly reduce development time, and ensure quick time to market.

These tools have recently been expanded with the addition of the EMV-44CON. This conversion kit allows you to convert an EMV-51 into an EMV-44 emulation vehicle. The resultant low cost emulator is designed for use with an iPDS Personal Development System, which also supports the ASM-51 assembler and PL/M-51. See Figure 6.

Emulation support is similar to the ICE-44 with support for Software and Hardware Development, System

Figure 6. RUPI-44 iPDS Personal Development System, EMV-44 Buffer Box, and EMV-44 Module Plugged into a User Prototype Board

Integration, and System Test. The iPDS's rugged portability and ease of use also make it an ideal system for production tests and field service of your finished design. In addition, the iPDS offers EPROM programming module for the 8744, and direct communications with the 8044-based BITBUS via an optional iSBX-344 distributed control module.

3.2 8051 Workshop

Intel provides 8051 training to its customers through the 5-day 8051 workshop. Familiarity with the 8051 and 8044 is achieved through a combination of lecture and laboratory exercises.

For designers not familiar with the 8051, the workshop is an effective way to become proficient with the 8051 architecture and capabilities.

8044 Architecture

8044 ARCHITECTURE CONTENTS PAGE
GENERAL 12-11
1.0 MEMORY ORGANIZATION OVERVIEW 12-11
1.1 Special Function Registers 12-11
1.2 Interrupt Control Registers 12-13
2.0 MEMORY ORGANIZATION DETAILS 12-14
2.1 Operand Addressing 12-15
2.2 Register Addressing 12-16
2.3 Direct Addressing 12-16
3.0 RESET 12-18
4.0 RUPITM-44 FAMILY PIN DESCRIPTION 12-18

GENERAL

The 8044 is based on the 8051 core. The 8044 replaces the 8051's serial port with an intelligent HDLC/SDLC controller called the Serial Interface or SIU. Thus the differences between the two result from the 8044's increased on-chip RAM (192 bytes) and additional special function registers necessary to control the SIU. Aside from the increased memory, the SIU itself, and differences in 5 pins (for the serial port), the 8044 and 8051 are compatible.

This chapter describes the differences between the 8044 and 8051. Information pertaining to the 8051 core, eg. instruction set, port operation, EPROM programming, etc. is located in the 8051 sections of this manual.

A block diagram of the 8044 is shown in Figure 1. The pinpoint is shown on the inside front cover.

1.0 MEMORY ORGANIZATION OVERVIEW

The 8044 maintains separate address spaces for Program Memory and Data Memory. The Program Memory can be up to 64 K bytes long, of which the lowest 4 K bytes are in the on-chip ROM.

If the $\overline{\mathrm{EA}}$ pin is held high, the 8044 executes out of internal ROM unlwess the Program Counter exceeds OFFFH. Fetches from locations 1000 H through FFFFH are directed to external Program Memory.

If the $\overline{E A}$ pin is held low, the 8044 fetches all instructions from external Program Memory.

The Data Memory consists of 192 bytes of on-chip RAM, plus 35 Special Function Registers, in addition to which the device is capable of accessing up to 64 K bytes of external data memory.

The Program Memory uses 16 -bit addresses. The external Data Memory can use erither 8 -bit or 16 -bit addresses. The internal Data Memory uses 8 -bit addresses, which provide a 256 -location address space. The lower 192 addresses access the on-chip RAM. The Special Function Registers occupy various locations in the upper 128 bytes of the same address space.

The lowest 32 bytes in the internal RAM (locations 00 through 1 FH) are divided into 4 banks of registers, each bank consisting of 8 bytes. Any one of these banks can be selected to be the "working registers" of the CPU, and can be accessed by a 3-bit address in the
same byte as the opcode of an instruction. Thus, a large number of instructions are one-byte instructions.

The next higher 16 bytes of the internal RAM (locations 20 H through 2 FH) have individually addressable bits. These are provided for use as software flags or for one-bit (Boolean) processing. This bit-addressing capability is an important feature of the 8044 . In addition to the 128 individually addressable bits in RAM, twelve of the Special Function Registers also have individually addressable bits.

A memory map is shown in Figure 2.

1.1 Special Function Registers

The Special Function Registers are as follows:

ACC	Accumulator (A Register)
B	B Register
* PSW	Program Status Word
SP	Stack Pointer
DPTR	Data Pointer (consisting of DPH AND DPL)
* P0	Port 0
* P1	Port 1
* P2	Port 2
* P3	Port 3
* IP	Interrupt Priority
* IE	Interrupt Enable
TMOD	Timer/Counter Mode
* TCON	Timer/Counter Control
TH0	Timer/Counter 0 (high byte)
TLO	Timer/Counter 0 (low byte)
TH1	Timer/Counter 1 (high byte)
TL1	Timer/Counter 1 (low byte)
SMD	Serial Mode
* STS	Status/Command
* NSNR	Send/Receive Count
STAD	Station Address
TBS	Transmit Buffer Start Address
TBL	Transmit Buffer Length
TCB	Transmit Control Byte
RBS	Receive Buffer Start Address
RBL	Receive Buffer Length
RFL	Received Field Length
RCB	Received Control Byte
DMA CNT	DMA Count
FIFO	FIFO (three bytes)
SIUST	SIU State Counter
PCON	Power Control

- Pu!

Stack Pointer

The Stack Pointer is 8 bits wide. The stack can reside anywhere in the 192 bytes of on-chip RAM. When the 8044 is reset, the stack pointer is initialized to 07 H . When executing a PUSH or a CALL, the stack pointer is incremented before data is stored, so the stack would begin at location 08 H .

1.2 Interrupt Control Registers

The Interrupt Request Flags are as listed below:

Source	Request Flag	Location
External Interrupt 0	$\overline{\text { INT0, if IT0 }=0}$ IE0, if IT0 $=1$	P3.2 TCON.1
Timer 0 Overflow	TF0	TCON.5
External Interrupt 1	INT1, if IT1 $=0$	P3.3
	IE1, if IT1 $=1$	TCON.3
Timer 1 Overflow	TF1	TCON.7
Serial Interface Unit	SI	STS.4

External Interrupt control bits ITO and IT1 are in TCON. 0 and TCON.2, respectively. Reset leaves all flags inactive, with IT0 and IT1 cleared.

All the interrupt flags can be set or cleared by software, with the same effect as by hardware.

The Enable and Priority Control Registers are shown below. All of these control bits are set or cleared by software. All are cleared by reset.

IE: Interrupt Enable Register (bit-addressable)

Bit:	7	6	5	4	3	2	1	0
	EA	X	X	ES	ET1	EX1	ETO	EXO

where:

- EA disables all interrupts. If $\mathrm{EA}=0$, no interrupt will be acknowledged. If $\mathrm{EA}=1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.
- ES enables or disables the Serial Interface Unit interrupt. If ES $=0$, the Serial Interface Unit interrupt is disabled.
- ET1 enables or disables the Timer 1 Overflow interrupt. If ET1 $=0$, the Timer 1 interrupt is disabled.
- EX1 enables or disables External Interrupt 1. If EX1 $=0$, External Interrupt 1 is disabled.
- ET0 enables or disables the Timer 0 Overflow interrupt. If ETO $=0$, the Timer 0 interrupt is disabled.

where:
- PS defines the Serial Interface Unit interrupt priority level. PS $=1$ programs it to the higher priority level.
- PT1 defines the Timer 1 interrupt priority level. PT1 $=1$ programs it to the higher priority level.
- PX1 defines the External Interrupt priority level. PX1 $=1$ programs it to the higher priority level.
- PT0 defines the Timer 0 interrupt priority level. PT0 $=1$ programs it to the higher priority level.
- PX0 defines the External Interrupt 0 priority level. PX0 $=1$ programs it to the higher priority level.

2.0 MEMORY ORGANIZATION DETAILS

In the 8044 family the memory is organized over three address spaces and the program counter. The memory spaces shown in Figure 2 are the:

- 64K-byte Program Memory address space
- 64K-byte External Data Memory address space
- 320-byte Internal Data Memory address space

The 16-bit Program Counter register provides the 8044 with its 64 K addressing capabilities. The Program Counter allows the user to execute calls and branches to any location within the Program Memory space. There are no instructions that permit program execution to move from the Program Memory space to any of the data memory spaces.

In the 8044 and 8744 the lower 4 K of the 64 K Program Memory address space is filled by internal ROM and EPROM, respectively. By tying the $\overline{E A}$ pin high, the processor can be forced to fetch from the internal ROM/EPROM for Program Memory addresses 0 through 4K. Bus expansion for accessing Program Memory beyond 4 K is automatic since external instruction fetches occur automatically when the Program Counter increases above 4095. If the EA pin is tied low
all Program Memory fetches are from external memory. The execution speed of the 8044 is the same regardless of whether fetches are from internal or external Program Memory. If all program storage is on-chip, byte location 4095 should be left vacant to prevent an undesired prefetch from external Program Memory address 4096.

Certain locations in Program Memory are reserved for specific programs. Locations 0000 through 0002 are reserved for the initialization program. Following reset, the CPU always begins execution at location 0000 . Locations 0003 through 0042 are reserved for the five in-terrupt-request service programs. Each resource that can request an interrupt requires that its service program be stored at its reserved location.

The 64K-byte External Data Memory address space is automatically accessed when the MOVX instruction is executed.

Functionally the Internal Data Memory is the most flexible of the address spaces. The Internal Data Memory space is subdivided into a 256-byte Internal Data RAM address space and a 128 -byte Special Function Register address space as shown in Figure 3.

Figure 3. Internal Data Memory Address Space

The Internal Data RAM address space is 0 to 255 . Four 8-Register Banks occupy locations 0 through 31. The stack can be located anywhere in the Internal Data RAM address space. In addition, 128 bit locations of the on-chip RAM are accessible through Direct Addressing. These bits reside in Internal Data RAM at byte locations 32 through 47 . Currently locations 0 through 191 of the Internal Data RAM address space are filled with on-chip RAM.

The stack depth is limited only by the available Internal Data RAM, thanks to an 8-bit reloadable Stack Pointer. The stack is used for storing the Program Counter during subroutine calls and may be used for passing parameters. Any byte of Internal Data RAM or Special Function Register accessible though Direct Addressing can be pushed/popped.

The Special Function Register address space is 128 to 255. All registers except the Program Counter and the four 8 -Register Banks reside here. Memory mapping the Special Function Registers allows them to be accessed as easily as internal RAM. As such, they can be operated on by most instructions. In the overlapping memory space (address 128-191), indirect addressing is used to access RAM, and direct addressing is used to

```
ARITHMETIC REGISTERS:
    Accumulator*, B register*,
    Program Status Word*
POINTERS:
    Stack Pointer, Data Pointer (high & low)
PARALLEL I/O PORTS:
    Port 3*, Port 2*, Port 1*, Port 0*
INTERRUPT SYSTEM:
    Interrupt Priority Control*,
    Interrupt Enable Control*
TIMERS:
    Timer Mode, Timer Control*, Timer 1
    (high & low), Timer 0 (high & low)
SERIAL INTERFACE UNIT:
    Transmit Buffer Start,
    Transmit Buffer Length,
    Transmit Control Byte,
    Send Count Receive Count*,
    DMA Count,
    Station Address
    Receive Field Length
    Receive Buffer Start
    Receive Buffer Length
    Receive Control Byte,
    Serial Mode,
    Status Register.*
```

*Bits in these registers are bit addressable.

Figure 4. Special Function Registers
access the SFR's. The SFR's at addresses 192-255 are also accessed using direct addressing. The Special Function Registers are listed in Figure 4. Their mapping in the Special Function Register address space is shown in Figures 5 and 6.

Performing a read from a location of the Internal Data memory where neither a byte of Internal Data RAM (i.e., RAM addresses 192-255) nor a Special Function Register exists will access data of indeterminable value.

Architecturally, each memory space is a linear sequence of 8 -bit wide bytes. By Intel convention the storage of multi-byte address and data operands in program and data memories is the least significant byte at the low-order address and the most significant byte at the high-order address. Within byte X , the most significant bit is represented by X .7 while the least significant bit is X.O. Any deviation from these conventions will be explicitly stated in the text.

2.1 Operand Addressing

There are five methods of addressing source operands. They are Register Addressing, Direct Addressing, Register-Indirect Addressing, Immediate Addressing

```
ARITHMETIC REGISTERS:
    Accumulator*, B register*,
    Program Status Word*
POINTERS:
    Stack Pointer, Data Pointer (high & low)
PARALLEL I/O PORTS:
    Port 3*, Port 2*, Port 1*, Port 0*
INTERRUPT SYSTEM:
    Interrupt Priority Control*,
    Interrupt Enable Control*
TIMERS:
    Timer Mode, Timer Control*, Timer 1
    (high & low), Timer 0 (high & low)
SERIAL INTERFACE UNIT:
    Serial Mode, Status/Command*,
    Send/Receive Count*, Station Address,
    Transmit Buffer Start Address,
    Transmit Buffer Length,
    Transmit Control Byte,
    Receive Buffer Start Address,
    Receive Buffer Length,
    Receive Field Length,
    Receive Control Byte,
    DMA Count,
    FIFO (three bytes),
    SIU Controller State Counter
*Bits in these registers are bit-addressable.
```

Figure 5. Mapping of Special Function Registers
and Base-Register-plus Index-Register-Indirect Addressing. The first three of these methods can also be used to address a destination operand. Since operations in the 8044 require 0 (NOP only), 1, 2, 3 or 4 operands, these five addressing methods are used in combinations to provide the 8044 with its 21 addressing modes.

Most instructions have a "destination, source" field that specifies the data type, addressing methods and operands involved. For operations other than moves, the destination operand is also a source operand. For example, in "subtract-with-borrow A,\# 5" the A register receives the result of the value in register A minus 5, minus \mathbf{C}.

Most operations involve operands that are located in Internal Data Memory. The selection of the Program Memory space or External Data Memory space for a second operand is determined by the operation mnemonic unless it is an immediate operand. The subset of the Internal Data Memory being addressed is determined by the addressing method and address value. For example, the Special Function Registers can be accessed only through Direct Addressing with an address of $128-255$. A summary of the operand addressing methods is shown in Figure 6. The following paragraphs describe the five addressing methods.

2.2 Register Addressing

Register Addressing permits access to the eight registers (R7-R0) of the selected Register Bank (RB). One of the four 8 -Register Banks is selected by a two-bit field in the PSW. The registers may also be accessed through Direct Addressing and Register-Indirect Addressing, since the four Register Banks are mapped into the lowest 32 bytes of internal Data RAM as shown in Figures 9 and 10. Other Internal Data Memory locations that are addressed as registers are A, B, C, AB and DPTR.

2.3 Direct Addressing

Direct Addressing provides the only means of accessing the memory-mapped byte-wide Special Function Registers and memory mapped bits within the Special Function Registers and Internal Data RAM. Direct Addressing of bytes may also be used to access the lower 128 bytes of Internal Data RAM. Direct Addressing of bits gains access to a 128 bit subset of the Special Function Registers as shown in Figures 5, 6, 9, and 10.

Figure 6. Mapping of Special Function Registers

Figure 7. Special Function Register Bit Address

Figure 9. RAM Bit Address

- Register Addressing
- R7-R0
- A, B, C (bit), AB (two bytes), DPTR (double byte)
- Direct Addressing
- Lower 128 bytes of Internal Data RAM
- Special Function Registers
- $\mathbf{1 2 8}$ bits in subset of Special Function Register address space
- Register-Indirect Addressing
- Internal Data RAM [@R1, @R0, @SP (PUSH and POP only)]
- Least Significant Nibbles in Internal Data RAM (@R1, @R0)
— External Data Memory (@R1, @R0, @DPTR)
- Immediate Addressing
- Program Memory (in-code constant)
- Base-Register-plus Index-Register-Indirect Addressing
- Program Memory (@ DPTR + A, @ PC + A)

Figure 8. Operand Addressing Methods

Figure 10. Addressing Operands in Internal Data Memory

Register-Indirect Addressing using the content of R1 or R0 in the selected Register Bank, or using the content of the Stack Pointer (PUSH and POP only), addresses the Internal Data RAM. Register-Indirect Addressing is also used for accessing the External Data Memory. In this case, either R1 or R0 in the selected Register Bank may be used for accessing locations within a 256 -byte block. The block number can be preselected by the contents of a port. The 16 -bit Data Pointer may be used for accessing any location within the full 64 K external address space.

3.0 RESET

Reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods) while the oscillator is running. The CPU responds by executing an internal reset. It also configures the ALE and PSEN pins as inputs. (They are quasi-bidirectional.) The internal reset is executed during the second cycle in which RST is high and is repeated every cycle until RST goes low. It leaves the internal registers as follows:

Register	Content
PC	000 H
A	00 H
B	00 H
PSW	00 H
SP	07 H
DPTR	000 H
PO-P3	0 FFH
IP	$(X X X 00000)$
IE	$0 \times X 00000)$
TMOD	00 H
TCON	00 H
THO	00 H
TLO	00 H
TH1	00 H
TL1	00 H
SMD	00 H
STS	00 H
NSNR	00 H
STAD	00 H

The internal RAM is not affected by reset. When VCC is turned on, the RAM content is indeterminate unless VPD was applied prior to VCC being turned off (see Power Down Operation.)

4.0 RUPITM-44 FAMILY PIN DESCRIPTION

VSS: Circuit ground potential.
VCC: Supply voltage during programming (of the 8744), verification (of the 8044 or 8744), and normal operation.

Port 0: Port 0 is an 8 -bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus during accessses to external memory (during which accesses it activates internal pullups). It also outputs instruction bytes during program verification. (External pullups are required during program verification.) Port 0 can sink eight LS TTL inputs.

Port 1: Port 1 is an 8 -bit bidirectional I/O port with internal pullups. It receives the low-order address byte during program verification in the 8044 or 8744 . Port 1 can sink/source four LS TTL inputs, It can drive MOS inputs without external pullups.

Two of the Port 1 pins serve alternate functions, as listed below:

Port Pin Alternate Function
P1.6 $\overline{R T S}$ (Request to Send). In a non-loop configuration, $\overline{\text { RTS }}$ signals that the 8044 is ready to transmit data.

The RUPITM-44 Serial Interface Unit

THE RUP|TM-44 SERIAL INTERFACE UNIT

CONTENTS PAGE
1.0 DATA LINK CONFIGURATIONS 12-21
2.0 DATA CLOCKING OPTIONS 12-21
3.0 DATA RATES 12-21
4.0 OPERATIONAL MODES 12-24
4.1 AUTO Mode 12-24
4.2 FLEXIBLE Mode 12-27
5.0 8044 FRAME FORMAT OPTIONS 12-27
5.1 Standard SDLC Format 12-27
5.2 No Control Field
(Non-Buffered Mode) 12-27
5.3 No Control Field and No Address
Field 12-27
5.4 No FCS Field 12-28
6.0 HLDC 12-29
7.0 SIU SPECIAL FUNCTION REGISTERS 12-29
7.1 Control and Status Registers 12-29
7.2 Parameter Registers 12-30
7.3 ICE Support Registers 12-31
8.0 OPERATION 12-33
8.1 Initialization 12-33
8.2 AUTO Mode 12-34
8.3 FLEXIBLE Mode 12-34
8:4 8044 Data Link Particulars 12-34
8.5 Turn Around Timing 12-34
9.0 MORE DETAILS ON SIU HARDWARE 12-51
9.1 The Bit Processor 12-51
9.2 The Byte Processor 12-51
10.0 DIAGNOSTICS 12-53

SERIAL INTERFACE

The serial interface provides a high-performance communication link. The protocol used for this communication is based on the IBM Synchronous Data Link Control (SDLC). The serial interface also supports a subset of the ISO HDLC (International Standards Organization High-Level Data Link Control) protocol.

The SDLC/HDLC protocols have been accepted as standard protocols for many high-level teleprocessing systems. The serial interface performs many of the functions required to service the data link without intervention from the 8044's own CPU. The programmer is free to concentrate on the 8044's function as a peripheral controller, rather than having to deal with the details of the communication process.

Five pins on the 8044 are involved with the serial interface:

Pin $7 \quad \overline{\text { RTS }} /$ P16
Pin $8 \quad \overline{\mathrm{CTS}} / \mathbf{P} 17$
Pin $10 \quad \mathrm{I} / \overline{\mathrm{O}} / \mathrm{RXD} / \mathrm{P} 30$
Pin 11 DATA/TXD/P31
Pin 15 SCLK/T1//P35
Figure 1 is a functional block diagram of the serial interface unit (SIU). More details on the SIU hardware are given later in this chapter.

1.0 DATA LINK CONFIGURATIONS

The serial interface is capable of operating in three serial data link configurations:

1) Half-Duplex, point-to-point
2) Half-Duplex, multipoint (with a half-duplex or fullduplex primary)
3) Loop

Figure 2 shows these three configurations. The RTS (Request to Send) and CTS (Clear to Send) hand-shaking signals are available in the point-to-point and multipoint configurations.

2.0 DATA CLOCKING OPTIONS

The serial interface can operate in an externally clocked mode or in a self clocked mode.

Externally Clocked Mode

In the externally clocked mode, a common Serial Data Clock (SCLK on pin 15) synchronizes the serial bit stream. This clock signal may come from the master CPU or primary station, or from an external phaselocked loop local to the 8044 . Figure 3 illustrates the timing relationships for the serial interface signals when the externally clocked mode is used in point-to-point and multipoint data link configurations.

Incoming data is sampled at the rising edge of SCLK, and outgoing data is shifted out at the falling edge of SCLK. More detailed timing information is given in the 8044 data sheet.

Self Clocked (Asynchronous) Mode

The self clocked mode allows data transfer without a common system data clock. Using an on-chip DPLL (digital phase locked loop) the serial interface recovers the data clock from the data stream itself. The DPLL requires a reference clock equal to either 16 times or 32 times the data rate. This reference clock may be externally supplied or internally generated. When the serial interface generates this clock internally, it uses either the 8044's internal logic clock (half the crystal frequency's PH2) or the "timer 1" overflow. Figure 4 shows the serial interface signal timing relationships for the loop configuration, when the unclocked mode is used.

The DPLL monitors the received data in order to derive a data clock that is centered on the received bits. Centering is achieved by detecting all transitions of the received data, and then adjusting the clock transition (in increments of $1 / 16$ bit period) toward the center of the received bit. The DPLL converges to the nominal bit center within eight bit transitions, worst case.

To aid in the phase locked loop capture process, the 8044 has a NRZI (non-return-to-zero inverted) data encoding and decoding option. NRZI coding specifies that a signal does not change state for a transmitted binary 1 , but does change state for a binary 0 . Using the NRZI coding with zero-bit insertion, it can be guaranteed that an active signal line undergoes a transition at least every six bit times.

3.0 DATA RATES

The maximum data rate in the externally clocked mode is 2.4 M bits per second (bps) a half-duplex configuration, and 1.0 M in a loop configuration.
ટて-て1

296165-2

1) HALF-DUPLEX, POINT-TO-POINT

296165-3
2) HALF-DUPLEX, MULTIPOINT

3) LOOP

Figure 2. RUPI-44 Data Link Configurations

In the self clocked mode with an external reference clock, the maximum data rate is 375 K bps.

In the self clocked mode with an internally generated reference clock, and the 8044 operating with a 12 MHz crystal, the available data rates are 244 bps to 62.5 K bps, 187.5 K bps and 375 K bps.

For more details see the table in the SMD register description, below.

4.0 OPERATIONAL MODES

The Serial Interface Unit (SIU) can operate in either of two response modes:

1) AUTO mode
2) FLEXIBLE (NON-AUTO) mode

In the AUTO mode, the SIU performs in hardware a subset of the SDLC protocol called the normal response mode. The AUTO mode enables the SIU to recognize and respond to certain kinds of SDLC frames without intervention from the 8044's CPU. AUTO mode provides a faster turnaround time and a simplified software interface, whereas NON-AUTO mode provides a greater flexibility with regard to the kinds of operation permitted.

In AUTO mode, the 8044 can act only as a normal response mode secondary station-that is, it can transmit only when instructed to do so by the primary station. All such AUTO mode responses adhere strictly to IBM's SDLC definitions.

In the FLEXIBLE mode, reception or transmission of each frame by the SIU is performed under the control of the CPU. In this mode the 8044 can be either a primary station or a secondary station.

In both AUTO and FLEXIBLE modes, short frames, aborted frames, or frames which have had CRC's are ignored by the SIU.

The basic format of an SDLC frame is as follows:

Flag	Address	Control	Information	FCS	Flag

Format variations consist of omitting one or more of the fields in the SDLC frame. For example, a supervisory frame is formed by omitting the information field. Supervisory frames are used to confirm received frames, indicate ready or busy conditions, and to report errors. More details on frame formats are given in the SDLC Frame Format Options section, below.

4.1 AUTO Mode

To enable the SIU to receive a frame in AUTO mode, the 8044 CPU sets up a receive buffer. This is done by writing two registers-Receive Buffer Start (RBS) Address and Receive Buffer Length (RBL).

The SIU receives the frame, examines the control byte, and takes the appropriate action. If the frame is an information frame, the SIU will load the receive buffer, interrupt the CPU (to have the receive buffer read), and make the required acknowledgement to the primary station. Details on these processes are given in the Operation section, below.

In addition to receiving the information frames, the SIU in AUTO mode is capable of responding to the following commands (found in the control field of supervisory frames) from the primary station:

RR (Receive Ready): Acknowledges that the Primary station has correctly received numbered frames up through $N_{R}-1$, and that it is ready to receive frame \mathbf{N}_{R}.

RNR (Receive Not Ready): Indicates a temporary busy condition (at the primary station) due to buffering or other internal constraints. The quantity $\mathbf{N}_{\mathbf{R}}$ in the control field indicates the number of the frame expected after the busy condition ends, and may be used to acknowledge the correct reception of the frames up through $\mathbf{N}_{\mathbf{R}}-1$.

REJ (Reject): Acknowledges the correct reception of frames up through $N_{R}-1$, and requests transmission or retransmission starting at frame N_{R}. The 8044 is capable of retransmitting at most the previous frame, and then only if it is still available in the transmit buffer.

UP (Unnumbered Poll): Also called NSP (Non-Sequenced Poll) or ORP (Optional Response Poll). This command is used in the loop configuration.

To enable the SIU to transmit an information frame in AUTO mode, the CPU sets up a transmit buffer. This is done by writing two registers-Transmit Buffer Start (TBS) Address and Transmit Buffer Length (TBL), and filling the transmit buffer with the information to be transmitted.

When the transmit buffer is full, the SIU can automatically (without CPU intervention) send an information frame (I-frame) with the appropriate sequence numbers, when the data link becomes available (when the 8044 is polled for information). After the SIU has transmitted the I-frame, it waits for acknowledgement from the receiving station. If the acknowledgement is
negative, the SIU retransmits the frame. If the acknowledgement is positive, the SIU interrupts the

CPU, to indicate that the transmit buffer may be reloaded with new information.

Figure 3. Serial Interface Timing-Clocked Mode

In addition to transmitting the information frames, the SIU in AUTO mode is capable of sending the following responses to the primary station:

RR (Receive Ready): Acknowledges that the 8044 has correctly received numbered frames up through $\mathrm{N}_{\mathrm{R}}-1$, and that it is ready to receive frame N_{R}.

RNR (Receive Not Ready): Indicates a temporary busy condition (at the 8044) due to buffering or other internal constraints. The quantity N_{R} in the control field indicates the number of the frame expected after the busy condition ends, and acknowledges the correct reception of the frames up through $N_{R}-1$.

4.2 FLEXIBLE Mode

In the FLEXIBLE (or non-auto) mode, all reception and transmission is under the control of the CPU. The full SDLC and HDLC protocols can be implemented, as well as any bit-synchronous variants of these protocols.

FLEXIBLE mode provides more flexibility than AUTO mode, but it requires more CPU overhead, and much longer recognition and response times. This is especially true when the CPU is servicing an interrupt that has higher priority than the interrupts from the SIU.

In FLEXIBLE mode, when the SIU receives a frame, it interrupts the CPU. The CPU then reads the control byte from the Receive Control Byte (RCB) register. If the received frame is an information frame, the CPU also reads the information from the receive buffer, according to the values in the Receive Buffer Start (RBS) address register and the Received Field Length (RFL) register.

In FLEXIBLE mode, the 8044 can initiate transmissions without being polled, and thus it can act as the primary station. To initiate transmission or to generate a response, the CPU sets up and enables the SIU. The SIU then formats and transmits the desired frame. Upon completion of the transmission, without waiting for a positive acknowledgement from the receiving station, the SIU interrupts the CPU.

5.0 8044 FRAME FORMAT OPTIONS

As mentioned above, variations on the basic SDLC frame consist of omitting one or more of the fields. The choice of which fields to omit, as well as the selection of AUTO mode versus FLEXIBLE mode, is specified by the settings of the following three bits in the Serial Mode Register (SMD) and the Status/Control Register (STS):
SMD Bit 0: NFCS (No Frame Check Sequence)

SMD Bit 1: NB (Non-Buffered Mode-No Control Field)
STS Bit 1: AM (AUTO Mode or Addressed Mode)
Figure 5 shows how these three bits control the frame format.

The following paragraphs discuss some properties of the standard SDLC format, and the significance of omitting some of the fields.

5.1 Standard SDLC Format

The standard SDLC format consists of an opening flag, an 8-bit address field, an 8-bit control field, an n-byte information field, a 16 -bit Frame Check Sequence (FCS), and a closing flag. The FCS is based on the CCITT-CRC polynominal ($\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{5}+1$). The address and control fields may not be extended. Within the 8044, the address field is held in the Station Address (STAD) register, and the control field is held in the Receive Control Byte (RCB) or Transmit Control Byte (TCB) register. The standard SDLC format may be used in either AUTO mode or FLEXIBLE mode.

5.2 No Control Field (Non-Buffered Mode)

When the control field is not present, the RCB and TCB registers are not used. The information field begins immediately after the address field, or, if the address field is also absent, immediately after the opening flag. The entire information field is stored in the 8044's on-chip RAM. If there is no control field, FLEXIBLE mode must be used. Control information may, of course, be present in the information field, and in this manner the No Control Field option may be used for implementing extended control fields.

5.3 No Control Field and No Address Field

The No Address Field option is available only in conjuction with the No Control Field option. The STAD, RCB, and TCB registers are not used. When both these fields are absent, the information field begins immediately after the opening flag. The entire information field is stored in on-chip RAM. FLEXIBLE mode must be used. Formats without an address field have the following applications:

Point-to-point data links (where no addressing is necessary)

Monitoring line activity (receiving all messages regardless of the address field)

Extended addressing

Figure 5. Frame Format Options

5.4 No FCS Field

In the normal case (NFCS $=0$), the last 16 bits before the closing flag are the Frame Check Sequence (FCS) field. These bits are not stored in the 8044's RAM. Rather, they are used to compute a cyclic redundancy check (CRC) on the data in the rest of the frame. A received frame with a CRC error (incorrect FCS) is ignored. In transmission, the FCS field is automatically computed by the SIU, and placed in the transmitted frame just prior to the closing flag.

The NFCS bit (SMD Bit 0) gives the user the capability of overriding this automatic feature. When this bit is set ($\mathrm{NFCS}=1$), all bits from the beginning of the information field to the beginning of the closing flag are treated as part of the information field, and are stored
in the on-chip RAM. No FCS checking is done on the received frames, and no FCS is generated for the transmitted frames. The No FCS Field option may be used in conjunction with any of the other options. It is typically used in FLEXIBLE mode, although it does not strictly include AUTO mode. Use of the No FCS Field option AUTO Mode may, however, result in SDLC protocol violations, since the data integrity is not checked by the SIU.

Formats without an FCS field have the following applications:

Receiving and transmitting frames without verifying data integrity.

Using an alternate data verification algorithm.

Using an alternate CRC-16 polynomial (such as $\mathrm{X}^{16}+$ $\mathrm{X}^{15}+\mathrm{X}^{2}+1$), or a 32 -bit CRC

Performing data link diagnosis by forcing false CRCs to test error detection mechanisms

In addition to the applications mentioned above, all of the format variations are useful in the support of nonstandard bit-synchronous protocols.

6.0 HDLC

In addition to its support of SDLC communications, the 8044 also supports some of the capabilities of HDLC. The following remarks indicate the principal differences between SDLC and HDLC.

HDLC permits any number of bits in the information field, whereas SDLC requires a byte structure (multiple of 8 bits). The 8044 itself operates on byte boundaries, and thus it restricts fields to multiples of 8 bits.

HDLC provides functional extensions to SDLC: an unlimited address field is allowed, and extended frame number sequencing.

HDLC does not support operation in loop configurations.

7.0 SIU SPECIAL FUNCTION REGISTERS

The 8044 CPU communicates with and controls the SIU through hardware registers. These registers are accessed using direct addressing. The SIU special function registers (SIU SFRs) are of three types:

Control and Status Registers
Parameter Registers
ICE Support Registers

7.1 Control and Status Registers

There are three SIU Control and Status Registers:
Serial Mode Register (SMD)
Status/Command Register (STS)
Send/Receive Count Register (NSNR)
The SMD, STS, and NSNR registers are all cleared by system reset. This assures that the SIU will power up in an idle state (neither receiving nor transmitting).

These registers and their bit assignments are described below (see also the More Details on Registers section).

SMD: SERIAL MODE REGISTER

 (BYTE-ADDRESSABLE)| Bit:7
 7 $\mathbf{6}$ |
| :--- |
| SCM2 |

The Serial Mode Register (Address C9H) selects the operational modes of the SIU. The 8044 CPU can both read and write SMD. The SIU can read SMD but cannot write to it. To prevent conflict between CPU and SIU access to SMD, the CPU should write SMD only when the Request To Send (RTS) and Receive Buffer Empty (RBE) bits (in the STS register) are both false (0). Normally, SMD is accessed only during initialization.

The individual bits of the Serial Mode Register are as follows:
$\left.\begin{array}{lll}\begin{array}{c}\text { Bit\# } \\ \text { SMD. } 0\end{array} & \begin{array}{c}\text { Name } \\ \text { NFCS }\end{array} & \begin{array}{l}\text { Description } \\ \text { No FCS field in the SDLC } \\ \text { frame. }\end{array} \\ \text { SMD. } 1 & \text { NB } & \begin{array}{l}\text { Noon-Buffered mode. No } \\ \text { control field in the SDLC } \\ \text { frame. }\end{array} \\ \text { SMD. } 2 & \text { PFS } & \begin{array}{l}\text { Pre-Frame Sync mode. In } \\ \text { this mode, the 8044 } \\ \text { transmits two bytes before } \\ \text { the first flag of a frame, for }\end{array} \\ & & \begin{array}{l}\text { DPLL synchronization. If } \\ \text { NRZI is enabled, 00H is }\end{array} \\ \text { Sent; otherwise, 55H is sent. }\end{array}\right\}$

The SCM bits decode as follows:

SCM		Clock Mode	Data Rate (Bits/sec)
2	1	0	
0	0	0	Externally clocked
0	0	1	Undefined
0	1	0	Self clocked, timer overflow
0	1	1	Undefined
1	0	0	Self clocked, external 16x
1	0	1	Self clocked, external 32x
1	1	0	Self clocked, internal fixed
1	1	1	Self clocked, internal fixed

[^15]
STS: STATUS/COMMAND REGISTER (BIT-ADDRESSABLE)

| Bit: |
| :--- | | TBF | RBE | RTS | SI | BOV | OPB | AM | RBP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The Status/Command Register (Address $\mathbf{C} 8 \mathrm{H}$) provides operational control of the SIU by the 8044 CPU, and enables the SIU to post status information for the CPU's access. The SIU can read STS, and can alter certain bits, as indicated below. The CPU can both read and write STS asynchronously. However, 2-cycle instructions that access STS during both cycles ('JBC/B, REL' and 'MOV /B,C.') should not be used, since the SIU may write to STS between the two CPU accesses.

The individual bits of the Status/Command Register are as follows:

Bit\#	Name	Description
STS. 0	RBP	Receive Buffer Protect. Inhibits writing of data into the receive buffer. In AUTO mode, RBP forces an RNR response instead of an RR.
STS. 1	AM	AUTO Mode/Addressed Mode. Selects AUTO mode where AUTO mode is allowed. If $N B$ is true, (= 1), the AM bit selects the addressed mode. AM may be cleared by the SIU.
STS. 2	OPB	Optional Poll Bit. Determines whether the SIU will generate an AUTO response to an optional poll (UP with $\mathrm{P}=0$). OPB may be set or cleared by the SIU.
STS. 3	BOV	Receive Buffer Overrun. BOV may be set or cleared by the SIU.
STS. 4	SI	SIU Interrupt. This is one of the five interrupt sources to the CPU . The vector location = 23H. SI may be set by the SIU. It should be cleared by the CPU before returning from an interrupt routine.
STS. 5	RTS	Request To Send. Indicates that the 8044 is ready to transmit or is transmitting. RTS may be read or written by the CPU. RTS may be read by the SIU, and in AUTO mode may be written by the SIU.
STS. 6	RBE	Receive Buffer Empty. RBE can be thought of as Receive Enable. RBE is set to one by the CPU when it is ready to receive a frame, or has just read the buffer, and to zero by the SIU when a frame has been received.

STS. 1 AM AUTO Mode/Addressed Mode. Selects AUTO mode where AUTO mode is allowed. If NB is true, (=1), the AM bit selects the addressed mode. AM may be cleared by the SIU.
STS. 2 OPB Optional Poll Bit. Determines whether the SIU will generate an AUTO response to an optional poll (UP with $\mathrm{P}=0$). OPB may be set or cleared by the SIU.
STS. 3 BOV Receive Buffer Overrun. BOV may be set or cleared by the SIU.
STS. 4 SI SIU Interrupt. This is one of the five interrupt sources to the CPU . The vector location = 23H. SI may be set by the SIU. It should be cleared by the CPU before returning from an ruptroune. that the 8044 is ready to transmit or is transmitting. RTS may be read or written by the SIU, and in AUTO mode may be written by the SIU.
STS. 6 RBE Receive Buffer Empty. RBE can be thought of as Receive Enable. RBE is set to one by receive a frame, or has just read the buffer, and to zero by received.
should access STAD only when the SIU is idle (RTS $=$ 0 and RBE $=0$). Normally, STAD is accessed only during initialization.

TBS: TRANSMIT BUFFER START ADDRESS REGISTER (BYTE-ADDRESSABLE)

The Transmit Buffer Start address register (Address DCH) points to the location in on-chip RAM for the beginning of the I-field of the frame to be transmitted. The CPU should access TBS only when the SIU is not transmitting a frame (when $\mathrm{TBF}=0$).

TBL: TRANSMIT BUFFER LENGTH REGISTER (BYTE-ADDRESSABLE)

The Transmit Buffer Length register (Address DBH) contains the length (in bytes) of the I-field to be transmitted. A blank I-field (TBL $=0$) is valid. The CPU should access TBL only when the SIU is not transmitting a frame (when TBF $=0$).

NOTE:
The transmit and receive buffers are not allowed to "wrap around" in the on-chip RAM. A "buffer end" is automatically generated if address 191 (BFH) is reached.

TCB: TRANSMIT CONTROL BYTE REGISTER (BYTE-ADDRESSABLE)

The Transmit Control Byte register (Address DAH) contains the byte which is to be placed in the control field of the transmitted frame, during NON-AUTO mode transmission. The CPU should access TCB only when the SIU is not transmitting a frame (when TBF $=0$). The N_{S} and N_{R} counters are not used in the NON-AUTO mode.

RBS: RECEIVE BUFFER START ADDRESS REGISTER (BYTE-ADDRESSABLE)

The Receive Buffer Start address register (Address CCH) points to the location in on-chip RAM where the beginning of the I-field of the frame being received is to be stored. The CPU should write RBS only when the SIU is not receiving a frame (when $\mathrm{RBE}=0$).

RBL: RECEIVE BUFFER LENGTH REGISTER (BYTE-ADDRESSABLE)

The Receive Buffer Length register (Address CBH) contains the length (in bytes) of the area in on-chip RAM allocated for the received I-field. RBL $=0$ is valid. The CPU should write RBL only when RBE = 0.

RFL: RECEIVE FIELD LENGTH REGISTER (BYTE-ADDRESSABLE)

The Received Field Length register (Address CDH) contains the length (in bytes) of the received I-field that has just been loaded into on-chip RAM. RFL is loaded by the SIU. RFL $=0$ is valid. RFL should be accessed by the CPU only when $\mathrm{RBE}=0$.

RCB: RECEIVE CONTROL BYTE REGISTER (BYTE-ADDRESSABLE)

The Received Control Byte register (Address CAH) contains the control field of the frame that has just been received. RCB is loaded by the SIU. The CPU can only read RCB, and should only access RCB when $\mathrm{RBE}=$ 0.

7.3 ICE Support Registers

The 8044 In-Circuit Emulator (ICE-44) allows the user to exercise the 8044 application system and monitor the execution of instructions in real time.

The emulator operates with Intel's Intellec ${ }^{\circledR}$ development system. The development system interfaces with the user's 8044 system through an in-cable buffer box. The cable terminates in a 8044 pin-compatible plug, which fits into the 8044 socket in the user's system. With the emulator plug in place, the user can exercise his system in real time while collecting up to 255 instruction cycles of real-time data. In addition, he can single-step the program.

Static RAM is available (in the in-cable buffer box) to emulate the 8044 internal and external program memory and external data memory. The designer can display and alter the contents of the replacement memory in the buffer box, the internal data memory, and the internal 8044 registers, including the SFRs.

Among the SIU SFRs are the following registers that support the operation of the ICE:

DMA CNT: DMA COUNT REGISTER (BYTE-ADDRESSABLE)

The DMA Count register (Address CFH) indicates the number of bytes remaining in the information block that is currently being used.

FIFO: THREE-BYTE (BYTE-ADDRESSABLE)

The Three-Byte FIFO (Address DDH, DEH, and DFH) is used between the eight-bit shift register and the information buffer when an information block is received.

SIUST: SIU STATE COUNTER (BYTEADDRESSABLE)

The SIU State Counter (Address D9H) reflects the state of the internal logic which is under SIU control. Therefore, care must be taken not to write into this register.

The SIUST register can serve as a helpful aid to determine which field of a receive frame that the SIU expects next. The table below will help in debugging 8044 reception problems.

SIUST Value	Function
01 H	Waiting for opening flag.
08 H	Waiting for address field.
10 H	Waiting for control field.
18 H	Waiting for first byte of I field. This state is only entered if a FCS is expected. It pushes the received byte onto the top of the FIFO.
20 H	Waiting for second byte of I field. This state always follows state 18 H.

SIUST Value	Function
28 H	Waiting for I field byte. This state can be entered from state 20H or from states 01H, 08H, or 10H depending upon the SIU's mode configuration. (Each time a byte is received, it is pushed onto the top of the FIFO and the byte at the bottom is put into memory. For no FCS formatted frames, the FIFO is collapsed into a single register).
30 H	Waiting for the closing flag after having overflowed the receive buffer. Note that even if the receive frame overflows the assigned receive buffer length, the FCS is still checked.

Examples of SIUST status sequences for different frame formats are shown below. Note that status changes after acceptance of the received field byte.

Table 1. SIUST Status Sequences

											Fram	Op	
											NFCS	NB	AM
Example 1:													
Frame Format	(Idle)	F	A	C	1			FCS	F		0	0	1
SIUST Value	01	01	08	10	18	20	28	28	01				
Example 2:													
Frame Format	(Idle)	F	A	1			FCS	F			0	1	1
SIUST Value	01	01	08	18	20	28	28	01					
Example 3:													
Frame Format	(Idle)	F		1		FCS	F				0	1	0
SIUST Value	01	01	18	20	28	28	01						
Example 4:													
Frame Format	(Idle)	F	A	1	F						1	1	1
SIUST Value	01	01	08	28	01								
Example 5:													
Frame Format	(Idle)	F			F						1	1	0
SIUST Value	01	01			01								
Example 6:													
Frame Format	(Idle)	F		1			ERFL		FCS	F	0	1	0
SIUST Value	01	01	18	20	28		30		30	01			

8.0 OPERATION

The SIU is initialized by a reset signal (on pin 9), followed by write operations to the SIU SFRs. Once initialized, the SIU can function in AUTO mode or NONAUTO mode. Details are given below.

8.1 Initialization

Figure 6 is the SIU. Registers SMD, STS, and NSNR are cleared by reset. This puts the 8044 into an idle state-neither receiving nor transmitting. The following registers must be initialized before the 8044 leaves the idle state:
STAD - to establish the 8044's SDLC station address.
SMD - To configure the 8044 for the proper operating mode.
RBS, RBL - to define the area in RAM allocated for the Receive Buffer.

TBS, TBL - to define the area in RAM allocated for the Transmit Buffer.

Once these registers have been initialized, the user may write to the STS register to enable the SIU to leave the idle state, and to begin transmits and/or receives.

Setting RBE to 1 enables the SIU for receive. When RBE $=1$, the SIU monitors the received data stream for a flag pattern. When a flag pattern is found, the SIU enters Receive mode and receives the frame.

Setting RTS to 1 enables the SIU for transmit. When RTS = 1, the SIU monitors the received data stream for a GA pattern (loop configuration) or waits for a CTS (non-loop configuration). When the GA or CTS arrives, the SIU enters Transmit mode and transmits a frame.

In AUTO mode, the SIU sets RTS to enable automatic transmissions of appropriate responses.

Figure 6. SIU State Diagram

8.2 AUTO Mode

Figure 7 illustrates the receive operations in AUTO mode. The overall operation is shown in Figure 7a. Particular cases are illustrated in Figures 7b through 7j. If any Unnumbered Command other than UP is received, the AM bit is cleared and the SIU responds as if in the FLEXIBLE mode, by interrupting the CPU for supervision. This will also happen if a BOV or SES condition occurs. If the received frame contains a poll, the SIU sets the RTS bit to generate a response.

Figure 8 illustrates the transmit operations in AUTO mode. When the SIU gets the opportunity to transmit, and if the transmit buffer is full, it sends an I-frame. Otherwise, it sends an RR if the buffer is free, or an RNR if the buffer is protected. The sequence counters NS and NR are used to construct the appropriate control fields.

Figure 9 shows how the CPU responds to an SI (serial interrupt) in AUTO mode. The CPU tests the AM bit (in the STS register). If AM = 1, it indicates that the SIU has received either an I-frame, or a positive response to a previously transmitted I-frame.

8.3 FLEXIBLE Mode

Figure 10 illustrates the receive operations in NONAUTO mode. When the SIU successfully completes a task, it clears RBF and interrupts the CPU by setting SI to 1 . The exact CPU response to SI is determined by software. A typical response is shown in Figure 11.

Figure 12 illustrates the transmit operations in FLEXIBLE mode. The SIU does not wait for a positive acknowledge response to the transmitted frame. Rather, it interrupts the CPU (by setting SI to 1) as soon as it finishes transmitting the frame. The exact CPU response to SI is determined by software. A typical response is shown in Figure 13. This response results in another transmit frame being set up. The sequence of operations shown in Figure 13 can also be initiated by the CPU, without an SI. Thus the CPU can initiate a transmission in FLEXIBLE mode without a poll, simply by setting the RTS bit in the STS register. The RTS bit is always used to initiate a transmission, but it is applied to the RTS pin only when a non-loop configuration is used.

8.4 8044 Data Link Particulars

The following facts should be noted:

1) In a non-loop configuration, one or two bits are transmitted before the opening flag. This is necessary for NRZI synchronization.
2) In a non-loop configuration, one to eight extra dribble bits are transmitted after the closing flag. These bits are a zero followed by ones.
3) In a loop configuration, when a GA is received and the 8044 begins transmitting, the sequence is 01111110101111110 ... (FLAG, 1, FLAG, ADDRESS, etc.). The first flag is created from the GA. The second flag begins the message.
4) CTS is sampled after the rising edge of the serial data, at about the center of the bit cell, except during a non-loop, externally clocked mode transmit, in which case it is sampled just after the falling edge.
5) The SIU does not check for illegal I-fields. In particular, if a supervisory command is received in AUTO mode, and if there is also an I-field, it will be loaded into the receive buffer (if RBP $=0$), but it cannot cause a BOV.
6) In relation to the Receive Buffer Protect facility, the user should set RFL to 0 when clearing RBP, such that, if the SIU is in the process of receiving a frame, RFL will indicate the proper value when reception of the frame has been completed.

8.5 Turn Around Timing

In AUTO mode, the SIU generates an RTS immediately upon being polled. Assuming that the 8044 sends an information frame in response to the poll, the primary station sends back an acknowledgement. If, in this acknowledgement, the 8044 is polled again, a response may be generated even before the CPU gets around to processing the interrupt caused by the acknowledge. In such a case, the response would be an RR (or RNR), since TBF would have been set to 0 by the SIU, due to the acknowledge.

If the system designer does not wish to take up channel time with RR responses, but prefers to generate a new I-frame as a response, there are several ways to accomplish this:

1) Operate the 8044 in FLEXIBLE mode.
2) Specify that the master should never acknowledge and poll in one message. This is typically how a loop system operates, with the poll operation confined to the UP command. This leaves plenty of time for the 8044 to get its transmit buffer loaded with new information after an acknowledge.
3) The 8044 CPU can clear RTS. This will prevent a response from being sent, or abort it if it is already in progress. A system using external RTS/CTS handshaking could use a one-shot delay RTS or CTS, thereby giving the CPU more time to disable the response.

Figure 7a. SIU AUTO Mode Receive Flowchart-General

Figure 7b. SIU AUTO Mode Receive Flowchart-Unknown Command

Figure 7c. SIU AUTO Mode Receive Flowchart-Unnumbered Poll

Figure 7d. SIU AUTO Mode Receive Flowchart-Supervisory Command

Figure 7e. SIU AUTO Mode Receive Flowchart-I Command: Prior Transmitted I-Field Confirmed, Current Received I-Field in Sequence

Flgure 7f. SIU AUTO Mode Receive Flowchart-I Command: Prior Transmitted I-Field Not Confirmed, Current Received I-Field in Sequence

Figure 7g. SIU AUTO Mode Receive Flowchart-I Command: Sequence Error Send, Current Received I-Field in Sequence

Figure 7h. SIU AUTO Mode Receive Flowchart-I Command:
Prior Transmitted I-Field Confirmed Sequence Error Receive

Figure 7I. SIU AUTO Mode Receive Flowchart-I Command:
Prior Transmitted I-Field Not Confirmed, Sequence Error Receive

Figure 7j. SIU AUTO Mode Receive Flowchart—I Command: Sequence Error Send and Sequence Error Receive

Figure 8. SIU AUTO Mode Transmit Flowchart

Figure 9. AUTO Mode Response to "SI"

Figure 10. SIU FLEXIBLE Mode Receive Flowchart

Figure 11. FLEXIBLE Mode Response to Receive "SI"

Figure 12. SIU FLEXIBLE Mode Transmit Flowchart

Figure 13. FLEXIBLE Mode Response to Transmit "SI"

9.0 MORE DETAILS ON SIU HARDWARE

The SIU divides functionally into two sections-a bit processor (BIP) and a byte processor (BYP)-sharing some common timing and control logic. As shown in Figure 14, the BIP operates between the serial port pins and the SIU bus, and performs all functions necessary to transmit/receive a byte of data to/from the serial data stream. These operations include shifting, NRZI encoding/decoding, zero insertion/deletion, and FCS generation/checking. The BYP manipulates bytes of data to perform message formatting, and other transmitting and receiving functions. It operates between the SIU bus (SIB) and the 8044's internal bus (IB). The interface between the SIU and the CPU involves an interrupt and some locations in on-chip RAM space which are managed by the BYP.

The maximum possible data rate for the serial port is limited to $1 / 2$ the internal clock rate. This limit is imposed by both the maximum rate of DMA to the onchip RAM, and by the requirements of synchronizing to an external clock. The internal clock rate for an 8044 running on a 12 MHz crystal is 6 MHz . Thus the maximum 8044 serial data rate is 3 MHz . This data rate drops down to 2.4 MHz when time is allowed for external clock synchronization.

9.1 The Bit Processor

In the asynchronous (self clocked) modes the clock is extracted from the data stream using the on-chip digital phase-locked-loop (DPLL). The DPLL requires a clock input at 16 times the data rate. This $16 \times$ clock may originate from SCLK, Timer 1 Overflow, or PH2 (one half the oscillator frequency). The extra divide by-two described above allows these sources to be treated alternatively as $32 \times$ clocks.

The DPLL is a free-running four-bit counter running off the $16 \times$ clock. When a transition is detected in the receive data stream, a count is dropped (by suppressing the carry-in) if the current count value is greater than 8. A count is added (by injecting a carry into the second stage rather than the first) if the count is less than 8 . No adjustment is made if the transition occurs at the count of 8 . In this manner the counter locks in on the point at which transitions in the data stream occur at the count of 8 , and a clock pulse is generated when the count overflows to 0 .

In order to perform NRZI decoding, the NRZI decoder compares each bit of input data to the previous bit. There are no clock delays in going through the NRZI decoder.

The zero insert/delete circuitry (ZID) performs zero insertion/deletion, and also detects flags, GA's (GoAhead's), and aborts (same as GA's) in the data stream. The pattern 1111110 is detected as an early GA, so that the GA may be turned into a flag for loop mode transmission.

The shut-off detector monitors the receive data stream for a sequence of eight zeros, which is a shut-off command for loop mode transmissions. The shut-off detector is a three-bit counter which is cleared whenever a one is found in the receive data stream. Note that the ZID logic could not be used for this purpose, because the receive data must be monitored even when the ZID is being used for transmission.

As an example of the operation of the bit processor, the following sequence occurs in relation to the receive data:

1) RXD is sampled by SCLK, and then synchronized to the internal processor clock (IPC).
2) If the NRZI mode is selected, the incoming data is NRZI decoded.
3) When receiving other than the flag pattern, the ZID deletes the ' 0 ' after 5 consecutive ' 1 's (during transmission this zero is inserted). The ZID locates the byte boundary for the rest of the circuitry. The ZID deletes the ' 0 's by preventing the SR (shift register) from receiving a clocking pulse.
4) The FCS (which is a function of the data between the flags-not including the flags) is initialized and started at the detection of the byte boundary at the end of the opening flag. The FCS is computed each bit boundary until the closing flag is detected. Note that the received FCS has gone through the ZID during transmission.

9.2 The Byte Processor

Figure 15 is a block diagram of the byte processor (BYP). The BYP contains the registers and controllers necessary to perform the data manipulations associated with SDLC communications. The BYP registers may be read or written by the CPU over the 8044's internal bus (IB), using standard 8044 hardware register operations. The 8044 register select PLA controls these operations. Three of the BYP registers connect to the IB through the IBS, a sub-bus which also connects to the CPU interrupt control registers.

Figure 14. The Bit and Byte Processors

Simultaneous access of a register by both the IB and the SIB is prevented by timing. In particular, RAM access is restricted to alternate internal processor cycles for the CPU and the SIU, in such a way that collisions do not occur.

As an example of the operation of the byte processor, the following sequence occurs in relation to the receive data:

1) Assuming that there is an address field in the frame, the BYP takes the station address from the register file into temporary storage. After the opening flag, the next field (the address field) is compared to the station address in the temporary storage. If a match occurs, the operation continues.
2) Assuming that there is a control field in the frame, the BYP takes the next byte and loads it into the RCB register. The RCB register has the logic to update the NSNR register (increment receive count, set SES and SER flags, etc.).
3) Assuming that there is an information field, the next byte is dumped into RAM at the RBS location. The DMA CNT (RBL at the opening flag) is loaded from the DMA CNT register into the RB register and decremented. The RFL is then loaded into the RB register, incremented, and stored back into the register file.
4) This process continues until the DMA CNT reaches zero, or until a closing flag is received. Upon either event, the BYP updates the status, and, if the CRC is good, the NSNR register.

Figure 15. The Byte Processor

10.0 DIAGNOSTICS

An SIU test mode has been provided, so that the onchip CPU can perform limited diagnostics on the SIU. The test mode utilizes the output latches for P3.0 and P3.1 (pins 10 and 11). These port 3 pins are not useful as out-put ports, since the pins are taken up by the serial port functions. Figure 16 shows the signal routing associated with the SIU test mode.

Writing a 0 to P3.1 enables the serial test mode (P3.1 is set to 1 by reset). In test mode the P3.0 bit is mapped into the received data stream, and the 'write port 3 ' control signal is mapped into the SCLK path in place of T1. Thus, in test mode, the CPU can send a serial data
stream to the SIU by writing to P3.0. The transmit data stream can be monitored by reading P3.1. Each successive bit is transmitted from the SIU by writing to any bit in Port 3, which generates SCLK.

In test mode, the P3.0 and P3.1 pins are placed in a high voltage, high impedance state. When the CPU reads P3.0 and P3.1 the logic level applied to the pin will be returned. In the test mode, when the CPU reads 3.1, the transmit data value will be returned, not the voltage on the pin. The transmit data remains constant for a bit time. Writing to P3.0 will result in the signal being outputted for a short period of time. However, since the signal is not latched, P3.0 will quickly return to a high voltage, high impedance state.

-Pu!

The serial test mode is disabled by writing a 1 to P3.1. Care must be taken that a 0 is never written to P3.1 in the course of normal operation, since this causes the test mode to be entered.

Figure 17 is an example of a simple program segment that can be imbedded into the user's diagnostic program. That example shows how to put the 8044 into "Loop-back mode" to test the basic transmitting and receiving functions of the SIU.

Loop-back mode is functionally equivalent to a hardwire connection between pins 10 and 11 on the 8044.

In this example, the 8044 CPU plays the role of the primary station. The SIU is in the AUTO mode. The CPU sends the SIU a supervisory frame with the poll bit set and an RNR command. The SIU responds with a supervisory frame with the poll bit set and an RR command.

The operation proceeds as follows:
Interrupts are disabled, and the self test mode is enabled by writing a zero to P3.1: This establishes P3.0 as the data path from the CPU to the SIU. CTS (clear-tosend) is enabled by writing a zero to P1.7. The station address is initialized by writing 08 AH into the STAD (station address register).

The SIU is configured for receive operation in the clocked mode and in AUTO mode. The CPU then
transmits a supervisory frame. This frame consists of an opening flag, followed by the station address, a control field indicating that this is a supervisory frame with an RNR command, and then a closing flag.

Each byte of the frame is transmitted by writing that byte into the A register and then calling the subroutine XMIT8. Two additional SCLKs are generated to guarantee that the last bits in the frame have been clocked into the SIU. Finally the CPU reads the status register (STS). If the operation has proceeded correctly, the status will be 072 H . If it is not, the program jumps to the ERROR loop and terminates.

The SIU generates an SI (SIU interrupt) to indicate that it has received a frame. The CPU clears this interrupt, and then begins to monitor the data stream that is being generated by the SIU in response to what it has received. As each bit arrives (via P3.1), it is moved into the accumulator, and the CPU compares the byte in the accumulator with 07 EH , which is the opening flag. When a match occurs, the CPU identifies this as byte boundary, and thereafter processes the information byte-to-byte.

The CPU calls the RCV8 subroutine to get each byte into the accumulator. The CPU performs compare operations on (successively) the station address, the control field (which contains the RR response), and the closing flag. If any of these do not compare, the program jumps to the ERROR loop. If no error is found, the program jumps to the DONE loop.

Figure 17. Loop-Back Mode Software

8044 Application Examples

8044 APPLICATION EXAMPLES

CONTENTS PAGE
8044 APPLICATION EXAMPLES
1.0 INTERFACING THE 8044 TO A MICROPROCESSOR 12-59
Overview 12-59
The Interface 12-59
The Software 12-59
Conclusion 12-60
A HIGH PERFORMANCE NETWORK USING THE 8044 12-68
2.0 INTRODUCTION 12-68
2.1 Hardware 12-68
2.2 SDLC Basic Repertoire 12-69
2.3 Secondary Station Driver Using AUTO Mode 12-72
2.4 Application Module; ASYNC to SDLC Protocol Converter 12-80
2.5 Primary Station 12-84
APPENDIX A: 8044 SOFTWARE FLOWCHARTS 12-88
APPENDIX B: LISTINGS OF SOFTWARE MODULES 12-108

1.0 INTERFACING THE 8044 TO A MICROPROCESSOR

The 8044 is designed to serve as an intelligent controller for remote peripherals. However, it can also be used as an intelligent HDLC/SDLC front end for a microprocessor, capable of extensively off-loading link control functions for the CPU. In some applications, the 8044 can even be used for communications preprocessing, in addition to data link control.

This section describes a sample hardware interface for attaching the 8044 to an 8088. It is general enough to be extended to other microprocessors such as the 8086 or the 80186.

OVERVIEW

A sample interface is shown in Figure 1. Transmission occurs when the 8088 loads a 64 byte block of memory with some known data. The 8088 then enables the 8237A to DMA this data to the 8044. When the 8044 has received all of the data from the 8237 A , it sends the data in a SDLC frame. The frame is captured by the Spectron Datascope ${ }^{\text {TM }}$ * which displays it on a CRT in hex format.

In reception, the Datascope sends a SDLC information frame to the 8044. The 8044 receives the SDLC frame, buffers it, and sends it to the 8088's memory. In this example the 8044 is being operated in the NON-AUTO mode; therefore, it does not need to be polled by a primary station in order to transmit.

THE INTERFACE

The 8044 does not have a parallel slave port. The 8044's 32 I/O lines can be configured as a local microprocessor bus master. In this configuration, the 8044 can expand the ROM and RAM memory, control peripherals, and communicate with a microprocessor.

The 8044, like the 8051, does not have a Ready line; so there is no way to put the 8044 in wait state. The clock on the 8044 cannot be stopped. Dual port RAM could still be used, however, software arbitration would be the only way to prevent collisions. Another way to interface the 8044 with another CPU is to put a FIFO or queue between the two processors, and this was the method chosen for this design.

Figure 2 shows the schematic of the 8044/8088 interface. It involves two 8-bit tri-state latches, two SR flipflops, and some logic gates (6 TTL packs). The circuitry implements a one byte FIFO. RS422 transceivers are used, which can be connected to a multidrop link. Fig-
*Datascope is a trademark of Spectron Inc.
ure 3 shows the 8088 and support circuitry; the memory and decoders are not shown. It is a basic 8088 Min Mode system with an 8237A DMA controller and an 8259A interrupt controller.

DMA Channel One transfers a block of memory to the tri-state latch, while Channel Zero transfers a block of data from the latch to 8088's memory. The 8044's Interrupt 0 signal vectors the CPU into a routine which reads from the internal RAM and writes to the latch. The 8044's Interrupt 1 signal causes the chip to read from the latch and write to its on-chip data RAM. Both DMA requests and acknowledges are active low.

Initially, when the power is applied, a reset pulse coming from the 8284 A initializes the SR flip-flops. In this initialization state, the 8044's transmit interrupt and the 8088's transmit DMA request are active; however, the software keeps these signals disabled until either of the two processors are ready to transmit. The software leaves the receive signals enabled, unless the receive buffers are full. In this way either the 8088 or the 8044 are always ready to receive, but they must enable the transmit signal when they have prepared a block to ceived, the DMA and interrupt signals return to the initial state.

The receive and transmit buffer sizes for the blocks of data sent between the 8044 and the 8088 have a maximum fixed length. In this case the buffer size was 64 bytes. The buffer size must be less than 192 bytes to enable 8044 to buffer the data in its on-chip RAM. This design allows blocks of data that are less than 64 bytes, and accommodates networks that allow frames of varying size. The first byte transferred between the 8088 and the 8044 is the byte count to follow; thus the 8044 knows how many bytes to receive before it transmits the SDLC frame. However, when the 8044 sends data to the 8088 's memory, the 8237 A will not know if the 8044 will send less than the count the 8237A was programmed for. To solve this problem, the 8237 A is operated in the single mode. The 8044 uses an I/O bit to generate an interrupt request to the 8259 A . In the 8088's interrupt routine, the 8237A's receive DMA channel is disabled, thus allowing blocks of data less than 64 bytes to be received.

THE SOFTWARE

The software for the 8044 and the 8088 is shown in Table 1. The 8088 software was written in PL/M86, and the 8044 software was written in assembly language.

The 8044 software begins by initializing the stack, interrupt priorities, and triggering types for the interrupts. At this point, the SIU parameter registers are

Figure 1. Block Diagram of 8088/8044 Interface Test
initialized. The receive and transmit buffer starting addresses and lengths are loaded for the on-chip DMA. This DMA is for the serial port. The serial station address and the transmit control bytes are loaded too.

Once the initialization has taken place, the SIU interrupt is enabled, and the external interrupt which receives bytes from the 8088 is enabled. Setting the 8044's Receive Buffer Empty (RBE) bit enables the receiver. If this bit is reset, no serial data can be received. The 8044 then waits in a loop for either RECEIVE DMA interrupt or the SERIAL INT interrupt.

The RECEIVE DMA interrupt occurs when the 8237A is transferring a block of data to the 8044. The first time this interrupt occurs, the 8044 reads the latch and loads the count value into the R2 register. On subsequent interrupts, the 8044 reads the latch, loads the data into the transmit buffer, and decrements R2. When R 2 reaches zero, the interrupt routine sends the data in an SDLC frame, and disables the RECEIVE DMA interrupt. After the frame has been transmitted, a serial interrupt is generated. The SERIAL INT routine detects that a frame has been transmitted and reenables the RECEIVE DMA interrupt. Thus, while the frame is being transmitted through the SIU, the 8237A is inhibited from sending data to the 8044's transmit buffer.

The TRANSMIT DMA routine sends a block of data from the 8044 's receive buffer to the 8088 's memory.

Normally this interrupt remains disabled. However, if a serial interrupt occurs, and the SERIAL INT routine detects that a frame has been received, it calls the SEND subroutine. The SEND subroutine loads the number of bytes which were received in the frame into the receive buffer. Register R1 points to the receive buffer and R2 is loaded with the count. The TRANSMIT DMA interrupt is enabled, and immediately upon returning from the SERIAL INT routine, the interrupt is acknowledged. Each time the TRANSMIT DMA interrupt occurs, a byte is read from the receive buffer, written to the latch, and R2 is decremented. When R2 reaches 0 , the TRANSMIT DMA interrupt is disabled, the SIU receiver is re-enabled, and the 8044 interrupts the 8088.

CONCLUSION

For the software shown in Table 1, the transfer rate from the 8088 's memory to the 8044 was measured at 75 K bytes $/ \mathrm{sec}$. This transfer rate largely depends upon the number of instructions in the 8044's interrupt service routine. Fewer instructions result in a higher transfer rate.

There are many ways of interfacing the 8044 locally to another microprocessor: FIFO's, dual port RAM with software arbitration, and 8255's are just a few. Alternative approaches, which may be more optimal for certain applications, are certainly possible.

Table 1. Transmit and Receive Software for an 8044/8088 System

Table 1. Transmit and Receive Software for an 8044/8088 System (Continued)

56				
0063 10000E	5758	JBC	FIRST_BYTE, LI : THE FIRST BYTE TRANSFERRED IS THE COUNT	
0066 E0	59	movx	A. @DPTR	: READ THE LATCH
0067 F6	60	MOV	@R0, A	; PUT IT IN TRANSMIT BUFFER
006808	61	INC	R0	
0069 DA08	62	DJNZ	R2, L2	; AFTER READING BYTES,
	63			
006B D2CF	64	SETB	TBF	; SEND DATA
006D D2CD	65	SETB	RTS	
006F D200	66	SETB	FIRST_BYTE	
0071 C2AA	67	CLR	EXI	
	68			
007332	69	L2: RETI		
	70			
0074 786A	71	LI: MOV	R0. \#106	; RO IS A POINTER TO THE TRANSMIT
	72			; BUFFER STARTING ADDRESS
0076 E0	73	MOVX	A, @DPTR	; PUT THE FIRST BYTE INTO
0077 FA	74	MOV	R2, A	; R2 FOR THE COUNT
007832	75	RETI		
	76			
0079	77	LOC_TMPSET	\$	
0003	78	ORG	0003H	-
0003020079	79	LJMP	TRANSMIT_DMA	
0079	80	ORG	LOC_TMP	
	81			
	82	TRANSMIT_DMA		
	83			
0079 E7	84	MOV	A, @RI	; READ BYTE OUT OF THE RECEIVE BUFFER
007A F0	85	MOVX	@DPTR, A	; WRITE IT TO THE LATCH
007B 09	86	INC	R1	
007C DA08	87	DJNZ	R2, L3	; WHEN ALL BYTES HAVE BEEN SENT
	88			
007E C2A8	89	CLR	IE. 0	; DISABLE INTERRUPT
0080 C294	90	CLR	P1. 4	; CAUSE 8088 INTERRUPT TO TERMINATE DMA
0082 D294	91	SETB	P1. 4	
0084 D2CE	92	SETB	RBE	; ENABLE RECEIVER AGAIN
	93			
008632	94	L3: RETI		
	95			
	96			.
	97			.
0087	98	LOC_TMPSET	S	
0023	99	ORG	0023H	
0023020087	100	LJMP	SERIAL_INT	
0087	101	ORG	LOC_TMP	
	$\begin{aligned} & 102 \\ & 103 \end{aligned}$	SERIAL_INT:		
	104			
0087 30CE06	105	JNB	RBE, RCV	; WAS A FRAME RECEIVED
008A 30CF0B	106	JNB	TBF, XMIT	; WAS A FRAME TRANSMITTED
008D 020056	107	LJMP	ERROR	; IF NEITHER ERROR
	108			
0090 20CBC3	109	RCV: JB	BOV, ERROR	; IF BUFFER OVERRUN THEN ERROR
00931158	110	CALL	SEND	; SEND THE FRAME TO THE 8088
0095 C2CC	111	CLR	SI	
009732	112	RETI		
	113			
0098 C 2 CC	114	XMIT: CLR	SI	296166-70

Table 1. Transmit and Receive Software for an 8044/8088 System (Continued)

Table 2. PL/M-86 Compiler RUPI/8088 Interface Example

Table 2. PL/M-86 Compiler RUPI/8088 Interface Example (Continued)

A HIGH PERFORMANCE NETWORK USING THE 8044

2.0 INTRODUCTION

This section describes the design of an SDLC data link using the 8044 (RUPI) to implement a primary station and a secondary station. The design was implemented and tested. The following discussion assumes that the reader understands the 8044 and SDLC. This section is divided into two parts. First the data link design example is discussed. Second the software modules used to implement the data link are described. To help the reader understand the discussion of the software, flow charts and software listings are displayed in Appendix A and Appendix B, respectively.

APPLICATION DESCRIPTION

This particular data link design example uses a two wire half-duplex multidrop topology as shown in Figure 4. In an SDLC multidrop topology the primary station communicates with each secondary station. The secondary stations communicate only to the primary. Because of this hierarchial architecture, the logical topology for an SDLC multidrop is a star as shown in Figure 5. Although the physical topology of this data link is multidrop, the easiest way to understand the information flow is to think of the logical (star) topology. The term data link in this case refers to the logical communication pathways between the primary station and the secondary stations. The data links are shown in Figure 5 as two way arrows.

The application example uses dumb async terminals to interface to the SDLC network. Each secondary station has an async terminal connected to it. The secondary stations are in effect protocol converters which allows any async terminal to communicate with any other async terminal on the network. The secondary stations use an 8044 with a UART to convert SDLC to async. Figure 6 displays a block diagram of the data link. The primary station, controls the data link. In addition to data link control the primary provides a higher level layer which is a path control function or networking layer. The primary serves as a message exchange or switch. It receives information from one secondary station and retransmits it to another secondary station. Thus a virtual end to end connection is made between any two secondary stations on the network.

Three separate software modules were written for this network. The first module is a Secondary Station Driver (SSD) which provides an SDLC data link interface and a user interface. This module is a general purpose driver which requires application software to run it.

The user interface to the driver provides four functions: OPEN, CLOSE, TRANSMIT, and SIU__RECV. Using these four functions properly will allow any application software to communicate over this SDLC data link without knowing the details of SDLC. The secondary station driver uses the 8044's AUTO mode.

The second module is an example of application software which is linked to the secondary station driver. This module drives the 8215A, buffers data, and interfaces with the secondary station driver's user interface.

The third module is a primary station, which is a standalone program (i.e., it is not linked to any other module). The primary station uses the 8044's NON-AUTO or FLEXIBLE mode. In addition to controlling the data link it acts as a message switch. Each time a secondary station transmits a frame, it places the destination address of the frame in the first byte of the information or I field. When the primary station receives a frame, it removes the first byte in the I field and retransmits the frame to the secondary station whose address matches this byte.

This network provides two complete layers of the OSI (Open Systems Interconnection) reference model: the physical layer and the data link layer. The physical layer implementation uses the RS-422 electrical interface. The mechanical medium consists of ribbon cable and connectors. The data link layer is defined by SDLC. SDLC's use of acknowledgements and frame numbering guarantees that messages will be received in the same order in which they were sent. It also guarantees message integrity over the data link. However this network will not guarantee secondary to secondary message delivery, since there are acknowledgements between secondary stations.

2.1 Hardware

The schematic of the hardware is given in Figure 7. The 8251 A is used as an async communications controller, in support of the 8044. TxRDY and RxRDY on the 8251 A are both tied to the two available external interrupts of the 8044 since the secondary station driver is totally interrupt driven. The 8044 buffers the data and some variables in a 2016 ($2 \mathrm{~K} \times 8$ static RAM). The 8254 programmable interval timer is employed as a programmable baud rate generator and system clock driver for the 8251A. The third output from the 8254 could be used as an external baud rate generator for the 8044. The 2732A shown in the diagram was not used
since the software for both the primary and secondary stations used far less than the 4 K bytes provided on the 8744. For the async interface, the standard RS- 232 mechanical and electrical interface was used. For the SDLC channel, a standard two wire three state RS-422 driver is used. A DIP switch connected to one of the available ports on the 8044 allows the baud rate, parity, and stop bits to be changed on the async interface. The primary station hardware does not use the USART, 8254, nor the RS-232 drivers.

2.2 SDLC Basic Repertoire

The SDLC commands and responses implemented in the data link include the SDLC Basic Repertoire as defined in the IBM SDLC General Information manual. Table 3 shows the commands and responses that the primary and the secondary station in this data link design recognize and send.

Figure 4. SDLC Multidrop Topology

Figure 5. SDLC Logical Topology

Figure 6. Block Diagram of the Data Link Application Example

Figure 7. Schematic of Async/SDLC Secondary Station Protocol Converter

Table 3. Data Link Commands and Responses Implemented for This Design

Primary Station		
	Responses Recognized	Commands Sent
Unnumbered	UA	SNRM
	DM	
	FRMR	DISC
	*RD	
Supervisory	RR	RR
	RNR	RNR
Information	I	I

Secondary Station		
	Commands Recognized	Responses Sent
Unnumbered	SNRM DISC *TEST	UA DM FRMR *RD *TEST
Supervisory	RR RNR REJ	$\begin{gathered} \text { RR } \\ \text { RNR } \end{gathered}$
Information	1	1

*not included in the SDLC Basic Repertoire
The term command specifically means all frames which the primary station transmits and the secondary stations receive. Response refers to frames which the secondary stations transmit and the primary station receives.

NUMBER OF OUTSTANDING FRAMES

This particular data link design only allows one outstanding frame before it must receive an acknowledgement. Immediate acknowledgement allows the secondary station drivers to use the AUTO mode. In addition, one outstanding frame uses less memory for buffering, and the software becomes easier to manage.

2.3 Secondary Station Driver using AUTO Mode

The 8044 secondary station driver (SSD) was written as a general purpose SDLC driver. It was written to be linked to an application module. The application software implements the actual application in addition to interfacing to the SSD. The main application could be, a printer or plotter, a medical instrument, or a termi-
nal. The SSD is independent of the main application, it just provides the SDLC communications. Existing 8051 applications could add high performance SDLC communications capability by linking the SSD to the existing software and providing additional software to be able to communicate with the SSD.

DATA LINK INTERFACE AND USER INTERFACE STATES

The SSD has two software interfaces: a data link interface and a user interface as shown in Figure 8. The data link interface is the part of the software which controls the SDLC communications. It handles link access, command recognition/response, acknowledgements, and error recovery. The user interface provides four functions: OPEN, CLOSE, TRANSMIT, and SIU RECV. These are the only four functions which the application software has to interface in order to communicate using SDLC. These four functions are common to many I/O drivers like floppy and hard disks, keyboard/CRT, and async communication drivers.

The data link and the user interface each have their own states. Each interface can only be in one state at any time. The SSD uses the states of these two interfaces to help synchronize the application module to the data link.

There are three states which the secondary station data link interface can be in: Logical Disconnect State (L_D_S), Frame Reject State (FRMR_S), and the Information Transfer State (I_T_S). The Logical Disconnect State is when a station is physically connected to the channel but either the primary or secondary have not agreed to enter the Information Transfer State. Both the primary and the secondary stations synchronize to enter into the Information Transfer State. Only when the secondary station is in the I_T__S is it able to transfer data or information to the primary. The Frame Reject State (FRMR_S) indicates that the secondary station has lost software synchronization with the primary or encountered some kind of error condition. When the secondary station is in the FRMR_S, the primary station must reset the secondary to resynchronize.

The user interface has two states, open or closed. In the closed state, the user program does not want to communicate over the network. The communications channel is closed and not available for use. The secondary station tells the primary this by responding to all commands with DM. The primary continues to poll the secondary in case it wants to enter the I_T__S state. When the user program begins communication over the data link it goes into the open state. It does this by calling the OPEN procedure. When the user interface is in the open state it may transfer information to the primary.

Figure 8. Secondary Station Software Modules

SECONDARY STATION COMMANDS, RESPONSES AND STATE TRANSITIONS

Table 4 shows the commands which the secondary station recognizes and the responses it generates. The first row in Table 4 displays commands the secondary station recognizes and each column shows the potential responses with respect to secondary station. For example, if the secondary is in the Logical Disconnect State it will only respond with DM, unless it receives a SNRM command and the user state is open. If this is the case, then the response will be UA and the secondary station will move into the I_T__S.

Figure 9 shows the state diagram of the secondary station. When power is first applied to the secondary station, it goes into the Logical Disconnect State. As mentioned above, the I_T_S is entered when the secondary station receives a SNRM command and the user state is open. The secondary responds with UA to let the primary know that it has accepted the SNRM and is entering the $I_{\text {_ }} T_{\text {_ }} S$. The I__T_S can go into either the L_D__S or the FRMR_S. The I_T_S goes into the L__D_S if the primary sends the secondary DISC. The secondary has to respond with UA, and then goes into the L__D__S. If the user interface changes from open to close state, then the secondary sends RD. This causes the primary to send a DISC.

The FRMR_S is entered when a secondary station is in the I__T_S and either one of the following conditions occurs.

- A command can not be recognized by the secondary station.
- There is a buffer overrun.
- The Nr that was received from the primary station is invalid.

The secondary station cannot leave the FRMR_S until it receives a SNRM or a DISC command.

SOFTWARE DESCRIPTION OF THE SSD

To aid in following the description of the software, the reader may either look at the flow charts which are given for each procedure, or read the PL/M-51 listing provided in Appendix A.

A block diagram of the software structure of the SSD is given in Figure 10. A complete module is identified by the dotted box, and a procedure is identified by the solid box. Therefore the SIU__RECV procedure is not included in the SSD module, it exists in the application software. Two or more procedures connected by a solid line means the procedure above calls the procedure below. Transmit, Power__on_D, Close, and Open are all called by the application software. Procedures without any solid lines connected above are interrupt procedures. The only interrupt procedure in the SSD module is the SIU_INT.

The entire SSD module is interrupt driven. Its design allows the application program to handle real time events or just dedicate more CPU time to the application program. The SIU__INT is the only interrupt procedure in the SSD. It is automatically entered when an SIU interrupt occurs. This particular interrupt can be the lowest priority interrupt in the system.

Table 4. Secondary Station Responses to Primary Station Commands

Data Link States	Primary Station-Commands					
	I	RR	RNR	SNRM	DISC	TEST
Information Transfer State	I RR RNR RD FRMR	RR RNR RD FRMR	RR RNR RD FRMR	RD		
Logical Disconnect State	DM	DM	DM	UA	UA	RM
Frame Reject State	FRMR	FRMR	FRMR	UM	DM	

Figure 9. State Diagram of Secondary Station

Figure 10. Secondary Station Driver

SSD INITIALIZATION

Upon reset the application software is entered first. The application software initializes its own variables then calls Power__On__D which is the SSD's initialization routine. The SSD's initialization sets up the transmit and receive data buffer pointers (TBS and RBS), the receive buffer length (RBL), and loads the State variables. The STATION__STATE begins in the L__D__S state, and the USER_STATE begins in the closed state. Finally Power__On__D initializes XMIT__ BUFFER__EMPTY which is a bit flag. This flag serves as a semaphore between the SSD and the application software to indicate the status of the on chip transmit buffer. The SSD does not set the station address. It is the application software's responsibility to do this. After initialization, the SSD is read to respond to all of the primary station commands. Each time a frame is received with a matching station address and a good CRC, the SIU__INT procedure is entered.

SIU__INT PROCEDURE

The first thing the SIU__INT procedure clears is the serial interrupt__bit (SI) in the STS register. If the SIU__INT procedure returns with this bit set, another SI interrupt will occur.

The SIU__INT procedure is branches three independent cases. The first case is entered if the STATION_ STATE is not in the I_T__S. If this is true, then the SIU is not in the AUTO mode, and the CPU will have to respond to the primary on its own. (Remember that the AUTO mode is entered when the STATION_ STATE enters into $I_{\text {_ }} \mathrm{T}_{\text {_ }}$ S.) If the STATION_ STATE is in the I__T__S, then either the SIU has just left the AUTO mode, or is still in the AUTO mode. This is the second and third case, respectively.

In the first case, if the STATION__STATE is not in the I__T_SS, then it must be in either the L__D__S or the $F R M R _S$. In either case a separate procedure is called based on which state the station is in. The In _ Disconnect__State procedure sends to the primary a DM response, unless it received a SNRM command and the USER_STATE equals open. In that case the SIU sends a UA and enters into the I__T_S. The In_ FRMR_State procedure will send the primary the FRMR response unless it received either a DISC or an SNRM. If the primary's command was a DISC, then the secondary will send a UA and enter into the L_ D__S. If the primary's command was a SNRM, then the secondary will send a UA, enter into the I__T__S, and clear NSNR register.

For the second case, if the STATION__STATE is in the I__T__S but the SIU left the AUTO mode, then the CPU must determine why the AUTO mode was exited, and generate a response to the primary. There are four
reasons for the SIU to automatically leave the AUTO mode. The following is a list of these reasons, and the responses given by the SSD based on each reason.

1. The SIU has received a command field it does not recognize.
Response: If the CPU recognizes the command, it generates the appropriate response. If neither the SIU nor the CPU recognize the command, then a FRMR response is sent.
2. The SIU has received a Sequence Error Sent $(\mathrm{SES}=1$ in NSNR register). $\mathrm{Nr}(\mathrm{P}) \neq \mathrm{Ns}(\mathrm{S})+1$, and $\mathrm{Nr}(\mathrm{P}) \neq \mathrm{Ns}(\mathrm{S})$.
Response: Send FRMR.
3. A buffer overrun has occurred. $\mathrm{BOV}=1$ in STS register.
Response: Send FRMR.
4. An I frame with data was received while $R P B=1$.

Response: Go back into AUTO mode and send an AUTO mode response

In addition to the above reasons, there is one condition where the CPU forces the SIU out of the AUTO mode. This is discussed in the SSD's User Interface Procedures section in the CLOSED procedure description

Finally, case three is when the STATION__STATE is in the I__T__S and the AUTO mode. The CPU first looks at the TBF bit. If this bit is 0 then the interrupt may have been caused by a frame which was transmitted and acknowledged. Therefore the XMIT__BUFFER_EMPTY flag is set again, indicating that the application software can transmit another frame.

The other reason this section of code could be entered is if a valid I frame was received. When a good I frame is received the RBE bit equals 0 . This means that the receiver is disabled. If the primary were to poll the 8044 while $\mathrm{RBE}=0$, it would time out since no response would be given. Time outs reduce network throughput. To improve network performance, the CPU first sets RBP, then sets RBE. Now when the primary polls the 8044 an immediate RNR response is given. At this point the SSD calls the application software procedure SIU__RECV and passes the length of the data as a parameter. The SIU__RECV procedure reads the data out of the receive buffer then returns to the SSD module. Now that the receive information has been transferred, RBP can be cleared.

COMMAND__DECODE PROCEDURE

The Command__Decode procedure is called from the SIU__INT procedure when the STATION__STATE $=$ I__T__S and the SIU left the AUTO mode as a result of not being able to recognize the receive control byte. Commands which the SIU AUTO mode does not

Figure 11. Information Field of the FRMR Response, as Transmitted
recognize are handled here. The commands recognized in this procedure are: SNRM, DISC, and TEST. Any other command received will generate a Frame Reject with the nonimplemented command bit set in the third data byte of the FRMR frame. Any additional unnumbered frame commands which the secondary station is going to implement, should be implemented in this procedure.

IF an SNRM is received the command_decode procedure calls the SNRM_Response procedure. The SNRM_Response procedure sets the STATION_ STATE $=$ I_T_S, clears the NSNR register and responds with a UA frame. If a DISC is received, the command_decode procedure sets the STATIONSTATE $=$ L__D_S, and responds with a UA frame. When a TEST frame is received, and there is no buffer overrun, the command_decode procedure responds with a TEST frame retransmitting the same data it received. However if a TEST frame is received and there is a buffer overrun, then a TEST frame will be sent without any data, instead of a FRMR with the buffer overrun bit set.

FRAME REJECT PROCEDURES

There are two procedures which handle the FRMR state: XMIT__FRMR and IN__FRMR_STATE. XMIT__FRMR is entered when the secondary station first goes into the FRMR state. The frame reject response frame contains the FRMR response in the command field plus three additional data bytes in the I
field. Figure 11 displays the format for the three data bytes in the I field of a FRMR response. The XMIT_ FRMR procedure sets up the Frame Reject response frame based on the parameter REASON which is passed to it. Each place in the SSD code that calls the XMIT__FRMR procedure, passes the REASON that this procedure was called, which in turn is communicated to the primary station. The XMIT__FRMR procedure uses three bytes of internal RAM which it initializes for the correct response. The TBS and TBL registers are then changed to point to the FRMR buffer so that when a response is sent these three bytes will be included in the I field.

The IN__FRMR_STATE procedure is called by the SIU_INT procedure when the STATION_STATE already is in the FRMR state and a response is required. The IN__FRMR_STATE procedure will only allow two commands to remove the secondary station from the FRMR state: SNRM and DISC. Any other command which is received while in the FRMR state will result in a FRMR response frame.

XMIT_UNNUMBERED PROCEDURE

This is a general purpose transmit procedure, used only in the FLEXIBLE mode, which sends unnumbered responses to the primary. It accepts the control byte as a parameter, and also expects the TBL register to be set before the procedure is called. This procedure waits until the frame has been transmitted before returning. If
this procedure returned before the transmit interrupt was generated, the SIU__INT routine would be entered. The SIU__INT routine would not be able to distinguish this condition.

SSD's User Interface Procedures-OPEN, CLOSE, TRANSMIT, SIU__RECV—are discussed in the following section.

The OPEN procedure is the simplest of all, it changes the USER_STATE to OPEN__S then returns. This lets the SSD know that the user wants to open the channel for communications. When the SSD receives a SNRM command, it checks the USER_STATE. If the USER_STATE is open, then the SSD will respond with a UA, and the STATION__STATE enters the I__T__S.

The CLOSE procedure is also simple, it changes the USER__STATE to CLOSED__S and sets the AM bit to 0 . Note that when the CPU sets the AM bit to 0 it puts the SIU out of the AUTO mode. This event is asynchronous to the events on the network. As a result an I frame can be lost. This is what can happen.

1. AM is set to 0 by the CLOSE Procedure.
2. An I frame is received and an SI interrupt occurs.
3. The SIU__INT procedure enters case 2 (STATION__STATE $=\mathrm{I} _$T__S, and AM $=0$).
4. Case 2 detects that the USER__STATE $=$ CLOSED_S, sends an RD response and ignores the fact that an I frame was received.

Therefore it is advised to never call the CLOSE procedure or take the SIU out of the AUTO mode when it is receiving I frames or an I frame will be lost.

For both the TRANSMIT and SIU__RECV procedures, it is the application software's job to put data into the transmit buffer, and take data out of the receive buffer. The SSD does not transfer data in or out of its transmit or receive buffers because it does not know what kind of buffering the application software is implementing. What the SSD does do is notify the application software when the transmit buffer is empty, XMIT__BUFFER__EMPTY $=1$, and when the receive buffer is full.

One of the functions that the SSD performs to synchronize the application software to the SDLC data link. However some of the synchronization must also be done by the application software. Remember that the SSD does not want to hang up the application software waiting for some event to occur on the SDLC data link, therefore the SSD always returns to the application software as soon as possible.

For example, when the application software calls the OPEN procedure, the SSD returns immediately. The
application software thinks that the SDLC channel is now open and it can transmit. This is not the case. For the channel to be open, the SSD must receive an SNRM from the primary and respond with a UA. However, the SSD does not want to hang up the application software waiting for an SNRM from the primary before returning from the OPEN procedure. When the TRANSMIT procedure is called, the SSD expects the STATION__STATE to be in the I__T_S. If it isn't, the SSD refuses to transmit the data. The TRANSMIT procedure first checks to see if the USER__STATE is open. If not, the USER__STATE_CLOSED parameter is passed back to the application module. The next thing TRANSMIT checks is the STATION__STATE. If this is not open, then TRANSMIT passes back LINK__DISCONNECTED. This means that the USER__STATE is open, but the SSD hasn't received an SNRM command from the primary yet. Therefore, the application software should wait awhile and try again. Based on network performance, one knows the maximum amount of time it will take for a station to be polled. If the application software waits this length of time and tries again but still gets a LINK__DISCONNECTED parameter passed back, higher level recovery must be implemented.

Before loading the transmit buffer and calling the TRANSMIT procedure, the application software must check to see that XMIT__BUFFER__EMPTY $=1$. This flag tells the application software that it can write new data into the transmit buffer and call the TRANSMIT procedure. After the application software has verified that XMIT__BUFFER_EMPTY $=1$, it fills the transmit buffer with the data and calls the TRANSMIT procedure passing the length of the buffer as a parameter. The TRANSMIT procedure checks for three reasons why it might not be able to transmit the frame. If any of these three reasons are true, the TRANSMIT procedure returns a parameter explaining why it couldn't send the frame. If the application software receives one of these responses, it must rectify the problem and try again. Assuming these three conditions are false, then the SSD clears XMIT__BUFFER_EMPTY, attempts to send the data and returns the parameter DATA_TRANSMITTED. XMIT__ BUFFER_EMPTY will not be set to 1 again until the data has been transmitted and acknowledged.

The SIU__RECV procedure must be incorporated into the application software module. When a valid I frame is received by the SIU, it calls the SIU__RECV procedure and passes the length of the received data as a parameter. The SIU__RECV procedure must remove all of the data from the receive buffer before returning to the SIU__INT procedure.

LINKING UP TO THE SSD

Figure 12 shows the necessary parts to include in a PL/M-51 application program that will be linked to the SSD module. RL51 is used to link and locate the SSD and application modules. The command line used to do this is:

```
RL51 SSD.obj,filename.obj,PLM51.LIB TO
filename & RAMSIZE(192)
$registerbank(0)
user$mod: do;
$include (reg44.dcl)
declare
    lit literally 'literally',
    buffer_length lit '60',
siu_xmit_buffer
(buffer_length) byte external idata,
siu_recv_buffer
(buffer_length) byte external,
xmit_buffer_empty bit external;
/* external procedures */
power_on_d: procedure external;
end power_on_d;
close: procedure external using l;
end close;
open: procedure external using 1;
end open;
transmit: procedure
(xmit_buffer_length) byte external;
    declare xmit_buffer_length byte;
end transmit;
/* local procedures */
siu_recv: procedure (length) using l;
public
    declare length byte,
        \bullet
        \bullet
        \bullet
end siu_recv;
```

Figure 12. Applications Module Link Information

PL/M-51 AND REGISTER BANKS

The 8044 has four register banks. PL/M-51 assumes that an interrupt procedure never uses the same bank as the procedure it interrupts. The USING attribute of a procedure, or the \$REGISTERBANK control, can be used to ensure that.

The SSD module uses the \$REGISTERBANK(1) attribute. Some procedures are modified with the USING attribute based on the register bank level of the calling procedure.

2.4 Application Module; ASYNC to SDLC Protocol Converter

One of the purposes of this application module is to demonstrate how to interface software to the SSD. Another purpose is to implement and test a practical application. This application software performs I/O with an async terminal through a USART, buffers data, and also performs I/O with the SSD. In addition, it allows the user on the async terminal to: set the station address, set the destination address, and go online and offline. Setting the station address sets the byte in the STAD register. The destination address is the first byte in the I field. Going online or offline results in either calling the OPEN or CLOSE procedure respectively.

After the secondary station powers up, it enters the 'terminal mode', which accepts data from the terminal. However, before any data is sent, the user must configure the station. The station address and destination address must be set, and the station must be placed online. To configure the station the ESC character is entered at the terminal which puts the protocol converter into the 'configure mode'. Figure 13 shows the menu which appears on the terminal screen.
(/)8044 Secondary Station
/
1-Set the Station Address
2- Set the Destination Address
3-Go Online
4-Go Offline
5- Return to terminal mode Enter option -

Figure 13. Menu for the Protocol Converter
In the terminal mode data is buffered up in the secondary station. A Line Feed character 'LF' tells the secondary station to send an I frame. If more than 60 bytes are buffered in the secondary station when a 'LF' is received, the applications software packetizes the data into 60 bytes or less per frame. If a LF is entered when the station is offline, an error message comes on the screen which says 'Unable to Get Online'.

The secondary station also does error checking on the async interface for Parity, Framing Error, and Overrun Error. If one of these errors are detected, an error message is displayed on the terminal screen.

BUFFERING

There are two separate buffers in the application module: a transmit buffer and a receive buffer. The transmit buffer receives data from the USART, and sends data to the SSD. The receive buffer receives data from the SSD, and transmits data to the USART. Each buffer is a 256 byte software FIFO. If the transmit FIFO becomes full and no 'LF' character is received, the secondary station automatically begins sending the data. In addition, the application modules will shut off the terminal's transmitter using CTS until the FIFO has been partially emptied. A block diagram of the buffering for the protocol converter is given in Figure 14.

APPLICATION MODULE SOFTWARE

A block diagram of the application module software is given in Figure 15. There are three interrupt routines in this module: USART__RECV__INT, USART_XMIT_INT, and TIMER_0__INT. The first two are for servicing the USART. TIMER_0_INT is used if the TRANSMIT procedure in the SSD is called and does not return with the DATA_TRANSMITTED parameter. TIMER_0_INT employs Timer 0 to wait a finite amount of time before trying to transmit again. The highest priority interrupt is USART__RECV_ INT. The main program and all the procedures it calls use register bank 0, USART_XMIT_INT and TIMER_0_INT and FIFO__R_OUT use bank 1, while USART__RECV__INT and all the procedures it calls use register bank 2.

POWER_ON PROCEDURE

The Power_On procedure initializes all of the chips in the system including the 8044. The 8044 is initialized to use the on-chip DPLL with NRZI coding, PreFrame Sync, and Timer 1 auto reload at a baud rate of 62.5 Kbps . The 8254 and the 8251 A are initialized next based on the DIP switch values attached to port 1 on the 8044. Variables and pointers are initialized, then the SSD's Power-Up Procedure, Power_On_D, is called. Finally, the interrupt system is enabled and the main program is entered.

MAIN PROGRAPA

The main program is a simple loop which waits for a frame transmit command. A frame transmit command is indicated when the variable SEND_DATA is greater than 0 . The value of SEND__DATA equals the number of 'LF' characters in the transmit FIFO, hence it also indicates the number of frames pending transmission. Each time a frame is sent, SEND__DATA is decremented by one. Thus when SEND_DATA is greater than 0 , the main program falls down into the
next loop which polls the XMIT__BUFFER_EMPTY bit. When XMIT_BUFFER_EMPTY equals 1, the SIU_XMIT_BUFFER can be loaded. The first byte in the buffer is loaded with the destination address while the rest of the buffer is loaded with the data. Bytes are removed from the transmit FIFO and placed into the SIU_XMIT_BUFFER until one of three things happen: 1. a 'LF' character is read out of the FIFO, 2. the number of bytes loaded equals the size of the SIU__XMIT__BUFFER, or 3. the transmit FIFO is empty.

After the SIU_XMIT__BUFFER is filled, the SSD TRANSMIT procedure is called and the results from the procedure are checked. Any result other than DATA_TRANSMITTED will result in several retries within a finite amount of time. If all the retries fail, then the LINK_DISC procedure is called which sends a message to the terminal, 'Unable to Get Online'.

USART__RECV_INT PROCEDURE

When the 8251A receives a character, the RxRDY pin on the 8251 A is activated, and this interrupt procedure is entered. The routine reads the USART status register to determine if there are any errors in the character received. If there are, the character is discarded and the ERROR procedure is called which prints the type of error on the screen. If there are no errors, the received character is checked to see if it's an ESC. If it is an ESC, the MENU procedure is called which allows the user to change the configuration. If neither one of these two conditions exists, the received character is inserted into the transmit FIFO. The received character may or may not be echoed back to the terminal based on the dip switch settings.

TRANSMIT FIFO

The transmit FIFO consists of two procedures: FIFO_ T__IN and FIFO__T__OUT. FIFO__T_IN inserts a character into the FIFO, and FIFO_T_OUT removes a character from the FIFO. The FIFO itself is an array of 256 bytes called FIFO_T. There are two pointers used as indexes in the array to address the characters: IN__PTR_T and OUT__PTR_T. IN_ PTR_T points to the location in the array which will store the next byte of data inserted. OUT_PTR_T points to the next byte of data removed from the array. Both IN_PTR_T and OUT__PTR_T are declared as bytes. The FIFO__T_IN procedure receives a character from the USART__RECV__INT procedure and stores it in the array location pointed to by IN_PTR_ T, then IN__PTR_T is incremented. Similarly, when FIFO_T__OUT is called by the main program, to load the SIU_XMIT__BUFFER, the byte in the array

pointed to by OUT__PTR_T is read, then OUT__ PTR__T is incremented. Since $I N _$PTR__T and OUT__PTR_T are always incremented, they must be able to roll over when they hit the top of the 256 byte address space. This is done automatically by having both IN__PTR__T and OUT__PTR__T declared as bytes. Each character inserted into the transmit FIFO is tested to see if it's a LF. If it is a LF, the variable SEND__DATA is incremented, which lets the main program know that it is time to send an I frame. Similarly each character removed from the FIFO is tested. SEND__DATA is decremented for every LF character removed from the FIFO.

IN__PTR__T and OUT__PTR__T are also used to indicate how many bytes are in the FIFO, and whether it is full or empty. When a character is placed into the FIFO and IN__PTR_T is incremented, the FIFO is full if IN__PTR_T equals OUT__PTR_T. When a character is read from the FIFO and OUT__PTR_T is incremented, the FIFO is empty if OUT__PTR_T equals IN__PTR__T. If the FIFO is neither full nor empty, then it is in use. A byte called BUFFER_ STATUS_T is used to indicate one of these three conditions. The application module uses the buffer status information to control the flow of data into and out of the FIFO. When the transmit FIFO is empty, the main program must stop loading bytes into the SIU_ XMIT__BUFFER. Just before the FIFO is full, the async input must be shut off using CTS. Also, if the FIFO is full and SEND__DATA $=0$, then SEND__ DATA must be incremented to automatically send the data without an LF.

RECEIVE FIFO

The receive FIFO operates in a fashion similar to the transmit FIFO. Data is inserted into the receive FIFO from the SIU__RECV procedure. The SIU__RECV procedure is called by the SIU__INT procedure when a valid I frame is received. The SIU__RECV procedure merely polls the receive FIFO status to see if it's full before transferring each byte from the SIU__RECV __ BUFFER into the receive FIFO. If the receive FIFO is full, the SIU__RECV procedure remains polling the FIFO status until it can insert the rest of the data. In the meantime, the SIU AUTO mode is responding to all polls from the primary with a RNR supervisory frame. The USART__XMIT__INT interrupt procedure removes data from the receive FIFO and transmits it to the terminal. The USART transmit interrupt remains enabled while the receive FIFO has data in it. When the receive FIFO becomes empty, the USART transmit interrupt is disabled.

2.5 Primary Station

The primary station is responsible for controlling the data link. It issues commands to the secondary
stations and receives responses from them. The primary station controls link access, link level error recovery, and the flow of information. Secondaries can only transmit when polled by the primary.

Most primary stations are either micro/minicomputers, or front end processors to a mainframe computer. The example primary station in this design is standalone. It is possible for the 8044 to be used as an intelligent front end processor for a microprocessor, implementing the primary station functions. This latter type of design would extensively off-load link control functions for the microprocessor. The code listed in this paper can be used as the basis for this primary station design. Additional software is required to interface to the microprocessor. A hardware design example for interfacing the 8044 to a microprocessor can be found in the applications section of this handbook.

The primary station must know the addresses of all the stations which will be on the network. The software for this primary needs to know this before it is compiled, however a more flexible system would download these parameters.

From the listing of the software it can be seen that the variable NUMBER__OF__STATIONS is a literal declaration, which is 2 in this design example. There were three stations tested on this data link, two secondaries and one primary. Following the NUMBER_OF_ STATIONS declaration is a table, loaded into the object code file at compile time, which lists the addresses of each secondary station on the network.

REMOTE STATION DATABASE

The primary station keeps a record of each secondary station on the network. This is called the Remote Station Database (RSD). The RSD in this software is an array of structures, which can be found in the listing and also in Figure 16. Each RSD stores the necessary information about that secondary station.

To add additional secondary stations to the network, one simply adjusts the NUMBER__OF__STATIONS declaration, and adds the additional addresses to the SECONDARY__ADDRESSES table. The number of RSDs is automatically allocated at compile time, and the primary automatically polls each station whose address is in the SECONDARY__ADDRESSES table.

Memory for the RSDs resides in external RAM. Based on memory requirements for each RSD, the maximum number of stations can be easily buffered in external RAM. (254 secondary stations is the maximum number SDLC will address on the data link; i.e. 8-bit address, FF H is the broadcast address, and 0 is the null address. Each RSD uses 70 bytes of RAM. $70 \times 254=$ 17,780 .)

The station state, in the RSD structure, maintains the status of the secondary. If this byte indicates that the secondary is in the DISCONNECT_S, then the primary tries to put the station in the I_T__S by sending an SNRM. If the response is a UA then the station state changes into the I_T_S. Any other frame received results in the station state remaining in the DISCONNECT_S. When the RSD indicates that the station state is in the I_T__S, the primary will send either an I, RR, or RNR command, depending on the local and remote buffer status. When the station state equals GO__TO_DISC the primary will send a DISC command. If the response is a UA frame, the station state will change to DISCONNECT_S, else the station state will remain in GO__TO_DISC. The station state is set to GO_TO_DISC when one of the following responses occur:

1. A receive buffer overrun in the primary.
2. An I frame is received and $\mathrm{Nr}(\mathrm{P}) \neq \mathrm{Ns}(\mathrm{S})$.
3. An I frame or a Supervisory frame is received and $\mathrm{Ns}(\mathbf{P})+1 \neq \mathrm{Nr}(\mathbf{S})$ and $\mathrm{Ns}(\mathbf{P}) \neq \mathrm{Nr}(\mathbf{S})$.
4. A FRMR response is received.
5. An RD response is received.
6. An unknown response is received.

The send count (Ns) and receive count (Nr) are also maintained in the RSD. Each time an I frame is sent by the primary and acknowledged by the secondary, Ns is incremented. Nr is incremented each time a valid I frame is received. BUFFER_STATUS indicates the status of the secondary station's buffer. If an RR response is received, BUFFER_STATUS is set to BUFFER_READY. If a RNR response is received, BUFFER_STATUS is set to BUFFER_NOT_ READY.

BUFFERING

The buffering for the primary station is as follows: within each RSD is a 64 byte array buffer which is initially empty. When the primary receives an I frame, it looks for a match between the first byte of the I frame and the addresses of the secondaries on the network. If a match exists, the primary places the data in the RSD buffer of the destination station. The INFO_ LENGTH in the RSD indicates how many bytes are in the buffer. If INFO_LENGTH equals 0 , then the buffer is empty. The primary can buffer only one I frame per station. If a second I frame is received while the addressed secondary's RSD buffer is full, the primary cannot receive any more I frames. At this point the primary continues to poll the secondaries using RNR supervisory frame.

PRIMARY STATION SOFTWARE

A block diagram of the primary station software is shown in Figure 17. The primary station software consists of a main program, one interrupt routine, and several procedures. The POWER_ON procedure begins by initializing the SIU's DMA and enabling the receiver. Then each RSD is initialized. The DPLL and the timers are set, and finally the TIMER 0 interrupt is enabled.

The main program consists of an iterative do loop within a do forever loop. The iterative do loop polls each secondary station once through the do loop. The variable STATION__NUMBER is the counter for the iterative do statement which is also used as an index to the array of RSD structures. The primary station issues one command and receives one response from every secondary station each time through the loop. The first statement in the loop loads the secondary station address, indexed by STATION_NUMBER into the array of the RSD structures. Now when the primary sends a command, it will have the secondary's address in the address field of the frame. The automatic address recognition feature is used by the primary to recognize the response from the secondary.

Next, the main program determines the secondary station's state. Based on this state, the primary knows what command to send. If the station is in the DISCONNECT_S, the primary calls the SNRM_P procedure to try and put the secondary in the $\mathrm{I}_{-} \mathbf{T}$ _S. If the station state is in the GO_TO__DISC state, the DISC__P is called to try and put the secondary in the L_D__S. If the secondary is in neither one of the above two states, then it is in the I_T_S. When the secondary is in the I_T_S, the primary could send one of three commands: I, RR, or RNR. If the RSD's buffer has data in it, indicated by INFO__LENGTH being greater than zero, and the secondary's BUFFER_STATUS equals BUFFER_READY, then an I frame will be sent. Else if $\mathrm{RPB}=0$, an RR supervisory frame will be sent. If neither one of these cases is true, then an RNR will be sent. The last statement in the main program checks the RPB bit. If set to one, the BUFFER_TRANSFER procedure is called, which transfers the data from the SIU receive buffer to the appropriate RSD buffer.

Figure 16. Remote Station Database Structure

RECEIVE TIME OUT

Each time a frame is transmitted, the primary sets a receive time out timer; Timer 0 . If a response is not received within a certain time, the primary returns to the main program and continues polling the rest of the stations. The minimum length of time the primary should wait for a response can be calculated as the sum of the following parameters.

1. Propagation time to the secondary station
2. Clear-to-send at the secondary station's DCE
3. Appropriate time for secondary station processing
4. Propagation time from the secondary station

5. Maximum frame length time

The clear-to-send time and the propagation time are negligible for a local network at low bit rates. However, the turnaround time and the maximum frame length time are significant factors. Using the 8044 secondaries in the AUTO mode minimizes turnaround time. The
maximum frame length time comes from the fact the 8044 does not generate an interrupt from a received frame until it has been completely received, and the CRC is verified as correct. This means that the timeout is bit rate dependent.

Ns AND Nr CHECK PROCEDURES

Each time an I frame or supervisory frame is received, the Nr field in the control byte must be checked. Since this data link only allows one outstanding frame, a valid Nr would satisfy either one of two equations; $\mathrm{Ns}(\mathrm{P})+1=\mathrm{Nr}(\mathrm{S})$ the I frame previously sent by the primary is acknowledged, $\mathrm{Ns}(\mathrm{P})=\mathrm{Nr}(\mathrm{S})$ the I frame previously sent is not acknowledged. If either one of these two cases is true, the CHECK_NR procedure returns a parameter of TRUE; otherwise a FALSE parameter is returned. If an acknowledgement is received, the Ns byte in the RSD structure is incremented, and the Information buffer may be cleared. Otherwise the information buffer remains full.

When an I frame is received, the Ns field has to be checked also. If $\mathrm{Nr}(\mathbf{P})=\mathrm{Ns}(\mathbf{S})$, then the procedure returns TRUE, otherwise a FALSE is returned.

RECEIVE PROCEDURE

The receive procedure is called when a supervisory or information frame is sent, and a response is received before the time-out period. The RECEIVE procedure can be broken down into three parts. The first part is entered if an I frame is received. When an I frame is received, Ns, Nr and buffer overrun are checked. If there is a buffer overrun, or there is an error in either Ns or Nr , then the station state is set to GO__TO_ DISC. Otherwise Nr in the RSD is incremented, the receive field length is saved, and the RPB bit is set. By incrementing the Nr field, the I frame just received is acknowledged the next time the primary polls the secondary with an I frame or a supervisory frame. Setting RBP protects the received data, and also tells the main program that there is data to transfer to one of the RSD buffers.

Figure 17. Block Diagram of Primary Station Software Structure

If a supervisory frame is received, the Nr field is checked. If a FALSE is returned, then the station state is set to GO__TO_DISC. If the supervisory frame received was an RNR, buffer status is set to not ready. If the response is not an I frame, nor a supervisory frame, then it must be an Unnumbered frame.

The only Unnumbered frames the primary recognizes are UA, DM, and FRMR. In any event, the station
state is set to GO_TO__DISC. However, if the frame received is a FRMR, Nr in the second data byte of the I field is checked to see if the secondary acknowledged an I frame received before it went into the FRMR state. If this is not done and the secondary acknowledged an I frame which the primary did not recognize, the primary transmits the I frame when the secondary returns to the I__T_S. In this case, the secondary would receive duplicate I frames.

APPENDIX A 8044 SOFTWARE FLOWCHARTS

Figure 18. Secondary Station Driver Flow Chart

Figure 19. Secondary Station Driver Flow Chart

Figure 20. Secondary Station Driver Flow Chart

Figure 21. Secondary Station Driver Flow Chart

Figure 22. Secondary Station Driver Flow Chart

Figure 23. Secondary Station Driver Flow Chart

Figure 25. Application Module Flow Chart

Figure 26. Application Module Flow Chart

Figure 27. Application Module Flow Chart

Figure 28. Application Module Flow Chart

Figure 29. Application Module Flow Chart

Figure 30. Application Module Flow Chart

Figure 31. Application Module Flow Chart

Figure 32. Primary Station Flow Charts

Figure 33. Primary Station Flow Charts

Figure 34. Primary Station Flow Charts

Figure 35. Primary Station Flow Charts

12

Figure 36. Primary Station Flow Charts

Figure 37. Primary Station Flow Charts

APPENDIX B LISTINGS OF SOFTWARE MODULES


```
PL/M-SI COMPILER RUPI-44 Eecondary Station Driver



```

168 2 ELSE CALL XMIT_FRMR(UNASSIONED_C); /* Received an undefined or not implemented command */

```
168 2 ELSE CALL XMIT_FRMR(UNASSIONED_C); /* Received an undefined or not implemented command */
169 1 END COMMAND_DECODE,
169 1 END COMMAND_DECODE,
170 2 SIU_INT: PROCEDURE INTERRUPT 4;
170 2 SIU_INT: PROCEDURE INTERRUPT 4;
171 2 DECLARE I BYTE AUXILIARY,
171 2 DECLARE I BYTE AUXILIARY,
172 2 SI=0;
172 2 SI=0;
THEN DO, IF RBE=0 /* Received a frame? Qive response */
THEN DO, IF RBE=0 /* Received a frame? Qive response */
3) IF RBE=O THEN DO,
3) IF RBE=O THEN DO,
                                    DO CABE BTATION STATE
                                    DO CABE BTATION STATE
                                    CALL IN_DISCONNECT_STATE:
                                    CALL IN_DISCONNECT_STATE:
                                    CALL IN_FRMR_STATE,
                                    CALL IN_FRMR_STATE,
                                    END:
                                    END:
                                    ND;
                                    ND;
                RETURN,
                RETURN,
                END:
                END:
                /* If the program reaches this point, STATION_STATE=I_T_S
                /* If the program reaches this point, STATION_STATE=I_T_S
                    which means the SIU either was, or still is in the AUTO MODE */
                    which means the SIU either was, or still is in the AUTO MODE */
                    THEN DO,
                    THEN DO,
                                    TBL=O;
                                    TBL=O;
                                    CALL XMIT_UNNUMMERED(REQ_DISC),
                                    CALL XMIT_UNNUMMERED(REQ_DISC),
                    END,
                    END,
                ELSE IF BES=1
                ELSE IF BES=1
                    ELSE IF GES=1 CHEN CALL XMIT_FRMR(BES_ERR);
                    ELSE IF GES=1 CHEN CALL XMIT_FRMR(BES_ERR);
                    ELSE IF BOV=1 _
                    ELSE IF BOV=1 _
                    THEN DO; /* DON'T SEND FRMR IF A TEST WAS RECEIVED*/
                    THEN DO; /* DON'T SEND FRMR IF A TEST WAS RECEIVED*/
                    IF (RC# AND OEFH)=TEST
                    IF (RC# AND OEFH)=TEST
                    ELGE THEN CALL COHMAND_DECODE; OUERRUN):
                    ELGE THEN CALL COHMAND_DECODE; OUERRUN):
                    END;
                    END;
                ELSE CALL CDMMAND_DECODE,
                ELSE CALL CDMMAND_DECODE,
                    ELSE CA
                    ELSE CA
                END;
                END;
        ELSE DO; /* MUST STILL BE IN AUTO MODE */
        ELSE DO; /* MUST STILL BE IN AUTO MODE */
            1F TBF=0
            1F TBF=0
                            THEN XMIT_BUFFER_EMPTY=1; /* TRANSMITTED A FRAME */
                            THEN XMIT_BUFFER_EMPTY=1; /* TRANSMITTED A FRAME */
                    IF RBEm0
                    IF RBEm0
                        THEN DO,
```

 THEN DO,
    ```


Boftware and application note written by Charles Yager

WARNINOS:
4 IS THE HIOHEST UBED INTERRUPT

MODULE INFORMATION
CODE GIZE
CONBTANT BIZE
DIRECT VARIABLE GIZE INDIRECT VARIABLE BIZE BIT GIZE
BIT-ADDREB8ABLE BIZE
AUXILIARY VARIABLE EIZE
MAXIMMM GTACK GIZE
REOISTER-BANK ( 8 ) USED:
REOISTER-BANK
460 LINEB READ
460 LINES READ
0 PROORAM ERRDR (B)
END DF PL/M-51 COMPILATION

```

PL/M-51 cOMPILER Application Module: Async/SDLC Protocol converter 18:50:53 09/19/83 PAOE 1
1818-1I PL/M-51 V1.0
COMPILER INVOKED BY: : f2: p1m51: \&2: unote. sTC
STITLE ('Application Module: Async/BDLC Protocol converter')
edebug
cregisterbink(0)
usersmod:dol
DNOLI8T LIT
TRUE
TRUEE
EEC
EMPTY
INUBE
INUBE
UGER_BTATE_CLOBED
LINK_DIBCONNECTED
OVERFLOW
DATA_TRANEMITTED

| LITERALLY | 'LITERALLY' |
| :---: | :---: |
| LIT | 'OFFH', |
| LIT | 'OOH', |
| L.1T | 'WHILE 1', |
| LIT | '18H', |
| LIT | 'OAH', |
| LIT | 'ODH', |
| LIT | '08H', |
| LIT | '07H', |
| LIT | ' OOH ', |
| LIT | '01H', |
| LIT | '02H', |
| LIT | 'OOH', |
| LIT | 'O1H', |
| LIT | ' O2H', |
| LIT | '03H', |

 /* BUFFERS */
 | BUFFER_LENOTH | LIT | | |
| :--- | :---: | :---: | :---: |
| SIU_XMIT_BUFFER (BUFFER_LENOTH) | GYTE', | | |
| BIU_RECV_BUFFER (BUFFER_LENOTH) | EXTERNAL BYTE | EXTERNAL, | |
| EIDATA, | | | |

GIU_RECV_BUFFER(BUFFER_LENOTH) BYTE AUX
FIFO_T(256) BYTE AUXILIARY,
IN_PTR_T, BYTE AUXILIARY,
OUTPTR_T BYTE AUXILIARY,
GUFFER_8TATUS_T BYTE AUXILIARY,
FlFO_R(236) BYTE AUXILIARY,
FIFOR(236) BYTE AUXILIARY,
IN_PTR_R % GYTE
BUFFER_gTATUS_R BYTE AUX

| LENOTH | BYTE | AUXILIARY, |
| :---: | :---: | :---: |
| CHAR | BYTE | AUXILIARY, |
| 1 | BYTE | AUXILIARY, |
| USART_CMD | BYTE | AUXILIARY, |
| DEETINATION_ADDRESS | BYTE | AUXILIARY, |
| SEND_DATA | BYTE | AUXILIARY, |
| RESULT | BYTE | AUXILIARY, |
| ERR_MESBAOE_INDEX | 日YTE | AUXILIARY, |
| ERR_MESEAOE_PTR | WORD | AUXILIARY, |

```

PARITY(*) BYTE CONSTANT(LF, CR, 'Parity Error Detected', LF, CR, OOH), FRAME(*) BYTE CONBTANT(LF, CR, 'Framing Error Detected', LF, CR, OOH),

OVER＿RUN（＊）BYTE CONSTANT（LF，CR，＇Overrun Errar Detected＇，LF，CR，O），
LINK＇＊）BYTE CONBTANT（LF，CR，Unable to Oet Online＇，LF，CR，OOH），
DEST＿ADDR（＊）BYTE CONSTANT（CR，LF，LF，
\[
\text { Enter the destination address: _ } \because \text { Bs, 日8, 0). }
\]

D＿ADDR＿ACK（＊）BYTE CONBTANT（CR，LF，LF，
＇The new destination address is＇，0i，
BTAT＿ADDR（＊）BYTE CONSTANT（CR，LF，LF，
'Enter the station address: _ ', B8, B8, Ol,

8＿ADDR＿ACK（＊）BYTE CDNSTANT（CR，LF，LF
The new station address is, 0 ），
ADDR＿ACK＿FIN（＊）EYTE CONSTANT（＇H＇，CR，LF，LF，O），

BION＿ON（＊）BYTE CONSTANT（CR，LF，LF，
＇（N／）RUPI－44 Becondary Station＇，CR，LF，
－N＇，CR，LF，LF，
＇1－Bet the Station Address＇，LF，CR．
＇2－Set the Destination Address＇，CR，LF，
＇3－Oo Online＇，CR，LF，
＇4－Oo DPfline＇，CR，LF
＇s－Return to terminal mode＇，CR，LF，LF， Enter option：＿＇日8，0），

FIN（＊）EYTE CONSTANT（CR，LF，LF，O），
／＊Characters Received From the Torminal＊／
HEX＿TABLE（17）BYTE CONBTANT（＇0123456789ABCDEF＇，BEL），
MENU＿CHAR（6）BYTE CONBTANT（＇12345＇，BEL），
/w Flags and Bits */
\begin{tabular}{|c|c|c|c|}
\hline XMIT＿BUFFER＿EMPTY & BIT & EXTERNAL， & ／＊Semapho \\
\hline 8TOP＿BIT & BIT & \multicolumn{2}{|l|}{AT（147）REQ，／＊Torm} \\
\hline ECHO & EIT & AT（084H） & REO， \\
\hline HAIT & 日IT． & & ／＊Timeout \\
\hline ERROR＿FLAO & EIT， & & ／＊Error m \\
\hline \multicolumn{4}{|l|}{／＊Periheral Addresses＊／} \\
\hline USART＿BTATUS & BYTE & AT（0801H） & AUXILIARY， \\
\hline UBART＿DATA & GYTE & AT（0800H） & AUXILIARY， \\
\hline TIMER＿CONTROL & BYTE & AT（1003H） & AUXILIARY， \\
\hline TIMER＿0 & EYTE & AT（1000H） & AUXILIARY， \\
\hline TIMER－1 & BYTE & AT（1001H） & AUXILIARY， \\
\hline TIMER＿2 & BYTE & AT（1002H） & AUXILIARY： \\
\hline
\end{tabular}

1＊External Procedures＊／
```

PL/M-51 COMPILER APplication Module: Asyne/SDLC Protocol converter 18:50:53 09/19/83 PAOE 3
6 2 POWER ON_D: PROCEDURE EXTERNAL,
END POWER_ON_DI
CLOSE: PROCEDURE EXTERNAL USINO 2;
END CLOBE,
OPEN: PROCEDURE EXTERNAL USINO 2,
END OPEN:
TRANSMIT: PROCEDURE (XMIT_BUFFER_LENOTH) BYTE EXTERNAL;
END TRANSMIT,
/* Local Procedures */
TIMER_O_INT: PROCEDURE INTERRUPT 1 USINO 1)
WAIT=O!
END TIMER_O_INTI
PONER_ON: PROCEDURE USINQ O;

```

```

 Definition for dip switch tied to P1.O to P1.6
    ```

```

PL/M-5i COMPILER Application Module: Async/BDLC Protocol converter

Echo	7
on	off
off	

＊／
$\begin{array}{ll}29 & 2 \\ 29 & 2\end{array}$
313

```
```

32

$$
\begin{array}{ll}
4 & 4 \\
15 & 4 \\
16 & 4
\end{array}
$$

$$
\begin{array}{ll}
36 & 4 \\
37 & 4 \\
38 & 4
\end{array}
$$

$$
\begin{array}{ll}
39 & 4 \\
10 & 4
\end{array}
$$

```
```必必
```

44
45
46

3
$+\rightarrow+$

$\rightarrow+$

```DO1 \(\begin{aligned} & \text { TIMER＿1 }=63 \mathrm{HI} \\ & \text { TIMER } 1=01\end{aligned}\)
```

END；
／＊ 19200 ＊／DOs
TIMER＿1 $=33 \mathrm{H}_{1}$

```Nı
```

END：
USART＿BTATUBMOS USART STATUS＝0

```USART－STATUS＝0
\[
\begin{aligned}
& \text { USART_STATUS }=01 \\
& \text { USART_ETATUE }=40 \mathrm{H}_{1}
\end{aligned}
\]
USART_8TATUS=40H:
```

TEMP＝OAH；$\quad$／＊Determine the parity and of stop bits＊／

```
\[
\text { TEMP=TEMP OR (PI AND } 30 H \text {); }
\]
IF BTOP_BIT=1
\[
\begin{aligned}
& \text { STOP BIT=1 } \\
& \text { THEN TEMP }=\text { TEMP OR OCOH }
\end{aligned}
\]
\[
\begin{aligned}
& \text { THEN TEMP=TEMP OR O } \\
& \text { ELSE TEMP=TEMP DR } 40 H \text {; }
\end{aligned}
\]
USART_STATUS=TEMP; /* USART Mode Word */
USART_BTATUS, USART_CMD=27Hi/\#USART Command Word RTS, RxE, 'DTR, TエEN=1\%/
STAD=OFFHI
```

```
PL/M-Si COMPILER Application Module: Async/BDLC Protocol converter 18:50:53 09/19/83 PAOE S
 69 2
 70 2 IN_PTR_T, OUT_PTR_T, IN_PTR_R, OUT_PTR_R = OI/#Initialize FIFO PTRS*/
 71 2 BUFFER_STATUS_T, BUFFER_STATUS_R= EMPTY,
 72 2 CALL POWER_ON_Di
 73 2 IPm01H: /* USART's RxRdy is the highest priority */
 IE=93H, /* Both external interrupts are level triggered*/
 5 2 ERROR_FLAO=0,
 76 1 END PONER_ON,
 77 2 FIFO_R_IN: PROCEDURE (CHAR) USINO 11
 D DECLARE CHAR BYTE;
 79 FIFO_R(IN_PTR_R)=CHAR,
 80 2 IN_PTR_R=IN_PTR_R+11
 81 2 IF BUFFER_gTATUS_R=EMPTY
 THEN DO,
 EA=O,
 EUFFER_gTATUB_R=INUSE,
 EXI=1; /# Enable USART's TXD interrupt */
 END,
 ((BUFFER STATUS R=INUSE) AND (IN PTR R=OUT PTR R))
 THEN BUFFER_&TATUS_R=FULL;
 90 1 END FIFO_R_IN,
 T1 2 FIFO_R_OUT: PROCEDURE GYTE USINO 1:
 92 2 DECLARE CHAR BYTE AUXILIARY,
 CHAR=FIFO_R(OUT_PTR_R);
 CHAR=FIFO_R(OUT_PTR_R)
 OUT_PTR_R=OUT_PTR_R+1,
 OUT_PTR_R
 EXI=0; /* Shut off TxD interrupt */
 BUFFER_STATUB_R=EMPTV,
 ELSE IF ((BUFFER_STATUB_R=FULL) AND (OUT_PTR_R-2O=IN_PTR_R))
 (TBUFFER_BTATUBARMFURL) AND,
 RETURN CHAR,
 END FIFO_R_OUT,
 UBART_XMIT_INT: PROCEDURE INTERRUPT 2 USINO 1;
```







```
PL/M-S1 COMPILER Application Module: Async/BDLC Protocol converter 18:50:53 09/19/83 PAOE 11
288 4, 4, CHARMFIFO_T_OUT,
/* If the line entered ot the terminal is greater than BUFFER_LENOTH char, send the
 first BUFFER_LENOTH char, then send the rest, since the BIU buffer is only BUFFER_LENQTH bytes */
```




```
293 3 RETRY: % RESULT=TRANSMIT(LENOTH): /* Send
 for link
 NAIT=1/
 THO=3CH,
 TLO=0AFH
 TRO=1:
 DO WHILE WAIT,
 ENDi
 TRO=0;
 I=I+1!
 IFI+1/ I>100 THEN DO; /* Wait 5 sec to get on line else
 Wait sece to get on line else
 send error message
 CALL LINK_DISC;
 COTO L1,
 END;
 END;
 END;
 END;
 END USER*MOD;
```


## WARNINOS:

2 IB THE HIOHEST USED INTERRUPT

```
MODULE INFORMATION:
```

    CODE GIZE
    CONSTANT SIIE
    DIRECT VARIABLE SIZE
    INDIRECT VARIABLE SIZE
    INDIRECT
    BIT-ADDRESSABLE SIZE
    AUXILIARY VARIABLE SIZE
    MAXIFAMM STACK SIZE
    REOISTER-BANK (S) USED:
    713 LINES READ
    O PROQRAM ERROR (S)
    END OF PL/M-SI COMPILATION


```
PL/M-51 COMPILER RUPI-44 Primary Station 20:47:13 09/26/83 PAOE 1
1518-1I PL/M-51 V1.O
COMP ILER INVOKED BY: :FR:PLMSI :F2:PNOTE. SRC
 #TITLE ('RUPI-44 Primary Station')
 SREBISTERBANK(O)
 MAIN&MOD:DO!
 /* To save paper the RUPI registers are not listed, but this is the statement
 used to include them: INCLUDE (:&2:REG44.DCL) */
 *NOLIST
 5 1
\begin{tabular}{lll}
DECLARE LIT & LITERALLY & 'LITERALLY', \\
TRUE & LIT & OFFH', \\
FALSE & LIT & 'OOH'' \\
FOREVER & LIT & 'WHILE 1':
\end{tabular}
 /* SDLC COMMANDS AND RESPDNSES */
 6 1
\begin{tabular}{|c|c|c|c|}
\hline DECLARE & SNRM & LIT & '93H', \\
\hline & UA & LIT & '73H', \\
\hline & DISC & LIT & '53H', \\
\hline & DM & LIT & '1FH', \\
\hline & FRMR & LIT & '97H', \\
\hline & REQ_DISC & LIT & '53H', \\
\hline & UP & LIT & '33H', \\
\hline & TEST & LIT & 'OF3H', \\
\hline & RR & LIT & '11H', \\
\hline & RNR & LIT & '15H', \\
\hline
\end{tabular}
 /* REMOTE STATION BUFFER STATUS */
```



```
PL/M-51 COMPILER RUPI-44 Primary Station 20:47:13 09/26/83 PAQE 2
```



```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{/* VARIABLES */} \\
\hline STATION_NUMEER & BYTE & AUXILIARY, \\
\hline RECV_FIELD_LENOTH & BYTE & AUXILIARY, \\
\hline WAIT & BIT, & AUX \\
\hline \multicolumn{3}{|l|}{/* BUFFERS */} \\
\hline SIU_XMIT_BUFFER(64) & & IDATA, \\
\hline SIU_RECV_BUFFER(64) & & \\
\hline
\end{tabular}
POWER_ON: PROCEDURE ;
 DECLARE I BYTE AUXILIARY;
 TBS=. SIU_XMIT_BUFFER(0);
 RBS=. SIU_RECV_BUFFER(O);
 RBL=64; /# 64 Byte receive buffer #/
 l RBL=64; * 64 Byte receive buffer */
 DO I= 0 TO NUMBER_OF_STATIONS-1;
 RSD(I).STATION_ADDRESS=SECDNDARY_ADDRESSES(I);
 RSD(I). STATION_STATE=DISCONNECT_/_
 RSD(I).BUFFER_STATUS=BUFFER_NOT_READY:
 RSD(I). INFO_LENOTH=0
 END,
 SMD=54H1/* Using DPLL, NRZI, PFG, TIMER 1, e 62. 5 Kbps */
 TMOD=21H;
 TH1=0FFH
 TCON=4OHi /* Use timer O for receive time out interrupt */
 IE=82H;
 END POWER_ON;
 XMIT: PROCEDURE (CONTROL_BYTE);
 DECLARE CONTROL_BYTE BYTE;
 TCB=CONTROL_BYTE;
 TBF=1;
```

PL/M-51 COMPILER RUPI-44 Primary Station 20:47:13 09/2b/83 PAGE 3
29
TIMER_O_INT: PROCEDURE INTERRUPT 1 USING 1;
END TIMER_O_INT;
TIME_QUT: PROCEDURE BYTE; /* Time_out returns true if there wasn't
a frame received within 200 msec.
If there was frame received within
3B DECLARE I BYTE AUXILIARY,
39 DO I=0 TO 3:
403
42
43
44
43
44
45
45
$\begin{array}{ll}4 & 4 \\ 9 & 3\end{array}$
492
502
512
521
3 SEND_DISC: PROCEDURE;
$422 \quad \mathrm{TBL}=\mathrm{O}$;
CALL XMIT(DISC);
IF TIME OUT =FALSE
THEN IF RCB=UA OR RCB=DM
THEN DO;
RSD (STATION_NUMBER). BUFFER_STATUS=BUFFER_NOT_READY; RSD(STATION_NUMBER). STATION_STATE=DISCONNECT_S;
REE=1;
END SEND_DISC;
SEND_SNRM: PROCEDURE;
TBL=Oi

```
```

PL/M-51 COMPILER RUPI-44 Primary Station 20:47:13 09/26/B3 PAOE 4
66}
CALL XMIT(SNRM)।
IF (TIME_OUT=FALSE) AND (RCB=UA)
THEN DO;
RSD(BTATION_NUMBER). STATION_STATE=I_T_S'
RBD(STATION_NUMBER). NS=O:
RSD(STATION_NUMBER). NR=O;
END;
RBE=1;
END SEND_8NRM;
CHECK_NS: PROCEDURE BYTE,
/* Check the Ns Field of the received frame. If Nr(P)=Ns(S) return true */
IF (RSD(STATION_NUMBER). NR=(SHR(RCB,1) AND O7H))
THEN RETURN TRUE;
ELSE RETURN FALSE;
END CHECK_NS;
CHECK_NR: PROCEDURE BYTE;
/* Check the Nr field of the received frame. If Ns(P)+1mNr(S) then the frame
has been acknowledged, else if Ns(P)=Nr(S) then the frame has not been
acknowledged, else reset the secondery \#/
IF (((RSD(STATION_NUMBER).NS + 1) AND O7H) = SHR(RCB,5))
THEN DO;
RED(STATION_NUMBER).NS=((RSD(8TATION_NUMBER).NS+1) AND O7H),
RSD(STATION_NUMPER). INFO_LENOTH=O1
END;
(RSD(STATION NUMBER). NS <> SHR(RCB, S))
THEN RETURN FALSE
RETURN TRUE;
END CHECK_NR;
RECEIVE: PROCEDURE ;
DECLARE I BYTE AUXILIARY;
RSD(STATION_NUMBER).BUFFER_STATUS=BUFFER_READY,
/* If an RNR was received buffer_status will be changed in the supervisory
frame decode section futher down in this procedure, any other response
means the remote stations buffer is ready b/
IF (RCB AND O1H)=0
THEN DD; 1* I Frame Receivad */
IF (CHECK_NS=TRUE AND BOV=O AND CHECK_NR=TRUE)
THEN DO;
RSD(STATION_NUMBER). NR=((RSD(STATION_NUMEER). NR+1) AND O7H);
REP=1;

```

```

PL/M-Si CQMPILER RUPI-44 Primary Station 20:47:13 09/26/83 PAGE 6

```

TEMP=(SHL(RSD(STATION_NUMBER). NR,5) OR TEMP);
F TIME OUTHP
then call receive
\({ }^{\text {END }}\)
ER: PROCEDURE
```

PL/M-51 CDMPILER RUPI-44 Primary Station

179	3	END:
180	2	END;
181	1	END MAIN\$MOD;

## WARNINGS

1 IS THE HIGHEST USED INTERRUPT

MODULE IHFORMATION:
CODE SIZE
CONSTANT SIZE
DIRECT VARIABLE SIZE INDIRECT VARIABLE SIZE BIT SIZE
BIT-ADDRESSABLE SIZE
AUXILIARY VARIABLE SIZE
MAXIMUM STACK SIZE REGISTER-BANK (S) USED: 456 LINES READ
O PROGRAM ERRDR (S)
END OF PL/M-5i COMPILATION
 WITH ON-CHIP SERIAL COMMUNICATION CONTROLLER

\author{

- 8044AH—Includes Factory Mask Programmable ROM <br> - 8344AH—For Use with External Program Memory <br> - 8744H—Includes User Programmable/Eraseable EPROM
}


## 8051 MICROCONTROLLER CORE

- Optimized for Real Time Control 12 MHz Clock, Priority Interrupts, 32 Programmable I/O Lines, Two 16-bit Timer/Counters
- Boolean Processor
- $4 \mathrm{~K} \times 8$ ROM, $192 \times 8$ RAM
- 64K Accessible External Program Memory
- 64K Accessible External Data Memory
- $4 \mu \mathrm{~s}$ Multiply and Divide


## SERIAL INTERFACE UNIT (SIU)

Serial Communication Processor that Operates Concurrently to CPU

- 2.4 Mbps Maximum Data Rate

■ 375 Kbps using On-Chip Phase Locked Loop

- Communication Software in Silicon: - Complete Data Link Functions - Automatic Station Response
- Operates as an SDLC Primary or Secondary Station

The RUPI-44 family integrates a high performance 8-bit Microcontroller, the Intel 8051 Core, with an Intelligent/high performance HDLC/SDLC serial communication controller, called the Serial Interface Unit (SIU). See Figure 1. This dual architecture allows complex control and high speed data communication functions to be realized cost effectively.

Specifically, the 8044's Microcontroller features: 4K byte On-Chip program memory space; 32 I/O lines; two 16-bit timer/event counters; a 5-source; 2-level interrupt structure; a full duplex serial channel; a Boolean processor; and on-chip oscillator and clock circuitry. Standard TTL and most byte-oriented MCS-80 and MCS85 peripherals can be used for I/O amd memory expansion.

The Serial Interface Unit (SIU) manages the interface to a high speed serial link. The SIU offloads the On-Chip 8051 Microcontroller of communication tasks, thereby freeing the CPU to concentrate on real time control tasks.

The RUPI-44 family consists of the 8044, 8744, and 8344. All three devices are identical except in respect of on-chip program memory. The 8044 contains 4 K bytes of mask-programmable ROM. User programmable EPROM replaces ROM in the 8744 . The 8344 addresses all program memory externally.

The RUPI-44 devices are fabricated with Intel's reliable +5 volt, silicon-gate HMOSII technology and packaged in a 40-pin DIP.

The 8744 H is available in a hermetically sealed, ceramic, 40 -lead dual in-line package which includes a window that allows for EPROM erasure when exposed to ultraviolet light (See Erasure Characteristics). During normal operation, ambient light may adversely affect the functionality of the chip. Therefore applications which expose the 8744 H to ambient light may require an opaque label over the window.


Figure 1. Dual Controller Architecture

Table 1. RUPITM-44 Family Pin Description

## vss

Circuit ground potential.

## VCC

+5 V power supply during operation and program verification.

## PORT 0

Port 0 is an 8 -bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification. Port 0 can sink/source eight LS TTL loads (six in 8744).

## PORT 1

Port 1 is an 8 -bit quasi-bidirectional I/O port. It is used for the low-order address byte during program verification. Port 1 can sink/source four LS TTL loads.

In non-loop mode two of the I/O lines serve alternate functions:

- $\overline{\text { RTS (P1.6). Request-to-Send output. A low in- }}$ dicates that the RUPI-44 is ready to transmit.
- $\overline{\mathrm{CTS}}$ (P1.7) Clear-to-Send input. A low indicates that a receiving station is ready to receive.


## PORT 2

Port 2 is an 8 -bit quasi-bidirection I/O port. It also emits the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification. Port 2 can sink/source four LS TTL loads.

## PORT 3

Port 3 is an 8 -bit quasi-bidirectional I/O port. It also contains the interrupt, timer, serial port and RD and WR pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. Port 3 can sink/source four LS LTT loads.

In addition to I/O, some of the pins also serve alternate functions as follows:

- I/ $\bar{O}$ R×D (P3.0). In point-to-point or multipoint configurations, this pin controls the direction of pin P3.1. Serves as Receive Data input in loop and diagnostic modes.
- DATA TxD (P3.1) In point-to-point or multipoint configurations, this pin functions as data input/ output. In loop mode, it serves as transmit pin. A ' 0 ' written to this pin enables diagnostic mode.
- $\overline{\mathrm{NTO}}$ (P3.2). Interrupt 0 input or gate control input for counter 0 .
- $\overline{\mathrm{NT} 1}$ (P3.3). Interrupt 1 input or gate control input for counter 1.
— TO (P3.4). Input to counter 0.
- SCLK T1 (P3.5). In addition to I/O, this pin provides input to counter 1 or serves as SCLK (serial clock) input.
— $\overline{W R}$ (P3.6). The write control signal latches the data byte from Port 0 into the External Data Memory.
- $\overline{\mathrm{RD}}$ (P3.7). The read control signal enables External Data Memory to Port 0.


## RST

A high on this pin for two machine cycles while the oscillator is running resets the device. A small external pulldown resistor ( $\approx 8.2 \mathrm{~K} \Omega$ ) from RST to $\mathrm{V}_{\text {ss }}$ permits power-on reset when a capacitor ( $\approx 10 \mu \mathrm{f}$ ) is also connected from this pin to $\mathrm{V}_{\mathrm{cc}}$.

## ALE/PROG

Provides Address Latch Enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access. It also receives the program pulse input for programming the EPROM version.

## $\overline{\text { PSEN }}$

The Program Store Enable output is a control signal that enables the external Program Memory to the bus during external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. Remains high during internal program execution.

## $\overline{E A} / V P P$

When held at a TTL high level, the RUPI-44 executes instructions from the internal ROM when the PC is less than 4096. When held at a TTL low level, the RUPI-44 fetches all instructions from external. Program Memory. The pin also receives the 21V EPROM programming supply voltage on the 8744.

Table 1. RUPITM-44 Family Pin Description (Continued)

## XTAL 1

Input to the oscillator's high gain amplifier. Required when a crystal is used. Connect to VSS when external source is used on XTAL 2.

XTAL 2
Output from the oscillator's amplifier. Input to the internal timing circuitry. A crystal or external source can be used.


Figure 2. Logic Symbol


Figure 3A. DIP Pin Configuration


231663-21
Figure 3B. PLCC Pin Configuration


Figure 4. Block Diagram

## FUNCTIONAL DESCRIPTION

## General

The 8044 integrates the powerful 8051 microcontroller with an intelligent Serial Communication Controller to provide a single-chip solution which will efficiently implement a distributed processing or distributed control system. The microcontroller is a selfsufficient unit containing ROM, RAM, ALU, and its own peripherals. The 8044's architecture and instruction set are identical to the 8051's. The 8044 replaces the 8051's serial interface with an intelligent SDLC/HDLC Serial Interface Unit (SIU). 64 more bytes of RAM have been added to the 8051 RAM array. The SIU can communicate at bit rates up to 2.4 M bps. The SIU works concurrently with the Microcontroller so that there is no throughput loss in either unit. Since the SIU possesses its own intelligence, the CPU is off-loaded from many of the communications tasks, thus dedicating more of its computing power to controlling local peripherals or some external process.

## The Microcontroller

The microcontroller is a stand-alone high-performance single-chip computer intended for use in sophisticated real-time application such as instrumentation, industrial control, and intelligent computer peripherals.

The major features of the microcontroller are:

- 8 -bit CPU
- on-chip oscillator
- 4 K bytes of ROM
- 192 bytes of RAM
- 32 I/O lines
- 64 K address space for external Data Memory
- 64 K address space for external Program Memory
- two fully programmable 16 -bit timer/counters
- a five-source interrupt structure with two priority levels
- bit addressability for Boolean processing


Figure 5. Internal Data Memory Address Space

- $1 \mu \mathrm{~s}$ instruction cycle time for $60 \%$ of the instructions $2 \mu \mathrm{~s}$ instruction cycle time for $40 \%$ of the instructions
- $4 \mu$ s cycle time for 8 by 8 bit unsigned Multiply/ Divide


## INTERNAL DATA MEMORY

Functionally the Internal Data Memory is the most flexible of the address spaces. The Internal Data Memory space is subdivided into a 256 -byte Internal Data RAM address space and a 128 -bit Special Function Register address space as shown in Figure 5.

The Internal Data RAM address space is 0 to 255. Four 8 -Register Banks occupy locations 0 through 31. The stack can be located anywhere in the Internal Data RAM address space. In addition, 128 bit locations of the on-chip RAM are accessible through Direct Addressing. These bits reside in Internal Data RAM at byte locations 32 through 47. Currently locations 0 through 191 of the Internal Data RAM address space are filled with on-chip RAM.

## Parallel I/O

The 8044 has 32 general-purpose I/O lines which are arranged into four groups of eight lines. Each group is called a port. Hence there are four ports; Port 0, Port 1, Port 2, and Port 3. Up to five lines from Port 3 are dedicated to supporting the serial channel when the SIU is invoked. Due to the nature of the serial port, two of Port 3's I/O lines (P3.0 and P3.1) do not have latched outputs. This is true whether or not the serial channel is used.

Port 0 and Port 2 also have an alternate dedicatē function. When placed in the external access mode, Port 0 and Port 2 become the means by which the 8044 communicates with external program memory. Port 0 and Port 2 are also the means by which the 8044 communicates with external data memory. Peripherals can be memory mapped into the address space and controlled by the 8044.

Table 2. MCS $\begin{gathered}\text { - } \\ \text { - }\end{gathered}$ Instruction Set Description

Mnemonic		Description	Byte	Cyc	Mnem	nic	Description	Byte	Cyc
ARITHMETIC OPERATIONS					ARITHMETIC OPERATIONS (Continued)				
ADD	A,Rn	Add register to Accumulator	1	1	SUBB	A,@Ri	Subtract indirect RAM from A with		
ADD	A,direct	Add direct byte					Borrow	1	1
ADD	A,@Ri	to Accumulator Add indirect RAM to	2	1	SUBB	A, \#data	Subtract immed data from A with Borrow	2	1
		Accumulator	1	1	INC	A	Increment		
ADD	A, \# data	Add immediate data to Accumulator	2	1	INC	Rn	Accumulator Increment register	1	1
ADDC	A,Rn	Add register to Accumulator with Carry	1	1	INC INC	direct @ ${ }^{\text {i }}$	Increment direct byte   Increment	2	1
ADDC	A,direct	Add direct byte to A with Carry flag	2	1	INC	DPTR	indirect RAM   Increment Data   Pointer	1 1	2
ADDC	A,@Ri	Add indirect RAM to A with Carry flag	1	1	DEC	A Rn	Decrement Accumulator Decrement	1	1
ADDC	A, \#data	Add immediate data to $A$ with Carry flag	2	1	DEC	direct	register Decrement direct byte	2	1
SUBB	A,Rn	Subtract register from A with Borrow	1	1	DEC	@Ri AB	Decrement indirect RAM Multiply A \& B	1	1
SUBB	A,direct	Subtract direct byte from A with Borrow	2	1	$\begin{aligned} & \text { DIV } \\ & \text { DA } \end{aligned}$	$\begin{aligned} & A D \\ & A B \\ & A \end{aligned}$	Divide A by B Decimal Adjust Accumulator	1	4 1

Table 2. MCS®-51 Instruction Set Description (Continued)


Table 2. MCS ${ }^{\circledR}$-51 Instruction Set Description (Continued)


Table 2. MCS®-51 Instruction Set Description (Continued)

Mnemonic	Description	Byte Cyc	
PROGRAM AND MACHINE CONTROL (Continued)			
CJNE Rn, \# data,rel	Comp, immed, to reg \& Jump if Not Equal	3	2
CJNE @Ri, \#data, re	Comp, immed, to ind. \& Jump if Not Equal	3	2
DJNZ Rn,rel	Decrement register \& Jump if Not Zero	2	2
DJNZ direct,rel	Decrement direct \& Jump if Not Zero		2
NOP	No operation	1	1
Notes on data addressing modes:			
direct - 128 internal RAM locations, any I/O			
dressed by register R0 or R1	- Indirect internal RAM location ad-		

## Timer/Counters

The 8044 contains two 16 -bit counters which can be used for measuring time intervals, measuring pulse widths, counting events, generating precise periodic interrupt requests, and clocking the serial communications. Internally the Timers are clocked at $1 / 12$ of the crystal frequency, which is the instruction cycle time. Externally the counters can run up to 500 KHz .

## Interrupt System

External events and the real-time driven on-chip peripherals require service by the CPU asynchronous to the execution of any particular section of code. To tie the asynchronous activities of these functions to normal program execution, a sophisticated multiplesource, two priority level, nested interrupt system is provided. Interrupt response latency ranges from 3 $\mu \mathrm{sec}$ to $7 \mu \mathrm{sec}$ when using a 12 MHz clock.

All five interrupt sources can be mapped into one of the two priority levels. Each interrupt source can be enabled or disabled individually or the entire interrupt system can be enabled or disabled. The five interrupt sources are: Serial Interface Unit, Timer 1, Timer 2, and two external interrupts. The external interrupts can be either level or edge triggered.


All mnemonic copyrighted© Intel Corporation 1979

## Serial Interface Unit (SIU)

The Serial Interface Unit is used for HDLC/SDLC communications. It handles Zero Bit Insertion/Deletion, Flags automatic access recognization, and a 16 -bit cyclic redundancy check. In addition it implements in hardware a subset of the SDLC protocol certain applications it is advantageous to have the CPU control the reception or transmission of every single frame. For this reason the SIU has two modes of operation: "AUTO" and "FLEXIBLE" (or "NONAUTO"). It is in the AUTO mode that the SIU responds to SDLC frames without CPU intervention; whereas, in the FLEXIBLE mode the reception or transmission of every single frame will be under CPU control.

There are three control registers and eight parameter registers that are used to operate the serial interface. These registers are shown in Figure 5 and Figure 6. The control register set the modes of operation and provide status information. The eight parameter registers buffer the station address, receive and transmit control bytes, and point to the on-chip transmit and receive buffers.

Data to be received or transmitted by the SIU must be buffered anywhere within the 192 bytes of onchip RAM. Transmit and receive buffers are not allowed to "wrap around" in RAM; a "buffer end" is generated after address 191 is reached.


NOTE:
*ICE Support Hardware registers. Under normal operating conditions there is no need for the CPU to access these registers.

Figure 5. Mapping of Special Function Registers


Figure 6. Serial Interface Unit Control Registers

With the addition of only a few bytes of code, the 8044's frame size is not limited to the size of its internal RAM ( 192 bytes), but rather by the size of external buffer with no degradation of the RUPI's features (e.g. NRZI, zero bit insertion/deletion, address recognition, cyclic redundancy check). There is a special function register called SIUST whose contents dictates the operation of the SIU. At low data rates, one section of the SIU (the Byte Processor) performs no function during known intervals. For a given data rate, these intervals (stand-by mode) are fixed. The above characteristics make it possible to program the CPU to move data to/from external RAM and to force the SIU to perform some desired hardware tasks while transmission or reception is taking place. With these modifications, external RAM can be utilized as a transmit and received buffer instead of the internal RAM.

## AUTO Mode

In the AUTO mode the SIU implements in hardware a subset of the SDLC protocol such that it responds to many SDLC frames without CPU intervention. All AUTO mode responses to the primary station will comform to IBM's SDLC definition. The advantages of the AUTO mode are that less software is required to implement a secondary station, and the hardware generated response to polls is much faster than doing it in software. However, the Auto mode can not be used at a primary station.

To transmit in the AUTO mode the CPU must load the Transmit Information Buffer, Transmit Buffer Start register, Transmit Buffer Length register, and set the Transmit Buffer Full bit. The SIU automatically responds to a poll by transmitting an information frame with the P/F bit in the control field set. When the SIU receives a positive acknowledgement from the primary station, it automatically increments the Ns field in the NSNR register and interrupts the CPU. A negative acknowledgement would cause the SIU to retransmit the frame.

To receive in the AUTO mode, the CPU loads the Receive Buffer Start register, the Receive Buffer Length register, clears the Receive Buffer Protect bit, and sets the Receive Buffer Empty bit. If the SIU is polled in this state, and the TBF bit indicates that the Transmit Buffer is empty, an automatic RR response will be generated. When a valid information frame is received the SIU will automatically increment Nr in the NSNR register and interrupt the CPU.

While in the AUTO mode the SIU can recognize and respond to the following commands without CPU intervention: I (Information), RR (Receive Ready), RNR (Receive Not Ready), REJ (Reject), and UP (Unnumbered Poll). The SIU can generate the fol-
lowing responses without CPU intervention: I (Information), RR (Receive Ready), and RNR (Receive Not Ready).

When the Receive Buffer Empty bit (RBE) indicates that the Receive Buffer is empty, the receiver is enabled, and when the RBE bit indicates that the Receive Buffer is full, the receiver is disabled. Assuming that the Receiver Buffer is empty, the SIU will respond to a poll with an I frame if the Transmit Buffer is full. If the Transmit Buffer is empty, the SIU will respond to a poll with a RR command if the Receive Buffer Protect bit (RBP) is cleared, or an RNR command if RBP is set.

## FLEXIBLE (or NON-AUTO) Mode

In the FLEXIBLE mode all communications are under control of the CPU. It is the CPU's task to encode and decode control fields, manage acknowledgements, and adhere to the requirements of the HDLC/SDLC protocols. The 8044 can be used as a primary or a secondary station in this mode.

To receive a frame in the FLEXIBLE mode, the CPU must load the Receive Buffer Start register, the Receive Buffer Length register, clear the Receive Buffer Protect bit, and set the Receive Buffer Empty bit. If a valid opening flag is received and the address field matches the byte in the Station Address register or the address field contains a broadcast address, the 8044 loads the control field in the receive control byte register, and loads the I field in the receive buffer. If there is no CRC error, the SIU interrupts the CPU, indicating a frame has just been received. If there is a CRC error, no interrupt occurs. The Receive Field Length register provides the number of bytes that were received in the information field.

To transmit a frame, the CPU must load the transmit information buffer, the Transmit Buffer Start register, the Transmit Buffer Length register, the Transmit Control Byte, and set the TBF and the RTS bit. The SIU, unsolicited by an HDLC/SDLC frame, will transmit the entire information frame, and interrupt the CPU, indicating the completion of transmission. For supervisory frames or unnumbered frames, the transmit buffer length would be 0 .

## CRC

The FCS register is initially set to all 1's prior to calculating the FCS field. The SIU will not interrupt the CPU if a CRC error occurs (in both AUTO and FLEXIBLE modes). The CRC error is cleared upon receiving of an opening flag.

## Frame Format Options

In addition to the standard SDLC frame format, the 8044 will support the frames displayed in Figure 7. The standard SDLC frame is shown at the top of this figure. For the remaining frames the information field will incorporate the control or address bytes and the frame check sequences; therefore these fields will
be stored in the Transmit and Receive buffers. For example, in the non-buffered mode the third byte is treated as the beginning of the information field. In the non-addressed mode, the information field begins after the opening flag. The mode bits to set the frame format options are found in the Serial Mode register and the Status register.


## Extended Addressing

To realize an extended control field or an extended address field using the HDLC protocol, the FLEXIBLE mode must be used. For an extended control field, the SIU is programmed to be in the non-buffered mode. The extended control field will be the first and second bytes in the Receive and Transmit Buffers. For extended addressing the SIU is placed in the non-addressed mode. In this mode the CPU must implement the address recognition for received frames. The addressing field will be the initial bytes in the Transmit and Receive buffers followed by the control field.

The SIU can transmit and receive only frames which are multiples of 8 bits. For frames received with other than 8 -bit multiples, a CRC error will cause the SIU to reject the frame.

## SDLC Loop Networks

The SIU can be used in an SDLC loop as a secondary or primary station. When the SIU is placed in the Loop mode it receives the data on pin 10 and transmits the data one bit time delayed on pin 11. It can also recognize the Go ahead signal and change it into a flag when it is ready to transmit. As a secondary station the SIU can be used in the AUTO or FLEXIBLE modes. As a primary station the FLEXIBLE mode is used; however, additional hardware is required for generating the Go Ahead bit pattern. In the Loop mode the maximum data rate is 1 Mbps clocked or 375 Kpbs self-clocked.

## SDLC Multidrop Networks

The SIU can be used in a SDLC non-loop configuration as a secondary or primary station. When the SIU is placed in the non-loop mode, data is received and transmitted on pin 11, and pin 10 drives a tri-state buffer. In non-loop mode, modem interface pins, RTS and CTS, become available.

## Data Clocking Options

The 8044's serial port can operate in an externally clocked or self clocked system. A clocked system provides to the 8044 a clock synchronization to the data. A self-clocked system uses the 8044's on-chip Digital Phase Locked Loop (DPLL) to recover the clock from the data, and clock this data into the Serial Receive Shift Register.

In this mode, a clock synchronized with the data is externally fed into the 8044. This clock may be generated from an External Phase Locked Loop, or possibly supplied along with the data. The 8044 can
transmit and receive data in this mode at rates up to 2.4 Mbps.

This self clocked mode allows data transfer without a common system data clock. An on-chip Digital Phase Locked Loop is employed to recover the data clock which is encoded in the data stream. The DPLL will converge to the nominal bit center within eight bit transitions, worst case. The DPLL requires a reference clock of either 16 times (16x) or 32 times (32x) the data rate. This reference clock may be externally applied or internally generated. When internally generated either the 8044's internal logic clock (crystal frequency divided by two) or the timer 1 overflow is used as the reference clock. Using the internal timer 1 clock the data rates can vary from 244 to 62.5 Kbps. Using the internal logic clock at a 16x sampling rate, receive data can either be 187.5 Kbps , or 375 Kbps . When the reference clock for the DPLL is externally applied the data rates can vary from 0 to 375 Kbps at a 16 x sampling rate.

To aid in a Phase Locked Loop capture, the SIU has a NRZI (Non Return to Zero Inverted) data encoding and decoding option. Additionally the SIU has a preframe sync option that transmits two bytes of alternating 1's and 0's to ensure that the receive station DPLL will be synchronized with the data by the time it receives the opening flag.

## Control and Status Registers

- There are three SIU Control and Status Registers: Serial Mode Register (SMD) Status/Command Register (STS)
Send/Receive Count Register (NSNR)
The SMD, STS, and NSNR, registers are all cleared by system reset. This assures that the SIU will power up in an idle state (neither receiving nor transmitting).

These registers and their bit assignments are described below.

SMD: Serial Mode Register (byte-addressable)

Bit 7:	6	5	4	3	2	1	0
SCM2	SCM1	SCM0	NRZI	LOOP	PFS	NB	NFCS

The Serial Mode Register (Address C9H) selects the operational modes of the SIU. The 8044 CPU can both read and write SMD. The SIU can read SMD but cannot write to it. To prevent conflict between CPU and SIU access to SMD, the CPU should write SMD only when the Request To Send (RTS) and

Receive Buffer Empty (RBE) bits (in the STS register) are both false (0). Normally, SMD is accessed only during initialization.

The individual bits of the Serial Mode Register are as follows:

Bit \#	Name	Description
SMD.0	NFCS	No FCS field in the SDLC frame.
SMD.1	NB	Non-Buffered mode. No control   field in the SDLC frame.
SMD.2	PFS	Pre-Frame Sync mode. In this   mode, the 8044 transmits two   bytes before the first flag of a   frame, for DPLL synchronization.   If NRZI is enabled, 00H is sent;   otherwise, 55H is sent. In either   case, 16 preframe transitions are   guaranteed.
SMD.3	LOOP	Loop configuration:   SMD.4   NRZINRZI coding option. If bit $=1$,   NRZI coding is used. If bit = 0,   then it is straight binary (NRZ).
SMD.5	SCM0	Select Clock Mode-Bit 0
SMD.6	SCM1	Select Clock Mode-Bit 1
SMD.7	SCM2	Select Clock Mode-Bit 2

The SCM bits decode as follows:

SCM				Data Rate   $(\text { Bits } / \mathbf{s e c})^{*}$
2	1	0	Clock Mode	$0-2.4 \mathrm{M}^{* *}$
0	0	0	Externally clocked	
0	0	1	Reserved	
0	1	0	Self clocked, timer overflow	$244-62.5 \mathrm{~K}$
0	1	1	Reserved	
1	0	0	Self clocked, external 16 x	$0-375 \mathrm{~K}$
1	0	1	Self clocked, external 32 x	$0-187.5 \mathrm{~K}$
1	1	0	Self clocked, internal fixed	375 K
1	1	1	Self clocked, internal fixed	187.5 K

## NOTES:

*Based on a 12 Mhz crystal frequency
**0-1 M bps in loop configuration

```
STS: Status/Command Register (bitaddressable)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit: & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline & TBF & RBE & RTS & SI & BOV & OPB & AM & RBP \\
\hline
\end{tabular}
```

The Status/Command Register (Address C 8 H ) provides operational control of the SIU by the 8044

CPU, and enables the SIU to post status information for the CPU's access. The SIU can read STS, and can alter certain bits, as indicated below. The CPU can both read and write STS asynchronously. However, 2 -cycle instructions that access STS during both cycles ('JBC/B, REL' and 'MOV/B, C.') should not be used, since the SIU may write to STS between the two CPU accesses.

The individual bits of the Status/Command Register are as follows:

Bit\#	Name	Description
STS.0	RBP	Receive Buffer Protect. Inhibits   writing of data into the receive   buffer. In AUTO mode, RBP   forces an RNR response instead   of an RR.
STS.1	AM	AUTO Mode/Addressed Mode.   Selects AUTO mode where   AUTO mode is allowed. If NB is   true, ( = 1), the AM bit selects the   addressed mode. AM may be   cleared by the SIU.
STS.2	OPB	Optional Poll Bit. Determines   whether the SIU will generate an   AUTO response to an optional   poll (UP with P = 0). OPM may   be set or cleared by the SIU.
STS.3	BOV	Receive Buffer Overrun. BOV   may be set or cleared by the SIU.
STS.4	SI	SIU Interrupt. This is one of the   five interrupt sources to the CPU.   The vector location = 23H. SI   may be set by the SIU. It should   be cleared by the CPU before   returning from an interrupt   routine.
STS. 5	RTS	Request To Send. Indicates that   the 8044 is ready to transmit or is   transmitting. RTS may be read or   written by the CPU. RTS may be   read by the SIU, and in AUTO   mode may be written by the SIU.
STS. 7	TBF	RTS. 6   RBE   Receive Buffer Empty. RBE can   be thought of as Receive Enable.   RBE is set to one by the CPU   when it is ready to ereceive a   frame, or has just read the buffer,   and to zero by the SIU when a   frame has been received.
Transmit Buffer Full. Written by   the CPU to indicate that it has   filled the transmit buffer. TBF may   be cleared by the SIU.		

## NSNR: Send/Receive Count Register (bitaddressable)

Bit:
7 $\mathbf{6}$

The Send/Receive Count Register (Address D8H) contains the transmit and receive sequence numbers, plus tally error indications. The SIU can both read and write NSNR. The 8044 CPU can both read and write NSNR asynchronously. However, 2-cycle instructions that access NSNR during both cycles ('JBC /B, REL,' and 'MOV /B,C') should not be used, since the SIU may write to NSMR between the two 8044 CPU accesses.

The individual bits of the Send/Receive Count Register are as follows:

Bit \#	Name	Description
NSNR.0	SER	Receive Sequence Error:   NS $(P) \neq$ NR (S)
NSNR.1	NR0	Receive Sequence Counter-Bit 0
NSNR.2	NR1	Receive Sequence Counter-Bit 1
NSNR.3	NR2	Receive Sequence Counter-Bit 2
NSNR.4	SES	Send Sequence Error:   NR (P) $\neq$ NS $(S)$ and   NR $(P) \neq$ NS $(S)+1$
NSNR.5	NS0	Send Sequence Counter-Bit 0
NSNR.6	NS1	Send Sequence Counter-Bit 1
NSNR.7	NS2	Send Sequence Counter-Bit 2

## Parameter Registers

There are eight parameter registers that are used in connection with SIU operation. All eight registers may be read or written by the 8044 CPU. RFL and RCB are normally loaded by the SIU.

The eight parameter registers are as follows:

## STAD: Station Address Register (byte-addressable)

The Station Address register (Address CEH) contains the station address. To prevent acess conflict, the CPU should access STAD only when the SIU is idle (RTS $=0$ and RBE $=0$ ). Normally, STAD is accessed only during initialization.

## TBS: Transmit Buffer Start Address Register (byte-addressable)

The Transmit Buffer Start address register (Address DCH) points to the location in on-chip RAM for the beginning of the 1 -field of the frame to be transmitted. The CPU should access TBS only when the SIU is not transmitting a frame (when TBF $=0$ ).

## TBL: Transmit Buffer Length Register (byte = addressable)

The Transmit Buffer Length register (Address DBH) contains the length (in bytes) of the 1 -field to be transmitted. A blank 1 -field ( $\mathrm{TBL}=0$ ) is valid. The CPU should access TBL only when the SIU is not transmitting a frame (when TBF $=0$ ).

NOTE:
The transmit and receive buffers are not allowed to "wrap around" in the on-chip RAM. A "buffer end" is automatically generated if address 191 (BFH) is reached.

## TCB: Transmit Control Byte Register (byte-addressable)

The Transmit Control Byte register (Address DAH) contains the byte which is to be placed in the control field of the transmitted frame, during NON-AUTO mode transmission. The CPU should access TCB only when the SIU is not transmitting a frame (when TBF $=0$ ). The $N_{S}$ and $N_{R}$ counters are not used in the NON-AUTO mode.

## RBS: Receive Buffer Start Address Register (byte-addressable)

The Receive Buffer Start address register (Address CCH ) points to the location in on-chip RAM where the beginning of the $l$-field of the frame being received is to be stored. The CPU should write RBS only when the SIU is not receiving a frame (when RBE $=0$ ).

## RBL: Receive Buffer Length Register (byte-addressable)

The Receive Buffer Length register (Address CBH) contains the length (in bytes) of the area in on-chip RAM allocated for the received 1 -field. $\mathrm{RBL}=0$ is valid. The CPU should write RBL only when $\mathrm{RBE}=0$.

## RFL: Receive Field Length Register (byte-addressable)

The Receive Field Length register (Address CDH) contains the length (in bytes) of the received I-field that has just been loaded into on-chip RAM. RFL is loaded by the SIU. RFL $=0$ is valid. RFL should be accessed by the CPU only when RBE $=0$.

## RCB: Receive Control Byte Register (byte-addressable)

The Received Control Byte register (Address CAH) contains the control field of the frame that has just been received. RCB is loaded by the SIU. The CPU can only read RCB, and should only access RCB when $\mathrm{RBE}=0$.

## ICE Support

The 8044 In -Circuit Emulator (ICE-44) allows the user to exercise the 8044 application system and monitor the execution of instructions in real time.

The emulator operates with Intel's IntellecTM development system. The development system interfaces with the user's 8044 system through an in-cable buffer box. The cable terminates in a 8044 pin-compatible plug, which fits into the 8044 socket in the user's system. With the emulator plug in place, the user can excercise his system in real time while collecting up to 255 instruction cycles of real-time data. In addition, he can single-step the program.

Static RAM is available (in the in-cable buffer box) to emulate the 8044 internal and external program memory and external data memory. The designer can display and alter the contents of the replacement memory in the buffer box, the internal data memory, and the internal 8044 registers, including the SFR's.

## SIUST: SIU State Counter (byte-addressable)

The SIU State Counter (Address D9H) reflects the state of the internal logic which is under SIU control. Therefore, care must be taken not to write into this register. This register provides a useful means for

## ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias ...... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$
Voltage on $\overline{\mathrm{EA}}, \mathrm{VPP}$ Pin to VSS... -0.5 V to -21.5 V
Voltage on Any Other Pin to VSS .... -0.5 V to -7 V
Power Dissipation
.2W

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
D.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}=10 \%$, $\mathrm{VSS}=0 \mathrm{~V}$

Symbol	Parameter	Min	Max	Unit	Test Conditions
VIL	Input Low Voltage (Except EA Pin of 8744H)	-0.5	0.8	V	
VIL1	Input Low Voltage to EA Pin of 8744H	0	0.8	V	
VIH	Input High Voltage (Except XTAL2, RST)	2.0	VCC +0.5	V	
VIH1	Input High Voltage to XTAL2, RST	2.5	VCC +0.5	V	XTAL1 = VSS
VOL	Output Low Voltage (Ports 1, 2, 3)*		0.45	V	$1 \mathrm{OL}=1.6 \mathrm{~mA}$
VOL1	Output Low Voltage (Port 0,ALE, $\overline{\text { PSEN }}$ )*				
	8744H		$\begin{aligned} & 0.60 \\ & 0.45 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=3.2 \mathrm{~mA} \\ & \mathrm{IOL}=2.4 \mathrm{~mA} \end{aligned}$
	8044AH/8344AH		0.45	V	$1 \mathrm{OL}=3.2 \mathrm{~mA}$
VOH	Output High Voltage (Ports 1, 2, 3)	2.4		V	$\mathrm{IOH}=-80 \mu \mathrm{~A}$
VOH 1	Output High Voltage (Port 0 in External Bus Mode, ALE, PSEN)	2.4		V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
IIL	Logical 0 Input Current (Ports 1, 2, 3)		-500	$\mu \mathrm{A}$	$\mathrm{Vin}=0.45 \mathrm{~V}$
IL1	Logical 0 Input Current to EA Pin of 8744 H only		-15	mA	
IIL2	Logical 0 Input Current (XTAL2)		-3.6	mA	$\mathrm{Vin}=0.45 \mathrm{~V}$
ILI	Input Leakage Current (Port 0) 8744H   8044AH/8344AH		$\begin{aligned} & \pm 100 \\ & \pm 10 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & 0.45<\operatorname{Vin}<V C C \\ & 0.45<\operatorname{Vin}<\mathrm{VCC} \\ & \hline \end{aligned}$
IIH	Logical 1 Input Current to EA Pin of 8744H		500	$\mu \mathrm{A}$	
IIH1	Input Current to RST to Activate Reset		500	$\mu \mathrm{A}$	Vin < (VCC - 1.5V)
ICC	Power Supply Current:   8744H   8044AH/8344AH		$\begin{aligned} & 285 \\ & 170 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	All Outputs Disconnected: $\overline{E A}=$ VCC
ClO	Pin Capacitance		10	pF	Test Freq. $=1 \mathrm{MHz}(1)$

## *NOTES:

1. Sampled not $100 \%$ tested. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLs of ALE and Ports 1 and 3 . The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pin when these pins make 1 -to0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF ), the noise pulse on the ALE line may exceed $0.8 V$. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

## A.C. CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{VSS}=0 \mathrm{~V}$, Load Capacitance for Port $0, \mathrm{ALE}$, and PSEN $=100 \mathrm{pF}$, Load Capacitance for All Other Outputs $=80 \mathrm{pF}$

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Osc		Variable Clock   $1 /$ TCLCL $=3.5 \mathrm{MHz}$ to 12 MHz		Unit
		Min	Max	Min	Max	
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX1	Address Hold After ALE Low	48		TCLCL-35		ns
TLLIV	ALE Low to Valid Instr in 8744H 8044AH/8344AH		$\begin{array}{r} 183 \\ 233 \\ \hline \end{array}$		4TCLCL-150 4TCLCL-100	ns
TLLPL	ALE Low to $\overline{\text { PSEN Low }}$	58		TCLCL-25		ns
TPLPH	$\overline{\text { PSEN Pulse Width }}$ 8744H   8044AH/8344AH	$\begin{aligned} & 190 \\ & 215 \end{aligned}$		$\begin{aligned} & \text { 3TCLCL-60 } \\ & \text { 3TCLCL-35 } \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TPLIV	$\overline{\text { PSEN }}$ Low to Valid Instr in 8744H 8044AH/8344AH		$\begin{aligned} & 100 \\ & 125 \end{aligned}$		3TCLCL-150   3TCLCL-125	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TPXIX	Input Instr Hold After PSEN	0		0		ns
TPXIZ ${ }^{2}$	Input Instr Float After PSEN		63		TCLCL-20	ns
TPXAV2	$\overline{\text { PSEN }}$ to Address Valid	75		TCLCL-8		ns
TAVIV	Address to Valid Instr in 8744H 8044AH/8344AH		$\begin{aligned} & 267 \\ & 302 \\ & \hline \end{aligned}$		5TCLCL-150   5TCLCL-115	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TAZPL	Address Float to PSEN	-25		-25		ns

## NOTES:

1. TLLAX for access to program memory is different from TLLAX for data memory.
2. Interfacing RUPI-44 devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

EXTERNAL DATA MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Osc		Variable Clock $1 /$ TCLCL $=3.5 \mathrm{MHz}$ to 12 MHz		Unit
		Min	Max	Min	Max	
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400		6TCLCL-100		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	400		6TCLCL-100		ns
TLLAX	Address Hold after ALE	48		TCLCL-35		ns
TRLDV	$\overline{\mathrm{RD}}$ Low to Valid Data in		252		5TCLCL-165	ns
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0		0		ns
TRHDZ	Data Float After $\overline{\mathrm{RD}}$		97		2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In.		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{W R}$ Low	200	300	3TCLCL-50	3TLCLCL+50	ns
TAVWL	Address to $\overline{\mathrm{RD}}$ or WR Low	203		4TCLCL-130		ns
TQVWX	Data Valid to $\overline{W R}$ Transition 8744H 8044AH/8344AH	$\begin{aligned} & 13 \\ & 23 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { TCLCL-70 } \\ & \text { TCLCL-60 } \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TQVWH	Data Setup Before $\overline{\text { WR }}$ High	433		7TCLCL-150		ns
TWHQX	Data Held After WR	33		TCLCL-50		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		25		25	ns
TWHLH	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE High 8744H 8044AH/8344AH	$\begin{aligned} & 33 \\ & 43 \end{aligned}$	$\begin{aligned} & 133 \\ & 123 \end{aligned}$	TCLCL-50 TCLCL-40	$\begin{aligned} & \text { TCLCL+50 } \\ & \text { TCLCL+50 } \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTE:

1. TLLAX for access to program memory is different from TLLAX for access data memory.

## Serial Interface Characteristics

Symbol	Parameter	Min	Max	Unit
TDCY	Data Clock	420		ns
TDCL	Data Clock Low	180		ns
TDCH	Data Clock High	100		ns
tTD	Transmit Data Delay		140	ns
tDSS	Data Setup Time	40		ns
tDHS	Data Hold Time	40		ns

## WAVEFORMS

## Memory Access

PROGRAM MEMORY READ CYCLE


DATA MEMORY READ CYCLE


DATA MEMORY WRITE CYCLE


## SERIAL I/O WAVEFORMS

## SYNCHRONOUS DATA TRANSMISSION



## SYNCHRONOUS DATA RECEPTION



## AC TESTING INPUT, OUTPUT, FLOAT WAVEFORMS



231663-13
AC testing inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 " Timing measurements are made at 2.0V for a Logic " 1 " and 0.8 V for a Logic " 0 ".


## EXTERNAL CLOCK DRIVE XTAL2



Symbol	Parameter	Variable Clock   Freq $=\mathbf{3 . 5} \mathbf{~ M H z}$ to $\mathbf{1 2} \mathbf{~ M H z}$		Unit
		Min	Max	
TCLCL	Oscillator Period	83.3	285.7	ns
TCHCX	High Time	20	TCLCL-TCLCX	ns
TCLCX	Low Time	20	TCLCL-TCHCX	ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

## CLOCK WAVEFORMS



This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns . This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component to component. Typically though, ( $T_{A}=25^{\circ} \mathrm{C}$, fully loaded) RD and WR propagation delays are approximately 50 ns . The other signals are typically 85 ns . Propagation delays are incorporated in the AC specifications.

## 8744H EPROM CHARACTERISTICS

## Erasure Characteristics

Erasure of the 8744 H Program Memory begins to occur when the chip is exposed to light with wavelengths shorter than approximately 4,000 Ångstroms. Since sunlight and fluorescent lighting have wavelengths in this range, constant exposure to these light sources over an extended period of time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause unintentional erasure. If an application subjects the 8744 H to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Ångstroms) to an integrated dose of at least $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$ rating for 20 to 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the array in an all 1s state.

## Programming the EPROM

To be programmed, the 8744 H must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate registers.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0P2.3 of Port 2, while the data byte is applied to Port 0 . Pins P2.4-P2.6 and PSEN should be held low, and P2.7 and RST high. (These are all TTL levels except RST, which requires 2.5 V for high.) $\overline{E A} /$ VPP is held normally high, and is pulsed to +21 V . While EA/ VPP is at 21 V , the ALE/PROG pin, which is normally being held high, is pulsed low for 50 msec . Then EA/VPP is returned to high. This is illustrated in Fig-
ure 8. Detailed timing specifications are provided in the EPROM Programming and Verification Characteristics section of this data sheet.

## Program Memory Security

The program memory security feature is developed around a "security bit" in the 8744 H EPROM array. Once this "hidden bit" is programmed, electrical access to the contents of the entire program memory array becomes impossible. Activation of this feature is accomplished by programming the 8744 H as described in "Programming the EPROM" with the exception that P2.6 is held at a TTL high rather than a TTL low. In addition, Port 1 and P2.0-P2.3 may be in any state. Figure 9 illustrates the security bit programming configuration. Deactivating the security feature, which again allows programmability of the EPROM, is accomplished by exposing the EPROM to ultraviolet light. This exposure, as described in "Erasure Characteristics," erases the entire EPROM array. Therefore, attempted retrieval of "protected code" results in its destruction.

## Program Verification

Program Memory may be read only when the "security feature" has not been activated. Refer to Figure 10 for Program Verification setup. To read the Program Memory, the following procedure can be used. The unit must be running with a 4 to 6 MHz oscillator. The address of a Program Memory location to be read is applied to Port 1 and pins P2.0-P2.3 of Port 2. Pins P2.4-P2.6 and PSEN are held at TTL low, while the ALE/ $\overline{\text { PROG }}, \mathrm{RST}$, and $\overline{E A} / V P P$ pins are held at TTL high. (These are all TTL levels except RST, which requires 2.5 V for high.) Port 0 will be the data output lines. P2.7 can be used as a read strobe. While P2.7 is held high, the Port 0 pins float. When P2.7 is strobed low, the contents of the addressed location will appear at Port 0. External pullups (e.g., 10K) are required on Port 0 during program verification.


Figure 8. Programming Configuration


Figure 9. Security Bit Programming Configuration


Figure 10. Program Verification Configuration

EPROR PROGRAMMMING, SECURITY BIT PROGRAMMING
AND VERIFICATION CHARACTERISTICS
$\mathrm{TA}=21^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Min	Max	Units
$V_{\text {PP }}$	Programming Supply Voltage	20.5	21.5	V
IPP	Programming Current		30	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG	48TCLCL		
TGHAX	Address Hold after PROG	48TCLCL		
TDVGL	Data Setup to $\overline{\text { PROG }}$	48TCLCL		
TGHDX	Data Hold after $\overline{\text { PROG }}$	48TCLCL		
TEHSH	ENABLE High to Vpp	48 TCLCL		
TSHGL	$\mathrm{V}_{\mathrm{PP}}$ Setup to $\overline{\text { PROG }}$	10		$\mu \mathrm{sec}$
TGHSL	$V_{\text {PP }}$ Hold after $\overline{\text { PROG }}$	10		$\mu \mathrm{sec}$
TGLGH	PROG Width	45	55	msec
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	

EPROM PROGRAMMING, SECURITY BIT PROGRAMMING AND VERIFICATION WAVEFORMS


## MCS ${ }^{\circledR}$-80/85 Data Sheets

13

## 8-BIT N-CHANNEL MICROPROCESSOR

## - TTL Drive Capability

■ $2 \mu \mathrm{~s}(-1: 1.3 \mu \mathrm{~s},-2: 1.5 \mu \mathrm{~s})$ Instruction Cycle

- Powerful Problem Solving Instruction Set
- 6 General Purpose Registers and an Accumulator
- 16-Bit Program Counter for Directly Addressing up to 64 K Bytes of Memory
- 16-Bit Stack Pointer and Stack Manipulation Instructions for Rapid Switching of the Program Environment
- Decimal, Binary, and Double Precision Arithmetic
- Ability to Provide Priority Vectored Interrupts
- 512 Directly Addressed I/O Ports
- Available in EXPRESS - Standard Temperature Range
- Available in 40-Lead Cerdip and Plastic Packages
(See Packaging Spec. Order \# 231369)

The Intel® ${ }^{\circledR} 8080 \mathrm{~A}$ is a complete 8 -bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using Intel's n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications.

The 8080A contains 68 -bit general purpose working registers and an accumulator. The 6 general purpose registers may be addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set or reset 4 testable flags. A fifth flag provides decimal arithmetic operation.

The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/retrieve the contents of the accumulator, flags, program counter, and all of the 6 general purpose registers. The 16 -bit stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting.

This microprocessor has been designed to simplify systems design. Separate 16 -line address and 8 -line bidirectional data busses are used to facilitate easy interface to memory and I/O. Signals to control the interface to memory and I/O are provided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR-tying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

NOTE:
The 8080A is functionally and electrically compatible with the Intel 8080.


Figure 1. Block Diagram


Figure 2. Pin Configuration

Table 1. Pin Description

Symbol	Type	Name and Function
$\mathrm{A}_{15}-\mathrm{A}_{0}$	O	ADDRESS BUS: The address bus provides the address to memory (up to 64 K 8 -bit words) or denotes the I/O device number for up to 256 input and 256 output devices. $A_{0}$ is the least significant address bit.
$\mathrm{D}_{7}-\mathrm{D}_{0}$	1/0	DATA BUS: The data bus provides bi-directional communication between the CPU, memory, and I/O devices for instructions and data transfers. Also, during the first clock cycle of each machine cycle, the 8080A outputs a status word on the data bus that describes the current machine cycle. $D_{0}$ is the least significant bit.
SYNC	0	SYNCHRONIZING SIGNAL: The SYNC pin provides a signal to indicate the beginning of each machine cycle.
DBIN	0	DATA BUS IN: The DBIN signal indicates to external circuits that the data bus is in the input mode. This signal should be used to enable the gating of data onto the 8080A data bus from memory or I/O.
READY	1	READY: The READY signal indicates to the 8080A that valid memory or input data is available on the 8080A data bus. This signal is used to synchronize the CPU with slower memory or I/O devices. If after sending an address out the 8080A does not receive a READY input, the 8080A will enter a WAIT state for as long as the READY line is low. READY can also be used to single step the CPU.
WAIT	0	WAIT: The WAIT signal acknowledges that the CPU is in a WAIT state.
$\overline{\mathrm{WR}}$	0	WRITE: The $\overline{\text { WR }}$ signal is used for memory WRITE or I/O output control. The data on the data bus is stable while the $\overline{W R}$ signal is active low ( $\overline{W R}=0$ ).
HOLD	1	HOLD: The HOLD signal requests the CPU to enter the HOLD state. The HOLD state allows an external device to gain control of the 8080A address and data bus as soon as the 8080A has completed its use of these busses for the current machine cycle. It is recognized under the following conditions:   - the CPU is in the HALT state.   - the CPU is in the T2 or TW state and the READY signal is active. As a result of entering the HOLD state the CPU ADDRESS BUS $\left(\mathrm{A}_{15}-\mathrm{A}_{0}\right)$ and DATA BUS ( $\mathrm{D}_{7}-\mathrm{D}_{0}$ ) will be in their high impedance state. The CPU acknowledges its state with the HOLD ACKNOWLEDGE (HLDA) pin.
HLDA	0	HOLD ACKNOWLEDGE: The HLDA signal appears in response to the HOLD signal and indicates that the data and address bus will go to the high impedance state. The HLDA signal begins at:   - T3 for READ memory or input.   - The Clock Period following T3 for WRITE memory or OUTPUT operation.   In either case, the HLDA signal appears after the rising edge of $\phi_{2}$.
INTE	0	INTERRUPT ENABLE: Indicates the content of the internal interrupt enable flip/flop. This flip/flop may be set or reset by the Enable and Disable Interrupt instructions and inhibits interrupts from being accepted by the CPU when it is reset. It is automatically reset (disabling further interrupts) at time T1 of the instruction fetch cycle (M1) when an interrupt is accepted and is also reset by the RESET signal.
INT	1	INTERRUPT REQUEST: The CPU recognizes an interrupt request on this line at the end of the current instruction or while halted. If the CPU is in the HOLD state or if the Interrupt Enable flip/flop is reset it will not honor the request.
RESET ${ }^{1}$	1	RESET: While the RESET signal is activated, the content of the program counter is cleared. After RESET, the program will start at location 0 in memory. The INTE and HLDA flip/flops are also reset. Note that the flags, accumulator, stack pointer, and registers are not cleared.
$\mathrm{V}_{S S}$		GROUND: Reference.
$V_{D D}$		POWER: $+12 \pm 5 \% \mathrm{~V}$.
$V_{C C}$		POWER: $+5 \pm 5 \% \mathrm{~V}$.
$\mathrm{V}_{\mathrm{BB}}$		POWER: $-5 \pm 5 \% \mathrm{~V}$.
$\phi_{1}, \phi_{2}$		CLOCK PHASES: 2 externally supplied clock phases. (non TTL compatible)

## NOTE:

1. The RESET signal must be active for a minimum of 3 clock cycles.

## ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input or Output Voltages
with Respect to $V_{B B} \ldots . . . . . .-0.3 V$ to +20 V
$V_{C C}, V_{D D}$ and $V_{S S}$
with Respect to $\mathrm{V}_{\mathrm{BB}} \ldots . . . . . .$.
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 W

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings' may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## D.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$; unless otherwise noted

Symbol	Parameter	Min	Typ	Max	Unit	Test Condition
VILC	Clock Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	
$\mathrm{V}_{\text {IHC }}$	Clock Input High Voltage	9.0		$V_{D D}+1$	V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{S S}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	3.3		$V_{C C}+1$	V	
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage			0.45	V	$\mathrm{IOL}^{2}=1.9 \mathrm{~mA}$ on All Outputs,
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	3.7			V	$\mathrm{IOH}=-150 \mu \mathrm{~A}$.
$\operatorname{ldD}(\mathrm{AV})$	Avg. Power Supply Current (VDD)		40	70	mA	
$\operatorname{lcC}(\mathrm{AV})$	Avg. Power Supply Current (VCC)		60	80	mA	
$\mathrm{I}_{\mathrm{BB}}(\mathrm{AV})$	Avg. Power Supply Current ( $\mathrm{V}_{\mathrm{BB}}$ )		0.01	1	mA	$\mathrm{T}_{\mathrm{CY}}=0.48 \mu \mathrm{~S}$
IIL	Input Leakage			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$
ICL	Clock Leakage			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {CLOCK }} \leq \mathrm{V}_{\mathrm{DD}}$
IDL	Data Bus Leakage in Input Mode			$\begin{aligned} & -100 \\ & -2.0 \end{aligned}$	$\mu \mathrm{A}$   mA	$\begin{aligned} & V_{S S} \leq V_{I N} \leq V_{S S}+0.8 \mathrm{~V} \\ & V_{S S}+0.8 V \leq V_{I N} \leq V_{C C} \end{aligned}$
$I_{\text {FL }}$	Address and Data Bus Leakage During HOLD			$\begin{array}{r} +10 \\ -100 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {ADDR/DATA }}=V_{C C} \\ & V_{\text {ADDR/DATA }}=V_{S S}+0.45 \mathrm{~V} \end{aligned}$

## CAPACITANCE

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}$

Symbol	Parameter	Typ	Max	Unit	Test Condition
$\mathrm{C}_{\phi}$	Clock   Capacitance	17	25	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{IN}}$	Input   Capacitance	6	10	pF	Unmeasured Pins
COUT	Output   Capacitance	10	20	pF	Returned to $\mathrm{V}_{\mathrm{SS}}$



231453-3
Typical Supply Current vs
Temperature, Normalized $\Delta I$ Supply $/ \Delta T_{A}=-0.45 \% /{ }^{\circ} \mathrm{C}$
A.C. CHARACTERISTICS (8080A) $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, $V_{B B}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$; unless otherwise noted

Symbol	Parameter	Min	Max	$\begin{array}{\|c\|} \hline-1 \\ \operatorname{Min} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline-1 \\ \operatorname{Max} \end{array}$	$\begin{array}{\|c\|} \hline-2 \\ \operatorname{Min} \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline-2 \\ \operatorname{Max} \end{array} \right\rvert\,$	Unit	Test Condition
$\mathrm{t}_{\mathrm{Cr}}{ }^{(3)}$	Clock Period	0.48	2.0	0.32	2.0	0.38	2.0	$\mu \mathrm{s}$	
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Clock Rise and Fall Time	0	50	0	25	0	50	ns	
${ }^{\mathrm{t}}{ }_{\text {d }}$	${ }_{\phi 1}$ Pulse Width	60		50		60		ns	
$\mathrm{t}_{\text {+ } 2}$	$\phi 2$ Pulse Width	220		145		175		ns	
$\mathrm{t}_{\mathrm{D} 1}$	Delay $\phi_{1}$ to $\phi_{2}$	0		0		0		ns	
$\mathrm{t}_{\mathrm{D} 2}$	Delay $\phi_{1}$ to $\phi_{2}$	70		60		70		ns	
$\mathrm{t}_{\mathrm{D} 3}$	Delay $\phi_{1}$ to $\phi_{2}$ Leading Edges	80		60		70	ns		
tDA	Address Output Delay From $\phi_{2}$		200		150		175	ns	$C_{L}=100 \mathrm{pF}$
tDD	Data Output Delay From $\phi_{2}$		200		180		200	ns	
tDC	Signal Output Delay From $\phi_{1}$ or $\phi_{2}$ (SYNC, WR, WAIT, HLDA)		120		110		120	ns	$C_{L}=50 \mathrm{pF}$
$\mathrm{t}_{\mathrm{DF}}$	DBIN Delay From $\phi_{2}$	25	140	25	130	25	140	ns	
$t_{\text {ti }}{ }^{(1)}$	Delay for Input Bus to Enter Input Mode		$\mathrm{t}_{\mathrm{DF}}$		$\mathrm{t}_{\mathrm{DF}}$		$\mathrm{t}_{\mathrm{DF}}$	ns	
$\mathrm{t}_{\mathrm{DS} 1}$	Data Setup Time During $\phi_{1}$ and DBIN	30		10		20		ns	
$\mathrm{t}_{\mathrm{DS} 2}$	Data Setup Time to $\phi_{2}$ During DBIN	150		120		130		ns	
$\mathrm{t}_{\mathrm{DH}}{ }^{(1)}$	Data Hold Time From $\phi_{2}$ and DBIN	(1)		(1)		(1)		ns	
$\mathrm{tIE}^{\text {I }}$	INTE Output Delay From $\phi_{2}$		200		200		200	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
trs	READY Setup Time During $\phi_{2}$	120		90		90		ns	
${ }^{\text {H }} \mathrm{HS}$	HOLD Setup Time During $\phi_{2}$	140		120		120		ns	
tis	INT Setup Time During $\phi_{2}$	120		100		100		ns	
$\mathrm{tH}_{\mathrm{H}}$	Hold Time From $\phi_{2}$ (READY, INT, HOLD)	0		0		0		ns	
$\mathrm{t}_{\text {FD }}$	Delay to Float During Hold (Address and Data Bus)		120		120		120	ns	
$\mathrm{t}_{\text {AW }}$	Address Stable Prior to WR	(5)		(5)		(5)		ns	
tbw	Output Data Stable Prior to WR	(6)		(6)		(6)		ns	
twD	Output Data Stable From WR	(7)		(7)		(7)		ns	
twa	Address Stable From WR	(7)		(7)		(7)		ns	
${ }^{\text {thF }}$	HLDA to Float Delay	(8)		(8)		(8)		ns	
${ }^{\text {tw }}$ F	WR to Float Delay	(9)		(9)		(9)		ns	
$\mathrm{t}_{\mathrm{AH}}$	Address Hold Time After DBIN During HLDA	-20		-20		-20		ns	

## A.C. TESTING LOAD CIRCUIT



231453-5
NOTE:
Timing measurements are made at the following reference voltages: CLOCK " 1 " $=8.0 \mathrm{~V}$, " 0 " $=1.0 \mathrm{~V}$; INPUTS " 1 " $=3.3 \mathrm{~V}$, " 0 " $=0.8 \mathrm{~V}$; OUTPUTS " 1 " $=2.0 \mathrm{~V}$, " 0 " = 0.8 V

WAVEFORMS (Continued)


NOTES:
(Parenthesis gives $-1,-2$ specifications, respectively.)

1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured.
$\mathrm{t}_{\mathrm{DH}}=50 \mathrm{~ns}$ or $\mathrm{t}_{\mathrm{DF}}$, whichever is less.
2. $t_{C Y}=t_{D 3}+t_{t_{\phi 2}}+t_{\phi 2}+t_{t_{\phi} 2}+t_{D 2}+t_{t_{\phi 1}} z$ $480 \mathrm{~ns}(-1: 320 \mathrm{~ns},-2: 380 \mathrm{~ns}$ ).

Typical $\Delta$ Output Delay vs $\Delta$ Capacitance

3. The following are relevant when interfacing the 8080A to devices having $\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}$ :
a) Maximum output rise time from 0.8 V to $3.3 \mathrm{~V}=$ 100 ns @ $\mathrm{C}_{\mathrm{L}}=$ SPEC.
b) Output delay when measured to $3.0 \mathrm{~V}=$ SPEC +60 ns @ $\mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
c) If $C_{L}=S P E C$, add $0.6 \mathrm{~ns} / \mathrm{pF}$ if $\mathrm{C}_{\mathrm{L}}>\mathrm{C}_{\text {SPEC }}$, subtract $0.3 \mathrm{~ns} / \mathrm{pF}$ (from modified delay) if $\mathrm{C}_{\mathrm{L}}<$ $\mathrm{C}_{\text {SPEC }}$
4. $\mathrm{t}_{\mathrm{AW}}=2 \mathrm{t}_{\mathrm{CY}}-\mathrm{t}_{\mathrm{D} 3}-\mathrm{t}_{\mathrm{r} \boldsymbol{2} 2}-140 \mathrm{~ns}(-1: 110$ ns, - 2:130 ns).
5. $t_{D W}=t_{C Y}-t_{D 3}-t_{\text {r }} 2-170 \mathrm{~ns}(-1: 150 \mathrm{~ns}$, - 2:170 ns).
6. If not HLDA, $t_{W D}=t_{W A}=t_{D 3}+t_{r \phi 2}+10 \mathrm{~ns}$.

If HLDA, $\mathrm{t}_{\mathrm{wD}}=\mathrm{t}_{\mathrm{wA}}=\mathrm{t}_{\mathrm{w}} \mathrm{F}$.
7. $\mathrm{t}_{\mathrm{HF}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}-50 \mathrm{~ns}$.
8. $\mathrm{t}_{\mathrm{WF}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}-10 \mathrm{~ns}$.
9. Data in must be stable for this period during DBIN $T_{3}$. Both $t_{D S 1}$ and $t_{D S 2}$ must be satisfied.
10. Ready signal must be stable for this period during $T_{2}$ or $T_{W}$. (Must be externally synchronized.)
11. Hold signal must be stable for this period during $T_{2}$ or $T_{w}$ when entering hold mode, and during $T_{3}$, $T_{4}, T_{5}$ and $T_{W H}$ when in hold mode. (External synchronization is not required.)
12. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized on the following instruction. (External synchronization is not required.)
13. This timing diagram shows timing relationships only; it does not represent any specific machine cycle.

## INSTRUCTION SET

The accumulator group instructions include arithmetic and logical operators with direct, indirect, and immediate addressing modes.

Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, indirect, and immediate addressing modes.

The ability to branch to different portions of the program is provided with jump, jump conditional, and computed jumps. Also the ability to call to and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the

8080A. The ability to increment and decrement memory, the six general registers and the accumulator is provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.

Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the 8080A instruction set.

The following special instruction group completes the 8080A instruction set: the NOP instruction, HALT to stop processor execution and the DAA instructions provide decimal arithmetic capability. STC allows the carry flag to be directly set, and the CMC instruction allows it to be complemented. CMA complements the contents of the accumulator and XCHG exchanges the contents of two 16-bit register pairs directly.

## Data and Instruction Formats

Data in the 8080A is stored in the form of 8-bit binary integers. All data transfers to they system data bus will be in the same format.

$$
\begin{aligned}
& \begin{array}{llllllll}
D_{7} & D_{6} & D_{5} & D_{4} & D_{3} & D_{2} & D_{1} & D_{0}
\end{array} \\
& \text { DATA WORD }
\end{aligned}
$$

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored in successive words in program memory. The instruction formats then depend on the particular operation executed.

One Byte Instructions

$$
D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0} \quad \text { OP CODE }
$$

## TYPICAL INSTRUCTIONS

Register to register, memory reference, arithmetic or logical, rotate, return, push, pop, enable or disable Interrupt instructions

Immediate mode or I/O instructions

Jump, call or direct load and store instructions

Three Byte Instructions
$D_{7} D_{6} \quad D_{5} D_{4} D_{3} D_{2} D_{1} \quad D_{0} \quad$ OP CODE
$D_{7} D_{6} D_{5} D_{4} \quad D_{3} \quad D_{2} \quad D_{1} D_{0}$

LOW ADDRESS OR OPERAND 1
HIGH ADDRESS OR OPERAND 2
For the 8080A a logic " 1 " is defined as a high level and a logic " 0 " is defined as a low level.

Table 2. Instruction Set Summary


Table 2. Instruction Set Summary (Continued)


## NOTES:

1. $D D D$ or SSS: $B=000, C=001, D=010, E=011, H=100, L=101$, Memory $=110, A=111$.
2. Two possible cycle times $(6 / 12)$ indicate instruction cycles dependent on condition flags.
*All mnemonics copyright © Intel Corporation 1977

## 8085AH/8085AH-2/8085AH-1 8-BIT HMOS MICROPROCESSORS

■ Single + 5V Power Supply with 10\% Voltage Margins

- $3 \mathrm{MHz}, 5 \mathrm{MHz}$ and 6 MHz Selections Available
- 20\% Lower Power Consumption than 8085A for 3 MHz and 5 MHz
- $1.3 \mu \mathrm{~s}$ Instruction Cycle (8085AH); 0.8 $\mu \mathrm{s}$ (8085AH-2); $0.67 \mu \mathrm{~s}$ (8085AH-1)
■ 100\% Software Compatible with 8080A
■ On-Chip Clock Generator (with External Crystal, LC or RC Network)
- On-Chip System Controller; Advanced Cycle Status Information Available for Large System Control
- Four Vectored Interrupt Inputs (One Is Non-Maskable) Plus an 8080ACompatible Interrupt
- Serial In/Serial Out Port
- Decimal, Binary and Double Precision Arithmetic
- Direct Addressing Capability to 64K Bytes of Memory
- Available in 40-Lead Cerdip and Plastic Packages
(See Packaging Spec., Order \#231369)

The Intel 8085AH is a complete 8-bit parallel Central Processing Unit (CPU) implemented in N -channel, depletion load, silicon gate technology (HMOS). Its instruction set is $100 \%$ software compatible with the 8080A microprocessor, and it is designed to improve the present 8080A's performance by higher system speed. Its high level of system integration allows a minimum system of three IC's [8085AH (CPU), 8156H (RAM/IO) and 8755A (EPROM/IO)] while maintaining total system expandability. The 8085AH-2 and $8085 \mathrm{AH}-1$ are faster versions of the 8085 AH .

The 8085AH incorporates all of the features that the 8224 (clock generator) and 8228 (system controller) provided for the 8080A, thereby offering a higher level of system integration.

The 8085AH uses a multiplexed data bus. The address is split between the 8-bit address bus and the 8-bit data bus. The on-chip address latches of $8155 \mathrm{H} / 8156 \mathrm{H} / 8755 \mathrm{~A}$ memory products allow a direct interface with the 8085AH.


Figure 1. 8085AH CPU Functional Block Diagram


Figure 2. 8085AH Pin Configuration

Table 1. Pin Description

Symbol	Type	Name and Function
$\mathrm{A}_{8}-\mathrm{A}_{15}$	0	ADDRESS BUS: The most significant 8 bits of memory address or the 8 bits of the I/O address, 3 -stated during Hold and Halt modes and during RESET.
$\mathrm{AD}_{0-7}$	1/0	MULTIPLEXED ADDRESS/DATA BUS: Lower 8 bits of the memory address (or I/O address) appear on the bus during the first clock cycle (T state) of a machine cycle. It then becomes the data bus during the second and third clock cycles.
ALE	0	ADDRESS LATCH ENABLE: It occurs during the first clock state of a machine cycle and enables the address to get latched into the on-chip latch of peripherals. The falling edge of ALE is set to guarantee setup and hold times for the address information. The falling edge of ALE can also be used to strobe the status information. ALE is never 3-stated.
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ and $1 \mathrm{O} / \overline{\mathrm{M}}$	0	MACHINE CYCLE STATUS:   $S_{1}$ can be used as an advanced $R / \bar{W}$ status. $I O / \bar{M}, S_{0}$ and $S_{1}$ become valid at the beginning of a machine cycle and remain stable throughout the cycle. The falling edge of ALE may be used to latch the state of these lines.
$\overline{\mathrm{RD}}$	0	READ CONTROL: A low level on $\overline{R D}$ indicates the selected memory or I/O device is to be read and that the Data Bus is available for the data transfer, 3 -stated during Hold and Halt modes and during RESET.
$\overline{\mathrm{WR}}$	0	WROTE CONTROL: A low level on WR indicates the data on the Data Bus is to be written into the selected memory or I/O location. Data is set up at the trailing edge of WR. 3 -stated during Hold and Halt modes and during RESET.
READY	1	READY: If READY is high during a read or write cycle, it indicates that the memory or peripheral is ready to send or receive data. If READY is low, the CPU will wait an integral number of clock cycles for READY to go high before completing the read or write cycle. READY must conform to specified setup and hold times.
HOLD	1	HOLD: Indicates that another master is requesting the use of the address and data buses. The CPU, upon receiving the hold request, will relinquish the use of the bus as soon as the completion of the current bus transfer. Internal processing can continue. The processor can regain the bus only after the HOLD is removed. When the HOLD is acknowledged, the Address, Data RD, $\overline{W R}$, and $I O / \bar{M}$ lines are 3-stated.
HLDA	0	HOLD ACKNOWLEDGE: Indicates that the CPU has received the HOLD request and that it will relinquish the bus in the next clock cycle. HILDA goes low after the Hold request is removed. The CPU takes the bus one half clock cycle after HLDA goes low.
INTR	1	INTERRUPT REQUEST: Is used as a general purpose interrupt. It is sampled only during the next to the last clock cycle of an instruction and during Hold and Halt states. If it is active, the Program Counter (PC) will be inhibited from incrementing and an INTA will be issued. During this cycle a RESTART or CALL instruction can be inserted to jump to the interrupt service routine. The INTR is enabled and disabled by software. It is disabled by Reset and immediately after an interrupt is accepted.

Table 1. Pin Description (Continued)

Symbol	Type	Name and Function
INTA	$\bigcirc$	INTERRUPT ACKNOWLEDGE: Is used instead of (and has the same timing as) $\overline{\text { RD }}$ during the Instruction cycle after an INTR is accepted. It can be used to activate an 8259A Interrupt chip or some other interrupt port.
$\begin{aligned} & \text { RST } 5.5 \\ & \text { RST } 6.5 \\ & \text { RST } 7.5 \end{aligned}$	1	RESTART INTERRUPTS: These three inputs have the same timing as INTR except they cause an internal RESTART to be automatically inserted.   The priority of these interrupt is ordered as shown in Table 2. These interrupts have a higher priority than INTR. In addition, they may be individually masked out using the SIM instruction.
TRAP	1	TRAP: Trap interrupt is a non-maskable RESTART interrupt. It is recognized at the same time as INTR or RST 5.5-7.5. It is unaffected by any mask or Interrupt Enable. It has the highest priority of any interrupt. (See Table 2.)
RESETIN	1	RESET IN: Sets the Program Counter to zero and resets the Interrupt Enable and HLDA flip-flops. The data and address buses and the control lines are 3 -stated during RESET and because of the asynchronous nature of RESET, the processor's internal registers and flags may be altered by RESET with unpredictable results. $\overline{\text { RESET IN }}$ is a Schmitt-triggered input, allowing connection to an R-C network for power-on RESET delay (see Figure 3). Upon power-up, RESETIN must remain low for at least 10 ms after minimum $\mathrm{V}_{\mathrm{Cc}}$ has been reached. For proper reset operation after the power-up duration, RESET IN should be kept low a minimum of three clock periods. The CPU is held in the reset condition as long as RESET IN is applied.
RESET OUT	0	RESET OUT: Reset Out indicates CPU is being reset. Can be used as a system reset. The signal is synchronized to the processor clock and lasts an integral number of clock periods.
$x_{1}, x_{2}$	1	$\mathrm{X}_{1}$ and $\mathrm{X}_{2}$ : Are connected to a crystal, LC, or RC network to drive the internal clock generator. $X_{1}$ can also be an external clock input from a logic gate. The input frequency is divided by 2 to give the processor's internal operating frequency.
CLK	0	CLOCK: Clock output for use as a system clock. The period of CLK is twice the $\mathrm{X}_{1}$, $\mathrm{X}_{2}$ input period.
SID	1	SERIAL INPUT DATA LINE: The data on this line is loaded into accumulator bit 7 whenever a RIM instruction is executed.
SOD	0	SERIAL OUTPUT DATA LINE: The output SOD is set or reset as specified by the SIM instruction.
$\mathrm{V}_{\mathrm{CC}}$		POWER: +5 volt supply.
$\mathrm{V}_{\text {SS }}$		GROUND: Reference.

Table 2. Interrupt Priority, Restart Address and Sensitivity

Name	Priority	Address Branched to(1)   When Interrupt Occurs	Type Trigger
TRAP	1	24 H	Rising Edge AND High Level until Sampled
RST 7.5	2	3 H	Rising Edge (Latched)
RST 6.5	3	34 H	High Level until Sampled
RST 5.5	4	2 H	High Level until Sampled
INTR	5	(Note 2)	High Level until Sampled

NOTES:

1. The processor pushes the PC on the stack before branching to the indicated address.
2. The address branched to depends on the instruction provided to the CPU when the interrupt is acknowledged.


Figure 3. Power-On Reset Circuit

## FUNCTIONAL DESCRIPTION

The 8085 AH is a complete 8 -bit parallel central processor. It is designed with N -channel, depletion load, silicon gate technology (HMOS), and requires a single +5 V supply. Its basic clock speed is 3 MHz (8085AH), 5 MHz (8085AH-2), or 6 MHz (8085-AH-1), thus improving on the present 8080A's performance with higher system speed. Also it is designed to fit into a minimum system of three IC's: The CPU (8085AH), a RAM/IO (8156H), and an EPROM/IO chip (8755A).

The 8085AH has twelve addressable 8-bit registers. Four of them can function only as two 16-bit register pairs. Six others can be used interchangeably as 8 -bit registers or as 16 -bit register pairs. The 8085AH register set is as follows:

Mnemonic	Register	Contents
ACC or A	Accumulator	8 Bits
PC	Program Counter	$16-$-Bit Address
BC, DE, HL	General-Purpose	$8-$ Bits $\times 6$ or
	Registers; data 16 Bits $\times 3$   pointer (HL)	
SP	Stack Pointer	16-Bit Address
Flags or F	Flag Register	5 Flags (8-Bit Space)

The 8085AH uses a multiplexed Data Bus. The address is split between the higher 8-bit Address Bus and the lower 8-bit Address/Data Bus. During the first T state (clock cycle) of a machine cycle the low order address is sent out on the Address/Data bus. These lower 8 bits may be latched externally by the Address Latch Enable signal (ALE): During the rest of the machine cycle the data bus is used for memory or I/O data.

The 8085AH provides $\overline{R D}, \overline{W R}, S_{0}, S_{1}$, and $I O / \bar{M}$ signals for bus control. An Interrupt Acknowledge signal ( $\overline{\mathrm{INTA}}$ ) is also provided. HOLD and all Interrupts are synchronized with the processor's internal clock. The 8085AH also provides Serial Input Data
(SID) and Serial Output Data (SOD) lines for simple serial interface.

In addition to these features, the 8085AH has three maskable, vector interrupt pins, one nonmaskable TRAP interrupt, and a bus vectored interrupt, INTR.

## INTERRUPT AND SERIAL I/O

The 8085AH has 5 interrupt inputs: INTR, RST 5.5, RST 6.5, RST 7.5, and TRAP. INTR is identical in function to the 8080A INT. Each of the three RESTART inputs, $5.5,6.5$, and 7.5 , has a programmable mask. TRAP is also a RESTART interrupt but it is nonmaskable.

The three maskable interrupt cause the internal execution of RESTART (saving the program counter in the stack and branching to the RESTART address) if the interrupts are enabled and if the interrupt mask is not set. The nonmaskable TRAP causes the internal execution of a RESTART vector independent of the state of the interrupt enable or masks. (See Table 2.)

There are two different types of inputs in the restart interrupts. RST 5.5 and RST 6.5 are high level-sensitive like INTR (and INT on the 8080) and are recognized with the same timing as INTR. RST 7.5 is rising edge-sensitive.

For RST 7.5, only a pulse is required to set an internal flip-flop which generates the internal interrupt request (a normally high level signal with a low going pulse is recommended for highest system noise immunity). The RST 7.5 request flip-flop remains set until the request is serviced. Then it is reset automatically. This flip-flop may also be reset by using the SIM instruction or by issuing a RESET IN to the 8085AH. The RST 7.5 internal flip-flop will be set by a pulse on the RST 7.5 pin even when the RST 7.5 interrupt is masked out.

The status of the three RST interrupt masks can only be affected by the SIM instruction and RESET IN. (See SIM, Chapter 5 of the 8080/8085 User's Manual.)

The interrupts are arranged in a fixed priority that determines which interrupt is to be recognized if more than one is pending as follows: TRAP-highest priority, RST 7.5, RST 6.5, RST 5.5, INTR-lowest priority. This priority scheme does not take into account the priority of a routine that was started by a higher priority interrupt. RST 5.5 can interrupt an RST 7.5 routine if the interrupts are re-enabled before the end of the RST 7.5 routine.

The TRAP interrupt is useful for catastrophic events such as power failure or bus error. The TRAP input is recognized just as any other interrupt but has the
highest priority. It is not affected by any flag or mask. The TRAP input is both edge and level sensitive. The TRAP input must go high and remain high until it is acknowledged. It will not be recognized again until it goes low, then high again. This avoids any false triggering due to noise or logic glitches. Figure 4 illustrates the TRAP interrupt request circuitry within the 8085AH. Note that the servicing of any interrupt (TRAP, RST 7.5, RST 6.5, RST 5.5, INTR) disables all future interrupts (except TRAPs) until an El instruction is executed.


Figure 4. TRAP and RESET In Circuit
The TRAP interrupt is special in that it disables interrupts, but preserves the previous interrupt enable status. Performing the first RIM instruction following a TRAP interrupt allows you to determine whether interrupts were enabled or disabled prior to the TRAP. All subsequent RIM instructions provide current interrupt enable status. Performing a RIM instruction following INTR, or RST 5.5-7.5 will provide current Interrupt Enable status, revealing that interrupts are disabled. See the description of the RIM instruction in the 8080/8085 Family User's Manual.

The serial I/O system is also controlled by the RIM and SIM instruction. SID is read by RIM, and SIM sets the SOD data.

## DRIVING THE $X_{1}$ AND $X_{2}$ INPUTS

You may drive the clock inputs of the 8085AH, 8085AH-2, or 8085AH-1 with a crystal, an LC tuned circuit, an RC network, or an external clock source. The crystal frequency must be at least 1 MHz , and must be twice the desired internal clock frequency;
hence, the 8085 AH is operated with a 6 MHz crystal (for 3 MHz clock), the $8085 \mathrm{AH}-2$ operated with a 10 MHz crystal (for 5 MHz clock), and the 8085AH-1 can be operated with a 12 MHz crystal (for 6 MHz clock). If a crystal is used, it must have the following characteristics:

Parallel resonance at twice the clock frequency desired
$\mathrm{C}_{\mathrm{L}}$ (load capacitance) $\leq 30 \mathrm{pF}$
$\mathrm{C}_{\mathrm{S}}$ (Shunt capacitance) $\leq 7 \mathrm{pF}$
$R_{S}$ (equivalent shunt resistance) $\leq 75 \Omega$
Drive level: 10 mW
Frequency tolerance: $\pm 0.005 \%$ (suggested)
Note the use of the 20 pF capacitor between $\mathrm{X}_{2}$ and ground. This capacitor is required with crystal frequencies below 4 MHz to assure oscillator startup at the correct frequency. A parallel-resonant LC citcuit may be used as the frequency-determining network for the 8085 AH , providing that its frequency tolerance of approximately $\pm 10 \%$ is acceptable. The components are chosen from the formula:

$$
f=\frac{1}{2 \pi \sqrt{L\left(C_{e x t}+C_{i n t}\right)}}
$$

To minimize variations in frequency, it is recommended that you choose a value for $\mathrm{C}_{\text {ext }}$ that is at least twice that of $\mathrm{C}_{\text {int }}$, or 30 pF . The use of an LC circuit is not recommended for frequencies higher than approximately 5 MHz .

An RC circuit may be used as the frequency-determining network for the 8085AH if maintaining a precise clock frequency is of no importance. Variations in the on-chip timing generation can cause a wide variation in frequency when using the RC mode. Its advantage is its low component cost. The driving frequency generated by the circuit shown is approximately 3 MHz . It is not recommended that frequencies greatly higher or lower than this be attempted.

Figure 5 shows the recommended clock driver circuits. Note in d and e that pullup resistors are required to assure that the high level voltage of the input is at least 4 V and maximum low level voltage of 0.8 V .

For driving frequencies up to and including 6 MHz you may supply the driving signal to $X_{1}$ and leave $X_{2}$ open-circuited (Figure 5d). If the driving frequency is from 6 MHz to 12 MHz , stability of the clock generator will be improved by driving both $X_{1}$ and $X_{2}$ with a push-pull source (Figure 5e). To prevent self-oscillation of the 8085AH, be sure that $\mathrm{X}_{2}$ is not coupled back to $X_{1}$ through the driving circuit.

a. Quartz Crystal Clock Driver

b. LC Tuned Circuit Clock Driver

c. RC Circuit Clock Driver


231718-8
d. 1-6 MHz Input Frequency Clock Driver Circuit


231718-9
e. 1-12 MHz Input Frequency

External Clock Driver Circuit

Figure 5. Clock Driver Circuits

## GENERATING AN 8085AH WAIT STATE

If your system requirements are such that slow memories or peripheral devices are being used, the circuit shown in Figure 6 may be used to insert one WAIT state in each 8085AH machine cycle.

The D flip-flops should be chosen so that

- CLK is rising edge-triggered
- CLEAR is low-level active.


231718-10
*ALE and CLK (OUT) should be buffered if CLK input of latch exceeds 8085AH IOL or IOH.

Figure 6. Generation of a Wait State for 8085AH CPU

As in the 8080, the READY line is used to extend the read and write pulse lengths so that the 8085AH can be used with slow memory. HOLD causes the CPU to relinquish the bus when it is through with it by floating the Address and Data Buses.

## SYSTEM INTERFACE

The 8085AH family includes memory components, which are directly compatible to the 8085AH CPU. For example, a system consisting of the three chips, 8085AH, 8156 H and 8755 A will have the following features:

- 2 K Bytes EPROM
- 256 Bytes RAM
- 1 Timer/Counter
- 4 8-bit I/O Ports
- 16 -bit I/O Port
- 4 Interrupt Levels
- Serial In/Serial Out Ports

This minimum system, using the standard I/O technique is as shown in Figure 7.

In addition to the standard I/O, the memory mapped I/O offers an efficient I/O addressing technique. With this technique, an area of memory address space is assigned for 1/O address, thereby, using the memory address for I/O manipulation. Figure 8
shows the system configuration of Memory Mapped I/O using 8085AH.

The 8085AH CPU can also interface with the standard memory that does not have the multiplexed address/data bus. It will require a simple 8-bit latch as shown in Figure 9.


[^16]Figure 7. 8085AH Minimum System (Standard I/O Technique)



Figure 9. 8085 System (Using Standard Memories)

## BASIC SYSTEM TIMING

The 8085AH has a multiplexed Data Bus. ALE is used as a strobe to sample the lower 8 -bits of address on the Data Bus. Figure 10 shows an instruction fetch, memory read and I/O write cycle (as would occur during processing of the OUT instruction). Note that during the I/O write and read cycle that the I/O port address is copied on both the upper and lower half of the address.

There are seven possible types of machine cycles. Which of these seven takes place is defined by the status of the three status lines $\left(I O / \bar{M}, S_{1}, S_{0}\right)$ and
the three control signals ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{NTA}}$ ). (See Table 3.) The status lines can be used as advanced controls (for device selection, for example), since they become active at the $T_{1}$ state, at the outset of each machine cycle. Control lines $\overline{\mathrm{RD}}$ and $\overline{W R}$ become active later, at the time when the transfer of data is to take place, so are used as command lines.

A machine cycle normally consists of three $T$ states, with the exception of OPCODE FETCH, which normally has either four or six T states (unless WAIT or HOLD states are forced by the receipt of READY or HOLD inputs). Any T state must be one of ten possible states, shown in Table 4.

Table 3. 8085AH Machine Cycle Chart

Machine Cycle			Status			Control		
			$10 / \bar{M}$	S1	So	$\overline{\mathbf{R D}}$	$\overline{W R}$	INTA
OPCODE FETCH	(OF)		0	1	1	0	1	1
MEMORY READ	(MR)		0	1	0	0	1	1
MEMORY WRITE	(MW)		0	0	1	1	0	1
I/O READ	(IOR)		1	1	0	0	1	1
I/O WRITE	(IOW)		1	0	1	1	0	1
ACKNOWLEDGE OF INTR	(INA)		1	1	1	1	1	0
BUS IDLE	(BI):	DAD   ACK.OF   RST,TRAP   HALT	$\begin{aligned} & 0 \\ & 1 \\ & \text { TS } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	0 1 0	1 1 1 $T S$	$\begin{gathered} 1 \\ 1 \\ \text { TS } \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Table 4. 8085AH Machine State Chart

Machine   State	Status \& Buses					Control		
	$\mathbf{S 1 , S 0}$	$\mathbf{I O} / \overline{\mathrm{M}}$	$\mathbf{A}_{\mathbf{8}}-\mathbf{A}_{\mathbf{1 5}}$	$\mathbf{A D}_{\mathbf{0}}-\mathbf{A D}_{\mathbf{7}}$	$\overline{\mathrm{RD}}, \overline{\mathbf{W R}}$	$\overline{\mathbf{N T T A}}$	$\mathbf{A L E}$	
$\mathrm{T}_{1}$	X	X	X	X	1	1	$1^{*}$	
$\mathrm{~T}_{\mathbf{2}}$	X	X	X	X	X	X	0	
$\mathrm{~T}_{\text {WAIT }}$	X	X	X	X	X	X	0	
$\mathrm{~T}_{3}$	X	X	X	X	X	X	0	
$\mathrm{~T}_{4}$	1	$0 \dagger$	X	TS	1	1	0	
$\mathrm{~T}_{5}$	1	$0 \dagger$	X	TS	1	1	0	
$\mathrm{~T}_{6}$	1	$0 \dagger$	X	TS	1	1	0	
$\mathrm{~T}_{\text {RESET }}$	X	TS	TS	TS	TS	1	0	
$\mathrm{~T}_{\text {HALT }}$	0	TS	TS	TS	TS	1	0	
$\mathrm{~T}_{\text {HOLD }}$	X	TS	TS	TS	TS	1	0	

$0=$ Logic "0",
$1=$ Logic " 1 "
TS = High Impedance
$1=$ Logic " 1 " $\quad \mathrm{x}=$ Unspecified
*ALE not generated during 2nd and 3rd machine cycles of DAD instruction.
$\dagger \mathrm{IO} / \bar{M}=1$ during $\mathrm{T}_{4}-\mathrm{T}_{6}$ of INA machine cycle.


Figure 10. 8085AH Basic System Timing

## ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature under Bias ...... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $. \ldots . . . . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
with Respect to Ground. . . . . . . . . -0.5 V to +7 V
Power Dissipation
1.5W

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## D.C. CHARACTERISTICS

$8085 \mathrm{AH}, 8085 \mathrm{AH}-2: \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$; unless otherwise specified*
$8085 \mathrm{AH}-1: \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$; unless otherwise specified*

Symbol	Parameter	Min	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.5	+0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.45	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{CC}}$	Power Supply Current		135	mA	$8085 \mathrm{AH}, 8085 \mathrm{AH}-2$
			200	mA	$8085 \mathrm{AH}-1$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage		$\pm 10$	$\mu \mathrm{~A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\text {LO }}$	Output Leakage		$\pm 10$	$\mu \mathrm{~A}$	$0.45 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{V}_{\mathrm{ILR}}$	Input Low Level, RESET	-0.5	+0.8	V	
$\mathrm{~V}_{\mathrm{IHR}}$	Input High Level, RESET	2.4	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{HY}}$	Hysteresis, RESET	0.15		V	

## A.C. CHARACTERISTICS

$8085 \mathrm{AH}, 8085 \mathrm{AH}-2: \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}^{*}$
8085AH-1: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	8085AH (2)		8085AH-2 (2)		8085AH-1 (2)		Units
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{CYC}}$	CLK Cycle Period	320	2000	200	2000	167	2000	ns
$\mathrm{t}_{1}$	CLK Low Time (Standard CLK Loading)	80		40		20		ns
$\mathrm{t}_{2}$	CLK High Time (Standard CLK Loading)	120		70		50		ns
$t_{r}, t_{f}$	CLK Rise and Fall Time		30		30		30	ns
$t_{\text {XKR }}$	$X_{1}$ Rising to CLK Rising	20	120	20	100	20	100	ns
$\mathrm{t}_{\text {XKF }}$	$X_{1}$ Rising to CLK Falling	20	150	20	110	20	110	ns
$t_{\text {AC }}$	$\mathrm{A}_{8-15}$ Valid to Leading Edge of Control (1)	270		115		70		ns
$t_{\text {ACL }}$	$A_{0-7}$ Valid to Leading Edge of Control	240		115		60		ns
$t_{A D}$	$\mathrm{A}_{0-15}$ Valid to Valid Data In		575		350		225	ns
$t_{\text {AFR }}$	Address Float after Leading Edge of $\overline{\text { READ }}$ (INTA)		0		0		0	ns
$t_{\text {AL }}$	$\mathrm{A}_{8-15}$ Valid before Trailing Edge of ALE (1)	115		50		25		ns

*NOTE:
For Extended Temperature EXPRESS use M8085AH Electricals Parameters.

8085AH/8085AH-2/8085AH-1
A.C. CHARACTERISTICS (Continued)

Symbol	Parameter	8085AH (2)		8085AH-2 (2)		8085AH-1 (2)		Units
		Min	Max	Min	Max	Min	Max	
$t_{\text {ALL }}$	$\mathrm{A}_{0-7}$ Valid before Trailing Edge of ALE	90		50		25		ns
$t_{\text {ARY }}$	READY Valid from Address Valid		220		100		40	ns
$t_{\text {cA }}$	Address ( $\mathrm{A}_{8-15}$ ) Valid after Control	120		60		30		ns
$\mathrm{t}_{\mathrm{CC}}$	Width of Control Low ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\text { INTA }}$ ) Edge of ALE	400		230		150		ns
$\mathrm{t}_{\mathrm{CL}}$	Trailing Edge of Control to Leading Edge of ALE	50		25		0		ns
${ }^{\text {t }}$ WW	Data Valid to Trialing Edge of WRITE	420		230		140		ns
$t_{\text {HABE }}$	HLDA to Bus Enable		210		150		150	ns
$t_{\text {HABF }}$	Bus Float after HLDA		210		150		150	ns
$\mathrm{t}_{\mathrm{HACK}}$	HLDA Valid to Trailing Edge of CLK	110		40		0		ns
$t_{\text {HDH }}$	HOLD Hold Time	0		0		0		ns
$\mathrm{t}_{\mathrm{HDS}}$	HOLD Setup Time to Trailing Edge of CLK	170		120		120		ns
$\mathrm{t}_{\mathrm{INH}}$	INTR Hold Time	0		0		0		ns
tINS	INTR, RST, and TRAP Setup Time to Falling Edge of CLK	160		150		150		ns
tha	Address Hold Time after ALE	100		50		20		ns
thc	Trailing Edge of ALE to Leading Edge of Control	130		60		25		ns
tick	ALE Low During CLK High	100		50		15		ns
tidR	ALE to Valid Data during Read		460		270		175	ns
tLDW	ALE to Valid Data during Write		200		140		110	ns
$t_{\text {LL }}$	ALE Width	140		80		50		ns
tLRY	ALE to READY Stable		110		30		10	ns
$t_{\text {RAE }}$	Trailing Edge of $\overline{\text { READ }}$ to Re -Enabling of Address	150		90		50		ns
$\mathrm{t}_{\mathrm{RD}}$	$\overline{\text { READ ( }}$ ( $\overline{\mathrm{NTA}}$ ) to Valid Data		300		150		75	ns
$t_{\text {RV }}$	Control Trailing Edge to Leading Edge of Next Control	400		220		160		ns
$\mathrm{t}_{\text {RDH }}$	Data Hold Time after $\overline{\text { READ }} \overline{\text { INTA }}$	0		0		0		ns
$t_{\text {RYH }}$	READY Hold Time	0		0		5		ns
$t_{\text {RYS }}$	READY Setup Time to Leading Edge of CLK	110		100		100		ns
$t_{\text {WD }}$	Data Valid after Trailing Edge of WRITE	100		60		30		ns
tWDL	LEADING Edge of WRITE to Data Valid		40		20		30	ns

## NOTES:

1. $A_{8}-A_{15}$ address Specs apply $I O / \bar{M}, S_{0}$, and $S_{1}$ except $A_{8}-A_{15}$ are undefined during $T_{4}-T_{6}$ of OF cycle whereas $I O / \bar{M}$, $S_{0}$, and $S_{1}$ are stable.
2. Test Conditions: $\mathrm{t}_{\mathrm{CYC}}=320 \mathrm{~ns}(8085 \mathrm{AH}) / 200 \mathrm{~ns}(8085 \mathrm{AH}-2) ; / 167 \mathrm{~ns}(8085 \mathrm{AH}-1) ; \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$.
3. For all output timing where $\mathrm{C} \neq 150 \mathrm{pF}$ use the following correction factors:
$25 \mathrm{pF} \leq \mathrm{C}_{\mathrm{L}}<150 \mathrm{pF}:-0.10 \mathrm{~ns} / \mathrm{pF}$
$150 \mathrm{pF}<\mathrm{C}_{\mathrm{L}} \leq 300 \mathrm{pF}:+0.30 \mathrm{~ns} / \mathrm{pF}$
4. Output timings are measured with purely capacitive load.
5. To calculate timing specifications at other values of $t_{\mathrm{CYC}}$ use Table 5.

## A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing measurements are made at 2.0 V for a Logic " 1 " and 0.8 V for a Logic " 0 ".
A.C. TESTING LOAD CIRCUIT


Table 5. Bus Timing Specification as a TcYc Dependent

Symbol	$\mathbf{8 0 8 5 A H}$	$\mathbf{8 0 8 5 A H - 2}$	$\mathbf{8 0 8 5 A H - 1}$	
$t_{A L}$	$(1 / 2) T-45$	$(1 / 2) T-50$	$(1 / 2) T-58$	Minimum
$t_{L A}$	$(1 / 2) T-60$	$(1 / 2) T-50$	$(1 / 2) T-63$	Minimum
$t_{L L}$	$(1 / 2) T-20$	$(1 / 2) T-20$	$(1 / 2) T-33$	Minimum
$t_{L C K}$	$(1 / 2) T-60$	$(1 / 2) T-50$	$(1 / 2) T-68$	Minimum
$t_{L C}$	$(1 / 2) T-30$	$(1 / 2) T-40$	$(1 / 2) T-58$	Minimum
$t_{A D}$	$(5 / 2+N) T-225$	$(5 / 2+N) T-150$	$(5 / 2+N) T-192$	Maximum
$t_{\text {RD }}$	$(3 / 2+N) T-180$	$(3 / 2+N) T-150$	$(3 / 2+N) T-175$	Maximum
$t_{\text {RAE }}$	$(1 / 2) T-10$	$(1 / 2) T-10$	$(1 / 2) T-33$	Minimum
$t_{C A}$	$(1 / 2) T-40$	$(1 / 2) T-40$	$(1 / 2) T-53$	Minimum
$t_{\text {DW }}$	$(3 / 2+N) T-60$	$(3 / 2+N) T-70$	$(3 / 2+N) T-110$	Minimum
$t_{\text {WD }}$	$(1 / 2) T-60$	$(1 / 2) T-40$	$(1 / 2) T-53$	Minimum
$t_{C C}$	$(3 / 2+N) T-80$	$(3 / 2+N) T-70$	$(3 / 2+N) T-100$	Minimum
$t_{C L}$	$(1 / 2) T-110$	$(1 / 2) T-75$	$(1 / 2) T-83$	Minimum
$t_{\text {ARY }}$	$(3 / 2) T-260$	$(3 / 2) T-200$	$(3 / 2) T-210$	Maximum
$t_{\text {HACK }}$	$(1 / 2) T-50$	$(1 / 2) T-60$	$(1 / 2) T-83$	Minimum
$t_{\text {HABF }}$	$(1 / 2) T+50$	$(1 / 2) T+50$	$(1 / 2) T+67$	Maximum
$t_{\text {HABE }}$	$(1 / 2) T+50$	$(1 / 2) T+50$	$(1 / 2) T+67$	Maximum
$t_{A C}$	$(2 / 2) T-50$	$(2 / 2) T-85$	$(2 / 2) T-97$	Minimum
$t_{1}$	$(1 / 2) T-80$	$(1 / 2) T-60$	$(1 / 2) T-63$	Minimum
$t_{2}$	$(1 / 2) T-40$	$(1 / 2) T-30$	$(1 / 2) T-33$	Minimum
$t_{\text {RV }}$	$(3 / 2) T-80$	$(3 / 2) T-80$	$(3 / 2) T-90$	Minimum
$t_{\text {LDR }}$	$(4 / 2+N) T-180$	$(4 / 2) T-130$	$(4 / 2) T-159$	Maximum

## NOTE:

N is equal to the total WAIT states. $\mathrm{T}=\mathrm{t}_{\mathrm{CYC}}$.

## WAVEFORMS

CLOCK


READ


## WRITE



## WAVEFORMS (Continued)

HOLD


READ OPERATION WITH WAIT CYCLE (TYPICAL)-SAME READY TIMING APPLIES TO WRITE


## WAVEFORMS (Continued)

INTERRUPT AND HOLD


Table 6. Instruction Set Summary

Mnemonic	Instruction Code$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$								Operations Description
MOVE, LOAD AND STORE									
MOVr1 r2		1	D	D	D	S	S	S	Move register to register
MOV M.r		1	1	1	0	S	S	S	Move register to memory
MOV r.M		1	D	D	D	1	1	0	Move memory to register
MVI r		0	D	D	D	1	1	0	Move immediate register
MVI M		0	1	1	0	1	1	0	Move immediate memory
LXI B		0	0	0	0	0	0	1	Load immediate register Pair B \& C
LXID	0	0	0	1	0	0	0	1	Load immediate register Pair D \& E
LXIH		0	1	0	0	0	0	1	Load immediate register Pair H \& L
STAX B	0	0	0	0	0	0	1	0	Store A indirect
STAX D		0	0	1	0	0	1	0	Store A indirect
LDAX B	0	0	1	0	1	0	1	0	Load A indirect
LDAXD	0	0	0	1	1	0	1	0	Load A indirect
STA		0	1	1	0	0	1	0	Store A direct
LDA	0	0	1	1	1	0	1	0	Load A direct
SHLD	0	0	1	0	0	0	1	0	Store H \& L direct
LHLD	0	0	1	0	1	0	1	0	Load H \& L direct
XCHG		1	1	0	1	0	1	1	Exchange D \& E, H \& L Registers
STACK OPS									
PUSH B		1	0	0	0	1	0	1	Push register Pair B \& C on stack
PUSH D		1	0	1	0	1	0	1	Push register Pair D \& E on stack
PUSH H		1	1	0	0	1	0	1	Push register Pair H \& L on stack
$\begin{aligned} & \text { PUSH } \\ & \text { PSW } \end{aligned}$		1	1	1	0	1	0	1	Push A and Flags on stack
POP B		1	0	0	0	0	0	1	Pop register Pair B \& C off stack
POP D	1	1	0	1	0	0	0	1	Pop register Pair D \& E off stack
POP H	1	1	1	0	0	0	0	1	Pop register Pair H \& L off stack


Mnemonic	Instruction Code$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$									Operations Description
STACK OPS (Continued)										
POP PSW		1	1	1	0	0	0	1	1	Pop A and Flags off stack
XTHL	1	1	1	0	0	0	1	1	1	Exchange top of stack, H \& L
SPHL		1	1	1	1	0	0	1	1	H\&L to stack pointer
LXISP		0	1	1	0	0	0	1	1	Load immediate stack pointer
INX SP		0	1	1	0	0	1		1	Increment stack pointer
DCX SP	0	0	1	1	1	0	1	1	1	Decrement stack pointer
JUMP										
JMP	1	1	0	0	0	0	1		1	Jump unconditional
JC	1	1	0	1	1	0	1	0	0	Jump on carry
JNC	1	1	0	1	0	0	1	0	0	Jump on no carry
JZ	1	1	0	0	1	0	1	1	0	Jump on zero
JNZ	1	1	0	0	0	0	1	1	0	Jump on no zero
JP.	1	1	1	1	0	0	1		0	Jump on positive
JM	1	1	1	1	1	0	1		0	Jump on minus
JPE	1	1	1	0	1	0	1		0	Jump on parity even
JPO	1	1	1	0	0	0	1		0	Jump on parity odd
PCHL	1	1	1	0	1	0	0		1	H \& L to program counter
CALL										
CALL	1	1	0	0	1	1	0		1	Call unconditional
CC	1	1	0	1	1	1	0		0	Call on carry
CNC	1	1	0	1	0	1	0		0	Call on no carry
CZ	1	1	0	0	1	1	0		0	Call on zero
CNZ	1	1	0	0	0	1	0	0	0	Call on no zero
CP	1	1	1	1	0	1	0	0	0	Call on positive
CM	1	1	1	1	1	1	0		0	Call on minus
CPE	1	1	1	0	1	1	0		0	Call on parity even
CPO	1	1	1	0	0	1	0	0	0	Call on parity odd
RETURN										
RET	1	1	0	0	1	0	0		1	Return
RC	1	1	0	1	1	0	0		0	Return on carry
RNC	1	1	0	1	0	0	0	0	0	Return on no carry
RZ	1	1	0	0	1	0	0	0	0	Return on zero

Table 6. Instruction Set Summary (Continued)
$\left.\begin{array}{|l|l|l|}\hline \text { Mnemonic } & \begin{array}{c}\text { Instruction Code } \\ D_{7} D_{6} D_{5} D_{4} \\ D_{3} \\ D_{2} \\ D_{1}\end{array} D_{0}\end{array} \begin{array}{c}\text { Operations } \\ \text { Description }\end{array}\right]$

RNZ	1	1	0	0	0	0	0	0	Return on no zero
RP	1	1	1	1	0	0	0	0	Return on positive
RM	1	1	1	1	1	0	0	0	Return on minus
RPE	1	1	1	0	1	0	0	0	Return on   parity even
RPO	1	1	1	0	0	0	0	0	Return on   parity odd

## RESTART

RST	1	1	$A$	$A$	$A$	1	1	1	Restart

INPUT/OUTPUT

IN	1	1	0	1	1	0	1	1	Input
OUT	1	1	0	1	0	0	1	1	Output

INCREMENT AND DECREMENT

INR r	0	0	D	$D$	$D$	1	0	0	Increment register
DCR r	0	0	D	D	D	1	0	1	Decrement register
INR M	0	0	1	1	0	1	0	0	Increment memory
DCR M	0	0	1	1	0	1	0	1	Decrement memory
INX B	0	0	0	0	0	0	1	1	Increment B \& C   registers
INXD	0	0	0	1	0	0	1	1	Increment D \& E   registers
INXH	0	0	1	0	0	0	1	1	Increment H \& L   registers
DCX B	0	0	0	0	1	0	1	1	Decrement B \& C
DCXD	0	0	0	1	1	0	1	1	Decrement D \& E
DCXH	0	0	1	0	1	0	1	1	Decrement H \& L
ADD									
ADD r	1	0	0	0	0	$S$	$S$	$S$	Add register to A
ADC r	1	0	0	0	1	$S$	$S$	$S$	Add register to A   with carry
ADD M	1	0	$C$	0	0	1	1	0	Add memory to A
ADC M	1	0	0	0	1	1	1	0	Add memory to A   with carry
ADI	1	1	0	0	0	1	1	0	Add immediate to A
ACI	1	1	0	0	1	1	1	0	Add immediate to A   with carry
DAD B	0	0	0	0	1	0	0	1	Add B \& C to H \& L


Mnemonic	Instruction Code$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$								Operations Description
ADD (Continued)									
DAD D		0	0	1	1	0	0	1	Add D \& E to H \& L
DAD H	0	0	1	0	1	0	0	1	Add H \& L to H \& L
DAD SP		0	1	1	1	0	0	1	Add stack pointer to H \& L
SUBTRACT									
SUB r		0	0	1	0	S	S	S	Subtract register from $A$
SBB r		0	0	1	1	S	S	S	Subtract register from A with borrow
SUB M		0	. 0	1	0	1	1		Subtract memory from $A$
SBB M		0	0	1	1	1	1	0	Subtract memory from A with borrow
SUI		1	0	1	0	1	1	0	Subtract immediate from $A$
SBI		1	0	1	1	1	1	0	Subtract immediate from A with borrow


ANA r	1	0	1	0	0	$S$	$S$	$S$	And register with A
XRA r	1	0	1	0	1	$S$	$S$	$S$	Exclusive OR   register with A
ORA r	1	0	1	1	0	$S$	$S$	$S$	OR register   with A
CMP r	1	0	1	1	1	$S$	$S$	$S$	Compare register   with A
ANA M	1	0	1	0	0	1	1	0	And memory with A
XRA M	1	0	1	0	1	1	1	0	Exclusive OR memory   with A
ORA M	1	0	1	1	0	1	1	0	OR memory with A
CMP M	1	0	1	1	1	1	1	0	Compare   memory with A
ANI	1	1	1	0	0	1	1	0	And immediate   with A
XRI	1	1	1	0	1	1	1	0	Exclusive OR   immediate with A
ORI	1	1	1	1	0	1	1	0	OR immediate   with A
CPI	1	1	1	1	1	1	1	0	Compare   immediate with A

Table 6. Instruction Set Summary (Continued)

Mnemonic	Instruction Code$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$								Operations Description
ROTATE									
RLC	0	0	0	0	0	1	1	1	Rotate A left
RRC	0	0	0	0	1	1	1	1	Rotate A right
RAL	0	0	0	1	0	1	1	1	Rotate A left through carry
RAR	0	0	0	1	1	1	1	1	Rotate A right through carry
SPECIALS									
CMA	0	0	1	0	1	1	1	1	Complement A
STC	0	0	1	1	0	1	1	1	Set carry
CMC	0	0	1	1	1	1	1	1	Complement carry
DAA	0	0	1	0	0	1	1	1	Decimal adjust A


| Mnemonic | Instruction Code <br> $D_{7}$ <br> $D_{6}$$D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$ | Operations <br> Description |
| :--- | :--- | :--- | :--- |


$E I$	1	1	1	1	1	0	1	1	Enable Interrupts
DI	1	1	1	1	0	0	1	1	Disable Interrupt
NOP	0	0	0	0	0	0	0	0	No-operation
HLT	0	1	1	1	0	1	1	0	Halt

NEW 8085AH INSTRUCTIONS

RIM	0	0	1	0	0	0	0	0	Read Interrupt   Mask
SIM	0	0	1	1	0	0	0	0	Set Interrupt Mask

## NOTES:

1. DDS or SSS: B 000, C 001, D 010, E011, H 100, L101, Memory 110, A 111.
2. Two possible cycle times $(6 / 12)$ indicate instruction cycles dependent on condition flags.
*All mnemonics copyrighted ©Intel Corporation 1976.

## 8155H/8156H/8155H-2/8156H-2 2048-BIT STATIC HMOS RAM WITH I/O PORTS AND TIMER

- Single +5V Power Supply with $10 \%$ Voltage Margins
- 30\% Lower Power Consumption than the 8155 and 8156
- 256 Word $x 8$ Bits
- Completely Static Operation
- Internal Address Latch
- 2 Programmable 8-Bit I/O Ports
- 1 Programmable 6-Bit I/O Port

■ Programmable 14-Bit Binary Counter/ Timer

- Compatible with 8085AH and 8088 CPU
- Multiplexed Address and Data Bus
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The Intel ${ }^{\circledR} 8155 \mathrm{H}$ and 8156 H are RAM and $1 / \mathrm{O}$ chips implemented in N -Channel, depletion load, silicon gate technology (HMOS), to be used in the 8085 AH and 8088 microprocessor systems. The RAM portion is designed with 2048 static cells organized as $256 \times 8$. They have a maximum access time of 400 ns to permit use with no wait states in 8085AH CPU. The $8155 \mathrm{H}-2$ and $8156 \mathrm{H}-2$ have maximum access times of 330 ns for use with the $8085 \mathrm{H}-2$ and the 5 MHz 8088 CPU .

The I/O portion consists of three general purpose I/O ports. One of the three ports can be programmed to be status pins, thus allowing the other two ports to operate in handshake mode.

A 14-bit programmable counter/timer is also included on chip to provide either a square wave or terminal count pulse for the CPU system depending on timer mode.


231719-1
*8155H/8155H-2 $=\overline{\mathrm{CE}}, 8156 \mathrm{H} / 8156 \mathrm{H}-2=\mathrm{CE}$
Figure 1. Block Diagram


Figure 2. Pin Configuration

Table 1. Pin Description

Symbol	Type	Name and Function
RESET	1	RESET: Pulse provided by the 8085AH to initialize the system (connect to 8085AH RESET OUT). Input high on this line resets the chip and initializes the three I/O ports to input mode. The width of RESET pulse should typically be two 8085AH clock cycle times.
$\mathrm{AD}_{0-7}$	1/0	ADDRESS/DATA: 3-state Address/Data lines that interface with the CPU lower 8-bit Address/Data Bus. The 8-bit address is latched into the address latch inside the $8155 \mathrm{H} / 56 \mathrm{H}$ on the falling edge of ALE. The address can be either for the memory section or the I/O section depending on the $I O / \bar{M}$ input. The 8-bit data is either written into the chip or read from the chip, depending on the $\overline{W R}$ or $\overline{R D}$ input signal.
CE or $\overline{C E}$	1	CHIP ENABLE: On the 8155 H , this pin is $\overline{\mathrm{CE}}$ and is ACTIVE LOW. On the 8156 H , this pin is CE and is ACTIVE HIGH.
$\overline{\mathrm{RD}}$	1	READ CONTROL: Input low on this line with the Chip Enable active enables and $A D_{0-7}$ buffers. If $10 / \bar{M}$ pin is low, the RAM content will be read out to the AD bus. Otherwise the content of the selected I/O port or command/status registers will be read to the AD bus.
$\bar{W} \bar{R}$	1	WRITE CONTROL: Input low on this line with the Chip Enable active causes the data on the Address/Data bus to be written to the RAM or I/O ports and command/status register, depending on $10 / \bar{M}$.
ALE	1	ADDRESS LATCH ENABLE: This control signal latches both the address on the $A D_{0-7}$ lines and the state of the Chip Enable and $I O / \bar{M}$ into the chip at the falling edge of ALE.
$10 / \bar{M}$	1	I/O MEMORY: Selects memory if low and I/O and command/status registers if high.
$\mathrm{PA}_{0-7}(8)$	I/O	PORT A: These 8 pins are general purpose $1 / O$ pins. The in/out direction is selected by programming the command register.
$\mathrm{PB}_{0-7}(8)$	1/0	PORT B: These 8 pins are general purpose I/O pins. The in/out direction is selected by programming the command register.
$\mathrm{PC}_{0-5}$ (6)	1/0	PORT C: These 6 pins can function as either input port, output port, or as control signals for PA and PB. Programming is done through the command register. When $\mathrm{PC}_{0-5}$ are used as control signals, they will provide the following:   $\mathrm{PC}_{0}-\mathrm{A}$ INTR (Port A Interrupt)   $\mathrm{PC}_{1}$-ABF (Port A Buffer Full)   $\mathrm{PC}_{2}-\overline{\mathrm{A} S T B}$ (Port A Strobe)   $\mathrm{PC}_{3}-\mathrm{B}$ INTR (Port B Interrupt)   $\mathrm{PC}_{4}-\mathrm{B} \mathrm{BF}$ (Port B Buffer Full)   $\mathrm{PC}_{5}-\overline{\mathrm{BSTB}}$ (Port B Strobe)
TIMER IN	1	TIMER INPUT: Input to the timer-counter.
TIMER OUT	0	TIMER OUTPUT: This output can be either a square wave or a pulse, depending on the timer mode.
$\mathrm{V}_{\text {CC }}$		VOLTAGE: +5 V supply.
$V_{S S}$		GROUND: Ground reference.

## FUNCTIONAL DESCRIPTION

The $8155 \mathrm{H} / 8156 \mathrm{H}$ contains the following:

- 2 K Bit Static RAM organized as $256 \times 8$
- Two 8-bit I/O ports (PA \& PB) and one 6-bit I/O port (PC)
- 14-bit timer-counter

The $10 / \bar{M}$ (IO/Memory Select) pin selects either the five registers (Command, Status, $\mathrm{PA}_{0-7}, \mathrm{~PB}_{0-7}$, $\mathrm{PC}_{0-5}$ ) or the memory (RAM) portion.

The 8 -bit address on the Address/Data lines, Chip Enable input CE or $\overline{C E}$, and $I O / \bar{M}$ are all latched on-


Figure 3. 8155H/8156H Internal Registers chip at the falling edge of ALE.


Figure 4. 8155H/8156H On-Board Memory Read/Write Cycle

## PROGRAMMING OF THE COMMAND REGISTER

The command register consists of eight latches. Four bits $(0-3)$ define the mode of the ports, two bits (4-5) enable or disable the interrupt from port $C$ when it acts as control port, and the last two bits (6-7) are for the timer.

The command register contents can be altered at any time by using the I/O address XXXXX000 during a WRITE operation with the Chip Enable active and $I O / \bar{M}=1$. The meaning of each bit of the command byte is defined in Figure 5. The contents of the command register may never be read.

## READING THE STATUS REGISTER

The status register consists of seven latches, one for each bit; six $(0-5)$ for the status of the ports and one (6) for the status of the timer.

The status of the timer and the I/O section can be polled by reading the Status Register (Address XXXXX000). Status word format is shown in Figure 6. Note that you may never write to the status register since the command register shares the same I/O address and the command register is selected when a write to that address is issued.


Figure 5. Command Register Bit Assignment


Figure 6. Status Register Bit Assignment

## INPUT/OUTPUT SECTION

The I/O section of the $8155 \mathrm{H} / 8156 \mathrm{H}$ consists of five registers: (see Figure 7.)

- Command/Status Register (C/S)-Both registers are assigned the address XXXXX000. The $\mathrm{C} / \mathrm{S}$ address serves the dual purpose.
When the C/S registers are selected during WRITE operation, a command is written into the command register. The contents of this register are not accessible through the pins.
When the C/S (XXXXX000) is selected during a READ operation, the status information of the I/O ports and the timer becomes available on the $A D_{0-7}$ lines.
- PA Register-This register can be programmed to be either input or output ports depending on the status of the contents of the C/S Register. Also depending on the command, this port can operate in either the basic mode or the strobed mode (see timing diagram). The I/O pins assigned in relation to this register are $\mathrm{PA}_{0-7}$. The address of this register is $\mathrm{XXXXX001}$.
- PB Register-This register functions the same as PA Register. The I/O pins assigned are $\mathrm{PB}_{0-7}$. The address of this register is $\mathrm{XXXXX010}$.
- PC Register-This register has the address XXXXX011 and contains only 6 bits. The 6 bits can be programmed to be either input ports, output ports or as control signals for PA and PB by properly programming the $A D_{2}$ and $A D_{3}$ bits of the C/S register.
When $\mathrm{PC}_{0-5}$ is used as a control port, 3 bits are assigned for Port A and 3 for Port B. The first bit is an interrupt that the 8155 H sends out. The sec-
ond is an output signal indicating whether the buffer is full or empty, and the third is an input pin to accept a strobe for the strobed input mode. (See Table 2.)

When the ' C ' port is programmed to either ALT3 or ALT4, the control signals for PA and PB are initialized as follows:

Control	Input Mode	Output Mode
BF	Low	Low
INTR	Low	High
STB	Input Control	Input Control


I/O Address $\dagger$								Selection
A7	A6	A5	A4	A3	A2	A1	AO	
X	X	x	X	X	0	0	0	Interval Command/Status Register
X	X	x	x	$x$	0	0	1	General Purpose I/O Port A
X	X	X	X	X	0	1	0	General Purpose I/O Port B
X	X	X	X	X	0	1	1	Port C-General Purpose I/O or Control
x	$x$	x	$x$	X	1	0	0	Low-Order 8 bits of Timer Count
X	$x$	x	x	x	1	0	1	High 6 bits of Timer Count and 2 bits of Timer Mode

X: Don't Care.
$\dagger$ : I/O Address must be qualified by $\mathrm{CE}=1(8156 \mathrm{H})$ or $\overline{\mathrm{CE}}$ $=0(8155 \mathrm{H})$ and $I O / \bar{M}=1$ in order to select the appropriate register.
Figure 7. I/O Port and Timer Addressing Scheme
Figure 8 shows how I/O PORTS A and B are structured within the 8155 H and 8156 H :


Figure 8. 8155H/8156H Port Functions

Table 2. Port Control Assignment

Pin	ALT 1	ALT 2	ALT 3	ALT 4
PC0	Input Port	Output Port	A INTR (Port A Interrupt)	A INTR (Port A Interrupt)
PC1	Input Port	Output Port	A BF (Port A Buffer Full)	A BF (Port A Buffer Full)
PC2	Input Port	Output Port	A STB (Port A Strobe)	A STB (Port A Strobe)
PC3	Input Port	Output Port	Output Port	B INTR (Port B Interrupt)
PC4	Input Port	Output Port	Output Port	B BF (Port B Buffer Full)
PC5	Input Port	Output Port	Output Port	B STB (Port B Strobe)

Note in the diagram that when the I/O ports are programmed to be output ports, the contents of the output ports can still be read by a READ operation when appropriately addressed.

The outputs of the $8155 \mathrm{H} / 8156 \mathrm{H}$ are "glitch-free" meaning that you can write a "1" to a bit position that was previously " 1 " and the level at the output pin will not change.

Note also that the output latch is cleared when the port enters the input mode. The output latch cannot be loaded by writing to the port if the port is in the input mode. The result is that each time a port mode is changed from input to output, the output pin will go low. When the $8155 \mathrm{H} / 56 \mathrm{H}$ is RESET, the output latches are all cleared and all 3 ports enter the input mode.

When in the ALT 1 or ALT 2 modes, the bits of PORT C are structured like the diagram above in the simple input or output mode, respectively.

Reading from an input port with nothing connected to the pins will provide unpredictable results.

Figure 9 shows how the $8155 \mathrm{H} / 8156 \mathrm{H}$ I/O ports might be configured in a typical MCS ${ }^{\oplus}$-85 system.


Figure 9. Example:
Command Register $=00111001$

## TIMER SECTION

The time is a 14 -bit down-counter that counts the TIMER IN pulses and provides either a square wave or pulse when terminal count (TC) is reached.

The timer has the I/O address XXXXX100 for the low order byte of the register and the I/O address XXXXX101 for the high order byte of the register. (See Figure 7.)

To program the timer, the COUNT LENGTH REG is loaded first, one byte at a time, by selecting the timer addresses. Bits 0-13 of the high order count register will specify the length of the next count and bits 14-15 of the high order register will specify the timer output mode (see Figure 10). The value loaded into the count length register can have any value from 2 H through 3FFFH in Bits 0-13.


Figure 10. Timer Format
There are four modes to choose from: M2 and M1 define the timer mode, as shown in Figure 11.


Figure 11. Timer Modes

Bits 6-7 $\left(\mathrm{TM}_{2}\right.$ and $\left.T M_{1}\right)$ of command register contents are used to start and stop the counter. There are four commands to choose from:

TM $_{2}$	TM $_{1}$	
0	0	NOP-Do not affect counter operation.
0	1	STOP-NOP if timer has not started; stop   counting if the timer is running.
1	0	STOP AFTER TC-Stop immediately after   present TC is reached (NOP if timer has not
1	1	started)   START-Load mode and CNT length and   start immediately after loading (if timer is not   presently running). If timer is running, start   the new mode and CNT length immediately   after present TC is reached.

Note that while the counter is counting, you may load a new count and mode into the count length registers. Before the new count and mode will be used by the counter, you must issue a START command to the counter. This applies even though you may only want to change the count and use the previous mode.

In case of an odd-numbered count, the first half-cycle of the squarewave output, which is high, is one count longer than the second (low) half-cycle, as shown in Figure 12.


231719-11

## NOTE:

5 and 4 refer to the number of clocks in that time period.

Figure 12. Asymmetrical Square-Wave Output Resulting from Count of 9

The counter in the 8155 H is not initialized to any particular mode or count when hardware RESET occurs, but RESET does stop the counting. Therefore, counting cannot begin following RESET until a START command is issued via the C/S register.

Please note that the timer circuit on the $8155 \mathrm{H} /$ 8156 H chip is designed to be a square-wave timer, not an event counter. To achieve this, it counts down by twos twice in completing one cycle. Thus, its registers do not contain values directly representing the number of TIMER IN pulses received. You cannot load an initial value of 1 into the count register and cause the timer to operate, as its terminal count value is 10 (binary) or 2 (decimal). (For the detection of single pulses, it is suggested that one of the hardware interrupt pins on the 8085AH be used.) After the timer has started counting down, the values residing in the count registers can be used to calculate the actual number of TIMER IN pulses required to complete the timer cycle if desired. To obtain the remaining count, perform the following operations in order:

1. Stop the count
2. Read in the 16 -bit value from the count length registers
3. Reset the upper two mode bits
4. Reset the carry and rotate right one position all 16 bits through carry
5. If carry is set, add $1 / 2$ of the full original count ( $1 / 2$ full count-1 if full count is odd).

## NOTE:

If you started with an odd count and you read the count length register before the third count pulse occurs, you will not be able to discern whether one or two counts has occurred. Regardless of this, the $8155 \mathrm{H} / 56 \mathrm{H}$ always counts out the right number of pulses in generating the TIMER OUT waveforms.

## 8085AH MINIMUM SYSTEM CONFIGURATION

Figure 13a shows a minimum system using three chips, containing:

- 2 K Bytes EPROM
- 38 I/O Pins
- 1 Interval Timer
- 4 Interrupt Levels
- 256 Bytes RAM


Figure 13a. 8085AH Minimum System Configuration (Memory Mapped I/O)

## 8088 FIVE CHIP SYSTEM

Figure 13b shows a five chip system containing:

- 1.25 K Bytes RAM
- 2 K Bytes EPROM


Figure 13b. 8088 Five Chip System Configuration

## ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias $\ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $\ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
with Respect to Ground........... 0.5 V to +7 V
Power Dissipation....................... W

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
D.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.5	0.8	V	
$\mathrm{~V}_{\text {IH }}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.45	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage		$\pm 10$	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\text {LO }}$	Output Leakage Current		$\pm 10$	$\mu \mathrm{~A}$	$0.45 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current		125	mA	
$\mathrm{I}_{\text {IL }}$ (CE)	Chip Enable Leakage   8155 H   8156 H		+100	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$

A.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	8155H/8156H		8155H-2/8156H-2		Units
		Min	Max	Min	Max	
$t_{\text {AL }}$	Address to Latch Setup Time	50		30		ns
tLA	Address Hold Time after Latch	80		30		ns
tLC	Latch to READ/WRITE Control	100		40		ns
$\mathrm{t}_{\mathrm{RD}}$	Valid Data Out Delay from READ Control		170		140	ns
tLD	Latch to Data Out Valid		350		270	ns
$t_{\text {AD }}$	Address Stable to Data Out Valid		400		330	ns
tLL	Latch Enable Width	100		70		ns
trip	Data Bus Float after READ	0	100	0	80	ns
$\mathrm{t}_{\mathrm{CL}}$	READ/WRITE Control to Latch Enable	20		10		ns
$\mathrm{t}_{\text {cli }}$	WRITE Control to Latch Enable for C/S Register	125		125		ns
$\mathrm{t}_{\mathrm{CC}}$	READ/WRITE Control Width	250		200		ns
$t_{\text {DW }}$	Data In to WRITE Setup Time	150		100		ns
twd	Data In Hold Time after WRITE	25		25		ns
triv	Recovery Time between Controls	300		200		ns
twp	WRITE to Port Output		400		300	ns

A.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Continued)

Symbol	Parameter	8155H/8156H		8155H-2/8156H-2		Units
		Min	Max	Min	Max	
$t_{\text {PR }}$	Port Input Setup Time	70		50		ns
$t_{\text {RP }}$	Port Input Hold Time	50		10		ns
$\mathrm{t}_{\text {SBF }}$	Strobe to Buffer Full		400		300	ns
$\mathrm{t}_{\text {SS }}$	Strobe Width	200		150		ns
$t_{\text {RBE }}$	READ to Buffer Empty		400		300	ns
$t_{\text {SI }}$	Strobe to INTR On		400		300	ns
$\mathrm{t}_{\text {RDI }}$	READ to INTR Off		400		300	ns
tpss	Port Setup Time to Strobe	50		0		ns
tpHS	Port Hold Time After Strobe	120		100		ns
$t_{\text {SBE }}$	Strobe to Buffer Empty		400		300	ns
${ }_{\text {t }}$ WBF	WRITE to Buffer Full		400		300	ns
${ }^{\text {W }}$ WI	WRITE to INTR Off		400		300	ns
$\mathrm{t}_{\mathrm{T}} \mathrm{L}$	TIMER-IN to TIMER-OUT Low		400		300	ns
$t_{\text {th }}$	TIMER-IN to TIMER-OUT High		400		300	ns
$t_{\text {RDE }}$	Data Bus Enable from READ Control	10		10		ns
$\mathrm{t}_{1}$	TIMER-IN Low Time	80		40		ns
$\mathrm{t}_{2}$	TIMER-IN High Time	120		70		ns
${ }^{\text {t }}$ WT	WRITE to TIMER-IN (for writes which start counting)	360		200		ns

## A.C. TESTING INPUT, OUTPUT WAVEFORM


A.C. TESTING LOAD CIRCUIT


## WAVEFORMS

READ


WRITE


## WAVEFORMS (Continued)

## STROBED INPUT



STROBED OUTPUT


BASIC INPUT
DATA BUS -2

BASIC OUTPUT


NOTE：
1．The timer output is periodic if in an automatic reload mode（ $M_{1}$ Mode bit $=1$ ）．

## 818518185-2 <br> 1024 $x$ 8-EBT STATIC RAMFOR MCS ${ }^{®}$ - 85

- Multiplexed Address and Data Bus
( Directly Compaitible vith 8085AH and 8088 Microprocessors

Low Operating Power Dissipation
(a) Low Standby Power Dissipation
. Single +5 V Supply
[0. High Density 18-Pin Package

The Intel 8185 is an 8192 -bit static random access memory (RAM) organized as 1024 words by 8 -bits using N channel Silicon-Gate MOS technology. The multiplexed address and data bus allows the 8185 to interface directly to the 8085 AH and 8088 microprocessors to provide a maximum level of system integration.

The low standby power dissipation minimizes system power requirements when the 8185 is disabled.
The 8185-2 is a high-speed selected version of the 8185 that is compatible with the $5 \mathrm{MHz} 8085 \mathrm{AH}-2$ and the 5 MHz 8088 .


Figure 1. Block Diagram


Figure 2. Pin Configuration
Pin Names

$A D_{0}-A D_{7}$	Address/Data Lines
$A_{8}, A_{9}$	Address Lines
$C S$	Chip Select
$C E_{1}$	Chip Enable (IO/M)
$C E_{2}$	Chip Enable
$A L E$	Address Latch Enable
WR	Write Enable

## FUNCTIONAL DESCRIPTION

The 8185 has been designed to provide for direct interface to the multiplexed bus structure and bus timing of the 8085A microprocessor.

At the beginning of an 8185 memory access cycle, the 8 -bit address on $\mathrm{AD}_{0-7}, \mathrm{~A}_{8}$ and $\mathrm{Ag}_{9}$, and the status of $\mathrm{CE}_{1}$ and $\mathrm{CE}_{2}$ are all latched internally in the 8185 by the falling edge of ALE. If the latched status of both $\overline{\mathrm{CE}}_{1}$ and $\mathrm{CE}_{2}$ are active, the 8185 powers itself up, but no action occurs until the $\overline{C S}$ line goes low and the appropriate $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ control signal input is activated.

The $\overline{\mathrm{CS}}$ input is not latched by the 8185 in order to allow the maximum amount of time for address decoding in selecting the 8185 chip. Maximum power consumption savings will occur, however, only when $\overline{\mathrm{CE}}_{1}$ and $\mathrm{CE}_{2}$ are activated selectively to power down the 8185 when it is not in use. A possible connection would be to wire the 8085A's $10 / \bar{M}$ line to the 8185 's $\mathrm{CE}_{1}$ input, thereby keeping the 8185 powered down during I/O and interrupt cycles.

Table 1. Truth Table for
Power Down and Function Enable

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\mathbf{C E}_{\mathbf{2}}$	$\overline{\mathbf{C S}}$	$\left.\mathbf{( C S}^{*}\right)^{(2)}$	$\mathbf{8 1 8 5 \text { Status }}$
1	X	X	0	Power Down and   Function Disable(1)
X	0	X	0	Power Down and   Function Disable(1)
0	1	1	0	Powered Up and   Function Disable(1)
0	1	0	1	Powered Up and   Enabled

NOTES:
X = Don't Care.
1: Function Disable implies Data Bus in high impedance state and not writing.
2: $\mathrm{CS}^{*}=\left(\mathrm{CE}_{1}=0\right) \times\left(C E_{2}=1\right) \times(\overline{\mathrm{CS}}=0)$.
CS* $=1$ signifies all chip enables and chip select active.

Table 2. Truth Table for Control and Data Bus Pin Status

(CS*)	$\overline{\text { RD }}$	$\overline{\text { WR }}$	AD   Por7   Portion of Cycle	$\mathbf{8 1 8 5}$ Function
0	X	X	Hi-Impedance	No Function
1	0	1	Data from Memory	Read
1	1	0	Data to Memory	Write
1	1	1	Hi-Impedance	Reading, but not   Driving Data Bus

NOTE:
$\mathrm{X}=$ Don't Care.


Figure 3. 8185 In an MCS ${ }^{-}$-85 System
4 Chips:
2K Bytes EPROM
1.25K Bytes RAM

38 I/O Lines
1 Counter/Timer
2 Serial I/O Lines
5 Interrupt Inputs

## iAPX 88 FIVE CHIP SYSTEM:

- 1.25 K Bytes RAM
- 2 K Bytes EPROM
- 38 I/O Pins
- 1 Internal Timer
- 2 Interrupt Levels


Figure 4. IAPX 88 Five Chip System Configuration

## ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature ........... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
with Respect to Ground. . . . . . . . . . -0.5 V to +7 V
Power Dissipation. 1.5 W

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
D.C. CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.5	0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.45	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4			$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage		$\pm 10$	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{LO}}$	Output Leakage Current		$\pm 10$	$\mu \mathrm{~A}$	$0.45 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current   Powered Up   Powered Down		100	mA	
		35	mA		

A.C. CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	8185		8185-2		Units
		Min	Max	Min	Max	
$t_{\text {AL }}$	Address to Latch Set Up Time	50		30		ns
tLA	Address Hold Time After Latch	80		30		ns
$\mathrm{t}_{\mathrm{L}} \mathrm{C}$	Latch to READ/WRITE Control	100		40		ns
$\mathrm{t}_{\mathrm{RD}}$	Valid Data Out Delay from READ Control		170		140	ns
tLD	ALE to Data Out Valid		300		200	ns
$t_{\text {LL }}$	Latch Enable Width	100		70		ns
$t_{\text {RDF }}$	Data Bus Float After READ	0	100	0	80	ns
$\mathrm{t}_{\mathrm{CL}}$	READ/WRITE Control to Latch Enable	20		10		ns
$\mathrm{t}_{\mathrm{CC}}$	READ/WRITE Control Width	250		200		ns
$t_{\text {DW }}$	Data In to WRITE Set Up Time	150		150		ns
$t_{\text {WD }}$	Data In Hold Time After WRITE	20		20		ns
$\mathrm{t}_{\text {SC }}$	Chip Select Set Up to Control Line	10		10		ns
$t_{\text {cS }}$	Chip Select Hold Time After Control	10		10		ns
$\mathrm{t}_{\text {ALCE }}$	Chip Enable Set Up to ALE Falling	30		10		ns
t LACE	Chip Enable Hold Time After ALE	50		30		ns

## A.C. TESTING INPUT, OUTPUT WAVEFORM


A.C. Testing: Inputs Are Driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ." Timing Measurements Are Made at 2.0 V for a Logic " 1 " and 0.8 V for a Logic " 0 ."
A.C. TESTING LOAD CIRCUIT


231450-6
$C_{L}=150 \mathrm{pF}$
$C_{L}$ Includes Jig Capacitance

WAVEFORM


## 8224 <br> CLOCK GENERATOR AND DRIVER FOR 8080A CPU

- Single Chip Clock Generator/Driver for 8080A CPU
- Power-Up Reset for CPU
- Ready Synchronizing Flip-Flop
- Advanced Status Strobe
- Oscillator Output for External System Timing
- Crystal Controlled for Stable System Operation
■ Reduces System Package Count
- Available in EXPRESS
- Standard Temperature Range
- Available in 16-Lead Cerdip Package
(See Packaging Spec, Order \# 231369)

The Intel 8224 is a single chip clock generator/driver for the 8080A CPU. It is controlled by a crystal, selected by the designer to meet a variety of system speed requirements.

Also included are circuits to provide power-up reset, advance status strobe, and synchronization of ready.
The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing for 8080A.


Figure 1. Block Diagram


231464-2

RESIN	Reset Input		
RESET	Reset Output	XTAL 1	$\} \begin{aligned} & \text { Connections } \\ & \text { for Crystal } \end{aligned}$
RDYIN	Ready Input	XTAL 2	
READY	Ready Output	TANK	Used with Overtone XTAL
SYNC	Sync Input	OSC	Oscillator Output
STSTB	Status STB   (Active Low)	$\phi_{2}$ (TTL)	$\phi_{2}$ CLK (TTL Level)
		$\mathrm{V}_{\mathrm{CC}}$	$+5 \mathrm{~V}$
$\phi_{1}$	$\} \begin{aligned} & 8080 \\ & \text { Clocks }\end{aligned}$	$V_{D D}$	+12V
$\phi_{2}$		GND	OV

Figure 2. Pin Configuration

## ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage, $\mathrm{V}_{\mathrm{CC}} \ldots . .$.
Supply Voltage, $\mathrm{V}_{\text {DD }} \ldots \ldots . . . .$.
Input Voltage . . . . . . . . . . . . . . . . . . . . . -1.5 V to +7 V
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## D.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Limits			Units	Test Conditions
		Min	Typ	Max		
$\mathrm{I}_{F}$	Input Current Loading			$-0.25$	mA	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\mathrm{R}}$	Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
$\mathrm{V}_{\mathrm{C}}$	Input Forward Clamp Voltage			1.0	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
$\mathrm{V}_{\text {IL }}$	Input "Low" Voltage			0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{IH}}$	Input "High" Voltage	2.6			V	Reset Input
		2.0			V	All Other Inputs
$\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\text {IL }}$	RESIN Input Hysteresis	0.25			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Output "Low" Voltage			0.45	V	( $\phi_{1}, \phi_{2}$ ), Ready, Reset, $\overline{\text { TTSTB }}$ $\mathrm{IOL}=2.5 \mathrm{~mA}$
				0.45	V	All Other Outputs $\mathrm{l} \mathrm{OL}=15 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output "High" Voltage $\phi_{1}, \phi_{2}$   READY, RESET   All Other Outputs	9.4			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
		3.6			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
		2.4			V	$\mathrm{IOH}=-1 \mathrm{~mA}$
ICC	Power Supply Current			115	mA	
IDD	Power Supply Current			12	mA	

NOTE:

1. For crystal frequencies of 18 MHz connect $510 \Omega$ resistors between the X 1 input and ground as well as the X 2 input and ground to prevent oscillation at harmonic frequencies.

## Crystal Requirements

Tolerance: $0.005 \%$ at $0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ Resonance: Series (Fundamental)* Load Capacitance: $20 \mathrm{pF}-35 \mathrm{pF}$ Equivalent Resistance: 75 $\mathbf{~} \mathbf{- 2 0 \Omega}$

Power Dissipation (Min): 4 mW
*NOTE: With tank circuit use 3rd overtone mode.

## A.C. CHARACTERISTICS

Symbol	Parameter	Limits			Units	Test Conditions
		Min	Typ	Max		
$t_{\text {¢ }}{ }^{\text {l }}$	$\phi_{1}$ Pulse Width	$\frac{2 \text { tcy }}{9}-20 \mathrm{~ns}$			ns	$C_{L}=20 \mathrm{pF}$ to 50 pF
$\mathrm{t}_{\text {¢ } 2}$	$\phi_{2}$ Pulse Width	$\frac{5 \text { tcy }}{9}-35 \mathrm{~ns}$				
$t_{\text {D1 }}$	$\phi_{1}$ to $\phi_{2}$ Delay	0				
$t_{\text {D2 }}$	$\phi_{2}$ to $\phi_{1}$ Delay	$\frac{2 \text { tcy }}{9}-14 \mathrm{~ns}$				
$\mathrm{t}_{\mathrm{D} 3}$	$\phi_{1}$ to $\phi_{2}$ Delay	$\frac{2 t c y}{9}$		$\frac{2 \text { tcy }}{9}+20 \mathrm{~ns}$		
$t_{R}$	$\phi_{1}$ and $\phi_{2}$ Rise Time			20		
$\mathrm{t}_{\mathrm{F}}$	$\phi_{1}$ and $\phi_{2}$ Fall Time			20		
$t_{\text {D }{ }^{\prime} \text { 2 }}$	$\phi_{2}$ to $\phi_{2}$ (TTL) Delay	-5		+15	ns	$\begin{aligned} & \phi_{2} \text { TTL, CL }=30 \\ & R_{1}=300 \Omega \\ & R_{2}=600 \Omega \end{aligned}$
toss	, $\phi_{2}$ to STSTB Delay	$\frac{6 \text { tcy }}{9}-30 \mathrm{~ns}$		$\frac{6 t c y}{9}$	ns	$\begin{aligned} & \overline{\text { STSTB }, ~} C_{L}=15 \mathrm{pF} \\ & R_{1}=2 K \\ & R_{2}=4 K \end{aligned}$
$t_{\text {PW }}$	$\overline{\text { STSTB Pulse Width }}$	$\frac{\text { tcy }}{9}-15 \mathrm{~ns}$			ns	
$t_{\text {DRS }}$	RDYIN Setup Time to Status Strobe	$50 \mathrm{~ns}-\frac{4 \mathrm{tcy}}{9}$				
$t_{\text {DRH }}$	RDYIN Hold Time after STSTB	$\frac{4 \mathrm{tcy}}{9}$				
$t_{\text {DR }}$	RDYIN or RESIN to $\phi_{2}$ Delay	$\frac{4 \text { tcy }}{9}-25 \mathrm{~ns}$			ns	Ready \& Reset $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & \mathrm{R}_{1}=2 \mathrm{~K} \\ & \mathrm{R}_{2}=4 \mathrm{~K} \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {CLK }}$	CLK Period		$\frac{\text { tcy }}{9}$		ns	
$\mathrm{f}_{\text {max }}$	Maximum Oscillating Frequency			27	MHz	
$\mathrm{C}_{\text {in }}$	Input Capacitance			8	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \\ & \mathrm{~V}_{\text {BIAS }}=2.5 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$

## NOTE:

These formulas are based on the internal workings of the part and intended for customer convenience. Actual testing of the part is done at $\mathrm{t}_{\mathrm{cy}}=488.28 \mathrm{~ns}$.
A.C. CHARACTERISTICS (Continued)

For $\mathrm{t}_{\mathrm{CY}}=488.28 \mathrm{~ns} ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Limits			Units	Test Conditions
		Min	Typ	Max		
$\mathrm{t}_{\phi 1}$	$\phi_{1}$ Pulse Width	89			nsnsnsnsnsnsnsnsnsnsnsnsns	$\mathrm{t}_{\mathrm{CY}}=488.28 \mathrm{~ns}$   $\phi_{1} \& \phi_{2}$ Loaded to $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \text { to } 50 \mathrm{pF}$
$\mathrm{t}_{\phi 2}$	$\phi_{2}$ Pulse Width	236				
$t_{\text {D1 }}$	Delay $\phi_{1}$ to $\phi_{2}$	0				
$t_{\text {D2 }}$	Delay $\phi_{2}$ to $\phi_{1}$	95				
$t_{\text {D3 }}$	Delay $\phi_{1}$ to $\phi_{2}$ Leading Edges	109		129		
$\mathrm{t}_{\mathrm{r}}$	Output Rise Time			20		
$t_{f}$	Output Fall Time			20		
$t_{\text {DSS }}$	$\phi_{2}$ to STSTB Delay	296		326		
$t_{\text {D } 22}$	$\phi_{2}$ to $\phi_{2}$ (TTL) Delay	-5		$+15$		
tpw	Status Strobe Pulse Width	40				Ready \& Reset Loaded to $2 \mathrm{~mA} / 10 \mathrm{pF}$ All measurements referenced to 1.5 V unless specified otherwise.
${ }^{\text {t }}$ DRS	RDYIN Setup Time to STSTB	-167				
tDRH	RDYIN Hold Time after STSTB	217				
$t_{\text {DR }}$	READY or RESET to $\phi_{2}$ Delay	192				
$\mathrm{f}_{\text {MAX }}$	Oscillator Frequency			18.432	MHz	

A.C. TESTING, INPUT, OUTPUT WAVEFORM

A.C. Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 " (unless otherwise noted).
A.C. TESTING LOAD CIRCUIT


## WAVEFORMS



VOLTAGE MEASUREMENT POINTS: $\phi_{1}, \phi_{2}$ Logic " 0 " $=1.0 \mathrm{~V}$, Logic " 1 " $=8.0 \mathrm{~V}$. All other signals measured at 1.5 V .

## CLOCK HIGH AND LOW TIME (USING X1, X2)



231464-6

## SYSTEM CONTROLLER AND BUS DRIVER

 FOR 8080A CPU
## - Single Chip System Control for MCS ${ }^{\circledR}$-80 Systems <br> ■ Built-In Bidirectional Bus Driver for Data Bus Isolation <br> - Allows the Use of Multiple Byte Instructions (e.g. CALL) for interrupt Acknowledge

- User Selected Single Level Interrupt Vector (RST 7)
- Available in EXPRESS - Standard Temperature Range
- Available in 28-Lead Cerdip and Plastic Packages
(See Packaging Spec, Order \#23i369)


## - Reduces System Package Count

The Intel ${ }^{(1)} 8228$ is a single chip system controller and bus driver for MCS®-80. It generates all signals required to directly interface MCS-80 family RAM, ROM, and I/O components.

A bidirectional bus driver is included to provide high system TTL fan-out. It also provides isolation of the 8080 data bus from memory and I/O. This allows for the optimization of control signals, enabling the systems designer to use slower memory and I/O. The isolation of the bus driver also provides for enhanced system noise immunity.
A user selected single level interrupt vector (RST 7) is provided to simplify real time, interrupt driven, small system requirements. The 8228 also generates the correct control signals to allow the use of multiple byte instructions (e.g., CALL) in response to an interrupt acknowledge by the 8080A. This feature permits large, interrupt driven systems to have an unlimited number of interrupt levels.

The 8228 is designed to support a wide variety of system bus structures and also reduce system package count for cost effective, reliable design of MCS-80 systems.

The specifications for the 3228 are identical with those for the 8228.


Figure 1. Block Diagram


Figure 2. Pin Configuration

## ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage, $\mathrm{V}_{\mathrm{CC}} \ldots \ldots . . . . . . . .$.
Input Voltage . . . . . . . . . . . . . . . . . . . . . -1.5 to +7 V
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
D.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter		Limits			Unit	Test Conditions
			Min	Typ(1)	Max		
$\mathrm{V}_{\mathrm{C}}$	Input Clamp Voltage, All Input			0.75	-1.0	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} ; \mathrm{l}_{\mathrm{C}}=-5 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}}$	Input Load Current	STSTB			500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
		$\mathrm{D}_{2}$ \& $\mathrm{D}_{6}$			750	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$
		$\begin{aligned} & \mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{4}, \\ & \mathrm{D}_{5} \& \mathrm{D}_{7} \\ & \hline \end{aligned}$			250	$\mu \mathrm{A}$	
		All Other Inputs			250	$\mu \mathrm{A}$	
${ }^{\prime} \mathrm{R}$	Input Leakage Current	STSTB			100	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{R}=5.25 \mathrm{~V} \end{aligned}$
		$\mathrm{DB}_{0}-\mathrm{DB}_{7}$			20	$\mu \mathrm{A}$	
		All Other Inputs			100	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {TH }}$	Input Threshold Voltage, All Inputs		0.8		2.0	V	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
ICC	Power Supply Current			140	190	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
VOL	Output Low Voltage	$\mathrm{D}_{0}-\mathrm{D}_{7}$			0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$
		All Other Outputs			0.45	V	$\mathrm{loL}=10 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{D}_{0}-\mathrm{D}_{7}$	3.6	3.8		V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
		All Other Outputs	2.4			V	$\mathrm{IOH}=-1 \mathrm{~mA}$
los	Short Circuit Current, All Outputs		15		90	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
IO (off)	Off State Output Current All Control Outputs				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$
					-100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$
Int	INTA Current				5	mA	(See INTA Test Circuit)

## NOTE:

1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltages.

CAPACITANCE $V_{B I A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

1. This parameter is periodically sampled and not $100 \%$ tested.

Symbol	Parameter	Limits			Unit
		Min	Typ(1)	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		8	12	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance   Control Signals		7	15	pF
I/O	I/O Capacitance   (D or DB)		8	15	pF

## A.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Limits		Unit	Conditions
		Min	Max		
tpw	Width of Status Strobe	22		ns	
tss	Setup Time, Status Inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$	8		ns	
$\mathrm{t}_{\text {SH }}$	Hold Time, Status inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$	5		ns	
$t_{D C}$	Delay from STSTB to any Control Signal	20	60	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\mathrm{t}_{\mathrm{RR}}$	Delay from DBIN to Control Outputs		30	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$t_{\text {RE }}$	Delay from DBIN to Enable/Disable 8080 Bus		45	ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
$\mathrm{t}_{\mathrm{RD}}$	Delay from System Bus to 8080 Bus during Read		30	ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
$t_{\text {WR }}$	Delay from WR to Control Outputs	5	45	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
twe	Delay to Enable System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ after STSTB		30	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
two	Delay from 8080 Bus $D_{0}-D_{7}$ to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ during Write	5	40	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\mathrm{t}_{\mathrm{E}}$	Delay from System Bus Enable to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$		30	ns	$C_{L}=100 \mathrm{pF}$
$t_{H D}$	HLDA to Read Status Outputs		25	ns	
$t_{\text {DS }}$	Setup Time, System Bus Inputs to HLDA	10		ns	
$t_{\text {DH }}$	Hold Time, System Bus Inputs to HLDA	20		ns	$C_{L}=100 \mathrm{pF}$

A.C. TESTING LOAD CIRCUIT


INTA Test Circuit (for RST 7)


## WAVEFORMS



VOLTAGE MEASUREMENT POINTS: $D_{0}-D_{7}$ (when outputs) Logic " 0 " $=0.8 \mathrm{~V}$, Logic " 1 " $=3.0 \mathrm{~V}$. All other signals measured at 1.5 V .

# 8755A <br> 16,384-BIT EPROM WITH I/O 

- 2048 Words x 8 Bits
- Single +5 V Power Supply ( $\mathrm{V}_{\mathrm{CC}}$ )
- Directly Compatible with 8085AH
- U.V. Erasable and Electrically Reprogrammable
- Internal Address Latch
- 2 General Purpose 8-Bit I/O Ports
- Each I/O Port Line Individually Programmable as Input or Output
■ Multiplexed Address and Data Bus.
- 40-Pin DIP
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The Intel 8755A is an erasable and electrically reprogrammable ROM (EPROM) and I/O chip to be used in the 8085AH microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maximum access time of 450 ns to permit use with no wait states in an 8085AH CPU.

The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines, and each I/O port line is individually programmable as input or output.


231735-1
Figure 1. Block Diagram


Figure 2. Pin Configuration

Table 1. Pin Description

Symbol	Type	Name and Function
ALE	1	ADDRESS LATCH ENABLE: When Address Latch Enable goes high, $\mathrm{AD}_{0-2,}$ $10 / \bar{M}, A_{8-10}, C E_{2}$, and $\overline{C E} E_{1}$ enter the address latches. The signals, (AD, $I O / \bar{M}$, $A D_{8-10}, C E_{2}, C E_{1}$ ) are latched in at the trailing edge of ALE.
$\mathrm{AD}_{0-7}$	1	BIDIRECTIONAL ADDRESS/DATA BUS: The lower 8 bits of the PROM or I/O address are applied to the bus lines when ALE is high.   During an I/O cycle, Port A or B is selected based on the latched value of $A D_{0}$. IF $\overline{R D}$ or $\overline{O R}$ is low when the latched Chip Enables are active, the output .buffers present data on the bus.
$\mathrm{AD}_{8-10}$	1	ADDRESS BUS: These are the high order bits of the PROM address. They do not affect I/O operations.
$\begin{aligned} & \text { PROG/ } \overline{\mathrm{CE}_{1}} \\ & \mathrm{CE}_{2} \end{aligned}$	1	CHIP ENABLE INPUTS: $\overline{C E}_{1}$ is active low and $\mathrm{CE}_{2}$ is active high. The 8755A can be accessed only when both Chip Enables are active at the time the ALE signal latches them up. If either Chip Enable input is not active, the $A D_{0-7}$, and READY ouputs will be in a high impedance state. $\mathrm{CE}_{1}$ is also used as a programming pin. (See section on programming.)
$10 / \bar{M}$	1	I/O MEMORY: If the latched IO/ $\bar{M}$ is high when $\overline{R D}$ is low, the output data comes from an I/O port. If it is low the output data comes from the PROM.
$\overline{\mathrm{RD}}$	1	READ: If the latched Chip Enables are active when $\overline{\mathrm{RD}}$ goes low, the $\mathrm{AD}_{0-7}$ output buffers are enabled and output either the selected PROM location or I/O port. When both $\overline{\mathrm{RD}}$ and $\overline{\mathrm{IOR}}$ are high, the $\mathrm{AD}_{0-7}$ output buffers are 3stated.
IOW	1	I/O WRITE: If the latched Chip Enables are active, a low on IOW causes the output port pointed to by the latched value of $\mathrm{AD}_{0}$ to be written with the data on $A D_{0-7}$. The state of $10 / \bar{M}$ is ignored.
CLK	1	CLOCK: The CLK is used to force the READY into its high impedance state after it has been forced low by $\mathrm{CE}_{1}$ low, $\mathrm{CE}_{2}$ high, and ALE high.
READY	0	READY is a 3-state output controlled by $\overline{C E}_{1}, \mathrm{CE}_{2}$, ALE and CLK. READY is forced low when the Chip Enables are active during the time ALE is high, and remains low until the rising edge of the next CLK. (See Figure 6c.)
$\mathrm{PA}_{0-7}$	1/O	PORT A: These are general purpose I/O pins. Their input/output direction is determined by the contents of Data Direction Register (DDR). Port A is selected for write operations when the Chip Enables are active and IDW is low and a 0 was previously latched from $A D_{0}, A D_{1}$.   Read Operation is selected by either TOR low and active Chip Enables and $A D_{0}$ and $A D_{1}$ low, or $I O / \bar{M}$ high, $\overline{R D}$ low, active Chip Enables, and $A D_{0}$ and $A D_{1}$ low.
$\mathrm{PB}_{0-7}$	1/0	PORT B: The general purpose I/O port is identical to Port A except that it is selected by a 1 latched from $A D_{0}$ and a 0 from $A D_{1}$.
RESET	1	RESET: In normal operation, an input high on RESET causes all pins in Ports A and $B$ to assume input mode (clear DDR register).
$\overline{\mathrm{IOR}}$	1	I/O READ: When the Chip Enables are active, a low on $\overline{O R}$ will output the selected I/O port onto the AD bus. IOR low performs the same function as the combination of IO/ $\overline{\mathrm{M}}$ high and $\overline{\mathrm{RD}}$ low. When $\overline{\mathrm{IOR}}$ is not used in a system, $\overline{\mathrm{IOR}}$ should be tied to $\mathrm{V}_{\mathrm{CC}}$ ("1").
$\mathrm{V}_{\text {CC }}$		POWER: +5 V supply.
$\mathrm{V}_{\text {SS }}$		GROUND: Reference.
$V_{D D}$		POWER SUPPLY: $V_{D D}$ is a programming voltage, and must be tied to $V_{C C}$ when the 8755A is being read.   For programming, a high voltage is supplied with $\mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}$, typical. (See section on programming.)

## FUNCTIONAL DESCRIPTION

## PROM Section

The 8755A contains an 8-bit address latch which allows it to interface directly to MCS®-48 and MCS ${ }^{-85}$-8 processors without additional hardware.

The PROM section of the chip is addressed by the 11 -bit address and the Chip Enables. The address, $\mathrm{CE}_{1}$ and $\mathrm{CE}_{2}$ are latched into the address latches on the falling edge of ALE. If the latched Chip Enables are active and $10 / \bar{M}$ is low when $\overline{R D}$ goes low, the contents of the PROM location addressed by the latched address are put out on the $A D_{0-7}$ lines (provided that $\mathrm{V}_{\mathrm{DD}}$ is tied to $\mathrm{V}_{\mathrm{C}}$ ).

## I/O Section

The I/O section of the chip is addressed by the latched value of $A D_{0-1}$. Two 8 -bit Data Direction Registers (DDR) in 8755A determine the input/output status of each pin in the corresponding ports. A " 0 " in a particular bit position of a DDR signifies that the corresponding I/O port bit is in the input mode. A " 1 " in a particular bit position signifies that the corresponding I/O port bit is in the output mode. In this manner the I/O ports of the 8755A are bit-by-bit programmable as inputs or outputs. The table summarizes port and DDR designation. DDR's cannot be read.

$A D_{1}$	$A D_{0}$	Selection
0	0	Port A
0	1	Port B
1	0	Port A Data Direction Register (DDR A)
1	1	Port B Data Direction Register (DDR B)

When $\overline{\text { IOW }}$ goes low and the Chip Enables are active, the data on the $A D_{0-7}$ is written into I/O port selected by the latched value of $\mathrm{AD}_{0-1}$. During this operation all I/O bits of the selected port are affected, regardless of their I/O mode and the state of IO/ $\overline{\mathrm{M}}$. The actual output level does not change until $\overline{\text { IOW }}$ returns high. (Glitch free output.)

A port can be read out when the latched Chip Enables are active and either $\overline{\mathrm{RD}}$ goes low with $10 / \overline{\mathrm{M}}$ high, or $\overline{\text { ORR }}$ goes low. Both input and output mode bits of a selected port will appear on lines $A D_{0-7}$.

To clarify the function of the I/O Ports and Data Direction Registers, the following diagram shows the configuration of one bit of PORT A and DDR A. The same logic applies to PORT B and DDR B.

8755A ONE BIT OF PORT A AND DDR A


Note that hardware RESET or writing a zero to the DDR latch will cause the output latch's output buffer to be disabled, preventing the data in the Output Latch from being passed through to the pin. This is equivalent to putting the port in the input mode. Note also that the data can be written to the Output Latch even though the Output Buffer has been disabled. This enables a port to be initialized with a value prior to enabling the output.

The diagram also shows that the contents of PORT $A$ and PORT $B$ can be read even when the ports are configured as outputs.

WRITE PA $=(\overline{\mathrm{IOW}}=0) \bullet(\mathrm{CHIP}$ ENABLES ACTIVE $) \bullet($ PORT A ADDRESS SELECTED)
WRITE DDR $A=(\overline{\mathrm{IOW}}=0) \cdot($ CHIP ENABLES ACTIVE $) \bullet($ DDR A ADDRESS SELECTED)
READ PA $=\{(I O / \bar{M}=1) \cdot(\overline{\mathrm{RD}}=0)+(\overline{\mathrm{IOR}}=0)\} \cdot(\mathrm{CHIP}$ ENABLES ACTIVE) • (PORT A ADDRESS SELECTED)

## NOTE:

Write PA is not qualified by $1 O / \bar{M}$.

## ERASURE CHARACTERISTICS

The erasure characteristics of the 8755A are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms ( $\AA$ §). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000 $\AA$ range. Data show that constant exposure to room level fluorescent lighting could erase the typical 8755A in approximately 3 years while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the 8755A is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from Intel which should be placed over the 8755A window to prevent unintentional erasure.

The recommended erasure procedure for the 8755A is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms ( $\AA$ ). The integrated dose (i.e., UV intensity $x$ exposure time) for erasure should be a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The 8755A should be placed within one inch from the lamp tubes during erasure. Some lamps have a filter on their tubes and this filter should be removed before erasure.

## PROGRAMMING

Initially, and after each erasure, all bits of the EPROM portions of the 8755A are in the " 1 " state. Information is introduced by selectively programming " 0 " into the desired bit locations. A programmed " 0 " can only be changed to a " 1 " by UV erasure.

The 8755A can be programmed on the Intel Universal Programmer (iUP), and iUPF8744A programming module.

The program mode itself consists of programming a single address at a time, giving a single 50 msec pulse for every address. Generally, it is desirable to have a verify cycle after a program cycle for the same address as shown in the attached timing diagram. In the verify cycle (i.e., normal memory read cycle) ' $V_{D D}$ ' should be at +5 V .

## SYSTEM APPLICATIONS

## System Interface with 8085AH

A system using the 8755A can use either one of the two I/O Interface techniques:

- Standard I/O
- Memory Mapped IIO

If a standard $I / O$ technique is used, the system can use the feature of both $\mathrm{CE}_{2}$ and $\overline{\mathrm{CE}}_{1}$. By using a combination of unused address lines $\mathrm{A}_{11-15}$ and the Chip Enable inputs, the 8085AH system can use up to 5 ' $8755 A^{\prime}$ 's without requiring a CE decoder. See Figure 4.

If a memory mapped I/O approach is used the 8755A will be selected by the combination of both the Chip Enables and $I O / \bar{M}$ using $A D_{8-15}$ address lines. See Figure 3.


Figure 3. 8755A in 8085AH System (Memory-Mapped I/O)


## ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin
with Respect to Ground. . . . . . . . . . -0.5 V to +7 V
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . 1.5W

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## D.C. CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min	Max	Unit	Test Conditions
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.5	0.8	V	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.45	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage		10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{LO}}$	Output Leakage Current		$\pm 10$	$\mu \mathrm{~A}$	$0.45 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current		180	mA	
$\mathrm{I}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}$ Supply Current		30	mA	$\mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}$
$\mathrm{C}_{\mathrm{IN}}$	Capacitance of Input Buffer		10	pF	$\mathrm{f}_{\mathrm{C}}=1 \mu \mathrm{~Hz}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Capacitance of I/O Buffer		15	pF	$\mathrm{f}_{\mathrm{C}}=1 \mu \mathrm{~Hz}$

## D.C. CHARACTERISTICS-PROGRAMMING

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=25 \mathrm{~V} \pm 1 \mathrm{~V}$

Symbol	Parameter	Min	Typ	Max	Unit
$V_{D D}$	Programming Voltage (during Write to EPROM)	24	25	26	V
$\mathrm{I}_{\mathrm{DD}}$	Prog Supply Current		15	30	mA

## A.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	8755A		Unit
		Min	Max	
$\mathrm{t}_{\mathrm{CYC}}$	Clock Cycle Time	320		ns
T1	CLK Pulse Width	80		ns
$\mathrm{T}_{2}$	CLK Pulse Width	120		ns
$t_{f}, t_{r}$	CLK Rise and Fall Time		30	ns
$t_{\text {AL }}$	Address to Latch Set Up Time	50		ns
tLA	Address Hold Time after Latch	80		ns
tcc	Latch to READ/WRITE Control	100		ns
$t_{\text {RD }}$	Valid Data Out Delay from READ Control*		170	ns
$t_{\text {AD }}$	Address Stable to Data Out Valid**		450	ns
$t_{L L}$	Latch Enable Width	100		ns
$\mathrm{t}_{\text {RDF }}$	Data Bus Float after READ	0	100	ns
${ }^{\text {t }}$ CL	READ/WRITE Control to Latch Enable	20		ns
$\mathrm{t}_{\mathrm{CC}}$	READ/WRITE Control Width	250		ns
t ${ }_{\text {DW }}$	Data in Write Set Up Time	150		ns
twD	Data in Hold Time after WRITE	30		ns
twP	WRITE to Port Output		400	ns
$t_{\text {PR }}$	Port Input Set Up Time	50		ns
$t_{R P}$	Port Input Hold Time to Control	50		ns
$t_{\text {RYM }}$	READY HOLD Time to Control	0	160	ns
$t_{\text {ARY }}$	ADDRESS (CE) to READY		160	ns
$t_{\text {RV }}$	Recovery Time between Controls	300		ns
$t_{\text {RDE }}$	READ Control to Data Bus Enable	10		ns

## NOTES:

$C_{\text {LOAD }}=150 \mathrm{pF}$.
${ }^{*} \mathrm{Or} \mathrm{T}_{A D}-\left(\mathrm{T}_{A L}+\mathrm{T}_{L C}\right)$, whichever is greater.
**Defines ALE to Data Out Valid in conjunction with $\mathrm{T}_{\text {AL }}$.

## A.C. CHARACTERISTICS-PROGRAMMING

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=25 \mathrm{~V} \pm 1 \mathrm{~V}$

Symbol	Parameter	Min	Typ	Max	Unit
$t_{\text {PS }}$	Data Setup Time	10			ns
$t_{\text {PD }}$	Data Hold Time	0			ns
$t_{\mathrm{s}}$	Prog Pulse Setup Time	2			$\mu \mathrm{~s}$
$t_{H}$	Prog Pulse Hold Time	2			$\mu \mathrm{~s}$
$\mathrm{t}_{\text {PR }}$	Prog Pulse Rise Time	0.01	2		$\mu \mathrm{~s}$
$t_{\text {PF }}$	Prog Pulse Fall Time	0.01	2		$\mu \mathrm{~s}$
$t_{\text {PRG }}$	Prog Pulse Width	45	50		ms

## A.C. TESTING INPUT, OUTPUT WAVEFORM


A.C. Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing Measurements are made at 2.0 V for a Logic " 1 " and 0.8 V for a Logic " 0 ".
A.C. TESTING LOAD CIRCUIT

$\substack{\text { OEVICE } \\ \text { UNDER } \\ \text { TEST } \\ C_{\mathrm{L}}=150 \mathrm{pF} \\ \mathrm{C}_{\mathrm{L}} \text { Includes Jig Capacitance }}$

## WAVEFORMS

CLOCK SPECIFICATION FOR 8755A


231735-9

PROM READ, I/O READ AND WRITE


WAVEFORMS (Continued)
I/O PORT


WAIT STATE (READY = 0)


## WAVEFORMS (Continued)

8755A PROGRAM MODE


MCS ${ }^{\circledR}$-96 Architectural Overview and Quick References

## intel.

## MCS®-96 Architectural Overview

## MCS-96 Architectural Overview

CONTENTS PAGE CONTENTS ..... PAGE
1.0 INTRODUCTION ..... 14-3
5.0 8XC196KB PERIPHERALS ..... 14-7
2.0 THE CPU ..... 14-4
6.0 8XC196KC/KD PERIPHERALS ..... 14-9
3.0 THE ARCHITECTURE14-5
3.1 Addressing Modes ..... 14-5
4.0 8X9X PERIPHERALS ..... 14-6
7.0 8XC196KR/KT PERIPHERALS ..... 14-10
8.0 8XC196NT PERIPHERALS ..... 14-12
9.0 8XC196MC PERIPHERALS ..... 14-13

### 1.0 INTRODUCTION

The MCS-96 family members are all high performance microcontrollers with a 16-bit CPU and at least 230 bytes of on-chip RAM. The Intel MCS-96 family easily handles high speed calculations and fast input/output (I/O) operations. Typical applications include closedloop control and mid-range digital signal processing. Modems, motor control system, printers, engine control system, photocopiers, anti-lock brakes, air conditioner control systems, disk drives and medical instrumentation all use MCS-96 products.

All of the MCS-96 components share a common instruction set and architecture. However, the CHMOS
components have enhancements to provide higher performance with lower power consumption. To further decrease power usage, idle and power-down modes are available on these devices. These microcontrollers contain dedicated I/O subsystems and perform 16-bit arithmetic instructions including multiply and divide operations.

This overview briefly describes the MCS-96 instruction set and architecture and provides descriptions for the 8X9X, $80 \mathrm{C} 196 \mathrm{~KB}, 80 \mathrm{C} 196 \mathrm{KC}$ and 80 C 196 KR key features. Comprehensive user's guides that contain more information about these devices are available. Figure 1.1 shows a block diagram of the MCS-96 architecture.


Figure 1.1. MCS-96 Block Diagram

### 2.0 THE CPU

The major components of the MCS-96 CPU are the Register File and the Register/Arithmetic Logic Unit (RALU). Locations 00 H through 17 H are the I/O control registers or Special Function Registers (SFRs). Locations 18 H and 19 H contain the stack pointer, which can serve as general purpose RAM when not performing stack operations. The remaining bytes of the register file serve as general purpose RAM, accessible as bytes, words or double-words.

Calculations performed by the CPU take place in the RALU. The RALU shown in Figure 2.1 contains a 17-bit ALU, the Program Status Word (PSW), the Program Counter (PC), a loop counter and three temporary registers. The RALU operates directly on the Register File, thus eliminating accumulator bottleneck and providing for direct control of I/O operations through the SFRs.


Figure 2.1 Block Diagram of the Register File, RALU, Memory Controller and Interrupt Controller

### 3.0 THE ARCHITECTURE

The MCS-96 supports a complete instruction set which includes bit operations, byte operations, word operations, double-word operations (unsigned 32-bit), long operations (signed 32-bit), flag manipulations as well as jump and call instructions. All the standard logical and arithmetic instructions function as both byte and word operations. The Jump Bit Set and Jump Bit Clear instructions can operate on any of the SFRs or bytes in the lower register file. These fast bit manipulations allow for rapid I/O functions.

Byte and word operations make-up most of the instruction set. The assembly language ASM-96 uses a "B" suffix on a mnemonic for a byte operation, otherwise the mnemonic refers to a word operation. One, two or three operand forms exist for many of the instructions.

Long and double-word operations include shifts, normlize, multiply and divide. The divide instruction functions as a 32 -bit by 16 -bit divide that generates a 16 -bit quotient and 16 -bit remainder. The word multiply operates as a 16 -bit by 16 -bit multiply with a 32 -bit result. Both operations can function in either the signed or unsigned mode. The normalize instruction and sticky bit flag provide hardware support for the software floating point package (FPAL-96).

### 3.1 Addressing Modes

The MCS-96 instruction set supports the following addressing modes: register-direct, indirect, indirect with auto-increment, immediate, short-indexed and long-indexed. These modes increase the flexibility and overall execution speed of the MCS-96 devices. Each instruction uses at least one of the addressing modes. These modes and formats are shown in Figure 3.1.

Mnem	Dest or Srcl	;One operand direct
Mnem	Dest, Srcl	;Two operand direct
Mnem	Dest, Srcl, Src2	;Three operand direct
Mnem	\#Srcl	;One operand immediate
Mnem	Dest, \#Srcl	;Two operand immediate
Mnem	Dest, Srcl, \#Src2	;Three operand immediate
Mnem	[addr]	;One operand indirect
Mnem	[addr] +	;One operand indirect auto-increment
Mnem	Dest, [addr]	;Two operand indirect
Mnem	Dest, [addr] +	;Two operand indirect auto-increment
Mnem	Dest, Srcl, [addr]	;Three operand indirect
Mnem	Dest, Srcl, [addr] +	;Three operand indirect auto-increment
Mnem   Mnem	Dest, offs[addr]   Dest, Srcl, offs[addr]	;Two operand indexed (short or long)   ;Three operand indexed (short or long)
Where:		
Mnem $=$ instruction mnemonic		
Dest $=$ destination register		
Srcl, Src2 = source registers		
addr $=$ word register used in computing the address of an operand		

Figure 3.1 Instruction Format

The register-direct and immediate addressing modes execute faster than the other addressing modes. The register-direct addressing mode provides access to the addresses in the register file and the SFRs. The indexed modes provide for direct access to the remainder of the 64 K address space. Immediate addressing uses the data following the opcode as the operand.

Both of the indirect addressing modes use the value in a word register as the address of the operand. The indirect auto-increment mode increments a word address by one after a byte operation and two after a word operation. This addressing mode provides easy access into look-up tables.

The long-indexed addressing mode provides direct access to any of the locations in the 64 K address space. This mode forms the address of the operand by adding a 16-bit 2's complement value to the contents of a word register. Indexing with the zero register allows "direct" addressing to any location. The short-indexed addressing mode forms the address of the operand by adding an 8-bit 2's complement value to the contents of a word register.

The 8XC196NT has 9 new instructions which have been implemented to support addressing the extended 1 Mbyte address space of the 8XC196NT family. Four extended load and store instructions using indirect, indirect auto increment, or extended indexed addressing, can be used to address the 1 Mbyte address space. Three instructions are for extended calls, branches, and jumps. An extended version of the interruptible and non-interruptible block moves have also been implemented.

The multiple addressing modes of the MCS-96 make it easy to program in assembly language and provide an excellent interface to high-level languages. The instructions accepted by the assembler consist of mnemonics followed by either addresses or data. Refer to the Quick Reference section for Instruction Summary tables for each device. The MCS-96 Macro Assembler Users Guide contains additional ASM96 information.

### 4.0 8X9X PERIPHERALS

Standard I/O Ports-The 8X9X has five 8-bit I/O ports. Port 0 is an input port that is also the anlog input for the A/D converter. Port 1 is a quasi-bidirectional port. Port 2 contains three types of port lines: quasi-bidirectional, input and output. Other functions on the 8X9X share the input and output lines with Port 2. Ports 3 and 4 are open-drain bidirectional ports that share their pins with the address/data bus.

Timers-The 8X9X has two 16-bit timers, Timerl and Timer2. An internal clock increments the Timer1 value every 8 state times. (A state time is 3 oscillator periods.) An external clock increments Timer2 on every positive and negative transition. Either an internal or external source can reset Timer2. Timer1 and Timer2 can generate an interrupt when crossing the $0 \mathrm{FFFFH} / 0000 \mathrm{H}$ boundary. The 8 X 9 X also includes separate, dedicated timers for the Serial Port baud rate generator and Watchdog Timer. The Watchdog Timer is an internal timer that resets the system if the software fails to operate properly.

Table 1. MCS-96 Family Devices

Product	Timers	HSIO   /EPA	A/D   CHS	Serial   Port	Synch.   Serial   Port	PWMS	PTS	Slave   Port	3-Phase   Waveform   Generator
8098	2	HSIO	4	YES		1			
8097 BH	2	HSIO	8	YES		1			
8097 JF	2	HSIO	8	YES		1			
80 C 198	2	HSIO	4	YES		1			
80 C 196 KB	2	HSIO	8	YES		1			
80 C 196 KC	2	HSIO	8	YES		3	YES		
80 C 196 KD	2	HSIO	8	YES		3	YES		
80 C 196 KR	2	EPA	8	YES	YES		YES	YES	
$80 C 196 K T$	2	EPA	8	YES	YES		YES	YES	
$80 C 196 N T$	2	EPA	4	YES	YES		YES	YES	
$80 C 196 M C$	2	EPA	13	YES			YES		YES

High Speed Input Unit (HSI)-The 8X9X HSI unit can record times of external events with a 9 state time resolution. It can monitor four independently configurable HSI lines and capture the value of Timerl when an event(s) takes place. The four types of events that can trigger captures include: rising edges only, falling edges only, rising or falling edges, or every eighth rising edge. The HSI unit can store up to 8 entries (Timerl values). Reading the HSI holding register unloads the earliest entry placed in the FIFO. The HSI unit can generate an interrupt when loading an entry into the HSI holding register or loading the sixth entry into the FIFO.

High Speed Output Unit (HSO)-The 8X9X HSO unit can trigger events at specified times based on Timerl or Timer2. These programmable events include: starting an $A / D$ conversion, resetting Timer2, generating up to four software time delays, and setting or clearing one or more of the 6 HSO output lines. The HSO unit stores pending events and the specified times in a Content Addressable Memory (CAM) file. This file stores up to eight commands. Each command specifies the action time, the nature of the action, whether an interrupt is to occur, and whether Timer1 or Timer 2 is the reference timer. Every 8 state times the HSO compares the CAM locations for time matches. The HSO unit triggers the specified event when it finds a time match. A command is cleared from the CAM as soon as it executes.

The Serial Port-The Serial Port on the 8X9X has one synchronous (Mode 0 ) and three asynchronous modes (Modes 1, 2 and 3). The asynchronous modes are full duplex, meaning they can transmit and receive data simultaneously. The receiver on the 8 X 9 X is buffered so the reception of a second byte may begin before the first byte is read. The most common use of Mode 0, the synchronous mode, is to expand the I/O capability of the 8 X 9 X using shift registers. Mode 1 is the standard asynchronous mode used for normal serial communication. The data frame for Mode 1 consists of 10 bits: a start bit, 8 data bits (LSB first) and a stop bit. If parity is enabled (PEN $=1$ ), an even parity bit is sent instead of the 8 th data bit. Modes 2 and 3 are 9 -bit modes commonly used for multiprocessor communications. The data frame used in these modes consists of 11 bits: a start bit, nine data bits (LSB first) and a stop bit. Devices in Mode 2 will interrupt upon reception only if the 9th data bit is set. Devices in Mode 3 will always interrupt upon reception. Mode 3 also allows transmission of 8 data bits plus an even parity bit.

Pulse Width Modulator (PWM)-The PWM output waveform is a variable duty cycle pulse that repeats every 256 state times. The Pulse Width Modulator of the 8 X 9 X can provide useful signals for a variety of applications. The PWM output can perform digital to analog conversions and drive several types of motors that require a PWM waveform for more efficient operation.

A/D Converter-The 8X9X A/D Converter converts an analog input to a 10 -bit digital equivalent. The main components of the A/D Converter are: 8 analog inputs, an 8 to 1 multiplexer, a sample and hold capacitor and the resistor ladder. The A/D Quick Reference section defines the A/D terms. The A/D Converter can start a conversion immediately or the High Speed Output unit can trigger a conversion at a preprogrammed time. The A/D Converter performs a conversion in 88 state times. Upon completion of each conversion the converter can generate a conversion complete interrupt. The 8X9X provides separate $V_{\text {REF }}$ and ANGND supply pins to isolate noise on the $V_{C C}$ or $V_{S S}$ lines.

Interrupts-There are 21 interrupt sources and 8 interrupt vectors on the 8 X 9 X . When the interrupt controller detects one of the 8 interrupts it sets the corresponding bit in the interrupt pending register. Individual interrupts are enabled or disabled by setting or clearing bits in the interrupt mask register. When the interrupt controller decides to process an interrupt, it executes a "call" to an Interrupt Service Routine (ISR). The corresponding interrupt vector contains the address of the ISR. The interrupt controller then clears the associated pending bit.

### 5.0 8XC196KB PERIPHERALS

Standard I/O Ports-The 8XC196KB has five 8-bit $\mathrm{I} / \mathrm{O}$ ports. Port 0 is an input port that is also the analog input for the A/D converter. Port 1 is a quasi-bidirectional port. Port 2 contains three types of port lines: quasi-bidirectional, input and output. Other functions on the 8 XC 196 KB share the input and output lines with Port 2. Ports 3 and 4 are open-drain bidirectional ports that share their pins with the address/data bus.

Timers-The 8XC196KB has two 16-bit timers, Timer1 and Timer2. An internal clock increments the Timerl value every 8 state times. (A state time is 2 oscillator periods.) An external clock increments or decrements Timer2 on every positive and negative transition. Either an internal or external source can reset Timer2. Timerl can generate an interrupt when crossing the 0FFFFH/0000H boundary. Timer2 can generate an interrupt when crossing the $0 \mathrm{FFFFH} / 0000 \mathrm{H}$ boundary or the $7 \mathrm{FFFH} / 8000 \mathrm{H}$ boundary. The 8 XC 196 KB also includes separate, dedicated timers for the baud rate generator and Watchdog Timer. The Watchdog Timer is an internal timer that resets the system if the software fails to operate properly.

High Speed Input Unit (HSI)—The 8XC196KB HSI unit can record times of external events with a 9 state time resolution. It can monitor four independently configurable HSI lines and capture the value of Timerl when an event(s) takes place. The four types of events that can trigger captures include: rising edges only, falling edges only, rising or falling edges, or every eighth rising edge. The HSI unit can store up to 8 entries (Timer 1 values), 7 in the 7 -level FIFO and 1 in the HSI holding register. Reading the HSI holding register unloads the earliest entry placed in the FIFO. The HSI unit can generate an interrupt when: loading an entry into the HSI holding register, loading the fourth entry into the FIFO or loading the sixth entry into the FIFO.

High Speed Output Unit (HSO)-The 8XC196KB HSO unit can trigger events at specified times based on Timerl or Timer2. These programmable events include: starting an $\mathrm{A} / \mathrm{D}$ conversion, resetting Timer2, generating up to four software time delays, and setting or clearing one or more of the 6 HSO output lines. The HSO unit stores pending events and the specified times in a Content Addressable Memory (CAM) file. This file stores up to eight commands. Each command specifies the action time, the nature of the action, whether an interrupt is to occur, and whether Timer 1 or Timer 2 is the reference timer. Every 8 state times the HSO compares the CAM locations for time matches. The HSO unit triggers the specified event when it finds a time match. A command can either clear from the CAM as soon as it executes or remain in the CAM as a locked CAM entry and continue to execute whenever its time tag matches the reference timer. Locked entries are useful in applications requiring periodic or repetitive events to occur such as multiple PWMs.

The Serial Port-The Serial Port on the 8 XC 196 KB has one synchronous (Mode 0) and three asynchronous modes (Modes 1, 2 and 3). The asynchronous modes are full duplex, meaning they can transmit and receive data simultaneously. The receiver on the 8 XC 196 KB is buffered so the reception of a second byte may begin before the first byte is read. The transmitter is also double buffered and can generate continual transmissions. The most common use of Mode 0 , the synchronous mode, is to expand the I/O capability of the 8XC196KB using shift registers. Mode 1 is the standard asynchronous mode used for normal serial communication. The data frame for Mode 1 consists of 10 bits: a start bit, 8 data bits (LSB first) and a stop bit. If parity is enabled (PEN $=1$ ), an even parity bit is sent instead of the 8th data bit. Modes 2 and 3 are 9 -bit modes commonly used for multiprocessor communications. The data frame used in these modes consists of 11 bits: a start bit, nine data bits (LSB first) and a stop bit. Devices in Mode 2 will interrupt upon reception only if the 9th data bit is set. Devices in Mode 3 will always interrupt upon reception. Mode 3 also allows transmission of 8 data bits plus an even parity bit.

Pulse Width Modulator (PWM)—The Pulse Width Modulator of the 8 XC 196 KB can provide useful signals for a variety of applications. The PWM output can perform digital to analog conversions and drive several types of motors that require a PWM waveform for more efficient operaton. The PWM output waveform is a variable duty cycle pulse that repeats every 256 state times or 512 state times.

A/D Converter-The 8XC196KB A/D Converter converts an analog input to a 10 -bit digital equivalent. The main components of the A/D Converter are: 8 analog inputs, an 8 to 1 multiplexer, a sample and hold capacitor and the resistor ladder. Refer to the data sheet for all specifications on $A / D$ performance. The A/D Quick Reference section defines the A/D terms. The A/D Converter can start a conversion immediately or the High Speed Output unit can trigger a conversion at a preprogrammed time. The A/D Converter can perform a conversion in either 91 state times for low crystal frequencies and 158 state times for higher crystal frequencies. Upon completion of each conversion the converter generates a conversion complete interrupt. The 8 XC 196 KB provides separate $\mathrm{V}_{\text {REF }}$ and ANGND supply pins to isolate noise on the $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{SS}}$ lines.

Interrupts-There are 28 interrupt sources and 16 interrupt vectors on the 8 XC196KB. Additionally, there are 2 special interrupt vectors for Software Trap and Unimplemented Opcodes. When the interrupt controller detects one of the 16 interrupts it sets the corresponding bit in one of two interrupt pending registers. Individual interrupts are enabled or disabled by setting or clearing bits in the interrupt mask registers. When the interrupt controller decides to process an interrupt, it executes a "call" to an Interrupt Service Routine (ISR). The corresponding interrupt vector contains the address of the ISR. The interrupt controller then clears the associated pending bit.

### 6.0 8XC196KC and 8XC196KD PERIPHERALS

Standard I/O Ports-The $8 \mathrm{XC} 196 \mathrm{KC} / \mathrm{KD}$ has five 8 -bit $\mathrm{I} / \mathrm{O}$ ports. Port 0 is an input port that is also the analog input for the $A / D$ converter. Port 1 is a quasibidirectional port that shares pins with two PWM outputs. Port 2 contains three types of port lines: quasi-bidirectional, input and output. Other functions on the $8 \mathrm{XC} 196 \mathrm{KC} / \mathrm{KD}$ share the input and output lines with Port 2. Ports 3 and 4 are open-drain bidirectional ports that share their pins with the address/data bus.

Timers-The $8 \mathrm{XC} 196 \mathrm{KC} / \mathrm{KD}$ has two 16 -bit timers, Timer 1 and Timer2. An internal clock increments the Timerl value every 8 state times. (A state time is 2 oscillator periods.) An internal clock or an external clock can drive Timer2. When clocked internally Timer2 can increment every 1 or 8 state times. When clocked externally Timer2 increments or decrements on every positive and negative transition. Either an internal or external source can reset Timer2. Timer1 can generate an interrupt when crossing the OFFFFH/ 0000 H boundary. Timer2 can generate an interrupt when crossing the $0 \mathrm{FFFFH} / 0000 \mathrm{H}$ boundary or the 7FFFH/8000H boundary. The $8 \mathrm{XC} 196 \mathrm{KC} / \mathrm{KD}$ also includes separate, dedicated timers for the baud rate generator and Watchdog Timer. The Watchdog Timer is an internal timer that resets the system if the software fails to operate properly.

High Speed Input Unit (HSI)-The 8XC196KC/KD HSI unit can record times of external events with a 9 state time resolution. It can monitor four independently configurable HSI lines and capture the value of Timerl when an event(s) takes place. The four types of events that can trigger captures include: rising edges only, falling edges only, rising or falling edges, or every eighth
rising edge. The HSI unit can store up to 8 entries (Timerl values), 7 in the 7 -level FIFO and 1 in the HSI holding register. Reading the HSI holding register unloads the earliest entry placed in the FIFO. The HSI unit can generate an interrupt when: loading an entry into the HSI holding register, loading the fourth entry into the FIFO or loading the sixth entry into the FIFO.

High Speed Output Unit (HSO)-The 8 XC196KC/ KD HSO unit can trigger events at specified times based on Timerl or Timer2. These programmable events include: starting an A/D conversion, resetting Timer2, generating up to four software timers, and setting or clearing one or more of the 6 HSO output lines. The HSO unit stores pending events and the specified times in a Content Addressable Memory (CAM) file. This file stores up to eight commands. Each command specifies the action time, the nature of the action, whether an interrupt is to occur, and whether Timerl or Timer 2 is the reference timer. Every 8 state times the HSO compares the CAM locations for time matches. The HSO unit triggers the specified event when it finds a time match. A command can either clear from the CAM as soon as it executes or remain in the CAM as a locked CAM entry and continue to execute whenever its time tag matches the reference timer. Locked entries are useful in applications requiring periodic or repetitive events to occur such as multiple PWMs.

The Serial Port-The Serial Port on the 8 XC196KC/ KD has one synchronous (Mode 0) and three asynchronous modes (Modes 1, 2 and 3). The asynchronous modes are full duplex, meaning they can transmit and receive data simultaneously. The receiver on the $8 \mathrm{XC} 196 \mathrm{KC} / \mathrm{KD}$ is buffered so the reception of a second byte may begin before the first byte is read. The transmitter is also double bufered and can generate continual transmissions. The most common use of Mode 0 , the synchronous mode, is to expand the I/O capability of the $8 \mathrm{XC} 196 \mathrm{KC} / \mathrm{KD}$ using shift registers. Mode 1 is the standard asynchronous mode used for normal serial communication. The data frame for Mode 1 consists of 10 bits: a start bit, 8 data bits (LSB first) and a stop bit. If parity is enabled (PEN =1), an even parity bit is sent instead of the 8th data bit. Modes 2 and 3 are 9 -bit modes commonly used for multiprocessor communications. The data frame used in these modes consists of 11 bits: a start bit, nine data bits (LSB first) and a stop bit. Devices in Mode 2 will interrupt upon reception only if the 9th data bit is set. Devices in Mode 3 will always interrupt upon reception. Mode 3 also allows transmission of 8 data bits plus an even parity bit.

Pulse Width Modulator (PWM)—The 8CX196KC/ KD has 3 PWM outputs. The output waveform is a variable duty cycle pulse which is selectable to repeat every 256 state times or 512 state times. Several types of motors require a PWM waveform for most efficient operation. Additionally, filtering this waveform will produce a DC level that can change in 256 steps by varying the duty cycle.

A/D Converter-The 8XC196KC/KD A/D Converter converts an analog input to a digital equivalent. Resolution is either 8 or 10 bits with programmable sample and convert times. The main components of the A/D Converter are: a sample and hold, an 8 -channel multiplexer, and an 8-bit or 10 -bit successive approximation analog-to-digital converter. Refer to the data sheet for all specifications on $A / D$ performance. The $A / D$ Quick Reference section defines the A/D terms. The converter can start a conversion immediately or the High Speed Output unit can trigger a conversion at a preprogrammed time. Upon completion of each conversion the converter generates a conversion complete interrupt. The $8 \mathrm{XC} 196 \mathrm{KC} / \mathrm{KD}$ provides separate $\mathrm{V}_{\mathrm{REF}}$ and ANGND supply pins to isolate noise on the $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{SS}}$ lines.

Interrupts-There are 28 interrupt sources and 16 interrupt vectors on the $8 \mathrm{XC} 196 \mathrm{KC} / \mathrm{KD}$. In addition there are 2 special interrupt vectors (Software Trap and Unimplemented Opcode) used in Intel development tools or evaluation boards. When the interrupt controller detects one of the 16 interrupts it sets the corresponding bit in one of two interrupt pending registers. Individual interrupts are enabled or disabled by setting or clearing bits in the interrupt mask registers. When the interrupt controller decides to process an interrupt, it executes a "call" to an Interrupt Service Routine (ISR). The corresponding interrupt vector contains the address of the ISR. The interrupt controller then clears the associated pending bit.

Peripheral Transaction Server (PTS)—The PTS is a microcoded hardware interrupt processor. It responds to interrupts with a fixed set of actions. These actions consist of: transferring data, starting an A/D conversion, reading the HSI FIFO and loading HSO events. The PTS completes these tasks much faster than using interrupt driven service routines. The PTS can service all interrupts except NMI, Trap and Unimplemented Opcode. Each interrupt managed by the PTS requires a block of data called the PTS Control Block (PTSCB). Each PTSCB requires 8 data bytes in register RAM.

The PTSCB determines: the type of PTS, the number of PTS responses (if applicable), the source for data and the destination (if applicable). PTS cycles have a higher priority than interrupts and may temporarily suspend interrupt service routines.

### 7.0 8XC196KR and 8XC196KT PERIPHERALS

Standard I/O Ports-The 8XC196KR/KT has six 8 -bit I/O ports. Each pin operates as a dedicated input or output. Most pins also have an alternate function. The KR/KT does not use the quasi-bidirectional port pins found on previous MCS-96 devices. As an input, the pin is a true high impedance with no pull-ups or pull-downs. Most ports (Ports 1, 2, 5 and 6) have direction registers (Px_DIR), mode registers ( $\mathrm{Px} \_$MODE), data input registers ( $\mathrm{Px} \_$PIN) and data output registers (Px_REG). This allows the user to configure each port pin as input, output, open-drain output or alternate function. Ports 3 and 4 have Px__PIN and Px__REG registers and lack internal pull-ups. As standard outputs, these pins can only function in open-drain mode and need external pull-ups. Ports 3 and 4 also are the multiplexed address/data bus. When emitting the address, an internal pull-up device is active and does not need external pull-ups. Port 0 is the analog input port, and only has a Px__PIN register because there are no output drivers. As a digital port, Port 0 pins can only function as inputs.

Event Processor Array (EPA)-The EPA performs input event capture and output event generation functions using Timer1 and Timer2. It consists of 10 capture/compare modules, 2 compare only modules and the 2 timers. In capture mode, when an external event occurs the EPA stores the value of the timer, generates an interrupt or both. A rising, falling, or any edge can trigger a capture. All captures are double buffered. In compare mode, when the timer matches the value in the compare register the EPA changes the state of an output pin, generates an interrupt, or both. The EPA sets, resets or toggles the pin when the compare occurs. The timers can count up or count down. The clock source to the timers can be internal or external. The clock also goes through a programmable prescaler. The prescaler divides the oscillator frequency within a range of 1 to 64. The EPA also allows two channels to control a single output pin that is useful for high-speed PWM generation.

Serial I/O Port (SIO)-The SIO (also known as the UART) supports 8- or 9-bit data frames with one synchronous mode and 3 asynchronous modes. The synchronous mode transmits or receives 8 bits of data without start or stop bits and generates a shift clock. All other devices must synchronize to the 8XC196KR/ KT's shift clock. The asynchronous frames contain a start and stop bit, making them either 10 or 11 bits long. The 11-bit frames allow implementation of specialized multiprocessor communication interfaces. Two of the asynchronous modes support parity error detection. All three asynchronous modes support full or half duplex operation. Also included is a dedicated baud rate generator. The SIO on the $8 \mathrm{XC} 196 \mathrm{KR} / \mathrm{KT}$ is compatible with all MCS-96 and MCS-51 devices.

Synchronous Serial I/O Port (SSIO)-The SSIO includes two Serial I/O communication ports with separate data and clock pins. The data format is eight data bits only. The clock and data pins can be inputs or outputs. This peripheral supports several standard synchronous serial protocols. A handshake mode allows two serial channels to transfer data without requiring extra lines to convey their status. The handshake mode also permits servicing of the SSIO by the PTS. The serial channel includes a dedicated baud rate generator. Each channel has a single byte buffer. If clocked externally, both channels can simultaneously operate at different frequencies. Maximum baud rate is $1 / 8$ the oscillator frequency. The transmission or reception of a byte sets an interrupt pending flag.

A/D Converter-Converts analog inputs to a digital equivalent. Resolution is either 8 or 10 bits with programmable sample and convert times. The main components of the A/D converter are: 8 analog inputs, 8 to 1 multiplexer, sample and hold capacitor and the resistor ladder. Refer to the data sheet for all specifications on A/D performance. The A/D Quick Reference section defines the $A / D$ terms. Another function implemented with the A/D converter is threshold detection. The converter generates an interrupt when the analog input is greater than or less than a programmed digital value. The KR/KT provides separate $\mathrm{V}_{\text {REF }}$ and ANGND supply pins to isolate noise on the $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{SS}}$ lines.

Interrupts-There are 37 interrupt sources and 18 interrupt vectors on the $8 \mathrm{XC} 196 \mathrm{KR} / \mathrm{KT}$. With so many more sources than vectors, the $\mathrm{KR} / \mathrm{KT}$ implements in-
direct interrupts. 17 of the interrupts are direct, which means each interrupt has one source and a dedicated vector location. The remaining 20 interrupt sources are the indirect interrupts. The term indirect is used because they share the same interrupt vector and another register identifies the interrupt source. The register, EPAIPV, contains the highest ending interrupt. EPAIPV is read to determine the interrupt needing sevice. The TIJMP instruction with EPAIPV simplifies the servicing of indirect interrupts. The direct interrupts include: NMI, External Interrupt, Trap, Unimplemented Opcode, SIO interrupts, SSIO interrupts, slave port interrupts, A/D converter and the lower 4 EPA channels. The indirect interrupts include: the upper 6 EPA channels, the 2 compare channels, all 10 EPA overruns and both timer overflows.

Peripheral Transaction Server (PTS)—The PTS is a microcoded hardware interrupt processor. It responds to interrupts with a fixed set of actions. These actions consist of: transferring data, starting an A/D conversion or generating PWM outputs. The PTS completes these tasks much faster than using interrupt driven service routines. The PTS can service all interrupts except NMI, Trap and Unimplemented Opcode. The register PTSSEL selects the interrupts handled by the PTS. Each interrupt managed by the PTS requires a block of data called the PTS Control Block (PTSCB). Each PTSCB requires 8 data bytes in register RAM. The PTSCB determines: the type of PTS, the number of PTS responses (if applicable), the source for data and the destination (if applicable). PTS cycles have a higher priority than interrupts and may temporarily suspend interrupt service routines.

Slave Port-The slave port is an interface between the KR/KT and a microprocessor. The KR/KT sits on the address/data bus of the processor and is accessed as a memory mapped peripheral. The slave port includes: a chip select input, 8 -bit bidirectional data bus, an address input line, ALE input (to latch the address), $\overline{\mathrm{WR}}$ and $\overrightarrow{\mathrm{RD}}$ inputs to input/output data and an interrupt output. The address line and the $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ select which registers are accessed (Output data, Status output, Input data or Command input). The various control signals and port structure allow the KR/KT and the processor to communicate with each other without having to be synchronized.

### 8.0 8XC196NT PERIPHERALS

Extended Address Port (EPORT)—The 80C196NT is the first member of the MCS-96 family to offer addressing that exceeds 64 Kbytes . The 80C196NT has a 1 Mbyte liner address space which is implemented through 4 address lines added by the EPORT. EPORT lines are individually assigned to function as either address or I/O. When assigned as I/O, they have the same functionality as a standard I/O port. As an input, the pin is a true high-impedance with no pull-ups or pull-downs. As an output, the pin is either complementary or open-drain. When assigned as address, the EPORT outputs address A16-A19. The address is strongly driven through the entire bus cycle, eliminating the need for an address latch.

Standard I/O Ports-The 8XC196NT has six 8-bit I/O ports. Each pin operates as a dedicated input or output. Most pins also have an alternate function. The NT does not use the quasi-bidirectional port pins found on previous MCS-96 devices. As an input, the pin is a true high impedance with no pull-ups or pull-downs. Most ports (Ports 1, 2, 5 and 6) have direction registers (Px_DIR), mode registers (Px_MODE), data input registers (Px_PIN) and data output registers ( $\mathbf{P x} \_$_REG). This allows the user to configure each port pin as input, output, open-drain output or alternate function. Ports 3 and 4 have Px_PIN and Px__REG registers and lack internal pull-ups. As standard outputs, these pins can only function in opendrain mode and need external pull-ups. Ports 3 and 4 also are the multiplexed address/data bus. When emitting the address, an internal pull-up device is active and does not need external pull-ups. Port 0 is the analog input port, and only has a Px__PIN register because there are no output drivers. As a digital port, Port 0 pins can only function as inputs.

Event Processor Array (EPA)-The EPA performs input event capture and output event generation functions using Timer1 and Timer2. It consists of 10 capture/compare modules, 2 compare only modules and the 2 timers. In capture mode, when an external event occurs the EPA stores the value of the timer, generates an interrupt or both. A rising, falling, or any edge can trigger a capture. All captures are double buffered. In compare mode, when the timer matches the value in the compare register the EPA changes the state of an output pin, generates an interrupt, or both. The EPA sets, resets or toggles the pin when the compare occurs.

The timers can count up or count down. The clock source to the timers can be internal or external. The clock also goes through a programmable prescaler. The prescaler divides the oscillator frequency within a range of 1 to 64 . The EPA also allows two channels to control a single output pin that is useful for high-speed PWM generation.

Serial I/O Port (SIO)-The SIO (also known as the UART) supports 8 - or 9 -bit data frames with one synchronous mode and 3 asynchronous modes. The synchronous mode transmits or receives 8 bits of data without start or stop bits and generates a shift clock. All other devices must synchronize to the 8XC196NT's shift clock. The asynchronous frames contain a start and stop bit, making them either 10 or 11 bits long. The 11-bit frames allow implementation of specialized multiprocessor communication interfaces. Two of the asynchronous modes support parity error detection. All three asynchronous modes support full or half duplex operation. Also included is a dedicated baud rate generator. The SIO on the 8 XC 196 NT is compatible with all MCS-96 and MCS-51 devices.

Synchronous Serial I/O Port (SSIO)-The SSIO includes two Serial I/O communication ports with separate data and clock pins. The data format is eight data bits only. The clock and data pins can be inputs or outputs. This peripheral supports several standard synchronous serial protocols. A handshake mode allows two serial channels to transfer data without requiring extra lines to convey their status. The handshake mode also permits servicing of the SSIO by the PTS. The serial channel includes a dedicated baud rate generator. Each channel has a single byte buffer. If clocked externally, both channels can simultaneously operate at different frequencies. Maximum baud rate is $1 / 8$ the oscillator frequency. The transmission or reception of a byte sets an interrupt pending flag.

A/D Converter-Converts analog inputs to a digital equivalent. Resolution is either 8 or 10 bits with programmable sample and convert times. The main components of the A/D converter are: 4 analog inputs, 4 to 1 multiplexer, sample and hold capacitor and the resistor ladder. Refer to the data sheet for all specifications on A/D performance. The A/D Quick Reference section defines the $A / D$ terms. Another function implemented with the $A / D$ converter is threshold detection. The converter generates an interrupt when the analog input is greater than or less than a programmed digital value. The NT provides separate $\mathrm{V}_{\text {REF }}$ and ANGND supply pins to isolate noise on the $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{SS}}$ lines.

Interrupts-There are 37 interrupt sources and 18 interrupt vectors on the 8 XC 196 NT . With so many more sources than vectors, the NT implements indirect interrupts. 17 of the interrupts are direct, which means each interrupt has one source and a dedicated vector location. The remaining 20 interrupt sources are the indirect interrupts. The term indirect is used because they share the same interrupt vector and another register identifies the interrupt source. The register, EPAIPV, contains the highest ending interrupt. EPAIPV is read to determine the interrupt needing service. The TIJMP instruction with EPAIPV simplifies the servicing of indirect interrupts. The direct interrupts include: NMI, External Interrupt, Trap, Unimplemented Opcode, SIO interrupts, SSIO interrupts, slave port interrupts, A/D converter and the lower 4 EPA channels. The indirect interrupts include: the upper 6 EPA channels, the 2 compare channels, all 10 EPA overruns and both timer overflows.

Peripheral Transaction Server (PTS)-The PTS is a microcoded hardware interrupt processor. It responds to interrupts with a fixed set of actions. These actions consist of: transferring data, starting an A/D conversion or generating PWM outputs. The PTS completes these tasks much faster than using interrupt driven service routines. The PTS can service all interrupts except NMI, Trap and Unimplemented Opcode. The register PTSSEL selects the interrupts handled by the PTS. Each interrupt managed by the PTS requires a block of data called the PTS Control Block (PTSCB). Each PTSCB requires 8 data bytes in register RAM. The PTSCB determines: the type of PTS, the number of PTS responses (if applicable), the source for data and the destination (if applicable). PTS cycles have a higher priority than interrupts and may temporarily suspend interrupt service routines.

Slave Port-The slave port is an interface between the NT and a microprocessor. The NT sits on the address/ data bus of the processor and is accessed as a memory mapped peripheral. The slave port includes: a chip select input, 8 -bit bidirectional data bus, an address input line, ALE input (to latch the address), $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ inputs to input/output data and an interrupt output. The address line and the $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ select which registers are accessed (Output data, Status output, Input data or Command input). The various control signals and port structure allow the NT and the processor to communicate with each other without having to be synchronized.

### 9.0 8XC196MC PERIPHERALS

On-Chip Peripherals-The 8XC196MC's on-chip peripherals provide special functions useful in a variety of applications. The peripherals are monitored and controlled via special function registers (SFRs) that can be accessed indirectly or windowed and thereby treated as CPU "accumulators."

I/O Ports-The 8 XC196MC has 7 I/O ports, labeled $0-6$. Individual port pins are multiplexed to serve for standard I/O or to carry special signals. All ports are 8bit except port 1 which is a 5 -bit port.

Ports $0,1,2$ and 6 are controlled by SFRs that can be directly addressed by the RALU through a window in the register file. Ports 0 and 1 serve as input to the 13channel A/D, and can also be read as digital inputs. Port 2 can be configured either as standard I/O ports or to serve special functions. Port 6 is the output port for the PWM and WG units.

Ports 3, 4 and 5 are memory mapped and cannot be windowed. These ports are accessed only via 16 -bit addresses. Ports 3 and 4 also serve as the 16-bit external address/data bus. The Port 5 lines can be selected for standard I/O or to serve as system bus control pins.

Timers and the Event Processor Array (EPA)-The Event Processor Array (EPA) performs input and output functions associated with timers 1 and 2 . In the input mode the EPA monitors an input pin for signal transitions and records the timer value when the event occurs. The 'captured" event is thus tagged with its time. In the output mode the EPA waits until the timer matches a stored time value and then sets, clears or toggles an output pin. This is a "compare" event. Both capture and compare events initiate interrupts which can be handled by a normal service routine or the PTS. The 8XC196MC has 4 capture/compare modules and 4 compare-only modules.

The two 16-bit timers can be clocked by the internal clock generator or by external sources. An external "quadrature clocking" mode is available for monitoring speed and direction from a position encoder.

Pulse Width Modulation Unit-The 8XC196MC has a PWM module that provides two PWM outputs. This module is in addition to the waveform generator. The
duty cycle and the period of each output is programmable through a respective 8 -bit register. The module has an 8-bit counter, two 8-bit PWM compare registers and an 8 -bit period register. The PWM output pins are controlled with bits in the output control register of the waveform generator.

A/D Converter-The 13-channel A/D converter can perform 10 -bit conversions or faster 8 -bit conversions. Automated A/D conversions and result storage are facilitated by the A/D scan mode of the PTS. The sam-ple-and-hold times and the conversion times are programmable. The A/D can also act as a programmable comparator and issue an interrupt when the input crosses a threshold. Conversions can be performed on the analog ground and reference voltage, and the results can be used to calculate gain and zero offset errors. The zero offset compensation circuit is also programmable, enabling automatic offset adjustment.

Interrupt Controller and Peripheral Transaction Server (PTS)-The 8XC196MC's flexible interrupt handling system has two main components: the programmable interrupt controller and the Peripheral Transac-
tion Server (PTS). The interrupt controller has a hardware priority scheme that can be modified by user software. These interrupts are serviced by user-written interrupt service routines. The user can select most interrupts to be serviced by the PTS instead of the programmable interrupt controller. The PTS has several microcoded hardware interrupt service routines whose execution is interleaved with normal instruction execution. The result is high-speed, low-overhead interrupt handling. The PTS can perform single and burst transfers of bytes or 16 -bit words between any memory locations, manage multiple analog-to-digital (A/D) conversions and control a software serial channel which allows either synchronous or asynchronous operations.

Waveform Generator-The Waveform Generator (WG) produces 3 pairs of complimentary PWM signals. This peripheral is optimized for controlling 3phase induction AC motors. It can also control brushless DC motors and DC to AC inverters. A dead-time generator and phase inverter circuit provide non-overlapping on-timers for each PWM output pair. Each signal is independently programmable.

8X9X
Quick Reference

## 8X9X Quick Reference

CONTENTS
1.0 MEMORY AND SFR MAPPAGE CONTENTS
PAGE
2.0 SFR BIT SUMMARY ..... 14-18
3.0 PIN DEFINITION TABLE ..... 14-20
4.0 PACKAGE PIN ASSIGNMENTS ..... 14-22
5.0 PIN DESCRIPTIONS ..... 14-27
6.0 OPCODE TABLE ..... 14-29

### 1.0 MEMORY AND SFR MAP



### 2.0 SFR BIT SUMMARY




HSO Command ( $\mathbf{0 6 H}$ )
CHANNEL:


272110-4


WHERE FOR EACH 2-BIT STATUS FIELD THE LOWER BIT INDICATES WHETHER OR NOT AN EVENT HAS OCCURRED ON THIS PIN AND THE UPPER BIT INDICATES the current status of the pin.


272110-6


Internal Ready Control

IRC1	IRC0	Description
0	0	Limit to 1 Wait State
0	1	Limit to 2 Wait States
1	0	Limit to 3 Wait States
1	1	Disable Internal Ready Control

## Program Lock Modes

LOC1	LOCO	Protection
0	0	Read and Write Protected
0	1	Read Protected
1	0	Write Protected
1	1	No Protection




$10 \mathrm{C1}$ (16H)	
0	- SELECT PWM / SELECT P2.5
1	EXternal interrupt ach7 / EXTINT
2	-timer 1 OVERFLOW interrupt enable / disable
3	-TIMER 2 OVERFLOW Interrupt enable / DISABLE
	HSO.4 OUTPUT ENABLE/ DISALE
4	. 4 OUTPUT ENA
5	- SELECT TXD / SELECT P2.0
6	hso. 5 OUTPUt Enable / Disable
	HSI Interrupt
	LLING REGITTER LOADED
	272110-14

PSW Register

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Z	N	V	VT	C	-	I	ST	<Interrupt Mask Reg>							

### 3.0 PIN DEFINITION TABLE

Pin Name	$\begin{gathered} \text { 68L } \\ \text { PLCC } \end{gathered}$	$\begin{gathered} 68 \mathrm{~L} \\ \text { PGA or LCC } \end{gathered}$	64L SDIP	$\begin{aligned} & \text { 48L } \\ & \text { DIP } \end{aligned}$	Pin Name	$\begin{gathered} \text { 68L } \\ \text { PLCC } \end{gathered}$	$\begin{gathered} 68 \mathrm{~L} \\ \text { PGA or LCC } \end{gathered}$	$\begin{aligned} & \text { 64L } \\ & \text { SDIP } \end{aligned}$	48L   DIP
ACHO	6	4	4		HSO. 0	28	50	26	7
ACH1	5	5	3		HSO. 1	29	49	27	8
ACH2	7	3	5		HSO. 2	34	44	32	9
ACH3	4	6	2		HSO. 3	35	43	33	10
ACH4	11	67	9	43	HSO. 4	26	52	24	5
ACH5	10	68	8	42	HSO. 5	27	51	25	6
ACH6	8	2	6	40	INST	63	15		
ACH7	9	1	7	41	NMI	3	7		
AD0	60	18	58	32	P0.0	6	4	4	
AD1	59	19	57	31	P0.1	5	5	3	
AD2	58	20	56	30	P0.2	7	3	5	
AD3	57	21	55	29	P0.3	4	6	2	
AD4	56	22	54	28	P0.4	11	67	9	43
AD5	55	23	53	27	P0.5	10	68	8	42
AD6	54	24	52	26	P0.6	8	2	6	40
AD7	53	25	51	25	P0.7	9	1	7	41
AD8	52	26	50	24	P1.0	19	59	17	
AD9	51	27	49	23	P1.1	20	58	18	
AD10	50	28	48	22	P1.2	21	57	19	
AD11	49	29	47	21	P1.3	22	56	20	
AD12	48	30	46	20	P1.4	23	55	21	
AD13	47	31	45	19	P1.5	30	48	28	
AD14	46	32	44	18	P1.6	31	47	29	
AD15	45	33	43	17	P1.7	32	46	30	
$\overline{\text { ADV }}$	62	16	60	34	P2.0	18	60	16	2
ALE	62	16	60	34	P2.1	17	61	15	1
ANGND	12	66	10	44	P2.2	15	63	13	47
$\overline{\mathrm{BHE}}$	41	37	39	15	P2.3	44	34	42	
BUSWIDTH	64	14			P2.4	42	36	40	
CLKOUT	65	13			P2.5	39	39	37	13
$\overline{E A}$	2	8	1	39	P2.6	33	45	31	
EXTINT	15	63	13	47	P2.7	38	40	36	
HSI. 0	24	54	22	3	P3.0	60	18	58	32
HSI. 1	25	53	23	4	P3.1	59	19	57	31
HSI. 2	26	52	24	5	P3.2	58	20	56	30
HSI. 3	27	51	25	6	P3.3	57	21	55	29

### 3.0 PIN DEFINITION TABLE (Continued)

Pin   Name	68L   PLCC	68L   PGA or LCC	64L   SDIP	48L   DIP
P3.4	56	22	54	28
P3.5	55	23	53	27
P3.6	54	24	52	26
P3.7	53	25	51	25
P4.0	52	26	50	24
P4.1	51	27	49	23
P4.2	50	28	48	22
P4.3	49	29	47	21
P4.4	48	30	46	20
P4.5	47	31	45	19
P4.6	46	32	44	18
P4.7	45	33	43	17
PALE	17	61	15	1
PDO	39	39	37	13
PMOD.0	11	67	9	43
PMOD.1	10	68	8	42
PMOD.2	8	2	6	40
PMOD.3	9	1	7	41
PROG	15	63	13	47
PVER	18	60	16	2
PWM	39	39	37	13


Pin Name	$\begin{gathered} \text { 68L } \\ \text { PLCC } \end{gathered}$	$\begin{gathered} \text { 68L } \\ \text { PGA or LCC } \end{gathered}$	$\begin{aligned} & \text { 64L } \\ & \text { SDIP } \end{aligned}$	48L   DIP
$\overline{\mathrm{RD}}$	61	17	59	33
READY	43	35	41	16
RESET	16	62	14	48
RXD	17	61	15	1
SALE	18	60	16	2
$\overline{\text { SPROG }}$	39	39	37	13
T2CLK	44	34	42	
T2RST	42	36	40	
TXD	18	60	16	2
$\mathrm{V}_{\mathrm{CC}}$	1	9	64	38
$V_{P D}$	14	64	12	46
VPP	37	41	35	12
$V_{\text {REF }}$	13	65	11	45
$V_{\text {SS1 }}$	68	10	34	11
$V_{\text {SS2 }}$	36	42	63	37
$\overline{\mathrm{WR}}$	40	38	38	14
WRL	40	38	38	14
$\overline{\text { WRH }}$	41	37	39	25
XTAL1	67	11	62	36
XTAL2	66	12	61	35

### 4.0 PACKAGE PIN ASSIGNMENT



272110-15

PGA	Description
1	ACH7/P0.7/PMOD.3
2	ACH6/P0.6/PMOD.2
3	ACH2/P0.2
4	ACH0/P0.0
5	ACH1/P0.1
6	ACH3/P0.3
7	NMI
8	$\overline{\text { EA }}$
9	VCC
10	VSS
11	XTAL1
12	XTAL2
13	CLKOUT
14	BUSWIDTH
15	INST
16	ALE/ADV
17	$\overline{\text { RD }}$
18	ADO/P3.0
19	AD1/P3.1
20	AD2/P3.2
21	AD3/P3.3
22	AD4/P3.4
23	AD5/P3.5


PGA	Description
24	AD6/P3.6
25	AD7/P3.7
26	AD8/P4.0
27	AD9/P4.1
28	AD10/P4.2
29	AD11/P4.3
30	AD12/P4.4
31	AD13/P4.5
32	AD14/P4.6
33	AD15/P4.7
34	T2CLK/P2.3
35	READY
36	T2RST/P2.4
37	$\overline{\text { BHE/ }} \overline{\text { WRH }}$
38	$\overline{\text { WR/ }} \overline{\text { WRL }}$
39	PWM/P2.5/PDO/SPROG
40	P2.7
41	VPP
42	VSS
43	HSO.3
44	HSO.2
45	P2.6
46	P1.7


PGA	Description
47	P1.6
48	P1.5
49	HSO.1
50	HSO.0
51	HSO.5/HSI.3
52	HSO.4/HSI.2
53	HSI.1
54	HSI.0
55	P1.4
56	P1.3
57	P1.2
58	P1.1
59	P1.0
60	TXD/P2.0/PVER/SALE
61	RXD/P2.1/PALE
62	$\overline{\text { RESET }}$
63	EXTINT/P2.2/PROG
64	V PD
65	V REF
66	ANGND
67	ACH4/P0.4/PMOD.0
68	ACH5/P0.5/PMOD.1





Shrink-DIP Package

| RXD P2.1/PALE |
| ---: | ---: | ---: | ---: | ---: |

### 5.0 PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage ( 5 V ).
$\mathrm{V}_{\text {SS }}$	Digital circuit ground ( 0 V ). There are two $\mathrm{V}_{\mathrm{SS}}$ pins, both of which must be connected.
$V_{P D}$	RAM standby supply voltage ( 5 V ). This voltage must be present during normal operation. In a Power Down condition (i.e., $\mathrm{V}_{C C}$ drops to zero), if RESET is activated before $\mathrm{V}_{\mathrm{CC}}$ drops below spec and $V_{P D}$ continues to be held within spec., the top 16 bytes in the Register File will retain their contents.
$\mathrm{V}_{\text {REF }}$	Reference voltage for the $A / D$ converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected to use A/D or Port 0.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $V_{S S}$.
$\mathrm{V}_{\mathrm{PP}}$	Programming voltage for the EPROM devices. It should be +12.75 V for programming and will float to 5 V otherwise. The pin should not be above $\mathrm{V}_{C C}$ for ROM and CPU devices. This pin must be left floating in the application circuit for EPROM devices.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT* $\dagger$	Output of the internal clock generator. The frequency of CLKOUT is $1 / 3$ the oscillator frequency. It has a $33 \%$ duty cycle.
RESET	Reset input to the chip. Input low for a minimum 10 XTAL1 cycles to reset the chip. The subsequent low-to-high transition re-synchronizes CLKOUT and commences a 10-statetime RESET sequence.
BUSWIDTH* $\dagger$	Input for bus width selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1 , a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus. If this pin is left unconnected, it will rise to $\mathrm{V}_{\mathrm{Cc}}$.
NMI* $\dagger$	A positive transition causes a vector to external memory location 0000 H .
INST* $\dagger$	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle.
$\overline{E A}$	Input for memory select (External Access). $\overline{\text { EA }}$ equal to a TTL-high causes memory accesses to locations 2000 H through 3FFFH to be directed to on-chip ROM/EPROM. EA equal to a TTL-low causes accesses to these locations to be directed to off-chip memory. $\overline{\mathrm{EA}}=+12.75 \mathrm{~V}$ causes execution to begin in the Programming Mode.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a signal to demultiplex the address from the address/data bus. When the pin is $\overline{\text { ADV, it goes inactive high at the end of the bus cycle. ALE/ } \overline{\operatorname{ADV}} \text { is activated only during }}$ external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
	Write and Write Low output to external memory, as selected by the CCR. $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. $\overline{W R} / \overline{W R L}$ is activated only during external memory writes.
$\overline{\text { BHE } / \overline{W R H}}$	Bus High Enable or Write High output to external memory, as selected by the CCR. $\overline{\text { BHE }}$ will go low for external writes to the high byte of the data bus. WRH will go low for external writes where an odd byte is being written. $\overline{\text { BHE }} / \overline{\text { WRH }}$ is activated only during external memory writes.

### 5.0 PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
READY	Ready input to lengthen external memory cycles. If the pin is low prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the next positive transition in CLKOUT occurs with READY high. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle held not ready is available in the CCR.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.
Port 0 \#	8 -bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter.
Port $1+$	8 -bit quasi-bidirectional I/O port.
Port $2 \dagger$	8 -bit multi-functional port. Six of its pins are shared with other functions in the 8096BH, the remaining 2 are quasi-bidirectional.
Ports 3 and 4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus. Ports 3 and 4 are also used as a command, address and data path by EPROM devices operating in the Programming Mode.
PMODE	Determines the EPROM programming mode.
$\overline{\text { PACT }}$	A low signal in Auto Programming Mode indicates that programming is in progress. A high signal indicates programming is complete.
PVAL	A low signal in Auto Programming Mode indicates that the device was programmed correctly.
SALE	A falling edge of Auto Programming Mode indicates that Ports 3 and 4 contain valid programming address/command information (output from master).
$\overline{\text { SPROG }}$	A falling edge in Auto Programming Mode indicates that Ports 3 and 4 contain valid programming data (output from master).
SID	Ássigns a pin of Ports 3 and 4 to each slave to pass programming verification.
PA!LE	A falling edge in Slave Programming Mode and Auto Configuration Byte Programming Mode indicates that Ports 3 and 4 contain valid programming address/command information (input to slave).
PROG	A falling edge in Slave Programming Mode indicates that Ports 3 and 4 contain valid programming data (input to slave).
PVER	A high signal in Slave Programming Mode and Auto Configuration Byte Programming Mode indicates the byte programmed correctly.
PVAL	A high signal in Slave Programming Mode indicates the device was programmed correctly.
$\overline{\text { PDO }}$	A low signal in Slave Programming Mode indicates that the PROG pulse was applied for longer than allowed.

*Not available on Shrink-DIP package.
$\dagger$ Not available on 48-pin device.
$\ddagger$ Port 0.0.1.2.3 not available on 48-pin device.

### 6.0 OPCODE TABLE

Opcode	Instruction	Opcode	Instruction
00	SKIP	34	JBC
01	CLR	35	JBC
02	NOT	36	JBC
03	NEG	37	JBC
04	XCH	38	JBS
05	DEC	39	JBS
06	EXT	3A	JBS
07	INC	3B	JBS
08	SHR	3 C	JBS
09	SHL	3D	JBS
OA	SHRA	3 E	JBS
OB	RESERVED**	3F	JBS
${ }^{0} \mathrm{C}$	SHRL	40	AND DIRECT (3 OPS)
OD	SHLL	41	AND IMMEDIATE (3 OPS)
OE	SHRAL	42	AND INDIRECT (3 OPS)
OF	NORML	43	AND INDEXED (3 OPS)
10	RESERVED**	44	ADD DIRECT (3 OPS)
11	CLRB	45	ADD IMMEDIATE (3 OPS)
12	NOTB	46	ADD INDIRECT (3 OPS)
13	NEGB	47	ADD INDEXED (3 OPS)
14	XCHB	48	SUB DIRECT (3 OPS)
15	DECB	49	SUB IMMEDIATE (3 OPS)
16	EXTB	4A	SUB INDIRECT (3 OPS)
17	INCB	4B	SUB INDEXED (3 OPS)
18	SHRB	4 C	MULU DIRECT (3 OPS)
19	SHLB	4D	MULU IMMEDIATE (3 OPS)
1A	SHRAB	4E	MULU INDIRECT (3 OPS)
1B	RESERVED**	4F	MULU INDEXED (3 OPS)
1 C	RESERVED**	50	ANDB DIRECT (3 OPS)
1 D	RESERVED**	51	ANDB IMMEDIATE (3 OPS)
1E	RESERVED**	52	ANDB INDIRECT (3 OPS)
1F	RESERVED**	53	ANDB INDEXED (3 OPS)
20	SJMP	54	ADDB DIRECT (3 OPS)
21	SJMP	55	ADDB IMMEDIATE (3 OPS)
22	SJMP	56	ADDB INDIRECT (3 OPS)
23	SJMP	57	ADDB INDEXED (3 OPS)
24	SJMP	58	SUBB DIRECT (3 OPS)
25	SJMP	59	SUBB IMMEDIATE (3 OPS)
26	SJMP	5A	SUBB INDIRECT (3 OPS)
27	SJMP	5B	SUBB INDEXED (3 OPS)
28	SCALL	5 C	MULUB DIRECT (3 OPS)
29	SCALL	5D	MULUB IMMEDIATE (3 OPS)
2A	SCALL	5E	MULUB INDIRECT (3 OPS)
2B	SCALL	5 F	MULUB INDEXED (3 OPS)
2 C	SCALL	60	AND DIRECT (2 OPS)
2D	SCALL	61	AND IMMEDIATE (2 OPS)
2E	SCALL	62	AND INDIRECT (2 OPS)
2 F	SCALL	63	AND INDEXED (2 OPS)
30	JBC	64	ADD DIRECT (2 OPS)
31	JBC	65	ADD IMMEDIATE (2 OPS)
32	JBC	66	ADD INDIRECT (2 OPS)
33	JBC	67	ADD INDEXED (2 OPS)

6.0 OPCODE TABLE (Continued)

Opcode	Instruction	Opcode	Instruction
68	SUB DIRECT (2 OPS)	9 C	DIVUB DIRECT
69	SUB IMMEDIATE (2 OPS)	9 D	DIVUB IMMEDIATE
6A	SUB INDIRECT (2 OPS)	9 E	DIVUB INDIRECT
6B	SUB INDEXED (2 OPS)	9 F	DIVUB INDEXED
6C	MULU DIRECT (2 OPS)	AO	LD DIRECT
6D	MULU IMMEDIATE (2 OPS)	A1	LD IMMEDIATE
6 E	MULU INDIRECT (2 OPS)	A2	LD INDIRECT
6 F	MULU INDEXED (2 OPS)	A3	LD INDEXED
70	ANDB DIRECT (2 OPS)	A4	ADDC DIRECT
71	ANDB IMMEDIATE (2 OPS)	A5	ADDC IMMEDIATE
72	ANDB INDIRECT (2 OPS)	A6	ADDC INDIRECT
73	ANDB INDEXED (2 OPS)	A7	ADDC INDEXED
74	ADDB DIRECT (2 OPS)	A8	SUBC DIRECT
75	ADDB IMMEDIATE (2 OPS)	A9	SUBC IMMEDIATE
76	ADDB INDIRECT (2 OPS)	AA	SUBC INDIRECT
77	ADDB INDEXED (2 OPS)	AB	SUBC INDEXED
78	SUBB DIRECT (2 OPS)	AC	LDBZE DIRECT
79	SUBB IMMEDIATE (2 OPS)	AD	LDBZE IMMEDIATE
7A	SUBB INDIRECT (2 OPS)	AE	LDBZE INDIRECT
7B	SUBB INDEXED (2 OPS)	AF	LDBZE INDEXED
7 C	MULUB DIRECT (2 OPS)	B0	LDB DIRECT
7D	MULUB IMMEDIATE (2 OPS)	B1	LDB IMMEDIATE
7E	MULUB INDIRECT (2 OPS)	B2	LDB INDIRECT
7F	MULUB INDEXED (2 OPS)	B3	LDB INDEXED
80	OR DIRECT	B4	ADDCB DIRECT
81	OR IMMEDIATE	B5	ADDCB IMMEDIATE
82	OR INDIRECT	B6	ADDCB INDIRECT
83	OR INDEXED	B7	ADDCB INDEXED
84	XOR DIRECT	B8	SUBCB DIRECT
85	XOR IMMEDIATE	B9	SUBCB IMMEDIATE
86	XOR INDIRECT	BA	SUBCB INDIRECT
87	XOR INDEXED	BB	SUBCB INDEXED
88	CMP DIRECT	BC	LDBSE DIRECT
89	CMP IMMEDIATE	BD	LDBSE IMMEDIATE
8A	CMP INDIRECT	BE	LDBSE INDIRECT
8B	CMP INDEXED	BF	LDBSE INDEXED
8 C	DIVU DIRECT	C0	ST DIRECT
8D	DIVU IMMEDIATE	C1	RESERVED**
8 E	DIVU INDIRECT	C2	ST INDIRECT
8 F	DIVU INDEXED	C3	STINDEXED
90	ORB DIRECT	C4	STB DIRECT
91	ORB IMMEDIATE	C5	RESERVED**
92	ORB INDIRECT	C6	STB INDIRECT
93	ORB INDEXED	C7	STB INDEXED
94	XORB DIRECT	C8	PUSH DIRECT
95	XORB IMMEDIATE	C9	PUSH IMMEDIATE
96	XORB INDIRECT	CA	PUSH INDIRECT
97	XORB INDEXED	CB	PUSH INDEXED
98	CMPB DIRECT	CC	POP DIRECT
99	CMPB IMMEDIATE	CD	RESERVED**
9A	CMPB INDIRECT	CE	POP INDIRECT
9 B	CMPB INDEXED	CF	POP INDEXED

6.0 OPCODE TABLE (Continued)

Opcode	Instruction	Opcode	Instruction
D0	JNST	E8	RESERVED**
D1	JNH	E9	RESERVED**
D2	JGT	EA	RESERVED**
D3	JNC	EB	RESERVED**
D4	JNVT	EC	RESERVED**
D5	JNV	ED	RESERVED**
D6	JGE	EE	RESERVED**
D7	JNE	EF	LCALL
D8	JST	F0	RET
D9	JH	F1	RESERVED**
DA	JLE	F2	PUSHF
DB	JC	F3	POPF
DC	JVT	F4	RESERVED**
DD	JV	F5	RESERVED**
DE	JLT	F6	RESERVED**
DF	JE	F7	TRAP
EO	DJNZ	F8	CLRC
E1	RESERVED**	F9	SETC
E2	RESERVED**	FA	DI
E3	BR (INDIRECT)	FB	El
E4	RESERVED**	FC	CLRVT
E5	RESERVED**	FD	NOP
E6	RESERVED**	FE	*DIV/DIVB/MUL/MULB
E7	LJMP	FF	RST

*Two Byte Instruction
**Opcodes which do not have a corresponding instruction will not generate an interrupt if executed.

### 7.0 INSTRUCTION SUMMARY

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			z	N	C	v	VT	ST	
ADD/ADDB	2	$D \leftarrow D+A$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
ADD/ADDB	3	$D \leftarrow B+A$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
ADDC/ADDCB	2	$D \leftarrow D+A+C$	$\downarrow$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
SUB/SUBB	2	$D \leftarrow D-A$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
SUB/SUBB	3	$D \leftarrow B-A$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
SUBC/SUBCB	2	$D \leftarrow D-A+C-1$	$\downarrow$	$\nu$	$\nu$	$\checkmark$	$\uparrow$	-	
CMP/CMPB	2	$D-A$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
MUL/MULU	2	$D, D+2 \leftarrow D^{*} A$	-	-	-	-	-	?	2
MUL/MULU	3	$D, D+2 \leftarrow B^{*} A$	-	-	-	-	-	?	2
MULB/MULUB	2	$D, D+1 \leftarrow D^{*} A$	-	-	-	-	-	?	3
MULB/MULUB	3	$D, D+1 \leftarrow B^{*} A$	-	-	-	-	-	?	3
DIVU	2	$D \leftarrow(D, D+2) / A, D+2 \leftarrow$ remainder	-	-	-	$\nu$	$\uparrow$	-	2
DIVUB	2	$D \leftarrow(D, D+1) / A, D+1 \leftarrow$ remainder	-	-	-	$\checkmark$	$\uparrow$	-	3
DIV	2	$D \leftarrow(D, D+2) / A, D+2 \leftarrow$ remainder	-	-	-	?	$\uparrow$	-	
DIVB	2	$D \leftarrow(D, D+1) / A, D+1 \leftarrow$ remainder	-	-	-	?	$\uparrow$	-	
AND/ANDB	2	$D \leftarrow D$ and $A$	$\checkmark$	$\checkmark$	0	0	-	-	
AND/ANDB	3	$D \leftarrow B$ and $A$	$\checkmark$	$\checkmark$	0	0	-	-	
OR/ORB	2	$D \leftarrow D$ or $A$	$\checkmark$	$\checkmark$	0	0	-	-	
XOR/XORB	2	$\mathrm{D} \leftarrow \mathrm{D}$ (excl. or) A	$\checkmark$	$\checkmark$	0	0	-	-	
LD/LDB	2	$D \leftarrow A$	-	-	-	-	-	-	
ST/STB	2	$A \leftarrow D$	-	-	-	-	-	-	
LDBSE	2	$D \leftarrow A ; D+1 \leftarrow \operatorname{SIGN}(A)$	-	-	-	-	-	-	3,4
LDBZE	2	$D \leftarrow A ; D+1 \leftarrow 0$	-	-	-	-	-	-	3,4
PUSH	1	$S P \leftarrow S P-2 ;(S P) \leftarrow A$	-	-	-	-	-	-	
POP	1	$\mathrm{A} \leftarrow(\mathrm{SP}) ; \mathrm{SP} \leftarrow \mathrm{SP}+2$	-	-	-	-	-	-	
PUSHF	0	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-2 ;(\mathrm{SP}) \leftarrow \mathrm{PSW} ; \\ & \mathrm{PSW} \leftarrow 0000 \mathrm{H} \end{aligned}$	0	0	0	0	0	0	
POPF	0	PSW $\leftarrow(S P) ; S P \leftarrow \mathrm{SP}+2 ; \quad 1 \leftarrow \sim$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	
SJMP	1	$\mathrm{PC} \leftarrow \mathrm{PC}+$ 11-bit offset	-	-	-	-	-	-	5
LJMP	1	$\mathrm{PC} \leftarrow \mathrm{PC}+16$-bit offset	-	-	-	-	-	-	5
BR [indirect]	1	$\mathrm{PC} \leftarrow(\mathrm{A})$	-	-	-	-	-	-	
SCALL	1	$\begin{aligned} & S P \leftarrow \mathrm{SP}-2 ;(\mathrm{SP}) \leftarrow \mathrm{PC} ; \\ & \mathrm{PC} \leftarrow \mathrm{PC}+11 \text {-bit offset } \end{aligned}$	-	-	-	-	-	-	5
LCALL	1	$\begin{aligned} & S P \leftarrow \mathrm{SP}-2 ;(\mathrm{SP}) \leftarrow \mathrm{PC} ; \\ & \mathrm{PC} \leftarrow \mathrm{PC}+16 \text {-bit offset } \end{aligned}$	-	-	-	-	-	-	5
RET	0	$\mathrm{PC} \leftarrow(\mathrm{SP}) ; \mathrm{SP} \leftarrow \mathrm{SP}+2$	-	-	-	-	-	-	

### 7.0 INSTRUCTION SUMMARY (Continued)

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			Z	N	C	V	VT	ST	
$J$ (conditional)	1	$\mathrm{PC} \leftarrow \mathrm{PC}+8$-bit offset (if taken)	-	-	-	-	-	-	5
JC	1	Jump if $C=1$	-	-	-	-	-	-	5
JNC	1	Jump if $\mathrm{C}=0$	-	-	-	-	-	-	5
JE	1	Jump if $Z=1$	-	-	-	-	-	-	5
JNE	1	Jump if $Z=0$	-	-	-	-	-	-	5
JGE	1	Jump if $\mathrm{N}=0$	-	-	-	-	-	-	5
JLT	1	Jump if $N=1$	-	-	-	-	-	-	5
JGT	1	Jump if $N=0$ and $Z=0$	-	-	-	-	-	-	5
JLE	1	Jump if $N=1$ or $Z=1$	-	-	-	-	-	-	5
JH	1	Jump if $C=1$ and $Z=0$	-	-	-	-	-	-	5
JNH	1	Jump if $C=0$ or $Z=1$	-	-	-	-	-	-	5
JV	1	Jump if $\mathrm{V}=1$	-	-	-	-	-	-	5
JNV	1	Jump if $V=0$	-	-	-	-	-	-	5
JVT	1	Jump if $\mathrm{VT}=1$; Clear VT	-	-	-	-	0	-	5
JNVT	1	Jump if $\mathrm{VT}=0$; Clear VT	-	-	-	-	0	-	5
JST	1	Jump if ST $=1$	-	-	-	-	-	-	5
JNST	1	Jump if ST $=0$	-	-	-	-	-	-	5
JBS	3	Jump if Specified Bit $=1$	-	-	-	-	-	-	5,6
JBC	3	Jump if Specified Bit $=0$	-	-	-	-	-	-	5,6
DJNZ	1	$\begin{aligned} & D \leftarrow D-1 \text {; if } D \neq 0 \text { then } \\ & P C \leftarrow P C+8 \text {-bit offset } \end{aligned}$	-	-	-	-	-	-	5
DEC/DECB	1	$D \leftarrow D-1$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
NEG/NEGB	1	$D \leftarrow 0-D$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
INC/INCB	1	$D \leftarrow D+1$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
EXT	1	$D \leftarrow \mathrm{D} ; \mathrm{D}+2 \leftarrow \operatorname{Sign}(\mathrm{D})$	$\checkmark$	$\checkmark$	0	0	-	-	2
EXTB	1	$D \leftarrow D ; D+1 \leftarrow \operatorname{Sign}(\mathrm{D})$	$\checkmark$	$\checkmark$	0	0	-	-	3
NOT/NOTB	1	$\mathrm{D} \leftarrow$ Logical Not (D)	$\nu$	$\checkmark$	0	0	-	-	
CLR/CLRB	1	$D \leftarrow 0$	1	0	0	0	-	-	
SHL/SHLB/SHLL	2	$\mathrm{C} \leftarrow \mathrm{msb}-----\mathrm{lsb} \leftarrow 0$	$\checkmark$	?	$\checkmark$	$\checkmark$	$\uparrow$	-	7
SHR/SHRB/SHRL	2	$0 \rightarrow \mathrm{msb}----\ldots \mathrm{lsb} \rightarrow \mathrm{C}$	$\checkmark$	?	$\checkmark$	0	-	$\checkmark$	7
SHRA/SHRAB/SHRAL	2	$\mathrm{msb} \rightarrow \mathrm{msb}-----\mathrm{lsb} \rightarrow \mathrm{C}$	$\checkmark$	$\checkmark$	$\checkmark$	0	-	$\checkmark$	7
SETC	0	$C \leftarrow 1$	-	-	1	-	-	-	
CLRC	0	$\mathrm{C} \leftarrow 0$	-	-	0	-	-	-	
CLRVT	0	VT $\leftarrow 0$	-	-	-	-	0	-	

### 7.0 INSTRUCTION SUMMARY (Continued)

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			Z	N	C	v	VT	ST	
RST	0	$\mathrm{PC} \leftarrow 2080 \mathrm{H}$	0	0	0	0	0	0	8
DI	0	Disable All Interrupts ( $1 \leftarrow 0$ )	-	-	-	-	-	-	
El	0	Enable All Interrupts ( $1 \leftarrow 1$ )	-	-	-	-	-	-	
NOP	0	$\mathrm{PC} \leftarrow \mathrm{PC}+1$	-	-	-	-	-	-	
SKIP	0	$\mathrm{PC} \leftarrow \mathrm{PC}+2$	-	-	-	-	-	-	
NORML	2	Left shift till msb $=1$; $\mathrm{D} \leftarrow$ shift count	$\checkmark$	?	0	-	-	-	7
TRAP	0	$\begin{aligned} & S P \leftarrow \mathrm{SP}-2 ;(\mathrm{SP}) \leftarrow \mathrm{PC} \\ & \mathrm{PC} \leftarrow(2010 \mathrm{H}) \\ & \hline \end{aligned}$	-	-	-	-	-	-	9

## NOTES:

1. If the mnemonic ends in " $B$ ", a byte operation is performed, otherwise a word operation is done. Operands $D, B$ and $A$ must conform to the alignment rules for the required operand type. $D$ and $B$ are locations in the Register File; $A$ can be located anywhere in memory.
2. D, D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.
3. $D, D+1$ are consecutive BYTES in memory; $D$ is WORD aligned.
4. Changes a byte to a word.
5. Offset is a 2's complement number.
6. Specified bit is one of the 2048 bits in the register file.
7. The "L" (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 2080 H .
9. The assembler will not accept this mnemonic.

## 8．0 OPCODES，INSTRUCTION LENGTH AND STATE TIMES

		DIRECT			IMMEDIATE			INDIRECT®					INDEXED®							
					NORMAL	AUTO－INC．		SHORT			LONG									
		$\begin{aligned} & \text { ü } \\ & \text { O} \\ & \text { D } \end{aligned}$	$\left\|\begin{array}{l} \mathbf{m} \\ \mathbf{m} \\ \mathbf{m} \end{array}\right\|$					$\begin{aligned} & \text { 山 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|c} \mathbf{c} \\ \mathbf{m} \\ \mathbf{5} \\ \hline \end{array}$		$\begin{aligned} & \text { ய } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \boldsymbol{m} \\ & \mathbf{m} \\ & \hline \mathbf{m} \end{aligned}$		$\left\|\begin{array}{l} \boldsymbol{n} \\ \mathbf{y} \\ \mathbf{m} \end{array}\right\|$		$\begin{aligned} & \text { 山 } \\ & \text { O} \\ & 0 \\ & 0 . \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \boldsymbol{m} \\ & \mathbf{m} \\ & \mathbf{m} \end{aligned}\right.$		号	
ARITHMETIC INSTRUCTIONS																				
ADD	2	64	3	4	65	4	5	66	3	6／11	3	7／12	67	4	6／11	5	7／12			
ADD	3	44	4	5	45	5	6	46	4	7／12	4	8／13	47.	5	7／12	6.	8／13			
ADDB	2	74	3	4	75	3	4	76	3	6／11	3	7／12	77	4	6／11	5	7／12			
ADDB	3	54	4	5	55	4	5	56	4	7／12	4	8／13	57	5	$7 / 12$	6	8／13			
ADDC	2	A4	3	4	A5	4	5	A6	3	6／11	3	7／12	A7	4	6／11	5	$7 / 12$			
ADDCB	2	B4	3	4	B5	3	4	B6	3	6／11	3	7／12	B7	4	6／11	5	$7 / 12$			
SUB	2	68	3	4	69	4	5	6A	3	6／11	3	7／12	6B	4	6／11	5	$7 / 12$			
SUB	3	48	4	5	49	5	6	4A	4	7／12	4	8／13	4B	5	7／12	6	8／13			
SUBB	2	78	3	4	79	3	4	7A	3	6／11	3	7／12	7B	4	6／11	5	7／12			
SUBB	3	58	4	5	59	4	5	5A	4	7／12	4	8／13	5B	5	7／12	6	8／13			
SUBC	2	A8	3	4	A9	4	5	AA	3	6／11	3	7／12	AB	4	6／11	5	7／12			
SUBCB	2	B8	3	4	B9	3	4	BA	3	6／11	3	7／12	BB	4	6／11	5	$7 / 12$			
CMP	2	88	3	4	89	4	5	8A	3	6／11	3	7／12	8B	4	6／11	5	7／12			
CMPB	2	98	3	4	99	3	4	9A	3	6／11	3	7／12	9B	4	6／11	5	7／12			
MULU	2	6C	3	25	6D	4	26	6E	3	27／32	3	28／33	6 F	4	27／32	5	28／33			
MULU	3	4C	4	26	4D	5	27	4E	4	28／33	4	29／34	4 F	5	28／33	6	29／34			
MULUB	2	7C	3	17	7D	3	17	7E	3	19／24	3	20／25	7 F	4	19／24	5	20／25			
MULUB	3	5C	4	18	5D	4	18	5E	4	20／25	4	21／26	5 F	5	20／25	6	21／26			
MUL	2	（2）	4	29	（2）	5	30	（2）	4	31／36	4	32／37	（2）	5	31／36	6	32／37			
MUL	3	（2）	5	30	（2）	6	31	（2）	5	32／37	5	33／38	（2）	6	32／37	7	33／38			
MULB	2	（2）	4	21	（2）	4	21	（2）	4	23／28	4	24／29	（2）	5	23／28	6	24／29			
MULB	3	（2）	5	22	（2）	5	22	（2）	5	24／29	5	25／30	（2）	6	24／29	7	25／30			
DIVU	2	8C	3	25	8D	4	26	8 E	3	28／32	3	29／33	8 F	4	28／32	5	29／33			
DIVUB	2	9C	3	17	9D	3	17	9E	3	20／24	3	21／25	9F	4	20／24	5	21／25			
DIV	2	（2）	4	29	（2）	5	30	（2）	4	32／36	4	33／37	（2）	5	32／36	6	33／37			
DIVB	2	（2）	4	21	（2）	4	21	（2）	4	24／28	4	25／29	（2）	5	24／28	6	25／29			

## NOTES：

＊Long indexed and Indirect＋instructions have identical opcodes with Short indexed and Indirect modes，respectively．The second byte of instructions using any Indirect or indexed addressing mode specifies the exact mode used．If the second byte is even，use Indirect or Short indexed．If it is odd，use Indirect＋or Long indexed．In all cases the second byte of the instruction always specifies an even（word）location for the address referenced．
（1）Number of state times shown for internal／external operands．
（2）The opcodes for signed multiply and divide are the opcodes for the unsigned functions with an＂FE＂appended as a prefix．
（8）State times shown for 16 －bit bus．

## 8．0 OPCODES，INSTRUCTION LENGTH AND STATE TIMES（Continued）

		DIRECT			IMMEDIATE			INDIRECT ${ }^{\text {® }}$					INDEXED®							
					NORMAL	AUTO－INC．		SHORT			LONG									
		$\begin{aligned} & \text { 山 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						$\mu$   0   0   0   0   0	$\begin{aligned} & \boldsymbol{g} \\ & \underset{\sim}{\mathbf{m}} \\ & \mathbf{m} \end{aligned}$	㘳皆	$\mu$ 0 0 0 0 0	$\left\lvert\, \begin{gathered} \boldsymbol{g} \\ \mathbf{y} \\ \mathbf{5} \\ \hline \mathbf{m} \end{gathered}\right.$		－		14 0 0 0 0 0	－		号	
LOGICAL INSTRUCTIONS																				
AND	2	60	3	4	61	4	5	62	3	6／11	3	7／12	63	4	6／11	5	$7 / 12$			
AND	3	40	4	5	41	5	6	42	4	7／12	4	8／13	43	5	7／12	6	8／13			
ANDB	2	70	3	4	71	3	4	72	3	6／11	3	7／12	73	4	6／11	5	$7 / 12$			
ANDB	3	50	4	5	51	4	5	52	4	7／12	4	8／13	53	5	7／12	6	8／13			
OR	2	80	3	4	81	4	5	82	3	6／11	3	7／12	83	4	6／11	5	$7 / 12$			
ORB	2	90	3	4	91	3	4	92	3	6／11	3	$7 / 12$	93	4	6／11	5	$7 / 12$			
XOR	2	84	3	4	85	4	5	86	3	6／11	3	$7 / 12$	87	4	6／11	5	$7 / 12$			
XORB	2	94	3	4	95	3	4	96	3	6／11	3	7／12	97	4	6／11	5	$7 / 12$			
DATA TRANSFER INSTRUCTIONS																				
LD	2	A0	3	4	A1	4	5	A2	3	6／11	3	7／12	A3	4.	6／11	5	$7 / 12$			
LDB	2	B0	3	4	B1	3	4	B2	3	6／11	3	7／12	B3	4	6／11	5	$7 / 12$			
ST	2	C0	3	4	－	－	－	C2	3	7／11	3	8／12	C3	4	7／11	5	8／12			
STB	2	C4	3	4	－	－	－	C6	3	$7 / 11$	3	$8 / 12$	C7	4	7／11	5	8／12			
LDBSE	2	BC	3	4	BD	3	4	BE	3	6／11	3	7／12	BF	4	6／11	5	$7 / 12$			
LDBZE	2	AC	3	4	AD	3	4	AE	3	6／11	3	7／12	AF	4	6／11	5	7／12			
STACK OPERATIONS（internal stack）																				
PUSH	1	C8	2	8	C9	3	8	CA	2	11／15	2	12／16	CB	3	11／15	4	12／16			
POP	1	CC	2	12	－	－	－	CE	2	14／18	2	14／18	CF	3	14／18	4	14／18			
PUSHF	0	F2	1	8																
POPF	0	F3	1	9																
STACK OPERATIONS（external stack）																				
PUSH	1	C8	2	12	C9	3	12	CA	2	15／19	2	16／20	CB	3	15／19	4	16／20			
POP	1	CC	2	14	－	－	－	CE	2	16／20	2	16／20	CF	3	16／20	4	16／20			
PUSHF	0	F2	1	12																
POPF	0	F3	1	13																


JUMPS AND CALLS							
MNEMONIC	OPCODE	BYTES	STATES	MNEMONIC	OPCODE	BYTES	STATES
LJMP	E7	3	8	LCALL	EF	3	$13 / 16(5)$
SJMP	$20-27(4)$	2	8	SCALL	$28-2 F(4)$	2	$13 / 16(5)$
BR［ ］	E3	2	8	RET	F0	1	$12 / 160$

272110－21

## NOTES：

（1）Number of state times shown for internal／external operands．
（3）The assembler does not accept this mnemonic．
（4）The least significant 3 bits of the opcode are concatenated with the following 8 bits to form an 11－bit，2＇s complement， offset for the relative call or jump．
（5）State times for stack located internal／external．
（®）State times shown for 16－bit bus．

### 8.0 OPCODES, INSTRUCTION LENGTH AND STATE TIMES (Continued) CONDITIONAL JUMPS

| All conditional jumps are 2 byte instructions. They require 8 state times if the jump is taken, 4 if it is not.(8) |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MNEMONIC | OPCODE | MNEMONIC | OPCODE | MNEMONIC | OPCODE | MNEMONIC | OPCODE |
| JC | DB | JE | DF | JGE | D6 | JGT | D2 |
| JNC | D3 | JNE | D7 | JLT | DE | JLE | DA |
| JH | D9 | JV | DD | JVT | DC | JST | D8 |
| JNH | D1 | JNV | D5 | JNVT | D4 | JNST | D0 |

JUMP ON BIT CLEAR OR BIT SET

These instructions are 3 byte instructions. They require 9 state times if the jump is taken, 5 if it is not.(8)									
		BIT NUMBER							
MNEMONIC	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
JBC	30	31	32	33	34	35	36	37	
JBS	38	39	$3 A$	$3 B$	$3 C$	$3 D$	$3 E$	$3 F$	

LOOP CONTROL

MNEMONIC	OPCODE	BYTES	STATE TIMES
DJNZ	EO	3	$5 / 9$ STATE TIME (NOT TAKEN/TAKEN)(8)

SINGLE REGISTER INSTRUCTIONS

MNEMONIC	OPCODE	BYTES	STATES(8)	MNEMONIC	OPCODE	BYTES	STATES(8)
DEC	05	2	4	EXT	06	2	4
DECB	15	2	4	EXTB	16	2	4
NEG	03	2	4	NOT	02	2	4
NEGB	13	2	4	NOTB	12	2	4
INC	07	2	4	CLR	01	2	4
INCB	17	2	4	CLRB	11	2	4

### 8.0 OPCODES, INSTRUCTION LENGTH AND STATE TIMES (Continued)

SPECIAL CONTROL INSTRUCTIONS

MNEMONIC	OPCODE	BYTES	STATES(8)	MNEMONIC	OPCODE	BYTES	STATES(8)
SETC	F9	1	4	DI	FA	1	4
CLRC	F8	1	4	EI	FB	1	4
CLRVT	FC	1	4	NOP	FD	1	4
RST(6)	FF	1	166	SKIP	00	2	4

NORMALIZE

MNEMONIC	OPCODE	BYTES	STATE TIMES
NORML	OF	3	$11+1$ PER SHIFT

NOTES:
6. This instruction takes 2 states to pull $\overline{\text { RESET }}$ low, then holds it low for at least one state time to initiate a reset. The reset takes 13 states, at which time the program restarts at location 2080 H .
7. Execution will take at least 8 states, even for 0 shift.
8. State times shown for 16 -bit bus.

### 9.0 INTERRUPT TABLE

Vector	Vector Location       (High   Byte)		(Low   Byte)
	2011 H	2010 H	Not Applicable
Extint	200 FH	200 EH	7 (Highest)
Serial Port	200 DH	200 CH	6
Software Timers	200 BH	200 AH	5
HSI.O	2009 H	2008 H	4
High Speed Outputs	2007 H	2006 H	3
HSI Data Available	2005 H	2004 H	2
A/D Conversion Complete	2003 H	2002 H	1
Timer Overflow	2001 H	2000 H	0 (Lowest)

### 10.0 FORRGULAS

Baud Rate Calculations
Using XTAL1:   Mode 0: $\underset{\text { Rate }}{\text { Baud }}=\frac{\text { XTAL1 frequency }}{4 *(B+1)} ; B \neq 0$   Others: $\underset{\text { Rate }}{\text { Baud }}=\frac{\text { XTAL1 frequency }}{64 *(B+1)}$   Using T2CLK:   Mode 0: $\underset{\text { Rate }}{\text { Baud }}=\frac{\text { T2CLK frequency }}{\mathrm{B}} ; \mathrm{B} \neq 0$   Others: $\underset{\text { Rate }}{\text { Baud }}=\frac{\text { T2CLK frequency }}{16 * B} ; B \neq 0$   Note that B cannot equal 0 , except when using XTAL1 in other than Mode 0.

8X9XBH Signature Word

Device	Signature Word
$879 \times B H$	896FH
839XBH	896EH
809XBH	Undefined

11.0 RESET STATUS

Register	RESET Value
Port 1	XXXXXXXXB
Port 2	XXOXXXX1B
Port 3	$11111111 B$
Port 4	$11111111 B$
PWM Control	00 H
Serial Port (Transmit)	undefined
Serial Port (Receive)	undefined
Baud Rate Register	undefined
Serial Port Control	XXXXOXXXB
Serial Port Status	X00XXXXXB
A/D Command	undefined
A/D Result	undefined
Interrupt Pending	undefined
Interrupt Mask	00000000 B
Timer 1	0000 H
Timer 2	0000 H
WDT	0000 H
HSI Mode	XXXXXXXXB
HSI Status	undefined
IOS0	00000000 B
IOS1	$00000000 B$
IOCO	

## 8XC196KB <br> Quick Reference

8XC196KB Quick Reference
CONTENTS page CONTENTS
1.0 MEMORY MAP ..... $14-42$
2.0 SFR MAP ..... $14-42$
3.0 SFR BIT SUMMARY ..... $14-43$
4.0 PIN DEFINITION TABLE ..... $14-47$
5.0 PACKAGE PIN ASSIGNMENTS ..... $14-50$
6.0 PIN DESCRIPTIONS ..... 14-57
7.0 OPCODE TABLE ..... $14-59$
PAGE
PAGE
8.0 INSTRUCTION SET SUMMARY
8.0 INSTRUCTION SET SUMMARY ..... 14-62 ..... 14-62
9.0 INSTRUCTION
LENGTH/OPCODE ..... 14-65
10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) ..... 14-67
11.0 INTERRUPT TABLE ..... 14-69
12.0 FORMULAS ..... 14-71
13.0 RESET STATUS ..... $14-72$

### 1.0 MEMORY MAP

$\left.\begin{array}{|c|c|}\hline \text { EXTERNAL MEMORY OR I/O } & \text { OFFFFH } \\ \hline \text { INTERNAL ROM/EPROM OR } \\ \text { EXTERNALMEMORY }\end{array}\right)$

NOTE:
Code executed in locations 0 to OFFH will be forced external.

### 2.0 SFR MAP

$\begin{aligned} & 19 \mathrm{H} \\ & 18 \mathrm{H} \\ & 17 \mathrm{H} \\ & 16 \mathrm{H} \end{aligned}$	SP (HI)	19H	SP (HI)	$\begin{aligned} & 19 \mathrm{H} \\ & 18 \mathrm{H} \end{aligned}$	SP (HI)	$\begin{aligned} & 19 \mathrm{H} \\ & 18 \mathrm{H} \end{aligned}$	SP (HI)
	SP (LO)	18H	SP (LO)		SP (LO)		SP (LO)
	IOS2	$17 \mathrm{H}$	PWM_CONTROL	$17 \mathrm{H}$	PWM_CONTROL	$17 \mathrm{H}$	IOS2
	IOS1		10 C 1		IOC1	16H	IOS1
15H	IOSO	$\begin{aligned} & 15 \mathrm{H} \\ & 14 \mathrm{H} \end{aligned}$	IOCO	$\begin{aligned} & 16 \mathrm{H} \\ & 15 \mathrm{H} \end{aligned}$	IOC0	15 H14	IOSO
14H	WSR		WSR	14 H	WSR		WSR
13H	INT_MASK1	13 H	INT_MASK1	13H	INT_MASK1	13 H	INT_MASK1
12 H	INT_-PEND1	12H	INT_PEND1	12H	INT__PEND1	12 H11 H	INT_PEND1
11H	SP_STAT		SP_CON	10 H	SP_CON		SP_STAT
10 H	PORT2	$\begin{aligned} & 11 \mathrm{H} \\ & 10 \mathrm{H} \end{aligned}$	PORT2		RESERVED**	10 H	RESERVED**
OFH	PORT1	OFH	PORT1	OFH	RESERVED**	OFH	RESERVED**
OEH	PORTO	OEH	BAUD_REG	OEH	RESERVED**	ODH	RESERVED**
ODH	TIMER2 (HI)		TIMER2 (HI)		T2CAPTURE(HI)		T2CAPTURE(HI)
OCH	TIMER2 (LO)	OCH	TIMER2 (LO)	OCH	T2CAPTURE(LO)	OCH	T2CAPTURE(LO)
OBH	TIMER1 (HI)	OBH	IOC2	OBH	10 C 2	OBH	TIMER1 (HI)
OAH	TIMER1 (LO)	$\begin{aligned} & \mathrm{OAH} \\ & \mathrm{O} \mathrm{OH} \end{aligned}$	WATCHDOG		WATCHDOG		TIMER1 (LO)
09H	INT_PPEND		INT__PEND	OAH 09	INT_PEND	09H	INT__PEND
08H	INT_MASK	$08 \mathrm{H}$	INT_MASK	08H	INT_MASK		INT_MASK
07H	SBUF (RX)		SBUF (TX)	07H	SBUF(TX)	06H	SBUF(RX)
06H	HSI_STATUS	06H	HSO_COMMAND	06H	HSO_COMMAND	05H	HSI_STATUS
05H	HSI_TIME (HI)	05H	HSO_TIME (HI)	05H	HSO_TIME(HI)		HSI_TIME (HI)
04H	HSI_TIME (LO)	04H	HSO_TIME (LO)		HSO_TIME(LO)	04H	HSI_TIME (LO)
03H	AD__RESULT (HI)	03H	HSI_MODE	03H	HSI_MODE	$03 \mathrm{H}$	AD_RESULT (HI)
02H	AD_RESULT (LO)	02H	AD_COMMAND	02H	AD_COMMAND	$02 \mathrm{H}$	AD_RESULT (LO)
01H	ZERO_REG (HI).	01H	ZERO_REG (HI)	01H	ZERO_REG (HI)		ZERO_REG (H)
OOH$* * R$	ZERO_REG (LO)	OOH	ZERO_REG (LO)	OOH	ZERO_REG (LO)		ZERO_REG (LO)
	HWINDOW 0 when Read rved registers sh		HWINDOW 0 when Written ten or read.		HWINDOW 15 when Read		when Written



### 3.0 SFR BIT SUMMARY





IOSO (15H HWINO Read)
(15H HWIN15 Write)



IOC0 (15H HWINO Write)
(15H HWIN15 Read)
 272111-9


| 0 | ENABLE FAST INCREMENT OF T2 |
| :---: | :---: | :---: |
| 1 | ENABLE T2 AS UP/DOWN COUNTER |
| 2 | ENABLE /2 PRESCALER ON PWMs |
| 3 | ENABLE 80C196KC A/D MODES |
| 4 | A/D CLOCK PRESCALER DISABLE |
| 5 | T2 ALTERNATE INTERRUPT @ 8000H |
| 6 | ENABLE LOCKED CAM ENTRIES |
| 7 | CLEAR ENTIRE CAM |


SP_CON (11H HWINO Write)   (11H HWIN15 Read)			
2	PEN - 1 = PARITY ENABLED (EVEN)		
3	REN - 1 = RECEIVE ENABLED		
4	TB8 - 9th BIT FOR TRANSMISSION		
5	RSV*		
6	RSV*		
7	RSV*		
*RSV - RESERVED bITS MUST be written as 0			
272111-11			





### 4.0 PIN DEFINITION TABLE

8XC196KB, 8XC198, 8XC194 Pin Definition Table

Pin Name	8XC196KB			8XC198		8XC194	
	$\begin{aligned} & \text { 68L } \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & \hline 68 \mathrm{~L} \\ & \text { PGA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 80L } \\ & \text { QFP } \end{aligned}$	$\begin{array}{r} 52 L \\ \text { PLCC } \end{array}$	$\begin{aligned} & \text { 80L } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & \text { 52L } \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & \text { 80L } \\ & \text { QFP } \end{aligned}$
ACHO	6	4	18	N/A	N/C	N/A	N/C
ACH1	5	5	17	N/A	N/C	N/A	N/C
ACH2	7	3	19	N/A	N/C	N/A	N/C
ACH3	4	6	16	N/A	N/C	N/A	N/C
ACH4	11	67	24	9	24	N/A	N/C
ACH5	10	68	23	8	23	N/A	N/C
ACH6	8	2	20	6	20	N/A	N/C
ACH7	9	1	21	7	21	N/A	N/C
AD0	60	18	2	48	2	48	2
AD1	59	19	1	47	1	47	1
AD2	58	20	80	46	80	46	80
AD3	57	21	78	45	78	45	78
AD4	56	22	77	44	77	44	77
AD5	55	23	76	43	76	43	76
AD6	54	24	74	42	74	42	74
AD7	53	25	73	41	73	41	73
AD8	52	26	72	40	72	40	72
AD9	51	27	71	39	71	39	71
AD10	50	28	70	38	70	38	70
AD11	49	29	69	37	69	37	69
AD12	48	30	68	36	68	36	68
AD13	47	31	67	35	67	35	67
AD14	46	32	66	34	66	34	66
AD15	45	33	65	33	65	33	65
ADV	62	16	4	50	4	50	4
AINC	42	36	61	30	61	30	61
ALE	62	16	4	50	4	50	4
ANGND	12	66	25	10	25	10	25
BHE	41	37	60	N/A	N/C	N/A	N/C
BREQ	30	48	46	N/A	N/C	N/A	N/C
BUSWIDTH	64	14	6	N/A	N/A	N/A	N/A
CDE*	14	64	N/A	N/A	N/A	N/A	N/A
CLKOUT	65	13	7	N/A	N/C	N/A	N/C
EA	2	8	14	5	14	5	14
EXTINT	15,9	63, 25	28, 21	13	28, 21	13	28, 21
HOLD	32	46	48	N/A	N/C	N/A	N/C
HLDA	31	47	47	N/A	N/C	N/A	N/C
HSI. 0	24	54	39	17	39	17	39
HSI. 1	25	53	40	18	40	18	40
HSI. 2	26	52	41	19	41	19	41
HSI. 3	27	51	43	20	43	20	43

4.0 PIN DEFINITION TABLE (Continued)

8XC196KB, 8XC198, 8XC194 Pin Definition Table

Pin Name	8XC196KB			8XC198		8XC194	
	$\begin{gathered} \text { 68L } \\ \text { PLCC } \end{gathered}$	$\begin{aligned} & \text { 68L } \\ & \text { PGA } \end{aligned}$	$\begin{aligned} & \text { 80L } \\ & \text { QFP } \end{aligned}$	$\begin{gathered} 52 \mathrm{~L} \\ \text { PLCC } \end{gathered}$	$\begin{aligned} & \text { 80L } \\ & \text { QFP } \end{aligned}$	$\begin{gathered} 52 \mathrm{~L} \\ \text { PLCC } \end{gathered}$	$\begin{aligned} & \text { 80L } \\ & \text { QFP } \end{aligned}$
HSO. 0	28	50	44	21	44	21	44
HSO. 1	29	49	45	22	45	22	45
HSO. 2	34	44	50	23	50	23	50
HSO. 3	35	43	53	25	53	25	53
HSO. 4	26	52	41	19	41	19	41
HSO. 5	27	51	43	20	43	20	43
INST	63	15	5	51	5	51	5
NMI	3	7	15	N/A	N/A	N/A	N/A
P0.0	6	4	18	N/A	N/C	N/A	N/C
P0.1	5	5	17	N/A	N/C	N/A	N/C
P0. 2	7	3	19	N/A	N/C	N/A	N/C
P0.3	4	6	16	N/A	N/C	N/A	N/C
P0.4	11	67	24	9	24	9	24
P0.5	10	68	23	8	23	8	23
P0.6	8	2	20	6	20	6	20
P0.7	9	1	21	7	21.	7	21
P1.0	19	59	34	N/A	N/C	N/A	N/A
P1.1	20	58	35	N/A	N/C	N/A	N/C
P1.2	21	57	36	N/A	N/C	N/A	N/C
P1.3	22	56	37	N/A	N/C	N/A	N/C
P1.4	23	55	38	N/A	N/C	N/A	N/C
P1.5	30	48	46	N/A	N/C	N/A	N/C
P1.6	31	47	47	N/A	N/C	N/A	N/C
P1.7	32	46	48	N/A	N/C	N/A	N/C
P2.0	18	60	32	16	32	16	32
P2.1	17	61	31	15	31	15	31
P2.2	15	63	28	13	28	13	28
P2.3	44	34	64	32	64	32	64
P2.4	- 42	36	61	30	61	30	61
P2.5	39	39	58	28	58	28	58
P2.6	33	45	49	N/A	N/C	N/A	N/C
P2.7	38	40	57	N/A	N/C	N/A	N/C
P3.0	60	18	2	48	2	48	2
P3.1	59	19	1	47	1	47	1
P3.2	58	20	80	46	80	46	80
P3.3	57	21	78	45	78	45	78
P3.4	56	22	77	44	77	44	77
P3. 5	55	23	76	43	76	43	76
P3.6	54	24	74	42	74	42	74
P3.7	53	25	73	41	73	41	73

### 4.0 PIN DEFINITION TABLE (Continued) <br> 8XC196KB, 8XC198, 8XC194 Pin Definition Table

Pin Name	8XC196KB			8XC198		8XC194	
	$\begin{aligned} & 68 \mathrm{~L} \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & \text { 68L } \\ & \text { PGA } \end{aligned}$	$\begin{aligned} & \text { 80L } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 52 \mathrm{~L} \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & 80 \mathrm{~L} \\ & \text { QFP } \end{aligned}$	$\begin{gathered} 52 \mathrm{~L} \\ \text { PLCC } \end{gathered}$	$\begin{aligned} & \hline 80 \mathrm{~L} \\ & \text { QFP } \end{aligned}$
P4.0	52	26	72	40	72	40	72
P4.1	51	27	71	39	71	39	71
P4.2	50	28	70	38	70	38	70
P4.3	49	29	69	37	69	37	69
P4.4	48	30	68	36	68	36	68
P4.5	47	31	67	35	67	35	67
P4.6	46	32	66	34	66	34	66
P4.7	45	33	65	33	65	33	65
PALE	17	61	31	15	31	15	31
PMODE. 0	11	67	24	9	24	9	24
PMODE. 1	10	68	23	8	23	8	23
PMODE. 2	8	2	20	6	20	6	20
PMODE. 3	9	1	21	7	21	7	21
PROG	15	63	28	13	28	13	28
RESET	16	62	30	14	30	14	30
RXD	17	61	31	15	31	15	31
SID. 0	24	54	39	17	39	17	39
SID. 1	25	53	40	18	40	18	40
SID. 2	26	52	41	19	41	19	41
SID. 3	27	51	43	20	43	20	43
T2CAPTURE	38	40	57	N/A	N/C	N/A	N/C
T2CLK	44	34	64	32	64	32	64
T2RST	42	36	61	30	61	30	61
T2UPDN	33	45	49	N/A	N/C	N/A	N/C
TXD	18	60	32	16	32	16	32
$\mathrm{V}_{\text {CC }}$	1	9	$\begin{gathered} 12,13, \\ 2,52, \\ 75 \end{gathered}$	4	$\begin{gathered} 12,13, \\ 2,52, \\ 75 \end{gathered}$	4	$\begin{gathered} 12,13, \\ 29,52, \\ 75 \end{gathered}$
$\mathrm{V}_{\text {PP }}$	37	41	56	27	56	27	56
$\mathrm{V}_{\text {REF }}$	13	65	26	11	26	11	26
$V_{S S}$	68, 36	10, 42	$\begin{aligned} & 10,11, \\ & 27,33, \\ & 42,51, \\ & 54,55, \\ & 63,79 \end{aligned}$	$\begin{gathered} 3,1,1, \\ 24,26, \\ 52 \end{gathered}$	$\begin{aligned} & 6,10, \\ & 11,15, \\ & 27,33, \\ & 42,51, \\ & 54,55, \\ & 63,79 \end{aligned}$	$\begin{gathered} 3,12, \\ 24,26, \\ 52 \end{gathered}$	$\begin{gathered} 6,10, \\ 11,15, \\ 27,33, \\ 42,51, \\ 54,55, \\ 63,79 \end{gathered}$
WR	40	38	59	29	59	29	59
WRL	40	38	59	29	59	29	59
WRH	41	37	60	N/A	N/C	N/A	N/C
XTAL1	67	11	9	2	9	2	9
XTAL2	66	12	8	1	8	1	8

NOTES:
*CDE This pin was formerly the Clock Detect Enable pin. This is not functional, and this pin must be connected to $\mathrm{V}_{\text {SS }}$.
N/A $=$ Not Available
N/C $=$ No Connect. Do not connect these pins.

### 5.0 PACKAGE PIN ASSIGNMENTS



68-Pin PLCC Package Diagram


NOTE:
N.C. means No Connect (do not connect these pins).


68-Pin PGA Package (Top View) 80C196KB Only

PGA	Description	PGA	Description	PGA	Description
1	ACH7/P0.7/PMODE. 3	24	AD6/P3.6	47	P1.6/TLDA
2	ACH6/P0.6/PMODE. 2	25	AD7/P3.7/EXTINT	48	P1.5/BREQ
3	ACH2/P0. 2	26	AD8/P4.0	49	HSO. 1
4	ACH0/P0.0	27	AD9/P4.1	50	HSO. 0
5	ACH1/P0. 1	28	AD10/P4.2	51	HSO.5/HSI.3/SID. 3
6	ACH3/P0. 3	29	AD11/P4.3	52	HSO.4/HSI.2/SID. 2
7	NMI	30	AD12/P4.4	53	HSI.1/SID. 1
8	$\overline{E A}$	31	AD13/P4.5	54	HSI.0/SID. 0
9	VCC	32	AD14/P4.6	55	P1.4
10	$V_{\text {SS }}$	33	AD15/P4.7	56	P1.3
11	XTAL1	34	T2CLK/P2.3	57	P1.2
12	XTAL2	35	READY	58	P1.1
13	CLKOUT	36	T2RST/P2.4/AINC	59	P1.0
14	BUSWIDTH	37	$\overline{\text { BHE/ }} \overline{\text { WRH }}$	60	TSD/P2.0/PVER
15	INST	38	WR/WRL	61	RXD/P2.1/PALE
16	ALE/ $\overline{\text { ADV }}$	39	PWM/P2.5	62	RESET
17	RD	40	P2.7/T2CAPTURE/ $\overline{\text { PACT }}$	63	EXTINT/P2.2/PROG
18	ADO/P3.0/PVAL	41	$V_{P P}$	64	$\mathrm{V}_{\text {SS }}{ }^{(1)}$
19	AD1/P3.1	42	V Ss	65	$V_{\text {REF }}$
20	AD2/P3. 2	43	HSO.3/SID3	66	ANGND
21	AD3/P3.3	44	HSO.2/SID2	67	ACH4/P0.4/PMODE. 0
22	AD4/P3.4	45	P2.6/T2UPDN	68	ACH5/P0.5/PMODE. 1
23	AD5/P3. 5	46	P1.7/HOLD		

## NOTE:

1. This pin was formerly the Clock Detect Enable pin. This function is not guaranteed to work. This pin must be directly connected to $\mathrm{V}_{\mathrm{Ss}}$.



80-Pin QFP Package Diagram



80-Pin QFP Package Diagram

### 6.0 PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (5V).
$\mathrm{V}_{\text {SS }}$	Digital circuit ground ( OV ). There are three $\mathrm{V}_{\text {SS }}$ pins, all of them must be connected.
$V_{\text {REF }}$	Reference voltage for the $\mathrm{A} / \mathrm{D}$ converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as Vss.
$\mathrm{V}_{\mathrm{PP}}$	Programming voltage. Also timing pin for the return from power down circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $\mathrm{V}_{\mathrm{SS}}$. If this function is not used, connect to $\mathrm{V}_{\mathrm{CC}}$.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT	Output of the internal clock generator. The frequency of CLKOUT is $1 / 2$ the oscillator frequency. It has a $50 \%$ duty cycle.
$\overline{\text { RESET }}$	Reset input and open-drain output. Input low for at least 4 state times to reset the chip. The subsequent low-to-high transition re-synchronizes CLKOUT and commences a 10 -state-time sequence in which the PSW is cleared, a byte read from 2018 H loads CCR, and a jump to location 2080 H is executed. Input high for normal operation. RESET has an internal pullup.
BUSWIDTH	Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1 , a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus.
NMI	A positive transition causes a vector through 203EH.
INST	Output high during an external memory read indicates the read is an instruction fetch and output low indicates a data fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses.
EA	Input for memory select (External Access). $\overline{E A}$ equal to a TTL-high causes memory accesses to locations 2000 H through 3FFFH to be directed to on-chip ROM/EPROM. EA equal to a TTL-low causes accesses to these locations to be directed to off-chip memory.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a signal to demultiplex the address from the address/data bus. When the pin is $\overline{\text { ADV }}$, it goes inactive high at the end of the bus cycle. $\overline{\text { ADV }}$ can be used as a chip select for external memory. ALE/ $\overline{A D V}$ is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{\text { WR } / \overline{W R L}}$	Write and Write Low output to external memory, as selected by the CCR. $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. WR/WRL is activated only during external memory writes.
$\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$	Bus High Enable or Write High output to external memory, as selected by the CCR. $\overline{\text { BHE }}=0$ selects the bank of memory that is connected to the high byte of the data bus. AO $=0$ selects the bank of memory that is connected to the low byte of the data bus. Thus accesses to a 16 -bit wide memory can be to the low byte only ( $\mathrm{AO}=0, \overline{\mathrm{BHE}}=1$ ), to the high byte only ( $\mathrm{AO}=1, \overline{\mathrm{BHE}}=0$ ), or both bytes ( $\mathrm{AO}=0, \overline{\mathrm{BHE}}=0$ ). If the $\overline{\text { WRH function is selected, the }}$ pin will go low if the bus cycle is writing to an odd memory location. $\overline{B H E} / \overline{\mathrm{WRH}}$ is valid only during 16-bit external memory write cycles.

### 6.0 PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
READY	Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, or for bus sharing. If the pin is high, CPU operation continues in a normal manner. If the pin is low prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the next positive transition in CLKOUT occurs with READY high. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle (held not ready) is available through configuration of CCR.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit. The HSI pins are also used as the SID in Slave Programming Mode.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.
Port 0	8 -bit high impedance input-only port. Three pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter. These pins set the Programming Mode.
Port 1	8 -bit quasi-bidirectional I/O port. These pins are shared with $\overline{\text { HOLD, }}$,
Port 2	8-bit multi-functional port. All of its pins are shared with other functions in the 87C196KB.
Ports 3 and 4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus which has strong internal pullups.
HOLD	Bus Hold input requesting control of the bus. Enabled by setting WSR.7.
HLDA	Bus Hold acknowledge output indicating release of the bus. Enabled by setting WSR.7.
$\overline{\text { BREQ }}$	Bus Request output activated when the bus controller has a pending external memory cycle. Enabled by setting WSR.7.
TxD	The TxD pin is used for serial port transmission in Modes 1,2 , and 3. The TxD function is enabled by setting IOC1.5. In mode 0 the pin is used as the serial clock output.
RxD	Serial Port Receive pin used for serial port reception. The RxD function is enabled by setting SPCON.3. In mode 0 the pin functions as input or output data.
EXTINT	A rising edge on the EXTINT pin will generate an external interrupt. EXTINT is selected as the external interrupt source by setting IOC1.1 high.
T2CLK	The T2CLK pin is the Timer2 clock input or the serial port baud rate generator input.
T2RST	A rising edge on the T2RST pin will reset Timer2. The external reset function is enabled by setting IOCO.3. T2RST is enabled as the reset source by clearing IOCO.5.
PWM	Port 2.5 can be enabled as a PWM output by setting IOC1.0. The duty cycle of the PWM is determined by the value loaded into the PWM-CONTROL register (17H).
T2UPDN	The T2UPDN pin controls the direction of Timer2 as an up or down counter. The Timer2 up/down function is enabled by setting IOC2.1.
T2CAP	A rising edge on P2.7 will capture the value of Timer2 in the T2CAPTURE register (location OCH in Window 15).
PMODE	Programming Mode Select. Determines the EPROM programming algorithm that is performed. PMODE is sampled after a chip reset and should be static while the part is operating.
SID	Slave ID Number. Used to assign each slave a pin of Port 3 or 4 to use for passing programming verification acknowledgement. For example, if gang programming in the Slave Programming Mode, the slave with SID $=001$ will use Port 3.1 to signal correct or incorrect program verification.

### 6.0 PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
$\overline{\text { PALE }}$	Programming ALE Input. Accepted by the 87C196KB when it is in Slave Programming   Mode. Used to indicate that Ports 3 and 4 contain a command/address.
$\overline{\text { PROG }}$	Programming. Falling edge indicates valid data on PBUS and the beginning of programming.   Rising edge indicates end of programming.
$\overline{\text { PACT }}$	Programming Active. Used in the Auto Programming Mode to indicate when programming   activity is complete.
$\overline{\text { PVAL }}$	Program Valid. This signal indicates the success or failure of programming in the Auto   Programming Mode. A zero indicates successful programming.
PVER	Program Verification. Used in Slave Programming and Auto CLB Programming Modes.   Signal is low after rising edge of PROG if the programming was not successful.
$\overline{\text { AINC }}$	Auto Increment. Active low signal indicates that the auto increment mode is enabled. Auto   Increment will allow reading or writing of sequential EPROM locations without address   transactions across the PBUS for each read or write.
PORT   3 and 4   During   Programming	Address/Command/Data Bus. Used to pass commands, addresses, and data to and from   slave mode 87C196KBs. Used by chips in Auto Programming Mode to pass command,   addresses and data to slaves. Also used in the Auto Programming Mode as a regular   system bus to access external memory. Should have pullups to VCC (15 k $\Omega$ ).

### 7.0 OPCODE TABLE

00	SKIP
01	CLR
02	NOT
03	NEG
04	RESERVED
05	DEC
06	EXT
07	INC
08	SHR
09	SHL
$0 A$	SHRA
$0 B$	RESERVED
$0 C$	SHRL
$0 D$	SHLL
$0 E$	SHRAL
$0 F$	NORML
10	RESERVED
11	CLRB
12	NOTB
13	NEGB
14	RESERVED


15	DECB
16	EXTB
17	INCB
18	SHRB
19	SHLB
$1 A$	SHRAB
$1 B$	RESERVED
$1 C$	RESERVED
$1 D$	RESERVED
$1 E$	RESERVED
$1 F$	RESERVED
20	SJMP
21	SJMP
22	SJMP
23	SJMP
24	SJMP
25	SJMP
26	SJMP
27	SJMP
28	SCALL
29	SCALL


2A	SCALL
2B	SCALL
2 C	SCALL
2D	SCALL
2 E	SCALL
2 F	SCALL
30	JBC
31	JBC
32	JBC
33	JBC
34	JBC
35	JBC
36	JBC
37	JBC
38	JBS
39	JBS
3A	JBS
3B	JBS
3C	JBS
3D	JBS
3E	JBS

7.0 OPCODE TABLE (Continued)

3F	JBS	64	ADD DIRECT (2 OPS)
40	AND DIRECT (3 OPS)	65	ADD IMMEDIATE (2 OPS)
41	AND IMMEDIATE (3 OPS)	66	ADD INDIRECT (2 OPS)
42	AND INDIRECT (3 OPS)	67	ADD INDEXED (2 OPS)
43	AND INDEXED (3 OPS)	68	SUB DIRECT (2 OPS)
44	ADD DIRECT (3 OPS)	69	SUB IMMEDIATE (2 OPS)
45	ADD IMMEDIATE (3 OPS)	6A	SUB INDIRECT (2 OPS)
46	ADD INDIRECT (3 OPS)	6B	SUB INDEXED (2 OPS)
47	ADD INDEXED (3 OPS)	6C	MULU DIRECT (2 OPS)
48	SUB DIRECT (3 OPS)	6D	MULU IMMEDIATE (2 OPS)
49	SUB IMMEDIATE (3 OPS)	6E	MULU INDIRECT (2 OPS)
4A	SUB INDIRECT (3 OPS)	6 F	MULU INDEXED (2 OPS)
4B	SUB INDEXED (3 OPS)	70	ANDB DIRECT (2 OPS)
4C	MULU DIRECT (3 OPS)	71	ANDB IMMEDIATE (2 OPS)
4D	MULU IMMEDIATE (3 OPS)	72	ANDB INDIRECT (2 OPS)
4E	MULU INDIRECT (3 OPS)	73	ANDB INDEXED (2 OPS)
4F	MULU INDEXED (3 OPS)	74	ADDB DIRECT (2 OPS)
50	ANDB DIRECT (3 OPS)	75	ADDB IMMEDIATE (2 OPS)
51	ANDB IMMEDIATE (3 OPS)	76	ADDB INDIRECT (2 OPS)
52	ANDB INDIRECT (3 OPS)	77	ADDB INDEXED (2 OPS)
53	ANDB INDEXED (3 OPS)	78	SUBB DIRECT (2 OPS)
54	ADDB DIRECT (3 OPS)	79	SUBB IMMEDIATE (2 OPS)
55	ADDB IMMEDIATE (3 OPS)	7A	SUBB INDIRECT (2 OPS)
56	ADDB INDIRECT (3 OPS)	7B	SUBB INDEXED (2 OPS)
57	ADDB INDEXED (3 OPS)	7C	MULUB DIRECT (2 OPS)
58	SUBB DIRECT (3 OPS)	7D	MULUB IMMEDIATE (2 OPS)
59	SUBB IMMEDIATE (3 OPS)	7E	MULUB INDIRECT (2 OPS)
5A	SUBB INDIRECT (3 OPS)	7F	MULUB INDEXED (2 OPS)
5B	SUBB INDEXED (3 OPS)	80	OR DIRECT
5 C	MULUB DIRECT (3 OPS)	81	OR IMMEDIATE
5D	MULUB IMMEDIATE (3 OPS)	82	OR INDIRECT
5E	MULUB INDIRECT (3 OPS)	83	OR INDEXED
5F	MULUB INDEXED (3 OPS)	84	XOR DIRECT
60	AND DIRECT (2 OPS)	85	XOR IMMEDIATE
61	AND IMMEDIATE (2 OPS)	86	XOR INDIRECT
62	AND INDIRECT (2 OPS)	87	XOR INDEXED
63	AND INDEXED (2 OPS)	88	CMP DIRECT


89	CMP IMMEDIATE
8A	CMP INDIRECT
8B	CMP INDEXED
8C	DIVU DIRECT
8D	DIVU IMMEDIATE
8E	DIVU INDIRECT
8F	DIVU INDEXED
90	ORB DIRECT
91	ORB IMMEDIATE
92	ORB INDIRECT
93	ORB INDEXED
94	XORB DIRECT
95	XORB IMMEDIATE
96	XORB INDIRECT
97	XORB INDEXED
98	CMPB DIRECT
99	CMPB IMMEDIATE
9A	CMPB INDIRECT
9B	CMPB INDEXED
9 C	DIVUB DIRECT
9D	DIVUB IMMEDIATE
9E	DIVUB INDIRECT
9 F	DIVUB INDEXED
AO	LD DIRECT
A1	LD IMMEDIATE
A2	LD INDIRECT
A3	LD INDEXED
A4	ADDC DIRECT
A5	ADDC IMMEDIATE
A6	ADDC INDIRECT
A7	ADDC INDEXED
A8	SUBC DIRECT
A9	SUBC IMMEDIATE
AA	SUBC INDIRECT
$A B$	SUBC INDEXED
AC	LDBZE DIRECT
AD	LDBZE IMMEDIATE

### 7.0 OPCODE TABLE (Continued)

AE	LDBZE INDIRECT
AF	LDBZE INDEXED
B0	LDB DIRECT
B1	LDB IMMEDIATE
B2	LDB INDIRECT
B3	LDB INDEXED
B4	ADDCB DIRECT
B5	ADDCB IMMEDIATE
B6	ADDCB INDIRECT
B7	ADDCB INDEXED
B8	SUBCB DIRECT
B9	SUBCB IMMEDIATE
BA	SUBCB INDIRECT
BB	SUBCB INDEXED
BC	LDBSE DIRECT
BD	LDBSE IMMEDIATE
BE	LDBSE INDIRECT
BF	LDBSE INDEXED
C0	ST DIRECT
C1	BMOV
C2	ST INDIRECT
C3	ST INDEXED
C4	STB DIRECT
C5	CMPL
C6	STB INDIRECT
C7	STB INDEXED
C8	PUSH DIRECT
C9	PUSH IMMEDIATE


CA	PUSH INDIRECT
CB	PUSH INDEXED
CC	POP DIRECT
CD	RESERVED
CE	POP INDIRECT
CF	POP INDEXED
D0	JNST
D1	JNH
D2	JGT
D3	JNC
D4	JNVT
D5	JNV
D6	JGE
D7	JNE
D8	JST
D9	JH
DA	JLE
DB	JC
DC	JVT
DD	JV
DE	JLT
DF	JE
E0	DJNZ
E1	DJNZW
E2	RESERVED
E3	BR (INDIRECT)
E4	RESERVED


E5	RESERVED
E6	RESERVED
E7	LJMP
E8	RESERVED
E9	RESERVED
EA	RESERVED
EB	RESERVED
EC	RESERVED
ED	RESERVED
EE	RESERVED
EF	LCALL
F0	RET
F1	RESERVED
F2	PUSHF
F3	POPF
F4	PUSHA
F5	POPA
F6	IDLPD
F7	TRAP
F8	CLRC
F9	SETC
FA	DI
FB	EI
FC	CLRVT
FD	NOP
FE	*DIV/DIVB/MUL/MULB
FF	RST
RE	

## NOTE:

*Two Byte Instruction
RESERVED-Execution of reserved instructions will cause unimplemented opcode interrupt.

### 8.0 INSTRUCTION SET SUMMARY

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			Z	N	c	v	VT	ST	
ADD/ADDB	2	$D \leftarrow D+A$	$\checkmark$	$\checkmark$	$\nu$	$\nu$	$\uparrow$	-	
ADD/ADDB	3	$D \leftarrow B+A$	$\checkmark$	$\checkmark$	$\nu$	$\checkmark$	$\uparrow$	-	
ADDC/ADDCB	2	$D \leftarrow D+A+C$	$\downarrow$	$\nu$	$\checkmark$	$\nu$	$\uparrow$	-	
SUB/SUBB	2	$D \leftarrow D-A$	$\checkmark$	$\nu$	$\nu$	$\checkmark$	$\uparrow$	-	
SUB/SUBB	3	$D \leftarrow B-A$	$\checkmark$	$\nu$	$\checkmark$	$\nu$	$\uparrow$	-	
SUBC/SUBCB	2	$D \leftarrow D-A+C-1$	$\downarrow$	$\nu$	$\checkmark$	$\nu$	$\uparrow$	-	
CMP/CMPB	2	D - A	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
MUL/MULU	2	$D, D+2 \leftarrow D \times A$	-	-	-	-	-	-	2
MUL/MULU	3	$D, D+2 \leftarrow B \times A$	-	-	-	-	-	-	2
MULB/MULUB	2	$D, D+1 \leftarrow D \times A$	-	-	-	-	-	-	3
MULB/MULUB	3	$D, D+1 \leftarrow \mathrm{~B} \times \mathrm{A}$	-	-	-	-	-	-	3
DIVU	2	$D \leftarrow(D, D+2) / A, D+2 \leftarrow$ remainder	-	-	-	$\checkmark$	$\uparrow$	-	2
DIVUB	2	$D \leftarrow(D, D+1) / A, D+1 \leftarrow$ remainder	-	-	-	$\checkmark$	$\uparrow$	-	3
DIV	2	$D \leftarrow(D, D+2) / A, D+2 \leftarrow$ remainder	-	-	-	$\checkmark$	$\uparrow$	-	
DIVB	2	$D \leftarrow(\mathrm{D}, \mathrm{D}+1) / \mathrm{A}, \mathrm{D}+1 \leftarrow$ remainder	-	-	-	$\nu$	$\uparrow$	-	
AND/ANDB	2	$D \leftarrow$ D AND $A$	$\checkmark$	$\nu$	0	0	-	-	
AND/ANDB	3	$D \leftarrow$ BAND A	$\checkmark$	$r$	0	0	-	-	
OR/ORB	2	$D \leftarrow$ DORA	$\checkmark$	$\nu$	0	0	-	-	
XOR/XORB	2	$D \leftarrow D$ (ecxl. or) $A$	$\checkmark$	$\checkmark$	0	0	-	-	
LD/LDB	2	$D \leftarrow A$	-	-	-	-	-	-	
ST/STB	2	$A \leftarrow D$	-	-	-	-	-	-	
LDBSE	2	$\mathrm{D} \leftarrow \mathrm{A} ; \mathrm{D}+1 \leftarrow \operatorname{SIGN}(\mathrm{~A})$	-	-	-	-	-	-	3,4
LDBZE	2	$D \leftarrow A ; D+1 \leftarrow 0$	-	-	-	-	-	-	3,4
PUSH	1	$\mathrm{SP} \leftarrow \mathrm{SP}-2 ;(\mathrm{SP}) \leftarrow \mathrm{A}$	-	-	-	-	-	-	
POP	1	$\mathrm{A} \leftarrow(\mathrm{SP}) ; \mathrm{SP}+2$	-	-	-	-	-	-	
PUSHF	0	$\begin{aligned} & S P \leftarrow S P-2 ;(S P) \leftarrow P S W ; \\ & P S W \leftarrow \text { OOOOH; } 1 \leftarrow 0 \end{aligned}$	0	0	0	0	0	0	
POPF	0	PSW $\leftarrow(\mathrm{SP})$; $\mathrm{SP} \leftarrow \mathrm{SP}+2 ; 1 \leftarrow \nu$	$\checkmark$	$\nu$	$\nu$	$\checkmark$	$\nu$	$\nu$	
SJMP	1	$\mathrm{PC} \leftarrow \mathrm{PC}+{ }^{\text {1 }}$ 1-bit offset	-	-	-	-	-	-	5
LJMP	1	$\mathrm{PC} \leftarrow \mathrm{PC}+16$-bit offset	-	-	-	-	-	-	5
BR[indirect]	1	$\mathrm{PC} \leftarrow(\mathrm{A})$	-	-	-	-	-	-	
SCALL	1	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-2 ; \\ & (\mathrm{SP}) \leftarrow \mathrm{PC} ; \mathrm{PC} \leftarrow \mathrm{PC}+\text { 11-bit offset } \end{aligned}$	-	-	-	-	-	-	5
LCALL	1	$\begin{aligned} & S P \leftarrow S P-2 ;(S P) \leftarrow P C ; \\ & P C \leftarrow P C+16 \text {-bit offset } \end{aligned}$	-	-	-	-	-	-	5

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			z	N	c	V	VT	ST	
RET	0	$\mathrm{PC} \leftarrow(\mathrm{SP}) ; \mathrm{SP} \leftarrow \mathrm{SP}+2$	-	-	-	-	-	-	
$J$ (conditional)	1	$\mathrm{PC} \leftarrow \mathrm{PC}+8$-bit offset (if taken)	-	-	-	-	-	-	5
JC	1	Jump if $\mathrm{C}=1$	-	-	-	-	-	-	5
JNC	1	Jump if $\mathrm{C}=0$	-	-	-	-	-	-	5
JE	1	Jump if $Z=1$	-	-	-	-	-	-	5
JNE	1	Jump if $Z=0$	-	-	-	-	-	-	5
JGE	1	Jump if $\mathrm{N}=0$	-	-	-	-	-	-	5
JLT	1	Jump if $\mathrm{N}=1$	-	-	-	-	-	-	5
JGT	1	Jump if $\mathrm{N}=0$ and $\mathrm{Z}=0$	-	-	-	-	-	-	5
JLE	1	Jump if $\mathrm{N}=1$ or $\mathrm{Z}=1$	-	-	-	-	-	-	5
JH	1	Jump if $\mathrm{C}=1$ and $\mathrm{Z}=0$	-	-	-	-	-	-	5
JNH	1	Jump if $\mathrm{C}=0$ or $\mathrm{Z}=1$	-	-	-	-	-	-	5
JV	1	Jump if $\mathrm{V}=1$	-	-	-	-	-	-	5
JNV	1	Jump if $\mathrm{V}=0$	-	-	-	-	-	-	5
JVT	1	Jump if VT $=1$; Clear VT	-	-	-	-	0	-	5
JNVT	1	Jump if VT $=0$; Clear VT	-	-	-	-	0	-	5
JST	1	Jump if ST $=1$	-	-	-	-	-	-	5
JNST	1	Jump if ST $=0$	-	-	-	-	-	-	5
JBS	3	Jump if Specified Bit = 1	-	-	-	-	-	-	5,6
JBC	3	Jump if Specified Bit $=0$	-	-	-	-	-	-	5,6
$\begin{array}{\|l\|} \hline \text { DJNZ/ } \\ \text { DJNZW } \\ \hline \end{array}$	1	$\left\lvert\, \begin{aligned} & D \leftarrow D-1 ; \\ & \text { If } D \neq 0 \text { then } P C \leftarrow P C+8 \text {-bit offset } \end{aligned}\right.$	-	-	-	-	-	-	$\begin{gathered} 5 \\ 10 \end{gathered}$
DEC/DECB	1	$D \leftarrow D-1$	$\checkmark$	$\checkmark$	$\checkmark$	$\nu$	$\uparrow$	-	
NEG/NEGB	1	$\mathrm{D} \leftarrow 0-\mathrm{D}$	$\checkmark$	$\checkmark$	$\nu$	$\nu$	$\uparrow$	-	
INC/INCB	1	$\mathrm{D} \leftarrow \mathrm{D}+1$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
EXT	1	$\mathrm{D} \leftarrow \mathrm{D} ; \mathrm{D}+2 \leftarrow \operatorname{Sign}$ (D)	$\checkmark$	$\checkmark$	0	0	-	-	2
EXTB	1	$D \leftarrow D ; D+1 \leftarrow \operatorname{Sign~(D)~}$	$\checkmark$	$\checkmark$	0	0	-	-	3
NOT/NOTB	1	$\mathrm{D} \leftarrow$ Logical $\operatorname{Not}(\mathrm{D})$	$\checkmark$	$\checkmark$	0	0	-	-	
CLR/CLRB	1	$\mathrm{D} \leftarrow 0$	1	0	0	0	-	-	
SHL/SHLB/SHLL	2	$\mathrm{C} \leftarrow \mathrm{msb}-\ldots-\mathrm{lsb} \leftarrow 0$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	7
SHR/SHRB/SHRL	2	$0 \rightarrow$ msb ---- Isb $\rightarrow$ C	$\checkmark$	$\checkmark$	$\checkmark$	0	-	$\checkmark$	7
SHRA/SHRAB/SHRAL	2	$\mathrm{msb} \rightarrow \mathrm{msb}----\mathrm{lsb} \rightarrow \mathrm{C}$	$\checkmark$	$\checkmark$	$\checkmark$	0	-	$\checkmark$	7
SETC	0	$C \leftarrow 1$	-	-	1	-	-	-	
CLRC	0	$\mathrm{C} \leftarrow 0$	-	-	0	-	-	-	

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			z	N	C	V	VT	ST	
CLRVT	0	$\mathrm{VT} \leftarrow 0$	-	-	-	-	0	-	
RST	0	$\mathrm{PC} \leftarrow 2080 \mathrm{H}$	0	0	0	0	0	0	8
DI	0	Disable All Interrupts ( $1 \leftarrow 0$ )	-	-	-	-	-	-	
El	0	Enable All Interrupts (1 $\leftarrow 1$ )	-	-	-	-	-	-	
NOP	0	$\mathrm{PC} \leftarrow \mathrm{PC}+1$	-	-	-	-	-	-	
SKIP	1	$\mathrm{PC} \leftarrow \mathrm{PC}+2$	-	-	-	-	-	-	
NORML	2	Left shift till msb $=1$; $\mathrm{D} \leftarrow$ shift count	$\checkmark$	$\checkmark$	0	-	-	-	7
TRAP	0	$\begin{array}{\|l\|} \hline S P \leftarrow S P-2 ; \\ (S P) \leftarrow P C ; P C \leftarrow(2010 H) \end{array}$	-	-	-	-	-	-	9
PUSHA	1	```SP \leftarrow SP-2; (SP) \leftarrow PSW; PSW \leftarrow 0000H; SP \leftarrow SP-2; (SP) \leftarrow IMASK1/WSR; IMASK1 \leftarrow 00H```	0	0	0	0	0	0	
POPA	1	$\begin{array}{\|l\|} \hline \text { IMASK1/WSR } \leftarrow(S P) ; S P ~ \leftarrow S P+2 \\ \text { PSW } \leftarrow(S P) ; S P ~ \\ \hline \end{array}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	
IDLPD	1	IDLE MODE IF KEY=1;   POWERDOWN MODE IF KEY $=2$; CHIP RESET OTHERWISE	-	-	-	-	-	-	
CMPL	2	D-A	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
BMOV	2	[PTR_HI] + $\leftarrow$ [PTR_LOW] +;   UNTIL COUNT $=0$	-	-	-	-	-	-	

## NOTES:

1. If the mnemonic ends in " $B$ " a byte operation is performed, otherwise a word operation is done. Operands $D, B$ and $A$ must conform to the alignment rules for the required operand type. D and B are locations in the Register File; A can be located anywhere in memory.
2. $D, D+2$ are consecutive WORDS in memory; $D$ is DOUBLE-WORD aligned.
3. $D, D+1$ are consecutive BYTES in memory; $D$ is WORD aligned.
4. Changes a byte to word.
5. Offset is a 2's complement number.
6. Specified bit is one of the 2048 bits in the register file.
7. The " $L$ " (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 2080H.
9. The assembler will not accept this mnemonic.
10. The DJNZW instruction is not guaranteed to work.

### 9.0 INSTRUCTION LENGTH/OPCODE

MNEMONIC	DIRECT	IMMED	INDIRECT		INDEXED	
			NORMAL ${ }^{(1)}$	A-INC(1)	SHORT(1)	LONG(1)
ADD (3-op)	4/44	5/45	4/46	4/46	5/47	6/47
SUB (3-op)	4/48	5/49	4/4A	4/4A	5/4B	6/4B
ADD (2-op)	3/64	4/65	3/66	3/66	4/67	5/67
SUB (2-op)	3/68	4/69	3/6A	3/6A	4/6B	5/6B
ADDC	3/A4	4/A5	3/A6	3/A6	4/A7	5/A7
SUBC	3/A8	4/A9	3/AA	3/AA	4/AB	5/AB
CMP	3/88	4/89	3/8A	3/8A	4/8B	5/8B
ADDB (3-op)	4/54	4/55	4/56	4/56	5/57	6/57
SUBB (3-op)	4/58	4/59	4/5A	4/5A	5/5B	6/5B
ADDB (2-op)	3/74	3/75	3/76	3/76	4/77	5/77
SUBB (2-op)	3/78	3/79	3/7A	3/7A	4/7B	5/7B
ADDCB	3/B4	3/B5	3/B6	3/B6	4/B7	5/B7
SUBCB	3/B8	3/89	3/BA	3/BA	4/BB	5/BB
CMPB	3/98	3/99	3/9A	3/9A	4/9B	5/9B
MUL (3-op)	5/(2)	6/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULU (3-op)	4/4C	5/4D	4/4E	4/4E	5/4F	6/4F
MUL (2-op)	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULU (2-op)	3/6C	4/6D	3/6E	3/6E	4/6F	5/6F
DIV	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVU	$3 / 8 \mathrm{C}$	4/8D	3/8E	3/8E	4/8F	5/8F
MULB (3-op)	5/(2)	5/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULUB (3-op)	4/5C	4/5D	4/5E	4/5E	5/5F	6/5F
MULB (2-op)	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULUB (2-op)	3/7C	3/7D	3/7E	3/7E	4/7F	5/7F
DIVB	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVUB	3/9C	3/9D	3/9E	3/9E	4/9F	5/9F
AND (3-op)	4/40	5/41	4/42	4/42	5/43	6/43
AND (2-op)	3/60	4/61	3/62	3/62	4/63	5/63
OR (2-op)	3/80	4/81	3/82	3/82	4/83	5/83
XOR	3/84	4/85	3/86	3/86	4/87	5/87
ANDB (3-op)	4/50	4/51	4/52	4/52	5/53	5/53
ANDB (2-op)	3/70	3/71	3/72	3/72	4/73	4/73
ORB (2-op)	3/90	3/91	3/92	3/92	4/93	5/93
XORB	3/94	3/95	3/96	3/96	4/97	5/97
PUSH	2/C8	3/C9	2/CA	2/CA	3/CB	4/CB
POP	2/CC	-	2/CE	2/CE	3/CF	4/CF

9.0 INSTRUCTION LENGTH/OPCODE (Continued)

MNEMONIC	DIRECT	IMMED	INDIRECT		INDEXED	
			NORMAL	A-INC	SHORT	LONG
LD		$3 / \mathrm{AO}$	$4 / \mathrm{A} 1$	$3 / \mathrm{A} 2$	$3 / \mathrm{A} 2$	$4 / \mathrm{A} 3$
LDB	$3 / B 0$	$3 / \mathrm{B} 1$	$3 / \mathrm{B} 2$	$3 / \mathrm{B} 2$	$4 / \mathrm{B} 3$	$5 / \mathrm{B3}$
ST	$3 / \mathrm{CO}$	-	$3 / \mathrm{C} 2$	$3 / \mathrm{C} 2$	$4 / \mathrm{C} 3$	$5 / \mathrm{C} 3$
STB	$3 / \mathrm{C} 4$	-	$3 / \mathrm{C} 6$	$3 / \mathrm{C} 6$	$4 / \mathrm{C} 7$	$5 / \mathrm{C} 7$
LDBSE	$3 / \mathrm{BC}$	$3 / \mathrm{BD}$	$3 / \mathrm{BE}$	$3 / \mathrm{BE}$	$4 / \mathrm{BF}$	$5 / \mathrm{BF}$
LBSZE	$3 / \mathrm{AC}$	$3 / \mathrm{AD}$	$3 / \mathrm{AE}$	$3 / \mathrm{AE}$	$4 / \mathrm{AF}$	$5 / \mathrm{AF}$


Mnemonic	Length/Opcode
PUSHF	$1 / F 2$
POPF	$1 / F 3$
PUSHA	$1 / F 4$
POPA	$1 / F 5$
TRAP	$1 / F 7$
LCALL	$3 / E F$
SCALL	$2 / 28-2 F(3)$
RET	$1 / F 0$
LJMP	$3 / E 7$
SJMP	$2 / 20-27(3)$
BR[ ]	$2 / E 3$
JNST	$1 / D 0$
JST	$1 / D 8$
JNH	$1 / D 1$
JH	$1 / D 9$
JGT	$1 / D 2$
JLE	$1 / D A$
JNC	$1 / B 3$
JC	$1 / D 8$
JNVT	$1 / D 4$
JVT	$1 / D C$
JNV	$1 / D 5$
JV	$1 / D D$
JGE	$1 / D 6$
JLT	$1 / D E$
JNE	$1 / D 7$
JE	$1 / D F$
JBC	$3 / 30-37$
JBS	


Mnemonic	Length/Opcode
DJNZ	$3 / E 0$
DJNZW	$3 / E 1(4)$
NORML	$3 / 0 F$
SHRL	$3 / 0 C$
SHLL	$3 / 0 D$
SHRAL	$3 / 0 E$
SHR	$3 / 08$
SHRB	$3 / 18$
SHL	$3 / 09$
SHLB	$3 / 19$
SHRA	$3 / 0 A$
SHRAB	$3 / 1 A$
CLRC	$1 / F 8$
SETC	$1 / F 9$
DI	$1 /$ ḞA
EI	$1 / F B$
CLRVT	$1 / F C$
NOP	$1 / F D$
RST	$1 / F F$
SKIP	$2 / 00$
IDLPD	$1 / F 6$
BMOV	$3 / C 1$

## NOTES:

1. Indirect and indirect + share the same opcodes, as do short and long indexed opcodes. If the second byte is even, use indirect or short indexed. If odd, use indirect or long indexed.
2. The opcodes for signed multiply and divide are the unsigned opcode with an "FE" prefix.
3. The 3 least significant bits of the opcode are concatenated with the 8 bits to form an 11-bit, 2's complement offset.
4. The DJNZW instruction is not guaranteed to work.
10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES)

MNEMONIC	DIRECT	IMMED	INDIRECT		INDEXED	
			NORMAL*	A-INC*	SHORT*	LONG*
ADD (3-op)	5	6	7/10	8/11	7/10	8/11
SUB (3-op)	5	6	7/10	8/11	7/10	8/11
ADD (2-op)	4	5	6/8	7/9	6/8	7/9
SUB (2-op)	4	5	6/8	7/9	6/8	7/9
ADDC	4	5	6/8	7/9	6/8	7/9
SUBC	4	5	6/8	7/9	6/8	7/9
CMP	4	5	6/8	7/9	6/8	7/9
ADDB (3-op)	5	5	7/10	8/11	7/10	8/11
SUBB (3-op)	5	5	7/10	8/11	7/10	8/11
ADDB (2-op)	4	4	6/8	7/9	6/8	7/9
SUBB (2-op)	4	4	6/8	7/9	6/8	7/9
ADDCB	4	4	6/8	7/9	6/8	7/9
SUBCB	4	4	6/8	7/9	6/8	7/9
CMPB	4	4	6/8	7/9	6/8	7/9
MUL (3-op)	16	17	18/21	19/22	19/22	20/23
MULU (3-op)	14	15	16/19	17/19	17/20	18/21
MUL (2-op)	16	17	18/21	19/22	19/22	20/23
MULU (2-op)	14	15	16/19	17/19	17/20	18/21
DIV	26	27	28/31	29/32	29/32	30/33
DIVU	24	25	26/29	27/30	27/30	28/31
MULB (3-op)	12	12	14/17	15/18	15/18	16/19
MULUB (3-op)	10	10	12/15	12/16	12/16	14/17
MULB (2-op)	12	12	14/17	15/18	15/18	16/19
MULUB (2-op)	10	10	12/15	13/15	12/16	14/17
DIVB	18	18	20/23	21/24	21/24	22/25
DIVUB	16	16	18/21	19/22	19/22	20/23
AND (3-op)	5	6	7/10	8/11	7/10	8/11
AND (2-op)	4	5	6/8	7/9	6/8	7/9
OR (2-op)	4	5	6/8	7/9	6/8	7/9
XOR	4	5	6/8	7/9	6/8	7/9
ANDB (3-op)	5	5	7/10	8/11	7/10	8/11
ANDB (2-op)	4	4	6/8	7/9	6/8	7/9
ORB (2-op)	4	4	6/8	7/9	6/8	7/9
XORB	4	4	6/8	7/9	6/8	7/9
LD, LDB	4, 4	5, 4	5/8	6/8	6/9	7/10
ST, STB	4, 4	-	5/8	6/9	6/9	7/10
LDBSE	4	4	5/8	6/8	6/9	7/10
LDBZE	4	4	5/8	6/8	6/9	7/10
BMOV			ernal/intern ernal/interna: ernal/extern	+8 per w   +11 per   +14 per		
PUSH (int stack)	6	7	9/12	10/13	10/13	11/14
POP (int stack)	8	-	10/12	11/13	11/13	12/14
PUSH (ext stack)	8	9	11/14	12/15	12/15	13/16
POP (ext stack)	11	-	13/15	14/16	14/16	15/17

*Times for operands as: SFRs and internal RAM (0-1FFH)/memory controller (200H-0FFFFH)
NOTE:

1. Execution times for memory controller references may be one to two states higher depending on the number of bytes in the prefetch queue: Internal stack is $200 \mathrm{H}-1$ FFH and external stack is $200 \mathrm{H}-0$ FFFFH.
10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

MNEMONIC		MNEMONIC	
PUSHF (int stack) POPF (int stack) PUSHA (int stack) POPA (int stack)	$\begin{array}{r} 6 \\ 7 \\ 12 \\ 12 \end{array}$	PUSHF (ext stack) POPF (ext stack) PUSHA (ext stack) POPA (ext stack)	8 10 18 18
TRAP (int stack) LCALL (int stack) SCALL (int stack) RET (int stack)	$\begin{aligned} & 16 \\ & 11 \\ & 11 \\ & 11 \end{aligned}$	TRAP (ext stack) LCALL (ext stack) SCALL (ext stack) RET (ext stack)	18 13 13 14
CMPL   CLR/CLRB   NOT/NOTB   NEG/NEGB	$\begin{aligned} & 7 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	DEC/DECB   EXT/EXTB   INC/INCB	3 4 3
LJMP   SJMP   BR [indirect] JNST, JST JNH, JH JGT, JLE JNC, JC JNVT, JVT JNV, JV JGE, JLT JNE, JE JBC, JBS	4/8 jump not taken/jump taken 5/9 jump not taken/jump taken		
DJNZ   DJNZW (Note 1)	5/9 jump not taken/jump taken 5/9 jump not taken/jump taken		
NORML   SHRL   SHLL   SHRAL   SHR/SHRB   SHL/SHLB   SHRA/SHRAB	$8+1$ per shift ( 9 for 0 shift)   $7+1$ per shift ( 8 for 0 shift)   $7+1$ per shift ( 8 for 0 shift)   $7+1$ per shift ( 8 for 0 shift)   $6+1$ per shift ( 7 for 0 shift)   $6+1$ per shift ( 7 for 0 shift)   $6+1$ per shift ( 7 for 0 shift)		
CLRC   SETC   DI   El   CLRVT   NOP   RST   SKIP   IDLPD	```2 2 2 2 \\ 2 \\ 2 \\ 15 (includes fetch of configuration byte) \\ 3 \\ 8/25 (proper key/improper key)```		

## NOTE:

1. The DJNZW instruction is not guaranteed to work.

### 11.0 INTERRUPT TABLE

80C196KB Interrupt Priorities

Number	Source	Vector Location	Priority
INT15	NMI	203 EH	15
INT14	HSI FIFO Full	203 CH	14
INT13	EXTINT1	203 AH	13
INT12	TIMER2 Overflow	2038 H	12
INT11	TIMER2 Capture	2036 H	11
INT10	4th Entry into HSI FIFO	2034 H	10
INT09	RI	2032 H	9
INT08	TI	2030 H	8
SPECIAL	Unimplemented Opcode	2012 H	N/A
SPECIAL	Trap	2010 H	N/A
INT07	EXTINT	200 EH	7
INT06	Serial Port	200 CH	6
INT05	Software Timer.	200 AH	5
INT04	HSI.0 Pin	2008 H	4
INT03	High Speed Outputs	2006 H	3
INT02	HSI Data Available	2004 H	2
INT01	A/D Conversion Complete	2002 H	1
INT00	Timer Overflow	2000 H	0



### 12.0 FORMULAS

## Baud Rate

Asynchronous Modes 1, 2 and 3:

$$
\begin{gathered}
\text { BAUD_REG }=\frac{\text { XTAL1 }}{\text { Baud Rate } \times 16}-1 \\
\text { or } \frac{\text { T2CLK }}{\text { Baud Rate } \times 8}
\end{gathered}
$$

Synchronous Mode 0:

$$
\begin{aligned}
\text { BAUD__REG } & =\frac{\text { XTAL1 }}{\text { Baud Rate } \times 2}-1 \\
\text { or } & \frac{\text { T2CLK }}{\text { Baud Rate }}
\end{aligned}
$$

## A/D Sample and Conversion Times

Clock Prescaler On (IOC2.4 = 0)
Convert Time: 158 States $=26.33 \mu \mathrm{~s} @ 12 \mathrm{MHz}$
Sample Time: 15 States $=2.50 \mu \mathrm{~s} @ 12 \mathrm{MHz}$

Clock Prescaler Off (IOC2.4 = 1)
Convert Time: 91 States $=22.75 \mu \mathrm{~s}$ @ 8 MHz
Sample Time: 8 States $=2.00 \mu \mathrm{~s} @ 8 \mathrm{MHz}$

## Pulse Width Rodulation (PWRi)

$$
\begin{gathered}
\text { PWM_Control }=256 \times \text { Duty Cycle } \\
\text { or } \\
\text { PWM_Control }=512 \times \text { Duty Cycle }
\end{gathered}
$$

## State Time

1 State Time $=\frac{2}{\text { XTAL1 }}=2$ TOSC
Signature Word and Voltage Levels

Description	Location	Value
Signature Word	2070 H	897 CH
Programming V CCC	2072 H	040 H
		$(5.0 \mathrm{~V})$
Programming VPP	2073 H	0 A 3 H   $(12.75 \mathrm{~V})$

### 13.0 RESET STATUS

Pin Name   Name	Multiplexed   Port Pins	Value of the   Pin on Reset
$\overline{\text { RESET }}$		Mid-Sized Pullup
ALE		Weak Pullup
$\overline{\text { RD }}$		Weak Pullup
$\overline{\text { BHE }}$		Weak Pullup
$\overline{\text { WR }}$		Weak Pullup
INST		Weak Pullup
$\overline{\text { EA }}$		Undefined Input*
READY		Undefined Input*
NMI		Phasefined Input* ${ }^{*}$ of Clock
BUSWIDTH		Weak Pullup
CLKOUT		Undefined Input*
System Bus	P3.0-P4.7	P0.0-P0.7
ACH0-7	P2.0	Weak Pullups
PORT1	P1.0-P1.7	Weallup
TXD	P2.1	Undefined Input*
RXD	P2.2	Undefined Input*
EXTINT	P2.3	Undefined Input*
T2CLK	P2.4	Undefined Input*
T2RST	P2.5	Weak Pulldown
PWM	P2.6-P2.7	Weak Pullups
-	Undefined Input*	
HSI0-HSI1		Undefined Input*
HSI2/HSO4		Undefined Input
HSI3/HSO5		
HSO0-HSO3		


Register Name	Value
AD_RESULT	7FF0H**
HSI_STATUS	x0x0x0x0B
SBUF(RX)	00 H
INT_MASK	00000000 B
INT__PENDING	00000000 B
TIMER1	0000 H
TIMER2	0000 H
IOPORT1	11111111 B
IOPORT2	11000001 B
SP_STAT/SP_CON	00001011 B
IMASK1	00000000 B
IPEND1	00000000 B
WSR	XXXX0000B
HSI_MODE	11111111 B
IOC2	X0000000B
IOC0	$000000 \times 0 \mathrm{~B}$
IOC1	00100001 B
PWM_CONTROL	00 H
IOPORT3	1111111 B
IOPORT4	11111111 B
IOS0	00000000 B
IOS1	00000000 B
IOS2	00000000 B

## NOTE:

[^17]
## 8XC196KC Quick Reference

## 8XC196KC Quick Reference

CONTENTS PAgE CONTENTS PAGE
1.0 MEMORY MAP ..... 14-75
2.0 SFR MAP ..... 14-75
3.0 SFR BIT SUMMARY ..... 14-76
4.0 8XC196KC PIN DEFINITION TABLE ..... 14-81
5.0 PACKAGE PIN ASSIGNMENTS ..... 14-83
6.0 PIN DESCRIPTIONS ..... 14-85
7.0 OPCODE TABLE ..... 14-87
8.0 INSTRUCTION SET SUMMARY ..... 14-90
9.0 INSTRUCTION LENGTH/OPCODE ..... 14-93
10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) ..... 14-95
11.0 INTERRUPT TABLE ..... 14-97
12.0 FORMULAS ..... 14-100
13.0 RESET STATUS ..... 14-101

### 1.0 MEMORY MAP

## NOTE:

EXTERNAL MEMORY OR I/O	$\begin{aligned} & \text { OFFFFH } \\ & 6000 \mathrm{H} \end{aligned}$
INTERNAL ROM/EPROM OR EXTERNAL MEMORY	2080H
RESERVED	
PTS VECTORS	205
UPPER INTERRUPT VECTORS	04
ROM/EPROM SECURITY KEY	O30H
RESERVED	2020 H
CHIP CONFIGURATION BYTE	2018H
Reserved	
LOWER INTERRUPT VECTORS	2014H
PORT 3 AND PORT 4	
EXTERNAL MEMORY	200 H
additional ram	
REGISTER FILE AND EXTERNAL PROGRAM MEMORY	

Code executed in locations 0 to 1FFH will be forced external.

### 2.0 SFR MAP

19H	SP (HI)								
18 H	SP (LO)								
17H	IOS2	17 H	PWMO_CONTROL	17H	PWM2_CONTROL	17 H	PWMO_CONTROL	17 H	IOS2
16 H	IOS1	16 H	IOC1	16 H	PWM1__CONTROL	16 H	IOC1	16 H	IOS 1
15 H	IOS0	15 H	IOC0	15H	RESERVED	15 H	IOC0	15 H	IOSO
14 H	WSR								
13 H	INT__MASK1								
12 H	INT__PEND1	12 H	INT__PEND1	12 H	INT__PEND1	12H	INT__PEND1	12 H	INT__PEND1
11 H	SP_STAT	11 H	SP_CON	11 H	RESERVED**	11 H	SP_CON	11H	SP__STAT
10 H	PORT2	10 H	PORT2	10 H	RESERVED**	10H	RESERVED	10 H	RESERVED**
OFH	PORT1	OFH	PORT1	OFH	RESERVED**	OFH	RESERVED	OFH	RESERVED**
OEH	PORTO	OEH	BAUD__REG	OEH	RESERVED**	OEH	RESERVED	OEH	RESERVED**
ODH	TIMER2 (HI)	ODH	TIMER2 (HI)	ODH	RESERVED**	ODH	T2CAPTURE (HI)	ODH	T2CAPTURE (HI)
OCH	TIMER2 (LO)	0 CH	TIMER2 (LO)	0 CH	IOC3*	OCH	T2CAPTURE (LO)	0 CH	T2CAPTURE (LO)
OBH	TIMER1 (HI)	OBH	IOC2	OBH	RESERVED**	OBH	IOC2	OBH	TIMER1 (HI)
OAH	TIMER1 (LO)	OAH	WATCHDOG	OAH	RESERVED**	OAH	WATCHDOG	OAH	TIMER1 (LO)
09 H	INT__PEND	09H	INT_PEND	09H	INT__PEND	09H	INT__PEND	09H	INT__PEND
08H	INT__MASK	08H	INT_MASK	08H	INT__MASK	08H	INT__MASK	08H	INT_MASK
07H	SBUF (RX)	07H	SBUF (TX)	07H	PTSSRV (HI)	07H	SBUF (TX)	07H	SBUF (RX)
06H	HSI_STATUS	06H	HSO_COMMAND	06H	PTSSRV (LO)	06H	HSO__COMMAND	06H	HSI__STATUS
05H	HSI__TIME (HI)	05H	HSO_TIME (HI)	05H	PTSSEL(HI)	05H	HSO_TIME (HI)	05H	HSI__TIME (HI)
04H	HSI_TIME (LO)	04H	HSO_TIME (LO)	04H	PTSSEL(LO)	04H	HSO_TIME (LO)	04H	HSI__TIME (LO)
03H	AD__RESULT (HI)	03H	HSI_MODE	03H	AD_TIME	03H	HSI__MODE	03H	AD__RESULT (HI)
02H	AD_RESULT (LO)	22H	AD__COMMAND	02H	RESERVED**	02H	AD_CCOMMAND	02H	AD__RESULT (LO)
01 H	ZERO__REG (HI)	01H	ZERO__REG (HI)						
OOH	ZERO__REG (LO)	00H	ZERO__REG (LO)	00H	ZERO__REG (LO)	OOH	ZERO__REG (LO)	00H	ZERO_REG (LO)
	HWINDOW 0 when Read merly labeled T served bytes mu		HWINDOW 0 when Written ROL or T2CNTC itten with zero.		HWINDOW 1 Read/Write		HWINDOW 15 when Read		HWINDOW 15 when Written

## 8XC196KC CHIP CONFIGURATION BYTE

## CCR (2018H: Byte)

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
LOC1	LOCO	IRC1	IRCO	ALE	WR	BW0	PD

PD $\quad 1=$ Powerdown mode enabled
$0=$ Powerdown mode disabled
BWO $\quad 1=$ Buswidth is BUSWIDTH pin controlled
$0=$ Buswidth is 8 -bit
WR $\quad 1=\overline{W R} / \overline{\mathrm{BHE}}$
$0=\overline{W R L} / \overline{W R H}$
ALE $\quad 1=$ ALE
$0=\overline{A D V}$
IRC0, 1 READY control. (see Table below)
LOCO, 1 ROM, EPROM Protection. (see Table below)

IRC1	IRC0	Max Wait States
0	0	1 Wait State
0	1	2 Wait States
1	0	3 Wait States
1	1	READY Pin Controlled


LOC1	LOCO	Function
0	0	Read and Write Protected
0	1	Read Protected Only
1	0	Write Protected Only
1	1	No Protection

### 3.0 SFR BIT SUMMARY




*RSV - RESERVED BITS MUST BE WRITTEN AS 0 272112-4
 (02H HWIN15 Write)

*RSV - RESERVED BITS MUST BE WRITTEN AS 0



## IOS1 (16H HWINO Read) (16H HWIN15 Write)

| 0 | SOFTWARE TIMER 0 EXPIRED |
| :--- | :--- | :--- |
| 1 | SOFTWARE TIMER 1 EXPIRED |
| 2 | SOFTWARE TIMER 2 EXPIRED |
| 3 | SOFTWARE TIMER 3 EXPIRED |
| 4 | TIMER 2 HAS OVERFLOW |
| 5 | TIMER 1 HAS OVERFLOW |
| 6 | HSI FIFO IS FULL |
| 7 | HSI HOLDING REGISTER DATA AVAILABLE | BITS 0-5 ARE CLEARED WHEN READ

## IOS2 (17H HWINO Read)

(17H HWIN15 Write)
INDICATES WHICH HSO EVENT OCCURRED


IOS2 IS CLEARED WHEN READ

 272112-11

	IOC2   (OBH HWINO Write)   (OBH HWIN15 Read)
	ENABLE FAST INCREMENT OF T2






	SP_CON	(11H HWINO Write) (11H HWIN15 Read)
0		MODE 0: SYNCHRONOUS MODE $1:$ STANDARD ASYNC MODE 2: 9th BIT ENABLE MODE 3: 9th BIT DATA
2	PEN - $1=$	ARITY ENABLED
3	REN - 1	eceive enabled
4	TB8 - 9th	Bit for transmission
5	RSV*	
6	RSV*	
7	RSV*	
*RS	- RESERVE	BITS MUST BE WRITTEN AS 0





272112-27
NOTE:
*RSV-Reserved bits must be $=0$
CLKOUT__DIS only available on C-step or later KC

### 4.0 8XC196KC PIN DEFINITION TABLE

Pin Name	68L PLCC	80L QFP	80L SQFP
ACHO	6	18	17
ACH1	5	17	16
ACH 2	7	19	18
ACH3	4	16	15
ACH4	11	24	22
ACH5	10	23	21
ACH6	8	20	19
ACH7	9	21	20
ADO	60	2	80
AD1	59	1	79
AD2	58	80	78
AD3	57	78	77
AD4	56	77	76
AD5	55	76	75
AD6	54	74	74
AD7	53	73	73
AD8	52	72	70
AD9	51	71	69
AD10	50	70	68
AD11	49	69	67
AD12	48	68	66
AD13	47	67	65
AD14	46	66	64
AD15	45	65	63
$\overline{\text { ADV }}$	62	4	2
$\overline{\text { AINC }}$	42	61	59
ALE	62	4	2
ANGND	12	25	23
$\overline{\mathrm{BHE}}$	41	60	58
$\overline{\text { BREQ }}$	30	46	44
BUSWIDTH	64	6	4
CPVER	33	49	47
CLKOUT	65	7	5
$\overline{E A}$	2	14	12
EXTINT	15,9	28, 21	26
HOLD	32	48	46


Pin Name	68L PLCC	80L QFP	80L SQFP
HLDA	31	47	45
HSI. 0	24	39	37
HSI. 1	25	40	38
HSI. 2	26	41	39
HSI. 3	27	43	41
HSO. 0	28	44	42
HSO. 1	29	45	43
HSO. 2	34	50	48
HSO. 3	35	53	51
HSO. 4	26	41	39
HSO. 5	27	43	41
INST	63	5	3
NMI	3	15	13
P0.0	6	18	17
P0.1	5	17	16
P0. 2	7	19	18
P0.3	4	16	15
P0.4	11	24	22
P0.5	10	23	21
P0.6	8	20	19
P0.7	9	21	20
P1.0	19	34	32
P1.1	20	35	33
P1.2	21	36	34
P1.3	22	37	35
P1.4	23	38	36
P1.5	30	46	44
P1.6	31	47	45
P1.7	32	48	46
P2.0	18	32	30
P2.1	17	31	29
P2.2	15	28	26
P2.3	44	64	62
P2.4	42	61	59
P2.5	39	58	56
P2.6	33	49	47

4.0 8XC196KC PIN DEFINITION TABLE (Continued)

Pin Name	68L PLCC	80L QFP	80L SQFP
P2.7	38	57	55
P3.0	60	2	80
P3.1	59	1	79
P3.2	58	80	78
P3.3	57	78	77
P3.4	56	77	76
P3.5	55	76	75
P3.6	54	74	74
P3.7	53	73	73
P4.0	52	72	70
P4.1	51	71	69
P4.2	50	70	68
P4.3	49	69	67
P4.4	48	68	66
P4.5	47	67	65
P4.6	46	66	64
P4.7	45	65	63
PACT	38	57	55
PALE	17	31	29
PMODE.0	11	24	22
PMODE.1	10	23	21
PMODE.2	8	20	19
PMODE.3	9	21	20
PROG	15	28	26
PVER	18	32	30


Pin Name	68L PLCC	80L QFP	80L SQFP
PWM0	39	58	56
PWM1	22	37	35
PWM2	23	38	36
$\overline{\text { RD }}$	61	3	1
READY	43	62	60
RESET	16	30	28
RXD	17	31	29
T2CAPTURE	38	57	55
T2CLK	44	64	62
T2RST	42	61	59
T2UP-DN	33	49	47
TXD	18	32	30
V $_{\text {CC }}$	1	$12,13,29$,	10,11,
VPP $^{27}, 50$			
V $_{\text {REF }}$	37	56	54
V $_{\text {SS }}$	13	26	24
	$14,36,68$	$10,11,27$,	$8,9,25$,
$33,42,51$,	$31,40,49$,		
WR		$54,55,63$,	$52,53,61$
WRL	40	59	57
$\overline{\text { WRH }}$	40	59	57
XTAL1	67	60	58
XTAL2	66	8	7

### 5.0 PACKAGE PIN ASSIGNMENTS




80-Lead QFP Package Diagram

### 6.0 PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (5V).
$\mathrm{V}_{\text {SS }}$	Digital circuit ground ( OV ). There are three $\mathrm{V}_{\text {SS }}$ pins, all of them must be connected.
$V_{\text {REF }}$	Reference voltage for the $\mathrm{A} / \mathrm{D}$ converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as Vss.
$V_{\text {PP }}$	Programming voltage. Also timing pin for the return from power down circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $\mathrm{V}_{\mathrm{SS}}$. If this function is not used, connect to $\mathrm{V}_{\mathrm{CC}}$.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT	Output of the internal clock generator. The frequency of CLKOUT is $1 / 2$ the oscillator frequency. It has a $50 \%$ duty cycle.
RESET	Reset input and open-drain output. Hold low to reset the chip. The subsequent low-to-high transition re-synchronizes CLKOUT and commences a 10 -state-time sequence in which the PSW is cleared, a byte read from 2018 H loads CCR, and a jump to location 2080 H is executed. Input high for normal operation. RESET has an internal pullup.
BUSWIDTH	Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1 , a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus.
NMI	A positive transition causes a vector through 203EH.
INST	Output high during an external memory read indicates the read is an instruction fetch and output low indicates a data fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses.
$\overline{E A}$	Input for memory select (External Access). $\overline{\text { EA }}$ equal to a TTL-high causes memory accesses to locations 2000 H through 3FFFH to be directed to on-chip ROM/EPROM. EA equal to a TTL-low causes accesses to these locations to be directed to off-chip memory.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is $\overline{A D V}$, it goes inactive high at the end of the bus cycle. $\overline{\text { ADV }}$ can be used as a chip select for external memory. ALE/ $\overline{A D V}$ is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{\mathrm{WR}} / \overline{\mathrm{WRL}}$	Write and Write Low output to external memory, as selected by the CCR. $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. $\overline{W R} / \overline{W R L}$ is activated only during external memory writes.
	Bus High Enable or Write High output to external memory, as selected by the CCR. $\overline{\text { BHE }}=0$ selects the bank of memory that is connected to the high byte of the data bus. $\mathrm{A} 0=0$ selects the bank of memory that is connected to the low byte of the data bus. Thus accesses to a 16bit wide memory can be to the low byte only ( $\mathrm{A} 0=0, \overline{\mathrm{BHE}}=1$ ), to the high byte only $(\mathrm{AO}=$ $1, \overline{\mathrm{BHE}}=0)$, or both bytes ( $\mathrm{AO}=0, \overline{\mathrm{BHE}}=0$ ). If the WRH function is selected, the pin will go low if the bus cycle is writing to an odd memory location. $\overline{B H E} / \overline{\mathrm{WRH}}$ is valid only during 16bit external memory write cycles.
READY	Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, or for bus sharing. If the pin is high, CPU operation continues in a normal manner. If the pin is low prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the next positive transition in CLKOUT occurs with READY high. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle (held not ready) is available through configuration of CCR.

### 6.0 PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit. The HSI pins are also used as the SID in Slave Programming Mode.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.
Port 0	8 -bit high impedance input-only port. Three pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter. These pins set the Programming Mode.
Port 1	8 -bit quasi-bidirectional I/O port. These pins are shared with HOLD, $\overline{\text { HLDA }}$ and $\overline{\mathrm{BREQ}}$.
Port 2	8-bit multi-functional port. All of its pins are shared with other functions in the 87C196KB.
Ports 3 and 4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus which has strong internal pullups.
HOLD	Bus Hold input requesting control of the bus. Enabled by setting WSR.7.
HLDA	Bus Hold acknowledge output indicating release of the bus. Enabled by setting WSR.7.
$\overline{\text { BREQ }}$	Bus Request output activated when the bus controller has a pending external memory cycle. Enabled by setting WSR.7.
TxD	The TxD pin is used for serial port transmission in Modes 1, 2 and 3 . The TxD function is enabled by setting IOC1.5. In mode 0 the pin is used as the serial clock output.
RxD	Serial Port Receive pin used for serial port reception. The RxD function is enabled by setting SPCON.3. In mode 0 the pin functions as input or output data.
EXTINT	A rising edge on the EXTINT pin will generate an external interrupt. EXTINT is selected as the external interrupt source by setting IOC1. 1 high.
T2CLK	The T2CLK pin is the Timer2 clock input or the serial port baud rate generator input.
T2RST	A rising edge on the T2RST pin will reset Timer2. The external reset function is enabled by setting IOCO.3. T2RST is enabled as the reset source by clearing IOCO.5.
PWMO-2	Port 2.5 can be enabled as a PWM output. The duty cycle of the PWM is determined by the value loaded into the PWM-CONTROL registers.
T2UPDN	The T2UPDN pin controls the direction of Timer2 as an up or down counter. The Timer2 up/down function is enabled by setting IOC2.1.
T2CAP	A rising edge on P2.7 will capture the value of Timer2 in the T2CAPTURE register (location OCH in Window 15).
PMODE	Programming Mode Select. Determines the EPROM programming algorithm that is performed. PMODE is sampled after a chip reset and should be static while the part is operating.
$\overline{\text { PALE }}$	Programming ALE Input. Accepted by the 87C196KB when it is in Slave Programming Mode. Used to indicate that Ports 3 and 4 contain a command/address.
PROG	Programming. Falling edge indicates valid data on PBUS and the beginning of programming. Rising edge indicates end of programming.
PACT	Programming Active. Used in the Auto Programming Mode to indicate when programming activity is complete.
PVER	Program Verification. Used in Slave Programming and Auto Programming Modes. Signal is low after rising edge of PROG if the programming was not successful.
$\overline{\text { AINC }}$	Auto Increment. Active low input signal indicates that the auto increment mode is enabled. Auto Increment will allow reading or writing of sequential EPROM locations without address transactions across the PBUS for each read or write.

### 6.0 PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
PORT	Address/Command/Data Bus. Used to pass commands, addresses, and data to and from   3 and 4   slave mode 87C196KBs. Used by chips in Auto Programming Mode to pass command,   (During   addresses and data to slaves. Also used in the Auto Programming Mode as a regular
Programming)	system bus to access external memory.

### 7.0 OPCODE TABLE

00	SKIP	2D	SCALL	5A	SUBB INDIRECT (3 OPS)
01	CLR	2E	SCALL	5B	SUBB INDEXED (3 OPS)
02	NOT	2 F	SCALL	5C	MULUB DIRECT (3 OPS)
03	NEG	30	JBC	5D	MULUB IMMEDIATE (3 OPS)
04	XCH	31	JBC	5E	MULUB INDIRECT (3 OPS)
05	DEC	32	JBC	5F	MULUB INDEXED (3 OPS)
06	EXT	33	JBC	60	AND DIRECT (2 OPS)
07	INC	34	JBC	61	AND IMMEDIATE (2 OPS)
08	SHR	35	JBC	62	AND INDIRECT (2 OPS)
09	SHL	36	JBC	62	AND INDEXED (2 OPS)
OA	SHRA	37	JBC	64	ADD DIRECT (2 OPS)
OB	XCH	38	JBS	65	ADD IMMEDIATE (2 OPS)
OC	SHRL	39	JBS	66	ADD INDIRECT (2 OPS)
OD	SHLL	3A	JBS	67	ADD INDEXED (2 OPS)
OE	SHRAL	3B	JBS	68	SUB DIRECT (2 OPS)
OF	NORML	3C	JBS	69	SUB IMMEDIATE (2 OPS)
10	RESERVED	3D	JBS	6A	SUB INDIRECT (2 OPS)
11	CLRB	3E	JBS	6B	SUB INDEXED (2 OPS)
12	NOTB	3F	JBS	6C	MULU DIRECT (2 OPS)
13	NEGB	40	AND DIRECT (3 OPS)	6D	MULU IMMEDIATE (2 OPS)
14	XCHB	41	AND IMMEDIATE (3 OPS)	6E	MULU INDIRECT (2 OPS)
15	DECB	42	AND INDIRECT (3 OPS)	6F	MULU INDEXED (2 OPS)
16	EXTB	43	AND INDEXED (3 OPS)	70	ANDB DIRECT (2 OPS)
17	INCB	44	ADD DIRECT (3 OPS)	71	ANDB IMMEDIATE (2 OPS)
18	SHRB	45	ADD IMMEDIATE (3 OPS)	72	ANDB INDIRECT (2 OPS)
19	SHLB	46	ADD INDIRECT (3 OPS)	73	ANDB INDEXED (2 OPS)
1A	SHRAB	47	ADD INDEXED (3 OPS)	74	ADDB DIRECT (2 OPS)
1B	XCHB	48	SUB DIRECT (3 OPS)	75	ADDB IMMEDIATE (2 OPS)
1 C	RESERVED	49	SUB IMMEDIATE (3 OPS)	76	ADDB INDIRECT (2 OPS)
1D	RESERVED	4A	SUB INDIRECT (3 OPS)	77	ADDB INDEXED (2 OPS)
1E	RESERVED	4B	SUB INDEXED (3 OPS)	78	SUBB DIRECT (2 OPS)
1F	RESERVED	4 C	MULU DIRECT (3 OPS)	79	SUBB IMMEDIATE (2 OPS)
20	SJMP	4D	MULU IMMEDIATE (3 OPS)	7A	SUBB INDIRECT (2 OPS)
21	SJMP	4E	MULU INDIRECT (3 OPS)	7B	SUBB INDEXED (2 OPS)
22	SJMP	4F	MULU INDEXED (3 OPS)	7C	MULUB DIRECT (2 OPS)
23	SJMP	50	ANDB DIRECT (3 OPS)	7D	MULUB IMMEDIATE (2 OPS)
24	SJMP	51	ANDB IMMEDIATE (3 OPS)	7E	MULUB INDIRECT (2 OPS)
25	SJMP	52	ANDB INDIRECT (3 OPS)	7F	MULUB INDEXED (2 OPS)
26	SJMP	53	ANDB INDEXED (3 OPS)	80	OR DIRECT
27	SJMP	54	ADDB DIRECT (3 OPS)	81	OR IMMEDIATE
28	SCALL	55	ADDB IMMEDIATE (3 OPS)	82	OR INDIRECT
29	SCALL	56	ADDB INDIRECT (3 OPS)	83	OR INDEXED
2A	SCALL	57	ADDB INDEXED (3 OPS)	84	XOR DIRECT
2B	SCALL	58	SUBB DIRECT (3 OPS)	85	XOR IMMEDIATE
2 C	SCALL	59	SUBB IMMEDIATE (3 OPS)	86	XOR INDIRECT

### 7.0 OPCODE TABLE (Continued)

87	XOR INDEXED
88	CMP DIRECT
89	CMP IMMEDIATE
$8 A$	CMP INDIRECT
8B	CMP INDEXED
8C	DIVU DIRECT
$8 D$	DIVU IMMEDIATE
$8 E$	DIVU INDIRECT
8F	DIVU INDEXED
90	ORB DIRECT
91	ORB IMMEDIATE
92	ORB INDIRECT
93	ORB INDEXED
94	XORB DIRECT
95	XORB IMMEDIATE
96	XORB INDIRECT
97	XORB INDEXED
98	CMPB DIRECT
99	CMPB IMMEDIATE
$9 A$	CMPB INDIRECT
$9 B$	CMPB INDEXED
$9 C$	DIVUB DIRECT
$9 D$	DIVUB IMMEDIATE
$9 E$	DIVUB INDIRECT
$9 F$	DIVUB INDEXED
A0	LD DRECT
A1	LD IMMEDIATE
A2	LD INDIRECT
A3	LD INDEXED
A4	ADDC DIRECT
A5	ADDC IMMEDIATE
A6	ADDC INDIRECT
A7	ADDC INDEXED
A8	SUBC DIRECT
A9	SUBC IMMEDIATE
AA	SUBC INDIRECT
AB	SUBC INDEXED
AC	LDBZE DIRECT
AD	LDBZE IMMEDIATE
AE	LDBZE INDIRECT
AF	LDBZE INDEXED


B0	LDB DIRECT
B1	LDB IMMEDIATE
B2	LDB INDIRECT
B3	LDB INDEXED
B4	ADDCB DIRECT
B5	ADDCB IMMEDIATE
B6	ADDCB INDIRECT
B7	ADDCB INDEXED
B8	SUBCB DIRECT
B9	SUBCB IMMEDIATE
BA	SUBCB INDIRECT
BB	SUBCB INDEXED
BC	LDBSE DIRECT
BD	LDBSE IMMEDIATE
BE	LDBSE INDIRECT
BF	LDBSE INDEXED
C0	ST DIRECT
C1	BMOV
C2	ST INDIRECT
C3	ST INDEXED
C4	STB DIRECT
C5	CMPL
C6	STB INDIRECT
C7	STB INDEXED
C8	PUSH DIRECT
C9	PUSH IMMEDIATE
CA	PUSH INDIRECT
CB	PUSH INDEXED
CC	POP DIRECT
CD	BMOVI
CE	POP INDIRECT
CF	POP INDEXED
D0	JNST
D1	JNH
D2	JGT
D3	JNC
D4	JNVT
D5	JNV
D6	JGE
D7	JNE
D8	JST


D9	JH
DA	JLE
DB	JC
DC	JVT
DD	JV
DE	JLT
DF	JE
E0	DJNZ
E1	DJNZW
E2	TIJMP
E3	BR (INDIRECT)
E4	RESERVED
E5	RESERVED
E6	RESERVED
E7	LJMP
E8	RESERVED
E9	RESERVED
EA	RESERVED
EB	RESERVED
EC	DPTS
ED	EPTS
EE	RESERVED**
EF	LCALL
F0	RET
F1	RESERVED
F2	PUSHF
F3	POPF
F4	PUSHA
F5	POPA
F6	IDLPD
F7	TRAP
F8	CLRC
F9	SETC
FA	DI
FB	EI
FC	CLRVT
FD	NOP
FE	*DIV/DIVB/MUL/MULB
FF	RST

NOTE:
*Two Byte Instruction
RESERVED-Execution of RESERVED instructions will cause unimplemented opcode interrupt.
${ }^{* *}$ Opcode EE is reserved, but it does not generate an unimplemented opcode interrupt.


80-Pin SQFP Package

8XC196KC QUICK REFERENCE

### 8.0 INSTRUCTION SET SUMMARY

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			z	N	C	v	VT	ST	
ADD/ADDB	2	$D \leftarrow D+A$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
ADD/ADDB	3	$D \leftarrow B+A$	$\checkmark$	$\nu$	$\checkmark$	$\nu$	$\uparrow$	-	
ADDC/ADDCB	2	$D \leftarrow D+A+C$	$\downarrow$	$\nu$	$\checkmark$	$\nu$	$\uparrow$	-	
SUB/SUBB	2	$D \leftarrow D-A$	$\checkmark$	$\nu$	$\nu$	$\nu$	$\uparrow$	-	
SUB/SUBB	3	$D \leftarrow B-A$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
SUBC/SUBCB	2	$D \leftarrow D-A+C-1$	$\downarrow$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$	-	
CMP/CMPB	2	D - A	$\checkmark$	$\nu$	$\checkmark$	$\nu$	$\uparrow$	-	
MUL/MULU	2	$\mathrm{D}, \mathrm{D}+2 \leftarrow \mathrm{D} \times \mathrm{A}$	-	-	-	-	-	-	2
MUL/MULU	3	$D, D+2 \leftarrow B \times A$	-	-	-	-	-	-	2
MULB/MULUB	2	$D, D+1 \leftarrow D \times A$	-	-	-	-	-	-	3
MULB/MULUB	3	$D, D+1 \leftarrow B \times A$	-	-	-	-	-	-	3
DIVU	2	$\mathrm{D} \leftarrow(\mathrm{D}, \mathrm{D}+2) / \mathrm{A}, \mathrm{D}+2 \leftarrow$ remainder	-	-	-	$\checkmark$	$\uparrow$	-	2
DIVUB	2	$D \leftarrow(\mathrm{D}, \mathrm{D}+1) / \mathrm{A}, \mathrm{D}+1 \leftarrow$ remainder	-	-	-	$\nu$	$\uparrow$	-	3
DIV	2	$D \leftarrow(D, D+2) / A, D+2 \leftarrow$ remainder	-	-	-	$\checkmark$	$\uparrow$	-	
DIVB	2	$D \leftarrow(D, D+1) / A, D+1 \leftarrow$ remainder	-	-	-	$\checkmark$	$\uparrow$	-	
AND/ANDB	2	$D \leftarrow D A N D A$	$\checkmark$	$\nu$	0	0	-	-	
AND/ANDB	3	$D \leftarrow$ B AND A	$\checkmark$	$\nu$	0	0	-	-	
OR/ORB	2	$D \leftarrow$ D OR A	$\checkmark$	$\checkmark$	0	0	-	-	
XOR/XORB	2	$D \leftarrow \mathrm{D}$ (ecxl. or) A	$\nu$	$\nu$	0	0	-	-	
LD/LDB	2	$D \leftarrow A$	-	-	-	-	-	-	
ST/STB	2	$A \leftarrow D$	-	-	-	-	-	-	
XCH/XCHB	2	$D \leftarrow A, A \leftarrow D$	-	-	-	-	-	-	
LDBSE	2	$D \leftarrow A ; D+1 \leftarrow \operatorname{SIGN}(\mathrm{~A})$	-	-	-	-	-	-	3,4
LDBZE	2	$D \leftarrow A ; D+1 \leftarrow 0$	-	-	-	-	-	-	3,4
PUSH	1	$\mathrm{SP} \leftarrow \mathrm{SP}-2 ;(S P) \leftarrow \mathrm{A}$	-	-	-	-	-	-	
POP	1	$\mathrm{A} \leftarrow(\mathrm{SP}) ; \mathrm{SP}+2$.	-	-	-	-	-	-	
PUSHF	0	$\begin{aligned} & S P \leftarrow S P-2 ;(S P) \leftarrow P S W ; \\ & P S W \leftarrow 0000 \mathrm{H} ; 1 \leftarrow 0 \end{aligned}$	0	0	0	0	0	0	
POPF	0	PSW $\leftarrow(\mathrm{SP}) ; \mathrm{SP} \leftarrow \mathrm{SP}+2 ; 1 \leftarrow \vee$	$\checkmark$	$\nu$	$\nu$	$\checkmark$	$\nu$	$\nu$	
SJMP	1	$\mathrm{PC} \leftarrow \mathrm{PC}+11$-bit offset	-	-	-	-	-	-	5
LJMP	1	$\mathrm{PC} \leftarrow \mathrm{PC}+16$-bit offset	-	-	-	-	-	-	5
BR[indirect]	1	$\mathrm{PC} \leftarrow(\mathrm{A})$	-	-	-	-	-	-	
TIJMP	3	$\mathrm{PC} \leftarrow[\mathrm{A}]+2^{*}([\mathrm{~B}]$ AND C)	-	-	-	-	-	-	
SCALL	1	$\begin{aligned} & \hline S P \leftarrow S P-2 ; \\ & (S P) \leftarrow P C ; P C \leftarrow P C+11 \text {-bit offset } \end{aligned}$	-	-	-	-	-	-	5
LCALL	1	$\begin{aligned} & S P \leftarrow S P-2 ;(S P) \leftarrow P C ; \\ & P C \leftarrow P C+16 \text {-bit offset } \end{aligned}$	-	-	-	-	-	-	5

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			z	N	c	v	VT	ST	
RET	0	$\mathrm{PC} \leftarrow(\mathrm{SP})$; $\mathrm{SP} \leftarrow \mathrm{SP}+2$	-	-	-	-	-	-	
$J$ (conditional)	1	$\mathrm{PC} \leftarrow \mathrm{PC}+8$-bit offset (if taken)	-	-	-	-	-	-	5
JC	1	Jump if $\mathrm{C}=1$	-	-	-	-	-	-	5
JNC	1	Jump if $\mathrm{C}=0$	-	-	-	-	-	-	5
JE	1	Jump if $Z=1$	-	-	-	-	-	-	5
JNE	1	Jump if $Z=0$	-	-	-	-	-	-	5
JGE	1	Jump if $N=0$	-	-	-	-	-	-	5
JLT	1	Jump if $\mathrm{N}=1$	-	-	-	-	-	-	5
JGT	1	Jump if $N=0$ and $Z=0$	-	-	-	-	-	-	5
JLE	1	Jump if $\mathrm{N}=1$ or $\mathrm{Z}=1$	-	-	-	-	-	-	5
JH	1	Jump if $\mathrm{C}=1$ and $\mathrm{Z}=0$	-	-	-	-	-	-	5
JNH	1	Jump if $\mathrm{C}=0$ or $\mathrm{Z}=1$	-	-	-	-	-	-	5
JV	1	Jump if $\mathrm{V}=1$	-	-	-	-	-	-	5
JNV	1	Jump if $\mathrm{V}=0$	-	-	-	-	-	-	5
JVT	1	Jump if VT $=1$; Clear VT	-	-	-	-	0	-	5
JNVT	1	Jump if VT $=0$; Clear VT	-	-	-	-	0	-	5
JST	1	Jump if ST $=1$	-	-	-	-	-	-	5
JNST	1	Jump if ST $=0$	-	-	-	-	-	-	5
JBS	3	Jump if Specified Bit = 1	-	-	-	-	-	-	5,6
JBC	3	Jump if Specified Bit $=0$	-	-	-	-	-	-	5,6
$\begin{array}{\|l} \hline \text { DJNZ/ } \\ \text { DJNZW } \\ \hline \end{array}$	1	$\begin{aligned} & \mathrm{D} \leftarrow \mathrm{D}-1 ; \\ & \text { If } \mathrm{D} \neq 0 \text { then } \mathrm{PC} \leftarrow \mathrm{PC}+8 \text {-bit offset } \end{aligned}$	-	-	-	-	-	-	5
DEC/DECB	1	$\mathrm{D} \leftarrow \mathrm{D}-1$	$\checkmark$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$	-	
NEG/NEGB	1	$\mathrm{D} \leftarrow 0-\mathrm{D}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
INC/INCB	1	$D \leftarrow D+1$	$\checkmark$	$\checkmark$	$\checkmark$	$\nu$	$\uparrow$	-	
EXT	1	$\mathrm{D} \leftarrow \mathrm{D} ; \mathrm{D}+2 \leftarrow \operatorname{Sign}(\mathrm{D})$	$\nu$	$\checkmark$	0	0	-	-	2
EXTB	1	$\mathrm{D} \leftarrow \mathrm{D} ; \mathrm{D}+1 \leftarrow \operatorname{Sign}(\mathrm{D})$	$\nu$	$\checkmark$	0	0	-	-	3
NOT/NOTB	1	$\mathrm{D} \leftarrow$ Logical $\operatorname{Not}(\mathrm{D})$	$\checkmark$	$\checkmark$	0	0	-	-	
CLR/CLRB	1	$\mathrm{D} \leftarrow 0$	1	0	0	0	-	-	
SHL/SHLB/SHLL	2	$\mathrm{C} \leftarrow \mathrm{msb}-\cdots-\mathrm{lsb} \leftarrow 0$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	7
SHR/SHRB/SHRL	2	$0 \rightarrow$ msb $-\cdots-\mathrm{lsb} \rightarrow \mathrm{C}$	$\nu$	$\checkmark$	$\nu$	0	-	$\nu$	7
SHRA/SHRAB/SHRAL	2	$\mathrm{msb} \rightarrow \mathrm{msb}-\cdots-\mathrm{lsb} \rightarrow \mathrm{C}$	$\checkmark$	$\checkmark$	$\nu$	0	-	$\checkmark$	7
SETC	0	$C \leftarrow 1$	-	-	1	-	-	-	
CLRC	0	$\mathrm{C} \leftarrow 0$	-	-	0	-	-	-	

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			z	N	C	V	VT	ST	
CLRVT	0	$\mathrm{VT} \leftarrow 0$	-	-	-	-	0	-	
RST	0	$\mathrm{PC} \leftarrow 2080 \mathrm{H}$	0	0	0	0	0	0	8
DI	0	Disable All Interupts ( $1 \leftarrow 0$ )	-	-	-	-	-	-	
EI	0	Enable All Interupts ( $1 \leftarrow 1$ )	-	-	-	-	-	-	
DPTS	0	Disable all PTS Cycles (PSE $=0$ )	-	-	-	-	-	-	
EPTS	0	Enable all PTS Cycles (PSE = 1)	-	-	-	-	-	-	
NOP	0	$\mathrm{PC} \leftarrow \mathrm{PC}+1$	-	-	-	-	-	-	
SKIP	1	$\mathrm{PC} \leftarrow \mathrm{PC}+2$	-	-	-	-	-	-	
NORML	2	Left shift till msb $=1$; $\mathrm{D} \leftarrow$ shift count	$\checkmark$	$\checkmark$	0	-	-	-	7
TRAP	0	$\begin{aligned} & \hline \mathrm{SP} \leftarrow \mathrm{SP}-2 ; \\ & (\mathrm{SP}) \leftarrow \mathrm{PC} ; \mathrm{PC} \leftarrow(2010 \mathrm{H}) \\ & \hline \end{aligned}$	-	-	-	-	-	-	9
PUSHA	1	```SP \leftarrow SP-2; (SP) \leftarrow PSW; PSW }\leftarrow0000H; SP \leftarrow SP-2 (SP) \leftarrow IMASK1/WSR; IMASK1 }\leftarrow00```	0	0	0	0	0	0	
POPA	1	$\begin{aligned} & \hline \text { IMASK1/WSR } \leftarrow(S P) ; S P \leftarrow S P+2 \\ & \text { PSW } \leftarrow(S P) ; S P ~ \leftarrow S P+2 \end{aligned}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	
IDLPD	1	IDLE MODE IF KEY=1; POWERDOWN MODE IF KEY = 2 ; CHIP RESET OTHERWISE	-	-	-	-	-	-	
CMPL	2	D-A	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
$\begin{aligned} & \hline \mathrm{BMOV}, \\ & \mathrm{BMOVi} \end{aligned}$	2	[PTR_HI] $+\leftarrow$ [PTR_LOW] + ;   UNTIL COUNT $=0$	-	-	-	-	-	-	

## NOTES:

1. If the mnemonic ends in " $B$ " a byte operation is performed, otherwise a word operation is done. Operands $D, B$ and $A$ must conform to the alignment rules for the required operand type. $D$ and $B$ are locations in the Register File; $A$ can be located anywhere in memory.
2. $D, D+2$ are consecutive WORDS in memory; $D$ is DOUBLE-WORD aligned.
3. $D, D+1$ are consecutive BYTES in memory; $D$ is WORD aligned.
4. Changes a byte to word.
5. Offset is a 2's complement number.
6. Specified bit is one of the 2048 bits in the register file.
7. The " $L$ " (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 2080 H .
9. The assembler will not accept this mnemonic.

### 9.0 INSTRUCTION LENGTH/OPCODE

MNEMONIC	DIRECT	IMMED	INDIRECT		INDEXED	
			NORMAL ${ }^{(1)}$	A-INC(1)	SHORT(1)	LONG(1)
ADD (3-op)	4/44	5/45	4/46	4/46	5/47	6/47
SUB (3-op)	4/48	5/49	4/4A	4/4A	5/4B	6/4B
ADD (2-op)	3/64	4/65	3/66	3/66	4/67	5/67
SUB (2-op)	3/68	4/69	3/6A	3/6A	4/6B	5/6B
ADDC	3/A4	4/A5	3/A6	3/A6	4/A7	5/A7
SUBC	3/A8	4/A9	3/AA	3/AA	4/AB	5/AB
CMP	3/88	4/89	3/8A	3/8A	4/8B	5/8B
ADDB (3-op)	4/54	4/55	4/56	4/56	5/57	6/57
SUBB (3-op)	4/58	4/59	4/5A	4/5A	5/5B	6/5B
ADDB (2-op)	3/74	3/75	3/76	3/76	4/77	5/77
SUBB (2-op)	3/78	3/79	3/7A	3/7A	4/7B	5/7B
ADDCB	3/B4	3/B5	3/B6	3/B6	4/B7	5/B7
SUBCB	3/B8	3/B9	3/BA	3/BA	4/BB	5/BB
CMPB	3/98	3/99	3/9A	3/9A	4/9B	5/9B
MUL (3-op)	5/(2)	6/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULU (3-op)	4/4C	5/4D	4/4E	4/4E	5/4F	6/4F
MUL (2-op)	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULU (2-op)	3/6C	4/6D	3/6E	3/6E	4/6F	5/6F
DIV	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVU	$3 / 8 \mathrm{C}$	4/8D	3/8E	3/8E	4/8F	5/8F
MULB (3-op)	5/(2)	5/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULUB (3-op)	4/5C	4/5D	4/5E	4/5E	5/5F	6/5F
MULB (2-op)	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULUB (2-op)	3/7C	3/7D	3/7E	3/7E	4/7F	5/7F
DIVB	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVUB	3/9C	3/9D	3/9E	3/9E	4/9F	5/9F
AND (3-op)	4/40	5/41	4/42	4/42	5/43	6/43
AND (2-op)	3/60	4/61	3/62	3/62	$4 / 63$	5/63
OR (2-op)	3/80	4/81	3/82	3/82	4/83	5/83
XOR	3/84	4/85	3/86	3/86	4/87	5/87
ANDB (3-op)	4/50	4/51	4/52	4/52	5/53	5/53
ANDB (2-op) ${ }^{\text {* }}$	3/70	3/71	3/72	3/72	4/73	4/73
ORB (2-op)	3/90	3/91	3/92	3/92	4/93	5/93
XORB	3/94	3/95	3/96	3/96	4/97	5/97
PUSH	2/C8	3/C9	2/CA	2/CA	3/CB	4/CB
POP	2/CC	-	2/CE	2/CE	3/CF	4/CF

### 9.0 INSTRUCTION LENGTH/OPCODE (Continued)

MNEMONIC	DIRECT	IMMED	INDIRECT		INDEXED	
			NORMAL	A-INC	SHORT	LONG
LD	$3 / \mathrm{AO}$	$4 / \mathrm{A} 1$	$3 / \mathrm{A} 2$	$3 / \mathrm{A} 2$	$4 / \mathrm{A} 3$	$5 / \mathrm{A} 3$
LDB	$3 / \mathrm{BO}$	$3 / \mathrm{B} 1$	$3 / \mathrm{B} 2$	$3 / \mathrm{B} 2$	$4 / \mathrm{B} 3$	$5 / \mathrm{B} 3$
ST	$3 / \mathrm{C} 0$	-	$3 / \mathrm{C} 2$	$3 / \mathrm{C} 2$	$4 / \mathrm{C} 3$	$5 / \mathrm{C} 3$
STB	$3 / \mathrm{C} 4$	-	$3 / \mathrm{C} 6$	$3 / \mathrm{C} 6$	$4 / \mathrm{C} 7$	$5 / \mathrm{C} 7$
XCH	$3 / 04$	-	-	-	$4 / 0 \mathrm{~B}$	$5 / 0 \mathrm{~B}$
XCHB	$3 / 14$	-	-	-	$4 / 1 \mathrm{~B}$	$5 / 1 \mathrm{~B}$
LDBSE	$3 / \mathrm{BC}$	$3 / \mathrm{BD}$	$3 / \mathrm{BE}$	$3 / \mathrm{BE}$	$4 / \mathrm{BF}$	$5 / \mathrm{BF}$
LBSZE	$3 / \mathrm{AC}$	$3 / \mathrm{AD}$	$3 / \mathrm{AE}$	$3 / \mathrm{AE}$	$4 / \mathrm{AF}$	$5 / \mathrm{AF}$


Mnemonic	Length/Opcode	Mnemonic	Length/Opcode
PUSHF	1/F2	JE	1/DF
POPF	1/F3	JBC	3/30-37
PUSHA	1/F4	JBS	3/38-3F
POPA	1/F5	DJNZ	3/E0
		DJNZW	3/E1
TRAP	1/F7	NORML	3/0F
LCALL	3/EF	SHRL	3/0C
SCALL	2/28-2F(3)	SHLL	3/0D
RET	1/F0	SHRAL	3/0E
LJMP	3/E7	SHR	3/08
SJMP	2/20-27(3)	SHRB	3/18
BR[]	2/E3	SHL	3/09
TIJMP	4/E2	SHLB	3/19
		SHRA	3/0A
JNST	1/D0	SHRAB	3/1A
JST	1/D8		
JNH	1/D1	CLRC	1/F8
JH	1/D9	SETC	1/F9
JGT	1/D2	DI	1/FA
JLE	1/DA	El	1/FB
JNC	1/B3	DPTS	1/EC
JC	1/D8	EPTS	1/ED
JNVT	1/D4	CLRVT	1/FC
JVT	1/DC	NOP	1/FD
JNV	1/D5	RST	1/FF
JV	1/DD	SKIP	2/00
JGE	1/D6	IDLPD	1/F6
JLT	1/DE	BMOV	3/C1
JNE	1/D7	BMOVi	3/CD

## NOTES:

1. Indirect and indirect + share the same opcodes, as do short and long indexed opcodes. If the second byte is even, use indirect or short indexed. If odd, use indirect or long indexed.
2. The opcodes for signed multiply and divide are the unsigned opcode with an "FE" prefix.
3. The 3 least significant bits of the opcode are concatenated with the 8 bits to form an 11-bit, 2's complement offset.

### 10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES)

MNEMONIC	DIRECT	IMMED	INDIRECT		INDEXED	
			NORMAL*	A-INC*	SHORT*	LONG*
ADD (3-op)		6	7/10	8/11	7/10	8/11
SUB (3-op)	5	6	7/10	8/11	7/10	8/11
ADD (2-op)	4	5	6/8	7/9	6/8	7/9
SUB (2-op)	4	5	6/8	7/9	6/8	7/9
ADDC	4	5	6/8	7/9	6/8	7/9
SUBC	4	5	6/8	7/9	6/8	7/9
CMP	4	5	6/8	7/9	6/8	7/9
ADDB (3-op)	5	5	7/10	8/11	7/10	8/11
SUBB (3-op)	5	5	7/10	8/11	7/10	8/11
ADDB (2-op)	4	4	6/8	7/9	6/8	7/9
SUBB (2-op)	4	4	6/8	7/9	6/8	7/9
ADDCB	4	4	6/8	7/9	6/8	7/9
SUBCB	4	4	6/8	7/9	6/8	7/9
CMPB	4	4	6/8	7/9	6/8	7/9
MUL (3-op)	16	17	18/21	19/22	19/22	20/23
MULU (3-op)	14	15	16/19	17/19	17/20	18/21
MUL (2-op)	16	17	18/21	19/22	19/22	20/23
MULU (2-op)	14	15	16/19	17/19	17/20	18/21
DIV	26	27	28/31	29/32	29/32	30/33
DIVU	24	25	26/29	27/30	27/30	28/31
MULB (3-op)	12	12	14/17	15/18	15/18	16/19
MULUB (3-op)	10	10	12/15	12/16	12/16	14/17
MULB (2-op)	12	12	14/17	15/18	15/18	16/19
MULUB (2-op)	10	10	12/15	13/15	12/16	14/17
DIVB	18	18	20/23	21/24	21/24	22/25
DIVUB	16	16	18/21	19/22	19/22	20/23
AND (3-op)	5	6	7/10	8/11	7/10	8/11
AND (2-op)	4	5	6/8	7/9	6/8	7/9
OR (2-op)	4	5	6/8	7/9	6/8	7/9
XOR	4	5	6/8	7/9	6/8	7/9
ANDB (3-op)	5	5	7/10	8/11	7/10	8/11
ANDB (2-op)	4	4	6/8	7/9	6/8	7/9
ORB (2-op)	4	4	6/8	7/9	6/8	7/9
XORB	4	4	6/8	7/9	6/8	7/9
LD, LDB	4, 4	5, 4	5/8	6/8	6/9	7/10
ST, STB	4, 4	-	5/8	6/9	6/9	7/10
XCH, XCHB	5,5	-	-	-	8/13	9/14
LDBSE	4	4	5/8	6/8	6/9	7/10
LDBZE	4	4	5/8	6/8	6/9	7/10
BMOV	$6+8$ per word +3 for each memory controller reference					
BMOVi	$\begin{gathered} 7+8 \text { per word } \\ +14 \text { for each interrupt }+3 \text { for each memory controller reference } \\ \hline \end{gathered}$					
PUSH (int stack)	6	7	9/12	10/13	10/13	11/14
POP (int stack)	8	-	10/12	11/13	11/13	12/14
PUSH (ext stack)	8	9	11/14	12/15	12/15	13/16
POP (ext stack)	11	-	13/15	14/16	14/16	15/17

*Times for operands addressed as SFRs and internal RAM ( $0-1 \mathrm{FFH}$ )/memory controller references (200-0FFFFH)).

## NOTES:

1. Execution times for memory controller references may be one to two states higher depending on the number of bytes in the prefetch queue.
2. INT stack is $0-1$ FFH and EXT stack is 200-0FFFFH.
10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

MNEMONIC		MNEMONIC	
PUSHF (int stack) POPF (int stack) PUSHA (int stack) POPA (int stack)	6 7 12 12	PUSHF (ext stack) POPF (ext stack) PUSHA (ext stack) POPA (ext stack)	8 10 18 18
TRAP (int stack) LCALL (int stack) SCALL (int stack) RET (int stack)	16 11 11 11	TRAP (ext stack) LCALL (ext stack) SCALL (ext stack) RET (ext stack)	18 13 13 14
CMPL   CLR/CLRB   NOT/NOTB   NEG/NEGB	3	DEC/DECB   EXT/EXTB   INC/INCB	3
LJMP   SJMP   BR [indirect]   TIJMP   JNST, JST   JNH, JH   JGT, JLE   JNC, JC   JNVT, JVT   JNV, JV   JGE, JLT   JNE, JE   JBC, JBS	7 15 $4 / 8$ $4 / 8$ $4 / 8$ $4 / 8$ $4 / 8$ $4 / 8$ $4 / 8$ $4 /$ $5 /$	emory controller ref   n/jump taken   n/jump taken   n/jump taken   n/jump taken   I/jump taken   n/jump taken   n/jump taken   n/jump taken   n/jump taken	
DJNZ DJNZW	5/9 jump not taken/jump taken 6/10 jump not taken/jump taken		
NORML   SHRL   SHLL   SHRAL   SHR/SHRB   SHL/SHLB   SHRA/SHRAB	$8+1$ per shift ( 9 for 0 shift)   $7+1$ per shift ( 8 for 0 shift)   $7+1$ per shift ( 8 for 0 shift)   $7+1$ per shift ( 8 for 0 shift)   $6+1$ per shift ( 7 for 0 shift)   $6+1$ per shift ( 7 for 0 shift)   $6+1$ per shift ( 7 for 0 shift)		
CLRC   SETC   DI   EI   DPTS   EPTS   CLRVT   NOP   RST   SKIP   IDLPD	2 2 2 2 2 2 2 20 3 $8 /$	of configuration byte) improper key)	

### 10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

PTS CYCLES	
Single Transfer	$18(+3$ for each memory controller reference)
Block Transfer	$13(+7$ for each transfer, 1 minimum
	+3 for each memory controller reference)
A/D Mode (SFRs/internal RAM)	21
(MEMORY CONT)	25
HSI MODE (SFRs/internal RAM)	$12(+10$ for each transfer, 1 minimum)
(MEMORY CONT)	$16(+10$ for each transfer, 1 minimum)
HSO MODE (SFRs/internal RAM)	$11(+10$ for each transfer, 1 minimum)
(MEMORY CONT)	$15(+11$ for each transfer, 1 minimum)

### 11.0 INTERRUPT TABLE

80C196KC Interrupt Priorities

Number	Source	Vector   Location	Priority
INT15	NMI	203 EH	15
N/A	PTS	Table	$(1,2)$
INT14	HSI FIFO Full	203 CH	14
INT13	EXTINT1	203 AH	13
INT12	TIMER2 Overflow	2038 H	12
INT11	TIMER2 Capture	2036 H	11
INT10	4 th Entry into HSI FIFO	2034 H	10
INT09	RI	2032 H	9
INT08	TI	2030 H	8
SPECIAL	Unimplemented	2012 H	N/A
Opcode	2010 H	N/A	
SPECIAL	Trap	200 H	7
INT07	EXTINT	200 CH	6
INT06	Serial Port	200 AH	5
INT05	Software Timer	2008 H	4
INT04	HSI.0 Pin	2006 H	3
INT03	High Speed Outputs	2004 H	2
INT02	HSI Data Available	2002 H	1
INT01	A/D Conversion   Complete	2000 H	0
INT00	Timer Overflow		
		2	

PTS Vector Table

PTS Vector	Location
HSI FIFO Full	205 CH
EXTINT1	205 AH
TIMER2 Overflow	2058 H
TIMER2 Capture	2056 H
4th HSI FIFO Entry	2054 H
RI	2052 H
TI	2050 H
EXTINT	204 EH
Serial Port	204 CH
Software Timer	204 AH
HSI.0 Pin	2048 H
High Speed Outputs	2046 H
HSI Data Available	2044 H
A/D Conversion Complete	2042 H
Timer Overflow	2040 H

## NOTES:

1. PTS interrupts have higher priority than all other interrupts except NMI.
2. PTS priorities are in the same order as conventional interrupts.
11.0 INTERRUPT TABLE (Continued)

PTSVEC	PTS Control Blocks				
	UNUSED	UNUUSED	UNUSED	UNUSED	UNUSED
	UNUSED	PTSBLOCK	UNUSED	PTSBLOCK	PTSBLOCK
	PTSDST (HI)	PTSDST (HI)	REG (HI)	UNUSED	UNUSED
	PTSDST (LO)	PTSDST (LO)	REG (LO)	UNUSED	UNUSED
	PTSSRC (HI)	PTSSRC (HI)	S/D (HI)	PTSSRC (HI)	PTSDEST (HI)
	PTSSRC (LO)	PTSSRC (LO)	S/D (LO)	PTSSRC (LO)	PTSDEST (LO)
	PTSCON	PTSCON	PTSCON	PTSCON	PTSCON
	PTSCOUNT	PTSCOUNT	PTSCOUNT	PTSCOUNT	PTSCOUNT
	Single Transfer	Block Transfer	A/D Mode	HSO Mode	HSI Mode

11.0 INTERRUPT TABLE (Continued)


### 12.0 FORMULAS

## Baud Rate

Asynchronous Modes 1, 2 and 3:

$$
\begin{aligned}
& \text { BAUD__REG }=\frac{\text { XTAL1 }}{\text { Baud Rate } * 16}-1 \\
& \text { or } \frac{\text { T2CLK }}{\text { Baud Rate } * 8}
\end{aligned}
$$

Synchronous Mode 0:

$$
\begin{aligned}
& \text { BAUD_REG }=\frac{\text { XTAL1 }}{\text { Baud Rate *2 }}-1 \\
& \text { or } \frac{\text { T2CLK }}{\text { Baud Rate }}
\end{aligned}
$$

## A/D Conversion

$10-$ Bit value $=\operatorname{INT}\left[\frac{1023 *\left(V_{\text {IN }}-A N G N D\right)}{\left(V_{\text {REF }}-A N G N D\right)}\right]$
8 -Bit value $=\operatorname{INT}\left[\frac{255 *\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{ANGND}\right)}{\left(\mathrm{V}_{\mathrm{REF}}-\mathrm{ANGND}\right)}\right]$
SAM $=\frac{\left(T_{S A M} * F_{O S C}\right)-2}{8}$
$T_{\text {SAM }}=\frac{(8 * \text { SAM })+2}{\text { FOSC }}$
CONV $=\frac{\left(T_{C O N V} * F_{\text {OSC }}\right)+3}{2 \times B}$
$T_{\text {CONV }}=\frac{(2 * B * \text { CONV })-3}{F_{\text {OSC }}}$
$\mathrm{T}_{\text {CONV }}=$ Conversion time, $\mu \mathrm{s}$
$\mathrm{T}_{\text {SAMP }}=$ Sample time, $\mu \mathrm{s}$
SAM $=$ Value loaded into AD__TIME bits 5, 6, 7. Must equal 1 through 7
CONV $=$ Value loaded into AD__TIME bits 0-5. Must equal 2 through 31
XTAL1 $=$ Processor frequency, MHz
B $\quad=8$ for 8 -bit conversion
B $\quad=10$ for 10 -bit conversion

## Pulse Width Modulation (PWM)

PWM__CONTROL $=256 *$ duty cycle or
PWM_CONTROL $=512 *$ duty cycle

State Time

$$
1 \text { STATE TIME }=\frac{2}{\text { XTAL1 }}=2 \text { TOSC }
$$

Signature Word and Voltage Levels

Description	Location	Value
Signature Word	70 H	879 CH
Programming $\mathrm{V}_{\mathrm{CC}}$	72 H	040 H
		5.0 V
Programming $\mathrm{V}_{\mathrm{PP}}$	73 H	0 AOH
		12.50 V

### 13.0 RESET STATUS

## SFR Reset Status

Register Name	Value
AD__RESULT	7FFOH
AD_TIME	OFFH
HSI_STATUS	X0X0X0X0B
SBUF(RX)	00 H
INT_MASK	00000000 B
INT_PENDING	00000000 B
TIMER1	0000 H
TIMER2	0000 H
IOPORT1	11111111 B
IOPORT2	11000001 B
SP_STAT/SP_CON	00001011 B
IMASK1	00000000 B
IPEND1	00000000 B
WSR	XXXX0000B
HSI_MODE	11111111 B
IOC2	X0000000B
IOC0	$000000 \times 0 \mathrm{~B}$
IOC1	00100001 B
PWM_CONTROLS	00 H
IOPORT3	11111111 B
IOPORT4	11111111 B
IOSO	00000000 B
IOS1	00000000 B
IOS2	00000000 B
IOC3*	11110010 B

## NOTE:

*Was previously called T2CONTROL or T2CNTC.

8XC196KC Pin Reset Stats

Pin Name	Multiplexed Port Pins	Pin Status during Reset	Pin Status after Reset
ACH0-ACH7	P0.0-P0.7	Undefined Inputs ${ }^{(1)}$	Undefined Inputs ${ }^{(1)}$
PORT1	P1.0-P1.7	Weak Pull-Ups ( $\mathrm{ILL}_{\text {Spec }}$ )	Weak Pull-Ups (l/L Spec)
TXD	P2.0	Strong Pull-Up ( $\mathrm{l}_{\text {L1 }} \mathrm{Spec}$ )	Strongly Driven
RXD	P2.1	Undefined Input(3)	Undefined Input(3)
EXTINT	P2.2	Undefined Input(3)	Undefined Input(3)
T2CLK	P2.3	Undefined Input(3)	Undefined Input(3)
T2RST	P2.4	Undefined Input(3)	Undefined Input(3)
PWM0	P2.5	Medium Pull-Down	Strongly Driven
-	P2.6-P2.7	Weak Pull-Ups	Weak Pull-Ups
AD0-AD15	P3.0-P4.7	Weak Pull-Ups	Address/Data Bus or Open-Drain I/O(2)
HSI.0, HSI. 1	-	Undefined Input(3)	Undefined Input(3)
HSI.2/HSO. 4	-	Undefined Input(3)	Undefined Input(3)
HSI.3/HSO. 5	-	Undefined Input(3)	Undefined Input(3)
HSO.0-HSO. 3	-	Weak Pull-Down	Weak Pull-Down
ALE	-	Weak Pull-Up	Strongly Driven
$\overline{\text { BHE }}$	-	Weak Pull-Up	Strongly Driven
BUSWIDTH	-	Undefined Input(3)	Undefined Input(3)
CLKOUT	-	CLKOUT (Strongly Driven)	CLKOUT (Strongly Driven)
EA	-	Undefined Input(3)	Undefined Input(3)
INST	-	Weak Pull-Down	Strongly Driven
NMI	-	Weak Pull-Down ( $\mathrm{I}_{\mathrm{H} 1} \mathrm{Spec}$ )	Weak Pull-Down ( $\mathrm{I}_{\mathrm{H} 1} \mathrm{Spec}$ )
$\overline{\mathrm{RD}}$	-	Weak Pull-Up	Strongly Driven
READY	-	Undefined Input(3)	Undefined Input(3)
RESET	-	Medium Pull-Up ( $\mathrm{R}_{\text {RST }} \mathrm{Spec}$ )	Medium Pull-Up ( $\mathrm{R}_{\text {RST }} \mathrm{Spec}$ )
WR	-	Weak Pull-Up	Strongly Driven

## NOTES:

1. These pins are allowed to float. However, it is recommended that unused pins be tied high or low. 2. The state of these pins depends on device configuration. If the address/data bus is active, the pins act as a strongly driven bus; otherwise, they act as an open-drain I/O port and are left floating.
2. These pins must be driven and not left floating. Input voltage must not exceed $V_{C C}$ during power-up.
3. Consult the 8XC196KC/KD data sheet for specifications.

8XC196KC Pin Status Descriptions

Pin Status	Approximate Value
Weak Pull-Up	$70 \mu \mathrm{~A}$
Medium Pull-Up	1 mA
Strong Pull-Up	12 mA
Weak Pull-Down	$200 \mu \mathrm{~A}$
Medium Pull-Down	1 mA
Strongly Driven High	See $\mathrm{V}_{\mathrm{OH}}$ Specification
Strongly Driven Low	See $\mathrm{V}_{\mathrm{OL}}$ Specification

## NOTE:

These typical maximum values are approximate; they are provided for reference only and are not guaranteed.

## 8XC196KD <br> Quick Reference

## 8XC196KD Quick Reference

CONTENTS page CONTENTS PAGE
1.0 MEMORY MAP 14-106 7.0 OPCODE TABLE ..... 14-119
2.0 SFR MAP ..... 14-106
8.0 INSTRUCTION SET SUMMARY ..... 14-121
3.0 SFR BIT SUMMARY ..... 14-107
4.0 8XC196KD PIN DEFINITION TABLE ..... 14-112
5.0 PACKAGE PIN ASSIGNMENTS ..... 14-114
6.0 PIN DESCRIPTIONS ..... 14-117
9.0 INSTRUCTION LENGTH/OPCODE ..... 14-124
10.0 INSTRUCTION EXECUTION TIMES
(IN STATE TIMES) ..... 14-126
11.0 INTERRUPT TABLE ..... 14-128
12.0 FORMULAS ..... 14-130
13.0 RESET STATUS ..... 14-131

### 1.0 MEMORY MAP



### 2.0 SFR MAP



8XC196KD CHIP CONFIGURATION BYTE

CCR (2018H: Byte)									
		7	6	5	4	3	2	1	0
		LOC1	LOCO	IRC1	IRCO	ALE	WR	BW0	PD
PD $\quad \begin{aligned} & 1=\text { Powerdown mode enabled } \\ & 0\end{aligned}$									
BW0 $\quad \begin{aligned} & \text { l }\end{aligned}$									
WR $\quad 1=\overline{\mathrm{WR}} / \overline{\mathrm{BHE}}$									
$\text { ALE } \quad 1=\mathrm{AL}$									
IRC0, 1 READY control. (see Table below)									
LOCO, 1 ROM, EPROM Protection. (see Table below)									
IRC1	IRCO	Max Wait States				LOC1		LOCO	Function
0	0	1 Wait State				0		0	Read and Write Protected
0	1	2 Wait States						1	Read Protected Only
1	0	3 Wait States						0	Write Protected Only
1	1	READY Pin Controlled						1	No Protection

### 3.0 SFR BIT SUMMARY






IOC1	(16H HWINO Write)   (16H HWIN15 Read)
0	SELECT PWM / SELECT P2.5




8XC196KD QUICK REFERENCE



$\begin{array}{ll} \text { INT__MASK1 } & \text { (13H all windows R/W) } \\ \text { INT_PEND1 } & \text { (12H all windows R/W) } \end{array}$							
7	6	5	4	3	2	1	0
NMI*	$\begin{aligned} & \text { FIFO } \\ & \text { FULI } \end{aligned}$	$\begin{aligned} & \text { EXT } \\ & \text { INT1 } \end{aligned}$	$\begin{gathered} \text { T2 } \\ \text { OVF } \end{gathered}$	$\begin{gathered} \text { T2 } \\ \text { CAP } \end{gathered}$	HSI4	RI	Tl
* NMI IS A RESERVED BIT, MUST BE WRITTEN AS 0							
NOTE:   MASK and PEND bits share the same names							


					PTSSR   PTSS		Wo Wo		1 Read 1 Read	Write) Write)					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSV*	$\begin{aligned} & \text { FIFO } \\ & \text { FULL } \end{aligned}$	$\begin{aligned} & \text { EXT } \\ & \text { INT } 1 \end{aligned}$	$\begin{gathered} \mathrm{T} 2 \\ \mathrm{OVF} \end{gathered}$	$\begin{gathered} T 2 \\ \text { CAP } \end{gathered}$	$\begin{aligned} & \text { HSI } \\ & \text { FIFO } \\ & \text { FULL } \end{aligned}$	RI	TI	$\begin{aligned} & \text { EXT } \\ & \text { INT } \end{aligned}$	$\begin{gathered} \text { SER } \\ \text { PORT } \end{gathered}$	SOFT   TIMER	$\begin{aligned} & \text { HSI. } 1 \\ & \text { PIN } \end{aligned}$	$\begin{aligned} & \text { HSO } \\ & \text { PIN } \end{aligned}$	$\begin{aligned} & \text { HSI } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { A/D } \\ & \text { DONE } \end{aligned}$	TIMER OVF
* RSV - RESERVED BIT MUST BE WRITTEN AS 0															
NOTE:   PTSSRV and PTSSEL bits share the same names															



## NOTE:

*RSV-Reserved bits must be $=0$
intel.

### 4.0 8XC196KD PIN DEFINITION TABLE

Pin Name	68L PLCC	80L QFP	80L SQFP
ACHO	6	18	17
ACH1	5	17	16
ACH2	7	19	18
ACH3	4	16	15
ACH4	11	24	22
ACH5	10	23	21
ACH6	8	20	19
ACH7	9	21	20
AD0	60	2	80
AD1	59	1	79
AD2	58	80	78
AD3	57	78	77
AD4	56	77	76
AD5	55	76	75
AD6	54	74	74
AD7	53	73	73
AD8	52	72	70
AD9	51	71	69
AD10	50	70	68
AD11	49	69	67
AD12	48	68	66
AD13	47	67	65
AD14	46	66	64
AD15	45	65	63
$\overline{\text { ADV }}$	62	4	2
$\overline{\text { AINC }}$	42	61	59
ALE	62	4	2
ANGND	12	25	23
$\overline{\text { BHE }}$	41	60	58
BREQ	30	46	44
BUSWIDTH	64	6	4
CPVER	33	49	47
CLKOUT	65	7	5
EA	2	14	12
EXTINT	15,9	28, 21	26
HOLD	32	48	46


Pin Name	68L PLCC	80L QFP	80L SQFP
HLDA	31	47	45
HSI. 0	24	39	37
HSI. 1	25	40	38
HSI. 2	26	41	39
HSI. 3	27	43	41
HSO. 0	28	44	42
HSO. 1	29	45	43
HSO. 2	34	50	48
HSO. 3	35	53	51
HSO. 4	26	41	39
HSO. 5	27	43	41
INST	63	5	3
NMI	3	15	13
P0.0	6	18	17
P0.1	5	17	16
P0.2	7	19	18
P0.3	4	16	15
P0.4	11	24	22
P0.5	10	23	21
P0.6	8	20	19
P0.7	9	21	20
P1.0	19	34	32
P1.1	20	35	33
P1.2	21	36	34
P1.3	22	37	35
P1.4	23	38	36
P1.5	30	46	44
P1.6	31	47	45
P1.7	32	48	46
P2.0	18	32	30
P2.1	17	31	29
P2.2	15	28	26
P2.3	44	64	62
P2.4	42	61	59
P2.5	39	58	56
P2.6	33	49	47

### 4.0 8XC196KD PIN DEFINITION TABLE (Continued)

Pin Name	68L PLCC	80L QFP	80L SQFP
P2.7	38	57	55
P3.0	60	2	80
P3. 1	59	1	79
P3.2	58	80	78
P3.3	57	78	77
P3.4	56	77	76
P3.5	55	76	75
P3.6	54	74	74
P3.7	53	73	73
P4.0	52	72	70
P4.1	51	71	69
P4.2	50	70	68
P4.3	49	69	67
P4.4	48	68	66
P4.5	47	67	65
P4.6	46	66	64
P4.7	45	65	63
PACT	38	57	55
$\overline{\text { PALE }}$	17	31	29
PMODE. 0	11	24	22
PMODE. 1	10	23	21
PMODE. 2	8	20	19
PMODE. 3	9	21	20
$\overline{\text { PROG }}$	15	28	26
PVER	18	32	30


Pin Name	68L PLCC	80L QFP	80L SQFP
PWMO	39	58	56
PWM1	22	37	35
PWM2	23	38	36
$\overline{\mathrm{RD}}$	61	3	1
READY	43	62	60
RESET	16	30	28
RXD	17	31	29
T2CAPTURE	38	57	55
T2CLK	44	64	62
T2RST	42	61	59
T2UP-DN	33	49	47
TXD	18	32	30
$\mathrm{V}_{\mathrm{CC}}$	1	$\begin{gathered} 12,13,29, \\ 52,75 \end{gathered}$	$\begin{aligned} & 10,11, \\ & 27,50 \\ & \hline \end{aligned}$
$V_{\text {PP }}$	37	56	54
$V_{\text {REF }}$	13	26	24
$V_{\text {SS }}$	14, 36, 68	$\begin{gathered} 10,11,27, \\ 33,42,51, \\ 54,55,63, \\ 79 \end{gathered}$	$\begin{gathered} 8,9,25, \\ 31,40,49, \\ 52,53,61 \end{gathered}$
$\overline{\mathrm{WR}}$	40	59	57
$\overline{\text { WRL }}$	40	59	57
$\overline{\text { WRH }}$	41	60	58
XTAL1	67	9	7
XTAL2	66	8	6

### 5.0 PACKAGE PIN ASSIGNMENTS



68-Lead PLCC Package Diagram



80-Pin SQFP Package

### 6.0 PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (5V).
$\mathrm{V}_{S S}$	Digital circuit ground ( OV ). There are three $\mathrm{V}_{\text {SS }}$ pins, all of them must be connected.
$V_{\text {REF }}$	Reference voltage for the A/D converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for $A / D$ and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as Vss.
$\mathrm{V}_{\mathrm{PP}}$	Programming voltage. Also timing pin for the return from power down circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $\mathrm{V}_{\mathrm{Ss}}$. If this function is not used, connect to $\mathrm{V}_{\mathrm{CC}}$.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT	Output of the internal clock generator. The frequency of CLKOUT is $1 / 2$ the oscillator frequency. It has a $50 \%$ duty cycle.
$\overline{\text { RESET }}$	Reset input and open-drain output. Hold low to reset the chip. The subsequent low-to-high transition re-synchronizes CLKOUT and commences a 10 -state-time sequence in which the PSW is cleared, a byte read from 2018 H loads CCR, and a jump to location 2080 H is executed. Input high for normal operation. RESET has an internal pullup.
BUSWIDTH	Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1 , a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus.
NMI	A positive transition causes a vector through 203EH.
INST	Output high during an external memory read indicates the read is an instruction fetch and output low indicates a data fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses.
$\overline{E A}$	Input for memory select (External Access). $\overline{E A}$ equal to a TTL-high causes memory accesses to locations 2000 H through 3FFFH to be directed to on-chip ROM/EPROM. EA equal to a TTL-low causes accesses to these locations to be directed to off-chip memory.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is $\overline{A D V}$, it goes inactive high at the end of the bus cycle. $\overline{\text { ADV }}$ can be used as a chip select for external memory. ALE/ $\overline{A D V}$ is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{\mathrm{WR}} / \overline{\mathrm{WRL}}$	Write and Write Low output to external memory, as selected by the CCR. $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. $\overline{\text { WR }} / \overline{\mathrm{WRL}}$ is activated only during external memory writes.
$\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$	Bus High Enable or Write High output to external memory, as selected by the CCR. $\overline{\text { BHE }}=0$ selects the bank of memory that is connected to the high byte of the data bus. $\mathrm{A} O=0$ selects the bank of memory that is connected to the low byte of the data bus. Thus accesses to a 16bit wide memory can be to the low byte only ( $\mathrm{A} O=0, \overline{\mathrm{BHE}}=1$ ), to the high byte only ( $\mathrm{A} 0=$ $1, \overline{B H E}=0)$, or both bytes ( $A 0=0, \overline{B H E}=0$ ). If the $\overline{W R H}$ function is selected, the pin will go low if the bus cycle is writing to an odd memory location. $\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$ is valid only during 16bit external memory write cycles.
READY	Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, or for bus sharing. If the pin is high, CPU operation continues in a normal manner. If the pin is low prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the next positive transition in CLKOUT occurs with READY high. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle (held not ready) is available through configuration of CCR.

### 6.0 PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit. The HSI pins are also used as the SID in Slave Programming Mode.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.
Port 0	8 -bit high impedance input-only port. Three pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter. These pins set the Programming Mode.
Port 1	8 -bit quasi-bidirectional I/O port. These pins are shared with $\overline{\text { HOLD, }}$,
Port 2	8 -bit multi-functional port. All of its pins are shared with other functions in the 87C196KB.
Ports 3 and 4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus which has strong internal pullups.
HOLD	Bus Hold input requesting control of the bus. Enabled by setting WSR.7.
HLDA	Bus Hold acknowledge output indicating release of the bus. Enabled by setting WSR.7.
$\overline{\text { BREQ }}$	Bus Request output activated when the bus controller has a pending external memory cycle. Enabled by setting WSR.7.
TxD	The TxD pin is used for serial port transmission in Modes 1, 2 and 3 . The TxD function is enabled by setting IOC1.5. In mode 0 the pin is used as the serial clock output.
RxD	Serial Port Receive pin used for serial port reception. The RxD function is enabled by setting SPCON.3. In mode 0 the pin functions as input or output data.
EXTINT	A rising edge on the EXTINT pin will generate an external interrupt. EXTINT is selected as the external interrupt source by setting IOC1.1 high.
T2CLK	The T2CLK pin is the Timer2 clock input or the serial port baud rate generator input.
T2RST	A rising edge on the T2RST pin will reset Timer2. The external reset function is enabled by setting IOCO.3. T2RST is enabled as the reset source by clearing IOCO.5.
PWM0-2	Port 2.5 can be enabled as a PWM output. The duty cycle of the PWM is determined by the value loaded into the PWM-CONTROL registers.
T2UPDN	The T2UPDN pin controls the direction of Timer2 as an up or down counter. The Timer2 up/down function is enabled by setting IOC2.1.
T2CAP	A rising edge on P2.7 will capture the value of Timer2 in the T2CAPTURE register (location OCH in Window 15).
PMODE	Programming Mode Select. Determines the EPROM programming algorithm that is performed. PMODE is sampled after a chip reset and should be static while the part is operating.
$\overline{\text { PALE }}$	Programming ALE Input. Accepted by the 87C196KB when it is in Slave Programming Mode. Used to indicate that Ports 3 and 4 contain a command/address.
$\overline{\text { PROG }}$	Programming. Falling edge indicates valid data on PBUS and the beginning of programming. Rising edge indicates end of programming.
$\overline{\text { PACT }}$	Programming Active. Used in the Auto Programming Mode to indicate when programming activity is complete.
PVER	Program Verification. Used in Slave Programming and Auto Programming Modes. Signal is low after rising edge of PROG if the programming was not successful.
$\overline{\text { AINC }}$	Auto Increment: Active low input signal indicates that the auto increment mode is enabled. Auto Increment will allow reading or writing of sequential EPROM locations without address transactions across the PBUS for each read or write.

6.0 PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
PORT	Address/Command/Data Bus. Used to pass commands, addresses, and data to and from   slave mode 87C196KBs. Used by chips in Auto Programming Mode to pass command,   3 and 4   (During   Programming)
addresses and data to slaves. Also used in the Auto Programming Mode as a regular	
system bus to access external memory.	

### 7.0 OPCODE TABLE

00	SKIP
01	CLR
02	NOT
03	NEG
04	XCH
05	DEC
06	EXT
07	INC
08	SHR
09	SHL
$0 A$	SHRA
OB	XCH
$0 C$	SHRL
$0 D$	SHLL
$0 E$	SHRAL
$0 F$	NORML
10	RESERVED
11	CLRB
12	NOTB
13	NEGB
14	XCHB
15	DECB
16	EXTB
17	INCB
18	SHRB
19	SHLB
$1 A$	SHRAB
$1 B$	XCHB
$1 C$	RESERVED
$1 D$	RESERVED
$1 E$	RESERVED
$1 F$	RESERVED
20	SJMP
21	SJMP
22	SJMP
23	SJMP
24	SJMP
25	SJMP
26	SJMP
27	SJMP
28	SCALL
29	SCALL
$2 A$	SCALL
$2 B$	SCALL
$2 C$	SCALL


2D	SCALL	5A	SUBB INDIRECT (3 OPS)
2E	SCALL	5B	SUBB INDEXED (3 OPS)
2F	SCALL	5C	MULUB DIRECT (3 OPS)
30	JBC	5D	MULUB IMMEDIATE (3 OPS)
31	JBC	5E	MULUB INDIRECT (3 OPS)
32	JBC	5 F	MULUB INDEXED (3 OPS)
33	JBC	60	AND DIRECT (2 OPS)
34	JBC	61	AND IMMEDIATE (2 OPS)
35	JBC	62	AND INDIRECT (2 OPS)
36	JBC	62	AND INDEXED (2 OPS)
37	JBC	64	ADD DIRECT (2 OPS)
38	JBS	65	ADD IMMEDIATE (2 OPS)
39	JBS	66	ADD INDIRECT (2 OPS)
3A	JBS	67	ADD INDEXED (2 OPS)
3B	JBS	68	SUB DIRECT (2 OPS)
3C	JBS	69	SUB IMMEDIATE (2 OPS)
3D	JBS	6A	SUB INDIRECT (2 OPS)
3E	JBS	6B	SUB INDEXED (2 OPS)
3 F	JBS	6C	MULU DIRECT (2 OPS)
40	AND DIRECT (3 OPS)	6D	MULU IMMEDIATE (2 OPS)
41	AND IMMEDIATE (3 OPS)	6E	MULU INDIRECT (2 OPS)
42	AND INDIRECT (3 OPS)	6 F	MULU INDEXED (2 OPS)
43	AND INDEXED (3 OPS)	70	ANDB DIRECT (2 OPS)
44	ADD DIRECT (3 OPS)	71	ANDB IMMEDIATE (2 OPS)
45	ADD IMMEDIATE (3 OPS)	72	ANDB INDIRECT (2 OPS)
46	ADD INDIRECT (3 OPS)	73	ANDB INDEXED (2 OPS)
47	ADD INDEXED (3 OPS)	74	ADDB DIRECT (2 OPS)
48	SUB DIRECT (3 OPS)	75	ADDB IMMEDIATE (2 OPS)
49	SUB IMMEDIATE (3 OPS)	76	ADDB INDIRECT (2 OPS)
4A	SUB INDIRECT (3 OPS)	77	ADDB INDEXED (2 OPS)
4B	SUB INDEXED (3 OPS)	78	SUBB DIRECT (2 OPS)
4C	MULU DIRECT (3 OPS)	79	SUBB IMMEDIATE (2 OPS)
4D	MULU IMMEDIATE (3 OPS)	7A	SUBB INDIRECT (2 OPS)
4E	MULU INDIRECT (3 OPS)	7B	SUBB INDEXED (2 OPS)
4F	MULU INDEXED (3 OPS)	7 C	MULUB DIRECT (2 OPS)
50	ANDB DIRECT (3 OPS)	7D	MULUB IMMEDIATE (2 OPS)
51	ANDB IMMEDIATE (3 OPS)	7E	MULUB INDIRECT (2 OPS)
52	ANDB INDIRECT (3 OPS)	7F	MULUB INDEXED (2 OPS)
53	ANDB INDEXED (3 OPS)	80	OR DIRECT
54	ADDB DIRECT (3 OPS)	81	OR IMMEDIATE
55	ADDB IMMEDIATE (3 OPS)	82	OR INDIRECT
56	ADDB INDIRECT (3 OPS)	83	OR INDEXED
57	ADDB INDEXED (3 OPS)	84	XOR DIRECT
58	SUBB DIRECT (3 OPS)	85	XOR IMMEDIATE
59	SUBB IMMEDIATE (3 OPS)	86	XOR INDIRECT

### 7.0 OPCODE TABLE (Continued)

87	XOR INDEXED	B0	LDB DIRECT	D9	JH
88	CMP DIRECT	B1	LDB IMMEDIATE	DA	JLE
89	CMP IMMEDIATE	B2	LDB INDIRECT	DB	JC
8A	CMP INDIRECT	B3	LDB INDEXED	DC	JVT
8B	CMP INDEXED	B4	ADDCB DIRECT	DD	JV
8 C	DIVU DIRECT	B5	ADDCB IMMEDIATE	DE	JLT
8D	DIVU IMMEDIATE	B6	ADDCB INDIRECT	DF	JE
8 E	DIVU INDIRECT	B7	ADDCB INDEXED	EO	DJNZ
8F	DIVU INDEXED	B8	SUBCB DIRECT	E1	DJNZW
90	ORB DIRECT	B9	SUBCB IMMEDIATE	E2	TIJMP
91	ORB IMMEDIATE	BA	SUBCB INDIRECT	E3	BR (INDIRECT)
92	ORB INDIRECT	BB	SUBCB INDEXED	E4	RESERVED
93	ORB INDEXED	BC	LDBSE DIRECT	E5	RESERVED
94	XORB DIRECT	BD	LDBSE IMMEDIATE	E6	RESERVED
95	XORB IMMEDIATE	BE	LDBSE INDIRECT	E7	LJMP
96	XORB INDIRECT	BF	LDBSE INDEXED	E8	RESERVED
97	XORB INDEXED	C0	ST DIRECT	E9	RESERVED
98	CMPB DIRECT	C1	BMOV	EA	RESERVED
99	CMPB IMMEDIATE	C2	ST INDIRECT	EB	RESERVED
9A	CMPB INDIRECT	C3	STINDEXED	EC	DPTS
9B	CMPB INDEXED	C4	STB DIRECT	ED	EPTS
9 C	DIVUB DIRECT	C5	CMPL	EE	RESERVED**
9D	DIVUB IMMEDIATE	C6	STB INDIRECT	EF	LCALL
9 E	DIVUB INDIRECT	C7	STB INDEXED	F0	RET
9 F	DIVUB INDEXED	C8	PUSH DIRECT	F1	RESERVED
AO	LD DIRECT	C9	PUSH IMMEDIATE	F2	PUSHF
A1	LD IMMEDIATE	CA	PUSH INDIRECT	F3	POPF
A2	LD INDIRECT	CB	PUSH INDEXED	F4	PUSHA
A3	LD INDEXED	CC	POP DIRECT	F5	POPA
A4	ADDC DIRECT	CD	BMOVI	F6	IDLPD
A5	ADDC IMMEDIATE	CE	POP INDIRECT	F7	TRAP
A6	ADDC INDIRECT	CF	POP INDEXED	F8	CLRC
A7	ADDC INDEXED	D0	JNST	F9	SETC
A8	SUBC DIRECT	D1	JNH	FA	DI
A9	SUBC IMMEDIATE	D2	JGT	FB	El
AA	SUBC INDIRECT	D3	JNC	FC	CLRVT
$A B$	SUBC INDEXED	D4	JNVT	FD	NOP
AC	LDBZE DIRECT	D5	JNV	FE	*DIV/DIVB/MUL/MULB
AD	LDBZE IMMEDIATE	D6	JGE	FF	RST
AE	LDBZE INDIRECT	D7	JNE		
AF	LDBZE INDEXED	D8	JST		

## NOTE:

*Two Byte Instruction
RESERVED-Execution of RESERVED instructions will cause unimplemented opcode interrupt.
${ }^{* *}$ Opcode EE is reserved but does not generate an unimplimented opcode interrupt.

### 8.0 INSTRUCTION SET SUMMARY

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			z	N	c	V	VT	ST	
ADD/ADDB	2	$D \leftarrow D+A$	$\checkmark$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$	-	
ADD/ADDB	3	$D \leftarrow B+A$	$\checkmark$	$\nu$	$\checkmark$	$\nu$	$\uparrow$	-	
ADDC/ADDCB	2	$D \leftarrow D+A+C$	$\downarrow$	$\nu$	$\checkmark$	$\nu$	$\uparrow$	-	
SUB/SUBB	2	$D \leftarrow D-A$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
SUB/SUBB	3	$D \leftarrow B-A$	$\checkmark$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$	-	
SUBC/SUBCB	2	$D \leftarrow D-A+C-1$	$\downarrow$	$\nu$	$\checkmark$	$\nu$	$\uparrow$	-	
CMP/CMPB	2	D-A	$\checkmark$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$	-	
MUL/MULU	2	$D, D+2 \leftarrow D \times A$	-	-	-	-	-	-	2
MUL/MULU	3	$\mathrm{D}, \mathrm{D}+2 \leftarrow \mathrm{~B} \times \mathrm{A}$	-	-	-	-	-	-	2
MULB/MULUB	2	$D, D+1 \leftarrow D \times A$	-	-	-	-	-	-	3
MULB/MULUB	3	$D, D+1 \leftarrow \mathrm{~B} \times \mathrm{A}$	-	-	-	-	-	-	3
DIVU	2	$D \leftarrow(D, D+2) / A, D+2 \leftarrow$ remainder	-	-	-	$\nu$	$\uparrow$	-	2
DIVUB	2	$D \leftarrow(D, D+1) / A, D+1 \leftarrow$ remainder	-	-	-	$\nu$	$\uparrow$	-	3
DIV	2	$D \leftarrow(D, D+2) / A, D+2 \leftarrow$ remainder	-	-	-	$\checkmark$	$\uparrow$	-	
DIVB	2	$D \leftarrow(D, D+1) / A, D+1 \leftarrow$ remainder	-	-	-	$\nu$	$\uparrow$	-	
AND/ANDB	2	$D \leftarrow$ DAND A	$\checkmark$	$\checkmark$	0	0	-	-	
AND/ANDB	3	$D \leftarrow$ BAND A	$\checkmark$	$\nu$	0	0	-	-	
OR/ORB	2	$D \leftarrow D O R A$	$\checkmark$	$\nu$	0	0	-	-	
XOR/XORB	2	$D \leftarrow D$ (ecxl. or) $A$	$\checkmark$	$\checkmark$	0	0	-	-	
LD/LDB	2	$D \leftarrow A$	-	-	-	-	-	-	
ST/STB	2	$A \leftarrow D$	-	-	-	-	-	-	
XCH/XCHB	2	$D \leftarrow A, A \leftarrow D$	-	-	-	-	-	-	
LDBSE	2	$D \leftarrow A ; D+1 \leftarrow \operatorname{SIGN}(A)$	-	-	-	-	-	-	3,4
LDBZE	2	$D \leftarrow A ; D+1 \leftarrow 0$	-	-	-	-	-	-	3,4
PUSH	1	$\mathrm{SP} \leftarrow \mathrm{SP}-2 ;(\mathrm{SP}) \leftarrow \mathrm{A}$	-	-	-	-	-	-	
POP	1	$\mathrm{A} \leftarrow(\mathrm{SP}) ; \mathrm{SP}+2$	-	-	-	-	-	-	
PUSHF	0	$\begin{aligned} & \text { SP } \leftarrow S P-2 ;(S P) \leftarrow P S W ; \\ & \text { PSW } \leftarrow 0000 H ; 1 \leftarrow 0 \end{aligned}$	0	0	0	0	0	0	
POPF	0	PSW $\leftarrow(\mathrm{SP}) ; \mathrm{SP} \leftarrow \mathrm{SP}+2 ; 1 \leftarrow \downarrow$	$\checkmark$	$\nu$	$\nu$	$\nu$	$\nu$	$\checkmark$	
SJMP	1	$\mathrm{PC} \leftarrow \mathrm{PC}+11$-bit offset	-	-	-	-	-	-	5
LJMP	1	$\mathrm{PC} \leftarrow \mathrm{PC}+16$-bit offset	-	-	-	-	-	-	5
BR[indirect]	1	$\mathrm{PC} \leftarrow(\mathrm{A})$	-	-	-	-	-	-	
TIJMP	3	$\mathrm{PC} \leftarrow[\mathrm{A}]+2^{*}([\mathrm{~B}]$ AND C)	-	-	-	-	-	-	
SCALL	1	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-2 ; \\ & (\mathrm{SP}) \leftarrow \mathrm{PC} ; \mathrm{PC} \leftarrow P C+11 \text {-bit offset } \end{aligned}$	-	-	-	-	-	-	5
LCALL	1	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-2 ;(\mathrm{SP}) \leftarrow \mathrm{PC} ; \\ & \mathrm{PC} \leftarrow \mathrm{PC}+16 \text {-bit offset } \end{aligned}$	-	-	-	-	-	-	5

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			z	N	C	V	VT	ST	
RET	0	$\mathrm{PC} \leftarrow(\mathrm{SP}) ; \mathrm{SP} \leftarrow \mathrm{SP}+2$	-	-	-	-	-	-	
$J$ (conditional)	1	$\mathrm{PC} \leftarrow \mathrm{PC}+8$-bit offset (if taken)	-	-	-	-	-	-	5
JC	1	Jump if $\mathrm{C}=1$	-	-	-	-	-	-	5
JNC	1	Jump if $\mathrm{C}=0$	-	-	-	-	-	-	5
JE	1	Jump if $Z=1$	-	-	-	-	-	-	5
JNE	1	Jump if $Z=0$	-	-	-	-	-	-	5
JGE	1	Jump if $\mathrm{N}=0$	-	-	-	-	-	-	5
JLT	1	Jump if $\mathrm{N}=1$	-	-	-	-	-	-	5
JGT	1	Jump if $\mathrm{N}=0$ and $\mathrm{Z}=0$	-	-	-	-	-	-	5
JLE	1	Jump if $\mathrm{N}=1$ or $\mathrm{Z}=1$	-	-	-	-	-	-	5
JH	1	Jump if $\mathrm{C}=1$ and $\mathrm{Z}=0$	-	-	-	-	-	-	5
JNH	1	Jump if $\mathrm{C}=0$ or $\mathrm{Z}=1$	-	-	-	-	-	-	5
JV	1	Jump if $\mathrm{V}=1$	-	-	-	-	-	-	5
JNV	1	Jump if $\mathrm{V}=0$	-	-	-	-	-	-	5
JVT	1	Jump if VT $=1$; Clear VT	-	-	-	-	0	-	5
JNVT	1	Jump if VT $=0$; Clear VT	-	-	-	-	0	-	5
JST	1	Jump if ST $=1$	-	-	-	-	-	-	5
JNST	1.	Jump if ST $=0$	-	-	-	-	-	-	5
JBS	3	Jump if Specified Bit $=1$	-	-	-	-	-	-	5,6
JBC	3	Jump if Specified Bit $=0$	-	-	-	-	-	-	5,6
DJNZ/ DJNZW	1	$\begin{aligned} & \mathrm{D} \leftarrow \mathrm{D}-1 ; \\ & \text { If } \mathrm{D} \neq 0 \text { then } \mathrm{PC} \leftarrow P C+8 \text {-bit offset } \end{aligned}$	-	-	-	-	-	-	5
DEC/DECB	1	$D \leftarrow D-1$	$\checkmark$	$\checkmark$	$\nu$	$\checkmark$	$\uparrow$	-	
NEG/NEGB	1	$D \leftarrow 0-D$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	
INC/INCB	1	$\mathrm{D} \leftarrow \mathrm{D}+1$	$\checkmark$	-	$\checkmark$	-	$\uparrow$	-	
EXT	1	$D \leftarrow D ; D+2 \leftarrow \operatorname{Sign~(D)~}$	$\checkmark$	-	0	0	-	-	2
EXTB	1	$D \leftarrow D ; D+1 \leftarrow \operatorname{Sign}(\mathrm{D})$	$\checkmark$	$\checkmark$	0	0	-	-	3
NOT/NOTB	1	$\mathrm{D} \leftarrow$ Logical $\operatorname{Not}(\mathrm{D})$	$\checkmark$	$\checkmark$	0	0	-	-	
CLR/CLRB	1	$\mathrm{D} \leftarrow 0$	1	0	0	0	-	-	
SHL/SHLB/SHLL	2	$\mathrm{C} \leftarrow \mathrm{msb} \cdots \cdots-\cdots$ lsb $\leftarrow 0$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$	-	7
SHR/SHRB/SHRL	2	$0 \rightarrow$ msb---- lsb $\rightarrow$ C	$\nu$	-	$\checkmark$	0	-	$\nu$	7
SHRA/SHRAB/SHRAL	2	$\mathrm{msb} \rightarrow \mathrm{msb}-\cdots-\mathrm{lsb} \rightarrow \mathrm{C}$	$\checkmark$	-	$\checkmark$	0	-	$\checkmark$	7
SETC	0	$C \leftarrow 1$	-	-	1	-	-	-	
CLRC	0	$C \leftarrow 0$	-	-	0	-	-	-	

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation (Note 1)	Flags						Notes
			z	N	C	v	VT	ST	
CLRVT	0	$\mathrm{V} T \leftarrow 0$	-	-	-	-	0	-	
RST	0	$\mathrm{PC} \leftarrow 2080 \mathrm{H}$	0	0	0	0	0	0	8
DI	0	Disable All Interupts ( $1 \leftarrow 0$ )	-	-	-	-	-	-	
El	0	Enable All Interupts ( $1 \leftarrow 1$ )	-	-	-	-	-	-	
DPTS	0	Disable all PTS Cycles (PSE =0)	-	-	-	-	-	-	
EPTS	0	Enable all PTS Cycles (PSE $=1$ )	-	-	-	-	-	-	
NOP	0	$\mathrm{PC} \leftarrow \mathrm{PC}+1$	-	-	-	-	-	-	
SKIP	1	$\mathrm{PC} \leftarrow \mathrm{PC}+2$	-	-	-	-	-	-	
NORML	2	Left shift till msb $=1 ; \mathrm{D} \leftarrow$ shift count	$\checkmark$	$\checkmark$	0	-	-	-	7
TRAP	0	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-2 ; \\ & (\mathrm{SP}) \leftarrow \mathrm{PC} ; \mathrm{PC} \leftarrow(2010 \mathrm{H}) \\ & \hline \end{aligned}$	-	-	-	-	-	-	9
PUSHA	1	$\mathrm{SP} \leftarrow \mathrm{SP}-2 ;$ (SP) $\leftarrow \mathrm{PSW}$;   PSW $\leftarrow 0000 \mathrm{H}$; $\mathrm{SP} \leftarrow$ SP-2;   $(S P) \leftarrow$ IMASK1/WSR; IMASK1 $\leftarrow 00 \mathrm{H}$	0	0	0	0	0	0	
POPA	1	IMASK1/WSR $\leftarrow$ (SP); SP $\leftarrow$ SP+2 $\mathrm{PSW} \leftarrow(\mathrm{SP}) ; \mathrm{SP} \leftarrow \mathrm{SP}+2$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	
IDLPD	1	IDLE MODE IF KEY=1; POWERDOWN MODE IF KEY $=2$; CHIP RESET OTHERWISE	-	-	-	-	-	-	
CMPL	2	D-A	$\checkmark$	$\checkmark$	$\checkmark$	$\nu$	$\uparrow$	-	
BMOV, BMOVi	2	[PTR_HI] $+\leftarrow$ [PTR_LOW] + ; UNTIL COUNT $=0$	-	-	-	-	-	-	

## NOTES:

1. If the mnemonic ends in " $B$ " a byte operation is performed, otherwise a word operation is done. Operands $D, B$ and $A$ must conform to the alignment rules for the required operand type. $D$ and $B$ are locations in the Register File; $A$ can be located anywhere in memory.
2. $D, D+2$ are consecutive WORDS in memory; $D$ is DOUBLE-WORD aligned.
3. $D, D+1$ are consecutive BYTES in memory; $D$ is WORD aligned.
4. Changes a byte to word.
5. Offset is a 2's complement number.
6. Specified bit is one of the 2048 bits in the register file.
7. The "L" (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 2080 H .
9. The assembler will not accept this mnemonic.

### 9.0 INSTRUCTION LENGTH/OPCODE

MNEMONIC	DIRECT	IMMED	INDIRECT		INDEXED	
			NORMAL(1)	A-INC(1)	SHORT ${ }^{(1)}$	LONG(1)
ADD (3-op)	4/44	5/45	4/46	4/46	5/47	6/47
SUB (3-op)	4/48	5/49	4/4A	4/4A	5/4B	6/4B
ADD (2-op)	3/64	4/65	3/66	3/66	4/67	5/67
SUB (2-op)	3/68	4/69	3/6A	3/6A	4/6B	5/6B
ADDC	3/A4	4/A5	3/A6	3/A6	4/A7	5/A7
SUBC	3/A8	4/A9	3/AA	3/AA	4/AB	5/AB
CMP	3/88	4/89	3/8A	3/8A	4/8B	5/8B
ADDB (3-op)	4/54	4/55	4/56	4/56	5/57	6/57
SUBB (3-op)	4/58	4/59	4/5A	4/5A	5/5B	6/5B
ADDB (2-op)	3/74	3/75	3/76	3/76	4/77	5/77
SUBB (2-op)	3/78	3/79	3/7A	3/7A	4/7B	5/7B
ADDCB	3/B4	3/B5	3/B6	3/B6	4/B7	5/B7
SUBCB	3/B8	3/B9	3/BA	3/BA	4/BB	5/BB
CMPB	3/98	3/99	3/9A	3/9A	4/9B	5/9B
MUL (3-op)	5/(2)	6/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULU (3-op)	4/4C	5/4D	4/4E	4/4E	5/4F	6/4F
MUL (2-op)	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULU (2-op)	3/6C	4/6D	3/6E	3/6E	4/6F	5/6F
DIV	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVU	3/8C	4/8D	3/8E	3/8E	4/8F	5/8F
MULB (3-op)	5/(2)	5/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULUB (3-op)	4/5C	4/5D	4/5E	4/5E	5/5F	6/5F
MULB (2-op)	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULUB (2-op)	3/7C	3/7D	3/7E	3/7E	4/7F	5/7F
DIVB	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVUB	3/9C	3/9D	3/9E	3/9E	4/9F	5/9F
AND (3-op)	4/40	5/41	4/42	4/42	5/43	6/43
AND (2-op)	3/60	4/61	3/62	3/62	4/63	5/63
OR (2-op)	3/80	4/81	3/82	3/82	4/83	5/83
XOR	3/84	4/85	3/86	3/86	4/87	5/87
ANDB (3-op)	$4 / 50$	4/51	4/52	4/52	5/53	5/53
ANDB (2-op)	3/70	3/71	3/72	3/72	4/73	$4 / 73$
ORB (2-op)	3/90	3/91	3/92	3/92	4/93	5/93
XORB	3/94	3/95	3/96	3/96	4/97	5/97
PUSH	2/C8	3/C9	2/CA	2/CA	3/СВ	4/CB
POP	2/CC	-	2/CE	2/CE	3/CF	4/CF

### 9.0 INSTRUCTION LENGTH/OPCODE (Continued)

MNEMONIC	DIRECT	IMMED	INDIRECT		INDEXED	
			NORMAL	A-INC	SHORT	LONG
LD	$3 / \mathrm{AO}$	$4 / \mathrm{A} 1$	$3 / \mathrm{A} 2$	$3 / \mathrm{A} 2$	$4 / \mathrm{A3}$	$5 / \mathrm{A} 3$
LDB	$3 / \mathrm{B} 0$	$3 / \mathrm{B} 1$	$3 / \mathrm{B} 2$	$3 / \mathrm{B} 2$	$4 / \mathrm{B} 3$	$5 / \mathrm{B3}$
ST	$3 / \mathrm{C} 0$	-	$3 / \mathrm{C} 2$	$3 / \mathrm{C} 2$	$4 / \mathrm{C} 3$	$5 / \mathrm{C} 3$
STB	$3 / \mathrm{C} 4$	-	$3 / \mathrm{C} 6$	$3 / \mathrm{C} 6$	$4 / \mathrm{C} 7$	$5 / \mathrm{C} 7$
XCH	$3 / 04$	-	-	-	$4 / 0 \mathrm{~B}$	$5 / 0 \mathrm{~B}$
XCHB	$3 / 14$	-	-	-	$4 / 1 \mathrm{~B}$	$5 / 1 \mathrm{~B}$
LDBSE	$3 / \mathrm{BC}$	$3 / \mathrm{BD}$	$3 / \mathrm{BE}$	$3 / \mathrm{BE}$	$4 / \mathrm{BF}$	$5 / \mathrm{BF}$
LBSZE	$3 / \mathrm{AC}$	$3 / \mathrm{AD}$	$3 / \mathrm{AE}$	$3 / \mathrm{AE}$	$4 / \mathrm{AF}$	$5 / \mathrm{AF}$


Mnemonic	Length/Opcode	Mnemonic	Length/Opcode
PUSHF	1/F2	JE	1/DF
POPF	1/F3	JBC	3/30-37
PUSHA	1/F4	JBS	3/38-3F
POPA	1/F5	DJNZ	3/E0
		DJNZW	3/E1
TRAP	1/F7	NORML	3/0F
LCALL	3/EF	SHRL	3/0C
SCALL	2/28-2F(3)	SHLL	3/0D
RET	1/F0	SHRAL	$3 / 0 \mathrm{E}$
LJMP	3/E7	SHR	3/08
SJMP	2/20-27(3)	SHRB	3/18
BR[]	2/E3	SHL	3/09
TIJMP	4/E2	SHLB	3/19
		SHRA	3/0A
JNST	1/D0	SHRAB	3/1A
JST	1/D8		
JNH	1/D1	CLRC	1/F8
JH	1/D9	SETC	1/F9
JGT	1/D2	DI	1/FA
JLE	1/DA	EI	1/FB
JNC	1/B3	DPTS	1/EC
JC	1/D8	EPTS	1/ED
JNVT	1/D4	CLRVT	1/FC
JVT	1/DC	NOP	1/FD
JNV	1/D5	RST	1/FF
JV	1/DD	SKIP	2/00
JGE	1/D6	IDLPD	1/F6
JLT	1/DE	BMOV	3/C1
JNE	1/D7	BMOVi	$3 / C D$

## NOTES:

1. Indirect and indirect + share the same opcodes, as do short and long indexed opcodes. If the second byte is even, use indirect or short indexed. If odd, use indirect or long indexed.
2. The opcodes for signed multiply and divide are the unsigned opcode with an "FE" prefix.
3. The 3 least significant bits of the opcode are concatenated with the 8 bits to form an 11-bit, 2's complement offset.

### 10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES)

MNEMONIC	DIRECT	IMMED	INDIRECT		INDEXED	
			NORMAL*	A-INC*	SHORT*	LONG*
ADD (3-op)	5	6	7/10	8/11	7/10	8/11
SUB (3-op)	5	6	7/10	8/11	7/10	8/11
ADD (2-op)	4	5	6/8	7/9	6/8	7/9
SUB (2-op)	4	5	6/8	7/9	6/8	7/9
ADDC	4	5	6/8	7/9	6/8	7/9
SUBC	4	5	6/8	7/9	6/8	7/9
CMP	4	5	6/8	7/9	6/8	7/9
ADDB (3-op)	5	5	7/10	8/11	7/10	8/11
SUBB (3-op)	5	5	7/10	8/11	7/10	8/11
ADDB (2-op)	4	4	6/8	7/9	6/8	7/9
SUBB (2-op)	4	4	6/8	7/9	6/8	7/9
ADDCB	4	4	6/8	7/9	6/8	7/9
SUBCB	4	4	6/8	7/9	6/8	7/9
CMPB	4	4	6/8	7/9	6/8	7/9
MUL (3-op)	16	17	18/21	19/22	19/22	20/23
MULU (3-op)	14	15	16/19	17/19	17/20	18/21
MUL (2-op)	16	17	18/21	19/22	19/22	20/23
MULU (2-op)	14	15	16/19	17/19	17/20	18/21
DIV	26	27	28/31	29/32	29/32	30/33
DIVU	24	25	26/29	27/30	27/30	28/31
MULB (3-op)	12	12	14/17	15/18	15/18	16/19
MULUB (3-op)	10	10	12/15	12/16	12/16	14/17
MULB ( $2-\mathrm{op}$ )	12	12	14/17	15/18	15/18	16/19
MULUB (2-op)	10	10	12/15	13/15	12/16	14/17
DIVB	18	18	20/23	21/24	21/24	22/25
DIVUB	16	16	18/21	19/22	19/22	20/23
AND (3-op)	5	6	7/10	8/11	7/10	8/11
AND (2-op)	4	5	6/8	7/9	6/8	7/9
OR (2-op)	4	5	6/8	7/9	6/8	$7 / 9$
XOR	4	5	6/8	7/9	6/8	7/9
ANDB (3-op)	5	5	7/10	8/11	7/10	8/11
ANDB (2-op)	4	4	6/8	7/9	6/8	7/9
ORB (2-op)	4	4	6/8	7/9	6/8	719
XORB	4	4	6/8	7/9	6/8	7/9
LD, LDB	4, 4	5,4	5/8	6/8	6/9	7/10
ST, STB	4,4	-	5/8	6/9	6/9	7/10
XCH, XCHB	5,5	-	-	-	8/13	9/14
LDBSE	4	4	5/8	6/8	6/9	7/10
LDBZE	4	4	5/8	6/8	6/9	7/10
BMOV	$6+8$ per word +3 for each memory controller reference					
BMOVi	$\begin{gathered} 7+8 \text { per word } \\ +14 \text { for each interrupt }+3 \text { for each memory controller reference } \end{gathered}$					
PUSH (int stack)	6	7	9/12	10/13	10/13	11/14
POP (int stack)	8	-	10/12	11/13	11/13	12/14
PUSH (ext stack)	8	9	11/14	12/15	12/15	13/16
POP (ext stack)	11	-	13/15	14/16	14/16	15/17

*Times for operands addressed as SFRs and internal RAM ( $0-1 \mathrm{FFH}$ )/memory controller references (200-0FFFFH)).
NOTES:

1. Execution times for memory controller references may be one to two states higher depending on the number of bytes in the prefetch queue.
2. INT stack is 0-1FFH and EXT stack is 200-0FFFFH.

### 10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

MNEMONIC		MNEMONIC	
PUSHF (int stack)	6	PUSHF (ext stack)	8
POPF (int stack)	7	POPF (ext stack)	10
PUSHA (int stack)	12	PUSHA (ext stack)	18
POPA (int stack)	12	POPA (ext stack)	18
TRAP (int stack)	16	TRAP (ext stack)	18
LCALL (int stack)	11	LCALL (ext stack)	13
SCALL (int stack)	11	SCALL (ext stack)	13
RET (int stack)	11	RET (ext stack)	14
CMPL	7	DEC/DECB	3
CLR/CLRB	3	EXT/EXTB	4
NOT/NOTB	3	INC/INCB	3
NEG/NEGB	3		
LJMP	7		
SJMP	7		
BR [indirect]	7		
TIJMP	$15+3$ for each memory controller reference 4/8 jump not taken/jump taken 5/9 jump not taken/jump taken		
JNST, JST			
JNH, $\mathrm{JH}^{-}$			
JGT, JLE			
JNC, JC			
JNVT, JVT			
JNV, JV			
JGE, JLT			
JNE, JE			
JBC, JBS			
DJNZ	5/9 jump not taken/jump taken 6/10 jump not taken/jump taken		
DJNZW			
NORML	$8+1$ per shift ( 9 for 0 shift)		
SHRL	$7+1$ per shift ( 8 for 0 shift)		
SHLL	$7+1$ per shift (8for 0 shift)		
SHRAL	$7+1$ per shift ( 8 for 0 shift)		
SHR/SHRB	$6+1$ per shift ( 7 for 0 shift)		
SHL/SHLB	$6+1$ per shift ( 7 for 0 shift)		
SHRA/SHRAB	$6+1$ per shift ( 7 for 0 shift)		
CLRC	2		
SETC	2		
DI	2		
El	2		
DPTS	2		
EPTS	2		
CLRVT	2		
NOP	2		
RST	20 (includes fetch of configuration byte)		
SKIP	3		
IDLPD	8/25 (proper key/improper key)		

10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

PTS CYCLES	
Single Transfer	$18(+3$ for each memory controller reference)
Block Transfer	$13(+7$ for each transfar, 1 minimum
	+3 for each memory controller reference)
A/D Mode (SFRs/internal RAM)	21
(MEMORY CONT)	25
HSI MODE (SFRs/internal RAM)	$12(+10$ for each transfer, 1 minimum)
(MEMORY CONT)	$16(+10$ for each transfer, 1 minimum)
HSO MODE (SFRs/internal RAM)	$11(+10$ for each transfer, 1 minimum)
(MEMORY CONT)	$15(+11$ for each transfer, 1 minimum)

### 11.0 INTERRUPT TABLE

80C196KD Interrupt Priorities

Number	Source	Vector   Location	Priority
INT15	NMI	$203 E H$	15
N/A	PTS	Table	$(1,2)$
INT14	HSI FIFO Full	203 CH	14
INT13	EXTINT1	203 AH	13
INT12	TIMER2 Overflow	2038 H	12
INT11	TIMER2 Capture	2036 H	11
INT10	4th Entry into HSI FIFO	2034 H	10
INT09	RI	2032 H	9
INT08	TI	2030 H	8
SPECIAL	Unimplemented	2012 H	$\mathrm{N} / \mathrm{A}$
Opcode	2010 H	$\mathrm{N} / \mathrm{A}$	
SPECIAL	Trap	200 EH	7
INT07	EXTINT	200 CH	6
INT06	Serial Port	200 AH	5
INT05	Software Timer	2008 H	4
INT04	HSI.0 Pin	2006 H	3
INT03	High Speed Outputs	2004 H	2
INT02	HSI Data Available	2002 H	1
INT01	A/D Conversion   Complete	2000 H	0
INT00	Timer Overflow		

PTS Vector Table

PTS Vector	Location
HSI FIFO Full	205 CH
EXTINT1	205 AH
TIMER2 Overflow	2058 H
TIMER2 Capture	2056 H
4th HSI FIFO Entry	2054 H
RI	2052 H
TI	2050 H
EXTINT	204 EH
Serial Port	204 CH
Software Timer	204 AH
HSI.0 Pin	2048 H
High Speed Outputs	2046 H
HSI Data Available	2044 H
A/D Conversion Complete	2042 H
Timer Overflow	2040 H

## NOTES:

1. PTS, interrupts have higher priority than all other interrupts except NMI.
2. PTS priorities are in the same order as conventional interrupts.
11.0 INTERRUPT TABLE (Continued)

PTSVEC $\rightarrow$	PTS Control Blocks				
	UNUSED	UNUSED	UNUSED	UNUSED	UNUSED
	UNUSED	PTSBLOCK	UNUSED	PTSBLOCK	PTSBLOCK
	PTSDST (HI)	PTSDST (HI)	REG (HI)	UNUSED	UNUSED
	PTSDST (LO)	PTSDST (LO)	REG (LO)	UNUSED	UNUSED
	PTSSRC (HI)	PTSSRC (HI)	S/D (H)	PTSSRC (HI)	PTSDEST (HI)
	PTSSRC (LO)	PTSSRC (LO)	S/D (LO)	PTSSRC (LO)	PTSDEST (LO)
	PTSCON	PTSCON	PTSCON	PTSCON	PTSCON
	PTSCOUNT	PTSCOUNT	PTSCOUNT	PTSCOUNT	PTSCOUNT
	Single Transfer	Block Transfer	A/D Mode	HSO Mode	HSI Mode



### 12.0 FORMULAS

## Baud Rate

Asynchronous Modes 1, 2 and 3:

$$
\begin{aligned}
\text { BAUD__REG } & =\frac{\text { XTAL1 }}{\text { Baud Rate } * 16}-1 \\
& \text { or } \frac{\text { T2CLK }}{\text { Baud Rate } * 8}
\end{aligned}
$$

## Synchronous Mode 0:

$$
\begin{aligned}
& \text { BAUD__REG }=\frac{\text { XTAL1 }}{\text { Baud Rate } * 2}-1 \\
& \text { or } \frac{\text { T2CLK }}{\text { Baud Rate }}
\end{aligned}
$$

## A/D Conversion

$10-$ Bit value $=\operatorname{INT}\left[\frac{1023 *\left(\mathrm{~V}_{\text {IN }}-\mathrm{ANGND}\right)}{\left(\mathrm{V}_{\text {REF }}-\mathrm{ANGND}\right)}\right]$
8 -Bit value $=\operatorname{INT}\left[\frac{255 *\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{ANGND}\right)}{\left(\mathrm{V}_{\mathrm{REF}}-\mathrm{ANGND}\right)}\right]$
$\mathrm{SAM}=\frac{\left(\text { TSAM }^{*} \mathrm{FOSC}_{\mathrm{OS}}\right)-2}{8}$
$\mathrm{T}_{\mathrm{SAM}}=\frac{\left(8^{*} \mathrm{SAM}\right)+2}{\mathrm{~F}_{\mathrm{OSC}}}$
$\operatorname{CONV}=\frac{\left(T_{\text {CONV }}{ }^{*} \mathrm{~F}_{\text {OSC }}\right)+3}{2^{*} \mathrm{~B}}$
$T_{\text {CONV }}=\frac{\left(2 * \mathrm{~B}^{*} \mathrm{CONV}\right)-3}{\mathrm{~F}_{\text {OSC }}}$
$\mathrm{T}_{\text {CONV }}=$ Conversion time, $\mu \mathrm{s}$
$\mathrm{T}_{\text {SAMP }}=$ Sample time, $\mu \mathrm{s}$
SAM $=$ Value loaded into AD__TIME bits 5, 6, 7. Must equal 1 through 7
CONV $=$ Value loaded into AD__TIME bits 0-5. Must equal 2 through 31
XTAL1 $=$ Processor frequency, MHz
B $\quad=8$ for 8 -bit conversion
$\mathrm{B} \quad=10$ for 10 -bit conversion

## Pulse Width Modulation (PWM)

PWM__CONTROL $=256 *$ duty cycle or
PWM_CONTROL $=512 *$ duty cycle
State Time
1 STATE TIME $=\frac{2}{\text { XTAL1 }}=2$ TOSC
Signature Word and Voltage Levels

Description	Location	Value
Signature Word	70 H	879 CH
Programming $\mathrm{V}_{\mathrm{CC}}$	72 H	040 H
		5.0 V
	73 H	0 AOH
Programming $\mathrm{V}_{\mathrm{PP}}$		12.50 V

### 13.0 RESET STATUS

SFR Reset Status		
	Register Name	Value
	AD_RESULT	7FFOH
	AD__TIME	OFFH
	HSI_STATUS	XOXOXOXOB
	SBUF(RX)	OOH
	INT__MASK	00000000B
	INT__PENDING	00000000B
	TIMER1	0000H
	TIMER2	0000H
	IOPORT1	11111111B
	IOPORT2	11000001B
	SP_STAT/SP_CON	00001011B
	IMASK1	00000000B
	IPEND1	00000000B
	WSR	XXXX0000B
	HSI_MODE	11111111B
	IOC2	X0000000B
	IOCO	000000x0В
	IOC1	00100001B
	PWM_CONTROLS	00H
	IOPORT3	11111111B
	IOPORT4	11111111B
	IOS0	00000000B
	IOS1	00000000B
	IOS2	00000000B
	IOC3	11110010B

8XC196KD Pin Reset Status

Pin Name	Multiplexed Port Pins	Pin Status During Reset	Pin Status After Reset
ACH0-ACH7	P0.0-P0.7	Undefined Inputs(1)	Undefined Inputs ${ }^{(1)}$
PORT1	P1.0-P1.7	Weak Pull-ups ( $l_{\text {LL }}$ Spec)	Weak Pull-ups (l/L Spec)
TXD	P2.0	Strong Pull-up (IIL2 Spec)	Strongly Driven
RXD	P2.1	Undefined Input(3)	Undefined Input(3)
EXTINT	P2.2	Undefined Input(3)	Undefined Input(3)
T2CLK	P2.3	Undefined Input(3)	Undefined Input(3)
T2RST	P2.4	Undefined Input(3)	Undefined Input(3)
PWM0	P2.5	Medium Pull-down	Strongly Driven
	P2.6-P2.7	Weak Pull-ups	Weak Pull-ups
AD0-AD15	P3.0-P4.7	Weak Pull-ups	Address/Data Bus or Open-Drain I/O(2)
HSI.0, HSI. 1		Undefined Input(3)	Undefined Input(3)
HSI.2/HSO. 4		Undefined Input(3)	Undefined Input(3)
HSI.3/HSO. 5		Undefined Input(3)	Undefined Input(3)
HSO.0/HSO. 3		Weak Pull-down	Weak Pull-down
ALE		Weak Pull-up	Strongly Driven
$\overline{\text { BHE }}$		Weak Pull-up	Strongly Driven
BUSWIDTH		Undefined Input(3)	Undefined Input(3)
CLKOUT		CLKOUT (Strongly Driven)	CLKOUT (Strongly Driven)
EA		Undefined Input(3)	Undefined Input(3)
INST		Weak Pull-down	Strongly Driven
NMI		Weak Pull-down ( $\mathrm{l}_{\mathrm{H} 1} \mathrm{Spec}$ )	Weak Pull-down ( $\mathrm{l}_{\mathrm{H} 1} \mathrm{Spec}$ )
$\overline{\mathrm{RD}}$		Weak Pull-up	Strongly Driven
READY		Undefined Input(3)	Undefined Input(3)
RESET		Medium Pull-up ( $\mathrm{R}_{\text {RST }} \mathrm{Spec}$ )	Medium Pull-up ( $\mathrm{R}_{\text {RST }} \mathrm{Spec}$ )
$\overline{W R}$		Weak Pull-up	Strongly Driven

## NOTES:

1. These pins are allowed to float. However, it is recommended that unused pins be tied high or low.
2. The state of these pins depends on device configuration. If the address/data bus is active, the pins act as a strongly driven bus; otherwise, they act as an open-drain I/O port and are left floating.
3. These pins must be driven and not left floating. Input voltage must not exceed $V_{C C}$ during power-up.
4. Consult the $8 \times C 196 \mathrm{KC} / \mathrm{KD}$ data sheet for specifications.

8XC196KD Pin Status Descriptions

Pin Status	Approximate Value
Weak Pull-up	$70 \mu \mathrm{~A}$
Medium Pull-up	1 mA
Strong Pull-up	12 mA
Weak Pull-down	$200 \mu \mathrm{~A}$
Medium Pull-down	1 mA
Strongly Driven High	See $\mathrm{V}_{\mathrm{OH}}$ Specification
Strongly Driven Low	See $\mathrm{V}_{\mathrm{OL}}$ Specification

NOTE:
These typical maximum values are approximate; they are provided for reference only and are not guaranteed.

## 8XC196KR Quick Reference

8XC196KR Quick Reference
CONTENTS
1.0 MEMORY MAAP 14-13614-1362.0 SFR MAP
14-138
3.0 SFR BIT SUMMARY
4.0 PIN DEFINITION TABLE ..... 14-142
5.0 PACKAGE PIN ASSIGNMENTS ..... 14-143
6.0 PIN DESCRIPTION ..... 14-144
7.0 OPCODE TABLE ..... 14-147page CONTENTSPAGE
8.0 INSTRUCTION SET SUMMARY ..... 14-149
9.0 INSTRUCTION LENGTH/OPCODES ..... 14-152
10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) ..... 14-154
11.0 INTERRUPT TABLE ..... 14-157
12.0 FORMULAS ..... 14-158
13.0 RESET STATUS ..... 14-159

### 1.0 MEMORY MAP

0 0FFFFH	External   06000 H
05 FFFH	Internal ROM/EPROM
02080 H	or External Memory

### 2.0 SFR MAP

CPU Special Function Registers

17H	(Reserved)	OBH	(Reserved)
16H	(Reserved)	OAH	WATCHDOG
15H	(Reserved)	09H	INT_PPEND
14H	WSR	08H	INT_MASK
13H	INT_MASK1	07H	PTSSRV (Hi)
12H	INT_PEND1	06H	PTSSRV (Lo)
11H	(Reserved)	05H	PTSSEL (Hi)
10H	(Reserved)	04H	PTSSEL (Lo)
OFH	(Reserved)	03H	Read as FFH
OEH	(Reserved)	02H	Read as FFH
ODH	(Reserved)	01H	ZERO__REG (Hi)
OCH	(Reserved)	OOH	ZERO_REG (Lo)


Memory Mapped I／O SFRs			Serial I／O and Synchronous SIO SFRs			1F8EH   1 F8CH	EPA SFRs				
1FFEH	HIGH BYTE	LOW BYTE	1 FBEH	HIGH BYTE LOW BYTE			HIGH BYTE	LOW BYTE			
	P4＿PIN	P3＿PIN		H（Reserved）	（Reserved）		COMP1＿－TIME（Hi）	COMP1＿－TIME（Lo）			
$\begin{aligned} & 1 \mathrm{FFCH} \\ & \text { 1FFAH } \end{aligned}$	P4＿REG	P3＿REG	1 FBCH	SP＿＿BAUD（Hi）	SP＿BAUD（Lo）		（Reserved）	COMP1＿CON			
	SLP＿＿CON	SLP＿CMD	1 FBAH	SP＿CON	SBUF＿TX	$1 \mathrm{F8AH}$	COMPO＿TIME（Hi）	COMPO＿TIME（Lo）			
1FF8H   1FF6H   1FF4H   1FF2H   1FFOH	（Reserved）	SLP＿STAT	$1 \mathrm{FB8H}$	SP＿STATUS	SBUF＿RX	1F88H	（Reserved）	COMPO＿CON			
	P5＿PIN	USFR	1FB6H	（Reserved）	（Reserved）	1F86H	EPA9＿TIME（Hi）	EPA9＿－TIME（Lo）			
	P5＿REG	（Reserved）	1FB4H	H（Reserved）	SSIO＿BAUD	1F84H	（Reserved）	EPA9＿CON			
	P5＿＿DIR	（Reserved）	1 FB 2 H	SSIOO＿CON	SSIOO＿BUF	1F82H	EPA8＿TIME（Hi）	EPA8＿－TIME（Lo）			
	P5＿MODE	（Reserved）	1 FBOH	SSIO1＿CON	SSIO1＿＿BUF	$1 \mathrm{F8OH}$	（Reserved）	EPA8＿CON			
Port 0，Port 1 and Port 6 SFRs			A／D and EPA Interrupt SFRs			1F7EH	EPA7＿TIME（Hi）	EPA7＿－TIME（Lo）			
			1F7CH	（Reserved）	EPA7＿CON						
			$1 \mathrm{F7AH}$	EPA6＿TIME（Hi）	EPA6＿TIME（Lo）						
1FDEH	high byte	LOW BYTE					HIGH BYTE	LOW BYTE	1F78H	（Reserved）	EPA6＿CON
	（Reserved）	（Reserved）				1FAEH 1FACH	AD＿TIME	AD＿TEST	1F76H	EPA5＿TIME（Hi）	EPA5＿．．TIME（Lo）
1 FDCH	（Reserved）	（Reserved）	AD＿COMMAND（Hi）	AD＿COMMAND（Lo）	1F74H		（Reserved）	EPA5＿CON			
1FDAH	（Reserved）	P0＿PIN	1FAAH	AD＿＿RESULT（Hi）	AD＿RESULT（Lo）	1F72H	EPA4＿－TIME（Hi）	EPA4＿－TIME（Lo）			
1FD8H   1FD6H   1FD4H   1FD2H   1FDOH	（Reserved）	（Reserved）	1FA8H	（Reserved）	EPAIPV	1F70H	（Reserved）	EPA4＿－CON			
	P6＿PIN	P1＿＿PIN	1FA6H   1FA4H   1FA2H   1 FAOH	（Reserved）	EPA＿PEND1	1F6EH	EPA3＿TIME（Hi）	EPA3＿TIME（Lo）			
	P6＿＿REG	P1＿REG		（Reserved）	EPA＿MASK1	1F6CH	EPA3＿CON（Hi）	EPA3＿CON（Lo）			
	P6＿DIR	P1＿＿DIR		EPA＿PEND（Hi）	EPA＿PEND（Lo）		EPA2＿TIME（Hi）	EPA2＿TIME（Lo）			
	P6＿MODE	P1＿MODE		EPA＿MASK（Hi）	EPA＿MASK（Lo）	1 F 68 H	（Reserved）	EPA2＿CON			
Port 2 SFRsHigh erte			Timer 1 and Timer 2 SFRs			1F66H	EPA1＿TIME（Hi）	EPA1＿－TIME（Lo）			
			1F64H	EPA1＿CON（Hi）	EPA1＿CON（Lo）						
1FCEH	P2＿PIN	（Reserved）				1F9EH	HIGH BYTE LOW BYTE		$1 \mathrm{F62H}$	EPAO＿TIME（Hi）	EPAO＿TIME（Lo）
	P2＿REG	（Reserved）	H（Reserved）	T2CONTROL	1F60H		（Reserved）	EPAO＿CON			
1 FCAH	P2＿DIR	（Reserved）	$1 \mathrm{F9AH}$	H TIMER1（Hi）	TIMER1（Lo）						
1FC8H	P2＿MODE	（Reserved）	$1 \mathrm{F98H}$	H（Reserved）	T1CONTROL						

Serial I／O and Synchronous SIO SFRs
EPA SFRs

Memory Mapped I／O SFRs			Serial I／O and Synchronous SIO SFRs			1F8EH   1 F8CH	EPA SFRs				
1FFEH	HIGH BYTE	LOW BYTE	1 FBEH	HIGH BYTE LOW BYTE			HIGH BYTE	LOW BYTE			
	P4＿PIN	P3＿PIN		H（Reserved）	（Reserved）		COMP1＿－TIME（Hi）	COMP1＿－TIME（Lo）			
$\begin{aligned} & 1 \mathrm{FFCH} \\ & \text { 1FFAH } \end{aligned}$	P4＿REG	P3＿REG	1 FBCH	SP＿＿BAUD（Hi）	SP＿BAUD（Lo）		（Reserved）	COMP1＿CON			
	SLP＿＿CON	SLP＿CMD	1 FBAH	SP＿CON	SBUF＿TX	$1 \mathrm{F8AH}$	COMPO＿TIME（Hi）	COMPO＿TIME（Lo）			
1FF8H   1FF6H   1FF4H   1FF2H   1FFOH	（Reserved）	SLP＿STAT	$1 \mathrm{FB8H}$	SP＿STATUS	SBUF＿RX	1F88H	（Reserved）	COMPO＿CON			
	P5＿PIN	USFR	1FB6H	（Reserved）	（Reserved）	1F86H	EPA9＿TIME（Hi）	EPA9＿－TIME（Lo）			
	P5＿REG	（Reserved）	1FB4H	H（Reserved）	SSIO＿BAUD	1F84H	（Reserved）	EPA9＿CON			
	P5＿＿DIR	（Reserved）	1 FB 2 H	SSIOO＿CON	SSIOO＿BUF	1F82H	EPA8＿TIME（Hi）	EPA8＿－TIME（Lo）			
	P5＿MODE	（Reserved）	1 FBOH	SSIO1＿CON	SSIO1＿＿BUF	$1 \mathrm{F8OH}$	（Reserved）	EPA8＿CON			
Port 0，Port 1 and Port 6 SFRs			A／D and EPA Interrupt SFRs			1F7EH	EPA7＿TIME（Hi）	EPA7＿－TIME（Lo）			
			1F7CH	（Reserved）	EPA7＿CON						
			$1 \mathrm{F7AH}$	EPA6＿TIME（Hi）	EPA6＿TIME（Lo）						
1FDEH	high byte	LOW BYTE					HIGH BYTE	LOW BYTE	1F78H	（Reserved）	EPA6＿CON
	（Reserved）	（Reserved）				1FAEH 1FACH	AD＿TIME	AD＿TEST	1F76H	EPA5＿TIME（Hi）	EPA5＿．．TIME（Lo）
1 FDCH	（Reserved）	（Reserved）	AD＿COMMAND（Hi）	AD＿COMMAND（Lo）	1F74H		（Reserved）	EPA5＿CON			
1FDAH	（Reserved）	P0＿PIN	1FAAH	AD＿＿RESULT（Hi）	AD＿RESULT（Lo）	1F72H	EPA4＿－TIME（Hi）	EPA4＿－TIME（Lo）			
1FD8H   1FD6H   1FD4H   1FD2H   1FDOH	（Reserved）	（Reserved）	1FA8H	（Reserved）	EPAIPV	1F70H	（Reserved）	EPA4＿－CON			
	P6＿PIN	P1＿＿PIN	1FA6H   1FA4H   1FA2H   1 FAOH	（Reserved）	EPA＿PEND1	1F6EH	EPA3＿TIME（Hi）	EPA3＿TIME（Lo）			
	P6＿＿REG	P1＿REG		（Reserved）	EPA＿MASK1	1F6CH	EPA3＿CON（Hi）	EPA3＿CON（Lo）			
	P6＿DIR	P1＿＿DIR		EPA＿PEND（Hi）	EPA＿PEND（Lo）		EPA2＿TIME（Hi）	EPA2＿TIME（Lo）			
	P6＿MODE	P1＿MODE		EPA＿MASK（Hi）	EPA＿MASK（Lo）	1 F 68 H	（Reserved）	EPA2＿CON			
Port 2 SFRsHigh erte			Timer 1 and Timer 2 SFRs			1F66H	EPA1＿TIME（Hi）	EPA1＿－TIME（Lo）			
			1F64H	EPA1＿CON（Hi）	EPA1＿CON（Lo）						
1FCEH	P2＿PIN	（Reserved）				1F9EH	HIGH BYTE LOW BYTE		$1 \mathrm{F62H}$	EPAO＿TIME（Hi）	EPAO＿TIME（Lo）
	P2＿REG	（Reserved）	H（Reserved）	T2CONTROL	1F60H		（Reserved）	EPAO＿CON			
1 FCAH	P2＿DIR	（Reserved）	$1 \mathrm{F9AH}$	H TIMER1（Hi）	TIMER1（Lo）						
1FC8H	P2＿MODE	（Reserved）	$1 \mathrm{F98H}$	H（Reserved）	T1CONTROL						


Memory Mapped I／O SFRs			Serial I／O and Synchronous SIO SFRs			1F8EH   1 F8CH	EPA SFRs				
1FFEH	HIGH BYTE	LOW BYTE	1 FBEH	HIGH BYTE LOW BYTE			HIGH BYTE	LOW BYTE			
	P4＿PIN	P3＿PIN		H（Reserved）	（Reserved）		COMP1＿－TIME（Hi）	COMP1＿－TIME（Lo）			
$\begin{aligned} & 1 \mathrm{FFCH} \\ & \text { 1FFAH } \end{aligned}$	P4＿REG	P3＿REG	1 FBCH	SP＿＿BAUD（Hi）	SP＿BAUD（Lo）		（Reserved）	COMP1＿CON			
	SLP＿＿CON	SLP＿CMD	1 FBAH	SP＿CON	SBUF＿TX	$1 \mathrm{F8AH}$	COMPO＿TIME（Hi）	COMPO＿TIME（Lo）			
1FF8H   1FF6H   1FF4H   1FF2H   1FFOH	（Reserved）	SLP＿STAT	$1 \mathrm{FB8H}$	SP＿STATUS	SBUF＿RX	1F88H	（Reserved）	COMPO＿CON			
	P5＿PIN	USFR	1FB6H	（Reserved）	（Reserved）	1F86H	EPA9＿TIME（Hi）	EPA9＿－TIME（Lo）			
	P5＿REG	（Reserved）	1FB4H	H（Reserved）	SSIO＿BAUD	1F84H	（Reserved）	EPA9＿CON			
	P5＿＿DIR	（Reserved）	1 FB 2 H	SSIOO＿CON	SSIOO＿BUF	1F82H	EPA8＿TIME（Hi）	EPA8＿－TIME（Lo）			
	P5＿MODE	（Reserved）	1 FBOH	SSIO1＿CON	SSIO1＿＿BUF	$1 \mathrm{F8OH}$	（Reserved）	EPA8＿CON			
Port 0，Port 1 and Port 6 SFRs			A／D and EPA Interrupt SFRs			1F7EH	EPA7＿TIME（Hi）	EPA7＿－TIME（Lo）			
			1F7CH	（Reserved）	EPA7＿CON						
			$1 \mathrm{F7AH}$	EPA6＿TIME（Hi）	EPA6＿TIME（Lo）						
1FDEH	high byte	LOW BYTE					HIGH BYTE	LOW BYTE	1F78H	（Reserved）	EPA6＿CON
	（Reserved）	（Reserved）				1FAEH 1FACH	AD＿TIME	AD＿TEST	1F76H	EPA5＿TIME（Hi）	EPA5＿．．TIME（Lo）
1 FDCH	（Reserved）	（Reserved）	AD＿COMMAND（Hi）	AD＿COMMAND（Lo）	1F74H		（Reserved）	EPA5＿CON			
1FDAH	（Reserved）	P0＿PIN	1FAAH	AD＿＿RESULT（Hi）	AD＿RESULT（Lo）	1F72H	EPA4＿－TIME（Hi）	EPA4＿－TIME（Lo）			
1FD8H   1FD6H   1FD4H   1FD2H   1FDOH	（Reserved）	（Reserved）	1FA8H	（Reserved）	EPAIPV	1F70H	（Reserved）	EPA4＿－CON			
	P6＿PIN	P1＿＿PIN	1FA6H   1FA4H   1FA2H   1 FAOH	（Reserved）	EPA＿PEND1	1F6EH	EPA3＿TIME（Hi）	EPA3＿TIME（Lo）			
	P6＿＿REG	P1＿REG		（Reserved）	EPA＿MASK1	1F6CH	EPA3＿CON（Hi）	EPA3＿CON（Lo）			
	P6＿DIR	P1＿＿DIR		EPA＿PEND（Hi）	EPA＿PEND（Lo）		EPA2＿TIME（Hi）	EPA2＿TIME（Lo）			
	P6＿MODE	P1＿MODE		EPA＿MASK（Hi）	EPA＿MASK（Lo）	1 F 68 H	（Reserved）	EPA2＿CON			
Port 2 SFRsHigh erte			Timer 1 and Timer 2 SFRs			1F66H	EPA1＿TIME（Hi）	EPA1＿－TIME（Lo）			
			1F64H	EPA1＿CON（Hi）	EPA1＿CON（Lo）						
1FCEH	P2＿PIN	（Reserved）				1F9EH	HIGH BYTE LOW BYTE		$1 \mathrm{F62H}$	EPAO＿TIME（Hi）	EPAO＿TIME（Lo）
	P2＿REG	（Reserved）	H（Reserved）	T2CONTROL	1F60H		（Reserved）	EPAO＿CON			
1 FCAH	P2＿DIR	（Reserved）	$1 \mathrm{F9AH}$	H TIMER1（Hi）	TIMER1（Lo）						
1FC8H	P2＿MODE	（Reserved）	$1 \mathrm{F98H}$	H（Reserved）	T1CONTROL						

### 3.0 SFR BIT SUMMARY

EPAx_CONTROL								
8	7	6	5	4	3	2	1	0
RM	TB	CE	M1	M0	RE	AD	ROT	ON/RT
RM: "1" Enables Remapping (EPA1 \& EPA3 Only)   TB: " 0 " Selects Timer1, "1" Selects Timer2   CE: " 0 " Disables Comparator, " 1 " Enables Comparator   M1, M0: Mode Bits								
M1, M0		Capture:					Compare:	
$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$		No Op Capture Negative Capture Positive Capture All Edges					Interrupt Only   Output "0"   Output "1"   Toggle Output	



RE: Reenable Entry = "1" (Lock Entry)
AD: Start A/D
ROT: Reset Opposite Time Base
ON/RT: Overrun and Reset Timer Enable

EPAIPV									1FA8H: Byte						
$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$								
0	0	0	PV4	PV3	PV2	PV1	PV0								

PV4-PV0: Returns the encoded highest priority interrupt. Value from $1 \mathrm{H}-14 \mathrm{H}$.

OH $=$ No Interrupt Pending	$0 A H=$ OVRINT4
$14 \mathrm{H}=$ EPAINT4	$09 \mathrm{H}=$ OVRINT5
$13 \mathrm{H}=$ EPAINT5	$08 \mathrm{H}=$ OVRINT6
$12 \mathrm{H}=$ EPAINT6	$07 \mathrm{H}=$ OVRINT7
$11 \mathrm{H}=$ EPAINT7	$06 \mathrm{H}=$ OVRINT8
$10 \mathrm{H}=$ EPAINT8	$05 \mathrm{H}=$ OVRINT9
OFH $=$ EPAINT9	$04 \mathrm{H}=$ Compare Channel 0
OEH $=$ OVRINT0	$03 \mathrm{H}=$ Compare Channel 1
ODH $=$ OVRINT1	$02 \mathrm{H}=$ TIMER1 Overffow
OCH $=$ OVRINT2	$01 \mathrm{H}=$ TIMER2 Overflow
OBH $=$ OVRINT3	



TxCONTROL 1F98H: Byte $=$ T1
1F9CH: Byte $=$ T2

$\begin{array}{ll} \text { TxCONTROL } & \text { 1F98H: Byte }=\text { T1 } \\ & \text { 1F9CH: Byte }=\text { T2 } \end{array}$									
	CE	UD	M2	M1	M0	P2	P1	P	
	CE:   UD:								
M2, M1, M0-Mode Bits					P2, P1, P0-Prescale Bits				
000	Clock = Internal/Direction = UD					000			$\div 1(250 \mathrm{~ns}$ @ 16 MHz ) Xtal*4
$\times 01$	Clock $=$ External/Direction = UD					001			$\div 2(500 \mathrm{~ns}$ @ 16 MHz ) Xtal* 8
010	Clock $=$ Internal/Direction $=$ TxDIR					010			$\div 4(1 \mu \mathrm{~s}$ @ 16 MHz ) Xtal* 16
011	Clock $=$ External/Direction $=$ TxDIR					011			$\div 8(2 \mu \mathrm{~s}$ @ 16 MHz ) Xtal*32
100	Clock $=$ T1 Overflow/Direction = UD					100			$\div 16$ ( $4 \mu \mathrm{~s}$ @ 16 MHz ) Xtal*64
110	Clock $=\mathrm{T} 1$ Overflow/Direction $=\mathrm{T} 1$					101			$\div 32$ ( $8 \mu \mathrm{~s}$ @ 16 MHz ) Xtal 128
111						110			$\div 64$ (16 $\mu \mathrm{s}$ @ 16 MHz ) Xtal*256
	Quadrature Count (TxCLK/TxDIR)					111			Reserved

CE: " 0 " Disables Timer, " 1 " Enables Timer
UD: " 0 " Counts Down, " 1 " Counts Up

$\begin{array}{ll} \text { TxCONTROL } & \text { 1F98H: Byte }=\text { T1 } \\ & \text { 1F9CH: Byte }=\text { T2 } \end{array}$									
	CE	UD	M2	M1	M0	P2	P1	P	
	CE:   UD:								
M2, M1, M0-Mode Bits					P2, P1, P0-Prescale Bits				
000	Clock = Internal/Direction = UD					000			$\div 1(250 \mathrm{~ns}$ @ 16 MHz ) Xtal*4
$\times 01$	Clock $=$ External/Direction = UD					001			$\div 2(500 \mathrm{~ns}$ @ 16 MHz ) Xtal* 8
010	Clock $=$ Internal/Direction $=$ TxDIR					010			$\div 4(1 \mu \mathrm{~s}$ @ 16 MHz ) Xtal* 16
011	Clock $=$ External/Direction $=$ TxDIR					011			$\div 8(2 \mu \mathrm{~s}$ @ 16 MHz ) Xtal*32
100	Clock $=$ T1 Overflow/Direction = UD					100			$\div 16$ ( $4 \mu \mathrm{~s}$ @ 16 MHz ) Xtal*64
110	Clock $=\mathrm{T} 1$ Overflow/Direction $=\mathrm{T} 1$					101			$\div 32$ ( $8 \mu \mathrm{~s}$ @ 16 MHz ) Xtal 128
111						110			$\div 64$ (16 $\mu \mathrm{s}$ @ 16 MHz ) Xtal*256
	Quadrature Count (TxCLK/TxDIR)					111			Reserved

M2, M1, M0-Mode Bits


		AD__TEST			1FAEH: Byte		
7	6	5	4	3	2	1	0
0	0	0	0	OF1	OFO	$\mathrm{V}_{\text {REF }}$	$\mathrm{A}_{\text {GND }}$
A $_{\text {GND }}$ : Convert on AnGND $\mathrm{V}_{\mathrm{REF}}$ : Convert on $\mathrm{V}_{\text {REF }}$							
		Off No ADD SUB SUB	t	ment			


SP__STATUS				1FB9H: Byte			
7	6	5	4	3	2	1	0
RB8/RPE	RI	TI	FE	TXE	OE	X	$x$

RP8: Set if 9th Bit set (No Parity)
RPE: Set if Parity Enabled and Parity Error
RI: Set after Last Data Bit Received
TI: Set at Beginning of STOP Bit
FE: Set if No STOP Bit Found
TXE: Set when Byte is in SBUF_TX
OE: Set if Overrun Error Occurred


AD__COMMAND				1FACH: Byte/Word			
7	6	5	4	3	2	1	
0	0	T	M	GO			
Channel \# = 0 to 7							
GO: "1" to Start Now/"0" for EPA Start							
M: " 0 " = 10-Bit/" 1 " = 8-Bit Conversion							
" 0 " = Detect High/" 1 " = Detect Low							
T: "0" = Normal Conversion/" 1 " = Threshold D							

## EPA_MASK1/EPA_PEND1 EPA_MASK/EPA__PEND

1FA4H/1FA6H: Byte 1FAOH/1FA2H: Word

$\mathbf{4}$			$\mathbf{3}$	$\mathbf{2}$	$\mathbf{c}$
$\mathbf{1}$	$\mathbf{0}$				


$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
rsv	rsv	rsv	rsv	COMP   CHO	COMP   CH1	OVR   TIMR1	OVR   TIMR2



SLP_CON 1FFBH: By								
7	6		5	4	3	2	1	0
0	0			0	SLP	SLPL	IBEmask	OBFmask
SLP $=1$ Enables Slave Port Operation   $=0$ Disables Slave Port Operation and Clears Bits, CBE, IBE, and OBF								
$\begin{aligned} \text { SLPL } & =1 \text { ALE Latches SLP_ADDR from } \\ & =A D 1(P 3.1) \\ & =0 \mathrm{ALE} \text { is SLP_ADDR } \end{aligned}$								
IBEmask $=1 \mathrm{IBE}$ Can Affect SLPINT								
OBFmask $=1$ OBF Can Affect SLPINT								


7	SLP_STAT				1FF8H: Byte		
	6	5	4	3	2	1	0
		STAT			CBE	IBE	OBF
STAT These bits are written by the 8XC196KR user and defined by the 8XC196KR user for communication flags.							
CBE		1 After 0 After or SLP	Buff	EmR Wr Writ SLP	eads $\mathrm{s} \text { to } \mathrm{SL}$ _CON	PCML	
IBE		$=0$ After Master Writes to SLPDIN, or SLP $=0$ in SLP_CON					
OBF	$=1$ After 8XC196KR Writes to SLPDOUT   = 0 After Master Reads SLPDOUT						


USFR							1FF6H (Read Only): Byte
$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
RSV	RSV	RSV	DEI	DED	RSV	RSV	RSV

NOTE:
Do not write to location 1FF6H. Bits DED and DEI are written as specified in users manual.

Device	DEI	DED
87C196KR	UPROM Bit	UPROM Bit
83C196KR	N/A	N/A

DED-Disable External Data
DEI-Disable External Instructions

SSIOx_CON Registers				$\begin{aligned} & \text { 1FB1H: Byte = SSIOO } \\ & \text { 1FB3H: Byte }=\text { SSIO1 } \end{aligned}$			
7	6	5	4	3	,	1	-
M/S	T/ $\bar{R}$	TRT	THS	STE	ATR	OUF	TBS
M/S Master/STave							
T/ $\overline{\mathrm{A}}$ Transmit $\overline{\text { Receive }}$							
TRT Transmitter/Receiver Toggle							
THS Transceiver Handshake Select							
STE Single Transfer Enable							
ATR Auto Transfer Re-Enable							
OUF Overflow/Underilow Flag							
TBS	Transc	eiver/B	uffer	atus			

AD__RESULT 1FAAH: Word
$\begin{array}{lllllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
2 LSB $\quad$ RSV $\mid$ RSV $\mid$ BUSY $\mid$ A/D Channel

A/D Channel Channel Number: 0-7 BUSY $0=A / D$ Idle $1=A / D$ in Use
RSV Reserved
2 LSB 2 Least Significant Bits 8 MSB 8 Most Significant Bits Bit 4,5 0

### 4.0 PIN DEFINITION TABLE

$\begin{array}{\|c\|} \hline 68 \\ \text { PLCC } \end{array}$	$\begin{array}{\|c\|} \hline 52 \\ \hline \text { PLCC } \\ \hline \end{array}$	Function
40		ACH0
41		ACH1
42	33	ACH2
43	34	ACH3
44	35	ACH4
45	36	ACH5
46	37.	ACH6
47	38	ACH7
26	22	AD0
25	21	AD1
24	20	AD2
23	19	AD3
22	18	AD4
21	17	AD5
20	16	AD6
19	15	AD7
18	14	AD8
17	13	AD9
16	12	AD10
15	11	AD11
14	10	AD12
13	09	AD13
12	08	AD14
11	07	AD15
04	02	$\overline{\text { ADV }}$
36	30	$\overline{\text { AINC }}$
04	02	ALE
48	39	ANGND
08		BHE
35		BREQ
10		BUSWIDTH
39	32	CLKOUT
38	31	CPVER
29	24	$\overline{E A}$
57	44	EPA0
56	43	EPA1


$\begin{gathered} 68 \\ \text { PLCC } \end{gathered}$	$\begin{gathered} 52 \\ \text { PLCC } \end{gathered}$	Function
55	42	EPA2
54	41	EPA3
53		EPA4
52		EPA5
51		EPA6
50		EPA7
58	45	EPA8
59	46	EPA9
34	29	EXTINT
38	31	HLDA
37		HOLD
03		INST
36	30	INTOUT
28		NMI
40		P0.0
41		P0.1
42	33	P0.2
43	34	P0.3
44	35	P0.4
45	36	P0. 5
46	37	P0.6
47	38	P0.7
57	44	P1.0
56	43	P1.1
55	42	P1.2
54	41	P1.3
53		P1.4
52		P1.5
51		P1.6
50		P1.7
32	27	P2.0
33	28	P2.1
34	29	P2.2
35		P2.3
36	30	P2.4


$\begin{gathered} 68 \\ \text { PLCC } \end{gathered}$	$\begin{gathered} 52 \\ \text { PLCC } \end{gathered}$	Function
37		P2.5
38	31	P2.6
39	32	P2.7
26	22	P3.0
25	21	P3.1
24	20	P3.2
23	19	P3.3
22	18	P3.4
21	17	P3.5
20	16	P3.6
19	15	P3.7
18	14	P4.0
17	13	P4.1
16	12	P4.2
15	11	P4.3
14	10	P4.4
13	09	P4.5
12	08	P4.6
11	07	P4.7
04	02	P5.0
03		P5.1
09	06	P5.2
07	05	P5.3
01		P5.4
08		P5.5
02		P5.6
10		P5.7
58	45	P6.0
59	46	P6.1
60		P6.2
61		P6.3
62	47	P6.4
63	48	P6.5
64	49	P6.6


$\begin{gathered} 68 \\ \text { PLCC } \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ \text { PLCC } \end{gathered}$	Function
65	50	P6.7
39	32	$\overline{\text { PACT }}$
33	28	PALE
44	35	PMODE. 0
45	36	PMODE. 1
46	37	PMODE. 2
47	38	PMODE. 3
34	29	PROG
32	27	PVER
07	05	$\overline{\mathrm{RD}}$
02		READY
27	23	RESET
33	28	RXD
62	47	SC0
64	49	SC1
63	48	SD0
65	50	SD1
01		SLPINT
60		T1CLK
61		T1DIR
57		T2CLK
55		T2DIR
32	27	TXD
31	26	$V_{C C}$
06	04	$V_{\text {Pp }}$
49	40	$V_{\text {REF }}$
05	01	$V_{S S}$
30	03	$V_{S S}$
68	25	$V_{S S}$
09	06	$\overline{W R}$
08		$\overline{\text { WRH }}$
09	06	$\overline{\text { WRL }}$
67	52	XTAL1
66	51	XTAL2

### 5.0 PACKAGE PIN ASSIGNMENTS



NOTE:

*In earlier versions of documentation these pins were referred to as:
INTOUT $\rightarrow$ INTINTOUT
$\overline{\text { BREQ }} \rightarrow \overline{\text { INTB }}$
BUSWIDTH $\rightarrow$ BUSW
$\widehat{\text { HOLD }} \rightarrow \overline{\mathrm{HLD}}$

### 6.0 PIN DESCRIPTION

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (+5V).
$\mathrm{V}_{\mathrm{SS} 1}, \mathrm{~V}_{\mathrm{SS} 2}, \mathrm{~V}_{\mathrm{SS} 3}$	Digital circuit ground ( OV ). There are three $\mathrm{V}_{\mathrm{SS}}$ pins, all of which MUST be connected.
$\mathrm{V}_{\text {REF }}$	Reference and supply voltage for the A/D converter and Port0 ( +5 V ). Must be connected for A/D and Port 0 to function.
$\mathrm{V}_{\mathrm{PP}}$	Programming voltage for the EPROM parts. It should be +12.5 V for programming. It is also the timing pin for the return from power-down circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $\mathrm{V}_{S S}$ and a $1 \mathrm{M} \Omega$ resistor to $\mathrm{V}_{\mathrm{CC}}$. If this function is not used, connect $\mathrm{V}_{\mathrm{PP}}$ to $\mathrm{V}_{\mathrm{CC}}$.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $\mathrm{V}_{\mathrm{SS}}$.
ACH0-ACH7/PORT0	Analog inputs to the on-chip A/D converter. Also a digital input pin.*
ALE/ $\overline{\text { ADV } / P 5.0 ~}$	Address Latch Enable or Address Valid output. Goes low to latch and demultiplex the address/data bus. When the pin is $\overline{\mathrm{ADV}}$, it goes inactive (high) at the end of the bus cycle, providing a chip select for external memory. $\overline{\text { ADV }}$ is active only during external memory accesses. Also a standard I/O pin.*
$\overline{\text { BHE } / \overline{\mathrm{WRH}} / \mathrm{P} 5.5}$	Byte High Enable or Write High output. $\overline{\text { BHE }}=0$ when accessing odd (high) bytes or complete words in external memory. WRH $=0$ when writing to odd bytes or complete words in external memory. BHE/WRH is only valid during 16-bit external memory cycles. Also a standard I/O pin.*
BREQ/P2.3	Bus Request output. Active low when the bus controller is in hold and has a pending external memory cycle. Also a standard I/O pin.*
BUSWIDTH/P5.7	Input for bus width selection. If BUSWIDTH is low, an 8-bit cycle occurs. If BUSWIDTH is high, a 16-bit cycle occurs. Also a standard I/O pin.*
CLOCKOUT/P2.7	Output of the internal clock generator. A $50 \%$ duty cycle signal at $1 / 2$ XTAL1 frequency. Also a standard I/O pin.*
$\overline{E A}$	Input for memory select (External Access). $\overline{E A}=1$ directs memory accesses from locations 2000 H through 5FFFH to on-chip EPROM/ROM. $\overline{E A}=0$ directs all memory accesses to off-chip memory. $\overline{E A}=+12.5 \mathrm{~V}$ causes execution to begin in the Programming Mode. EA is latched at reset.
$\begin{aligned} & \text { EPAO-7/P1.0-1.7 } \\ & \text { EPA8-9/P6.0-6.1 } \end{aligned}$	I/O pins for the Event Processor Array. EPAO and EPA2 also function as T2CLK and T2DIR. Also a standard I/O pin.*
EXTINT/P2.2	External Interrupt input pin. A positive transition sets the EXTINT interrupt pending flag. The minimum high and low times are 2 oscillator cycles. Also a standard I/O pin.*
INST/P5.1	Instruction fetch signal. Output high during the entire bus cycle of an external instruction fetch. INST is active only during external memory fetches; during internal memory fetches, INST is low. Also a standard I/O pin.*
İNTOUT/P2.4	Interrupt output indicating that a pending interrupt requires use of the external bus. Also a standard I/O pin.*
HLDA/P2.6	Bus Hold Acknowledge output indicating release of the bus in response to a HOLD request. Also a standard I/O pin.* This is also a TEST MODE enable pin. Do not use it as an input without careful hardware evaluation.

*These pins may be used for the system or peripheral functions or as a standard I/O pin.

### 6.0 PIN DESCRIPTION (Continued)

Symbol	Name and Function
HOLD/P2.5	Bus Hold request input. $\overline{\text { HOLD }}$ is sent by another processor to request control of 8XC196KR system bus. Also a standard I/O pin.*
NMI	Non-Maskable interrupt input pin. A positive transition causes a non-maskable interrupt vector through memory location 203EH. If not used, this pin should be tied to $V_{S S}$. May be used by Intel Evaluation boards.
PORTO	8 -bit high impedance input-only port. Also used as A/D converter inputs. Port 0 pins should not be left floating. In EPROM devices these pins are also used to select the Programming Mode.
PORT1	8 -bit bidirectional standard I/O port. All of its pins are shared with the EPA.
PORT2	8 -bit bidirectional standard I/O port. All of its pins are shared with other functions (TxD, RxD, EXTINT, $\overline{B R E Q}, \overline{I N T O U T}, \mathrm{HOLD}, ~ H L D A, ~ C L K O U T) . ~$.
$\begin{aligned} & \text { PORT3 } \\ & \text { PORT4 } \\ & \hline \end{aligned}$	8 -bit bidirectional standard I/O with open drain outputs. These pins are shared with the multiplexed address/data bus which uses complementary drivers.
PORT5	8 -bit bidirectional standard I/O port. All of its pins are shared with other functions (ALE/ADV, INST, WR/WRL, $\overline{R D}$, SLPINT, $\overline{B H E} / \bar{W} H$, , READY, BUSWIDTH).
PORT6	8-bit bidirectional standard I/O port. All of its pins are shared with other functions (EPA8, EPA9, T1CLK, T1DIR, SC0, SD0, SC1, SD1).
$\overline{\mathrm{RD}}$ /P5.3	Read signal output to external memory. $\overline{\mathrm{RD}}$ is low only during external memory reads. Also a standard I/O pin.*
READY/P5.6	Ready input to lengthen external memory cycles. If READY $=1$, CPU operation continues in a normal manner. If READY $=0$ wait states are added. Also a standard I/O pin.*
RESET	Reset input to the chip. Held low for at least 16 state times to reset the chip. The subsequent low to high transition starts the reset sequence. Input high for normal operation. RESET has an internal pullup.
RXD/P2.1	Receive data input pin for the Serial I/O (SIO) port. Also a standard I/O pin.*
SLPINT/P5.4	Slave Port Interrupt output pin. Also a standard I/O pin.*
$\begin{aligned} & \hline \text { SSIO/P6.4-P6.7 } \\ & \text { (SC0, SD0, SC1, SD1) } \end{aligned}$	Synchronous Serial I/O pins. SC0/SC1 are clock pins and SD0/SD1 are data pins. Also a standard I/O pin.*
T1CLK/P6. 2	TIMER1 Clock input. TIMER1 increments or decrements on both rising and falling edges. Also a standard I/O pin.*
T1DIR/P6.3	TIMER1 Direction input. TIMER1 increments when this pin is high and decrements when this pin is low. Also a standard I/O pin.*
T2CLK/P1.0	TIMER2 Clock Input. TIMER2 increments or decrements on both rising and falling edges. Also a standard I/O pin.*
T2DIR/P1.2	TIMER2 Direction input. TIMER2 increments when this pin is high and decrements when this pin is low. Also a standard I/O pin.*
TXD/P2.0	Transmit data output pin for the Serial I/O (SIO) port. Also a standard I/O pin.*
$\overline{\mathrm{WR}} / \overline{\mathrm{WRL}} / \mathrm{P} 5.2$	Write and Write Low output to external memory. $\overline{\text { WR }}$ goes low for every external write. WRL goes low only for writes to even addresses. WR/WRL is active only during external memory writes. Also a standard I/O pin.*
XTAL1	Input of the oscillator invertor and the internal clock generator. If using an external clock source connect it to this pin.
XTAL2	Output of the oscillator invertor. Leave floating unless connected to a crystal/ resonator circuit.

### 6.0 PIN DESCRIPTION (Continued)

## Programming Mode Pin Definitions

Name	Name and Function
PMODE   PO.4-7	Programming Mode Select. Determines the EPROM programming algorithm that is performed.   PMODE is sampled after a chip reset and should be static while the part is operating.
$\overline{\text { PALE }}$	Programming ALE Input. Accepted by an 8XC196KR that is in Slave Programming Mode. Used   to indicate that Port 3 and 4 contain a command/address.
$\overline{\text { PROG }}$	Programming. Falling edge latches data on PBUS and begins programming. Rising edge inputs   ends programming.
PACT	Programming Active. Used to indicate when programming activity is complete.
PVER	Programming Verification. Signal is low after rising edge of PROG if the programming was not   successful.
$\overline{\text { AINC }}$	Auto Increment. Active low input enables the auto increment mode. Auto increment will allow   reading or writing of sequential EPROM locations without address transactions across the   PBUS for each read or write.
PORTS   3 and 4	Address/Command/Data Bus. Used to pass commands, addresses and data to and from   $8 X C 196 K R s . ~ A l s o ~ u s e d ~ i n ~ t h e ~ A u t o ~ P r o g r a m m i n g ~ M o d e ~ a s ~ a ~ r e g u l a r ~ s y s t e m ~ b u s ~ t o ~ a c c e s s ~$
external memory.	

### 7.0 OPCODE TABLE

00	SKIP
01	CLR
02	NOT
03	NEG
04	XCH
05	DEC
06	EXT
07	INC
08	SHR
09	SHL
OA	SHRA
OB	XCH
OC	SHRL
OD	SHLL
OE	SHRAL
OF	NORML
10	RESERVED
11	CLRB
12	NOTB
13	NEGB
14	XCHB
15	DECB
16	EXTB
17	INCB
18	SHRB
19	SHLB
1A	SHRAB
1B	XCHB
1C	RESERVED
1D	RESERVED
1E	RESERVED
1 F	RESERVED
20	SJMP
21	SJMP
22	SJMP
23	SJMP
24	SJMP
25	SJMP
26	SJMP
27	SJMP
28	SCALL
29	SCALL
2A	SCALL
2B	SCALL
2 C	SCALL
2D	SCALL
2E	SCALL


2F	SCALL
30	JBC
31	JBC
32	JBC
33	JBC
34	JBC
35	JBC
36	JBC
37	JBC
38	JBS
39	JBS
3A	JBS
3B	JBS
3C	JBS
3D	JBS
3E	JBS
3F	JBS
40	AND DIRECT (3 OPS)
41	AND IMMEDIATE (3 OPS)
42	AND INDIRECT (3 OPS)
43	AND INDEXED (3 OPS)
44	ADD DIRECT (3 OPS)
45	ADD IMMEDIATE (3 OPS)
46	ADD INDIRECT (3 OPS)
47	ADD INDEXED (3 OPS)
48	SUB DIRECT (3 OPS)
49	SUB IMMEDIATE (3 OPS)
4A	SUB INDIRECT (3 OPS)
4B	SUB INDEXED (3 OPS)
4C	MULU DIRECT (3 OPS)
4D	MULU IMMEDIATE (3 OPS)
4E	MULU INDIRECT (3 OPS)
4F	MULU INDEXED (3 OPS)
50	ANDB DIRECT (3 OPS)
51	ANDB IMMEDIATE (3 OPS)
52	ANDB INDIRECT (3 OPS)
53	ANDB INDEXED (3 OPS)
54	ADDB DIRECT (3 OPS)
55	ADDB IMMEDIATE (3 OPS)
56	ADDB INDIRECT (3 OPS)
57	ADDB INDEXED (3 OPS)
58	SUBB DIRECT (3 OPS)
59	SUBB IMMEDIATE (3 OPS)
5A	SUBB INDIRECT (3 OPS)
5B	SUBB INDEXED (3 OPS)
5C	MULUB DIRECT (3 OPS)
5D	MULUB IMMEDIATE (3 OPS)


5E	MULUB INDIRECT (3 OPS)
5F	MULUB INDEXED (3 OPS)
60	AND DIRECT (2 OPS)
61	AND IMMEDIATE (2 OPS)
62	AND INDIRECT (2 OPS)
63	AND INDEXED (2 OPS)
64	ADD DIRECT (2 OPS)
65	ADD IMMEDIATE (2 OPS)
66	ADD INDIRECT (2 OPS)
67	ADD INDEXED (2 OPS)
68	SUB DIRECT (2 OPS)
69	SUB IMMEDIATE (2 OPS)
6A	SUB INDIRECT (2 OPS)
6B	SUB INDEXED (2 OPS)
6C	MULU DIRECT (2 OPS)
6D	MULU IMMEDIATE (2 OPS)
6E	MULU INDIRECT (2 OPS)
6F	MULU INDEXED (2 OPS)
70	ANDB DIRECT (2 OPS)
71	ANDB IMMEDIATE (2 OPS)
72	ANDB INDIREC ${ }^{-*}$ (2 OPS)
73	ANDB INDEXED (2 OPS)
74	ADDB DIRECT (2 OPS)
75	ADDB IMMEDIATE (2 OPS)
76	ADDB INDIRECT (2 OPS)
77	ADDB INDEXED (2 OPS)
78	SUBB DIRECT (2 OPS)
79	SUBB IMMEDIATE (2 OPS)
7A	SUBB INDIRECT (2 OPS)
7B	SUBB INDEXED (2 OPS)
7C	MULUB DIRECT (2 OPS)
7D	MULUB IMMEDIATE (2 OPS)
7E	MULUB INDIRECT (2 OPS)
7F	MULUB INDEXED (2 OPS)
80	OR DIRECT
81	OR IMMEDIATE
82	OR INDIRECT
83	OR INDEXED
84	XOR DIRECT
85	XOR IMMEDIATE
86	XOR INDIRECT
87	XOR INDEXED
88	CMP DIRECT
89	CMP IMMEDIATE
8A	CMP INDIRECT
8B	CMP INDEXED
8C	DIVU DIRECT

### 7.0 OPCODE TABLE (Continued)

8D	DIVU IMMEDIATE
8E	DIVU INDIRECT
8 F	DIVU INDEXED
90	ORB DIRECT
91	ORB IMMEDIATE
92	ORB INDIRECT
93	ORB INDEXED
94	XORB DIRECT
95	XORB IMMEDIATE
96	XORB INDIRECT
97	XORB INDEXED
98	CMPB DIRECT
99	CMPB IMMEDIATE
9A	CMPB INDIRECT
9B	CMPB INDEXED
9 C	DIVUB DIRECT
9D	DIVUB IMMEDIATE
9 E	DIVUB INDIRECT
9 F	DIVUB INDEXED
A0	LD DIRECT
A1	LD IMMEDIATE
A2	LD INDIRECT
A3	LD INDEXED
A4	ADDC DIRECT
A5	ADDC IMMEDIATE
A6	ADDC INDIRECT
A7	ADDC INDEXED
A8	SUBC DIRECT
A9	SUBC IMMEDIATE
AA	SUBC INDIRECT
AB	SUBC INDEXED
AC	LDBZE DIRECT
AD	LDBZE IMMEDIATE
AE	LDBZE INDIRECT
AF	LDBZE INDEXED
B0	LDB DIRECT
B1	LDB IMMEDIATE
B2	LDB INDIRECT
B3	LDB INDEXED


B4	ADDCB DIRECT
B5	ADDCB IMMEDIATE
B6	ADDCB INDIRECT
B7	ADDCB INDEXED
B8	SUBCB DIRECT
B9	SUBCB IMMEDIATE
BA	SUBCB INDIRECT
BB	SUBCB INDEXED
BC	LDBSE DIRECT
BD	LDBSE IMMEDIATE
BE	LDBSE INDIRECT
BF	LDBSE INDEXED
C0	ST DIRECT
C1	BMOV
C2	ST INDIRECT
C3	ST INDEXED
C4	STB DIRECT
C5	CMPL
C6	STB INDIRECT
C7	STB INDEXED
C8	PUSH DIRECT
C9	PUSH IMMEDIATE
CA	PUSH INDIRECT
CB	PUSH INDEXED
CC	POP DIRECT
CD	BMOVI
CE	POP INDIRECT
CF	POP INDEXED
DO	JNST
D1	JNH
D2	JGT
D3	JNC
D4	JNVT
D5	JNV
D6	JGE
D7	JNE
D8	JST
D9	JH


DA	JLE
DB	JC
DC	JVT
DD	JV
DE	JLT
DF	JE
E0	DJNZ
E1	DJNZW
E2	TIJMP
E3	BR (INDIRECT)
E4	RESERVED
E5	RESERVED
E6	RESERVED
E7	LJMP
E8	RESERVED
E9	RESERVED
EA	RESERVED
EB	RESERVED
EC	DPTS
ED	EPTS
EE	RESERVED
EF	LCALL
F0	RET
F1	RESERVED
F2	PUSHF
F3	POPF
F4	PUSHA
F5	POPA
F6	IDPLD
F7	TRAP
F8	CLRC
F9	SETC
FA	DI
FB	EI
FC	CLRVT
FD	NOP
FE	*DIV/DIVB/MUL/MULB
FF	RST

*Two Byte Instruction - This opcode is placed as the first byte of an instruction to make it a signed operation instead of unsigned.

8XC196KR QUICK REFERENCE
8.0 INSTRUCTION SET SUMMARY

Mnemonic	Operands	Operation(1)	Flags(2)						Notes
			z	N	C	V	VT	ST	
ADD/ADDB	2	$D=D+A$	$\checkmark$	$\checkmark$	$\checkmark$	$\nu$	$\uparrow$		
ADD/ADDB	3	$D=B+A$	$\checkmark$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$		
ADDC/ADDCB	2	$D=D+A+C$	$\downarrow$	$\checkmark$	$\stackrel{\rightharpoonup}{r}$	$\checkmark$	$\uparrow$		
SUB/SUBB	2	$D=D-A$	$\checkmark$	$\nu$	$\stackrel{\rightharpoonup}{r}$	$\checkmark$	$\uparrow$		
SUB/SUBB	3	$D=B-A$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
SUBC/SUBCB	2	$D=D-A+C-1$	$\downarrow$	$\checkmark$	$\nu$	$\checkmark$	$\uparrow$		
CMP/CMPB/CMPL	2	D-A	$\checkmark$	$\nu$	$\nu$	$\checkmark$	$\uparrow$		
MUL/MULU	2	$D, D+2=D \times A$							3
MUL/MULU	3	$D, D+2=B \times A$							3
MULB/MULUB	2	$D, D+1=D \times A$							4
MULB/MULUB	3	$D, D+1=B \times A$							4
DIVU	2	$D=(D, D+2) / A, D+2=$ Remainder				$\checkmark$	$\uparrow$		3
DIVUB	2	$D=(D, D+1) / A, D+1=$ Remainder				$\checkmark$	$\uparrow$		4
DIV	2	$D=(D, D+2) / A, D+2=$ Remainder				$\checkmark$	$\uparrow$		
DIVB	2	$D=(D, D+1) / A, D+1=$ Remainder				$\checkmark$	$\uparrow$		
AND/ANDB	2	$D=D$ and $A$	$\nu$	$\nu$	0	0			
AND/ANDB	3	$D=B$ and $A$	$\nu$	$\nu$	0	0			
OR/ORB	2	$D=D$ or $A$	$\checkmark$	$\nu$	0	0			
XOR/XORB	2	$D=D$ (exclusive or) $A$	$\checkmark$	$\stackrel{\nu}{\nu}$	0	0			
LD/LDB	2	$\mathrm{D}=\mathrm{A}$							
ST/STB	2	A = D							
XCH	2	$D \longleftrightarrow A ; D+1 \longleftrightarrow A+1$							
XCHB	2	$D \longleftrightarrow A$							
BMOV, BMOVI	2	$\begin{aligned} & \text { (PTR_HI) }+=\text { (PTR_LOW) }+; \\ & \text { Until_COUNT }=0 \end{aligned}$							
LDBSE	2	$D=A ; D+1=\operatorname{Sign}(\mathrm{A})$							4,5
LDBZE	2	$D=A ; D+1=0$							4,5
PUSH	1	$\mathrm{SP}=\mathrm{SP}-2 ;(\mathrm{SP})=\mathrm{A}$							
POP	1	$\mathrm{A}=(\mathrm{SP}) ; \mathrm{SP}=\mathrm{SP}+2$							
PUSHF	0	$\begin{aligned} & S P=S P-2 ;(S P)=P S W ; \\ & P S W=0 ; 1=0 ; P S E=0 \end{aligned}$	0	0	0	0	0	0	11
POPF	0	$\mathrm{PSW}=(\mathrm{SP}) ; \mathrm{SP}=\mathrm{SP}+2 ; 1 \leftarrow \nu$	$\nu$	$\checkmark$	$\checkmark$	$\nu$	$\checkmark$	$\checkmark$	11
PUSHA	0	$\begin{aligned} & S P=S P-2 ;(S P)=P S W ; \\ & P S W=0000 H ; S P=S P-2 ; \\ & (S P)=1 M A S K 1 / W S R ; \\ & \text { IMASK1 }=00 H ; 1=0 ; \text { PSE }=0 \end{aligned}$	0	0	0	0	0	0	
POPA	0	$\begin{aligned} & \text { IMASK1/WSR }=(S P) ; S P=S P+2 ; \\ & \text { PSW }=(S P) ; S P=S P+2 \end{aligned}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation(1)	Flags(2)						Notes
			z	N	C	V	VT	ST	
SJMP	1	PC $=$ PC + 11-Bit-Offset							6
LJMP	1	$P C=P C+16$-Bit-Offset				.			6
BR[Indirect]	1	$\mathrm{PC}=(\mathrm{A})$							
TIJMP	3	$\mathrm{PC}=$ ([index] and MASK)2 + (Table)							
TRAP	0	$\begin{aligned} & \mathrm{SP}=\mathrm{SP}-2 ;(\mathrm{SP})=\mathrm{PC} ; \\ & \mathrm{PC}=(2010 \mathrm{H}) \end{aligned}$							10
SCALL	1	$\begin{aligned} & \mathrm{SP}=\mathrm{SP}-2 ;(\mathrm{SP})=\mathrm{PC} ; \\ & \mathrm{PC}=\mathrm{PC}+11 \text {-Bit-Offset } \end{aligned}$							6
LCALL	1	$\begin{aligned} & S P=S P-2 ;(S P)=P C ; \\ & P C=P C+16 \text {-Bit-Offset } \end{aligned}$							6
RET	0	$P C=(S P) ; ~ S P=S P+2$							
J(conditioned)	1	$\mathrm{PC}=\mathrm{PC}+8$-Bit-Offset (If Taken)							6
JC	1	Jump if $\mathrm{C}=1$							6
JNC	1	Jump if C $=0$							6
JE	1	Jump if $Z=1$							6
JNE	1	Jump if $Z=0$							6
JGE	1	Jump if $N=0$							6
JLT	1	Jump if $N=1$							6
JGT	1	Jump if $\mathrm{N}=0$ and $\mathrm{Z}=0$							6
JLE	1	Jump if $N=1$ or $Z=1$							6
JH	1	Jump if $C=1$ and $Z=0$							6
JNH	1	Jump if $C=0$ or $Z=1$							6
JV	1	Jump if $V=0$							6
JNV	1	Jump if $V=1$							6
JVT	1	Jump if $\mathrm{VT}=1$; Clear VT					0		6
JNVT	1	Jump if VT $=0$; Clear VT					0		6
JST	1	Jump if ST $=1$							6
JNST	1	Jump if ST $=0$							6
JBS	3	Jump if Specific Bit $=1$							6,7
JBC	3	Jump if Specific Bit $=0$							6,7
DJNZ/DJNZW	1	$\begin{aligned} & D=D-1 ; \\ & \text { If } D \neq 0 \text { then } P C=P C+8 \text {-Bit-Offset } \end{aligned}$							6
DEC/DECB	1	$\mathrm{D}=\mathrm{D}-1$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
NEG/NEGB	1	$D=0-D$	$\checkmark$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$		
INC/INCB	1	$D=D+1$	$\checkmark$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$		
EXT	1	$D=D ; D+2=\operatorname{Sign}(\mathrm{D})$	$\checkmark$	$\stackrel{\rightharpoonup}{\nu}$	0	0			3
EXTB	1	$D=D ; D+1=\operatorname{Sign}(\mathrm{D})$	$\checkmark$	$\nu$	0	0			4
NOT/NOTB	1	D = Logical Not (D)	$\checkmark$	$\nu$	0	0			
CLR/CLRB	1	D $=0$	1	0	0	0			

### 8.0 INSTRUCTION SET SUMAMARY (Continued)

Mnemonic	Operands	Operation ${ }^{(1)}$	Flags( ${ }^{(2)}$						Notes
			Z	N	C	V	VT	ST	
SHL/SHLB/SHLL	2	$\mathrm{C} \leftarrow \mathrm{msbooolsb} \leftarrow 0$	$\sim$	$\sim$	$\checkmark$	$\checkmark$	$\uparrow$		8
SHR/SHRB/SHRL	2	$0 \rightarrow$ msbooolsb $\rightarrow$ C	$\nu$	$\stackrel{\sim}{\sim}$	$\checkmark$	0		$\checkmark$	8
SHRA/SHRAB/SHRAL	2	$\mathrm{msb} \rightarrow$ msbooolsb $\rightarrow$ C	い	$\nu$	$\stackrel{\square}{ }$	0		$\checkmark$	8
NORML	2	Left Shift until $\mathrm{msb}=1 ; \mathrm{D}=$ Shift Count	$\sim$	$\checkmark$	0				8
SETC	0	$C=1$			1				
CLRC	0	$C=0$			0				
CLRVT	0	$\mathrm{V} T=0$					0		
RST	0	$\mathrm{PC}=2080 \mathrm{H}$	0	0	0	0	0	0	9
DI	0	Disable All Interrupts ( $1=0$ )							
El	0	Enable All Interupts ( $1=1$ )							
DPTS	0	Disable PTS Interrupts (PSE = 0)							
EPTS	0	Enable PTS Interrupts (PSE = 1)							
NOP	0	$P C=P C+1$							
SKIP	0	$P C=P C+2$							
IPLPD	1	Idle Mode IF Key = 1;   Powerdown Mode IF Key = 2   Chip RESET Otherwise							

## NOTES:

1. If the mnemonic ends in " B " a byte operation is performed, otherwise a word operation is performed. Operands $\mathrm{D}, \mathrm{B}$ and A must conform to the alignment rules for the required operand type. D and B are locations in the Lower Register File; A can be located anywhere in memory.
2. The symbols indicate the effects on the flags:
$\checkmark$ Cleared or set as appropriate
0 Cleared
1 Set
$\uparrow$ Set if appropriate; never cleared
$\downarrow$ Cleared if appropriate; never set
3. $\mathrm{D}, \mathrm{D}+2$ are consecutive WORDs in memory; D is DOUBLE-WORD aligned.
4. $D, D+1$ are consecutive BYTEs in memory; $D$ is WORD aligned.
5. Changes a BYTE to WORD.
6. Offset is a 2 's complement number.
7. Specific Bit must be in or windowed into the Lower Register File.
8. The "L" (LONG) suffix indicates DOUBLE-WORD operations.
9. Initiates a RESET by pulling RESET low. Software should re-initialize all the neccessary registers with code starting at 2080H.
10. The assembler does not accept this mnemonic (use the macro file for definition).
11. 1 = Interrupt Enable (PSW1).

### 9.0 INSTRUCTION LENGTH/OPCODES

Mnemonic	Direct	Immed	Indirect		Indexed	
			Normal(1)	A-Inc(1)	Short(1)	Long(1)
ADD (3-op)	4/44	5/45	4/46	4/46	5/47	6/47
SUB (3-op)	4/48	5/49	4/4A	4/4A	5/4B	6/4B
ADD (2-op)	3/64	4/65	3/66	3/66	4/67	5/67
SUB (2-op)	3/68	4/69	3/6A	3/6A	4/6B	5/6B
ADDC	3/A4	4/A5	3/A6	3/A6	4/A7	5/A7
SUBC	3/A8	4/A9	3/AA	3/AA	4/AB	5/AB
CMP	3/88	4/89	3/8A	3/8A	4/8B	5/8B
ADDB (3-op)	4/54	4/55	4/56	4/56	5/57	6/57
SUBB (3-op)	4/58	4/59	4/5A	4/5A	5/5B	6/5B
ADDB (2-op)	3/74	3/75	3/76	3/76	4/77	5/77
SUBB (2-op)	3/78	3/79	3/7A	3/7A	4/7B	5/7B
ADDCB	3/B4	3/B5	3/B6	3/B6	4/B7	5/B7
SUBCB	3/B8	3/B9	3/BA	3/BA	4/BB	5/BB
CMPB	3/98	3/99	3/9A	3/9A	4/9B	5/9B
MUL (3-op)	5/(2)	6/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULU (3-op)	4/4C	5/4D	4/4E	4/4E	5/4F	6/4F
MUL (2-op)	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULU (2-op)	3/6C	4/6D	3/6E	3/6E	4/6F	5/6F
DIV	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVU	3/8C	4/8D	3/8E	3/8E	4/8F	5/8F
MULB (3-op)	5/(2)	5/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULUB (3-op)	4/5C	4/5D	4/5E	4/5E	5/5F	6/5F
MULB (2-op)	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULUB (2-op)	3/7C	3/7D	3/7E	3/7E	4/7F	5/7F
DIVB	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVUB	3/9C	3/9D	3/9E	3/9E	4/9F	5/9F
AND (3-op)	4/40	5/41	4/42	4/42	5/43	6/43
AND (2-op)	3/60	4/61	3/62	3/62	4/63	5/63
OR (2-op)	3/80	4/81	3/82	3/82	4/83	5/83
XOR	3/84	4/85	3/86	3/86	4/87	5/87
ANDB (3-op)	4/50	4/51	4/52	4/52	5/53	5/53
ANDB (2-op)	3/70	3/71	3/72	3/72	4/73	4/73
ORB (2-op)	3/90	3/91	3/92	3/92	4/93	5/93
XORB	3/94	3/95	3/96	3/96	4/97	5/97
PUSH	2/C8	3/C9	2/CA	2/CA	3/CB	4/CB
POP	2/CC	-	2/CE	2/CE	3/CF	4/CF
LD	3/A0	4/A1	3/A2	3/A2	4/A3	5/A3
LDB	3/B0	3/B1	3/B2	3/B2	4/B3	5/B3
ST	3/C0	一	3/C2	3/C2	4/C3	5/C3
STB	3/C4	-	3/C6	3/C6	4/C7	5/C7

### 9.0 INSTRUCTION LENGTH/OPCODES (Continued)

Mnemonic	Direct	Immed	Indirect		Indexed	
			Normal(1)	A-Inc(1)	Short(1)	Long(1)
$X \mathrm{XCH}$	$3 / 04$	-	-	-	$4 / 0 \mathrm{~B}$	$5 / 0 \mathrm{~B}$
XCHB	$3 / 14$	-	-	-	$4 / 1 \mathrm{~B}$	$5 / 1 \mathrm{~B}$
LDBSE	$3 / \mathrm{BC}$	$3 / \mathrm{BD}$	$3 / \mathrm{BE}$	$3 / \mathrm{BE}$	$4 / \mathrm{BF}$	$5 / \mathrm{BF}$
LBSZE	$3 / \mathrm{AC}$	$3 / \mathrm{AD}$	$3 / \mathrm{AE}$	$3 / \mathrm{AE}$	$4 / \mathrm{AF}$	$5 / \mathrm{AF}$


Mnemonic	Length/Opcode	Mnemonic	Length/Opcode
PUSHF	1/F2	DJNZ	3/E0
POPF	1/F3	DJNZW	3/E1
PUSHA	1/F4	NORML	3/0F
POPA	1/F5	SHRL	3/0C
		SHLL	3/0D
TRAP	1/F7	SHRAL	3/0E
LCALL	3/EF	SHR	3/08
SCALL	2/28-2F(3)	SHRB	3/18
RET	1/F0	SHL	3/09
LJMP	3/E7	SHLB	3/19
SJMP	2/20-27(3)	SHRA	3/0A
BR[]	2/E3	SHRAB	3/1A
TIJMP	4/E2		
		CLRC	1/F8
JNST	1/D0	SETC	1/F9
JST	1/D8	DI	1/FA
JNH	1/D1	El	1/FB
JH	1/D9	DPTS	1/EC
JGT	1/D2	EPTS	1/ED
JLE	1/DA	CLRVT	1/FC
JNC	1/B3	NOP	1/FD
JC	1/D8	RST	1/FF
JNVT	1/D4	SKIP	2/00
JVT	1/DC	IDLPD	1/F6
JNV	1/D5	BMOV	3/C1
JV	1/DD	BMOVi	$3 / C D$

## NOTES:

1. Indirect and indirect + share the same opcodes, as do short and long indexed opcodes. If the second byte is even, use indirect or short indexed. If odd, use indirect or long indexed.
2. The opcodes for signed multiply and divide are the unsigned opcode with an "FE" prefix.
3. The 3 least significant bits of the opcode are concatenated with the 8 bits to form an 11-bit, 2's complement offset.
10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES)

Instruction	Direct	Immediate	Indirect		Indexed	
			Normal	A-Inc	Short	Long
ADD (3op)	5	6	7/10	8/11	7/10	8/11
SUB (3op)	5	6	7/10	8/11	7/10	8/11
ADD (2op)	4	5	6/8	7/9	6/8	7/9
SUB (2op)	4	5	6/8	7/9	6/8	7/9
ADDC	4	5	6/8	7/9	6/8	7/9
SUBC	4	5	6/8	7/9	6/8	7/9
CMP	4	5	6/8	7/9	6/8	7/9
ADDB (30p)	5	5	7/10	8/11	7/10	8/11
SUBB (3op)	5	5	7/10	8/11	7/10	8/11
ADDB (2op)	4	4	6/8	7/9	6/8	7/9
SUBB (2op)	4	4	6/8	7/9	6/8	7/9
ADDCB	4	4	6/8	7/9	6/8	7/9
SUBCB	4	4	6/8	7/9	6/8	7/9
CMPB	4	4	6/8	7/9	6/8	7/9
CMPL	7					
MUL (3op)	16	17	18/21	19/22	19/22	20/23
MULU (3op)	14	15	16/19	17/20	17/20	18/21
MUL (2op)	16	17	18/21	19/22	19/22	20/23
MULU (2op)	14	15	16/19	17/20	17/20	18/21
DIV	26	27	28/31	29/32	29/32	30/33
DIVU	24	25	26/29	27/30	27/30	28/31
MULB (30p)	12	12	14/17	15/18	15/18	16/19
MULUB (3op)	10	10	12/15	12/16	12/16	14/17
MULB (2op)	12	12	14/17	15/18	15/18	16/19
MULUB (2op)	10	10	12/15	12/16	12/16	14/17
DIVB	18	18	20/23	21/24	21/24	22/25
DIVUB	16	16	18/21	19/22	19/22	20/23
AND (3op)	5	6	7/10	8/11	7/10	8/11
AND (2op)	4	5	6/8	7/9	6/8	7/9
OR	4	5	6/8	7/9	6/8	7/9
XOR	4	5	6/8	7/9	6/8	7/9
ANDB (30p)	5	5	7/10	8/11	7/10	8/11
ANDB (2op)	4	4	6/8	7/9	6/8	7/9
ORB	4	4	6/8	7/9	6/8	7/9
XORB	4	4	6/8	7/9	6/8	7/9
LD	4	5	5/8	6/8	6/9	7/10
ST	4		5/8	6/9	6/9	7/10
XCH	5				8/13	9/14
LDB	4	4	5/8	6/8	6/9	7/10
STB	4		5/8	6/9	6/9	7/10
XCHB	5				8/13	9/14

### 10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)



### 10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

Instruction	Direct	Immediate	Indirect		Indexed	
			Normal	A-Inc	Short	Long
CLR, NOT, NEG	3					
DEC, INC	3					
EXT	4					
CLRB, NOTB	3					
DECB, INCB	3					
NEGB	3					
EXTB	4					
NORML	$8+1$ per Shift (9 for 0 Shift)					
SHRL	$7+1$ per Shift ( 8 for 0 Shift)					
SHLL	$7+1$ per Shift ( 8 for 0 Shift)					
SHRAL	$7+1$ per Shift ( 8 for 0 Shift)					
SHR	$6+1$ per Shift ( 7 for 0 Shift)					
SHL	$6+1$ per Shift ( 7 for 0 Shift)					
SHRA	$6+1$ per Shift ( 7 for 0 Shift)					
SHRB	$6+1$ per Shift ( 7 for 0 Shift)					
SHLB	$6+1$ per Shift ( 7 for 0 Shift)					
SHRAB	$6+1$ per Shift ( 7 for 0 Shift)					
CLRC	2					
SETC	2					
DI	2					
El	2					
DPTS	2					
EPTS	2					
CLRVT	2					
NOP	2					
RST	20 (Includes Fetch of CCB0/CCB1)					
SKIP	3					
IDLPD	8/25 (Proper Key/Improper Key)					
PTS						
Single Transfer		( +3 for Ext Reference, +1 If XFER Count $=0$ )				
Burst Transfer		( +7 for Each Transfer, 1 Minimum +3 for Each Memory Controller Reference)				
PWM Modes	15					
A/D Scan Mode	21/25					

## NOTES:

The timing figures are minimum execution times expressed as staie times (one period of CLKOUT $=$ two oscillator periods) and are based on the following assumptions:

1. The opcode, along with any required operands, have been pre-fetched and reside in the instruction queue.
2. The bus controller operates with the 16 -bit bus selected and without wait states for external memory references and prefetches. For instructions with indirect or indexed addressing, execution times separated by a slash are for instructions requiring a fetch from internal/external memory.
3. Times for jumps, calls and returns include the 4 state times required to flush the pre-fetch queue and to fetch the opcode at the destination address. This is reflected in the jump taken/not-taken times shown in the table.

### 11.0 INTERRUPT TABLE

Name	Source	Vector	Priority
INT15	NMI	203EH	32 (Highest)
PTS14	EXTINT Pin	205 CH	31
PTS13	Reserved	205AH	30
PTS12	Receive SIO	2058H	29
PTS11	Transmit SIO	2056H	28
PTS10	SSIO Channel 1 Transfer	2054H	27
PTS09	SSIO Channel 0 Transfer	2052H	26
PTS08	Command Buffer Full (SLP)	2050 H	25
PTS07	Input Buffer Full (SLP)	204EH	24
PTS06	Output Buffer Empty (SLP)	204 CH	23
PTS05	A/D Conversion Complete	204AH	22
PTS04	EPAO	2048H	21
PTS03	EPA1	2046H	20
PTS02	EPA2	2044H	19
PTS01	EPA3	2042 H	18
PTS00	EPA4-9, Overrun (EPAO-9), Compare0-1, Timer Overflow	2040H	17
INT14	EXTINT Pin	203CH	16
INT13	Reserved	203AH	15
INT12	Receive SIO	2038H	14
INT11	Transmit SIO	2036H	13
INT10	SSIO Channel 1 Transfer	2034H	12
INT09	SSIO Channel 0 Transfer	2032H	11
INT08	Command Buffer Full (SLP)	2030 H	10
N/A	UNIMPLEMENTED OPCODE	2012H	09
N/A	TRAP	2010H	08
INT07	Input Buffer Full (SLP)	200EH	07
INT06	Output Buffer Empty (SLP)	200 CH	06
INT05	A/D Conversion Complete	200AH	05
INT04	EPAO	2008H	04
INT03	EPA1	2006 H	03
INT02	EPA2	2004H	02
INT01	EPA3	2002H	01
INTOO	EPA4-9, Overrun (EPA0-9), Compare0-1, Timer Overflow	2000 H	00 (Lowest)

### 12.0 FORMULAS

State Time $=2$ Oscillator Periods

## TIJMP Calculation-

Destination $=([$ INDEX] AND INDEX_MASK) $\times 2+$ [TBASE]

## EPA Prescaler-

P2	P1	P0	
0	0	0	$\div 1$
0	0	1	$\div 2$
0	1	0	$\div 4$
0	1	1	$\div 8$
1	0	0	$\div 16$
1	0	1	$\div 32$
1	1	0	$\div 64$
1	1	1	Reserved

## SIO Baud Rate-

Modes 1, 2 and 3
$S P \_B A U D=\frac{X T A L 1 \text { Frequency }}{\text { Baud Rate } \times 16}-$
$\left(B \geq 0, S P \_B A U D .15=1\right)$
SP__BAUD $=\frac{\text { T1CLK Frequency }}{\text { Baud Rate } \times 8}-1$
$\left(B>0, S P \_B A U D .15=0\right)$

## Mode 0

$\begin{array}{ll}\text { SP_BAUD }=\frac{X T A L 1 \text { Frequency }}{\text { Baud Rate } \times 2}-1 & \left(B>0, S P \_B A U D .15=1\right) \\ S P \_B A U D=\frac{T 1 C L K \text { Frequency }}{\text { Baud Rate }}-1 & \left(B>0, S P \_B A U D .15=0\right)\end{array}$

## SSIO Baud Rate-

SSIO. $0-$ SSIO. $6=\frac{\text { XTAL1 Frequency }}{\text { Baud Rate } \times 8}-1$

A/D-
Sample States $=4 \times$ SAM +1
$\left(S A M=A D \_\right.$TIME. $5-A D \_$TIME.7)
Conversion States $=\mathrm{B} \times(\mathrm{CONV}+1)+1.5$
(CONV $=$ AD_TIME. $0-$ AD__TIME.4)
( $B=8$ for 8 -Bit Conversion)
( $B=10$ for 10-Bit Conversion)
Total Conversion Time $=$ State Time $\times[(4 \times S A M)+(B \times(C O N V+1))+2.5]$
Programming Pulse Width-
$P P R=\frac{((\text { PPW }) \times(\text { FOSC })) \cdot-144}{144}+32768$

### 13.0 RESET STATUS

SFR	Reset Value
AD__RESULT	7F80H
AD_COMMAND	OCOH
AD_TEST	OCOH
AD_TIME	OFFH
SSIOO_BUF, SSIO1_BUF	00H
SSIOO_CON, SSIO1_CON	OOH
SSIO_BAUD (Baud Rate Control (Read))	OXXXXXXXB
SSIO__BAUD (Baud Rate Down Count (Write))	OOH
SBUF__RX, SBUF_TX	OOH
SP_STAT	OBH
SP_CON	EOH
SP_BAUD	0000H
COMPO_CON, COMP1_CON	OOH
COMPO__TIME, COMP1_TIME	0000H
EPA1_CON, EPA3_CON	0000H
EPAx_CON ( $\mathrm{x}=0,2,4-9$ )	OOH
EPAx_TIME ( $\mathrm{x}=0-9$ )	0000H
TIMER1, TIMER2	0000H
T1CONTROL, T2CONTROL	OOH
EPA_MASK, EPA_MASK1	OOH
EPA_PPEND, EPA_PEND1	00H
EPAIPV	OOH
PO__PIN, P1__PIN, P3_PIN, P4__PIN, P6__PIN	XXH
P1_MODE, P6_MODE	OOH
P1_DIR, P5__DIR, P6__DIR	OFFH
P1__REG, P3_REG, P4_REG, P5__REG, P6_REG	OFFH
P2__PIN, P5_PIN	1XXXXXXXB
P2_MODE, P5_MODE	80H
P2_DIR, P2_REG	7FH
INT__MASK, INT__PEND	00H
INT_MASK1, INT_PPEND1	OOH
PTSSRV, PTSSEL	0000H
WSR	OOH

Pin States, during Reset, Idle and Powerdown

Pin Name	Reset	Idle	PD
RESET	wk1	wk1	wk1
ALE (P5.0)	wk1	(A)	(A)
INST (P5.1)	wk0	(A)	(A)
$\overline{\mathrm{RD}}$ (P5.3), $\overline{\mathrm{WR}}$ (P5.2), SPLINT (P5.4)	' wk1	(I)	(I)
$\overline{\text { BHE (P5.5) }}$	wk1	(B)	(B)
READY (P5.6), BUSW (P5.7)	wk1	(C)	(C)
$\overline{\mathrm{EA}}$, NMI	HZ	HZ	HZ
P3, P4/AD (EA = 0)	wk1	HZ	HZ
P3, P4/AD (EA = 1)	wk1	ODIO	ODIO
ACH/PO	HZ	HZ	HZ
P1	wk1	(D)	(D)
CLKOUT (P2.7)	clk, LZ	(E)	(G)
P2.0-P2.6	wk1	(E)	(E)
P6.0-P6.7	wk1	(F)	(F)
$\mathrm{V}_{\mathrm{PP}}$	HZ	1, LZ	1, LZ
XTAL1	HZ	HZ	HZ
XTAL2	osc, LZ	osc, LZ	(H)

## NOTES:

(A) If P5__MODE. $x=0$, port is as programmed. If P5__MODE. $x=1$ and $\overline{H L D A}=1$, then LZ 0 . If P5_MODE. $x=1$ and $\overline{\text { HLDA }}=0$, then HZ .
(B) If P5_MODE. $x=0$, port is as programmed. If P5_MODE. $x=1$ and $\overline{H L D A}=1$, then LZ 1 . If P5__MODE. $x=1$ and HLDA $=0$, then HZ .
(C) If P5_MODE. $x=0$, port is as programmed. If P5_MODE. $x=1$, then $H Z$.
(D) If P1__MODE. $x=0$, port is as programmed. If $\mathrm{P} 1 \_$MODE. $x=1$, pin is as specified by P1__DIR and associated peripheral.
(E) If P2_MODE. $x=0$, port is as programmed. If P2__MODE. $x=1$, pin is as specified by P2_DIR and associated peripheral.
(F) If P6__MODE.x $=0$, port is as programmed. If P6__MODE. $x=1$, pin is as specified by P6__DIR .and associated peripheral.
(G) If P2_MODE. $7=0$, port is as programmed. If $P 2 \_M O D E .7=1$, then $L Z 0$.
(H) If XTAL1 $=1$, then LZ 0 . IF XTAL1 $=0$, then LZ 1 .
(I) If P5_MODE. $x=0$, port is as programmed. If P5_MODE. $x=1$, then pin is as specified by P5_DIR and associated peripheral.
$\mathrm{HZ}=$ High impedance
LZ = Low Impedance
wk1 = Weakly pulled high
ODIO = Open drain input/output
osc = Oscillator
wkO = Weakly pulled low

# 8XC196KT <br> Quick Reference 

8XC196KT Quick Reference
CONTENTS
1.0 MEMORY MAP ..... 14-163
2.0 SFR MAP ..... 14-164
3.0 SFR BIT SUMMARY ..... 14-166
4.0 PIN DEFINITION TABLE ..... 14-170
5.0 PACKAGE PIN ASSIGNMENTS ..... 14-171
6.0 PIN DESCRIPTION ..... 14-172
7.0 OPCODE TABLE ..... 14-175
CONTENTS PAGE
8.0 INSTRUCTION SET SUMMARY ..... 14-177
9.0 INSTRUCTION
LENGTH/OPCODES ..... $14-180$
10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) ..... 14-182
11.0 INTERRUPT TABLE ..... 14-186
12.0 FORMULAS ..... 14-187
13.0 RESET STATUS ..... 14-188

### 1.0 MEMORY MAP

OFFFFH   A 000 H	24 Kbytes External Memory
$\begin{aligned} & \text { 9FFFH } \\ & 2080 H \end{aligned}$	Internal ROM/EPROM or External Memory
$\begin{aligned} & 207 \mathrm{FH} \\ & 205 \mathrm{EH} \end{aligned}$	Reserved
$\begin{aligned} & 205 \mathrm{DH} \\ & 2050 \mathrm{H} \end{aligned}$	PTS Vectors
$\begin{aligned} & 203 F H \\ & 2030 \mathrm{H} \end{aligned}$	Interrupt Vector (Upper)
$\begin{aligned} & 202 \mathrm{FH} \\ & 2020 \mathrm{H} \end{aligned}$	ROM/EPROM Security Key
$\begin{aligned} & 201 \mathrm{FH} \\ & 201 \mathrm{CH} \end{aligned}$	Reserved. Must $=0$ FFH
201BH	Reserved. Must $=20 \mathrm{H}$
201AH	CCB1
2019 H	Reserved. Must $=20 \mathrm{H}$
2018 H	CCBO
$\begin{aligned} & 2017 \mathrm{H} \\ & 2014 \mathrm{H} \end{aligned}$	Reserved. Must $=0$ FFH
$\begin{aligned} & 2013 \mathrm{H} \\ & 2000 \mathrm{H} \end{aligned}$	Interrupt Vectors (Lower)
$\begin{aligned} & \text { 1FFFH } \\ & \text { 1FOOH } \end{aligned}$	Internal SFR's
1EFFH 0600H	External Memory
$\begin{aligned} & 05 F F H \\ & 0400 \mathrm{H} \end{aligned}$	Internal RAM
$\begin{aligned} & \text { O3FFH } \\ & \text { OOOOH } \end{aligned}$	Register File

8XC196KT QUICK REFERENCE

### 2.0 SFR MAP

CPU Special Function Registers

17H	(Reserved)	OBH	(Reserved)
16H	(Reserved)	OAH	WATCHDOG
15H	(Reserved)	09H	INT__PEND
14H	WSR	08H	INT_MASK
13H	INT_MASK1	07H	PTSSRV (Hi)
12H	INT_PPEND1	06H	PTSSRV (Lo)
11H	(Reserved)	05H	PTSSEL (Hi)
10H	(Reserved)	04H	PTSSEL (Lo)
OFH	(Reserved)	03H	Read as FFH
OEH	(Reserved)	02H	Read as FFH
ODH	(Reserved)	01H	ZERO__REG (Hi)
OCH	(Reserved)	OOH	ZERO_REG (Lo)



### 3.0 SFR BIT SUMMARY

EPAx_CONTROL								
8	7	6	5	4	3	2	1	0
RM	TB	CE	M1	M0	RE	AD	ROT	ON/RT

RM: "1" Enables Remapping (EPA1 \& EPA3 Only).
TB: "0" Selects Timer1, "1" Selects Timer2
CE: " 0 " Disables Comparator, " 1 " Enables Comparator M1, MO: Mode Bits

M1, M0	Capture:	Compare:
00	No Op	Interrupt Only
01	Capture Negative	Output "0"
10	Capture Positive	Output "1"
11	Capture All Edges	Toggle Output

RE: Reenable Entry = "1" (Lock Entry)
AD: Start A/D
ROT: Reset Opposite Time Base
ON/RT: Overrun and Reset Timer Enable

EPAIPV							
1FA8H: Byte							
$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
0	0	0	PV4	PV3	PV2	PV1	PV0

PV4-PV0: Returns the encoded highest priority interrupt. Value from $1 \mathrm{H}-14 \mathrm{H}$.

$0 \mathrm{H}=$ No Interrupt Pending	0 OH $=$ OVRINT4
$14 \mathrm{H}=$ EPAINT4	$09 \mathrm{H}=$ OVRINT5
$13 \mathrm{H}=$ EPAINT5	$08 \mathrm{H}=$ OVRINT6
$12 \mathrm{H}=$ EPAINT6	$07 \mathrm{H}=$ OVRINT7
$11 \mathrm{H}=$ EPAINT7	$06 \mathrm{H}=$ OVRINT8
$10 \mathrm{H}=$ EPAINT8	$05 \mathrm{H}=$ OVRINT9
OFH $=$ EPAINT9	$04 \mathrm{H}=$ Compare Channel 0
OEH $=$ OVRINT0	$03 \mathrm{H}=$ Compare Channel 1
ODH $=$ OVRINT1	$02 \mathrm{H}=$ TIMER1 Overflow
OCH $=$ OVRINT2	$01 \mathrm{H}=$ TIMER2 Overflow
OBH $=$ OVRINT3	


7		SP_CON		1FBBH: Byte			
	6	5	4	3	2	1	0
X	X	X	TB8	REN	PEN	M2	M1

TB8: 9th Bit for Transmission
REN: Enables the Receiver
PEN: Enables Parity (Even)
M2, M1:
00: Mode 0/Sync
01: Mode 1/Async (std)
10: Mode 2/Async (9th Bit Enable)
11: Mode 3/Async (9th Bit Data)


TxCONTROL 1F98H: Byte $=$ T1
1F9CH: Byte $=$ T2

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
CE	UD	M 2	M 1	M 0	P 2	P 1	P 0

CE: " 0 " Disables Timer, " 1 " Enables Timer
UD: " 0 " Counts Down, " 1 " Counts Up

M2, M1, MO—Mode Bits

000	Clock $=$ Internal/Direction = UD
$\times 01$	Clock $=$ External/Direction = UD
010	Clock $=$ Internal/Direction $=$ TxDIR
011	Clock $=$ External/Direction $=$ TxDIR
100	Clock $=$ T1 Overflow/Direction $=$ UD
110	Clock $=$ T1 Overflow/Direction $=$ T1
111	Quadrature Count (TxCLK/TxDIR)

P2, P1, P0—Prescale Bits

000	$\div 1(250 \mathrm{~ns}$ @ 16 MHz ) Xtal*4
001	$\div 2(500 \mathrm{~ns}$ @ 16 MHz ) Xtal*8
010	$\div 4(1 \mu \mathrm{~s} @ 16 \mathrm{MHz}) \mathrm{Xtal} * 16$
011	$\div 8(2 \mu s$ @ 16 MHz ) Xtal*32
100	$\div 16$ (4 $\mu \mathrm{s}$ @ 16 MHz$) \mathrm{Xtal} * 64$
101	$\div 32(8 \mu \mathrm{~s} @ 16 \mathrm{MHz})$ Xtal*128
110	$\div 64(16 \mu s$ @ 16 MHz$) \mathrm{Xtal}$ *256
111	Reserved



		AD__TEST			1FAEH: Byte		0
7	6	5	4	3	2	1	
0	0	0	0	OF1	OFO	$V_{\text {REF }}$	$\mathrm{A}_{\mathrm{GND}}$
$\mathrm{A}_{\text {GND }}$ : Convert on AnGND $V_{\text {REF }}$ : Convert on $V_{\text {REF }}$							
	OF 00 01 10: 11:	Off	d	䉼			


SP__STATUS									1FB9H: Byte				
$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$						
RB8/RPE	RI	TI	FE	TXE	OE	X	X						

RP8: Set if 9th Bit set (No Parity)
RPE: Set if Parity Enabled and Parity Error
RI: Set after Last Data Bit Received
TI: Set at Beginning of STOP Bit
FE: Set if No STOP Bit Found
TXE: Set when Byte is in SBUF_TX
OE: Set if Overrun Error Occurred


CCB $\quad(2018 \mathrm{H}:$ Byte)


LOC1	LOCO	Function
0	0	Read and Write Protected
0	1	Write Protected Only
1	0	Read Protected Only
1	1	No Protection


MSEL1	MSELO	Bus Timing Mode
0	0	Mode 0 (1-Wait KR)
0	1	Mode 1 (Long R/W)
1	0	Mode 2 (Early Address)
1	1	Mode 3 (KR Compatible)


BW1	BW0	Bus Width
0	0	ILLEGAL
0	1	16-Bit Only
1	0	8-Bit Only
1	1	BW Pin Controlled



STAT These bits are written by the 8XC196KT user and defined by the 8XC196KT user for communication flags.
CBE (Command Buffer Empty)
$=1$ After 8XC196KT Reads SLPCMD
$=0$ After Master Writes to SLPCMD or SLP $=0$ in SLP_CON
IBE (Input Buffer Empty)
$=1$ After 8XC196KT Reads SLPDIN
$=0$ After Master Writes to SLPDIN, or SLP $=0$ in SLP_CON
OBF (Output Buffer Full)
$=1$ After 8XC196KT Writes to SLPDOUT
$=0$ After Master Reads SLPDOUT

USFR									1FF6H (Read Only): Byte
$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$		
RSV	RSV	RSV	DEI	DED	RSV	RSV	RSV		

## NOTE:

Do not write to location 1FF6H. Bits DED and DEI are written as specified in users manual.

Device	DEI	DED
87C196KR	UPROM Bit	UPROM Bit
83C196KR	N/A	N/A

DED—Disable External Data
DEI-Disable External Instructions

SSIOx_CON Registers				$\begin{aligned} & \text { 1FB1H: Byte = SSIO0 } \\ & \text { 1FB3H: Byte = SSIO1 } \end{aligned}$			
7	6	5	4	3	2	1	0
M/ $\bar{S}$	T/ $\bar{R}$	TRT	THS	STE	ATR	OUF	TBS
M/ $\overline{\mathrm{S}}$	Master/	/ $\overline{\text { Slave }}$					
T/信	Transm	mit $\overline{R e c}$					
TRT	Transm	itter/R	eceiver	Toggl			
THS	Transce	eiver H	andsha	ke Sel			
STE	Single	Transf	Enabl				
ATR	Auto Tr	Transfer	Re-Ena	able			
OUF	Overflo	w/Und	erflow	Flag			
TBS	Transce	eiver/B	uffer St	tatus			




EA _STAT not effected by write
*RSV-reserved bit must be $=0$
4.0 PIN DEFINITION TABLE

$\begin{gathered} 68 \\ \text { PLCC } \end{gathered}$	Function
40	ACHO
41	ACH1
42	ACH2
43	ACH3
44	ACH4
45	ACH5
46	ACH6
47	ACH7
26	ADO
25	AD1
24	AD2
23	AD3
22	AD4
21	AD5
20	AD6
19	AD7
18	AD8
17	AD9
16	AD10
15	AD11
14	AD12
13	AD13
12	AD14
11	AD15
04	$\overline{\text { ADV }}$
36	$\overline{\text { AINC }}$
04	ALE
48	ANGND
08	$\overline{\text { BHE }}$
35	BREQ
10	BUSWIDTH
39	CLKOUT
38	CPVER
29	$\overline{E A}$
57	EPAO
56	EPA1


68   PLCC	Function
55	EPA2
54	EPA3
53	EPA4
52	EPA5
51	EPA6
50	EPA7
58	EPA8
59	EPA9
34	EXTINT
38	HLDA
37	$\overline{\text { HOLD }}$
03	INST
36	INTOUT
28	NMI
40	P0.0
41	P0.1
42	P0.2
43	P0.3
44	P0.4
45	P0.5
46	P0.6
47	P0.7
57	P1.0
56	P1.1
55	P1.2
54	P1.3
53	P1.4
52	P1.5
51	P1.6
50	P1.7
32	P2.0
33	P2.1
34	P2.2
35	P2.3
36	P2.4
53	


68   PLCC	Function
37	P2.5
38	P2.6
39	P2.7
26	P3.0
25	P3.1
24	P3.2
23	P3.3
22	P3.4
21	P3.5
20	P3.6
19	P3.7
18	P4.0
17	P4.1
16	P4.2
15	P4.3
14	P4.4
13	P4.5
12	P4.6
11	P4.7
04	P5.0
03	P5.1
09	P5.2
07	P5.3
01	P5.4
08	P5.5
02	P5.6
10	P5.7
58	P6.0
59	P6.1
60	P6.2
61	P6.3
62	P6.4
63	P6.5
64	P6.6


$\begin{gathered} 68 \\ \text { PLCC } \end{gathered}$	Function
65	P6.7
39	$\overline{\text { PACT }}$
33	PALE
44	PMODE. 0
45	PMODE. 1
46	PMODE. 2
47	PMODE. 3
34	$\overline{\text { PROG }}$
32	PVER
07	$\overline{\mathrm{RD}}$
02	READY
27	RESET
33	RXD
62	SC0
64	SC1
63	SD0
65	SD1
01	SLPINT
60	T1CLK
61	T1DIR
57	T2CLK
55	T2DIR
32	TXD
31	$V_{\text {CC }}$
06	$V_{\text {PP }}$
49	$\mathrm{V}_{\text {REF }}$
05	$V_{\text {SS }}$
30	$\mathrm{V}_{\text {S }}$
68	$V_{S S}$
09	$\overline{W R}$
08	WRH
09	WRL
67	XTAL1
66	XTAL2

### 5.0 PACKAGE PIN ASSIGNMENTS



### 6.0 PIN DESCRIPTION

Symbol	Name and Function
$V_{\text {CC }}$	Main supply voltage ( +5 V ).
$\mathrm{V}_{\mathrm{SS} 1}, \mathrm{~V}_{\text {SS2 }}, \mathrm{V}_{\text {SS3 }}$	Digital circuit ground ( OV ). There are three $\mathrm{V}_{\mathrm{SS}}$ pins, all of which MUST be connected.
$\mathrm{V}_{\text {REF }}$	Reference and supply voltage for the A/D converter and Port0 ( +5 V ). Must be connected for A/D and Port 0 to function.
$\mathrm{V}_{\mathrm{PP}}$	Programming voltage for the EPROM parts. It should be +12.5 V for programming. It is also the timing pin for the return from power-down circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $\mathrm{V}_{\mathrm{SS}}$ and a $1 \mathrm{M} \Omega$ resistor to $\mathrm{V}_{\mathrm{CC}}$. If this function is not used, connect $\mathrm{V}_{\mathrm{PP}}$ to $\mathrm{V}_{\mathrm{CC}}$.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $\mathrm{V}_{\mathrm{SS}}$.
ACH0-ACH7/PORTO	Analog inputs to the on-chip $\dot{A} / D$ converter. Also a digital input pin.*
ALE/ $\overline{\text { ADV } / P 5.0 ~}$	Address Latch Enable or Address Valid output. Goes low to latch and demultiplex the address/data bus. When the pin is $\overline{A D V}$, it goes inactive (high) at the end of the bus cycle, providing a chip select for external memory. $\overline{\text { ADV }}$ is active only during external memory accesses. Also a standard I/O pin.*
$\overline{\text { BHE/ }} \overline{\text { WRH }}$ /P5.5	Byte High Enable or Write High output. $\overline{\text { BHE }}=0$ when accessing odd (high) bytes or complete words in external memory. WRH $=0$ when writing to odd bytes or complete words in external memory. BHE/WRH is only valid during 16 -bit external memory cycles. Also a standard I/O pin.*
BREQ/P2.3	Bus Request output. Active low when the bus controller is in hold and has a pending external memory cycle. Also a standard I/O pin.*
BUSWIDTH/P5.7	Input for bus width selection. If BUSWIDTH is low, an 8-bit cycle occurs. If BUSWIDTH is high, a 16 -bit cycle occurs. Also a standard I/O pin.*
CLOCKOUT/P2.7	Output of the internal clock generator. A $50 \%$ duty cycle signal at $1 / 2$ XTAL1 frequency. Also a standard I/O pin.*
$\overline{E A}$	Input for memory select (External Access). $\overline{E A}=1$ directs memory accesses from locations 2000 H through 9FFFH to on-chip EPROM/ROM. $\overline{E A}=0$ directs all memory accesses to off-chip memory. $\overline{E A}=+12.5 \mathrm{~V}$ causes execution to begin in the Programming Mode. EA is latched at reset.
$\begin{aligned} & \text { EPAO-7/P1.0-1.7 } \\ & \text { EPA8-9/P6.0-6.1 } \end{aligned}$	I/O pins for the Event Processor Array. EPAO and EPA2 also function as T2CLK and T2DIR. Also a standard I/O pin.*
EXTINT/P2. 2	External Interrupt input pin. A positive transition sets the EXTINT interrupt pending flag. The minimum high and low times are 2 oscillator cycles. Also a standard I/O pin.*
INST/P5.1	Instruction fetch signal. Output high during the entire bus cycle of an external instruction fetch. INST is active only during external memory fetches; during internal memory fetches, INST is low. Also a standard I/O pin.*
INTOUT/P2.4	Interrupt output indicating that a pending interrupt requires use of the external bus. Also a standard I/O pin.*
HLDA/P2.6	Bus Hold Acknowledge output indicating release of the bus in response to a HOLD request. Also a standard I/O pin.* This is also a TEST MODE enable pin. Do not use it as an input without careful hardware evaluation.

[^18]
### 6.0 PIN DESCRIPTION (Continued)

Symbol	Name and Function
HOLD/P2.5	Bus Hold request input. $\overline{\mathrm{HOLD}}$ is sent by another processor to request control of 8XC196KT system bus. Also a standard I/O pin.*
NMI	Non-Maskable interrupt input pin. A positive transition causes a non-maskable interrupt vector through memory location 203EH. If not used, this pin should be tied to $V_{\mathrm{SS}}$. May be used by Intel Evaluation boards.
PORTO	8 -bit high impedance input-only port. Also used as A/D converter inputs. Port 0 pins should not be left floating. In EPROM devices these pins are also used to select the Programming Mode.
PORT1	8 -bit bidirectional standard I/O port. All of its pins are shared with the EPA.
PORT2	8 -bit bidirectional standard I/O port. All of its pins are shared with other functions (TxD, RxD, EXTINT, $\overline{B R E Q}$, INTOUT, HOLD, HLDA, CLKOUT).
PORT3 PORT4	8 -bit bidirectional standard I/O with open drain outputs. These pins are shared with the multiplexed address/data bus which uses complementary drivers.
PORT5	8 -bit bidirectional standard I/O port. All of its pins are shared with other functions (ALE/ADV, INST, WR/WRL, RD, SLPINT, BHE/WRH, READY, BUSWIDTH).
PORT6	8-bit bidirectional standard I/O port. All of its pins are shared with other functions (EPA8, EPA9, T1CLK, T1DIR, SC0, SD0, SC1, SD1).
$\overline{\mathrm{RD}}$ /P5.3	Read signal output to external memory. $\overline{\mathrm{RD}}$ is low only during external memory reads. Also a standard I/O pin.*
READY/P5.6	Ready input to lengthen external memory cycles. If READY $=1$, CPU operation continues in a normal manner. If READY $=0$ wait states are added. Also a standard I/O pin.*
$\overline{\text { RESET }}$	Reset input to the chip. Held low for at least 16 state times to reset the chip. The subsequent low to high transition starts the reset sequence. Input high for normal operation. RESET has an internal pullup.
RXD/P2.1	Receive data input pin for the Serial I/O (SIO) port. Also a standard I/O pin.*
SLPINT/P5.4	Slave Port Interrupt output pin. Also a standard I/O pin.*
$\begin{aligned} & \hline \text { SSIO/P6.4-P6.7 } \\ & \text { (SC0, SDO, SC1, SD1) } \end{aligned}$	Synchronous Serial I/O pins. SC0/SC1 are clock pins and SDO/SD1 are data pins. Also a standard I/O pin.*
T1CLK/P6.2	TIMER1 Clock input. TIMER1 increments or decrements on both rising and falling edges. Also a standard I/O pin.*
T1DIR/P6.3	TIMER1 Direction input. TIMER1 increments when this pin is high and decrements when this pin is low. Also a standard I/O pin.*
T2CLK/P1.0	TIMER2 Clock Input. TIMER2 increments or decrements on both rising and falling edges. Also a standard I/O pin.*
T2DIR/P1.2	TIMER2 Direction input. TIMER2 increments when this pin is high and decrements when this pin is low. Also a standard I/O pin.*
TXD/P2.0	Transmit data output pin for the Serial I/O (SIO) port. Also a standard I/O pin.*
$\overline{\text { WR/ } / \overline{\mathrm{WRL}} / \mathrm{P} 5.2}$	Write and Write Low output to external memory. $\overline{\text { WR }}$ goes low for every external write. $\overline{\text { WRL }}$ goes low only for writes to even addresses. $\overline{\text { WR }} / \overline{\mathrm{WRL}}$ is active only during external memory writes. Also a standard I/O pin.*
XTAL1	Input of the oscillator invertor and the internal clock generator. If using an external clock source connect it to this pin.
XTAL2	Output of the oscillator invertor. Leave floating unless connected to a crystal/ resonator circuit.

[^19]
### 6.0 PIN DESCRIPTION (Continued)

## Programming Mode Pin Definitions

Name	Name and Function
PMODE   PO.4-7	Programming Mode Select. Determines the EPROM programming algorithm that is performed.   PMODE is sampled after a chip reset and should be static while the part is operating.
$\overline{\text { PALE }}$	Programming ALE Input. Accepted by an 8XC196KT that is in Slave Programming Mode. Used   to indicate that Port 3 and 4 contain a command/address.
$\overline{\text { PROG }}$	Programming. Falling edge latches data on PBUS and begins programming. Rising edge inputs   ends programming.
PACT	Programming Active. Used to indicate when programming activity is complete.
PVER	Programming Verification. Signal is low after rising edge of PROG if the programming was not   successful.
$\overline{\text { AINC }}$	Auto Increment. Active low input enables the auto increment mode. Auto increment will allow   reading or writing of sequential EPROM locations without address transactions across the,   PBUS for each read or write.
PORTS   3 and 4	Address/Command/Data Bus. Used to pass commands, addresses and data to and from   $8 X C 196 K T s . ~ A l s o ~ u s e d ~ i n ~ t h e ~ A u t o ~ P r o g r a m m i n g ~ M o d e ~ a s ~ a ~ r e g u l a r ~ s y s t e m ~ b u s ~ t o ~ a c c e s s ~$   external memory.
CPVER	Cumulative Program Verification. Pin is high if all locations since entering a programming mode   have programmed correctly.

### 7.0 OPCODE TABLE

00	SKIP
01	CLR
02	NOT
03	NEG
04	XCH
05	DEC
06	EXT
07	INC
08	SHR
09	SHL
OA	SHRA
OB	XCH
0 C	SHRL
OD	SHLL
OE	SHRAL
OF	NORML
10	RESERVED
11	CLRB
12	NOTB
13	NEGB
14	XCHB
15	DECB
16	EXTB
17	INCB
18	SHRB
19	SHLB
1A	SHRAB
1B	XCHB
1C	EST INDIRECT**
1D	EST INDEXED**
1E	ESTB INDIRECT**
1F	ESTB INDEXED**
20	SJMP
21	SJMP
22	SJMP
23	SJMP
24	SJMP
25	SJMP
26	SJMP
27	SJMP
28	SCALL
29	SCALL
2A	SCALL
2B	SCALL
2 C	SCALL
2D	SCALL
2E	SCALL


2 F	SCALL
30	JBC
31	JBC
32	JBC
33	JBC
34	JBC
35	JBC
36	JBC
37	JBC
38	JBS
39	JBS
3A	JBS
3B	JBS
3C	JBS
3D	JBS
3E	JBS
3F	JBS
40	AND DIRECT (3 OPS)
41	AND IMMEDIATE (3 OPS)
42	AND INDIRECT (3 OPS)
43	AND INDEXED (3 OPS)
44	ADD DIRECT (3 OPS)
45	ADD IMMEDIATE (3 OPS)
46	ADD INDIRECT (3 OPS)
47	ADD INDEXED (3 OPS)
48	SUB DIRECT (3 OPS)
49	SUB IMMEDIATE (3 OPS)
4A	SUB INDIRECT (3 OPS)
4B	SUB INDEXED (3 OPS)
4 C	MULU DIRECT (3 OPS)
4D	MULU IMMEDIATE (3 OPS)
4 E	MULU INDIRECT (3 OPS)
4 F	MULU INDEXED (3 OPS)
50	AiNDB DIRECT (3 OPS)
51	ANDB IMMEDIATE (3 OPS)
52	ANDB INDIRECT (3 OPS)
53	ANDB INDEXED (3 OPS)
54	ADDB DIRECT (3 OPS)
55	ADDB IMMEDIATE (3 OPS)
56	ADDB INDIRECT (3 OPS)
57	ADDB INDEXED (3 OPS)
58	SUBB DIRECT (3 OPS)
59	SUBB IMMEDIATE (3 OPS)
5A	SUBB INDIRECT (3 OPS)
5B	SUBB INDEXED (3 OPS)
5 C	MULUB DIRECT (3 OPS)
5D	MULUB IMMEDIATE (3 OPS)


5E	MULUB INDIRECT (3 OPS)
5F	MULUB INDEXED (3 OPS)
60	AND DIRECT (2 OPS)
61	AND IMMEDIATE (2 OPS)
62	AND INDIRECT (2 OPS)
63	AND INDEXED (2 OPS)
64	ADD DIRECT (2 OPS)
65	ADD IMMEDIATE (2 OPS)
66	ADD INDIRECT (2 OPS)
67	ADD INDEXED (2 OPS)
68	SUB DIRECT (2 OPS)
69	SUB IMMEDIATE (2 OPS)
6A	SUB INDIRECT (2 OPS)
6B	SUB INDEXED (2 OPS)
6C	MULU DIRECT (2 OPS)
6D	MULU IMMEDIATE (2 OPS)
6E	MULU INDIRECT (2 OPS)
6F	MULU INDEXED (2 OPS)
70	ANDB DIRECT (2 OPS)
71	ANDB IMMEDIATE (2 OPS)
72	ANDB INDIRECT (2 OPS)
73	ANDB INDEXED (2 OPS)
74	ADDB DIRECT (2 OPS)
75	ADDB IMMEDIATE (2 OPS)
76	ADDB INDIRECT (2 OPS)
77	ADDB INDEXED (2 OPS)
78	SUBB DIRECT (2 OPS)
79	SUBB IMMEDIATE (2 OPS)
7A	SUBB INDIRECT (2 OPS)
7B	SUBB INDEXED (2 OPS)
7C	MULUB DIRECT (2 OPS)
7D	MULUB IMMEDIATE (2 OPS)
7E	MULUB INDIRECT (2 OPS)
7F	MULUB INDEXED (2 OPS)
80	OR DIRECT
81	OR IMMEDIATE
82	OR INDIRECT
83	OR INDEXED
84	XOR DIRECT
85	XOR IMMEDIATE
86	XOR INDIRECT
87	XOR INDEXED
88	CMP DIRECT
89	CMP IMMEDIATE
8A	CMP INDIRECT
8B	CMP INDEXED
8C	DIVU DIRECT

7.0 OPCODE TABLE (Continued)

8D	DIVU IMMEDIATE	B4	ADDCB DIRECT	DA	JLE
8E	DIVU INDIRECT	B5	ADDCB IMMEDIATE	DB	JC
8F	DIVU INDEXED	B6	ADDCB INDIRECT	DC	JVT
90	ORB DIRECT	B7	ADDCB INDEXED	DD	JV
91	ORB IMMEDIATE	B8	SUBCB DIRECT	DE	JLT
92	ORB INDIRECT	B9	SUBCB IMMEDIATE	DF	JE
93	ORB INDEXED	BA	SUBCB INDIRECT	E0	DJNZ
94	XORB DIRECT	BB	SUBCB INDEXED	E1	DJNZW
95	XORB IMMEDIATE	BC	LDBSE DIRECT	E2	TIJMP
96	XORB INDIRECT	BD	LDBSE IMMEDIATE	E3	BR (INDIRECT)
97	XORB INDEXED	BE	LDBSE INDIRECT	E4	EBMOVI**
98	CMPB DIRECT	BF	LDBSE INDEXED	E5	RESERVED
99	CMPB IMMEDIATE	C0	ST DIRECT	E6	EJMP**
9A	CMPB INDIRECT	C1	BMOV	E7	LJMP
9B	CMPB INDEXED	C2	ST INDIRECT	E8	ELD INDIRECT**
9C	DIVUB DIRECT	C3	ST INDEXED	E9	ELD INDEXED**
9D	DIVUB IMMEDIATE	C4	STB DIRECT	EA	ELDB INDIRECT**
9E	DIVUB INDIRECT	C5	CMPL	EB	ELDB INDEXED**
9 F	DIVUB INDEXED	C6	STB INDIRECT	EC	DPTS
AO	LD DIRECT	C7	STB INDEXED	ED	EPTS
A1	LD IMMEDIATE	C8	PUSH DIRECT	EE	RESERVED
A2	LD INDIRECT	C9	PUSH IMMEDIATE	EF	LCALL
A3	LD INDEXED	CA	PUSH INDIRECT	FO	RET
A4	ADDC DIRECT	CB	PUSH INDEXED	F1	ECALL**
A5	ADDC IMMEDIATE	CC	POP DIRECT	F2	PUSHF
A6	ADDC INDIRECT	CD	BMOVI	F3	POPF
A7	ADDC INDEXED	CE	POP INDIRECT	F4	PUSHA
A8	SUBC DIRECT	CF	POP INDEXED	F5	POPA
A9	SUBC IMMEDIATE	D0	JNST	F6	IDPLD
AA	SUBC INDIRECT	D1	JNH	F7	TRAP
AB	SUBC INDEXED	D2	JGT	F8	CLRC
AC	LDBZE DIRECT	D3	JNC	F9	SETC
AD	LDBZE IMMEDIATE	D4	JNVT	FA	DI
AE	LDBZE INDIRECT	D5	JNV	FB	El
AF	LDBZE INDEXED	D6	JGE	FC	CLRVT
B0	LDB DIRECT	D7	JNE	FD	NOP
B1	LDB IMMEDIATE	D8	JST	FE	*DIV/DIVB/MUL/MULB
B2	LDB INDIRECT	D9	JH	FF	RST
B3	B INDEX				

[^20]
### 8.0 INSTRUCTION SET SUMMARY

Mnemonic	Operands	Operation(1)	Flags ${ }^{(2)}$						Notes
			Z	N	C	V	VT	ST	
ADD/ADDB	2	$D=D+A$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
ADD/ADDB	3	$D=B+A$	$\checkmark$	$\nu$	$\nu$	$\checkmark$	$\uparrow$		
ADDC/ADDCB	2	$D=D+A+C$	$\downarrow$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
SUB/SUBB	2	$D=D-A$	$\checkmark$	$\nu$	$\nu$	$\nu$	$\uparrow$		
SUB/SUBB	3	$D=B-A$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
SUBC/SUBCB	2	$D=D-A+C-1$	$\downarrow$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$		
CMP/CMPB/CMPL	2	D - A	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
MUL/MULU	2	$D, D+2=D \times A$							3
MUL/MULU	3	$D, D+2=B \times A$							3
MULB/MULUB	2	$D, D+1=D \times A$							4
MULB/MULUB	3	$D, D+1=B \times A$							4
DIVU	2	$D=(D, D+2) / A, D+2=$ Remainder				$\nu$	$\uparrow$		3
DIVUB	2	$D=(D, D+1) / A, D+1=$ Remainder				$\checkmark$	$\uparrow$		4
DIV	2	$D=(D, D+2) / A, D+2=$ Remainder				$\checkmark$	$\uparrow$		
DIVB	2	$D=(D, D+1) / A, D+1=$ Remainder				$\checkmark$	$\uparrow$		
AND/ANDB	2	$D=D$ and $A$	$\checkmark$	$\checkmark$	0	0			
AND/ANDB	3	$D=B$ and $A$	$\checkmark$	$\checkmark$	0	0			
OR/ORB	2	$D=D$ or $A$	$\nu$	$\checkmark$	0	0			
XOR/XORB	2	$D=D$ (exclusive or) $A$	$\checkmark$	$\checkmark$	0	0			
LD/LDB	2	$D=A$							
ELD/ELDB	2	$\mathrm{D}=\mathrm{A}$							
ST/STB	2	A $=$ D							
EST/ESTB	2	$A=D$							
XCH	2	$D \longleftrightarrow A$; $+1 \longleftrightarrow A+1$							
XCHB	2	$D \longleftrightarrow A$							
BMOV, BMOVI/EBMOVI	2	$\begin{aligned} & \text { (PTR_HI) }+=\text { (PTR_LOW) }+; \\ & \text { Until_COUNT }=0 \end{aligned}$							
LDBSE	2	$D=A ; D+1=\operatorname{Sign}(A)$							4,5
LDBZE	2	$\mathrm{D}=\mathrm{A} ; \mathrm{D}+1=0$							4,5
PUSH	1	SP = SP-2; (SP) = A							
POP	1	$\mathrm{A}=(\mathrm{SP}) ; \mathrm{SP}=\mathrm{SP}+2$							
PUSHF	0	$\begin{aligned} & \mathrm{SP}=\mathrm{SP}-2 ;(\mathrm{SP})=P S W ; \\ & \mathrm{PSW}=0 ; \mathrm{I}=0 ; \mathrm{PSE}=0 \end{aligned}$	0	0	0	0	0	0	11
POPF	0	$\mathrm{PSW}=(\mathrm{SP}) ; \mathrm{SP}=\mathrm{SP}+2 ; 1 \leftarrow \vee$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\nu$	$\checkmark$	11
PUSHA	0	$\begin{aligned} & \hline S P=S P-2 ;(S P)=P S W ; \\ & P S W=0000 H ; S P=S P-2 ; \\ & \text { (SP) = IMASK1/WSR; } \\ & \text { IMASK1 }=00 H ; 1=0 ; \text { PSE }=0 \end{aligned}$	0	0	0	0	0	0	
POPA	0	$\begin{aligned} & \text { IMASK } 1 / W S R=(S P) ; S P=S P+2 ; \\ & P S W=(S P) ; S P=S P+2 \end{aligned}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	
SJMP	1	PC = PC + 11-Bit-Offset							6

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation(1)	Flags(2)						Notes
			Z	N	C	V	VT	ST	
LJMP	1	PC $=$ PC + 16-Bit-Offset							6
EJMP	1	$P C=P C+24=$ Bit-Offset							6,12
EBR [Indirect]	1	$P C=(A)$							12
TIJMP	3	$\mathrm{PC}=$ ([index] and MASK)2 + (Table)							
TRAP	0	$\begin{aligned} & \mathrm{SP}=\mathrm{SP}-2 ;(\mathrm{SP})=\mathrm{PC} ; \\ & \mathrm{PC}=(2010 \mathrm{H}) \end{aligned}$							10
ECALL	1	$\begin{aligned} & S P=S P-4 ;(S P)=P C \\ & P C=P C+20 \text {-Bit Offset } \end{aligned}$							6,12
LCALL   (16-Bit Mode)	1	$\begin{aligned} & S P=S P-2 ;(S P)=P C \\ & P C=P C+16 \text {-Bit Offset } \end{aligned}$							6
LCALL   (24-Bit Mode)	1	$\begin{aligned} & S P=S P-4 ;(S P)=P C \\ & P C=P C+16 \text {-Bit Offset } \end{aligned}$							6,13
SCALL   (16-Bit Mode		$\begin{aligned} & \mathrm{SP}=\mathrm{SP}-2 ;(\mathrm{SP})=\mathrm{PC} \\ & \mathrm{PC}=\mathrm{PC}+11 \text {-Bit Offset } \end{aligned}$							6
SCALL   (24-Bit Mode)	1	$\begin{aligned} & \mathrm{SP}=\mathrm{SP}-4 ;(\mathrm{SP})=\mathrm{PC} \\ & \mathrm{PC}=\mathrm{PC}+11 \text {-Bit Offset } \end{aligned}$							6,13
$\begin{array}{\|l\|} \hline \text { RET } \\ \text { (16-Bit Mode) } \\ \hline \end{array}$	0	$\mathrm{PC}=(\mathrm{SP}) ; \mathrm{SP}=\mathrm{SP}+2$							
RET   (24-Bit Mode)	0	$\mathrm{PC}=(\mathrm{SP}) ; \mathrm{SP}=\mathrm{SP}+4$							13
J(conditioned)	1	PC $=$ PC + 8-Bit-Offset (If Taken)							6
JC	1	Jump if $C=1$							6
JNC	1	Jump if C $=0$							6
JE	1	Jump if $Z=1$							6
JNE	1	Jump if $Z=0$							6
JGE	1	Jump if $\mathrm{N}=0$							6
JLT	1	Jump if $\mathrm{N}=1$							6
JGT	1	Jump if $\mathrm{N}=0$ and $\mathrm{Z}=0$							6
JLE	1	Jump if $\mathrm{N}=1$ or $\mathrm{Z}=1$							6
JH	1	Jump if $C=1$ and $Z=0$							6
JNH	1	Jump if $\mathrm{C}=0$ or $\mathrm{Z}=1$							6
JV	1	Jump if $\mathrm{V}=0$							6
JNV	1	Jump if $\mathrm{V}=1$							6
JVT	1	Jump if VT = 1; Clear VT					0		6
JNVT	1	Jump if VT = 0; Clear VT					0		6
JST	1	Jump if ST $=1$							6
JNST	1	Jump if ST $=0$							6
JBS	3	Jump if Specific Bit = 1							6,7
JBC	3	Jump if Specific Bit $=0$							6,7
DJNZ/DJNZW	1	$\begin{aligned} & D=D-1 ; \\ & \text { If } D \neq 0 \text { then } P C=P C+8 \text {-Bit-Offset } \end{aligned}$							6

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation(1)	Flags ${ }^{(2)}$						Notes
			Z	N	C	V	VT	ST	
DEC/DECB	1	$D=D-1$	$\checkmark$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$		
NEG/NEGB	1	$D=0-D$	$\checkmark$	$\checkmark$	$r$	$\checkmark$	$\uparrow$		
INC/INCB	1	$D=D+1$	$\checkmark$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$		
EXT	1	$D=D ; D+2=\operatorname{Sign}(\mathrm{D})$	$\checkmark$	$\nu$	0	0			3
EXTB	1	$D=D ; D+1=\operatorname{Sign}(\mathrm{D})$	$\checkmark$	$\nu$	0	0			4
NOT/NOTB	1	D = Logical Not ( D )	$\checkmark$	$\nu$	0	0			
CLR/CLRB	1	$\mathrm{D}=0$	1	0	0	0			
SHL/SHLB/SHLL	2	$\mathrm{C} \leftarrow \mathrm{msb} \bullet \bullet \bullet \mathrm{lsb} \leftarrow 0$	$\checkmark$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$		8
SHR/SHRB/SHRL	2	$0 \rightarrow$ msb $-\bullet \bullet$ lsb $\rightarrow$ C	$\checkmark$	$\nu$	$\checkmark$	0		$\nu$	8
SHRA/SHRAB/SHRAL	2	$\mathrm{msb} \rightarrow \mathrm{msb} \bullet \bullet \bullet$ \|sb $\rightarrow$ C	$\checkmark$	$\nu$	$\checkmark$	0		$\checkmark$	8
NORML	2	Left Shift until msb $=1 ; \mathrm{D}=$ Shift Count	$\checkmark$	$\checkmark$	0				8
SETC	0	$\mathrm{C}=1$			1				
CLRC	0	$C=0$			0				
CLRVT	0	VT $=0$					0		
RST	0	$\mathrm{PC}=2080 \mathrm{H}$	0	0	0	0	0	0	9
DI	0	Disable All Interrupts ( $1=0$ )							
El	0	Enable All Interupts ( $1=1$ )							
DPTS	0	Disable PTS Interrupts (PSE = 0)							
EPTS	0	Enable PTS Interrupts (PSE = 1)							
NOP	0	$P C=P C+1$							
SKIP	0	$P C=P C+2$							
IPLPD	1	Idle Mode IF Key = 1;   Powerdown Mode IF Key $=2$   Chip RESET Otherwise							

## NOTES:

1. If the mnemonic ends in " $B$ " a byte operation is performed, otherwise a word operation is performed. Operands $D, B$ and A must conform to the alignment rules for the required operand type. D and B are locations in the Lower Register File; A can be located anywhere in memory.
2. The symbols indicate the effects on the flags:

- Cleared or set as appropriate

0 Cleared
1 Set
$\uparrow$ Set if appropriate; never cleared
$\downarrow$ Cleared if appropriate; never set
3. $D, D+2$ are consecutive WORDs in memory; $D$ is DOUBLE-WORD aligned.
4. $D, D+1$ are consecutive BYTEs in memory; $D$ is WORD aligned.
5. Changes a BYTE to WORD.
6. Offset is a 2 's complement number.
7. Specific Bit must be in or windowed into the Lower Register File.
8. The "L" (LONG) suffix indicates DOUBLE-WORD operations.
9. Initiates a RESET by pulling RESET low. Software should re-initialize all the neccessary registers with code starting at 2080 H .
10. The assembler does not accept this mnemonic (use the macro file for definition).
11. 1 = Interrupt Enable (PSW1).
12. These instructions will only function in 24 -bit mode.
13. These instructions push/pop two additional bytes on/off stack in 24-bit mode.

### 9.0 INSTRUCTION LENGTH/OPCODES

Mnemonic	Direct	Immed	Indirect		Indexed	
			Normal(1)	A-Inc(1)	Short(1)	Long(1)
ADD (3-op)	4/44	5/45	4/46	4/46	5/47	6/47
SUB (3-op)	4/48	5/49	4/4A	4/4A	5/4B	6/4B
ADD (2-op)	3/64	4/65	3/66	3/66	4/67	5/67
SUB (2-op)	3/68	4/69	3/6A	3/6A	4/6B	5/6B
ADDC	3/A4	4/A5	3/A6	3/A6	4/A7	5/A7
SUBC	3/A8	4/A9	3/AA	3/AA	4/AB	5/AB
CMP	3/88	4/89	3/8A	3/8A	4/8B	5/8B
ADDB (3-op)	4/54	4/55	4/56	4/56	5/57	6/57
SUBB (3-op)	4/58	4/59	4/5A	4/5A	5/5B	6/5B
ADDB (2-op)	3/74	3/75	3/76	3/76	4/77	5/77
SUBB (2-op)	3/78	3/79	3/7A	3/7A	4/7B	5/7B
ADDCB	3/B4	3/B5	3/B6	3/B6	4/B7	5/B7
SUBCB	3/B8	3/B9	3/BA	3/BA	4/BB	5/BB
CMPB	3/98	3/99	3/9A	3/9A	4/9B	5/9B
MUL (3-op)	5/(2)	6/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULU (3-op)	4/4C	5/4D	4/4E	4/4E	5/4F	6/4F
MUL (2-op)	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULU (2-op)	3/6C	4/6D	3/6E	3/6E	4/6F	5/6F
DIV	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVU	3/8C	4/8D	3/8E	3/8E	4/8F	5/8F
MULB (3-op)	5/(2)	5/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULUB (3-op)	4/5C	4/5D	4/5E	4/5E	5/5F	6/5F
MULB (2-op)	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULUB (2-op)	3/7C	3/7D	3/7E	3/7E	4/7F	5/7F
DIVB	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVUB	3/9C	3/9D	3/9E	3/9E	4/9F	5/9F
AND (3-op)	4/40	5/41	4/42	4/42	5/43	6/43
AND (2-op)	3/60	4/61	3/62	3/62	4/63	5/63
OR (2-op)	3/80	4/81	3/82	3/82	4/83	5/83
XOR	3/84	4/85	3/86	3/86	4/87	5/87
ANDB (3-op)	4/50	4/51	4/52	4/52	5/53	5/53
ANDB (2-op)	3/70	3/71	3/72	3/72	4/73	4/73
ORB (2-op)	3/90	3/91	3/92	3/92	4/93	5/93
XORB	3/94	3/95	3/96	3/96	4/97	5/97
PUSH	2/C8	3/C9	2/CA	2/CA	3/CB	4/CB
POP	2/CC	-	2/CE	2/CE	3/CF	4/CF
LD	3/A0	4/A1	3/A2	3/A2	4/A3	5/A3
LDB	3/B0	3/B1	3/B2	3/B2	4/B3	5/B3
ELD			3/E8	3/E8		6/E9
ELDB			3/EA	3/EA		6/EB
ST	3/C0	-	3/C2	3/C2	4/C3	5/С3
STB	3/C4	-	3/C6	3/C6	4/C7	5/C7
EST			3/1C	3/1C		6/1D
ESTB			3/1E	3/1E		6/1F

### 9.0 INSTRUCTION LENGTH/OPCODES (Continued)

Mnemonic	Direct	Immed	Indirect		Indexed	
				Normal(1)	A-Inc(1)	Short(1)
Long(1)						
XCH	$3 / 04$	-	-	-	$4 / 0 \mathrm{~B}$	$5 / 0 \mathrm{~B}$
XCHB	$3 / 14$	-	-	-	$4 / 1 \mathrm{~B}$	$5 / 1 \mathrm{~B}$
LDBSE	$3 / \mathrm{BC}$	$3 / \mathrm{BD}$	$3 / \mathrm{BE}$	$3 / \mathrm{BE}$	$4 / \mathrm{BF}$	$5 / \mathrm{BF}$
LBSZE	$3 / \mathrm{AC}$	$3 / \mathrm{AD}$	$3 / \mathrm{AE}$	$3 / \mathrm{AE}$	$4 / \mathrm{AF}$	$5 / \mathrm{AF}$


Mnemonic	Length/Opcode
PUSHF	1/F2
POPF	1/F3
PUSHA	1/F4
POPA	1/F5
TRAP	$1 / F 7$
LCALL	3/EF
SCALL	2/28-2F(3)
ECALL	4/F1
RET	1/F0
LJMP	3/E7
SJMP	2/20-27(3)
EJMP	4/E6
BRI	2/E3
TIJMP	4/E2
JNST	1/D0
JST	1/D8
JNH	1/D1
JH	1/D9
JGT	1/D2
JLE	1/DA
JNC	1/B3
JC	1/D8
JNVT	1/D4
JVT	1/DC
JNV	1/D5
JV	1/DD
JGE	1/D6
JLT	1/DE
JNE	1/D7
JBC	1/DF
JBS	$3 / 30-37$
	$3 / 38-3 F$


Mnemonic	Length/Opcode
DJNZ	$3 / E 0$
DJNZW	$3 / E 1$
NORML	$3 / 0 \mathrm{~F}$
SHRL	$3 / 0 \mathrm{C}$
SHLL	$3 / 0 \mathrm{D}$
SHRAL	$3 / 0 \mathrm{E}$
SHR	$3 / 08$
SHRB	$3 / 18$
SHL	$3 / 09$
SHLB	$3 / 19$
SHRA	$3 / 0 \mathrm{~A}$
SHRAB	$3 / 1 \mathrm{~A}$
CLRC	$1 / F 8$
SETC	$1 / F 9$
DI	$1 / F A$
EI	$1 / F B$
DPTS	$1 / E C$
EPTS	$1 / E D$
CLRVT	$1 / F C$
NOP	$1 / F D$
RST	$1 / F F$
SKIP	$2 / 00$
IDLPD	$1 / F 6$
BMOV	$3 / C 1$
BMOVi	$3 / C D$
EBMOVi	$3 / E 4$

## NOTES:

1. Indirect and indirect + share the same opcodes, as do short and long indexed opcodes. If the second byte is even, use indirect or short indexed. If odd, use indirect or long indexed.
2. The opcodes for signed multiply and divide are the unsigned opcode with an "FE" prefix.
3. The 3 least significant bits of the opcode are concatenated with the 8 bits to form an 11-bit, 2's complement offset.
10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES)

Instruction	Direct	Immediate	Indirect		Indexed		Extended
			Normal	A-Inc	Short	Long	
ADD (3op)	5	6	7/10	8/11	7/10	8/11	
SUB (3op)	5	6	7/10	8/11	7/10	8/11	
ADD (2op)	4	5	6/8	7/9	6/8	7/9	
SUB (2op)	4	5	6/8	7/9	6/8	7/9	
ADDC	4	5	6/8	7/9	6/8	7/9	
SUBC	4	5	6/8	7/9	6/8	7/9	
CMP	4	5	6/8	7/9	6/8	7/9	
ADDB (3op)	5	5	7/10	8/11	7/10	8/11	
SUBB (30p)	5	5	7/10	8/11	7/10	8/11	
ADDB (2op)	4	4	6/8	7/9	6/8	7/9	
SUBB (2op)	4	4	6/8	7/9	6/8	7/9	
ADDCB	4	4	6/8	7/9	6/8	7/9	
SUBCB	4	4	6/8	7/9	6/8	7/9	
CMPB	4	4	6/8	7/9	6/8	7/9	
CMPL	7						
MUL (3op)	16	17	18/21	19/22	19/22	20/23	
MULU (30p)	14	15	16/19	17/20	17/20	18/21	
MUL (2op)	16	17	18/21	19/22	19/22	20/23	
MULU (2op)	14	15	16/19	17/20	17/20	18/21	
DIV	26	27	28/31	29/32	29/32	30/33	
DIVU	24	25	26/29	27/30	27/30	28/31	
MULB (30p)	12	12	14/17	15/18	15/18	16/19	
MULUB (3op)	10	10	12/15	12/16	12/16	14/17	
MULB (2op)	12	12	14/17	15/18	15/18	16/19	
MULUB (2op)	10	10	12/15	12/16	12/16	14/17	
DIVB	18	18	20/23	21/24	21/24	22/25	
DIVUB	16	16	18/21	19/22	19/22	20/23	
AND (30p)	5	6	7/10	8/11	7/10	8/11	
AND (2op)	4	5	6/8	. $7 / 9$	6/8	7/9	
OR	4	5	6/8	7/9	6/8	7/9	
XOR	4	5	6/8	7/9	6/8	7/9	
ANDB (30p)	5	5	7/10	8/11	7/10	8/11	
ANDB (2op)	4	4	6/8	7/9	6/8	7/9	
ORB	4	4	6/8	7/9	6/8	7/9	
XORB	4	4	6/8	7/9	6/8	7/9	
LD	4	5	5/8	6/8	6/9	7/10	

10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

Instruction	Direct	Immediate	Indirect		Indexed		Extended
			Normal	A-Inc	Short	Long	
ST	4		5/8	6/9	6/9	7/10	
LDB	4	4	5/8	6/8	6/9	7/10	
STB	4		5/8	6/9	6/9	7/10	
ELD			6/9	8/11			8/11
EST			6/9	8/11			8/11
ELDB			6/9	8/11			8/11
ESTB			6/9	8/11			8/11
XCH	5				8/13	9/14	
STB	4				8/13	9/14	
XCHB	5				8/13	9/14	
BMOV	$6+8$ per Word		$6+11 / 14$ per Word				
BMOVI	$\begin{aligned} & 7+8 \text { per Word } \\ & +14 \text { for Each Interrupt } \end{aligned}$		$\begin{aligned} & 7+11 / 14 \text { per Word } \\ & +14 \text { for Each Interrupt } \end{aligned}$				
EBMOVI			$8+14 / 20$ per Word   + 16 for Each Interrupt				
LDBSE, LDBZE	4	4	5/7	6/8	6/8	7/9	
PUSH (int)	6	7	9/12	10/13	10/13	11/14	
POP (int)	8		10/12	11/13	11/13	12/14	
PUSHF (int)	6						
POPF (int)	7						
PUSHA (int)	12						
POPA (int)	12						
PUSH (ext)	8	9	11/14	12/15	12/15	13/16	
POP (ext)	11		13/15	14/16	14/16	15/17	
PUSHF (ext)	8						
POPF (ext)	10						
PUSHA (ext)	18						
POPA (ext)	18						
EJMP (24-Bit Mode)	8						
LJMP	7						
SJMP	7						
EBR[Indirect](24-Bit Mode)	9						
BR[Indirect]	7						
TIJMP (Internal Table)	15						
TIJMP (External Table)	18						
TrRAP (24-Bit Mode, Int)	19						
TRAP (16-Bit Mode, Int)	16						

### 10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

Instruction	Direct	Immediate	Indirect		Indexed		Extended
			Normal	A-Inc	Short	Long	
ECALL (24-Bit Mode, Int)	16						
LCALL (16-Bit Mode, Int)	11						
LCALL (24-Bit Mode, Int)	15						
SCALL (16-Bit Mode, Int	11						
SCALL (24-Bit Mode, Int)	15						
RET (24-Bit Mode, Int)	16						
RET (16-Bit Mode, Int)	11						
TRAP (24-Bit Mode, Ext)	25						
TRAP (16-Bit Mode, Ext)	18						
ECALL (24-Bit Mode, Ext)	22						
LCALL (16-Bit Mode, Ext)	13						
LCALL (24-Bit Mode, Ext)	18						
SCALL (16-Bit Mode, Ext)	13						
SCALL (24-Bit Mode, Ext)	18						
RET (24-Bit Mode, Ext)	22						
RET (16-Bit Mode, Ext )	14						
JNST, JST	4/8 Jump Not Taken/Jump Taken						
JNH, JH	4/8 Jump Not Taken/Jump Taken						
JGT, JLE	4/8 Jump Not Taken/Jump Taken						
JNC, JC	4/8 Jump Not Taken/Jump Taken						
JNVT, JVT	4/8 Jump Not Taken/Jump Taken						
JNV, JV	4/8 Jump Not Taken/Jump Taken						
JGE, JLT	4/8 Jump Not Taken/Jump Taken						
JNE, JE	4/8 Jump Not Taken/Jump Taken						
JBS, JBC	5/9 Jump Not Taken/Jump Taken						
DJNZ	5/9 Jump Not Taken/Jump Taken						
DJNZW	6/10 Jump Not Taken/Jump Taken						
CLR, NOT, NEG	3						
DEC, INC	3						
EXT	4						
CLRB, NOTB	3						
DECB, INCB	3						
NEGB	3						
EXTB	4						
NORML	$8+1$ per Shift (9 for 0 Shift)						

### 10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

Instruction	Direct	Immediate	Indirect		Indexed		Extended
			Normal	A-Inc	Short	Long	
SHRL	$7+1$ per Shift (8 for 0 Shift)						
SHLL	$7+1$ per Shift (8 for 0 Shift)						
SHRAL	$7+1$ per Shift (8 for 0 Shift)						
SHR	$6+1$ per Shift ( 7 for 0 Shift)						
SHL	$6+1$ per Shift ( 7 for 0 Shift)						
SHRA	$6+1$ per Shift ( 7 for 0 Shift)						
SHRB	$6+1$ per Shift (7 for 0 Shift)						
SHLB	$6+1$ per Shift ( 7 for 0 Shift)						
SHRAB	$6+1$ per Shift ( 7 for 0 Shift)						
CLRC	2						
SETC	2						
DI	2						
El	2						
DPTS	2						
EPTS	2						
CLRVT	2						
NOP	2						
RST	20 (Includes Fetch of CCBO/CCB1)						
SKIP	3						
IDLPD	8/25 (Proper Key/Improper Key)						
PTS							
Single Transfer		$(+3$ for Ext Reference, +1 If XFER Count $=0$ )					
Burst Transfer		( +7 for Each Transfer, 1 Minimum   +3 for Each Memory Controller Reference)					
PWM Modes	15						
A/D Scan Mode	21/25						

## NOTES:

The timing figures are minimum execution times expressed as state times (one period of CLKOUT = two oscillator periods) and are based on the following assumptions:

1. The opcode, along with any required operands, have been pre-fetched and reside in the instruction queue.
2. The bus controller operates with the 16 -bit bus selected and without wait states for external memory references and prefetches. For instructions with indirect or indexed addressing, execution times separated by a slash are for instructions requiring a fetch from internal/external memory.
3. Times for jumps, calls and returns include the 4 state times required to flush the pre-fetch queue and to fetch the opcode at the destination address. This is reflected in the jump taken/not-taken times shown in the table.
11.0 INTERRUPT TABLE

Name	Source	Vector	Priority
INT15	NMI	203EH	32 (Highest)
PTS14	EXTINT Pin	205 CH	31
PTS13	Reserved	205AH	30
PTS12	Receive SIO	2058 H	29
PTS11	Transmit SIO	2056H	28
PTS10	SSIO Channel 1 Transfer	2054H	27
PTS09	SSIO Channel 0 Transfer	2052H	26
PTS08	Command Buffer Full (SLP)	2050 H	25
PTS07	Input Buffer Full (SLP)	204EH	24
PTS06	Output Buffer Empty (SLP)	204 CH	23
PTS05	A/D Conversion Complete	204AH	22
PTS04	EPAO	2048 H	21
PTS03	EPA1	2046 H	20
PTS02	EPA2	2044H	19
PTS01	EPA3	2042H	18
PTS00	EPA4-9, Overrun (EPAO-9), Compare0-1, Timer Overflow	2040 H	17
INT14	EXTINT Pin	203CH	16
INT13	Reserved	203AH	15
INT12	Receive SIO	2038 H	14
INT11	Transmit SIO	2036 H	13
INT10	SSIO Channel 1 Transfer	2034 H	12
INT09	SSIO Channel 0 Transfer	2032 H	11
INT08	Command Buffer Full (SLP)	2030H	10
N/A	UNIMPLEMENTED OPCODE	2012H	09
N/A	TRAP	2010 H	08
INT07	Input Buffer Full (SLP)	200EH	07
INT06	Output Buffer Empty (SLP)	200 CH	06
INT05	A/D Conversion Complete	200 AH	05
INT04	EPAO	2008 H	04
INT03	EPA1	2006 H	03
INT02	EPA2	2004 H	02
INT01	EPA3	2002 H	01
INT00	EPA4-9, Overrun (EPAO-9), Compare0-1, Timer Overflow	2000 H	00 (Lowest)

### 12.0 FORMULAS

State Time $=2$ Oscillator Periods

TIJMP Calculation-
Destination $=([$ INDEX $]$ AND INDEX__MASK $) \times 2+[T B A S E]$

## EPA Prescaler-

P2	P1	P0	
0	0	0	$\div 1$
0	0	1	$\div 2$
0	1	0	$\div 4$
0	1	1	$\div 8$
1	0	0	$\div 16$
1	0	1	$\div 32$
1	1	0	$\div 64$
1	1	1	Reserved

## SIO Baud Rate-

Modes 1, 2 and 3
$S P \_B A U D=\frac{X T A L 1 \text { Frequency }}{\text { Baud Rate } \times 16}-1$
$\left(B \geq 0, S P \_B A U D .15=1\right)$
$S P \_B A U D=\frac{\text { T1CLK Frequency }}{\text { Baud Rate } \times 8}-1$
$\left(B>0, S P \_B A U D .15=0\right)$

Mode 0
$S P \_B A U D=\frac{X T A L 1 \text { Frequency }}{\text { Baud Rate } \times 2}-1$
$\left(B>0, S P \_B A U D .15=1\right)$
$S P \_B A U D=\frac{\text { T1CLK Frequency }}{\text { Baud Rate }}-1 \quad\left(B>0, S P \_B A U D .15=0\right)$

SSIO Baud Rate-
SSIO. $0-$ SSIO. $6=\frac{\text { XTAL1 Frequency }}{\text { Baud Rate } \times 8}-1$

## A/D-

Sample States $=4 \times S A M+1$
$\left(S A M=A D \_\right.$TIME. $5-A D \_$TIME.7)
Conversion States $=B \times(C O N V+1)+1.5$
(CONV $=$ AD__TIME. $0-A D \_$TIME.4)
( $\mathrm{B}=8$ for 8 -Bit Conversion)
( $B=10$ for 10-Bit Conversion)
Total Conversion Time $=$ State Time $\times[(4 \times S A M)+(B \times(C O N V+1))+2.5]$
Programming Pulse Width-
$\mathrm{PPR}=\frac{((\mathrm{PPW}) \times(\mathrm{FOSC}))-144}{144}+32768$
13.0 RESET STATUS

SFR	Reset Value
AD_RESULT	7F80H
AD_COMMAND	OCOH
AD_TEST	OCOH
AD_TIME	OFFH
SSIOO_BUF, SSIO1_BUF	00H
SSIO0_CON, SSIO1_CON	00H
SSIO_BAUD (Baud Rate Control (Read))	OXXXXXXXB
SSIO__BAUD (Baud Rate Down Count (Write))	00H
SBUF_RX, SBUF_TX	OOH
SP_STAT	OBH
SP_CON	EOH
SP_BAUD	0000H
COMPO__CON, COMP1_CON	00H
COMPO_TIME, COMP1_TIME	0000H
EPA1__CON, EPA3__CON	0000H
EPAx_CON ( $\mathrm{x}=0,2,4-9$ )	OOH
EPAx_TIME ( $\mathrm{x}=0-9$ )	0000H
TIMER1, TIMER2	0000H
T1CONTROL, T2CONTROL	OOH
EPA_MASK, EPA_MASK1	OOH
EPA_PEND, EPA_PEND1	00H
EPAIPV	OOH
P0__PIN, P1_PIN, P3_PIN, P4_PIN, P6_PIN	XXH
P1_MODE, P6_MODE	OOH
P1_DIR, P5_DIR, P6__DIR	OFFH
P1_REG, P3_REG, P4__REG, P5__REG, P6__REG	OFFH
P2_PIN, P5__PIN	1XXXXXXXB
P2_MODE, P5_MODE	80H
P2_DIR, P2_REG	7FH
INT__MASK, INT__PEND	OOH
INT_MASK1, INT__PEND1	00H
PTSSRV, PTSSEL	0000H
WSR	OOH

Pin States, during Reset, Idle and Powerdown

Pin Name	Reset	Idle	PD
RESET	wk1	wk1	wk1
ALE (P5.0)	wk1	(A)	(A)
INST (P5.1)	wko	(A)	(A)
$\overline{\mathrm{RD}}$ (P5.3), $\overline{\mathrm{WR}}$ (P5.2), SPLINT (P5.4)	wk1	(I)	(I)
BHE (P5.5)	wk1	(B)	(B)
READY (P5.6), BUSW (P5.7)	wk1	(C)	(C)
$\overline{\mathrm{EA}}, \mathrm{NMI}$	HZ	HZ	HZ
P3, P4/AD (EA = 0)	wk1	HZ	HZ
P3, P4/AD (EA = 1)	wk1	ODIO	ODIO
ACH/PO	HZ	HZ	HZ
P1	wk1	(D)	(D)
CLKOUT (P2.7)	clk, LZ	(E)	(G)
P2.0-P2.6	wk1	(E)	(E)
P6.0-P6.7	wk1	(F)	(F)
$V_{P P}$	HZ	1, LZ	1, LZ
XTAL!	HZ	HZ	HZ
XTAL2	osc, LZ	osc, LZ	(H)

## NOTES:

(A) If P5__MODE. $x=0$, port is as programmed. If P5__MODE. $x=1$ and $\overline{H L D A}=1$, then LZ 0 . If P5__MODE. $x=1$ and HLDA $=0$, then HZ .
(B) If P5__MODE. $x=0$, port is as programmed. If P5__MODE. $x=1$ and $\overline{H L D A}=1$, then LZ 1 . If P5__MODE. $x=1$ and $\overline{H L D A}=0$, then HZ .
(C) If P5__MODE. $x=0$, port is as programmed. If P5__MODE. $x=1$, then HZ .
(D) If P1__MODE. $=0$, port is as programmed. If P1__MODE. $x=1$, pin is as specified by P1_DIR and associated peripheral.
(E) If P2_MODE.x $=0$, port is as programmed. If P2_MODE.x $=1$, pin is as specified by P2_DIR and associated peripheral.
(F) If P6_MODE. $x=0$, port is as programmed. If P6__MODE. $x=1$, pin is as specified by P6_DIR and associated peripheral.
(G) If P2_MODE. $7=0$, port is as programmed. If P2_MODE. $7=1$, then $L Z 0$.
(H) If XTAL1 $=1$, then $L Z 0$. IF XTAL1 $=0$, then LZ 1 .
(I) If P5__MODE. $x=0$, port is as programmed. If P5__MODE. $x=1$, then pin is as specified by P5_DIR and associated peripheral.
$\mathrm{HZ}=$ High impedance
LZ = Low Impedance
wk1 = Weakly pulled high
ODIO = Open drain input/output
osc $=$ Oscillator
wk0 = Weakly pulled low

October 1992

## 8XC196MC Quick Reference

8XC196MC Quick Reference
CONTENTS page CONTENTS PAGE
1.0 MEMORY MAP ..... 14-192
8.0 INSTRUCTION SET SUMMARY ..... $14-212$
2.0 SFR MAP ..... 14-193
3.0 SFR BIT SUMMARY ..... 14-194
4.0 PIN DEFINITION TABLE ..... 14-203
5.0 PACKAGE PIN ASSIGNMENT ..... 14-204
6.0 PIN DESCRIPTIONS ..... 14-207
7.0 OPCODE TABLE ..... $14-210$
9.0 INSTRUCTION LENGTH/OPCODES ..... 14-215
10.0 INSTRUCTION EXECUTION TIMES
(IN STATE TIMES) ..... 14-217
11.0 INTERRUPT TABLE ..... 14-220
12.0 FORMULAS ..... 14-222
13.0 RESET STATUS ..... 14-222

### 1.0 MEMORY MAP

8XC196MC Memory Map

$\begin{array}{\|l\|} \hline \text { OFFFFH } \\ 06000 \mathrm{H} \end{array}$	External Memory		
$\begin{aligned} & 05 \mathrm{FFFH} \\ & 02080 \mathrm{H} \end{aligned}$	Internal ROM/EPROM or External Memory		
$\begin{array}{\|l\|} \hline 0207 \mathrm{FH} \\ 02000 \mathrm{H} \end{array}$	Reserved Memory (Internal ROM/EPROM or External Memory)		
01FFFH $01 F 00 \mathrm{H}$	Internal Special Function Registers (SFRs)		
$\begin{array}{l\|} \hline 01 \text { EFFH } \\ 00200 \mathrm{H} \end{array}$	External Memory		
$\left\|\begin{array}{l} 001 \text { FFH } \\ 00100 \mathrm{H} \end{array}\right\|$	Register RAM	Upper Register File (Address with indirect or indexed modes or through windows.)	Register File
$\begin{array}{\|l\|} \hline 000 \mathrm{FFH} \\ 00018 \mathrm{H} \end{array}$	Register RAM	Lower Register File (Address with direct	
$\begin{array}{l\|} 00017 \mathrm{H} \\ 00000 \mathrm{H} \end{array}$	CPU SFRs	indirect or indexed modes.)	

8XC196MC Reserved Memory

0207 FH	Reserved
02074 H	
02073 H	Programming Voltages
02072 H	
02071 H	Signature Word
02070 H	
0206 FH	Reserved
0205 EH	
0205 DH	Peripheral Transaction Server (PTS) Vectors
02040 H	
0203 FH	Interrupt Vectors (Upper)
02030 H	
0202 FH	Security Key
02020 H	
0201 FH	20 H
0201 EH	Reserved
0201 DH	20 H
0201 CH	Reserved
0201 BH	20 H
0201 AH	CCB1 (Chip Configuraton Byte 1)
02019 H	20 H
02018 H	CCB (Chip Configuration Byte 0)
02017 H	Reserved
02014 H	Rer
02013 H	Interrupt Vectors (Lower)
0200 H	

## NOTE:

Reserved locations must be filled with OFFH unless noted.

### 2.0 SFR MAP

## CORE SFR MAP

$0019 \mathrm{H}:$	SP (HI)
$0018 \mathrm{H}:$	SP (LO)
$0017 \mathrm{H}:$	reserved
$0016 \mathrm{H}:$	reserved
$0015 \mathrm{H}:$	reserved
$0014 \mathrm{H}:$	WSR
$0013 \mathrm{H}:$	INT_MASK1
$0012 \mathrm{H}:$	INT_PEND1
$0011 \mathrm{H}:$	reserved
$0010 \mathrm{H}:$	reserved
$000 \mathrm{FH}:$	reserved
$000 \mathrm{EH}:$	reserved
$000 \mathrm{DH}:$	reserved
$000 \mathrm{CH}:$	reserved
$000 \mathrm{BH}:$	reserved
$000 \mathrm{AH}:$	WATCHDOG
$0009 \mathrm{H}:$	INT_-PEND
$0008 \mathrm{H}:$	INT_MASK
$0007 \mathrm{H}:$	PTSSRV (HI)
$0006 \mathrm{H}:$	PTSSRV (LO)
$0005 \mathrm{H}:$	PTSSEL (HI)
$0004 \mathrm{H}:$	PTSSEL (LO)
$0003 \mathrm{H}:$	reserved
$0002 \mathrm{H}:$	reserved
$0001 \mathrm{H}:$	ZERO_REG (HI)
$0000 \mathrm{H}:$	ZERO_REG (LO)

## PERIPHERAL SFR MAP



## NOTE:

*These registers can only be addressed as word registers, not as separate byte registers.

### 3.0 SFR BIT SUMMARY

## CHIP CONFIGURATION BYTES

CCB (2018H)
msb

LOC1	LOCO	IRC1	IRCO	ALE	WR	BW0	PD

CCB1 (201AH)

msb					Isb		
$1^{*}$	$1^{*}$	$0^{*}$	$1^{*}$	WD	BW1	IRC2	$0^{*}$

*: These bits are reserved and must be written as indicated.
WD: Watch Dog Timer Disable.
$0=$ Starts RUNNING immediately and cannot be stopped.
$1=$ Does not run until enabled in software.
BW1-BW0: Bus Width. These two bits separately, OR along with BUSWIDTH pin determine the external bus width ( 8 -bit or 16-bit wide).

BW1	BW0	BUSWIDTH (pin)	Bus Width
0	0	$x$	Illegal
0	1	$x$	16
1	0	$x$	8
1	1	0	8
1	1	1	16

LOCO:

LOC1:
Internal OTPROM Write Protect. LOCO $=1$ No Write protection. LOCO $=0$ Address locations 2000 H to 5 FFFH are write protected.
Internal OTPROM Read Protect. LOC1 $=1$ No read protection. LOC1 $=0$ Address locations 2080 H to 5FFFH are read protected, also locations 2020 H to 202 FH are read/write protected.
IRC2, IRC1, IRC0: Internal Ready Control. They limit the number of the wait states to be asserted in the external bus operation.

IRC2	IRC1	IRC0	Number of   Wait States
0	0	0	0
0	$X$	1	Illegal
0	1	$X$	Illegal
1	0	0	1
1	0	1	2
1	1	0	3
1	1	1	Infinite

ALE: ALE/ $\overline{\mathrm{ADV}}$
ALE $=0$ The ALE pin becomes $\overline{\text { ADV }}$
ALE $=1$ The ALE pin remains ALE
WR: Write Strobe Mode/Standard Mode
$\mathrm{WR}=0 \quad$ The BHE pin becomes $\overline{\mathrm{WRH}}$ and $\overline{\text { WR }}$ becomes $\overline{\text { WRL }}$
$\mathrm{WR}=1$ The $\overline{\mathrm{BHE}}$ and $\overline{\mathrm{WR}}$ are unchanged
PD: Power Down Enable
$\mathrm{PD}=0 \quad$ The power down instruction does not have any effect
$\mathrm{PD}=1 \quad$ The power down instruction is enabled

WINDOW SELECT REGISTER


PROGRAM STATUS WORD

PSW									
msb									Isb
Z	$N$	v	VT	C	PSE	1	ST	INT MASK	
Z:	Zero F								
$\mathrm{N}:$	Negat								
V :	Overfl								
VT:	Overfl		Flag						
C:	Carry								
PSE:	PTS E	le							
IE:	Interru		bit						
ST:	Sticky								

PORT 2 AND PORT 5 CONTROL REGISTERS

Pn_MODE ( $\mathrm{n}=2$ @ 1FDOH, $\mathrm{n}=5$ @ 1FF1H)							
7	6	5	4	3	2	1	0
Pn_REG ( $\mathrm{n}=2$ @ 1FD4H, $\mathrm{n}=5$ @ 1FF5H)							
7	6	5	4	3	2	1	0
Pn_DIR ( $\mathrm{n}=2$ @ 1FD2H, $\mathrm{n}=5$ @ 1FF3H)							
7	6	5	4	3	2	1	0
Pn_PIN ( $\mathrm{n}=2$ @ 1FD6H, $\mathrm{n}=5$ @ 1FF7H)							
7	6	5	4	3	2	1	0
Pn__PIN contains the pin data delayed by $1 / 2$ state time.							

Each pin of Port 2 can be programmed to function in one of the following modes:

Mode	Dir	Reg	Pull   Up	Pull   Down	Function
0	0	0	OFF	ON	Output 0
0	0	1	ON	OFF	Output 1   0
0	0	OFF	ON	Open Drain 0   0	1
1	$X$	OFF	OFF	Open Drain 1   (Input)   System   Pin	System   Sinstem   Pin

Each pin of Port 5 can be programmed to function in one of the following modes.

Mode	Dir	Reg	Pull   Up	Pull   Down	Function
X	0	0	OFF	ON	Output 0
X	0	1	ON	OFF	Output 1
X	1	0	OFF	ON	Open Drain 0   X
1	1	OFF	OFF	Open Drain 1   (Input)	

## AD COMMAND REGISTER

AD_COMMAND (1FACH)								
Isb								
7	6	5	4	3	2	1	0	

0-3: Channel Select
4: GO, indicates when to begin conversion
GO $=1$ means start now
GO $=0$ means EPA controls when to start conversion.
5, 6: CONVERSION MODE:
$00=10$-bit
$01=8$-bit
$10=$ Threshold detect high
$11=$ Threshold detect low
7: Reserved, write 0.

## AD TIME REGISTER

AD_TIME (1FAFH)          msb          7 6 5 4 3 2 1 0
0-4: Conversion Time $=\mathrm{n}+1$ state times $(\mathrm{n}=2$   to 31).   5-7:   Sample Time $=4 \mathrm{n}+1$ state times ( $\mathrm{n}=1$ to   7).

## AD RESULT REGISTER (READ)



AD RESULT REGISTER (WRITE)

AD__RESULT (1FAAH)						
msb						b
15-8	7-5	4	3	2	1	0

0-3: Channel Number
4: Busy
$0=\mathrm{AD}$ is idle
$1=$ conversion is in progress
5-7: Reserved, write 0
8-15: SAR value. Writing to the AD__RESULT register selects the threshold detection value. Presetting the ASR is required before selecting one of the threshold detect modes.

TIMER 1 CONTROL REGISTER

| T1CONTROL (1F78H) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| msb |  |  |  |  |  |
| CE UD M2 M1 M0 | P2 | P1 | P0 |  |  |

CE: $\quad 1=$ timer/counter enabled
$0=$ timer/counter disabled
UD: $\quad 1=$ count up
$0=$ count down
M2 M1 M0: EPA Clock source and direction mode select.

M2	M1	M0	Clock Source	Clock Direction
0	0	0	Internal	UD Bit
0	0	1	External	UD Bit
0	1	0	Internal	External Pin
0	1	1	External	External Pin
1	0	0	Reserved	
1	1	0	Reserved	
1	1	1	Quadrature	
			Clocking(1)	

## NOTE:

1. The counter input clock and the count direction is taken from the quadrature clocking circuit.

## P2 P1 P0: EPA Clock control bits.

P2 P1 P0	Input   Divide By	Resolution   (at $16 \mathbf{M H z}$ )	
0	0	0	1

AD__TEST (1FAEH)


0-1: Reserved
2-4: Adjust offset

b4	b3	b2
0	0	0 -no change
0	0	1 -add 2.5 mV
1	0	$0-$ sub 2.5 mV
1	0	1 -sub 5.0 mV
X	1	X—reserved

5-7: Reserved

TIMER 2 CONTROL REGISTER

T2 CONTROL (1F7CH)							
CE	UD	M	2 M1	mo	P2	P1	PO
CE: $\quad 1 \begin{aligned} & 1 \\ & =0\end{aligned}$							
UD: $\quad 1=$ Count up   $0=$ Count down							
M2 M1 M0:		EPA Clock source and direction mode select.					
M2	M1	M0		lock urce			
0	0	0	Internal				
0	0	1	Reserv				
0	1	0	Reserved				
0	1	1	Reserv				
	0	0	T1 Ove	Unde	fiow		
1	1	0	T1 Ove	/Unde	flow	Tim	
1	1	1	Reserv				

P2 P1 P0: Timer prescalar control

P2	P1	P0	Input   Divide By	Resolution   (at 16 MHz)
0	0	0	1	250 ns
0	0	1	2	500 ns
0	1	0	4	$1 \mu \mathrm{~s}$
0	1	1	8	$2 \mu \mathrm{~s}$
1	0	0	16	$4 \mu \mathrm{~s}$
1	0	1	32	$8 \mu \mathrm{~s}$
1	1	0	64	$16 \mu \mathrm{~s}$
1	1	1	Reserved	

CAPTURE/COMPARE CONTROL REGISTERS

CAPCOMPn_CON							
msb							
mb	CE	M1	MO	RE	PFE	ROT	ON/RT


$n$	Address
0	1 F 40 H
1	1 F 44 H
2	1 F 48 H
3	1 F 4 CH

TB: $\quad 1=$ selects TIMER2 as time base
$0=$ selects TIMER1 as time base
CE: $\quad 1=$ enables compare mode
$0=$ disables capture mode
M1, M0: Mode Selects
On Capture Mode ( $\mathrm{CE}=0$ )
$00=$ no operation
$01=$ capture - edge
$10=$ capture + edge
$11=$ capture $\pm$ edge
On Compare Mode ( $\mathrm{CE}=1$ )
$00=$ no compare
$01=$ clear output pin
$10=$ set output pin
$11=$ toggle output pin
PFE: $\quad 1=$ peripheral function enable
$0=$ no action
RE: $\quad 1=$ output event is automatically enabled after execution
$0=$ output event is disabled after execution
ROT: Reset Opposite Timer
On Capture Mode ( $\mathrm{CE}=0$ )
$1=$ reset opposite timer
$0=$ no action
On Compare Mode ( $\mathrm{CE}=1$ )
$1=$ reset opposite timer
$0=$ reset selected timer
ON/RT: Overwrite New/Reset Timer
On Capture Mode ( $\mathrm{CE}=0$ )
1 = old data of CCn__BUFF lost on data overrun
$0=$ new data lost on data overrun
On Compare Mode ( $\mathrm{CE}=1$ )
$1=$ reset timer (selected by TB and ROT)
$0=$ no action

CAPTURE/COMPARE CONTROL REGISTERS (Continued)

TB	CE	M1	MO	RE	PFE	ROT	ON/RT	Operating Mode
Capture:								
X	0	0	0	-	X	X	X	No Operation (No Interrupt)
X	0	1	0	-	X	X	X	Capture on Positive Transition
X	0	0	1	-	X	X	X	Capture on Negative Transition
X	0	1	1	-	X	X	X	Capture on Either Transition
X	0	X	1	-	X	1	X	Reset Opposite Timer
X	0	1	X	-	X	1	X	Reset Opposite Timer
X	0	X	1	-	1	X	X	Peripheral Function Enable
X	0	1	X	-	1	X	X	Peripheral Function Enable
X	0	X	1	-	X	X	X	Generate Interrupt
X	0	1	X	-	X	X	X	Generate Interrupt
Compare:								
X	1	0	1	X	X	X	X	Reset Output Pin
X	1	1	0	X	X	X	X	Set Output Pin
X	1	1	1	X	X	X	X	Toggle Output Pin
X	1	X	X	X	X	0	1	Reset Associated Time Base Timer
X	1	X	X	X	X	1	1	Reset Opposite Time Base Timer
X	1	X	X	X	1	X	X	Peripheral Function Enable
X	1	X	X	X	X	X	X	Generate Interrupt
X	1	0	0	X	0	X	0	Generate Interrupt Only (Soft Timer)

X: Bit selects additional options
-: Bit is not used in Capture Mode

## COMPARE CONTROL REGISTER



COMPARE CONTROL REGISTER (Continued)

TB	CE	M1	MO	RE	PFE	ROT	RT	Operating Mode
X	0	X	X	X	X	X	X	No Operation (No Interrupt)
X	1	0	1	X	X	X	X	Reset Output Pin
X	1	1	0	X	X	X	X	Set Output Pin
X	1	1	1	X	X	X	X	Toggle Output Pin
X	1	X	X	X	X	0	1	Reset Associated Time Base Timer
X	1	X	X	X	X	1	1	Reset Opposite Time Base Timer
X	1	X	X	X	1	X	X	Peripheral Function Enable
X	1	X	X	X	X	X	X	Generate Interrupt
X	1	0	0	X	0	X	0	Generate Interrupt Only (Soft Timer)

X: Bit selects additional options

## COMPARE TIME REGISTER

Scheduled time for programmed event. This register must only be read and written as a word.


PERIPHERAL INTERRUPT MASK REGISTER

—: Reserved, write 0
WG: Waveform Generator interrupt mask
TF2: Timer/Counter 2 overflow interrupt mask
TF1: Timer/Counter 1 overflow interrupt mask
NOTE:
A logical 1 in the bit position allows the corresponding function to set its interrupt pending flag.

PERIPHERAL INTERRUPT PENDING REGISTER

PI_PEND (1FBEH)							
msb							
\begin{tabular}{\|c	c	c	c	c	c	}	
\hline							
\end{tabular}							
-	-	-	WG	-	TF2	-	TF1

—: Reserved, write 0
WG: Waveform Generator status flag
TF2: Timer/Counter 2 overflow status flag
TF1: Timer/Counter 1 overflow status flag
NOTE:
This register can be read but not written. When read, all bits in this register are reset. Therefore, the value of the register must be stored in a shadow register if more than one bit of this register is used.

WAVE GENERATOR CONTROL REGISTER


CS: Counter Status
$1=$ up counting
$0=$ down counting
EC: Enable/Disable Counter (WG_Count)
$1=$ enable counting
$0=$ disable counting

D9-D0: 10 bit Down Counter value
NOTE:

1. The WG_OUT reload trigger signals are enabled when the SYNC bit in the Output Control Register (WG_OUT) is 1 .

WG COMPARE REGISTER


WG_COMP controls the duty cycle of the waveform generator outputs.

WG RELOAD REGISTER

msb	WG__RELOAD (1FC8H)														
															Isb
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

WAVE GENERATOR OUTPUT CONTROL REGISTER

WG_OUT (1FCOH)																		
msb																Isb		
OP1	OPO	SYNC	PE1	PEO	PH32	PH22	PH12	P1		P0	PH31	P 330	PH21	PH20	PH11	PH10		
OP1:		Output Polarity for positive-phase outputs   $1=$ P6.1, P6.3 and P6.5 are active-high   $0=$ P6.1, P6.3 and P6.5 are active-low						PE1, PE0: Enable P6.7, P6.6 (respectively) as PWM output										
									P0:		P6.7,	6.6 (r	pectiv	ly) ou	ut val			
OPO:	Output Polarity for negative-phase outputs							PEn				Pn		Pin Output				
										0		0		0				
		$1=\mathrm{P} 6.0, \mathrm{P} 6.2$ and P6.4 are active-high $0=$ P6.0, P6.2 and P6.4 are active-low								0		1		$1$   PWM output				
SYNC:		Synchronize Loading of Output Buffer																
		$1=$ outputs		e sy	ynchroni	zed		PH12			PH11 P	$\mathrm{H} 10 \rightarrow \mathrm{c}$		ntrol P6.0 and P6.1				
		Reload			ing si	nal		PH22		PH21		H2O $\rightarrow$		trol P	. 2 an	P6.3		
		$\begin{aligned} 0= & \text { outputs are not synchronized with } \\ & \text { WG_COMPn } \end{aligned}$						PH32		PH31		H3O $\rightarrow$		trol P6.4 and P6.5				
PHn2	PHn1		PHnO		WGn					WGn						( $\mathrm{n}=1,2$ or 3 )		
				OP1 $=$		$O P 1=0$		$O P 0=1$			$\mathrm{OPO}=0$							
0		0		0		Low		High		Low			High					
0		0	1		Low		High		High			Low						
0		1	0		High		Low		Low			High						
0		1	1		High		Low		High			Low						
1		0	0		Low		High		Low			High						
1		0	1		Low		High		PWM			PWM						
1		1	0		PWM		PWM		Low			High						
1		1	1		PWM		PWM		PWM			PWM						

## WG PROTECTION CONTROL REGISTER

WG_PROTECT (1FCEH)							
msb							
-	-	-	-	$E S$	$I T$	DP	EO

ES: Enable Sampling Circuitry
$1=$ protection/interrupt triggered by sampling
$0=$ protection/interrupt triggered by edge
IT: Interrupt Type control bit
$1=$ rising edge/high trigger
$0=$ falling edge/low trigger
DP: Disable/Enable Protection Circuit
$1=$ disable protection output
$0=$ enable protection output
EO: Enable/Disable Output. Must be set when port is used as output
1 = enable output
$0=$ disable output

## PTS VECTORS PTSVEC, PTSVEC1

Each PTS vector points to internal RAM space and must be aligned to a quad word boundary.

r...r Reserved (Write 0)
b...b Upper bits of the 10 -bit pointer to the PTS Control Block located in Internal Ram.

PTSCON-GENERAL TRANSFER MODES

msb ${ }^{\text {m }}$							
M2	M1	мо	B/W	su	DU	SI	DI
M2, M1, M0: $000=$ PTS Burst Transfer Mode $100=$ PTS Single Transfer Mode							
B/W:		$\begin{aligned} & 1=\text { Transfer in bytes } \\ & 0=\text { Transfer in words } \end{aligned}$					
SU:		$\begin{aligned} & 1=\text { Update PTSSRC at end of each } \\ & \text { PTS cycle } \\ & 0=\text { No update } \end{aligned}$					
DU:		$\begin{aligned} & 1=\text { Update PTSDST at end of each } \\ & \text { PTS cycle } \\ & 0=\text { No update } \end{aligned}$					
SI:		$1=$ Source address auto-increment   $0=$ No auto-increment					
DI:		$\begin{aligned} & 1=\text { Destination address auto- } \\ & \text { increment } \\ & 0=\text { No auto-increment } \end{aligned}$					

## PTSCON-A/D MODE

msb

M2	M1	MO	0	UPDT	0	1	1

M2, M1, M0: $110=$ PTS A/D mode
UPDT: $\quad 1=$ Update SRC/DST pointer $0=$ No update
$0: \quad$ Write 0 to these bits
$1: \quad$ Write 1 to these bits

## PTSCON-SERIAL PORT MODES

msb lsb							
M2	M1	M0	SA	0	0	SA	MAJ
$\begin{aligned} \text { M2, M1, M0: } 011 & =\text { Transmit mode } \\ 001 & =\text { Receive mode } \end{aligned}$							
SA:		$\begin{aligned} & 1=\text { Synchronous mode } \\ & 0=\text { Asynchronous mode } \end{aligned}$					
MAJ:		$1=$ Enable Majority Sample mode   $1=$ Disable Majority Sample mode					
0 :		Write 0 to these bits					

PTSCON1—ASIO MODE

Isb							
msb							
0	RPAR	PEN	0	0	0	FE	TPAR

PEN: Parity Enable bit
$1=$ Enable
$0=$ Disable
FE: Framing Error flag
$1=$ The Stop Bit received was not a 1. It must be reset at the start of every reception.
$0=$ No Error
TPAR: Transmit Parity Control. This bit must be initialized at the start of every reception.
$1=$ Odd
$0=$ Even
RPAR: Receive Parity Control/Status. This bit has two functions, control and status. Before reception, initialize for Even ( 0 ) or Odd (1) parity. If at the end of a reception this bit is a 1 , a parity error has occurred. This bit must be initialized before the start of each reception.
0 : Write 0 to these bits

## PTSCON1-SSIO MODE

msb							Isb
0	0	0	0	0	0	TRC	0

TRC: Transmit/Receive Control
$1=$ Receive/Transmit bit on first PTS request and every other one thereafter
$0=$ Receive/Transmit data bit on second PTS request and every other one thereafter. Throughout the transmission/reception, this bit is toggled.
0 : Write 0 to these bits

### 4.0 PIN DEFINITION TABLE

8XC196MC Package Pin Assignments

$\begin{aligned} & \text { PLCC } \\ & \text { Pin \# } \end{aligned}$	$\begin{aligned} & \text { QFP } \\ & \text { Pin \# } \end{aligned}$	$\begin{aligned} & \text { SDIP } \\ & \text { Pin \# } \end{aligned}$	Description	$\begin{aligned} & \text { PLCC } \\ & \text { Pin \# } \end{aligned}$	$\begin{aligned} & \text { QFP } \\ & \text { Pin \# } \end{aligned}$	$\begin{aligned} & \text { SDIP } \\ & \text { Pin \# } \end{aligned}$	Description
1	73	63	P5.4	43	31		$V_{S S}$
2	74	64	P5.6/READY	44	32	33	P6.2/WG2
3	75		P5.1/INST	45	33	34	P6.1/WG1
4	76	1	$\mathrm{V}_{\text {SS }}$	46	34	35	P6.0/WG1
5	77	2	P5.0/ALE	47	35	36	P1.3/ACH11
6	78	3	$V_{\text {PP }}$	48	36	37	P1.2/ACH10
7	79	4	P5.3/ $\overline{\mathrm{RD}}$	49	37		$\mathrm{V}_{\text {SS }}$
8	80	5	P5.5/ $/$ BHE	50	38		P1.4/ACH12
9			NC	51	39	38	P1.1/ACH9
10	1	6	P5.2/WR	52	40	39	P1.0/ACH8
11	2	7	P5.7/BUSW	53	41	40	P0.7/ACH7/PMODE. 3
12	3	10	P4.7/AD15	54	42	41	P0.6/ACH6/PMODE. 2
13	4	8	P4.6/AD14	55	43	42	AGND
14	5	11	$V_{C C}$	56	44	43	$V_{\text {REF }}$
15	6	9	P4.5/AD13	57	45	44	P0.5/ACH5/PMODE. 1
16	7		CLKOUT	58	46	45	P0.4/ACH4/PMODE. 0
17	8	12	P4.4/AD12	59	47	46	P0.3/ACH3
18	9	13	P4.3/AD11	60	48	47	P0.2/ACH2
19	10	14	P4.2/AD10	61	49	48	P0.1/ACH1
20	11	15	P4.1/AD09	62	50	49	PO.O/ACHO
21	12	16	P4.0/AD08	63	51		NC
22			NC	64	52	50	P2.0/CAPCOMPO/PVER
23			NC	65	53	51	P2.1/CAPCOMP1/PALE
24	13	17	P3.7/AD07	66	54		NC
25	14	18	P3.6/AD06	67	55		NC
26	15	19	P3.5/AD05	68	56	52	P2.2/CAPCOMP2/PROG
27	16	20	P3.4/AD04	69	57	53	P2.3/CAPCOMP2
28	17	21	P3.3/AD03	70	58		P2.7/COMPARE3
29	18	22	P3.2/AD02	71	59		NC
30	19	23	P3.1/AD01	72	60		NC
31	20	24	P3.0/AD00	73	61	54	P2.4/COMPARE0/AINC
32	21		NC	74	62	55	P2.5/COMPARE1/PACT
33	22	25	RESET	75	63	56	P2.6/COMPARE2/CPVER
34	23	26	NMI	76	64	57	P6.7/PWM1
35			NC	77	65	58	P6.6/PWM0
36	24	27	EA	78	66		NC
37	25	28	$\mathrm{V}_{\text {SS }}$	79	67		NC
38	26		$V_{\text {SS }}$	80	68		NC
39	27	29	$V_{C C}$	81	69	59	XTAL2
40	28	30	P6.5/WG3	82	70	60	XTAL1
41	29	31	P6.4/ $\overline{\text { WG3 }}$	83	71	61	$\mathrm{V}_{\text {SS }}$
42	30	32	P6.3/WG2	84	72	62	EXTINT

### 5.0 PACKAGE PIN ASSIGNMENT

Package Prefix Identification Table

Package	Device
PLCC	N87C196MC
EIAJQFP	S87C196MC
SDIP	U87C196MC



NOTE:
*The pin sequence is correct.


84-Lead PLCC Package Pinout


272114-3
NOTE:
NC means No Connect. Do not connect these pins.
80-Lead Shrink EIAJQFP (Quad Flat Pack)

### 6.0 PIN DESCRIPTIONS

Symbol	Name and Function
$\begin{aligned} & \text { ACHO-ACH12 } \\ & \text { (P0.0-P0.7, P1.0-P1.4) } \end{aligned}$	Analog inputs to the on-chip A/D converter. $\mathrm{ACHO}-7$ share the input pins with P0.0-7 and ACH8-12 share pins with P1.0-4. If the A/D is not used, the port pins can be used as standard input ports.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $V_{S S}$.
ALE/ $\overline{\text { ADV }}$ (P5.0)	Address Latch Enable or Address Valid output, as selected by CCR. Both options allow a latch to demultiplex the address/data bus. When the pin is $\overline{\text { ADV, it goes inactive (high) at the end of the bus cycle. When the pin is ALE, }}$ the address can be latched on the falling edge. ALE/ $\overline{A D V}$ is active only during external memory accesses. Can be used as standard I/O when not used as ALE/ADV.
$\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$ (P5.5)	Byte High Enable or Write High output, as selected by the CCR. $\overline{\text { BHE }}=0$ selects the bank of memory that is connected to the high byte of the data bus. If the WRH function is selected, the pin will go low when the bus cycle is writing to an odd memory location. BHE/WRH is only valid during 16 -bit external memory cycles. Can be used as standard I/O when not used as a bus control signal.
BUSWIDTH (P5.7)	Input for bus width selection. If CCR bits 1 and $2=1$, this pin dynamically controls the bus width of the bus cycle in progress. If BUSWIDTH is low, an 8 -bit cycle occurs. If it is high, a 16 -bit cycle occurs. This pin can be used as standard I/O when not used as BUSWIDTH.
$\begin{aligned} & \text { CAPCOMPO-САРСОMP3 } \\ & \text { (P2.0-P2.3) } \end{aligned}$	The EPA Capture/Compare pins. These pins share P2.0-P2.3. If not used for EPA, they can be configured as standard I/O pins.
CLKOUT	Output of the internal clock generator. The frequency is $1 / 2$ of the oscillator frequency. It has a $50 \%$ duty cycle.
COMPAREO-COMPARE3 (P2.4-P2.7)	The EPA Compare pins. These pins share P2.4-P2.7. If not used for EPA, they can be configured as standard I/O pins.
$\overline{E A}$	External Access enable pin. $\overline{\mathrm{EA}}=0$ causes all memory accesses to be external to the chip. $\overline{E A}=1$ causes memory accesses from locations 2000 H to 5 FFFH to be from the on-chip OTPROM/ROM. $\overline{\mathrm{EA}}=12.5 \mathrm{~V}$ causes execution to begin in the programming mode. $\overline{E A}$ is latched at reset:
EXTINT	A programmable input on this pin causes a maskable interrupt vector through memory location 203 CH . The input may be selected to be a positive/negative edge or a high/low level.
INST (P5.1)	INST is high during the instruction fetch from the external memory and throughout the bus cycle. It is low otherwise. This pin can be configured as standard I/O if not used as INST.
NMI	A positive transition on this pin causes a non-maskable interrupt which vectors to memory location 203EH. If not used, it should be tied to $\mathrm{V}_{\text {SS }}$. May be used by Intel Evaluation boards.
PORTO	8 -bit high impedance input-only port. Also used as A/D converter inputs. Port0 pins should not be left floating. These pins also used to select programming modes in the OTPROM devices.
PORT1	5-bit high impedance input-only port. P1.0-P1.4 are also used as A/D converter inputs. In addition, P1.2 and P1. 3 can be used as Timer 1 clock input and direction select respectively.

### 6.0 PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
PORT2	8-bit bidirectional I/O port. All of the Port2 pins are shared with the EPA I/O pins (CAPCOMPO-3 and COMPAREO-3).
PORT3, PORT4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus which uses strong internal pullups.
PORT5	8 -bit bidirectional I/O port. 7 of the pins are shared bus control signals ( $\overline{\mathrm{ALE}}$, INST, WR, $\overline{R D}, \overline{B H E}$, READY, BUSWIDTH). Can be used as standard I/O.
PORT6	8 -bit output-only port. P6.6 and P6.7 output PWM and the rest are used as the Wave Generator outputs. Can be used as standard output ports.
PWM0, PWM1 (P6.6, P6.7)	Programmable duty cycle, programmable frequency Pulse Width Modulator pins. The duty cycle has a resolution of 256 steps, and the frequency can vary from 122 Hz to 31 KHz ( 16 MHz input clock). Pins may be configured as standard output if PWM is not used.
$\overline{\mathrm{RD}}$ (P5.3)	Read signal output to external memory. $\overline{\mathrm{RD}}$ is low only during external memory reads. Can be used as standard I/O when not used as RD.
READY (P5.6)	Ready input to lengthen external memory cycles. If READY $=0$, the memory controller inserts wait states until the next positive transition of CLKOUT occurs with READY $=1$. Can be used as standard I/O when not used as READY.
$\overline{\text { RESET }}$	Reset input to and open drain output from the chip. Held low for at least 16 state times to reset the chip. Input high for normal operation. RESET has an Ohmic internal pullup resistor.
T1CLK (P1.2)	Timer 1 Clock input. This pin has two other alternate functions: ACH10 and P1.2.
T1DIR (P1.3)	Timer 1 Direction input. This pin has two other alternate functions: ACH11 and P1.3.
$\mathrm{V}_{\mathrm{PP}}$	The programming voltage is applied to this pin. It is also the timing pin for the return from Power Down circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $\mathrm{V}_{\text {SS }}$ and a $1 \mathrm{M} \Omega$ resistor to $\mathrm{V}_{\mathrm{CC}}$. If the Power Down feature is not used, connect the pin to $\mathrm{V}_{\mathrm{CC}}$.
$\begin{aligned} & \text { WG1-WG3/ } \overline{\mathrm{WG} 1-\overline{W G 3}} \\ & \text { (P6.0-P6.5) } \end{aligned}$	3-phase output signals and their complements used in motor control applications. The pins can also be configured as standard output pins.
$\overline{\mathrm{WR}} / \overline{\mathrm{WRL}}$ (P5.2)	Write and Write Low output to external memory. $\overline{\text { WR }}$ will go low every external write. WRL will go low only for external writes to an even byte. Can be used as standard I/O when not used as WR/WRL.
XTAL1	Input of the oscillator inverter and the internal clock generator. This pin should be used when using an external clock source.
XTAL2	Output of the oscillator inverter.

Programming Mode Pin Definitions

Name	Name and Function
PMODE.0-3   (PO.4-7)	Programming Mode Select. Determines the EPROM programming algorithm   that is performed. PMODE is sampled after a chip reset and should be static   while the part is operation.
PALE   (P2.1)	Programming ALE Input. Accepted by an 8XC196MC that is in slave   programming mode. Used to indicate that port 3 and 4 contain a command/   address.
PROG   (P2.2)	Programming. Falling edge latches data on PBUS and begins programming.   Rising edge input ends programming.
PACT   (P2.5)	Programming Active. Use to indicate when programming activity is complete.
PVER   (P2.0)	Programming Verification. Signal is low after rising edge of PROG if they   programming was not successful.
AINC   (P2.4)	Auto Increment. Active low input enables the auto increment mode. Auto   increment will allow reading or writing of sequential EPROM locations without   address transactions across the PBUS for each read or write.
PORTS   3 and 4   (During Programming)	Address/Command/Data Bus. Used to pass commands, addresses and data   to and from 8XC196MC. Also used in the auto programming mode as a regular   system bus to access external memory.
CPVER   (P2.6)	Cumulative Program Verification. Pin is high if all locations since entering a   programming mode have programmed correctly.

Programming Mode PMODE Values

PMODE	Programming Mode
0	Reserved
$1-4$	Reserved
5	Slave Programming
6	ROM Dump
$7-8$	Reserved
9	UPROM Programming
OAH-OBH	Reserved
OCH	Auto Programming
ODH	PCCB Programming
OEH-OFH	Reserved

7.0 OPCODE TABLE

00	SKIP	31	JBC	61	AND IMMEDIATE (2 OPS)
01	CLR	32	JBC	62	AND INDIRECT (2 OS)
02	NOT	33	JBC	63	AND INDEXED (2 OPS)
03	NEG	34	JBC	64	ADD DIRECT (2 OPS)
04	XCH	35	JBC	65	ADD IMMEDIATE (2 OPS)
05	DEC	36	JBC	66	ADD INDIRECT (2 OPS)
06	EXT	37	JBC	67	ADD INDEXED (2 OPS)
07	INC	38	JBS	68	SUB DIRECT (2 OPS)
08	SHR	39	JBS	69	SUB IMMEDIATE (2 OPS)
09	SHL	3A	JBS	6A	SUB INDIRECT (2 OPS)
OA	SHRA	3B	JBS	6B	SUB INDEXED (2 OPS)
OB	XCH	3C	JBS	6C	MULU DIRECT (2 OPS)
${ }^{\text {OC }}$	SHRL	3D	JBS	6D	MULU IMMEDIATE (2 OPS)
OD	SHLL	3E	JBS	6E	MULU INDIRECT (2 OPS)
OE	SHRAL	3F	JBS	6F	MULU INDEXED (2 OPS)
OF	NORMAL	40	AND DIRECT (3 OPS)	70	ANDB DIRECT (2 OPS)
10	RESERVED	41	AND IMMEDIATE (3 OPS)	71	ANDB IMMEDIATE (2 OPS)
11	CLRB	42	AND INDIRECT (3 OPS)	72	ANDB INDIRECT (2 OPS)
12	NOTB	43	AND INDEXED (3 OPS)	73	ANDB INDEXED (2 OPS)
13	NEGB	44	ADD DIRECT (3 OPS)	74	ADDB DIRECT (2 OPS)
14	XCHB	45	ADD IMMEDIATE (3 OPS)	75	ADDB IMMEDIATE (2OPS)
15	DECB	46	ADD INDIRECT (3 OPS)	76	ADDB INDIRECT (2 OPS)
16	EXTB	47	ADD INDEXED (3 OPS)	77	ADDB INDEXED (2 OPS)
17	INCB	48	SUB DIRECT (3 OPS)	78	SUBB DIRECT (2 OPS)
18	SHRB	49	SUB IMMEDIATE (3 OPS)	79	SUBB IMMEDIATE (2 OPS)
19	SHLB	4A	SUB INDIRECT (3 OPS)	7A	SUBB INDIRECT (2 OPS)
1 A	SHRAB	4B	SUB INDEXED (3 OPS)	7B	SUBB INDEXED (2 OPS)
1B	XCHB	4 C	MULU DIRECT (3 OPS)	7 C	MULUB DIRECT (2 OPS)
1 C	RESERVED	4D	MULU IMMEDIATE (3 OPS)	7D	MULUB IMMEDIATE (2 OPS)
1D	RESERVED	4E	MULU INDIRECT (3 OPS)	7E	MULUB INDIRECT (2 OPS)
1E	RESERVED	4F	MULU INDEXED (3 OPS)	7F	MULUB INDEXED (2 OPS)
1 F	RESERVED	50	ANDB DIRECT (3 OPS)	80	OR DIRECT
20	SJMP	51	ANDB IMMEDIATE (3 OPS)	81	OR IMMEDIATE
21	SJMP	52	ANDB INDIRECT (3 OPS)	82	OR INDIRECT
22	SJMP	53	ANDB INDEXED (3 OPS)	83	OR INDEXED
23	SJMP	54	ADDB DIRECT (3 OPS)	84	XOR DIRECT
24	SJMP	55	ADDB IMMEDIATE (3 OPS)	85	XOR IMMEDIATE
25	SJMP	56	ADDB INDIRECT (3 OPS)	86	XOR INDIRECT
26	SJMP	57	ABBD INDEXED (3 OPS)	87	XOR INDEXED
27	SJMP	58	SUBB DIRECT (3 OPS)	88	CMP DIRECT
28	SCALL	59	SUBB IMMEDIATE (3 OPS)	89	CMP IMMEDIATE
29	SCALL	5A	SUBB INDIRECT (3 OPS)	8A	CMP INDIRECT
2A	SCALL	5B	SUBB INDEXED (3 OPS)	8B	CMP INDEXED
2B	SCALL	5C	MULUB DIRECT ( 3 OPS)	8 C	DIVU DIRECT
2 C	SCALL	5D	MULUB IMMEDIATE (3 OPS)	8D	DIVU IMMEDIATE
2D	SCALL	5E	MULUB INDIRECT (3 OPS)	8 E	DIVU INDIRECT
2E	SCALL	5F	MULUB INDEXED (3 OPS)	8 F	DIVU INDEXED
2 F	SCALL	60	AND DIRECT (2 OPS)		
30	JBC				

7.0 OPCODE TABLE (Continued)

90	ORB DIRECT	B6	ADDCB INDIRECT	DB	JC
91	ORB IMMEDIATE	B7	ADDCB INDEXED	DC	JVT
92	ORB INDIRECT	B8	SUBCB DIRECT	DD	JV
93	ORB INDEXED	B9	SUBCB IMEDIATE	DE	JLT
94	XORB DIRECT	BA	SUBCB INDIRECT	DF	JE
95	XORB IMMEDIATE	BB	SUBCB INDEXED	E0	DJNZ
96	XORB INDIRECT	BC	LDBSE DIRECT	E1	DJNZW
97	XORB INDEXED	BD	LDBSE IMMEDIATE	E2	TIJMP
98	CMPB DIRECT	BE	LDBSE INDIRECT	E3	BR (INDIRECT)
99	CMPB IMMEDIATE	BF	LDBSE INDEXED	E4	RESERVED
9A	CMPB INDIRECT	C0	ST DIRECT	E5	RESERVED
9 B	CMPB INDEXED	C1	BMOV	E6	RESERVED
9 C	DIVUB DIRECT	C2	ST INDIRECT	E7	LJMP
9 D	DIVUB IMMEDIATE	C3	ST INDEXED	E8	RESERVED
9E	DIVUB INDIRECT	C4	STB DIRECT	E9	RESERVED
9F	DIVUB INDEXED	C5	CMPL	EA	RESERVED
AO	LD DIRECT	C6	STB INDIRECT	EB	RESERVED
A1	LD IMMEDIATE	C7	STB INDEXED	EC	DPTS
A2	LD INDIRECT	C8	PUSH DIRECT	ED	EPTS
A3	LD INDEXED	C9	PUSH IMMEDIATE	EE	RESERVED
A4	ADDC DIRECT	CA	PUSH INDIRECT	EF	LCALL
A5	ADDC IMMEDIATE	CB	PUSH INDEXED	F0	RET
A6	ADDC INDIRECT	CC	POP DIRECT	F1	RESERVED
A7	ADDC INDEXED	CD	BMOVI	F2	PUSHF
A8	SUBC DIRECT	CE	POP INDIRECT	F3	POPF
A9	SUBC IMMEDIATE	CF	POP INDEXED	F4	PUSHA
AA	SUBC INDIRECT	D0	JNST	F5	POPA
AB	SUBC INDEXED	D1	JNH	F6	IDLPD
AC	LDBZE DIRECT	D2	JGT	F7	TRAP
AD	LDBZE IMMMEDIATE	D3	JNC	F8	CLRC
AE	LDBZE INDIRECT	D4	JNVT	F9	SETC
AF	LDBZE INDEXED	D5	JNV	FA	DI
B0	LDB DIRECT	D6	JGE	FB	El
B1	LDB IMMEDIATE	D7	JNE	FC	CLRVT
B2	LDB INDIRECT	D8	JST	FD	NOP
B3	LDB INDEXED	D9	JH	FE	*DIV/DIVB/MUL/MULB
B4	ADDCB DIRECT	DA	JLE	FF	RST
B5	ADDCB IMMEDIATE				

## NOTES:

*Two byte instruction
RESERVED-Execution of reserved instructions will cause Unimplemented Opcode interrupt.

8XC196MC

### 8.0 INSTRUCTION SET SUMMARY

Mnemonic	Operands	Operation(1)	Flags ${ }^{(2)}$						Notes
				N	C	V	VT	ST	
ADD/ADDB	2	$D=D+A$		$\nu$	$\checkmark$	$\checkmark$	$\uparrow$		
ADD/ADDB	3	$D=B+A$		$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
ADDC/ADDCB	2	$D=D+A+C$		$\checkmark$	$\nu$	$\checkmark$	$\uparrow$		
SUB/SUBB	2	$D=D-A$		$\nu$	$\checkmark$	$\checkmark$	$\uparrow$		
SUB/SUBB	3	$D=B-A$		$\checkmark$	V	$\checkmark$	$\uparrow$		
SUBC/SUBCB	2	$D=D-A+C-1$	$\downarrow$	$\nu$	$\checkmark$	$\checkmark$	$\uparrow$		
CMP/CMPB/CMPL	2	D - A		$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
MUL/MULU	2	$D, D+2=D \times A$							3
MUL/MULU	3	$D, D+2=D \times A$							3
MULB/MULUB	2	$D, D+1=D \times A$							4
MULB/MULUB	3	$D, D+1=B \times A$							4
DIVU	2	$D=(D, D+2) / A, D+2=$ remainder					$\uparrow$		3
DIVUB	2	$D=(D, D+1) / A, D+1=$ remainder					$\uparrow$		4
DIV	2	$D=(D, D+2) / A, D+2=$ remainder					$\uparrow$		
DIVB	2	$D=(D, D+1) / A, D+1=$ remainder					$\uparrow$		
AND/ANDB	2	$\mathrm{D}=\mathrm{D}$ and A		$\nu$	0	0			
AND/ANDB	3	$\mathrm{D}=\mathrm{B}$ and A		$\checkmark$	0	0			
OR/ORB	2	$D=D$ or $B$		$\checkmark$	0	0			
XOR/XORB	2	$D=D$ (exclusive or) $A$	$\checkmark$	$\checkmark$	0	0			
LD/LDB	2	$D=A$							
ST/STB	2	$\mathrm{A}=\mathrm{D}$							
XCH	2	$D \longleftrightarrow A ; D+1 \longleftrightarrow A+1$							
XCHB	2	$D \longleftrightarrow A$							
BMOV, BMOVI	2	$\begin{aligned} & (\text { PTR_HI })+=\text { (PTR_LOW) }+; \\ & \text { Until COUNT }=0 \end{aligned}$							
LDBSE	2	$D=A ; D+1=\operatorname{Sign}(A)$							4,5
LDBZE	2	$D=A ; D+1=0$							4,5
PUSH	1	SP = SP-2; (SP) = A							
POP	1	$\mathrm{A}=(\mathrm{SP}) ; \mathrm{SP}=\mathrm{SP}+2$							
PUSHF	0	$\begin{aligned} & S P=S P-2 ;(S P)=P S W ; \\ & P S W=0 ; I=0 ; P S E=0 \end{aligned}$	0	0	0	0	0	0	11
POPF	0	PSW = (SP); SP = SP + 2;1 $\rightarrow$ r	$\nu$	$\checkmark$	r	$\checkmark$	$\checkmark$	$\checkmark$	11
PUSHA	0	$\begin{aligned} & S P=S P-2 ;(S P)=P S W ; P S W=0000 \mathrm{~h} ; \\ & S P=S P-2 ;(S P)=I M A S K I / W S R ; \\ & I M A S K I=00 h ; 1=0 ; P S E=0 \end{aligned}$	0	0	0	0	0	0	11

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation(1)	Flags(2)						Notes
			Z	N	C	V		T	
POPA	0	$\begin{aligned} & \text { IMASKI/WSR }=(S P) ; S P=S P+2 ; \\ & \text { PSW }=(S P) ; S P=S P+2 \end{aligned}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	
SJMP	1	$P C=P C+11$-Bit-Offset							6
LJMP	1	$P C=P C+16$-Bit-Offset							6
BR[Indirect]	1	$\mathrm{PC}=(\mathrm{A})$							
TIJMP	3	$\mathrm{PC}=$ ([index] and MASK)2 + (Table)							
TRAP	0	$\begin{aligned} & \mathrm{SP}=\mathrm{SP}-2 ;(\mathrm{SP})=\mathrm{PC} ; \\ & \mathrm{PC}=(2010 \mathrm{~h}) \end{aligned}$							10
SCALL	1	$\begin{aligned} & S P=S P-2 ;(S P)=P C ; \\ & P C=P C+11 \text {-Bit Offset } \end{aligned}$							6
LCALL	1	$\begin{aligned} & S P=S P-2 ;(S P)=P C . \\ & P C=P C+16 \text {-Bit-Offset } \end{aligned}$							6
RET	0	$\mathrm{PC}=(\mathrm{SP}) ; \mathrm{SP}=\mathrm{SP}+2$							
J (conditional)	1	$\mathrm{PC}=\mathrm{PC}+8$-Bit-Offset (If Taken)							6
JC	1	Jump if $\mathrm{C}=1$							6
JNC	1	Jump if $\mathrm{C}=0$							6
JE	1	Jump if $Z=1$							6
JNE	1	Jump if $Z=0$							6
JGE	1	Jump if $\mathrm{N}=0$							6
JLT	1	Jump if $\mathrm{N}=1$							6
JGT	1	Jump if $\mathrm{N}=0$ and $\mathrm{Z}=0$							6
JLE	1	Jump if $\mathrm{N}=1$ or $\mathrm{Z}=1$							6
JH	1	Jump if $C=1$ and $Z=0$							6
JNH	1	Jump if $C=0$ or $Z=1$							6
JV	1	Jump if $\mathrm{V}=1$							6
JNV	1	Jump if $\mathrm{V}=0$							6
JVT	1	Jump if VT $=1$; Clear VT					0		6
JNVT	1	Jump if VT $=0$; Clear VT					0		6
JST	1	Jump if ST $=1$							6
JNST	1	Jump if ST $=0$							6
JBS	3	Jump if Specific Bit $=1$							6,7
JBC	3	Jump if Specific Bit $=0$							6,7
DJNZ/DJNZW	1	$\begin{aligned} & D=D-1 ; \\ & \text { If } D \neq 0 \text { then } P C=P C+8 \text {-Bit-Offset } \end{aligned}$							6
DEC/DECB	1	$D=D-1$	$\stackrel{\rightharpoonup}{r}$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
NEG/NEGB	1	$D=0-\mathrm{D}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation(1)		N		$\begin{aligned} & \text { Flags(2) } \\ & \text { C V VT } \end{aligned}$		Notes
INC/INCB	1	$D=D+1$				$\checkmark \vee \uparrow$		
EXT	1	$D=D ; D+2=\operatorname{Sign}(\mathrm{D})$		$\checkmark$		0		3
EXTB	1	$D=D ; D+1$ Sign (D)	$\checkmark$	$\checkmark$	-	00		4
NOT/NOTB	1	$D=$ Logical Not (D)	$\checkmark$	$\checkmark$	-	00		
CLR/CLRB	1	$D=0$	1	0	0	00		
SHL/SHLB/SHLL	2	$\mathrm{C} \leftarrow \mathrm{msb} \ldots \mathrm{lsb} \leftarrow 0$	$\checkmark$	$\checkmark$	-	$\checkmark \vee \uparrow$		8
SHR/SHRB/SHRL	2	$0 \rightarrow$ msb ... Isb $\rightarrow$ C	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	8
SHRA/SHRAB/SHRAL	2	$\mathrm{msb} \rightarrow \mathrm{msb} \ldots \mathrm{lsb} \rightarrow \mathrm{C}$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	8
NORML	2	Left Shift until msb $=1 ; D=$ Shift Count	$\checkmark$	$\checkmark$	-	0		8
SETC	0	$C=1$				1		
CLRC	0	$\mathrm{C}=0$				0		
CLRVT	0	$V T=0$				0		
RST	0	$\mathrm{PC}=2080 \mathrm{H}$	0	0	0	$00^{\prime} 0$	0	9
DI	0	Disable All Interrupts ( $1=0$ )						
El	0	Enable All Interrupts ( $1=1$ )						
DPTS	0	Disable PTS Interrupts (PSE = 0)						
EPTS	0	Enable PTS Interrupts (PSE = 1)						
NOP	0	$P C=P C+1$						
SKIP	0	$P C=P C+2$						
IPLPD	1	Idle Mode IF Key = 1; Powerdown Mode IF Key $=2$ Chip RESET Otherwise						

## NOTES:

1. If the mnemonic ends in "B" a byte operation is performed, otherwise a word operation is performed. Operands D, B and A must conform to the alignment rules for the required operand type. D and B are locations in the Lower Register File; A can be located anywhere in memory.
2. The symbols indicate the effects on the flags:
$\checkmark$ Cleared or set as appropriate
0 Cleared
1 Set
$\uparrow$ Set if appropriate; never cleared
$\downarrow$ Cleared if appropriate; never set
3. D.D + 2 are consecutive WORDs in memory; $D$ is DOUBLE-WORD aligned.
4. D.D + 1 are consecutive BYTEs in memory; $D$ is WORD aligned.
5. Changes a BYTE to WORD.
6. Offset is a 2's complement number.
7. Specific Bit must be in or windowed into the Lower Register File.
8. The "L" (LONG) suffix indicates DOUBLE-WORD operations.
9. Initiates a RESET by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 2080 H .
10. The assembler does not accept this mnemonic (use the macro file for definition).
11. I = Interrupt Enable (PSW.9).

### 9.0 INSTRUCTION LENGTH/OPCODES

Mnemonic	Direct	Immed	Indirect		Indexed	
			Normal(1)	A-inc(1)	Short(1)	Long(1)
ADD (3-op)	4/44	5/45	4/46	4/46	5/47	6/47
SUB (3-op)	4/48	5/49	4/4A	4/4A	5/4B	6/4B
ADD (2-op)	3/64	4/65	3/66	3/66	4/67	5/67
SUB (2-op)	3/68	4/69	3/6A	3/6A	4/6B	5/6B
ADDC	3/A4	4/A5	3/A6	3/A6	4/A7	5/A7
SUBC	3/A8	4/A9	3/AA	3/AA	4/AB	5/AB
CMP	3/88	4/89	3/8A	3/8A	4/8B	5/8B
ADDB (3-op)	4/54	4/55	4/56	4/56	5/57	6/57
SUBB (3-op)	4/58	4/59	4/5A	4/5A	5/5B	6/5B
ADDB (2-op)	3/74	3/75	3/76	3/76	4/77	5/77
SUBB (2-op)	3/78	3/79	3/7A	3/7A	4/7B	5/7B
ADDCB	3/B4	3/B5	3/B6	3/B6	4/B7	5/B7
SUBCB	3/88	3/89	3/BA	3/BA	4/BB	5/BB
CMPB	3/98	3/99	3/9A	3/9A	4/9B	5/9B
MUL (3-op)	5/(2)	6/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULU (3-op)	4/4C	5/4D	4/4E	4/4E	5/4F	6/4F
MUL (2-op)	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULU (2-op)	3/6C	4/6D	3/6E	3/6E	4/6F	5/6F
DIV	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVU	3/8C	4/8D	3/8E	3/8E	4/8F	5/8F
MULB (3-op)	5/(2)	5/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULUB (3-op)	4/5C	4/5D	4/5E	4/5E	5/5F	6/5F
MULB (2-op)	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULUB (2-op)	3/7C	3/7D	$3 / 7 \mathrm{E}$	3/7E	4/7F	5/7F
DIVB	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVUB	3/9C	3/9D	3/9E	3/9E	4/9F	5/9F
AND (3-op)	4/40	5/41	4/42	4/42	5/43	6/43
AND (2-op)	3/60	4/61	3/62	3/62	4/63	5/63
OR (2-op)	3/80	4/81	3/82	3/82	4/83	5/83
XOR	3/84	4/85	3/86	3/86	4/87	5/87
ANDB (3-op)	4/50	4/51	4/52	4/52	5/53	5/53
ANDB (2-op)	3/70	3/71	3/72	3/72	4/73	4/73
ORB (2-op)	3/90	3/91	3/92	3/92	4/93	5/93
XORB	3/94	3/95	3/96	3/96	4/97	5/97
PUSH	2/C8	3/C9	2/CA	2/CA	$3 / \mathrm{CB}$	4/CB
POP	2/CC	-	2/CE	2/CE	3/CF	4/CF

Instruction Length (in bytes)/Opcode

Mnemonic	Direct	Immed	Indirect		Indexed	
			Normal	A-inc	Short	Long
LD	$3 / \mathrm{AO}$	$4 / \mathrm{A} 1$	$3 / \mathrm{A} 2$	$3 / \mathrm{A} 2$	$4 / \mathrm{A} 3$.	$5 / \mathrm{A} 3$
LDB	$3 / \mathrm{B0}$	$3 / \mathrm{B} 1$	$3 / \mathrm{B} 2$	$3 / \mathrm{B} 2$	$4 / \mathrm{B} 3$	$5 / \mathrm{B3}$
ST	$3 / \mathrm{CO}$	-	$3 / \mathrm{C} 2$	$3 / \mathrm{C} 2$	$4 / \mathrm{C} 3$	$5 / \mathrm{C} 3$
STB	$3 / \mathrm{C} 4$	-	$3 / \mathrm{C} 6$	$3 / \mathrm{C} 6$	$4 / \mathrm{C} 7$	$5 / \mathrm{C} 7$
XCH	$3 / 04$	-	-	-	$4 / 0 \mathrm{~B}$	$5 / 0 \mathrm{~B}$
XCHB	$3 / 14$	-	-	-	$4 / 1 \mathrm{~B}$	$5 / 1 \mathrm{~B}$
LDBSE	$3 / \mathrm{BC}$	$3 / \mathrm{BD}$	$3 / \mathrm{BE}$	$3 / \mathrm{BE}$	$4 / \mathrm{BF}$	$5 / \mathrm{BF}$
LBSZE	$3 / \mathrm{AC}$	$3 / \mathrm{AD}$	$3 / \mathrm{AE}$	$3 / \mathrm{AE}$	$4 / \mathrm{AF}$	$5 / \mathrm{AF}$


Mnemonic	Length/Opcode	Mnemonic	Length/Opcode
PUSHF	1/F2	DJNZ	3/E0
POPF	1/F3	DJNZW	3/E1
PUSHA	1/F4	NORML	3/0F
POPA	1/F5	SHRL	3/0C
		SHLL	3/0D
TRAP	1/F7	SHRAL	3/0E
LCALL	3/EF	SHR	3/08
SCALL	2/28-2F(3)	SHRB	3/18
RET	1/F0	SHL	3/09
LJMP	3/E7	SHLB	3/19
SJMP	2/20-27(3)	SHRA	3/0A
BR[]	2/E3	SHRAB	3/1A
TIJMP	4/E2		
		CLRC	1/F8
JNST	1/D0	SETC	1/F9
JST	1/D8	DI	1/FA
JNH	1/D1	El	1/FB
JH	1/D9	DPTS	1/EC
JGT	1/D2	EPTS	1/ED
JLE	1/DA	CLRVT	1/FC
JNC	1/B3	NOP	1/FD
JC	1/D8	RST	1/FF
JNVT	1/D4	SKIP	2/00
JVT	1/DC	IDLPD	1/F6
JNV	1/D5	BMOV	3/C1
JV	1/DD	BMOVI	$3 / C D$
JGE	1/D6		
JLT	1/DE		
JNE	1/D7		
JE	1/DF		
JBC	3/30-37		
JBS	3/38-3F		

## NOTES:

1. Indirect and indirect + share the same opcodes, as do short and long indexed opcodes. If the second byte is even, use indirect or short indexed. If odd, use indirect or long indexed.
2. The opcodes for signed multiply and divide are the unsigned opcode with an "FE" prefix.
3. The 3 least significant bits of the opcode are concatenated with the 8 bits to form an 11-bit, 2's complement offset.

### 10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES)

Instruction	Direct	Immediate	Indirect		Indexed	
			Normal	A-inc	Short	Long
ADD (30p)	5	6	7/10	8/11	7/10	8/11
SUB (3op)	5	6	7/10	8/11	7/10	8/11
ADD (2op)	4	5	6/8	7/9	6/8	7/9
SUB (2op)	4	5	6/8	7/9	6/8	7/9
ADDC	4	5	6/8	7/9	6/8	7/9
SUBC	4	5	6/8	7/9	6/8	7/9
CMP	4	5	6/8	7/9	6/8	7/9
ADDB (3op)	5	5	7/10	8/11	7/10	8/11
SUBB (3op)	5	5	7/10	8/11	7/10	8/11
ADDB (2op)	4	4	6/8	7/9	6/8	7/9
SUBB (2op)	4	4	6/8	7/9	6/8	7/9
ADDCB	4	4	6/8	7/9	6/8	7/9
SUBCB	4	4	6/8	7/9	6/8	7/9
CMPB	4	4	6/8	7/9	6/8	7/9
CMPL	7					
MUL (30p)	16	17	18/21	19/22	19/22	20/23
MULU (30p)	14	15	16/19	17/20	17/20	18/21
MUL (2op)	16	17	18/21	19/22	19/22	20/23
MULU (2op)	14	15	16/19	17/20	17/20	18/21
DIV	26	27	28/31	29/32	29/32	30/33
DIVU	24	25	26/29	27/30	27/30	28/31
MULB (3op)	12	12	14/17	15/18	15/18	16/19
MULUB (30p)	10	10	12/15	12/16	12/16	14/17
MULB (2op)	12	12	14/17	15/18	15/18	16/19
MULUB (20p)	10	10	12/15	12/16	12/16	14/17
DIVB	18	18	20/23	21/24	21/24	22/25
DIVUB	16	16	18/21	19/22	19/22	20/23
AND (30p)	5	6	7/10	8/11	7/10.	8/11
AND (2op)	4	5	6/8	7/9	6/8	7/9
OR	4	5	6/8	7/9	6/8	7/9
XOR	4	5	6/8	7/9	6/8	7/9
ANDB (3op)	5	5	7/10	8/11	7/10	8/11
ANDB (2op)	4	4	6/8	7/9	6/8	7/9
ORB	4	4	6/8	7/9	6/8	7/9
XORB	4	4	6/8	7/9	6/8	7/9
LD	4	5	5/8	6/8	6/9	7/10
ST	4		5/8	6/9	6/9	7/10
XCH	5				8/13	9/14
LDB	4	4	5/8	6/8	6/9	7/10

8XC196MC

### 10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

$\left.\begin{array}{|lccccc|}\hline \text { Instruction } & \text { Direct } & \text { Immediate } & \begin{array}{c}\text { Indirect } \\ \text { Normal }\end{array} & \begin{array}{c}\text { Index } \\ \text { Short }\end{array} \\ \hline \text { Long }\end{array}\right)$
10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

Instruction	Direct	Immediate	Indirect Normal A-inc	Indexed Short Long
CLR, NOT, NEG	3			
DEC, INC	3			
EXT	4			
CLRB, NOTB	3			
DECB, INCB	3			
NEGB	3			
EXT	4			
NORML	$8+1$ p			
SHRL	$7+1 \mathrm{p}$			
SHLL	$7+1 \mathrm{p}$			
SHRAL	$7+1 \mathrm{p}$			
SHR	$6+1 \mathrm{p}$			
SHL	$6+1 p$			
SHRA	$6+1 \mathrm{p}$			
SHRB	$6+1 \mathrm{p}$			
SHLB	$6+1 \mathrm{p}$			
SHRAB	$6+1$ p			
CLRC	2			
SETC	2			
DI	2			
El	2			
DPTS	2			
EPTS	2			
CLRVT	2			
NOP	2			
RST	20 (Incl	/CCB1)		
SKIP	3	,		
IDLPD	8/25 (P	er Key)		
PTS				
Single Transfer	18	rence, +1 lf		
Burst Transfer		ransfer, 1 Mini mory Controller		
PWM Modes	15			
A/D Scan Mode	12/25			

## NOTES:

The timing figures are minimum execution times expressed as state times (one period of CLKOUT = two oscillator periods. Section 11.3) and are based on the following assumptions:

1. The opcode, along with any required operands, have been pre-fetched and reside in the instruction queue.
2. The bus controller operates with the 16 -bit bus selected and without wait states for external memory references and prefetches. For instructions with indirect or indexed addressing, execution times separated by a slash are for instructions requiring a fetch from internal/external memory.
3. Times for jumps, calls, and returns include the 4 state times required to flush the pre-fetch queue and to fetch the opcode a the destination address. This is reflected in the jump taken/not-taken times shown in the table.

### 11.0 INTERRUPT TABLE

8XC196MC Summary of Interrupts and Priorities

Number	Source	Symbol	Vector   Location	Priority
INT15	Non-Maskable Interrupt	NMI	$203 E H$	15
PTS14-   PTS0	PTS	$*$	$*$	$*$
INT14	EXTINT Pin	EXTINT	$203 C H$	14
INT13	WG_COUNTER	WG	$203 A H$	13
INT12	Reserved	-	2038 H	12
INT11	Reserved	-	2036 H	11
INT10	Reserved	-	2034 H	10
INT09	COMPARE3	CM3	2032 H	9
INT08	CAPCOMP3	CP3	2030 H	8
N/A	Unimplemented Opcode	N/A	2012 H	N/A
N/A	TRAP Instruction	N/A	2010 H	N/A
INT07	COMPARE2	CM2	2003 H	7
INT06	CAPCOMP2	CP2	200 CH	6
INT05	COMPARE1	CM1	200 AH	5
INT04	CAPCOMP1	CP1	2008 H	4
INT03	COMPARE0	CM0	2006 H	3
INT02	CAPCOMPO	CP0	$2004 H$	2
INT01	A/D Complete	A/D DONE	2002 H	1
INT00	T1/T2 Overflow	TOVF	2000 H	0

NOTE:
*Refer to PTS Vector Table

Interrupt SFRs. The Interrupt SFRs are listed with their addresses:

SFR	Address
INT_MASK	08 H
INT__PEND	09 H
INT_PEND1	12 H
INT_MASK1	13 H

PTS Vector Table

Priority	Name	Source	PTS Vector
HIGHEST	PTS14	EXTINT	205 CH
$\bullet$	PTS13	WG_COUNT	205 AH
$\bullet$	PTS12	RESERVED	2058 H
$\bullet$	PTS11	RESERVED	2056 H
$\bullet$	PTS10	RESERVED	2054 H
$\bullet$	PTS9	COMPARE3	2052 H
$\bullet$	PTS8	CAPCOMP3	2050 H
$\bullet$	PTS7	COMPARE2	204 EH
$\bullet$	PTS6	CAPCOMP2	204 CH
$\bullet$	PTS5	COMPARE2	204 AH
$\bullet$	PTS4	CAPCOMP1	2048 H
$\bullet$	PTS3	COMPARE0	2046 H
$\bullet$	PTS2	CAPCOMP0	2044 H
$\bullet$	PTS1	A/D Done	2042 H
LOWEST	PTS0	TOVF	2040 H

The end-of-PTS interrupt is treated as a normal interrupt. It vectors through the associated location in the normal interrupt vector table (Table 11.1). For example, if the A/D interrupt is selected by the PTS, an A/D interrupt is directed to its PTSCB by the PTS vector at 2042 H ; its end-of-PTS interrupt is at 2002 H . Thus, the user would write an end-of-PTS interrupt routine for TI and store a vector pointing to it at location 2002 H .

An end-of-PTS interrupt has higher priority than any normal interrupt (with the exception of NMI). Within the group of end-of-PTS interrupts, the priorities are the same as for normal interrupts.

### 12.0 FORMULAS

State Time $=2$ Oscillator periods $=\frac{2}{\text { FOSC }}$
TIJMP Calculation-
Destination $=\underset{[\text { [TBASE }]}{(\text { INDEX }] \text { and INDEX_MASK) } * 2+~}$

EPA Prescaler

P2	P1	P0	Divide By
0	0	0	$\div 1$
0	0	1	$\div 2$
0	1	0	$\div 4$
0	1	1	$\div 8$
1	0	0	$\div 16$
1	0	1	$\div 32$
1	1	0	$\div 64$
1	1	1	Reserved

A/D-

$$
\begin{gathered}
S A M=\frac{\left(T_{S A M}^{*} F_{O S C}\right)-2}{8} \\
T_{S A M}=\frac{(8 * S A M)+2}{F_{O S C}} \\
C O N V=\frac{\left(T_{C O N V}^{*} F_{O S C}\right)+3}{2 * B} \\
T_{C O N V}=\frac{\left(2 * B^{*} \text { CONV }\right)-3}{F_{O S C}}
\end{gathered}
$$

Programming Pulse Width-

$$
\operatorname{PPR}=\frac{\left((\mathrm{PPW}) *\left(\mathrm{~F}_{\mathrm{OSC}}\right)\right)-144}{144}+32768
$$

SIO Baud Rate-
BAUDCONST $=\mathrm{Fosc}_{\mathrm{OS}} /(4$ * Baud Rate $*$ EPA prescale $)$
SSIO Baud Rate-
BAUDCONST $=\mathrm{Fosc}_{\text {O }} /(8 *$ Baud Rate $*$ EPA prescale $)$
Wave Generator Up/Down Mode-

$$
\text { WG_RELOAD }=(\text { Fosc } * \text { PWM Period }) / 4
$$

Wave Generator Up Mode-
WG_RELOAD $=($ Fosc $*$ PWM Period $) / 2$

### 13.0 RESET STATUS

Pin States during RESET, Idle or Powerdown

Pin Name	Reset	Idle	Powerdown
RESET	wk1	wk1	wk1
P5.0 (ALE)	wk1 *	(A)	(A)
P5.1 (INST)	wk1	(B)	(B)
P5:2 (רR)	wk1*	(C)	(C)
P5.3 ( $\overline{\mathrm{RD}}$ )	wk1*	(C)	(C)
P5.4	mdl *	(C)	(C)
P5.5 ( $\overline{\mathrm{BHE}})$	wk1	(C)	(C)
P5.6 (READY)	wk1	(D)	(D)
P5.7 (BUSWIDTH)	wk1	(D)	(D)
$\overline{E A}$	HZ	HZ	HZ
NMI	wk0	wk0	wk0
P3, P4 ( $\overline{E A}=0)$	wk1	HZ	HZ
P3, P4 ( $\overline{E A}=1$ )	wk1	ODIO	ODIO
CLKOUT	clk	clk	0, LZ
EXTINT	HZ	HZ	HZ
PO (ACH)	HZ	HZ	HZ
P1 (ACH)	HZ	HZ	HZ
P2.0	wk1*	(E)	(E)
P2.[7, 5:1]	wk1*	(E)	(E)
P2.6	mdl *	(E)	(E)
P6. [5:0]	wk1	(F)	(F)
P6. [7:6]	wkO	(F)	(F)
VPP	HZ	1, LZ	1, LZ
XTAL1	HZ	HZ	HZ
XTAL2	osc, LZ	osc, LZ	(G)

HZ —High Impedance
LZ -Low Impedance
wk1 -Weakly Pulled High
wk0 -Weakly Pulled Low
mdl -Medium Strength High
ODIO -Open Drain IO

* These pins are also used to control test mode entry.
(A) if P5_MODE. $0=0$ then port value if P5_MODE. $0=1$ and OCR. $3=1$ (ALE mode) then LZ 0 if P5_MODE. $0=1$ and OCR. $3=0$ (ADV mode) then LZ 1
(B) if P5__MODE. $1=0$ then port value if P5__MODE. $1=1$ then LZ 0
(C) if P5__MODE. $y=0$ then port value if P5_MODE. $y=1$ then LZ 1
(D) if P5__MODE.y $=0$ then port value if P5__MODE. $y=1$ then HZ
(E) if P2_MODE.y $=0$ then port value if P2_MODE. $y=1$ then as peripheral specifies
(F) if output port then port value if special function then as peripheral specifies
(G) if XTAL1 $=1$ then LZ 0 if XTAL1 $=0$ then LZ 1

SFR Reset Values

CAPCOMPO__TIME	INDETERMINATE
CAPCOMP1__TIME	INDETERMINATE
CAPCOMP2_TIME	INDETERMINATE
CAPCOMP3_TIME	INDETERMINATE
COMPO_TIME	INDETERMINATE
COMP1_TIME	INDETERMINATE
COMP2_TIME	INDETERMINATE
COMP3_TIME	INDETERMINATE
T1RELOAD	INDETERMINATE
PO_PIN	FFH (when pin is not driven)
P1__PIN	FFH (when pin is not driven)
AD_RESULT (LO)	COH
AD_RESULT (HI)	FFH
AD_COMMAND	80 H
AD_TEST	COH
AD_TIME	FFH
PI_MASK	AAH
PI_PEND	AAH
WG_COUNT	INDETERMINATE
WG_CON	COH
WG__PROTECT	FOH
P2_DIR, P2__REG	FFH
P2_PIN	FFH (when pin is not driven)
P5_MODE	$80 \mathrm{HIF} \overline{E A}=$ HIGH, A9H IF $\overline{E A}=$ LOW
P5_CIIR, P5_PIN	FFH
P5_REG	FFH (when pin is not driven)
USFR	02H
P3__REG, P4__REG	FFH
P3_PIN, P4_PIN	FFH (when pin is not driven)

## NOTE:

This table lists all the registers that their reset value is not 0 . Given values include the reserved bits (when applicable).

## 8XC196NT/NQ Quick Reference

8XC196NT/NQ Quick Reference
CONTENTS
1.0 MEMORY MAP ..... 14-226PAGE
2.0 SFR MAP ..... 14-227
3.0 SFR BIT SUMMARY ..... 14-229
4.0 PIN DEFINITION TABLE ..... 14-233
5.0 PACKAGE PIN ASSIGNMENTS ..... 14-234
6.0 PIN DESCRIPTION ..... 14-235
7.0 OPCODE TABLE ..... 14-238
CONTENTS PAGE
8.0 INSTRUCTION SET SUMMARY ..... 14-240
9.0 INSTRUCTION
LENGTH/OPCODES ..... 14-243
10.0 INSTRUCTION EXECUTION TIMES(IN STATE TIMES)14-245
11.0 INTERRUPT TABLE ..... 14-249
12.0 FORMULAS ..... 14-250
13.0 RESET STATUS ..... 14-251

### 1.0 MEMORY MAP



### 2.0 SFR MAP

## CPU Special Function Registers

17H	(Reserved)	OBH	(Reserved)
16H	(Reserved)	OAH	WATCHDOG
15H	(Reserved)	09H	INT__PEND
14H	WSR	08H	INT_MASK
13H	INT_MASK1	07H	PTSSRV (Hi)
12 H	INT_PEND1	06H	PTSSRV (Lo)
11H	(Reserved)	05H	PTSSEL (Hi)
10 H	(Reserved)	04H	PTSSEL (Lo)
OFH	(Reserved)	03H	Read as FFH
OEH	(Reserved)	02H	Read as FFH
ODH	(Reserved)	01H	ZERO__REG (Hi)
OCH	(Reserved)	00H	ZERO_REG (Lo)

## Memory Mapped I/O SFRs

HIGH BYTE LOW BYTE
1FFEH 1FFCH

1FFAH
1FF8H
1FF6H
1FF4H
1FF2H
1FFOH
1FEEH
1FECH
1FEAH
1FE8H
1FE6H
1FE4H
1FE2H
1 FEOH

P4__PIN	P3__PIN
P4__REG	P3__REG
SLP__CMD	SLP__CMD
(Reserved)	SLP__STAT
P5__PIN	USFR
P5__REG	(Reserved)
P5__DIR	(Reserved)
P5__MODE	(Reserved)
(Reserved)	(Reserved)
EP__PIN	(Reserved)
EP__REG	(Reserved)
EP__DIR	(Reserved)
EP__MODE	IRAM__REG

Port 0, Port 1 and Port 6 SFRs

1FDEH	Port 6 SFRs	
	HIGH BYTE	LOW BYTE
	(Reserved)	(Reserved)
1FDCH	(Reserved)	(Reserved)
1FDAH	(Reserved)	PO_PIN
1FD8H	(Reserved)	(Reserved)
1FD6H	P6__PIN	P1__PIN
1FD4H	P6_REG	P1__REG
1FD2H	P6__DIR	P1__DIR
1FDOH	P6_MODE	P1__MODE

Port 2 SFRs
HIGH BYTE LOW BYTE
1FCEH
1 FCCH
1FCAH
1 FC 8 H

HIGH BYTE	LOW BYTE
P2__PIN	(Reserved)
P2__REG	(Reserved)
P2_DIR	(Reserved)
P2_MODE	(Reserved)


	Serial I/O and Synchronous SIO SFRs	
	HIGH BYTE	LOW BYTE
1FBEH	(Reserved)	(Reserved)
1 FBCH	SP__BAUD (Hi)	SP__BAUD (Lo)
1 FBAH	SP_CON	SBUF_TX
1FB8H	SP__STATUS	SBUF_RX
1FB6H	(Reserved)	(Reserved)
1FB4H	(Reserved)	SSIO__BAUD
1FB2H	SSIOO_CON	SSIOO_BUF
1 FBOH	SSIO1_CON	SSIO1__BUF


	A/D and EPA Interrupt SFRs	
	HIGH BYTE	LOW BYTE
1FAEH	AD_TIME	AD__TEST
1FACH	AD_COMMAND ( Hi )	AD__COMMAND (Lo)
1FAAH	AD__RESULT (Hi)	AD__RESULT (Lo)
1FA8H	(Reserved)	EPAIPV
1FA6H	(Reserved)	EPA_PEND1
1FA4H	(Reserved)	EPA_MASK1
1FA2H	EPA_PEND (Hi)	EPA _PEND (Lo)
1FAOH	EPA_MASK (Hi)	EPA_MASK (Lo)



### 3.0 SFR BIT SUMMARY

8	EPAx_CONTROL							
	7	6	5	4	3	2	1	0
RM	TB	CE	M1	M0	RE	AD	ROT	ON/RT

RM: "1" Enables Remapping (EPA1 \& EPA3 Only)
TB: "0" Selects Timer1, "1" Selects Timer2
CE: " 0 " Disables Comparator, " 1 " Enables Comparator M1, M0: Mode Bits

M1, M0	Capture:	Compare:
00	No Op	Interrupt Only
01	Capture Negative	Output "0"'
10	Capture Positive	Output "1""
11	Capture All Edges	Toggle Output

RE: Reenable Entry = "1" (Lock Entry)
AD: Start A/D
ROT: Reset Opposite Time Base
ON/RT: Overrun and Reset Timer Enable

EPAIPV									1FA8H: Byte						
$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$								
0	0	0	PV4	PV3	PV2	PV1	PV0								

PV4-PVO: Returns the encoded highest priority interrupt. Value from $1 \mathrm{H}-14 \mathrm{H}$.

OH $=$ No Interrupt Pending	0 OH $=$ OVRINT4
$14 \mathrm{H}=$ EPAINT4	$09 \mathrm{H}=$ OVRINT5
$13 \mathrm{H}=$ EPAINT5	$08 \mathrm{H}=$ OVRINT6
$12 \mathrm{H}=$ EPAINT6	$07 \mathrm{H}=$ OVRINT7
$11 \mathrm{H}=$ EPAINT7	$06 \mathrm{H}=$ OVRINT8
$10 \mathrm{H}=$ EPAINT8	$05 \mathrm{H}=$ OVRINT9
OFH $=$ EPAINT9	$04 \mathrm{H}=$ Compare Channel 0
OEH $=$ OVRINTO	$03 \mathrm{H}=$ Compare Channel 1
ODH $=$ OVRINT1	$02 \mathrm{H}=$ TIMER1 Overflow
OCH $=$ OVRINT2	$01 \mathrm{H}=$ TIMER2 Overflow
OBH $=$ OVRINT3	


SP_CON										1FBBH: Byte
$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$			
X	X	X	TB8	REN	PEN	M 2	M 1			

TB8: 9th Bit for Transmission REN: Enables the Receiver PEN: Enables Parity (Even) M2, M1:

00: Mode 0/Sync
01: Mode 1/Async (std)
10: Mode 2/Async (9th Bit Enable)
11: Mode 3/Async (9th Bit Data)


## PORT 1/2/5/6 Control

Px_MODE $=$ " 1 " for Peripheral Control
PX_MODE = " 0 " for Standard Port
Px_DIR = " 1 " for INPUT or OPEN DRAIN
OUTPUT

Px_DIR = " 0 " for OUTPUT (PUSH/PULL)
Px__PIN is for PORT READs
Px_REG is for PORT WRITEs

M2, M1, M0—Mode Bits

000	Clock = Internal/Direction = UD
$x 01$	Clock = External/Direction = UD
010	Clock $=$ Internal/Direction $=$ TxDIR
011	Clock $=$ External/Direction $=$ TxDIR
100	Clock $=$ T1 Overflow/Direction $=$ UD
110	Clock $=$ T1 Overflow/Direction $=$ T1
111	Quadrature Count (TxCLK/TxDIR)

P2, P1, P0—Prescale Bits

000	$\div 1(250 \mathrm{~ns}$ @ 16 MHz ) Xtal*4
001	$\div 2(500 \mathrm{~ns}$ @ 16 MHz ) Xtal*8
010	$\div 4(1 \mu \mathrm{~s} @ 16 \mathrm{MHz}) \times$ tal*16
011	$\div 8(2 \mu \mathrm{~s} @ 16 \mathrm{MHz}) \times$ tal $* 32$
100	$\div 16$ (4 $\mu \mathrm{s}$ @ 16 MHz ) Xtal*64
101	$\div 32(8 \mu \mathrm{~s}$ @ 16 MHz$) \mathrm{Xtal} * 128$
110	$\div 64(16 \mu \mathrm{~s} @ 16 \mathrm{MHz})$ Xtal*256
111	Reserved




SP__STATUS				1FB9H: Byte			
7	6	5	4	3	2	1	0
RB8/RPE	RI	TI	FE	TXE	OE	X	X

RP8: Set if 9th Bit set (No Parity)
RPE: Set if Parity Enabled and Parity Error
RI: Set after Last Data Bit Received
TI: Set at Beginning of STOP Bit
FE: Set if No STOP Bit Found
TXE: Set when Byte is in SBUF__TX
OE: Set if Overrun Error Occurred


CCB (FF2018H: Byte)


LOC1	LOCO	Function
0	0	Read and Write Protected
0	1	Write Protected Only
1	0	Read Protected Only
1	1	No Protection

CCB2 (FF201CH: Byte)

0	1	= "0" - 24-bit mode
1	MODE16	
2	REMAP	= "1" - 16-bit mode
3	1	FF2000H only
4	1	= "1" - EPROM also
5	1	mapped to
6	1	
7	1	


IRC2	IRC1	IRC0	Max Wait States
0	0	0	Zero Wait States
1	0	0	1 Waii State
1	0	1	2 Wait States
1	1	0	3 Wait States
1	1	1	INFINITE


MSEL1	MSELO	Bus Timing Mode
0	0	Mode 0 (1-Wait KR)
0	1	Mode 1 (Long R/W)
1	0	Mode 2 (Early Address)
1	1	Mode 3 (KR Compatible)


BW1	BW0	Bus Width
0	0	ILLEGAL
0	1	16-Bit Only
1	0	8-Bit Only
1	1	BW Pin Controlled


SLP_CON						FFBH: Byte	
0	0	0	0	SLP	SLPL	IBEmask	OBFmask
$\begin{aligned} \text { SLP } \quad= & 1 \text { Enables Slave Port Operation } \\ & =0 \text { Disables Slave Port Operation and } \\ & \text { Clears Bits, CBE, IBE, and OBF } \\ & \text { in SLP_STAT }\end{aligned}$							
$\begin{aligned} \text { SLPL } & =1 \text { ALE Latches SLP_ADDR from } \\ & =A D 1(P 3.1) \\ & =0 \text { ALE is SLP_ADDR } \end{aligned}$							
$\begin{aligned} \text { IBEmask } & =1 \text { IBE Can Affect SLPINT } \\ & =0 \text { IBE Cannot Affect SLPINT } \end{aligned}$							

SLP_STAT 1FF8H: Byte

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
STAT				CBE	IBE	OBF

STAT These bits are written by the 8XC196NT/NQ user and defined by the 8XC196NT/NQ user for communication flags.
CBE (Command Buffer Empty)
$=1$ After 8XC196NT/NQ Reads SLPCMD
$=0$ After Master Writes to SLPCMD or SLP $=0$ in SLP__CON
IBE (Input Buffer Empty)
$=1$ After 8 XC196NT/NQ Reads SLPDIN
$=0$ After Master Writes to SLPDIN, or SLP $=0$ in SLP__CON
OBF (Output Buffer Full)
$=1$ After 8XC196NT/NQ Writes to SLPDOUT
$=0$ After Master Reads SLPDOUT

USFR							
$\mathbf{1 F F}$	1FFH (Read Only): Byte						
$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
RSV	RSV	RSV	DEI	DED	RSV	RSV	RSV

NOTE:
Do not write to location 1FF6H. Bits DED and DEI are written as specified in users manual.

Device	DEI	DED
87C196NT/NQ	UPROM Bit	UPROM Bit

DED—Disable External Data
DEI—Disable External Instructions

$$
\begin{aligned}
& \text { SSIOX_CON Registers 1FB1H: Byte = SSIOO } \\
& \text { 1FB3H: Byte = SSIO1 }
\end{aligned}
$$




IRAM_CON (1FEOH: BYTE)


EA_STAT NOT EFFECTED BY WRITE
*RSV--RESERVED BIT MUST BE $=0$

### 4.0 PIN DEFINITION TABLE

$\begin{gathered} 68 \\ \text { PLCC } \end{gathered}$	Function
44	ACH4
45	ACH5
46	ACH6
47	ACH7
30	ADO
29	AD1
28	AD2
27	AD3
26	AD4
25	AD5
24	AD6
23	AD7
22	AD8
21	AD9
20	AD10
19	AD11
18	AD12
17	AD13
16	AD14
15	AD15
14	AD16
13	AD17
12	AD18
11	AD19
04	$\overline{\text { ADV }}$
40	$\overline{\text { AINC }}$
04	ALE
48	ANGND
08	BHE
39	$\overline{\text { BREQ }}$
10	BUSWIDTH
43	CLKOUT
42	CPVER
33	$\overline{E A}$
14	EPO


68   PLCC	Function
13	EP1
12	EP2
11	EP3
57	EPA0
56	EPA1
55	EPA2
54	EPA3
53	EPA4
52	EPA5
51	EPA6
50	EPA7
58	EPA8
59	EPA9
38	EXTINT
42	$\overline{\text { HLDA }}$
41	$\overline{\text { HOLD }}$
03	INST
40	$\overline{\text { NTOUT }}$
32	NMI
44	P0.4
45	P0.5
46	P0.6
47	P0.7
57	P1.0
56	P1.1
55	P1.2
54	P1.3
53	P1.4
52	P1.5
51	P1.6
50	P1.7
36	P2.0
37	P2.1
38	P2.2
54	


$\begin{gathered} 68 \\ \text { PLCC } \end{gathered}$	Function
39	P2.3
40	P2.4
41	P2.5
42	P2.6
43	P2.7
30	P3.0
29	P3. 1
28	P3. 2
27	P3.3
26	P3.4
25	P3. 5
24	P3.6
23	P3.7
22	P4.0
21	P4.1
20	P4.2
19	P4.3
18	P4.4
17	P4.5
16	P4.6
15	P4.7
04	P5.0
03	P5.1
09	P5.2
01	P5.4
08	P5.5
02	P5.6
10	P5.7
58	P6.0
59	P6.1
60	P6.2
61	P6.3
62	P6.4
63	P6.5


$\begin{gathered} 68 \\ \text { PLCC } \end{gathered}$	Function
64	P6.6
65	P6.7
43	PACT
37	PALE
44	PMODE. 0
45	PMODE. 1
46	PMODE. 2
47	PMODE. 3
38	$\overline{\text { PROG }}$
36	PVER
07	$\overline{\mathrm{RD}}$
02	READY
31	RESET
37	RXD
62	SCO
64	SC1
63	SDO
65	SD1
01	SLPINT
60	T1CLK
61	T1DIR
57	T2CLK
55	T2DIR
36	TXD
35	$V_{\text {cC }}$
06	$V_{\text {PP }}$
49	$\mathrm{V}_{\text {REF }}$
05	$V_{\text {SS }}$
34	$V_{\text {SS }}$
09	$\overline{\text { WR }}$
08	$\overline{\text { WRH }}$
09	$\overline{\text { WRL }}$
67	XTAL1
66	XTAL2

### 5.0 PACKAGE PIN ASSIGNMENTS



Figure 1. 68-Pin PLCC Package Diagram

### 6.0 PIN DESCRIPTION

Symbol	Name and Function
$V_{\text {CC }}$	Main supply voltage ( +5 V ).
$\mathrm{V}_{\mathrm{SS} 1}, \mathrm{~V}_{\mathrm{SS} 2}, \mathrm{~V}_{\mathrm{SS} 3}$	Digital circuit ground ( OV ). There are three $\mathrm{V}_{\mathrm{SS}}$ pins, all of which MUST be connected.
$\mathrm{V}_{\text {REF }}$	Reference and supply voltage for the A/D converter and Port0 ( +5 V ). Must be connected for A/D and Port 0 to function.
$\mathrm{V}_{\mathrm{PP}}$	Programming voltage for the EPROM parts. It should be +12.5 V for programming. It is also the timing pin for the return from power-down circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $\mathrm{V}_{S S}$ and a $1 \mathrm{M} \Omega$ resistor to $\mathrm{V}_{\mathrm{CC}}$. If this function is not used, connect $\mathrm{V}_{\mathrm{PP}}$ to $\mathrm{V}_{\mathrm{CC}}$.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $\mathrm{V}_{\text {SS }}$.
ACH4-ACH7/PORT0	Analog inputs to the on-chip A/D converter. Also a digital input pin.*
ALE/ $\overline{\text { ADV } / P 5.0 ~}$	Address Latch Enable or Address Valid output. Goes low to latch and demultiplex the address/data bus. When the pin is $\overline{\text { ADV, it goes inactive (high) at the end of the }}$ bus cycle, providing a chip select for external memory. $\overline{\text { ADV }}$ is active only during external memory accesses. Also a standard I/O pin.*
$\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}} / \mathrm{P} 5.5$	Byte High Enable or Write High output. $\overline{\text { BHE }}=0$ when accessing odd (high) bytes or complete words in external memory. $\overline{\text { WRH }}=0$ when writing to odd bytes or complete words in external memory. $\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$ is only valid during 16 -bit external memory cycles. Also a standard I/O pin.*
BREQ/P2.3	Bus Request output. Active low when the bus controller is in hold and has a pending external memory cycle. Also a standard I/O pin.*
BUSWIDTH/P5.7	Input for bus width selection. If BUSWIDTH is low, an 8 -bit cycle occurs. If BUSWIDTH is high, a 16 -bit cycle occurs. Also a standard I/O pin.*
CLOCKOUT/P2.7	Output of the internal clock generator. A $50 \%$ duty cycle signal at $1 / 2$ XTAL1 frequency. Also a standard I/O pin.*
$\overline{\mathrm{EA}}$	Input for memory select (External Access). $\overline{\mathrm{EA}}=1$ directs memory accesses from locations 0F2000H through 0F9FFFH to on-chip EPROM/ROM. EA $=0$ directs all memory accesses to off-chip memory. $\overline{E A}=+12.5 \mathrm{~V}$ causes execution to begin in the Programming Mode. $\overline{E A}$ is latched at reset.
$\begin{aligned} & \text { EPA0-7/P1.0-1.7 } \\ & \text { EPA8-9/P6.0-6.1 } \end{aligned}$	I/O pins for the Event Processor Array. EPA0 and EPA2 also function as T2CLK and T2DIR. Also a standard I/O pin.*
EPORT	4-bit bidirectional standard I/O port. These pins are shared with the extended address bus, A16-A19. Pin function is selected on a per pin basis.
EXTINT/P2.2	External Interrupt input pin. A positive transition sets the EXTINT interrupt pending flag. The minimum high and low times are 2 oscillator cycles. Also a standard I/O pin.*
INST/P5.1	Instruction fetch signal. Output high during the entire bus cycle of an external instruction fetch. INST is active only during external memory fetches; during internal memory fetches, INST is low. Also a standard I/O pin.*
INTOUT/P2.4	Interrupt output indicating that a pending interrupt requires use of the external bus. Also a standard I/O pin.*
HLDA/P2.6	Bus Hold Acknowledge output indicating release of the bus in response to a HOLD request. Also a standard I/O pin.* This is also a TEST MODE enable pin. Do not use it as an input without careful hardware evaluation.

*These pins may be used for the system or peripheral functions or as a standard I/O pin.

8XC196NT/NQ QUICK REFERENCE

### 6.0 PIN DESCRIPTION (Continued)

Symbol	Name and Function
HOLD/P2.5	Bus Hold request input. $\overline{\text { HOLD }}$ is sent by another processor to request control of 8XC196NT/NQ system bus. Also a standard I/O pin.*
NMI	Non-Maskable interrupt input pin. A positive transition causes a non-maskable interrupt vector through memory location FF203EH. If not used, this pin should be tied to $V_{S s}$. May be used by Intel Evaluation boards.
PORTO	8 -bit high impedance input-only port. Also used as A/D converter inputs. Port 0 pins should not be left floating. In EPROM devices these pins are also used to select the Programming Mode.
PORT1	8 -bit bidirectional standard I/O port. All of its pins are shared with the EPA.
PORT2	8 -bit bidirectional standard I/O port. All of its pins are shared with other functions (TxD, RxD, EXTINT, $\overline{B R E Q}, \overline{I N T O U T}, \mathrm{HOLD}, \mathrm{HLDA}, \mathrm{CLKOUT}$ ).
$\begin{array}{\|l} \hline \text { PORT3 } \\ \text { PORT4 } \end{array}$	8 -bit bidirectional standard I/O with open drain outputs. These pins are shared with the multiplexed address/data bus which uses complementary drivers.
PORT5	8 -bit bidirectional standard I/O port. All of its pins are shared with other functions (ALE/ADV, INST, WR/WRL, $\overline{R D}$, SLPINT, $\overline{B H E} / \bar{W} R$, READY, BUSWIDTH).
PORT6	8 -bit bidirectional standard I/O port. All of its pins are shared with other functions (EPA8, EPA9, T1CLK, T1DIR, SC0, SD0, SC1, SD1).
$\overline{\mathrm{RD}} / \mathrm{P} 5.3$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is low only during external memory reads. Also a standard I/O pin.*
READY/P5.6	Ready input to lengthen external memory cycles. If READY $=1$, CPU operation continues in a normal manner. If READY $=0$ wait states are added. Also a standard I/O pin.*
$\overline{\text { RESET }}$	Reset input to the chip. Held low for at least 16 state times to reset the chip. The subsequent low to high transition starts the reset sequence. Input high for normal operation. RESET has an internal pullup.
RXD/P2.1	Receive data input pin for the Serial I/O (SIO) port. Also a standard I/O pin.*
SLPINT/P5.4	Slave Port Interrupt output pin. Also a standard I/O pin.*
$\begin{aligned} & \text { SSIO/P6.4-P6.7 } \\ & \text { (SC0, SD0, SC1, SD1) } \end{aligned}$	Synchronous Serial I/O pins. SC0/SC1 are clock pins and SD0/SD1 are data pins. Also a standard I/O pin.*
T1CLK/P6. 2	TIMER1 Clock input. TIMER1 increments or decrements on both rising and falling edges. Also a standard I/O pin.*
T1DIR/P6.3	TIMER1 Direction input. TIMER1 increments when this pin is high and decrements when this pin is low. Also a standard I/O pin.*
T2CLK/P1.0	TIMER2 Clock Input. TIMER2 increments or decrements on both rising and falling edges. Also a standard I/O pin.*
T2DIR/P1. 2	TIMER2 Direction input. TIMER2 increments when this pin is high and decrements when this pin is low. Also a standard I/O pin.*
TXD/P2.0	Transmit data output pin for the Serial I/O (SIO) port. Also a standard I/O pin.*
$\overline{\text { WR/ } / \overline{\mathrm{WRL}} / \mathrm{P} 5.215}$	Write and Write Low output to external memory. $\overline{\text { WR }}$ goes low for every external write. WRL goes low only for writes to even addresses. $\overline{W R} / \overline{W R L}$ is active only during external memory writes. Also a standard I/O pin.*
XTAL1	Input of the oscillator invertor and the internal clock generator. If using an external clock source connect it to this pin.
XTAL2	Output of the oscillator invertor. Leave floating unless connected to a crystal/ resonator circuit.

*These pins may be used for the system or peripheral functions or as a standard I/O pin.

### 6.0 PIN DESCRIPTION (Continued)

## Programming Mode Pin Definitions

Name	Name and Function
PMODE   PO.4-7	Programming Mode Select. Determines the EPROM programming algorithm that is performed.   PMODE is sampled after a chip reset and should be static while the part is operating.
$\overline{\text { PALE }}$	Programming ALE Input. Accepted by an 8XC196NT/NQ that is in Slave Programming Mode.   Used to indicate that Port 3 and 4 contain a command/address.
$\overline{\text { PROG }}$	Programming. Falling edge latches data on PBUS and begins programming. Rising edge inputs   ends programming.
PACT	Programming Active. Used to indicate when programming activity is complete.
PVER	Programming Verification. Signal is low after rising edge of PROG if the programming was not   successful.
$\overline{\text { AINC }}$	Auto Increment. Active low input enables the auto increment mode. Auto increment will allow   reading or writing of sequential EPROM locations without address transactions across the   PBUS for each read or write.
PORTS   3 and 4	Address/Command/Data Bus. Used to pass commands, addresses and data to and from   $8 X C 196 N T / N Q s . ~ A l s o ~ u s e d ~ i n ~ t h e ~ A u t o ~ P r o g r a m m i n g ~ M o d e ~ a s ~ a ~ r e g u l a r ~ s y s t e m ~ b u s ~ t o ~ a c c e s s ~$   external memory.
CPVER	Cumulative Program Verification. Pin is high if ail locations since entering a programming mode   have programmed correctly.

### 7.0 OPCODE TABLE

00	SKIP
01	CLR
02	NOT
03	NEG
04	XCH
05	DEC
06	EXT
07	INC
08	SHR
09	SHL
OA	SHRA
OB	XCH
OC	SHRL
OD	SHLL
OE	SHRAL
OF	NORML
10	RESERVED
11	CLRB
12	NOTB
13	NEGB
14	XCHB
15	DECB
16	EXTB
17	INCB
18	SHRB
19	SHLB
1A	SHRAB
1B	XCHB
1 C	EST INDIRECT
1D	EST INDEXED
1E	ESTB INDIRECT
1F	ESTB INDEXED
20	SJMP
21	SJMP
22	SJMP
23	SJMP
24	SJMP
25	SJMP
26	SJMP
27	SJMP
28	SCALL
29	SCALL
2A	SCALL
2B	SCALL
2 C	SCALL
2D	SCALL
2 E	SCALL


2F	SCALL
30	JBC
31	JBC
32	JBC
33	JBC
34	JBC
35	JBC
36	JBC
37	JBC
38	JBS
39	JBS
3A	JBS
3B	JBS
3C	JBS
3D	JBS
3E	JBS
3F	JBS
40	AND DIRECT (3 OPS)
41	AND IMMEDIATE (3 OPS)
42	AND INDIRECT (3 OPS)
43	AND INDEXED (3 OPS)
44	ADD DIRECT (3 OPS)
45	ADD IMMEDIATE (3 OPS)
46	ADD INDIRECT (3 OPS)
47	ADD INDEXED (3 OPS)
48	SUB DIRECT (3 OPS)
49	SUB IMMEDIATE (3 OPS)
4A	SUB INDIRECT (3 OPS)
4B	SUB INDEXED (3 OPS)
4 C	MULU DIRECT (3 OPS)
4D	MULU IMMEDIATE (3 OPS)
4E	MULU INDIRECT (3 OPS)
4F.	MULU INDEXED (3 OPS)
50	ANDB DIRECT (3 OPS)
51	ANDB IMMEDIATE (3 OPS)
52	ANDB INDIRECT (3 OPS)
53	ANDB INDEXED (3 OPS)
54	ADDB DIRECT (3 OPS)
55	ADDB IMMEDIATE (3 OPS)
56	ADDB INDIRECT (3 OPS)
57	ADDB INDEXED (3 OPS)
58	SUBB DIRECT (3 OPS)
59	SUBB IMMEDIATE (3 OPS)
5A	SUBB INDIRECT (3 OPS)
5B	SUBB INDEXED (3 OPS)
5C	MULUB DIRECT (3 OPS)
5D	MULUB IMMEDIATE (3 OPS)


5E	MULUB INDIRECT (3 OPS)
5F	MULUB INDEXED (3 OPS)
60	AND DIRECT (2 OPS)
61	AND IMMEDIATE (2 OPS)
62	AND INDIRECT (2 OPS)
63	AND INDEXED (2 OPS)
64	ADD DIRECT (2 OPS)
65	ADD IMMEDIATE (2 OPS)
66	ADD INDIRECT (2 OPS)
67	ADD INDEXED (2 OPS)
68	SUB DIRECT (2 OPS)
69	SUB IMMEDIATE (2 OPS)
6A	SUB INDIRECT (2 OPS)
6B	SUB INDEXED (2 OPS)
6C	MULU DIRECT (2 OPS)
6D	MULU IMMEDIATE (2 OPS)
6 E	MULU INDIRECT (2 OPS)
6 F	MULU INDEXED (2 OPS)
70	ANDB DIRECT (2 OPS)
71	ANDB IMMEDIATE (2 OPS)
72	ANDB INDIRECT (2 OPS)
73	ANDB INDEXED (2 OPS)
74	ADDB DIRECT (2 OPS)
75	ADDB IMMEDIATE (2 OPS)
76	ADDB INDIRECT (2 OPS)
77	ADDB INDEXED (2 OPS)
78	SUBB DIRECT (2 OPS)
79	SUBB IMMEDIATE (2 OPS)
7A	SUBB INDIRECT (2 OPS)
7B	SUBB INDEXED (2 OPS)
7C	MULUB DIRECT (2 OPS)
7D	MULUB IMMEDIATE (2 OPS)
7E	MULUB INDIRECT (2 OPS)
7F	MULUB INDEXED (2 OPS)
80	OR DIRECT
81	OR IMMEDIATE
82	OR INDIRECT
83	OR INDEXED
84	XOR DIRECT
85	XOR IMMEDIATE
86	XOR INDIRECT
87	XOR INDEXED
88	CMP DIRECT
89	CMP IMMEDIATE
8A	CMP INDIRECT
8B	CMP INDEXED
8 C	DIVU DIRECT

7.0 OPCODE TABLE (Continued)

8D	DIVU IMMEDIATE
8E	DIVU INDIRECT
8F	DIVU INDEXED
90	ORB DIRECT
91	ORB IMMEDIATE
92	ORB INDIRECT
93	ORB INDEXED
94	XORB DIRECT
95	XORB IMMEDIATE
96	XORB INDIRECT
97	XORB INDEXED
98	CMPB DIRECT
99	CMPB IMMEDIATE
9A	CMPB INDIRECT
9 B	CMPB INDEXED
9 C	DIVUB DIRECT
9D	DIVUB IMMEDIATE
9E	DIVUB INDIRECT
9 F	DIVUB INDEXED
A0	LD DIRECT
A1	LD IMMEDIATE
A2	LD INDIRECT
A3	LD INDEXED
A4	ADDC DIRECT
A5	ADDC IMMEDIATE
A6	ADDC INDIRECT
A7	ADDC INDEXED
A8	SUBC DIRECT
A9	SUBC IMMEDIATE
AA	SUBC INDIRECT
$A B$	SUBC INDEXED
AC	LDBZE DIRECT
AD	LDBZE IMMEDIATE
AE	LDBZE INDIRECT
AF	LDBZE INDEXED
B0	LDB DIRECT
B1	LDB IMMEDIATE
B2	LDB INDIRECT
B3	LDB INDEXED


B4	ADDCB DIRECT
B5	ADDCB IMMEDIATE
B6	ADDCB INDIRECT
B7	ADDCB INDEXED
B8	SUBCB DIRECT
B9	SUBCB IMMEDIATE
BA	SUBCB INDIRECT
BB	SUBCB INDEXED
BC	LDBSE DIRECT
BD	LDBSE IMMEDIATE
BE	LDBSE INDIRECT
BF	LDBSE INDEXED
C0	ST DIRECT
C1	BMOV
C2	ST INDIRECT
C3	ST INDEXED
C4	STB DIRECT
C5	CMPL
C6	STB INDIRECT
C7	STB INDEXED
C8	PUSH DIRECT
C9	PUSH IMMEDIATE
CA	PUSH INDIRECT
CB	PUSH INDEXED
CC	POP DIRECT
CD	BMOVI
CE	POP INDIRECT
CF	POP INDEXED
D0	JNST
D1	JNH
D2	JGT
D3	JNC
D4	JNVT
D5	JNV
D6	JGE
D7	JNE
D8	JST
D9	JH


DA	JLE
DB	JC
DC	JVT
DD	JV
DE	JLT
DF	JE
E0	DJNZ
E1	DJNZW
E2	TIJMP
E3	**EBR (INDIRECT)
E4	EBMOVI
E5	RESERVED
E6	EJMP
E7	LJMP
E8	ELD INDIRECT
E9	ELD INDEXED
EA	ELDB INDIRECT
EB	ELDB INDEXED
EC	DPTS
ED	EPTS
EE	RESERVED
EF	LCALL
F0	RET
F1	ECALL
F2	PUSHF
F3	POPF
F4	PUSHA
F5	POPA
F6	IDPLD
F7	TRAP
F8	CLRC
F9	SETC
FA	DI
FB	EI
FC	CLRVT
FD	NOP
FE	*DIV/DIVB/MUL/MULB
FF	RST

[^21]
### 8.0 INSTRUCTION SET SUMMARY

Mnemonic	Operands	Operation(1)	Flags(2)						Notes
			z	N	C	V	VT	ST	
ADD/ADDB	2	$D=D+A$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
ADD/ADDB	3	$D=B+A$	$\checkmark$	$\checkmark$	$\nu$	$\nu$	$\uparrow$		
ADDC/ADDCB	2	$D=D+A+C$	$\downarrow$	$\nu$	$\checkmark$	$\nu$	$\uparrow$		
SUB/SUBB	2	$\mathrm{D}=\mathrm{D}-\mathrm{A}$	$\checkmark$	$\checkmark$	$\checkmark$	$\stackrel{r}{ }$	$\uparrow$		
SUB/SUBB	3	$D=B-A$	$\checkmark$	$\checkmark$	$\nu$	$\nu$	$\uparrow$		
SUBC/SUBCB	2	$D=D-A+C-1$	$\downarrow$	$\checkmark$	$\checkmark$	$\nu$	$\uparrow$		
CMP/CMPB/CMPL	2	D - A	$\nu$	$\nu$	$\nu$	$\nu$	$\uparrow$		
MUL/MULU	2	$D, D+2=D \times A$							3
MUL/MULU	3	$D, D+2=B \times A$							3
MULB/MULUB	2	D, D $+1=\mathrm{D} \times \mathrm{A}$							4
MULB/MULUB	3	$D, D+1=B \times A$							4
DIVU	2	$D=(D, D+2) / A, D+2=$ Remainder				$\stackrel{r}{r}$	$\uparrow$		3
DIVUB	2	$D=(D, D+1) / A, D+1=$ Remainder				$\nu$	$\uparrow$		4
DIV	2	$D=(D, D+2) / A, D+2=$ Remainder				$r$	$\uparrow$		
DIVB	2	$D=(D, D+1) / A, D+1=$ Remainder				r	$\uparrow$		
AND/ANDB	2	$D=D$ and $A$	$\checkmark$	$\nu$	0	0			
AND/ANDB	3	$D=B$ and $A$	$\nu$	$\nu$	0	0			
OR/ORB	2	$D=D$ or $A$	$\nu$	$\nu$	0	0			
XOR/XORB	2	$D=D$ (exclusive or) $A$	$\checkmark$	$\checkmark$	0	0			
LD/LDB	2	$D=A$							
ELD/ELDB	2	$D=A$							
ST/STB	2	$\mathrm{A}=\mathrm{D}$							
EST/ESTB	2	$A=D$							
XCH	2	$D \longleftrightarrow A ; D+1 \longleftrightarrow A+1$							
XCHB	2	$D \longleftrightarrow A$							
BMOV, BMOVI/EBMOV	2	$\begin{aligned} & \text { (PTR_HI) }+=\text { (PTR_LOW) }+; \\ & \text { Until COUNT }=0 \end{aligned}$							
LDBSE	2	$D=A ; D+1=\operatorname{Sign}(A)$							4,5
LDBZE	2	$\mathrm{D}=\mathrm{A} ; \mathrm{D}+1=0$							4,5
PUSH	1	SP = SP - 2; (SP) = A							
POP	1	$\mathrm{A}=(\mathrm{SP}) ; \mathrm{SP}=\mathrm{SP}+2$							
PUSHF	0	$\begin{aligned} & S P=S P-2 ;(S P)=P S W ; \\ & P S W=0 ; I=0 ; P S E=0 \end{aligned}$	0	0	0	0	0	0	11
POPF	0	$\mathrm{PSW}=(\mathrm{SP}) ; \mathrm{SP}=\mathrm{SP}+2 ; 1 \leftarrow \nu$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\nu$	11
PUSHA	0	$\begin{aligned} & \text { SP = SP - 2; (SP) }=\text { PSW; } \\ & \text { PSW = 0000H; SP = SP - } 2 ; \\ & \text { (IP) = IMASK1/WSR; } \\ & \text { IMASK } 1=00 \mathrm{H} ; 1=0 ; \text { PSE }=0 \end{aligned}$	0	0	0	0	0	0	
POPA	0	$\begin{aligned} & \text { IMASK1/WSR }=(S P) ; \text { SP }=S P+2 ; \\ & \text { PSW }=(S P) ; S P=S P+2 \end{aligned}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	

### 8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation(1)	Flags(2)						Notes
			z	N	C	V	VT	ST	
SJMP	1	$P C=P C+11$-Bit-Offset							6
LJMP	1	$\mathrm{PC}=\mathrm{PC}+16$-Bit-Offset							6
EJMP	1	$P C=P C+24$-Bit Offset							6,12
EBR[Indirect]	1	$P C=(A)$							12
TIJMP	3	$\mathrm{PC}=$ ([index] and MASK)2 + (Table)							
TRAP	0	$\begin{aligned} & S P=S P-2 ;(S P)=P C ; \\ & P C=F F 2010 H \end{aligned}$							10
ECALL	1	$\begin{aligned} & S P=S P-4 ;(S P)=P C \\ & P C=P C+24-B i t \text { Offset } \end{aligned}$							6,12
LCALL   (16-Bit Mode)	1	$\begin{aligned} & S P=S P-2 ;(S P)=P C \\ & P C=P C+16 \text {-Bit Offset } \end{aligned}$							6
$\begin{aligned} & \text { LCALL } \\ & \text { (24-Bit Mode) } \end{aligned}$	1	$\begin{aligned} & S P=S P-4 ;(S P)=P C \\ & P C=P C+16 \text {-Bit Offset } \end{aligned}$							6,13
$\begin{aligned} & \hline \text { SCALL } \\ & \text { (16-Bit Mode } \end{aligned}$	1	$\begin{aligned} & S P=S P-2 ;(S P)=P C \\ & P C=P C+11 \text {-Bit Offset } \end{aligned}$							6
SCALL   (24-Bit Mode)	1	$\begin{aligned} & S P=S P-4 ;(S P)=P C \\ & P C=P C+11-\text { Bit Offset } \end{aligned}$							6,13
$\begin{array}{\|l\|} \hline \text { RET } \\ \text { (16-Bit Mode) } \\ \hline \end{array}$	0	$\mathrm{PC}=(\mathrm{SP}) ; \mathrm{SP}=\mathrm{SP}+2$							
$\begin{array}{\|l\|} \hline \text { RET } \\ \text { (24-Bit Mode) } \end{array}$	0	$P C=(S P) ; ~ S P=S P+4$							13
J (conditioned)	1	PC = PC + 8-Bit-Offset (If Taken)							6
JC	1	Jump if $C=1$							6
JNC	1	Jump if $\mathrm{C}=0$							6
JE	1	Jump if $Z=1$							6
JNE	1	Jump if $Z=0$							6
JGE	1	Jump if $\mathrm{N}=0$							6
JLT	1	Jump if $\mathrm{N}=1$							6
JGT	1	Jump if $\mathrm{N}=0$ and $\mathrm{Z}=0$							6
JLE	1	Jump if $\mathrm{N}=1$ or $\mathrm{Z}=1$							6
JH	1	Jump if $C=1$ and $Z=0$							6
JNH	1	Jump if $C=0$ or $Z=1$							6
JV	1	Jump if $\mathrm{V}=0$							6
JNV	1	Jump if $\mathrm{V}=1$							6
JVT	1	Jump if VT $=1$; Clear VT					0		6
JNVT	1	Jump if VT $=0$; Clear VT					0		6
JST	1	Jump if ST $=1$							6
JNST	1	Jump if ST $=0$							6
JBS	3	Jump if Specific Bit $=1$							6,7
JBC	3	Jump if Specific Bit $=0$							6,7
DJNZ/DJNZW	1	$\begin{aligned} & D=D-1 ; \\ & \text { If } D \neq 0 \text { then } P C=P C+8 \text {-Bit-Offset } \end{aligned}$							6

8XC196NT/NQ QUICK REFERENCE
8.0 INSTRUCTION SET SUMMARY (Continued)

Mnemonic	Operands	Operation ${ }^{(1)}$	Flags(2)						Notes
			z	N	C	V	VT	ST	
DEC/DECB	1	$D=D-1$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
NEG/NEGB	1	$D=0-\mathrm{D}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
INC/INCB	1	$\mathrm{D}=\mathrm{D}+1$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		
EXT	1	$D=D ; D+2=\operatorname{Sign}(\mathrm{D})$	$\checkmark$	$\nu$	0	0			3
EXTB	1	$D=D ; D+1=\operatorname{Sign}(\mathrm{D})$	$\checkmark$	$\nu$	0	0			4
NOT/NOTB	1	D = Logical Not ( D )	$\checkmark$	$\checkmark$	0	0			
CLR/CLRB	1	$\mathrm{D}=0$	1	0	0	0			
SHL/SHLB/SHLL	2	$\mathrm{C} \leftarrow \mathrm{msb} \bullet \bullet \bullet \mathrm{lsb} \leftarrow 0$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\uparrow$		8
SHR/SHRB/SHRL	2	$0 \rightarrow$ msb•**lsb $\rightarrow$ C	$\checkmark$	$\nu$	$\checkmark$	0		$\checkmark$	8
SHRA/SHRAB/SHRAL	2	$\mathrm{msb} \rightarrow \mathrm{msb} \bullet \bullet \bullet \mathrm{lsb} \rightarrow \mathrm{C}$	$\checkmark$	$\checkmark$	$\checkmark$	0		$\checkmark$	8
NORML	2	Left Shift until msb $=1 ; \mathrm{D}=$ Shift Count	$\checkmark$	$\checkmark$	0				8
SETC	0	$C=1$			1				
CLRC	0	$C=0$			0				
CLRVT	0	$\mathrm{VT}=0$					0		
RST	0	$\mathrm{PC}=2080 \mathrm{H}$	0	0	0	0	0	0	9
DI	0	Disable All Interrupts ( $1=0$ )							
El	0	Enable All Interupts ( $1=1$ )							
DPTS	0	Disable PTS Interrupts (PSE = 0)							
EPTS	0	Enable PTS Interrupts (PSE = 1)							
NOP	0	$P C=P C+1$							
SKIP	0	$P C=P C+2$							
IPLPD	1	Idle Mode IF Key = 1;   Powerdown Mode IF Key $=2$   Chip RESET Otherwise							

NOTES:

1. If the mnemonic ends in " $B$ " a byte operation is performed, otherwise a word operation is performed. Operands $D, B$ and A must conform to the alignment rules for the required operand type. D and B are locations in the Lower Register File; A can be located anywhere in memory.
2. The symbols indicate the effects on the flags:

- Cleared or set as appropriate

0 Cleared
1 Set
$\uparrow$ Set if appropriate; never cleared
$\downarrow$ Cleared if appropriate; never set
3. $D, D+2$ are consecutive WORDs in memory; $D$ is DOUBLE-WORD aligned.
4. $D, D+1$ are consecutive BYTEs in memory; $D$ is WORD aligned.
5. Changes a BYTE to WORD.
6. Offset is a 2 's complement number.
7. Specific Bit must be in or windowed into the Lower Register File.
8. The "L" (LONG) suffix indicates DOUBLE-WORD operations.
9. Initiates a RESET by pulling RESET low. Software should re-initialize all the neccessary registers with code starting at FF2080H.
10. The assembler does not accept this mnemonic (use the macro file for definition).
11. I = Interrupt Enable (PSW1).
12. These instructions will only function in 24 -bit mode.
13. These instructions push/pop 2 additional bytes on/off stack in 24-bit mode.

### 9.0 INSTRUCTION LENGTH/OPCODES

Mnemonic	Direct	Immed	Indirect		Indexed	
			Normal(1)	A-Inc(1)	Short(1)	Long(1)
ADD (3-op)	4/44	5/45	4/46	4/46	5/47	6/47
SUB (3-op)	4/48	5/49	4/4A	4/4A	5/4B	6/4B
ADD (2-op)	3/64	4/65	3/66	3/66	4/67	5/67
SUB (2-op)	3/68	4/69	3/6A	3/6A	4/6B	5/6B
ADDC	3/A4	4/A5	3/A6	3/A6	4/A7	5/A7
SUBC	3/48	4/A9	3/AA	3/AA	4/AB	5/AB
CMP	3/88	4/89	3/8A	3/8A	4/8B	5/8B
ADDB (3-op)	4/54	4/55	4/56	4/56	5/57	6/57
SUBB (3-op)	4/58	4/59	4/5A	4/5A	5/5B	6/5B
ADDB (2-op)	3/74	3/75	3/76	3/76	4/77	5/77
SUBB (2-op)	3/78	3/79	$3 / 7 \mathrm{~A}$	3/7A	4/7B	5/7B
ADDCB	3/B4	3/B5	3/B6	3/B6	4/B7	5/B7
SUBCB	3/88	3/89	3/BA	3/BA	4/BB	5/BB
CMPB	3/98	3/99	3/9A	3/9A	4/9B	5/9B
MUL (3-op)	5/(2)	6/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULU (3-op)	4/4C	5/4D	4/4E	4/4E	5/4F	6/4F
MUL (2-op)	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULU (2-op)	3/6C	4/6D	3/6E	3/6E	4/6F	5/6F
DIV	4/(2)	5/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVU	3/8C	4/8D	3/8E	3/8E	4/8F	5/8F
MULB (3-op)	5/(2)	5/(2)	5/(2)	5/(2)	6/(2)	7/(2)
MULUB (3-op)	4/5C	4/5D	4/5E	4/5E	5/5F	6/5F
MULB (2-op) ,	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
MULUB (2-op)	3/7C	3/7D	3/7E	3/7E	4/7F	5/7F
DIVB	4/(2)	4/(2)	4/(2)	4/(2)	5/(2)	6/(2)
DIVUB	3/9C	3/9D	3/9E	3/9E	4/9F	5/9F
AND (3-op)	4/40	5/41	4/42	4/42	5/43	6/43
AND (2-op)	3/60	4/61	3/62	3/62	4/63	5/63
OR (2-op)	3/80	4/81	3/82	3/82	4/83	5/83
XOR	3/84	4/85	3/86	3/86	4/87	5/87
ANDB (3-op)	4/50	4/51	4/52	4/52	5/53	5/53
ANDB (2-op)	3/70	3/71	3/72	3/72	4/73	4/73
ORB (2-op)	3/90	3/91	3/92	3/92	4/93	5/93
XORB	3/94	3/95	3/96	3/96	4/97	5/97
PUSH	2/C8	3/C9	2/CA	2/CA	3/CB	4/CB
POP	2/CC		2/CE	2/CE	3/CF	4/CF
LD	3/A0	4/A1	3/A2	3/A2	4/A3	5/A3
LDB	3/B0	3/B1	3/B2	3/B2	4/B3	5/B3
ELD			3/E8	3/E8		6/E9
ELDB			3/EA	3/EA		6/EB
ST	3/C0		$3 / \mathrm{C} 2$	3/C2	4/C3	5/C3
STB	3/C4		3/C6	3/C6	4/C7	5/C7
EST			3/1C	3/1C		6/1D
ESTB			3/1E	3/1E		6/1F

### 9.0 INSTRUCTION LENGTH/OPCODES (Continued)

Mnemonic	Direct	Immed	Indirect		Indexed	
			Normal(1)	A-Inc(1)	Short(1)	Long(1)
XCH	$3 / 04$	-	-	-	$4 / 0 \mathrm{~B}$	$5 / 0 \mathrm{~B}$
XCHB	$3 / 14$	-	-	-	$4 / 1 \mathrm{~B}$	$5 / 1 \mathrm{~B}$
LDBSE	$3 / \mathrm{BC}$	$3 / \mathrm{BD}$	$3 / \mathrm{BE}$	$3 / \mathrm{BE}$	$4 / \mathrm{BF}$	$5 / \mathrm{BF}$
LBSZE	$3 / \mathrm{AC}$	$3 / \mathrm{AD}$	$3 / \mathrm{AE}$	$3 / \mathrm{AE}$	$4 / \mathrm{AF}$	$5 / \mathrm{AF}$


Mnemonic	Length/Opcode
PUSHF	1/F2
POPF	1/F3
PUSHA	1/F4
POPA	1/F5
TRAP	1/F7
LCALL	3/EF
SCALL	2/28-2F(3)
ECALL	4/F1
RET	1/F0
LJMP	3/E7
SJMP	2/20-27(3)
EJMP	4/E6
EBR[]	2/E3
TIJMP	4/E2
JNST	1/D0
JST	1/D8
JNH	1/D1
JH	1/D9
JGT	1/D2
JLE	1/DA
JNC	1/B3
JC	1/D8
JNVT	1/D4
JVT	1/DC
JNV	1/D5
JV	1/DD
JGE	1/D6
JLT	1/DE


Mnemonic	Length/Opcode
JNE	$1 / D 7$
JE	$1 / D F$
JBC	$3 / 30-37$
JBS	$3 / 38-3 F$
DJNZ	$3 / E 0$
DJNZW	$3 / E 1$
NORML	$3 / 0 F$
SHRL	$3 / 0 C$
SHLL	$3 / 0 D$
SHRAL	$3 / 0 E$
SHR	$3 / 08$
SHRB	$3 / 18$
SHL	$3 / 09$
SHLB	$3 / 19$
SHRA	$3 / 0 A$
SHRAB	$3 / 1 A$
CLRC	$1 / F 8$
SETC	$1 / F 9$
DI	$1 / F A$
EI	$1 / F B$
DPTS	$1 / E C$
EPTS	$1 / E D$
CLRVT	$1 / F C$
NOP	$1 / F D$
RST	$1 / F F$
SKIP	$2 / 00$
IDLPD	$1 / F 6$
BMOV	$3 / C 1$
BMOVi	$3 / C D$
EBMOVI	$3 / E 4$

NOTES:

1. Indirect and indirect + share the same opcodes, as do short and long indexed opcodes. If the second byte is even, use indirect or short indexed. If odd, use indirect or long indexed.
2. The opcodes for signed multiply and divide are the unsigned opcode with an "FE" prefix.
3. The 3 least significant bits of the opcode are concatenated with the 8 bits to form an 11-bit, 2 's complement offset.

8XC196NT/NQ QUICK REFERENCE
10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES)

Instruction	Direct	Immediate	Indirect		Indexed		Extended
			Normal	A-Inc	Short	Long	
ADD (3op)	5	6	7/10	8/11	7/10	8/11	
SUB (30p)	5	6	7/10	8/11	7/10	8/11	
ADD (2op)	4	5	6/8	7/9	6/8	7/9	
SUB (2op)	4	5	6/8	7/9	6/8	7/9	
ADDC	4	5	6/8	7/9	6/8	7/9	
SUBC	4	5	6/8	7/9	6/8	7/9	
CMP	4	5	6/8	7/9	6/8	7/9	
ADDB (3op)	5	5	7/10	8/11	7/10	8/11	
SUBB (30p)	5	5	7/10	8/11	7/10	8/11	
ADDB (2op)	4	4	6/8	7/9	6/8	7/9	
SUBB (2op)	4	4	6/8	7/9	6/8	7/9	
ADDCB	4	4	6/8	7/9	6/8	7/9	
SUBCB	4	4	6/8	7/9	6/8	7/9	
CMPB	4	4	6/8	7/9	6/8	7/9	
CMPL	7						
MUL (30p)	16	17	18/21	19/22	19/22	20/23	
MULU (3op)	14	15	16/19	17/20	17/20	18/21	
MUL (20p)	16	17	18/21	19/22	19/22	20/23	
MULU (2op)	14	15	16/19	17/20	17/20	18/21	
DIV	26	27	28/31	29/32	29/32	30/33	
DIVU	24	25	26/29	27/30	27/30	28/31	
MULB (30p)	12	12	14/17	15/18	15/18	16/19	
MULUB (30p)	10	10	12/15	12/16	12/16	14/17	
MULB (2op)	12	12	14/17	15/18	15/18	16/19	
MULUB (2op)	10	10	12/15	12/16	12/16	14/17	
DIVB	18	18	20/23	21/24	21/24	22/25	
DIVUB	16	16	18/21	19/22	19/22	20/23	
AND (30p)	5	6	7/10	8/11	7/10	8/11	
AND (2op)	4	5	6/8	7/9	6/8	7/9	
OR	4	5	6/8	7/9	6/8	7/9	
XOR	4	5	6/8	7/9	6/8	7/9	
ANDB (30p)	5	5	7/10	8/11	7/10	8/11	
ANDB (2op)	4	4	6/8	7/9	6/8	7/9	
ORB	4	4	6/8	7/9	6/8	7/9	
XORB	4	4	6/8	7/9	6/8	7/9	
LD	4	5	5/8	6/8	6/9	7/10	

10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

Instruction	- Direct	Immediate	Indirect		Indexed		Extended
			Normal	A-Inc	Short	Long	
ST	4		5/8	6/9	6/9	7/10	
LDB	4	4	5/8	6/8	6/9	7/10	
STB	4		5/8	6/9	6/9	7/10	
ELD			6/9	8/11			8/11
EST			6/9	8/11			8/11
ELDB			6/9	8/11			8/11
ESTB			6/9	8/11			8/11
XCH	5				8/13	9/14	
STB	4				8/13	9/14	
XCHB	5				8/13	9/14	
BMOV	$6+8$ per Word		$6+11 / 14$ per Word				
BMOVI	$7+8$ per Word   +14 for Each Interrupt		$7+11 / 14$ per Word   +14 for Each Interrupt				
EBMOVI			$8+14 / 20$ per Word   +16 for Each Interrupt				
LDBSE, LDBZE	4	4	5/7	6/8	6/8	7/9	
PUSH (int)	6	7	9/12	10/13	10/13	11/14	
POP (int)	8		10/12	11/13	11/13	12/14	
PUSHF (int)	6						
POPF (int)	7						
PUSHA (int)	12						
POPA (int)	12						
PUSH (ext)	8	9	11/14	12/15	12/15	13/16	
POP (ext)	11		13/15	14/16	14/16	15/17	
PUSHF (ext)	8	.					
POPF (ext)	10						
PUSHA (ext)	18						
POPA (ext)	18						
EJMP (24-Bit Mode)	8						
LJMP	7						
SJMP	7						
EBR[Indirect](24-Bit Mode)	9						
BR[Indirect]	7						
TIJMP (Internal Table)	15						
TIJMP (External Table)	18						
TRAP (24-Bit Mode, Int)	19						
TRAP (16-Bit Mode, Int)	16						

10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)

Instruction	Direct	Immediate	Indirect		Indexed		Extended
			Normal	A-Inc	Short	Long	
ECALL (24-Bit Mode, Int)	16						
LCALL (16-Bit Mode, Int)	11						
LCALL (24-Bit Mode, Int)	15						
SCALL (16-Bit Mode, Int	11						
SCALL (24-Bit Mode, Int)	15						
RET (24-Bit Mode, Int)	16						
RET (16-Bit Mode, Int)	11						
TRAP (24-Bit Mode, Ext)	25						
TRAP (16-Bit Mode, Ext)	18						
ECALL (24-Bit Mode, Ext)	22						
LCALL (16-Bit Mode, Ext)	13						
LCALL (24-Bit Mode, Ext)	18						
SCALL (16-Bit Mode, Ext)	13						
SCALL (24-Bit Mode, Ext)	18						
RET (24-Bit Mode, Ext)	22						
RET (16-Bit Mode, Ext)	14						
JNST, JST	4/8 Jump Not Taken/Jump Taken						
JNH, JH	4/8 Jump Not Taken/Jump Taken						
JGT, JLE	4/8 Jump Not Taken/Jump Taken						
JNC, JC	4/8 Jump Not Taken/Jump Taken						
JNVT, JVT	4/8 Jump Not Taken/Jump Taken						
JNV, JV	4/8 Jump Not Taken/Jump Taken						
JGE, JLT	4/8 Jump Not Taken/Jump Taken						
JNE, JE	4/8 Jump Not Taken/Jump Taken						
JBS, JBC	5/9 Jump Not Taken/Jump Taken						
DJNZ	5/9 Jump Not Taken/Jump Taken						
DJNZW	6/10 Jump Not Taken/Jump Taken						
CLR, NOT, NEG	3						
DEC, INC	3						
EXT	4						
CLRB, NOTB	3						
DECB, INCB	3						
NEGB	3						
EXTB	4						
NORML	$8+1$ per Shift (9 for 0 Shift)						
SHRL	$7+1$ per Shift ( 8 for 0 Shift)						
SHLL	$7+1$ per Shift ( 8 for 0 Shift)						

### 10.0 INSTRUCTION EXECUTION TIMES (IN STATE TIMES) (Continued)



## NOTES:

The timing figures are minimum execution times expressed as state times (one period of CLKOUT = two oscillator periods) and are based on the following assumptions:

1. The opcode, along with any required operands, have been pre-fetched and reside in the instruction queue.
2. The bus controller operates with the 16 -bit bus selected and without wait states for external memory references and prefetches. For instructions with indirect or indexed addressing, execution times separated by a slash are for instructions requiring a fetch from internal/external memory.
3. Times for jumps, calls and returns include the 4 state times required to flush the pre-fetch queue and to fetch the opcode at the destination address. This is reflected in the jump taken/not-taken times shown in the table.
11.0 INTERRUPT TABLE

Name	Source	Vector	Priority
INT15	NMI	FF203EH	32 (Highest)
PTS14	EXTINT Pin	FF205CH	31
PTS13	Reserved	FF205AH	30
PTS12	Receive SIO	FF2058H	29
PTS11	Transmit SIO	FF2056H	28
PTS10	SSIO Channel 1 Transfer	FF2054H	27
PTS09	SSIO Channel 0 Transfer	FF2052H	26
PTS08	Command Buffer Full (SLP)	FF2050H	25
PTS07	Input Buffer Full (SLP)	FF204EH	24
PTS06	Output Buffer Empty (SLP)	FF204CH	23
PTS05	A/D Conversion Complete	FF204AH	22
PTS04	EPAO	FF2048H	21
PTS03	EPA1	FF2046H	20
PTS02	EPA2	FF2044H	19
PTS01	EPA3	FF2042H	18
PTS00	EPA4-9, Overrun (EPAO-9), Compare0-1, Timer Overflow	FF2040H	17
INT14	EXTINT Pin	FF203CH	16
INT13	Reserved	FF203AH	15
INT12	Receive SIO	FF2038H	14
INT11	Transmit SIO	FF2036H	13
INT10	SSIO Channel 1 Transfer	FF2034H	12
INT09	SSIO Channel 0 Transfer	FF2032H	11
INT08	Command Buffer Full (SLP)	FF2030H	10
N/A	UNIMPLEMENTED OPCODE	FF2012H	09
N/A	TRAP	FF2010H	08
INT07	Input Buffer Full (SLP)	FF200EH	07
INT06	Output Buffer Empty (SLP)	FF200CH	06
INT05	A/D Conversion Complete	FF200AH	05
INT04	EPAO	FF2008H	04
INT03	EPA1	FF2006H	03
INT02	EPA2	FF2004H	02
INT01	EPA3	FF2002H	01
INT00	EPA4-9, Overrun (EPAO-9), Compare0-1, Timer Overflow	FF2000H	00 (Lowest)

### 12.0 FORMULAS

State Time $=2$ Oscillator Periods
TIJMP Calculation-
Destination $=([$ INDEX] AND INDEX_MASK $) \times 2+[$ TBASE $]$

## EPA Prescaler-

P2	P1	P0	
0	0	0	$\div 1$
0	0	1	$\div 2$
0	1	0	$\div 4$
0	1	1	$\div 8$
1	0	0	$\div 16$
1	0	1	$\div 32$
1	1	0	$\div 64$
1	1	1	Reserved

## SIO Baud Rate-

Modes 1, 2 and 3
SP_BAUD $=\frac{\text { XTAL1 Frequency }}{\text { Baud Rate } \times 16}-$
$\left(B \geq 0, S P \_B A U D .15=1\right)$
SP_BAUD $=\frac{\text { T1CLK Frequency }}{\text { Baud Rate } \times 8}-1$
$\left(B>0, S P \_B A U D .15=0\right)$

## Mode 0

SP_BAUD $=\frac{\text { XTAL1 Frequency }}{\text { Baud Rate } \times 2}-1$
$\left(B>0, S P \_B A U D .15=1\right)$
SP_BAUD $=\frac{\text { T1CLK Frequency }}{\text { Baud Rate }}-1 \quad\left(B>0, S P \_B A U D .15=0\right)$

SSIO Baud Rate-
SSIO. $0-$ SSIO. $6=\frac{\text { XTAL1 Frequency }}{\text { Baud Rate } \times 8}-1$
A/D-
Sample States $=4 \times$ SAM +1
(SAM $=$ AD__TIME. $5-$ AD_TIME.7)
Conversion States $=B \times(C O N V+1)+1.5$
(CONV $=$ AD__TIME. $0-$ AD__TIME.4)
( $\mathrm{B}=8$ for 8 -Bit Conversion)
( $B=10$ for 10 -Bit Conversion)
Total Conversion Time $=$ State Time $\times[(4 \times S A M)+(B \times(C O N V+1))+2.5]$
Programming Pulse Width-
$\mathrm{PPR}=\frac{((\mathrm{PPW}) \times(\text { FOSC }))-144}{144}+32768$

### 13.0 RESET STATUS

SFR	Reset Value
AD__RESULT	$7 \mathrm{F80H}$
AD_COMMAND	OCOH
AD_TEST	OCOH
AD_TIME	OFFH
SSIOO_BUF, SSIO1_BUF	OOH
SSIO0_CON, SSIO1_CON	00H
SSIO_BAUD (Baud Rate Control (Read))	0XXXXXXXB
SSIO__BAUD (Baud Rate Down Count (Write))	00H
SBUF_RX, SBUF_TX	00H
SP_STAT	OBH
SP_CON	EOH
SP_BAUD	0000H
COMPO_CON, COMP1_CON	00H
COMP0__TIME, COMP1_TIME	0000H
EPA1_CON, EPA3_CON	0000H
EPAx_CON ( $x=0,2,4-9$ )	OOH
EPAx_TIME ( $\mathrm{x}=0-9$ )	0000H
TIMER1, TIMER2	0000H
T1CONTROL, T2CONTROL	OOH
EPA_MASK, EPA_MASK1	00H
EPA__PEND, EPA_PPEND1	00H
EPAIPV	00H
P0_PIN, P1__PIN, P3_PIN, P4__PIN, P6_PIN, EP__PIN	XXH
P1_MODE, P6_MODE	OOH
P1_DIR, P5__DIR, P6__DIR	OFFH
P1_REG, P3_REG, P4_REG, P5__REG, P6_REG, EP__REG	OFFH
P2_PIN, P5_PIN	1XXXXXXXB
P2_MODE, P5_MODE	80 H
P2_DIR, P2_REG	7 FH
INT__MASK, INT__PEND	00H
INT_MASK1, INT__PEND1	00H
PTSSRV, PTSSEL	0000H
WSR	OOH

Pin States, during Reset, Idle and Powerdown

Pin Name	Reset	Idle	PD
$\overline{\text { RESET }}$	wk1	wk1	wk1
ALE (P5.0)	wk1	(A)	(A)
INST (P5.1)	wk0	(A)	(A)
$\overline{\mathrm{RD}}$ (P5.3), $\overline{\mathrm{WR}}$ (P5.2), SPLINT (P5.4)	wk1	(I)	(I)
BHE (P5.5)	wk1	(B)	(B)
READY (P5.6), BUSW (P5.7)	wk1	(C)	(C)
EA, NMI	HZ	HZ	HZ
EP, P3, P4/AD (EA = 0)	wk1	HZ	HZ
EP, P3, P4/AD (EA = 1)	wk1	ODIO	ODIO
$\mathrm{ACH} / \mathrm{PO}$	HZ	HZ	HZ
P1	wk1	(D)	(D)
CLKOUT (P2.7)	clk, LZ	(E)	(G)
P2.0-P2.6	wk1	(E)	(E)
P6.0-P6.7	wk1	(F)	(F)
$\mathrm{V}_{\text {PP }}$	HZ	1, LZ	1, LZ
XTAL1	HZ	HZ	HZ
XTAL2	osc, LZ	osc, LZ	(H)

## NOTES:

(A) If P5__MODE. $x=0$, port is as programmed. If P5__MODE. $x=1$ and $\overline{\text { HLDA }}=1$, then LZ 0 . If P5_MODE. $x=1$ and HLDA $=0$, then HZ .
(B) If P5_MODE. $x=0$, port is as programmed. If P5_MODE. $x=1$ and $\overline{H L D A}=1$, then LZ 1. If P5_MODE. $x=1$ and HLDA $=0$, then HZ .
(C) If P5__MODE.x $=0$, port is as programmed. If P5__MODE. $x=1$, then HZ .
(D) If P1__MODE. $x=0$, port is as programmed. If P1_MODE. $x=1$, pin is as specified by P1_DIR and associated peripheral.
(E) If P2_MODE. $x=0$, port is as programmed. If P2_MODE. $x=1$, pin is as specified by P2_DIR and associated peripheral.
(F) If P6__MODE.x $=0$, port is as programmed. If P6__MODE. $x=1$, pin is as specified by P6__DIR and associated peripheral.
(G) If P2_MODE. $7=0$, port is as programmed. If P2_MODE. $7=1$, then LZ 0 .
(H) If XTAL1 $=1$, then LZ 0 . IF XTAL1 $=0$, then LZ 1 .
(I) If P5__MODE. $x=0$, port is as programmed. If P5__MODE. $x=1$, then pin is as specified by P5_DIR and associated peripheral.
$\mathrm{HZ}=$ High impedance
LZ = Low Impedance
wk1 = Weakly pulled high
ODIO = Open drain input/output
osc = Oscillator
wkO = Weakly pulled low

# MCS ${ }^{\circledR}$-96 A/D Converter Quick Reference 

### 1.0 The MCS-96 A/D Converter

Analog inputs to the MCS-96 family are handled by the A/D converter system. As shown in Figure 1, the converter system has an 8 channel multiplexer, a sample and hold, and a 10 -bit successive approximation A/D converter. Conversions can be performed on one of 8 channels, the inputs of which share pins with port 0 .

There are various versions of the A/D converter, depending on the specific device type. The 8 X 9 X family offers a 10 -bit fixed conversion time. The 8 XC 196 KB family offers a 10 -bit conversion with either a fast or slow conversion time. The 8XC196KC family offers an 8 - or 10 -bit conversion with programmable sample and convert times. The 8 XC 196 KR has all of the KC features, with the addition of offset correction and internal conversion of $\mathrm{V}_{\text {ref }}$ and ANGND. The 8XC196MC includes all of the KR features, and the multiplexer has been expanded to 13 analog input channels.

This chapter describes the basic operation and terminology of the A/D converter. The different devices control the $\mathrm{A} / \mathrm{D}$ in different ways, but the principals of operation remain the same throughout.

### 1.1 A/D Conversion Process

The conversion process is initiated by an HSO or EPA command, or by writing a one to the GO Bit in the A/D Control Register. Either activity causes a start conversion signal to be sent to the A/D converter control logic.

Once the A/D unit receives a start conversion signal, there is a one state time delay before sampling (Sample Delay) while the successive approximation register is reset and the proper multiplexer channel is selected. After the sample delay, the multiplexer output is connected to the sample capacitor and remains connected for the sample time. After the "sample window" closes, the input to the sample capacitor is disconnected from the multiplexer so that changes on the input pin will not alter the stored charge while the conversion is in progress. The comparator is then auto-zeroed and the conversion begins. The sample delay and sample time uncertainties are each approximately $\pm 50 \mathrm{~ns}$, independent of clock speed.

To perform the actual analog-to-digital conversion the MCS-96 implements a successive approximation algorithm. The converter hardware consists of a 256 -resistor ladder, a comparator, coupling capacitors and a 10-bit successive approximation register (SAR) with logic that guides the process. The resistor ladder provides 20 mV steps $\left(\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}\right)$, while capacitive coupling creates 5 mV steps within the 20 mV ladder voltages. Therefore, 1024 internal reference voltages are available for comparison against the analog input to generate a 10 -bit conversion result.

A successive approximation conversion is performed by comparing a sequence of reference voltages, to the ana$\log$ input, in a binary search for the reference voltage that most closely matches the input. The $1 / 2$ full scale reference voltage is the first tested. This corresponds to a 10 -bit result where the most significant bit is zero, and all other bits are ones ( 0111.1111 .11 b ). If the analog input was less than the test voltage, bit 10 of the SAR is left a zero, and a new test voltage of $1 / 4$ full scale (0011.1111.11b) is tried. If this test voltage was lower than the analog input, bit 9 of the SAR is set and bit 8 is cleared for the next test ( 0101.1111 .11 b ). This binary search continues until 10 tests have occurred, at which time the valid 10 -bit conversion result resides in the SAR where it can be read by software.

### 1.2 A/D Interface Suggestions

The external interface circuitry to an analog input is highly dependent upon the application, and can impact converter characteristics. In the external circuit's design, important factors such as input pin leakage, sample capacitor size and multiplexer series resistance from the input pin to the sample capacitor must be considered.

These factors are idealized in Figure 1. The external input circuit must be able to charge a sample capacitor $\left(\mathrm{C}_{\mathrm{S}}\right)$ through a series resistance ( $\mathrm{R}_{\mathrm{I}}$ ) to an accurate voltage given a DC leakage ( $\mathrm{I}_{\mathrm{L}}$ ). Typically $\mathrm{C}_{\mathrm{S}}$ is around $2 \mathrm{pF}, \mathrm{R}_{\mathrm{I}}$ is around $5 \mathrm{~K} \Omega$ and $\mathrm{I}_{\mathrm{L}}$ is specified as $3 \mu \mathrm{~A}$. In determining the necessary source impedance $\mathrm{R}_{\mathbf{S}}$, the value of $\mathrm{V}_{\text {BIAS }}$ is not important.


Figure 1. Idealized A/D Sampling Circuitry
External circuits with source impedances of $1 \mathrm{~K} \Omega$ or less will be able to maintain an input voltage within a tolerance of about $\pm 0.61 \mathrm{LSB}(1.0 \mathrm{~K} \Omega \times 3.0 \mu \mathrm{~A}=$ 3.0 mV ) given the DC leakage. Source impedances above $2 \mathrm{~K} \Omega$ can result in an external error of at least one LSB due to the voltage drop caused by the $3 \mu \mathrm{~A}$ leakage. In addition, source impedances above $25 \mathrm{~K} \Omega$ may degrade converter accuracy as a result of the internal sample capacitor not being fully charged during the sample window.

If large source impedances degrade converter accuracy because the sample capacitor is not charged during the sample time, an external capacitor connected to the pin compensates for this. Since the sample capacitor is 2 pF , a $0.005 \mu \mathrm{~F}$ capacitor ( 2048 * 2 pF ) will charge the sample capacitor to an accurate input voltage of $\pm 0.5$ LSB. An external capacitor does not compensate for the voltage drop across the source resistance, but charges the sample capacitor fully during the sample time.

Placing an external capacitor on each analog input will also reduce the sensitivity to noise, as the capacitor combines with series resistance in the external circuit to form a low-pass filter. In practice, one should include a small series resistance prior to the external capacitor on the analog input pin and choose the largest capacitor value practical, given the frequency of the signal being converted. This provides a low-pass filter on the input, while the resistor will also limit input current during over-voltage conditions.

Figure 2 shows a simple analog interface circuit based upon the discussion above. The circuit in the figure also provides limited protection against over-voltage conditions on the analog input. Should the input voltage inappropriately drop significantly below ground, diode D 2 will forward bias at about 0.8 DCV . Since the specification of the pin on most devices has an absolute maximum low voltage of -0.3 V , this will leave about 0.5 V across the $270 \Omega$ resistor, or about 2 mA of current. This should limit the current to a safe amount. Note that if any input pins are driven much beyond $\mathrm{V}_{\text {REF }}$ or below ANGND, the accuracy of all analog input channels may be adversely affected. This is because the input protection circuit will start to conduct, thus injecting current into the internal reference circuitry and upsetting the reference voltage. Refer to the data sheet for exact device specifications.

However, before any circuit is used in an actual application, it should be thoroughly analyzed for applicability to the specific problem at hand.


Figure 2. Suggested A/D Input Circuit

## ANALOG REFERENCES

Reference supply levels and noise strongly influence the absolute accuracy of the conversion. For this reason, it is recommended that the ANGND pin be tied to the $\mathrm{V}_{\text {SS }}$ pins close to the device. Bypass capacitors should also be used between $V_{\text {REF }}$ and ANGND. ANGND should be within about a tenth of a volt of $\mathrm{V}_{\text {SS }} . \mathrm{V}_{\text {REF }}$ should be well regulated and used only for the A/D converter. The VREF supply needs to be able to source around 5 mA .

Note that if only ratiometric information is desired, $\mathrm{V}_{\text {REF }}$ can be connected to $\mathrm{V}_{\text {CC }}$. In addition, $\mathrm{V}_{\text {REF }}$ and ANGND must be connected even if the A/D converter is not being used. Remember that Port 0 receives its power from the $V_{\text {REF }}$ and ANGND pins even when it is used as digital I/O.

### 1.3 The A/D Transfer Function

The conversion result is a 8 - or 10 -bit ratiometric representation of the input voltage, so the numerical value obtained from the conversion will be:

$$
\begin{aligned}
& \text { INT }\left[255 \times\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{ANGND}\right) /\left(\mathrm{V}_{\mathrm{REF}}-\mathrm{ANGND}\right)\right] \text { or } \\
& \text { INT }\left[1023 \times\left(\mathrm{V}_{\mathbb{I N}}-\mathrm{ANGND}\right) /\left(\mathrm{V}_{\mathrm{REF}}-\mathrm{ANGND}\right)\right]
\end{aligned}
$$

This produces a stair-stepped transfer function when the output code is plotted versus input voltage (see Figure 3). The resulting digital codes can be taken as simple ratiometric information, or they provide information about absolute voltages or relative voltage changes on the inputs. The more demanding the application is on the A/D converter, the more important it is to fully understand the converter's operation. For simple applications, knowing the absolute error of the converter is sufficient. However, closing a servo-loop with analog inputs necessitates a detailed understanding of an $A / D$ converter's operation and errors.

The errors inherent in an analog-to-digital conversion process are many: quantizing error, zero offset, fullscale error, differential non-linearity and non-linearity. These are "transfer function" errors related to the A/D converter. In addition, converter temperature drift, $\mathrm{V}_{\mathrm{CC}}$ rejection, sample-hold feedthrough, multiplexer off-isolation, channel-to-channel matching and random noise should be considered. Fortunately, one "Absolute Error" specification is available which describes the sum total of all deviations between the actual conversion process and an ideal converter. However, the various sub-components of error are important in many applications. These error components are described in the text below where ideal and actual converters are compared.




An unavoidable error simply results from the conversion of a continuous voltage to an integer digital representation. This error is called quantizing error, and is always $\pm 0.5$ LSB. Quantizing error is the only error seen in a perfect A/D converter, and is obviously present in actual converters. Figure 3 shows the transfer function for an ideal 3-bit A/D converter (i.e., the Ideal Characteristic).

Note that in Figure 3 the Ideal Characteristic possesses unique qualities: its first code transition occurs when the input voltage is 0.5 LSB ; its full-scale code transition occurs when the input voltage equals the fullscale reference minus 1.5 LSB ; and its code widths are all exactly one LSB. These qualities result in a digitization without offset, full-scale or linearity errors. In other words, a perfect conversion.

Figure 4 shows an Actual Characteristic of a hypothetical 3-bit converter, which is not perfect. When the Ideal Characteristic is overlaid with the imperfect characteristic, the actual converter is seen to exhibit errors in the location of the first and final code transitions and code widths. The deviation of the first code transition from ideal is called "zero offset", and the deviation of the final code transition from ideal is "full-scale error". The deviation of the code widths from ideal causes two types of errors. Differential Non-Linearity and NonLinearity. Differential Non-Linearity is a local linearity error measurement, whereas Non-Linearity is an overall linearity error measure.

Differential Non-Linearity is the degree to which actual code widths differ from the ideal one LSB width. It gives the user a measure of how much the input voltage may have changed in order to produce a one count change in the conversion result. Non-Linearity is the worst case deviation of code transitions from the corresponding code transitions of the Ideal Characteristic. Non-Linearity describes how much Differential NonLinearities could add up to produce an overall maximum departure from a linear characteristic. If the Differential Non-Linearity errors are too large, it is possible for an A/D converter to miss codes or exhibit nonmonotonicity. Neither behavior is desirable in a closedloop system. A converter has no missed codes if there exists for each output code a unique input voltage range that produces that code only. A converter is monotonic if every subsequent code change represents an input voltage change in the same direction.

Differential Non-Linearity and Non-Linearity are quantified by measuring the Terminal Based Linearity Errors. A Terminal Based Characteristic results when an Actual Characteristic is shifted and rotated to eliminate zero offset and full-scale error (see Figure 5). The Terminal Based Characteristic is similar to the Actual Characteristic that would be seen if zero offset and fullscale error were externally trimmed away. In practice, this is done by using input circuits which include gain
and offset trimming. In addition, $\mathrm{V}_{\text {REF }}$ could also be closely regulated and trimmed within the specified range to affect full-scale error.

Other factors that affect a real A/D Converter system include sensitivity to temperature, failure to completely reject all unwanted signals, multiplexer channel dissimilarities and random noise. Fortunately these effects are small.

Temperature sensitivities are described by the rate at which typical specifications change with a change in temperature.

Undesired signals come from three main sources. First, noise on $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CC}}$ Rejection. Second, input signal changes on the channel being converted after the sample window has closed-Feedthrough. Third, signals applied to channels not selected by the multiplexer-OffIsolation.

Finally, multiplexer on-channel resistances differ slightly from one channel to the next causing Channel-toChannel Matching errors, and random noise in general results in Repeatability errors.

### 1.4 A/D Glossary of Terms

Figures 3, 4 and 5 display many of these terms. Refer to AP-406 'MCS-96 Analog Acquisition Primer' for additional information on the $A / D$ terms.

ABSOLUTE ERROR-The maximum difference between corresponding actual and ideal code transitions. Absolute Error accounts for all deviations of an actual converter from an ideal converter.

ACTUAL CHARACTERISTIC-The characteristic of an actual converter. The characteristic of a given converter may vary over temperature, supply voltage, and frequency conditions. An Actual Characteristic rarely has ideal first and last transition locations or ideal code widths. It may even vary over multiple conversion under the same conditions.

BREAK-BEFORE-MAKE-The property of a multiplexer which guarantees that a previously selected channel will be deselected before a new channel is selected. (e.g., the converter will not short inputs together.)

CHANNEL-TO-CHANNEL MATCHING-The difference between corresponding code transitions of actual characteristics taken from different channels under the same temperature, voltage and frequency conditions.

CHARACTERISTIC-A graph of input voltage versus the resultant output code for an A/D converter. It describes the transfer function of the $\mathrm{A} / \mathrm{D}$ converter.

CODE-The digital value output by the converter.
CODE CENTER-The voltage corresponding to the midpoint between two adjacent code transitions.

CODE TRANSITION-The point at which the converter changes from an output code of Q , to a code of $\mathrm{Q}+1$. The input voltage corresponding to a code transition is defined to be that voltage which is equally likely to produce either of two adjacent codes.

CODE WIDTH-The voltage corresponding to the difference between two adjacent code transitions.

CROSSTALK-See "Off-Isolation".
DC INPUT LEAKAGE-Leakage current to ground from an analog input pin.

DIFFERENTIAL NON-LINEARITY-The difference between the ideal and actual code widths of the terminal based characteristic of a converter.

FEEDTHROUGH-Attenuation of a voltage applied on the selected channel of the A/D converter after the sample window closes.

FULL SCALE ERROR-The difference between the expected and actual input voltage corresponding to the full scale code transition.

IDEAL CHARACTERISTIC-A characteristic with its first code transition at $\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{LSB}$, its last code transition at $\mathrm{V}_{\text {IN }}=\left(\mathrm{V}_{\mathrm{REF}}-1.5 \mathrm{LSB}\right)$ and all code widths equal to one LSB.

INPUT RESISTANCE-The effective series resistance from the analog input pin to the sample capacitor.

LSB (LEAST SIGNIFICANT BIT)-The voltage value corresponding to the full scale voltage divided by $2^{\text {n }}$, where n is the number of bits of resolution of the converter. For a 10 -bit converter with a reference voltage of 5.12 volts, one LSB is 5.0 mV . Note that this is different than digital LSBs, since an uncertainty of two LSBs, when referring to an A/D converter, equals 10 mV . (This has been confused with an uncertainty of two digital bits, which would mean four counts, or 20 mV .)

MONOTONIC-The property of successive approximation converters which guarantees that increasing input voltages produce adjacent codes of increasing value, and that decreasing input voltages produce adjacent codes of decreasing value.

NO MISSED CODES-For each and every output code, there exists a unique input voltage range which produces that code only.

NON-LINEARITY-The maximum deviation of code transitions of the terminal based characteristic from the corresponding code transitions of the ideal characteristics.

OFF-ISOLATION-Attenuation of a voltage applied on a deselected channel of the A/D converter. (Also referred to as Crosstalk.)

REPEATABILITY-The difference between corresponding code transitions from different actual characteristics taken from the same converter on the same channel at the same temperature, voltage and frequency conditions.

RESOLUTION-The number of input voltage levels that the converter can unambiguously distinguish between. Also defines the number of useful bits of information which the converter can return.

SAMPLE DELAY-The delay from receiving the start conversion signal to when the sample window opens.

SAMPLE DELAY UNCERTAINTY-The variation in the Sample Delay.

SAMPLE TIME-The time that the sample window is open.

SAMPLE TIME UNCERTAINTY-The variation in the sample time.

SAMPLE WINDOW-Begins when the sample capacitor is attached to a selected channel and ends when the sample capacitor is disconnected from the selected channel.

SUCCESSIVE APPROXIMATION-An A/D conversion method which uses a binary search to arrive at the best digital representation of an analog input.

TEMPERATURE COEFFICIENTS-Change in the stated variable per degree centigrade temperature change. Temperature coefficients are added to the typical values of a specification to see the effects of temperature drift.

TERMINAL BASED CHARACTERISTIC-An Actual Characteristic which has been rotated and translated to remove zero offset and full-scale error.
$\mathbf{V}_{\text {CC }}$ REJECTION-Ratio of the change in the A/D characteristic to the change in $\mathrm{V}_{\mathrm{CC}}$.

ZERO OFFSET-The difference between the expected and actual input voltage corresponding to the first code transition.

## 8X9X Data Sheets

## 15

809XBH／839XBH／879XBH COMMERCIAL／EXPRESS HMOS MICROCONTROLLER

879XBH：an 809XBH with 8 Kbytes of On－Chip EPROM<br>（1）839XBH：an 809XBH with 8 Kbytes of On－Chip ROM

－ 232 Byte Register File
■ Register－to－Register Architecture
10－Bit A／D Converter with S／H
－Five 8－Bit I／O Ports
－ 20 Interrupt Sources
■ Pulse－Width Modulated Output
■ ROM／EPROM Lock
－Run－Time Programmable EPROM
－Extended Temperature Available

用 High Speed I／O Subsystem
Full Duplex Serial Port
© Dedicated Baud Rate Generator
－ $6.25 \mu \mathrm{~s} 16 \times 16$ Multiply
图 $6.25 \mu \mathrm{~s} 32 / 16$ Divide
图 16－Bit Watchdog Timer
图 Four 16－Bit Software Timers
国 Two 16－Bit Counter／Timers
圆 Extended Burn－In Available

The MCS ${ }^{\text {－}} 96$ family of 16 －bit microcontrollers consists of many members，all of which are designed for high－ speed control functions．The MCS－96 family members produced using Intel＇s HMOS－III process are described in this data sheet．

The CPU supports bit，byte，and word operations．Thirty－two bit double－words are supported for a subset of the instruction set．With a 12 MHz input frequency the 8096 BH can do a 16 －bit addition in $1.0 \mu \mathrm{~s}$ and a $16 \times 16$－bit multiply or $32 / 16$ divide in $6.25 \mu \mathrm{~s}$ ．Instruction execution times average 1 to $2 \mu \mathrm{~s}$ in typical applications．

Four high－speed trigger inputs are provided to record the times at which external events occur．Six high－speed pulse generator outputs are provided to trigger external events at preset times．The high－speed output unit can simultaneously perform software timer functions．Up to four 16 －bit software timers can be in operation at once．

The on－chip A／D converter includes a Sample and Hold，and converts up to 8 multiplexed analog input channels to 10 －bit digital values．With a 12 MHz crystal，each conversion takes $22 \mu \mathrm{~s}$ ．This feature is only available on the 8 X 95 BHs and 8 X 97 BH ，with the 8 X 95 BHs having 4 multiplexed analog inputs．


Figure 1． $8 \times 9 \times B H$ Block Diagram

Also provided on-chip are a serial port, a Watchdog Timer and a pulse-width modulated output signal.

With the commercial (standard) temperature option, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Unless otherwise noted, the specifications are the same for both options.

With the extended burn-in option, the burn-in is dynamic for a minimum time of 160 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$, following the guidelines in MIL-STD-883, Method 1015.

See the Packaging Information for extended temperature and extended burn-in designators.


Figure 2. 8X9XBH Memory Map

## PACKAGING

The 8096 BH is available in 48 -pin, 64-pin and 68-pin packages, with and without A/D, and with and without onchip ROM or EPROM. The 8096BH numbering system is shown in Figure 3. Figures 5-10 show the pinouts for the 48-, 64- and 68-pin packages. The 48-pin version is offered in a Dual-In-Line package while the 68-pin versions come in a Plastic Leaded Chip Carrier (PLCC), a Pin Grid Array (PGA) or a Type " $B$ " Leadless Chip Carrier.

ANALOG NO ANALOG	Factory Masked ROM			CPU			User Programmable								
				EPROM	OTP										
	68-Pin	64-Pin	48-Pin				68-Pin	64-Pin	48-Pin	68-Pin	64-Pin	48-Pin	68-Pin	64-Pin	48-Pin
	8397BH	8397BH	8395BH	8097BH	8097BH	8095BH	8797BH		8795BH	8797BH	8797BH				
	8396BH			8096BH											

Figure 3. 8X9X Packaging

## Package Designators:

$N=$ PLCC
C = Ceramic DIP
$A=$ Ceramic Pin Grid Array
$P=$ Plastic DIP
$R=$ Ceramic LCC
$U=$ Shrink DIP

Prefix Designators:
T = Extended Temperature
$\mathrm{L}=$ Extended Temperature with 160 Hours Burn-in

Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
68 L PGA	$35^{\circ} \mathrm{C} / \mathrm{W}$	$10^{\circ} \mathrm{C} / \mathrm{W}$
68 L PLCC	$37^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
68 L LCC	$28^{\circ} \mathrm{C} / \mathrm{W}$	$14^{\circ} \mathrm{C} / \mathrm{W}$
64 L Shrink DIP	$56^{\circ} \mathrm{C} / \mathrm{W}$	-
48 L Plastic DIP	$38^{\circ} \mathrm{C} / \mathrm{W}$	$19^{\circ} \mathrm{C} / \mathrm{W}$
48 L Ceramic DIP	$26^{\circ} \mathrm{C} / \mathrm{W}$	$6.5^{\circ} \mathrm{C} / \mathrm{W}$

Figure 4. 8X9XBH Thermal Characteristics
All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.


Figure 5. 64-Pin Shrink-DIP Package

Pins Facing Down


Figure 6. 68-Pin PGA Package

PGA	Description	PGA	Description	PGA	Description
1	ACH7/P0.7/PMODE. 3	24	AD6/P3.6	47	P1.6
2	ACH6/P0.6/PMODE. 2	25	AD7/P3.7	48	P1.5
3	ACH2/P0.2	26	AD8/P4.0	49	HSO. 1
4	ACHO/P0. 0	27	AD9/P4.1	50	HSO.0/ $\overline{\text { PACT }}$
5	ACH1/P0.1	28	AD10/P4.2	51	HSO.5/HSI.3/SID. 3
6	ACH3/P0.3	29	AD11/P4.3	52	HSO.4/HSI.2/SID. 2
7	NMI	30	AD12/P4.4	53	HSI.1/SID. 1
8	$\overline{E A}$	31	AD13/P4.5	54	HSI.0/SID. 0
9	$V_{C C}$	32	AD14/P4.6	55	P1.4
10	$V_{S S}$	33	AD15/P4.7	56	P1.3
11	XTAL1	34	T2CLK/P2.3	57	P1.2
12	XTAL2	35	READY	58	P1.1
13	CLKOUT	36	T2RST/P2.4	59	P1.0
14	BUSWIDTH	37	$\overline{\text { BHE/ }} \overline{\text { WRH }}$	60	TXD/P2.0/PVER/SALE
15	INST	38	$\overline{\text { WR/ } / \overline{W R L}}$	61	RXD/P2.1/ $\overline{\text { PALE }}$
16	ALE/ $\overline{\text { ADV }}$	39.	PWM/P2.5/PDO/SPROG	62	RESET
17	$\overline{\mathrm{RD}}$	40	P2. 7	63	EXTINT/P2.2/®ROG
18	AD0/P3.0	41	$V_{\text {PP }}$	64	$V_{P D}$
19	AD1/P3.1	42	$V_{S S}$	65	$V_{\text {REF }}$
20	AD2/P3.2	43	HSO. 3	66	ANGND
21	AD3/P3.3	44	HSO. 2	67	ACH4/P0.4/PMODE. 0
22	AD4/P3.4	45	P2.6	68	ACH5/P0.5/PMODE. 1
23	AD5/P3.5	46	P1.7		

Figure 7. PGA Function Pinouts


Figure 8. 68-Pin LCC Package


Figure 9. 68-Pin PLCC Package


Figure 10. 48-Pin DIP Package

PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (5V).
$\mathrm{V}_{\text {SS }}$	Digital circuit ground ( 0 V ). There are two $\mathrm{V}_{\text {SS }}$ pins, both of which must be connected.
$V_{P D}$	RAM standby supply voltage ( 5 V ). This voltage must be present during normal operation. In a Power Down condition (i.e. $V_{C C}$ drops to zero), if RESET is activated before $V_{C C}$ drops below spec and $\mathrm{V}_{\mathrm{PD}}$ continues to be held within spec., the top 16 bytes in the Register File will retain their contents.
$V_{\text {REF }}$	Reference voltage for the $\mathrm{A} / \mathrm{D}$ converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0. Must be connected to use A/D or Port 0 .
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $V_{S S}$.
$V_{\text {PP }}$	Programming voltage for the EPROM devices. It should be +12.75 V for programming and will float to 5 V otherwise. The pin should not be above $\mathrm{V}_{C C}$ for ROM and CPU devices. This pin must be left floating in the application circuit for EPROM devices.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT* $\dagger$	Output of the internal clock generator. The frequency of CLKOUT is $1 / 3$ the oscillator frequency. It has a 33\% duty cycle.
$\overline{\text { RESET }}$	Reset input to the chip. Input low for a minimum 10 XTAL1 cycles to reset the chip. The subsequent low-to-high transition re-synchronizes CLKOUT and commences a 10 -statetime RESET sequence.
BUSWIDTH* $\dagger$	Input for bus width selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1 , a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus. If this pin is left unconnected, it will rise to $\mathrm{V}_{\mathrm{CC}}$.
NMI* $\dagger$	A positive transition causes a vector to external memory location 0000 H .
INST* $\dagger$	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle.
$\overline{E A}$	Input for memory select (External Access). $\overline{\text { EA }}$ equal to a TTL-high causes memory accesses to locations 2000 H through 3FFFH to be directed to on-chip ROM/EPROM. EA equal to a TTL-low causes accesses to these locations to be directed to off-chip memory. EA equal to 12.75 V causes the device to enter the Programming Mode.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demuthitiplex the address from the address/data bus. When the pin is $\overline{\text { ADV }}$, it goes high at the end of the bus cycle. ALE/ $\overline{\text { ADV }}$ is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{\text { WR }} / \overline{\mathrm{WRL}}$	Write and Write Low output to external memory, as selected by the CCR. $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. WR/WRL is activated only during external memory writes.
$\overline{\text { BHE/ } \overline{W R H}}$	Bus High Enable or Write High output to external memory, as selected by the CCR. $\overline{\text { BHE }}$ will go low for external writes to the high byte of the data bus. WRH will go low for external writes where an odd byte is being written. $\overline{B H E} / \overline{\mathrm{WRH}}$ is activated only during external memory writes.

## PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
READY	Ready input to lengthen external memory cycles. If the pin is low prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the next positive transition of CLKOUT occurs with READY high. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle held not ready is available in the CCR.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.
Port 0才	8 -bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter.
Port $1 \dagger$	8 -bit quasi-bidirectional I/O port.
Port 2†	8 -bit multi-functional port. Six of its pins are shared with other functions in the 8096BH, the remaining 2 are quasi-bidirectional.
Ports 3 and 4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus which has strong internal pullups. Ports 3 and 4 are also used as a command, address and data path by EPROM devices operating in the Programming Mode.*
PMODE	Determines the EPROM programming mode.
$\overline{\text { PACT }}$	A low signal in Auto Programming Mode indicates that programming is in progress. A high signal indicates programming is complete.
PVAL	A low signal in Auto Programming Mode indicates that the device programmed correctly.
SALE	A falling edge in Auto Programming Mode indicates that Ports 3 and 4 contain valid programming address/command information (output from master).
$\overline{\text { SPROG }}$	A falling edge in Auto Programming Mode indicates that Ports 3 and 4 contain valid programming data (output from master).
SID	Assigns a pin of Ports 3 and 4 to each slave to pass programming verification.
PALE	A falling edge in Slave Programming Mode and Auto Configuration Byte Programming Mode indicates that Ports 3 and 4 contain valid programming address/command information (input to slave).
$\overline{\text { PROG }}$	A falling edge in Slave Programming Mode indicates that Ports 3 and 4 contain valid programming data (input to slave).
PVER	A high signal in Slave Programming Mode and Auto Configuration Byte Programming Mode indicates the byte programmed correctly.
PVAL	A high signal in Slave Programming Mode indicates the device programmed correctly.
$\overline{\text { PDO }}$	A low signal in Slave Programming Mode indicates that the PROG pulse was applied for longer than allowed.

[^22]
## ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ........... $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage from $\overline{E A}$ or $V_{P P}$
to $\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{ANGND} . \ldots . . . . . .$.
Voltage from Any Other Pin to
$V_{S S}$ or ANGND
$\ldots . . . . . . . . .-0.3 \mathrm{~V}$ to $+7.0 \mathrm{~V}(1)$
Average Output Current from Any Pin . . . . . . 10 mA
Power Dissipation(2) 1.5W

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

NOTES:

1. This includes VPP and EA on ROM and CPU only devices.
2. Power dissipation is based on package heat transfer limitations, not device power consumption.

## OPERATING CONDITIONS

(All characteristics in this data sheet apply to these operating conditions unless otherwise noted.)

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Under Bias Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Under Bias Extended Temp.	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	V
$\mathrm{~F}_{\text {OSC }}$	Oscillator Frequency	6.0	12	MHz
$\mathrm{V}_{\text {PD }}$	Power-Down Supply Voltage	4.50	5.50	V

NOTE:
ANGND and $\mathrm{V}_{\text {SS }}$ should be nominally at the same potential.

## DC CHARACTERISTICS

Symbol	Parameter	Min	Max	Units	Test Conditions
$I_{C C}$	$V_{C C}$ Supply Current Commercial Temp.		240	mA	All Outputs   Disconnected.
$I_{C C}$	$V_{C C}$ Supply Current Extended Temp.		270	mA	
$I_{C C 1}$	$V_{C C}$ Supply Current $\left(T_{A} \geq 70^{\circ} \mathrm{C}\right)$		185	mA	
$I_{\text {PD }}$	$V_{\text {PD }}$ Supply Current		1	mA	Normal operation   and Power-Down.
$I_{\text {REF }}$	$V_{\text {REF }}$ Supply Current Commercial Temp.		8	mA	
$I_{\text {REF }}$	$V_{\text {REF }}$ Supply Current Extended Temp.		10	mA	
$V_{\text {IL }}$	Input Low Voltage	-0.3	+0.8	V	

DC CHARACTERISTICS (Continued)

Symbol	Parameter	Min	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage (Except RESET, NMI, XTAL1)	2.0	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{HH} 1}$	Input High Voltage, $\overline{\text { RESET }}$ Rising	2.4	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{IH} 2}$	Input High Voltage, RESET Falling (Hysteresis)	2.1	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage, NMI, XTAL1	2.2	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{l}_{\mathrm{LI}}$	Input Leakage Current to each pin of HSI, P3, P4, and to P2.1.		$\pm 10$	$\mu \mathrm{A}$	$V_{\text {in }}=0$ to $V_{C C}$
LII1	DC Input Leakage Current to each pin of PO		+3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0$ to $\mathrm{V}_{\mathrm{CC}}$
$\mathrm{IIH}^{\text {H }}$	Input High Current to EA		100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$
ILL	Input Low Current to each pin of P1, and to P2.6, P2.7 Commercial Temp.		-125	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
ILL	Input Low Current to each pin of P1, and to P2.6, P2.7 Extended Temp.		-150	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
IL1	Input Low Current to RESET	-0.25	-2	mA	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
ILL2	Input Low Current P2.2, P2.3, P2.4, READY, BUSWIDTH		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage on QuasiBidirectional port pins and P3, P4 when used as ports		0.45	V	$\begin{aligned} & \mathrm{IOL}=0.8 \mathrm{~mA} \\ & \text { (Note 1) } \end{aligned}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage on QuasiBidirectional port pins and P3, P4 when used as ports		0.75	V	$\begin{aligned} & \mathrm{IOL}^{2}=2.0 \mathrm{~mA} \\ & (\text { Notes } 1,2,3) \end{aligned}$
$\mathrm{V}_{\text {OL2 }}$	Output Low Voltage on Standard Outpuit pins, RESET and Bus/Control Pins		0.45	V	$\begin{aligned} & \mathrm{IOL}_{\mathrm{O}}=2.0 \mathrm{~mA} \\ & (\text { Notes } 1,2,3 \text { ) } \end{aligned}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage on QuasiBidirectional pins	2.4		V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A} \\ & \text { (Note 1) } \end{aligned}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage on Standard Output pins and Bus/Control pins	2.4		V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \\ & \text { (Note 1) } \end{aligned}$
$\mathrm{I}^{\text {OH3 }}$	Output High Current on RESET	-50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
$\mathrm{C}_{S}$	Pin Capacitance (Any Pin to V ${ }_{\text {SS }}$ )		10	pF	$\mathrm{F}_{\text {TEST }}=1.0 \mathrm{MHz}$

## NOTES:

1. Quasi-bidirectional pins include those on P1, for P2.6 and P2.7. Standard Output Pins include TXD, RXD (Mode 0 only), PWM, and HSO pins. Bus/Control pins include CLKOUT, ALE, $\overline{B H E}, \overline{R D}, \overline{W R}$, INST and ADO-15.
2. Maximum current per pin must be externally limited to the following values if $\mathrm{V}_{\mathrm{OL}}$ is held above 0.45 V .

IOL on quasi-bidirectional pins and Ports 3 and 4 when used as ports: 4.0 mA
$\mathrm{I}_{\mathrm{OL}}$ on standard output pins and RESET: 8.0 mA
Iol on Bus/Control pinis: 2.0 mA
3. During normal (non-transient) operation the following limits apply:

Total lol on Port 1 must not exceed 8.0 mA .

Total lol on Port 3 must not exceed 10 mA .
Total IOL on P2.5, P2.7, and Port 4 must not exceed 20 mA .

## AC CHARACTERISTICS

Test Conditions: Load Capacitance on Output Pins $=80 \mathrm{pF}$

TIMING REQUIREMENTS (The system must meet these specifications to work with the 8X9XBH.)

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {CLYX }}{ }^{(2,3)}$	READY Hold after CLKOUT Edge	O(1)		ns
TLLYV	End of ALE/ $\overline{A D V}$ to READY Valid		2 Tosc $^{-70}$	ns
TLLYH	End of ALE/ADV to READY High	$2 \mathrm{TOSC}^{+40}$	4 Tosc - 80	ns
TYLYH	Non-Ready Time	.	1000	ns
$\mathrm{TAVDV}^{(4)}$	Address Valid to Input Data Valid		5 Tosc - 120(5)	ns
TRLDV	$\overline{\mathrm{RD}}$ Active to Input Data Valid		3 Tosc - 100(5)	ns
TRHDX	Data Hold after $\overline{\mathrm{RD}}$ Inactive	0		ns
TRHDZ	$\overline{\mathrm{RD}}$ Inactive to Input Data Float	0	TOSC - 25	ns
$\mathrm{TAVGV}^{(2,4)}$	Address Valid to BUSWIDTH Valid		2 TOSC $^{-125}$	ns
$\mathrm{T}_{\text {LLGX }}{ }^{(2,3)}$	BUSWIDTH Hold after ALE/ $\overline{\text { ADV }}$ Low	TOSC +40		ns
$\mathrm{T}_{\text {LLGV }}{ }^{(2,3)}$	ALE/ $\overline{\text { ADV }}$ Low to BUSWIDTH Valid		TOSC - 75	ns
TRLPV	Reset Low to Ports Valid		10 Tosc	ns

## NOTES:

1. If the 48 -pin or 64 -pin device is being used then this timing can be generated by assuming that the CLKOUT falling edge has occurred at 2 TOSC +55 (TLLCH(max) + TCHCL(max)) after the falling edge of ALE.
2. Pins not bonded out on 64 -pin devices.
3. Pins not bonded out on 48 -pin devices.
4. The term "Address Valid" applies to ADO-15, $\overline{B H E}$ and INST.
5. If wait states are used, add 3 TOSC ${ }^{*} N$ where $N=$ number of wait states.

TIMING RESPONSES (MCS-96 devices meet these specs.)

Symbol	Parameter	Min	Max	Units
FXTAL	Oscillator Frequency	6.0	12.0	MHz
Tosc	Oscillator Period	83	166	ns
TOHCH	XTAL1 Rising Edge to Clockout Rising Edge	0(4)	120(4)	ns
$\mathrm{T}_{\text {CHCH }}{ }^{(1,4)}$	CLKOUT Period(3)	$3 \mathrm{TOSC}^{(3)}$	$3 \mathrm{TOSC}^{(3)}$	ns
$\mathrm{T}_{\text {CHCL }}{ }^{(1,4)}$	CLKOUT High Time	Tosc-35	Tosc +10	ns
$\mathrm{T}_{\text {CLLH }}{ }^{(1,4)}$	CLKOUT Low to ALE High	-30	+15	ns
$\mathrm{TLLCH}^{(4)}$	ALE/ $\overline{\text { ADV Low to CLKOUT High(1) }}$	Tosc - 25	Tosc +45	ns
TLHLL	ALE/ $\overline{\text { DVV }}$ High Time	TOSC - 30	Tosc $+35(5)$	ns
$\mathrm{T}_{\text {AVLL }}{ }^{(6)}$	Address Setup to End of ALE/ $\overline{\text { ADV }}$	TOSC - 50		ns
$\mathrm{T}_{\mathrm{RLAZ}}{ }^{(7)}$	$\overline{\mathrm{RD}}$ or WR Low to Address Float Commercial Temp.	Typ. $=0$	10	ns
$\mathrm{T}_{\text {RLAZ }}{ }^{(7)}$	$\overline{\mathrm{RD}}$ or WR Low to Address Float Extended Temp.		25	ns
TLLRL	End of ALE/ $\overline{\text { ADV }}$ to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Active	Tosc - 40		ns
$\mathrm{T}_{\text {LLAX }}{ }^{(7)}$	Address Hold after End of ALE//̄DV	Tosc - 40		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	3 TOSC - 35(2)		ns
TQVWH		3 TOSC - 60(2)		ns
TWHQx	Output Data Hold after WR/WRL/WRH	Tosc - 50		ns
TWHLH	End of $\overline{\text { WR }} / \overline{\text { WRL }} / \overline{\text { WRH }}$ to ALE/ $\overline{\text { ADV High }}$	Tosc - 75		ns
TRLRH	$\overline{\text { RD Pulse Width }}$	3 Tosc - 30(2)		ns
$\mathrm{T}_{\text {RHLH }}$	End of $\overline{\mathrm{RD}}$ to ALE/ $\overline{\mathrm{ADV}}$ High	TOSC - 45		ns
$\mathrm{T}_{\text {CLLL }}{ }^{(4)}$	CLOCKOUT Low ${ }^{(1)}$ to ALE// $\overline{\text { DVV }}$ Low	Tosc - 40	Tosc +35	ns
$\mathrm{T}_{\text {RHBX }}{ }^{(4)}$	$\overline{\text { RD High to INST(1), } \overline{\text { BHE, }} \text { AD8-15 Inactive }}$	TOSC - 25	Tosc +30	ns
TWHBX ${ }^{(4)}$	$\overline{\text { WR High to INST(1), } \overline{\text { BHE, AD8-15 }} \text { Inactive }}$	TOSC - 50	TosC +100	ns
$\mathrm{T}_{\text {HLHH }}$	$\overline{\text { WRL, }} \overline{\text { WRH }}$ Low to WRL, $\overline{\text { WRH }}$ High	2 Tosc - 35	2 Tosc +40	ns
TLLHL	ALE/ $\overline{\text { ADV }}$ Low to WRL, $\overline{\text { WRH }}$ Low	2 Tosc - 30	2 Tosc +55	ns
T ${ }_{\text {QVHL }}$	Output Data Valid to WRL, WRH Low	Tosc - 60		ns

## NOTES:

1. Pins not bonded out on 64 -pin devices.
2. If more than one wait state is desired, add 3 Tosc for each additional wait state.
3. CLKOUT is directly generated as a divide by 3 of the oscillator. The period will be 3 TOSC $\pm 10 \mathrm{~ns}$ if Tosc is constant and the rise and fall times on XTAL1 are less than 10 ns .
4. CLKOUT, INST, and BHE pins not bonded out on 48 -pin and 64-pin devices.
5. Max spec applies only to ALE. Min spec applies to both ALE and ADV.
6. The term "Address Valid" applies to ADO-15, BHE and INST.
7. The term "Address" in this definition applies to ADO-7 for 8-bit cycles, and ADO-15 for 16-bit cycles.

## WAVEFORM-SYSTEM BUS TIMINGS



## NOTES:

1. 8 -bit bus only.
2. 8 -bit or 16 -bit bus and write strobe mode selected.
3. When ADV selected.
4. 8 - or 16 -bit bus and no write strobe mode selected.

## WAVEFORM-BUSWIDTH* TIMINGS



[^23]EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TOLOL	Oscillator Frequency	6	12	MHz
TOHOX	High Time	25		ns
TOLOX	Low Time	30		ns
TOLOH $^{\text {TOHOL }}$	Rise Time		15	ns

## EXTERNAL CLOCK DRIVE WAVEFORMS



An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the $\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\mathbb{I H}}$ specifications the capacitance will not exceed 20 pF .

## EXTERNAL CRYSTAL CONNECTIONS



NOTE:
Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and $\mathrm{V}_{\mathrm{SS}}$. When using crystals, $\mathrm{C} 1=30 \mathrm{pF}$ and $\mathrm{C} 2=30 \mathrm{pF}$. When using ceramic resonators, consult manufacturerer for recommended capacitor values.

## AC TESTING INPUT, OUTPUT WAVEFORMS



270090-49
AC Testing inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing measurements are made at 2.0 V for a Logic " 1 " and 0.8 V for a Logic " 0 ".

EXTERNAL CLOCK CONNECTIONS


## AC TESTING FLOAT WAVEFORMS



270090-51
For Timing Purposes a Port Pin is no Longer Floating when a 200 mV change from Load Voltage Occurs, and Begins to Float when a 200 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $1 \mathrm{OL} / \mathrm{IOH}_{\mathrm{OH}} \geq \pm 8 \mathrm{~mA}$.

MINIMUM HARDWARE CONFIGURATION CIRCUITS


## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE

## SERIAL PORT TIMING-SHIFT REGISTER MODE

Test Conditions: Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	Min	Max	Units
TXLXL	Serial Port Clock Period	8 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge	4 Tosc - 50	4 Tosc +50	ns
T ${ }_{\text {QVXH }}$	Output Data Setup to Clock Rising Edge	3 Tosc		ns
TXHQX	Output Data Hold After Clock Rising Edge	2 Tosc - 70		ns
TXHQV	Next Output Data Valid After Clock Rising Edge		2 Tosc +50	ns
T ${ }_{\text {DVXH }}$	Input Data Setup to Clock Rising Edge	2 Tosc $^{+} 200$		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		ns
TXHQZ	Last Clock Rising to Output Float		5 Tosc	ns

## WAVEFORM-TRLPV



8X9XBH

## WAVEFORM-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE


270090-36

## A/D CONVERTER SPECIFICATIONS

A/D Converter operation is verified only on the $8097 \mathrm{BH}, 8397 \mathrm{BH}, 8095 \mathrm{BH}, 8395 \mathrm{BH}, 8797 \mathrm{BH}, 8795 \mathrm{BH}$.
The absolute conversion accuracy is dependent on the accuracy and stability of $\mathrm{V}_{\mathrm{REF}}$.
See the MCS-96 A/D Converter Quick Reference for definitions of A/D Converter terms.

Parameter	Typical*	Minimum	Maximum	Units**	Notes
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 4$	LSBs	
Full Scale Error	$-0.5 \pm 0.5$			LSBs	
Zero Offset Error	$\pm 0.5$			LSBs	
Non-Linearity		0	$\pm 4$	LSBs	
Differential Non-Linearity		$>-1$	+2	LSBs	
Channel-to-Channel Matching		0	$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients: Offset Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			$\begin{aligned} & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \end{aligned}$	
Off Isolation		$-60$		dB	1, 3
Feedthrough	-60			dB	1
$\mathrm{V}_{\mathrm{CC}}$ Power Supply Rejection	-60			dB	1
Input Series Resistance		1 K	5K	$\Omega$	4
DC Input Leakage		0	3.0	$\mu \mathrm{A}$	
Sample Delay		$3 \mathrm{~T}_{\text {OSC }}-50$	3 TOSC + 50	ns	2
Sample Time		12 Tosc - 50	12 TOSC +50	ns	
Sampling Capacitor			2	pF	

## NOTES:

* These values are expected for most devices at $25^{\circ} \mathrm{C}$.
** An "LSB", as used here, is defined in the MCS-96 A/D Converter Quick Reference and has a value of approximately 5 mV .

1. DC to 100 KHz .
2. For starting the A/D with an HSO Command.
3. Multiplexer Break-Before-Make Guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.

## EPROM SPECIFICATIONS

## EPROM PROGRAMMING OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature during Programming	20	30	${ }^{\circ} \mathrm{C}$
$V_{C C}, V_{P D}, V_{\text {REF }}{ }^{(1)}$	Supply Voltages during Programming	4.5	5.5	V
$V_{E A}$	Programming Mode Supply Voltage	9.0	13.0	V (2)
$V_{P P}$	EPROM Programming Supply Voltage	12.50	13.0	V (2)
$\mathrm{V}_{\text {SS }}$, ANGND(3)	Digital and Analog Ground	0	0	V
Fosc1	Oscillator Frequency during Auto and Slave Programming	6.0	6.0	MHz
Fosc2	Oscillator Frequency during Run-Time Programming	6.0	12.0	MHz

## NOTES:

1. $V_{C C}, V_{P D}$ and $V_{\text {REF }}$ should nominally be at the same voltage during programming.
2. $V_{E A}$ and $V_{P P}$ must never exceed the maximum voltage for any amount of time or the device may be damaged.
3. $\mathrm{V}_{\mathrm{SS}}$ and ANGND should nominally be at the same voltage ( OV ) during programming.

## AC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {AVLL }}$	ADDPESS/COMMAND Valid to PALE Low	0		Tosc
TLLAX	ADDRESS/COMMAND Hold After PALE Low	80		Tosc
TDVPL	Output Data Setup Before $\overline{\text { PROG }}$ Low	0		Tosc
TPLDX	Data Hold After PROG Falling	80		Tosc
TLLLH	PALE Pulse Width	180		Tosc
TPLPH	PROG Pulse Width	250 Tosc	$\begin{aligned} & 100 \mu \mathrm{~s}+ \\ & 144 \text { ToSC } \end{aligned}$	
TLHPL	PALE High to PROG Low	250		Tosc
TPHLL	$\overline{\text { PROG }}$ High to Next PALE Low	600		Tosc
TPHDX	Data Hold After PROG High	30		Tosc
TPHVV	$\overline{\text { PROG }}$ High to PVER/ $\overline{\text { PDO }}$ Valid	500		Tosc
TLLVH	PALE Low to PVER/ $\overline{\text { PDO }}$ High	100		Tosc
TPLDV	PROG Low to VERIFICATION/DUMP Data Valid	100		Tosc
TSHLL	RESET High to First PALE Low (not shown)	2000		Tosc

## DC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Min	Max	Units
$I_{\text {PP }}$	$V_{P P}$ Supply Current (Whenever Programming)		100	mA

## WAVEFORM-EPROM PROGRAMMING



## 8X9XBH ERRATA

Devices covered by this data sheet (see Revision History) have the following errata.

## 1. INDEXED, 3 OPERAND MULTIPLY

The displacement portion of an indexed, three operand (byte or word) multiply may not be in the range of 200 H thru 17FFH inclusive. If you must use these displacements, execute an indexed, two operand multiply and a move if necessary.

## 2. HSI FIFO OPERATION

The High Speed Input (HSI) has three deviations from the specifications. Note that "events" are defined as one or more pin transitions. "Entries" are defined as the recording of one or more events.
A. The resolution is nine states instead of eight states. Events occurring on the same pin more frequently than once every nine states may be lost.
B. A mismatch between the nine state HSI resolution and the eight state hardware timer causes one time-lag value to be skipped every nine timer counts. Events may receive a time-tag one count later than expected.
C. If the FIFO and Holding Register are empty, the first event will transfer into the Holding Register, leaving the FIFO empty again. The next event that occurs will be the first event loaded into the empty FIFO. If the first two events into an empty FIFO (not counting the Holding Register) occur coincident with each other, both are recorded as one entry with one time-tag. If the second event
occurs within 9 states after the first, the events will be entered separately with time-tags at least one count apart. If the second event enters the FIFO coincident with the "skipped" time-tag situation (see B above) the time tags will be at least two counts apart.

## 3. RESERVED LOCATION 2019H

The 1990 Architectural Overview recommended that address 2019 H be loaded with OFFH. The recommendation is now 20 H .

## 4. RESERVED LOCATION 201CH

Reading reserved location 201 CH , either internally or externally, will return "201C" as data.

## 5. SERIAL PORT SECTION

Serial Port Flags-Reading SP_STAT may not clear the TI or RI flag if that flag was set within two state times prior to the read. In addition, the parity error bit (RPE/RB8) may not be correct if it is read within two state times after RI is set. Use the following code to replace ORB sp_image, SP__STAT.
SP_READ: LDB TEMP, SP_STAT
ORB SP_IMAGE, TEMP
JBS TEMP,5,SP_READ; if TI is
set then read again
JBS TEMP,6,SP_READ; if RI is
set then read again
ANDB SP_IMAGE,\#7FH; clear
false RB8/RPE
ORB SP_IMAGE, TEMP; load
correct RB8/RPE

## DATA SHEET REVISION HISTORY

This data sheet (270090-010) is valid for devices marked with an " $E$ " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The difference between this data sheet $(-010)$ and the previous one $(-009)$ is the $\mathrm{lOL}_{2} / \mathrm{l}_{\mathrm{OH}}$ for float waveform testing changed from $\pm 15 \mathrm{~mA}$ to $\pm 8 \mathrm{~mA}$ (this data sheet).

The following differences exist between (-009) data sheet and (-008).

1. The Express (extended temperature and burn-in options) were added to this data sheet. The 8X9XBH Express data sheet (270433-004) is now obsolete.
2. Changes were made to the format of the data sheet and the SFR descriptions were removed. No specification changes made.
3. Added Reserved Location 201 CH errata.

The following differences exist between the -008 data sheet and the -007 data sheet.

1. The -007 data sheet was valid for devices marked with a " $D$ " at the end of the top side tracking number.
2. The following errata were removed: RESET and the Quasi-Bidirectional Ports, Software RESET Timing, and Using T2CLK as the source for Timer2.
3. The HSI FIFO Operation errata definition was changed to match change in the HSI FIFO Operation.

The following differences exist between the -007 data sheet and the -006 data sheet.

1. $\mathrm{T}_{\mathrm{CCLH}}$ changed from Min $=-20 \mathrm{~ns}$, Max $=$ +25 ns to $\mathrm{Min}=-30 \mathrm{~ns}, \mathrm{Max}=+15 \mathrm{~ns}$.
2. $\mathrm{T}_{\mathrm{XHQX}}$ changed from Min $=2 \mathrm{~T}_{\mathrm{OSC}}-50 \mathrm{~ns}$ to Min $=2 \mathrm{~T}_{\mathrm{OSC}}-70 \mathrm{~ns}$.
3. Tolox changed from Min $=25 \mathrm{~ns}$ to $\mathrm{Min}=$ 30 ns.
4. An errata was added changing the recommendation for address 2019 H from OFFH to 20 H .
5. The power supply sequencing section has been deleted. The information is in the Hardware Design Information.
6. The method of identifying the current change indicator was added to the differences between the -005 and -004 data sheets.
7. A bug was not documented in the -004 data sheet and was fixed before the -005 data sheet. Information on the bug was added to the difference between the -005 and -004 data sheets.

Differences between -006 and -005 data sheets.

1. All EPROM programming mode information has been deleted and moved to the Hardware Design Information chapter.
2. Shrink-DIP package information has been added.
3. A new RESET timing specification has been added for clarity.
4. Software Reset pin timing information has been added.
5. HSO IOL specifications have been improved so that all HSO pins have the same drive capability.
6. Port 3 and Port 4 pin descriptions were clarified, indicating the necessity of pullup if the pins are used as ports.
7. HSI FIFO overflow description added.

Differences between the -005 and the -004 data sheets.

1. The -005 data sheet corresponds to devices marked with a " $D$ " at the end of the topside tracking number. The -004 data sheet corresponded to devices which are not marked with a "D".
2. Much of the description of device functionality has been deleted. All of this information is already in the MCS-96 Architectural Overview.
3. The A/D converter specification for Differential Non-linearity has been changed to be a minimum of $>-1$ lsbs to a maximum of +2 LSBs.
4. 8X9XBH errata section. The JBS and JBC on Port 0 errata has been fixed on the latest device stepping.
5. $8 \times 9 \times B H$ errata section. The errata for the 48 -pin devices has been fixed on the latest device stepping.This errata caused the upper 8 bits on the Address/Data bus to be latched when resetting into an 8 -bit external memory system.
6. $8 \times 9 \times B H$ errata section. An errata existed which caused the device to be held in RESET for extended periods of time with the internal RESET pin pulled down internally. The condition occurred when the XTAL inputs were driven before $V_{C C}$ was stable and within the data sheet specification. The condition was worse at cold. This errata was not documented in the -004 data sheet. It has been fixed on the latest device stepping.
7. 8X9XBH errata section. Errata 3 and 4 have been added to the errata list. These errata exist for all steppings of the device.

Differences between the -004 and the -003 data sheets.

1. The bus control figures and bus timing diagrams were modified to more accurately describe their operation. In particular the 8-bit bus modes now reflect the use of Write Strobe Mode.
2. Additional text was added to the Analog/Digital description of the conversion process to clarify its operation and usefulness.
3. Text was added to the interrupt description section to indicate the maximum transition speed of the input signal relative to the CPU's state timing. A figure was included to graphically demonstrate the interrupt response timing.
4. The pin descriptions were modified to indicate that VPP must normally float in the application.
5. The input low voltage specification ( $\mathrm{V}_{\mathrm{IL} 1}$ ) was deleted and is covered by the $\mathrm{V}_{\mathrm{IL}}$ specification.
6. A suggested minimum configuration circuit was added to the material.
7. The A/D Converter Specifications for Differential Non-Linearity has been corrected to be a maximum of +2 LSB's.
8. The EPROM programming section figures were corrected to indicate the correct interface to a 2764A-2. A reset circuit was added to these figures and the signal PVAL (Port 3.X and Port 4.X) is now identified as the valid signal for program verification in the Auto Programming Mode. Text was added to this section to reference the requirement of using the Auto Configuration Byte Programming Mode for 48 -lead devices. Figure 22A was edited for corrections to the text, and now indicates PVER (Port 2.0). The EPROM circuits were corrected to show 6 MHz operation for programming devices from internal microcode.
9. The protected memory section was edited to indicate that the CPU will enter a "JUMP ON SELF" condition when ROM/EPROM dump mode is complete.
10. An $8 \times 9 \times B H$ ERRATA section was added.
11. This REVISION HISTORY was added.

## 8097JF/8397JF/8797JF COMMERCIAL/EXPRESS HMOS MICROCONTROLLER

## 8797JF: an 8097JF with 16 Kbytes of On-Chip EPROM 8397JF: an 8097JF with 16 Kbytes of On-Chip ROM

- 232 Byte Register File

■ 256 Bytes XRAM for Code

- 10-Bit A/D Converter with S/H

■ Five 8-Bit I/O Ports

- 20 Interrupt Sources

■ Pulse-Width Modulated Output

- ROM/EPROM Lock
- Run-Time Programmable EPROM (OTP)
- Extended Temperature Available
- High Speed I/O Subsystem
- Full Duplex Serial Port
- Dedicated Baud Rate Generator

ㅍ $6.25 \mu \mathrm{~s} 16 \times 16$ Multiply

- $6.25 \mu \mathrm{~s}$ 32/16 Divide
- 16-Bit Watchdog Timer

■ Four 16-Bit Software Timers

- Two 16-Bit Counter/Timers
- Extended Burn-In Available

The MCS-96 family of 16-bit microcontrollers consists of many members, all of which are designed for highspeed control functions. The MCS-96 family members produced using Intel's HMOS-III process are described in this data sheet.

The CPU supports bit, byte, and word operations. Thirty-two bit double-words are supported for a subset of the instruction set. With a 12 MHz input frequency the 8097JF can do a 16 -bit addition in $1.0 \mu \mathrm{~s}$ and a $16 \times 16$-bit multiply or $32 / 16$ divide in $6.25 \mu \mathrm{~s}$. Instruction execution times average 1 to $2 \mu \mathrm{~s}$ in typical applications.

Four high-speed trigger inputs are provided to record the times at which external events occur. Six high-speed pulse generator outputs are provided to trigger external events at preset times. The high-speed output unit can simultaneously perform software timer functions. Up to four 16-bit software timers can be in operation at once.

The on-chip A/D converter includes a Sample and Hold, and converts up to 8 multiplexed analog input channels to 10 -bit digital values. With a 12 MHz crystal, each conversion takes $22 \mu \mathrm{~s}$.

Also provided on-chip are a serial port, a Watchdog Timer and a pulse-width modulated output signal.
With the commercial (standard) temperature option, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Unless otherwise noted, the specifications are the same for both options.

With the extended burn-in option, the burn-in is dynamic for a minimum time of 160 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=$ $5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$, following the guidelines in MIL-STD-883, Method 1015.

See the Packaging information for extended temperature and extended burn-in designators.


Figure 1. 8X97JF Block Diagram


270795-2
Figure 2. 8X97JF Memory Map

## PACKAGING

The 8097JF is available in 64-pin and 68 -pin packages, with and without on-chip ROM or EPROM. The 8097JF numbering system is shown in Figure 3. Figures $5-6$ show the pinouts for the 64- and 68-pin packages. The 64 -pin version is offered in a Shrink-DIP package while the 68 -pin versions come in a Plastic Leaded Chip Carrier (PLCC).

8X97JF PACKAGING

Factory   Masked ROM	CPU		User Programmable		
	OTP				
68-Pin	64-Pin	68-Pin	64-Pin	68 -Pin	64-Pin
8397JF	8397JF	8097JF	8097JF	8797JF	8797JF

Figure 3. The 8097JF Family Nomenclature

## Package Designators: Prefix Designators:

$\mathrm{N}=\mathrm{PLCC}$
T = Extended Temperature
$\mathrm{U}=$ Shrink DIP
$\mathrm{L}=$ Extended Temperature with 160 hrs Burn-in

Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
68 L PLCC	$37^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
64 L Shrink DIP	$56^{\circ} \mathrm{C} / \mathrm{W}$	-

Figure 4. 8X97JF Thermal Characteristics
All thermal impedance data is approximate for static air conditions a 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.


Figure 5. 68-Pin PLCC Package


Figure 6. Shrink-DIP Package

PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (5V).
$\mathrm{V}_{S S}$	Digital circuit ground ( 0 V ). There are two $\mathrm{V}_{S S}$ pins, both of which must be connected.
$V_{P D}$	RAM standby supply voltage ( 5 V ). This voltage must be present during normal operation. In a Power Down condition (i.e., $\mathrm{V}_{\mathrm{CC}}$ drops to zero), if RESET is activated before $\mathrm{V}_{\mathrm{CC}}$ drops below spec and VPD continues to be held within spec., the top 16 bytes in the Register File will retain their contents.
$\mathrm{V}_{\text {REF }}$	Reference voltage for the $\mathrm{A} / \mathrm{D}$ converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected to use A/D or Port 0 .
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $\mathrm{V}_{\mathrm{ss}}$.
$\mathrm{V}_{\mathrm{PP}}$	Programming voltage for the EPROM devices. It should be +12.75 V for programming and will float to 5 V otherwise. It should not be above $\mathrm{V}_{\mathrm{CC}}$ for ROM or CPU devices. This pin must be left floating in the application circuit for EPROM devices.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT*	Output of the internal clock generator. The frequency of CLKOUT is $1 / 3$ the oscillator frequency. It has a $33 \%$ duty cycle.
$\overline{\text { RESET }}$	Reset input to the chip. Input low for a minimum of 10 XTAL1 cycles to reset the chip. The subsequent low-to-high transition re-synchronizes CLKOUT and commences a 10-statetime RESET sequence.
BUSWIDTH*	Input for bus width selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1, a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus. If this pin is left unconnected, it will rise to $\mathrm{V}_{\mathrm{Cc}}$.
NMI*	A positive transition causes a vector to external memory location 0000 H .
INST*	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle.
$\overline{E A}$	Input for memory select (External Access). $\overline{\text { EA }}$ equal to a TTL-high causes memory accesses to locations 2000 H through 5FFF to be directed to on-chip ROM/EPROM. EA equal to a TTL-low causes accesses to these locations to be directed to off-chip memory. $\overline{E A}=+12.75 \mathrm{~V}$ causes the device to enter the Programming Mode.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is $\overline{\mathrm{ADV}}$, it goes inactive high at the end of the bus cycle. ALE/ $\overline{\operatorname{ADV}}$ is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{\text { WR } / \overline{W R L}}$	Write and Write Low output to external memory, as selected by the CCR. WR will go low for every external write, while WRL will go low only for external writes where an even byte is being written. WR/WRL is activated only during external memory writes.
$\overline{\text { BHE }} / \overline{\text { WRH }}$	Bus High Enable or Write High output to external memory, as selected by the CCR. $\overline{\text { BHE }}$ will go low for external writes to the high byte of the data bus. WRH will go low for external writes where an odd byte is being written. $\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$ is activated only during external memory writes.

[^24]8X97JF

## PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
READY	Ready input to lengthen external memory cycles. If the pin is low prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the next positive transition of CLKOUT occurs with READY high. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle held not ready is available in the CCR.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.
Port 0	8 -bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter.
Port 1	8 -bit quasi-bidirectional I/O port.
Port 2	8 -bit multi-functional port. Six of its pins are shared with other functions in the 8096JF, the remaining 2 are quasi-bidirectional. These pins are also used to input and output control signals on EPROM devices in Programming Mode.
Ports 3 and 4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus, which has strong internal pull-ups. Ports 3 and 4 are also used as a command, address and data path by EPROM devices operating in the Programming Mode.
PMODE	Determines the EPROM programming mode.
$\overline{\text { PACT }}$	A low signal in Auto Programming Mode indicates that programming is in progress. A high signal indicates programming is complete.
PVAL	A low signal in Auto Programming Mode indicates that the device programmed correctly.
SALE	A falling edge in Auto Programming Mode indicates that Ports 3 and 4 contain valid programming address/command information (output from master).
$\overline{\text { SPROG }}$	A falling edge in Auto Programming Mode indicates that Ports 3 and 4 contain valid programming data (output from master).
SID	Assigns a pin of Ports 3 and 4 to each slave to pass programming verification.
PALE	A falling edge in Slave Programming Mode and Auto Configuration Byte Programming Mode indicates that Ports 3 and 4 contain valid programming address/command information (input to slave).
PROG	A falling edge in Slave Programming Mode indicates that Ports 3 and 4 contain valid programming data (input to slave).
PVER	A high signal in Slave Programming Mode and Auto Configuration Byte Programming Mode indicates the byte programmed correctly.
PVAL	A high signal in Slave Programming Mode indicates the device programmed correctly.
$\overline{\text { PDO }}$	A low signal in Slave Programming Mode indicates that the PROG pulse was applied for longer than allowed.

## ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $\qquad$	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage from $\overline{E A}$ or $V_{P P}$ to $V_{S S}$ or ANGND . .	$-0.3 \mathrm{~V} \text { to }+13.0 \mathrm{~V}$
Voltage from Any Other Vss or ANGND ....	$-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V}(1)$
Average Output Current	Pin ...... 10 mA
Power Dissipation(2)	1.5

NOTES:

1. This includes VPP and EA on ROM and CPU only devices.
2. Power dissipation is based on package heat transfer characteristics, not device power consumption.

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## OPERATING CONDITIONS

(All characteristics specified in this data sheet apply to these operating conditions unless otherwise noted.)

Symbol	Parameter	Min	Max	Units
$T_{\text {A }}$	Ambient Temperature Under Bias Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Ambient Temperature Under Bias Extended Temp.	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	V
F $_{\text {OSC }}$	Oscillator Frequency	6.0	12	MHz
$\mathrm{V}_{\text {PD }}$	Power-Down Supply Voltage	4.50	5.50	V

## NOTE:

ANGND and $V_{\text {SS }}$ should be nominally at the same potential.

DC CHARACTERISTICS

Symbol	Parameter	Min	Max	Units	Test Conditions
ICC	$\mathrm{V}_{\text {CC }}$ Supply Current Commercial Temp.		300	mA	All Outputs Disconnected
ICC	$\mathrm{V}_{\text {CC }}$ Supply Current Extended Temp.		330	mA	
Icc	$\mathrm{V}_{\text {CC }}$ Supply Current ( $\mathrm{T}_{\mathrm{A}} \geq 70^{\circ} \mathrm{C}$ )		245	mA	
IPD	$\mathrm{V}_{\text {PD }}$ Supply Current		1	mA	Normal operation and Power-Down
$I_{\text {REF }}$	$V_{\text {REF }}$ Supply Current Commercial Temp.		8	mA	
$\mathrm{I}_{\text {REF }}$	$V_{\text {REF }}$ Supply Current Extended Temp.		10	mA	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	+0.8	V	
$\mathrm{V}_{\text {ILI }}$	Input Low Voltage, $\overline{\text { RESET Commercial Temp. }}$	-0.3	+0.8	V	
$\mathrm{V}_{\text {IL1 }}$	Input Low Voltage, $\overline{\text { RESET Extended Temp. }}$	-0.3	+0.7	V	

8X97JF

DC CHARACTERISTICS (Continued)

Symbol	Parameter	Min	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage (Except RESET, NMI, XTAL1)	2.0	$V_{C C}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage, $\overline{\text { RESET Rising }}$	2.4	$V_{\text {CC }}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 2}$	Input High Voltage, $\overline{\text { RESET Falling (Hysteresis) }}$	2.1	$V_{C C}+0.5$	V	
$\mathrm{V}_{1+3}$	Input High Voltage, NMI, XTAL1 Commercial Temp.	2.2	$V_{C C}+0.5$	V	
$\mathrm{V}_{\text {IH3 }}$	Input High Voltage, NMI, XTAL1 Extended Temp.	2.3	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{ILI}^{\prime}$	Input Leakage Current to each pin of HSI, P3, P4, and to P2.1		$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0$ to $\mathrm{V}_{\mathrm{CC}}$
${ }^{\text {LII }}$	DC Input Leakage Current to each pin of P0		+3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0$ to $\mathrm{V}_{\mathrm{CC}}$
$\mathrm{IH}_{\mathrm{IH}}$	Input High Current to EA		100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$
ILL	Input Low Current to each pin of P1, and to P2.6, P2. 7 Commercial Temp.		-125	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
ILL	Input Low Current to each pin of P1, and to P2.6, P2.7 Extended Temp.		-150	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
ILL1	Input Low Current to RESET	-0.25	-2	mA	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
ILL2	Input Low Current P2.2, P2.3, P2.4, READY, BUSWIDTH		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
VOL	Output Low Voltage on Quasi-Bidirectional port pins and P3, P4 when used as ports		0.45	V	$\begin{aligned} & \mathrm{IOL}=0.8 \mathrm{~mA} \\ & \text { (Note 1) } \end{aligned}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage on Quasi-Bidirectional port pins and P3, P4 when used as ports		0.75	V	$\begin{array}{\|l\|} \hline \mathrm{IOL}=2.0 \mathrm{~mA} \\ (\text { Notes } 1,2,3) \\ \hline \end{array}$
$\mathrm{V}_{\mathrm{OL} 2}$	Output Low Voltage on Standard Output pins, RESET and Bus/Control Pins		0.45	V	$\begin{aligned} & \mathrm{loL}=2.0 \mathrm{~mA} \\ & (\text { Notes } 1,2,3) \\ & \hline \end{aligned}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage on Quasi-Bidirectional pins	2.4		V	$\begin{aligned} & \mathrm{l}=-20 \mu \mathrm{~A} \\ & \text { (Note 1) } \end{aligned}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage on Standard Output pins and Bus/Control pins	2.4		V	$\begin{aligned} & \mathrm{l} \\ & \text { INH }=-200 \mu \mathrm{~A} \\ & \text { (Note 1) } \end{aligned}$
${ }^{\text {OH3 }}$	Output High Current on RESET	-50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
$\mathrm{C}_{5}$	Pin Capacitance (Any Pin to V ${ }_{\text {SS }}$ )		10	pF	$\mathrm{F}_{\text {TEST }}=1.0 \mathrm{MHz}$

## NOTES:

1. Quasi-bidirectional pins include those on P1, for P2.6 and P2.7. Standard Output Pins include TXD, RXD (Mode 0 only), PWM and HSO pins. Bus/Control pins include CLKOUT, ALE, $\overline{B H E}, \overline{R D}, \overline{W R}$, INST and AD0-15.
2. Maximum current per pin must be externally limited to the following values if $V_{O L}$ is held above 0.45 V .
lol on quasi-bidirectional pins and Ports 3 and 4 when used as ports: 4.0 mA
IOL on standard output pins and RESET: 8.0 mA
IOL on Bus/Control pins: 2.0 mA
3.During normal (non-transient) operation the following limits apply:

Total IOL on Port 1 must not exceed 8.0 mA .
Total Iol on P2.0, P2.6, RESET and all HSO pins must not exceed 15 mA .
Total IOL on Port 3 must not exceed 10 mA .
Total Iol on P2.5, P2.7, and Port 4 must not exceed 20 mA .

## AC CHARACTERISTICS

Test Conditions: Load Capacitance on Output Pins $=80 \mathrm{pF}$

TIMING REQUIREMENTS (The system must meet these specifications to work with the 8X97JF)

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {CLYX }}{ }^{(3)}$	READY Hold after CLKOUT Edge	O(1)		ns
TLLYV	End of ALE/ $\overline{\text { ADV }}$ to READY Valid		$2 \mathrm{TOSC}^{-70}$	ns
TLLYH	End of ALE/ $\overline{\text { ADV }}$ to READY High	$2 \mathrm{~T}_{\text {OSC }}+40$	4 Tosc - 80	ns
TYLYH	Non-Ready Time		1000	ns
$\mathrm{T}_{\text {AVDV }}{ }^{(2)}$	Address Valid to Input Data Valid		5 Tosc - 120(4)	ns
TRLDV	$\overline{\mathrm{RD}}$ Active to Input Data Valid		3 TosC - 100(4)	ns
$\mathrm{T}_{\text {RHDX }}$	Data Hold after $\overline{\mathrm{RD}}$ Inactive	0		ns
$\mathrm{T}_{\text {RHDZ }}$	$\overline{\mathrm{RD}}$ Inactive to Input Data Float	0	Tosc - 25	ns
$\mathrm{T}_{\text {AVGV }}{ }^{(2,3)}$	Address Valid to BUSWIDTH Valid		2 TOSC $^{-125}$	ns
$\mathrm{T}_{\text {LLGX }}{ }^{(3)}$	BUSWIDTH Hold after ALE/ $\overline{\text { DDV }}$ Low	Tosc +40		ns
TLLGV ${ }^{(3)}$	ALE/ $\overline{\text { ADV }}$ Low to BUSWIDTH Valid		Tosc - 100	ns
TRLPV	Reset Low to Ports Valid		10 TOSC	ns

## NOTES:

1. If the 64-pin device is being used then this timing can be generated by assuming that the CLKOUT falling edge has occurred at 2 TOSC +55 (TLLCH(max) + TCHCL(max)) after the falling edge of ALE.
2. The term "Address Valid" applies to ADO-15, BHE and INST.
3. Pins not bonded out on 64 -pin devices.
4. If wait states are used, add 3 TOSC * $N$ where $N=$ number of wait states.

8K97JF

TIMING RESPONSES (8X97JF devices meet these specs.)

Symbol	Parameter	Min	Max	Units
FXTAL	Oscillator Frequency	6.0	12.0	MHz
Tosc	Oscillator Period	83	166	ns
$\mathrm{TOHCH}^{(3)}$	XTAL1 Rising Edge to Clockout Rising Edge	0	120	ns
$\mathrm{T}_{\mathrm{CHCH}}{ }^{(3)}$	CLKOUT Period	$3 \mathrm{TOSC}^{(2)}$	$3 \mathrm{ToSC}^{(2)}$	ns
$\mathrm{T}_{\mathrm{CHCL}}{ }^{(3)}$	CLKOUT High Time	Tosc - 35	Tosc +10	ns
$\mathrm{T}_{\text {CLLH }}{ }^{(3)}$	CLKOUT Low to ALE High	-30	+ 15	ns
$\mathrm{TLLCH}^{(3)}$	ALE/ $\overline{\text { DDV Low to CLKOUT High }}$	Tosc - 25	Tosc +45	ns
TLHLL	ALE/ $\overline{\text { ADV }}$ High Time	Tosc - 30	TOSC + 35(4)	ns
$\mathrm{T}_{\text {AVLL }}{ }^{\text {(5) }}$	Address Setup to End of ALE/ $\overline{\text { ADV }}$	Tosc - 50		ns
$\mathrm{T}_{\text {RLAZ }}{ }^{(6)}$	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low to Address Float Commercial Temp.	Typ. $=0$	10	ns
$\mathrm{T}_{\text {RLAZ }}{ }^{(6)}$	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low to Address Float Extended Temp.		25	ns
TLLRL	End of ALE/ $\overline{\mathrm{ADV}}$ to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Active	Tosc - 40		ns
TLLAX ${ }^{(6)}$	Address Hold after End of ALE/ $\overline{\text { ADV }}$	Tosc - 40		ns
TWLWH	$\overline{\text { WR Pulse Width }}$	3 TOSC - 35(1)		ns
T ${ }_{\text {QVW }}$	Output Data Valid to End of $\overline{\text { WR}} / \overline{\text { WRL }} / \overline{\text { WRH }}$	3 Tosc - 60(1)		ns
$\mathrm{T}_{\text {WHOX }}$	Output Data Hold after $\overline{\text { WR }} / \overline{\text { WRL }} / \overline{\text { WRH }}$	Tosc - 50		ns
T WHLH	End of $\overline{\text { WR }} / \overline{\text { WRL }} / \overline{\text { WRH }}$ to ALE/ $/ \overline{\text { WDV High }}$	Tosc - 75		ns
T ${ }_{\text {RLRH }}$	$\overline{\text { RD Pulse Width }}$	3 Tosc - $^{\text {30(1) }}$		ns
$\mathrm{T}_{\text {RHLH }}$	End of $\overline{\mathrm{RD}}$ to ALE/ $\overline{\text { ADV }}$ High	Tosc - 45		ns
$\mathrm{T}_{\text {CLLL }}{ }^{(3)}$	CLOCKOUT Low to ALE/ $\overline{\text { ADV }}$ Low	Tosc - 40	Tosc +35	ns
$\mathrm{T}_{\text {RHBX }}{ }^{(3)}$	$\overline{\mathrm{RD}}$ High to INST, $\overline{\mathrm{BHE}}$, AD8-15 Inactive	TOSC - 25	Tosc +30	ns
$\mathrm{T}_{\text {WhBX }}{ }^{(3)}$	$\overline{\text { WR }}$ High to INST, $\overline{B H E}$, AD8-15 Inactive	Tosc - 50	Tosc +100	ns
$\mathrm{T}_{\text {HLHH }}$	$\overline{\text { WRL, }}$ WRH Low to WRL, $\overline{\text { WRH High }}$	2 Tosc - 35	2 Tosc +40	ns
TLLHL	ALE/ $\overline{\text { ADV }}$ Low to WRL, $\overline{\text { WRH }}$ Low	$2 \mathrm{TOSC}^{-30}$	2 Tosc +55	ns
T QVHL	Output Data Valid to WRL, WRH Low	Tosc - 60		ns

## NOTES:

1. If more than one wait state is desired, add 3 Tosc for each additional wait state.
2. CLKOUT is directly generated as a divide by 3 of the oscillator. The period will be 3 Tosc $\pm 10 \mathrm{~ns}$ if TOSc is constant and the rise and fall times on XTAL1 are less than 10 ns .
3. CLKOUT, INST and BHE pins not bonded out on 64-lead package.
4. Max spec applies only to ALE. Min spec applies to both ALE and $\overline{\text { ADV }}$.
5. The term "Address Valid" applies to ADO-15, BHE and INST.
6. The term " Address" in this specification applies to ADO-7 for 8-bit cycles, and ADO-15 for 16-bit cycles.

## WAVEFORM-SYSTEM BUS TIMINGS



270795-18

## NOTES:

1. 8-bit bus only.
2. 8-bit or 16-bit bus and write strobe mode selected.
3. When $\overline{\text { ADV }}$ selected.
4. 8 - or 16 -bit bus and no write strobe mode selected.

## WAVEFORM—BUSWIDTH* TIMINGS


*Not available on 64-lead package.

## WAVEFORM-TRLPV



EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TOLOL	Oscillator Frequency	6	12	MHz
TOHOX	High Time	25		ns
TOLOX	Low Time	30		ns
TOLOH	Rise Time		15	ns
TOHOL	Fall Time		15	ns

## EXTERNAL CLOCK DRIVE WAVEFORMS



An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts-up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the $\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\mathrm{IH}}$ specifications the capacitance will not exceed 20 pF .

## EXTERNAL CRYSTAL CONNECTIONS



NOTE:
Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and VSS. When using crystals, C1 = 30 pF and $\mathrm{C} 2=30 \mathrm{pF}$. When using ceramic resonators, consult manufacturer for recommended capacitor values.

EXTERNAL CLOCK CONNECTIONS


## FLOAT WAVEFORMS



270795-24
For Timing Purposes a Port Pin is no Longer Floating when a 200 mV change from Load Voltage Occurs, and Begins to Float when a 200 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{IOL} / \mathrm{I}_{\mathrm{OH}} \geq \pm 8 \mathrm{~mA}$.

## MINIMUM HARDWARE CONFIGURATION CIRCUITS



## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE

## SERIAL PORT TIMING-SHIFT REGISTER MODE

Test Conditions: Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	Min	Max	Units
$T_{\text {XLXL }}$	Serial Port Clock Period	$8 T_{\text {OSC }}$		ns
$T_{\text {XLXH }}$	Serial Port Clock Falling Edge to Rising Edge	$4 T_{\text {OSC }}-50$	$4 T_{\text {OSC }}+50$	ns
$T_{\text {QVXH }}$	Output Data Setup to Clock Rising Edge	$3 T_{\text {OSC }}$		ns
$T_{\text {XHQX }}$	Output Data Hold After Clock Rising Edge	$2 T_{\text {OSC }}-70$		ns
$T_{\text {XHQV }}$	Next Output Data Valid After Clock Rising Edge		$2 T_{\text {OSC }}+50$	ns
$T_{\text {DVXH }}$	Input Data Setup to Clock Rising Edge	$2 T_{\text {OSC }}+200$		ns
$T_{\text {XHDX }}$	Input Data Hold After Clock Rising Edge	0		ns
$T_{\text {XHQZ }}$	Last Clock Rising to Output Float		$5 T_{\text {OSC }}$	ns

## WAVEFORM-SERIAL PORT-SHIFT REGISTER MODE

## SERIAL PORT WAVEFORM-SHIFT REGISTER MODE



## A/D CONVERTER SPECIFICATIONS

The absolute conversion accuracy is dependent on the accuracy and stability of $\mathrm{V}_{\text {REF }}$.
See the MCS-96 A/D Converter Quick Reference for definitions of A/D Converter terms.

Parameter	Typical*	Minimum	Maximum	Units**	Notes
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 4$	LSBs	
Full Scale Error	$-0.5 \pm 0.5$			LSBs	
Zero Offset Error	$\pm 0.5$			LSBs	
Non-Linearity		0	$\pm 4$	LSBs	
Differential Non-Linearity		>-1	+2	LSBs	
Channel-to-Channel Matching		0	$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients:   Offset   Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			LSB $/{ }^{\circ} \mathrm{C}$   LSB $/{ }^{\circ} \mathrm{C}$   LSB $/{ }^{\circ} \mathrm{C}$	
Off Isolation		-60		dB	1,3
Feedthrough	-60			dB	1
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB	1
Input Series Resistance		1K	5K	$\Omega$	4
DC Input Leakage		0	3.0	$\mu \mathrm{A}$	
Sample Delay		3 Tosc - 50	3 Tosc +50	ns	2
Sample Time		12 Tosc - 50	12 Tosc +50	ns	
Sampling Capacitor			2	pF	

NOTES:

* These values are expected for most devices at $25^{\circ} \mathrm{C}$.
** An "LSB", as used here, is defined in the MCS-96 A/D Converter Quick Reference and has a value of approximately 5 mV .

1. DC to 100 KHz .
2. For starting the A/D with an HSO Command.
3. Multiplexer Break-Before-Make Guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.

## OTP EPROM SPECIFICATIONS

## EPROM PROGRAMMING OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature during Programming	20	30	C
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{PD}}$,   $\mathrm{V}_{\text {REF }}{ }^{(1)}$	Supply Voltages during Programming	4.5	5.5	V
$\mathrm{~V}_{\mathrm{EA}}$	Programming Mode Supply Voltage	9.0	13.0	$\mathrm{~V}(2)$
$\mathrm{V}_{\mathrm{PP}}$	EPROM Programming Supply Voltage	12.50	13.0	$\mathrm{~V}(2)$
$\mathrm{V}_{\mathrm{SS}}, \mathrm{ANGND}^{(3)}$	Digital and Analog Ground	0	0	V
$\mathrm{FOSC}^{(1)}$	Oscillator Frequency during Auto and Slave   Programming	6.0	6.0	MHz
$\mathrm{FOSC}^{(2)}$	Oscillator Frequency during Run-Time   Programming	6.0	12.0	MHz

## NOTES:

1. $V_{C C}, V_{P D}$ and $V_{\text {REF }}$ should nominally be at the same voltage during programming.
2. $V_{E A}$ and $V_{P P}$ must never exceed the maximum voltage for any amount of time or the device may be damaged.
3. $\mathrm{V}_{\mathrm{SS}}$ and ANGND should nominally be at the same voltage ( $O \mathrm{~V}$ ) during programming.

## AC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {AVLL }}$	ADDRESS/COMMAND Valid to PALE Low	0		Tosc
TLLAX	ADDRESS/COMMAND Hold After PALE Low	80		Tosc
TDVPL	Output Data Setup Before PROG Low	0		Tosc
TPLDX	Data Hold After PROG Falling	80		Tosc
TLLLH	PALE Pulse Width	180		Tosc
TPLPH	$\overline{\text { PROG Pulse Width }}$	250 Tosc	$\begin{aligned} & 100 \mu \mathrm{~s}+ \\ & 144 \text { TOSC } \end{aligned}$	
TLHPL	PALE High to PROG Low	250		Tosc
TPHLL	$\overline{\text { PROG }}$ High to Next PALE Low	600		Tosc
TPHDX	Data Hold After PROG High	30		Tosc
TPHVV	$\overline{\text { PROG }}$ High to PVER/何O Valid	500		Tosc
TLLVH	PALE Low to PVER/何 High	100		Tosc
TPLDV	PROG Low to VERIFICATION/DUMP Data Valid	100		Tosc
TSHLL	RESET High to First PALE Low (not shown)	2000		Tosc

## DC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Min	Max	Units
$I_{\text {PP }}$	$V_{\text {PP }}$ Supply Current (Whenever Programming)		100	mA

## WAVEFORM-EPROM PROGRARIMING (OTP)



## REVISION HISTORY

This data sheet (270795-005) is valid for devices with a " $B$ " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following difference exists between this -006 data sheet and the previous one -005.

1. The $\mathrm{I}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}}$ for float waveform testing changed from $\pm 15 \mathrm{~mA}$ to $\pm 8 \mathrm{~mA}$ (this data sheet).

The following differences exist between -005 and -004.

1. The Express (extended temperature and burn-in options) were added to this data sheet. The 8X9XJF EXPRESS data sheet (270796-001) is now obsolete.
2. Changes were made to the format of the data sheet and the SFR descriptions were removed. No spec changes were made.
3. Added Reserved Location 201CH errata.

The following differences exist between the -004 data sheet and the -003 data sheet.

1. The -003 data sheet was valid only for devices marked with an " $A$ " at the end of the top side tracking number.

## 2. Added $\mathrm{V}_{\mathrm{IL} 1}$ (Input Low Voltage, $\overline{R E S E T)}$

The following differences exist between the -003 data sheet and the -002 data sheet.

1. The reserved location section and the power supply sequencing section has been deleted. This information is in the Hardware Design Information.
2. The Software Reset Timing bug was removed from the Functional Deviations. The RESET pin will pull down for at least 2 states if a software reset or watchdog timer overflow occurs.

Differences between the -002 and -001 data sheets.

1. The TLLGV spec has been changed from Max $=$ $T_{\text {OSC }}-75$ ns to Max $=$ TOSC $=100 \mathrm{~ns}$.
2. The TCLLH spec has been changed from Min $=$ -20 ns and Max $=+25 \mathrm{~ns}$ to $\mathrm{Min}=-30 \mathrm{~ns}$ and $\operatorname{Max}=+15 \mathrm{~ns}$.
3. The TXHQX spec has been changed from $\mathrm{Min}=$ 2 TOSC -50 ns to $2 T_{\text {OSC }}-70 \mathrm{~ns}$.
4. The TOLOX spec has been changed from Min $=$ 25 ns to $\mathrm{Min}=30 \mathrm{~ns}$.
5. Added " 20 " recommendation for reserved address 2019 H to EPROM specification.
6. Added errata.

## 8X97JF ERRATA

Devices covered by this data sheet (see Revision History) have the following errata.

1. INDEXED, 3 OPERAND MULTIPLY

The displacement portion of an indexed, three operand (byte or word) multiply may not be in the range of 200 H thru 17 FFH inclusive. If you must use these displacements, execute an indexed, two operand multiply and a move if necessary.
2. 8X97JF HIGH SPEED INPUTS

The High Speed Input (HSI) has three deviations from the specifications. Note that "events" are defined as one or more pin transitions. "Entries" are defined as the recording of one or more events.
A. The resolution is nine states instead of eight states. Events occurring on the same pin more frequently than once every nine state times may be lost.
B. A mismatch between the nine state HSI resolution and the eight state hardware timer causes one time-tag value to be skipped every nine timer counts. Events may receive a time tag one count later than expected.
C. If the FIFO and Holding Register are empty, the first event will transfer into the Holding Register, leaving the FIFO empty again. The next event that occurs will be the first event loaded into the empty FIFO. If the first two events into any empty FIFO (not counting the Holding Register) occur coincident with each other, both are recorded as one entry with one time-tag. If the second event occurs' within 9 states after the first, the events will be entered separately with time-tags at least one count apart. If the second event enters the FIFO coincident with the "skipped" time-tag situation (see B above) the time-tags will be at least two counts apart.

## 3. RESERVED LOCATION 2019H

The 1990 Architectural Overview recommends that reserved location 2019H be filled with hex value FFH . The recommendation is now to fill 2019 H with hex value 20 H .
4. RESERVED LOCATION 201CH

Reading reserved location 201 CH , either internally or externally, will return "201C" as data.
5. SERIAL PORT SECTION

Serial Port Flags-Reading SP_STAT may not clear the TI or RI flag if that flag was set within two state times prior to the read. In addition, the parity error bit (RPE/RB8) may not be correct if it is read within two state times after RI is set. Use the following code to replace ORB sp__image, SP_STAT.

```
SP_READ: LDB TEMP, SP_STAT
ORB SP_IMAGE, TEMP
JBS TEMP,5,SP_READ; if TI
is set then read again
JBS TEMP,6,SP_READ; if RI
is set then read again
ANDB SP_IMAGE,#7FH; clear
false RB8/RPE
ORB SP_IMAGE, TEMP; load
correct RB8/RPE
```


# 8098/8398/8798 <br> COMMERCIAL/EXPRESS HMOS MICROCONTROLLER 

# - 8798: an 8098 with 8 Kbytes of On-Chip EPROM <br> - 8398: an 8098 with 8 Kbytes of On-Chip ROM 

232 Byte Register File	- Full Duplex Serial Port
- Register-to-Register Architecture	■ Dedicated Baud Rate Generator
■ 10-Bit A/D Converter with S/H	■ $6.25 \mu s 16 \times 16$ Multiply
- Two 8-Bit and Two 4-Bit I/O Ports	■ $6.25 \mu \mathrm{~s} 32 / 16$ Divide
- 20 Interrupt Sources	- 16-Bit Watchdog Timer
■ Pulse-Width Modulated Output	■ Four 16-Bit Software Timers
■ ROM/EPROM Lock	- Two 16-Bit Counter/Timers
- High Speed I/O Subsystem	- Run-Time Programmable EPROM
- Extended Temperature Available	- Extended Burn-In Available

The MCS ${ }^{\oplus}$-96 family of 16-bit microcontrollers consists of many members, all of which are designed for highspeed control functions. The 8X98 members were designed specifically for those applications that require the speed of a 16-bit microcontroller but are limited by board space and cost requirements to an 8-bit external bus. The 8X98 members are produced using Intel's HMOS-III process.

The CPU supports bit, byte, and word operations. Thirty-two bit double-words are supported for a subset of the instruction set. With a 12 MHz input frequency the 8098 can do a 16 -bit addition in $1.0 \mu \mathrm{~s}$ and a $16 \times 16$-bit multiply or $32 / 16$ divide in $6.25 \mu \mathrm{~s}$. Instruction execution times average 1 to $2 \mu \mathrm{~s}$ in typical applications.

Four high-speed trigger inputs are provided to record the times at which external events occur. Six high-speed pulse generator outputs are provided to trigger external events at preset times. The high-speed output unit can simultaneously perform software timer functions. Up to four 16-bit software timers can be in operation at once.

The on-chip A/D converter includes a Sample and Hold, and converts up to 4 multiplexed analog input channels to 10-bit digital values. With a 12 MHz crystal, each conversion takes $22 \mu \mathrm{~s}$.


270532-1
Figure 1. 8X98 Block Diagram

Also provided on-chip are a serial port, a Watchdog Timer and a pulse-width modulated output signal.

With the commercial (standard) temperature option, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Unless otherwise noted, the specifications are the same for both options.

With the extended burn-in option, the burn-in is dynamic for a minimum time of 160 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$, following the guidelines in MIL-STD-883, Method 1015.

See the Packaging information for extended temperature and extended burn-in designators.


Figure 2. 8X98 Memory Map

## PACKAGING

The 8098 is available in a 48 -pin package with and without on-chip ROM or EPROM. The MCS-96 numbering system for the 8X98 devices is shown in Figure 4. Figure 6 shows the pinout for the 48 -pin package. The 48 -pin version is offered in a Dual-In-Line package.

Factory   Masked   ROM	CPU	User   Programmable	
	EPROM	OTP	
8398	8098	48 -Pin	48 -Pin

Figure 3. MCS®-96 Packaging-8098

## Package Designators:

C = Ceramic DIP
$P=$ Plastic DIP

Prefix Designators:
$\mathrm{T}=$ Extended Temperature
L = Extended Temperature with 160 Hours Burn-In

Package Type	$\boldsymbol{\theta}_{\text {ja }}$	$\boldsymbol{\theta}_{\text {jc }}$
48 L Plastic DIP	$38^{\circ} \mathrm{C} / \mathrm{W}$	$19^{\circ} \mathrm{C} / \mathrm{W}$
48 L Ceramic DIP	$26^{\circ} \mathrm{C} / \mathrm{W}$	$6.5^{\circ} \mathrm{C} / \mathrm{W}$

Figure 4. 8X98 Thermal Characteristics
All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.


Figure 5. 48-Pin Package

8098/8398/8798

PIN DESCRIPTIONS

Symbol	Name and Function
$V_{C C}$	Main supply voltage (5V).
$\mathrm{V}_{\text {SS }}$	Digital circuit ground ( 0 V ). There are two $\mathrm{V}_{\text {SS }}$ pins, both of which must be connected.
$V_{P D}$	RAM standby supply voltage ( 5 V ). This voltage must be present during normal operation. In a Power Down condition (i.e. $\mathrm{V}_{\mathrm{CC}}$ drops to zero), if RESET is activated before $\mathrm{V}_{\mathrm{CC}}$ drops below spec and $\mathrm{V}_{\text {PD }}$ continues to be held within spec., the top 16 bytes in the Register File will retain their contents.
$V_{\text {REF }}$	Reference voltage for the A/D converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as VSS.
$\mathrm{V} P \mathrm{P}$	Programming voltage for the EPROM devices. It should be 12.75 V when programming and will float to 5 V otherwise. The pin should not be above $\mathrm{V}_{\mathrm{CC}}$ for ROM or CPU devices. This pin must float in the application circuit on EPROM devices.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
RESET	Reset input to the chip. Input low for a minimum 10XTAL1 cycles to reset the chip. The subsequent low-to-high transition re-synchronizes CLKOUT and commences a 10 -state-time RESET sequence.
$\overline{E A}$	Input for memory select (External Access). $\overline{E A}$ equal to a TTL-high causes memory accesses to locations 2000 H through 3FFFH to be directed to on-chip ROM. EA equal to a TTL-Iow causes accesses to these locations to be directed to off-chip memory. EA equal to +12.75 V causes the device to enter the Programming Mode.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is $\overline{A D V}$, it goes inactive high at the end of the bus cycle. ALE/ $\overline{\text { ADV }}$ is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{W R}$	Write output to external memory. $\overline{\mathrm{WR}}$ is activated only during external memory writes.
READY	Ready input to lengthen external memory cycles. If the pin is low prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the next positive transition of CLKOUT occurs with READY high. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle held not ready is available in the CCR.

PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.
Port 0	4-bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter.
Port 2	4-bit multi-functional port. Its pins are shared with other functions in the 8098.
Ports 3 and 4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus which has strong internal pullups. Ports 3 and 4 are also used as a command, address and data path by EPROM devices in the Programming Mode.
PMODE	Determines the EPROM programming mode.
$\overline{\text { PACT }}$	A low signal in Auto Programming Mode indicates that programming is in progress. A high signal indicates programming is complete.
PVAL	A low signal in Auto Programming Mode indicates that the device programmed correctly.
SALE	A falling edge in Auto Programming Mode indicates that Ports 3 and 4 contain valid programming address/command information (output from master).
$\overline{\text { SPROG }}$	A falling edge in Auto Programming Mode indicates that Ports 3 and 4 contain valid programming data (output from master).
SID	Assigns a pin of Ports 3 and 4 to each slave to pass programming verification.
PALE	A falling edge in Slave Programming Mode and Auto Configuration Byte Programming Mode indicates that Ports 3 and 4 contain valid programming address/command information (input to slave).
$\overline{\text { PROG }}$	A falling edge in Slave Programming Mode indicates that Ports 3 and 4 contain valid programming data (input to slave).
PVER	A high signal in Slave Programming Mode and Auto Configuration Byte Programming Mode indicates the byte programmed correctly.
PVAL	A high signal in Slave Programming Mode indicates the device programmed correctly.
$\overline{\text { PDO }}$	A low signal in Slave Programming Mode indicates that the PROG pulse was applied for longer than allowed.

## ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage from $\overline{E A}$ or $V_{P P}$
to $V_{S S}$ or ANGND . . . . . . . . . . . . -0.3 V to +13.0 V
Voltage from Any Other Pin to
VSS or ANGND
............$-0.3 V$ to $+7.0 \mathrm{~V}(1)$
Average Output Current from Any Pin . . . . . . 10 mA
Power Dissipation(2) . . . . . . . . . . . . . . . . . . . . . . . 1.5W

## NOTES:

1. This includes $\mathrm{V}_{\mathrm{PP}}$ on ROM and CPU only devices.
2. Power dissipation is based on package heat transfer limitations, not device power consumption.

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## OPERATING CONDITIONS

(All characteristics specified in this data sheet apply to these operating conditions unless otherwise noted.)

Symbol	Parameter	Min	Max	Units
$T_{A}$	Ambient Temperature Under Bias Commercial Temp.	0	+70	C
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Under Bias Extended Temp.	-40	+85	C
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	V
$\mathrm{~F}_{\text {OSC }}$	Oscillator Frequency	6.0	12	MHz
$\mathrm{V}_{\text {PD }}$	Power-Down Supply Voltage	4.50	5.50	V

## NOTE:

ANGND and $V_{S S}$ should be nominally at the same potential.

## DC CHARACTERISTICS

Symbol	Parameter	Min	Max	Units	Test Conditions
ICC	$\mathrm{V}_{\text {CC }}$ Supply Current Commercial Temp.		240	mA	All Outputs Disconnected.
ICC	$\mathrm{V}_{\text {CC }}$ Supply Current Extended Temp.		270	mA	
ICC	$\mathrm{V}_{\text {CC }}$ Supply Current ( $\mathrm{T}_{\mathrm{A}} \geq 70^{\circ} \mathrm{C}$ )		185	mA	
IPD	$\mathrm{V}_{\text {PD }}$ Supply Current		1	mA	Normal operation and Power-Down.
IREF	$V_{\text {REF }}$ Supply Current Commercial Temp.		8	mA	
IREF	$V_{\text {REF }}$ Supply Current Extended Temp.		10	mA	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	+0.8	V	

DC CHARACTERISTICS (Continued)

Symbol	Parameter	Min	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage   (Except RESET, NMI, XTAL1)	2.0	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage, RESET Rising	2.4	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{1 \mathrm{H} 2}$	Input High Voltage, $\overline{\text { RESET Falling Hysteresis }}$	2.1	$V_{C C}+0.5$	V	
$\mathrm{V}_{\text {IH3 }}$	Input High Voltage, NMI, XTAL1	2.2	$V_{C C}+0.5$	V	
$\mathrm{I}_{\text {LI }}$	Input Leakage Current to each pin of HSI, P3, P4, and to P2.1.		$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0$ to $\mathrm{V}_{\mathrm{CC}}$
LLI	DC Input Leakage Current to each pin of P0		+3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0$ to $\mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{IH}}$	Input High Current to EA		100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$
IIL	Input Low Current to each pin of P1 and to P2.6, P2.7 Commercial Temp.		-125	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
IIL	Input Low Current to each pin of P1 and to P2.6, P2.7 Extended Temp.		-150	$\mu \mathrm{A}$	
${ }_{\text {ILI }}$	Input Low Current to RESET	-0.25	-2	mA	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
IIL2	Input Low Current P2.2		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
VOL	Output Low Voltage on P3, P4 when used as ports		0.45	V	$\begin{aligned} & \mathrm{IOL}=0.8 \mathrm{~mA} \\ & (\text { Note 1) } \end{aligned}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage on P3, P4 when used as ports		0.75	V	$\begin{aligned} & \mathrm{IOL}_{\mathrm{O}}=2.0 \mathrm{~mA} \\ & (\text { Notes } 1,2,3) \end{aligned}$
$\mathrm{V}_{\text {OL2 }}$	Output Low Voltage on Standard Output pins, RESET and Bus/Control Pins		0.45	V	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA} \\ & (\text { Notes } 1,2,3) \end{aligned}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage on Standard Output pins and Bus/Control pins	2.4		V	$\begin{aligned} & \mathrm{IOH}=-200 \mu \mathrm{~A} \\ & \text { (Note 1) } \end{aligned}$
IOH	Output High Current on RESET	-50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
$\mathrm{C}_{S}$	Pin Capacitance (Any Pin to V ${ }_{\text {SS }}$ )		10	pF	$\mathrm{F}_{\text {TEST }}=1.0 \mathrm{MHz}$

## NOTES:

1. Standard Output Pins include TXD, RXD (Mode 0 only), PWM, and HSO pins. Bus/Control pins include ALE, $\overline{\text { RD }}, \overline{\mathrm{WR}}$, AD0-AD7 and A8-A15.
2. Maximum current per pin must be externally limited to the following values if $\mathrm{V}_{\mathrm{OL}}$ is held above 0.45 V .
lol on Ports 3 and 4 when used as ports: 4.0 mA
IOL on standard output pins and RESET: 8.0 mA
lol on Bus/Control pins: 2.0 mA
3. During normal (non-transient) operation the following limits apply:

Total loL on P2.0, $\overline{\text { RESET }}$ and all HSO pins must not exceed 15 mA .
Total IOL on Port 3 must not exceed 10 mA .
Total IOL on P2.5 and Port 4 must not exceed 20 mA .

AC CHARACTERISTICS Test Conditions: Load Capacitance on Output Pins $=80 \mathrm{pF}$
TIMING REQUIREMENTS (The system must meet these specifications to work with the 8X98.)

Symbol	Parameter	Min	Max	Units
TLLYV	End of ALE/ $\overline{\text { ADV }}$ to READY Valid		2 Tosc - 70	ns
TLLYH	End of ALE/ $\overline{\text { ADV }}$ to READY High	2 Tosc +40	4 Tosc - 80	ns
TYLYH	Non-Ready Time		1000	ns
$\mathrm{T}_{\text {AVDV }}{ }^{(1)}$	Address Valid to Input Data Valid		$5 \mathrm{TOSC}^{-120(2)}$	ns
TRLDV	$\overline{\mathrm{RD}}$ Active to Input Data Valid		3 TOSC - 100(2)	ns
$\mathrm{T}_{\text {RHDX }}$	Data Hold after $\overline{\text { RD }}$ Inactive	0		ns
$\mathrm{T}_{\text {RHDZ }}$	$\overline{\mathrm{RD}}$ Inactive to Input Data Float	0	TOSC - 25	ns

## NOTE:

1. The term "Address Valid" applies to A0-A15.
2. If wait states are used, add 3 Tosc * $N$ where $N=$ number of states.

TIMING RESPONSES (8X98 devices meet these specs.)

Symbol	Parameter	Min	Max	Units
FXTAL	Oscillator Frequency	6.0	12.0	MHz
Tosc	Oscillator Period	83	166	ns
TLHLL	ALE/ $\overline{\text { ADV }}$ High Time	Tosc - 30	Tosc $+35(3)$	ns
$\mathrm{T}_{\text {AVLL }}{ }^{(4)}$	Address Setup to End of ALE/ $\overline{\text { ADV }}$	Tosc - 50		ns
$T_{\text {RLAZ }}{ }^{(5)}$	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low to Address Float Commercial Temp.	Typ. $=0$	10	ns
$\mathrm{T}_{\text {RLAZ }}{ }^{(5)}$	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low to Address Float Extended Temp.		25	ns
TLLRL	End of ALE/ $\overline{\text { DDV }}$ to $\overline{\text { RD }}$ Active	Tosc - 40		ns
TLLAX ${ }^{(5)}$	Address Hold after End of ALE/ $\overline{\text { ADV }}$	Tosc - 40		ns
$\mathrm{T}_{\text {WLWH }}{ }^{(6)}$	$\overline{\text { WR Pulse Width }}$	$3 \mathrm{TOSC}^{-35(2)}$		ns
$T_{\text {WLWH }}{ }^{(7)}$	$\overline{\text { WR Pulse Width }}$	2 TOSC - 35(2) $^{\text {a }}$	$2 \mathrm{TOSC}^{+40}$	ns
T ${ }_{\text {QVWH }}$	Output Data Valid to End of $\overline{\text { WR }}$	$3 \mathrm{TOSC}^{-60(2)}$		ns
TWHQX	Output Data Hold after WR	Tosc - 50		ns
TWHLH	End of $\overline{W R}$ to ALE/ADV High	Tosc - 75		ns
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	3 TOSC - 30(2)		ns

TIMING RESPONSES (8X98 devices meet these specs.) (Continued)

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {RHLH }}$	End of $\overline{\mathrm{RD}}$ to ALE/ $\overline{\text { ADV }}$ High	Tosc - 45		ns
$\mathrm{T}_{\text {RHBX }}$	$\overline{\mathrm{RD}}$ High to A8-A15 Inactive	Tosc - 25	Tosc +30	ns
T WHBX	$\overline{\text { WR }}$ High to A8-A15 Inactive	Tosc - 50	TOSC +100	ns
$\mathrm{TLLWL}^{(6)}$	ALE/ $\overline{\text { ADV }}$ Low to $\overline{\text { WR }}$ Low	Tosc - 40		ns
$\mathrm{TLLWL}^{(7)}$	ALE/ $\overline{\text { ADV }}$ Low to $\overline{\mathrm{WR}}$ Low	2 Tosc - 30	2 Tosc +55	ns
$\mathrm{T}_{\text {QVWL }}{ }^{(6)}$	Output Data Valid to $\overline{\mathrm{WR}}$ Low	Tosc - 60		ns
$\mathrm{T}_{\text {QVWL }}{ }^{(7)}$	Output Data Valid to WR Low	Tosc - 30		ns

## NOTES:

2. If more than one wait state is desired, add 3 Tosc for each additional wait state.
3. Max spec applies only to ALE. Min spec applies to both ALE and ADV.
4. The term "Address Valid" applies to AD0-AD7, A8-A15.
5. The term "Address" in this definition applies to ADO-AD7.
6. Write Strobe Mode is not selected.
7. Write Strobe Mode is selected.

## WAVEFORM-SYSTEM BUS TIMINGS



## NOTES:

1. When $\overline{\text { ADV selected. }}$
2. When Write Strobe Mode selected

## WAVEFORM-TRLPV



EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 /$ TOLOL	Oscillator Frequency	6	12	MHz
TOHOX $^{\text {OHOX }}$	High Time	25		ns
TOLOW	Low Time	30		ns
TOLOH $^{\text {TOHOL }}$	Rise Time		15	ns
	Fall Time		15	ns

## EXTERNAL CLOCK DRIVE WAVEFORMS



270532-24
An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the $\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\mathrm{IH}}$ specifications the capacitance will not exceed 20 pF .

EXTERNAL CRYSTAL CONNECTIONS


## NOTE:

Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and $\mathrm{V}_{\text {SS }}$. When using crystals, $\mathrm{C} 1=30 \mathrm{pF}, \mathrm{C} 2=30 \mathrm{pF}$. When using ceramic resonators, consult manufacturer for recommended capacitor values.

AC TESTING INPUT, OUTPUT WAVEFORMS
AC Testing inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for
a Logic " 0 ". Timing measurements are made at 2.0 V for a Logic
" 1 " and 0.8 V for a Logic " 0 ".

## EXTERNAL CLOCK CONNECTIONS



FLOAT WAVEFORMS


270532-26
For Timing Purposes a Port Pin is no Longer Floating when a 200 mV change from Load Voltage Occurs, and Begins to Float when a 200 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{IOL} / \mathrm{IOH}^{2} \geq \pm 8 \mathrm{~mA}$.

MINIMUM HARDWARE CONFIGURATION CIRCUIT


## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT TIMING-SHIFT REGISTER MODE
Test Conditions: Load Capacitance $=80 \mathrm{pF}$

Symbol	Parameter	Min	Max	Units
$T_{\text {XLXL }}$	Serial Port Clock Period	$8 T_{\text {OSC }}$		ns
$T_{\text {XLXH }}$	Serial Port Clock Falling Edge to Rising Edge	$4 T_{\text {OSC }}-50$	4 TOSC +50	ns
$T_{\text {QVXH }}$	Output Data Setup to Clock Rising Edge	$3 T_{\text {OSC }}$		ns
$T_{\text {XHQX }}$	Output Data Hold After Clock Rising Edge	$2 T_{\text {OSC }}-70$		ns
$T_{\text {XHQV }}$	Next Output Data Valid After Clock Rising Edge		$2 T_{\text {OSC }}+50$	ns
$T_{\text {DVXH }}$	Input Data Setup to Clock Rising Edge	$2 T_{\text {OSC }}+200$		ns
$T_{\text {XHDX }}$	Input Data Hold After Clock Rising Edge	0		ns
$T_{\text {XHQZ }}$	Last Clock Rising to Output Float		$5 T_{\text {OSC }}$	ns

## WAVEFORM-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE


## A/D CONVERTER SPECIFICATIONS

The absolute conversion accuracy is dependent on the accuracy and stability of $\mathrm{V}_{\text {REF }}$.
See the MCS-96 A/D Converter Quick Reference for definition of A/D Converter Terms.

Parameter	Typical*(1)	Minimum	Maximum	Units**	Notes
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 4$	LSBs	
Full Scale Error	$-0.5 \pm 0.5$			LSBs	
Zero Offset Error	$\pm 0.5$			LSBs	
Non-Linearity		0	$\pm 4$	LSBs	
Differential Non-Linearity		$>-1$	+2	LSBs	
Channel-to-Channel Matching		0	$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients: Offset Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			LSB $/{ }^{\circ} \mathrm{C}$   LSB $/{ }^{\circ} \mathrm{C}$   LSB $/{ }^{\circ} \mathrm{C}$	
Off Isolation		-60		dB	1,3
Feedthrough	-60			dB	1
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB	1
Input Series Resistance		1K	5 K	$\Omega$	4
DC Input Leakage		0	3.0	$\mu \mathrm{A}$	
Sample Delay		3 TOSC - 50	$3 \mathrm{~T}_{\text {OSC }}+50$	ns	2
Sample Time		12 Tosc - 50	12 Tosc +50	ns	
Sampling Capacitor	2			pF	

## NOTES:

* These values are expected for most parts at $25^{\circ} \mathrm{C}$.
** An "LSB", as used here, is defined in the MCS-96 A/D Converter Quick Reference and has a value of approximately 5 mV .

1. DC to 100 KHz .
2. For starting the A/D with an HSO Command.
3. Multiplexer Break-Before-Make Guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.

## EPROM SPECIFICATIONS

EPROM PROGRAMMING OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature during Programming	20	30	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{PD}}, \mathrm{V}_{\text {REF }}(1)$	Supply Voltages during Programming	4.5	5.5	V
$\mathrm{~V}_{\mathrm{EA}}$	Programming Mode Supply Voltage	9.0	13.0	$\mathrm{~V}(2)$
$\mathrm{V}_{\mathrm{PP}}$	EPROM Programming Supply Voltage	12.50	13.0	$\mathrm{~V}(2)$
$\mathrm{V}_{\mathrm{SS}}$, ANGND(3)	Digital and Analog Ground	0	0	V
Fosc $^{1}$	Oscillator Frequency during Auto and Slave Programming	6.0	6.0	MHz
FOSC $^{2}$	Oscillator Frequency during Run-Time Programming	6.0	12.0	MHz

## NOTES:

1. $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{PD}}$ and $\mathrm{V}_{\text {REF }}$ should nominally be at the same voltage during programming.
2. $V_{E A}$ and $V_{P P}$ must never exceed the maximum voltage for any amount of time or the device may be damaged.
3. $\mathrm{V}_{\mathrm{SS}}$ and ANGND should nominally be at the same voltage ( 0 V ) during programming.

## AC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {AVLL }}$	ADDRESS/COMMAND Valid to PALE Low	0		Tosc
TLLAX	ADDRESS/COMMAND Hold After PALE Low	80		Tosc
T DVPL	Output Data Setup Before $\overline{\text { PROG }}$ Low	0		Tosc
TPLDX	Data Hold After PROG Falling	80		Tosc
TLLLH	PALE Pulse Width	180		Tosc
TPLPH	$\overline{\text { PROG Pulse Width }}$	250 Tosc	$\begin{aligned} & 100 \mu \mathrm{~s}+ \\ & 144 \text { ToSC } \end{aligned}$	
TLHPL	PALE High to PROG Low	250		Tosc
TPHLL	$\overline{\text { PROG High to Next PALE Low }}$	600		Tosc
TPHDX	Data Hold After PROG High	30		Tosc
TPHVV	$\overline{\text { PROG High to PVER/何O Valid }}$	500		Tosc
TLLVH	PALE Low to PVER/隌O High	100		Tosc
TPLDV	PROG Low to VERIFICATION/DUMP Data Valid	100		Tosc
$\mathrm{T}_{\text {SHLL }}$	RESET High to First PALE Low (not shown)	2000		Tosc

## DC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Min	Max	Units
Ipp	VPp Supply Current (Whenever Programming)		100	mA

## WAVEFORM-EPROM PROGRAMMING



270532-37

## DIFFERENCES BETWEEN THE 8X9XBH AND 8X98

1. CCB. 1 must be set to a logical 0 on the $8 \times 98$.
2. The following $8 \times 9 \times B H$ pins and corresponding functions are not available on the 8X98:

BUSWIDTH
CLKOUT
INST
NMI
Port 0.0-0.3 (ACHO-3)
Port 1.0-1.7
Port 2.6
Port 2.7
P2.3 (T2CLK)
P2.4 (T2RST).

## 8X98 ERRATA

Devices covered by this data sheet (see Revision History) have the following errata.

## 1. INDEXED, 3 OPERAND MULTIPLY

The displacement portion of an indexed, three operand (byte or word) multiply may not be in the range of 200 H thru 17 FFH inclusive. If you must use these displacements, execute an indexed, two operand multiply and a move if necessary.

## 2. HSI FIFO OPERATION

The High Speed Input (HSI) has three deviations from the specifications. Note that "events" are de-
fined as one or more pin transitions. "Entries" are defined as the recording of one or more events.
A. The resolution is nine states instead of eight states. Events occurring on the same pin more frequently than once every nine states may be lost.
B. A mismatch between the nine state HSI resolution and the eight state hardware timer causes one time-tag value to be skipped every nine timer counts. Events may receive a time-tag one count later than expected.
C. If the FIFO and Holding Register are empty, the first event will transfer into the Holding Register, leaving the FIFO empty again. The next event that occurs will be the first event loaded into the empty FIFO. If the first two events into an empty FIFO (not counting the Holding Register) occur coincident with each other, both are recorded as one entry with one time-tag. If the second event occurs within nine states after the first, the events will be entered separately with time-tags at least one count apart. If the second event enters the FIFO coincident with the "skipped" timetag situation (see B above) the time-tags will be at least two counts apart.

## 3. RESERVED LOCATION 2019H

The 1990 Architectural Overview recommended that address 2019 H be filled with hex value OFFH. The recommendation is now 20 H .

## 4. RESERVED LOCATION 201CH

Reading reserved location 201 CH , either internally or externally, will return "201C" as data.

## 5. SERIAL PORT SECTION

Serial Port Flags_Reading SP__STAT may not clear the TI or RI flag if that flag was set within two state times prior to the read. In addition, the parity error bit (RPE/RB8) may not be correct if it is read within two state times after RI is set. Use the following code to replace ORB sp__image, SP__STAT.
SP_READ: LDB TEMP, SP_STAT

> ORB SP_IMAGE, TEMP

JBS TEMP, 5, SP_READ; if
$T I$ is set then read again JBS TEMP, 6; SP_READ; if $R I$ is set then read again ANDB SP_IMAGE,\#7FH; clear false RB8/RPE ORB SP_IMAGE, TEMP; load correct RB8/RPE

## DATA SHEET REVISION HISTORY

This data sheet (270532-008) is valid for devices with an " $E$ " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The difference between -007 and -008 is the $\mathrm{l}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}}$ for the float waveform testing changed from $\pm 15 \mathrm{~mA}$ to $\pm 8 \mathrm{~mA}$.

The following differences exist between (-007) data sheet and the (-006).

1. The Express (extended temperature and burn-in options) were added to this data sheet. The 8X98 Express data sheet (270914-002) is now obsolete.
2. Changes were made to the format of the data sheet and the SFR descriptions were removed. No specification changes were made.
3. Added Reserved Location 201CH errata.

The following differences exist between the -006 data sheet and the -005 data sheet.

1. The -005 data sheet was valid for devices marked with a " $D$ " at the end of the top side tracking number.
2. The following errata were removed: RESET and the Quasi-Bidirectional Ports, Software RESET Timing, and Using T2CLK as the source for Timer2.
3. The HSI FIFO Operation errata definition was changed to match a change in the HSI FIFO operation.

The following differences exist between the -005 data sheet and the -004 data sheet.

1. Most of the functional description has been removed. This information is in the MCS-96 Architectural Overview.
2. Information on programming the Chip Configuration Register has been added.
3. $T_{X H Q X}$ changed from $\operatorname{Min}=2$ TOSC -50 ns to Min $=2$ TOSC -70 ns.
4. TOLOX changed from $\operatorname{Min}=25$ ns to $\operatorname{Min}=$ 30 ns.
5. Added AC timings specifications to clarify Write Strobe Mode specifications.
6. The differences between the $8 \times 9 \times B H$ and the 8X98 have been added.
7. An errata has been added changing the recommendation for address 2019 H from 0FFH to 20 H .

Differences between the -004 and -003 data sheets.

1. All EPROM programming mode information has been moved to the Hardware Design Information Chapter.
2. CCB RESET FETCH and JBS/JBC on Port 0 anamolies have been corrected on the current steppings of the 8X98.
3. New information regarding T2CLK and new information about RESET of the Quasi Ports have been added to the Errata section.
4. The Extended Reset errata has been eliminated on the silicon and in the data sheet.
5. HSI Mode register is undefined until the user code initializes this register.
6. Minimum DNL us now $>-1$ LSB.
7. HSI FIFO overflow description added.

Differences between the -002 and -003 data sheets.

1. All 8798 EPROM information has been added as a complete section after the Analog Section.
2. The chip configuration byte values now indicate the use of WRITE STROBE with 8-bit systems. Write Strobe design text was added to the explanation.
3. The interrupt information now includes a worst case timing diagram.
4. The EPROM 8798 was added as necessary throughout the text.
5. NMI pin information was deleted.
6. Reset Register Status was added and the state of the HSO pins after RESET.
7. A diagram of the Interrupt Pending Register is now included.
8. A diagram of the PSW Register was added.
9. $\mathrm{V}_{\text {ILi }}$ was deleted. This was a RESET pin characteristic that has been improved to match the other characteristics.
10. The Differential Non-Linearity specification in the A/D converter specifications was corrected to read +2 LSBs.
11. Power On Reset - New information on Extended Reset Time was added to the Errata Section.

## 8XC196KB Data Sheets

# 80C196KB10/83C196KB10/80C196KB12/83C196KB12 COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER 

## 83C196KB - 8 Kbytes of Factory Mask-Programmed ROM 80C196KB - ROMless

■ 8 Kbytes of On-Chip ROM Available<br>- 232 Byte Register File<br>■ Register-to-Register Architecture<br>- 28 Interrupt Sources/16 Vectors<br>■ $2.3 \mu \mathrm{~s} 16 \times 16$ Multiply ( 12 MHz )<br>■ $4.0 \mu \mathrm{~s}$ 32/16 Divide ( 12 MHz )<br>- Powerdown and Idle Modes<br>- Five 8-Bit I/O Ports<br>- 16-Bit Watchdog Timer<br>- Dynamically Configurable 8-Bit or 16-Bit Buswidth<br>- Extended Temperature Available

- Full Duplex Serial Port

High Speed I/O Subsystem
16-Bit Timer
16-Bit Up/Down Counter with Capture

- Pulse-Width-Modulated Output
- Four 16-Bit Software Timers

10-Bit A/D Converter with Sample/Hold
HOLD/HLDA Bus Protocol
10 MHz and 12 MHz Available

- Extended Burn-In Available

The 80C196KB 16-bit microcontroller is a high performance member of the MCS®-96 microcontroller family. The 80 C 196 KB is compatible with the 8096 BH and uses a true superset of the 8096BH instructions. Intel's CHMOS process provides a high performance processor along with low power consumption. To further reduce power requirements, the processor can be placed into Idle or Powerdown Mode.

The 80 C 196 KB has a 232 -byte register file and an optional 8 Kbyte of on-chip ROM. Bit, byte, word and some 32-bit operations are available on the 80 C 196 KB . With a 12 MHz oscillator a 16 -bit addition takes $0.66 \mu \mathrm{~s}$, and the instruction times average $0.5 \mu \mathrm{~s}$ to $1.5 \mu \mathrm{~s}$ in typical applications.

Four high-speed capture inputs are provided to record times when events occur. Six high-speed outputs are available for pulse or waveform generation. The high-speed output can also generate four software timers or start an A/D conversion. Events can be based on the timer or up/down counter. Also provided on-chip are an A/D converter, serial port, watchdog timer and a pulse-width-modulated output signal.

The 80 C 196 KB 10 and 83 C 196 KB 10 have a maximum guaranteed frequency of 10 MHz . The 80 C 196 KB 12 and 83 C 196 KB 12 have a maximum guaranteed frequency of 12 MHz . All references to the 80 C 196 KB also refer to the $80 \mathrm{C} 196 \mathrm{KB10}, 83 \mathrm{C} 196 \mathrm{KB10}, 80 \mathrm{C} 196 \mathrm{~KB} 12$ and 83 C 196 KB 12 unless otherwise noted.

With the commercial (standard) temperature option, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. With the extended burn-in option, the burn-in is dynamic for a minimum time of 160 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{C C}=5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$, following the guidelines in MIL-STD-883, Method 1015. The specifications which are different for the extended temperature and extended burn-in devices are listed in this data sheet. Otherwise, the commercial specifications apply for both.

MCS®-96 is a registered trademark of Intel Corporation.


Figure 1. 80C196KB Block Diagram


Figure 2. Memory Map

PACKAGING
The 80 C 196 KB is available in a 68 -pin PLCC package, an 80 -pin QFP package and a 68 -pin PGA package. Contact your local sales office to determine the exact ordering code for the part desired.

Package Designators: $\mathrm{N}=68$-pin PLCC, $\mathrm{S}=80$-pin QFP and $\mathrm{A}=68$-pin PGA.
Prefix Designators: $T=$ extended temperature, $L=$ extended temperature with extended burn-in.
Thermal Characteristics

Package   Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
PGA	$28^{\circ} \mathrm{C} / \mathrm{W}$	$3.5^{\circ} \mathrm{C} / \mathrm{W}$
PLCC	$35^{\circ} \mathrm{C} / \mathrm{W}$	$12^{\circ} \mathrm{C} / \mathrm{W}$
QFP	$85^{\circ} \mathrm{C} / \mathrm{W}$	-

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

PGA	PLCC	Description	PGA	PLCC	Description	PGA	PLCC	Description
1	9	ACH7/P0.7	24	54	AD6/P3.6	47	31	P1.6/ HLDA
2	8	ACH6/P0.6	25	53	AD7/P3. 7	48	30	P1.5/BREQ
3	7	ACH2/P0. 2	26	52	AD8/P4.0	49	29	HSO. 1
4	6	ACHO/PO.O	27	51	AD9/P4.1	50	28	HSO. 0
5	5	ACH1/P0. 1	28	50	AD10/P4.2	51	27	HSO.5/HSI. 3
	4	АСН3/P0. 3	29	49	AD11/P4.3	52	26	HSO.4/HSI. 2
7	3	NMI	30	48	AD12/P4.4	53	25	HSI. 1
8	2	EA	31	47	AD13/P4.5	54	24	HSI. 0
9	1	$V_{\text {cc }}$	32	46	AD14/P4.6	55	23	P1.4
10	68	$V_{S S}$	33	45	AD15/P4.7	56	22	P1.3
11	67	XTAL1	34	44	T2CLK/P2.3	57	21	P1.2
12	66	XTAL2	35	43	READY	58	20	P1.1
13	65	CLKOUT	36	42	T2RST/P2. 4	59	19	P1.0
14	64	BUSWIDTH	37	41	$\overline{\text { BHE/ }} \overline{\text { WRH }}$	60	18	TXD/P2.0
15	63	INST	38	40	$\overline{\mathrm{WR}} / \overline{\mathrm{WRL}}$	61	17	RXD/P2. 1
16	62	ALE/ $\overline{\text { ADV }}$	39	39	PWM/P2. 5	62	16	RESET
17	61	$\overline{\mathrm{RD}}$	40	38	P2.7/T2CAPTURE	63	15	EXTINT/P2.2
18	60	ADO/P3.0	41	37	$V_{\text {PP }}$	64	14	$\mathrm{V}_{\text {S }}{ }^{(1)}$
19	59	AD1/P3.1	42	36	$V_{\text {ss }}$	65	13	$V_{\text {REF }}$
20	58	AD2/P3.2	43	35	HSO.3/SID3	66	12	ANGND
21	57	AD3/P3.3	44	34	HSO.2/SID2	67	11	ACH4/P0. 4
22	56	AD4/P3.4	45	33	P2.6/T2UP-DN	68	10	ACH5/P0.5.
23	55	AD5/P3. 5	46	32	P1.7/\%OLD			

## NOTE:

1. This pin was formerly the Clock Detect Enable pin. This function is not guaranteed to work. This pin must be directly connected to $\mathrm{V}_{\mathrm{Ss}}$.

Pins Facing Down


Figure 3. 68-Pin Package (Pin Grid Array-Top View)


Figure 4. 68-Pin Package (PLCC-Top View)


Figure 5. 80-Pin Quad Flat Pack (QFP)

PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (5V).
$\mathrm{V}_{S S}$	Digital circuit ground ( 0 V ). There are two $\mathrm{V}_{S S}$ pins, both of which must be connected.
$V_{\text {REF }}$	Reference voltage for the $\mathrm{A} / \mathrm{D}$ converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as Vss.
$V_{\text {PP }}$	Timing pin for the return from powerdown circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $\mathrm{V}_{\mathrm{SS}}$. If this function is not used, connect to $\mathrm{V}_{\mathrm{CC}}$. This pin is the programming voltage on the EPROM device.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT	Output of the internal clock generator. The frequency of CLKOUT is $1 / 2$ the oscillator frequency. It has a $50 \%$ duty cycle.
RESET	Reset input and open-drain output. Input low for at least 4 state times to reset the chip. The subsequent low-to-high transition re- synchronizes CLKOUT and commences a 10 -state-time sequence in which the PSW is cleared, a byte read from 2018 H loads CCR, and a jump to location 2080 H is executed. Input high for normal operation. RESET has an internal pullup.
BUSWIDTH	Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1 , a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus.
NMI	A positive transition causes a vector through 203EH.
INST	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses and output low for a data fetch.
$\overline{E A}$	Input for memory select (External Access). $\overline{\text { EA }}$ equal to a TTL-high causes memory accesses to locations 2000 H through 3FFFH to be directed to on-chip ROM/EPROM. EA equal to a TTL-low causes accesses to these locations to be directed to off-chip memory. EA must be tied low for the 80C196KB ROMless device.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is $\overline{\text { ADV, it goes }}$ inactive high at the end of the bus cycle. $\overline{\text { ADV }}$ can be used as a chip select for external memory. ALE/ $\overline{\text { ADV }}$ is activated only during external memiory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{\mathrm{WR}} / \overline{\mathrm{WRL}}$	Write and Write Low output to external memory, as selected by the CCR. $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. $\overline{W R} / \overline{W R L}$ is activated only during external memory writes.
$\overline{\text { BHE }}$ / $\overline{\text { RH }}$	Bus High Enable or Write High output to external memory, as selected by the CCR. $\overline{\text { BHE }}=0$ selects the bank of memory that is connected to the high byte of the data bus. AO $=0$ selects the bank of memory that is connected to the low byte of the data bus. Thus accesses to a 16 -bit wide memory can be to the low byte only ( $A 0=0, \overline{B H E}=1$ ), to the high byte only $(A O=1, \overline{B H E}=0)$, or both bytes $(A O=0, \overline{B H E}=0)$. If the $\overline{W R H}$ function is selected, the pin will go low if the bus cycle is writing to an odd memory location. $\overline{B H E} / \overline{\mathrm{WRH}}$ is valid only during 16 -bit external memory write cycles.

## PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
READY	Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, or for bus sharing. If the pin is high, CPU operation continues in a normal manner. If the pin is low prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the next positive transition in CLKOUT occurs with READY high. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle held not ready is available through configuration of CCR.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit. The HSI pins are also used as the SID in Slave Programming Mode on the EPROM device.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.
Port 0	8 -bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter. These pins set the Programming Mode on the EPROM device.
Port 1	8-bit quasi-bidirectional I/O port.
Port 2	8 -bit multi-functional port. All of its pins are shared with other functions in the 80C196KB.
Ports 3 and 4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus which has strong internal pullups. Available as I/O only on the ROM and EPROM devices.
HOLD	Bus Hold input requesting control of the bus. Enabled by setting WSR.7.
HLDA	Bus Hold acknowledge output indicating release of the bus. Enabled by setting WSR.7.
BREQ	Bus Request output activated when the bus controller has a pending external memory cycle. Enabled by setting WSR.7.
TxD	The TxD pin is used for serial port transmission in Modes 1, 2 and 3. The TxD function is enabled by setting IOC1 5 . In mode 0 the pin is used as the serial clock output.
RxD	Serial Port Receive pin used for serial port reception. The R×D function is enabled by setting SPCON.3. In mode 0 the pin functions as input or output data.
EXTINT	A rising edge on the EXTINT pin will generate an external interrupt. EXTINT is selected as the external interrupt source by setting IOC1. 1 high.
T2CLK	The T2CLK pin is the Timer2 clock input or the serial port baud rate generator input.
T2RST	A rising edge on the T2RST pin will reset Timer2. The external reset function is enabled by setting IOCO.03 T2RST is enabled as the reset source by clearing IOCO.5.
PWM	Port 2.5 can be enabled as a PWM output by setting IOC1.O The duty cycle of the PWM is determined by the value loaded into the PWM-CONTROL register (17H).
T2UP-DN	The T2UP-DN pin controls the direction of Timer2 as an up or down counter. The Timer2 up/ down function is enabled by setting IOC2.1.
T2CAP	A rising edge on P2.7 will capture the value of Timer2 in the T2CAPTURE register (location 0 CH in Window 15).

## ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS*



## NOTE:

1. Power Dissipation is based on package heat transfer, not device power consumption.

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## OPERATING CONDITIONS

(All characteristics in this data sheet apply to these operating conditions unless otherwise noted.)

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Under Bias	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	V
FOSC	Oscillator Frequency $\mathbf{1 2} \mathbf{~ M H z}$	3.5	12	$\mathbf{M H z}$
FOSC	Oscillator Frequency $\mathbf{1 0} \mathbf{~ M H z}$	3.5	10	$\mathbf{M H z}$

NOTE:
ANGND and $\mathrm{V}_{\mathrm{SS}}$ should be nominally at the same potential.
DC CHARACTERISTICS

Symbol	Description	Min	Typ(7)	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.5		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage (Note 1)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{IH} 1}$	Input High Voltage on XTAL 1	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{IH} 2}$	Input High Voltage on RESET	2.6		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage			0.3	V	$\mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A}$
				0.45	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
				1.5	V	$\mathrm{I}_{\mathrm{OL}}=7 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}-0.3$			V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
	(Standard Outputs)	$\mathrm{V}_{\mathrm{CC}}-0.7$			V	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$
		$\mathrm{~V}_{\mathrm{CC}}-1.5$			V	$\mathrm{I}_{\mathrm{OH}}=-7 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH} 1}$	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}-0.3$			V	$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
	(Quasi-bidirectional Outputs)	$\mathrm{V}_{\mathrm{CC}}-0.7$			V	$\mathrm{I}_{\mathrm{OH}}=-30 \mu \mathrm{~A}$
		$\mathrm{~V}_{\mathrm{CC}}-1.5$			V	$\mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A}$

## NOTES:

1. All pins except RESET and XTAL1.
2. Holding these pins below $\mathrm{V}_{\mathrm{IH}}$ in Reset may cause the part to enter test modes.

DC CHARACTERISTICS (Continued)

Symbol	Description	Min	Typ(7)	Max	Units	Test Conditions
ILI	Input Leakage Current (Std. Inputs)			$\pm 10$	$\mu \mathrm{A}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}-0.3 \mathrm{~V}$
LII1	Input Leakage Current (Port 0)			+3	$\mu \mathrm{A}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {REF }}$
1 TL	1 to 0 Transition Current (QBD Pins)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
ILL	Logical 0 Input Current (QBD Pins)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
liL1	Logical 0 Input Current in Reset (Note 2) (ALE, $\overline{R D}, \overline{W R}, \overline{B H E}$, INST, P2.0)			-1.2	mA	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$
Hyst	Hysteresis on RESET Pin	300			mV	
ICC	Active Mode Current in Reset		40	55	mA	$\begin{aligned} & \text { XTAL1 }=12 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{P P}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \end{aligned}$
IREF	A/D Converter Reference Current		2	5	mA	
IIDLE	Idle Mode Current		10	22	mA	
ICC1	Active Mode Current		15	22	mA	XTAL1 $=3.5 \mathrm{MHz}$
IPD	Powerdown Mode Current		5	50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V}$
$\mathrm{R}_{\text {RST }}$	Reset Pullup Resistor	6 K		50K	$\Omega$	
$\mathrm{C}_{\text {S }}$	Pin Capacitance (Any Pin to V ${ }_{\text {SS }}$ )			10	pF	$\mathrm{F}_{\text {TEST }}=1.0 \mathrm{MHz}$

## NOTES:

(Notes apply to all specifications)

1. QBD (Quasi-bidirectional) pins include Port 1, P2.6 and P2.7.
2. Standard Outputs include ADO-15, $\overline{R D}, \overline{W R}$, ALE, $\overline{B H E}$, INST, HSO pins, PWM/P2.5, CLKOUT, RESET, Ports 3 and 4, TXD/P2.0 and RXD (in serial mode 0). The $\mathrm{V}_{\mathrm{OH}}$ specification is not valid for RESET. Ports 3 and 4 are open-drain outputs. 3. Standard Inputs include HSI pins, CDE, EA, READY, BUSWIDTH, NMI, RXD/P2.1, EXTINT/P2.2, T2CLK/P2.3 and T2RST/P2.4.
3. Maximum current per pin must be externally limited to the following values if $\mathrm{V}_{\mathrm{OL}}$ is held above 0.45 V or $\mathrm{V}_{\mathrm{OH}}$ is held below $\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}$ :
lol on Output pins: 10 mA
$\mathrm{IOH}_{\mathrm{OH}}$ on quasi-bidirectional pins: self limiting
$\mathrm{I}_{\mathrm{OH}}$ on Standard Output pins: 10 mA
4. Maximum current per bus pin (data and control) during normal operation is $\pm 3.2 \mathrm{~mA}$.
5. During normal (non-transient) conditions the following total current limits apply:

Port 1, P2.6
HSO, P2.0, RXD, $\overline{R E S E T}$
P2.5, P2.7, WR, BHE
AD0-AD15
AD, ALE, INST-CLKOUT
lol: 29 mA
OH is self limiting
$\quad \mathrm{IOH}_{\mathrm{O}} 26 \mathrm{~mA}$
lol: $13 \mathrm{~mA} \quad \mathrm{lOH}^{11 \mathrm{~mA}}$
IOL: $52 \mathrm{~mA} \quad \mathrm{IOH}_{\mathrm{OH}} 52 \mathrm{~mA}$
IoL: $13 \mathrm{~mA} \quad \mathrm{IOH}_{\mathrm{OH}} 13 \mathrm{~mA}$
7. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.


Figure 6. ICC and IIDLE vs Frequency

## AC CHARACTERISTICS

Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, Fosc $=10 / 12 \mathrm{MHz}$
The system must meet these specifications to work with the 80C196KB:

Symbol	Description	Min	Max	Units	Notes
$\mathrm{T}_{\text {AVYV }}$	Address Valid to READY Setup 80C196KB10/83C196KB10 80C196KB12/83C196KB12		$\begin{array}{r} 2 \text { TOSC }-90 \\ 2 \text { TOSC }^{2}-85 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	
TLLYV	ALE Low to READY Setup 80C196KB10/83C196KB10 80C196KB12/83C196KB12		$\begin{aligned} & \text { TOSC }-80 \\ & \text { TOSC }-72 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
TYLYH	Non READY Time	No upper limit		ns	
TCLYX	READY Hold after CLKOUT Low	0	Tosc - 30	ns	(Note 1)
TLLYX	READY Hold after ALE Low	Tosc - 15	2 Tosc - 40	ns	(Note 1)
TAVGV	Address Valid to Buswidth Setup		2 Tosc - 85	ns	
TLLGV	ALE Low to Buswidth Setup		Tosc - 70	ns	
TCLGX	Buswidth Hold after CLKOUT Low	0		ns	
TAVDV	Address Valid to Input Data Valid 80C196KB10/83C196KB10 80C196KB12/83C196KB12		$\begin{aligned} & 3 \text { TOSC }-70 \\ & 3 \text { TOSC }-67 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	(Note 2)
TrLDV	$\overline{R D}$ Active to Input Data Valid $80 \mathrm{C} 196 \mathrm{~KB} 10 / 83 \mathrm{C} 196 \mathrm{~KB} 10$ 80C196KB12/83C196KB12		$\begin{aligned} & \text { TOSC }=30 \\ & \text { TOSC }^{2}-23 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	(Note 2)
TCLDV	CLKOUT Low to Input Data Valid		Tosc - 50	ns	
T RHDZ	End of $\overline{\mathrm{RD}}$ to Input Data Float		Tosc - 20	ns	
TrXDX	Data Hold after $\overline{\text { RD }}$ Inactive	0		ns	

## NOTES:

1. If max is exceeded, additional wait states will occur.
2. When using wait states, add 2 TOSC $\times n$, where $n=$ number of wait states.

AC CHARACTERISTICS
Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, Fosc $=10 / 12 \mathrm{MHz}$
The 80C196KB will meet these specifications:

Symbol	Description	Min	Max	Units	Notes
FXTAL	Frequency on XTAL $_{1}$ 80C196KB10/83C196KB10 80C196KB12/83C196KB12	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	(Note 2)   (Note 2)
Tosc	I/FXTAL 80C196KB10/83C196KB10 80C196KB12/83C196KB12	$\begin{gathered} 100 \\ 83 \end{gathered}$	$\begin{aligned} & 286 \\ & 286 \end{aligned}$	$\mathrm{ns}$	
$\mathrm{T}_{\mathrm{XHCH}}$	XTAL1 High to CLKOUT High or Low	40	110	ns	(Note 3)
TCLCL	CLKOUT Cycle Time	2 Tosc		ns	
TCHCL	CLKOUT High Period	Tosc - 10	Tosc +10	ns	
TCLLH	CLKOUT Falling Edge to ALE Rising	-5	15	ns	
TLLCH	ALE Falling Edge to CLKOUT Rising	-15	15	ns	
TLHLH	ALE Cycle Time	4 Tosc		ns	(Note 5)
TLHLL	ALE High Period	Tosc - 10	Tosc +10	ns	
$\mathrm{T}_{\text {AVLL }}$	Address Setup to ALE Falling Edge	Tosc - 20			
TLLAX	Address Hold after ALE Falling Edge	Tosc - 40		ns	
TLLRL	ALE Falling Edge to $\overline{\mathrm{RD}}$ Falling Edge	Tosc - 40		ns	
TRLCL	$\overline{\text { RD Low to CLKOUT Falling Edge }}$	5	30	ns	
TRLRH	$\overline{\mathrm{RD}}$ Low Period	Tosc - 5	TOSC +25	ns	(Note 5)
TrHLH	$\overline{\mathrm{RD}}$ Rising Edge to ALE Rising Edge	Tosc	Tosc +25	ns	(Note 4)
T RLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		10	ns	
TLLWL	ALE Falling Edge to $\overline{\text { WR }}$ Falling Edge	Tosc - 10		ns	
TCLWL	CLKOUT Low to $\overline{\text { WR }}$ Falling Edge	0	25	ns	
Tovwh	Data Stable to $\overline{\text { WR Rising Edge }}$ 80C196KB10/83C196KB10 80C196KB12/83C196KB12	$\begin{aligned} & \text { TOSC }-30 \\ & \text { TOSC }-23 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	( Note 5)
TCHWH	CLKOUT High to $\overline{\text { WR }}$ Rising Edge	-10	10	ns	
T WLWH	$\overline{\text { WR }}$ Low Period	Tosc - 30	Tosc + 5	ns	(Note 5)
TWHQX	Data Hold after WR Rising Edge	Tosc - 10		ns	
TWHLH	$\overline{\text { WR Rising Edge to ALE Rising Edge }}$	Tosc - 10	Tosc +15	ns	(Note 4)
T WHBX	BHE, INST Hold after WR Rising Edge	Tosc - 10		ns	
TRHBX	$\overline{\text { BHE, INST Hold after } \overline{\text { RD }} \text { Rising Edge }}$	Tosc - 10		ns	
TWHAX	AD8-15 Hold after $\overline{\text { WR Rising Edge }}$	Tosc - 50		ns	
TRHAX	AD8-15 Hold after $\overline{\text { RD }}$ Rising Edge	Tosc - 25		ns	

## NOTES:

TOSC $=83.3 \mathrm{~ns}$ at 12 MHz ; TOSC $=100 \mathrm{~ns}$ at 10 MHz .

1. Customers whose applications require an 83 C 196 KB to meet the 80 C 196 KB specifications listed above should contact an Intel Field Sales Representative.
2. Testing performed at 3.5 MHz . However, the part is static by design and will typically operate below 1 Hz .
3. Typical specification, not guaranteed.
4. Assuming back-to-back bus cycles.
5. When using wait states, add 2 Tosc $\times n$, where $n=$ number of wait states.
intel.

## System Bus Timings



READY Timings (One Wait State)


## Buswidth Timings

CLKOUT
$\overline{H O L D} / \overline{H L D A}$ TIMINGS

Symbol	Description	Min	Max	Units	Notes
$T_{\text {HVCH }}$	HOLD Setup	85		ns	1
$T_{\text {CLHAL }}$	CLKOUT Low to $\overline{\text { HLDA Low }}$	-15	15	ns	
$T_{\text {CLBRL }}$	CLKOUT Low to $\overline{\text { BREQ Low }}$	-15	15	ns	
$T_{\text {HALAZ }}$	$\overline{\text { HLDA Low to Address Float }}$		20	ns	
$T_{\text {HALBZ }}$	$\overline{\text { HLDA }}$ Low to BHE, INST, RD, WR Float			ns	
$T_{\text {CLHAH }}$	CLKOUT Low to $\overline{\text { HLDA }}$ High	-15	15	ns	
$T_{\text {CLBRH }}$	CLKOUT Low to $\overline{\text { BREQ High }}$	-15	15	ns	
$T_{\text {HAHAX }}$	$\overline{\text { HLDA }}$ High to Address No Longer Float	-5		ns	
$T_{\text {HAHBV }}$	$\overline{\text { HLDA }}$ High to $\overline{B H E, ~ I N S T, ~} \overline{R D}, \overline{W R}$ Valid	-20		ns	
$T_{\text {CLLH }}$	CLKOUT Low to ALE High	-5	15	ns	

## NOTE:

1. To guarantee recognition at next clock.


## EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TXLXL	$\begin{aligned} & \text { Oscillator Frequency } \\ & \text { 80C196KB10 } \\ & \text { 80C196KB12 } \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
TXLXL	$\begin{aligned} & \text { Oscillator Frequency } \\ & \text { 80C196KB10 } \\ & \text { 80C196KB12 } \end{aligned}$	$\begin{gathered} 100 \\ 83 \end{gathered}$	$\begin{array}{r} 286 \\ .286 \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TXHXX	High Time	32		ns
TXLXX	Low Time	32		ns
TXLXH	Rise Time		10	ns
TXHXL	Fall Time		10	ns

## EXTERNAL CLOCK DRIVE WAVEFORMS



An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts-up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the $\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\mathrm{IH}}$ specifications the capacitance will not exceed 20 pF .

## EXTERNAL CRYSTAL CONNECTIONS



## NOTE:

Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and VSS. When using crystals, $\mathrm{C} 1=\mathrm{C} 2 \approx 20 \mathrm{pF}$. When using ceramic resonators, consult manufacturer for recommended capacitor values.

EXTERNAL CLOCK CONNECTIONS


AC TESTING INPUT, OUTPUT WAVEFORMS


270918-30
AC Testing inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 " Timing measurements are made at 2.0 V for a Logic " 1 " and 0.8 V for a Logic " 0 ".

## FLOAT WAVEFORMS



270918-31
For Timing Purposes a Port Pin is no Longer Floating when a 150 mV change from Load Voltage Occurs and Begins to Float when a 150 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}= \pm 15 \mathrm{~mA}$.

## EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by " $T$ " for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

Conditions:

H	- High
L	- Low
V	- Valid
X	- No Longer Valid
Z	- Floating

Signals:
A - Address
B - $\overline{\mathrm{BHE}}$
BR - $\overline{\mathrm{BREQ}}$
C - CLKOUT
D - DATA IN
G - Buswidth
H - HOLD

HA - $\overline{\text { HLDA }}$
L - ALE/ $\overline{A D V}$
Q - DATA OUT
$\mathrm{R}-\overline{\mathrm{RD}}$
W - $\overline{\mathrm{WR}} / \overline{\mathrm{WRH}} / \overline{\mathrm{WRL}}$
X - XTAL1
Y - READY

## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT TIMING-SHIFT REGISTER MODE

Symbol	Parameter	Min	Max	Units
TXLXL	Serial Port Clock Period (BRR $\geq 8002 \mathrm{H}$ )	6 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR $\geq 8002 \mathrm{H}$ )	4 Tosc - 50	4 Tosc +50	ns
TXLXL	Serial Port Clock Period (BRR $=8001 \mathrm{H}$ )	4 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR $=8001 \mathrm{H}$ )	2 Tosc - $50^{\text {a }}$	$2 \mathrm{~T}_{\text {OSC }}+50$	ns
T ${ }_{\text {QVXH }}$	Output Data Setup to Clock Rising Edge	2 Tosc $^{-50}$		ns
TXHQX	Output Data Hold after Clock Rising Edge	2 Tosc - 50		ns
TXHQV	Next Output Data Valid after Clock Rising Edge		2 Tosc +50	ns
T ${ }_{\text {DVXH }}$	Input Data Setup to Clock Rising Edge	Tosc +50		ns
TXHDX	Input Data Hold after Clock Rising Edge	0		ns
$\mathrm{T}_{\mathrm{XHQZ}}$	Last Clock Rising to Output Float		1 Tosc	ns

## WAVEFORM—SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE


## A TO D CHARACTERISTICS

There are two modes of A/D operation: with or without clock prescaler. The speed of the A/D converter can be adjusted by setting a clock prescaler on or off. At high frequencies more time is needed for the comparator to settle. The maximum frequency with the clock prescaler disabled is 8 MHz . The conversion times with the prescaler turned on or off is shown in the table below.

The converter is ratiometric, so the absolute accuracy is directly dependent on the accuracy and stability of $V_{\text {REF }}$. $V_{\text {REF }}$ must be close to $V_{C C}$ since it supplies both the resistor ladder and the digital section of the converter.

See the MCS-96 A/D Quick Reference for definition of $A / D$ terms.

Conversion Time

Clock Prescaler On   IOC2.4 $=\mathbf{0}$	Clock Prescaler Off   IOC2.4 $=\mathbf{1}$
158 States	91 States
$26.33 \mu \mathrm{~s}$ @ 12 MHz	$22.75 \mu \mathrm{~s}$ @ 8 MHz

## A/D CONVERTER SPECIFICATIONS

Parameter	Typical(1)	Minimum	Maximum	Units*	Notes
Resolution		$\begin{gathered} 512 \\ 9 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 4$	LSBs	
Full Scale Error	$0.25 \pm 0.50$			LSBs	
Zero Offset Error	$-0.25 \pm 0.50$			LSBs	
Non-Linearity Error	$1.5 \pm 2.5$	0	$\pm 4$	LSBs	
Differential Non-Linearity Error		>-1	+2	LSBs	
Channel-to-Channel Matching	$\pm 0.1$	0	$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients: Offset Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			$\begin{aligned} & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \end{aligned}$	
Off Isolation		-60		dB	2, 3
Feedthrough	-60			dB	2
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB	2
Input Series Resistance		1K	5K	$\Omega$	4
DC Input Leakage		0	3.0	$\mu \mathrm{A}$	
Sample Time: Prescaler On Prescaler Off	$\begin{gathered} 15 \\ 8 \end{gathered}$			States States	
Sampling Capacitor	3			pF	

## NOTES:

*An "LSB", as used here, has a value of approximately 5 mV .

1. Typical values are expected for most devices at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make Guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.

## EXTENDED TEMPERATURE/EXTENDED BURN-IN ONLY SPECIFICATIONS

Symbols	Description	Min	Max	Units
RESET Hysteresis	Hysteresis on RESET Pin	TBD		mV
IPD	Powerdown Mode Current		TBD	mA
TLLYV	ALE Low to READY Setup		Tosc-65	ns
TLLGV	ALE Low to BUSWIDTH Setup		Tosc - 60	ns
TAVDV	Address Valid to Input Data Valid		3 Tosc - 60	ns
TrLDV	$\overline{\mathrm{RD}}$ Low to Input Data Valid	-	Tosc - 25	ns
TLHLL	ALE High Period	Tosc - 12	Tosc +12	ns
T RHAX	$A D_{8}-\mathrm{AD}_{15}$ Hold after $\overline{\mathrm{RD}}$ Rising	Tosc - 50		ns
THALAZ	HLDA Low to Address Float		-25	ns
$\mathrm{T}_{\text {HALBZ }}$	$\overline{\text { HLDA }}$ Low to $\overline{B H E}$, INST, RD, $\overline{\text { WR }}$ Float		-30	ns
Thahbv	HLDA High to $\overline{B H E}$, INST, RD, $\overline{W R}$ Valid	-25		ns
A/D Absolute Error	Absolute Error		$\pm 6$	LSBs

## FUNCTIONAL DEVIATIONS

1. The DJNZW instruction is not guaranteed to be functional. The instruction, if encountered, will not cause an unimplemented opcode interrupt. (The opcode for DJNZW is OE1 Hex.) The DJNZ (byte) instruction works correctly and should be used instead.
2. The CDE function is not guaranteed to work. The CDE pin must be directly connected to $\mathrm{V}_{\mathrm{SS}}$.
3. The HSI unit has two errata: one dealing with resolution and the other with first entries into the FIFO.
The HSI resolution is 9 states instead of 8 states. Events on the same line may be lost if they occur faster than once every 9 state times.
There is a mismatch between the 9 state time HSI resolution and the 8 state time timer. This causes one time value to be unused every 9 timer counts. Events may receive a time-tag one count later than expected because of this "skipped" time value.

If the first two events into an empty FIFO (not including the Holding Register) occur in the same internal phase, both are recorded with one timetag. Otherwise, if the second event occurs within 9 states after the first, its time-tag is one count later than the first's. If this is the "skipped" time value, the second event's time-tag is 2 counts later than the first's.
If the FIFO and Holding Register are empty, the first event will transfer into the Holding Register after 8 state times, leaving the FIFO empty again. If the second event occurs after this time, it will act as a new first event into an empty FIFO.
4. The serial port Framing Error flag fails to indicate an error if the bit preceding the stop bit is a 1. This is the case in both the 8 -bit and 9 -bit modes. False framing errors are never generated.
5. The serial port RI flag is not generated after the first byte is received. The problem does not occur if the baud rate is reloaded after each reception.
6. If the unsigned divide instruction (byte or word) is the last instruction in the queue as HOLD or READY is asserted, the result may be incorrect.

## DATA SHEET REVISION HISTORY

This data sheet (270918-002) is valid for devices marked with a " $B$ " at the end of the top side tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following differences exist between this data sheet and the previous version (-001).

1. The commercial and Express (extended temperature and extended burn-in) devices were combined in this data sheet. The Express only data sheet (270780-002) is now obsolete.
2. The EPROM devices were removed from this data sheet. They are now in a separate data sheet (270909).
3. The 80 C 196 KB devices were removed from this data sheet. Only the 80C196KB10, 83C196KB10, 80C196KB12 and 83C196KB12 devices are now covered.
4. Changes were made to the format of the data sheet and the SFR descriptions were removed.
5. Two errata were added: the serial port RI flag and the DIVIDE during HOLD/READY.
6. Three specifications for the extended temperature and extended burn-in devices were changed: $\mathrm{V}_{\mathrm{IH} 2}$ Min was changed from 2.4 V to $2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{XHCH}}$ Min was changed from 35 ns to 40 ns , and $\mathrm{T}_{\mathrm{HVCH}}$ Min was changed from 90 ns to 85 ns .

The -001 data sheet integrated the 87 C 196 KB (order number $270590-003$ ) and the $83 \mathrm{C} 196 \mathrm{~KB} / 80 \mathrm{C} 196 \mathrm{~KB}$ (order number 270634-003) data sheets. The following differences exist between the -001 data sheet and each of the above mentioned data sheets.

1. The status of the data sheet was upgraded from ADVANCE INFORMATION to PRELIMINARY.
2. The warning about the ABSOLUTE MAXIMUM RATINGS was reworded and a notice of disclaimer was added to the electrical specifications section.
3. $\mathrm{V}_{\mathrm{IH} 2}$ was increased from 2.2 V to 2.6 V .
4. I IL1 was increased from $-950 \mu \mathrm{~A}$ to -1.2 mA . This change was documented in the previous revision of the data sheets but the DC Characteristics table did not reflect the change.
5. Maximum IPD specification was added to the DC table and IPD note was deleted.

80C198/83C198/80C194/83C194 COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER

83C198 - 8 Kbytes of Factory Mask-Programmed ROM 80C198 — ROMiless

- 232 Byte Register File

■ Register-to-Register Architecture
■ 28 Interrupt Sources/16 Vectors
■ $2.3 \mu \mathrm{~s} 16 \times 16$ Multiply ( 12 MHz )
■ $4.0 \mu \mathrm{~s} 32 / 16$ Divide ( 12 MHz )

- Powerdown and Idle Modes
- 16-Bit Watchdog Timer
- 8-Bit External Bus
- Extended Temperature Available

Full Duplex Serial Port
■ High Speed I/O Subsystem

- 16-Bit Timer
- 16-Bit Counter

■ Pulse-Width-Modulated Output
■ Four 16-Bit Software Timers

- 10-Bit A/D Converter with Sample/Hold
- Extended Burn-In Available

The 80C198 is the low cost member of the CHMOS MCS ${ }^{\oplus}$ - 96 microcontroller family. Intel's CHMOS process provides a high performance processor along with low power consumption. To further reduce power requirements, the processor can be placed into Idle or Powerdown Mode.

The 83C198 is an 80C198 with 8 Kbytes on-chip ROM. In this document, the 80C198 will also refer to the 83C198, 80C194 and 83C194 unless otherwise stated. Bit, byte, word and some 32-bit operations are available on the 80 C 198 . With a 12 MHz oscillator a 16-bit addition takes $0.66 \mu \mathrm{~s}$, and the instruction times average $0.5 \mu \mathrm{~s}$ to $1.5 \mu \mathrm{~s}$ in typical applications.

Four high-speed capture inputs are provided to record times when events occur. Six high-speed outputs are available for pulse or waveform generation. The high-speed output can also generate four software timers or start an A/D conversion. Events can be based on the timer or counter. Also provided on-chip are an A/D converter, serial port, watchdog timer and a pulse-width-modulated output signal.

The 80C194 and 83C194 do not have the on-chip A/D converter.
With the commercial (standard) temperature option, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. With the extended burn-in option, the burn-in is dynamic for a minimum time of 160 hours at $125^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$, following the guidelines in MIL-STD-883, Method 1015. The specifications which are different for the extended temperature and extended burn-in devices are listed in this data sheet. Otherwise, the commercial specifications apply for both.


Figure 1. 80C198/80C198 Block Diagram



Figure 3. Chip Configuration (2018H)

Figure 2. Memory Map

## PACKAGING

The 80C198 and 83C198 are available in a 52-pin PLCC package and an 80-pin QFP package. Contact your local sales office to determine the exact ordering code for the part desired.

Package Designators:
$N=52$-pin PLCC
$S=80$-pin QFP

## Prefix Designators:

$\mathrm{T}=$ Extended temperature
$\mathrm{L}=$ Extended temperature and extended burn-in

Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
PLCC	$35^{\circ} \mathrm{C} / \mathrm{W}$	$12^{\circ} \mathrm{C} / \mathrm{W}$
QFP	$85^{\circ} \mathrm{C} / \mathrm{W}$	-

Figure 4. 8XC198 Thermal Characteristics
All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for á description of Intel's thermal impedance test methodology.


Figure 5. 52-Pin PLCC Package


## NOTE:

N.C. means No Connect (do not connect these pins).

Figure 6. 80-Pin QFP Package

## PIN DESCRIPTIONS

Symbol	Name and Function
$V_{C C}$	Main supply voltage (5V).
$\mathrm{V}_{\mathrm{SS}}$	The PLCC package has $5 \mathrm{~V}_{\text {SS }}$ pins and the QFP package has $12 \mathrm{~V}_{\mathrm{SS}}$ pins. All must be connected to circuit ground.
$V_{\text {REF }}$	Reference voltage for the $\mathrm{A} / \mathrm{D}$ converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the $\mathrm{A} / \mathrm{D}$ converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $V_{S S}$.
$\mathrm{V}_{\mathrm{PP}}$	Timing pin for the return from powerdown circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $\mathrm{V}_{\mathrm{SS}}$. If this function is not used, connect to $\mathrm{V}_{\mathrm{CC}}$. This pin is the programming voltage on the EPROM device.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
RESET	Reset input to and open-drain output from the chip. Input low for at least 4 state times to reset the chip. The subsequent low-to-high transition commences the Reset Sequence in which the PSW is cleared, a byte read from 2018 H loads CCR, and a jump to location 2080 H is executed. Input high for normal operation. RESET has an internal pullup.
INST	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses and output low for a data fetch.
$\overline{E A}$	Input for memory select (External Access). $\overline{\text { EA }}$ equal to a TTL-high causes memory accesses to locations 2000 H through 3FFFH to be directed to on-chip ROM/EPROM. EA equal to a TTL-low causes accesses to these locations to be directed to off-chip memory.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is $\overline{A D V}$, it goes inactive high at the end of the bus cycle. $\overline{A D V}$ can be used as a chip select for external memory. ALE/ $\overline{A D V}$ is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{\mathrm{WR}}$	Write output to external memory. $\overline{\mathrm{WR}}$ will go low for every external write.
READY	Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, or for bus sharing. If the pin is high, CPU operation continues in a normal manner. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle held not ready is available through configuration of CCR.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.
Port 0	4-bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter. These pins set the Programming Mode on the EPROM device.
Port 2	Multi-functional port. All of its pins are shared with other functions in the 80C198.

PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
Ports 3 and 4	8-bit bidirectional I/O ports with open drain outputs. These pins are shared with the   multiplexed address/data bus which has strong internal pullups. Available as !/O only   on the ROM and EPROM devices.
TxD	The TxD pin is used for serial port transmission in Modes 1, 2 and 3. The TxD function is   enabled by setting IOC1 5. In mode 0 the pin is used as the serial clock output.
RxD	Serial Port Receive pin used for serial port reception. The RxD function is enabled by   setting SPCON.3. In mode 0 the pin functions as input or output data.
EXTINT	A positive transition on the EXTINT pin will generate an external interrupt. EXTINT is   selected as the external interrupt source by setting IOC1.1 high.
T2CLK	The T2CLK pin is the Timer2 clock input or the serial port baud rate generator input.
T2RST	A rising edge on the T2RST pin will reset Timer2. The external reset function is enabled   by setting IOCO.03 T2RST is enabled as the reset source by clearing IOCO.5.
PWM	Port 2.5 can be enabled as a PWM output by setting IOC1.O The duty cycle of the PWM   is determined by the value loaded into the PWM-CONTROL register (17H).

## ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin to	-0.5 V to +7.0 V
Power Dissipation	1.5W

## NOTE:

1. Power dissipation is based on package heat transfer, not device power consumption.

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## OPERATING CONDITIONS

(All characteristics in this data sheet apply to these operating conditions unless otherwise noted.)

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Under Bias Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Under Bias Extended Temp.	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	V
$\mathrm{~F}_{\text {OSC }}$	Oscillator Frequency	3.5	12	MHz

## NOTE:

ANGND and $V_{S S}$ should be nominally at the same potential.

## DC CHARACTERISTICS

Symbol	Description	Min	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5	0.8	V	
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage (Note 1)	$0.2 \mathrm{~V}_{C C}+1.0$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{iH} 1}$	Input High Voltage on XTAL 1	$0.7 \mathrm{~V}_{\mathrm{CC}}$	$V_{C C}+0.5$	V	
$\mathrm{V}_{\mathrm{HH} 2}$	Input High Voltage on RESET	2.6	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage		$\begin{gathered} \hline 0.3 \\ 0.45 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{lOL}=200 \mu \mathrm{~A} \\ & \mathrm{lOL}=32 \mathrm{~mA} \\ & \mathrm{lOL}=7 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage (Standard Outputs)	$\begin{aligned} & V_{\mathrm{CC}}-0.3 \\ & \mathrm{~V}_{\mathrm{CC}}-0.7 \\ & \mathrm{~V}_{\mathrm{CC}}-1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \\ & \mathrm{IOH}=-3.2 \mathrm{~mA} \\ & \mathrm{IOH}^{2}=-7 \mathrm{~mA} \\ & \hline \end{aligned}$
LII	Input Leakage Current (Std. Inputs)		$\pm 10$	$\mu \mathrm{A}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}-0.3 \mathrm{~V}$
Lli1	Input Leakage Current (Port 0)		+3	$\mu \mathrm{A}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {REF }}$
IL1	Logical 0 Input Current in Reset (Note 2) (ALE, $\overline{R D}, \overline{W R}$, INST, P2.0)		-1.2	mA	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
Hyst	Hysteresis on RESET Pin	300		mV	

## NOTE:

1. All pins except RESET and XTAL1.
2. Holding these pins below $V_{I H}$ in Reset may cause the part to enter test modes.

DC CHARACTERISTICS (Continued)

Symbol	Description	Min	Typ(6)	Max	Units	Test Conditions
$I_{\text {CC }}$	Active Mode Current in Reset		40	55	mA	$\begin{aligned} & \text { XTAL1 }=12 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \end{aligned}$
I REF	A/D Converter Reference Current		2	5	mA	
IIDLE	Idle Mode Current		10	22	mA	
$\mathrm{I}_{\text {CC1 }}$	Active Mode Current		15	22	mA	XTAL1 $=3.5 \mathrm{MHz}$
IPD	Powerdown Mode Current		5	50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {REF }}=5.5 \mathrm{~V}$
$\mathrm{R}_{\text {RST }}$	Reset Pullup Resistor	6K		65K	$\Omega$	
$\mathrm{C}_{S}$	Pin Capacitance (Any Pin to V ${ }_{\text {SS }}$ )			10	pF	$\mathrm{F}_{\text {TEST }}=1.0 \mathrm{MHz}$

## NOTES:

(Notes apply to all specifications)

1. Standard Outputs include ADO-15, $\overline{R D}, \overline{W R}$, ALE, INST, HSO pins, PWM/P2.5, RESET, Ports 3 and 4, TXD/P2.0 and RXD (in serial mode 0 ). The $V_{\mathrm{OH}}$ specification is not valid for RESET. Ports 3 and 4 are open-drain outputs.
2. Standard Inputs include HSI pins, EA, READY, RXD/P2.1, EXTINT/P2.2, T2CLK/P2.3 and T2RST/P2.4.
3. Maximum current per pin must be externally limited to the following values if $V_{\mathrm{OL}}$ is held above 0.45 V or $\mathrm{V}_{\mathrm{OH}}$ is held below $V_{c c}-0.7 \mathrm{~V}$ :

Iol on Output pins: 10 mA
IOH on Standard Output pins: 10 mA
4. Maximum current per bus pin (data and control) during normal operation is $\pm 3.2 \mathrm{~mA}$.
5. During normal (non-transient) conditions the following total current limits apply:

SSO, P2.0, RXD, $\overline{\text { RESET }}$	$\mathrm{l} \mathrm{OL}: 29 \mathrm{~mA}$	$\mathrm{l}_{\mathrm{OH}} \mathbf{2 6 ~ m A}$
P2.5, WR	$\mathrm{loL}: 13 \mathrm{~mA}$	$\mathrm{IOH} \mathbf{1 1} \mathrm{mA}$
AD0-AD15	l OL: 52 mA	loh: 52 mA
RD, ALE, INST	$\mathrm{l} \mathrm{LL}: 13 \mathrm{~mA}$	$\mathrm{l} \mathrm{OH}: 13 \mathrm{~mA}$

6. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and $\mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.


Figure 7. ICC and IIDLE vs Frequency

80C198/83C198/80C194/83C194

## AC CHARACTERISTICS

Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, FOSC $=12 \mathrm{MHz}$
The system must meet these specifications to work with the 80C198/83C198:

Symbol	Description	Min	Max	Units	Notes
TAVYV	Address Valid to Ready Setup		2 Tosc - 85	ns	
TLLYV	ALE Low to READY Setup		Tosc - 70	ns	
TYLYH	Non READY Time	No upper limit		ns	
TLLYX	READY Hold after ALE Low	Tosc - 15	2 Tosc $^{\text {- }} 40$	ns	(Note 1)
TAVDV	Address Valid to Input Data Valid		3 Tosc - 60	ns	(Note 2)
TrLDV	$\overline{\mathrm{RD}}$ Active to Input Data Valid		Tosc - 23	ns	(Note 2)
T RHDZ	End of $\overline{\mathrm{RD}}$ to Input Data Float		Tosc - 20	ns	
$\mathrm{T}_{\mathrm{RXDX}}$	Data Hold after $\overline{\mathrm{RD}}$ Inactive	0		ns	

## NOTES:

1. If max is exceeded, additional wait states will occur.
2. When using wait states, add 2 Tosc $\times n$, where $n=$ number of wait states.

The 80C198/83C198 will meet these specifications:

Symbol	Description	Min	Max	Units	Notes
FXTAL	Frequency on $\mathrm{XTAL}_{1}$	3.5	12	MHz	(Note 1)
Tosc	I/FXTAL	83	286	ns	
TLHLH	ALE Cycle Time	4 Tosc		ns	(Note 4)
TLHLL	ALE High Period	Tosc - 10	Tosc +10	ns	
TAVLL	Address Setup to ALE Falling Edge	Tosc - 20		ns	
TLLAX	Address Hold after ALE Falling Edge	Tosc - 40		ns	
TLLRL	ALE Falling Edge to $\overline{\text { RD }}$ Falling Edge	Tosc - 30		ns	
TRLRH	$\overline{\mathrm{RD}}$ Low Period	Tosc - 5	Tosc +25	ns	(Note 4)
$\mathrm{T}_{\text {RHLH }}$	$\overline{\text { RD Rising Edge to ALE Rising Edge }}$	Tosc	Tosc +25	ns	(Note 3)
TrLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		10	ns	
TLLWL	ALE Falling Edge to WR Falling Edge	Tosc - 10		ns	
TQVWH	Data Stable to WR Rising Edge	Tosc - 23		ns	(Note 4)
TWLWH	$\overline{\text { WR Low Period }}$	Tosc - 30	Tosc +5	ns	(Note 4)
TWHQX	Data Hold after WR Rising Edge	Tosc - 2.5		ns	
TWHLH	$\overline{\text { WR Rising Edge to ALE Rising Edge }}$	Tosc - 10	Tosc +15	ns	(Note 3)
T ${ }_{\text {WHBX }}$	INST Hold after WR Rising Edge	Tosc - 10		ns	
TRHBX	INST Hold after $\overline{\text { RD }}$ Rising Edge	Tosc - 10		ns	
Twhax	AD8-15 Hold after WR Rising Edge	Tosc - 50		ns	
TRHAX	AD8-15 Hold after $\overline{\mathrm{RD}}$ Rising Edge	Tosc - 25		ns	

NOTES:

1. Testing performed at 3.5 MHz . However, the part is static by design and will typically operate below 1 Hz .
2. Typical specification, not guaranteed.
3. Assuming back-to-back bus cycles.
4. When using wait states, add 2 TOSC $\times n$, where $n=$ number of wait states.

## System Bus Timings



## READY Timings (One Wait State)



EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 / T_{X L X L}$	Oscillator Frequency	3.5	12.0	MHz
$T_{\text {XLXL }}$	Oscillator Period	83	286	ns
$T_{\text {XHXX }}$	High Time	32		ns
$T_{X L X X}$	Low Time	32		ns
$T_{\text {XLXH }}$	Rise Time		10	ns
$T_{X H X L}$	Fall Time		10	ns

## EXTERNAL CLOCK DRIVE WAVEFORMS



An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts-up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the $\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\mathrm{IH}}$ specifications the capacitance will not exceed 20 pF .

## EXTERNAL CRYSTAL CONNECTIONS

## XTAL1

NOTE:
Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and VSS. When using crystals, $\mathrm{C} 1=20 \mathrm{pF}$ and $\mathrm{C} 2=20 \mathrm{pF}$. When using ceramic resonators, consult manufacturer for recommended capacitor values.

EXTERNAL CLOCK CONNECTIONS


## AC TESTING INPUT, OUTPUT WAVEFORMS



AC Testing inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 " Timing measurements are made at 2.0 V for a Logic " 1 " and 0.8 V for a Logic " 0 ".

FLOAT WAVEFORMS


270815-27
For Timing Purposes a Port Pin is no Longer Floating when a 150 mV change from Load Voltage Occurs and Begins to Float when a 150 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{IOL}_{\mathrm{OH}}= \pm 15 \mathrm{~mA}$.

## EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by "T" for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

## Conditions:

H - High
L - Low
V - Valid
X - No Longer Valid
Z - Floating

## Signals:

A - Address
D - DATA IN
L - ALE/ $\overline{A D V}$
Q - DATA OUT
R - RD
W - $\overline{\mathrm{WR}}$
X - XTAL1
Y - READY

## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT TIMING-SHIFT REGISTER MODE

Symbol	Parameter	Min	Max	Units
TXLXL	Serial Port Clock Period (BRR $\geq 8002 \mathrm{H}$ )	6 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR $\geq 8002 \mathrm{H}$ )	4 Tosc - 50	4 Tosc +50	ns
T ${ }_{\text {XLXL }}$	Serial Port Clock Period (BRR $=8001 \mathrm{H}$ )	4 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR $=8001 \mathrm{H}$ )	2 Tosc - 50	2 Tosc +50	ns
T ${ }_{\text {QVXH }}$	Output Data Setup to Clock Rising Edge	2 Tosc - 50		ns
$\mathrm{T}_{\text {XHQX }}$	Output Data Hold after Clock Rising Edge	2 Tosc $^{-50}$		ns
TXHQV	Next Output Data Valid after Clock Rising Edge		$2 \mathrm{Tosc}^{+50}$	ns
T ${ }_{\text {DVXH }}$	Input Data Setup to Clock Rising Edge	Tosc +50		ns
TXHDX	Input Data Hold after Clock Rising Edge	0	-	ns
$\mathrm{T}_{\mathrm{XHQZ}}$	Last Clock Rising to Output Float		1 Tosc	ns

## WAVEFORM—SERIAL PORT—SHIFT REGISTER MODE

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE


## A TO D CHARACTERISTICS

There are two modes of A/D operation: with or without clock prescaler. The speed of the A/D converter can be adjusted by setting a clock prescaler on or off. At high frequencies more time is needed for the comparator to settle. The maximum frequency with the clock prescaler disabled is 8 MHz . The conversion times with the prescaler turned on or off is shown in the table below.

The converter is ratiometric, so the absolute accuracy is directly dependent on the accuracy and stability of $V_{\text {REF }}$. $V_{\text {REF }}$ must be close to $V_{C C}$ since it supplies both the resistor ladder and the digital section of the converter.

The 80C194/83C194 does not have an A/D converter.

See the MCS-96 A/D Quick Reference for definition of $A / D$ terms.

Conversion Time

Clock Prescaler On   IOC2.4 $=\mathbf{0}$	Clock Prescaler Off   IOC2.4 =1
158 States	91 States
$26.33 \mu$ s @ 12 MHz	$22.75 \mu \mathrm{~s} @ 8 \mathrm{MHz}$

## A/D CONVERTER SPECIFICATIONS

Parameter	Typical(1)	Minimum	Maximum	Units*	Notes
Resolution		$\begin{gathered} 512 \\ 9 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 4$	LSBs	
Full Scale Error	$0.25 \pm 0.50$			LSBs	
Zero Offset Error	$-0.25 \pm 0.50$			LSBs	
Non-Linearity Error	$1.5 \pm 2.5$	0	$\pm 4$	LSBs	
Differential Non-Linearity Error		$>-1$	+2	LSBs	
Channel-to-Channel Matching	$\pm 0.1$	0	$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients:   Offset   Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			$\begin{aligned} & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \end{aligned}$	
Off Isolation		-60		dB	2, 3
Feedthrough	-60			dB	2
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB	2
Input Series Resistance		1K	5K	$\Omega$	
DC Input Leakage		0	3.0	$\mu \mathrm{A}$	4
Sample Time: Prescaler On Prescaler Off	$\begin{gathered} 15 \\ 8 \end{gathered}$			States   States	
Sampling Capacitor	3			pF	

## NOTES:

"An "LSB", as used here, has a value of approximately 5 mV .

1. Typical values are expected for most devices at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make Guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.

EXTENDED TEMPERATURE/EXTENDED BURN-IN ONLY SPECIFICATIONS

Symbol	Description	Min	Max	Units
RESET Hysteresis	Hysteresis on RESET Pin	TBD		mV
IPD	Powerdown Mode Current		TBD	mA
$\mathrm{T}_{\text {LLYV }}$	ALE Low to READY Setup		$\mathrm{T}_{\mathrm{OSC}}-65$	ns
$\mathrm{~T}_{\text {AVDV }}$	Address Valid to Input Data Valid		$3 \mathrm{~T}_{\mathrm{OSC}}-60$	ns
$\mathrm{~T}_{\text {RLDV }}$	RD Low to Input Data Valid		$\mathrm{T}_{\mathrm{OSC}}-25$	ns
$\mathrm{~T}_{\text {LHLL }}$	ALE High Period	$\mathrm{T}_{\mathrm{OSC}}-12$	$\mathrm{~T}_{\mathrm{OSC}}+12$	ns
$\mathrm{~T}_{\text {RHAX }}$	AD8-15 Hold after $\overline{\text { RD Rising }}$	$\mathrm{T}_{\mathrm{OSC}}-50$		ns
A/D Absolute Error	Absolute Error		+6	LSBs

## FUNCTIONAL DEVIATIONS

1. The DJNZW instruction is not guaranteed to be functional. The instruction, if encountered, will not cause an unimplemented opcode interrupt. (The opcode for DJNZW is OE1 Hex.) The DJNZ (byte) instruction works correctly and should be used instead.
2. The HSI unit has two errata: one dealing with resolution and the other with first entries into the FIFO.
The HSI resolution is 9 states instead of 8 states. Events on the same line may be lost if they occur faster than once every 9 state times.
There is a mismatch between the 9 state time HSI resolution and the 8 state time timer. This causes one time value to be unused every 9 timer counts. Events may receive a time-tag one count later than expected because of this "skipped" time value.

If the first two events into an empty FIFO (not including the Holding Register) occurs within 9 states after the first, its time-tag is one count later than the first's. If this is the "skipped" time value, the second event's time-tag is 2 counts later than the first's.
If the FIFO and Holding Register are empty, the first event will transfer into the Holding Register after 8 state times, leaving the FIFO empty again. If the second event occurs after this time, it will act as a new first event into an empty FIFO.
3. The serial port Framing Error flag fails to indicate an error if the bit preceding the stop bit is a 1. This is the case in both the 8 -bit and 9 -bit modes. False framing errors are never generated.
4. The serial port RI flag is not generated after the first byte is received. The problem does not occur if the baud rate is reloaded after each reception.
5. If the unsigned divide instruction (byte or word) is the last instruction in the queue as HOLD or READY is asserted, the result may be incorrect.

## REVISION HISTORY

This data sheet (270815-003) is valid for devices marked with a " $B$ " at the end of the top side tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following differences exist between this data sheet and the previous version (-002).

1. The Express (extended temperature and extended burn-in) devices were added to this data sheet.
2. Changes were made to the format of the data sheet and the SFR descriptions were removed.
3. Four errata were added: the CDE pin, the HSI resolution, the serial port framing error flag, the serial port RI flag and the DIVIDE during HOLD/ READY.
4. One specification for the extended temperature and extended burn-in devices was changed: $\mathrm{V}_{1 \mathrm{H} 2}$ Min was changed from 2.4 V to 2.6 V .

Differences between -002 and the -001 version of the 80C198 data sheet.

1. $V_{S S}$ pin description was altered to reflect the correct number of pins.
2. $\mathrm{V}_{\mathrm{IH} 2}$ Min was changed from 2.2 V to 2.6 V .
3. Max $I_{P D}$ was added and the $I_{P D}$ note was deleted.

For more detailed information on the 80C198, refer to the 80C196KB User's Guide, order number 270651. The 80C196KB User's Guide applies to the 80C198 except for the design considerations listed above. Because the 80C198 is a reduced pin count version, some 80C196KB features are not available and are listed here:

1. PORT 1. PORT1 is a quasi-bidirectional port.
A. HOLD/HLDA. This feature is multiplexed on PORT1.5-. 7 and is not available.
2. The $A / D$ converter loses four of its input channels, ACHO-3.
3. T2CAPTURE (P2.7) Timer2 Capture feature is not available.
4. T2UP/DN (P2.6) The Timer2 UP/DOWN feature is not available.
5. CLKOUT
6. NMI
7. BUSWIDTH
8. BHE
9. PACT

8XC196KB/8XC196KB16 COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER

- 8 Kbytes of On-Chip ROM/OTP Available

232 Byte Register File
■ Register-to-Register Architecture

- 28 Interrupt Sources/16 Vectors

■ $1.75 \mu \mathrm{~s} 16 \times 16$ Multiply ( 16 MHz )
■ $3.0 \mu \mathrm{~s} 32 / 16$ Divide ( 16 MHz )

- Powerdown and Idle Modes

E Five 8-Bit I/O Ports

- 16-Bit Watchdog Timer
- 12 MHz and 16 MHz Available
- Dedicated 15-Bit Baud Rate Generator
- Dynamically Configurable 8-Bit or 16-Bit Buswidth

■ Full Duplex Serial Port

- High Speed I/O Subsystem
- 16-Bit Timer

■ 16-Bit Up/Down Counter with Capture
■ Pulse-Width-Modulated Output
■ Four 16-Bit Software Timers
■ 10-Bit A/D Converter with Sample/Hold
HOLD/HLDA Bus Protocol

- Extended Temperature Available

The 8 XC 196 KB is a 16 -bit microcontroller available in three different memory varieties: ROMless (80C196KB), 8K ROM (83C196KB) and 8K OTP (One Time Programmable-87C196KB). The 8XC196KB is a high performance member of the MCS-96 microcontroller family. The 8 XC196KB has the same peripheral set as the 8096 BH and has a true superset of the 8096BH instructions. Intel's CHMOS process provides a high performance processor along with low power consumption. To further reduce power requirements, the processor can be placed into Idle or Powerdown Mode.

Bit, byte, word and some 32-bit operations are available on the 80 C 196 KB . With a 16 MHz oscillator a 16-bit addition takes $0.50 \mu \mathrm{~s}$, and the instruction times average $0.37 \mu \mathrm{~s}$ to $1.1 \mu \mathrm{~s}$ in typical applications.

Four high-speed capture inputs are provided to record times when events occur. Six high-speed outputs are available for pulse or waveform generation. The high-speed output can also generate four software timers or start an A/D conversion. Events can be based on the timer or up/down counter. Also provided on-chip are an A/D converter, serial port, watchdog timer and a pulse-width-modulated output signal.

The 8XC196KB has a maximum guaranteed frequency of 12 MHz . The $8 \times \mathrm{C} 196 \mathrm{~KB} 16$ has a maximum guaranteed frequency of 16 MHz . All references to the 80C196KB also refer to the 80C196KB16; 83C196KB, Rxxx; 87C196KB and 87C196KB16 unless otherwise noted. The ROM device does not have a speed indicator at the end of the device name. Instead it has a ROM code number.

With the commercial (standard) temperature option, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Package Designators: $N=68-$ pin PLCC, $S=80-$ pin QFP (commercial only). Prefix Designators: $T=$ Extended Temperature.


Figure 1. 8XC196KB Block Diagram

## PROCESS INFORMATION

This device is manufactured on P629.0 and 629.1, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.


EXAMPLE: N87C196KB16 is 68-Lead PLCC OTPROM, 16 MHz .
For complete package dimensional data, refer to the Intel Packaging Handbook (Order Number 240800).

NOTE:

1. EPROMs are available as One Time Programmable (OTPROM) only.

Figure 2. The 8XC196KB Nomenclature
Table 1. Thermal Characteristics

Package   Type	$\theta_{\text {la }}$	$\theta_{\text {jc }}$
PLCC	$35^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
QFP	$70^{\circ} \mathrm{C} / \mathrm{W}$	$4^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operation conditions and application. See the Intel Packaging Handbook (order number 240800) for a description of Intel's thermal impedance test methodology.

Table 2. 8XC196KB Memory Map

Description	Address				
External Memory or I/O	OFFFFH   04000 H				
Internal ROM/EPROM or External   Memory (Determined by EA)	3 FFFH   2080 H				
Reserved. Must contain FFH.   (Note 5)	207 FH				
2040 H		$	$	Upper Interrupt Vectors	203 FH
:---	:---				
	202 FH				
ROM/EPROM Security Key	2020 H				
Reserved. Must contain FFH.	201 FH				
(Note 5)	201 AH				
Reserved. Must Contain 20H	2019 H				
(Note 5)	2018 H				
CCB	2017 H				
Reserved. Must contain FFH.	2014 H				
(Note 5)	2013 H				
Lower Interrupt Vectors	2000 H				
Port 3 and Port 4	1 FFFH				
Word Addressable Only	1 FFEH				
External Memory	1 FFDH				
232 Bytes Register RAM (Note 1)	0100 H				
CPU SFR's (Notes 1, 3)	0018 H				

## NOTES:

1. Code executed in locations 0000 H to 00 FFH will be forced external.
2. Reserved memory locations must contain OFFH unless noted.
3. Reserved SFR bit locations must contain 0.
4. Refer to 8XC196KB quick reference for SFR descriptions.
5. WARNING: Reserved memory locations must not be written or read. The contents and/or function of these locations may change with future revisions of the device. Therefore, a program that relies on one or more of these locations may not function properly.


Figure 3. 68-Pin Package (PLCC Top View)

## NOTE:

The above pin out diagram applies to the OTP $(87 \mathrm{C} 196 \mathrm{~KB})$ device. The OTP device uses all of the programming pins shown above. The ROM (83C196KB) device only uses programming pins: $\overline{\text { AINC, PALE, PMODE.n, and PROG. The ROMless }}$ ( 80 C 196 KB ) doesn't use any of the programming pins.


Figure 4. 80-Pin QFP Package

## NOTE:

The above pin out diagram applies to the OTP (87C196KB) device. The OTP device uses all of the programming pins shown above. The ROM (83C196KB) device only uses programming pins: AINC, PALE, PMODE.n, and PROG. The ROMless ( 80 C 196 KB ) doesn't use any of the programming pins.

PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (5V).
$V_{S S}$	Digital circuit ground ( OV ). There are three $\mathrm{V}_{\text {SS }}$ pins, all of them must be connected.
$V_{\text {REF }}$	Reference voltage for the $\mathrm{A} / \mathrm{D}$ converter ( 5 V ). $\mathrm{V}_{\mathrm{FEF}}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $\mathrm{V}_{\mathrm{SS}}$. Connect $\mathrm{V}_{\text {SS }}$ and ANGND at chip to avoid noise problems.
$\mathrm{V}_{\mathrm{PP}}$	Programming voltage. Also timing pin for the return from power down circuit.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT	Output of the internal clock generator. The frequency of CLKOUT is $1 / 2$ the oscillator frequency. It has a $50 \%$ duty cycle.
RESET	Reset input to and open-drain output from the chip. Input low for at least 4 state times to reset the chip. The subsequent low-to-high transition re-synchronizes CLKOUT and commences a 10-state-time RESET sequence.
BUSWIDTH	Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1 , a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus.
NMI	A positive transition causes a vector through 203EH.
INST	Output high during an external memory read indicates the read is an instruction fetch and output low indicates a data fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses.
$\overline{E A}$	Input for memory select (External Access). EA equal to a TTL-high causes memory accesses to locations 2000 H through 3FFFH to be directed to on-chip ROM/OTPROM. EA equal to a TTL-low causes accesses to these locations to be directed to off-chip memory.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is $\overline{A D V}$, it goes inactive high at the end of the bus cycle. ALE/ $\overline{\text { ADV }}$ is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{\text { WR } / \overline{W R L}}$	Write and Write Low output to external memory, as selected by the CCR. $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. WR/WRL is activated only during external memory writes.
$\overline{\text { BHE/ }} \overline{\text { WRH }}$	Bus High Enable or Write High output to external memory, as selected by the CCR. $\overline{\text { BHE }}$ will go low for external writes to the high byte of the data bus. WRH will go low for external writes where an odd byte is being addressed. BHE/WRH is activated only during external memory writes.
READY	Ready input to lengthen external memory cycles. If the pin is low prior to the falling edge of CLKOUT, the memory controller goes into a wait mode until the next positive transition in CLKOUT occurs with READY high. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle (held not ready) is available in the CCR.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.

8XC196KB/8XC196KB16

PIN DESCRIPTIONS (Continued)

Symbol	$\quad$ Name and Function
Port 0	8-bit high impedance input-only port. Three pins can be used as digital inputs and/or as   analog inputs to the on-chip A/D converter.
Port 1	8-bit quasi-bidirectional I/O port. These pins are shared with $\overline{\text { HOLD, HLDA and BREQ. }}$
Port 2	8-bit multi-functional port. All of its pins are shared with other functions in the 87C196KB.   Pins P2.6 and P2.7 are quasi-bidirectional.
Ports 3 and 4	8-bit bidirectional I/O ports with open drain outputs. These pins are shared with the   multiplexed address/data bus, which has strong internal pullups.
HOLD	Bus Hold input requesting control of the bus. Enabled by setting WSR.7.
HLDA	Bus Hold acknowledge output indicating release of the bus. Enabled by setting WSR.7.
$\overline{\text { BREQ }}$	Bus Request output activated when the bus controller has a pending external memory   cycle. Enabled by setting WSR.7.
TxD	The TxD pin is used for serial port transmission in Modes 1, 2 and 3. In Mode 0 the pin is   used as the serial clock output.
RxD	Serial Port Receive pin used for serial port reception. In Mode 0 the pin functions as input or   output data.
EXTINT	A rising edge on the EXTINT pin will generate an external interrupt.
T2CLK	The T2CLK pin is the Timer2 clock input or the serial port baud rate generator input.
T2RST	A rising edge on the T2RST pin will reset Timer2.
PWM	The pulse width modulator output.
T2UP-DN	The T2UPDN pin controls the direction of Timer2 as an up or down counter.
T2CAPTURE	A rising edge on P2.7 will capture the value of Timer2 in the T2CAPTURE register.
PMODE	Programming Mode Select. Determines the EPROM programming algorithm that is   performed. PMODE is sampled after a chip reset and should be static while the part is   operating.
Ports 3   and 4   (Programming   Mode)	Address/Command/Data Bus. Used to pass commands, addresses, and data to and from   slave mode 87C196KBs. Used by chips in Auto Programming Mode to pass command,   addresses and data to slaves. Also used in the Auto Programming Mode as a regular   system bus to access external memory. Should have pullups to VCC when used in slave   programming mode.
programming verification acknowledgement.	

## ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature

Under Bias
$\ldots \ldots \ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $\ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin to V SS $\ldots . .$. . -0.5 V to +7.0 V
Power Dissipation(1) ............................ . 1.5 W
NOTE:

1. Power dissipation is based on package heat transfer limitations, not device power consumption.

NOTICE: This data sheet contains preliminary information on new products in production. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions", may affect device reliability.

## OPERATING CONDITIONS

(All characteristics in this data sheet apply to these operating conditions unless otherwise noted.)

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Under Bias	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	V
FOSC	Oscillator Frequency $\mathbf{1 2 ~ M H z}$	3.5	12	MHz
FOSC	Oscillator Frequency $\mathbf{1 6} \mathbf{~ M H z}$	3.5	16	MHz

NOTE:
ANGND and $V_{S S}$ should be nominally at the same potential.

## DC CHARACTERISTICS

Symbol	Description	Min	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5	0.8	V	
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage(1)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{HH} 1}$	Input High Voltage on XTAL 1	$0.7 \mathrm{~V}_{\mathrm{CC}}$	$V_{C C}+0.5$	V	
$\mathrm{V}_{\text {IH2 }}$	Input High Voltage on RESET	2.6	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		$\begin{gathered} \hline 0.3 \\ 0.45 \\ 1.5 \end{gathered}$	$\begin{aligned} & \hline V \\ & v \\ & v \end{aligned}$	$\begin{aligned} \mathrm{lOL} & =200 \mu \mathrm{~A} \\ \mathrm{loL} & =3.2 \mathrm{~mA} \\ \mathrm{lOL} & =7 \mathrm{~mA} \end{aligned}$
V OH	Output High Voltage (Standard Outputs)	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.7 \\ & V_{C C}-1.5 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \\ & \mathrm{IOH}=-3.2 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-7 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage   (Quasi-bidirectional Outputs)	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.7 \\ & V_{C C}-1.5 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{IOH}_{\mathrm{OH}}=-30 \mu \mathrm{~A} \\ & \mathrm{IOH}_{\mathrm{OH}}=-60 \mu \mathrm{~A} \end{aligned}$
lıI	Input Leakage Current (Std. Inputs)		$\pm 10$	$\mu \mathrm{A}$	$0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$
LII1	Input Leakage Current (Port 0)		+3	$\mu \mathrm{A}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {REF }}$
ITL	1 to 0 Transition Current (QBD Pins)		-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
IL	Logical 0 Input Current (QBD Pins)(4)	-	-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$

NOTE:
All pins except RESET and XTAL1.

DC CHARACTERISTICS (Continued)

Symbol	Description	Min	Typ(7)	Max	Units	Test Conditions
IL1	Logical 0 Input Current in Reset ALE, RD, INST			-7	mA	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\mathbf{H} 1}$	Logical 1 Input Current on NMI Pin			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
Hyst.	Hysteresis on RESET Pin	300			mV	
ICC	Active Mode Current in Reset		50	60	mA	$\begin{aligned} & \text { XTAL1 }=16 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \end{aligned}$
IREF	A/D Converter Reference Current		2	5	mA	
IIDLE	Idle Mode Current		10	25	mA	
$\mathrm{ICC}_{1}$	Active Mode Current		15	25	mA	XTAL1 $=3.5 \mathrm{MHz}$
IPD	Powerdown Mode Current		5	30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {PP }}=\mathrm{V}_{\text {REF }}=5.5 \mathrm{~V}$
$\mathrm{R}_{\text {RST }}$	Reset Pullup Resistor	6K		50K	$\Omega$	
$\mathrm{C}_{\mathrm{S}}$	Pin Capacitance (Any Pin to VSS)			10	pF	$\mathrm{F}_{\text {TEST }}=1.0 \mathrm{MHz}$

## NOTES:

(Notes apply to all specifications)

1. QBD (Quasi-bidirectional) pins include Port 1, P2.6 and P2.7.
2. Standard Outputs include ADO-15, $\overline{R D}, \overline{W R}$, ALE, $\overline{B H E}$, INST, HSO pins, PWM/P2.5, CLKOUT, RESET, Ports 3 and 4, TXD/P2.0 and RXD (in serial mode 0). The $\mathrm{V}_{\mathrm{OH}}$ specification is not valid for RESET. Ports 3 and 4 are open-drain outputs.
3. Standard Inputs include HSI pins, CDE, EA, READY, BUSWIDTH, NMI, RXD/P2.1, EXTINT/P2.2, T2CLK/P2.3 and T2RST/P2.4.
4. Maximum current per pin must be externally limited to the following values if $\mathrm{V}_{\mathrm{OL}}$ is held above 0.45 V or $\mathrm{V}_{\mathrm{OH}}$ is held below $\mathrm{V}_{\mathrm{cc}}-0.7 \mathrm{~V}$ :

IoL on Output pins: 10 mA
${ }^{1} \mathrm{OH}$ on quasi-bidirectional pins: self limiting
IOH on Standard Output pins: 10 mA
5. Maximum current per bus pin (data and control) during normal operation is $\pm 3.2 \mathrm{~mA}$.
6. During normal (non-transient) conditions the following total current limits apply:

Port 1, P2. 6
HSO, P2.0, RXD, RESET
P2.5, P2.7, WR, BHE AD0-AD15
RD, ALE, INST-CLKOUT
lol: 29 mA
loL: 29 mA
lol: 13 mA
$\mathrm{I}_{\mathrm{OL}}: 52 \mathrm{~mA}$
lol: 13 mA
$\mathrm{IOH}_{\mathrm{OH}}$ is self limiting
ІОн: 26 mA
$\mathrm{l}_{\mathrm{OH}}: 11 \mathrm{~mA}$
$\mathrm{l}_{\mathrm{OH}}: 52 \mathrm{~mA}$
Іон: 13 mA
7. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and $V_{\text {REF }}=V_{C C}=5 \mathrm{~V}$.


Figure 6. ICC and IIDLE vs Frequency

## AC CHARACTERISTICS

Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, FoSc $=12 / 16 \mathrm{MHz}$
The system must meet these specifications to work with the 87C196KB:

Symbol	Description	Min	Max	Units	Notes
TAVYV	Address Valid to READY Setup		2 Tosc $^{\text {- }} 75$	ns	
TLLYV	ALE Low to READY Setup		Tosc - 60	ns	(Note 3)
TYLYH	NonREADY Time	No upper limit		ns	
TCLYX	READY Hold after CLKOUT Low	0	Tosc - 30	ns	(Note 1)
TLLYX	READY Hold after ALE Low	Tosc - 15	2 Tosc $^{-40}$	ns	(Note 1)
TAVGV	Address Valid to Buswidth Setup		2 Tosc - 75	ns	
TLLGV	ALE Low to Buswidth Setup		Tosc - 60	ns	(Note 3)
TCLGX	Buswidth Hold after CLKOUT Low	0		ns	
TAVDV	Address Valid to Input Data Valid		$3 \mathrm{~T}_{\text {OSC }}-55$	ns	(Note 2)
TrLDV	$\overline{\mathrm{RD}}$ Active to Input Data Valid		Tosc - 23	ns	(Note 2)
TCLDV	CLKOUT Low to Input Data Valid		Tosc - 50	ns	
$\mathrm{T}_{\text {RHDZ }}$	End of $\overline{\mathrm{RD}}$ to Input Data Float		Tosc - 20	ns	
$\mathrm{T}_{\text {RXDX }}$	Data Hold after $\overline{\mathrm{RD}}$ Inactive	0		ns	

## NOTES:

1. If max is exceeded, additional wait states will occur.
2. When using wait states, add 2 TOSC $\times n$ where $n=$ number of wait states.
3. These timings are included for compatibility with -90 and BH products. They should not be used for newer high-speed designs.

AC CHARACTERISTICS (Continued)
Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, Fosc $=12 / 16 \mathrm{MHz}$
The 87C196KB will meet these specifications:

Symbol	Description	Min	Max	Units	Notes
FXTAL	Frequency on XTAL1 12 MHz	3.5	12.0	MHz	(Note 2)
$\mathrm{F}_{\text {XTAL }}$	Frequency on XTAL1 16 MHz	3.5	16.0	MHz	(Note 2)
Tosc	1/FXTAL 12 MHz	83.3	286	ns	
Tosc	1/FXTAL 16 MHz	62.5	286	ns	
TXHCH	XTAL1 High to CLKOUT High or Low	+20	+110	ns	
TCLCL	CLKOUT Cycle Time	2 Tosc		ns	
TCHCL	CLKOUT High Period	TOSC - 10	Tosc +10	ns	
TCLLH	CLKOUT Falling Edge to ALE Rising	-10	+10	ns	
TLLCH	ALE Falling Edge to CLKOUT Rising	-15	+15	ns	
TLHLH	ALE Cycle Time	4 Tosc		ns	(Note 3)
TLHLL	ALE High Period	Tosc - 10	TOSC +10	ns	
TAVLL	Address Setup to ALE Falling Edge	TOSC - 20		ns	
TLLAX	Address Hold after ALE Falling Edge	Tosc - 40		ns	
TLLRL	ALE Falling Edge to $\overline{\text { RD }}$ Falling Edge	Tosc - 35		ns	
TrLCL	$\overline{\mathrm{RD}}$ Low to CLKOUT Falling Edge	+4	+25	ns	
$\mathrm{T}_{\text {RLRH }}$	$\overline{\mathrm{RD}}$ Low Period	Tosc-5	Tosc +25	ns	(Note 3)
TRHLL	$\overline{\text { RD Rising Edge to ALE Rising Edge }}$	Tosc	Tosc +25	ns	(Note 1)
TrLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		+5	ns	
TLLWL	ALE Falling Edge to WR Falling Edge	Tosc - 10		ns	
TCLWL	CLKOUT Low to WR Falling Edge	0	$+25$	ns	
TQVWH	Data Stable to WR Rising Edge	Tosc - 23		ns	(Note 3)
TCHWH	CLKOUT High to WR Rising Edge	-5	+15	ns	
TWLWH	$\overline{\text { WR Low Period }}$	Tosc - 15	Tosc +5	ns	(Note 3)
TWHQX	Data Hold after WR Rising Edge	Tosc - 15		ns	
TWHLH	$\overline{\text { WR Rising Edge to ALE Rising Edge }}$	Tosc - 15	Tosc +10	ns	(Note 1)
TWHBX	BHE, INST HOLD after $\overline{\text { WR }}$ Rising Edge	TOSC - 15		ns	
$\mathrm{T}_{\text {RHBX }}$	$\overline{B H E}, ~ I N S T ~ H O L D ~ a f t e r ~ \overline{R D}$ Rising Edge	TOSC - 10		ns	
Twhax	AD8-15 hold after WR Rising Edge	TOSC - 30		ns	
TrHAX	AD8-15 hold after $\overline{\text { RD }}$ Rising Edge	Tosc - 25		ns	

## NOTES:

1. Assuming back-to-back bus cycles.
2. Testing performed at 3.5 MHz , however, the device is static by design and will typically operate below 1 Hz .
3. When using wait states, all 2 TOSC $+n$ where $n=$ number of wait states.

## System Bus Timings



READY Timings (One Wait State)


## Buswidth Bus Timings



HOLD/HLDA Timings

Symbol	Description	Min	Max	Units	Notes
THVCH	HOLD Setup	55		ns	(Note 1)
TCLHAL	CLKOUT Low to HLDA Low		15	ns	
TCLBRL	CLKOUT Low to $\overline{\mathrm{BREQ}}$ Low		15	ns	
ThaLAZ	$\overline{\text { HLDA }}$ Low to Address Float		10	ns	
ThaLBZ	HLDA Low to $\overline{B H E}, ~ I N S T, ~ \overline{R D}, \overline{\text { WR }}$ Float		10	ns	
TCLHAH	CLKOUT Low to HLDA High	-15	15	ns	
TCLBRH	CLKOUT Low to BREQ High	-15	15	ns	
THAHAX	HLDA High to Address No Longer Float	-15		ns	
THAHAV	$\overline{\text { HLDA }}$ High to Address Valid	0		ns	
THAHBX	HLDA High to $\overline{\mathrm{BHE}}, \mathrm{INST}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ No Longer Float	-20		ns	
THAHBV	HLDA High to $\overline{\mathrm{BHE}}, \mathrm{INST}, \overline{\mathrm{RD}}, \overline{\text { WR }}$ Valid	0		ns	
TCLLH	CLKOUT Low to ALE High	-5	15	ns	

## NOTE:

1. To guarantee recognition at next clock.

Maximum Hold Latency

Bus Cycle Type	Latency
Internal Access	1.5 States
16-Bit External Execution	2.5 States
8-Bit External	4.5 States



EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TXLXL	Oscillator Frequency 12 MHz	3.5	12.0	MHz
1/TXXXL	Oscillator Frequency 16 MHz	3.5	16	MHz
TXLXL	Oscillator Period 12 MHz	83.3	286	ns
TXLXL	Oscillator Period 16 MHz	62.5	286	ns
TXHXX	High Time	21.25		ns
TXLXX	Low Time	21.25		ns
TXLXH	Rise Time		10	ns
TXHXL	Fall Time		10	ns

## EXTERNAL CLOCK DRIVE WAVEFORMS



An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts-up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the $\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\mathrm{IH}}$ specifications, the capacitance will not exceed 20 pF .

## EXTERNAL CRYSTAL CONNECTIONS



## NOTE:

Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and VSS. When using crystals, $\mathrm{C} 1=20 \mathrm{pF}, \mathrm{C} 2=20 \mathrm{pF}$. When using ceramic resonators, consult manufacturer for recommended circuitry.

## EXTERNAL CLOCK CONNECTIONS



## AC TESTING INPUT, OUTPUT WAVEFORMS



## FLOAT WAVEFORMS



For Timing Purposes a Port Pin is no Longer Floating when a 200 mV change from Load Voltage Occurs and Begins to Float when a 200 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{l}_{\mathrm{OL}} / \mathrm{IOH}_{\mathrm{OH}}= \pm 15 \mathrm{~mA}$.

## EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by " $T$ " for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

## Conditions:

H - High
L - Low
V - Valid
X - No Longer Valid
Z - Floating

Signals:
A - Address
B - $\overline{\text { BHE }}$
BR - $\overline{\mathrm{BREQ}}$
C - CLKOUT
D - DATA IN
G - Buswidth
H - $\overline{\mathrm{HOLD}}$

HA - HLDA
L - ALE/ $\overline{A D V}$
Q - DATA OUT
R - $\overline{\mathrm{RD}}$
W - $\overline{\mathrm{WR}} / \overline{\mathrm{WRH}} / \overline{\mathrm{WRL}}$
$X$ - XTAL1
Y - READY

## 10-BIT A/D CHARACTERISTICS

At a clock speed of 6 MHz or less, the clock prescaler should be disabled. This is accomplished by setting $\operatorname{IOC} 2.4=1$.

At higher frequencies (greater than 6 MHz ) the clock prescaler should be enabled $(I O C 2.4=0)$ to allow the comparator to settle.

The table below shows two different clock speeds and their corresponding A/D conversion and sample times.

State times are calculated as follows:

$$
\text { state time }=\frac{2}{\text { XTAL1 }}
$$

The converter is ratiometric, so the absolute accuracy is directly dependent on the accuracy and stability of $V_{\text {REF }}$. $V_{\text {REF }}$ must be close to $V_{C C}$ since it supplies both the resistor ladder and the digital section of the converter.

See the MCS-96 A/D Converter Quick Reference for definition of A/D terms.

Example Sample and Conversion Times

A/D Clock   Prescaler	Clock Speed   $(\mathbf{M H z})$	Sample Time   (States)	Sample Time   at Clock   Speed   $(\boldsymbol{\mu s})$	Conversion   Time   (States)	Conversion   Time at   Clock Speed   $(\boldsymbol{\mu s})$
IOC2.4 = $0 \rightarrow$ ON	16	15	1.875	156.5	19.6
IOC2.4 $=1 \rightarrow$ OFF	6	8	2.667	89.5	29.8

## A/D CONVERTER SPECIFICATIONS

Parameter	Typical(1)	Minimum	Maximum	Units*	Notes
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 3$	LSBs	
Full Scale Error	$0.25 \pm 0.50$			LSBs	
Zero Offset Error	$-0.25 \pm 0.50$			LSBs	
Non-Linearity Error	$1.5 \pm 2.5$	0	$\pm 3$	LSBs	
Differential Non-Linearity Error		$>-1$	+2	LSBs	
Channel-to-Channel Matching	$\pm 0.1$	0	$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients:   Offset   Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			$\begin{aligned} & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \end{aligned}$	
Off İsolation		-60		dB	2, 3
Feedthrough	-60			dB	2
$\mathrm{V}_{\mathrm{CC}}$ Power Supply Rejection	-60			dB	2
Input Series Resistance		750	1.2K	$\Omega$	4
DC Input Leakage		0	3.0	$\mu \mathrm{A}$	
Sampling Capacitor	3			pF	

## NOTES:

*An "LSB", as used here, has a value of approximately 5 mV .

1. Typical values are expected for most devices at $25^{\circ} \mathrm{C}$.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make Guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.

8XC196KB/8XC196KB16
PRREGUNONARN

## EPROM SPECIFICATIONS

EPROM PROGRAMMING OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {A }}$	Ambient Temperature During Programming	20	30	C
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{PD}}, \mathrm{V}_{\text {REF }}{ }^{(1)}$	Supply Voltages During Programming	4.5	5.5	V
$\mathrm{V}_{\text {EA }}$	Programming Mode Supply Voltage	12.50	13.0	V (2)
$V_{\text {PP }}$	EPROM Programming Supply Voltage	12.50	13.0	V (2)
$\mathrm{V}_{\text {SS }}$, ANGND(3)	Digital and Analog Ground	0	0	V
Fosc	Oscillator Frequency 12 MHz	6.0	12.0	MHz
Fosc	Oscillator Frequency 16 MHz	6.0	16.0	MHz

## NOTES:

1. $V_{C C}, V_{P D}$ and $V_{\text {REF }}$ should nominally be at the same voltage during programming.
2. $V_{E A}$ and $V_{P P}$ must never exceed the maximum voltage for any amount of time or the device may be damaged.
3. $\mathrm{V}_{\mathrm{SS}}$ and $A N G N D$ should nominally be at the same voltage ( OV ) during programming.

## AC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Description	Min	Max	Units
TSHLL	Reset High to First $\overline{\text { PALE }}$ Low	1100		Tosc
TLLLH	$\overline{\text { PALE Pulse Width }}$	40		Tosc
$\mathrm{T}_{\text {AVLL }}$	Address Setup Time	0		Tosc
TLLAX	Address Hold Time	50		Tosc
TLLVL	PALE Low to PVER Low		60	Tosc
TPLDV	$\overline{\text { PROG }}$ Low to Word Dump Valid		50	Tosc
TPHDX	Word Dump Data Hold		50	Tosc
T DVPL	Data Setup Time	0		Tosc
TPLDX	Data Hold Time	50		Tosc
TPLPH	$\overline{\text { PROG Pulse Width }}$	40		Tosc
TPHLL	$\overline{\text { PROG }}$ High to Next $\overline{\text { PALE }}$ Low	120		Tosc
TLHPL	$\overline{\text { PALE }}$ High to PROG Low	220		Tosc
TPHPL	PROG High to Next PROG Low	120		Tosc
$\mathrm{T}_{\text {PHIL }}$	$\overline{\text { PROG High to AINC Low }}$	0		Tosc
TILIH	$\overline{\text { AINC Pulse Width }}$	40		Tosc
TILVH	PVER Hold after AINC Low	50		Tosc
TILPL	$\overline{\text { AINC Low to PROG Low }}$	170		Tosc
TPHVL	$\overline{\text { PROG }}$ High to PVER Low		90	Tosc

## DC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Description	Min	Max	Units
$\mathrm{I}_{\mathrm{PP}}$	$\mathrm{V}_{\mathrm{PP}}$ Supply Current (When Programming)		100	mA

NOTE:
Do not apply $\mathrm{V}_{\mathrm{PP}}$ until $\mathrm{V}_{\mathrm{CC}}$ is stable and within specifications and the oscillator/clock has stabilized or the device may be damaged.

## EPROM PROGRAMMING WAVEFORMS

SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE


SLAVE PROGRAMMING MODE IN WORD DUMP OR DATA VERIFY MODE WITH AUTO INCREMENT


SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM MODE WITH REPEATED PROG PULSE AND AUTO INCREMENT


AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE
SERIAL PORT TIMING-SHIFT REGISTER MODE

Symbol	Parameter	Min	Max	Units
TXLXL	Serial Port Clock Period (BRR $\geq 8002 \mathrm{H}$ )	6 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR $\geq 8002 \mathrm{H}$ )	$4 \mathrm{~T}_{\text {OSC }}-50$	$4 \mathrm{~T}_{\text {OSC }}+50$	ns
$\mathrm{T}_{\text {XLXL }}$	Serial Port Clock Period (BRR = 8001H)	4 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR = 8001H)	2 Tosc $^{-50}$	2 TOSC +50	ns
TQVXH	Output Data Setup to Clock Rising Edge	2 Tosc - 50		ns
TXHQX	Output Data Hold after Clock Rising Edge	2 Tosc $^{-50}$		ns
$\mathrm{T}_{\text {XHQV }}$	Next Output Data Valid after Clock Rising Edge		$2 \mathrm{TOSC}^{+50}$	ns
T ${ }_{\text {DVXH }}$	Input Data Setup to Clock Rising Edge	Tosc +50		ns
TXHDX	Input Data Hold after Clock Rising Edge	0		ns
$\mathrm{T}_{\mathrm{XHQZ}}$	Last Clock Rising to Output Float		2 Tosc	ns

## WAVEFORM—SERIAL PORT-SHIFT REGISTER MODE

## SERIAL PORT WAVEFORM-SHIFT REGISTER MODE



## FUNCTIONAL DEVIATIONS

Devices marked with an "E", "F" or "G" have the following errata.

## 1. High Speed Inputs

The High Speed Input (HSI) has three deviations from the specifications.

## NOTE:

"Events" are defined as one or more pin transitions. "Entries" are defined as the recording of one or more events.
A. The resolution is nine states instead of eight states. Events occurring on the same pin more frequently than once every nine state may be lost.
B. A mismatch between the nine state HSI resolution and the eight state hardware timer causes one time-tag value to be skipped every nine timer counts. Events may receive a time-tag one count later than expected.
C. If the FIFO and Holding Register are empty, the first event will transfer into the Holding Register, leaving the FIFO empty again. The next event that occurs will be the first event loaded into the empty FIFO. If the first two events into an empty FIFO (not counting the Holding Register) Occur coincident with each other, both are recorded as one entry with one time-tag. If the second event occurs within 9 states after the first, the events will be entered separately with time-tags at least one count apart. If the second event enters the FIFO coincident with the "skipped" time-tag situation (see $B$ above) the time-tags will be at least two counts apart.

## 2. CMPL with RO

Using CMPL with register 0 can set incorrect flags. Don't use register 0 with the compare long (CMPL)
instruction. Use another long word register and set it equal to zero. See tech bit MC0692.

## REVISION HISTORY

This data sheet (270909-004) is valid for devices with an " $E$ ", " $F$ " or " $G$ " at the end of the top side tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following differences exist between this data sheet (270909-004) and (270909-003):

1. The ROM (80C196KB), and ROMless (83C196KB) were combined with this data sheet resulting in no specification differences.
2. The description of the prescalar bit for the $A / D$ has been enhanced.
3. ThahbvMIN was -15 ns (270909-003). Now THAHBVMIN is -20 ns (270909-004).
4. $T_{X H Q Z M A X ~ w a s ~}^{1}$ TOSC (270909-003). Now TXHQZMAX is 2 TOSC (270909-004). This should have no impact on designs using synchronous serial mode 0.
5. The change indicators for the 80 C 196 KB are " $E$ ", " $F$ " and " $G$ ". Previously there was only one change indicator " $E$ ". The change indicator is used for tracking purposes. The change indicator is the last character in the FPO number. The FPO number is the second line on the top side of the device.

The following differences exist between (-003) and version (-002).

1. The 12 MHz and 16 MHz devices were combined in this data sheet. The 87C196KB 12 MHz only data sheet (272035-001) is now obsolete.
2. Changes were made to the format of the data sheet and the SFR descriptions were removed.
3. The -002 version of this data sheet was valid for devices marked with a "B" or a "D" at the end of the top side tracking number.
4. The OSCILLATOR errata was removed.
5. An errata was not documented in the -002 data sheet for devices marked with a "B" or a "D". This is the DIVIDE DURING HOLD/READY errata. When HOLD or READY is active and DIV/ DIVB is the last instruction in the queue, the divide result may be incorrect.
6. $T_{X C H}$ was changed from $\operatorname{Min}=40 \mathrm{~ns}$ to $\mathrm{Min}=$ 20 ns.
7. $T_{\text {RLCL }}$ was changed from $\operatorname{Min}=5$ ns to $\operatorname{Min}=$ 4 ns.
8. ILL, was changed from $\operatorname{Max}=-6 \mathrm{~mA}$ to $\mathrm{Max}=$ -7 mA .
9. $T_{\text {HAHBV }}$ was changed from $\operatorname{Min}=-10$ ns to $\operatorname{Min}=-15 \mathrm{~ns}$.

Differences between the -002 and -001 data sheets.

1. The -001 version of this data sheet was valid for devices marked with a " C " at the end of the top side tracking number.
2. Added 64L SDIP and 80L QFP packages.
3. Added IIH1.
4. Changed $\mathrm{T}_{\mathrm{CHWH}}$ Min from -10 ns to -5 ns .
5. Changed $T_{C H W H}$ Max from +10 ns to +15 ns .
6. Changed TWLWH Min from TOSC -20 ns to TOSC - 15 ns .
7. Changed TWHQX Min from TOSC -10 ns to TOSC - 15 ns .
8. Changed TWhlh Min from TOsc -10 ns to TOSC - 15 ns .
9. Changed $T_{\text {WhLH }}$ Max from $T_{\text {OSC }}+15 \mathrm{~ns}$ to TOSC +10 ns .
10. Changed TWHBX Min from TOSC - 10 ns to Tosc - 15 ns .
11. Changed $T_{H V C H}$ Min from 85 ns to 55 ns .
12. Remove $\mathrm{T}_{\mathrm{HVCH}}$ Max.
13. Changed $T_{\text {CLHAL }}$ Min from -10 ns to -15 ns .
14. Changed $T_{\text {CLHAL }}$ Max from 20 ns to 15 ns .
15. Changed TCLBRL Min from - 10 ns to -15 ns .
16. Changed $T_{\text {CLBRL }}$ Max from 20 ns to 15 ns .
17. Changed $T_{\text {HAHAX }}$ Min from -10 ns to -15 ns .
18. Added HSI description to Functional Deviations.
19. Added Oscillator description to Functional Deviations.

# 8XC198 <br> COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER 

## 8 Kbytes of OTPROM

- 8 Kbytes of On-Chip OTPROM or ROM
- 232 Byte Register File
- Register-to-Register Architecture

■ 28 Interrupt Sources/16 Vectors
■ $1.75 \mu \mathrm{~s} 16 \times 16$ Multiply ( 16 MHz )
■ $3.0 \mu \mathrm{~s}$ 32/16 Divide ( 16 MHz )

- Powerdown and Idle Modes
- 16-Bit Watchdog Timer
- 8-Bit External Bus
- 16 MHz Standard
- Full Duplex Serial Port
- High Speed I/O Subsystem

■ 16-Bit Timer

- 16-Bit Counter
- Pulse-Width-Modulated Output

■ Four 16-Bit Software Timers
■ 10-Bit A/D Converter with Sample/Hold

- Extended Temperature Available

The 8XC198 family offers low-cost entry into Intel's powerful MCS®-96 16-bit microcontroller architecture. Intel's CHMOS process provides a high performance processor along with low power consumption. To further reduce power requirements, the processor can be placed into Idle or Powerdown Mode.

The 8 XC 198 is the 8 -bit bus version of the $8 \mathrm{XC196KB}$. The prefixes mean: 80 (ROMless), 83 (ROM), 87 (OTP) One Time Programmable. The ROM and OTP are available in 8 Kbytes.

Bit, byte, word and some 32-bit operations are available on the $8 \times C 198$. With a 16 MHz oscillator a 16-bit addition takes $0.50 \mu \mathrm{~s}$, and the instruction times average $0.37 \mu \mathrm{~s}$ to $1.1 \mu \mathrm{~s}$ in typical applications.

Four high-speed capture inputs are provided to record times when events occur. Six high-speed outputs are available for pulse or waveform generation. The high-speed output can also generate four software timers or start an A/D conversion. Events can be based on the timer or counter. Also provided on-chip are an A/D converter, serial port, watchdog timer and a pulse-width-modulated output signal.

With the commercial (standard) temperature option, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Wth the extended temperature range option, operational characteristics are guaranteed over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.


Figure 1. 87C198 Block Diagram



Figure 3. Chip Configuration (2018H)

Figure 2. Memory Map
WARNING:
Reserved memory locations must not be written or read. The contents and/or function of these locations may change with future revisions of the device. Therefore, a program that relies on one or more of these locations may not function properly.

## PACKAGING

The 8 XC198 is available in a 52-pin PLCC package and an 80-pin QFP package. Contact your local sales office to determine the exact ordering code for the part desired.

## Package Designators:

$\mathrm{N}=52$-pin PLCC
$S=80-$ pin QFP

## Thermal Characteristics

Package Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
PLCC	$40^{\circ} \mathrm{C} / \mathrm{W}$	
QFP	$70^{\circ} \mathrm{C} / \mathrm{W}$	$4^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.


Figure 4. 52-Pin PLCC Package

## NOTE:

The above pinout diagram applies to the OTP (87C198) device. The OTP device uses all of the programming pins shown above. The ROM (83C198) device only uses programming pins: AINC, PALE, PMODE.n and PROG. The ROMless (80C198) doesn't use any of the programming pins.
NOTE:
N.C. means No Connect (do not connect these pins).

Figure 5. 80-Pin QFP Package

## NOTE:

The above pinout diagram applies to the OTP (87C198) device. The OTP device uses all of the programming pins shown above. The ROM (83C198) device only uses programming pins: AINC, PALE, PMODE.n and PROG. The ROMIess (80C198) doesn't use any of the programming pins.

## PIN DESCRIPTIONS

Symbol	Name and Function
$V_{C C}$	Main supply voltage (5V).
$\mathrm{V}_{\text {SS }}$	The PLCC package has $5 \mathrm{~V}_{\text {SS }}$ pins and the QFP package has $12 \mathrm{~V}_{\mathrm{SS}}$ pins. All must be connected to digital ground.
$\mathrm{V}_{\text {REF }}$	Reference voltage for the $\mathrm{A} / \mathrm{D}$ converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for $A / D$ and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $V_{S S}$.
$\mathrm{V}_{\text {PP }}$	Programming Voltage. Also, timing pin for the return from powerdown circuit.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
RESET	Reset input to and open-drain output from the chip. Input low for at least 4 state times to reset the chip. The subsequent low-to-high transition commences the 10 -state Reset Sequence.
INST	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses and output low for a data fetch.
$\overline{E A}$	Input for memory select (External Access). EA equal to a TTL-high causes memory accesses to locations 2000 H through 3FFFH to be directed to on-chip ROM/EPROM. EA equal to a TTL-low causes accesses to these locations to be directed to off-chip memory.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is $\overline{\text { ADV, }}$, goes inactive high at the end of the bus cycle. ALE/ $\overline{\text { ADV }}$ is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{W R}$	Write output to external memory. $\overline{\text { WR }}$ will go low for every external write.
READY	Ready input to lengthen external memory cycles. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle held not ready is available through configuration of CCR.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.
Port 0	4-bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter. These pins set the Programming Mode on the EPROM device.

PIN DESCRIPTIONS (Continued)

Symbol	$\quad$ Name and Function
Port 2	Multi-functional port. All of its pins are shared with other functions in the 80C198.
Ports 3 and 4	8-bit bidirectional I/O ports with open drain outputs. These pins are shared with   the multiplexed address/data bus which has strong internal pullups. Available as   I/O only on the ROM and EPROM devices.
TxD	The TxD pin is used for serial port transmission in Modes 1, 2 and 3. In mode 0 the   pin is used as the serial clock output.
RxD	Serial Port Receive pin used for serial port reception. In mode 0 the pin functions   as input or output data.
EXTINT	A positive transition on the EXTINT pin will generate an external interrupt.
T2CLK	The T2CLK pin is the Timer2 clock input or the serial port baud rate generator   input.
T2RST	A rising edge on the T2RST pin will reset Timer2.
PWM	The PWM output.
PMODE	Programming Mode Select. Determines the EPROM programming algorithm that is   performed. PMODE is sampled after a chip reset and should be static while the   part is operating.
SID	Slave ID Number. Used to assign each slave a pin of Port 3 or 4 to use for passing   programming verification acknowledgement.
$\overline{\text { PALE }}$	Programming ALE Input. Accepted by the 87C196KB when it is in Slave   Programming Mode. Used to indicate that Ports 3 and 4 contain a command/   address.
$\overline{\text { PROG }}$	Programming. Falling edge indicates valid data on PBUS and the beginning of   programming. Rising edge indicates end of programming.
$\overline{\text { PVAL }}$	Program Valid. This signal indicates the success or failure of programming in the   Auto Programming Mode. A zero indicates successful programming.
PVER	Program Verification. Used in Slave Programming and Auto CLB Programming   Modes. Signal is low after rising edge of PROG if the programming was not   successful.
PORTS 3 and 4	Auto Increment. Active low signal indicates that the auto increment mode is   enabled. Auto Increment will allow reading or writing of sequential EPROM   locations without address transactions across the PBUS for each read or write.
(when programming)	Address/Command/Data Bus. Used to pass commands, addresses, and data to   and from slave mode 87C196KBs. Used by chips in Auto Programming Mode to   pass command, addresses and data to slaves. Also used in the Auto Programming   Mode as a regular system bus to access external memory. Should have pullups to   VCc (15 kS).

## ELECTRICAL CHARACTERISTICS

## ABSOLUTE MAXIMUM RATINGS*

```
Ambient Temperature
 under Bias \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Storage Temperature \(\ldots \ldots-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Voltage on \(V_{P P}\) or \(\overline{E A}\) to
 \(V_{s S}\) or ANGND -0.3 V to +13.0 V
Voltage on Any Other Pin to \(\mathrm{V}_{\mathrm{SS}} . .-0.5 \mathrm{~V}\) to +7.0 V
Power Dissipation(1) 1.5 W
```


## NOTE:

```
1. Power dissipation is based on package heat transfer limitations, not device power consumption.
```

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## OPERATING CONDITIONS

(All characteristics in this data sheet apply to these operating conditions unless otherwise noted.)

Symbol	Description	Min	Max	Units
$T_{A}$	Ambient Temperature Under Bias	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	V
F $_{\text {OSC }}$	Oscillator Frequency $\mathbf{1 6} \mathbf{~ M H z}$	3.5	16	MHz

## NOTE:

ANGND and $\mathrm{V}_{\text {SS }}$ should be nominally at the same potential.
DC CHARACTERISTICS

Symbol	Description	Min	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.5	0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage (1)	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{IH} 1}$	Input High Voltage on XTAL1	$0.7 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{IH} 2}$	Input High Voltage on RESET	2.6	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.3	V	$\mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A}$
			0.45	V	
$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$					
$\mathrm{l}_{\mathrm{OL}}=7 \mathrm{~mA}$					

## NOTE:

1. All pins except RESET and XTAL1.

DC CHARACTERISTICS (Continued)

Symbol	Description	Min	Typ(6)	Max	Units	Test Conditions
ICC	Active Mode Current in Reset		50	60	mA	$\begin{aligned} & \text { XTAL1 }=16 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \end{aligned}$
$I_{\text {REF }}$	A/D Converter Reference Current		2	5	mA	
IIDLE	Idle Mode Current		10	25	mA	
$\mathrm{I}_{\mathrm{CC} 1}$	Active Mode Current		15	25	mA	XTAL1 $=3.5 \mathrm{MHz}$
IPD	Powerdown Mode Current		5	30	$\mu \mathrm{A}$	$V_{C C}=V_{\text {PP }}=V_{\text {REF }}=5.5 \mathrm{~V}$
$\mathrm{R}_{\text {RST }}$	Reset Pullup Resistor	6 K		50K	$\Omega$	
$\mathrm{C}_{S}$	Pin Capacitance (Any Pin to V ${ }_{\text {SS }}$ )			10	pF	$\mathrm{F}_{\text {TEST }}=1.0 \mathrm{MHz}$

## NOTES:

(Notes apply to all specifications)

1. Standard Outputs include ADO-15, $\overline{R D}, \overline{W R}$, ALE, INST, HSO pins, PWM/P2.5, RESET, Ports 3 and 4, TXD/P2.0 and RXD (in serial mode 0 ). The $\mathrm{V}_{\mathrm{OH}}$ specification is not valid for RESET. Ports 3 and 4 are open-drain outputs.
2. Standard Inputs include HSI pins, EA, READY, RXD/P2.1, EXTINT/P2.2, T2CLK/P2.3 and T2RST/P2.4.
3. Maximum current per pin must be externally limited to the following values if $\mathrm{V}_{\mathrm{OL}}$ is held above 0.45 V or $\mathrm{V}_{\mathrm{OH}}$ is held below $\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}$ : lol on Output pins: 10 mA $\mathrm{IOH}^{\mathrm{OH}}$ Standard Output pins: 10 mA
4. Maximum current per bus pin (data and control) during normal operation is $\pm 3.2 \mathrm{~mA}$.
5. During normal (non-transient) conditions the following total current limits apply:

P2.0, RXD, RESET	$\mathrm{loL}: 29 \mathrm{~mA}$	$\mathrm{IOH}^{26 \mathrm{~mA}}$
P2.5, WR	loL: 13 mA	$\mathrm{l}_{\mathrm{OH}} 11 \mathrm{~mA}$
AD0-AD15	$\mathrm{l} \mathrm{LL}: 52 \mathrm{~mA}$	$\mathrm{IOH}^{\mathrm{O}} 52 \mathrm{~mA}$
RD, ALE, INST	l OL: 13 mA	$\mathrm{IOH:}^{13 \mathrm{~m}}$

6. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and $V_{\text {REF }}=V_{C C}=5 \mathrm{~V}$.


Figure 8. ICC and IIDLE vs Frequency

## AC CHARACTERISTICS

Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}, \mathrm{FOSC}_{\mathrm{O}}=12 / 16 \mathrm{MHz}$
The system must meet these specifications to work with the 87C198:

Symbol	Description	Min	Max	Units	Notes
$\mathrm{T}_{\text {AVYV }}$	Address Valid to Ready Setup		2 Tosc - 75	ns	
TYLYH	Non READY Time	No upper limit		ns	
$\mathrm{T}_{\text {LLYX }}$	READY Hold after ALE Low	Tosc - 15	2 Tosc - 40	ns	(Note 1)
$\mathrm{T}_{\text {AVDV }}$	Address Valid to Input Data Valid		3 TOSC - 55	ns	(Note 2)
TrLDV	$\overline{\mathrm{RD}}$ Active to Input Data Valid		Tosc - 23	ns	(Note 2)
TRHDZ	End of $\overline{\mathrm{RD}}$ to Input Data Float		TOSC - 20	ns	
$\mathrm{T}_{\text {RXDX }}$	Data Hold after $\overline{\mathrm{RD}}$ Inactive	0		ns	

## NOTES:

1. If max is exceeded, additional wait states will occur.
2. When using wait states, add 2 TOSC $\times n$, where $n=$ number of wait states.

8XC198

## AC CHARACTERISTICS

Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, Fosc $=12 / 16 \mathrm{MHz}$
The 87C198 will meet these specifications:

Symbol	Description	Min	Max	Units	Notes
FXTAL	Frequency on XTAL1 12 MHz	3.5	12	MHz	(Note 1)
FXTAL	Frequency on XTAL1 16 MHz	3.5	16	MHz	(Note 1)
Tosc	1/FXTAL 12 MHz	83.3	286	ns	
Tosc	$1 / \mathrm{F}_{\text {XTAL }} 16 \mathrm{MHz}$	62.5	286	ns	
TLHLH	ALE Cycle Time	4 Tosc		ns	(Note 3)
TLHLL	ALE High Period	Tosc - 10	Tosc +10	ns	
T ${ }_{\text {AVLL }}$	Address Setup to ALE Falling Edge	Tosc - 20		ns	
TLLAX	Address Hold after ALE Falling Edge	Tosc - 40		ns	
TLLRL	ALE Falling Edge to $\overline{\mathrm{RD}}$ Falling Edge	Tosc - 35		ns	
TRLRH	$\overline{\mathrm{RD}}$ Low Period	TOSC-5	Tosc +25	ns	(Note 3)
TrHLH	$\overline{\mathrm{RD}}$ Rising Edge to ALE Rising Edge	Tosc	Tosc +25	ns	(Note 2)
TrLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		5	ns	
TLLWL	ALE Falling Edge to $\overline{\mathrm{WR}}$ Falling Edge	Tosc - 10		ns	
ToVWH	Data Stable to WR Rising Edge	Tosc - 23		ns	(Note 3)
TWLWH	$\overline{\text { WR Low Period }}$	Tosc - 15	Tosc +5	ns	(Note 3)
TwHQX	Data Hold after WR Rising Edge	Tosc - 15		ns	
TWHLH	WR Rising Edge to ALE Rising Edge	Tosc - 15	Tosc +10	ns	(Note 2)
TWHBX	INST Hold after WR Rising Edge	TOSC - 15		ns	
TLLBX	INST Hold after ALE Rising Edge	TOSC - 10		ns	
TRHBX	INST Hold after $\overline{\text { RD }}$ Rising Edge	Tosc - 10		ns	
TWHAX	AD8-15 Hold after WR Rising Edge	Tosc - 30		ns	
TRHAX	AD8-15 Hold after $\overline{\mathrm{RD}}$ Rising Edge	Tosc - 25		ns	

## NOTES:

1. Testing performed at 3.5 MHz . However, the part is static by design and will typically operate below 1 Hz .
2. Assuming back-to-back bus cycles.
3. When using wait states, add 2 TOSC $\times n$, where $n=$ number of wait states.

## System Bus Timings



READY Timings (One Wait State)


## EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 / T_{\text {XLXL }}$	Oscillator Frequency $\mathbf{1 2} \mathbf{~ M H z}$	3.5	12.0	$\mathbf{M H z}$
$1 / T_{\text {XLXL }}$	Oscillator Frequency $\mathbf{1 6} \mathbf{~ M H z}$	3.5	16.0	$\mathbf{M H z}$
$\mathrm{~T}_{\mathrm{XLXL}}$	Oscillator Period $\mathbf{1 2} \mathbf{~ M H z}$	83.3	286	ns
$\mathrm{~T}_{\mathrm{XLXL}}$	Oscillator Period $\mathbf{1 6} \mathbf{~ M H z}$	62.5	286	ns
$\mathrm{~T}_{\mathrm{XHXX}}$	High Time	21.25		ns
$\mathrm{~T}_{\mathrm{XLXX}}$	Low Time	21.25		ns
$\mathrm{~T}_{\mathrm{XLXH}}$	Rise Time		10	ns
$\mathrm{~T}_{\mathrm{XHXL}}$	Fall Time		10	ns

## EXTERNAL CLOCK DRIVE WAVEFORMS

$\rightarrow$

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts-up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the $\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\mathrm{IH}}$ specifications the capacitance will not exceed 20 pF .

## EXTERNAL CRYSTAL CONNECTIONS



## NOTE:

Keep oscillator components close to chip and use short direct traces to XTAL1, XTAL2 and $\mathrm{V}_{\text {SS }}$. When using crystals, $\mathrm{C} 1=20 \mathrm{pF}, \mathrm{C} 2=20 \mathrm{pF}$. When using ceramic resonators consult manufacturer for recommended capacitor values.

AC TESTING INPUT, OUTPUT WAVEFORMS
AC Testing inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for
a Logic " 0 " Timing measurements are made at 2.0 V for a Logic
"1" and 0.8 V for a Logic " 0 ". .

EXTERNAL CLOCK CONNECTIONS


## FLOAT WAVEFORMS



272034-27
For Timing Purposes a Port Pin is no Longer Floating when a 200 mV change from Load Voltage Occurs and Begins to Float when a 200 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{IOH}_{\mathrm{OH}}= \pm 15 \mathrm{~mA}$.

## EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by " T " for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

Conditions:
H

- High

L - Low
V - Valid
X - No Longer Valid
Z - Floating

Signals:
A - Address
D - DATA IN
L - ALE/ $\overline{A D V}$
Q - DATA OUT
R - $\overline{R D}$
W - $\overline{\mathrm{WR}}$
X - XTAL1
$Y$ - READY

## 10-BIT AID CHARACTERISTICS

At a clock speed of 6 MHz or less, the clock prescaler should be disabled. This is accomplished by setting $\operatorname{IOC2.4}=1$.

At higher frequencies (greater than 6 MHz ) the clock prescaler should be turned on (IOC2.4 $=0$ ) to allow the comparator to settle.

The table below shows two different clock speeds and their corresponding A/D conversion and sample times.

State times are calculated as follows:

$$
\text { state time }=\frac{2}{f_{X \text { TAL }}}
$$

The converter is ratiometric, so the absolute accuracy is directly dependent on the accuracy and stability of $V_{\text {REF }}$. $V_{\text {REF }}$ must be close to $V_{C C}$ since it supplies both the resistor ladder and the digital section of the converter.

See the MCS-96 A/D Converter Quick Reference for definition of $A / D$ terms.

Example Sample and Conversion Times

AID Clock   Prescaler	Clock Speed   $\mathbf{( M H z )}$	Sample Time   (States)	Sample Time   at Clock   Speed $(\mu \mathbf{s})$	Conversion   Time   (States)	Conversion   Time at Clock   Speed $(\mu \mathbf{s})$
$\mathrm{OC} 2.4=0 \rightarrow$ ON	16	15	1.875	156.5	19.6
$\mathrm{OC} 2.4=1 \rightarrow$ OFF	6	8	2.667	89.5	29.8

## A/D CONVERTER SPECIFICATIONS

Parameter	Typical(1)	Minimum	Maximum	Units*	Notes
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 3$	LSBs	
Full Scale Error	$0.25 \pm 0.50$			LSBs	
Zero Offset Error	$-0.25 \pm 0.50$			LSBs	
Non-Linearity Error	$1.5 \pm 2.5$	0	$\pm 3$	LSBs	
Differential Non-Linearity Error		$>-1$	+2	LSBs	
Channel-to-Channel Matching	$\pm 0.1$	0	$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients: Offset Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			LSB $/{ }^{\circ} \mathrm{C}$   LSB $/{ }^{\circ} \mathrm{C}$   LSB $/{ }^{\circ} \mathrm{C}$	
Off Isolation		-60		dB	2, 3
Feedthrough	-60			dB	2
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB	2
Input Series Resistance		750	1.2K	$\Omega$	4
DC Input Leakage		0	3.0	$\mu \mathrm{A}$	
Sample Time: Prescaler On Prescaler Off	$\begin{gathered} 15 \\ 8 \end{gathered}$			States States	
Sampling Capacitor	3			pF	

## NOTES:

"An "LSB", as used here, has a value of approximately 5 mV .

1. Typical values are expected for most devices at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make Guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.

## EPROM SPECIFICATIONS

EPROM PROGRAMMING OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature during Programming	20	30	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{PD}}, \mathrm{V}_{\text {REF }}{ }^{(1)}$	Supply Voltages during Programming	4.5	5.5	V
$\mathrm{~V}_{\mathrm{EA}}$	Programming Mode Supply Voltage	12.50	13.0	$\mathrm{~V}^{(2)}$
$\mathrm{V}_{\mathrm{PP}}$	EPROM Programming Supply Voltage	12.50	13.0	$\mathrm{~V}^{(2)}$
$\mathrm{V}_{\mathrm{SS}}$,   ANGND(3)	Digital and Analog Ground	0	0	V
$\mathrm{~F}_{\text {OSC }}$	Oscillator Frequency 16 MHz	6.0	16.0	MHz

NOTES:

1. $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{PD}}$ and $\mathrm{V}_{\mathrm{REF}}$ should nominally be at the same voltage during programming.
2. $V_{E A}$ and $V_{\text {PP }}$ must never exceed the maximum voltage for any amount of time or the device may be damaged.
3. $\mathrm{V}_{\mathrm{SS}}$ and ANGND should nominally be at the same voltage ( OV ) during programming.

## AC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Description	Min	Max	Units
TSHLL	Reset High to First PALE Low	1100		Tosc
TLLLH	PALE Pulse Width	40		TOSC
TAVLL	Address Setup Time	0		Tosc
TLLAX	Address Hold Time	50		Tosc
TLLVL	PALE Low to PVER Low		60	Tosc
TPLDV	$\overline{\text { PROG Low to Word Dump Valid }}$		50	TosC
TPHDX	Word Dump Data Hold		50	Tosc
TDVPL	Data Setup Time	0		Tosc
TPLDX	Data Hold Time	50		Tosc
TPLPH	$\overline{\text { PROG Pulse Width }}$	40		Tosc
TPHLL	$\overline{\text { PROG }}$ High to Next PALE Low	120		Tosc
TLHPL	$\overline{\text { PALE }}$ High to PROG Low	220		Tosc
TPHPL		120		Tosc
TPHIL	$\overline{\text { PROG High to AINC Low }}$	0		TOSC
$\mathrm{T}_{\text {ILIH }}$	$\overline{\text { AINC Pulse Width }}$	40		TOSC
TILVH	PVER Hold after AINC Low	50		Tosc
TILPL	$\overline{\text { AINC }}$ Low to PROG Low	170		Tosc
TPHVL	PROG High to PVER Low		90	Tosc

## DC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Description	Min	Max	Units
$I_{p P}$	$V_{\text {PP }}$ Supply Current (When Programming)		100	mA

## EPROM PROGRAMMING WAVEFORMS

SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE


SLAVE PROGRAMMING MODE IN WORD DUMP OR DATA VERIFY MODE WITH AUTO INCREMENT


SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM MODE WITH REPEATED PROG PULSE AND AUTO INCREMENT


## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT TIMING-SHIFT REGISTER MODE

Symbol	Parameter	Min	Max	Units
TXLXL	Serial Port Clock Period (BRR $\geq 8002 \mathrm{H}$ )	6 ToSC		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR $\geq 8002 \mathrm{H}$ )	4 TOSC - 50	4 TOSC +50	ns
TXLXL	Serial Port Clock Period (BRR $=8001 \mathrm{H}$ )	4 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR = 8001H)	2 TOSC $^{-50}$	2 Tosc +50	ns
TQVXH	Output Data Setup to Clock Rising Edge	2 TOSC - 50		ns
TXHQX	Output Data Hold after Clock Rising Edge	2 TOSC -50		ns
TXHQV	Next Output Data Valid after Clock Rising Edge		$2 \mathrm{TOSC}^{+50}$	ns
TDVXH	Input Data Setup to Clock Rising Edge	TOSC +50		ns
TXHDX	Input Data Hold after Clock Rising Edge	0		ns
TXHQZ	Last Clock Rising to Output Float		2 Tosc	ns

## WAVEFORM-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE


## FUNCTIONAL DEVIATIONS

Devices marked with an " $E$ ", " $F$ ", or " $G$ " have the following errata.

## 1. HIGH SPEED INPUTS

The High Speed Input (HSI) has three deviations from the specifications.

NOTE:
"Events" are defined as one or more pin transitions. "Entries" are defined as the recording of one or more events.
A. The resolution is nine states instead of eight states. Events occurring on the same pin more frequently than once every nine states may be lost.
B. A mismatch between the nine state HSI resolution and the eight state hardware timer causes one time-tag value to be skipped every nine timer counts. Events may receive a time-tag one count later than expected.
C. If the FIFO and Holding Register are empty, the first event will transfer into the Holding Register, leaving the FIFO empty again. The next event that occurs will be the first event loaded into the empty FIFO. If the first two events into an empty FIFO (not counting the Holding Register) occur coincident with each other, both are recorded as one entry with one time-tag. If the second event occurs within 9 states after the first, the events will be entered separately with time-tags at least one count apart. If the second event enters the FIFO coincident with the "skipped" time-tag situation (see B above) the time-tags will be at least two counts apart.

## 2. CMPL with RO

Using CMPL with register 0 can set incorrect flags. Don't use register 0 with the compare long instruction. Use another long word register and set it equal to zero. See Techbit MC0692.

## REVISION HISTORY

This data sheet (272034-003) is valid for devices marked with an " $E$ ", " $F$ ", or " $G$ " at the end of the top side tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following differences exist between this data sheet and the previous version (-002).

1. This data sheet added the ROMless and ROM devices 80 C 198 and 83 C 198 respectively.
2. The description of the $A / D$ converter prescalar bit was improved.

## 8XC196KC Data Sheet

17
-

## 8XC196KC <br> COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER

87C196KC-16 Kbytes of On-Chip EPROM 80C196KC—ROMless

- 16 MHz Operation
- 232 Byte Register File
- 256 Bytes of Additional RAM

■ Register-to-Register Architecture

- 28 Interrupt Sources/16 Vectors
- Peripheral Transaction Server

■ $1.75 \mu \mathrm{~s} 16 \times 16$ Multiply ( 16 MHz )
■ $3.0 \mu \mathrm{~s} 32 / 16$ Divide ( 16 MHz )

- Powerdown and Idle Modes
- Five 8-Bit I/O Ports
- 16-Bit Watchdog Timer
- Extended Temperature Available
- Dynamically Configurable 8-Bit or 16-Bit Buswidth
- Full Duplex Serial Port

■ High Speed I/O Subsystem

- 16-Bit Timer
- 16-Bit Up/Down Counter with Capture

■ 3 Pulse-Width-Modulated Outputs
[ Four 16-Bit Software Timers

- 8- or 10-Bit A/D Converter with Sample/Hold
- $\overline{\text { HOLD }} / \overline{\mathrm{HLDA}}$ Bus Protocol
- OTP One-Time Programmable Version

The 80C196KC 16 -bit microcontroller is a high performance member of the MCS®-96 microcontroller family. The 80C196KC is an enhanced 80C196KB device with 488 bytes RAM, 16 MHz operation and an optional 16 Kbytes of ROM/EPROM. Intel's CHMOS IV process provides a high performance processor along with low power consumption.

The 87C196KC is an 80C196KC with 16 Kbytes on-chip EPROM. In this document, the 80C196KC will refer to all products unless otherwise stated.

Four high-speed capture inputs are provided to record times when events occur. Six high-speed outputs are available for pulse or waveform generation. The high-speed output can also generate four software timers or start an A/D conversion. Events can be based on the timer or up/down counter.

With the commercial (standard) temperature option, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. With the extended (Express) temperature range option, operational characteristics are guaranteed over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Unless otherwise noted, the specifications are the same for both options.

See the Packaging information for extended temperature designators.


270942-1
Figure 1. 80C196KC Block Diagram

EXTERNAL MEMORY OR I/O	OFFFFH 6000 H
INTERNAL ROM/EPROM OR EXTERNAL MEMORY	
RESERVED	2080H
PTS VECTORS	205EH
UPPER INTERRUPT VECTORS	2040 H
ROM/EPROM SECURITY KEY	2030 H
RESERVED	2020 H
CHIP CONFIGURATION BYTE 0	2019H
RESERVED	2018H
LOWER INTERRUPT VECTORS	2014H
PORT 3 AND PORT 4	2000 H
EXTERNAL MEMORY	1FFEH
ADDITIONAL RAM	200 H
REGISTER FILE AND EXTERNAL PROGRAM MEMORY	100 H

Figure 2. Memory Map

## Process Information

This device is manufactured on PX29.5, a CHMOS IV process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, order number 210997.

Table 1. Prefix Identification

Device	Commercial   QFP	Commercial   PLCC	Express   PLCC
80C196KC	S80C196KC	N80C196KC	TN80C196KC
87C196KC	S87C196KC*	N87C196KC*	TN87C196KC*

*OTP Version
Package Designators: $N=68$-pin PLCC, $S=80-$ pin QFP
Prefix Designators: $\mathrm{T}=$ Extended Temperature
Table 2. Thermal Characteristics

Package   Type	$\boldsymbol{\theta}_{\text {ja }}$	$\boldsymbol{\theta}_{\mathbf{j c}}$
PLCC	$35^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
QFP	$42^{\circ} \mathrm{C} / \mathrm{W}$	-

All thermal data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and applications. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.


Figure 3. 68-Lead PLCC Package


Figure 4. S8XC 196KC 80-Pin QFP Package

PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {cc }}$	Main supply voltage (5V).
$\mathrm{V}_{\text {SS }}$	Digital circuit ground ( O ) . There are three $\mathrm{V}_{\text {SS }}$ pins, all of which must be connected.
$V_{\text {REF }}$	Reference voltage for the $\mathrm{A} / \mathrm{D}$ converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $\mathrm{V}_{\mathrm{SS}}$.
$\mathrm{V}_{\mathrm{PP}}$	Timing pin for the return from powerdown circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $V_{S S}$ and a $1 \mathrm{M} \Omega$ resistor to $V_{C C}$. If this function is not used $V_{P P}$ may be tied to $V_{C C}$. This pin is the programming voltage on the EPROM device.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT	Output of the internal clock generator. The frequency of CLKOUT is $1 / 2$ the oscillator frequency.
RESET	Reset input and open drain output.
BUSWIDTH	Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1 , a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus.
NMI	A positive transition causes a vector through 203EH.
INST	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses and output low for a data fetch.
$\overline{E A}$	Input for memory select (External Access). EA equal high causes memory accesses to locations 2000 H through 5FFFH to be directed to on-chip ROM/EPROM. EA equal to low causes accesses to those locations to be directed to off-chip memory: Also used to enter programming mode.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a signal to demultiplex the address from the address/data bus. When the pin is $\overline{A D V}$, it goes inactive high at the end of the bus cycle. ALE/ $\overline{A D V}$ is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{\text { WR/ } / \overline{W R L}}$	Write and Write Low output to external memory, as selected by the CCR. $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. WR/WRL is activated only during external memory writes.
$\overline{\text { BHE }}$ / $\overline{\text { RRH }}$	Bus High Enable or Write High output to external memory, as selected by the CCR. BHE will go low for external writes to the high byte of the data bus. WRH will go low for external writes where an odd byte is being written. $\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$ is activated only during external memory writes.
READY	Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, or for bus sharing. When the external memory is not being used, READY has no effect.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI.3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSI.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.
Port 0	8 -bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter.
Port 1	8 -bit quasi-bidirectional I/O port.
Port 2	8 -bit multi-functional port. All of its pins are shared with other functions in the 80C196KC. Pins 2.6 and 2.7 are quasi-bidirectional.

PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
Ports 3 and 4	8-bit bidirectional I/O ports with open drain outputs. These pins are shared with the   multiplexed address/data bus which has strong internal pullups.
$\overline{\text { HOLD }}$	Bus Hold input requesting control of the bus.
$\overline{\text { HLDA }}$	Bus Hold acknowledge output indicating release of the bus.
$\overline{\text { BREQ }}$	Bus Request output activated when the bus controller has a pending external memory   cycle.
PMODE	Determines the EPROM programming mode.
$\overline{\text { PACT }}$	A low signal in Auto Programming mode indicates that programming is in process. A high   signal indicates programming is complete.
PVAL	A low signal in Auto Programming Mode indicates that the device programmed correctly. A   high signal in Slave Programming Mode indicates the device programmed correctly.
$\overline{\text { PALE }}$	A falling edge in Slave Programming Mode and Auto Configuration Byte Programming Mode   indicates that ports 3 and 4 contain valid programming address/command information   (input to slave).
$\overline{\text { PROG }}$	A falling edge in Slave Programming Mode indicates that ports 3 and 4 contain valid   programming data (input to slave).
PVER	A high signal in Slave Programmig Mode and Auto Configuration Byte Programming Mode   indicates the byte programmed correctly.
$\overline{\text { AINC }}$	Auto Increment. Active low input signal indicates that the auto increment mode is enabled.   Auto Increment will allow reading or writing of sequential EPROM locations without address   transactions across the PBUS for each read or write.

8XC196KC

## ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS*



## NOTE:

1. This includes VPP and EA on ROM or CPU only devices. 2. Power dissipation is based on package heat transfer limitations, not device power consumption.

NOTICE: This data sheet contains information on products in the sampling and initial production phases of development. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$T_{A}$	Ambient Temperature Under Bias Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$T_{\text {A }}$	Ambient Temperature Under Bias Extended Temp.	-40	+85	${ }^{\circ} \mathrm{C}$
$V_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$V_{\text {REF }}$	Analog Supply Voltage	4.00	5.50	V
FOSC	Oscillator Frequency	8	16	MHz

## NOTE:

ANGND and $V_{\text {SS }}$ should be nominally at the same potential.

DC CHARACTERISTICS (Over Specified Operating Conditions)

Symbol	Description	Min	Typ	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		0.8	V	
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage (Note 1)	$0.2 \mathrm{~V}_{C C}+1.0$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage on XTAL 1	0.7 V CC		$V_{C C}+0.5$	V	
$\mathrm{V}_{1 \mathrm{H} 2}$	Input High Voltage on RESET	2.2		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{HYS}}$	Hysteresis on RESET	150			mV	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			$\begin{gathered} 0.3 \\ 0.45 \\ 1.5 \end{gathered}$	$\begin{aligned} & \text { v } \\ & \text { v } \\ & \text { v } \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=200 \mu \mathrm{~A} \\ & \mathrm{IOL}=2.8 \mathrm{~mA} \\ & \mathrm{IOL}=7 \mathrm{~mA} \\ & \hline \end{aligned}$
V ${ }_{\text {OL1 }}$	Output Low Voltage in RESET on P2.5 (Note 2)			0.8	V	$\mathrm{l}_{\mathrm{OL}}=+0.4 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage (Standard Outputs)	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.7 \\ & V_{C C}-1.5 \\ & \hline \end{aligned}$			$\begin{aligned} & V \\ & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-7 \mathrm{~mA} \end{aligned}$

DC CHARACTERISTICS (Over Specified Operating Conditions) (Continued)

Symbol	Description	Min	Typ	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Quasi-bidirectional Outputs)	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}}-0.3 \\ \mathrm{~V}_{\mathrm{CC}}-0.7 \\ \mathrm{~V}_{\mathrm{CC}}-1.5 \\ \hline \end{array}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OH}}=-30 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OH}}=-60 \mu \mathrm{~A} \end{aligned}$
OH 1	Logical 1 Output Current in Reset. Do not exceed this or device may enter test modes.	-0.8			mA	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$
IIL1	Logical 0 Input Current in Reset. Maximum current that must be sunk by external device to ensure test mode entry.			-6.0	mA	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
${ }_{1 / H}$	Logical 1 Input Current. Maximum current that external device must source to initiate NMI.			+100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
${ }_{\text {LII }}$	Input Leakage Current (Std. Inputs)			$\pm 10$	$\mu \mathrm{A}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}-0.3 \mathrm{~V}$
LII	Input Leakage Current (Port 0)			$\pm 3$	$\mu \mathrm{A}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {REF }}$
ITL	1 to 0 Transition Current (QBD Pins)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$
ILL	Logical 0 Input Current (QBD Pins)			-70	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
IL1	Ports 3 and 4 in Reset			-70	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
ICC	Active Mode Current in Reset		50	70	mA	$\begin{aligned} & \mathrm{XTAL1}=16 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \end{aligned}$
IREF	A/D Converter Reference Current		2	5	mA	
IIDLE	Idle Mode Current		15	30	mA	
IPD	Powerdown Mode Current		15	TBD	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V}$
$\mathrm{R}_{\text {RST }}$	Reset Pullup Resistor	6K		65K	$\Omega$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4.0 \mathrm{~V}$
$\mathrm{C}_{\text {S }}$	Pin Capacitance (Any Pin to $\mathrm{V}_{\text {SS }}$ )			10	pF	

## NOTES:

1. All pins except RESET and XTAL1.
2. Violating these specifications in Reset may cause the part to enter test modes.
3. Commercial specifications apply to express parts except where noted.
4. QBD (Quasi-bidirectional) pins include Port 1, P2.6 and P2.7.
5. Standard Outputs include ADO-15, $\overline{\text { DD }}, \overline{W R}$, ALE, $\overline{B H E}$, INST, HSO pins, PWM/P2.5, CLKOUT, RESET, Ports 3 and 4, TXD/P2.0 and RXD (in serial mode 0). The $V_{\mathrm{OH}}$ specification is not valid for RESET. Ports 3 and 4 are open-drain outputs.
6. Standard Inputs include HSI pins, READY, BUSWIDTH, NMI, RXD/P2.1, EXTINT/P2.2, T2CLK/P2.3 and T2RST/P2.4.
7. Maximum current per pin must be externally limited to the following values if $\mathrm{V}_{\mathrm{OL}}$ is held above 0.45 V or $\mathrm{V}_{\mathrm{OH}}$ is held below $\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}$ :
lol on Output pins: 10 mA
$\mathrm{l}^{\mathrm{OH}}$ on quasi-bidirectional pins: self limiting
$\mathrm{l}_{\mathrm{OH}}$ on Standard Output pins: 10 mA
8. Maximum current per bus pin (data and control) during normal operation is $\pm 3.2 \mathrm{~mA}$.

9 . During normal (non-transient) conditions the following total current limits apply:
Port 1, P2. 6
HSO, P2.0, RXD, RESET
P2.5, P2.7, WR, $\overline{\mathrm{BHE}}$
AD0-AD15
RD, ALE, INST-CLKOUT
lol: 29 mA
lot: 29 mA
$\mathrm{IOH}_{\mathrm{OH}}$ is self limiting
$\mathrm{IOH:}^{26 \mathrm{~mA}}$
$\mathrm{IOH:}^{11 \mathrm{~mA}}$
$\mathrm{lOH:}^{52 \mathrm{~mA}}$
$\mathrm{IOH}_{\mathrm{O}}: 13 \mathrm{~mA}$


Figure 5. ICC and IIDLE vs Frequency

## AC CHARACTERISTICS

For use over specified operating conditions.
Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, Fosc $=16 \mathrm{MHz}$
The system must meet these specifications to work with the 80C196KC:

Symbol	Description	Min	Max	Units	Notes
TAVYV	Address Valid to READY Setup		2 Tosc $^{\text {- }} 68$	ns	
TLLYV	ALE Low to READY Setup		Tosc - 70	ns	
TYLYH	Non READY Time	No upper limit		ns	
TCLYX	READY Hold after CLKOUT Low	0	Tosc - 30	ns	(Note 1)
TLLYX	READY Hold after ALE Low	Tosc - 15	$2 \mathrm{~T}_{\text {OSC }}-40$	ns	(Note 1)
TAVGV	Address Valid to Buswidth Setup		2 Tosc $^{\text {- }} 68$	ns	
TllgV	ALE Low to Buswidth Setup		Tosc - 60	ns	
TCLGX	Buswidth Hold after CLKOUT Low	0		ns	
T AVDV	Address Valid to Input Data Valid		3 TOSC - 55	ns	(Note 2)
TRLDV	$\overline{\mathrm{RD}}$ Active to Input Data Valid		Tosc - 22	ns	(Note 2)
TCLDV	CLKOUT Low to Input Data Valid		Tosc - 50	ns	
TRHDZ	End of $\overline{R D}$ to Input Data Float		Tosc	ns	
$\mathrm{T}_{\text {RXDX }}$	Data Hold after $\overline{\mathrm{RD}}$ Inactive	0		ns	

## NOTES:

1. If max is exceeded, additional wait states will occur.
2. If wait states are used, add 2 TOSC * $N$, where $N=$ number of wait states.

AC CHARACTERISTICS (Continued)
For user over specified operating conditions.
Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, Fosc $=16 \mathrm{MHz}$
The 80C196KC will meet these specifications:

Symbol	Description	Min	Max	Units	Notes
FXTAL	Frequency on $\mathrm{XTAL}_{1}$	8	16	MHz	(Note 1)
Tosc	1/FXTAL	62.5	125	ns	
$\mathrm{T}_{\mathrm{XHCH}}$	XTAL1 High to CLKOUT High or Low	20	110	ns	
TCLCL	CLKOUT Cycle Time	2 Tosc		ns	
TCHCL	CLKOUT High Period	Tosc - 10	Tosc +15	ns	
TCLLH	CLKOUT Falling Edge to ALE Rising	-5	15	ns	
TLLCH	ALE Falling Edge to CLKOUT Rising	-20	+15	ns	
TLHLH	ALE Cycle Time	4 Tosc		ns	(Note 4)
TLHLL	ALE High Period	Tosc - 10	Tosc +10	ns	
$\mathrm{T}_{\text {AVLL }}$	Address Setup to ALE Falling Edge	Tosc - 15			
TLLAX	Address Hold after ALE Falling Edge	Tosc - 40		ns	
TLLRL	ALE Falling Edge to $\overline{\mathrm{RD}}$ Falling Edge	Tosc - 30		ns	
TrLCL	$\overline{\mathrm{RD}}$ Low to CLKOUT Falling Edge	4	30	ns	
TRLRH	$\overline{\mathrm{RD}}$ Low Period	Tosc - 5		ns	(Note 4)
TRHLH	$\overline{\text { RD Rising Edge to ALE Rising Edge }}$	Tosc	Tosc +25	ns	(Note 2)
TrLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		5	ns	
TLLWL	ALE Falling Edge to $\overline{\mathrm{WR}}$ Falling Edge	Tosc - 10		ns	
TCLWL	CLKCUT Low to WR Falling Edge	0	25	ns	
TQVWH	Data Stable to WR Rising Edge	Tosc-23			(Note 4)
TCHWH	CLKOUT High to WR Rising Edge	-10	15	ns	
TWLWH	$\overline{\text { WR Low Period }}$	Tosc - 20		ns	(Note 4)
TWHQX	Data Hold after WR Rising Edge	Tosc - 25		ns	
TWHLH	$\overline{\text { WR }}$ Rising Edge to ALE Rising Edge	Tosc - 10	Tosc +15	ns	(Note 2)
TWHBX	$\overline{\text { BHE, INST after } \overline{\text { WR }} \text { Rising Edge }}$	TOSC - 10		ns	
Twhax	AD8-15 HOLD after WR Rising	Tosc - 30		ns	(Note 3)
TRHBX	$\overline{\text { BHE, INST after } \overline{\mathrm{RD}} \text { Rising Edge }}$	Tosc - 10		ns	
Trhax	AD8-15 HOLD after $\overline{\mathrm{RD}}$ Rising	Tosc - 30		ns	(Note 3)

## NOTES:

1. Testing performed at 8 MHz . However, the device is static by design and will typically operate below 1 Hz .
2. Assuming back-to-back bus cycles.
3. 8-Bit bus only.
4. If wait states are used, add 2 TOSC * $N$, where $N=$ number of wait states.

System Bus Timings


READY Timings (One Wait State)

$\overline{\text { HOLD/HLDA Timings }}$

Symbol	Description	Min	Max	Units	Notes
THVCH	HOLD Setup	55		ns	(Note 1)
TCLHAL	CLKOUT Low to HLDA Low	-15	15	ns	
TCLBRL	CLKOUT Low to BREQ Low	-15	15	ns	
THALAZ	HLDA Low to Address Float		10	ns	
ThaLbz	HLDA Low to $\overline{\mathrm{BHE}}$, INST, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Weakly Driven		15	ns	
TCLHAH	CLKOUT Low to HLDA High	-15	15	ns	
TCLBRH	CLKOUT Low to BREQ High	-15	15	ns	
THAHAX	HLDA High to Address No Longer Float	-15		ns	
THAHBV	HLDA High to BHE, INST, RD, WR Valid	-10		ns	
TCLLH	CLKOUT Low to ALE High	-5	15	ns	

## NOTE:

1. To guarantee recognition at next clock.

DC SPECIFICATIONS IN HOLD

Description	Min	Max	Units
Weak Pullups on $\overline{\mathrm{ADV}}, \overline{\mathrm{RD}}$,   $\overline{\mathrm{WR}}, \overline{\mathrm{WRL}}, \overline{\mathrm{BHE}}$	50 K	250 K	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
Weak Pulldowns on   ALE, NST	10 K	50 K	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4$



Maximum Hold Latency

Bus Cycle Type	
Internal Execution	1.5 States
16-Bit External Execution	2.5 States
8-Bit External Execution	4.5 States

## EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 / T_{\text {XLXL }}$	Oscillator Frequency	8	16.0	MHz
$T_{\text {XLXL }}$	Oscillator Period	62.5	125	ns
$T_{X H X X}$	High Time	20		ns
$T_{X L X X}$	Low Time	20		ns
$T_{X L X H}$	Rise Time		10	ns
$T_{X H X L}$	Fall Time		10	ns

## EXTERNAL CLOCK DRIVE WAVEFORMS



270942-21

## EXTERNAL CRYSTAL CONNECTIONS



## NOTE:

Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and VSS. When using crystals, $\mathrm{C} 1=\mathrm{C} 2 \approx 20 \mathrm{pF}$. When using ceramic resonators, consult manufacturer for recommended capacitor values.

EXTERNAL CLOCK CONNECTIONS


NOTE:
*Required if TTL driver used. Not needed if CMOS driver is used.

AC TESTING INPUT, OUTPUT WAVEFORMS


270942-22
AC Testing inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 " Timing measurements are made at 2.0 V for a Logic " 1 " and 0.8 V for a Logic " 0 ".

## FLOAT WAVEFORMS



270942-23
For Timing Purposes a Port Pin is no Longer Floating when a 150 mV change from Load Voltage Occurs and Begins to Float when a 150 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{lOL} / \mathrm{l}_{\mathrm{OH}}= \pm 15 \mathrm{~mA}$.

## EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by " $T$ " for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

Conditions:	Signals:	L- $\overline{A L E / \overline{A D V}}$
H— High	A- Address	BR- $\overline{\text { BREQ }}$
L- Low	B- $\overline{\text { BHE }}$	R- $\overline{\text { RD }}$
V— Valid	C- CLKOUT	W- $\overline{\text { WR } / \overline{W R H} / \overline{\text { WRL }}}$
X— No Longer Valid	D- DATA	X- XTAL1
Z- Floating	G- Buswidth	Y- READY
	H- $\overline{\text { HOLD }}$	Q- Data Out

## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT TIMING-SHIFT REGISTER MODE

Symbol	Parameter	Min	Max	Units
TXLXL	Serial Port Clock Period (BRR $\geq 8002 \mathrm{H}$ )	6 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR $\geq 8002 \mathrm{H}$ )	4 Tosc - 50	4 TOSC +50	ns
TXLXL	Serial Port Clock Period (BRR $=8001 \mathrm{H}$ )	4 TOSC	.	ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR = 8001H)	2 TOSC - 50	2 TOSC +50	ns
T QVXH	Output Data Setup to Clock Rising Edge	2 TOSC $^{-50}$		ns
TXHQX	Output Data Hold after Clock Rising Edge	2 TOSC -50		ns
TXHQV	Next Output Data Valid after Clock Rising Edge		$2 \mathrm{TOSC}^{\text {a }} 50$	ns
TDVXH	Input Data Setup to Clock Rising Edge	TOSC +50		ns
TXHDX	Input Data Hold after Clock Rising Edge	0		ns
TXHQZ	Last Clock Rising to Output Float		1 Tosc	ns

## WAVEFORM—SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE


## A to D CHARACTERISTICS

The A/D converter is ratiometric, so absolute accuracy is dependent on the accuracy and stability of $V_{\text {REF }}$.

## 10-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Extended Temp.	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.00	5.50	V
$\mathrm{~T}_{\text {SAM }}$	Sample Time	3.0		$\mu \mathrm{~s}(1)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	10	20	$\mu \mathrm{~S}(1)$
FOSC	Oscillator Frequency	8.0	16.0	MHz

## NOTE:

ANGND and $V_{S S}$ should nominally be at the same potential, 0.00V.

1. The value of AD_TIME is selected to meet these specifications.

## 10-BIT MODE A/D CHARACTERISTICS (Over Specified Operating Conditions)

Parameter	Typical(1)	Minimum	Maximum	Units*	Notes
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \\ \hline \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 3$	LSBs	
Full Scale Error	$0.25 \pm 0.5$			LSBs	
Zero Offset Error	$0.25 \pm 0.5$			LSBs	
Non-Linearity	$1.0 \pm 2.0$	0	$\pm 3$	LSBs	
Differential Non-Linearity Error		>-1	+2	LSBs	
Channel-to-Channel Matching	$\pm 0.1$	0	$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients: Offset Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			LSB $/{ }^{\circ} \mathrm{C}$ LSB $/{ }^{\circ} \mathrm{C}$ LSB $/{ }^{\circ} \mathrm{C}$	
Off Isolation		-60		dB	1,2
Feedthrough	-60			dB	1
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB	1
Input Series Resistance		750	1.2K	$\Omega$	4
Voltage on Analog Input Pin		ANGND - 0.5	$\mathrm{V}_{\text {REF }}+0.5$	V	5,6
DC Input Leakage		0	$\pm 3.0$	$\mu \mathrm{A}$	
Sampling Capacitor	3			pF	

## NOTES:

*An "LSB" as used here has a value of approxiimately 5 mV . (See Embedded Microcontrollers and Processors Handbook for A/D glossary of terms).

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. These values may be exceeded if the pin current is limited to $\pm 2 \mathrm{~mA}$.
6. Applying voltages beyond these specifications will degrade the accuracy of all channels being converted.
7. All conversions performed with processor in IDLE mode.

8-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Extended Temp.	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.00	5.50	V
$\mathrm{~T}_{\text {SAM }}$	Sample Time	2.0		$\mu \mathrm{~s}(1)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	7	20	$\mu \mathrm{~s}(1)$
FOSC	Oscillator Frequency	8.0	16.0	MHz

## NOTE:

ANGND and $\mathrm{V}_{S S}$ should nominally be at the same potential, 0.00 V .

1. The value of AD_TIME is selected to meet these specifications.

## 8-BIT MODE A/D CHARACTERISTICS (Over Specified Operating Conditions)

Parameter	Typical	Minimum	Maximum	Units*	Notes
Resolution		$\begin{gathered} 256 \\ 8 \end{gathered}$	$\begin{gathered} 256 \\ 8 \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 1$	LSBs	
Full Scale Error	$\pm 0.5$			LSBs	
Zero Offset Error	$\pm 0.5$			LSBs	
Non-Linearity		0	$\pm 1$	LSBs	
Differential Non-Linearity Error		$>-1$	+1	LSBs	
Channel-to-Channel Matching			$\pm 1$	LSBs	
Repeatability	$\pm 0.25$		-	LSBs	
Temperature Coefficients: Offset Full Scale Differential Non-Linearity				$\begin{aligned} & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \end{aligned}$	
Off Isolation		-60		dB	2, 3
Feedthrough	-60			dB	2
$\mathrm{V}_{\mathrm{CC}}$ Power Supply Rejection	-60			dB	2
Input Series Resistance		750	1.2K	$\Omega \mathrm{s}$	4
Voltage on Analog Input Pin		$\mathrm{V}_{S S}-0.5$	$\mathrm{V}_{\text {REF }}+0.5$	V	5,6
DC Input Leakage		0	$\pm 3.0$	$\mu \mathrm{A}$	
Sampling Capacitor	3			pF	

## NOTES:

*An "LSB" as used here has a value of approximately 20 mV . (See Embedded Microcontrollers and Processors Handbook for $A / D$ glossary of terms).

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. $D C$ to 100 KHz .
3. Multiplexer Break-Before-Make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. These values may be exceeded if pin current is limited to $\pm 2 \mathrm{~mA}$.
6. Applying voltages beyond these specifications will degrade the accuracy of all channels being converted.
7. All conversions performed with processor in IDLE mode.

8XC196KC

EPROM SPECIFICATIONS

## OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature During Programming	20	30	C
$\mathrm{V}_{\mathrm{CC}}$	Supply Voltage During Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\text {REF }}$	Reference Supply Voltage During Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\mathrm{PP}}$	Programming Voltage	12.25	12.75	$\mathrm{~V}(2)$
$\mathrm{V}_{\mathrm{EA}}$	EA Pin Voltage	12.25	12.75	$\mathrm{~V}(2)$
FOSC	Oscillator Frequency During Auto and Slave   Mode Programming	6.0	8.0	MHz
FOSC	Oscillator Frequency During   Run-Time Programming	6.0	12.0	MHz

## NOTES:

1. $V_{C C}$ and $V_{\text {REF }}$ should nominally be at the same voltage during programming.
2. $V_{P P}$ and $V_{E A}$ must never exceed the maximum specification, or the device may be damaged.
3. $V_{S S}$ and ANGND should nominally be at the same potential (OV).
4. Load capacitance during Auto and Slave Mode programming $=150 \mathrm{pF}$.

## AC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Description	Min	Max	Units
TSHLL	Reset High to First PALE Low	1100		Tosc
TLLLH	PALE Pulse Width	50		Tosc
$\mathrm{T}_{\text {AVLL }}$	Address Setup Time	0		Tosc
TLLAX	Address Hold Time	100		Tosc
TPLDV	PROG Low to Word Dump Valid		50	Tosc
TPHDX	Word Dump Data Hold		50	Tosc
T DVPL	Data Setup Time	0		Tosc
TPLDX	Data Hold Time	400		Tosc
$\mathrm{TPLPH}^{(1)}$	PROG Pulse Width	50		Tosc
TPHLL	$\overline{\text { PROG }}$ High to Next $\overline{\text { PALE }}$ Low	220		Tosc
TLHPL	$\overline{\text { PALE High to PROG Low }}$	220		Tosc
$\mathrm{T}_{\text {PHPL }}$	PROG High to Next PROG Low	220		Tosc
TPHIL	$\overline{\text { PROG }}$ High to AINC Low	0		Tosc
$\mathrm{T}_{\text {ILIIH }}$	$\overline{\text { AINC Pulse Width }}$	240		Tosc
TILVH	PVER Hold after AINC Low	50		Tosc
TILPL	$\overline{\text { AINC Low to PROG Low }}$	170		Tosc
TPHVL	$\overline{\text { PROG }}$ High to PVER Valid		220	Tosc

## NOTE:

1. This specification is for the Word Dump Mode. For programming pulses, use the Modified Quick Pulse Algorithm.

DC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Description	Min	Max	Units
$I_{P P}$	$V_{P P}$ Supply Current (When Programming)		100	mA

NOTE:
$\because$ PP must be within 1 V of $\mathrm{V}_{\mathrm{CC}}$ while $\mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V}$. $\mathrm{V}_{\mathrm{PP}}$ must not have a low impedance path to ground of $\mathrm{V}_{\mathrm{SS}}$ while $\mathrm{V}_{\mathrm{CC}}>4.5 \mathrm{~V}$.

## EPROM PROGRAMMING WAVEFORMS

SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE


SLAVE PROGRAMMING MODE IN WORD DUMP WITH AUTO INCREMENT


SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM WITH REPEATED PROG PULSE AND AUTO INCREMENT


## 80C196KB TO 80C196KC DESIGN CONSIDERATIONS

1. Memory Map. The 80C196KC has 512 bytes of RAM/SFRs and 16K of ROM/EPROM. The extra 256 bytes of RAM will reside in locations $100 \mathrm{H}-$ 1FFH and the extra 8 K of ROM/EPROM will reside in locations $4000 \mathrm{H}-5$ FFFH. These locations are external memory on the 80C196KB.
2. The CDE pin on the KB has become a $V_{S S}$ pin on the KC to support 16 MHz operation.
3. EPROM programming. The 80C196KC has a different programming algorithm to support 16 K of on-board memory. When performing Run-Time Programming, use the section of code on page 99 of the 80C196KC User's Guide, order number 270704-003.
4. ONCETM Mode Entry. The ONCE mode is entered on the 80C196KC by driving the TXD pin low on the rising edge of RESET. The TXD pin is held high by a pullup that is specified at 1.4 mA and remain at 2.0 V . This Pullup must not be overridden or the 80C196KC will enter the ONCE mode.
5. During the bus HOLD state, the 80C196KC weakly holds RD, WR, ALE, BHE and INST in their inactive states. The 80C196KB only holds ALE in its inactive state.
6. A RESET pulse from the 80 C196KC is 16 states rather than 4 states as on the 80C196KB (i.e., a watchdog timer overflow). This provides a longer RESET pulse for other devices in the system.

## 80C196KC ERRATA

1. NMI during PTS skips an address: When an NMI interrupts a PTS routine, the first byte of the instruction following completion of the PTS cycle is lost. This results in incorrect code execution. Workaround: NMI must be disabled using external hardware during any PTS activity.
2. $Q B D$ port glitch. There is a strong negative glitch on all QBD Port pins (P1.x and P2.6, P2.7) synchronous with the first falling edge of CLKOUT. This glitch lasts about 10 ns , and only occurs one time following initial application of $\mathrm{V}_{\mathrm{Cc}}$. The time for the pin to return to $\mathrm{V}_{\mathrm{CC}}$ may be several microseconds, depending on pin loading capacitance. Workaround: External systems and devices should be disabled from responding to this glitch until after the first CLKOUT falling edge has occurred.
3. Divide error during HOLD or READY. The result of a signed divide instruction may be off by one if executed while the device is held off the bus by HOLD or READY and the queue is empty. Specific timings of HOLD or READY going active or inactive must be met. Workaround for HOLD: disable HOLD during signed divide operations (using hardware or software). Workaround for READY: problem will only occur if unlimited wait state mode is selected, and 14 or more wait states are inserted.
4. The HSI unit has two errata: one dealing with resolution and the other with first entries into the FIFO.

The HSI resolution is 9 states instead of 8 states. Events on the same line may be lost if they occur faster than once every 9 state times.
There is a mismatch between the 9 state time HSI resolution and the 8 state time timer. This causes one time value to be unused every 9 timer counts.
Events may receive a time-tag on one count later than expected because of this "skipped" time value.

If the first two events into an empty FIFO (not including the Holding Register) occur in the same
internal phase, both are recorded with one timetag. Otherwise, if the second event occurs within 9 states after the first, its time-tag is one count later than the first time tag. If this is the "skipped" time value, the second event's time-tag is 2 counts later than the first's.
If the FIFO and Holding Register are empty, the first event will transfer into the Holding Register after 8 state times, leaving the FIFO empty again. If the second event occurs after this time, it will act as a new first event into an empty FIFO.

## DATA SHEET REVISION HISTORY

This data sheet is valid for devices with a " $D$ " or " $E$ " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following are the important differences between the -001 and -002 versions of data sheet 270942.

1. Express and Commercial devices are combined into one data sheet. The Express only data sheet 270794-001 is obsolete.
2. Removed KB/KC feature set differences, pin definition table, and SFR locations and bitmaps.
3. Added programming pin function to package drawings and pin descriptions.
4. Changed absolute maximum temperature under bias from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
5. Replaced $\mathrm{V}_{\mathrm{OH} 2}$ specification with $\mathrm{I}_{\mathrm{OH} 1}$ and $\mathrm{I}_{\mathrm{IL} 1}$ specifications.
6. Added $\mathrm{I}_{\mathrm{IH} 1}$ specification for NMI pulldown resistors.
7. Added maximum hold latency table.
8. Added external oscillator and external clock circuit drawings.
9. Changed Clock Drive $T_{X H X X}$ and $T_{X L X X}$ Min spec to 20 ns .
10. Fixed Serial Port TXLXH specification.
11. Added 8 - and 10 -bit mode A/D operating conditions tables.
12. Specified operating range for sample and convert times.
13. Added specification for voltage on analog input pin.
14. Put operating conditions for EPROM programming into tabular format.

The following differences exist between data sheet 270942-001 and 270741-003.

1. ONCE MODE $\mathrm{V}_{\text {IL }}$ errata removed.
2. $\mathrm{V}_{\text {REF }}$ Min changed from 4.5 V to 4.0 V .

The following differences exist between the -002 and -003 versions of data sheet 270741.

1. $80-\mathrm{Pin}$ QFP package added, 68 -pin Cerquad package deleted.
2. The following DC Characteristics were added:
$\mathrm{V}_{\mathrm{HYS}}$ RESET Hysteresis spec added
$\mathrm{I}_{\mathrm{IL}}, \mathrm{AD}$ BUS in RESET current Max added

## DATA SHEET REVISION HISTORY (Continued)

3. The following AC Characteristics were changed:

TAVYv Max from 2 Tosc- 75 to $2 T_{\text {osc- }} 68$
TAVGV Max from $2 \mathrm{~T}_{\text {OSc }}-75$ to $2 \mathrm{~T}_{\text {Osc- }}-68$
Twlwh Min from Tosc-30 to Tosc-20
$\mathrm{T}_{\mathrm{XHCH}}$ Min changed from 30 ns to 20 ns
THALBZ Max changed from 10 ns to 15 ns
4. Under 10-bit A/D Characteristics:

Sample Time/Convert Time Testing Conditions added.
Typical values added for Full Scale Error, Zero Offset Error; Non-Linearity and Channel-to-Channel Matching.
Max Absolute Error changed from $\pm 8$ to $\pm 3$ LSBs
Max Non-Linearity changed from $\pm 8$ to $\pm 3$ LSBs
5. Under 8-bit Mode A/D Characteristics:

Max Absolute Error changed from $\pm 2$ to $\pm 1$ LSBs
Max Non-Linearity changed from $\pm 2$ to $\pm 1$ LSBs
Typical Full Scale Error changed from $\pm 1$ to $\pm 0.5$ LSBs
Typical Zero Offset Error changed from $\pm 2$ to $\pm 0.5$ LSBs
6. The minimum frequency at which the device is tested was changed to 8.0 MHz from 3.5 MHz . Thus, data sheet specifications are guaranteed from 8 MHz to 16 MHz . However, the device is static and will function below 1 Hz .
7. The T2CONTROL (T2CNTC) SFR was renamed IOC3.
8. ONCE MODE $V_{\text {IL }}$ errata added. Other errata removed.
9. The A-Step device corresponding to data sheet 270741-002 had bits IOC1.4 and IOC1.6 reversed. The problem was corrected in the B-1 Step device corresponding to data sheet 270741-003.

The following are the important differences between the -001 and -002 versions of data sheet 270741. Please review this revision history carefully.

1. The 83C196KC (ROM) was added to the product line.
2. The OTP version of the EPROM was added to the product line.
3. $\overline{H O L D} / \overline{H L D A}$ Specifications were added.
4. The lol test condition on $\mathrm{V}_{\mathrm{OL} 1}$ has changed to -0.5 mA from -0.4 mA .
5. The $\mathrm{I}_{\mathrm{OH}}$ test condition $\mathrm{V}_{\mathrm{OH} 2}$ has changed to 0.8 mA from 1.4 mA .
6. BMOVi errata was added.
7. Errata was added for the HSI resolution and first event anomalies.
8. Errata was added for the serial port Framing Error anomaly.

## 8XC196KD Data Sheets

18

## 8XC196KD/8XC196KD20 COMMERCIAL CHMOS MICROCONTROLLER

## 87C196KD-32 Kbytes of On-Chip OTPROM

- 16 MHz and 20 MHz Available
- 1000 Byte Register RAM

■ Register-to-Register Architecture

- 28 Interrupt Sources/16 Vectors
- Peripheral Transaction Server

■ $1.4 \mu \mathrm{~s} 16 \times 16$ Multiply ( 20 MHz )
■ $2.4 \mu \mathrm{~s} 32 / 16$ Divide ( 20 MHz )

- Powerdown and Idle Modes
- Five 8-Bit I/O Ports
- 16-Bit Watchdog Timer
- Dynamically Configurable 8-Bit or 16-Bit Buswidth

■ Full Duplex Serial Port

- High Speed I/O Subsystem
- 16-Bit Timer
- 16-Bit Up/Down Counter with Capture
- 3 Pulse-Width-Modulated Outputs

■ Four 16-Bit Software Timers

- 8- or 10-Bit A/D Converter with Sample/Hold
- $\overline{\text { HOLD }} / \overline{H L D A}$ Bus Protocol
- OTP One-Time Programmable Version

The 8XC196KD 16-bit microcontroller is a high performance member of the MCS ${ }^{\oplus}-96$ microcontroller family. The 8XC196KD is an enhanced 80C196KC device with 1000 bytes RAM, 16 MHz operation and an optional 32 Kbytes of ROM/EPROM. Intel's CHMOS III-E process provides a high performance processor along with low power consumption.

The 8XC196KD has a maximum guaranteed frequency of 16 MHz . The 8XC196KD20 has a maximum guaranteed frequency of 20 MHz . Unless otherwise noted, all references to the 8XC196KD also refer to the 8XC196KD20.

Four high-speed capture inputs are provided to record times when events occur. Six high-speed outputs are available for pulse or waveform generation. The high-speed output can also generate four software timers or start an A/D conversion. Events can be based on the timer or up/down counter.


272145-1
Figure 1. 8XC196KD Block Diagram

## 87C196KD ENHANCED FEATURE SET OVER THE 87C196KC

1. The 87C196KD has twice the RAM and twice the OTPROM space of the 87C196KC.
2. The vertical windowing scheme has been extended to allow all 1000 bytes of register RAM to be windowed into the lower register file.
3. A CLKOUT disable bit has been added to the IOC3 SFR. This can be used to reduce noise in systems not requiring the CLKOUT signal.


Figure 2. 87C196KD New SFR Bit (CLKOUT Disable)

8XC196KD VERTICAL WINDOWING MAP

Table 1. 128-Byte Windows

Address to   Remap	Device   Series	WSR Contents
0380 H	KD	$\mathrm{X} 0010111 \mathrm{~B}=17 \mathrm{H}$
0300 H	KD	$\mathrm{X} 0010110 \mathrm{~B}=16 \mathrm{H}$
0280 H	KD	$\mathrm{X} 0010101 \mathrm{~B}=15 \mathrm{H}$
0200 H	KD	$\mathrm{X} 0010100 \mathrm{~B}=14 \mathrm{H}$
0180 H	$\mathrm{KC}, \mathrm{KD}$	$\mathrm{X} 0010011 \mathrm{~B}=13 \mathrm{H}$
0100 H	$\mathrm{KC}, \mathrm{KD}$	$\mathrm{X} 0010010 \mathrm{~B}=12 \mathrm{H}$
0080 H	$\mathrm{KC}, \mathrm{KD}$	$\mathrm{X} 0010001 \mathrm{~B}=11 \mathrm{H}$
0000 H	$\mathrm{KC}, \mathrm{KD}$	$\mathrm{X} 0010000 \mathrm{~B}=10 \mathrm{H}$

Window in Lower Register File: 80H-FFH
Table 2. 64-Byte Windows

Address to Remap	Device   Series	WSR Contents
03COH	KD	$\mathrm{X} 0101111 \mathrm{~B}=2 \mathrm{FH}$
0380H	KD	$\mathrm{X} 0101110 \mathrm{~B}=2 \mathrm{EH}$
0340H	KD	X010 1101B = 2DH
0300H	KD	$\mathrm{X} 0101100 \mathrm{~B}=2 \mathrm{CH}$
02COH	KD	X 010 1011B $=2 \mathrm{BH}$
0280H	KD	X010 1010B $=2 \mathrm{AH}$
0240H	KD	X010 1001B $=29 \mathrm{H}$
0200H	KD	X 010 1000B $=28 \mathrm{H}$
01COH	KC, KD	$\mathrm{X} 0100111 \mathrm{~B}=27 \mathrm{H}$
0180H	KC, KD	$\mathrm{X} 0100110 \mathrm{~B}=26 \mathrm{H}$
0140H	KC, KD	$\mathrm{X} 0100101 \mathrm{~B}=25 \mathrm{H}$
0100H	KC, KD	$X 0100100 \mathrm{~B}=24 \mathrm{H}$
00 COH	KC, KD	$\mathrm{X} 0100011 \mathrm{~B}=23 \mathrm{H}$
0080H	KC, KD	X 010 0010B $=22 \mathrm{H}$
0040H	KC, KD	X010 0001B $=21 \mathrm{H}$
0000H	KC, KD	$\mathrm{X} 0100000 \mathrm{~B}=20 \mathrm{H}$

Window in Lower Register File: COH-FFH

Table 3. 32-Byte Windows

Address to Remap	Device Series	WSR Contents
03EOH	KD	X 101 1111B $=5 \mathrm{FH}$
03COH	KD	$\mathrm{X} 1011110 \mathrm{~B}=5 \mathrm{EH}$
O3AOH	KD	X101 1101B $=5 \mathrm{DH}$
0380H	KD	X101 1100B $=5 \mathrm{CH}$
0360H	KD	X101 1011B $=5 \mathrm{BH}$
0340H	KD	$X 101$ 1010B $=5 \mathrm{AH}$
0320H	KD	X 101 1001B $=59 \mathrm{H}$
0300H	KD	X 101 1000B $=58 \mathrm{H}$
02E0H	KD	$\mathrm{X} 1010111 \mathrm{~B}=57 \mathrm{H}$
02COH	KD	$\mathrm{X} 1010110 \mathrm{~B}=56 \mathrm{H}$
02A0H	KD	$\mathrm{X} 1010101 \mathrm{~B}=55 \mathrm{H}$
0280H	KD	$\mathrm{X} 1010100 \mathrm{~B}=54 \mathrm{H}$
0260H	KD	X101 0011B $=53 \mathrm{H}$
0240H	KD	$\mathrm{X} 1010010 \mathrm{~B}=52 \mathrm{H}$
0220H	KD	$\mathrm{X} 1010001 \mathrm{~B}=51 \mathrm{H}$
0200H	KD	$\mathrm{X} 1010000 \mathrm{~B}=50 \mathrm{H}$
01E0H	KC, KD	X 100 1111B $=4 \mathrm{FH}$
01COH	KC, KD	X 100 1110B $=4 \mathrm{EH}$
01A0H	KC, KD	X100 1101B $=4 \mathrm{DH}$
0180H	KC, KD	X100 1100B $=4 \mathrm{CH}$
0160H	KC, KD	$X 100$ 1011B $=4 \mathrm{BH}$
0140H	KC, KD	X 100 1010B $=4 \mathrm{AH}$
0120H	KC, KD	X100 1001B $=49 \mathrm{H}$
0100H	KC, KD	X 100 1000B $=48 \mathrm{H}$
OOEOH	KC, KD	$\mathrm{X} 1000111 \mathrm{~B}=47 \mathrm{H}$
00 COH	KC, KD	$\mathrm{X} 1000110 \mathrm{~B}=46 \mathrm{H}$
00AOH	KC, KD	$\mathrm{X} 1000101 \mathrm{~B}=45 \mathrm{H}$
0080H	KC, KD	$\mathrm{X} 1000100 \mathrm{~B}=44 \mathrm{H}$
0060H	KC, KD	$\mathrm{X} 1000011 \mathrm{~B}=43 \mathrm{H}$
0040H	KC, KD	$\mathrm{X} 1000010 \mathrm{~B}=42 \mathrm{H}$
0020H	KC, KD	$\mathrm{X} 1000001 \mathrm{~B}=41 \mathrm{H}$
0000H	KC, KD	$\mathrm{X} 1000000 \mathrm{~B}=40 \mathrm{H}$

Window in Lower Register File: EOH-FFH

## PROCESS INFORMATION

This device is manufactured on PX29.5, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.


EXAMPLE: N87C196KD20 is 68-Lead PLCC OTPROM, 20 MHz .
For complete package dimensional data, refer to the Intel Packaging Handbook (Order Number 240800).

## NOTE:

1. EPROMs are available as One Time Programmable (OTPROM) only.

Figure 3. The 8XC196KD Family Nomenclature
Table 4. Thermal Characteristics

Package   Type	$\boldsymbol{\theta}_{\mathbf{j a}}$	$\boldsymbol{\theta}_{\mathbf{j c}}$
PLCC	$35^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
QFP	$56^{\circ} \mathrm{C} / \mathrm{W}$	$12^{\circ} \mathrm{C} / \mathrm{W}$
SQFP	TBD	TBD

All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operation conditions and application. See the Intel Packaging Handbook (order number 240800) for a description of Intel's thermal impedance test methodology.

Table 5. 8XC196KD Memory Map

Description	Address
External Memory or I/O	OFFFFH   0A000H
Internal ROM/EPROM or External	9 FFFH
Memory (Determined by EA)	2080 H
Reserved. Must contain FFH.	207 FH
(Note 5)	205 EH
PTS Vectors	205 DH
	2040 H
Upper Interrupt Vectors	203 FH
	2030 H
ROM/EPROM Security Key	202 FH
	2020 H
Reserved. Must contain FFH.	201 FH
(Note 5)	201 AH
Reserved. Must Contain 20H	2019 H
(Note 5)	
CCB	2018 H
Reserved. Must contain FFH.	2017 H
(Note 5)	2014 H
Lower Interrupt Vectors	2013 H
	2000 H
Port 3 and Port 4	1 FFFH
Word Addressable Only	1 FFEH
External Memory	1 FFDH
1000 Bytes Register RAM (Note 1)	0400 H
CPU SFR's (Notes 1, 3)	$03 F F H$
	0018 H

## NOTES:

1. Code executed in locations 0000 H to $03 F F H$ will be forced external.
2. Reserved memory locations must contain OFFH unless noted.
3. Reserved SFR bit locations must contain 0.
4. Refer to 8XC196KC for SFR descriptions.
5. WARNING: Reserved memory locations must not be written or read. The contents and/or function of these locations may change with future revisions of the device. Therefore, a program that relies on one or more of these locations may not function properly.


Figure 4. 68-Pin PLCC Package


Figure 5. 80-Pin QFP Package


Figure 6. 80-Pin SQFP Package

8XC196KD/8XC196KD20

PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (5V).
$\mathrm{V}_{\text {SS }}$	Digital circuit ground ( O ) . There are three $\mathrm{V}_{\text {SS }}$ pins, all of which must be connected.
$\mathrm{V}_{\text {REF }}$	Reference voltage for the $\mathrm{A} / \mathrm{D}$ converter ( 5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as Vss.
$\mathrm{V}_{\mathrm{PP}}$	Timing pin for the return from powerdown circuit. This pin also supplies the programming voltage on the EPROM device.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT	Output of the internal clock generator. The frequency of CLKOUT is $1 / 2$ the oscillator frequency.
RESET	Reset input and open drain output.
BUSWIDTH	Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1, a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus.
NMI	A positive transition causes a vector through 203EH.
INST	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses and output low for a data fetch.
$\overline{E A}$	Input for memory select (External Access). EA equal high causes memory accesses to locations 2000 H through 9FFFH to be directed to on-chip ROM/EPROM. EA equal low causes accesses to those locations to be directed to off-chip memory. Also used to enter programming mode.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a signal to demultiplex the address from the address/data bus. When the pin is $\overline{A D V}$, it goes inactive high at the end of the bus cycle. ALE/ $\overline{A D V}$ is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
	Write and Write Low output to external memory, as selected by the CCR. $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. $\overline{\text { WR }} / \overline{\mathrm{WRL}}$ is activated only during external memory writes.
BHE/WRH	Bus High Enable or Write High output to external memory, as selected by the CCR. $\overline{B H E}$ will go low for external writes to the high byte of the data bus. WRH will go low for external writes where an odd byte is being written. $\overline{B H E} / \overline{W R H}$ is activated only during external memory writes.
READY	Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, or for bus sharing. When the external memory is not being used, READY has no effect.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI. 3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSI.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.

PIN DESCRIPTIONS (Continued)

Symbol	$\quad$ Name and Function
Port 0	8-bit high impedance input-only port. These pins can be used as digital inputs and/or as   analog inputs to the on-chip A/D converter.
Port 1	8-bit quasi-bidirectional I/O port.
Port 2	8 -bit multi-functional port. All of its pins are shared with other functions in the 80C196KD.   Pins 2.6 and 2.7 are quasi-bidirectional.
Ports 3 and 4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the   multiplexed address/data bus which has strong internal pullups.
HOLD	Bus Hold input requesting control of the bus.
HLDA	Bus Hold acknowledge output indicating release of the bus.
$\overline{\text { BREQ }}$	Bus Request output activated when the bus controller has a pending external memory   cycle.
PMODE	Determines the EPROM programming mode.
$\overline{\text { PACT }}$	A low signal in Auto Programming mode indicates that programming is in process. A high   signal indicates programming is complete.
$\overline{\text { PALE }}$	A falling edge in Slave Programming Mode and Auto Configuration Byte Programming   Mode indicates that ports 3 and 4 contain valid programming address/command   information (input to slave).
$\overline{\text { PROG }}$	A falling edge in Slave Programming Mode indicates that ports 3 and 4 contain valid   programming data (input to slave).
PVER	A high signal in Slave Programming Mode and Auto Configuration Byte Programming   Mode indicates the byte programmed correctly.
CPVER	Cummulative Program Output Verification. Pin is high if all locations have programmed   correctly since entering a programming mode.
$\overline{\text { AINC }}$	Auto Increment. Active low input enables the auto increment mode. Auto increment allows   reading or writing sequential EPROM locations without address transactions across the   PBUS for each read or write.

## ELECTRICAL CHARACTERISTICS

## ABSOLUTE MAXIMUM RATINGS*



## NOTES:

1. This includes Vpp and $\overline{E A}$ on ROM or CPU only devices. 2. Power dissipation is based on package heat transfer limitations, not device power consumption.

NOTICE: This data sheet contains information on products in the sampling and initial production phases of development. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Under Bias Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50.	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.00	5.50	V
ANGND	Analog Ground Voltage	$\mathrm{V}_{\mathrm{SS}}-0.4$	$\mathrm{~V}_{\mathrm{SS}}+0.4$	$\mathrm{~V}(1)$
FOSC	Oscillator Frequency (8XC196KD)	8	16	MHz
FOSC	Oscillator Frequency (8XC196KD20)	8	20	MHz

NOTE:

1. ANGND and $\mathrm{V}_{\text {SS }}$ should be nominally at the same potential.

DC CHARACTERISTICS (Over Specified Operating Conditions)

Symbol	Description	Min	Max	Units	Test Conditions
$V_{\text {IL }}$	Input Low Voltage	-0.5	0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage (Note 1)	$0.2 \mathrm{~V}_{\mathrm{CC}}+1.0$	$\mathrm{V}_{C C}+0.5$	V	
$\mathrm{V}_{\mathrm{HYS}}$	Hysteresis on RESET	300		mV	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage on XTAL 1	$0.7 \mathrm{~V}_{\mathrm{CC}}$	$V_{C C}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 2}$	Input High Voltage on RESET	2.2	$V_{C C}+0.5$	V	
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage		$\begin{gathered} 0.3 \\ 0.45 \\ 1.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=200 \mu \mathrm{~A} \\ & \mathrm{IOL}=2.8 \mathrm{~mA} \\ & \mathrm{IOL}=7 \mathrm{~mA} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage   in RESET on P2.5 (Note 2)		0.8	V	$\mathrm{I}_{\mathrm{OL}}=+0.4 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage (Standard Outputs) (Note 4)	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.7 \\ & V_{C C}-1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-7 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Quasi-bidirectional Outputs) (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-0.3 \\ & \mathrm{~V}_{\mathrm{CC}}-0.7 \\ & \mathrm{~V}_{\mathrm{CC}}-1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-30 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A} \end{aligned}$

DC CHARACTERISTICS (Over Specified Operating Conditions) (Continued)

Symbol	Description	Min	Typ	Max	Units	Test Conditions
${ }^{\mathrm{I}} \mathrm{OH} 1$	Logical 1 Output Current in Reset on P2.0. Do not exceed this or device may enter test modes.	-0.8			mA	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$
IL1	Logical 0 Input Current in Reset on P2.0. Maximum current that must be sunk by external device to ensure test mode entry.			-12.0	mA	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
${ }_{1 / H 1}$	Logical 1 Input Current. Maximum current that external device must source to initiate NMI.			+200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$
$\mathrm{ILI}^{\prime}$	Input Leakage Current (Std. Inputs) (Note 5)			$\pm 10$	$\mu \mathrm{A}$	$0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$
$\mathrm{I}_{\text {L1 }}$	Input Leakage Current (Port 0)			$\pm 3$	$\mu \mathrm{A}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {REF }}$
ITL	1 to 0 Transition Current (QBD Pins)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
IIL	Logical 0 Input Current (QBD Pins)			-70	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
ILLI	AD Bus in Reset			-70	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
ICC	Active Mode Current in Reset (8XC196KD)		65	75	mA	$\begin{aligned} & \text { XTAL1 }=16 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {REF }}=5.5 \mathrm{~V} \end{aligned}$
ICC	Active Mode Current in Reset (8XC196KD20)		80	92	mA	$\begin{array}{\|l\|} \hline X T A L 1=20 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \\ \hline \end{array}$
lidle	Idle Mode Current (8XC196KD)		17	25	mA	$\begin{aligned} & \mathrm{XTAL1}=16 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {REF }}=5.5 \mathrm{~V} \end{aligned}$
IIDLE	Idle Mode Current (8XC196KD20)		21	30	mA	$\begin{aligned} & \mathrm{XTAL1}=20 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \end{aligned}$
IPD	Powerdown Mode Current		8	15	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V}$
IREF	A/D Converter Reference Current		2	5	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V}$
$\mathrm{R}_{\text {RST }}$	Reset Pullup Resistor	6K		65K	$\Omega$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{S}}$	Pin Capacitance (Any Pin to $\mathrm{V}_{\text {SS }}$ )			10	pF	

## NOTES:

1. All pins except RESET and XTAL1.
2. Violating these specifications in Reset may cause the part to enter test modes.
3. QBD (Quasi-bidirectional) pins include Port 1, P2.6 and P2.7.
4. Standard Outputs include ADO-15, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{ALE}, \overline{\mathrm{BHE}}$, INST, HSO pins, PWM/P2.5, CLKOUT, RESET, Ports 3 and 4, TXD/P2.0 and RXD (in serial mode 0). The $V_{O H}$ specification is not valid for RESET. Ports 3 and 4 are open-drain outputs.
5. Standard Inputs include HSI pins, READY, BUSWIDTH, RXD/P2.1, EXTINT/P2.2, T2CLK/P2.3 and T2RST/P2.4.
6. Maximum current per pin must be externally limited to the following values if $\mathrm{V}_{\mathrm{OL}}$ is held above 0.45 V or $\mathrm{V}_{\mathrm{OH}}$ is held below $\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}$ :
lol on Output pins: 10 mA
${ }^{\mathrm{IOH}}$ on quasi-bidirectional pins: self limiting
1 OH on Standard Output pins: 10 mA
7. Maximum current per bus pin (data and control) during normal operation is $\pm 3.2 \mathrm{~mA}$.
8. During normal (non-transient) conditions the following total current limits apply:

Port 1, P2.6	IOL: 29 mA	${ }^{\mathrm{OH}}$ is self limiting
HSO, P2.0, RXD, RESET	$\mathrm{l} \mathrm{OL}: 29 \mathrm{~mA}$	$\mathrm{IOH} \mathbf{2 6 ~ m A}$
P2.5, P2.7, WR, $\overline{\text { BHE }}$	$\mathrm{loL}: 13 \mathrm{~mA}$	Іон: 11 mA
AD0-AD15	lot: 52 mA	$\mathrm{IOH}_{\mathrm{OH}} 52 \mathrm{~mA}$
$\overline{\text { RD, }}$ ALE, INST-CLKOUT	lol: 13 mA	$\mathrm{lOH}^{13 \mathrm{~mA}}$



ICC Max $=4.13 \times$ Frequency +9 mA
Icc Typ $=3.50 \times$ Frequency +9 mA
IIDLE Max $=1.25 \times$ Frequency +5 mA
IIDLE Typ $=0.88 \times$ Frequency +3 mA

## NOTE:

Frequencies below 8 MHz are shown for reference only; no testing is performed.
Figure 7. ICC and IIDLE vs Frequency

## AC CHARACTERISTICS

For use over specified operating conditions.
Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, Fosc $=16 \mathrm{MHz}$
The system must meet these specifications to work with the 80C196KD:

Symbol	Description	Min	Max	Units	Notes
TAVYV	Address Valid to READY Setup		2 Tosc $^{-68}$	ns	
TLLYV	ALE Low to READY Setup		Tosc - 70	ns	(Note 3)
TYLYH	Non READY Time	No upper limit		ns	
TCLYX	READY Hold after CLKOUT Low	0	Tosc - 30	ns	(Note 1)
TLLYX	READY Hold after ALE Low	Tosc - 15	$2 \mathrm{TOSC}^{-40}$	ns	(Note 1)
TAVGV	Address Valid to Buswidth Setup		$2 \mathrm{~T}_{\text {OSC }}-68$	ns	
TLLGV	ALE Low to Buswidth Setup		Tosc - 60	ns	(Note 3)
TCLGX	Buswidth Hold after CLKOUT Low	0		ns	
T AVDV	Address Valid to Input Data Valid		3 Tosc - 55	ns	(Note 2)
TRLDV	$\overline{\mathrm{RD}}$ Active to Input Data Valid		Tosc - 22	ns	(Note 2)
TCLDV	CLKOUT Low to Input Data Valid		Tosc-45	ns	
$\mathrm{T}_{\text {RHDZ }}$	End of $\overline{\mathrm{RD}}$ to Input Data Float		Tosc	ns	
$\mathrm{T}_{\text {RXDX }}$	Data Hold after $\overline{\mathrm{RD}}$ Inactive	0		ns	

## NOTES:

1. If max is exceeded, additional wait states will occur.
2. If wait states are used, add 2 TOSC ${ }^{*} N$, where $N=$ number of wait states.
3. These timings are included for compatibility with older -90 and BH products. They should not be used for newer highspeed designs.

AC CHARACTERISTICS (Continued)
For use over specified operating conditions.
Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, FOSC $=16 / 20 \mathrm{MHz}$
The 80C196KD will meet these specifications:

Symbol	Description	Min	Max	Units	Notes
FXTAL	Frequency on XTAL1 (8XC196KD)	8	16	MHz	(Note 1)
$\mathrm{F}_{\text {XTAL }}$	Frequency on XTAL1 (8XC196KD20)	8	20	MHz	(Note 1)
Tosc	1/F ${ }_{\text {XTAL }}$ (8XC196KD)	62.5	125	ns	
Tosc	I/F $\mathrm{XTAL}^{\text {(8XC196KD20) }}$	50	125	ns	
$\mathrm{T}_{\text {XHCH }}$	XTAL1 High to CLKOUT High or Low	+20	+110	ns	
TCLCL	CLKOUT Cycle Time	2 Tosc		ns	
TCHCL	CLKOUT High Period	Tosc - 10	Tosc +15	ns	
TCLLH	CLKOUT Falling Edge to ALE Rising	-5	+15	ns	
TLLCH	ALE Falling Edge to CLKOUT Rising	-20	+15	ns	
TLHLH	ALE Cycle Time	4 Tosc		ns	(Note 4)
TLHLL	ALE High Period	Tosc - 10	Tosc +10	ns	
$\mathrm{T}_{\text {AVLL }}$	Address Setup to ALE Falling Edge	Tosc - 15			
TLLAX	Address Hold after ALE Falling Edge	Tosc - 35		ns	
TLLRL	ALE Falling Edge to $\overline{\mathrm{RD}}$ Falling Edge	Tosc - 30		ns	
TrLCL	$\overline{\mathrm{RD}}$ Low to CLKOUT Falling Edge	+4	$+30$	ns	
TRLRH	$\overline{\mathrm{RD}}$ Low Period	Tosc - 5		ns	(Note 4)
TRHLH	$\overline{\mathrm{RD}}$ Rising Edge to ALE Rising Edge	Tosc	Tosc +25	ns	(Note 2)
TrLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		+5	ns	
TLLWL	ALE Falling Edge to WR Falling Edge	TOSC - 10		ns	
TCLWL	CLKOUT Low to $\overline{\text { WR }}$ Falling Edge	0	+25	ns	
TQVWH	Data Stable to WR Rising Edge	Tosc - 23			(Note 4)
TCHWH	CLKOUT High to WR Rising Edge	-5	+15	ns	
TWLWH	WR Low Period	TOSC-20		ns	(Note 4)
TWHQX	Data Hold after WR Rising Edge	TOSC - 25		ns	
TWHLH	$\overline{\text { WR Rising Edge to ALE Rising Edge }}$	Tosc - 10	Tosc +15	ns	( Note 2)
T WHBX	$\overline{\text { BHE, INST after } \overline{\text { WR }} \text { Rising Edge }}$	Tosc - 10		ns	
T WHAX	AD8-15 HOLD after WR Rising	Tosc - 30		ns	(Note 3)
T ${ }_{\text {RHBX }}$	$\overline{\mathrm{BHE}}$, INST after $\overline{\mathrm{RD}}$ Rising Edge	TOSC - 10		ns	
TRHAX	AD8-15 HOLD after $\overline{\text { RD }}$ Rising	TOSC - 25		ns	(Note 3)

## NOTES:

1. Testing performed at 8 MHz . However, the device is static by design and will typically operate below 1 Hz .
2. Assuming back-to-back bus cycles.
3. 8-Bit bus only.
4. If wait states are used, add 2 TOSC ${ }^{*} N$, where $N=$ number of wait states:

## System Bus Timings



READY Timings (One Wait State)


## Buswidth Timings



HOLD/TLDA TIMINGS

Symbol	Description	Min	Max	Units	Notes
T HVCH	HOLD Setup	+55		ns	(Note 1)
TCLHAL	CLKOUT Low to HLDA Low	-15	+15	ns	
TCLBRL	CLKOUT Low to BREQ Low	-15	+15	ns	
Thalaz	HLDA Low to Address Float		+15	ns	
Thalbz	HLDA Low to $\overline{B H E}$, INST, $\overline{\mathrm{RD}}, \overline{\text { WR }}$ Weakly Driven		+20	ns	
TCLHAH	CLKOUT Low to HLDA High	-15	+15	ns	
TCLBRH	CLKOUT Low to BREQ High	-15	+15	ns	
T HahaX	HLDA High to Address No Longer Float	-15		ns	
Thahbv	HLDA High to $\overline{\mathrm{BHE}}$, INST, $\overline{\mathrm{RD}}$, $\overline{\text { WR }}$ Valid	-10	+15	ns	
TCLLH	CLKOUT Low to ALE High	-5	+15	ns	

## NOTE:

1. To guarantee recognition at next clock.

DC SPECIFICATIONS IN HOLD

Description	Min	Max	Units
Weak Pullups on $\overline{\mathrm{ADV}} ; \overline{\mathrm{RD}}$,   $\overline{\mathrm{WR}}, \overline{\mathrm{WRL}}, \overline{\mathrm{BHE}}$	50 K	250 K	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
Weak Pulldowns on   ALE, INST	10 K	50 K	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=2.4$



MAXIMUM HOLD LATENCY

Bus Cycle Type	
Internal Execution	1.5 States
16-Bit External Execution	2.5 States
8 -Bit External Execution	4.5 States

EXTERNAL CLOCK DRIVE (8XC196KD)

Symbol	Parameter	Min	Max	Units
$1 / T_{X L X L}$	Oscillator Frequency	8	16.0	MHz
$T_{X L X L}$	Oscillator Period	62.5	125	ns
$T_{X H X X}$	High Time	20		ns
$T_{X L X X}$	Low Time	20		ns
$T_{X L X H}$	Rise Time		10	ns
$T_{X H X L}$	Fall Time		10	ns

EXTERNAL CLOCK DRIVE (8XC196KD20)

Symbol	Parameter	Min	Max	Units
$1 / T_{X L X L}$	Oscillator Frequency	8	20.0	MHz
$T_{\text {XLXL }}$	Oscillator Period	50	125	ns
$T_{X H X X}$	High Time	17		ns
$T_{X L X X}$	Low Time	17		ns
$T_{\text {XLXH }}$	Rise Time		8	ns
$T_{X H X L}$	Fall Time		8	ns

EXTERNAL CLOCK DRIVE WAVEFORMS


## EXTERNAL CRYSTAL CONNECTIONS



NOTE:
Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and $\mathrm{V}_{\mathrm{SS}}$. When using ceramic crystals, $\mathrm{C} 1=20 \mathrm{pF}, \mathrm{C} 2=20 \mathrm{pF}$. When using ceramic resonators consult manufacturer for recommended capacitor values.

## AC TESTING INPUT, OUTPUT WAVEFORMS

AC Testing inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for
a Logic " 0 " Timing measurements are made at 2.0 V for a Logic
" 1 " and 0.8 V for a Logic " 0 ".

EXTERNAL CLOCK CONNECTIONS


## FLOAT WAVEFORMS



For Timing Purposes a Port Pin is no Longer Floating when a 150 mV change from Load Voltage Occurs, and Begins to Float when a 150 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{l}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}}= \pm 15 \mathrm{~mA}$.

## EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by "T" for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

Conditions:
H- High
L- Low
V- Valid
$X$ — No Longer Valid
Z- Floating

Signals:
A- Address
B- $\overline{\text { BHE }}$
C- CLKOUT
D- DATA
G- Buswidth
H- HOLD
HA - $\overline{\text { HLDA }}$

L- ALE/ $\overline{\text { ADV }}$
BR- $\overline{B R E Q}$
R- $\overline{\mathrm{RD}}$
W- $\overline{\mathrm{WR}} / \overline{\mathrm{WRH}} / \overline{\mathrm{WRL}}$
X— XTAL1
Y- READY
Q— Data Out

## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT TIMING-SHIFT REGISTER MODE (MODE 0)

Symbol	Parameter	Min	Max	Units
TXLXL	Serial Port Clock Period (BRR $\geq 8002 \mathrm{H}$ )	6 Tosc		ns
$\mathrm{T}_{\text {XLXH }}$	Serial Port Clock Falling Edge to Rising Edge (BRR $\geq 8002 \mathrm{H}$ )	4 TOSC - 50	4 TOSC +50	ns
TXLXL	Serial Port Clock Period (BRR $=8001 \mathrm{H}$ )	4 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge $(B R R=8001 \mathrm{H})$	2 TOSC -50	2 TOSC +50	ns
TQVXH	Output Data Valid to Clock Rising Edge	2 TOSC $^{-50}$		ns
TXHQX	Output Data Hold after Clock Rising Edge	2 Tosc - 50		ns
TXHQV	Next Output Data Valid after Clock Rising Edge		$2 \mathrm{TOSC}^{\text {a }} 50$	ns
TDVXH	Input Data Setup to Clock Rising Edge	TOSC +50		ns
TXHDX	Input Data Hold after Clock Rising Edge	0		ns
TXHQZ	Last Clock Rising to Output Float		1 Tosc	ns

## WAVEFORM-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE (MODE 0)


## A to D CHARACTERISTICS

The A/D converter is ratiometric, so absolute accuracy is dependent on the accuracy and stability of $V_{\text {REF }}$.

## 10-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.00	5.50	V
ANGND	Analog Ground Voltage	$\mathrm{V}_{\mathrm{SS}}-0.40$	$\mathrm{~V}_{\mathrm{CC}}+0.40$	V
$\mathrm{~T}_{\text {SAM }}$	Sample Time	1.0		$\mu \mathrm{~s}(1)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	10	20	$\mu \mathrm{~s}(1)$
FOSC	Oscillator Frequency (8XC196KD)	8.0	16.0	MHz
FOSC	Oscillator Frequency (8XC196KD20)	8.0	20.0	MHz

## NOTE:

1. The value of AD_TIME is selected to meet these specifications.

10-BIT MODE A/D CHARACTERISTICS (Over Specified Operating Conditions)

Parameter	Typical(1)	Minimum	Maximum	Units*	Notes
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 3$	LSBs	
Full Scale Error	$0.25 \pm 0.5$			LSBs	
Zero Offset Error	$0.25 \pm 0.5$			LSBs	
Non-Linearity	$1.0 \pm 2.0$	0	$\pm 3$	LSBs	
Differential Non-Linearity Error		>-1	+2	LSBs	
Channel-to-Channel Matching	$\pm 0.1$	0	$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients: Offset Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			LSB $/{ }^{\circ} \mathrm{C}$ LSB/ ${ }^{\circ} \mathrm{C}$ LSB $/{ }^{\circ} \mathrm{C}$	,
Off Isolation		-60		dB	2, 3
Feedthrough	-60			dB	2
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB	2
Input Series Resistance		750	1.2K	$\Omega$	4
Voltage on Analog Input Pin		ANGND - 0.5	$\mathrm{V}_{\text {REF }}+0.5$	V	5,6
DC Input Leakage		0	$\pm 3.0$	$\mu \mathrm{A}$	
Sampling Capacitor	3			pF	

## NOTES:

*An "LSB" as used here has a value of approxiimately 5 mV . (See Embedded Microcontrollers and Processors Handbook for A/D glossary of terms.)

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. These values may be exceeded if the pin current is limited to $\pm 2 \mathrm{~mA}$.
6. Applying voltages beyond these specifications will degrade the accuracy of other channels being converted.
7. All conversions performed with processor in IDLE mode.

8-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.00	5.50	V
ANGND	Analog Ground Voltage	$\mathrm{V}_{\mathrm{SS}}-0.40$	$\mathrm{~V}_{\text {SS }}+0.40$	V
$\mathrm{~T}_{\text {SAM }}$	Sample Time	1.0		$\mu \mathrm{~s}(1)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	7	20	$\mu \mathrm{~s}(1)$
FOSC $^{(1)}$	Oscillator Frequency (8XC109KD)	8.0	16.0	MHz
FOSC	Oscillator Frequency (8XC196KD20)	8.0	20.0	MHz

NOTE:

1. The value of AD_TIME is selected to meet these specifications.

## 8-BIT MODE A/D CHARACTERISTICS (Ȯver Specified Operating Conditions)

Parameter	Typical(1)	Minimum	Maximum	Units*	Notes
Resolution		$\begin{gathered} 256 \\ 8 \end{gathered}$	$\begin{gathered} 256 \\ 8 \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 1$	LSBs	
Full Scale Error	$\pm 0.5$			LSBs	
Zero Offset Error	$\pm 0.5$			LSBs	
Non-Linearity		0	$\pm 1$	LSBs	
Differential Non-Linearity Error		>-1	+1	LSBs	
Channel-to-Channel Matching			$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients: Offset Full Scale Differential Non-Linearity	$\begin{aligned} & 0.003 \\ & 0.003 \\ & 0.003 \end{aligned}$			LSB $/{ }^{\circ} \mathrm{C}$   LSB $/{ }^{\circ} \mathrm{C}$   LSB $/{ }^{\circ} \mathrm{C}$	
Off Isolation		-60		dB	2, 3
Feedthrough	-60			dB	2
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB	2
Input Series Resistance		750	1.2K	$\Omega$	4
Voltage on Analog Input Pin		$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{V}_{\text {REF }}+0.5$	V	5,6
DC Input Leakage		0	$\pm 3.0$	$\mu \mathrm{A}$	
Sampling Capacitor	3			pF	

NOTES:
"An "LSB" as used here has a value of approximately 20 mV . (See Embedded Microcontrollers and Processors Handbook for A/D glossary of terms).

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. These values may be exceeded if pin current is limited to $\pm 2 \mathrm{~mA}$.
6. Applying voltages beyond these specifications will degrade the accuracy of other channels being converted.
7. All conversions performed with processor in IDLE mode.

8XC196KD/8XC196KD20

## EPROM SPECIFICATIONS

## OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature During Programming	20	30	C
$\mathrm{V}_{\mathrm{CC}}$	Supply Voltage During Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\text {REF }}$	Reference Supply Voltage During Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\mathrm{PP}}$	Programming Voltage	12.25	12.75	$\mathrm{~V}(2)$
$\mathrm{V}_{\text {EA }}$	EA Pin Voltage	12.25	12.75	$\mathrm{~V}(2)$
FOSC	Oscillator Frequency during Auto and Slave   Mode Programming	6.0	8.0	MHz
FOSC	Oscillator Frequency during   Run-Time Programming (8XC196KD)	6.0	16.0	MHz
FOSC	Oscillator Frequency during   Run-Time Programming (8XC196KD20)	6.0	20.0	MHz

## NOTES:

1. $V_{C C}$ and $V_{\text {REF }}$ should nominally be at the same voltage during programming.
2. $V_{P P}$ and $V_{E A}$ must never exceed the maximum specification, or the device may be damaged.
3. $\mathrm{V}_{\mathrm{SS}}$ and ANGND should nominally be at the same potential (OV).
4. Load capacitance during Auto and Slave Mode programming $=150 \mathrm{pF}$.

## AC EPROM PROGRAMMING CHARACTERISTICS (SLAVE MODE)

Symbol	Description	Min	Max	Units
TSHLL	Reset High to First $\overline{\text { PALE }}$ Low	1100		Tosc
TLLLH	PALE Pulse Width	50		Tosc
$\mathrm{T}_{\text {AVLL }}$	Address Setup Time	0		Tosc
TLLAX	Address Hold Time	100		Tosc
TPLDV	PROG Low to Word Dump Valid		50	Tosc
$\mathrm{T}_{\text {PHDX }}$	Word Dump Data Hold		50	Tosc
TDVPL	Data Setup Time	0		Tosc
TPLDX	Data Hold Time	400		Tosc
$\mathrm{T}_{\text {PLPH }}{ }^{(1)}$	PROG Pulse Width	50		Tosc
$T_{\text {PHLL }}$	$\overline{\text { PROG }}$ High to Next PALE Low	220		Tosc
TLHPL	PALE High to PROG Low	220		Tosc
TPHPL	PROG High to Next PROG Low	220		Tosc
TPHIL	$\overline{\text { PROG }}$ High to AINC Low	0		Tosc
TILIH	$\overline{\text { AINC Pulse Width }}$	240		Tosc
TILVH	PVER Hold after AINC Low	50		Tosc
TILPL	$\overline{\text { AINC Low to PROG Low }}$	170		Tosc
TPHVL	$\overline{\text { PROG }}$ High to $\overline{\text { PVER }}$ Valid		220	Tosc

## NOTE:

1. This specification is for the Word Dump Mode. For programming pulses, use the Modified Quick Pulse Algorithm.

DC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Description	Min	Max	Units
$I_{P P}$	$V_{P P}$ Supply Current (When Programming)		100	mA

NOTE:
Do not apply $\mathrm{V}_{\mathrm{PP}}$ until $\mathrm{V}_{\mathrm{CC}}$ is stable and within specifications and the oscillator/clock has stabilized or the device may be damaged.

## EPROM PROGRAMMING WAVEFORMS

SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE


272145-16
NOTE:
P3.0 must be high (" 1 ")

SLAVE PROGRAMMING MODE IN WORD DUMP WITH AUTO INCREMENT


SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM WITH REPEATED PROG PULSE AND AUTO INCREMENT


## 8XC196KC TO 8XC196KD DESIGN CONSIDERATIONS

1. Memory Map. The 8XC196KD has 1024 bytes of RAM/SFRs and 32K of OTPROM. The extra 512 bytes of RAM reside in locations 0200 H to 03FFH, and the extra 16 Kbytes of OTPROM reside in locations 6000 H to 9 FFFH . On the 87C196KC these locations are always external, so KC code may have to be modified to run on the KD.
2. The vertical window scheme has been extended to include all on-chip RAM.
3. IOC3.1 controls the CLKOUT signal. This bit must be 0 to enable CLKOUT.
4. The 87 C 196 KD has a different autoprogramming algorithm to support 32 K of on-chip OTPROM.

## XC196KD ERRATA

## 8XC196KD

None known.

## DATA SHEET REVISION HISTORY

This data sheet is valid for devices with a " B " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following are important differences between the 272145-001 and 272145-002 data sheets:

1. Added 20 MHz specifications.
2. Added 80-lead SQFP package pinout.
3. Changed QFP Package $\theta_{\mathrm{JA}}$ to $56^{\circ} \mathrm{C} / \mathrm{W}$ from $42^{\circ} \mathrm{C} / \mathrm{W}$.
4. Changed $\mathrm{V}_{\mathrm{HY}}$ to 300 mV from 150 mV .
5. Changed ICC Typical specification at 16 MHz to 65 mA from 50 mA .
6. Changed I ICC Maximum specification at 16 MHz to 75 mA from 70 mA .
7. Changed I IDLE Typical specification to 17 mA from 15 mA .
8. Changed IIDLE Maximum specification to 25 mA from 30 mA .
9. Changed IPD Typical specification to $8 \mu \mathrm{~A}$ from $15 \mu \mathrm{~A}$.
10. Added IPD Maximum specification.
11. Changed TCLDV Maximum specification to Tosc - 45 from Tosc - 50.
12. Changed $T_{\text {LLAX }}$ Minimum specification to Tosc - 35 from Tosc - 40.
13. Changed $\mathrm{T}_{\text {CHwh }}$ Minimum specification to -5 from -10.
14. Changed $\mathrm{T}_{\text {RHAX }}$ Minimum specification to Tosc - 25 from Tosc - 30.
15. Changed ThaLAZ Maximum specification to +15 from +10 .
16. Changed $\mathrm{T}_{\text {HALBz }}$ Maximum specification to +20 from +15 .
17. Added $\mathrm{T}_{\text {HAHBV }}$ Maximum specification.
18. Changed TSAM for 10 -bit mode to $1 \mu \mathrm{~s}$ from $3 \mu \mathrm{~s}$.
19. Changed TSAM for 8 -bit mode to $1 \mu \mathrm{~s}$ from $2 \mu \mathrm{~s}$.
20. Changed $\mathrm{I}_{\mathrm{IH} 1}$ test condition to $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ from 5.5 V .
21. Changed $\mathrm{I}_{\mathrm{H} 1}$ maximum specification to +200 $\mu \mathrm{A}$ from $+100 \mu \mathrm{~A}$.
22. Removed NMI from list of standard inputs.
23. Updated ICC and IIDLE vs frequency graph.
24. Updated note under DC EPROM Programming Characteristics.
25. Changed I LI1 maximum specification to $\mathbf{- 1 2}$ mA from -6 mA .

## 8XL196KD COMMERCIAL CHMOS MICROCONTROLLER

## 87L196KD-32 Kbytes of On-Chip OTPROM

3.0V to 3.6V Operation

16 MHz Operation
1000 Byte Register RAM

- Register-to-Register Architecture

■ 28 Interrupt Sources/16 Vectors
Peripheral Transaction Server
■ $1.75 \mu \mathrm{~s} 16 \times 16$ Multiply ( 16 MHz )
■ $3.0 \mu \mathrm{~s} 32 / 16$ Divide ( 16 MHz )

- Powerdown and Idle Modes

Five 8-Bit I/O Ports
16-Bit Watchdog Timer

Dynamically Configurable 8-Bit or 16-Bit Buswidth
■ Full Duplex Serial Port
■ High Speed I/O Subsystem

- 16-Bit Timer
- 16-Bit Up/Down Counter with Capture
- 3 Pulse-Width-Modulated Outputs
- Four 16-Bit Software Timers
- 8- or 10-Bit A/D Converter with Sample/Hold
- OTP One-Time Programmable Version

The 8XL196KD 16-bit microcontroller is a high performance member of the MCS®-96 microcontroller family. The 8XL196KD is an enhanced 80C196KC device with 3.3V operation, 1000 bytes RAM, 16 MHz operation and an optional 32 Kbytes of ROM/EPROM. Intel's CHMOS III-E process provides a high performance processor along with low power consumption.

Four high-speed capture inputs are provided to record times when events occur. Six high-speed outputs are available for pulse or waveform generation. The high-speed output can also generate four software timers or start an A/D conversion. Events can be based on the timer or up/down counter.


Figure 1. 8XL196KD Block Diagram

## 87L196KD ENHANCED FEATURE SET OVER THE 87C196KC

1. The 87L196KD has twice the RAM and twice the OTPROM space of the 87C196KC.
2. The vertical windowing scheme has been extended to allow all 1000 bytes of register RAM to be windowed into the lower register file.

FUNCTIONAL DIFFERENCES BETWEEN THE 8XC196KD AND THE 8XL196KD

1. The $\overline{H O L D} / \overline{H L D A}$ bus protocol is not supported on the 8XL196KD.
2. The CLKOUT disable bit (IOC3.1) is not supported on the 8XL196KD.
3. Run-time programming is not supported on the 8XL196KD.

8XL196KD VERTICAL WINDOWING MAP

Table 1. 128-Byte Windows

Address to   Remap	Device   Series	WSR Contents
0380 H	KD	$\mathrm{X} 0010111 \mathrm{~B}=17 \mathrm{H}$
0300 H	KD	$\mathrm{X} 0010110 \mathrm{~B}=16 \mathrm{H}$
0280 H	KD	$\mathrm{X} 0010101 \mathrm{~B}=15 \mathrm{H}$
0200 H	KD	$\mathrm{X} 0010100 \mathrm{~B}=14 \mathrm{H}$
0180 H	$\mathrm{KC}, \mathrm{KD}$	$\mathrm{X} 0010011 \mathrm{~B}=13 \mathrm{H}$
0100 H	$\mathrm{KC}, \mathrm{KD}$	$\mathrm{X} 0010010 \mathrm{~B}=12 \mathrm{H}$
0080 H	$\mathrm{KC}, \mathrm{KD}$	$\mathrm{X} 0010001 \mathrm{~B}=11 \mathrm{H}$
0000 H	$\mathrm{KC}, \mathrm{KD}$	$\mathrm{X} 0010000 \mathrm{~B}=10 \mathrm{H}$

Window in Lower Register File: 80H-FFH
Table 2. 64-Byte Windows

Address to Remap	Device Series	WSR Contents
03COH	KD	X 010 1111B $=2 \mathrm{FH}$
0380H	KD	X010 1110B $=2 \mathrm{EH}$
0340H	KD	X010 1101B $=2 \mathrm{DH}$
0300H	KD	$\mathrm{X} 0101100 \mathrm{~B}=2 \mathrm{CH}$
02COH	KD	X010 1011B = 2BH
0280H	KD	X010 1010B $=2 \mathrm{AH}$
0240H	KD	X 010 1001B $=29 \mathrm{H}$
0200H	KD	X 010 1000B $=28 \mathrm{H}$
01C0H	KC, KD	$\mathrm{X} 0100111 \mathrm{~B}=27 \mathrm{H}$
0180H	KC, KD	$\mathrm{X} 0100110 \mathrm{~B}=26 \mathrm{H}$
0140H	KC, KD	X 010 0101B $=25 \mathrm{H}$
0100H	KC, KD	$\mathrm{X} 0100100 \mathrm{~B}=24 \mathrm{H}$
00 COH	KC, KD	$\mathrm{X} 0100011 \mathrm{~B}=23 \mathrm{H}$
0080H	KC, KD	$\mathrm{X} 0100010 \mathrm{~B}=22 \mathrm{H}$
0040H	KC, KD	$\mathrm{X} 0100001 \mathrm{~B}=21 \mathrm{H}$
0000H	KC, KD	X 010 0000B $=20 \mathrm{H}$

Window in Lower Register File: COH-FFH

Table 3. 32-Byte Windows

Address to Remap	Device Series	WSR Contents
03EOH	KD	$\mathrm{X} 1011111 \mathrm{~B}=5 \mathrm{FH}$
03COH	KD	$\mathrm{X} 1011110 \mathrm{~B}=5 \mathrm{EH}$
03AOH	KD	$\mathrm{X} 1011101 \mathrm{~B}=5 \mathrm{DH}$
0380H	KD	$\mathrm{X} 1011100 \mathrm{~B}=5 \mathrm{CH}$
0360H	KD	$\mathrm{X} 1011011 \mathrm{~B}=5 \mathrm{BH}$
0340H	KD	$X 1011010 \mathrm{~B}=5 \mathrm{AH}$
0320H	KD	$\mathrm{X} 1011001 \mathrm{~B}=59 \mathrm{H}$
0300H	KD	$\mathrm{X} 1011000 \mathrm{~B}=58 \mathrm{H}$
02EOH	KD	X101 0111B $=57 \mathrm{H}$
02COH	KD	$\mathrm{X} 1010110 \mathrm{~B}=56 \mathrm{H}$
02A0H	KD	$\mathrm{X} 1010101 \mathrm{~B}=55 \mathrm{H}$
0280H	KD	$\mathrm{X} 1010100 \mathrm{~B}=54 \mathrm{H}$
0260H	KD	X101 0011B $=53 \mathrm{H}$
0240H	KD	$\mathrm{X} 1010010 \mathrm{~B}=52 \mathrm{H}$
0220H	KD	X101 0001B $=51 \mathrm{H}$
0200H	KD	$\mathrm{X} 1010000 \mathrm{~B}=50 \mathrm{H}$
01EOH	KC, KD	$\mathrm{X} 1001111 \mathrm{~B}=4 \mathrm{FH}$
01 COH	KC, KD	$X 1001110 \mathrm{~B}=4 \mathrm{EH}$
01 AOH	KC, KD	X 100 1101B $=4 \mathrm{DH}$
0180H	KC, KD	$\mathrm{X} 1001100 \mathrm{~B}=4 \mathrm{CH}$
0160H	KC, KD	X 100 1011B $=4 \mathrm{BH}$
0140H	KC, KD	X 100 1010B $=4 \mathrm{AH}$
0120H	KC, KD	$\mathrm{X} 100 \mathrm{1001B}=49 \mathrm{H}$
0100H	KC, KD	X 100 1000B $=48 \mathrm{H}$
00EOH	KC, KD	$\mathrm{X} 1000111 \mathrm{~B}=47 \mathrm{H}$
00 COH	KC, KD	$\mathrm{X} 1000110 \mathrm{~B}=46 \mathrm{H}$
OOAOH	KC, KD	$\mathrm{X} 1000101 \mathrm{~B}=45 \mathrm{H}$
0080H	KC, KD	$\mathrm{X} 1000100 \mathrm{~B}=44 \mathrm{H}$
0060H	KC, KD	$\mathrm{X} 1000011 \mathrm{~B}=43 \mathrm{H}$
0040H	KC, KD	$\mathrm{X} 1000010 \mathrm{~B}=42 \mathrm{H}$
0020H	KC, KD	$\mathrm{X} 1000001 \mathrm{~B}=41 \mathrm{H}$
0000H	KC, KD	$\mathrm{X} 1000000 \mathrm{~B}=40 \mathrm{H}$

Window in Lower Register File: EOH-FFH

## PROCESS INFORMATION

This device is manufactured on PX29.5, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.


EXAMPLE: N87L196KD is 68-Lead PLCC OTPROM, 16 MHz .
For complete package dimensional data, refer to the Intel Packaging Handbook (Order Number 240800).

NOTE:

1. EPROMs are available as One Time Programmable (OTPROM) only.

Figure 2. The 8XL196KD Family Nomenclature
Table 4. Thermal Characteristics

Package   Type	$\theta_{\text {ja }}$	$\theta_{\mathbf{j c}}$
PLCC	$35^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
QFP	$56^{\circ} \mathrm{C} / \mathrm{W}$	$12^{\circ} \mathrm{C} / \mathrm{W}$
SQFP	TBD	TBD

All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operation conditions and application. See the Intel Packaging Handbook (order number 240800) for a description of Intel's thermal impedance test methodology.

Table 5. 8XL196KD Memory Map

Description	Address
External Memory or I/O	OFFFFH   0 A000H
Internal ROM/OTPROM or External   Memory (Determined by EA)	$9 F F F H$   2080 H
Reserved. Must contain FFH.   (Note 5)	207 FH
PTS Vectors	205 EH
Upper Interrupt Vectors	2040 H
ROM/EPROM Security Key	203 FH
	2030 H
Reserved. Must contain FFH.	202 FH
(Note 5)	201 FH
Reserved. Must Contain 20H	201 AH
(Note 5)	2019 H
CCB	2018 H
Reserved. Must contain FFH.	2017 H
(Note 5)	2014 H
Lower Interrupt Vectors	2013 H
	2000 H
Port 3 and Port 4	1 FFFH
Word Addressable Only	1 FFEH
External Memory	1 FFDH
1000 Bytes Register RAM (Note 1)	0400 H
CPU SFR's (Notes 1, 3)	$03 F F H$
	0018 H
	0017 H

## NOTES:

1. Code executed in locations 0000 H to 03 FFH will be forced external:
2. Reserved memory locations must contain OFFH unless noted.
3. Reserved SFR bit locations must contain 0 .
4. Refer to 8XC196KC for SFR descriptions.
5. WARNING: Reserved memory locations must not be written or read. The contents and/or function of these locations may change with future revisions of the device. Therefore, a program that relies on one or more of these locations may not function properly.


Figure 3．68－Pin PLCC Package


Figure 4. 80-Pin QFP Package


Figure 5. 80-Pin SQFP Package

## PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (3.3V).
$\mathrm{V}_{S S}$	Digital circuit ground ( O ) . There are multiple $\mathrm{V}_{\text {SS }}$ pins, all of which must be connected.
$V_{\text {REF }}$	Reference voltage for the $\mathrm{A} / \mathrm{D}$ converter ( 3.3 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $V_{S S}$.
$\mathrm{V}_{\mathrm{PP}}$	Timing pin for the return from powerdown circuit. This pin also supplies the programming voltage on the EPROM device.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT	Output of the internal clock generator. The frequency of CLKOUT is $1 / 2$ the oscillator frequency.
RESET	Reset input and open drain output.
BUSWIDTH	Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1, a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus.
NMI	A positive transition causes a vector through 203EH.
INST	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses and output low for a data fetch.
$\overline{E A}$	Input for memory select (External Access). $\overline{\text { EA }}$ equal high causes memory accesses to locations 2000 H through 9FFFH to be directed to on-chip ROM/EPROM. EA equal low causes accesses to those locations to be directed to off-chip memory. Also used to enter programming mode.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a signal to demultiplex the address from the address/data bus. When the pin is $\overline{\text { ADV, it goes inactive high at the end of the bus cycle. ALE/ } \overline{\operatorname{ADV}} \text { is activated only during }}$ external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
$\overline{\mathrm{WR}} / \overline{\mathrm{WRL}}$	Write and Write Low output to external memory, as selected by the CCR. $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. WR/WRL is activated only during external memory writes.
	Bus High Enable or Write High output to external memory, as selected by the CCR. $\overline{\text { BHE }}$ will go low for external writes to the high byte of the data bus. WRH will go low for external writes where an odd byte is being written. $\overline{B H E} / \overline{\text { WRH }}$ is activated only during external memory writes.
READY	Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, or for bus sharing. When the external memory is not being used, READY has no effect.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI. 2 and HSI. 3. Two of them (HSI. 2 and HSI.3) are shared with the HSO Unit.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSI.3, HSO. 4 and HSO.5. Two of them (HSO. 4 and HSO.5) are shared with the HSI Unit.

PIN DESCRIPTIONS (Continued)

Symbol	$\quad$ Name and Function
Port 0	8-bit high impedance input-only port. These pins can be used as digital inputs and/or as   analog inputs to the on-chip A/D converter.
Port 1	8-bit quasi-bidirectional I/O port.
Port 2	8-bit multi-functional port. All of its pins are shared with other functions in the 80C196KD.   Pins 2.6 and 2.7 are quasi-bidirectional,
Ports 3 and 4	8-bit bidirectional I/O ports with open drain outputs. These pins are shared with the   multiplexed address/data bus which has strong internal pullups.
PMODE	Determines the OTPROM programming mode.
$\overline{\text { PACT }}$	A low signal in Auto Programming mode indicates that programming is in process. A high   signal indicates programming is complete.
$\overline{\text { PALE }}$	A falling edge in Slave Programming Mode and Auto Configuration Byte Programming   Mode indicates that ports 3 and 4 contain valid programming address/command   information (input to slave).
$\overline{\text { PROG }}$	A falling edge in Slave Programming Mode indicates that ports 3 and 4 contain valid   programming data (input to slave).
PVER	A high signal in Slave Programming Mode and Auto Configuration Byte Programming   Mode indicates the byte programmed correctly.
CPVER	Cummulative Program Output Verification. Pin is high if all locations have programmed   correctly since entering a programming mode.
$\overline{\text { AINC }}$	Auto Increment. Active low input enables the auto increment mode. Auto increment allows   reading or writing sequential EPROM locations without address transactions across the   PBUS for each read or write.

## ELECTRICAL CHARACTERISTICS

## ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature
Under Bias $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature $\ldots . . . . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin to $V_{S S}$
Except EA and $\mathrm{V}_{\mathrm{Pp}} \ldots \ldots . . . .-0.5 \mathrm{~V}$ to $+7.0 \mathrm{~V}(1)$
Voltage from $\overline{E A}$ or
$\mathrm{V}_{\mathrm{PP}}$ to $\mathrm{V}_{\mathrm{SS}}$ or ANGND . ...... -0.5 V to +13.00 V
Power Dissipation
$1.5 \mathrm{~W}(2)$
NOTES:

1. This includes $V_{P P}$ and $\overline{E A}$ on ROM or CPU only devices. 2. Power dissipation is based on package heat transfer limitations, not device power consumption.

NOTICE: This document contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product is available.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## TARGETED OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Under Bias	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	3.00	3.60	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	3.00	3.60	V
ANGND	Analog Ground Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$	$\mathrm{~V}_{\mathrm{SS}}+0.3$	$\mathrm{~V}(1)$
FOSC	Oscillator Frequency	8	16	MHz

NOTE:

1. ANGND and $V_{S S}$ should be nominally at the same potential.

TARGETED DC CHARACTERISTICS (Over Specified Operating Conditions)

Symbol	Description	Min	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{IL} 1}$	Input Low Voltage on Quasi-   Bidirectional Pins	-0.3	+0.7	V	
$\mathrm{~V}_{\mathrm{IL} 2}$	Input Low Voltage on Reset	-0.3	+0.6	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage (Note 1)	2.0	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
$\mathrm{~V}_{\mathrm{HYS}}$	Hysteresis on RESET	150		mV	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IH} 1}$	Input High Voltage on XTAL 1	$0.7 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
$\mathrm{~V}_{\mathrm{IH} 2}$	Input High Voltage on RESET	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	0.4	V	$\mathrm{IOL}_{\mathrm{OL}}=2.0 \mathrm{~mA}$	
$\mathrm{~V}_{\mathrm{OL} 1}$	Output Low Voltage   in RESET on P2.5 (Note 2)		0.8	V	$\mathrm{I}_{\mathrm{OL}}=+0.4 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage   (Standard Outputs) (Note 4)	2.4	V	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	
$\mathrm{~V}_{\mathrm{OH} 1}$	Output High Voltage   (Quasi-bidirectional Outputs)   (Note 3)	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-30 \mu \mathrm{~A}$

TARGETED DC CHARACTERISTICS (Over Specified Operating Conditions) (Continued)

Symbol	Description	Min	Typ	Max	Units	Test Conditions
$\mathrm{I}^{\mathrm{OH} 1}$	Logical 1 Output Current in Reset on P2.0. Do not exceed this or device may enter test modes.	TBD			mA	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
ILL2	Logical 0 Input Current in Reset on P2.0. Maximum current that must be sunk by external device to ensure test mode entry.			TBD	mA	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\mathrm{H} 1}$	Logical 1 Input Current. Maximum current that external device must source to initiate NMI.			TBD	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
LII	Input Leakage Current (Std. Inputs) (Note 5)			$\pm 10$	$\mu \mathrm{A}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}-0.3 \mathrm{~V}$
$\mathrm{I}_{\text {LI } 1}$	Input Leakage Current (Port 0)			$\pm 3$	$\mu \mathrm{A}$.	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {REF }}$
$\mathrm{I}_{\text {TL }}$	1 to 0 Transition Current (QBD Pins)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$
ILL	Logical 0 Input Current (QBD Pins)			-70	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.40 \mathrm{~V}$
IL1	AD Bus in Reset			-70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$
ICC	Active Mode Current in Reset		30	40	mA	$\begin{aligned} & \mathrm{XTAL1}=16 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {REF }}=3.6 \mathrm{~V} \\ & \hline \end{aligned}$
IIdLE	Idle Mode Current		10	15	mA	$\begin{aligned} & \mathrm{XTAL1}=16 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=3.6 \mathrm{~V} \end{aligned}$
IPD	Powerdown Mode Current		8	15	$\mu \mathrm{A}$	$V_{\text {CC }}=V_{\text {PP }}=V_{\text {REF }}=3.6 \mathrm{~V}$
IREF	A/D Converter Reference Current		2	5	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {REF }}=3.6 \mathrm{~V}$
$\mathrm{R}_{\text {RST }}$	Reset Pullup Resistor	6K		65K	$\Omega$	
$\mathrm{C}_{S}$	Pin Capacitance (Any Pin to $\mathrm{V}_{\text {SS }}$ )			10	pF	

NOTES:

1. All pins except RESET.
2. Violating these specifications in Reset may cause the part to enter test modes.
3. QBD (Quasi-bidirectional) pins include Port 1, P2.6 and P2.7.
4. Standard Outputs include AD0-15, $\overline{R D}, \overline{W R}$, ALE, $\overline{B H E}$, INST, HSO pins, PWM/P2.5, CLKOUT, RESET, Ports 3 and 4, TXD/P2.0 and RXD (in serial mode 0). The $\mathrm{V}_{\mathrm{OH}}$ specification is not valid for RESET. Ports 3 and 4 are open-drain outputs.
5. Standard Inputs include HSI pins, READY, BUSWIDTH, RXD/P2.1, EXTINT/P2.2, T2CLK/P2.3 and T2RST/P2.4.
6. Maximum current per pin must be externally limited to the following values if $\mathrm{V}_{\mathrm{OL}}$ is held above 0.45 V or $\mathrm{V}_{\mathrm{OH}}$ is held below $\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}$ :

Iol on Output pins: 10 mA
$\mathrm{IOH}_{\mathrm{OH}}$ on quasi-bidirectional pins: self limiting
1 OH on Standard Output pins: 10 mA
7. Maximum current per bus pin (data and control) during normal operation is $\pm 3.2 \mathrm{~mA}$.
8. During normal (non-transient) conditions the following total current limits apply:

Port 1, P2.6
HSO, P2.0, RXD, RESET
P2.5, P2.7, WR, $\overline{\mathrm{BHE}}$
AD0-AD15
$\overline{R D}$, ALE, INST-CLKOUT
lol: 29 mA
loL: 29 mA
lol: 13 mA
Iol: 52 mA lol: 13 mA
$\mathrm{IOH}_{\mathrm{OH}}$ is self limiting
$\mathrm{IOH}_{\mathrm{O}}: 26 \mathrm{~mA}$
$\mathrm{IOH}^{\mathrm{OH}}: 11 \mathrm{~mA}$
$\mathrm{l}_{\mathrm{OH}}: 52 \mathrm{~mA}$
$\mathrm{IOH}^{\mathrm{OH}} 13 \mathrm{~mA}$


272254-6

## NOTE:

Frequencies below 8 MHz are shown for reference only; no testing is performed.
Figure 6. $\mathrm{I}_{\mathrm{CC}}$ and $\mathrm{I}_{\text {IDLE }}$ vs Frequency

## TARGETED AC CHARACTERISTICS

For use over specified operating conditions.
Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, Fosc $=16 \mathrm{MHz}$
The system must meet these specifications to work with the 80L196KD:

Symbol	Description	Min	Max	Units	Notes
T ${ }_{\text {AVYV }}$	Address Valid to READY Setup		2 TOSC -90	ns	
TYLYH	Non READY Time	No upper limit		ns	
TCLYX	READY Hold after CLKOUT Low	0	Tosc - 30	ns	(Note 1)
TAVGV	Address Valid to Buswidth Setup		2 Tosc $^{-68}$	ns	
TCLGX	Buswidth Hold after CLKOUT Low	0		ns	
$\mathrm{T}_{\text {AVDV }}$	Address Valid to Input Data Valid		$3 \mathrm{TOSC}^{-60}$	ns	(Note 2)
TrLDV	$\overline{\mathrm{RD}}$ Active to Input Data Valid		Tosc - 30	ns	(Note 2)
TCLDV	CLKOUT Low to Input Data Valid		Tosc - 50	ns	
T RHDZ	End of $\overline{\mathrm{RD}}$ to Input Data Float		Tosc	ns	
$\mathrm{T}_{\mathrm{RXDX}}$	Data Hold after $\overline{\mathrm{RD}}$ Inactive	0		ns	

## NOTES:

1. If max is exceeded, additional wait states will occur.
2. If wait states are used, add 2 Tosc * N , where $\mathrm{N}=$ number of wait states.

## TARGETED AC CHARACTERISTICS (Continued)

For use over specified operating conditions.
Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, Fosc $=16 \mathrm{MHz}$
The 80L196KD will meet these specifications:

Symbol	Description	Min	Max	Units	Notes
FXTAL	Frequency on XTAL1	8	16	MHz	(Note 1)
Tosc	I/FXTAL	62.5	125	ns	
$\mathrm{T}_{\text {XHCH }}$	XTAL1 High to CLKOUT High or Low	+20	+110	ns	
TCLCL	CLKOUT Cycle Time	2 Tosc		ns	
TCHCL	CLKOUT High Period	Tosc - 10	Tosc +15	ns	
TCLLH	CLKOUT Falling Edge to ALE Rising	-10	+33	ns	
TLLCH	ALE Falling Edge to CLKOUT Rising	-20	+15	ns	
TLHLH	ALE Cycle Time	4 Tosc		ns	(Note 4)
TLHLL	ALE High Period	Tosc - 14	Tosc +10	ns	
TAVLL	Address Setup to ALE Falling Edge	Tosc - 15			
TLLAX	Address Hold after ALE Falling Edge	Tosc - 40		ns	
TLLRL	ALE Falling Edge to $\overline{\text { RD }}$ Falling Edge	Tosc - 42		ns	
TrLCL	$\overline{\mathrm{RD}}$ Low to CLKOUT Falling Edge	+4	+30	ns	
TRLRH	$\overline{\mathrm{RD}}$ Low Period	Tosc - 5		ns	(Note 4)
TRHLH	$\overline{\mathrm{RD}}$ Rising Edge to ALE Rising Edge	Tosc	Tosc +37	ns	(Note 2)
TrLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		+5	ns	
TLLWL	ALE Falling Edge to $\overline{\mathrm{WR}}$ Falling Edge	Tosc - 17		ns	
TCLWL	CLKOUT Low to WR Falling Edge	0	+25	ns	
TQVWH	Data Stable to WR Rising Edge	Tosc-23			(Note 4)
TCHWH	CLKOUT High to $\overline{\text { WR }}$ Rising Edge	-10	+15	ns	
TWLWH	$\overline{\text { WR Low Period }}$	Tosc - 20		ns	(Note 4)
TWHQX	Data Hold after WR Rising Edge	Tosc - 33		ns	
TWHLH	$\overline{\text { WR Rising Edge to ALE Rising Edge }}$	Tosc - 10	TOSC +19	ns	(Note 2)
T WHBX	$\overline{\text { BHE, INST after } \overline{\text { WR }} \text { Rising Edge }}$	Tosc - 10		ns	
T Whax	AD8-15 HOLD after WR Rising	Tosc - 30		ns	(Note 3)
TRHBX	$\overline{\mathrm{BHE}}$, INST after $\overline{\mathrm{RD}}$ Rising Edge	Tosc - 10		ns	
$\mathrm{T}_{\text {RHAX }}$	AD8-15 HOLD after $\overline{\text { RD }}$ Rising	Tosc - 30		ns	(Note 3)

## NOTES:

1. Testing performed at 8 MHz . However, the device is static by design and will typically operate below 1 Hz .
2. Assuming back-to-back bus cycles.
3. 8-Bit bus only.
4. If wait states are used, add $2 \mathrm{~T}_{\mathrm{OSC}}{ }^{*} \mathrm{~N}$, where $\mathrm{N}=$ number of wait states.

## System Bus Timings



READY Timings (One Wait State)


## Buswidth Timings



EXTERNAL CLOCK DRIVE (8XL196KD)

Symbol	Parameter	Min	Max	Units
$1 / T_{X L X L}$	Oscillator Frequency	8	16.0	MHz
$T_{\text {XLXL }}$	Oscillator Period	62.5	125	ns
$T_{X H X X}$	High Time	20		ns
$T_{X L X X}$	Low Time	20		ns
$T_{X L X H}$	Rise Time		10	ns
$T_{X H X L}$	Fall Time		10	ns

EXTERNAL CLOCK DRIVE WAVEFORMS


EXTERNAL CRYSTAL CONNECTIONS


## NOTE:

Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and $\mathrm{V}_{\mathrm{SS}}$. When using ceramic crystals, $\mathrm{C} 1=20 \mathrm{pF}, \mathrm{C} 2=20 \mathrm{pF}$. When using ceramic resonators consult manufacturer for recommended circuitry.

AC TESTING INPUT, OUTPUT WAVEFORMS


EXTERNAL CLOCK CONNECTIONS

| EXTERNAL |  |
| :---: | :---: | :---: |
| CLOCK INPUT |  |
| no connect |  |

## NOTE:

*Required if TTL driver used.
Not needed if CMOS driver is used.

## FLOAT WAVEFORMS



For Timing Purposes a Port Pin is no Longer Floating when a 150 mV change from Load Voltage Occurs, and Begins to Float when a 150 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{IOL} / \mathrm{IOH}_{\mathrm{OH}}= \pm 15 \mathrm{~mA}$.

## EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by " T " for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

## Conditions:

H- High
L- Low
V- Valid
$X$ — No Longer Valid
Z- Floating

Signals:
A- Address
B- $\overline{\text { BHE }}$
C- CLKOUT
D- DATA
G- Buswidth
H- HOLD
HA- $\overline{\text { HLDA }}$

L- ALE/ $\overline{\text { ADV }}$
BR- $\overline{B R E Q}$
R- $\overline{R D}$
W- $\overline{\text { WR }} / \overline{\text { WRH }} / \overline{\text { WRL }}$
X— XTAL1
$Y$ - READY
Q— Data Out

## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT TIMING-SHIFT REGISTER MODE (MODE 0)

Symbol	Parameter	Min	Max	Units
TXLXL	Serial Port Clock Period (BRR $\geq 8002 \mathrm{H}$ )	6 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR $\geq 8002 \mathrm{H}$ )	4 TOSC $^{-50}$	4 TOSC +50	ns
TXLXL	Serial Port Clock Period (BRR $=8001 \mathrm{H}$ )	4 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge $(B R R=8001 \mathrm{H})$	2 TOSC $^{-50}$	$2 \mathrm{~T}_{\text {OSC }}+50$	ns
TQVXH	Output Data Valid to Clock Rising Edge	2 Tosc $^{-50}$		ns
TXHQX	Output Data Hold after Clock Rising Edge	2 Tosc - 50		ns
TXHQV	Next Output Data Valid after Clock Rising Edge		2 TOSC +50	ns
TDVXH	Input Data Setup to Clock Rising Edge	TOSC +50		ns
TXHDX	Input Data Hold after Clock Rising Edge	0		ns
TXHQZ	Last Clock Rising to Output Float		1 Tosc	ns

## WAVEFORM—SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE (MODE 0)


8XL196KD
PRODUCT PRRVIEW

## A to D CHARACTERISTICS

The A/D converter is ratiometric, so absolute accuracy is dependent on the accuracy and stability of $\mathrm{V}_{\text {REF }}$.

## TARGETED 10-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	3.0	3.6	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	3.0	3.6	V
ANGND	Analog Ground Voltage	$\mathrm{V}_{\mathrm{SS}}-0.30$	$\mathrm{~V}_{\mathrm{CC}}+0.30$	V
$\mathrm{~T}_{\text {SAM }}$	Sample Time	1.0		$\mu \mathrm{~S}(1)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	10	20	$\mu \mathrm{~S}(1)$
FOSC	Oscillator Frequency	8.0	16.0	MHz

NOTE:

1. The value of AD_TIME is selected to meet these specifications.

## TARGETED 10-BIT MODE A/D CHARACTERISTICS (Over Specified Operating Conditions)

Parameter	Typical(1)	Minimum	Maximum	Units ${ }^{*}$	Notes
Resolution		1024   10	1024   10	Levels   Bits	
Absolute Error		0	$\pm 3$	LSBs	
Full Scale Error	$0.25 \pm 0.5$			LSBs	
Zero Offset Error	$0.25 \pm 0.5$			LSBs	
Non-Linearity	$1.0 \pm 2.0$	0	$\pm 3$	LSBs	
Differential Non-Linearity Error		$>-1$	+2	LSBs	
Channel-to-Channel Matching	$\pm 0.1$	0	$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients:   Offset   Full Scale   Differential Non-Linearity	0.009	0.009			$\mathrm{LSB} /{ }^{\circ} \mathrm{C}$
Off Isolation	0.009			$\mathrm{LSB} /{ }^{\circ} \mathrm{C}$	
Feedthrough	-60	-60		dB	2,3
VCC Power Supply Rejection	-60			dB	2
Input Series Resistance		750	1.2 K	$\Omega$	dB
Voltage on Analog Input Pin		$\mathrm{ANGND}-0.3$	$\mathrm{~V}_{\text {REF }}+0.3$	V	5
DC Input Leakage	0	$\pm 3.0$	$\mu \mathrm{CA}$		
Sampling Capacitor					pF

## NOTES:

"An "LSB" as used here has a value of approxiimately 3 mV . (See Embedded Microcontrollers and Processors Handbook for A/D glossary of terms.)

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. These values may be exceeded if the pin current is limited to $\pm 2 \mathrm{~mA}$.
6. Applying voltages beyond these specifications will degrade the accuracy of other channels being converted.
7. All conversions performed with processor in IDLE mode.

## TARGETED 8-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	3.0	3.6	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	3.0	3.6	V
ANGND	Analog Ground Voltage	$\mathrm{V}_{\mathrm{SS}}-0.30$	$\mathrm{~V}_{\mathrm{SS}}+0.30$	V
$\mathrm{~T}_{\text {SAM }}$	Sample Time	1.0		$\mu \mathrm{~s}(1)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	7	20	$\mu \mathrm{~s}^{(1)}$
FosC Oscillator Frequency	8.0	16.0	MHz	

## NOTE:

1. The value of AD__TIME is selected to meet these specifications.

## TARGETED 8-BIT MODE A/D CHARACTERISTICS (Over Specified Operating Conditions)

Parameter	Typical(1)	Minimum	Maximum	U̇nits*	Notes
Resolution		$\begin{gathered} 256 \\ 8 \end{gathered}$	$\begin{gathered} 256 \\ 8 \end{gathered}$	Levels Bits	
Absolute Error		0	$\pm 1$	LSBs	
Full Scale Error	$\pm 0.5$			LSBs	
Zero Offset Error	$\pm 0.5$			LSBs	
Non-Linearity		0	$\pm 1$	LSBs	
Differential Non-Linearity Error		>-1	+1	LSBs	
Channel-to-Channel Matching			$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients: Offset Full Scale Differential Non-Linearity	$\begin{aligned} & 0.003 \\ & 0.003 \\ & 0.003 \end{aligned}$			LSB $/{ }^{\circ} \mathrm{C}$ LSB $/{ }^{\circ} \mathrm{C}$ LSB $/{ }^{\circ} \mathrm{C}$	
Off Isolation		-60		dB	2, 3
Feedthrough	-60			dB	2
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB	2
Input Series Resistance		750	1.2K	$\Omega$	4
Voltage on Analog Input Pin		$\mathrm{V}_{S S}-0.3$	$\mathrm{V}_{\text {REF }}+0.3$	V	5,6
DC Input Leakage		0	$\pm 3.0$	$\mu \mathrm{A}$	
Sampling Capacitor	3			pF	

## NOTES:

*An "LSB" as used here has a value of approximately 12 mV . (See Embedded Microcontrollers and Processors Handbook for A/D glossary of terms).

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. These values may be exceeded if pin current is limited to $\pm 2 \mathrm{~mA}$.
6. Applying voltages beyond these specifications will degrade the accuracy of other channels being converted.
7. All conversions performed with processor in IDLE mode.

## OTPROM SPECIFICATIONS

TARGETED OPERATING CONDITIONS DURING PROGRAMMING

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature During Programming	20	30	C
$\mathrm{V}_{\mathrm{CC}}$	Supply Voltage During Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\mathrm{REF}}$	Reference Supply Voltage During Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\mathrm{PP}}$	Programming Voltage	12.25	12.75	$\mathrm{~V}(2)$
$\mathrm{V}_{\mathrm{EA}}$	EA Pin Voltage	12.25	12.75	$\mathrm{~V}(2)$
FOSC	Oscillator Frequency during Auto and Slave   Mode Programming	6.0	8.0	MHz

NOTES:

1. $V_{C C}$ and $V_{\text {REF }}$ should nominally be at the same voltage during programming.
2. $V_{P P}$ and $V_{E A}$ must never exceed the maximum specification, or the device may be damaged.
3. $\mathrm{V}_{\mathrm{SS}}$ and ANGND should nominally be at the same potential (OV).
4. Load capacitance during Auto and Slave Mode programming $=150 \mathrm{pF}$.

## AC OTPROM PROGRAMMING CHARACTERISTICS (SLAVE MODE)

Symbol	Description	Min	Max	Units
TSHLL	Reset High to First $\overline{\text { PALE }}$ Low	1100		Tosc
TLLLH	PALE Pulse Width	50		Tosc
TAVLL	Address Setup Time	0		Tosc
TLLAX	Address Hold Time	100		Tosc
TPLDV	$\overline{\text { PROG Low to Word Dump Valid }}$		50	Tosc
TPHDX	Word Dump Data Hold		50	Tosc
T DVPL	Data Setup Time	0		Tosc
TPLDX	Data Hold Time	400		Tosc
TPLPH ${ }^{(1)}$	PROG Pulse Width	50		Tosc
TPHLL	PROG High to Next PALE Low	220		Tosc
TLHPL	$\overline{\text { PALE }}$ High to PROG Low	220		Tosc
TPHPL	$\overline{\text { PROG High to Next PROG Low }}$	220		Tosc
TPHIL	$\overline{\text { PROG High to AINC Low }}$	0		Tosc
$\mathrm{T}_{\text {ILIH }}$	$\overline{\text { AINC Pulse Width }}$	240		Tosc
TILVH	PVER Hold after AINC Low	50		Tosc
TILPL	$\overline{\text { AINC }}$ Low to $\overline{\text { PROG }}$ Low	170		Tosc
TPHVL	$\overline{\text { PROG }}$ High to $\overline{\text { PVER }}$ Valid		220	Tosc

NOTE:

1. This specification is for the Word Dump Mode. For programming pulses, use the Modified Quick Pulse Algorithm.

## DC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Description	Min	Max	Units
$\mathrm{I}_{\mathrm{PP}}$	$V_{\text {PP }}$ Supply Current (When Programming)		100	mA

## NOTE:

Do not apply $\mathrm{V}_{\mathrm{PP}}$ until $\mathrm{V}_{\mathrm{CC}}$ is stable and within specifications and the oscillator/clock has stabilized or the device may be damaged.

## EPROM PROGRAMMING WAVEFORMS

SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE


## SLAVE PROGRAMMING MODE IN WORD DUMP WITH AUTO INCREMENT



SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM WITH REPEATED PROG PULSE AND AUTO INCREMENT


## 8XL196KD ERRATA

None known.

## DATA SHEET REVISION HISTORY

This data sheet is valid for devices with a " $B$ " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

## 8XC196KR Data Sheet

19

# 8XC196KR/KQ/JR/JQ COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER 

## 87C196KR/KQ/JR/JQ-16 Kbytes of On-Chip OTPROM 80C196KR/KQ/JR/JQ—ROMless

■ High Performance CHMOS 16-Bit CPU

- 16 MHz Operating Frequency
- Up to 488 Bytes of On-Chip Register RAM
- 256 Bytes of Additional RAM (Code or Data RAM)
■ Register-Register Architecture
- 8 Channel/10-Bit A/D with Sample/Hold
- 37 Prioritized Interrupt Sources
- Up to Seven 8-Bit (56) I/O Ports

■ Full Duplex Serial I/O Port (SIO) and Full Duplex Synchronous Serial I/O Port (SSIO) with Dedicated Baud Rate Generators

- Interprocessor Communication Slave Port

■ Watchdog Timer

- High-Speed Peripheral Transaction Server (PTS)
- Two Programmable 16-Bit Timer/ Counters with Prescale, Cascading, Standard and Quadrature Counting Inputs
- 10 High-Speed Capture/Compare (EPA)

Registers

- Two Flexible 16-Bit Timer/Counters
- Quadrature Counting Inputs

■ Flexible 8-/16-Bit External Bus
■ Programmable Bus (HOLD/HLDA)
■ $1.75 \mu \mathrm{~s} 16 \times 16$ Multiply

- $3 \mu \mathrm{~s} 32 / 16$ Divide

■ Extended Temperature Available

- 68-Pin and 52-Pin PLCC Packages

Device	Pins/Package	OTPROM	Reg RAM	Internal RAM	I/O	EPA	SIO	SSIO	A/D
87C196KR	68 p PLCC	16 K	512	256	56	10	Y	Y	8
87C196KQ	68 p PLCC	12 K	384	128	56	10	Y	Y	8
87C196JR	52 p PLCC	16 K	512	256	41	6	Y	Y	6
87C196JQ	52 p PLCC	12 K	384	128	41	6	Y	Y	6
80C196KR	68 p PLCC	0	512	256	56	10	Y	Y	8
80C196KQ	68 p PLCC	0	384	128	56	10	Y	Y	8
80C196JR	52 p PLCC	0	512	256	41	6	Y	Y	6
80C196JQ	52 p PLCC	0	384	128	41	6	Y	Y	6

The 87C196KR/KQ/JR/JQ devices represent the 4th generation of MCS ${ }^{\oplus-96}$ products implemented on In tel's advanced 1 micron process technology. These products are members of the 80C196 family of devices and the instruction set is the same as that of the 80C196KC. The 87C196JR is a 52 -lead version of the 87C196KR device, while the 87C196KQ/JQ are memory scalars of the 87C196KR/JR.

The MCS-96® family members are all high-performance microcontrollers with a 16-bit CPU. The 87C196KR is composed of the high-speed ( 16 MHz ) core as well as the following peripherals: up to 16 Kbytes of on-chip EPROM, up to 512 bytes of Register RAM, 256 bytes of Code RAM, an eight-channel 10-bit analog to digital converter, an ( 8096 compatible) asynchronous/synchronous serial I/O port, an additional synchronous serial I/O port, 10 modularized multiplexed capture and compare channels (called the Event Processor Array), a sophisticated prioritized interrupt structure with the programmable Peripheral Transaction Server (PTS).

Additional register space is allocated for the EPA and can be windowed into the lower Register RAM area.
With the commercial (standard) temperature option, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. With the extended (Express) temperature range option, operational characteristics are guaranteed over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Unless otherwise noted, the specifications are the same for both options.

See the prefix identification for extended temperature designators.


Figure 1. Block Diagram

OFFFFFH 06000H	External Memory
$\begin{aligned} & \hline \text { 05FFFH } \\ & 02080 \mathrm{H} \end{aligned}$	Internal ROM/EPROM or External Memory
$\begin{aligned} & \hline \text { 0207FH } \\ & \text { 0205EH } \end{aligned}$	Reserved
$\begin{aligned} & \hline \text { O205DH } \\ & 02040 \mathrm{H} \end{aligned}$	PTS Vectors
$\begin{aligned} & \hline \text { 0203FH } \\ & 02030 \mathrm{H} \end{aligned}$	Interrupt Vectors (upper)
$\begin{aligned} & \hline \text { 0202FH } \\ & 02020 \mathrm{H} \end{aligned}$	ROM/EPROM   Security Key
0201FH	Reserved
0201BH	Reserved (must contain 20H)
0201AH	CCB1
02019H	Reserved (must contain 20H)


02018 H	CCBO
02017 H	Reserved
02014 H	Interrupt
02013 H	Vectors (lower)
02000 H	Internal SFRs
01 FFFH	External
$01 \mathrm{F00H}$	Memory
01 EFFH	Internal RAM
00500 H	External
004 FFH	Memory
00400 H	Register File
003 FFH	
00200 H	CPU SFR's
001 FFH	
18 H	
17 H	
00 H	

## NOTES:

1. Reserved memory locations must contain OFFH unless noted.
2. Reserved SFR bit locations must contain OH unless noted.
3. WARNING: Reserved memory locations must not be written or read. The contents and/or function of these locations may change with future revisions of the device. Therefore, a program that relies on one or more of these locations may not function properly.

## Process Information

The 8XC196KR/JR/KQ/JQ is manufactured on PX29.5, a CHMOS IV process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

Table 1. Prefix Identification

Device	Commercial   PLCC	Express   PLCC
80C196KR	N80C196KR	*TN80C196KR
80C196JR	N80C196JR	*TN80C196JR
80C196KQ	N80C196KQ	*TN80C196KQ
80C196JQ	N80C196JQ	${ }^{*}$ TN80C196JQ
87C196KR	N87C196KR	*TN87C196KR
87C196JR	N87C196JR	*TN87C196JR
87C196KQ	N87C196KQ	*TN87C196KQ
87C196JQ	N87C196JQ	*TN87C196JQ

*T $=$ Extended Temperature, no burn-in.
Table 2. Thermal Characteristics

Package	$\theta_{\mathbf{j a}}$	$\theta_{\mathbf{j c}}$
52-Lead PLCC	$35^{\circ} \mathrm{C} / \mathrm{W}$	$12^{\circ} \mathrm{C} / \mathrm{W}$
68 -Lead PLCC	$35^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operating conditions and application. See Intel Packaging Handbook, (Order Number 240800) for a description of Intel's thermal impedance test methodology.


NOTE:
*In earlier versions of documentation these pins were referred to as:
INTOUT $\rightarrow$ INTINTOUT
$\overline{B R E Q} \rightarrow \overline{\text { INTB }}$
BUSWIDTH $\rightarrow$ BUSW
$\overline{\mathrm{HOLD}} \rightarrow \overline{\mathrm{HLD}}$
Figure 2. Package Diagrams


NOTE:
*In earlier versions of documentation these pins were referred to as:
$\overline{\text { INTOUT }} \rightarrow$ INTINTOUT
$\overline{\mathrm{BREQ}} \rightarrow \overline{\text { NTB }}$
BUSWIDTH $\rightarrow$ BUSW
$\overline{\text { HOLD }} \rightarrow \overline{\text { HLD }}$
Figure 2. Package Diagrams (Continued)

PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {cc }}$	Main supply voltage ( +5 V ).
$\mathrm{V}_{\text {SS }}$	Digital circuit ground ( O V ). There are three $\mathrm{V}_{\text {SS }}$ pins, all of which MUST be connected.
$\mathrm{V}_{\text {REF }}$	Reference for the A/D converter ( +5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0. Must be connected for A/D and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $\mathrm{V}_{\mathrm{SS}}$.
$\mathrm{V}_{\mathrm{pp}}$	Programming voltage for the OTPROM parts. It should be +12.5 V for programming. It is also the timing pin for the return from powerdown circuit. If this function is not used, $\mathrm{V}_{\mathrm{PP}}$ must be tied to $\mathrm{V}_{\mathrm{CC}}$.
ACHO-ACH7/PORT0	Analog inputs to the on-chip A/D converter.
AINC	Input to automatically increment the address when in Programiming mode.
ALE//̄DV/P5.0	Address Latch Enable or Address Valid output, as selected by CCR. Both pin . options allow a latch to demultiplex the address/data bus. When the pin is $\overline{\mathrm{ADV}}$, it goes inactive (high) at the end of the bus cycle. When the pin is ALE, the address can be latched on the falling edge. ALE/ $\overline{A D V}$ is active only during external memory accesses. Can be used as standard I/O when not used as ALE.
$\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}} / \mathrm{P} 5.5$	Byte High Enable or Write High output, as selected by the CCR. $\overline{\text { BHE }}=0$ selects the bank of memory that is connected to the high byte of the data bus. If the WRH function is selected, the pin will go low if the bus cycle is writing to an odd memory location. $\overline{B H E} / \overline{\text { WRH }}$ is only valid during 16 -bit external memory cycles. Can be used as standard I/O when not used as BHE/WRH.
$\overline{\mathrm{BREQ}} / \mathrm{P} 2.3$	Bus Request output activated when the bus controller has a pending external memory cycle. Can be used as standard I/O when not used as BREQ.
BUSWIDTH/P5.7	Input for bus width selection. If CCR bit $1=1$ and CCR1 bit $2=1$, this pin dynamically controls the Bus width of the bus cycle in progress. If BUSWIDTH is low, an 8 -bit cycle occurs. If BUSWIDTH is high, a 16 -bit cycle occurs. Can be used as standard I/O when not used as BUSWIDTH.
CLKOUT/P2.7	Output of the internal clock generator. The frequency is $1 / 2$ the oscillator frequency. It has a $50 \%$ duty cycle. Can be used as standard I/O when not used as CLKOUT.
CPVER	Cumulative Program Verify output. Indicates when all EPROM locations program correctly.
$\overline{E A}$	Input for memory select (External Access). $\overline{E A}=1$ causes memory accesses from locations 2000 H to 5FFFH to be directed to on-chip EPROM/ROM. $\mathrm{EA}=0$ causes all memory accesses to be directed to off-chip memory. $\overline{E A}=+12.5 \mathrm{~V}$ causes execution to begin in the Programming Mode. $\overline{E A}$ is latched at reset.
$\begin{aligned} & \text { EPA0-7/PORT1 } \\ & \text { EPA8-9/P6.0-6.1 } \end{aligned}$	Event Processor Array pin for High Speed capture and compare. EPAO and EPA2 also function as T2CLK and T2DIR. Can be used as standard I/O when not used as EPA or T2 clock functions.
EXTINT/P2.2	A positive transition on this pin causes a maskable interrupt vector through memory location $203 C H$. May be used as standard I/O if not used as EXTINT.
HLDA/P2.6	Bus Hold Acknowledge output indicating release of the bus. Can be used as standard I/O when not used as HLDA.
HOLD/P2.5	Bus Hold input requesting control of the bus. Can be used as standard I/O when not used as HOLD.

PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
INST/P5.1	Output high during an external memory instruction fetch. INST is valid throughout the bus cycle. INST is low otherwise. Can be used as standard I/O when not used as INST.
INTOUT/P2.4	Interrupt output indicating that a pending interrupt requires use of the external bus. Can be used as standard I/O if not used as INTOUT.
NMI	A positive transition causes a non-maskable interrupt vector through memory location 203EH. If not used, this pin should be tied to $\mathrm{V}_{\mathrm{SS}}$. May be used by Intel Evaluation boards.
$\overline{\text { PACT }}$	Output that indicates when the device is currently programming itself. Not active during slave programming.
PALE	Input to latch the address during programming modes.
PMODE.0-PMODE. 3	Programming mode select inputs.
PORTO	8 -bit high impedance input-only port. Also used as A/D converter inputs. Port 0 pins should not be left floating. These pins are also used as inputs by EPROM parts to select the Programming Mode.
PORT1	8 -bit bidirectional standard I/O port. All of its pins are shared with the EPA.
PORT2	8 -bit bidirectional standard I/O port. All of its pins are shared with other functions (TxD, RXD, EXTINT, BREQ, INTOUT, HOLD, HLDA, CLKOUT).
$\begin{array}{\|l} \text { PORT3 } \\ \text { PORT4 } \\ \hline \end{array}$	8 -bit bidirectional standard I/O with open drain outputs. These pins are shared with the multiplexed address/data bus which uses strong internal pullups.
PORT5	8-bit bidirectional standard I/O port. All of its pins are shared with other functions (ALE/ $\overline{A D V}, \operatorname{INST}, \overline{W R} / \overline{W R L}, \overline{R D}$, SLPINT, $\bar{B} H E / \bar{W} H$, READY, BUSWIDTH).
PORT6	8-bit bidirectional standard I/O port. All of its pins are shared with other functions (EPA8, EPA9, T1CLK, T1DIR, SC0, SD0, SC1, SD1).
PROG	Programming mode enable input.
PVER	Program Verify output. Goes high after a byte/word is programmed to indicate a successful operation.
$\overline{\mathrm{RD}} / \mathrm{P} 5.3$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is low only during external memory reads. Can be used as standard I/O when not used as RD.
READY/P5.6	Ready input to lengthen external memory cycles. If READY $=1$, CPU operation continues in a normal manner. If READY $=0$ with the appropriate timings, the memory controller inserts wait states until the next positive transition of CLKOUT occurs with READY $=1$. Can be used as standard I/O when not used as READY.
RESET	Reset input to and output from the chip. Held low for at least 16 state times to reset the chip. The subsequent low to high transition resynchronizes CLKOUT and commences a 10 -state time sequence. Input high for normal operation. $\overline{\text { RESET }}$ has an internal pullup.
RXD/P2.1	Receive data input pin for the Serial I/O port. Can be used as standard I/O if not used as RXD.
$\overline{\text { SLPCS }}$	Slave port chip select input pin. Can be used as standard I/O if not used as SLPCS.
SLPINT/P5.4	Slave Port Interrupt Output pin. Can be used as standard I/O when not used as SLPINT.
$\begin{array}{\|l} \hline \text { SSIO/P6.4-6.7 } \\ \text { (SC0, SD0, SC1, SD1) } \end{array}$	Synchronous Serial I/O pins. SCO/SC1 serve as clock pins and SDO/SD1 are data pins. Can be used as standard I/O if not used for serial I/O.

PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
T1CLK/P6. 2	TIMER1 Clock input. The timer increments or decrements on both positive and negative edges. Can be used as standard I/O when not used as T1CLK.
T1DIR/P6.3	TIMER1 Direction input. The timer increments when this pin is high and decrements when this pin is low. Can be used as standard I/O when not used as T1DIR.
T2CLK/P1.0	TIMER2 Clock input. The timer increments or decrements on both positive and negative edges. Can be used as standard I/O when not used as T2CLK.
T2DIR/P1.2	TIMER2 Direction input. The timer increments when this pin is high and decrements when this pin is low. Can be used as standard I/O when not used as T2DIR.
TXD/P2.0	Transmit data output pins for the Serial I/O port. Can be used as standard I/O if not used as TXD.
$\overline{\text { WR/ } / \overline{W R L} / P 5.2 ~}$	Write and Write Low output to external memory. WR will go low for every external write. $\bar{W} L$ will go low only for external writes where an even byte is being written. $\overline{W R} / \overline{W R L}$ is active only during external memory writes. Can be used as standard I/O when not used as WR/WRL.
XTAL1	Input of the oscillator inverter and the internal clock generator. This pin should be used when using an external clock source.
XTAL2	Output of the oscillator inverter.

## ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS**

Storage Temperature $\ldots . . . . . .-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Voltage from $V_{P P}$ or $\overline{E A}$ to $V_{\text {Ss }}$ or ANGND $\ldots \ldots . . . . . .-0.5 \mathrm{~V}$ to +13.0 V
Voltage from Any Other Pin
to $\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{ANGND} . . . . . . . . . . .-0.5 \mathrm{~V}$ to +7.0 V This includes VPP on ROM and CPU devices.
Power Dissipation. $\qquad$ (based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This data sheet contains information on products in the sampling and initial production phases of development. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature under Bias Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Ambient Temperature under Bias Extended Temp.	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	V
$\mathrm{~F}_{\text {OSC }}$	Oscillator Frequency	4	16	$\mathrm{MHz}^{(4)}$

## NOTE:

ANGND and $\mathrm{V}_{\text {SS }}$ should be nominally at the same potential.

DC CHARACTERISTICS (Over Specified Operating Conditions) ${ }^{(9)}$

Symbol	Parameter	Min	Typ(6)	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage   (All Pins)	-0.5 V		$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage   (Outputs Configured   as Push/Pull)			0.3   0.45   1.5	V   V   V	$\mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A}(3,5)$   $\mathrm{I}_{\mathrm{LL}}=3.2 \mathrm{~mA}$   $\mathrm{I}_{\mathrm{OL}}=7.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage   (Outputs Configured   as Push/Pull)	$\mathrm{V}_{\mathrm{CC}}-0.3$   $\mathrm{~V}_{\mathrm{CC}}-0.7$   $\mathrm{~V}_{\mathrm{CC}}-1.5$			V   V   $\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}(3,5,8)$   $\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$   $\mathrm{I}_{\mathrm{OH}}=-7.0 \mathrm{~mA}$	
$\mathrm{~V}_{\mathrm{OH} 2}$	Output High Voltage   in RESET	$\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$			V	$\mathrm{I}_{\mathrm{OH}}=-15 \mu \mathrm{~A}(1,7)$
$\mathrm{I}_{\mathrm{LI}}$	Input Leakage Current   (Std. Inputs)			$\pm 10$	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}(2)$
$\mathrm{I}_{\mathrm{LI} 1}$	Input Leakage Current   (Port 0-A/D Inputs)		$\pm 1$	$\pm 3$	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{REF}}$
$\mathrm{I}_{\mathrm{IH}}$	Input High Current   (NMI)			+175	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}(10)$

DC CHARACTERISTICS (Over Specified Operating Conditions) ${ }^{(9)}$ (Continued)

Symbol	Parameter	Min	Typ(6)	Max	Units	Test Conditions
ICC	V CC Supply Current		60	75	mA	$\begin{aligned} & \text { XTAL1 }=16 \mathrm{MHz}, \\ & V_{C C}=V_{P P}=V_{\text {REF }}=5.5 \mathrm{~V} \end{aligned}$ (While Device in Reset)
$\mathrm{I}_{\text {REF }}$	A/D Reference Supply Current		2	5	mA	
IIDLE	Idle Mode Current		15	30	mA	$\begin{aligned} & \text { XTAL1 }=16 \mathrm{MHz}, \\ & V_{C C}=V_{P P}=V_{\text {REF }}=5.5 \mathrm{~V} \end{aligned}$
IPD	Powerdown Mode Current(6)		50	TBD	$\mu \mathrm{A}$	$V_{C C}=V_{P P}=V_{\text {REF }}=5.5 \mathrm{~V}$
R RST	Reset Pullup Resistor	6K		65K	$\Omega$	
$\mathrm{C}_{S}$	Pin Capacitance (Any Pin to $\mathrm{V}_{\mathrm{SS}}$ )			10	pF	$\mathrm{F}_{\text {TEST }}=1.0 \mathrm{MHz}$
RWPU	Weak Pullup Resistance (Approx)		150K		$\Omega$	(6)

## NOTES:

1. All BD (Bidirectional) pins except INST and CLKOUT. BD pins include Port1, Port2, Port3, Port4, Port5 (as a port), and Port6.

2. All Bidirectional I/O pins when configured as Outputs (Push/Pull).
3. Device is Static and should operate below 1 Hz , but only tested down to 4 MHz .
4. Maximum $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{IOH}_{\mathrm{OH}}$ currents per pin will be characterized and published at a later date.
5. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and $V_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
6. Violating these specifications in reset may cause the device to enter test modes (P5.4 and P2.6).
7. This specification applies to P3/4 only when used as an address bus supplying the address.
8. All voltages are referenced relative to $V_{S S}$. When used, $V_{S S}$ refers to the device pin.
9. Worst case is at upper limit of test conditions.


270912-4
NOTES:
Icc Max $=3.88 \times$ FREQ +13.43
lidle $M a x=1.65 \times$ FREQ +2.2

AC CHARACTERISTICS (Over Specified Operating Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The system must meet these specifications to work with the 87C196KR/KQ/JR/JQ:

Symbol	Parameter	Min	Max	Units
TAVYV	Address Valid to READY Setup		2 Tosc -75	ns(2)
TLLYV	ALE Low to READY Setup		Tosc-70	$\mathrm{ns}{ }^{(2)}$
TYLYH	Non READY Time	No Upper Limit		ns
TCLYX	READY Hold after CLKOUT Low	0	Tosc-30	$\mathrm{ns}(1,2)$
TLLYX	READY Hold after ALE Low	Tosc-15	2 Tosc-40.	$\mathrm{ns}(1,2)$
TAVGV	Address Valid to Buswidth Setup		2 Tosc $^{\text {- }} 75$	$\mathrm{ns}{ }^{(2)}$
TLLGV	ALE Low to Buswidth Setup		Tosc-60	$\mathrm{ns}{ }^{(2)}$
TCLGX	Buswidth Hold after CLKOUT Low	0		$\mathrm{ns}{ }^{(2)}$
TAVDV	Address Valid to Input Data Valid		3 Tosc -55	ns
TrLDV	$\overline{\text { RD }}$ Active to Input Data Valid		Tosc-22	ns
TCLDV	CLKOUT Low to Input Data Valid		Tosc-50	ns
T ${ }_{\text {RHDZ }}$	End of $\overline{\mathrm{RD}}$ to Input Data Float		Tosc	ns
$\mathrm{T}_{\text {RXDX }}$	Data Hold after $\overline{\mathrm{RD}}$ Inactive	0		ns

## NOTE:

1. If max is exceeded, additional wait states will occur.
2. Does not apply to JR/JQ.

AC CHARACTERISTICS (Over Specified Operating Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The 87C196KR/KQ/JR/JQ will meet these specifications.

Symbol	Parameter	Min	Max	Units
FXTAL	Oscillator Frequency	4.0	16.0	MHz ${ }^{(1)}$
Tosc	Oscillator Period (1/Fxtal)	62.5	250	ns
$\mathrm{T}_{\mathrm{XHCH}}$	XTAL1 High to CLKOUT High or Low	20	110	$\mathrm{ns}{ }^{(2)}$
TCLCL	CLKOUT Period	2 Tosc		ns
$\mathrm{T}_{\text {CHCL }}$	CLKOUT High Period	Tosc-10	Tosc +15	ns
TCLLH	CLKOUT Falling Edge to ALE Rising	-10	15	ns
TLLCH	ALE/ $\overline{\text { ADV }}$ Falling Edge to CLKOUT Rising	-20	15	ns
TLHLH	ALE/ $\overline{\text { ADV }}$ Cycle Time	4 Tosc		ns ${ }^{(5)}$
TLHLL	ALE/ADV High Period	Tosc-10	Tosc +10	ns
$\mathrm{T}_{\text {AVLL }}$	Address Setup to ALE/ $\overline{\text { ADV }}$ Falling Edge	Tosc-15		ns
TLLAX	Address Hold after ALE/ $\overline{\text { ADV }}$ Falling Edge	Tosc ${ }^{-40}$		ns
TLLRL	ALE/ $\overline{\text { ADV }}$ Falling Edge to $\overline{R D}$ Falling Edge	Tosc ${ }^{-30}$		ns
TrLCL	$\overline{\mathrm{RD}}$ Low to CLKOUT Falling Edge	4	30	ns
TRLRH	$\overline{\mathrm{RD}}$ Low Period	Tosc ${ }^{-5}$		ns (5)
$\mathrm{T}_{\text {RHLH }}$	$\overline{\text { RD Rising Edge to }}$ ALE/ADV Rising Edge	Tosc	Tosc ${ }^{+25}$	$\mathrm{ns}{ }^{(3)}$
TrLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		5	ns
TLLWL	ALE/ $\overline{\text { ADV Falling Edge }}$ to $\overline{W R}$ Falling Edge	Tosc-10		ns
TCLWL	CLKOUT Low to WR Falling Edge	-5	25	ns
TQVWH	Data Stable to WR Rising Edge	Tosc-23		ns
TCHWH	CLKOUT High to WR Rising Edge	-10	15	ns
TWLWH	$\overline{\text { WR Low Period }}$	Tosc-30		ns(5)
$\mathrm{T}_{\text {WHQX }}$	Data Hold after WR Rising Edge	Tosc-25		ns
TWHLH	$\overline{\text { WR Rising Edge to ALE/ } \overline{\text { ADV }}}$ Rising Edge	Tosc ${ }^{-10}$	Tosc ${ }^{+15}$	$\mathrm{ns}{ }^{(3)}$
TwHBX	BHE, INST Hold after WR Rising Edge	Tosc-10		ns ${ }^{(6)}$
T Whax	AD8-15 Hold after WR Rising Edge	Tosc-30(4)		ns
T ${ }_{\text {RHBX }}$	$\overline{B H E}$, INST Hold after $\overline{\text { RD }}$ Rising Edge	Tosc-10		ns ${ }^{(6)}$
$\mathrm{T}_{\text {RHAX }}$	AD8-15 Hold after $\overline{\text { RD Rising Edge }}$	Tosc ${ }^{-30(4)}$		ns
$\mathrm{T}_{\text {BVLL }}$	BHE Valid to ALE Falling Edge	Tosc - 15		ns(6)

## NOTES:

1. Testing performed at 4.0 MHz , however, the device is static by design and will typically operate below 1 Hz .
2. Typical specifications, not guaranteed.
3. Assuming back-to-back bus cycles.
4. 8 -bit bus only.
5. If wait states are used, add 2 TOSC $\times n$, where $n=$ number of wait states.
6. Does not apply to JR/JQ.

System Bus Timing


## Buswidth Timings


$\overline{\text { HOLD }} / \overline{\text { HLDA }}$ Timings

Symbol	Description	Min	Max	Units	Notes
$T_{\text {HVCH }}$	HOLD Setup	65		ns	$(1,2)$
$T_{\text {CLHAL }}$	CLKOUT Low to $\overline{\text { HLDA Low }}$	-15	15	ns	$(2)$
$T_{\text {CLBRL }}$	CLKOUT Low to $\overline{\text { BREQ Low }}$	-15	15	ns	$(2)$
$\mathrm{T}_{\text {AZHAL }}$	$\overline{\text { HLDA }}$ Low to Address Float		25	ns	$(2)$
$\mathrm{T}_{\text {BZHAL }}$	$\overline{\text { HLDA Low to } \overline{\text { BHE, INST, }} \overline{\text { RD, }} \overline{\text { WR }} \text { Weakly Driven }}$		25	ns	$(2)$
$\mathrm{T}_{\text {CLHAH }}$	CLKOUT Low to $\overline{\text { HLDA }}$ High	-15	15	ns	$(2)$
$\mathrm{T}_{\text {CLBRH }}$	CLKOUT Low to $\overline{\text { BREQ High }}$	-15	15	ns	$(2)$
$\mathrm{T}_{\text {HAHAX }}$	HLDA High to Address No Longer Float	-15		ns	$(2)$
$T_{\text {HAHBV }}$	HLDA High to BHE, INST, RD, WR Valid	-10		ns	$(2)$
$T_{\text {CLLH }}$	CLKOUT Low to ALE High	-10	15	ns	

## NOTE:

1. To guarantee recognition at next clock.
2. Does not apply to JR/JQ.

## HOLD LATENCY

	Max
Internal Access	1.5 States
16-Bit External Execution	2.5 States
8-Bit External Execution	4.5 States

DC SPECIFICATIONS IN HOLD

Parameter	Min	Max	Units
Weak Pullups on $\overline{\text { DDV, }} \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{WRL}}, \overline{\mathrm{BHE}}$	50 K	250 K	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
Weak Pulldowns on ALE, INST	10 K	50 K	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$



## EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 / T_{\text {XLXL }}$	Oscillator Frequency	4.0	16	MHz
$T_{\text {XLXL }}$	Oscillator Period (Tosc)	62.5	250	ns
$T_{\text {XHXX }}$	High Time	$0.35 \mathrm{~T}_{\mathrm{OSC}}$	$0.65 \mathrm{~T}_{\mathrm{OSC}}$	ns
$\mathrm{T}_{\mathrm{XLXX}}$	Low Time	$0.35 \mathrm{~T}_{\mathrm{OSC}}$	$0.65 \mathrm{~T}_{\mathrm{OSC}}$	ns
$\mathrm{T}_{\mathrm{XLXH}}$	Rise Time		10	ns
$\mathrm{~T}_{\mathrm{XHXL}}$	Fall Time		10	ns

## EXTERNAL CLOCK DRIVE WAVEFORMS



270912-8

## EXTERNAL CRYSTAL CONNECTIONS



## NOTE:

Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and $\mathrm{V}_{\mathrm{SS}}$. When using quartz crystals, typically $\mathrm{C} 1 \approx 22 \mathrm{pF}$ and $\mathrm{C} 2 \approx$ 22 pF . When using ceramic resonators, consult manufacturer for recommended circuitry.

EXTERNAL CLOCK CONNECTIONS


AC TESTING INPUT, OUTPUT WAVEFORMS


NOTE:
AC Testing Inputs are driven at 3.5 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for logic " 0 ".

FLOAT WAVEFORMS
NOTE:
For Timing Purposes a Port Pin is no longer floating
when a 150 mV change from Load Voltage Occurs and
Begins to Float when a 150 mV change from the Load-
ing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}} \leq 15 \mathrm{~mA}$.

## EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by " T " for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

## Conditions:

H-High
L— Low
V - Valid
X— No Longer Valid
Z—Floating

## Signals:

$$
\begin{array}{ll}
\text { A- Address } & \text { L-ALE/ } \overline{\text { ADV }} \\
\mathrm{B}-\overline{\mathrm{BHE}} & \mathrm{Q}-\mathrm{Data} \text { Out } \\
\mathrm{BR}-\overline{\mathrm{BREQ}} & \mathrm{R}-\overline{\mathrm{RD}} \\
\mathrm{C}-\mathrm{CLKOUT} & \mathrm{~W}-\overline{\mathrm{WR}} / \overline{\mathrm{WRH}} / \overline{\mathrm{WRI}} \\
\mathrm{D}-\mathrm{DATA} & \mathrm{X}-\mathrm{XTAL1} \\
\text { G- Buswidth } & \text { Y-READY } \\
\mathrm{H}-\overline{\mathrm{HOLD}} & \\
\text { HA- } \overline{\mathrm{HLDA}} &
\end{array}
$$

## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE (MODE 0)

SERIAL PORT TIMING-SHIFT REGISTER MODE (Over Specified Operating Conditions)
Test Conditions: Load Capacitance $=100 \mathrm{pF}$

Symbol	Parameter	Min	Max	Units
TXLXL	Serial Port Clock Period	8 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge	4 Tosc $^{-50}$	4 Tosc +50	ns
TQVXH	Output Data Setup to Clock Rising Edge	3 Tosc		ns
$\mathrm{T}_{\text {XHQX }}$	Output Data Hold after Clock Rising Edge	2 Tosc $^{-50}$		ns
TXHQV	Next Output Data Valid after Clock Rising Edge		2 Tosc +50	ns
T ${ }_{\text {DVXH }}$	Input Data Setup to Clock Rising Edge	$2 \mathrm{Tosc}^{+200}$		ns
T ${ }_{\text {XHDX }}$	Input Data Hold after Clock Rising Edge	0		ns
TXHQZ	Last Clock Rising to Output Float		5 Tosc	ns

## WAVEFORM—SERIAL PORT—SHIFT REGISTER MODE (MODE 0)

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE


## A TO D

The speed of the A/D converter in the 10-bit or 8-bit modes can be adjusted by setting the AD__TIME special function register to the appropriate value. The AD__TIME register only programs the speed at which the conversions are performed, not the speed it can convert correctly.

The converter is ratiometric, so absolute accuracy is dependent on the accuracy and stability of $V_{\text {REF }}$.

## A/D CONVERTER SPECIFICATION

After a conversion is started, the device is placed in the IDLE mode until the conversion is complete. Testing is performed at $\mathrm{V}_{\mathrm{REF}}=5.12 \mathrm{~V}$.

There is an AD__TEST register that allows for conversion on ANGND and $V_{\text {REF }}$ as well as zero offset adjustment. The Absolute Error listed is WITHOUT doing any adjustments.

10-BIT A/D OPERATING CONDITIONS(1)

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Extended Temp.	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	$5.50(2)$	V
$\mathrm{T}_{\text {SAM }}$	Sample Time	2.0		$\mu \mathrm{~s}(3)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	16.5	19.5	$\mu \mathrm{~s}(3)$
FOSC	Oscillator Frequency	4	16	MHz

## NOTES:

1. ANGND and $V_{S S}$ should nominally be at the same potential.
2. $V_{\text {REF }}$ must not exceed $V_{C C}$ by more than +0.5 V .
3. The value of AD__TIME is selected to meet these specifications.

## 10-BIT MODE A/D CHARACTERISTICS (Over Specified Operating Conditions)

Parameter	Typical (1)	Min	Max	Units*
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Level Bits
Absolute Error		0	$\pm 3$	LSBs
Full Scale Error	$0.25 \pm 0.5$			LSBs
Zero Offset Error	$0.25 \pm 0.5$			LSBs
Non-Linearity	$1.0 \pm 2.0$		$\pm 3$	LSBs
Differential Non-Linearity		$>-0.5$	+0.5	LSBs
Channel-to-Channel Matching	$\pm 0.1$	0	$\pm 1$	LSBs
Repeatability	$\pm 0.25$	0		LSBs
Temperature Coefficients: Offset Fullscale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			LSB/C   LSB/C   LSB/C
Off Isolation		-60		dB( 2,3 )
Feedthrough	-60			dB (2)
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB(2)
Input Series Resistance		750	1.2K	$\Omega^{(4)}$
Voltage on Analog Input Pin		ANGND - 0.5	$\mathrm{V}_{\text {REF }}+0.5$	V
Sampling Capacitor	2			pF
DC Input Leakage		0	$\pm 3$	$\mu \mathrm{A}$

## NOTES:

*An "LSB", as used here, has a value of approximately 5 mV . (See Embedded Microcontrollers and Processors Handbook for A/D glossary of terms).

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make Guaranteed.
4. Resistance from device pin, through internal multiplexer, to sample capacitor.

ADVANCE UNPORMATROON

8-BIT A/D OPERATING CONDITIONS(1)

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Commercial Temp.	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Extended Temp.	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	$5.50(2)$	V
$\mathrm{T}_{\text {SAM }}$	Sample Time	2.0		$\mu \mathrm{~s}(3)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	16.5	19.5	$\mu \mathrm{~s}(3)$
FOSC	Oscillator Frequency	4	16	MHz

## NOTES:

1. ANGND and $V_{\text {SS }}$ should nominally be at the same potential.
2. $\mathrm{V}_{\text {REF }}$ must not exceed $\mathrm{V}_{\mathrm{CC}}$ by more than +0.5 V .
3. The value of AD_TIME is selected to meet these specifications.

## 8-BIT MODE A/D CHARACTERISTICS (Over Specified Operating Conditions)

The 8 -bit mode trades off resolution for a faster conversion time. The AD_TIME register must be used when performing an 8 -bit conversion.

Parameter	Typ(1)	Minimum	Maximum	Units ${ }^{*}$	Notes
Resolution		256   8	256   8	Levels   Bits	
Absolute Error		0	$\pm 2$	LSBs	
Full Scale Error	$\pm 0.5$			LSBs	
Zero Offset Error	$\pm 0.5$			LSBs	
Non-Linearity		0	$\pm 2$	LSBs	
Differential Non-Linearity Error		$>-1$	+1	LSBs	
Channel-to-Channel Matching			$\pm 1$	LSBs	
Repeatability	$\pm 0.25$			LSBs	
Temperature Coefficients:   Offset   Full Scale   Differential Non-Linearity	0.003				$\mathrm{LSB} /{ }^{\circ} \mathrm{C}$
Off Isolation	0.003				
Feedthrough		-60		$\mathrm{LB}(2,3)$	
VCC Power Supply Rejection	-60			$\mathrm{~dB}(2)$	
Input Series Resistance		750		$\mathrm{~dB}(2)$	
Voltage on Analog Input Pin		$\mathrm{ANGND}-0.5$	$\mathrm{~V}_{\text {REF }}+0.5$	V	
Sampling Capacitor	2			V	
DC Input Leakage		0		$\pm 3$	$\mu \mathrm{CA}$

## NOTES:

*An "LSB", as used here, has a value of approximately 20 mV .

1. Typical values are expected for most devices at $25^{\circ} \mathrm{C}$.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make Guaranteed.
4. Resistance from device pin, through internal multiplexer, to sample capacitor.

OTPROM PROGRAMMING
OPERATING CONDITIONS DURING PROGRAMMING(3)

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature during Programming	20	30	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Supply Voltage during Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\text {REF }}$	Reference Supply Voltage during Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\mathrm{PP}}$	Programming Voltage	12.25	12.75	$\mathrm{~V}(2)$
$\mathrm{V}_{\mathrm{EA}}$	$\overline{\mathrm{EA}}$ Pin Voltage	12.25	12.75	$\mathrm{~V}(2)$
FOSC	Oscillator Frequency during Auto and   Slave Mode Programming	6.0	8.0	MHz
FOSC	Oscillator Frequency during   Run-Time Programming	6.0	12.0	MHz

## NOTES:

1. $V_{C C}$ and $V_{\text {REF }}$ should nominally be at the same voltage during programming.
2. $V_{P P}$ and $V_{E A}$ must never exceed the maximum specification, or the device may be damaged.
3. $\mathrm{V}_{\mathrm{SS}}$ and ANGND should nominally be at the same potential (OV).

## AC OTPROM PROGRAMMING CHARACTERISTICS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\text {AVLL }}$	Address Setup Time	0		Tosc
TLLAX	Address Hold Time	100		Tosc
TDVPL	Data Setup Time	0		Tosc
TPLDX	Data Hold Time	400		Tosc
TLLLH	PALE Pulse Width	50		Tosc
TPLPH	PROG Pulse Width(1)	50		Tosc
TLHPL	$\overline{\text { PALE }}$ High to PROG Low	220		Tosc
TPHLL	$\overline{\text { PROG }}$ High to Next $\overline{\text { PALE }}$ Low	220		Tosc
TPHDX	Word Dump Hold Time		50	Tosc
TPHPL	PROG High to Next PROG Low	220		Tosc
TLHPL	PALE High to PROG Low	220		Tosc
TPLDV	PROG Low to Word Dump Valid		50	Tosc
TSHLL	RESET High to First $\overline{\text { PALE }}$ Low	1100		Tosc
TPHIL	PROG High to AINC Low	0		Tosc
TILIH	$\overline{\text { AINC Pulse Width }}$	240		Tosc
TILVH	PVER Hold after AINC Low	50		Tosc
TILPL	$\overline{\text { AINC Low to PROG Low }}$	170		Tosc
TPHVL	$\overline{\text { PROG High to } \overline{\text { PVER }} \text { Valid }}$		220	Tosc

NOTE:

1. This specification is for the word dump mode. For programming pulses use $100 \mu \mathrm{~s}$.

DC OTPROM PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Min	Max	Units
$\mathrm{I}_{\mathrm{PP}}$	$\mathrm{V}_{\mathrm{PP}}$ Programming Supply Current		100	mA

NOTE:
Do not apply $\mathrm{V}_{\mathrm{PP}}$ until $\mathrm{V}_{\mathrm{CC}}$ is stable and within specifications and the oscillator/clock has stabilized or the device may be damaged.

## OTPROM PROGRAMMING WAVEFORMS

SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE


SLAVE PROGRAMMING MODE IN WORD DUMP OR DATA VERIFY MODE WITH AUTO INCREMENT


SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM MODE WITH REPEATED PROG PULSE AND AUTO INCREMENT


## 87C196KR/87C196JR ERRATA

## 1. $\mathrm{I}_{\mathrm{HH} 2}$

Current devices do not meet the test condition for $\mathrm{V}_{\mathrm{OH} 2}$ of $-15 \mu \mathrm{~A}$. Instead the devices are guaranteed to source a minimum of $-6 \mu \mathrm{~A}$.

## 87C196KR/87C196JR DESIGN CONSIDERATIONS

## 1. EPA Timers

Special care must be taken when resetting/writing the EPA timers. This is more of a software technique than a device errata. For example: The EPA timers do not generate a "time valid" signal when the counter is either reset or written. This means that if a compare event is programmed in the EPA/Compare channel for a value of " 0000 H " (when reset) or equal to a written value, the compared event will NOT happen. However, if the timers are allowed to increment/decrement to that value, that compare event WILL occur.
2. Port 6.4, 6.5, 6.6, 6.7

The user is not allowed to modify the P6_REG register when these pins are configured as Special Function P6__MODE.x $=1$ ). During software manipulation of these registers, it is a good practice to first change the P6_MODE register, then modify the P6__REG register when switching from SF to LSIO.

## 3. P2.7 (CLKOUT)

Port 2.7 (CLKOUT) does not operate in open drain mode.
4. Current versions of the 8XC196KQ/JQ are fabricated with 16K of internal OTPROM, 512 bytes of register RAM, and 256 bytes of internal RAM. The memory map of the 8 XC196KQ/JQ is identical to the 8XC196KR/JR. However, the extra memory locations are not tested and should not be used. Intel may disable this extra memory on future versions of the 8XC196KQ/JQ. Any software that relies on reading or writing these locations may not function correctly on future devices.
Two steps the user should always incorporate to insure future compatibility are:
A) The program must contain a jump to a location greater than 16 K before the 12 K boundary is reached. This is necessary only if greater than 12 K of program memory is required and portions of the program executes from internal OTPROM.
B) Use program memory from 12 K to 16 K only if $\overline{E A}$ is tied to ground. Never use data memory from 180 H to 1 FFH or from 480 H to 4 FFH .

## 52-LEAD DEVICES

Intel offers a 52-lead version of the 87C196KR device: the 87C196JR and 87C196JQ devices.

It is important to point out some functionality differences because of future devices or to remain software consistent with the 68 -lead device. Because of the absence of pins on the 52 -lead device some functions are not supported.

52-Lead Unsupported Functions:
Analog Channels 0 and 1
INST Pin Functionality
SLPINT Pin Support
HLD/HLDA Functionality
External Clocking/Direction of Timer1
WRH or BHE Functions
Dynamic Buswidth
Dynamic Wait State Control
The following is a list of recommended practices when using the 52 -lead device:
(1) External Memory. Use an 8 -bit bus mode only. There is neither a WRH or BUSWIDTH pin. The bus cannot dynamically switch from 8 - to 16 -bit or vice versa. Set the CCB bytes to an 8-bit only mode, using WR function only.
(2) Wait State Control. Use the CCB bytes to configure the maximum number of wait states. If the READY pin is selected to be a system function, the device will lockup waiting for READY. If the READY pin is configured as LSIO (default after $\overline{\text { RESET }}$ ), the internal logic will receive a logic " 0 " level and insert the CCB defined number of wait states in the bus cycle. DON'T USE IRC = "111".
(3) NMI Support. The NMI is not bonded out. Make the NMI vector at location 203Eh vector to a Return instruction. This is for glitch safety protection only.
(4) Auto-Programming Mode. The 52-lead device will ONLY support the 16 -bit zero wait state bus during auto-programming.
(5) EPA4 through EPA7. Since the JR and JQ devices use the KR silicon, these functions are in the device, just not bonded out. A programmer can use these as compare only channels or for other functions like software timer, start and $A / D$, or reset timers.
(6) Slave Port Support. The Slave port can still be used on the 52 -lead devices. The only function removed is the SLPINT output function.
(7) Port Functions. Some port pins have been removed. P5.7, P5.6, P5.5, P5.1, P6.2, P6.3, P1.4 through P1.7, P2.3, P2.5, P0.0 and P0.1. The Px_REG, Px_MODE, and Px_DIR registers can still be updated and read. The programmer should not use the corresponding bits associated with the removed port pins to conditionally branch in software. Treat these bits as RESERVED.
Additionally, these port pins should be setup internally by software as follows:

1. Written to Px_REG as " 1 " or " 0 ".
2. Configured as Push/Pull, Px_DIR as " 0 ".
3. Configured as LSIO.

This configuration will effectively strap the pin either high or low. DO NOT Configure as Open Drain output ' 1 '", or as an Input pin. This device is CMOS.

## REVISION HISTORY

This data sheet (270912-003) supercedes 270912002 and is valid for devices with a " C " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify that you have the latest version before finalizing a design or ordering devices.

1. Removed the following errata:

Slave Programming Mode
EPA_MASK1/EPA_PEND1
BMOVI
PTS and Other Interrupts
Serial Port Framing Error
Remap Mode on EPA3
A/D Abort
PTS/NMI Conflict
Data Output Register Cleared
Divide Error during HOLD/READY
SIO Mode 0
EPAIPV Multiplied by Two
(These were fixed on the C-step)
2. Moved the following from Errata to Design Considerations:
EPA Timers
Port 6.4, 6.5, 6.6, 6.7 (and reworded)
P2.7 (CLKOUT)
Oscillator Noise Sensitivity
3. Added New Errata:
${ }^{1} \mathrm{OH} 2$ (also existed on A-step)
4. Added SLPCS to Package Diagrams and Pin Descriptions
5. Added $\mathrm{T}_{\mathrm{BVLL}}$
6. Added $\mathrm{I}_{\mathrm{IH}}$ for NMI
7. Added notes to $A C$ Characteristics identifying specifications that do not apply to JR/JQ
8. Changed TCLLH from -5 ns to -10 ns under HOLD/HLDA Timings
9. Changed $T_{\text {HVCH }}$ from 55 ns to 65 ns
10. Changed $T_{A Z H A L}$ from 10 ns to 25 ns
11. Changed $T_{B Z H A L}$ from 10 ns to 25 ns
12. Changed ICC (max) from 70 mA to 75 mA
13. Changed ICC formula from ( $3.88 \times$ Freq +8.43 ) to (3.88X Freq +13.43 )
14. Changed $\mathrm{V}_{\mathrm{OH} 2}$ test point from $-50 \mu \mathrm{~A}$ to $-15 \mu \mathrm{~A}$
15. Changed Note 1 in DC parameters
16. Changed External Clock min/max, high/low times from percentage to ratio of TOSC
17. Removed NMI from standard inputs (Note 2 under DC Characteristics)
18. Removed $\mathrm{V}_{\mathrm{OL} 1} \mathrm{spec}$
19. Removed TCLBV
20. Added JQ/KQ design consideration

Data sheet 270912-002 supercedes 270912-001 and is valid for devices with an " A " at the end of the topside tracking number.

1. Removed:

CPU features descriptions
Peripheral features descriptions
SFR Operation (placed in Quick Reference)
SFR Maps (placed in Quick Reference)
SFR Bit Maps (placed in Quick Reference)
IIL in DC Characteristics
Tclhal Max and Tclbrh Max
Incorrect Sample and Convert time table from 8 -bit A/D
2. Added:

Express options
Bullets on front page
Memory Map
Process Information
Prefix Identification
Thermal Characteristics
Programming functions to pin-out and pin descriptions
Ambient Temperature under Bias to Absolute Maximum Ratings
Note relating to Power Dissipation in Absolute Maximum Rating
Notes 8 and 9 to DC Characteristics
TCLBV to AC Characteristics
Title to Buswidth timing diagram
TYLYH to Buswidth timing diagram
Hold latency spec
External Crystal Connection diagram
External Clock Connection diagram
10-bit A/D Operating Conditions Table
Title to 10-bit and 8-bit mode A/D Characteristics
Voltage on Analog Input Pin specification
Sampling Capacitor typical value
Note 4 to 10-bit and 8-bit A/D Specifications
8 -bit A/D Operating Conditions Table

Off Isolation, Feedthrough, $\mathrm{V}_{\mathrm{CC}}$ Power Supply Rejection, Input Series Resistance, Voltage on Analog Input Pin, Sampling Capacitor and DC Input Leakage to 8 -bit A/D specifications
Notes 1, 2 and 3 to EPROM Programming Conditions
New Errata (Items 10 to 16)
3. Changed:

Title of data sheet from " $8 \mathrm{XC} 196 \mathrm{KR} / \mathrm{KQ} / \mathrm{JR} / \mathrm{JQ}$ 16-BIT HIGH PERFORMANCE CHMOS MICROCONTROLLER" to " 8 XC196KR/KQ/JR/JQ COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER"
Several bullets on cover sheet
Register RAM numbers in table on front page to match device
Operating conditions to tabular format
Note 1 in DC Characteristics to include Ports 3 and 4
0 to $\mathrm{V}_{\mathrm{SS}}$ for $\mathrm{I}_{\mathrm{LI}}$ and $\mathrm{I}_{\mathrm{LI} 1}$ in DC Characteristics

Format of symbols in AC Characteristics
$T_{\text {CLCH }}$ to $T_{\text {CLLH }}$ in System Bus Timing diagram
$T_{\text {XLXL }}$ Max from 286 ns to 250 ns
$T_{\text {XHXX }}$ from TOSC - 44 ns to $35 \% / 65 \%$
TXLXX from Tosc - 44 ns to $35 \% / 65 \%$
$\mathrm{T}_{\text {XLXH }}$ from $\mathrm{T}_{\mathrm{OSC}}-50 \mathrm{~ns}$ to 10 ns
$T_{\text {XHXL }}$ from TOSC -50 ns to 10 ns
AC Testing Input, Output Waveform
Introductory text on A to D Characteristics and Converter Specification
$D C$ Input Leakage from $\pm 1 \mu \mathrm{~A}$ to $\pm 3 \mu \mathrm{~A}$ in $\mathrm{A} / \mathrm{D}$ Specifications.
Power Dissipation from 0.5W to 1.0 W .
Wording in Float Waveform from 100 mV to 150 mV .
EPROM Programming Characteristics to Operating Conditions table.

Data sheet (270912-001) is valid for devices with an " A " at the end of the topside tracking number. This is the first version of the data sheet.

## 8XC196NT/8XC196NQ and 8XC196KT Data Sheets

## 8XC196NT/8XC196NQ CHMOS MICROCONTROLLER WITH 1 MBYTE LINEAR ADDRESS SPACE

- High Performance CHMOS 16-Bit CPU
- Up to 32 Kbytes of On-Chip EPROM
- Up to 1 Kbyte of On-Chip Register RAM
- Up to 512 Bytes of Additional RAM (Internal RAM)
- Register-Register Architecture
- 4 Channel/10-Bit A/D with Sample/Hold
- 37 Prioritized Interrupt Sources
- Up to Seven 8-Bit (56) I/O Ports
- Full Duplex Serial I/O Port
- Dedicated Baud Rate Generator
- Interprocessor Communication Slave Port
- Selectable Bus Timing Modes for Flexible Interfacing
- Oscillator Fail Detection Circuitry

■ High Speed Peripheral Transaction Server (PTS)

- Two Dedicated 16-Bit High-Speed Compare Registers
- 10 High Speed Capture/Compare (EPA)
- Full Duplex Synchronous Serial I/O Port (SSIO)
- Two Flexible 16-Bit Timer/Counters

■ Quadrature Counting Inputs

- Flexible 8-/16-Bit External Bus (Programmable)
- Programmable Bus (HOLD/HLDA)
- $1.75 \mu \mathrm{~s} 16 \times 16$ Multiply
- $3 \mu \mathrm{~s}$ 32/16 Divide
- 68-Pin Package

Device	Pins/Package	EPROM	Reg   RAM	Code   RAM	Address   Space	I/O	EPA	A/D
$8 \times C 196 N T$	68P PLCC	32 K	1 K	512	1 Mbyte	56	10	4
$8 \times C 196 N Q$	68 P PLCC	12 K	360	128	1 Mbyte	56	10	4

$X=7$ EPROM Device

The 8XC196NT 16-bit microcontroller is a high performance member of the MCS(r)-96 microcontroller family. The 8XC196NT is an enhanced 8XC196KR device with 1 Mbyte linear address space, 1000 byte register RAM, 512 bytes internal RAM, 16 MHz operation and an optional 32 Kbytes of ROM/EPROM. Intel's CHMOS III-E process provides a high performance processor along with low power consumption.

The 8XC196NT has a maximum guaranteed frequency of 16 MHz . Unless otherwise noted, all references to the 8XC196NT also refer to the 8XC196NQ.

Ten high-speed capture/compare modules are provided. As capture modules event times with 250 ns resolution can be recorded and generate interrupts. As compare modules events such as toggling of a port pin, starting an A/D conversion, pulse width modulation, and software timers can be generated. Events can be based on the timer or up/down counter.


Figure 1. 8XC196NT Block Diagram

## PROCESS INFORMATION

This device is manufactured on PX29.5, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operation conditions and application. See the Intel Packaging Handbook (order number 240800) for a description of Intel's thermal impedance test methodology.

Table 1. Thermal Characteristics

Package   Type	$\theta_{\text {JA }}$	$\theta_{\text {JC }}$
PLCC	$36.5^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$

EXAMPLE: N87C196NT is 68-Lead PLCC OTPROM, 16 MHz .
For complete package dimensional data, refer to the Intel Packaging Handbook (Order Number 240800).

## NOTE:

1. EPROMs are available as One Time Programmable (OTPROM) only.

Figure 3. The 8XC186NT Familiy Nomenclature

8XC196NT Memory Map

Address	Description
FFFFFFH FFAOOOH	External Memory
FF9FFFH FF2080H	Internal EPROM or External Memory (Determined by EA Pin) RESET at FF2080H
$\begin{aligned} & \text { FF207FH } \\ & \text { FF2000H } \end{aligned}$	Reserved Memory (Internal EPROM or External Memory) (Determined by EA Pin)
FF1FFFH   FF0600H	External Memory
FF05FFH   FF0400H	Internal RAM (Identically Mapped into 00400H-005FFH)
FF03FFH FF0100H	External Memory
FFOOFFH FF0000H	Reserved for ICE
FEFFFFH   100000H	External Memory for future devices
OFFFFFH OAOOOH	984 Kbytes External Memory
$\begin{aligned} & \text { 09FFFH } \\ & \text { 02080H } \end{aligned}$	Internal EPROM or External Memory (Note 1)
$\begin{aligned} & \hline \text { 0207FH } \\ & 02000 \mathrm{H} \end{aligned}$	Reserved Memory (Internal EPROM or External Memory) (Notes 1, 3, and 6)
01FFFH   01FEOH	Memory Mapped Special Function Registers (SFR's)
01FDFH   01 FOOH	Internal Special Function Registers (SFR's) (Note 5)
01EFFH   00600H	External Memory
$\begin{aligned} & \text { 005FFH } \\ & 00400 \mathrm{H} \end{aligned}$	Internal Code or Data RAM (Address with Indirect or Indexed Modes)
003FFH   00100H	$\left.\begin{array}{l}\text { Register RAM }\end{array}\right\} \quad$Upper Register File (Address with Indirect or   Indexed Modes or through Windows.) (Note 2)
$\begin{aligned} & \hline \text { OOOFFH } \\ & 00018 \mathrm{H} \end{aligned}$	Register RAM Lower Register File   (Address with Direct,   Lner
$\begin{aligned} & 00017 \mathrm{H} \\ & 00000 \mathrm{H} \end{aligned}$	CPU SFR's $\quad$Indirect, or Indexed   Modes.)   $($ Notes 2, 4)

## NOTES:

1. These areas are mapped internal EPROM if the REMAP bit (CCB2.2) is set and EA $=\mathrm{H}$. Otherwise they are external memory.
2. Code executed in locations 00000 H to 003FFH will be forced external.
3. Reserved memory locations must contain OFFH unless noted.
4. Reserved SFR bit locations must be written with 0.
5. Refer to 8XC196NT for SFR descriptions.
6. WARNING: The contents or functions of reserved memory locations may change with future revisions of the device.

Therefore, a program that relies on one or more of these locations may not function properly.
7. The 8 XC196NT internally uses 24 bit address, but only 20 address lines are bonded out allowing 1 Mbyte external address space.

## 8XC196NT/NQ EXTENDED ADDRESSING INSTRUCTIONS

There are 9 new instructions which have been implemented to support extended addressing in the 8XC196NT family.

For the following examples, wreg is a word register, treg is a 32-bit register (only the lower 24 bits are used for addressing) which must be long word aligned (divisable by 4), and XXX is a 24 -bit offset. wreg and treg must be located in the lower register file.
ELD Extended Load. May be used in the following addressing modes:

ELD wreg,[treg]	Indirect Mode
ELD wreg,[treg] +	Indirect Autoincrement Mode
ELD wreg,XXX[treg]	Extended Indexed Mode

ELDB Extended Load Byte. May be used in the following addressing modes:

ELDB wreg,[treg]	Indirect Mode
ELDB wreg,[treg] +	Indirect Autoincrement Mode
ELDB wreg,XXX[treg]	Extended Indexed Mode

EST Extended Store. May be used in the following addressing modes:
EST wreg,[treg] Indirect Mode
EST wreg,[treg] + Indirect Autoincrement Mode
EST wreg, XXX[treg] Extended Indexed Mode
ESTB . Extended Store Byte. May be used in the following addressing modes:
$\begin{array}{ll}\text { ESTB wreg,[treg] } & \text { Indirect Mode } \\ \text { ESTB wreg,[treg] }+ & \text { Indirect Autoincrement Mode } \\ \text { ESTB wreg,XXX[treg] } & \text { Extended Indexed Mode }\end{array}$
EBMOV Extended Block Move (non-interruptable). For the following example, ereg is a quad-word (64-bit) register, which must be aligned on quad word boundary (divisable by 8). The source of the block is a 24 -bit address at location ereg, and the destination of the block is a 24 -bit address at location ereg +4 . wreg is a word register containing the number of words to move. ereg and wreg must be in the lower register file.

EBMOV ereg, wreg
EBMOVI Interruptable Extended Block Move. Identical to EBMOV except EBMOVI is interruptable.
EBMOVI ereg, wreg
EJMP Extended Jump. Functional in 24-bit mode only (MODE16 $=0$ ). This is an unconditional relative jump. The distance from the end of this instruction to the target label is added to the 24 -bit program counter, effecting the jump. The target label may be anywhere in the 1 Mbyte address space.

## EJMP any_label

EBR Extended Branch. Indirect unconditional jump functional in 24-bit mode only (MODE16 $=0$ ). The 24-bit program counter is loaded with the 24 -bit address contained in treg. Program execution continues at the address specified in treg.

EBRI [treg]

ECALL Extended Call. Functional in 24-bit mode only (MODE16 $=0$ ). The contents of the 24 -bit program counter are pushed on the stack in two words ( 32 bits). Then the distance from the target label is added to the 24-bit program counter, effecting the call. The target label may be anywhere in the 16 M address space.

## ECALL any__subroutine

NOTES:
The new extended instructions support 24-bit addressing, but the 8XC196NT only supports accessing 1 Mbyte external memory.

When operating in the 24-bit mode (MODE16 $=0$ ), all calls, returns, and interrupts always push/pop 4 bytes on the stack. Extra state times are required for this operation, so code using these instructions will execute slower than code in 16-bit mode.

Location 00 H (the "zero" register) will always be read as zero, even when read as double word.


Figure 2. 68-Pin PLCC Package Diagram

PIN DESCRIPTIONS

Symbol	Name and Function
$\mathrm{V}_{\text {CC }}$	Main supply voltage (+5V).
$\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\text {SSI }}, \mathrm{V}_{\text {SSI }}$	Digital circuit ground (OV). There are multiple $\mathrm{V}_{\text {SS }}$ pins, all of which MUST be connected.
$V_{\text {REF }}$	Reference for the $\mathrm{A} / \mathrm{D}$ converter ( +5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
$\mathrm{V}_{\mathrm{PP}}$	Programming voltage for the EPROM parts. It should be +12.5 V for programming. It is also the timing pin for the return from powerdown circuit.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $\mathrm{V}_{\mathrm{SS}}$.
XTAL1	Input of the oscillator inverter and the internal clock generator.
XTAL2	Output of the oscillator inverter.
P.27/CLKOUT	Output of the internal clock generator. The frequency is $1 / 2$ the oscillator frequency. It has a $50 \%$ duty cycle. Also LSIO pin.
RESET	Reset input to and open-drain output from the chip. RESET has an internal pullup.
P5.7/BUSWIDTH	Input for bus width selection. If CCR bit 1 is a one and CCR1 bit 2 is a one, this pin dyamically controls the Buswidth of the bus cycle in progress. If BUSWIDTH is low, an 8 -bit cycle occurs, if BUSWIDTH is high, a 16-bit cycle occurs. If CCR bit 1 is " 0 " and CCR1 bit 2 is " 1 ", all bus cycles are 8 -bit, if CCR bit 1 is " 1 " and CCR1 bit 2 is " 0 ", all bus cycles are 16 -bit. CCR bit $1=$ " 0 " and CCR1 bit $2=$ " 0 " is illegal. Also an LSIO pin when not used as BUSWIDTH.
NMI	A positive transition causes a non maskable interrupt vector through memory location 203EH.
P5.1/INST	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle. INST is active only during external memory fetches, during internal EPROM fetches INST is held low. Also LSIO when not INST.
$\overline{E A}$	Input for memory select (External Access). $\overline{\text { EA }}$ equal to a high causes memory accesses to locations 0FF2000H through OFF9FFFH to be directed to on-chip EPROM/ROM. EA equal to a low causes accesses to these locations to be directed to off-chip memory. $\overline{E A}=+12.5 \mathrm{~V}$ causes execution to begin in the Programming Mode. EA is latched at reset.
HOLD	Bus Hold Input requesting control of the bus.
HLDA	Bus Hold acknowledge output indicating release of the bus.
$\overline{\text { BREQ }}$	Bus Request output activated when the bus controller has a pending external memory cycle.
P5.0/ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is $\overline{\text { ADV }}$, it goes inactive (high) at the end of the bus cycle. ADV can be used as a chip select for external memory. ALE/ $\overline{\operatorname{ADV}}$ is active only during external memory accesses. Also LSIO when not used as ALE.
P5.3/ $\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is active only during external memory reads or LSIO when not used as RD.

PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
P5.2/WR/ $\overline{\mathrm{WRL}}$	Write and Write Low output to external memory, as selected by the CCR, $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. WR/WRL is active during external memory writes. Also an LSIO pin when not used as WR/WRL.
P5.5/ $\overline{\text { BHE }} / \overline{\text { WRH }}$	Byte High Enable or Write High output, as selected by the CCR. $\overline{\mathrm{BHE}}=0$ selects the bank of memory that is connected to the high byte of the data bus. A $0=0$ selects that bank of memory that is connected to the low byte. Thus accesses to a 16-bit wide memory can be to the low byte only ( $\mathrm{A} 0=0, \overline{\mathrm{BHE}}=1$ ), to the high byte only ( $\mathrm{A} 0=1, \overline{\mathrm{BHE}}=0$ ) or both bytes $(\mathrm{AO}=0, \overline{\mathrm{BHE}}=0)$. If the $\overline{\mathrm{WRH}}$ function is selected, the pin will go low if the bus cycle is writing to an odd memory location. $\overline{B H E} / \overline{\text { WRH }}$ is only valid during 16 -bit external memory write cycles. Also an LSIO pin when not BHE/WRH.
P5.6/READY	Ready input to lengthen external memory cycles, for interfacing with slow or dynamic memory, or for bus sharing. If the pin is high, CPU operation continues in a normal manner. If the pin is low prior to the falling edge of CLKOUT, the memory controller goes into a wait state mode until the next positive transition in CLKOUT occurs with READY high. When external memory is not used, READY has no effect. The max number of wait states inserted into the bus cycle is controlled by the CCR/ CCR1. Also an LSIO pin when READY is not selected.
P5.4/SLPINT	Dual function I/O pin. As a bidirectional port pin or as a system function. The system function is a Slave Port Interrupt Output Pin.
P6.2/T1CLK	Dual function I/O pin. Primary function is that of a bidirectional I/O pin, however, it may also be used as a TIMER1 Clock input. The TIMER1 will increment or decrement on both positive and negative edges of this pin.
P6.3/T1DIR	Dual function I/O pin. Primary function is that of a bidirectional I/O pin, however, it may also be used as a TIMER1 Direction input. The TIMER1 will increment when this pin is high and decrements when this pin is low.
PORT1/EPAO-7   P6.0-6.1/EPA8-9	Dual function I/O port pins. Primary function is that of bidirectional I/O. System function is that of High Speed capture and compare. EPAO and EPA2 have yet another function of T2CLK and T2DIR of the TIMER2 timer/counter.
PORT 0/ACH4-7	4-bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter. These pins are also used as inputs to EPROM parts to select the Programming Mode.
P6.3-6.7/SSIO	Dual function I/O ports that have a system function as Synchronous Serial I/O. Two pins are clocks and two pins are data, providing full duplex capability.
PORT 2	8 -bit multi-functional port. All of its pins are shared with other functions.
PORT 3 and 4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus which has strong internal pullups.
EPORT	8 -bit bidirectional standard and I/O port. These bits are shared with the extended address bus, A16-A19. Pin function is selected on a per pin basis.

ABSOLUTE MAXIMUM RATINGS*Storage Temperature $\ldots \ldots . . .-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Voltage from VPP or $\overline{E A}$ to
$V_{\text {Ss }}$ or ANGND $\ldots . . . . . . . . .-0.5 \mathrm{~V}$ to +13.0 V
Voltage from Any Other Pin
to $\mathrm{V}_{\mathrm{SS}}$ or ANGND $\ldots . . . . . . .$. . 0.5 to +7.0 V
This includes VPP on ROM and CPU devices.
Power Dissipation
0.5W

NOTICE: This document contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product is available. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the 'Operating Conditions"' is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
$T_{A}$	Ambient Temperature Under Bias	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	V
FOSC	Oscillator Frequency	4	16	$\mathrm{MHz}($ Note 4)

## NOTE:

ANGND and $\mathrm{V}_{\text {SS }}$ should be nominally at the same potential.

## DC CHARACTERISTICS (Under Listed Operating Conditions)

Symbol	Parameter	Min	Typ	Max	Units	Test Conditions
ICC	$\mathrm{V}_{\mathrm{CC}}$ Supply Current			90	mA	$\begin{aligned} & \mathrm{XTAL1}=16 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \end{aligned}$   (While device in Reset)
IREF	A/D Reference Supply Current			5	mA	
IIDLE	Idle Mode Current			40	mA	$\begin{aligned} & \mathrm{XTAL1}=16 \mathrm{MHz}, \\ & V_{C C}=V_{P P}=V_{\text {REF }}=5.5 \mathrm{~V} \end{aligned}$
$I_{\text {PD }}$	Powerdown Mode Current(6)		50	75	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {REF }}=5.5 \mathrm{~V}(11)$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (all pins)	-0.5V		0.3 VCC	V	For PORTO(10)
$V_{\text {IH }}$	Input High Voltage	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$V_{C C}+0.5$	V	For PORTO(10)
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage XTAL1	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	XTAL1 Input Pin Only(1)
$\mathrm{V}_{\mathrm{H} 2}$	Input High Voltage on RESET	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	RESET input pin only
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage (Outputs Configured as Complementary)			$\begin{gathered} 0.3 \\ 0.45 \\ 1.5 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=200 \mu \mathrm{~A}(3,5) \\ & \mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=7.0 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage (Outputs Configured as Complementary)	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.7 \\ & V_{C C}-1.5 \end{aligned}$			$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-200 \mu \mathrm{~A}(3,5) \\ & \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-7.0 \mathrm{~mA} \end{aligned}$
ILI	Input Leakage Current (Std. Inputs)			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$
Lli1	Input Leakage Current (Port 0)			$\pm 3$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {REF }}$
ILL	Logical 0 Input Current			-70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}(1)$

## DC CHARACTERISTICS (Under Listed Operating Conditions) (Continued)

Symbol	Parameter	Min	Typ	Max	Units	Test Conditions
$\mathrm{V}_{\mathrm{OL} 1}$	Output Low Voltage in RESET			0.8	V	$($ Note 7$)$
$\mathrm{V}_{\mathrm{OH} 1}$	SLPINT (P5.4) and HLDA (P2.6)   Output High Voltage in RESET	2.0			V	$\mathrm{I}_{\mathrm{OH}}=0.8 \mathrm{~mA}(7)$
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage in RESET	$\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$			V	$\mathrm{I}_{\mathrm{OH}}=-6 \mu \mathrm{~A}(1)$
$\mathrm{C}_{\mathrm{S}}$	Pin Capacitance (Any pin to $\left.\mathrm{V}_{\mathrm{SS}}\right)$			10	pF	$\mathrm{f}_{\text {test }}=1.0 \mathrm{MHz}$
$\mathrm{R}_{\text {WPU }}$	Weak Pullup Resistance		150 K		$\Omega$	$($ Note 6$)$

## NOTES:

1. All BD (bidirectional) pins except INST and CLKOUT. INST and CLKOUT are excluded due to their not being weakly pulied high in reset. BD pins include Port1, Port2, Port3, Port4, Port5, Port6 and EPORT except SPLINT (P5.4) and HLDA (P2.6).
2. Standard input pins include XTAL1, EA, RESET, and Port 1/2/5/6 and EPORT when setup as inputs.
3. All bidirectional I/O pins when configured as Outputs (Push/Pull).
4. Device is static and should operate below 1 Hz , but only tested down to 4 MHz .
5. Maximum $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{IOH}_{\mathrm{O}}$ currents per pin will be characterized and published at a later date.
6. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
7. Violating these specifications in reset may cause the device to enter test modes (P5.4 and P2.6).
8. $\mathrm{TBD}=\mathrm{To} \mathrm{Be}$ Determined.
9. Pullup present during return from powerdown condition.
10. When PO is used as analog inputs, refer to $A / D$ specifications for this characteristic.
11. For temperatures $<100^{\circ} \mathrm{C}$ typical is $10 \mu \mathrm{~A}$.

## 8XC196NT/NQ ADDITIONAL BUS TIMING MODES

The 8XC196NT and NQ devices have 3 additional bus timing modes for external memory interfacing.

## MODE 3:

Mode 3 is the standard timing mode. Use this mode for systems that emulate the 8XC196KR bus timings.

## MODE 0:

Mode 0 is the standard timing mode, but 1 (minimum) wait state is always inserted in external bus cycles.

## MODE 1:

Mode 1 is the long R/W mode. This mode advances $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals by 1 Tosc creating a 2 TOSC $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ low time. ALE is also advanced by 0.5 Tosc but ALE high time remains 1 Tosc.

## MODE 2:

Mode 2 is the long R/W mode with Early Address. Mode 2 is similar to Mode 1 with respect to RD, WR, and ALE signals. Additionally, the address is output on the bus 0.5 Tosc earlier in the bus cycle.


Figure 3. Detailed MODE 1, 2, 3, Comparison

## EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by "T" for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

Conditions:
H-High
L—Low
V -Valid
$X$-No Longer
Valid
Z-Floating

Signals:
A-Address
B- $\overline{\mathrm{BHE}}$
BR-- $\overline{B R E Q}$
C-CLKOUT D-DATA G-Buswidth H-HOLD

HA- $\overline{\text { HLDA }}$
L-ALE/ $\overline{\text { ADV }}$
Q-Data Out
RD- $\overline{R D}$
W-WR/ WRH/ $\overline{\text { WRI }}$
X—XTAL1
$Y$-READY

## BUS MODE 0 and 3-AC CHARACTERISTICS (Over Specified Operating Conditions)

Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The system must meet these specifications to work with the 8XC196NT.

Symbol	Parameter	Min	Max	Units
TAVYV	Address Valid to Ready Setup		2 Tosc $^{-75}$	ns ${ }^{(3)}$
TLLYV	ALE Low to READY Setup		Tosc - 70	$n s{ }^{(3)}$
TYLYH	Non READY Time	No Upper Limit		ns
$\mathrm{T}_{\text {CLYX }}$	READY Hold after CLKOUT Low	0	Tosc - 30	$\mathrm{ns}{ }^{(1)}$
$\mathrm{T}_{\text {AVGV }}$	Address Valid to BUSWIDTH Setup		2 Tosc - 75	$\mathrm{ns}(2,3)$
TLLGV	ALE Low to BUSWIDTH Setup		Tosc - 60	$n s(2,3)$
TClgx	BUSWIDTH Hold after CLKOUT Low	0		ns
TAVDV	Address Valid to Input Data Valid		3 Tosc - 55	$\mathrm{ns}{ }^{(2)}$
TRLDV	RD active to input Data Valid		Tosc - 30	$\mathrm{ns}{ }^{(2)}$
TCLDV	CLKOUT Low to Input Data Valid		Tosc - 60	ns
T RHDZ	End of RD to Input Data Float		Tosc	ns
TRHDX	Data Hold after RD High	0		ns

## NOTES:

1. If Max is exceeded, additional wait states will occur.
2. If wait states are used, add 2 TOSC $\times n$, where $n=$ number of wait states.
3. If mode 0 is selected, one wait state minimum is always added. If additional wait states are required, add 2 Tosc to the specification.

BUS MODE 0 and 3-AC CHARACTERISTICS (Over Specified Operating Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The 8XC196NT will meet these specifications

Symbol	Parameter	Min	Max	Units
$\mathrm{F}_{\text {XTAL }}$	Frequency on XTAL1	4.0	16.0	MHz ${ }^{(1)}$
Tosc	XTAL1 Period (1/FXTAL)	62.5	250	ns
$\mathrm{T}_{\mathrm{XHCH}}$	XTAL1 High to CLKOUT High or Low	+20		ns
Tofd	Clock Failure to Reset Pulled Low(6)	4	40	$\mu \mathrm{s}$
TCLCL	CLKOUT Period	2 Tosc		ns
TCHCL	CLKOUT High Period	Tosc - 10	Tosc +30	ns
TCLLH	CLKOUT Low to ALE/ADV High	-20	+15	ns
TLLCH	ALE/ADV Low to CLKOUT High	-20	+15	ns
TLHLH	ALE/ADV Cycle Time	4 Tosc		$\mathrm{ns}{ }^{(5)}$
TLHLL	ALE/ADV High Time	Tosc - 10	Tosc +10	ns
TAVLL	Address Valid to ALE Low	Tosc - 25		ns
TLLAX	Address Hold After ALE/ADV Low	Tosc - 40		ns
TLLRL	ALE/ADV Low to RD Low	Tosc - 30		ns
TrLCL	RD Low to CLKOUT Low	+4	$+40$	ns
TRLRH	RD Low Period	Tosc - 5		ns (5)
$\mathrm{T}_{\text {RHLH }}$	RD High to ALE/ADV High	Tosc	Tosc +25	ns (3)
TrLAZ	RD Low to Address Float		+5	ns
TLLWL	ALE/ADV Low to WR Low	Tosc - 10		ns
TCLWL	CLKOUT Low to WR Low	-20	+25	ns
TQVWH	Data Valid before WR High	Tosc - 23		ns
TCHWH	CLKOUT High to WR High	-10	+15	ns
TWLWH	WR Low Period	Tosc - 30		ns(5)
TWHQX	Data Hold after WR High	Tosc - 25		ns
TWHLH	WR High to ALE/ADV High	Tosc - 10	TOSC +15	$\mathrm{ns}{ }^{(3)}$
TWHBX	BHE, INST Hold after WR High	Tosc - 15		ns
TWhax	AD8-15 Hold after WR High	Tosc - 30		$n s(4)$
TRHBX	BHE, INST Hold after RD High	Tosc - 10		ns
TRHAX	AD8-15 Hold after RD High	Tosc - 30		$n s(4)$

## NOTES:

1. Testing performed at 8.0 MHz , however, the device is static by design and will typically operate below 1 Hz .
2. Typical specifications, not guaranteed.
3. Assuming back-to-back bus cycles.
4. 8-bit bus only.
5. If wait states are used, add 2 TOSC $\times n$, where $n=$ number of wait states. If mode 0 ( 1 automatic wait state added) operation is selected, add 2 TOSC to specification.
6. TOFD is the time for the oscillator fail detect circuit (OFD) to react to a clock failure. The OFD circuitry is enabled by programming the UPROM location 0778 H with the value 0004 H . NT/NQ customer QROM codes need to equate location 2016 H to the value OCDEH if the oscillator fail detect (OFD) function is desired. Intel manufacturing uses location 2016H as a flag to determine whether or not to program the Clock Detect Enable (CDE) bit. Programming the CDE bit enables oscillator fail detection.

BUS MODE 0 and 3-8XC196NT SYSTEM BUS TIMING


8XC196NT MODE 0 and 3-READY TIMINGS (ONE WAIT STATE)


MODE 0 and 3-8XC196NT BUSWIDTH TIMINGS
BUS WRITE

BUS MODE 1-AC CHARACTERISTICS (Over Specified Operating Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The system must meet these specifications to work with the 8XC196NT.

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {AVYV }}$	Address Valid to Ready Setup		2 Tosc $^{-75}$	ns
TLLYV	ALE Low to READY Setup		1.5 Tosc - 70	ns
TYLYH	Non READY Time	No Upper Limit		ns
TCLYX	READY Hold after CLKOUT Low	0	Tosc - 30	ns (1)
TAVGV	Address Valid to BUSWIDTH Setup		2 Tosc $^{\text {- }} 75$	ns
TLLGV	ALE Low to BUSWIDTH Setup		1.5 TOSC - 60	ns
TCLGX	BUSWIDTH Hold after CLKOUT Low	0		ns
$\mathrm{T}_{\text {AVDV }}$	Address Valid to Input Data Valid		$3 \mathrm{~T}_{\text {OSC }}-60$	$\mathrm{ns}{ }^{(2)}$
TRLDV	RD active to input Data Valid		2 Tosc - 44	$\mathrm{ns}{ }^{(2)}$
TCLDV	CLKOUT Low to Input Data Valid		Tosc - 60	ns
TRHDZ	End of RD to Input Data Float		Tosc	ns
$\mathrm{T}_{\text {RHDX }}$	Data Hold after RD High	0		ns

## NOTES:

1. If Max is exceeded, additional wait states will occur.
2. If wait states are used, add 2 TOSC $\times n$, where $n=$ number of wait states.

BUS MODE 1-AC CHARACTERISTICS (Over Specified Operating Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The 8XC196NT will meet these specifications

Symbol	Parameter	Min	Max	Units
FXTAL	Frequency on XTAL1	8.0	16.0	MHz ${ }^{(1)}$
Tosc	XTAL1 Period (1/FXTAL	62.5	125	ns
$\mathrm{T}_{\text {XHCH }}$	XTAL1 High to CLKOUT High or Low	+20	110	ns
TCLCL	CLKOUT Period	2 Tosc		ns
TCHCL	CLKOUT High Period	Tosc - 10	Tosc +27	ns
TCHLH	CLKOUT HIGH to ALE/ADV High	0.5 Tosc - 10	0.5 Tosc +15	ns
TCLLL	CLKOUT LOW to ALE/ADV Low	0.5 Tosc - 25	0.5 TOSC +15	ns
TLHLH	ALE/ADV Cycle Time	4 Tosc		ns(5)
TLHLL	ALE/ADV High Time	Tosc - 10	TOSC +10	ns
TAVLL	Address Valid to ALE Low	0.5 Tosc - 20		ns
TLLAX	Address Hold After ALE/ADV Low	Tosc - 40		ns
TLLRL	ALE/ADV Low to RD Low	0.5 Tosc - 10		ns
TrLCL	RD Low to CLKOUT Low	TOSC - 10	Tosc +30	ns
TRLRH	RD Low Period	2 Tosc - $20^{\text {d }}$		$\mathrm{ns}{ }^{(5)}$
$\mathrm{T}_{\text {RHLH }}$	RD High to ALE/ADV High	0.5 Tosc	0.5 Tosc +25	$\mathrm{ns}{ }^{(3)}$
TrLAZ	RD Low to Address Float		+5	ns
TLLWL	ALE/ADV Low to WR Low	0.5 Tosc - 10		ns
TCLWL	CLKOUT Low to WR Low	Tosc - 25	Tosc +25	ns
TQVwh	Data Valid before WR High	2 Tosc - 23		ns
TCHWH	CLKOUT High to WR High	-10	+15	ns
TWLWH	WR Low Period	2 Tosc - 20		$\mathrm{ns}{ }^{(5)}$
TWHQX	Data Hold after WR High	0.5 Tosc - 25		ns
TWHLH	WR High to ALE/ADV High	0.5 Tosc - 10	0.5 TOSC +10	$\mathrm{ns}{ }^{(3)}$
Twhbx	BHE Hold after WR High	Tosc - 15		ns
TWHIX	INST Hold after WR High	0.5 Tosc - 15		
TWHAX	AD8-15 Hold after WR High	0.5 Tosc - 30		$n s(4)$
$\mathrm{T}_{\text {RHBX }}$	BHE Hold after RD High	Tosc - 32		ns
$\mathrm{T}_{\text {RHIX }}$	INST Hold after RD High	0.5 Tosc - 32		
T ${ }_{\text {RHAX }}$	AD8-15 Hold after RD High	0.5 Tosc - 30		$n s(4)$

## NOTES:

1. Testing performed at 8.0 MHz , however, the device is static by design and will typically operate below 1 Hz .
2. Typical specifications, not guaranteed.
3. Assuming back-to-back bus cycles.
4. 8-bit bus only.
5. If wait states are used, add 2 TOSC $\times n$, where $n=$ number of wait states.

MODE 1-8XC196NT SYSTEM BUS TIMING


## MODE 1-8XC196NT READY TIMINGS (ONE WAIT STATE)



## MODE 1-8XC196NT BUSWIDTH TIMINGS



BUS MODE 2—AC CHARACTERISTICS (Over Specified Operating Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The system must meet these specifications to work with the 8XC196NT.

Symbol	Parameter	Min	Max	Units
TAVYV	Address Valid to Ready Setup		2.5 Tosc -75	ns
TLLYV	ALE Low to READY Setup		1.5 ToSC - 70	ns
TYLYH	Non READY Time	No Upper Limit		ns
TCLYX	READY Hold after CLKOUT Low	0	Tosc - 30	$\mathrm{ns}{ }^{(1)}$
TAVGV	Address Valid to BUSWIDTH Setup		2.5 Tosc - 75	ns
TLLGV	ALE Low to BUSWIDTH Setup		1.5 ToSC - 60	ns
TCLGX	BUSWIDTH Hold after CLKOUT Low	0		ns
TAVDV	Address Valid to Input Data Valid		3.5 Tosc - 55	$\mathrm{ns}{ }^{(2)}$
TrLDV	RD active to input Data Valid		2 Tosc - 44	$\mathrm{ns}{ }^{(2)}$
TCLDV	CLKOUT Low to Input Data Valid		Tosc - 60	ns
$\mathrm{T}_{\text {RHDZ }}$	End of RD to Input Data Float		0.5 Tosc	ns
TRHDX	Data Hold after RD High	0		ns

## NOTES:

1. If Max is exceeded, additional wait states will occur.
2. If wait states are used, add 2 Tosc $\times \mathrm{n}$, where $\mathrm{n}=$ number of wait states.

BUS MODE 2—AC CHARACTERISTICS (Over Specified Operating Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The 8XC196NT will meet these specifications

Symbol	Parameter	Min	Max	Units
FXTAL	Frequency on XTAL1	8.0	16.0	MHz ${ }^{(1)}$
Tosc	XTAL1 Period (1/FXTAL)	62.5	125	ns
$\mathrm{T}_{\mathrm{XHCH}}$	XTAL1 High to CLKOUT High or Low	$+20$	+85	ns
TCLCL	CLKOUT Period	2 Tosc		ns
TCHCL	CLKOUT High Period	Tosc - 10	Tosc +27	ns
TCHLH	CLKOUT HIGH to ALE/ADV High	0.5 Tosc - 10	0.5 TOSC +15	ns
TCLLL	CLKOUT LOW to ALE/ADV Low	0.5 T OSC -25	0.5 T OSC +15	ns
TLHLH	ALE/ADV Cycle Time	4 TOSC		$\mathrm{ns}{ }^{(5)}$
TLHLL	ALE/ADV High Time	Tosc - 10	TOSC +10	ns
TAVLL	Address Valid to ALE Low	Tosc - 15		ns
TLLAX	Address Hold After ALE/ADV Low	Tosc - 40		ns
TLLRL	ALE/ADV Low to RD Low	0.5 Tosc - 10		ns
TRLCL	RD Low to CLKOUT Low	Tosc - 10	Tosc +30	ns
TRLRH	RD Low Period	2 TOSC $^{-20}$		ns(5)
TRHLH	RD High to ALE/ADV High	0.5 Tosc - 5	0.5 Tosc +25	$\mathrm{ns}{ }^{(3)}$
TrLAZ	RD Low to Address Float		+5	ns
TLLWL	ALE/ADV Low to WR Low	0.5 T OSC -10		ns
TCLWL	CLKOUT Low to WR Low	Tosc - 22	TOSC +25	ns
TQVWH'	Data Valid before WR High	2 Tosc - 25		ns
TCHWH	CLKOUT High to WR High	-10	+15	ns
TWLWH	WR Low Period	2 Tosc - 20		$\mathrm{ns}{ }^{(5)}$
TWHQX	Data Hold after WR High	0.5 Tosc - 25		ns
TWHLH	WR High to ALE/ADV High	0.5 Tosc - 10	0.5 Tosc +10	$n s(3)$
TWHBX	BHE Hold after WR High	Tosc - 15		ns
T WHIX	INST Hold after WR High	0.5 Tosc - 15		
TWHAX	AD8-15 Hold after WR High	0.5 Tosc - 30		$n s(4)$
TRHBX	BHE Hold after RD High	Tosc - 32		ns
$\mathrm{T}_{\text {RHIX }}$	INST Hold after RD High	0.5 Tosc - 32		
$\mathrm{T}_{\text {RHAX }}$	AD8-15 Hold after RD High	0.5 Tosc - 30		$n s(4)$

## NOTES:

1. Testing performed at 8.0 MHz , however, the device is static by design and will typically operate below 1 Hz .
2. Typical specifications, not guaranteed.
3. Assuming back-to-back bus cycles.
4. 8-bit bus only.
5. If wait states are used, add 2 TOSC $\times n$, where $n=$ number of wait states.

MODE 2-8XC196NT SYSTEM BUS TIMING


## MODE 2-8XC196NT READY TIMINGS (ONE WAIT STATE)



## MODE 2-8XC196NT BUSWIDTH TIMINGS



BUS MODE 0, 1, 2, and 3-HOLD/HOLDA TIMINGS (Over Specified Operation Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.

Symbol	Parameter	Min	Max	Units
$T_{\text {HVCH }}$	HOLD Setup Time	+65		$\mathrm{~ns}(1)$
$T_{\text {CLHAL }}$	CLKOUT Low to HLDA Low	-15	+15	ns
$T_{\text {CLBRL }}$	CLKOUT Low to BREQ Low	-15	+15	ns
$\mathrm{~T}_{\text {AZHAL }}$	HLDA Low to Address Float		+25	ns
$\mathrm{~T}_{\text {BZHAL }}$	HLDA Low to BHE, INST, RD, WR Weakly Driven		+25	ns
$\mathrm{~T}_{\text {CLHAH }}$	CLKOUT Low to HLDA High	-25	+15	ns
$T_{\text {CLBRH }}$	CLKOUT Low to BREQ High	-25	+25	ns
$T_{\text {HAHAX }}$	HLDA High to Address No Longer Float	-15		ns
$T_{\text {HAHBV }}$	HLDA High to BHE, INST, RD, WR Valid	-10		ns

## NOTE:

1. To guarantee recognition at next clock.

## 8XC196NT $\overline{H O L D} / \overline{H O L D A}$ TIMINGS



## AC CHARACTERISTICS-SLAVE PORT

SLAVE PORT WAVEFORM-(SLPL = 0)


SLAVE PORT TIMING-(SLPL $=\mathbf{0}, \mathbf{1 , 2 , 3 )}$

Symbol	Parameter	Min	Max	Units
TSAVWL	Address Valid to WR Low	50		ns
TSRHAV	$\overline{\mathrm{RD}}$ High to Address Valid	60		ns
TSRLRH	$\overline{\mathrm{RD}}$ Low Period	Tosc		ns
TSWLWH	$\overline{\text { WR Low Period }}$	Tosc		ns
TSRLDV	$\overline{\mathrm{RD}}$ Low to Output Data Valid		60	ns
TSDVWH	Input Data Setup to WR High	20		ns
TSWHQX	$\overline{\text { WR }}$ High to Data Invalid	30		ns
TSRHDZ	$\overline{\mathrm{RD}}$ High to Data Float	15		ns

## NOTES:

1. Test Conditions: FOSC $=16 \mathrm{MHz}$, TOSC $=60 \mathrm{~ns}$. Rise/Fall Time $=10 \mathrm{~ns}$. Capacitive Pin Load $=100 \mathrm{pF}$.
2. These values are not tested in production, and are based upon theoretical estimates and/or laboratory tests.
3. Specifications above are advanced information and are subject to change.

## AC CHARACTERISTICS-SLAVE PORT (Continued)

SLAVE PORT WAVEFORM-(SLPL = 1)


SLAVE PORT TIMING-(SLPL = 1, 2, 3)

Symbol	Parameter	Min	Max	Units
TSELLL	$\overline{\text { CS }}$ Low to ALE Low	20		ns
TSRHEH	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to $\overline{\mathrm{CS}}$ High	60		ns
TSLLRL	ALE Low to $\overline{\text { RD }}$ Low	Tosc		ns
TSRLRH	$\overline{\mathrm{RD}}$ Low Period	Tosc		ns
TSWLWH	$\overline{\text { WR Low Period }}$	Tosc		ns
TSAVLL	Address Valid to ALE Low	20		ns
TSLLAX	ALE Low to Address Invalid	20		ns
TSRLDV	$\overline{\mathrm{RD}}$ Low to Output Data Valid		60	ns
TSDVwh	Input Data Setup to WR High	20		ns
TSWHQX	$\overline{\text { WR }}$ High to Data Invalid	30		ns
TSRHDZ	$\overline{\mathrm{RD}}$ High to Data Float	15		ns

## NOTES:

1. Test Conditions: Fosc $=16 \mathrm{MHz}$, Tosc $=60 \mathrm{~ns}$. Rise/Fall Time $=10 \mathrm{~ns}$. Capacitive Pin Load $=100 \mathrm{pF}$.
2. These values are not tested in production, and are based upon theoretical estimates and/or laboratory tests.
3. Specifications above are advanced information and are subject to change.

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 / T_{\text {XLXL }}$	Oscillator Frequency	4	16	MHz
$\mathrm{T}_{\mathrm{XLXL}}$	Oscillator Period (TOSC)	62.5	250	ns
$\mathrm{~T}_{\mathrm{XHXX}}$	High Time	$0.35 \times \mathrm{T}_{\mathrm{OSC}}$	$0.65 \mathrm{~T}_{\mathrm{OSC}}$	ns
$\mathrm{T}_{\mathrm{XLXX}}$	Low Time	$0.35 \times \mathrm{T}_{\mathrm{OSC}}$	$0.65 \mathrm{~T}_{\mathrm{OSC}}$	ns
$\mathrm{T}_{\mathrm{XLXH}}$	Rise Time		10	ns
$\mathrm{~T}_{\mathrm{XHXL}}$	Fall Time		10	ns

## EXTERNAL CLOCK DRIVE WAVEFORMS



## AC TESTING INPUT, OUTPUT WAVEFORMS



272267-18
AC Testing inputs are driven at 3.5 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for logic " 0 ".

FLOAT WAVEFORMS


For timing purposes a Port Pin is no longer floating when a 150 mV change from load voltage occurs and begins to float when a 150 mV change from the loading $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}} \leq 15 \mathrm{~mA}$.

## WAVEFORM—SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT WAVEFORM-SHIFT REGISTER MODE


## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT TIMING-SHIFTING REGISTER MODE
Test Conditions: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0.0 \mathrm{~V}$; Load Capacitance $=\mathrm{pF}$

Symbol	Parameter	Min	Max	Units
$T_{\text {XLXL }}$	Serial Port Clock Period	$8 T_{\text {OSC }}$		ns
$T_{\text {XLXH }}$	Serial Port Clock Falling Edge to Rising Edge	$4 T_{\text {OSC }}-50$	$T_{\text {OSC }}+50$	ns
$T_{\text {QVXH }}$	Output Data Setup to Clock Rising Edge	$3 T_{O S C}$		ns
$T_{\text {XHQX }}$	Output Data Hold after Clock Rising Edge	$2 T_{\text {OSC }}-50$		ns
$T_{\text {XHQV }}$	Next Output Data Valid after Clock Rising Edge		$2 T_{O S C}+50$	ns
$T_{\text {DVXH }}$	Input Data Setup to Clock Rising Edge	$2 T_{\text {OSC }}+200$		ns
$T_{\text {XHDX }}{ }^{(1)}$	Input Data Hold after Clock Rising Edge	0		ns
$T_{\text {XHQZ }}{ }^{(1)}$	Last Clock Rising to Output Float		$5 T_{\text {OSC }}$	ns

NOTE:

1. Parameters not tested.

8XC196NT/8XC196NQ

## A to D CHARACTERISTICS

The A/D converter is ratiometric, so absolute accuracy is dependent on the accuracy and stability of $\mathrm{V}_{\text {REF }}$.

## 10-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	$\mathrm{~V}(1)$
$\mathrm{T}_{\text {SAM }}$	Sample Time	1.0		$\mu \mathrm{~s}\left({ }^{(2)}\right.$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	10	15	$\mu \mathrm{~s}^{(2)}$
FOSC	Oscillator Frequency	4.0	16.0	MHz

## NOTES

1. $V_{\text {REF }}$ must be within 0.5 V of $\mathrm{V}_{\mathrm{CC}}$.
2. The value of AD__TIME is selected to meet these specifications.

## 10-BIT MODE A/D CHARACTERISTICS (Using Above Operating Conditions)(6)

Parameter	Typ*(1)	Min	Max	Units*
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Level Bits
Absolute Error		0	$\pm 3.0$	LSBs
Full Scale Error	$0.25 \pm 0.5$			LSBs
Zero Offset Error	$0.25 \pm 0.5$			LSBs
Non-Linearity	$1.0 \pm 2.0$		$\pm 3.0$	LSBs
Differential Non-Linearity		$-0.75$	$+0.75$	LSBs
Channel-to-Channel Matching	$\pm 0.1$	0	$\pm 1.0$	LSBs
Repeatability	$\pm 0.25$	0		LSBs(1)
Temperature Coefficients:   Offset   Full Scale   Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			$\begin{aligned} & \text { LSB/C(1) } \\ & \text { LSB/C(1) } \\ & \text { LSB/C(1) } \end{aligned}$
Off Isolation		-60		dB $(1,2,3)$
Feedthrough	-60			$\mathrm{dB}(1,2)$
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			$\mathrm{dB}(1,2)$
Input Resistance		750	1.2 K	$\Omega(4)$
DC Input Leakage	$\pm 1.0$	0	$\pm 3.0$	$\mu \mathrm{A}$
Voltage on Analog Input Pin		ANGND - 0.5	$\mathrm{V}_{\text {REF }}+0.5$	V (5)
Sampling Capacitor	3.0			pF

*An "LSB" as used here has a value of approximately 20 mV .

## NOTES:

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$, but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer break-before-make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. Applying voltages beyond these specifications will degrade the accuracy of other channels being converted.
6. All conversions performed with processor in IDLE mode.

8XC196NT/8XC196NQ

## 8-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	$\mathrm{~V}^{(1)}$
$\mathrm{T}_{\text {SAM }}$	Sample Time	1.0		$\mu \mathrm{~s}^{(2)}$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	7	20	$\mu \mathrm{~s}^{(2)}$
FOSC	Oscillator Frequency	4.0	16.0	MHz

## NOTES:

1. $V_{\text {REF }}$ must be within 0.5 V of $\mathrm{V}_{\mathrm{CC}}$.
2. The value of AD_TIME is selected to meet these specifications.

## 8-BIT MODE A/D CHARACTERISTICS (Using Above Operating Conditions)(6)

Parameter	Typ*(1)	Min	Max	Units*
Resolution		$\begin{gathered} 256 \\ 8 \end{gathered}$	$\begin{gathered} 256 \\ 8 \end{gathered}$	Level Bits
Absolute Error		0	$\pm 1.0$	LSBs
Full Scale Error	$\pm 0.5$			LSBs
Zero Offset Error	$\pm 0.5$			LSBs
Non-Linearity		0	$\pm 1.0$	LSBs
Differential Non-Linearity		-0.5	+ 0.5	LSBs
Channel-to-Channel Matching		0	$\pm 1.0$	LSBs
Repeatability	$\pm 0.25$	0		LSBs(1)
Temperature Coefficients:   Offset   Full Scale Differential Non-Linearity	$\begin{aligned} & 0.003 \\ & 0.003 \\ & 0.003 \end{aligned}$		.	LSB/C(1)   LSB/C(1)   LSB/C(1)
Off Isolation		-60		$\mathrm{dB}(1,2,3)$
Feedthrough	-60	,		$\mathrm{dB}(1,2)$
$\mathrm{V}_{\mathrm{CC}}$ Power Supply Rejection	-60			$\mathrm{dB}(1,2)$
Input Resistance		750	1.2K	$\Omega^{(4)}$
DC Input Leakage	$\pm 1.0$	0	$\pm 3.0$	$\mu \mathrm{A}$
Voltage on Analog Input Pin		ANGND - 0.5	$\mathrm{V}_{\text {REF }}+0.5$	V (5)
Sampling Capacitor	3.0			pF

*An "LSB" as used here has a value of approximately 20 mV .

## NOTES:

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$, but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer break-before-make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. Applying voltage beyond these specifications will degrade the accuracy of other channels being converted.
6. All conversions performed with processor in IDLE mode.

## EPROM SPECIFICATIONS

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature During Programming	20	30	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Supply Voltage During Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\text {REF }}$	Reference Supply Voltage During Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\mathrm{PP}}$	Programming Voltage	12.25	12.75	$\mathrm{~V}(2)$
$\mathrm{V}_{\text {EA }}$	EA Pin Voltage	12.25	12.75	$\mathrm{~V}(2)$
$\mathrm{F}_{\text {OSC }}$	Oscillator Frequency during Auto   and Slave Mode Programming	6.0	8.0	MHz
FOSC	Oscillator Frequency during   Run-Time Programming	6.0	16.0	MHz

## NOTES:

1. $V_{C C}$ and $V_{\text {REF }}$ should nominally be at the same voltage during programming.
2. $V_{P P}$ and $V_{E A}$ must never exceed the maximum specification, or the device may be damaged.
3. $\mathrm{V}_{\mathrm{SS}}$ and ANGND should nominally be at the same potential (OV).
4. Load capacitance during Auto and Slave Mode programming $=150 \mathrm{pF}$.

## AC EPROM PROGRAMMING CHARACTERISTICS (SLAVE MODE)

Symbol	Parameter	Min	Max	Units
T AVLL	Address Setup Time	0		Tosc
TLLAX	Address Hold Time	100		Tosc
TDVPL	Data Setup Time	0		Tosc
TPLDX	Data Hold Time	400		Tosc
TLLLH	PALE Pulse Width	50		Tosc
TPLPH	$\overline{\text { PROG Pulse Width }}$ (2)	50		Tosc
TLHPL	$\overline{\text { PALE }}$ High to $\overline{\text { PROG }}$ Low	220		Tosc
TPHLL	$\overline{\text { PROG High to next } \overline{\text { PALE }} \text { Low }}$	220		Tosc
TPHDX	Word Dump Hold Time		50	Tosc
TPHPL	PROG High to next PROG Low	220		Tosc
TLHPL	$\overline{\text { PALE }}$ High to PROG Low	220		Tosc
TPLDV	$\overline{\text { PROG }}$ Low to Word Dump Valid		50	Tosc
TSHLL	$\overline{\text { RESET }}$ High to First $\overline{\text { PALE }}$ Low	1100		Tosc
TPHIL	$\overline{\text { PROG }}$ High to $\overline{\text { AINC Low }}$	0		Tosc
TILIH	$\overline{\text { AINC Pulse Width }}$	240		Tosc
TILVH	PVER Hold after AINC Low	50		Tosc
TILPL	$\overline{\text { AINC Low to PROG Low }}$	170		Tosc
TPHVL	$\overline{\text { PROG }}$ High to $\overline{\text { PVER }}$ Valid		220	Tosc

## NOTES:

1. Run-time programming is done with FOSC $=6.0 \mathrm{MHz}$ to $10.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{PD}}, \mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and $V_{P P}=12.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$. For run-time programming over a full operating range, contact factory.
2. This specification is for the word dump mode. For programming pulses use Modified Quick Pulse Algorithm.

DC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Min	Max	Units
IPP	$V_{\text {PP }}$ Programming Supply Current		200	mA

NOTE:
Do not apply $V_{P P}$ unti $V_{C C}$ is stable and within specifications and the oscillator/clock has stabilized or the device may be damaged.

## EPROM PROGRAMMING WAVEFORMS

SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE


## NOTE:

P3.0 must be high ("1")

SLAVE PROGRAMMING MODE IN WORD DUMP MOְDE WITH AUTO INCREMENT


NOTE:
P3.0 must be low("0")

SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM MODE WITH REPEATED PROG PULSE AND AUTO INCREMENT


## 8XC196NT/NQ ERRATA

The following is a list of all known functional deviations for 8XC196NT/NQ devices. C-step devices can be identified by a special mark following the eight digit FPO number on the top of the package. For C -step devices, this mark is a " C ".

1. Base-indexed ELD, ELDB, EST, ESTB instructions: The ELD, ELDB, EST, ESTB instructions using the base-indexed addressing mode do not function when executed from external memory. For example:
ELD 20h, \#0b1000h[RO] ;does not work
workaround:

LD 30h, \#1000h
LD 32h, \#000bh
ELD 20h, [30h]
;30-32h forms pointer ;to extended memory ;this mode works correctly
2. 24-bit mode auto-increment across 64 K boundaries. When in 24-bit mode (MODE16 = 0), the auto increment addressing mode does not increment correctly across 64 K boundaries.

## 8XC196KT COMMERCIAL CHMOS MICROCONTROLLER

■ High Performance CHMOS 16-Bit CPU

- Up to 32 Kbytes of On-Chip EPROM
- Up to 1 Kbyte of On-Chip Register RAM
- Up to 512 Bytes of Additional RAM (Internal RAM)
- Register-Register Architecture

■ 8 Channel/10-Bit A/D with Sample/Hold

- 37 Prioritized Interrupt Sources
- Up to Seven 8-Bit (56) I/O Ports
- Full Duplex Serial I/O Port
- Dedicated Baud Rate Generator
- Interprocessor Communication Slave Port
- Selectable Bus Timing Modes for Flexible Interfacing
- Oscillator Fail Detection Circuitry
- High Speed Peripheral Transaction Server (PTS)
- Two Dedicated 16-Bit High-Speed Compare Registers
■ 10 High Speed Capture/Compare (EPA)
- Full Duplex Synchronous Serial I/O Port (SSIO)
■ Two Flexible 16-Bit Timer/Counters
- Quadrature Counting Inputs

■ Flexible 8-/16-Bit External Bus (Programmable)

- Programmable Bus (HOLD/HLDA)
- $1.75 \mu \mathrm{~s} 16 \times 16$ Multiply
- $3 \mu \mathrm{~s}$ 32/16 Divide
- 68-Pin PLCC Package

Device	Pins/Package	EPROM	Reg RAM	Code RAM	Address Space	I/O	EPA	A/D
$8 \times C 196 \mathrm{KT}$	$68-$ Pin PLCC	32 K	1 K	512	64 Kbyte	56	10	8

$\mathrm{X}=7$ EPROM Device

The 8XC196KT 16-bit microcontroller is a high performance member of the MCS ${ }^{\circledR}-96$ microcontroller family. The 8XC196KT is an enhanced 8XC196KR device with 1000 byte register RAM, 512 bytes internal RAM, 16 MHz operation and an optional 32 Kbytes of ROM/EPROM. Intel's CHMOS III-E process provides a high performance processor along with low power consumption.

The 8XC196KT has a maximum guaranteed frequency of 16 MHz .
Ten high-speed capture/compare modules are provided. As capture modules event times with 250 ns resolution can be recorded and generate interrupts. As compare modules events such as toggling of a port pin, starting an A/D conversion, pulse width modulation, and software timers can be generated. Events can be based on the timer or up/down counter.


Figure 1. 8XC196KT Block Diagram


EXAMPLE: N87C196KT is 68-Lead PLCC OTPROM.
For complete package dimensional data, refer to the Intel Packaging Handbok (Order Number 240800).
NOTE:

1. EPROMs are available as One Time Programmable (OTPROM) only.

Figure 2. The 8XC196KT Family Nomenclature

## PROCESS INFORMATION

This device is manufactured on PX29.5, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.

Table 1. Thermal Characteristics

Package   Type	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
PLCC	$36.5^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$

All thermal impedance data is approximate for static air conditions at 1 W of power dissipation. Values will change depending on operation conditions and application. See the Intel Packaging Handbook (Order Number 240800) for a description of Intel's thermal impedance test methodology.

8XC196KT Memory Map

FFFFH A000H	24 Kbytes External Memory	
$\begin{aligned} & 9 \text { 9FFH } \\ & 2080 \mathrm{H} \end{aligned}$	Internal EPROM or External Memory	
$\begin{aligned} & 207 \mathrm{FH} \\ & 2000 \mathrm{H} \end{aligned}$	Reserved Memory (Internal EPROM or External Memory)(4,5)	
$\begin{aligned} & \text { 1FFFH } \\ & \text { 1FEOH } \end{aligned}$	Memory Mapped Special Function Registers (SFR's)	
$\begin{aligned} & \text { 1FDFH } \\ & \text { 1FOOH } \end{aligned}$	Internal Special Function Registers (SFR's) ${ }^{(4)}$	
$\begin{aligned} & \text { 1EFFH } \\ & 0600 \mathrm{H} \end{aligned}$	External Memory	
$\begin{aligned} & 05 \mathrm{FFH} \\ & 0400 \mathrm{H} \end{aligned}$	Internal Code or Data RAM (Address with Indirect or Indexed Modes)	
03FFH	Register RAM	Upper Register File (Address with Indirect or Indexed Modes or through Windows) ${ }^{(1)}$
00FFH 0018H	Register RAM	Lower Register File (Address with Direct,
$\begin{aligned} & 0017 \mathrm{H} \\ & 0000 \mathrm{H} \end{aligned}$	CPU SFR's	Indirect, or Indexed Modes)(1,3)

## NOTES:

1. Code executed in locations 0000 H to 03FFH will be forced external.
2. Reserved memory locations must contain OFFH unless noted.
3. Reserved SFR bit locations must be written with 0.
4. Refer to 8XC196KT for SFR descriptions.
5. WARNING: The contents or functions of reserved memory locations may change with future revisions of the device. Therefore, a program that relies on one or more of these locations may not function properly.


PIN DESCRIPTIONS

Symbol	Name and Function
$V_{C C}$	Main supply voltage ( +5 V ).
$\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SSI}}, \mathrm{V}_{\mathrm{SSI}}$	Digital circuit ground ( 0 V ). There are multiple $\mathrm{V}_{\mathrm{SS}}$ pins, all of which MUST be connected.
$V_{\text {REF }}$	Reference for the $A / D$ converter ( +5 V ). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
$V_{P P}$	Programming voltage for the EPROM parts. It should be +12.5 V for programming. It is also the timing pin for the return from powerdown circuit.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $\mathrm{V}_{\mathrm{SS}}$.
XTAL1	Input of the oscillator inverter and the internal clock generator.
XTAL2	Output of the oscillator inverter.
P.27/CLKOUT	Output of the internal clock generator. The frequency is $1 / 2$ the oscillator frequency. It has a $50 \%$ duty cycle. Also LSIO pin.
RESET	Reset input to and open-drain output from the chip.
P5.7/BUSWIDTH	Input for bus width selection. If CCR bit 1 is a one and CCR1 bit 2 is a one, this pin dyamically controls the Buswidth of the bus cycle in progress. If BUSWIDTH is low, an 8 -bit cycle occurs, if BUSWIDTH is high, a 16 -bit cycle occurs. If CCR bit 1 is " 0 " and CCR1 bit 2 is " 1 ", all bus cycles are 8 -bit, if CCR bit 1 is " 1 " and CCR1 bit 2 is " 0 ", all bus cycles are 16 -bit. CCR bit $1=$ " 0 " and CCR1 bit $2=$ " 0 " is illegal. Also an LSIO pin when not used as BUSWIDTH.
NMI	A positive transition causes a non maskable interrupt vector through memory location 203EH.
P5.1/INST	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle. INST is active only during external memory fetches, during internal EPROM fetches INST is held low. Also LSIO when not INST.
$\overline{E A}$	Input for memory select (External Access). $\overline{E A}$ equal to a high causes memory accesses to locations 2000 H through 9FFFH to be directed to on-chip EPROM/ROM. EA equal to a low causes accesses to these locations to be directed to off-chip memory. $\widehat{E A}=+12.5 \mathrm{~V}$ causes execution to begin in the Programming Mode. $\overline{E A}$ is latched at reset.
HOLD	Bus Hold input requesting control of the bus.
HLDA	Bus hold acknowledge output indicating release of the bus.
$\overline{\text { BREQ }}$	Bus request output activated when the bus controller has a pending external memory cycle.
'P5.0/ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is $\overline{\text { ADV }}$, it goes inactive (high) at the end of the bus cycle. $\overline{\mathrm{ADV}}$ can be used as a chip select for external memory. ALE/ $\overline{A D V}$ is active only during external memory accesses. Also LSIO when not used as ALE.
P5.3/ $\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is active only during external memory reads or LSIO when not used as RD.
P5.2/ $\overline{\mathrm{WR}} / \overline{\mathrm{WRL}}$	Write and Write Low output to external memory, as selected by the CCR, $\overline{W R}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. $\overline{\text { WR}} / \overline{\text { WRL }}$ is active during external memory writes. Also an LSIO pin when not used as $\overline{W R} / \overline{W R L}$.

PIN DESCRIPTIONS (Continued)

Symbol	Name and Function
P5.5/ $\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$	Byte High Enable or Write High output, as selected by the CCR. $\overline{\mathrm{BHE}}=0$ selects the bank of memory that is connected to the high byte of the data bus. $\mathrm{A} 0=0$ selects that bank of memory that is connected to the low byte. Thus accesses to a 16 -bit wide memory can be to the low byte only $(\mathrm{AO}=0, \overline{\mathrm{BHE}}=1)$, to the high byte only. ( $\mathrm{A} 0=1, \overline{\mathrm{BHE}}=0$ ) or both bytes $(\mathrm{AO}=0, \overline{\mathrm{BHE}}=0)$. If the $\overline{\text { WRH function is selected, }}$ the pin will go low if the bus cycle is writing to an odd memory location. $\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$ is only valid during 16 -bit external memory write cycles. Also an LSIO pin when not BHE/WRH.
P5.6/READY	Ready input to lengthen external memory cycles, for interfacing with slow or dynamic memory, or for bus sharing. If the pin is high, CPU operation continues in a normal manner. If the pin is low prior to the falling edge of CLKOUT, the memory controller goes into a wait state mode until the next positive transition in CLKOUT occurs with READY high. When external memory is not used, READY has no effect. The max number of wait states inserted into the bus cycle is controlled by the CCR/ CCR1. Also an LSIO pin when READY is not selected.
P5.4/SLPINT	Dual function I/O pin. As a bidirectional port pin or as a system function. The system function is a Slave Port Interrupt Output Pin.
P6.2/T1CLK	Dual function I/O pin. Primary function is that of a bidirectional I/O pin, however, it may also be used as a TIMER1 Clock input. The TIMER1 will increment or decrement on both positive and negative edges of this pin.
P6.3/T1DIR	Dual function I/O pin. Primary function is that of a bidirectional I/O pin, however, it may also be used as a TIMER1 Direction input. The TIMER1 will increment when this pin is high and decrements when this pin is low.
PORT1/EPAO-7   P6.0-6.1/EPA8-9	Dual function I/O port pins. Primary function is that of bidirectional I/O. System function is that of High Speed capture and compare. EPAO and EPA2 have yet another function of T2CLK and T2DIR of the TIMER2 timer/counter.
PORT 0/ACH0-7	8 -bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter. These pins are also used as inputs to EPROM parts to select the Programming Mode.
P6.3-6.7/SSIO	Dual function I/O ports that have a system function as Synchronous Serial I/O. Two pins are clocks and two pins are data, providing full duplex capability.
PORT 2	8 -bit multi-functional port. All of its pins are shared with other functions.
PORT 3 and 4	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus which has strong internal pullups.

## ABSOLUTE MAXIMUM RATINGS*

Storage Temperature $\ldots . . . . . .-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage from $V_{P P}$ or $\overline{E A}$ to
$V_{S S}$ or ANGND $\ldots \ldots \ldots \ldots . .0 .5 \mathrm{~F}$ to +13.0 V
Voltage from Any Other Pin to $\mathrm{V}_{\mathrm{SS}}$ or ANGND $\ldots \ldots . \ldots . .-0.5$ to +7.0 V This includes VPP on ROM and CPU devices.
Power Dissipation 0.5 W

NOTICE: This data sheet contains preliminary information on new products in production. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Under Bias	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	V
$\mathrm{~F}_{\text {OSC }}$	Oscillator Frequency	4	16	MHz (Note 4)

## NOTE:

ANGND and $\mathrm{V}_{\text {SS }}$ should be nominally at the same potential.

DC CHARACTERISTICS (Under Listed Operating Conditions)

Symbol	Parameter	Min	Typ	Max	Units	Test Conditions
ICC	$\mathrm{V}_{\mathrm{CC}}$ Supply Current			90	mA	$\begin{aligned} & \mathrm{XTAL1}=16 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \end{aligned}$
IREF	A/D Reference Supply Current			5	mA	(While device in Reset)
IIDLE	Idle Mode Current			40	mA	$\begin{aligned} & \mathrm{XTAL1}=16 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \end{aligned}$
IPD	Powerdown Mode Current		50	75	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V}(6,11)$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (all pins)	-0.5V		$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	For PORTO(10)
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$v_{C C}+0.5$	V	For PORTO(10)
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage XTAL1	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	XTAL1 Input Pin Only ${ }^{(1)}$
$\mathrm{V}_{\mathrm{IH} 2}$	Input High Voltage on RESET	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	RESET input pin only
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Outputs Configured as Complementary)			$\begin{gathered} 0.3 \\ 0.45 \\ 1.5 \end{gathered}$	$\begin{aligned} & V \\ & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=200 \mu \mathrm{~A}(3,5) \\ & \mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=7.0 \mathrm{~mA} \end{aligned}$
VOH	Output High Voltage (Outputs Configured as Complementary)	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.7 \\ & V_{C C}-1.5 \end{aligned}$			$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}(3,5) \\ & \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-7.0 \mathrm{~mA} \end{aligned}$
ILI	Input Leakage Current (Std. Inputs)			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$
LII1	Input Leakage Current (Port 0)			$\pm 3$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {REF }}$
$\mathrm{IIL}^{1}$	Logical 0 Input Current			-70	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}(1)$

DC CHARACTERISTICS (Under Listed Operating Conditions) (Continued)

Symbol	Parameter	Min	Typ	Max	Units	Test Conditions
V OH1	SLPINT (P5.4) and HLDA (P2.6)   Output High Voltage in RESET	2.0			V	$\mathrm{I}_{\mathrm{OH}}=0.8 \mathrm{~mA}(7)$
V OH2	Output High Voltage in RESET	$\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$			V	$\mathrm{I}_{\mathrm{OH}}=-6 \mu \mathrm{~A}(1)$
$\mathrm{C}_{\mathrm{S}}$	Pin Capacitance (Any pin to $\mathrm{V}_{\text {SS }}$ )			10	pF	$\mathrm{f}_{\text {test }}=1.0 \mathrm{MHz}(6)$
RWPU	Weak Pullup Resistance		150 K		$\Omega$	(Note 6)

## NOTES:

1. All BD (bidirectional) pins except INST and CLKOUT. INST and CLKOUT are excluded due to their not being weakly pulled high in reset. BD pins include Port1, Port2, Port3, Port4, Port5 and Port6 except SPLINT (P5.4) and HLDA (P2.6).
2. Standard input pins include XTAL1, EA, RESET, and Port $1 / 2 / 5 / 6$ when setup as inputs.
3. All bidirectional I/O pins when configured as Outputs (Push/Pull).
4. Device is static and should operate below 1 Hz , but only tested down to 4 MHz .
5. Maximum $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ currents per pin will be characterized and published at a later date.
6. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
7. Violating these specifications in reset may cause the device to enter test modes (P5.4 and P2.6).
8. When PO is used as analog inputs, refer to A/D specifications for this characteristic.
9. For temperatures $<100^{\circ} \mathrm{C}$ typical is $10 \mu \mathrm{~A}$.

## 8XC196KT ADDITIONAL BUS TIMING MODES

The 8XC196KT devices have 3 additional bus timing modes for external memory interfacing.

## MODE 3:

Mode 3 is the standard timing mode.

## MODE 0:

Mode 0 is the standard timing mode, but 1 (minimum) wait state is always inserted in external bus cycles.

## MODE 1:

Mode 1 is the long R/W mode. This mode advances $\overline{R D}$ and $\overline{W R}$ signals by 1 TOSC creating a 2 TOSC $\overline{R D} / \overline{W R}$ low time. ALE is also advanced by 0.5 TOSC but ALE high time remains 1 TOSC.

## MODE 2:

Mode 2 is the long R/W mode with Early Address. Mode 2 is similar to Mode 1 with respect to RD, WR, and ALE signals. Additionally, the address is output on the bus 0.5 TOSC earlier in the bus cycle.


## EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by " $T$ " for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

Conditions:
H—High
L—Low
V -Valid
X -No Longer Valid
Z-Floating

Signals:
A-Address HA- $\overline{\text { HLDA }}$
$\mathrm{B}-\overline{\mathrm{BHE}} \quad \mathrm{L}-\mathrm{ALE} / \overline{\mathrm{ADV}}$
BR- $\overline{B R E Q}$ Q-Data Out
C-CLKOUT RD- $\overline{R D}$
D-DATA
W- $\overline{\mathrm{WR}} / \overline{\mathrm{WRH}} / \overline{\mathrm{WRI}}$
X-XTAL1
Y-READY

BUS MODE 0 AND 3 AC CHARACTERISTICS (Over Specified Operating Conditions) Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.

The system must meet these specifications to work with the 8XC196KT.

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {AVYV }}$	Address Valid to Ready Setup		2 Tosc $^{\text {- }} 75$	$\mathrm{ns}{ }^{(3)}$
TLLYV	ALE Low to READY Setup		Tosc - 70	ns(3)
TYLYH	Non READY Time	No Upper Limit		ns
TCLYX	READY Hold after CLKOUT Low	0	Tosc - 30	ns ${ }^{(1)}$
TAVGV	Address Valid to BUSWIDTH Setup		2 Tosc $^{\text {- }} 75$	$\mathrm{ns}(2,3)$
TllgV	ALE Low to BUSWIDTH Setup		Tosc - 60	$\mathrm{ns}(2,3)$
TCLGX	BUSWIDTH Hold after CLKOUT Low	0		ns
TAVDV	Address Valid to Input Data Valid		3 TOSC - 55	$\mathrm{ns}{ }^{(2)}$
TrLDV	RD active to input Data Valid		Tosc - 30	$\mathrm{ns}{ }^{(2)}$
TCLDV	CLKOUT Low to Input Data Valid		Tosc-60	ns
TRHDZ	End of RD to Input Data Float		Tosc	ns
TRHDX	Data Hold after RD High	0		ns

## NOTES:

1. If Max is exceeded, additional wait states will occur.
2. If wait states are used, add 2 Tosc $\times n$, where $n=$ number of wait states.
3. If mode 0 is selected, one wait state minimum is always added. If additional wait states are required, add 2 Tosc to the specification.

BUS MODE 0 AND 3 AC CHARACTERISTICS (Over Specified Operating Conditions) (Continued)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The 8XC196KT will meet these specifications

Symbol	Parameter	Min	Max	Units
FXTAL	Frequency on XTAL1	4.0	16.0	MHz ${ }^{(1)}$
Tosc	XTAL1 Period ( $1 / \mathrm{F}_{\text {XTAL }}$ )	62.5	250	ns
$\mathrm{T}_{\mathrm{XHCH}}$	XTAL1 High to CLKOUT High or Low	+20		ns
TofD	Clock Failure to Reset Pulled Low(6)	4	40	$\mu \mathrm{s}$
TCLCL	CLKOUT Period	2 Tosc		ns
TCHCL	CLKOUT High Period	Tosc - 10	Tosc +30	ns
TCLLH	CLKOUT Low to ALE/ADV High	-20	+15	ns
TLLCH	ALE/ADV Low to CLKOUT High	-20	+15	ns
TLHLH	ALE/ADV Cycle Time	4 Tosc		$\mathrm{ns}{ }^{(5)}$
TLHLL	ALE/ADV High Time	Tosc - 10	TosC +10	ns
TAVLL	Address Valid to ALE Low	Tosc - 25		ns
TLLAX	Address Hold After ALE/ADV Low	Tosc - 40		ns
TLLRL	ALE/ADV Low to RD Low	Tosc - 30		ns
T ${ }_{\text {RLCL }}$	RD Low to CLKOUT Low	+4	+40	ns
T ${ }_{\text {RLRH }}$	RD Low Period	Tosc - 5		$\mathrm{ns}(5)$
TRHLH	RD High to ALE/ADV High	Tosc	Tosc +25	$\mathrm{ns}{ }^{(3)}$
TrLAZ	RD Low to Address Float		+5	ns
TLLWL	ALE/ADV Low to WR Low	Tosc - 10		ns
TCLWL	CLKOUT Low to WR Low	-20	+25	ns
TQVwh	Data Valid before WR High	Tosc - 23		ns
TCHWH	CLKOUT High to WR High	-10	+15	ns
TWLWH	WR Low Period	Tosc - 30		ns (5)
TWHQX	Data Hold after WR High	TOSC - 25		ns
TWHLH	WR High to ALE/ADV High	Tosc - 10	Tosc +15	$\mathrm{ns}{ }^{(3)}$
TWHBX	BHE, INST Hold after WR High	TOSC-15		ns
Twhax	AD8-15 Hold after WR High	TOSC-30		$\mathrm{ns}(4)$
TRHBX	BHE, INST Hold after RD High	TOSC - 10		ns
$\mathrm{T}_{\text {RHAX }}$	AD8-15 Hold after RD High	Tosc - 30		ns(4)

## NOTES:

1. Testing performed at 4.0 MHz , however, the device is static by design and will typically operate below 1 Hz .
2. Typical specifications, not guaranteed.
3. Assuming back-to-back bus cycles.
4. 8-bit bus only.
5. If wait states are used, add 2 Tosc $\times n$, where $n=$ number of wait states. If mode 0 ( 1 automatic wait state added) operation is selected, add 2 TOSC to specification.
6. TOFD is the time for the oscillator fail detect circuit (OFD) to react to a clock failure. The OFD circuitry is enabled by programming the UPROM location 0778 H with the value 0004 H . KT customer QROM codes need to equate location 2016 H to the value OCDEH if the oscillator fail detect (OFD) function is desired. Intel manufacturing uses location 2016H as a flag to determine whether or not to program the Clock Detect Enable (CDE) bit. Programming the CDE bit enables oscillator fail detection.

BUS MODE 0 AND 3 8XC196KT SYSTEM BUS TIMING


## MODE 0 AND 3 8XC196KT READY TIMINGS (ONE WAIT STATE)



## 8XC196KT BUSWIDTH TIMINGS



BUS MODE 1-AC CHARACTERISTICS (Over Specified Operating Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The system must meet these specifications to work with the 8XC196KT.

Symbol	Parameter	Min	Max	Units
TAVYV	Address Valid to Ready Setup		2 Tosc - 75	ns
TLLYV	ALE Low to READY Setup		1.5 Tosc - 70	ns
TYLYH	Non READY Time	No Upper Limit		ns
TCLYX	READY Hold after CLKOUT Low	0	TOSC - 30	$\mathrm{ns}{ }^{(1)}$
TAVGV	Address Valid to BUSWIDTH Setup		2 TOSC - 75	nd
TLLGV	ALE Low to BUSWIDTH Setup		$\mathrm{T}_{1.5 \text { OSC }}-60$	ns
TCLGX	BUSWIDTH Hold after CLKOUT Low	0		ns
$\mathrm{T}_{\text {AVDV }}$	Address Valid to Input Data Valid		3 Tosc - 60	ns (2)
TRLDV	RD Active to input Data Valid		TOSC - 44	$\mathrm{ns}{ }^{(2)}$
TCLDV	CLKOUT Low to Input Data Valid		Tosc - 60	ns
TRHDZ	End of RD to Input Data Float		Tosc	ns
TRHDX	Data Hold after RD High	0		ns

## NOTES:

1. If Max is exceeded, additional wait states will occur.
2. If wait states are used, add 2 Tosc $\times n$, where $n=$ number of wait states. If mode 0 is selected, one wait state minimum is always added. If additional wait states are required, add 2 Tosc to the specification.

## BUS MODE 1-AC CHARACTERISTICS (Over Specified Operating Conditions)

Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The 8XC196KT will meet these specifications

Symbol	Parameter	Min	Max	Units
FXTAL	Frequency on XTAL1	4.0	16.0	MHz ${ }^{(1)}$
Tosc	XTAL1 Period (1/FXTAL)	62.5	250	ns
$\mathrm{T}_{\text {XHCH }}$	XTAL1 High to CLKOUT High or Low	+20		ns
TCLCL	CLKOUT Period	2 Tosc		ns
TCHCL	CLKOUT High Period	Tosc - 10	Tosc +27	ns
TCLLL	CLKOUT Low to ALE/ADV Low	0.5 Tosc - 25	0.5 Tosc +15	ns
TLHLH	ALE/ADV Cycle Time	4 Tosc		ns (5)
TLHLL	ALE/ADV High Time	Tosc - 10	TOSC +10	ns
$\mathrm{T}_{\text {AVLL }}$	Address Valid to ALE Low	Tosc - 20		ns
TLLAX	Address Hold After ALE/ADV Low	TOSC - 40		ns
TLLRL	ALE/ADV Low to RD Low	0.5 Tosc - 10		ns
TrLCL	RD Low to CLKOUT Low	Tosc - 10	TOSC + 30	ns
TRLRH	RD Low Period	2TOSC - 20		ns (5)
$\mathrm{T}_{\text {RHLH }}$	RD High to ALE/ADV High	0.5 Tosc	0.5 Tosc +25	ns (3)
T RLAZ	RD Low to Address Float		+5	ns
TLLWL	ALE/ADV Low to WR Low	0.5 Tosc - 10		ns
TCLWL	CLKOUT Low to WR Low	TOSC - 25	TOSC +25	ns
TQVWH	Data Valid before WR High	2 Tosc - 23		ns
TCHWH	CLKOUT High to WR High	-10	+15	ns
TWLWH	WR Low Period	2 Tosc - 20		ns(5)
TWHQX	Data Hold after WR High	0.5 Tosc - 25		ns
TWHLH	WR High to ALE/ADV High	0.5 Tosc - 10	0.5 Tosc +10	$\mathrm{ns}{ }^{(3)}$
T WHBX	BHE Hold after WR High	Tosc - 15		ns
T WHIX	INST Hold after WR High	0.5 Tosc - 15		
TWHAX	AD8-15 Hold after WR High	0.5 Tosc - 30		$n{ }^{(4)}$
TRHBX	BHE Hold after RD High	TOSC - 32		ns
$\mathrm{T}_{\text {RHIX }}$	INST Hold after RD High	0.5 Tosc - 32		
$\mathrm{T}_{\text {RHAX }}$	AD8-15 Hold after RD High	0.5 Tosc - 30		ns(4)

## NOTES:

1. Testing performed at 8.0 MHz , however, the device is static by design and will typically operate below 1 Hz .
2. Typical specifications, not guaranteed.
3. Assuming back-to-back bus cycles.
4. 8 -bit bus only.
5. If wait states are used, add 2 TOSC $\times n$, where $n=$ number of wait states. If mode 0 ( 1 automatic wait state added) operation is selected, add 2 TOSC to specification.

MODE 1-8XC196KT SYSTEM BUS TIMING


## MODE 1-8XC196KT READY TIMINGS (ONE WAIT STATE)



## MODE 1-8XC196KT BUSWIDTH TIMINGS



BUS MODE 2-AC CHARACTERISTICS (Over Specified Operating Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The system must meet these specifications to work with the 8XC196KT.

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {AVYV }}$	Address Valid to Ready Setup		2.5 Tosc - 75	ns
TLLYV	ALE Low to READY Setup		1.5 Tosc - 70	ns
TYLYH	Non READY Time	No Upper Limit		ns
TCLYX	READY Hold after CLKOUT Low	0	Tosc - 30	$\mathrm{ns}{ }^{(1)}$
TAVGV	Address Valid to BUSWIDTH Setup		2.5 Tosc - 75	ns
TLLGV	ALE Low to BUSWIDTH Setup		$\mathrm{T}_{1.5}$ OSC -60	ns
TCLGX	BUSWIDTH Hold after CLKOUT Low	0		ns
$\mathrm{T}_{\text {AVDV }}$	Address Valid to Input Data Valid		3.5 Tosc - 55	$\mathrm{ns}{ }^{(2)}$
T RLDV	RD Active to Input Data Valid		2 Tosc $^{\text {- } 44}$	$\mathrm{ns}{ }^{(2)}$
TCLDV	CLKOUT Low to Input Data Valid		TOSC - 60	ns
TRHDZ	End of RD to Input Data Float		0.5 Tosc	ns
$\mathrm{T}_{\text {RHDX }}$	Data Hold after RD High	0		ns

## NOTES:

1. If Max is exceeded, additional wait states will occur.
2. If wait states are used, add 2 Tosc $\times n$, where $n=$ number of wait states. If mode 0 is selected, one wait state minimum is always added. If additional wait states are required, add 2 Tosc to the specification.

BUS MODE 2-AC CHARACTERISTICS (Over Specified Operating Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.
The 8XC196KT will meet these specifications

Symbol	Parameter	Min	Max	Units
FXTAL	Frequency on XTAL1	8.0	16.0	MHz ${ }^{(1)}$
Tosc	XTAL1 Period (1/FXTAL)	62.5	125	ns
$\mathrm{T}_{\text {XHCH }}$	XTAL1 High to CLKOUT High or Low	+20	+85	ns
TCLCL	CLKOUT Period	2 Tosc		ns
TCHCL	CLKOUT High Period	Tosc - 10	Tosc +27	ns
TCLLL	CLKOUT Low to ALE/ADV Low	0.5 Tosc -25	0.5 Tosc +15	ns
TLHLH	ALE/ADV Cycle Time	4 Tosc		$\mathrm{ns}{ }^{(5)}$
TLHLL	ALE/ADV High Time	Tosc - 10	Tosc +10	ns
$\mathrm{T}_{\text {AVLL }}$	Address Valid to ALE Low	Tosc - 15		ns
TLLAX	Address Hold After ALE/ADV Low	Tosc - 40		ns
TLLRL	ALE/ADV Low to RD Low	0.5 Tosc - 10		ns
TRLCL	RD Low to CLKOUT Low	Tosc - 10	Tosc +30	ns
T TLRH	RD Low Period	2Tosc - 20		ns (5)
$\mathrm{T}_{\text {RHLH }}$	RD High to ALE/ADV High	$0.5 \mathrm{TOSC}^{-5}$	0.5 Tosc +25	ns(3)
TrLAZ	RD Low to Address Float		+5	ns
TLLWL	ALE/ADV Low to WR Low	0.5 Tosc - 10		ns
TCLWL	CLKOUT Low to WR Low	Tosc - 22	Tosc +25	ns
TQVWH	Data Valid before WR High	2 Tosc - 25		ns
TCHWH	CLKOUT High to WR High	-10	+15	ns
T WLWH	WR Low Period	2 Tosc - 20		$n{ }^{(5)}$
TWHQX	Data Hold after WR High	0.5 Tosc - 25		ns
T WHLH	WR High to ALE/ADV High	0.5 Tosc - 10	0.5 TosC +10	$\mathrm{ns}{ }^{(3)}$
T WHBX	BHE Hold after WR High	Tosc - 15		ns
TWHIX	INST Hold after WR High	0.5 Tosc - 15		
T WHAX	AD8-15 Hold after WR High	0.5 Tosc - 30		$n s(4)$
$\mathrm{T}_{\text {RHBX }}$	BHE Hold after RD High	Tosc - 32		ns
$\mathrm{T}_{\text {RHIX }}$	INST Hold after RD High	0.5 Tosc - 32		
$\mathrm{T}_{\text {RHAX }}$	AD8-15 Hold after RD High	0.5 Tosc - 30		ns(4)

## NOTES:

1. Testing performed at 8.0 MHz , however, the device is static by design and will typically operate below 1 Hz .
2. Typical specifications, not guaranteed.
3. Assuming back-to-back bus cycles.
4. 8-bit bus only.
5. If wait states are used, add 2 TOSC $\times n$, where $n=$ number of wait states. If mode 0 (1 automatic wait state added) operation is selected, add 2 TOSC to specification.

MODE 2-8XC196KT SYSTEM BUS TIMING


MODE 2-8XC196KT READY TIMINGS (ONE WAIT STATE)


MODE 2-8XC196KT BUSWIDTH TIMINGS


BUS MODE 0, 1, 2, and 3 HOLD/HOLDA TIMINGS (Over Specified Operation Conditions)
Test Conditions: Capacitance Load on All Pins $=100 \mathrm{pF}$, Rise and Fall Times $=10 \mathrm{~ns}$.

Symbol	Parameter	Min	Max	Units
THVCH	HOLD Setup Time	+65		$\mathrm{ns}{ }^{(1)}$
TCLHAL	CLKOUT Low to HLDA Low	-15	+15	ns
TCLBRL	CLKOUT Low to $\overline{B R E Q}$ Low	-15	+15	ns
$\mathrm{T}_{\text {AZHAL }}$	HLDA Low to Address Float		+25	ns
TBZHAL	HLDA Low to $\overline{\mathrm{BHE}}$, INST, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Weakly Driven		+25	ns
TCLHAH	CLKOUT Low to HLDA High	-25	+15	ns
TCLBRH	CLKOUT Low to BREQ High	-25	+25	ns
THAHAX	HLDA High to Address No Longer Float	-15		ns
THAHBV	$\overline{\text { HLDA }}$ High to $\overline{\mathrm{BHE}}$, INST, $\overline{\mathrm{RD}}$, $\overline{\text { WR }}$ Valid	-10		ns

## NOTE:

1. To guarantee recognition at next clock.

## 8XC196KT $\overline{\text { HOLD }} / \overline{\text { HOLDA }}$ TIMINGS



## AC CHARACTERISTICS-SLAVE PORT

SLAVE PORT WAVEFORM-(SLPL $=0$ )


SLAVE PORT TIMING-(SLPL $=\mathbf{0}, \mathbf{1}, \mathbf{2 , 3}$ )

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {SAVWL }}$	Address Valid to $\overline{\mathrm{WR}}$ Low	50		ns
$\mathrm{~T}_{\text {SRHAV }}$	$\overline{\mathrm{RD}}$ High to Address Valid	60		ns
$\mathrm{~T}_{\text {SRLRH }}$	$\overline{\mathrm{RD}}$ Low Period	$\mathrm{T}_{\text {SSC }}$		ns
$\mathrm{T}_{\text {SWLWH }}$	$\overline{\mathrm{WR}}$ Low Period	$\mathrm{T}_{\mathrm{OSC}}$		ns
$\mathrm{T}_{\text {SRLDV }}$	$\overline{\mathrm{RD}}$ Low to Output Data Valid		60	ns
$\mathrm{~T}_{\text {SDVWH }}$	Input Data Setup to $\overline{\mathrm{WR}}$ High	20		ns
$\mathrm{~T}_{\text {SWHQX }}$	$\overline{\mathrm{WR}}$ High to Data Invalid	30		ns
$\mathrm{~T}_{\text {SRHDZ }}$	$\overline{\mathrm{RD}}$ High to Data Float	15		ns

## NOTES:

1. Test Conditions: Fosc $=16 \mathrm{MHz}$, Tosc $=60 \mathrm{~ns}$. Rise/Fall Time $=10 \mathrm{~ns}$. Capacitive Pin Load $=100 \mathrm{pF}$.
2. These values are not tested in production, and are based upon theoretical estimates and/or laboratory tests.
3. Specifications above are advanced information and are subject to change.

## AC CHARACTERISTICS-SLAVE PORT (Continued)

SLAVE PORT WAVEFORM-(SLPL = 1)


SLAVE PORT TIMING-(SLPL = 1, 2, 3)

Symbol	Parameter	Min	Max	Units
TSELLL	$\overline{\text { CS }}$ Low to ALE Low	20		ns
TSRHEH	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to $\overline{\mathrm{CS}}$ High	60		ns
TSLLRL	ALE Low to $\overline{\text { RD }}$ Low	Tosc		ns
TSRLRH	$\overline{\mathrm{RD}}$ Low Period	Tosc		ns
TSWLWH	WR Low Period	Tosc		ns
TSAVLL	Address Valid to ALE Low	20		ns
TSLLAX	ALE Low to Address Invalid	20		ns
TSRLDV	$\overline{\mathrm{RD}}$ Low to Output Data Valid		60	ns
TSDVWH	Input Data Setup to WRHigh	20		ns
TSWHQX	WR High to Data Invalid	30		ns
TSRHDZ	$\overline{\mathrm{RD}}$ High to Data Float	15		ns

## NOTES:

1. Test Conditions: FOSC $=16 \mathrm{MHz}$, Tosc $=60 \mathrm{~ns}$. Rise/Fall Time $=10 \mathrm{~ns}$. Capacitive Pin Load $=100 \mathrm{pF}$.
2. These values are not tested in production, and are based upon theoretical estimates and/or laboratory tests.
3. Specifications above are advanced information and are subject to change.

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 / T_{\text {XLXL }}$	Oscillator Frequency	4	16	MHz
$\mathrm{T}_{\text {XLXL }}$	Oscillator Period (TOSC)	62.5	250	ns
$\mathrm{~T}_{\mathrm{XHXX}}$	High Time	$0.35 \times \mathrm{T}_{\mathrm{OSC}}$	$0.65 \mathrm{~T}_{\mathrm{OSC}}$	ns
$\mathrm{T}_{\mathrm{XLXX}}$	Low Time	$0.35 \times \mathrm{T}_{\mathrm{OSC}}$	$0.65 \mathrm{~T}_{\mathrm{OSC}}$	ns
$\mathrm{T}_{\mathrm{XLXH}}$	Rise Time		10	ns
$\mathrm{~T}_{\mathrm{XHXL}}$	Fall Time		10	ns

EXTERNAL CLOCK DRIVE WAVEFORMS


## AC TESTING INPUT, OUTPUT WAVEFORMS



AC Testing inputs are driven at 3.5 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for logic " 0 ".

FLOAT WAVEFORMS


For timing purposes a Port Pin is no longer floating when a 150 mV change from load voltage occurs and begins to float when a 150 mV change from the loading $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs $\mathrm{l}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}} \leq 15 \mathrm{~mA}$.

WAVEFORM-SERIAL PORT-SHIFT REGISTER MODE
SERIAL PORT WAVEFORM-SHIFT REGISTER MODE


## AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT TIMING-SHIFTING REGISTER MODE
Test Conditions: $T_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$; $\mathrm{V}_{\mathrm{SS}}=0.0 \mathrm{~V}$; Load Capacitance $=\mathrm{pF}$

Symbol	Parameter	Min	Max	Units
$T_{\text {XLXL }}$	Serial Port Clock Period	8 TOSC		ns
$T_{\text {XLXH }}$	Serial Port Clock Falling Edge to Rising Edge	$4 T_{\text {OSC }}-50$	$T_{\text {OSC }}+50$	ns
$T_{\text {QVXH }}$	Output Data Setup to Clock Rising Edge	$3 T_{\text {OSC }}$		ns
$T_{\text {XHQX }}$	Output Data Hold after Clock Rising Edge	$2 T_{\text {OSC }}-50$		ns
$T_{\text {XHQV }}$	Next Output Data Valid after Clock Rising Edge		$2 T_{\text {OSC }}+50$	ns
$T_{\text {DVXH }}$	Input Data Setup to Clock Rising Edge	$2 T_{\text {OSC }}+200$		ns
$T_{\text {XHDX }}{ }^{(1)}$	Input Data Hold after Clock Rising Edge	0		ns
$T_{\text {XHQZ }}{ }^{(1)}$	Last Clock Rising to Output Float		$5 T_{\text {OSC }}$	ns

## NOTE:

1. Parameters not tested.

8XC196KT
PRELOMONARY

## A TO D CHARACTERISTICS

The A/D converter is ratiometric, so absolute accuracy is dependent on the accuracy and stability of $V_{\text {REF }}$.

## 10-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$T_{A}$	Ambient Temperature	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	$\mathrm{~V}^{(1)}$
$\mathrm{T}_{\text {SAM }}$	Sample Time	1.0		$\mu \mathrm{~s}(2)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	10	15	$\mu \mathrm{~s}(2)$
FOSC	Oscillator Frequency	4.0	16.0	MHz

NOTES:

1. $\mathrm{V}_{\mathrm{REF}}$ must be within 0.5 V of $\mathrm{V}_{\mathrm{CC}}$.
2. The value of AD__TIME is selected to meet these specifications.

10-BIT MODE A/D CHARACTERISTICS (Using Above Operating Conditions)(6)

Parameter	Typ*(1)	Min	Max	Units*
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Level Bits
Absolute Error		0	$\pm 3.0$	LSBs
Full Scale Error	$0.25 \pm 0.5$			LSBs
Zero Offset Error	$0.25 \pm 0.5$			LSBs
Non-Linearity	$1.0 \pm 2.0$		$\pm 3.0$	LSBs
Differential Non-Linearity		-0.75	+0.75	LSBs
Channel-to-Channel Matching	$\pm 0.1$	0	$\pm 1.0$	LSBs
Repeatability	$\pm 0.25$	0		LSBs(1)
Temperature Coefficients:   Offset   Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			$\begin{aligned} & \text { LSB/C(1) } \\ & \text { LSB/C(1) } \\ & \text { LSB/C(1) } \end{aligned}$
Off Isolation		-60		$\mathrm{dB}(1,2,3)$
Feedthrough	-60			$\mathrm{dB}(1,2)$
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			$\mathrm{dB}(1,2)$
Input Resistance		750	1.2 K	$\Omega^{(4)}$
DC Input Leakage	$\pm 1.0$	0	$\pm 3.0$	$\mu \mathrm{A}$
Voltage on Analog Input Pin		ANGND - 0.5	$\mathrm{V}_{\text {REF }}+0.5$	V (5)
Sampling Capacitor	3.0			pF

"An "LSB" as used here has a value of approximately 20 mV .

## NOTES:

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$, but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer break-before-make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. Applying voltages beyond these specifications will degrade the accuracy of other channels being converted.
6. All conversions performed with processor in IDLE mode.

8XC196KT

## 8-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\text {A }}$	Ambient Temperature	0	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	$\mathrm{~V}(1)$
$\mathrm{T}_{\text {SAM }}$	Sample Time	1.0		$\mu \mathrm{~S}(2)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	7	20	$\mu \mathrm{~S}(2)$
FOSC	Oscillator Frequency	4.0	16.0	MHz

## NOTES:

1. $V_{\text {REF }}$ must be within 0.5 V of $\mathrm{V}_{\mathrm{CC}}$ -
2. The value of AD_TIME is selected to meet these specifications.

## 8-BIT MODE A/D CHARACTERISTICS (Using Above Operating Conditions)(6)

Parameter	Typ*(1)	Min	Max	Units*
Resolution		$\begin{gathered} 256 \\ 8 \end{gathered}$	$\begin{gathered} 256 \\ 8 \end{gathered}$	Level Bits
Absolute Error		0	$\pm 1.0$	LSBs
Full Scale Error	$\pm 0.5$			LSBs
Zero Offset Error	$\pm 0.5$			LSBs
Non-Linearity		0	$\pm 1.0$	LSBs
Differential Non-Linearity		-0.5	+0.5	LSBs
Channel-to-Channel Matching		0	$\pm 1.0$	LSBs
Repeatability	$\pm 0.25$	0		LSBs(1)
Temperature Coefficients:   Offset   Full Scale Differential Non-Linearity	$\begin{aligned} & 0.003 \\ & 0.003 \\ & 0.003 \end{aligned}$			LSB/C(1) LSB/C(1) LSB/C(1)
Off Isolation		-60		$\mathrm{dB}(1,2,3)$
Feedthrough	-60			$\mathrm{dB}(1,2)$
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			$\mathrm{dB}(1,2)$
Input Resistance		750	1.2K	$\Omega{ }^{(4)}$
DC Input Leakage	$\pm 1.0$	0	$\pm 3.0$	$\mu \mathrm{A}$
Voltage on Analog Input Pin		ANGND - 0.5	$\mathrm{V}_{\text {REF }}+0.5$	V (5)
Sampling Capacitor	3.0			pF

"An "LSB" as used here has a value of approximately 20 mV .

## NOTES:

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$, but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer break-before-make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. Applying voltage beyond these specifications will degrade the accuracy of other channels being converted.
6. All conversions performed with processor in IDLE mode.

## EPROM SPECIFICATIONS

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature during Programming	20	30	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Supply Voltage during Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\text {REF }}$	Reference Supply Voltage during Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\mathrm{PP}}$	Programming Voltage	12.25	12.75	$\mathrm{~V}(2)$
$\mathrm{V}_{\mathrm{EA}}$	EA Pin Voltage	12.25	12.75	$\mathrm{~V}(2)$
$\mathrm{F}_{\text {OSC }}$	Oscillator Frequency during Auto   and Slave Mode Programming	6.0	8.0	MHz
FOSC	Oscillator Frequency during   Run-Time Programming	6.0	16.0	MHz

## NOTES:

1. $V_{C C}$ and $V_{R E F}$ should nominally be at the same voltage during programming.
2. $V_{P P}$ and $V_{E A}$ must never exceed the maximum specification, or the device may be damaged
3. $\mathrm{V}_{\mathrm{SS}}$ and ANGND should nominally be at the same potential ( 0 V ).
4. Load capacitance during Auto and Slave Mode programming $=150 \mathrm{pF}$.

AC EPROM PROGRAMMING CHARACTERISTICS (SLAVE MODE)

Symbol	Parameter	Min	Max	Units
$\mathrm{T}_{\text {AVLL }}$	Address Setup Time	0		Tosc
TLLAX	Address Hold Time	100		Tosc
T DVPL	Data Setup Time	0		Tosc
TPLDX	Data Hold Time	400		Tosc
TLLLH	PALE Pulse Width	50		Tosc
TPLPH	PROG Pulse Width(2)	50		Tosc
TLHPL	$\overline{\text { PALE }}$ High to PROG Low	220		Tosc
TPHLL	PROG High to next PALE Low	220		Tosc
TPHDX	Word Dump Hold Time		50	Tosc
TPHPL	$\overline{\text { PROG }}$ High to next $\overline{\text { PROG }}$ Low	220		Tosc
TLHPL	PALE High to PROG Low	220		Tosc
TPLDV	$\overline{\text { PROG }}$ Low to Word Dump Valid		50	Tosc
TSHLL	RESET High to First PALE Low	1100		Tosc
TPHIL	PROG High to $\overline{\text { AINC Low }}$	0		Tosc
TILIH	$\overline{\text { AINC Pulse Width }}$	240.		Tosc
TILVH	PVER Hold after AINC Low	50		Tosc
TILPL	$\overline{\text { AINC Low to PROG Low }}$	170		Tosc
TPHVL	$\overline{\text { PROG High to PVER Valid }}$		220	Tosc

## NOTES:

1. Run-time programming is done with Fosc $=6.0 \mathrm{MHz}$ to $10.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{PD}}, \mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and $V_{P P}=12.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$. For run-time programming over a full operating range, contact factory.
2. Programming specifications are not tested, but guaranteed by design.
3. This specification is for the word dump mode. For programming pulses use Modified Quick Pulse Algorithm.

DC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Min	Max	Units
$I_{\text {PP }}$	V Pp $^{\prime}$ Programming Supply Current		200	mA

## NOTE:

Don not apply $\mathrm{V}_{\mathrm{PP}}$ until $\mathrm{V}_{\mathrm{CC}}$ is stable and within specifications and the oscillator/clock has stabilized or the device may be damaged.

## EPROM PROGRAMMING WAVEFORMS

SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE


272266-21
NOTE:
P3.0 must be HIGH (" 1 ")

SLAVE PROGRAMMING MODE IN WORD DUMP MODE WITH AUTO INCREMENT


SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM MODE WITH REPEATED PROG PULSE AND AUTO INCREMENT


## 8XC196KT ERRATA

The following is a list of all known functional deviations for 8XC196KT devices. C-step devices can be identified by a special mark following the eight digit FPO number on the top of the package. For C-step devices, this mark is a " $C$ ".

1. The following reserved op-codes do not generate the unimplemented op-code interrupt: 1Ch, 1Dh, 1Eh, 1Fh, E3h, E4h, E6h, E8h, E9h, EAh, EBh and F1h.

## 8XC196MC Data Sheet

## 8XC196MC INDUSTRIAL MOTOR CONTROL <br> MICROCONTROLLER <br> 87C196MC 16 Kbytes of On-Chip OTPROM* 83C196MC 16 Kbytes of On-Chip ROM

## ■ High Performance CHMOS 16-Bit CPU

■ 16 Kbytes of On-Chip OTPROM/ROM
■ 488 bytes of On-Chip Register RAM

- Register to Register Architecture
- Up to 53 I/O Lines
- Peripheral Transaction Server (PTS) with 11 Prioritized Sources
- Event Processor Array (EPA) - 4 High Speed Capture/Compare Modules
- 4 High Speed Compare Modules

■ Two 16-Bit Timers with Quadrature Decoder Input

- 3-Phase Complementary Waveform Generator
- 13 Channel 8/10-Bit A/D with Sample/ Hold with Zero Offset Adjustment H/W
- 14 Prioritized Interrupt Sources

■ Flexible 8/16-Bit External Bus

- $1.75 \mu \mathrm{~s} 16 \times 16$ Multiply
- $3 \mu \mathrm{~s}$ 32/16 Divide
- Idle and Power Down Modes


## ■ Extended Temperature Standard

The 8XC196MC is a 16 -bit microcontroller designed primarily to control 3 phase AC induction and DC brushless motors. The 8XC196MC is based on Intel's MCS®-96 16-bit architecture and is manufactured with Intel's CHMOS process.

The 8XC196MC has a three phase waveform generator specifically designed for use in "Inverter" motor control applications. This peripheral allows for pulse width modulation, three phase sine wave generation with minimal CPU intervention. It generates 3 complementary non-overlapping PWM pulses with resolutions of $0.125 \mu \mathrm{~s}$ (edge trigger) or $0.250 \mu \mathrm{~s}$ (centered).

The 8XC196MC has 16 Kbytes on-chip OTPROM/ROM and 488 bytes of on-chip RAM. It is available in three packages; PLCC (84-L), SDIP (64-L) and EIAJ/QFP (80-L).

Note that the 64-L SDIP package does not include P1.4, P2.7, P5.1 and the CLKOUT pins.
Operational characteristics are guaranteed over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
The 87C196MC contains 16 Kbytes on-chip OTPROM. The 83C196MC contains 16 Kbytes on-chip ROM. All references to the 80C196MC also refers to the 83C196MC and 87C196MC unless noted.

[^25]

Figure 1. 87C196MC Block Diagram

## PROCESS INFORMATION

This device is manufactured on PX29.5, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997.


EXAMPLE: N87C196MC is 84-Lead PLCC OTPROM, 16 MHz .
For complete package dimensional data, refer to the Intel Packaging Handbook (Order Number 240800).

## NOTE:

1. EPROMs are available as One Time Programmable (OTPROM) only.

Figure 3. The 8XC196MC Family Nomenclature
Thermal Characteristics

Package   Type	$\boldsymbol{\theta}_{\mathbf{j a}}$	$\boldsymbol{\theta}_{\mathbf{j c}}$
PLCC	$35^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$
QFP	$56^{\circ} \mathrm{C} / \mathrm{W}$	$12^{\circ} \mathrm{C} / \mathrm{W}$
SDIP	TBD	TBD

All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operation conditions and application. See the Intel Packaging Handbook (order number 240800) for a description of Intel's thermal impedance test methodology.

8XC196MC Memory Map

Description	Address
External Memory or I/O	OFFFFH   06000 H
Internal ROM/EPROM or External   Memory (Determined by EA)	5 FFFH   2080 H
Reserved. Must contain FFH.   (Note 5)	207 FH   205 EH
PTS Vectors	205 DH
	2040 H
Upper Interrupt Vectors	203 FH
	2030 H
ROM/EPROM Security Key	202 FH
	2020 H
Reserved. Must contain FFH.   (Note 5)	201 FH
Reserved. Must Contain 20H	201 CH
(Note 5)	201 BH
CCB1	201 AH
Reserved. Must Contain 20H	2019 H
(Note 5)	
CCB0	2018 H
Reserved. Must contain FFH.	2017 H
(Note 5)	2014 H
Lower Interrupt Vectors	2013 H
SFR's	2000 H
External Memory	1 FFFH
	$1 \mathrm{F00H}$
488 Bytes Register RAM (Note 1)	1 FFFH
CPU SFR's (Notes 1, 3)	0200 H

## NOTES:

1. Code executed in locations 0000 H to 03 FFH will be forced external.
2. Reserved memory locations must contain OFFH unless noted.
3. Reserved SFR bit locations must contain 0 .
4. Refer to 8XC196KC for SFR descriptions.
5. WARNING: Reserved memory locations must not be written or read. The contents and/or function of these locations may change with future revisions of the device. Therefore, a program that relies on one or more of these locations may not function properly.


270946-2

NOTE:
*The pin sequence is correct.
The 64-Lead SDIP package does not include the following pins: P1.4/ACH12,.P2.7/COMPARE3, P5.1/INST, CLKOUT.

Figure 2. 64-Lead Shrink DIP (SDIP) Package


Figure 3. 84-Lead PLCC Package


Figure 4. 80-Lead Shrink EIAJQFP (Quad Flat Pack)

PIN DESCRIPTIONS (Alphabetically Ordered)

Symbol	Function
$\begin{aligned} & \mathrm{ACHO}-\mathrm{ACH} 12 \\ & \text { (P0.0-P0.7, P1.0-P1.4) } \end{aligned}$	Analog inputs to the on-chip A/D converter. ACHO-7 share the input pins with PO.O-7 and $A C H 8-12$ share pins with P1.0-4. If the $A / D$ is not used, the port pins can be used as standard input ports.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $\mathrm{V}_{\text {SS }}$.
ALE/ $\overline{\text { ADV }}$ (P5.0)	Address Latch Enable or Address Valid output, as selected by CCR. Both options allow a latch to demultiplex the address/data bus on the signal's falling edge. When the pin is $\overline{A D V}$, it goes inactive (high) at the end of the bus cycle. ALE/ $\overline{A D V}$ is active only during external memory accesses. Can be used as standard I/O when not used as ALE/ADV.
$\overline{\text { BHE }}$ WRH (P5.5)	Byte High Enable or Write High output, as selected by the CCR. $\overline{\text { BHE }}$ will go low for external writes to the high byte of the data bus. WRH will go low for external writes where an odd byte is being written. $\overline{B H E} / \overline{W R H}$ is activated only during external memory writes.
BUSWIDTH (P5.7)	Input for bus width selection. If CCR bits 1 and $2=1$, this pin dynamically controls the bus width of the bus cycle in progress. If BUSWIDTH is low, an 8 -bit cycle occurs. If it is high, a 16-bit cycle occurs. This pin can be used as standard I/O winen not used as BUSWIDTH.
$\begin{aligned} & \text { CAPCOMPO-CAPCOMP3 } \\ & \text { (P2.0-P2.3) } \end{aligned}$	The EPA Capture/Compare pins. These pins share P2.0-P2.3. If not used for the EPA, they can be configured as standard I/O pins.
CLKOUT	Output of the internal clock generator. The frequency is $1 / 2$ of the oscillator frequency. It has a $50 \%$ duty cycle.
$\begin{aligned} & \text { COMPARE0-COMPARE3 } \\ & \text { (P2.4-P2.7) } \end{aligned}$	The EPA Compare pins. These pins share P2.4-P2.7. If not used for the EPA, they can be configured as standard I/O pins.
EA	External Access enable pin. $\overline{\mathrm{EA}}=0$ causes all memory accesses to be external to the chip. $\overline{E A}=1$ causes memory accesses from location 2000 H to 5FFFH to be from the on-chip OTPROM/QROM. $\overline{E A}=12.5 \mathrm{~V}$ causes execution to begin in the programming mode. EA is latched at reset.
EXTINT	A programmable input on this pin causes a maskable interrupt vector through memory location 203CH. The input may be selected to be a positive/negative edge or a high/low level using WG__PROTECT (1FCEH).
INST (P5.1)	INST is high during the instruction fetch from the external memory and throughout the bus cycle. It is low otherwise. This pin can be configured as standard I/O if not used as INST.
NMI	A positive transition on this pin causes a non-maskable interrupt which vectors to memory location 203EH. If not used, it should be tied to $\mathrm{V}_{\text {SS }}$. May be used by Intel Evaluation boards.
PORTO	8 -bit high impedance input-only port. Also used as A/D converter inputs. Port0 pins should not be left floating. These pins also used to select programming modes in the OTPROM devices.
PORT1	5 -bit high impedance input-only port. P1.0-P1.4 are also used as A/D converter inputs. In addition, P1.2 and P1. 3 can be used as Timer 1 clock input and direction select respectively.
PORT2	8 -bit bidirectional I/O port. All of the Port2 pins are shared with the EPA I/O pins (CAPCOMPO-3 and COMPAREO-3).
$\begin{aligned} & \hline \text { PORT3 } \\ & \text { PORT4 } \end{aligned}$	8 -bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus which uses strong internal pullups.
PORT5	8 -bit bidirectional I/O port. 7 of the pins are shared with bus control signals ( $\overline{\mathrm{ALE}}, \mathrm{INST}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{BHE}}$, READY, BUSWIDTH). Can be used as standard I/O.

PIN DESCRIPTIONS (Alphabetically Ordered) (Continued)

Symbol	Function
PORT6	8 -bit output port. P6.6 and P6.7 output PWM, the others are used as the Wave Form Generator outputs. Can be used as standard output ports.
PWM0, PWM1 (P6.6, P6.7)	Programmable duty cycle, Programmable frequency Pulse Width Modulator pins. The duty cycle has a resolution of 256 steps, and the frequency can vary from 122 Hz to 31 KHz ( 16 MHz input clock). Pins may be configured as standard output if PWM is not used.
$\overline{\mathrm{RD}}$ (P5.3)	Read signal output to external memory. $\overline{\mathrm{RD}}$ is low only during external memory reads. Can be used as standard I/O when not used as RD.
READY (P5.6)	Ready input to lengthen external memory cycles. If READY $=0$, the memory controller inserts wait states until the next positive transition of CLKOUT occurs with READY $=1$. Can be used as standard I/O when not used as READY.
$\overline{\text { RESET }}$	Reset input to and open-drain output from the chip. Held low for at least 16 state times to reset the chip. Input high for normal operation. $\overline{\text { RESET }}$ has an Ohmic internal pullup resistor.
$\begin{aligned} & \text { T1CLK } \\ & \text { (P1.2) } \\ & \hline \end{aligned}$	Timer 0 Clock input. This pin has two other alternate functions: ACH10 and P1.2.
$\begin{aligned} & \text { T1DIR } \\ & (\text { P1.3) } \end{aligned}$	Timer 0 Direction input. This pin has two other alternate functions: ACH11 and P1.3.
$\mathrm{V}_{\mathrm{PP}}$	The programming voltage is applied to this pin. It is also the timing pin for the return from Power Down circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $\mathrm{V}_{\text {SS }}$ and a $1 \mathrm{M} \Omega$ resistor to $V_{\mathrm{CC}}$. If the Power Down feature is not used, connect the pin to $\mathrm{V}_{\mathrm{CC}}$.
$\begin{aligned} & \text { WG1-WG3/ } \overline{\mathrm{WG1}}-\overline{\mathrm{WG3}} \\ & \text { (P6.0-P6.5) } \end{aligned}$	3 phase output signals and their complements used in motor control applications. The pins can also be configured as standard output pins.
$\overline{\mathrm{WR}} / \overline{\mathrm{WRL}}$ (P5.2)	Write and Write Low output to external memory. WR will go low every external write. WRL will go low only for external writes to an even byte. Can be used as standard I/O when not used as WR/WRL.
XTAL1	Input of the oscillator inverter and the internal clock generator. This pin should be used when using an external clock source.
XTAL2	Output of the oscillator inverter.
$\begin{aligned} & \text { PMODE } \\ & \text { (P0.4-7) } \end{aligned}$	Determines the EPROM programming mode.
$\begin{aligned} & \hline \text { PACT } \\ & \text { (P2.5) } \\ & \hline \end{aligned}$	A low signal in Auto Programming mode indicates that programming is in process. A high signal indicates programming is complete.
$\begin{aligned} & \hline \overline{\text { PALE }} \\ & \text { (P2.1) } \end{aligned}$	A falling edge in Slave Programming Mode and Auto Configuration Byte Programming Mode indicates that ports 3 and 4 contain valid programming address/command information (input to slave).
$\begin{aligned} & \hline \overline{\text { PROG }} \\ & \text { (P2.2) } \\ & \hline \end{aligned}$	A falling edge in Slave Programming Mode begins programming. A rising edge ends programming.
$\begin{aligned} & \text { PVER } \\ & \text { (P2.0) } \\ & \hline \end{aligned}$	A high signal in Slave Programming Mode and Auto Configuration Byte Programming Mode indicates the byte programmed correctly.
$\begin{aligned} & \hline \text { CPVER } \\ & \text { (P2.6) } \\ & \hline \end{aligned}$	Cumulative Program Verification. Pin is high if all locations since entering a programming mode have programmed correctly.
$\begin{aligned} & \overline{\text { AINC }} \\ & (\mathrm{P} 2.4) \end{aligned}$	Auto Increment. Active low input enables the auto increment mode. Auto increment will allow reading or writing of sequential EPROM locations without address transactions across the PBUS for each read or write.

## ABSOLUTE MAXIMUM RATINGS

Ambient Temperature
Under Bias ................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $\ldots . . . . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage from $\overline{E A}$ or $V_{P P}$
to $\mathrm{V}_{\mathrm{SS}}$ or ANGND....................... +13.00 V
Voltage on $V_{P P}$ or $\overline{E Q}$
to $V_{S S}$ or ANGND $\qquad$
Voltage on Any Other Pin
to $\mathrm{V}_{\mathrm{SS}}$ or ANGND ........... -0.5 V to $+7.0 \mathrm{~V}(1)$
Power Dissipation .............................1.5W(2)

## NOTES:

1. This includes VPP and $\overline{E A}$ on ROM or CPU only devices.
2. Power dissipation is based on package heat transfer limitations, not device power consumption.

NOTICE: This data sheet contains preliminary information on new products in production. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature Under Bias	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.00	5.50	V
$\mathrm{~F}_{\text {OSC }}$	Oscillator Frequency	8	16	MHz

## NOTE:

ANGND and $\mathrm{V}_{\text {SS }}$ should be nominally at the same potential. Also $\mathrm{V}_{\mathrm{SS}}$ and $\mathrm{V}_{\mathrm{SS} 1}$ must be at the same potential.

DC ELECTRICAL CHARACTERISTICS (Over Specified Operating Conditions)

Symbol	Parameter	Min	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5	$0.3 \mathrm{~V}_{\text {CC }}$	V	
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	$0.7 \mathrm{~V}_{\mathrm{CC}}$	$V_{C C}+0.5$	V	
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage Port 2 and 5, P6.6, P6.7, CLKOUT		$\begin{gathered} 0.3 \\ 0.45 \\ 1.5 \\ \hline \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{aligned} \mathrm{IOL} & =200 \mu \mathrm{~A} \\ \mathrm{IOL} & =3.2 \mathrm{~mA} \\ \mathrm{IOL} & =7 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage on Port 3/4		1.0	V	$\mathrm{IOL}=15 \mathrm{~mA}$
$\mathrm{V}_{\text {OL2 }}$	Output Low Voltage on Port 6.0-6.5		0.45	V	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-0.3 \\ & \mathrm{~V}_{\mathrm{CC}}-0.7 \\ & \mathrm{~V}_{\mathrm{CC}}-1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-7 \mathrm{~mA} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {th }+}-\mathrm{V}_{\text {th }}$	Hysteresis Voltage Width on RESET and All Input Pins except Port 3, Port 4 and Port 5 besides P5.3	0.2		V	Typical

DC ELECTRICAL CHARACTERISTICS (Over Specified Operating Conditions) (Continued)

Symbol	Parameter	Min	Typ	Max	Units	Test Conditions
${ }_{\text {LII }}$	Input Leakage Current on All Input Only Pins			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{OV}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ (in RESET)
${ }^{\text {LII }}$	Input Leakage Current on Porto and Port1			$\pm 3$	$\mu \mathrm{A}$	$\mathrm{OV}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {REF }}$
IIL	Input Low Current on BD Ports (Note 1)			-70	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.3 \mathrm{~V}_{\mathrm{CC}}$
IL1	Input Low Current on P5.4 and P2.6 during Reset			-7	mA	$0.2 \mathrm{~V}_{\mathrm{CC}}$
${ }^{\mathrm{OH}}$	Output High Current on P5.4 and P2.6 during Reset	-2			mA	$0.7 \mathrm{~V}_{\mathrm{CC}}$
ICC	Active Mode Current in Reset		50	70	mA	$\begin{aligned} & \mathrm{XTAL1}=16 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \end{aligned}$
IREF	A/D Conversion Reference Current		2	5	mA	
IIDL	Idle Mode Current		15	30	mA	
IPD	Power-Down Mode Current		5	50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {REF }}=5.5 \mathrm{~V}$
R RST	RESET Pin Pullup Resistor	6 k		65k	$\Omega$	
$\mathrm{C}_{S}$	Pin Capacitance (Any Pin to V ${ }_{\text {SS }}$ )			10	pF	$\mathrm{F}_{\text {TEST }}=1.0 \mathrm{MHz}$

## NOTES:

1. BD (Bidirectional ports) include:

P2.0-P2.7, except P2.6
P3.0-P3.7
P4.0-P4.7
P5.0-P5.3
P5.5-P5.7
2. During normal (non-transient) conditions, the following total current limits apply:

.	IoL: 40 mA	Іон: 28
P3	IoL: 90 mA	IOH: 42 mA
P4	IoL: 90 mA	Іон: 42 mA
P5,	IoL: 35 mA	$\mathrm{I}_{\text {OH: }} \mathbf{3 5} \mathrm{mA}$
P2, P6.6, P6.7	$\mathrm{l}_{\text {oL }}: 63 \mathrm{~mA}$	$\mathrm{l}_{\mathrm{OH}}: 63 \mathrm{~mA}$

## EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by " T " for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

## Conditions:

H — High
L - Low
A - Address
L - ALE/ $\overline{\text { ADV }}$
B - $\overline{\mathrm{BHE}}$
$\mathrm{BR}-\overline{\mathrm{BREQ}}$
V - Valid
C - CLKOUT
$\mathrm{R}-\overline{\mathrm{RD}}$
X — No Longer Valid
D - DATA
W - $\overline{\mathrm{WR}} / \overline{\mathrm{WRH}} / \overline{\mathrm{WRL}}$
Z — Floating
G - Buswidth
H - HOLD
HA - $\overline{\text { HLDA }}$
X - XTAL1
Y - READY
Q - Data Out

Signals:

## AC ELECTRICAL CHARACTERISTICS (Over Specified Operating Conditions)

Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}, \mathrm{Fosc}^{2}=16 \mathrm{MHz}$.
The system must meet the following specifications to work with the 87C196MC:

Symbol	Parameter	Min	Max	Units	Notes
FXTAL	Frequency on XTAL1	8	16	MHz	3
Tosc	1/FXTAL	62.5	125	ns	
T ${ }_{\text {AVYV }}$	Address Valid to READY Setup		2 Tosc -75	ns	
TLLYV	ALE Low to READY Setup		Tosc - 70	ns	4
TYLYH	Not READY Time	No Upper Limit		ns	
TCLYX	READY Hold after CLKOUT Low	0	Tosc - 30	ns	1
TLLYX	READY Hold after ALE Low	Tosc - 15	2 Tosc $^{\text {- }} 40$	ns	1
TAVGV	Address Valid to BUSWIDTH Setup		2 Tosc $^{\text {- }} 75$	ns	
Tllav	ALE Low to BUSWIDTH Setup		Tosc - 60	ns	4
TCLGX	Buswidth Hold after CLKOUT Low	0		ns	
TAVDV	Address Valid to Input Data Valid		3 Tosc - 55	ns	2
TRLDV	$\overline{\text { RD }}$ Active to Input Data Valid		TOSC-22	ns	2
TCLDV	CLKOUT Low to Input Data Valid		TOSC - 50	ns	
TRHDZ	End of $\overline{\mathrm{RD}}$ to Input Data Float		Tosc	ns	
$\mathrm{T}_{\text {RXDX }}$	Data Hold after $\overline{\mathrm{RD}}$ Inactive	0		ns	

## NOTES:

1. If Max is exceeded, additional wait states will occur.
2. If wait states are used, add 2 Tosc * $N$, where $N=$ number of wait states.
3. Testing performed at 8 MHz . However, the device is static by design and will typically operate below 1 Hz .
4. These timings are included for compatibility with older -90 and BH products. They should not be used for newer highspeed designs.

AC ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}, \mathrm{FOSC}^{=}=16 \mathrm{MHz}$.
The 87C196MC will meet the following timing specifications:

Symbol	Parameter	Min	Max	Units	Notes
$\mathrm{T}_{\mathrm{XHCH}}$	XTAL1 to CLKOUT High or Low	30	110	ns	
TCLCL	CLKOUT Cycle Time	2 Tosc		ns	
$\mathrm{T}_{\text {CHCL }}$	CLKOUT High Period	Tosc - 10	Tosc +15	ns	
TCLLH	CLKOUT Falling Edge to ALE Rising	-5	15	ns	
TLLCH	ALE Falling Edge to CLKOUT Rising	-20	15	ns	
TLHLH	ALE Cycle Time	4 Tosc		ns	3
TLHLL	ALE High Period	Tosc - 10	Tosc +10	ns	
$\mathrm{T}_{\text {AVLL }}$	Address Setup to ALE Falling Edge	Tosc - 15		ns	
TLLAX	Address Hold after ALE Falling	Tosc - 40		ns	
TLLRL	ALE Falling Edge to $\overline{\text { RD }}$ Falling	Tosc - 30		ns	
TrLCL	$\overline{\mathrm{RD}}$ Low to CLKOUT Falling Edge	4	30	ns	
TRLRH	$\overline{\mathrm{RD}}$ Low Period	Tosc - 5	Tosc +25	ns	3
TRHLH	$\overline{\mathrm{RD}}$ Rising Edge to ALE Rising Edge	Tosc	Tosc +25	ns	1
TrLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		5	ns	
TLLWL	ALE Falling Edge to WR Falling	Tosc - 10		ns	
TCLWL	CLKOUT Low to WR Falling Edge	0	25	ns	
TQVWH	Data Stable to WR Rising Edge	Tosc - 23		ns	
TCHWH	CLKOUT High to WR Rising Edge	-10	15	ns	
TWLWH	$\overline{\text { WR Low Period }}$	Tosc - 30		ns	3
TWHQX	Data Hold after WR Rising Edge	Tosc - 25		ns	
TWHLH	$\overline{\text { WR Rising Edge to ALE Rising Edge }}$	Tosc - 10	Tosc +15	ns	1
TwhBx	$\overline{\text { BHE, INST Hold after WR Rising }}$	Tosc - 10		ns	
T WHAX	AD8-15 Hold after WR Rising	Tosc - 30		ns	2
TRHBX	$\overline{B H E}$, INST Hold after $\overline{\text { RD }}$ Rising	Tosc - 10		ns	
TRHAX	AD8-15 Hold after $\overline{\text { RD }}$ Rising	Tosc - 30		ns	2

## NOTES:

1. Assuming back to back cycles.
2. 8-bit bus only.
3. If wait states are used, add 2 TOSC ${ }^{*} N$, where $N=$ number of wait states.

SYSTEM BUS TIMINGS


READY TIMINGS (One Wait State)


BUSWIDTH TIMINGS


8XC196MC

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 / T_{X L X L}$	Oscillator Frequency	8	16.0	MHz
$T_{\text {XLXL }}$	Oscillator Period	62.5	125	ns
$T_{X H X X}$	High Time	22		ns
$T_{X L X X}$	Low Time	22		ns
$T_{X L X H}$	Rise Time		10	ns
$T_{X H X L}$	Fall Time		10	ns

## EXTERNAL CRYSTAL CONNECTIONS



270946-14
NOTE:
Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and $\mathrm{V}_{\mathrm{SS}}$. When using crystals, $\mathrm{C} 1=20 \mathrm{pF}, \mathrm{C} 2=20 \mathrm{pF}$. When using ceramic resonators, consult manufacturer for recommended circuitry.

## EXTERNAL CLOCK CONNECTIONS



* Required if TTL driver used.

Not needed if CMOS driver is used.

## EXTERNAL CLOCK DRIVE WAVEFORMS



An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts-up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the $V_{\mathrm{IL}}$ and $\mathrm{V}_{\mathrm{IH}}$ specifications the capacitance will not exceed 20 pF .

## AC TESTING INPUT, OUTPUT WAVEFORMS



270946-9
AC Testing inputs are driven at 3.5 V for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing measurements are made at 2.0 V for a Logic " 1 " and 0.8 V for a Logic " 0 ".

## FLOAT WAVEFORMS



270946-10
For Timing Purposes a Port Pin is no Longer Floating when a 100 mV change from Load Voltage Occurs and Begins to Float when a 100 mV change from the Loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ Level occurs $\mathrm{lOL}_{\mathrm{OL}}=\leq \pm 15 \mathrm{~mA}$.

## A TO D CHARACTERISTICS

The sample and conversion time of the A/D converter in the 8 -bit or 10 -bit modes is programmed by loading a byte into the AD_TIME Special Function Register. This allows optimizing the A/D operation for specific applications. The AD__TIME register is functional for all possible values, but the accuracy of the A/D converter is only guaranteed for the times specificed in the operating conditions table.

The value loaded into AD_TIME bits 5, 6, 7 determines the sample time, $\mathrm{T}_{\mathrm{SAM}}$, and is calculated using the following formula:

$$
\mathrm{SAM}=\frac{\left(\mathrm{T}_{\text {SAM }} \times \mathrm{F}_{\mathrm{OSC}}\right)-2}{8}
$$

$$
\begin{aligned}
& \text { TSAM }=\text { Sample time, } \mu \mathrm{s} \\
& \text { FOSC }=\text { Processor frequency, MHz } \\
& \text { SAM }=\text { Value loaded into AD_TIME } \\
& \text { bits } 5,6,7
\end{aligned}
$$

SAM must be in the range 1 through 7.
The value loaded into AD_TIME bits $0-5$ determines the conversion time, $\mathrm{T}_{\text {CONV }}$, and is calculated using the following formula:

$$
\operatorname{CONV}=\frac{\left(T_{\mathrm{CONV}} \times \mathrm{F}_{\mathrm{OSC}}\right)-3}{2 \mathrm{~B}}-1
$$

Tconv = Conversion time, $\mu \mathrm{s}$
FOSC = Processor frequency, MHz
$B=8$ for 8 -bit conversion
$B=10$ for 10-bit conversion
CONV = Value loaded into AD__TIME bits 0-5

CONV must be in the range 2 through 31.
The converter is ratiometric, so absolute accuracy is dependent on the accuracy and stability of $V_{\text {REF }}$. $V_{\text {REF }}$ must be close to $\mathrm{V}_{\mathrm{CC}}$ since it supplies both the resistor ladder and the analog portion of the converter and input port pins. There is also an AD_TEST SFR that allows for conversion on ANGND and $V_{\text {REF }}$ as well as adjusting the zero offset. The absolute error listed is WITHOUT doing any adjustments.

## A/D CONVERTER SPECIFICATION

The specifications given assume adherence to the operating conditions section of this data sheet. Testing is performed with $\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}$ and 16.0 MHz operating frequency. After a conversion is started, the device is placed in the IDLE mode until the conversion is complete.

8XC196MC

10-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\text {A }}$	Ambient Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.00	5.50	$\mathrm{~V}^{(1)}$
$\mathrm{T}_{\text {SAM }}$	Sample Time	1.0		$\mu \mathrm{~s}(2)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	10.0	20.0	$\mu \mathrm{~s}(2)$
FOSC	Oscillator Frequency	8.0	16.0	MHz

## NOTES:

ANGND and $V_{S S}$ should nominally be at the same potential.

1. $\mathrm{V}_{\text {REF }}$ must be within 0.5 V of $\mathrm{V}_{\mathrm{CC}}$.
2. The value of AD__TIME is selected to meet these specifications.

## 10-BIT MODE A/D CHARACTERISTICS (Over Specified Operating Conditions)

Parameter	Typical(1)	Min	Max	Units*
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Levels Bits
Absolute Error		0	$\pm 4$	LSBs
Full Scale Error	$0.25 \pm 0.5$			LSBs
Zero Offset Error	$0.25 \pm 0.5$			LSBs
Non-Linearity	$1.0 \pm 2.0$		$\pm 4$	LSBs
Differential Non-Linearity		$>-1$	+2	LSBs
Channel-to-Channel Matching	$\pm 0.1$	0	$\pm 1.0$	LSBs
Repeatability	$\pm 0.25$	0		LSBs
Temperature Coefficients:   Offset   Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			LSB/C LSB/C LSB/C
Off Isolation		-60		$\mathrm{dB}(2,3)$
Feedthrough	-60			$\mathrm{dB}{ }^{(2)}$
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB (2)
Input Series Resistance		750	2K	$\Omega^{(4)}$
Voltage on Analog Input Pin		ANGND - 0.5	$\mathrm{V}_{\text {REF }}+0.5$	$\mathrm{V}(5,6)$
Sampling Capacitor	3			pF
DC Input Leakage	$\pm 1$	0	$\pm 3.0$	$\mu \mathrm{A}$

## NOTES:

"An "LSB", as used here has a value of approximately 5 mV . (See Embedded Microcontrollers and Processors Handbook for A/D glossary of terms).

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. These values may be exceeded if the pin current is limited to $\pm 2 \mathrm{~mA}$.
6. Applying voltages beyond these specifications will degrade the accuracy of other channels being converted.
7. All conversions performed with processor in IDLE mode.

## 8-BIT MODE A/D OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.00	5.50	$\mathrm{~V}(1)$
$\mathrm{T}_{\text {SAM }}$	Sample Time	1.0		$\mu \mathrm{~s}(2)$
$\mathrm{T}_{\text {CONV }}$	Conversion Time	7.0	20.0	$\mu \mathrm{~s}(2)$
FOSC	Oscillator Frequency	8.0	16.0	MHz

## NOTES:

ANGND and $V_{S S}$ should nominally be at the same potential.

1. $V_{\text {REF }}$ must be within 0.5 V of $\mathrm{V}_{\mathrm{CC}}$.
2. The value of AD_TIME is selected to meet these specifications.

## 8-BIT MODE A/D CHARACTERISTICS (Over the Above Operating Conditions)

Parameter	Typical(1)	Min	Max	Units*
Resolution		$\begin{gathered} 256 \\ 8 \end{gathered}$	$\begin{gathered} 256 \\ 8 \end{gathered}$	Level Bits
Absolute Error		0	$\pm 1$	LSBs
Full Scale Error	$\pm 0.5$			LSBs
Zero Offset Error	$\pm 0.5$			LSBs
Non-Linearity		0	$\pm 1$	LSBs
Differential Non-Linearity		$>-1$	+1	LSBs
Channel-to-Channel Matching		0	$\pm 1.0$	LSBs
Repeatability	$\pm 0.25$			LSBs
Temperature Coefficients:   Offset   Full Scale Differential Non-Linearity	$\begin{aligned} & 0.003 \\ & 0.003 \\ & 0.003 \end{aligned}$			$\begin{aligned} & \text { LSB/C } \\ & \text { LSB/C } \\ & \text { LSB/C } \end{aligned}$
Off Isolation		-60		$\mathrm{dB}(2,3)$
Feedthrough	$-60$			dB (2)
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB (2)
Input Series Resistance		750	2K	$\Omega(4)$
Voltage on Analog Input Pin		$\mathrm{V}_{S S}-0.5$	$\mathrm{V}_{\text {REF }}+0.5$	$\mathrm{V}(5,6)$
Sampling Capacitor	3			pF
DC Input Leakage	$\pm 1$	0	$\pm 3.0$	$\mu \mathrm{A}$

NOTES:
*An "LSB" as used here, has a value of approximately 20 mV . (See Embedded Microcontrollers and Processors Handbook for A/D glossary of terms).

1. These values are expected for most parts at $25^{\circ} \mathrm{C}$ but are not tested or guaranteed.
2. DC to 100 KHz .
3. Multiplexer Break-Before-Make is guaranteed.
4. Resistance from device pin, through internal MUX, to sample capacitor.
5. These values may be exceeded if the pin current is limited to $\pm 2 \mathrm{~mA}$.
6. Applying voltages beyond these specifications will degrade the accuracy of other channels being converted.
7. All conversions performed with processor in IDLE mode.

8XC196MC

## EPROM SPECIFICATIONS

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
$\mathrm{T}_{\mathrm{A}}$	Ambient Temperature during Programming	20	30	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$	Supply Voltage during Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\text {REF }}$	Reference Supply Voltage during Programming	4.5	5.5	$\mathrm{~V}(1)$
$\mathrm{V}_{\mathrm{PP}}$	Programming Voltage	12.25	12.75	$\mathrm{~V}(2)$
$\mathrm{V}_{\text {EA }}$	EA Pin Voltage	12.25	12.75	$\mathrm{~V}(2)$
$\mathrm{F}_{\text {OSC }}$	Oscillator Frequency during Auto   and Slave Mode Programming	6.0	8.0	MHz
$\mathrm{T}_{\text {OSC }}$	Oscillator Frequency during   Run-Time Programming	6.0	12.0	MHz

## NOTES:

1. $V_{C C}$ and $V_{\text {REF }}$ should nominally be at the same voltage during programming.
2. $V_{P P}$ and $V_{E A}$ must never exceed the maximum specification, or the device may be damaged.
3. $\mathrm{V}_{\mathrm{SS}}$ and ANGND should nominally be at the same potential (OV).
4. Load capacitance during Auto and Slave Mode programming $=150 \mathrm{pF}$.

## AC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Min	Max	Units
TSHLL	Reset High to First $\overline{\text { PALE }}$ Low	1100		Tosc
TLLLH	PALE Pulse Width	50		Tosc
TAVLL	Address Setup Time	0		Tosc
TLLAX	Address Hold Time	100		Tosc
TPLDV	PROG Low to Word Dump Valid		50	Tosc
TPHDX	Word Dump Data Hold		50	Tosc
T ${ }_{\text {DVPL }}$	Data Setup Time	0		Tosc
TPLDX	Data Hold Time	400		Tosc
$\mathrm{TPLPH}^{(1)}$	PROG Pulse Width	50		Tosc
$\mathrm{T}_{\text {PHLL }}$	PROG High to Next PALE Low	220		Tosc
TLHPL	PALE High to PROG Low	220		Tosc
TPHPL	$\overline{\text { PROG }}$ High to Next PROG Low	220		Tosc
$\mathrm{T}_{\text {PHIL }}$	PROG High to AINC Low	0		Tosc
$\mathrm{T}_{\text {ILIH }}$	$\overline{\text { AINC Pulse Width }}$	240		Tosc
TILVH	PVER Hold after AINC Low	50		Tosc
TILPL	$\overline{\text { AlNC Low to PROG Low }}$	170		Tosc
$\mathrm{T}_{\text {PHVL }}$	$\overline{\text { PROG High to } \overline{\text { PVER }} \text { Valid }}$		220	Tosc

## NOTE:

1. This specification is for the Word Dump Mode. For programming pulses, use the Modified Quick Pulse Algorithm.

## DC EPROM PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Min	Max	Units
Ipp	$V_{P P}$ Supply Current (When Programming)		100	mA

NOTE:
Do not apply $V_{P P}$ until $V_{C C}$ is stable and within specifications and the oscillator/clock has stabilized or the device may be damaged.

SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE


SLAVE PROGRAMMING MODE IN WORD DUMP WITH AUTO INCREMENT


NOTE:
P3.0 must be low ("0")

SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM WITH REPEATED PROG PULSE AND AUTO INCREMENT


## 87C196MC DESIGN CONSIDERATIONS

When an indirect shift during divide occurs the upper 3 bits of the shift count are not masked completely. If the shift count register has the value 32*n where n $=1,3,5$ or 7 , the operand will be shifted 32 times. This should have resulted in no shift taking place.

## DATA SHEET REVISION HISTORY

This data sheet (270946-004) is valid for devices with a " $B$ " at the end of the topside tracking number. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

The following important differences exist between this data sheet (270946-002) and the previous version (270946-003):

1. The data sheet was reorganized to standard format.
2. Added 83C196MC device.
3. Added package thermal characteristics.
4. Added note on missing pins on SDIP package.
5. Removed SFR maps (now in user's manual).
6. Added note on TLLYV and TLLGV specifications.
7. Changed 10-bit mode TCONV (MIN) to $10.0 \mu \mathrm{~s}$ from $15.0 \mu \mathrm{~s}$.
8. Changed 10-bit mode TCONV (MAX) to $20.0 \mu s$ from $18.0 \mu \mathrm{~s}$.
9. Changed VREF (MIN) in 8 - and 10 -bit mode to 4.0 V from 4.5 V .

The following important differences exist between data sheet 270946-003 and the previous version (270946-002):

1. The data sheet title was changed to better reflect the purpose of the 87C196MC as an AC Inverter/ DC Brushless Motor Control Microcontroller.
2. The standard temperature range for this part now covers $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
3. EXTINT function description now includes WG__PROTECT (1FCEH) as the name and address of the register used to select positive/negative or high/low detection for EXTINT.
4. The memory range $01 \mathrm{~F} 00 \mathrm{H}-01 \mathrm{FBFH}$ was added to the SFR map as RESERVED.
5. $I_{\mathrm{IL}}$ changed from $-60 \mu \mathrm{~A}$ to $-70 \mu \mathrm{~A}$.
6. I REF changed from 5 mA to 2 mA maximum and the typical specification was removed.
7. The READY description of the READY TIMINGS (One Wait State) graphic was modified to denote the shifting of the leading edge of READY versus frequency. At 16 MHz the falling edge of READY occurs before the falling edge of ALE.
8. AC Testing Input, Output Waveform was changed to reflect inputs driven at 3.5 V for a Logic " 1 " and .45 V for a Logic " 0 " and timing measurements made at 2.0 V for a Logic " 1 " and 0.8 V for a Logic " 0 ".
9. Float Waveform was changed from $l_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}}=$ $\pm 15 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}} \leq \pm 15 \mathrm{~mA}$
10. AD__TIME register for 10-bit conversions was changed from 0 C 7 H to 0 D 8 H . The number of sample time states was changed from 24 to 25 states, the conversion time states was changed from 80 to 240 states, and the total conversion time for AD__TIME = D8H replaced the total conversion time for AD__TIME $=\mathrm{C} 7 \mathrm{H}$.
11. The number of sample time states for an 8-bit conversion was changed from 20 states to 21 states.
12. There is a single entry in the ERRATA section of this version of the data sheet concerning the results of an indirect shift during divide.

The following important differences exist between this data sheet (270946-002) and the previous version (270946-001):

1. $\mathrm{T}_{\mathrm{A}}$ Ambient Temperature Under Bias Min changed from $-20^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$.
2. I Ref A/D Conversion Reference Current Max changed from 5 mA to 2 mA .
3. Testing levels changed from TTL values to CMOS values.
4. A/D Input Series Resistance Max changed from $1.2 \mathrm{~K} \Omega$ to $2 \mathrm{~K} \Omega$.

# MCS ${ }^{\circledR}$-96 Development Support Tools 

## ICETM-196KD/HX IN-CIRCUIT EMULATOR



## REAL-TIME IN-CIRCUIT EMULATION FOR MCS®-96 MICROCONTROLLERS

Intel's ICETM-196KD/HX In-Circuit Emulator (ICE) is an easy-to-use, full-featured tool to help you develop, integrate, and test your MCS-96 microcontroller-based products.
The ICE-196KD/HX supports all component variations offered in the following Intel MCS-96 families: $8 \mathrm{xC196KD}, 8 \mathrm{xC196KC}, 8 \mathrm{xC196KB}, 8 \mathrm{xC198}$, and $8 \mathrm{xC194}$.
The emulator supports all component types as differentiated by ROM, EPROM, and ROMless; as well as components differentiated by temperature, reliability screenings, package types, and speeds (up to 20 MHz ). Precise and reliable emulation is assured due to the emulator's matching of the component's electrical and timing characteristics.

## FEATURES

- Real-time, Transparent, In-Circuit Emulation at Speeds up to 20 MHz
- On-Circuit Emulation (ONCE) for Emulating Surface-Mounted 8xC196 Devices
- Execution and Bus Breaks (including Breaks on Internal Events and "Fastbreaks")
- Execution and Bus Trace
- Internal and External Bus Event Recognition
- 128 Kbytes of Zero-Waitstate, Mappable ICE Memory
- Source-Level, Symbolic Debugging
- Full-Color, Windowed, Easy-to-Use Interface (with Pull-Down Menus, PopUp Help, Hypertext Browsing, Function Keys, ...)
- Stand-Alone Operation and Self-Test Diagnostics
- Hosted on IBM PC XTs, ATs, PS/2s and $100 \%$ Compatible Machines (Serial Connection from PC to Emulator at up to 57.6 Kbaud)

FEATURES

## SOPHISTICATED, POWERFUL CAPABILITIES

## Event Recognition

To aid the debugging process, the ICE-196KD/ HX user has access to very sophisticated event recognition capabilities. Triggering can occur based on:

- Instruction Fetches
- Execution Addresses
- External Data Reads or Writes at a range of addresses
- Internal/External Data Reads or Writes at a specific address
- Internal/External Data Reads or Writes at a specific value
- Internal/External Data Reads or Writes at a range of values
- Signals from an External Device (causing an asynchronous break)
- CLIPSIN Status (8 external Clips available), or
- Trace Buffer Full Events

Compound triggers may be constructed through AND/OR combinations of events. Specifically:

- OR combinations of execution/bus events
- OR combinations of bus/bus events
- AND combinations of bus/bus events

The trace buffer is accessible during emulation. The buffer can contain up to 2048frames of information such as:

- Addresses
- Opcodes in Hex and Mnemonic Formats
- Operands in Hex and Symbolic Formats
- Bus Address/Data
- Processor Status Bits
- Logic Clips Information

In addition, the ICE-196KD/HX offers the following break and trace features:

- Recognizes up to 255 execution addresses; either specific addresses or address ranges.
- FASTBREAKS: emulation is immediately broken only for the duration of a requested memory access (typically $25 \mu \mathrm{~s}$ at 20 MHz ).
- A deferred FASTBREAK option: a FASTBREAK is honored only after reaching a specified address.
- Conditional arming and disarming of break specifications (2-state state machine).
- Conditional arming and disarming of trace specifications.
- Ability to reprogram break and trace specifications during emulation.
- Break and trace REGISTERS for storing complex break/trace definitions for reuse.


## Execution Control

- Single-step execution of machine instructions, high-level language statements, or procedure call blocks.
- Functions to disassemble/assemble memory in the form of machine instructions and to display/modify program variables and special function registers.
- Symbolic referencing to memory locations and information in trace and memory disassembly displays.


## System Resources

- The 128 Kbytes of mappable, zero-waitstate ICE memory can be used to:
- Execute and debug programs before target hardware exists
- Simulate non-existent or non-working target memory
- Overlay target EPROM space (avoiding the inconvenience of programming EPROMs).
- Event counters.
- To aid performance analysis, an event timer records the time from/to specified events while an emulation timer records the total duration of emulation.
- Synchronized multi-emulator start and break signals and a trigger out signal for synchronization with an external logic analyzer or other device are available.
- Eight external logic input lines may be used to trigger an action in the emulator. The status of the external lines is captured in the trace buffer.
- The user may qualify events with an external input SYSIN line.
- A SYSOUT output may be used to stimulate an action in the target system based on a recognized event.


## FEATURES

## Easy To Use

For ease of use and learning, the ICE-196KD/HX emulator can be operated via a command line interface or with Intel's windowed user interface. The command line style (with syntax guide) is compatible with previous emulators, while the windowed interface has the same look and feel as other Intel emulators and software debuggers.

## Windows and Pull-Down Menus

Each window presents a different view of the system. Select and move between a COMMAND LINE window, a SOURCE window, a REGISTER window, a TRACE window, a MEMORY window, or a WATCH window (where user variables are displayed). In addition, a CUSTOM window can perform user-defined functions. Within each window, option menus, pop-up fill-in-the-blank forms, and scroll keys control the view. As expected, windows may be added, sized, zoomed to full screen, or removed completely.

## Help at Your Fingertips

Both indexed and context sensitive help is available. A hypertext capability lets you easily move between help subjects. In addition, a Key Reference Line displays a list of the currently active function keys as well as brief help text for menus and forms.

## Source Level Debugging

Source level debugging with Intel's C-96, ASM-96, and PL/M-96 is synergistic with the windowed user interface. For example, simply use a pull-down menu to load the program. Then set a breakpoint at a souce line by pointing to the line of code in the SOURCE window and pressing a function key. Set trace specifications by using a pop-up, fill-in-theblank form. With the current execution location highlighted, simply press a function key to begin emulation.

## Genuine Intel Tools

The ICE-196KD/HX emulator provides the most comprehensive support for Intel's MCS-96 family of microcontrollers. When you trust your component selection to Intel, why trust its emulation to someone else?

## Worldwide Service, Support, and Training

To augment its development tools, Intel offers field application engineering expertise, hotline technical support, and on-site service.
Intel also offers software support which includes technical software information, automatic distributions of software and documentation updates, iCOMMENTS publication, remote diagnostic software, and a development tools troubleshooting guide.
Intel's standard 90-day Hardware Support package includes technical hardware information, telephone support, warranty on parts, labor, material, and on-site hardware support.
Intel Development Tools also offers a 30-day, money-back guarantee to customers who are not satisfied after purchasing any Intel development tool.

## SPECIFICATIONS

## Host Requirements

Emulator requires an IBM PC AT, XT, PS/2 or $100 \%$ compatible machine with 640 Kbytes of RAM and a hard disk running DOS 3.3 or 5.0.

## Electrical Characteristics

Power supply: $100 \mathrm{~V}-120 \mathrm{~V}$ or $200 \mathrm{~V}-240 \mathrm{~V}$
50 Hz or 60 Hz
5 amps (AC max) @ 120V
2 amps (AC max) @ 240V

## Electrical Considerations

The emulator processor's user-pin timings and loading are identical to the $8 \mathrm{xC196KD}$ component except as follows:

- Additional pin capacitance (approximate):
- Target Interface 12 pf (30 pf max) Board (TIB)
- pin 32 (P1.7/HOLD \#) 70 pf
- pin 63 (INST) 60 pf
- pin 16 (RESET\#) 325 pf
- all pins when using 10 pf adapter with a flexible cable (ex. KADPTCA68PLCC)
- DC loading:

Pin 1 ( $\mathrm{V}_{\mathrm{CC}}$ ) may draw an additional 5 mA ( 15 mA worst case @ 5.5 V ) due to power sensing circuitry.
Sensing circuitry may also draw approximately $\pm 0.1 \mathrm{~mA}$ (maximum) DC current from any $8 x C 196 \mathrm{KD}$ output pin.

- AC timings:
- pin 32 (P1.7/HOLD\#) degraded 1 ns
- pin 63 (INST) if degraded 1 ns jumper E5-E6 is installed
- pin 16 (RESET\#) degraded 15 ns


## Target Considerations

The acceptable target Vcc range is 4.5 V to 5.5 V and the maximum $\mathrm{V}_{\mathrm{CC}}$ power consumption of the processor is 1.5 W at 20 MHz .

## Environmental Characteristics

Operating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Operating humidity: maximum $85 \%$ relative humidity, non-condensing

## Processor Module Dimensions



## Physical Characteristics

Target Probe
Width: $\quad 6.9 \mathrm{~cm}$ (2.7")
Height: $3.0 \mathrm{~cm}\left(1.2^{\prime \prime}\right)$
Length: 11.0 cm (4.34")
Emulator Chassis Power Supply
Width: $34 \mathrm{~cm}\left(13^{3} / \mathrm{s}^{\prime \prime}\right)$ Width: $18 \mathrm{~cm}\left(71 / 2^{\prime \prime}\right)$
Height: $12 \mathrm{~cm}\left(4^{1} / 2^{\prime \prime}\right)$ Height: $10 \mathrm{~cm}\left(4^{\prime \prime}\right)$
Depth: $27 \mathrm{~cm}\left(10^{5} / \mathrm{s}^{\prime \prime}\right)$ Depth: $28 \mathrm{~cm}\left(11^{\prime \prime}\right)$
Weight: $3.2 \mathrm{~kg}(7 \mathrm{lb}$.$) \quad Weight: 7 \mathrm{~kg}(15 \mathrm{lb}$.
Probe Cable Length: 40 cm ( $17^{\prime \prime}$ )
Serial Cable Length: 3.65m (12')

## ORDERING INFORMATION

## Emulators

## Order Code

PICE196KDHXDZ Complete, fully-featured emulator kit. Contains all required emulator hardware and software to execute stand-alone or intarget. Kit includes:

- emulator base chassis and serial cable
- external power supply and power cord
- Emulation Control Board (ECB II)
- ICE Base Board (IBB II)
- Break/Trace Board (BTB)
- 64 Kbyte Optional Memory Board (OMB)
- CLIPSIN and CLIPSOUT pods
- Crystal Power Accessory (CPA) (used for diagnostics and stand-alone operation)
- Target Interface Board (TIB) fitted with a 68-lead PLCC adapter
- PC host software (featuring iWHI: Intel's Windowed Human Interface)
- all user documentation NOTE: host software is delivered on $5^{1 / 4} / 4$ high density (1.2 Mb ) and $31 / 2^{\prime \prime}$ standard ( 720 Kb ) density diskettes


## Software Tools

Order Code Description
D86C96NL DOS-hosted "CC" cross compiler closely conforming to ANSI C standards, with architectural extensions to support all MCS-96 components. Optimized for realtime embedded applications.

D86PLM96NL DOS-hosted PL/M crosscompiler. Architectural extensions support all MCS-96 components. Optimized for real-time, embedded applications.
D86ASM96NL DOS-hosted macro assembler. Supports all MCS-96 components.
NOTE: All software tool packages include a relocater/linker (RL-96), an object-to-hex converter ( OH ), a floating point arithmetic library (FPAL-96), and a librarian (LIB-96).

Target Adapters
Order Code Description
KADPT52PLCC target: 52-lead PLCC components (socketed)
KADPTCA68PLCC target: 68-lead PLCC components (socketed)
KADPTONC68PLCC target: 68-lead PLCC components (surfacemounted 8xC196 components)
target: 68-lead PGA components (socketed)
KADPT64SDIP target: 64-pin "shrink"DIP components (socketed)
complete probe cable assembly for 80 -lead QFP (EIAJ) component for minimal signal degradation converter for existing PLCC probe to 80-lead QFP (EIAJ) component

ICETM-196KD/PC IN-CIRCUIT EMULATOR


280917-1

## REAL-TIME IN-CIRCUIT EMULATION FOR MCS®-96 MICROCONTROLLERS

Intel's ICE-196KD/PC In-Circuit Emulator is a low-cost, PC-card form factor emulator that delivers real-time, high-level debugging capabilities to help you develop, integrate, and test your MCS-96 microcontroller-based products.
The ICE-196KD/PC emulator supports all component variations offered in the following Intel MCS-96 families:

- $8 x C 196 K D$
- 8xC194
- $8 x C 196 K C$
- $8 x \mathrm{x} 198$
- 8xC196KB

The emulator supports all component types as differentiated by ROM, EPROM, and ROMless; as well as components differentiated by temperature, reliability screenings, package types, and speeds (at up to 16 MHz ).

## FEATURES

- Real-time, transparent, in-target emulation at speeds up to 16 MHz
- Execution breaks (3 specific or 1 range breakpoint)
- Execution trace (2048 frame trace buffer)
- 64 Kbytes of zero-waitstate, mappable ICE memory
- Source-level, symbolic debugging
- Stand-alone operation and self-test diagnostics
- Hosted on IBM PC XTs, ATs, PS/2 Model 30 s , and $100 \%$ compatible machines
- 30 Day money back guarantee

FEATURES

## REAL-TIME EMULATION

The ICE-196KD/PC emulator provides realtime, transparent in-circuit emulation for all components in the $8 \mathrm{xCl} 196 \mathrm{KD}, 8 \mathrm{xC196KC}$, $8 \mathrm{xC196KB}, 8 \mathrm{xC198}$, and $8 \mathrm{xC194}$ microcontroller families. Running in-circuit, the emulator is able to operate at up to 16 MHz for all target processors.
The ICE-196KD/PC emulator connects to your target via a $16^{\prime \prime}(40 \mathrm{~cm})$ flex cable. A 68 -lead PLCC target adapter is included with the ICE196KD/PC emulator. Other target adapters supporting other package types are available separately (see "Ordering Information").

## MAPPABLE MEMORY

The ICE-196KD/PC emulator contains 64 Kbytes of zero-waitstate ICE memory that can be used to:

- execute and debug programs before target hardware exists
- simulate non-existent or non-working target memory
- overlay target EPROM space (saving time and bother by avoiding the need to program EPROMs).
The ICE memory can be set up as READONLY, WRITE-ONLY, or READ/WRITE.


## TRACE BUFFER

The ICE-196KD/PC emulator contains a 2048 frame trace buffer for keeping a history of actual instruction execution. The trace buffer can be conditionally turned off to collect a user specified number of trace frames. Trace information can be displayed as disassembled assembly instructions, or as disassembled assembly instructions intermixed with the original high-level language source code.

## BREAKPOINTS

Three execution address breakpoints or one address range breakpoint can be active at any one time. The ICE-196KD/PC emulator allows any number of breakpoints to be defined and activated when needed.

## SYMBOLIC SUPPORT AND SOURCE CODE DISPLAY

Full C-96, PL/M-96, and ASM-96 language symbolics (including variable typing and scope), are supported by the ICE-196KD/PC emulator. As an example, source-level, symbolic debugging affords you the convenience of

- setting breakpoints symbolically go til line \# 25
- referencing memory symbolically display MY_ARRAY length $M Y$ _ARRAY_SIZE as characters
You can browse through your original source code, and optionally, the high-level "C" or $\mathrm{PL} / \mathrm{M}$ source will be displayed when breakpoints are reached.


## STANDALONE OPERATION FOR SOFTWARE DEBUGGING

Code can be downloaded for execution on the target system. Or, by using the supplied Crystal Power Accessory (CPA) and mappable ICE memory), code can be downloaded and executed in the emulator itself. This capability allows you to prototype and debug your target software prior to hardware availability.

## VERSATILE AND POWERFUL HOST SOFTWARE

The ICE-196KD/PC emulator host software features on-line help, a command line syntax guide, a built-in editor (for creating/editing PROCs, editing source, or viewing the trace buffer), an assembler/disassembler, and a macro command language (for building command procedures).
To augment its development tools, Intel offers field application engineering expertise and hotline technical support.
Intel Development Tools also offers a 30-day, money-back guarantee to customers who are not satisfied after purchasing any Intel development tool.

## HOST REQUIREMENTS

The ICE-196KD/PC emulator is hosted on IBM PC XTs, ATs, PS/2 Model 30s, and $100 \%$ compatible machines with 640 Kbytes of RAM and a hard disk running DOS 3.3 or 5.0. Though the emulator card plugs into a single 8-bit PC slot, two slots should be reserved for clearance.

## ELECTRICAL CONSIDERATIONS

- Additional pin capacitance: all pins
all pins when using an adapter with flexible cable (ex: KADPTCA68PLCC)
- Cable propagation delay: best case 5.5 ns worst case 11.0 ns
- Operating frequency: 3.5 MHz to 16 MHz (CPA runs at 16 MHz only)


## TARGET CONSIDERATIONS

The acceptable target $\mathrm{V}_{\mathrm{CC}}$ range is 4.5 V to 5.5 V and the maximum $\mathrm{V}_{\mathrm{cc}}$ power consumption of the processor is 1.5 W at 16 MHz .

When entering or exiting emulation, the ICE$196 \mathrm{KD} / \mathrm{PC}$ emulator will use two bytes on the user stack to store the current instruction pointer.

## ENVIRONMENTAL

 CHARACTERISTICSOperating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ Operating humidity: maximum $85 \%$ relative humidity, non-condensing

## ORDERING INFORMATION

## order code description

PICE196KDPC Complete emulator kit.
Contains all required emulator hardware and software to execute stand-alone or intarget. Kit includes:

- Emulator controller board (PC-card form factor)
- Target Interface Board (TIB) fitted with a 68 -lead PLCC adapter
- Crystal Power Accessory (CPA) (required for diagnostics and stand-alone operation)
- PC host software
- All user documentation

NOTE: Host software is delivered on $5-1 / 4^{\prime \prime}(360 \mathrm{~Kb})$ and $3-1 / 2^{\prime \prime}$ ( 720 Kb ) diskettes

## SOFTWARE TOOLS

order code description
D86C96NL DOS-hosted, closely conforming ANSI "C" crosscompiler. Architectural extensions support all MCS-96 components. Optimized for real-time, embedded applications.

D86PLM96NL DOS-hosted PL/M crosscompiler. Language features allow direct architecture access. Optimized for real-time, embedded applications.
D86ASM96NL DOS-hosted macro assembler. Supports all MCS-96 components.
NOTE: All software tool packages include a relocater/linker (RL-96), an object-to-hex converter ( OH ), a floating point arithmetic library (FPAL-96), and a librarian (LIB-96).
TARGET ADAPTERS
order code description
KADPT52PLCC target: 52-lead PLCC components (socketed)
KADPTCA68PLCC target: 68-lead PLCC components (socketed)
KADPTCA68PGA target: 68-pin PGA components (socketed)
KADPT64SDIP target: 64-pin "shrink"DIP components (socketed)
I196ADPTCA80Q complete probe cable assembly for 80-lead QFP (EIAJ) component for minimal signal degradation
I196CONV80Q
converter for existing PLCC probe to 80-lead QFP (EIAJ) component


## COMPLETE SOFTWARE DEVELOPMENT SUPPORT FOR THE

 MCS ${ }^{\oplus}-96$ FAMIL Y OF MICROCONTROLLERSIntel supports application development for the MCS ${ }^{\circledR}-96$ family of microcontrollers with a complete set of development languages and utilities. These tools include a macro assembler, a C compiler, a PL/M compiler, linker/relocator program, floating point arithmetic library, a librarian utility, and an object-to-hex utility. Develop code in the language(s) you desire, then combine object modules from different languages into a single, fast program.

## FEATURES

- Software tools support all members of Intel's MCS ${ }^{\circledR-96}$ family
- ASM-96 macro assembler for speed critical code
- iC-96 package for structured C language programming, closely conforming to ANSI standards with many hardware specific extensions
- PL/M-96 package for the maintainability and reliability of a highlevel language with support for many low-level hardware functions
- Linker/Relocator program for linking modules generated in assembler, $\mathrm{PL} / \mathrm{M}$ or C and assigning absolute addresses to relocatable code. RL-96 prepares your
code for execution in target with a simple, one-step operation
- 32-bit Floating Point Arithmetic Library to reduce your development effort and to allow fast, highly optimized numericsintensive processing
- Library utility for creating and maintaining software object module libraries
- PROM building utility that converts object modules into standard hexadecimal format for easy download into various PROM programmers
- Hosted on IBM PC XT/AT with PC-DOS 3.0 or above

FEATURES


Figure 1. MCS®-96 Application Development Process

## ASM-96 MACROASSEMBLER

ASM-96 is the macroassembler for the MCS-96 family of microcontrollers, including the 80C196. ASM-96 translates symbolic assembly language mnemonics into relocatable object code.
The macro facility in ASM-96 saves development and maintenance time, since common code sequences need only be developed once. The assembler also supports symbolic access to the many features of MCS-96 microcontrollers and provides an "include" file with all MCS-96 registers defined.

## PL/M-96 SOFTWARE PACKAGE

$\mathrm{PL} / \mathrm{M}-96$ is a high-level programming language designed to support the software requirements of advanced 16-bit microcontrollers. The PL/M-96 compiler translates PL/M high-level language statements into 8096 relocatable object code. Major features of the PL/M-96 compiler include:

- Structured programming. The PL/M language supports modular and structured programming, making programs easier to understand, maintain, and debug.
- Built-in functions. PL/M-96 includes an extensive list of functions, including TYPE CONVERSION functions, STRING manipulations, and functions for interrogating MCS-96 hardware flags.
- Interrupt handling. The INTERRUPT attribute allows you to define interrupt handling procedures. The compiler generates code to save and restore the program status word for procedures.
- Compiler controls. Compile-time options increase the flexibility of the PL/M-96 compiler. These controls include: optimization, conditional compilation, the inclusion of common PL/M source files from disk, cross-reference of symbols, and optional assembly language code in the listing file.
- Data types. PL/M-96 supports seven data types, allowing PL/M-96 to perform three different kinds of arithmetic: signed, unsigned, and floating point.
- Language compatibility. PL/M-96 object modules are compatible with all other object modules generated by Intel MCS-96 translators.


## iC-96 SOFTWARE PACKAGE

Intel's iC-96 is a structured programming language designed to support applications for the 16-bit family of MCS-96 microcontrollers. Major features of the iC-96 compiler include:

- Standard language. iC-96 closely conforms to ANSI C standards. iC-96 code is fully linkable via RL-96 with both PL/M-96 and ASM-96 modules via an "ALIEN" attribute. This allows programmers to utilize the optimal language for any application.
- Architecture Support. iC-96 generates code which is fully optimized for the MCS-96 architecture. iC- 96 provides an INTERRUPT attribute, which allows you to define interrupt handlers in C. Library routines allow you to enable and disable interrupts directly from C. A REENTRANT/ NOREENTRANT control included in iC-96 allows the compiler to identify procedures appropriately, thus making efficient use of the large MCS-96 register set.
- In-Line Assembly. With the in-line assembly feature of iC-96, you can embed assembly language instructions within your C code for added programming flexibility.
- Symbolics. The iC-96 compiler boosts programmer productivity by providing extensive debug information, including symbols. Debug information can be used to debug application code using either the VLSiCE-96 emulator for the MCS-96 architecture or the ICE-196 KxPC/Hx emulators for the $8 \mathrm{xC19x}$ components.


## RUN-TIME LIBRARY LINKER/LOCATOR

Intel's RL-196 utility is used to link multiple MCS-96 object modules into a single program and then assign absolute.addresses to all relocatable addresses in the new program.

Modules can be written in ASM-96, PL/M-96, or iC-96. The RL-96 utility also promotes programmer productivity by encouraging modular programming. Because applications can be broken into separate modules, they're easier to design, test and maintain. Standard modules can be reused in different applications, saving software development time.

## FPAL-96 FLOATING POINT ARITHMETIC LIBRARY

FPAL-96 is a library of single-precision 32-bit floating point arithmetic functions. These functions are compatible with the IEEE floating point standard for accuracy and reliability and include an error-handler library.

## LIB-96

The Intel LIB-96 utility creates and maintains libraries of software object modules. Standard modules can be placed in a library, and linked into your applications programs using RL-96.

## OH-96

The OH-96 utility converts Intel OMF-96 object modules into standard hexadecimal format. This allows the code to be loaded directly into a PROM via non-Intel PROM programmers.

## SERVICE, SUPPORT, AND TRAINING

Intel augments its MCS-96 architecture family development tools with field application engineering expertise, telephone hot-line support, and software and hardware maintenance contracts. This full line of services will ensure your design success.

## ORDERING INFORMATION

D86ASM96NL* 96 Assembler for PC XT or AT system (or compatible), running DOS 3.0 or higher
D86PLM96NL* PL/M-96 Software Package for PC XT or AT system (or compatible), running DOS 3.0 or higher

D86C96NL*
iC-96 Software Package for PC XT or AT system (or compatible), running DOS 3.0 or higher

[^26] Floating Point, Arithmetic Library, and Librarian

## ApBUILDER INTERACTIVE APPLICATION PROGRAMMING PACKAGE



## Become An Architectural Wizard Instantly

A windows-based software tool that is a learning vehicle, reference guide and programmer all in one. ApBUILDER is a powerful new design tool for the embedded control applications programmer, created specifically to speed up your learning curve and reduce your total design time no matter what level of processor experience you have. $A p B U I L D E R$ software provides you with peripheral design capabilities, an interactive instruction and register editor, a click-on highlight feature and a hypertext* utility for hardware reference users' manuals.
The ApBUILDER programming package saves you time and energy by providing a simple mechanism for configuring an embedded processor. And it's flexible too. There's a design section that allows you to select the functionality of each integrated peripheral. If you want to program a specific register, $A p B U I L D E R$ software provides the on-line capability of picking and choosing the bits you want to set within the register itself. In both cases, $A p B U I L D E R$ software converts the user's selection into useable assembly language code.
ApBUILDER's block diagram screens give a graphic overview of the unique features of a selected device. With the ability to view multiple products quickly and easily, ApBUILDER software becomes a valuable tool in helping you choose which processor is best suited for your application.
Multiple hypertext windowed utilities are organized throughout the ApBUILDER software, enabling you to access an extraordinary amount of data quickly and easily. With the click of a button you have access to hardware reference manuals, data sheets, fact sheets, commonly asked questions and general help information.
*Hypertext: The linking of related information. By selecting a highlighted word in a body of text, information about that word is retrieved and displayed.

## ApBUILDER INTERACTIVE APPLICATION PROGRAMMING PACKAGE

## Product Highlights

- On-line Peripheral Programming
- Hypertext reference documentation
- Windows screens for ease of use
- Supports 186 and MCS®-96 families


## Features

## Multi-Level Programming Capabilities

- Design section generates initialization code for integrated peripherals based on system functionality
- Simple on-screen templates allow for register programming
- Instruction editor to confirm assembly instruction syntax, giving options for possible source and destination locations
- Translates and converts all requirements to source code
Programming Modules Linked to Reference Documentation for Specific Functions
- Keyed summary lists provide extensive search and retrieval capabilities
- Help references go several layers deep within the on-line reference documentation-
- Features like browse, forward, back and previous search provide easy movement through megabytes of documentation


## Click-On Highlight

- View product features, data sheets, fact sheets and answers to commonly asked questions
- Unique icons make retrieving valuable product information simple and straightforward


272198-2
ApBUILDER Menu


272198-4
Programs I/O Ports

## Benefits

- Reduction of total design time by removing the programming hassle associated with the configuration of an embedded processor
- Flexibility to program a single register or a series of peripherals
- Conversion of high level peripheral configurations to useable low level assembly language code
- Graphic overview of the unique features of a selected device
- Hypertext help available quickly and easily with the click of a button
- Enables you to select the best processor for your application


## ApBUILDER INTERACTIVE APPLICATION PROGRAMMING PACKAGE

## Summary

- Provides a simple and straightforward mechanism for constructing the building blocks necessary for embedded processor applications
- Enables you to focus on your application needs rather than wasting time programming bit by bit


272198-3
Programs a DMA Register

## System Requirements

Windows 3.0, IBM compatible 386 PC or above, VGA monitor, 16 M of hard disk, 1.44 M floppy drive, 4 M memory and a mouse.
The $A p$ Builder may be ordered through the Intel literature department Order No. 272216.


Hypertext Reference Data

## EV80C196KX EVALUATION BOARDS



## LOW COST CODE EVALUATION TOOL

The EV80C196KX (MCS®-96) family consists of the EV8097BH, EV80C196KB, EV80C196KC, and the EV80C196KD evaluation boards. They provide a hardware environment for code execution and software debugging at a relatively low cost. Each board features an advanced microcontroller that is a member of the industry standard MCS-96 family. The boards allow the user to take full advantage of the power of the MCS96. Their memory (ROMsim) can be reconfigured to match the user's planned memory system, allowing for exact analysis of code execution speeds in a particular application.
Popular features such as a symbolic single line assembler/disassembler, single-step program execution, and sixteen software breakpoints are standard. Intel provides a complete code development environment using assembler (ASM-96) as well as high-level languages such as Intel's iC-96 or PL/M-96 to accelerate development schedules.
Each evaluation board is hosted on an IBM PC** or BIOS-compatible clone, already a standard development solution in most of today's engineering environments. The source code for the on-board monitor (written in ASM-96) is public domain. The program is about 1 K , and can be easily modified to be included in the user's target hardware. In this way, the provided PC host software can be used throughout the development phase.

[^27]
## EV80C196KX EVALUATION BOARDS

## FEATURES

- Zero Wait-State Full Speed Execution
- 12 MHz Execution Speed for EV80C196KB
- 12 MHz Execution Speed for EV8097BH
- 16 MHz Execution Speed for EV80C196KC
- 20 MHz Execution Speed for EV80C196KD
- 24K Bytes of ROMsim
- Flexible Wait-State, Buswidth, Chip-Select Controller
- Total CMOS, Low Power Board (EV8097BH features NMOS)
- Concurrent Interrogation of Memory and Registers
- Sixteen Software Breakpoints
- Two Single Step Modes
- High-Level Language Support
- Symbolic Debug
- RS-232-C Communication Link


## FULL SPEED EXECUTION

The MCS-96 evaluation board executes the user's code from on board ROMsim at full speed with zero wait-states. By changing crystals, slower execution speed can be evaluated. The board's host interface timing is not affected by this crystal change.

## 24K BYTES OF ROMsim

The boards come with 24 K bytes of SRAM to be used as ROMsim for the user's code and as data memory if needed. 16 K bytes of this memory are configured as sixteen bits wide, and 8 K bytes are configured as eight bits wide. The user can therefore evaluate the speed of the part executing from either buswidth.

## FLEXIBLE MEMORY DECODING

By changing the Programmable Logic Device (PLD) on the board, the memory on the board can be made to look like the memory system planned for the user's hardware application. The PLD controls the buswidth and the chipselect inputs on the board. It also controls the number of wait states generated during a memory cycle. These features can all be selected with 256 byte boundaries of resolution.

## TOTALLY CMOS BOARDS

Built totally with CMOS components (except the 8097 BH which features NMOS), power consumption is very low, requiring 5 V at only 300 mA . If the on board LEDs are disabled, the current drops to only 180 mA . The boards also require $\pm 12 \mathrm{~V}$ at 15 mA .

## CONCURRENT INTERROGATION OF MEMOR Y AND REGISTERS

The monitor allows the user to read and modify internal registers and external memory while the user's code is running in the board.

## SIXTEEN SOFTWARE BREAKPOINTS

There are sixteen breakpoints available which automatically substitute a TRAP instruction for a user's instruction at the breakpoint location. The substitution occurs when execution is started. If the code is halted or a breakpoint is reached, the user's code is restored in the ROMsim.

## TWO STEP MODES

There are two single-step modes available. The first stepping mode locks out all interrupts which might occur during the step. The second mode enables interrupts, and treats subroutine calls and interrupt routines as one indivisible instruction.

## HIGH LEVEL LANGUAGE SUPPORT

The host software for the boards can load absolute object code generated by ASM-96, iC-96, PL/M-96 or RL-96, all of which are available from Intel.

## SYMBOLIC DEBUG

The host has a Single Line Assembler, and a Disassembler, which recognize symbolics generated by Intel software tools.

## RS-232-C COMMUNICATION LINK

The boards communicate with the host using an Intel 82510 UART provided on board. This frees the on-chip UART for the user's application.

## PERSONAL COMPUTER REQUIREMENTS

The Evaluation Boards are hosted on an IBM PC, XT, AT** or BIOS compatible clone. The PC must meet the following minimum requirements:

- 512 K Bytes of Memory
- One 360K Byte Floppy Disk Drive
- PC DOS** 3.1 or Later
- A Serial Port (COM1 or COM2) at 9600 Baud
- ASM-96, iC-96 or PL/M-96
- A text editor such as AEDIT


## EV80C196KX EVALUATION BOARDS

## GETTING STARTED

## POWERING UP THE BOARD

Power ( $+5 \mathrm{~V}, \pm 12 \mathrm{~V}$ ) must be connected to JP4 as shown on the board's silkscreen next to JP4 and in Figure 5. Included with the board is a packet containing a Molex connector and crimp terminals for your convenience.

Power supply requirements for the MCS-96 Evaluation Boards are as follows:
$+5 \mathrm{~V}_{\mathrm{DC}} \pm 5 \%$ @ 280 mA ( 180 mA if LEDs are disabled by removing jumper shunt E6)

$$
\begin{aligned}
& +12 \mathrm{~V}_{\mathrm{DC}} \pm 20 \% @ 15 \mathrm{~mA} \\
& -12 \mathrm{~V}_{\mathrm{DC}} \pm 20 \% @ 15 \mathrm{~mA}
\end{aligned}
$$

Upon power-up (or after a reset) the board goes through initialization. When completed, a continuous shifting-pattern is displayed on the Port 1 LEDs.

## CONNECTING TO THE PC

Once users have applied power to the board, they need to connect P1 to a PC serial port. P1 is configured to interface pin-to-pin with a standard nine-pin AT-type serial connector. Users should make certain that they use a cable providing all nine signals, as they are all needed for proper operation of the host interface.

## STARTING THE HOST SOFTWARE

After connecting power and a host PC, the host interface can be invoked. Install the disk in drive A of the system. At the DOS prompt type:

## A:ECM96 < CR >

After a moment, the PC sould display the iECM96 monitor screen.

NOTE: If users have a 25 -pin serial port it will be necessary to make a 25 -pin to 9 -pin adaptor (see Users Manual for details).

## HARDWARE OVERVIEW

The Evaluation Board is delivered with a MCS-96 microcontroller, 8 K -words and 8 K bytes of user code/data memory, a UART for host communications and analog-input filtering with a precision voltage reference. Also included, is programmable chip-select,
bus-width and wait-state-counter logic which allows you to custom tailor the board to look like your own system. The board's physical dimensions are $61 / 2^{\prime \prime} \times 73 / 4^{\prime \prime}$ with an overall height of $3 / 4$ ". There are six main sections to the board: Processor, Memory, Host Interface, Digital I/O, Analog Inputs and Decoding.

## MEMORY

There are five 28 -in memory sockets provided on each board: U1, U6, U8, U13, U14. The sockets are designed to support byte-wide, JEDEC-pinout, memory devices of various types and sizes, i.e., $8 \mathrm{~K} \times 8$ SRAM or $16 \mathrm{~K} \times 8$ EPROM. U1 and U8, U6 and U13 are connected as two 16-bit memory banks and U 14 is connected as an 8-bit memory bank.

## HOST INTERFACE

The PC host interface is accomplished with the 82510 UART (U20) connected to P1 via RS-232 drivers. The UART resides in the address range $1 \mathrm{E} 00 \mathrm{H}-1 \mathrm{EFFH}$. Therefore, register 0 in the UART would be at address 1 E 00 H of the MCS-96 microcontroller, register 1 would be at 1 E 01 H , register 2 would be at 1 E 02 H , etc., up to register 7 at 1 E 07 H . The registers will repeat again with register 0 at 1 E 08 H due to the limited decoding granularity of the EPLD. Pin 12 of the UART, OUT1\#, is used to tell the PC host when the MCS-96 microcontroller is executing user code by a true level on the Ring Indicator input of the host serial port.

## DIGITAL I/O

With the exception of the NMI input, which is used by the Host Interface, all Digital I/O functions of the MCS-96 microcontrollers are available to users. There are eight LEDs onboard along with buffer/drivers which allow users to quickly observe the state of Port 1 , HS0.0 and P2.5/PWM. The TxD and RxD pins of the MCS-96 microcontroller (Port 2.0 and Port 2.1) are connected to RS-232 buffer/ drivers, which are connected to P2. All of the I/O signals are available on JP2.

## EV80C196KX EVALUATION BOARDS

## ANALOG INPUTS

The Port 0 inputs of the MCS-96 microcontroller double as both digital and analog inputs. Each board includes circuitry to make the analog inputs easier to use. A precision voltage source for $V_{\text {REF }}$ is provided on board (U3 and U4) which can be carefully adjusted by trimming RP1. Also, jumper shunt E4 allows $\mathrm{V}_{\text {REF }}$ to be connected to $\mathrm{V}_{\mathrm{CC}}$ instead of the output of U3. By removing E4 entirely, an off board reference can be connected to JP1. By removing jumper shunt E2, ANGND can be isolated from $\mathrm{V}_{\mathrm{SS}}$. Protective clamping diodes
are installed on each channel. RC networks are provided in sockets (to allow users to change the input impedance to match their application) on all of the analog input channels. If Port 0 is to be used as a digital input, it is recommended that the capacitors be removed, and the resistors replaced with wires. For additional connection information, refer to Figure 1. The ground and power planes beneath the analog circuitry (D1, D2, R3, C2, U3, U4, JP1 and the analog connections on the 80C196KX board) are isolated from the digital power and ground planes of the board to keep noise from the analog inputs.


272222-2
Figure 1. Block Diagram of the EV80C196KX Board

Bank   No.	Even   Bytes I.C.	Odd   Bytes I.C.	Enable   Signal	Memory Type
0	U8	U1	CE0	8K x 16-Bit Monitor   EPROM from 0-FFH   and 1D00H-1DFFH
1	U13	U6	CE1	$8 \mathrm{~K} \times 16$-Bit ROMsim/RAM   from 2000H-5FFFH
2	U14	U14	CE2	$8 \mathrm{~K} \times 8$-Bit ROMsim/RAM   from 6000H-7FFFH

## EV80C196KX EVALUATION BOARDS

## DECODING

The decoding logic on each board serves three purposes; to provide Chip-Enable signals to memory and peripheral devices, to select the bus width for the device(s) being accessed and to provide wait states for slow devices. This section is provided should users need to modify the memory configuration of the board. It is not necessary to understand this section for normal usage of the board.

The heart of the decoding logic is U12, a 24 -pin 5AC312 Intel EPLD or a C22V10
programmable logic array which is socketed to allow easy changes. For the sake of convenience it will be referred to as "the EPLD" throughout this text. The EPLD uses latched addresses A8-A15 along the CLKOUT, HLDA\# , RESET\# and STALE (Stretched ALE) from the MCS-96 microcontroller as decode inputs.

There are 4 enable outputs from the EPLD, all of which are low-level true, however only one should be true at a time to avoid bus contention. They are decoded from the address lines, and an internally-latched signal called MAP. MAP is cleared when the RESET \# input is true, and set when the Monitor EPROMs are accessed in the address range $1 \mathrm{D} 00 \mathrm{H}-1 \mathrm{DFFH}$. MAP will always be set when the board is in the USER mode.
The BUSWIDTH output of the EPLD, pin 16, is fed into the buswidth pin of the MCS-96 microcontroller. Therefore, it is driven low for accesses to 8-bit memory and high for accesses to 16 -bit memory. As shipped, it goes low simultaneously with CE2 or CS510 as these are the only areas of memory mapped as 8 -bit.
Programmed into the EPLD is a 3 -bit waitstate machine clocked by the rising edge of CLKOUT from the MCS-96 microcontroller. The transition sequence of the wait-state machine is controlled by the current state of the machine and inputs to the EPLD.

CE0   Pin 21	(Address Range 2000H-27FF   and Not Map) or Address   Range 0H-FFH or Address   Range 1D00H-1DFFH	Enables Memory in U1 and U8   (Monitor EPROM as Shipped)
CE1   Pin 22	(Address Range 2000H-27FFH   and Map) or Address   Range 2800H-5FFFH	Enables Memory in U6 and U13   (User 16-Bit ROMsim/RAM as Shipped)
CE2   Pin 15	(Address Range 6000H-7FFFH)	Enables Memory in U14   (User 8-Bit ROMsim/RAM as Shipped)
CS510   Pin 14	(Address Range 1E00H-1EFFH)	Enables U20, the 82510 UART,   Which is Used for Host Communications


Memory Type	Wait   States	Enable   Signal	Memory Region in   User Mode			
ROMsim/RAM	0	CE1	$2000 \mathrm{H}-5 \mathrm{FFFH}$			
ROMsim/RAM	0	CE2	$6000 \mathrm{H}-7 \mathrm{FFFH}$			
Monitor EPROM	1	CE0	$0000 \mathrm{H}-00 \mathrm{FFH}$,			
82510 UART	2	CS510	$1 \mathrm{~N} 00 \mathrm{H}-1 \mathrm{DFFH}$	$	$	N/A
:---:						
Unimplemented						
Unimplemented						

EV80C196KX EVALUATION BOARDS

JP1 Analog Input Connector
2x25 Pin Molex 39-51-2604 or Equiv.

AN	$\square \square$	2 - analog channel o
$V_{\text {REF }}-3$		4- V ${ }_{\text {REF }}$
ANGND-	$\square \square$	6 - analog channel
ANGND -	$\square \square$	8 - ANALOG CHANNEL 2
$V_{\text {REF }}$	$\square \square$	10- V REF
ANGN	$\square \square$	12 - ANALOG CHANNEL
ANGND-13	$\square \square$	14-ANALOG
$\mathrm{V}_{\text {REF }}-15$		16- V ${ }_{\text {REF }}$
ANGND-17		18- ANALOG CHANNEL 5
ANGND-19		20- analog channel 6
$\mathrm{V}_{\text {REF }}-21$		22- V VEF
ANGND-23		24- ANALOG CHANNEL 7
$V_{\text {REF }}$		26 - ANGND

272222-3
Figure 2

## JP2 I/O Expansion Connector

 2x25 Pin Molex 39-51-5004 or Equiv.

Figure 3


Figure 4

## JP4 Power Supply Connector

4 Pin Molex 26-03-3041 or Equiv.


Figure 5
These evaluation boards may be purchased through your local Intel distributor or Intel sales office. Call 1-800-468-8118 for more information (U.S. and Canada).


272078-1

## Low Cost Code Evaluation Tool

Intel's EV80C196KR evaluation board provides a hardware environment for code execution and software debugging at a relatively low cost. The board features the 80C196KR advanced, CHMOS*, single chip, 16-bit microcontroller, the newest member of the industry standard MCS ${ }^{\circledR}-96$ family. The board allows the user to take full advantage of the power of the MCS-96. The EV80C196KR provides zero wait state, 16 MHz execution of a user's code. Plus its memory (ROMsim) can be reconfigured to match the user's planned memory system, allowing for exact analysis of code execution speeds in a particular application.
Popular features such as a symbolic debug, single line assembler/disassembler, singlestep program execution and sixteen software breakpoints are standard on the EV80C196KR. Intel provides a complete code development environment using assembly language (ASM-96) as well as Intel's high-level languages such as iC-96 or PL/M-96 to accelerate development schedules.
The evaluation board is hosted on an IBM PC** or BIOS-compatible clone, already a standard development solution in most of today's engineering environments. The source code for the on-board monitor (written in ASM-96) is public domain. The program is about 1 Kbyte and can be easily modified to be included in the user's target hardware. In this way, the provided PC host software can be used throughout the development phase.

[^28]
## EV80C196KR Features

- Zero Wait State 16 MHz Execution Speed
- 24 Kbytes of ROMsim
- Flexible Wait State, Buswidth, Chip-Select Controller
- Totally CMOS, Low Power Board
- Concurrent Interrogation of Memory and Registers
- Sixteen Software Breakpoints
- Two Single-Step Modes
- High-Level Language Support
- Symbolic Debug
- Single Line Assembler/Disassembler
- RS-232C Communications Link


## Full Speed Execution

The EV80C196KR executes the user's code from on-board ROMsim at 16 MHz with zero wait states. By changing crystals on the 80C196KR, any slower execution speed can be evaluated. The board's host interface timing is not effected by this crystal change.

## 24 Kbytes of ROMsim

The board comes with 24 Kbytes of SRAM to be used as ROMsim for the user's application code and as data memory if needed. 16 Kbytes of this memory are configured as sixteen-bit wide and 8 Kbytes are configured as eight-bit wide. The user can therefore evaluate the speed of the part executing from either bus width.

## Flexible Memory Decoding

By changing the Programmable Logic Device (PLD) on the board, the memory can be made to look like the memory system planned for the user's hardware application. The PLD controls the bus width of the 80 C 196 KR and the chipselect inputs on the board with 256-byte boundaries of resolution. It also controls the number of wait states (zero to four) generated by the 80 C 196 KR during a memory cycle.

## Totally CMOS Board

The EV80C196KR board is built totally with CMOS components. Its power consumption is therefore very low, requiring 5 volts at only 300 mA . If the board LEDs are disabled, the current drops to only 165 mA . The board also requires $\pm 12$ volts at 15 mA .

## Concurrent Interrogation of Memory and Registers

The monitor for the EV80C196KR allows the user to read and modify internal registers and external memory while the user's code is running on the board.

## Sixteen Software Breakpoints

There are sixteen breakpoints available which automatically substitute a TRAP instruction at the breakpoint location. The substitution occurs when execution is started. If the code is halted or a breakpoint is reached, the user's code is restored to the ROMsim.

## Two Steps Modes

There are two single-step modes available. The first stepping mode locks out all interrupts which might occur during the step. The second mode enables interrupts, and treats subroutine calls and interrupt routines as indivisible instructions.

## High-Level Language Support

The host software for the EV80C196KR board is able to load absolute object code generated by ASM-96, iC-96, PL/M-96 or RL-96, all of which are available from Intel.

## Symbolic Debug

The host has a single-line assembler, and a disassembler, that recognize symbolics generated by Intel software tools.

## RS-232C Communications Link

The EV80C196KR communicates with the host using an Intel 82510 UART provided on the board. This frees the on-chip UART of the 80C196KR for the user's application.

## Personal Computer Requirements

 The EV80C196KR Evaluation Board is hosted on an IBM PC, XT, AT** or BIOS-compatible clone. The PC must meet the following minimum requirements.- 512 Kbytes of Memory
- One 360 Kbyte Floppy Disk Drive
- PC DOS** Version 3.1 or later
- A Serial Port (COM1 or COM2) at 9600 Baud
- ASM-96 or PL/M-96
- A text editor such as AEDIT


## EV80C196MC EVALUATION BOARD



## LOW COST CODE EVALUATION TOOL

Intel's EV80C196 evaluation board provides a hardware environment for code execution and software debugging at a relatively low cost. The board features the 80C196MC advanced, CHMOS*, 16 -bit microcontroller, the newest member of the industry standard MCS ${ }^{\circledR}-96$ family. The board allows the user to take full advantage of the power of the MCS-96. The EV80C196MC provides zero wait-state, 16 MHz execution of a user's code. Plus, its memory (ROMsim) can be reconfigured to match the user's planned memory system, allowing for exact analysis of code execution speeds in a particular application.
Popular features such as a symbolic single line assembler/disassembler, single-step program execution, and sixteen software breakpoints are standard on the EV80C196MC. Intel provides a complete code development environment using assembler (ASM-96) as well as high-level languages such as Intel's iC-96 or PL/M-96 to accelerate development schedules.

The evaluation board is hosted on an IBM PC** or BIOS-compatible clone, already a standard development solution in most of today's engineering environments. The source code for the on-board monitor (written in ASM-96) is public domain. The program is about 1 K , and can be easily modified to be included in the user's target hardware. In this way, the provided PC host software can be used throughout the development phase.

[^29]
## FEATURES

## EV80C196MC FEATURES

- Zero Wait-State 16 MHz Exection Speed
- 24 Kbytes of ROMsim
- Flexible Wait-State, Buswidth, Chip Select Controller
- Totally CMOS, Low Power Board
- Concurrent Interrogation of Memory and Registers
- Sixteen Software Breakpoints
- Two Single-Step Modes
- High-Level Language Support
- Symbolic Debug
- RS-232-C Communication Link


## FULL SPEED EXECUTION

The EV80C196MC executes the user's code from on-board ROMsim at 16 MHz with zero wait-states. By changing crystals on the 80C196MC, any slower execution speed can be evaluated. The board's host inteface timing is not affected by this crystal change.

## 24 Kbytes OF ROMsim

The board comes with 24 Kbytes of SRAM to be used as ROMsim for the user's code and as data memory if needed. 16 Kbytes of this memory are configured as sixteen bits wide, and 8 Kbytes are configured as eight bits wide. The user can therefore evaluate the speed of the part executing from either buswidth.

## FLEXIBLE MEMORY DECODING

By changing the Programmable Logic Device (PLD) on the board, the memory on the board can be made to look like the memory system planned for the user's hardware application. The PLD controls the buswidth of the 80C196MC and the chip-select inputs on the board. It also controls the number of waitstates (zero to three) generated by the 80C196MC during a memory cycle. These features can all be selected with 256 byte boundaries of resolution.

## TOTALLY CMOS BOARD

The EV80C196MC board is built totally with CMOS components. Its power consumption is therefore very low, requiring 5 V at only 300 mA . If the on-board LEDs are disabled, the current drops to only 170 mA . The board also requires $\pm 12 \mathrm{~V}$.

## CONCURRENT INTERROGATION OF MEMORY AND REGISTERS

The monitor for the EV80C196MC allows the user to read and modify internal registers and external memory while the user's code is running in the board.

## SIXTEEN SOFTWARE BREAKPOINTS

There are sixteen breakpoints available which automatically substitute a TRAP instruction for a user's instruction at the breakpoint location. The substitution occurs when execution is started. If the code is halted or a breakpoint is reached, the user's code is restored in the ROMsim.

## TWO STEP MODES

There are two single-step modes available. The first stepping mode locks out all interrupts which might occur during the step. The second mode enables interrupts, and treats subroutine calls and interrupt routines as one indivisible instruction.

## HIGH-LEVEL LANGUAGE SUPPORT

The host software for the EV80C196MC board is able to load absolute object code generated by ASM-96, iC-96, PL/M-96 or RL-96, all of which are available from Intel.

## FEATURES

## SYMBOLIC DEBUG

The host has a Single Line Assembler, and a Disassembler, which recognize symbolics generated by Intel software tools.

## RS-232-C COMMUNICATION LINK

The EV80C196MC communicates with the host using an Intel 82510 UART provided on board.

## PERSONAL COMPUTER REQUIREMENTS

The EV80C196MC Evaluation Board is hosted on an IBM PC, XT, AT** or BIOS compatible clone. The PC must meet the following minimum requirements:

- 512 Kbytes of Memory
- One 360 Kbyte Floppy Disk Drive
- PC DOS** 3.1 or Later
- A Serial Port (COM1 or COM2) at 9600 Baud
- ASM-96, iC-96 or PL/M-96
- A text editor such as AEDIT



# MCS ${ }^{\circledR}-51$ and MCS-96 Packaging Information 

## intel.

# MCS ${ }^{\circledR}$-51 and MCS ${ }^{\circledR}$-96 Packaging Information 

MCS-51 and MCS-96 Packaging Information
CONTENTS ..... PAGE
Product Identification Codes ..... 23-3
40-Lead Plastic DIP ..... 23-4
40-Lead Cerdip ..... 23-5
44-Lead QFP ..... 23-6
48-Lead Plastic DIP ..... 23-7
48-Lead Ceramic DIP ..... 23-8
64-Lead Plastic Shrink DIP ..... 23-9
68-Lead LCC ..... 23-10
68-Lead PGA ..... 23-11
80-Lead QFP ..... 23-12
100-Lead PQFP ..... 23-13
44/52/68/84-Lead PLCC ..... 23-14


## 40-LEAD PLASTIC DUAL IN-LINE PACKAGE (TYPE N)



272118-1

Family: Plastic Dual In-Line Package		
Symbol	Millimeters Approx*	Inches Approx*
A	5	0.2
D	53	2.1
E	16	0.6
$e_{1}$	2.5	0.10
L	3	0.1

*For exact dimensions consult the Packaging Handbook (\#240800).

## 40-LEAD CERDIP DUAL IN-LINE PACKAGE (TYPE D)



272118-2

Family: Cerdip Dual In-Line Package		
Symbol	Millimeters Approx*	Inches Approx*
A	5.8	0.2
D	53	2.1
E	16	0.6
$e_{1}$	2.5	0.10
L	3	0.1

*For exact dimensions consult the Packaging Handbook (\#240800).

## 44-LEAD QUAD FLATPACK PACKAGE (TYPE S) VARIATION: SQUARE



272118-3

Family: Quad Flatpack Package	
Symbol	Millimeters Approx*
A	3
D	13
E	13
$e_{1}$	0.8

*For exact dimensions consult the Packaging Handbook (\# 240800).

## 48-LEAD PLASTIC DUAL IN-LINE PACKAGE (TYPE N)



272118-4

Family: Plastic Dual In-Line Package		
Symbol	Millimeters Approx*	Inches Approx*
A	5	0.2
D	62	2.5
E	16	0.6
$e_{1}$	2.5	0.1
L	3	0.1

[^30]
## 48-LEAD CERAMIC DUAL IN-LINE PACKAGE (TYPE C)



272118-5

Family: Ceramic Side Braze Dual In-Line		
Symbol	Millimeters Approx*	Inches Approx*
A	$6(1)$	$0.2(1)$
A	$7(2)$	$0.3(2)$
D	62	2.5
E	16	0.6
$e_{1}$	2.5	0.1
L	3	0.1

NOTES:

1. Solid LID
2. EPROM LID
*For exact dimensions consult the Packaging Handbook (\# 240800).

## 64-LEAD PLASTIC DUAL IN-LINE PACKAGE (SHRINK) (TYPE U)



272118-6

Family: Plastic Dual In-Line Package		
Symbol	Millimeters Approx*	Inches Approx* $^{*}$
A	6	0.3
D	59	2.3
$\mathrm{E}_{1}$	18	0.7
$\mathrm{e}_{1}$	1.8	0.07
L	3	0.1

[^31]
## 68-CERAMIC LEADLESS CHIP CARRIER (TYPE R) VARIATION: B



272118-7

Family: Ceramic Leadless Chip Carrier		
Symbol	Millimeters Approx*	Inches Approx*
A	3	0.1
D	25	1.0
E	25	1.0
E	1.3	0.05
L	1	0.1

*For exact dimensions consult the Packaging Handbook (\# 240800).

## 68-LEAD CERAMIC PIN GRID ARRAY PACKAGE (TYPE A)



272118-8

Family: Ceramic Pin Grid Array Package		
Symbol	Millimeters Approx*	Inches Approx*
A	5	0.2
$D$	30	1.2
$e_{1}$	2.5	0.1
$L$	2	0.1

[^32]
## 80-LEAD QUAD FLATPACK PACKAGE (TYPE S) VARIATION: RECTANGULAR



272118-9

Family: Quad Flatpack Package	
Symbol	Millimeters Approx*
A	3
D	25
E	19
$e_{1}$	0.8

[^33]
## 100-LEAD PLASTIC QUAD FLATPACK PACKAGE (TYPE KU)



272118-10

Family: Plastic Quad Flatpack (0.025 Inch (0.635mm) Pitch)			
Symbol	Description	Inches Approx*	Millimeters Approx*
A	Package Height	0.2	5
D, E	Terminal Dimension	0.9	23

*For exact dimensions consult the Packaging Handbook (\#240800).

## 42/52/68/84-LEAD PLASTIC LEADED CHIP CARRIER (TYPE N)



272118-11

Family: Plastic Leaded Chip Carrier-Square		
Symbol	44-Lead	
	Millimeters Approx*	Inches Approx*
A	5	0.2
D	18	0.7
E	18	0.7


Family: Plastic Leaded Chip Carrier-Square						
Symbol	Millimeters Approx* $^{*}$			Inches Approx*		
	68 -Lead	52 -Lead	84-Lead	68-Lead	52-Lead	84-Lead
A	5	5	5	0.2	0.2	0.2
D	26	21	31	1.0	0.8	1.2
E	26	21	31	1.0	0.8	1.2

*For exact dimensions consult the Packaging Handbook (\#240800).

ALABAMA
Intel Corp.
600 Boulevard South
Suite 104-
Huntsville 35802
FAX.

## ARIZONA

tintel Corp.
410 North 44th Street
Suite 500
Phoenix 85008
Tel: (800) 628-8686
FAX: (602) 244-0446

## CALIFORNIA

Intel Corp.
1 Sierra Gate Plaza
Suite 280C
Roseville 95678
Tel: (800) 628-8686
FAX: (916) 782.8153
tintel Corp.
9665 Chesapeake Dr.
Suite 325
San Diego 92123
Tel: (800) 628-8686
FAX: (619) 292-0628

* Intel Corp.

400 N. Tustin Avenue
Suite 450
Santa Ana 92705
Tel: (800) 628-8686
FAX: (714) 541-915
*tIntel Corp.
San Tomas 4
2700 San Tomas Expressway 2nd Floor
Santa Clara 95051
Tel: (800) 628-8686
TWX: 910-338-0255
Intel Corp
15260 Ventura Boulevard
Suite 360
Sherman Oaks 91403
FAX: (818) 995-662

## COLORADO

*tintel Corp.
600 S. Cherry St.
Suite 700
Denver 80222
Tel: (800) 628-8686
FAX:
CONNECTICUT
†Intel Corp.
103 Mill Plain Road
Danbury 06811
Tel: (800) 628-8686
FAX: (203) 794-0339

## FLORIDA

†Intel Corp.
00 Fairway Drive
Suite 160
Deerfield Beach 3344
. (800) 628-8686
†Intel Corp.
5850 T.G. Lee Blva.
Suite 340
Orlando 32822
Tel: (800) 628-8686
FAX: (407) 240-8097

## NORTH AMERICAN SALES OFFICES

GEORGIA
tintel Corp.
20 Technology Parkway
Suite 150
Norcross 30092
Tel: (800) 628-8686
FAX: (404) 605-9762

## ILLINOIS

*tIntel Corp.
Woodfield Corp. Center II
300 N. Martingale Road
Suite 400
Schaumburg 60173
Tel: (800) 628-8686
FAX: (708) 706-9762

## INDIANA

$\dagger$ Intel Corp.
8910 Purdue Road Suite 350
ndianapolis 46268 Tel: (800) 628-8686 FAX: (317) 875-8938

## MARYLAND

*tIntel Corp.
10010 Junction Dr.
Suite 200
Annapolis Junction 20701
Tel: (800) 628-8686
FAX: (410) 206-3678
MASSACHUSETTS

* Intel Corp.

Westford Corp. Cente
5 Carlisle Road
2nd Floor
Westford 01886
Tel: (800) 628-8686
TWX: 710-343-6333
FAX: (508) 692-7867

## MICHIGAN

†Intel Corp.
7071 Orchard Lake Road
Suite 100
West Bloomfield 48322
Tel: (800) 628-8686
FAX: (313) 851-8770

## MINNESOTA

†Intel Corp.
3500 W. 80th St.
Suite 360
Bloomington 55431
Tel: (800) 628-8686
TWX: 910-576-2867
FAX: (612) 831-6497
NEW JERSEY

* Intel Corp.

Lincroft Office Center
125 Half Mile Road
Red Bank 07701 Tel: (800) 628-8686 FAX: (908) 747-0983

## NEW YORK

*Intel Corp
850 Crosskeys Office Park
Fairport 14450
Tel: (800) 628-8686
TWX: 510-253-7391
FAX: (716) 223-2561

* Intel Corp.

2950 Express Dr., South
Suite 130
Islandia 11722
Tel: (800) 628-8686
TWX: 510-227-6236
FAX: (516) 348-7939
†Intel Corp.
300 Westage Business Center
Suite 230
Fishkill 12524
Tel: (800) 628-8686
FAX: (914) 897-3125
OHIO
*tintel Corp.
3401 Park Center Drive
Suite 220
Dayton 45414
Tel: (800) 628-8686
TWX: 810-450-2528
FAX: (513) 890-8658
*Intel Corp.
Four Commerce Park Square
23200 Chagrin Blvd., Suite 600
Beachwood 44122
FAX.

OKLAHOMA
Intel Corp.
6801 N. Broadway
Suite 115
Oklahoma City 73162
Tel: (800) 628-8686
FAX: (405) 840-9819

## OREGON

†Intel Corp.
15254 N.W. Greenbrier Pkwy.
Building B
Beaverton 97006
Tel: (800) 628-8686
TWX: 910-467-8741
FAX: (503) 645-8181
PENNSYLVANIA

* $\dagger$ Intel Corp.

925 Harvest Drive
Suite 200
Blue Bell 19422
Tel: (800) 628-8686
FAX: (215) 641-0785

* $\dagger$ Intel Corp.

400 Penn Center Blvd.
Suite 610
Pittsburgh 15235
Tel: (800) 628-8686
FAX: (412) 829-7578
SOUTH CAROLINA
Intel Corp.
100 Executive Center Drive
Suite 109, B183
Greenville 29615
Tel: (800) 628-8686
FAX: (803) 297-3401

## TEXAS

tintel Corp.
8911 N. Capital of Texas Hwy.
Suite 4230
Austin 78759
Tel: (800) 628-8686
FAX: (512) 338-9335
*tIntel Corp.
12000 Ford Road
Suite 400
Dallas 75234
Tel: (800) 628-8686
FAX: (214) 484-1180

* $\dagger$ Intel Corp.

Suite 401
Suite 401
Houston 77070
Tel: (800) 628-8686
FAX: (713) 988
UTAH
†Intel Corp.
428 East 6400 South
Suite 104
Murray 84107
Tel: (800) 628-8686
FAX: (801) 268-1457

## WASHINGTON

tintel Corp.
2800 156th Avenue S.E
Suite 105
Bellevue 98007
Tel: (800) 628-8686
FAX: (206) 746-4495
Intel Corp.
408 N. Mullan Road
Suite 105
Spokane 99206
Tel: (800) 628-8686
FAX: (509) 928-9467
WISCONSIN
Intel Corp.
400 N. Executive Dr.
Suite 401
Brookfield 53005
Tel: (800) 628-8686
FAX: (414) 789-2746

## CANADA

BRITISH COLUMBIA
Intel Semiconductor of
Canada, Ltd.
999 Canada Place
Suite 404, \#11
Vancouver V6C 3E2
Tel: (800) 628-8686
FAX: (604) 844-2813

## ONTARIO

tintel Semiconductor of
Canada, Ltd.
2650 Queensview Drive
Suite 250
Ottawa K2B 8H6
Tel: (800) 628-8686
FAX: (613) 820-5936
tintel Semiconductor of
Canada, Ltd.
190 Attwell Drive
Suite 500
Rexdale M9W 6H8
Tel: (800) 628-8686
FAX: (416) 675-2438

## QUEBEC

tIntel Semiconductor of
Canada, Ltd.
1 Rue Holiday
Suite 115
Tour East
Pt. Claire H9R 5N3
Tel: (800) 628-8686
FAX: 514-694-0064

## ALABAMA

Arrow/Schweber Electronics 1015 Henderson Road
Huntsville 35816
FAX:
Hamilton/Avnet
4960 Corporate Drive, \#135
Huntsville 35805
Tel: (205) 837-7210
FAX: (205) 830-8404
MTI Systems Sales 4950 Corporate Dr., \#120 Huntsville 35805 Tel: (205) 830-9526
FAX: (205) 830-9557

Pioneer Technologies Group
4835 Tiverity Squa Group
4835 University
Huntsvile 35816
FAX: (205) 837-9358

## ARIZONA

Arrow/Schweber Electronics
2415 W. Erie Drive
Tempe 85282
Tel: (602) 431-0030
FAX: (602) 431-9555
Avnet Computer
1626 S. Edwards Drive
Tempe 85281
Tel: (602) 902-4642
FAX: (602) 902-4646
Hamilton/Avnet
1626 S. Edwards Drive
Tempe 85281
Tel: (602) 902-4700
Wyle Laboratories
4141 E. Raymond
Phoenix 85040
Tel: (602) 437-2088
FAX: (602) 437-2124

## CALIFORNIA

Arrow Commercial Systems Group 1502 Crocker Avenue
Hayward 945
FAX: (510) 391-1742
Arrow Commercial Systems Group 14242 Chambers Road
Tustin 92680
Tel: (714) 544-0200
FAX: (714) 454-4203
Arrow/Schweber Electronics
26707 W. Agoura Road
Calabasas 91302
Tel: (818) 880-9686
FAX: (818) 880-4687
Arrow/Schweber Electronics
9511 Ridgehaven Court
San Diego 92123
Tel: (619) 565-4800
Arrow/Schweber Electronics
1180 Murphy Avenue
San Jose 95131
Tel: (408) 441-9700
FAX: (408) 453-4810
Arrow/Schweber Electronics
48834 Kato Rd., Suite 103
Fremont 94538
Te: (510) 440-2681
Arrow/Schweber Electronics
6 Cromwell, Suite 100
Irvine 92718
Tel: (714) 838-5422
FAX: (714) 454-4203
Avnet Computer
3170 Pullman Street
Costa Mesa 92626
Tel: (714) $641-4179$
FAX: $(714)$ 641-4170

## NORTH AMERICAN DISTRIBUTORS

Avnet Computer
1361 B West 190th Streel
Gardena 90248
Tel: (310) 217-6830
FAX: (310) 327-5389
Avnet Computer
1175 Bordeaux Drive
Sunnyvale 94089
FAX: (408) 743 -3348
Hamilton/Avnet
3170 Pulliman Street
Costa Mesa 92626
Tel: (714) 641-4182
FAX: (714) 641-4149
Hamilton/Avnet
1175 Bordeaux Drive
Sunnyvale 94089
FAX: (408) 745-6679
Hamilton/Avnet
4545 Viewridge Avenue
San Diego 92123
Tel: (619) $571-7540$
FAX: $(619)$ 277-6136
Hamilton/Avnet
21150 Califa St.
Woodland Hills 91367
FAX: (818) 594.8233
Hamilton/Avnet
755 Sunrise Avenue, \#150
Roseville 95661
Tel: (916) 925-2216
FAX: (916) 925-3478
Pioneer Technologies Group
134 Rio Robles
Tel: (408) 95434
FAX: (408) 954-9113
Pioneer Standard
217 Technology Dr., \#110
Irvine 92718
Tel: (714) 753-5090
FAX: (714) 753-5074
Pioneer Standard
5850 Canoga Ave., \#400
Woodland Hills 91367
Tel: (818) 883-4640
FAX: (818) 883-9721
Wyle Laboratories
2951 Sunrise Blvd., \#175
Rancho Cordova 95742
Tel: (916) 638-5282
FAX: (916) 638-1491
Wyle Laboratories
9525 Chesapeake Drive
San Diego 92123
Tel: (619) 565-9171
FAX: (619) 365-0512
Wyle Laboratories
3000 Bowers Avenue
Santa Clara 95051
Tel: (408) 727-2500
FAX: (408) 727-7359
Wyle Laboratories
17872 Cowan Avenue
Irvine 92714
Tel: (714) 863-9953
FAX: (714) 251-0365
Wyle Laboratories
26010 Mureau Road, \#150
Calabasas 91302
Te:: (818) 880-9000
FAX: (818) 880-5510

## colorado

Arrow/Schweber Electronics
61 Inverness Dr East, \#105
Englewood 80112
Tel: (303) 799-0258
FAX: (303) 799-4303
Hamilton/Avnet
9605 Maroon Circle, \#200 Englewood 80112
Tel:
FAX:

Wyle Laboratories
451 E. 124th Avenue
Thornton 80241
Tel: (303) 457-9953
FAX: (303) 457-4831

## CONNECTICUT

Arrow/Schweber Electronics
12 Beaumont Road
vallingiord 06492
FAX: (203) 265-7988
Avnet Computer
55 Federal Road, \#103
Danbury 06810
Tel: (203) 797-2880
FAX: (203) 791-2896
Hamilton/Avnet
55 Federal Road, \#103
Danbury 06810
Tel: (203) 743-9799
FAX:
Pioneer-Standard
2 Trap Falls Rd., \#101
Shelton 06484
Tel: (203) 929-5600
FAX: (203) 929-9791

## FLORIDA

Arrow/Schweber Electronics
400 Fairway Drive, \#102
Deerfield Beach 33441
Tel: (305) 429-8200
FAX: (305) 428-3991
Arrow/Schweber Electronics
37 Skyline Drive, \#3101
Lake Mary 32746
Tel: (407) 333.9300
FAX: (407) 333-9320
Avnet Computer
541 S. Orlando Ave., \#203
Maitlan 32751
Tel: (407) 539-2888
FAX: (407) 539-2085
Hamilton/Avnet
5371 N.W. 33rd Ave., \#204
5371 N.W. 33rd Ave., \#
Ft. Lauderdale 33309
FAX: (305) 484-8369
Hamilton/Avnet
3247 Tech Drive
St. Petersburg 35805
Tel: (813) 573-4346
FAX: (813) 572-0833
Hamilton/Avnet
7079 University Boulevard
Winter Park 32792
FAX: (407) $678-4414$
Pioneer Technologies Group
337 Northlake Blvg. \#1000
Alta Monte Springs 32701
Tel: (407) 834-9090
FAX: (407) 834-0865
Pioneer Technologies Group
674 S. Military Trail
Deerfield Beach 33442
Tel: (305) 428-8877
FAX: (305) 481-2950

## GEORGIA

Arrow Commercial Systems Group
3400 C . Corporate Way
Duluth 30136
el: (404) 623-8825
FAX: (404) 623-8802
Arrow/Schweber Electronics
4250 E. Rivergreen Pkwy., \#E
Duluth 30136
Tel: (404) 497-1300
FAX: (404) 476-1493
Avnet Computer
3425 Corporate Way, \#G
Duluth 30136
Tel: $(404) 623-5400$
FAX:: 404 ) $476-0125$
FAX: (404) 476-0125

Hamilton/Avnet
3425 Corporate Way, \#G
Duluth 30136
Tel: (404) 623-5475
FAX: (404) 623-5490
Pioneer Technologies Group
4250 C. Rivergreen Parkway
Duluth 30136
Tel: (404) 623-1003
FAX: (404) 623-0665

## iLlinois

Arrow/Schweber Electronics
1140 W. Thorndale Rd.
tasca 60143
Tel: (708) 250-0500
FAX: 708-250-0916
Avnet Computer
1124 Thorndale Avenue
Bensenville 60106
Tel: (708) 860.8573
FAX: (708) 773-7978
Hamilton/Avnet
1130 Thorndale Avenue
Bensenville 60106
Tel: (708) 860-7700
FAX: (708) 860-8532

## MTI Systems

1140 W. Thorndale Avenue
Itasca 60143
Tel: (708) 250-8222
FAX: (708) 250-8275
Pioneer-Standard
2171 Executive Dr., \#200
Addison 60101
Tel: (708) 495-9680
FAX: (708) 495-9831
INDIANA
Arrow/Schweber Electronics
7108 Lakeview Parkway West Dr.
Indianapolis 46268
FAX: (317) 299-2379
Avnet Computer
655 W. Carmel Dr., \#120
Carmel 46032
Carmel (317) 575-8029
FAX: (317) 844-4964
Hamilton/Avnet
485 Gradle Drive
Carmel 46032
Tel: (317) 844-9533
FAX: (317) 844-5921
Pioneer-Standard
9350 Priority Way West Dr.
Indianapolis 46250
Tel: (317) 573-0880
FAX: (317) 573-0979

## IOWA

Hamilton/Avnet
2335A Blairsferry Rd., N.E.
Cedar Rapids 52402
Tel: ( 319 ) $362-4757$
FAX: (319) $393-7050$
FAX: (319) 393-7050

## KANSAS

Arrow/Schweber Electronics
9801 Legler Road
Lenexa 66219
Tel: (913) 541-9542
FAX: (913) 752-2612
Avnet Computer
15313 W. 95th Street
Lenexa 61219
Tel: (913) 541-7989
FAX: (913) 541-7904
Hamilton/Avnet
15313 W. 95th Street
Overland Park 66215
Tel: (913) 888-1055
FAX: (913) 541-7951

# NORTH AMERICAN DISTRIBUTORS (Contd.) 

## KENTUCKY

Hamilton/Avnet
1847 Mercer Rd., \#G
Lexington 40511
Tel: (606) 288-4911
FAX: (606) 288-4936

## MARYLAND

Arrow/Schweber Electronics
9800J Patuxent Woods Dr.
Columbia 21046
Tel: (301) $596-7800$
FAX: (301) $596-7821$
Arrow Commercial Systems Group
200 Perry Parkway
Gaithersburg 20877
FAX: (301) 670-0188
Avnet Computer
7172 Columbia Gateway Dr
Columbia 21046
Tel: (301) 995-3571
FAX: (301) 995-3515
Hamilton/Avne
7172 Columbia Gateway Dr., \#F
Columbia 21046
Tel: (301) 995-3554
FAX: (301) 995-3553
*North Atlantic Industries
Systems Division
7125 River Wood Dr.
Columbia 21046
FAX: (301) 312-5850
Pioneer Technologies Group
9100 Gaither Road
Gaithersburg 20877
FAX: (301) 921-4255
MASSACHUSETTS
Arrow Commercial Systems Group
250 Upton Drive
Wilmingion 6588100
FAX: (508) 658-0977
Arrow/Schweber Electronics
25 Upton Dr.
Wilmington 01887
Tel: (508) 658-0900
FAX: (508) 694-1754
Avnet Computer
10 D Centennial Drive
Peabody 01960
Tel: (508) $532-9822$
FAX: $(508)$ 532-9887
Hamilton/Avnet
10 D Centennial Drive
Peabody 01960
Tel: (508) 531-7430
FAX: (508) 532-9802
Pioneer-Standard
44 Hartwell Avenue
Tel: (617) 8613
FAX: (617) 863-1547
Wyle Laboratories
15 Third Avenue
Burlington 01803
Tel: (617) 272-7300
FAX: (617) 272-6809

## MICHIGAN

Arrow/Schweber Electronics
19880 Haggerty Road
Livonia 48152
Tel: (800) 231-7902
FAX: (313) 462-2686
Avnet Computer
41650 Garden Brook Rd. \#120
Novi 48375
Tel: (313) 347-4067
FAX: (313) 347-1820
Hamilton/Avnet
2876 28th Street, S.W., \#5
Grandville 49418
Tel: (616) 531-0345
FAX: (616) 531-0059

Hamilton/Avnet
41650 Garden Brook Rd., \#100
Novi 48375
Tel: (313) 347-4270
FAX: (313) 347-4021
Pioneer-Standard
13485 Stamford Ct
Livonia 48150
Tel: (313) 525-1800
FAX: (313) 427-3720

## MINNESOTA

Arrow/Schweber Electronics
10100 Viking Drive, \#100
Eden Prairie 55344
Tel: (612) 941-5280
FAX: (612) 829-8007
Avnet Computer
9800 Bren Road, East
Minnetonka 55343
Tel: (612) 829-0025
FAX: (612) 944-0638
Hamilton/Avnet
9800 Bren Road, East, \#410
Minnetonka 55343
Tel: (612) $932-0600$
FAX: (612) $932-0613$
Pioneer-Standard
7625 Golden Triange Dr., \#G
Eden Prairie 55344
Tel: (612) 944-3355
FAX: (612) 944-3794

## MISSOURI

Arrow/Schweber Electronics
2380 Schuetz Road
St. Louis 63146
FAX: (314) 567-1164
Avnet Computer
741 Goddard Avenue
Chesterfield 63005
Tel: (314) 537-2725
FAX: (314) 537-4248
Hamilton/Avnet
741 Goddard
Chesterfield 63005
FAX: (314) 537-4248
NEW HAMPSHIRE
Avnet Computer
2 Executive Park Drive
Bedford 03102
Tel: (800) 442-8638
FAX: (603) 624-2402
NEW JERSEY
Arrow/Schweber Electronics
4 East Stow Rd., Unit 11
Marlton 08053
Tel: (609) 596-8000
FAX: (609) 596-9632
Arrow/Schweber Electronics
43 Route 46 East
Pine Brook 07058
Tel: (201) 227-7880
FAX: (201) 227-2064
Avnet Computer
1B Keystone Ave., Bldg. 36
Cherry Hill 08003
Tel: (609) 424-8962
FAX: (609) 751-2502
Hamilton/Avnet
1 Keystone Ave., Bldg. 36
Cherry Hill 08003
Tel: (609) 424-0110
FAX: (609) 751-2611
Hamilton/Avnet
10 Lanidex Plaza West
Parsippany 07054
Tel: (201) 515-5300
FAX: (201) 515-1600
MTI Systems Sales
43 US Rt. 46
Pinebrook 07058
Tel: (201) 882-8780

Pioneer-Standard
14A Madison Rd
Fairfield 07004
Tel: (201) 575-3510
NEW MEXICO
Alliance Electronics, Inc.
10510 Research Ave., SE
Albuquerque 87123
Tel: (505) 292-3360
FAX: (505) 275-6392
Avnet Computer
7801 Academy Rd., SE
Bldg. 1, Suite 204
Albuquerque 87109
Tel: (505) 828-9722
FAX: (505) 828-0364
Hamilton/Avnet
7801 Academy Rd., NE
Bldg. 1, Suite 204
Albuquerque 87108
Tel: (505) 828-1058
FAX: (505) 828-0360
NEW YORK
Arrow/Schweber Electronics
3375 Brighton Henrietta Townline Rd.
Rochester 14623
Tel: (716) 427-0300
FAX: (716) 427-0735
Arrow/Schweber Electronics
20 Oser Avenue
Hauppauge 11788
FAX.: (516)
Avnet Computer
933 Motor Parkway
Hauppauge 11788
Tel: (516) 434-7443
FAX: (516) 434-7459
Avnet Computer
2060 Townline Rd.
Rochester 14623
Tel: (716) 272-9110
FAX: (716) 272-9685
Hamilton/Avnet
933 Motor Parkway
Tel: (516) 231-9800
FAX: (516) 434-7426
Arrow Commercial Systems Group
120 Commerce
Hauppauge 11788
Tel: (516) 231-1175
FAX: (516) 435-2389
Hamilton/Avnet
2060 Townline Rd.
Rochester 14623
FAX: (716) 475-9119
Hamilton/Avnet
103 Twin Oaks Drive
Syracuse 13120
Tel: (315) 453-4000
MTI Systems
1 Penn Plaza
250 W. 34th Stree
New York 10119
Tel: (212) 643-1280
FAX: (212) $643-1288$
Pioneer-Standard
68 Corporate Driv
Binghamton 13904
Tel: (607) 722.9300
FAX: (607) 722-9562
Pioneer-Standard
60 Crossway Park West
Woodbury, Long Island 11797
Tel: (516) 921-8700
FAX: (516) 921-2143
Pioneer-Standard
840 Fairport Park
840 Fairport Park
Tel. (716) 381-7070
FAX: (716) 381-8774

NORTH CAROLINA
Arrow/Schweber Electronics
5240 Greensdairy Road
Raleigh 27604
Tel: (919) 876-3132
FAX: (919) 878-9517
Avnet Computer
2725 Millbrook Rd., \#123
Raleigh 27604
Tel: (919) 790-1735
FAX: (919) 872-4972
Hamilton/Avnet
5250-77 Center Dr. \#350
Charlotte 28217
Tel: (704) 527-2485
FAX: (704) 527-8058
Hamilton/Avnet
3510 Spring Forest Drive
Raleigh 27604
Tel: (919) 878-0819
FAX: (919) 954-0940
Pioneer Technologies Group
9401 L-Southern Pine Blvd.
Charlotte 28273
Tel. (704) 527-818
FAX: (704) 522-8564
Pioneer Technologies Group 2810 Meridian Parkway, \#148
Durham 27713
Tel: (919) 544-5400
FAX: (919) 544-5885
OHIO
Arrow Commercial Systems Group
284 Cramer Creek Court
Dublin 43017
Tel: (614) 889-9347
FAX: (614) 889-9680
Arrow/Schweber Electronics
6573 Cochran Road, \#E
Solon 44139
Tel: (216) 248-3990
FAX: (216) 248-1106
Arrow/Schweber Electronics
8200 Washington Village Dr.
Centerville 45458
Tel: (513) 435-5563
FAX: (513) 435-2049
Avnet Computer
7764 Washington Village Dr.
Dayton 45459
Tel: (513) 439-6756
FAX: (513) 439-6719
Avnet Computer
2 Summit Park Dr., \#520
independence 44131
FAX: (216) 573-7404
Hamilton/Avnet
7760 Washington Village Dr.
7760 Washing
Dayton 45459
Tel: (513) 439-6633
FAX: (513) 439-6711
Hamilton/Avnet
2 Summit Park Dr., \#520
Independence 44131
Tel: (216) 573-7400
FAX: (216) 573-7404
MTI Systems Sales
23404 Commerce Park Rd.
Beachwood 44122
Tel: (216) 464-6688
FAX: (216) 464-3564
Pioneer-Standard
4433 Interpoint Boulevard
Dayton 45424
Tel: (513) 236-9900
FAX: (513) 236-8133
Pioneer-Standard
4800 E. 131st Street
Cleveland 44105
Tel: (216) $587-3600$

## NORTH AMERICAN DISTRIBUTORS (Contd.)

OKLAHOMA
Arrow/Schweber Electronics
12111 East 51st Street, \#101
Tulsa 74146
Tel: (918) 252-7537
FAX: (918) 254-0917
Hamilton/Avnet
12121 E. 51 st St., \#102A
Tulsa 74146
FAX: (918) 250-8763
OREGON
Almac/Arrow Electronics
1885 N.W. 169th Place, \#106
Beaverton 97006
Tel: (503) 629-8090
FAX: (503) 645-0611
Arrow Commercial Systems Group
1885 N.W. 169th Place
Beaverton 97006-731
FAX: (503) 645-0611
Avnet Computer
9150 Southwest Nimbus Ave.
Beaverton 97005
Tel: (503) 627-0900
FAX: (503) 526-6242
Hamilton/Avnet
9409 Southwest Nimbus Ave.
Beaverton 97005
FAX: (503) 641-4012
Wyle Laboratories
9640 Sunshine Court
Bldg. G, Suite 200
Tel: (503) 643-7900
FAX: (503) 646-5466

## PENNSYLVANIA

Avnet Computer
213 Executive Drive, \#320
Mars 16046
Tel: ( 412 )
FAX:
712-12
$772-1898$
$772-189$
Hamilton/Avnet
213 Executive, \#320
Mars 16046
Tel: (412) 772-1881
FAX: (412) 772-1890
Pioneer-Standard
259 Kappa Drive
Pittsburgh 15238
Tel: ( 412 ) $782-2300$
FAX: (412) $963-8255$
Pioneer Technologies Group
500 Enterprise Road
Keith Valley Business Center
Horsham 19044
Tel: (215) 674-4000
FAX: (215) 674-3107

## TEXAS

Arrow/Schweber Electronics
Arrow/Schweber Electron
3220 Commander Drive
Carrollton 75006
Tel: (214) 3806
FAX: (214) 248-7208
Arrow/Schweber Electronics
10899 Kinghurst Dr., \#100
Houston 77099
Tel: (713) 530-4700
FAX: (713) 568-8518
Avnet Computer
4004 Beltline, Suite 200
Dallas 75244
Tel: (214) 308-8168
FAX: (214) 308-8129

Avnet Computer
1235 North Loop West, \#525
Houston 77008
FAX: (713) 861-6851
Hamilton/Avnet
1826-F Kramer Lane
Austin 78758
Tel: (512) $832-4306$
FAX: (512) 832-4315
Hamilton/Avnet
4004 Beltline, Suite 200
Dallas 75244
FAX:
Hamilton/Avnet
1235 North Loop West, \#521
Houston 77008
Tel: (713) 861-8517
FAX: (713) 861-6541
Pioneer-Standard
1826D Kramer Lane
Austin 78758
Tel: (512) 835-4000
Pioneer-Standard
13705 Beta Road
Dallas 75244
Tel: (214) 263-3168
FAX: (214) 490-6419
Pioneer-Standard
10530 Rockley Road, \#100
Houston 77099
Tel: (713) 495-4700
FAX: $(713)$ 495-5642
Wyle Laboratories
1810 Greenville Avenue
Richardson 75081
Tel: (214) 235-9953
FAX: (214) 644-5064
Wyle Laboratories
4030 West Braker Lane, \#420
Austin 78759
Tel: (512) 345-8853
Wyle Laboratories
11001 South Wilcrest, \#100
Houston 77099
Tel: (713) 879-9953
FAX: (713) 879-4069
UTAH
Arrow/Schweber Electronics
1946 W. Parkway Blvd.
Salt Lake City 84119
FAX: (801) 972-0200
Avnet Computer
1100 E. 6600 South, \#150
Salt Lake City 84121
Tel: (801) 266-1115
FAX: (801) 266-0362
Hamilton/Avnet
1100 East 6600 South, \#120
Salt Lake City 84121
Tel: (801) 972-2800
FAX: (801) 263-0104
Wyle Laboratories
1325 West 2200 South, \#E
West Valley 84119
Tel: (801) 974-9953
FAX: (801) 972-2524

## WASHINGTON

Almac/Arrow Electronics 14360 S.E. Eastgate Way
Bellevue 98007
Tel: (206) 643-9992

Arrow Commercial Systems Group
14360 S.E. Eastgate Way
Bellevue 98007
FAX: (206) 643-9709
Hamilton/Avnet
17761 N.E. 78th Place, \#C
Redmond 98052
Tel: (206) $241-8555$
FAX: (206) 241-5472
Avnet Computer
17761 N.E. 78th Place
Redmond 98052
Tel: (206) 867-0160
FAX: (206) 867-0161
Wyle Laboratories
15385 N.E. 90 th Street
Redmond 98052
Tel: (206) 881-1150
WISCONSIN
Arrow/Schweber Electronics
200 N. Patrick Blvd., \#100
200 N. Patrick Blv
Tel: (414) 792-0150
FAX: (414) 792-0156
Avnet Computer
20875 Crossroads Circle, \#400
Waukesha 53186
Tel: (414) 784-8205
FAX: (414) 784-6006
Hamilton/Avnet.
28875 Crossroads Circle, \#400
Waukesha 53186
Tel: ${ }^{(414)}$ 784-4511
FAX: $(414) 784-9509$
Pioneer-Standard
120 Bishop Way \#163
Brookfield 53005
Tel: (414) 784-3480
FAX: (414) 784-8207

## ALASKA

Avnet Computer
1400 West Benson Blva., \#400
Anchorage 99503
Tel: (907) 274-9899
FAX: (907) 277-2639

## CANADA

ALBERTA
Avnet Computer
1081144 29th Ave., NE
Calgary T2E 7P1
Tel: (403) 291-3284
FAX: (403) 250-1591
Zentronics
6815 8th Street N.E., \# 100
Calgary T2E 7H7
FAX: (403) 295-8714
BRITISH COLUMBIA
Almac-Arrow Electronics
8544 Baxter Place
Burnaby V5A 4T8
Tel: (604) $421-2333$
FAX: (604) $421-5030$
Hamilton/Avnet
8610 Commerce Court
Burnaby V5A 4N6
Tel: (604) 420-4101
FAX: (604) 420-5376

Zentronics
11400 Bridgeport Rd., \#108
Richmond V6X 1T2
FAX: (604) 273-2413
ONTARIO
Arrow Commercial Systems Group
1093 Meyerside Dr., Unit 2
Mississauga, Ontario
L5T 1 M4
Tel: (416) 670-7784
FAX: (416) 670-7781
Arrow/Schweber Electronics
36 Antares Dr., Unit 100
Nepean K2E 7W5
Tel: (613) 226-6903
FAX: (613) 723-2018
Arrow/Schweber Electronics
1093 Meyerside, Unit 2
Tississauga L. 17 .
FAX: (416) 670-7781
Avnet Computer
151 Superior Blvd.
Mississuaga L5T 2 L 1
Tel: (416) 795-3895
FAX: (416) 795-3855
Avnet Computer
190 Colonnade Road
190 Colonnade R
Nepean K2E 7J5
FAX: (613) 727-2020
Hamilton/Avnet
151 Superior Blvd.
Mississauga L5T 2 L1
Tel: (416) 795-3835
FAX: (416) 564-6036
Hamilton/Avnet
190 Colonnade Road
Nepean K2E 7J5
Tel: (613) 226-1700
FAX: (613) 226-1184
Zentronics
1355 Meyerside Drive
Tisssauga L-9600
FAX: (416) 564-8320
Zentronics
155 Colonnade Rd., South
Unit 17/18
Nepean K2E 7K1
Tel: (613) 226-8840
FAX: (613) 226-6352
QUEBEC
Arrow/Schweber Electronics
1100 St. Regis Blvd.
Dorval H9P 2 T5
Tel: (514) 42.1-7411
FAX: (514) 421-7430
Arrow Commercial Systems Group
500 Ave Street Jean Baptiste
Quebec City 2GE 5R9
Tel: (418) 871-7500
FAX: (418) 871-6816
Avnet Computer
2795 Rue Halpern
St. Laurent H4S 1P8
Tel: (514) 335-2483
FAX: (514) 335-2490
Hamilton/Avnet
2795 Rue Halpern
St. Laurent H4S 1P8
Tel: (514) 335-1000
FAX: (514) 335-2481
Zentronics
520 McCaffrey Street
St. Laurent H4T 1N1
St. Laurent H4T 1N1
FAX: (514) 737-5212

## intel.

UNITED STATES
Intel Corporation
2200 Mission College Boulevard
P.O. Box 58119
Santa Clara, CA 95052-8119
JAPAN
Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26
FRANCE
Intel Corporation S.A.R.L.
1, Rue Edison, BP 303
78054 Saint-Quentin-en-Yvelines Cedex
UNITED KINGDOM
Intel Corporation (U.K.) Ltd.
Pipers Way
Swindon
Wiltshire, England SN3 1RJ
GERMANY
Intel GmbH
Dornacher Strasse 1
8016 Feldkirchen bei Muenchen
HONG KONG
Intel Semiconductor Ltd.
10/F East Tower
Bond Center
Queensway, Central
CANADA
Intel Semiconductor of Canada, Ltd.
190 Attwell Drive, Suite 500
Rexdale, Ontario M9W 6H8

## Embedded Microcontrollers and Processors Vol. I

For 8-bit price performance in an embedded controller, the MCS -51 controller is the popular choice. If you need the performance of 16 bits, the MCS-96 product line or industry standard 186 family may be the answer:

We have combined all of the technical information for these three world-standard architectures into two comprehensive volumes. These handbooks contain complete product specifications, data sheets and architecture descriptions.
(The i960 microprocessor family information can be found in the i750 , i860", i960 Processors \& Related Products handbook.)

## intel.

Order Number: 270646-005


[^0]:    NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
    *WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

[^1]:    *Refer to Figure 3 for additional sink current capability.

[^2]:    * Commercial Grade

    P Plastic Package
    D Cerdip Package

[^3]:    *Refer to individual commercial grade data sheet for complete operating characteristics.

[^4]:    * = Bit addressable
    $+=8052$ only

[^5]:    $P=$ Programmed
    $\mathrm{U}=$ Unprogrammed

[^6]:    * = Found in the 8051 core (See 8051 Hardware Description for explanations of these SFRs).
    ** $=$ See description of PCON SFR. Bit PCON. 4 is not affected by reset.
    $X=$ Undefined.

[^7]:    Any other combination of the lock bits is not defined.

[^8]:    ＊See Table 1 for proper input on these pins

[^9]:    *WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

[^10]:    The 87C51FC-3/83C51FC-3 has the same 3.5 MHz to 20 MHz frequency range as the 87C51FC-20/ $83 \mathrm{C} 51 \mathrm{FC}-20$ when operating out of external program/data memory. When running out of internal program/ data memory, the 87C51FC-3/83C51FC-3 can operate up to 24 MHz .

    Throughout this document 8XC51FC-20 will refer to the 83C51FC-20, 87C51FC-20, 83C51FC-3 and the 87C51FC-3.

[^11]:    *Any other combination of lock bits is not defined.

[^12]:    With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. With the extended temperature range option, operational characteristics are guaranteed over the range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

    The 87C51GB EXPRESS is packaged in the 68-lead PLCC package. In order to designate a part as an EXPRESS part, a ' $T$ ' is added as a prefix to the part number. TN87C51GB denotes an EXPRESS part in a PLCC package.

    All A.C. and D.C. parameters in the commercial data sheets apply to the EXPRESS devices.

[^13]:    *IBM PC, XT, AT and DOS are registered trademarks of International Business Machines Corporation.

[^14]:    CHMOS is a patented Intel process.
    ${ }^{*}$ IBM ${ }^{*}$ PC, XT, AT and DOS are registered trademarks of International Business Machines Corporation.

[^15]:    *Based on a 12 MHz crystal frequency
    **0-1M bps in loop configuration

[^16]:    *NOTE:
    Optional Connection

[^17]:    *These pins must be driven and not left floating.
    **The RESET value of AD_-RESULT for devices with a change indicator of " E ", " F ", and " G " is 7 FCOH .

[^18]:    *These pins may be used for the system or peripheral functions or as a standard I/O pin.

[^19]:    *These pins may be used for the system or peripheral functions or as a standard I/O pin.

[^20]:    *Two Byte Instruction - This opcode is placed as the first byte of an instruction to make it a signed operation instead of unsigned.
    ${ }^{* *}$ These instructions exist for compatibility with future devices, and are not tested on the 8XC196KT.

[^21]:    *Two Byte Instruction - This opcode is placed as the first byte of an instruction to make it a signed operation instead of unsigned.

[^22]:    *Not available on Shrink-DIP package
    $\dagger$ Not available on 48-pin device
    $\ddagger$ Port 0.0.1.2.3 not available on 48-pin device

[^23]:    *Buswidth is not bonded out on 48- and 64-pin devices.

[^24]:    *Not available on Shrink-DIP Package

[^25]:    *OTPROM (One Time Programmable Read Only Memory) is the same as EPROM but it comes in an unwindowed package and cannot be erased. It is user programmable.

[^26]:    *Also includes: Relocator/Linker, Object-to-hex Converter,

[^27]:    MCS is a registered trademark of Intel Corporation.
    **IBM PC, XT, AT are registered trademarks of International Business Machines Corporation.

[^28]:    *CHMOS is a patented Intel process.
    **IBM PC, XT, AT and DOS are registered trademarks of International Business Machines Corporation.

[^29]:    *CHMOS is a patented Intel process.
    **EBM PC, XT, AT and DOS are registered trademarks of International Business Machines Corporation.

[^30]:    *For exact dimensions consult the Packaging Handbook (\#240800).

[^31]:    *For exact dimensions consult the Packaging Handbook (\# 240800).

[^32]:    *For exact dimensions consult the Packaging Handbook (\#240800).

[^33]:    *For exact dimensions consult the Packaging Handbook (\# 240800).

