16-Bit Embeddeél Controllers

Benedict Nndwﬂen—\,\b&\«
2 Q -

Order Number: 270646-003

PG

intal’

Intel Corporation is a leading supplier of microcomputer components,

moaules and systems. When Intel invented the microprocessorin 1971, it
created the era of the microcomputer. Today, Intel architectures are considered
world standards. Whether used in embedded applications such as automobiles,
printers and microwave ovens, or as the CPU in personal computers, client
servers or supercomputers, Intel delivers leading-edge technology.

16-BIT
EMBEDDED CONTROLLER
HANDBOOK

1991

About Our Cover:

Thinkers, inventors, and artists throughout history have breathed

life into their ideas by converting them into rough working sketches, models,
and products.: This series of covers shows a few of these creations, along

~ with the applications and products created by Intel customers.

Intel Corporation makes no warranty for the use of its pfoducts and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel products:

287, 376, 386, 387, 486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, ACE960,
ActionMedia, BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX, FaxBACK,
Genius, i, 1, 486, i750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, I2ICE, iLBX, iMDDX,
iMMX, Inboard, Insite, Intel, intgl, Intel386, intglBOS, Intel Certified, Intelevision, intgligent
Identifier, intgligent Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK, iRMX, \
iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS, Megachassis,
MICROMAINFRAME, MULTICHANNEL, MULTIMODULE, MultiSERVER, ONCE,
OpenNET, OTP, Pro750, PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse
Programming, READY LAN, RMX/80, RUPI, Seamless, SLD, SugarCube, SX, ToolTALK,
UPI, VAP, Visual Edge, VLSICEL, and ZapCode, and the combination of ICE, iCS, iRMX,
iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products. .

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation /
Literature Sales
P.O..Box 7641 .
Mt. Prospect, IL 60056-7641

©INTEL CORPORATION 1990 - .) .

intel®

CUSTOMER SUPPORT

INTEL’S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel’s complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor-
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer’s expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel’s customer support is extensive. It can start with assistance during your development
effort to network management. 100 Interale’s and service offices are located worldwide —in the U.S., Canada,
Europe and the Far East. So wherever you're using Intel technology, our professional staff is within close
reach.

HARDWARE SUPPORT SERVICES

Intel’s hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service. .

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor-
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and;
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment). .

NETWORK SERVICE AND SUPPORT

Today’s broad spectrum of powerful networking capabilities are only as good as the customer support provided
by the vendor. Intel offers network services and support structured to meet a wide variety of end-user comput-
ing needs. From a ground up design of your network’s physical and logical design to implementation, installa-
tion and network wide maintenance. From software products to turn-key system solutions; Intel offers the
customer a complete networked solution. With over 10 years of network experience in both the commercial
and Government arena; network products, services and support from Intel provide you the most optimized
network offering in the industry. -

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Siy;stems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your apﬁlication needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa-
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course
categories include: architecture and assembly language, programming and operating systems, BITBUS™ and
LAN applications.

intel®

DATA SHEET DESIGNATIONS

Intel uses various data sheet markings to designate each phase of the document as it
relates to the product. The marking appears in the upper, right-hand corner of the data
sheet. The following is the definition of these markings:

Data Sheet Marking . Description

Product Preview , Contains information on products in the design phase of
' development. Do not finalize a design with this
information. Revised information will be published when

the product becomes available. -

Advanced Information Contains information on products being sampled or in
the initial production phase of development.*

Preliminary Contains preliminary information on new products in
production.*

No Marking Contains information on products in full production.*

*Specifications within these data sheets are subject to change without notice. Verify with your local Intel sales
office that you have the latest data sheet before finalizing a design.

intal

MCS®.96 8X9X
Architectural Overview

MCS®.96 8X9X Hardware
Design Information and
Data Sheets

MCS®.96 Instruction Set

80C196KB User’s Guide
and Data Sheets

80C196KC User’s Guide
and Data Sheets ,

MCS®.96 Development
Support Tools

Memories Data Sheet

Table of Contents

Alphanumericindex et e e s iea st eeseretttateeerane , X
MCS®-96 FAMILY
Chapter 1 : L
MCS-96 8X9X Architectural Overviewoovveienn. e eeiiiaeaaes 1-1
~ Chapter 2 ‘ . ;
8X9X Hardware Design Information................ P e 2-1
MCS®-96 DATA SHEETS
MCS-96 809XBH, 839XBH, 879XBH Advanced 16-Bit Mlcrocontroller with 8- or .
16-BitExternal BuScoiiiii it it it it i e e 2-58
MCS-96 809XBH/839XBH/879XBH EXPressccovvveeevnnnnenns PR .. 2-80
MCS-96 809XJF, 839XJF, 879XJF Advanced 16-Bit Microcontroller with 8- or
16-Bit EXOrNal BUSottt ettt e e e 2-83
MCS-96 809XJF/839XJF/879XJF EXPressvvvvvvrreeeeeeernennnnnnns oo 24102
EV8097BH EvaluationBoard FactSheetcciiiiiiiiin i, 2-107
Chapter 3 - '
MCS-96 InstructionSet ...t e, 3-1
Chapter 4 ,
80C196KB UsersGuidecovviivvennnnnnn. PP 4-1
DATA SHEETS
87C196KB/83C196KB/80C196KB 16-B|t High Performance CHMOS i
MiCroCcONtroller ... o e e e 4-98
87C196KB16 16-Bit High Performance CHMOS Microcontroller 4-126
83C198/80C198, 83C194/80C194 16-Bit CHMOS Microcontroller 4-153
87C198/87C194 16-Bit CHMOS Microcontrollerccoviiivinnnn.. 4-173
BXC196KBEXPreSsoovvvverrnneernnnnnennns e e 4-194
EV80C196KB Evaluation Board Fact Sheet.................... e 4-211
Chapter 5 .
BO0CT196KC USEr'S GUIAE ovtiiit ittt ittt ettt ieeeiineennnaennnn 5-1
DATA SHEETS
8XC196KC 16-Bit High Performance CHMOS Microcontroller 5-104
»8XC196KC 16-Bit Microcontroller Express..........cooiiiiiiiiiiiiiiiinnnn.n. 5-130
EV80C196KC Evaluation Board FactSheet................coiiviiniieinnnn. 5-132
Chapter 6
MCS®-96 DEVELOPMENT SUPPORT TOOLS :
ACETO6TM SO WA . . . ottt it ettt ettt et ettt 61
8096/196 Software Development Packages 6-2
VLSICE-96 In-Circuit Emulatorcoiiiiiiiiii ittt eeeennnns 6-5
Real-Time Transparent 80C196 In-Circuit Emulator e 6-10
ICE-196KB/HX In-Circuit Emulatorc.coiiiiiiiiiiiiiiiiiiinnnn. 6-13
Chapter 7
MEMORIES
87C257 256K (32K x 8) CHMOSEPROM.ttt 7-1

Alphanumeric In‘dex

8096/196 Software Development Packages. S eeeeees P -
B0C196KB USEI'S GUIEo ettt ettt eaeeaaes e 41
B0C196KC USEr'S GUITE . .. oo ottt ittt te it e eenneeeneraneeeneerneeanenanasanes 5-1
83C198/80C198, 83C194/80C194 16-Bit CHMOS Microcontroller 4-153
~ 87C196KB/83C196KB/80C196KB 16-Bit High Performance CHMOS Microcontroller. 4-98
87C196KB16 16-Bit High Performance CHMOS Microcontroller........................ 4-126
87€198/87C194 16-Bit CHMOS Microcontroller T P 4-173
87C257 256K (32K x 8) CHMOS EPROMcciivivnnnnnnennens e e 741
8X9X Hardware Design Information RERPPPRR PP 2-1
BXCTOBKB EXPrESS . .o oo et e e et eeeiiiiei et eeeaneeeeeeeeeamenannnns e ... 44194
8XC196KC 16-Bit High Performance CHMOS Microcontroller....................... .. 5-104
8XC196KC 16-Bit.Microcontroller Expresscooovivinnnn, e e..s.. 54130
ACE196TM SOMWANSo vt vttt ittt nt i nenenearsnens " 6-1
EV8097BH Evaluation Board Fact Sheet.................. e weo. 24107
EVB0C196KB Evaluation Board FactSheetccoviiiiiriniinnnnennennean.. 4211
EV80C196KC Evaluation Board FactSheetcciiiiiiiiiiiiiiiiinnieennnn. 5-132
ICE-196KB/HX In-Circuit Emulatorcviiiiiiiiiii ittt i it ieeeiinnnnanns - 6-13
MCS-96 809XBH/839XBH/879XBH EXPreSs . . vt cvvvvenerenernnrennnennenneennnnsns 2-80
MCS-96 809XBH, 839XBH, 879XBH Advanced 16-Bit Microcontroller with 8- or 16-Bit
EXtOrNAl BUSttt e e et e 2-58
MCS-96 809XJF/B39XJF/879XJF EXPress.vvvvvrviniinienniiiieenvineneens, 2-102
-MCS-96 809XJF, 839XJF, 879XJF Advanced 16-Bit Microcontroller with 8- or 16-Bit
EXtOrNal BUSttt i e e i e e 2-83
MCS-96 8X9X Architectural Overview ereeeretnaeeeeas SN Cerresaaeesenns 1-1
MCS-96 InstructionSet e e, 3-1
Real-Time Transparent 80C196 In-Circuit Emulator...................... U 6-10
VLSIiCE-96 In-CircuitEmulatorcooii... e 6-5

S S
MCS®.96 8X9X 1

- Architectural Overview

[

October 1990

- MCS®-96 8X9X

Architectural Overview

11

Order Number: 270250-005

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

CONTENTS PAGE
1.0CPUOPERATION 1-3
11CPUBUSES ... 1-3
1.2 CPU RegisterFile 1-4
1.3RALUControl 1-4
14RALU 1-4
1.5Internal Timing 1-5
20 MEMORYSPACE 1-6
2.1 RegisterFile 1-6
2.2 Special Function Registers 1-7
2.3 PowerDown U 1-7
2.4 Reserved Memory Spaces 1-9
2.5 Internal ROM and EPROM 1-9
2.6 Internal Executable RAM
(XRAM)—8X9XJF Only 1-10
2.7 Memory Controller 1-10
288SystemBus 1-10
3.0 SOFTWARE OVERVIEW 1-17
3.1 Operand Typesc...ocuvvnnn. 1-17
3.2 Operand Addressing 1-18
3.3 Program Status Word 1-20
3.4 InstructionSet 1-21
3.5 Software Standards and
Conventionsc......coiil 1-25
4.0 INTERRUPT STRUCTURE 1-26
4.1 InterruptControl 1-28
4.2 Interrupt Priorities 1-28
. 4.3 Critical Regions 1-29
4.4 Interrupt Timing 1-30
50TIMERSooiiin. 1-31
SATimer1 ..o 1-31
B2Timer2oooviviniiininin., 1-31
5.3 Timer Interrupts 1-31
5.4 Timer Related Sections 1-32
6.0 HIGH SPEEDINPUTS 1-32
6.1HSIModes 1-33
6.2HSIFIFOcvoiiiinn 1-33
6.3 HSlInterrupts 1-33
6.4HSIStatusll 1-33

CONTENTS PAGE
7.0 HIGH SPEED OUTPUTS T...1-34
7AHSOCAM ..o 1-34
72HSOStatusoooviviint 1-35
7.3 Clearingthe HSO 1-35
7.4 Using Timer 2 with the HSO 1-35
7.5 Software Timers 1-36
8.0 ANALOG INTERFACE 1-36
8.1 Analoglnputs 1-36
8.2 A/D Commands 1-37
83A/DResults 1-37
8.4 Pulse Width Modulation Output .
(D/A) oo 1-38
8.5 PWM Usingthe HSO 1-39
9.0SERIALPORT 1-39
9.1 Serial Port Modes 1-39
9.2 Controlling the Serial Port 1-40
9.3 Determining Baud Rates 1-41
9.4 Multiprocessor Communications .. 1-42
10.01/OPORTS ,.................oeeln. 1-42
101 InputPorts 1-42
10.2 Quasi-Bidirectional Ports 1-43
10.3OutputPorts 1-43
10.4 Ports 3 and 4/AD0-15 1-43

11.0 STATUS AND CONTROL .
REGISTERS 1-44
11.1 1/0 Control Register 0 (I0CO) 1-44
11.2 1/0 Control Register 1 (IOC1) 1-45
11.3 I/0 Status Register 0 (I0S0) 1-45
~ 11.41/0 Status Register 1 (I0S1) 1-45
12.0 WATCHDOG TIMER 1-46
12.1 Software Protection Hints 1-46
12.2 Disabling the Watchdog 1-46
130RESET ..., 1-46
13.1 ResetSignal 1-46
‘13.2ResetStatus 1-47

~ 13.3ResetSyncMode

intef

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

This overview is written about the 8X9XBH, 8X9XJF,
and 8X98 devices. These devices are generically re-
ferred to as the 8X9X. All information in this overview
refers to the 8X9XBH, the 8X9XJF, and the 8X98 un-
less otherwise noted.

The 8X9X can be separated into several sections for the
purpose of describing its operation. There is a 16-bit
CPU, a programmable High Speed I/0 Unit, an analog
to digital converter, a serial port, and a Pulse Width
Modulated (PWM) output for digital to analog conver-
sion. In addition to these functional units, there are
some sections which support overall operation of the
chip such as the clock generator. The CPU and the
programmable I/0 make the 8X9X very different from
any other microcontroller. Let us first examine the
CPU.

1.0 CPU OPERATION

The. major components of the CPU on the 8X9X are

the Register File and the RALU. Communication with
the outside world is done through either the Special
Function Registers (SFRs) or the Memory Controller.
The RALU (Register/Arithmetic Logic Unit) does not
use an accumulator, it operates directly on the 256-byte
register space made up of the Register File and the
SFRs. Efficient I/O operations are possible by directly
controlling the 1/0 through the SFRs. The main bene-
fits of this structure are the ability to quickly change
context, the absence of accumulator bottleneck, and

" fast throughput and I/0 times.

1.1 CPU Buses

A “Control Unit” and two buses connect the Register
File and RALU. Figure 1 shows the CPU with its

POWER FREQUENCY
VREF. ANGND DOWN REFERENCE
[

P) o e o S R N R
[} N L}
H 8K BYTE H
! CLOCK ON-CHIP '
! A—BUS GEN 8 EPROM879XBH | 1
1 A/D e 1
1 | CONVERTER Y R . pp—— T l H
'] v _] !
: s 232 ! | mEMORY L N CONTROL
' tL| e REGISTER | ! - LCONTROLLER[\ /" SIGNALS
N WATCHDOG |1 REGISTER ALU s | TIMER1 1
! _TIMER |} FILE 1 [TIMER2 16 1'PORT 3
; . S Su— T
H y D-BUS vy 16 A 4 ADDR
1 N 4 y -4 DATA
! l L 4 ¥ BUS
: A 4

PULSE BAUD T
H wioth| | SERAL Le—] rate 1 PORT 4
] MOD. GEN. HIGH H
' SPEED '
[]
1 -\/0 1)
1 [}
] 1
1 1
] 1
LE - - D B W) - - --mamemme el

PORT 0 PORT 1 PORT 2 HSI HSO
ALT FUNCTIONS "
, . 270250-1

Figure 1. Block Diagram

1-3

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

major bus connections. The two buses are the “A-Bus”
which is 8-bits wide, and the “D-Bus” which is 16-bits
wide. The D-Bus transfers data only between the
RALU and the Register File or Special Function Regis-
ters (SFRs). The A-Bus is used as the address bus for
the above transfers or as’a multiplexed address/data
bus connecting to the “Memory Controller”. Any ac-
cesses of either the internal ROM or external memory
are done through the Memory Controller.

Within the memory controller is a slave program coun-
ter (Slave PC) which keeps track of the PC in the CPU.
By having most program fetches from memory refer-
enced to the slave PC, the processor saves time as ad-
dresses seldom have to be sent to the memory control-
ler. If the address jumps sequence then the slave PC is
loaded with a new value and processing continues.
Data fetches from memory are also done through the
memory controller, but the slave PC is bypassed for
this operation.

1.2 CPU Register File

The Register File contains 232 bytes of RAM which
can be accessed as bytes, words, or double-words. Since
each of these locations can be used by the RALU, there
are essentially 232 “accumulators”. The first word in

the Register File is reserved for use as the stack pointer
so it can not be used for data when stack manipulations
are taking place. Addresses for accessing the Register
File and- SFRs are temporarily stored in two 8-bit ad-
dress registers by the CPU hardware.

1.3 RALU Control

Instructions to the RALU are taken from the A-Bus
and stored temporarily in the instruction register. The
Control Unit decodes the instructions and generates the
correct sequence of signals to have the RALU perform
the desired function. Figure 1 shows the instruction
register and the control unit. '

N i

1.4 RALU

Most calculations performed by the 8X9X take place in
the RALU. The RALU, shown in Figure 2, contains a
17-bit ALU, the Program Status Word (PSW), the Pro-
gram Counter (PC), a loop counter, and three tempo-
rary registers. All of the registers are 16-bits or
17-bits (16 + sign extension) wide. Some of the regis-
ters have the ability to perform simple operations to off-
load the ALU. ‘

,1&3!1’
4/ b-BUS

1
—»] ProG. counter | [mcrementon |

—Pl UPPER WORD REGISTER/SHIFTER]—D
B

—»h.owen WORD REGISTER/SHIFTER]-»

‘ } senr
A1 A-BUS

e | TEMPORARY REGISTER 8
’ CONSTANTS (0,1,2) ,
,"10 16 ," N

LOOP COUNTER

1 s uppen - , 4

16,
7

8 . LOWER -
4 . .

270250-2

Figure 2. RALU Block Diagram

1-4

intel

MCS©®-96 8X9X ARCHITECTURAL OVERVIEW

A separate incrementor is used for the PC; however, -

jumps must be handled through the ALU. Two of the
temporary registers have their own-shift logic. These
registers are used for the operations which require logi-
cal shifts, including Normalize, Multiply, and Divide.
The “Lower Word” register is used only when double-

word quantities are being shifted, the “Upper Word”

register is used whenever a shift is performed or as a
temporary register for many instructions. Repetitive
shifts are counted by the 5-bit “Loop Counter”.

A temporary register is used to store the second oper-
and of two operand instructions. This includes the mul-
tiplier during multiplications and the divisor during
divisions. To perform subtractions, the output of this
register can be complemented before being placed into
the “B” input of the ALU.

The DELAY shown in Figure 2 is used to convert the
16-bit bus into an 8-bit bus. This is required as all ad-
dresses and instructions are carried on the 8-bit A-Bus.
Several constants, such as 0, 1 and 2 are stored in the
RALU for use in speeding up certain calculations.
These come in“handy when the RALU needs to make a
2’s complement number or perform an increment or
decrement instruction.

1.5 Internal Timing

The 8X9X requires an input clock frequency of be-
tween 6.0 MHz and 12 MHz to function. This frequen-
cy can be applied directly to XTALI1. Alternatively,
since XTAL1 and XTAL2 are inputs and outputs of an
inverter, it is also possible to-use a crystal to generate
the clock. A block diagram of the oscillator section is
shown in Figure 3. Details of the circuit and sugges-
tions for its use can be found in Section 1 of the Hard-
ware Design chapter.

The crystal or external oscillator frequency is divided
by 3 to generate the three internal timing phases as
shown in Figure 4. Each of the internal phases repeat
every 3 oscillator periods: 3 oscillator periods are re-
ferred to as one “state time”, the basic time measure-
ment for 8X9X operations. Most internal operations
are synchronized to either Phase A, B or C, each of
which have a 33% duty cycle. Phase A is represented
externally by CLKOUT, a signal available on the
68-pin device. Phases B and C are not available exter-
nally. The relationships of XTAL1, CLKOUT, and
Phases A, B, and C are shown in Figure 4. It should be
noted that propagation delays have not, been taken into
account in this diagram. Details on these and other tim-
ing relationships can be found in the Hardware Design
chapter.

+3 PHASE
GENERATOR

INTERNAL
CIRCUITRY

XTAL 1 XTAL 2

Ik
o
L
It
R

1L

270250-3

Figure 3. Block Diagram of Oscillator

The RESET line can be used to start the 8X9X at an
exact time to provide for synchronization of test equip-
ment and multiple chip systems. Use of this feature is
fully explained under RESET, Section 13..

PHASE A

tnipipipipipipin

i‘ONE STATE TIME >

(cLockouT)

N

PHASE B

L
1 [

g B

PHASEC | ‘

270250-4

Figure 4. Internal Timings Relative to XTAL 1

it

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

2.0 MEMORY SPACE

The addressable memory space on the 8X9X consists of
64K bytes, most of which is available to the user for
program or data memory. Locations which have special
purposes are 0000H through OOFFH, 0100H through
01FFH (8X9XJF only), and 1FFEH through 2080H.
All other locations can be used for either program or
data storage or for memory mapped peripherals. A
memory map is shown in Figure 5. ‘

2.1 Register File

Locations 00H through OFFH contain the Register File
and Special Function Registers, (SFRs). No code can
be executed from this internal RAM section. If an at-
tempt to execute instructions from locations 000H
through OFFH is made, the instructions will be fetched
from external memory. This section of external memo-
ry is reserved for use by Intel development tools. Exe-
cution of a nonmaskable interrupt (NMI) will force a

) FFFFH -
OFFH 255
POWER=DOWN EXTERN;LI;A:MORY
RAM .
OFOH 240
OEFH 239 6000H
INTERNAL EXTERNAL MEMORY OR 1/0 SFFFH
REGISTER FILE (8X9XBH)
(RAM)
INTERNAL PROGRAM STORAGE
ROM/EPROM OR EXTERNAL
1AH 26 MEMORY (8X9XJF) 4000H
3FFFH
19H 25 INTERNAL PROGRAM
STACK POINTER STACK POINTER STORAGE ROM/EPROM
18H 24
17H PWM_CONTROL 23 EXTERNAL MEMORY
16H | 10S1 oct 22 20804
[.
P s S RESERVED 2072H - 207FH
10co 21
SIGNATURE WORD 2070H - 2071H
14H 20
13H | RESERVE RES D == 2030H - 206FH
D ESERVE 19
3 SECURITY KEY 2020H - 202FH
12H 18
11H | SP_STAT SP_CON 7 bl 201CH = 201FH
| 1
- SELF JUMP OPCODE (27H FEH) 201AH = 201BH
10H | 10 PORT 2 10 PORT 2 16 -
RESERVED 2019H
OFH | 10 PORT 1 10 PORT 1 s
0 PO CHIP CONFIGURATION BYTE 2018H
OEH | 10 PORT 0 BAUD_RATE 14 v
) RESERVED 2012H - 2017H
00H | TIMER2 (HI) 13
_O0CH | TIMER2 (LO) RESERVED 12 INTERRUPT VECTORS
0BH | TIMER1 (HI) 11
) 2000H
0AH | TIMER1 (LO) WATCHDOG 10
PORT 4 1FFFH
09H | INT_PENDING INT_PENDING 9
PORT 3 1FFEH
08H | INT_MASK INT_MASK 8
EXTERNAL MEMORY
07H | SBUF (RX) SBUF (TX) 7 OR 1/0 O1FFH
06H | HSI_STATUS HSO_COMMAND 6
EXTERNAL MEMORY OR 1/0 (8X9XBH)
05H | HSI_TIME (H1) HSO_TIME (HI) 5 INTERNAL EXECUTABLE RAM
9XJF
04H | HSI_TIME (LO) HSO_TIME (LO) 4 (XRAM) (8X9XJF) 0100H
03H | AD_RESULT (HI) HSI_MODE 3 INTERNAL RAM 0OFFH
02H | AD_RESULT (LO) AD_COMMAND 2 REGISTER FILE
STACK POINTER
O1H | RO (HI) RO (HI) 1 SPECIAL FUNCTION REGISTERS
ook | 7o (Lo) R0 (L0) o (WHEN ACCESSED AS DATA MEMORY) 0000H
(WHEN READ) (WHEN WRITTEN)
270250-5

Figure 5. Memory Map

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

call to external location 0000H, therefore, the NMI and
TRAP interrupt are also reserved for Intel development
tools. .

The RALU can operate on any of the 256 internal reg-

2.3 Power Down

. The upper 16 RAM locations (OFOH through OFFH)

ister locations. Locations 00H through 17H are ysed to ~

access the SFRs. Locations 18H and 19H contain the
stack pointer. These are not SFRs, and may be used as
standard RAM if stack operations are not being per-
formed. The stack pointer must be initialized by the
user program and can point anywhere in the 64K mem-
ory space. The stack builds down. There are no restric-
tions on the use of the remaining 230 locations except
that code cannot be executed from them.

- 2.2 Special Function Registers

All of the I/0 on the 8X9X is controlled through the
SFRs. Many of these registers serve two functions; one
if they are read from, the other if they are written to.
Figure 5 shows the locations and names of these regis-
ters. A summary of the capabilities of each of these
registers is shown in Figure 6, with complete descrip-
tions reserved for later sections;)

There are several restrictions on using special function
registers.

Neither the source or destination addresses of the Mul-
tiply and Divide instructions can be a writable special
function register. ‘

These registers may not be used as base or index regis-
ters for indirect or indexed instructions.

.These registers can only be accessed as bytes unless
otherwise specified in Figure 6. Note that some of these
registers can only be accessed as words, and not as
bytes.

Within the SFR space are several registers labeled
“RESERVED”. These registers are reserved for future
expansion and test purposes. Operations should not be
performed with these registers as reads from them and
writes to them may produce unexpected results. For
example, in some versions of the 8X9X writing to loca-
tion OCH will set both timers to OFFFXH. This may
not be the case in future products, so it should not be
used as a feature.

1-7

receive their power from the Vpp pin. If it is desired to
keep the memory in these locations alive during a pow-
er down situation, one need only keep voltage on the
Vpp pin. The current required to keep the RAM alive
is approximately 1 milliamp (refer to the data sheet for
the exact specification). Both Vcc and Vpp must have
power applied for normal operation. If Vpp is not ap-
plied the power down RAM will not function properly,
even if Vg is applied. '

To place the 8X9X into a power down mode, the
RESET pin is pulled low. Two state times later the
device will be in reset. This is necessary to prevent the
device from writing into RAM as the power goes down.
The power may now be removed from the Vcc pin, the
Vpp pin must remain within specifications. The 8X9X
can remain in this state for any amount of time and the
16 RAM bytes will retain their values.

To bring the 8X9X out of power down, RESET is held
low while Vcc is applied. Two state times after the
oscillator has stabilized, the RESET pin can be pulled
high. The 8X9X will begin to execute code at location
02080H 10 state times after RESET is pulled high. Fig-
ure 7 shows a timing diagram of the power down se-
quence. To ensure that the 2 state time minimum reset
time (synchronous with CLKOUT) is met, it is recom-
mended that 10 XTAL1 cycles be used. Suggestions for
actual hardware connections are given in the Hardware
Design Chapter. Reset is discussed in Section 13.

To determine if a reset is a return from power down or
a complete cold start a “‘key” can be written into pow-
er-down RAM while the device is running. This key
can be checked on reset to determine which type of
reset has occurred. In this way the validity of the pow-
er-down RAM can be verified. The length of this key
determines the probability that this procedure will
work, however, there is always a statistical chance that
the RAM will power up with a replica of the key.

Under most circumstances, the power-fail indicator
which is used to initiate a power-down condition must
come from the unfiltered, unregulated section of the
power supply. The power supply must have sufficient
storage capacity to operate the 8X9X until it has com-
pleted its reset operation.

|nte[‘ - MCS®-96 8X9X ARCHITECTURAL OVERVIEW
‘ i
Register - Description Section
RO Zero Register — Always reads as a zero, useful for a base when 3
indexing and as a constant for calculations and compares.
AD_RESULT A/D Result Hi/Low — Low and high order Results of the A/D 8
‘ converter (byte read only)
AD_COMMAND A/D Command Register — Controls the A/ D 8
HSI_MODE HSI Mode Register — Sets the mode of the High Speed Input unit. 6
HSI_TIME HSI Time Hi/Lo — Contains the time at which the High Speed 6 .
Input unit was triggered. (word read only) ‘ ‘
" HSO_TIME HSO Time Hi/Lo — Sets the time or count for the High Speed 7
Output to execute the command in the Command Register. (word
. write only)
HSO_.COMMAND HSO Command Register — Determines what will happen at the 7
time loaded into the HSO Time registers.
HSI__STATUS HSI Status Registers — Indicates which HSI pins were detected at 6
the time in the HSI Time registers and the current state of the pins.
SBUF (TX) Transmit buffer for the serial port, holds contents to be outputted. 9
SBUF (RX) Receive buffer for the serial port, holds the byte just received by 9
. the serial port.)
INT_MASK Interrupt Mask Register — Enables or disables the individual 4
interrupts.
INT__PENDING Interrupt Pending Register — Indicates that an interrupt signal has 4
occurred on one of the sources and has not been serviced.
WATCHDOG Watchdog Timer Register — Written to periodically to hold off 12
‘ automatic reset every 64K state times.
TIMER1 Timer 1 Hi/Lo — Timer 1 high and low bytes. (word read only) 5
TIMER2 Timer 2 Hi/Lo — Timer 2 high and low bytes. (word read only) 5
IOPORTO Port 0 Register — Levels on pins of port 0. 10
BAUD_RATE Register which determines the baud rate, this register is loaded 9
sequentially. ‘
IOPORT1 Port 1 Register — Used to read or write to Port 1. 10
IOPORT2 Port 2 Register — Used to read or write to Port 2. 10
SP__STAT Serial Port Status — Indicates the status of the serial port. 9
SP_CON Serial Port Control — Used to set the mode of the serial port. 9
10S0 1/0 Status Register 0 — Contains information on the HSO status 11
10S1 1/0 Status Register 1 — Contains information on the status of the 1
timers and of the HSI. L
10COo I/O Control Register 0 — Controls alternate functions of HSI pins, 11
‘ Timer 2 reset sources and Timer 2 clock sources.
10C1 170 Control Register 1 — Controls alternate functions of Port 2 1
‘ pins, timer interrupts and HSI interrupts.
PWM__CONTROL Pulse Width Modulation Control Register — Sets the duration of 8

the PWM pulse.

Figure 6. SFR Summary '

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

vee POWER DOWN
veo 5
. =5x8V
RESET
e - —
. g
XTAL1 nARnRRnan
Lll uuuduuuuuu
10 XTAL1 CYCLES CLOCK NOT NECESSARY 10 XTAL1 CYCLES
. AFTER CLOCK IS STABLE
. 270250-6

Figure 7. Power Down Timing

2.4 Reserved Memory Spaces

A listing of locations with special significance is shown
in Figure 8. The locations marked ‘“Reserved” are re-
served by Intel for use in testing or future products. All
reserved locations except 2019H must be filled with
Hex value OFFH to insure compatibility with future
devices. Location 2019H must be filled with 20H.

Locations 1FFEH and 1FFFH are reserved for Ports 3
and 4 respectively. This is to allow easy reconstruction
of these ports if external memory is used in the system.
An example of reconstructing the I/0 ports is given in
section 7 of the Hardware Design chapter. If ports 3
and 4 are not going to be reconstructed, these locations
can be treated as any other external memory location.

The 9 interrupt vectors are stored in locations 2000H
through 2011H. The 9th vector is used by Intel devel-
opment systems, as explained in Section 4.

Locations 2012H through 2017H are reserved for fu-
ture use. Location 2018H is the Chip Configuration
byte which will be discussed in the next section. The
Jump-To-Self opcodes at locations 201AH and 201BH
are provided for EPROM programming as detailed in
the Hardware Design chapter. Locations 2020H
through 202FH are the security key used with the
ROM Lock feature which will be discussed in the next
section. All unspecified addresses in locations 2000H
through 207FH, including those marked Reserved,
should be considered reserved for use by Intel.

Resetting the 8X9X causes instructions to be fetched
starting from location 2080H. This location was chosen
to allow a system to have up to 8K of RAM continuous
with the register file. Further information on reset can
be found in Section 13.

0000H- | 0017H | Register Mapped I/0 (SFRs)
0018H- | 0019H | Stack Pointer

1FFEH- | 1FFFH | Ports3and 4 -

2000H- | 2011H | Interrupt Vectors

2012H--| 2017H | Reserved)

2018H ~ | Chip Configuration Byte
2019H Reserved

201AH- | 201BH | “Jump to Self” Opcode (27H FEH)
201CH- | 201FH | Reserved

2020H- | 202FH | Security Key

2030H- | 207FH | Reserved

2080H Reset Location

Figure 8. Registers with Special Significance

2.5 Internal ROM and EPROM

When a ROM device is ordered, or an EPROM device
is programmed, the internal memory locations 2080H
through 3FFFH on the 8X9XBH and 8X98 and loca-
tions 2080H through SFFFH on the 8X9XJF are user
specified, as are the interrupt vectors, Chip Configura-

. tion Register and Security Key in locations 2000H

1-9

through 202FH.

Instruction and data fetches from the internal ROM or
EPROM occur only if the device has a ROM or
EPROM, EA is tied high, and the address is between
2000H and 3FFFH on the 8X9XBH and 8X98 and
between 2000H and 5FFFH on the 8X9XJF. At all
other times data is accessed from either the internal
RAM space or external memory and instructions are
fetched from external memory. The EA pin is latched
on RESET rising. Information on programming
EPROMSs can be found in Section 10 of the Hardware
Design chapter.

Do not execute code out of the last three locations of
internal ROM/EPROM.

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

2.6 Internal Executable RAM
(XRAM)—8X9XJF only

Locations 0100H through 01FFH (8X9XJF only) con-
tain the internal executable RAM (XRAM) space. In-
struction fetches will be performed in this region if the
program counter points to the addresses 0100H
through O01FFH. Data accesses can also be performed
from this region.

The XRAM is accessed and executed from as if it were
external RAM that is contained on chip. No external
bus signals will be generated when accessing the
XRAM.

The XRAM is not part of the Register File. 8-bit direct
addressing can not be used on this address space.

2.7 Memory Controller

The RALU talks to the memory (except for the loca-
tions in the register file and SFR space) through the
memory controller which is connected to the RALU by
the A-Bus and several control lines. Since the A-Bus is
eight bits wide, the memory controller uses a Slave Pro-
gram Counter to avoid having to always get the instruc-
tion location from the RALU. This slave PC is incre-
mented after each fetch. When a jump or call occurs,
the slave PC must be loaded from the A-Bus before
instruction fetches can continue.

In addition to holding a slave PC, the memory control-
ler contains a 4 byte queue to help speed execution.
This queue is transparent to the RALU and to the user,
unless wait states are forced during external bus cycles.’
The instruction execution times shown in Section 14.8
show the normal execution times with no wait states
added and the 16-bit bus selected. Reloading the slave
PC and fetching the first byte of the new instruction
stream takes 4 state times. This is reflected in the jump
taken/not-taken times shown in the table.

- 2.8 System Bus

There are several operating modes on the 8X9X. The
standard bus mode uses a 16-bit multiplexed address/
data bus. Other bus modes include an 8-bit mode and a
mode in which the bus size can dynamically be
switched between 8-bits and 16-bits. In addition, there

* are several options available on the type of control sig-

nals used by the bus

In the standard mode, external memory is addressed
through lines ADO through AD15 which form a 16-bit
multiplexed (address/data) data bus. These lines share
pins with I/0 Ports 3 and 4. The falling edge of the
Address Latch Enable (ALE) line is used to provide a
clock to a transparent latch (74LS373) in order to de-

PHASE A __/-_L /—\ [\ [

(cLKouT)

PHASE B

U W !

msec T\ [\ [\ [\

ALE [\

READY NNNYvALe X777/ NN\

~+=~ DATAIN

ADDRESSDATA ————{ADDRESSY DATA OUT

> —

BHE, INST X

VALID X

270250-7

Figure 9. External Memory Timings

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

CLKOUT _\ / \ / \ / w\ / \ /

ALE

T\

A ONE WAIT STATE CYCLE

READY

RD or WR \

“ — |

NORMAL CYCLE

270250-42

Figure 9A.

multiplex the bus. A typical circuit and the required
timings are shown in Section 7 of the Hardware Design
chapter. Since the 8X9X’s external memory can be ad-
dressed as either bytes or words, the decoding is con-
trolled with two lines, Bus High Enable (BHE) and
Address/Data Line 0 (ADO).

To avoid confusion during the explanation of the mem-
ory system it is reasonable to give names to the demulti-
plexed address/data signals. The address signals will be
called MAO through MA15 (Memory Address), and
the data signals will be called MDO through MD15
(Memory Data).

When BHE is active (low), the memory connected to
the high byte of the data bus should be selected. When
MAQO is low the memory connected to the low byte of
the data bus should be selected. In this way accesses to
a 16-bit wide memory can be to the low (even) byte
only (MA0O=0, BHE=1), to the high (odd) byte only
(MAO=1, BHE=0), or to both bytes (MA0=0,
BHE=0). When a memory block is being used only for
reads, BHE and MAO need not be decoded.

TIMINGS

Figure 9 shows the idealized waveforms related to the
following description of external memory manipula-
tions. For exact timing specifications please refer to the
latest data sheet. When an external memory fetch be-
gins, the address latch enable (ALE) line rises, the ad-
dress is put on ADO-AD15 and BHE is set to the re-
quired state. ALE then falls, the address is taken off the

\

pins, and the RD (Read) signal goes low. When RD
falls, external memory should present its data to the
8X9X.

READ

The data from the external memory must be on the bus
and stable for a minimum of the specified set-up time
before the rising edge of RD. The rising edge of RD
latches the information into the 8X9X. If the read is for
data, the INST pin will be low when the address is
valid, if it is for an instruction the INST pin will be
high during this time. The 48-lead device does not have
the INST pin. The INST pin will be low for thie Chip
Configuration Byte and Interrupt Vector fetches.

WRITE

Writing to external memory requires timings that are
similar to those required when reading from it. The
main difference is that the write (WR) signal is used
instead of the RD signal. The timings are the same until
the falling edge of the WR line. At this point the 8X9X
removes the address and places the data on the bus.
When the WR line goes high the data should be latched
to the external memory. In systems which can write to
byte locations, the ADO and BHE lines must be used to
decode WR into WRite to Low byte (WRL) and WRite
to High byte (WRH) signals. INST is always low dur-
ing a write, as instructions cannot be written. The exact

- timing specifications for memory accesses can be found

in the data sheet.

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW C

READY

A ready line is available on the 8X9X to extend the
width of the RD and WR pulses in order to allow ac-
cess of slow memories or for DMA purposes. If the
READY line is low by the specified time after ALE
falls, the 8X9X will hold the bus lines to their values at
the falling edge of CLKOUT. When the READY line
rises the bus cycle will continue with the next falling
edge of CLKOUT. (See Figure 9A.)

Since the bus is synchronized to CLKOUT, it can be
held only for an integral number of state times. If more
than TYLYH nanoseconds are added the processor will
act unpredictably.

There are several set-up and hold times associated with
the READY signal. If these timings are not met, the
device may not respond with the proper number of wait
states. \ '

For falling edges of READY, sampling is done inter-

nally on the falling edge of Phase A. Since Phase A .

generates CLKOUT, (after some propagation delay)
the sample will be taken prior to CLKOUT falling. The
timing specification for this is given as TLLYV, the
time between when ALE falls and READY must be
valid. If READY changes between TLLYV max and
the falling édge of CLKOUT (TLLYH MIN on 48-lead
devices) it would be possible to have the READY sig-
nal transitioning as it is being sampled.

This situation could cause a metastable condition
which could make the device operate unpredictably.

For the rising edge of READY, sampling is done inter-
nally on the rising edge of Phase A. The rising edge
logic is fully synchronized, so it is not possible to cause
a metastable condition once the device is in a valid not-
ready condition. To cause one wait state to occur the
rising edge of READY must occur before TLLYH
MAX after ALE falls. If the signal is brought up after
this time two wait states may occur. If two wait states
are desired, READY should be brought high within the
TLLYH specification + 3 Tosc. Additional wait states
can be caused by adding additional state times to the
READY low time. The maximum amount of time that
a device may be held not-ready is specified as TYLYH.

The 8X9X has the ability to internally limit the number
of wait states to 1, 2, or 3 as determined by the value in
the Chip Configuration Register, (CCR). Using the
CCR for ready timing is discussed at, the end of this
section. If a ready limit is set, the TLLYH MAX speci-
fication is not used.

OPERATING MODES

The 8X9X supports a variety of options to simplify
memory systems, interfacing requirements and ready
control. Bus flexibility is provided by allowing selection
of bus control signal definitions and runtime selection
of the external bus width. In addition, several ready
control modes are available to simplify the external
hardware requirements for accessing slow devices. The
Chip Configuration Register (CCR) is used to store the
operating mode information.

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

CHIP CONFIGURATION REGISTER (CCR)

Configuration information is stored in the Chip Config-
uration Register (CCR). Four of the bits in the register
specify the bus control mode and ready control mode.
Two bits also govern the level of ROM/EPROM pro-
tection and one bit is NANDed with the BUSWIDTH
pin every bus cycle to determine the bus size. The CCR
bit map is shown in Figure 10. The functions associated
with each bit are described in this section.

|7 I 6 l 5 | 4 | 3 | 2| 1 |O ICHIP CONFIGURATION REGISTER

L RESERVED (Set to 1 for
compatibility with future
parts)

BUS WIDTH SELECT
(16 = BIT BUS /8= BIT BUS)

WRITE STROBE MODE SELECT
(WR AND BHE / WRL AND WRH)

ADDRESS_VALID STROBE SELECT
(ALE / ADV)

(IRCO)]

]

INTERNAL READY
CONTROL MODE

b (IRC1)
(Loco)
(Loct)

PROGRAM LOCK
MODE

270250-8

Figure 10. Chip Configuration Register

The CCR is loaded on reset with the Chip Configura-
tion Byte, located at address 2018H. The CCR register
is.a non-memory mapped location that can only be
written to during the reset sequence; once it is loaded it
cannot be changed until the next reset occurs. The
8X9X will correctly read this location in every bus
mode.

If the EA pin is set to a logical 0, the access to 2018H
comes from external memory. If EA is a logical 1, the
access comes from internal ROM/EPROM. If EA is
+12.75V, the CCR is loaded with a byte from a sepa-
rate non-memory-mapped location called PCCB (Pro-
gramming CCB). The Programming mode is described
in Section 10 of the Hardware Design chapter.

BUS WIDTH

The 8X9XBﬁ and 8X9XJF external bus width can be
run-time configured to operate as a standard 16-bit
multiplexed address/data bus, or as an 8051 style 16-bit

address/8-bit data bus. The 8X98 external bus must be
configured as a 16-bit address/8-bit data bus.

“During 16-bit bus cycles, Ports 3 and 4 contain the

address multiplexed with data using ALE to latch the
address. In 8-bit bus cycles, Port 3 is multiplexed ad-
dress/data while Port 4 is address bits 8 through 15.
The address bits on Port 4 are valid throughout an 8-bit
bus cycle. Figure 11 shows the two options.

The bus width can be changed each bus cycle on the
8X9XBH and the 8X9XJF and is controlled using bit 1
of the CCR with the BUSWIDTH pin. If either CCR.1
or BUSWIDTH is a 0, external accesses will be over a
16-bit address/8-bit data bus. If both CCR.1 and BUS-
WIDTH are s, external accesses will be over a 16-bit
address/16-bit data bus. Internal accesses are always
16-bits wide. The BUSWIDTH pin is not available on
the 8X98. CCR.1 must be a 0 on the 8X98.

The bus width can be changed every external bus cycle
if a 1 was loaded into CCR bit 1 at reset. If this is the
case, changing the value of the BUSWIDTH pin at run-
time will dynamically select the bus width. For exam-
ple, the user could feed the INST line into the BUS-
WIDTH pin, thus causing instruction accesses to be
word wide from EPROMs while data accesses are byte
wide to and from RAMs. A second example would be
to place an inverted version of Address bit 15 on the
BUSWIDTH pin. This would make half of external
memory word wide, while half is byte wide.

Since BUSWIDTH is sampled after address decoding
has had time to occur, even more complex memory
maps could be constructed. See the timing specifica-
tions for an exact description of BUSWIDTH timings.
The bus width will be determined by bit 1 of the CCR
alone on 48-pin devices since they do not have a BUS-
WIDTH pin. :

When using an 8-bit bus, some performance degrada-
tion is to be expected. On the 8X9X , instruction execu-

~ tion times with an 8-bit bus will slow down if any of

three conditions occur. First, word writes to external
memory will cause the executing instruction to take
two extra state times to complete. Second, word reads
from external memory will cause a one state time exten-
sion of instruction execution time. Finally, if the pre-
fetch queue is empty when an instruction fetch is re-
quested, instruction execution is lengthened by one
state time for each byte that must be externally ac-:
quired (worst case is the number of bytes in the instruc-
tion minus one.)

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

BUS CONTROL) | BUS CONTROL >
8X9X 8X9X
8-BIT
PORT 4 LATCHED
ADDRESS HIGH
16-BIT
PORT 4 MULTIPLEXED
PORT 3 ADDRESS /DATA
8-BIT
PORT 3 MULTIPLEXED
ADDRESS LOW/DATA /
. 270250-9 270250-10
16-Bit Bus 8-Bit Bus
Figure 11, Bus Width Options
BUS CONTROL - Standard Bus Control

Using the CCR, the 8X9X can be made to provide bus
control signals of several types. Three control lines have

dual functions designed to reduce external hardware.

Bits 2 and 3 of the CCR specify the functions per-
formed by these control lines. Figures 1215 show the
signals which can be modified by changing bits in the
CCR, all other lines will operate as shown in Figure 9.

If CCR bits 2 and 3 are 1s, then the standard 8X9X
control signals WR, BHE and ALE are provided (Fig-
ure 12). WR will come out for every write. BHE will be
valid throughout the bus cycle and can be combined
with WR and address line 0 to form WRL and WRH.
ALE will rise as the address starts to come out, and will
fall to provide the signal to externally latch the address.

ALE I | ' l |
WR
BHE © vAUD
ADD =15 = ADDR DATA OUT
. '270250-11
16-Bit Bus Cycle

«M_ N

WR

ADQ =7 smmm==gADDR LOW| DATA OUT

AD8=-15

ADDRESS HIGH

270250-12

8-Bit Bus Cycle

Figure 12. Standard Bus Control

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

Write Strobe Mode

The Write Strobe Mode eliminates the necessity to ex-

ternally decode for odd or even byte writes. If CCR bit

2 is a 0, and the bus is in a 16-bit cycle, WRL and

WRH signals are provided in place of WR and BHE

(Figure 13). WRL will go low for all byte writes to an

even address and all word writes. WRH will go low for
" all byte writes to an odd address and all word writes.

Write Strobe Mode is particularly well suited to memo-
ry systems latching data on the falling edge of WRITE.

WRL is provided for all 8-bit bus write cycles.

Address Valid Strobe Mode

If CCR bit 3 is a 0, then an Address Valid strobe is
provided in the place of ALE (Figure 14). When the
address valid mode is selected, ADV will go low after
an external address is set up. It will stay low until the
end of the bus cycle, where it will go inactive high. This
can be used by ROM devices to provide a chip select for a
single external RAM device in a minimum chip count
system.

Address Valid with Write Strobe

If both CCR bits 2 and 3 are Os, both the Address Valid
strobe and the Write Strobes will be provided for bus
control. Figure 15 shows these signals.

ALE I | | | ALE I I I I
WRL VALID WRL
WRH VALID ADO =7 ===JADDR LOW| DATA OUT
ADO =15 === ADDR DATA OUT e AD8 =15 ADDRESS HIGH
270250-13 270250-14
16-Bit Bus Cycle 8-Bit Bus Cycle’
A
Figure 13. Write Strobe Mode
ADV ADV :
WR T WR ’
BHE VALID ADO=7 == ADDR LOW| DATA OUT e
ADO =15 =i ADDR DATA OUT — AD8 = 15 wmmmmed ADDRESS OUT HIGH e
27025015 270250-16
16-Bit Bus Cycle 8-Bit Bus Cycle

Figure 14. Address Valid Strobe Mode

1-15

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

ADV
WRL VALID
WRH VALID
ADO =15 ADDR DATA OUT |
270250-17
16-Bit Bus Cycle

ADV
. ————— p——
ADd -7 ADDR LOW DATA OUT
AD8 =15 ADDRESS HIGH fr—
270250-18

8-Bit Bus Cycle

Figure 15. Write Strobe with Address Valid Strobe

'READY CONTROL

To simplify ready control, four modes of internal ready
control logic have been provided. The modes are cho-
sen by properly configuring bits 4 and 5 of the CCR.

The internal ready control logic can be used to limit the
number of wait states that slow devices can insert into
the bus cycle. When the READY pin is pulled low,
wait states will be inserted into the bus cycle until the
READY pin goes high, or the number of wait states
equals the number specified by CCR bits 4 and 5,
whichever comes first. Table 1 shows the number of
wait states that can be selected. Internal Ready control
can be disabled by loading 11 into bits 4 and 5 of the
CCR.

Table 1. Internal Ready Control

IRC1 IRCO Description
0 0 Limit to 1 Wait State
0 1 Limit to 2 Wait States
1 0 Limit to 3 Wait States
1 1 Disable Internal Ready Control

‘This feature provides for simple ready control. For ex-
ample, every slow memory chip select line could be
ORed together and be connected to the READY pin
with CCR bits 4 and 5 programmed to give the desired
number of wait states to the slow devices.

"ROM/EPROM LOCK

Four modes of program memory lock are available on
the 8X9X devices. CCR bits 6 and 7 (LOCO, LOC1)

select whether.internal- program memory can be read -

(or written in EPROM devices) by a program

executing from external memory. The modes are shown
in Table 2. Internal ROM/EPROM addresses 2020H
through 3FFFH on the 8X9XBH and the 8X98 and
addresses 2020H through 5FFFH on the 8X9XJF are
protected from reads. 2000H through 3FFFH on the
8X9XBH and the 8X98 and 2000H through SFFFH on
the 8X9XJF are protected from writes, as set by the
CCR.

Table 2. Program Lock Modes

LOC1 - LOCO Protection
0 0 Read and Write Protected
0 1 Read Protected
1 0 Write Protected
1 1 No Protection

Only code executing from internal memory can read
protected internal memory, while a write protected
memory can not be written to, even from internal exe-
cution. As a result of 8X9X prefetching of instructions,
however, accesses to protected memory are not allowed
for instructions located above 3FFAH on the X9XBH
and the 8X98 and above SFFAH on the 8X9XJF. This
is because the lock protection mechanism is gated off of
the Memory Controller’s slave program counter and
not the CPU program counter. If the bus controller
receives a request to perform a read of protected memo-
ry, the read sequence occurs with .indeterminate data
being returned to the CPU. Note that the interrupt vec-
tors and the CCR are not protected.

To provide verification and testing when the program
lock feature is enabled, the 8X9X verifies the security
key before programming or test modes are allowed to
read from protected memory. Before protected memory
can be read, the chip reads external memory locations
4020H through 402FH and compares the values

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

found to the internal security key located from 2020H
through 202FH. Only when the values exactly match
will accesses to protected memory be allowed. The de-
tails of ROM/EPROM accessing are discussed in Sec-
tion 10 of the Hardware Design chapter.

3.0 SOFTWARE OVERVIEW

This section provides information on writing programs
to execute in the 8X9X. Additional information can be
found in the following documents:

MCS®-§6 MACRO ASSEMBLER USER’S GUIDE
Order Number 186 ASM 96 (Intel Systems)
Order Number D86 ASM 96NL (DOS Systems)

C-96 USER’S GUIDE
Order Number D86 C96NL (DOS Systems)

PL/M-96 USER’S GUIDE
Order Number 186 PLM 96 (Intel Systems)
Order Number D86 PLM 96NL (DOS Systems)

‘ Throughout this section, short sections of code are used
to illustrate the operation of the device. For these sec-
tions it has been assumed that a set of temporary regis-
ters have been predeclared. The names of these registers
have been chosen as follows:

AX, BX, CX, and DX are 16-bit registers.

AL is the low byte of AX, AH is the high byte.
~ BL is the low byte of BX

CL is the low byte of CX

DL is the low byte of DX

These are the same as the names for the general data
registers used in the 8086 (80186). It is important to
note, however, that in the 8X9X, these are not dedicat-
ed registers but merely the symbolic names assigned by

the programmer to an eight byte region within the on-

board register file.

3.1 Operand Types

The MCS®-96 architecture provides support for a vari-
ety of data types which are likely to be useful in a con-
trol application. In the discussion of these operand
types that follows, the names adopted by the PLM-96
programming language will be used where appropriate.
To avoid confusion, the name of an operand type will
be capitalized. A “BYTE” is an unsigned eight bit vari-
able; a “byte” is an eight bit unit of data of any type.

BYTES

BYTES are unsigned 8-bit variables which can take on
the values between 0 and 255. Arithmetic and relational
operators can be applied to BYTE operands but the

result must be interpreted in modulo 256 arithmetic.
Logical operations on BYTES are applied bitwise. Bits
within BYTES are labeled from O to 7, with O being the
least significant bit. There are no alignment restrictions
for BYTES, so they may be placed anywhere in the
MCS-96 address space.

WORDS

WORDS are unsigned 16-bit variables which can take
on the values between O and 65535. Arithmetic and
relational operators can be applied to WORD operands
but the result must be interpreted modulo 65536. Logi-
cal operations on WORDS are applied bitwise. Bits
within words are labeled from 0 to 15 with O being the
least significant bit. WORDS must be aligned at even
byte boundaries in the MCS-96 address space. The least
significant byte of the WORD is in the even byte ad-
dress and the most significant byte is in the next higher
(odd) address. The address of a word is the address of
its least significant byte. Word operations to odd ad-
dresses are not guaranteed to operate in a consistent
manner. ‘

SHORT-INTEGERS

SHORT-INTEGERS are 8-bit signed variables which
can take on the values between —128 and +127.
Arithmetic operations which generate results outside of
the range of a SHORT-INTEGER will set the overflow
indicators in the program status word. The actual nu-
meric result returned will be the same as the equivalent
operation on BYTE variables. There are no alignment
restrictions on SHORT-INTEGERS so they may be
placed anywhere in the MCS-96 address space.

'

INTEGERS

INTEGERS are 16-bit signed variables which can take
on the values between — 32,768 and 32,767. Arithmetic
operations which generate results outside of the range
of an INTEGER will set the overflow indicators in the
program status word. The actual numeric result re-
turned will be the same as the equivalent operation on
WORD variables. INTEGERS conform to the same
alignment and addressing rules as do WORDS.

BITS:

BITS are single-bit operands which can take on the
Boolean values of true and false. In addition to the nor-
mal support for bits as components of BYTE and
WORD operands, the 8X9X provides for the direct
testing of any bit in the internal register file. The MCS-
96 architecture requires that bits be addressed as com-
ponents of BYTES or WORDS, it does not support the
direct addressing of bits that can occur in the MCS-51
architecture.

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

DOUBLE-WORDS .

DOUBLE-WORDS are unsigned 32-bit variables
which can take on the values. between O and
4,294,967,295. The MCS-96 architecture provides di-
rect support for this operand type only for shifts and as
the dividend in a 32 by 16 divide and the product of a
16 by 16 multiply. For these operations a DOUBLE-

" WORD variable must reside in the on-board register
file of the 8096 and be aligned at an address which is
evenly divisible by 4. A DOUBLE-WORD operand is
addressed by the address of its least significant byte.
DOUBLE-WORD operations which are not directly
supported can be easily implemented with two WORD
operations. For consistency with Intel provided soft-
ware the user should adopt the conventions for address-
ing DOUBLE-WORD operands which are discussed in
Section 3.5.

3.2 Operand Addressing

Operands are accessed within the address space of the
8X9X with one of six basic addressing modes. Some of
the details of how these addressing modes work are
hidden by the assembly language. If the programmer is
to take full advantage of the architecture, it is impor-
tant that these details be understood. This section will
describe the addressing modes as they are handled by
the hardware. At the end of this section the addressing

REGISTER-DIRECT REFERENCES

The register-direct mode is used to directly access a
register from the 256 byte on-board register file. The
register is selected by an 8-bit field within the instruc-
tion and register address and must conform to the

LONG-INTEGERS
LONG-INTEGERS are 32-b1t s1gned variables whlch

‘can take on the values between —2,147,483,648 and

- the onboard register file of the 8X9X and be aligned at -

2,147,483,647. The MCS-96 architecture provides di-
rect support for this data type only for shifts and as the
dividend in-a 32 by 16 divide and the product of a 16 by
16 multiply.

LONG-INTEGERS can also be normalized. For these
operations a LONG-INTEGER variable must reside in

an address which is evenly divisible by 4. A LONG-IN-
TEGER is addressed by the address of its least signifi-
cant byte.

LONG-INTEGER operations which are not directly
supported can be easily implemented with two INTE-
GER operations. For consistency with Intel provided
software, the user should adopt the conventions for ad-
dressing LONG operands which are discussed in Sec-
tion 3.5.

modes will be described as they are seen through the
assembly language. The six basic address modes which
will be described are termed register-direct, indirect, in-
direct with auto-increment, immediate, short-indexed,
and long-indexed. Several other useful addressing oper-
ations can be achieved by combining these basic ad-
dressing modes with specific registers such as the
ZERO register or the stack pointer.

alignment rules for the operand type. Depending on the

instruction, up to three registers can take part in the
calculation.

Examples .
ADD AX,BX,CX ;s AX:=BX+CX
MUL AX,BX 3 AX 3=AX*BX
INCB CL s CL:=CL+1

INDIRECT REFERENCES

The indirect mode is used to access an operand by plac-
ing its address in a WORD variable in the register file.
The calculated address must conform to the alignment
rules for the operand type. Note that the indirect ad-
dress can refer to an operand anywhere within the ad-

dress space of the 8X9X, including the register file. The

register which contains the indirect address is selected °

by an eight bit field within the instruction. An instruc-
tion can contain only one indirect reference and the
rémaining operands of the instruction (if any) must be
register-direct references.

Examples | .
/ ‘LD AX, [AX] H
ADDB AL,BL, [CX]
POP [AX] ;

AX :=MEM_WORD (AX)
AL :=BL+MEM_BYTE (CX)
MEM_WORD (AX) :=MEM_WORD (SP) ; SP:=SP+2

1-18

'

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

INDIRECT WITH AUTO-INCREMENT REFERENCES

This addressing mode is the same as the indirect mode
except that the WORD variable which contains the in-
direct address is incremented after it is used to address
the operand. If the instruction operates on BYTES or

SHORT-INTEGERS the indirect address variable will
be incremented by one, if the instruction operates on
WORDS or INTEGERS the indirect address variable
will be incremented by two.

Examples

PUSH [AX]+

LD AX, [BX]+
ADDB AL, BL, [CX]+

';s AX:=MEM_WORD (BX) ; BX:=BX+2
s AL :=BL+MEM_BYTE (CX) ; CX:=CX+1l
; SP:=SP-2;

; MEM_WORD (SP) :=MEM_WORD (AX)
s AX:=AX+2 1

IMMEDIATE REFERENCES

This addressing mode allows an operand to.be taken
directly from a field in the instruction. For operations
on BYTE or SHORT-INTEGER operands this field
is eight bits wide, for operations on WORD or

INTEGER operands the field is 16 bits wide. An in-
struction can contain only one immediate reference and
the remaining operand(s) must be register-direct refer-
ences.

Examples
ADD AX,#340
PUSH #1234H

; AX:=AX+340

; SP:=SP-2; MEM_WORD (SP) :=1234H
DIVB AX,#10 ; AL:=AX/10; AH:=AX MOD 10

SHORT-INDEXED REFERENCES

In this addressing mode an eight bit field in the instruc-
tion selects a WORD variable in the register file which
is assumed to contain.an address. A second eight bit
field in the instruction stream is sign-extended and
summed with the WORD variable to form the address
of the operand which will take part in the calculation.

/

Since the eight bit field is sign-extended, the effective
address can be up to 128 bytes before the address in the
WORD variable and up to 127 bytes after it. An in-
struction can contain only one short-indexed reference
and the remaining operand(s) must be register-direct
references. '

Exémples
LD AX,12[BX]
MULB AX,BL,3[CX]

we we

AX :=MEM_WORD (BX+12)
AX :=BL*MEM_BYTE (CX+3)

LONG-INDEXED REFERENCES

This addressing mode is like the short-indexed mode
except that a 16-bit field is taken from the instruction
and added to the WORD variable to form the address
of the operand. No sign extension is necessary. An in-

struction can contain only one long-indexed reference
and the remaining operand(s) must be register-direct
references.

Examples

AND AX,BX,TABLE[CX]
ST | AX,TABLE[BX]
ADDB AL, BL,LOOKUP[CX]

s AX

:=BX AND MEM_WORD (TABLE+CX) [
s MEM_WORD (TABLE+BX) :=AX ‘
3 AL :=BL+MEM_BYTE (LOOKUP+CX)

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

ZERO REGlSTER ADDRESSING

The first two bytes in the register file are fixed at zero
by the 8096 hardware. In addition to providing a fixed
source of the constant zero for calculations and com-
parisons, this register can be used as the WORD vari-

able in a long-indexed reference. This combination of
register selection and address mode allows any location
in memory to be addressed directly.

Examples
ADD AX,1234[0]
POP 5678[0]

we we we

AX :=AX+MEM_WORD (1234)
MEM_WORD (5678) :=MEM_WORD (SP)
SP:=SP+2

STACK POINTER REGISTER ADDRESSING

The system stack pointer in the 8X9X can be accessed
as register 18H of the internal register file. In addition
to providing for convenient manipulation of the stack
pointer, this also facilitates the accessing of operands in
the stack. The top of the stack, for example,

can be accessed by using the stack pointer as the
WORD variable in an indirect reference. In a similar
fashion, the stack pointer can be used in the short-in-
dexed mode to access data within the stack.

Examples :
PUSH [SP] s DUPLICATE TOP_O‘F_STACKY
LD AX,2[SP] ; AX:=NEXT_TO_TOP

ASSEMBLY LANGUAGE ADDRESSING MODES

The 8X9X assembly language simpiiﬁes the choice of
addressing modes to be used in several respects:

Direct Addressing. The assembly language will choose
between register-direct addressing and long-indexed
with the ZERO register depending on where the oper-
and is in memory. The user can simply refer to an oper-
and by its symbolic name; if the operand is in the regis-
ter file, a register-direct reference will be used, if the
operand is elsewhere in memory, a long-indexed refer-
ence will be generated.

Indexed Addressing. The assembly language will
choose between short and long indexing depending on
the value of the index expression. If the value can be
expressed in eight bits then short indexing will be used,
if it cannot be expressed in eight bits then long indexing
will be used.

The use of these features of the assembly language sim-
plifies the programming task and should be used wher-
ever possible.

3.3 Program Status Word ’

The program status word (PSW) is a collection of Bool-
ean flags which retain information concerning the state
of the user’s program. The format of the PSW is shown
in Figure 16. The information in the PSW can be bro-
ken down into two basic categories; interrupt control
and condition flags. The PSW can be saved in the sys-
tem stack with a single operation (PUSHF) and re-
stored in a like manner (POPF).

1514113121110 09| 08

07| 06| 05| 04| 03] 02]01] 00

vilc|—|1|sT

<Interrupt Mask Reg>

Figure 16. PSW Register

1.20

intel

MCS®-96 8X9X ARCHITECTURAL OVEHVIEW

INTERRUPT FLAGS

The lower eight bits of the PSW are used to individual-
ly mask the various sources of interrupt to the 8096. A
logical ‘Y’ in these bit positions enables the servicing of
the corresponding interrupt. These mask bits can be
accessed as an eight bit byte (INT__MASK—address
8) in the on-board register file. Bit 9 in the PSW is the
global interrupt disable. If this bit is cleared then all
interrupts will be locked out except for the Non Maska-
ble Interrupt (NMI). Note that the various interrupts
are collected in the INT__PENDING register even if
they are locked out. Execution of the corresponding
service routines will procede according to their priority
when they become enabled. Further information on the
interrupt structure of the 8X9X can be found in Section 4.

CONDITION FLAGS

The remaining bits in the PSW are set as side effects of
instruction execution and can be tested by the condi-
tional jump instructions.

Z. The Z (Zero) flag is set to indicate that the operation
generated a result equal to zero. For the add-with-carry
(ADDC) and subtract-with-borrow (SUBC) operations
the Z flag is cleared if the result is non-zero but is never
set. These two instructions are normally used in con-
junction with the ADD and SUB instructions to per-
form multiple precision arithmetic. The’ operation of
the Z flag for these instructions leaves it indicating the
proper result for the entire multiple precision calcula-
tion.

N. The N (Negative) flag is set to indicate that the
operation generated a negative result. Note that the N

- flag will be set to the algebraically correct state even if
the calculation overflows.

V. The V (overflow) flag is set to indicate that the oper-
ation generated a result which is outside the range that
can be expressed in the destination data type. For the
SHL, SHLB and SHLL instructions, the V flag will be
set if the most significant bit of the operand changes at
any time during the shift.

VT. The VT (oVerflow Trap) flag is set whenever the V
flag is set but can only be cleared by an instruction
which explicitly operates on it such as the CLRVT or
JVT instructions. The operation of the VT flag allows
for the testing for a possible overflow condition at the
end of a sequence of related arithmetic operations. This
is normally more efficient than testing the V flag after
each instruction.

1-21

C. The C (Carry) flag is set to indicate the state of the

arithmetic carry from the most significant bit of the

ALU for an arithmetic operation or the state of the last

bit shifted out of the operand for a shift. Arithmetic

Borrow after a subtract operation is the complement of

the C flag (i.e. if the operation generated a borrow then
= 0).

ST. The ST (STicky bit) flag is set to indicate that dur-
ing a right shift a 1 has been shifted first into the C flag
and then been shifted out. The ST flag is undefined
after a multiply operation. The ST flag can be used
along with the C flag to control rounding after a right
shift. Consider multiplying two eight bit quantities and
then scaling the result down to 12 bits:

MULUB AX,CL,DL ’
SHR AX,#4

sAX :=CL*DL
sShift right 4' places

If the C flag is set after the shift, it indicates that the
bits shifted off the end of the operand were greater-than
or equal-to one half the least significant bit (LSB) of the
result. If the C flag is clear after the shift, it indicates
that the bits shifted off the end of the operand were less
than half the LSB of the result. Without the ST flag,
the rounding decision must be made on the basis of this
information alone. (Normally the result would be
rounded up if the C flag is set.) The ST flag allows a
finer resolution in the rounding decision:

CST Value of the Bits Shifted Off
00 ‘Value = 0

01 0 < Value < 1, LSB

10 Value = 1/, L.SB

11 Value > 1, LSB

Figure 17. Rounding Alternatives
Imprecise rounding can be a major source of error in a

numerical calculation; use of the ST flag improves the
options available to the programmer.

3.4 Instruction Set

The MCS-96 instruction set contains a full set of arith-
metic and logical operations for the 8-bit data types

. BYTE and SHORT INTEGER and for the 16-bit data

types WORD and INTEGER. The DOUBLE-WORD
and LONG data types (32 bits) are supported for the
products of 16 by 16 multiplies and the dividends of 32

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

by 16 divides and for shift operations. The remaining
operations on 32-bit variables can be implemented by
combinations of 16-bit operations. As an example the
Sequence:

ADD
ADDC

AX,CX |
BX,DX

performs a 32-bit addition, and the sequence

SUB.
SUBC

AX,CX
BX,DX

performs a 32-bit subtraction. Operations on REAL
(i.e. floating point) variables are not supported directly
by the hardware but are supported by the floating point
library for the 8X9X (FPAL-96) which implements a
single precision subset of the proposed IEEE standard
for floating point operations. The performance of this
software is significantly improved by the 8X9X
NORML instruction which normalizes a 32-bit vari-
able and by the existence of the ST flag in the PSW.

In addition to the operations on the various data types,
the 8X9X supports conversions between these types.

1-22

LDBZE (load byte zero extended) converts a BYTE to
a WORD and LDBSE (load byte sign extended) con-
verts a SHORT-INTEGER into an INTEGER.
WORDS can be converted to DOUBLE-WORDS by
simply clearing the upper WORD of the DOUBLE-
WORD (CLR) and INTEGERS can be converted to
LONGS with the EXT (sign extend) instruction.

The MCS-96 instructions for addition, subtraction, and
comparison do not distinguish between unsigned words
and signed integers. Conditional jumps are provided to
allow the user to treat the results of these operations as
either signed or unsigned quantities. As an example, the
CMPB (compare byte) instruction is used to compare
both signed and unsigned eight bit quantities. A JH
(jump if higher) could be used following the compare if
unsigned operands were involved or a JGT (jump if
greater-than) if signed operands were involved.

Table 3 summarizes the operation of each of the in-
structions. Complete descriptions of each instruction
and its timings can be found in the Instruction Set
chapter. A summary of instruction opcodes and timing
is included in the quick reference section at the end of
this chapter. '

intal MCS®-96 8X9X ARCHITECTURAL OVERVIEW

Table 3. Instruction Summary

Mnemonic Oper- Operation (Note 1) Flags Notes.
ands z[N[c[v]vr[sr
ADD/ADDB 2 D<—D+A vilviv|iv 1| =
ADD/ADDB 3 De—B+A 4 v | v | v T —_
ADDC/ADDCB 2 D« D+A+C Llivlv]vw]| 1] —
SUB/SUBB 2 - D« D—A v |l | v | v» 1 —
SUB/SUBB 3 [D«—B-A vlw|w v t]|—
SUBC/SUBCB 2 D«<D-A+C-1 R I B T —
CMP/CMPB 2 D-A v ivivivev | T | —
MUL/MULU 2 D,D+2 «— D*A —_— |- = -] - ? 2 1
MUL/MULU 3 D,D+2 «<— B*A —_—] =] == = ? 2 .
MULB/MULUB | 2 D,D+1 <« DA —=1=1T=1=12 3
MULB/MULUB 3 DD+1 <« B*A —_—]] = -] - ? 3
DIVU 2 D « (D,D + 2)/A,D + 2 <« remainder ol e el T — 2
DIvuB 2 D « (D,D+ 1)/A,D+ 1 <« remainder — =] =1] T |- 3
DIV 2 D « (D,D+ 2)/A,D+ 2 <« remainder —_— -] - ? 1T -—
DIVB 2 D « (D,D+ 1)/A,D+ 1 < remainder - - =17 T —
AND/ANDB 2 D « DandA » v 0 0 — —
AND/ANDB 3 D « BandA v v 0 0 — —_
OR/ORB 2 D < DorA v | ¥ | O 0 - | —
XOR/XORB 2 D < D(excl.or)A vilivio|o]| -] —
LD/LDB 2 D« A . — | = = = = —_
ST/STB 2 A« D —_—] —_— —_ = - —
LDBSE 2 D « A;D+ 1 < SIGN(A) —=1T=1T=1=1—=1 324
LDBZE 2 D« AD+1«0 —_ -] - - - | - 3,4
PUSH 1 SP «— SP — 2;(SP) « A =T =1T=1T=T1T=
POP 1 A < (SP);SP «— SP + 2 — =] =]=1=1=
PUSHF 0 SP «— SP — 2;(SP) « PSW; 0 0 0 0 0 0
_PSW <« 0000H |« 0
POPF 0 PSW «— (SP); SP «— SP + 2; le=w | v | v | v | v v v
SJMP 1 PC «- PC + 11-bit offset —_] —_ = =] = | = 5
LJMP 1 PC <« PC + 16-bitoffset el e Rl el -— 5
BR [indirect] 1 PC « (A) ’ _ | = = =] = | -
SCALL 1 SP « SP — 2;(SP) « PC; T =T =T=T= 5
PC «— PC + 11-bit offset)
LCALL 1 SP «— SP — 2;(SP) « PC; —_ =] =] =] = = 5
PC <« PC + 16-bit offset
RET 0 PC <~ (SP);SP <« SP + 2 =T =1=]=1=1=
J (conditional) 1 PC «— PC + 8-bit offset (if taken) —_— | | -] = = | = 5
JC 1 JumpifC =1 —_ = = = = = 5
JNC 1 JumpifC =0) —] = = = = | = 5
JE 1 JumpifZ =1) ‘ || = = =] = 5
NOTES: '

1. If the mnemonic ends in “B”, a byte operation is performed, otherwise a word operation is done. Operands D, B, and A
must conform to the alignment rules for the required operand type. D and B are locations in the register file; A can 'be
located anywhere in memory.

2.D, D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.

3.D, D + 1 are consecutive BYTES in memory; D is WORD aligned.

4. Changes a byte to a word.

5. Offset is a 2's complement number.

1-23

inel

MCS®-96 8X9X ARCHITECTURAL OVERV-IEW '

Table 3. Inétruction Summary (Continued)

Mnemonic gg:: Operation (Note 1) 7 N cFIag‘sI v T sT Not?s
JNE 1 JumpifZ =0 R N Y S e - 5
JGE 1 Jumpif N =0 [, IS QNI [[N -, 5
JLT 1 Jumpif N = 1 T =1T=1T=1= 5
JGT 1 JumpifN=0andZ =10 — |- == =] = 5
JLE 1 JumpifN=10rZ =1 —] =] =)= =1 5
JH 1 JumpifC=1andZ =0 — == =] =] - 5
JNH 1 Jumpif C=0o0rZ =1 [e e 5
Jv 1 Jumpif V =1 —_ | == =] =] = 5
JNV 1 Jumpif V=0 —_ = =] = -] - 5
JVT 1 Jump if VT = 1; Clear VT —_ | - =] =] 0| — 5
JNVT 1 Jump if VT = 0; Clear VT — | —|=]=] 0] = 5
JST 1 Jump if ST = 1 — === =] - 5
JNST 1 Jumpif ST = 0 —_ | = =] =] =] = 5
JBS 3 Jump if Specified Bit = — | =] =] =] =]| =~ 5,6
JBC 3 Jump if Specified Bit = 0 - - =] =] = | = 5,6
DJINZ 1 D « D — 1;if D # O then
PC «— PC + 8-bit offset — = =] =] =] - 5

DEC/DECB 1 D« D-1 v v |v|v | T | —

1 NEG/NEGB 1 D« 0-D vl lwv|lv|iv] T | —
INC/INCB 1 D« D+ 1 v v |v | v T —_
EXT 1 D < D;D + 2 <« Sign(D) viw|lo|o]| =] — 2
EXTB 1 D <« D;D + 1 <« Sign(D) v | v 0 0 il 3
NOT/NOTB 1 D <« Logical Not (D) v | v | O 0| — | —
CLR/CLRB 1 D« 0 1 0 0 0 el
SHL/SHLB/SHLL 2. |Ce=msb————— Isb «— 0 v ? v | v T —_ 7
SHR/SHRB/SHRL 2 0 —> msb————— Isb = C | 2| 0| —| ¥ 7
SHRA/SHRAB/SHRAL 2 msb &> msb————— Isb > C v | iv| v | 0| —| ¥ 7
SETC 0 C e« 1 — =1] = =1 =
CLRC 0 C«0 —=]o|—=]—=1]—=
CLRVT 0 VT «— 0 — =1 =1=T1T09o | =
RST 0 PC <« 2080H 0 0 0 0 0 0 8
DI 0 Disable All Interrupts (I «<— 0) —_ | — =] = = =
El 0 Enable All Interrupts (I < 1) —_ == ===
NOP 0 PC «— PC + 1 —_ = -] =] - =
SKIP 0 PC « PC + 2 R [U U N
NORML 2 Left shift till msb = 1; D <— shiftcount | » ? 0| —| — | — 7
TRAP 0 SP « SP — 2;(SP) « PC

PC <« (2010H) — = =] =] = = 9
NOTES:

1. If the mnemonic ends in “B”, a byte operation is performed, otherwise a word operation is done. Operands D, B and A
must conform to the alignment rules for the requlred operand type D and B are locations in the register ﬂle A:can be
located anywhere in.memory.
5. Offset is a 2's complement number.

6. Specified bit is onie of the 2048 bits in the register file.
7. The “L” (Long) suffix indicates: double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary reglsters with code startmg at

2080H.

9. The assembler will not accept this mnemonic.

124

ntel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

3.5 Software Standards and
Conventions '

For a software project of any size it is a good idea to

modularize the program and to establish standards

which control the communication between these mod-
ules. The nature of these standards will vary with the
needs of the final application. A common component of
all of these standards, however, must be the mechanism
for passing parameters to procedures and returning re-
sults from procedures. In the absence of some overrid-
ing consideration which prevents their use, it is suggest-
ed that the user conform to the conventions adopted by
the PLM-96 programming language for procedure link-
age. It is a very usable standard for both the assembly
language and PLM-96 environment and it offers com-
patibility between these environments. Another advan-
tage is that it allows the user access to the same floating
point arithmetics library that PLM-96 uses to operate
on REAL variables.

REGISTER UTILIZATION

The MCS-96 architecture provides a 256 byte register
file. Some of these registers are used to control register-
mapped I/0 devices and for other special functions
such as the ZERO register and the stack pointer. The
remaining bytes in the register file, some 230 of them,
are available for allocation by the programmer. If these
registers are to be used effectively, some overall strategy
for their allocation must be adopted. PLM-96 adopts
the simple and effective strategy of allocating the eight

bytes between addresses 1CH and 23H as temporary .

storage. The starting address of this region is called
PLMREG. The remaining area in the register file is
treated as a segment of memory which is allocated as
required.

ADDRESSING 32-BIT OPERANDS

These operands are formed from two adjacent 16-bit
words in memory. The least significant word of the
double word is always in lower address, even when the

data is in the stack (which means that the most sig- -

nificant word must be pushed into the stack first). A
double word is addressed by the address of its least
significant byte. Note that the hardware supports some
operations on double words (e.g. normalize and divide).
For these operations the double word must be in the
internal register file and must have an address which i is
evenly d1v131ble by four.

suano(mNE LINKAGE

Parameters are passed to subroutines in the stack. Pa-
rameters are pushed into the stack in the order that
they are encountered in the scanning of the source text.
Eight-bit parameters (BYTES or. SHORT-INTE-
GERS) are pushed into the stack with the high order

1-25

byte undefined. Thirty-two bit parameters (LONG-
INTEGERS, DOUBLE-WORDS, and REALS) are
pushed into the stack as two 16-bit values; the most
significant half of the parameter is pushed into the
stack first.

As an example, consider the followmg PLM-96 proce-
dure:

example__procedure: PROCEDURE
(param],param2,param3);
DECLARE param] BYTE,
param2 DWORD,
param3 WORD;

When this procedure is entered at run time the stack
will contain the parameters in the following order:

2?7777 .

parami

high word of param2

low word of param2

param3

return address «— Stack__pointer

Figure 18. Stack Image

If a procedure returns a value to the calling code (as
opposed to modifying more global variables) then the
result is returned in the variable PLMREG. PLMREG
is viewed as either an 8-, 16- or 32-bit variable depend-
ing on the type of the procedure.

The standard calling convention adopted by PLM-96
has several key features:

a) Procedures can always assume that the eight bytes of
register file memory starting at PLMREG can be
used as temporaries within the body of the proce-
dure.

b) Code which calls a procedure must assume that the
eight bytes of register file memory starting at
PLMREG are modified by the procedure.

c) The Program Status Word (PSW—see Section 3.3) is
not saved and restored by procedures so the calling
code must assume that the condition flags (Z, N, V,
VT, C, and ST) are modified by the procedure.

d) Function results from procedures are always re-
turned in the variable PLMREG.

PLM-96 allows the definition of INTERRUPT proce~
dures which are executed when a predefined interrupt
occurs. These procedures do not conform to the rules of
a normal procedure. Parameters cannot be passed to
these procedures and they cannot return results. Since.
they can execute essentially at any time (hence the term
interrupt), these procedures must save the PSW and
PLMREG when they are entered and restore these val-
ues before they exit.

intel

MCS©®-96 8X9X ARCHITECTURAL OVERVIEW

4.0 INTERRUPT STRUCTURE"-

There are 21 sources of interrupts on the 8X9X These
sources are gathered into 8 interrupt types as indicated
in Figure 19. The 1/0 control registers which control
some of the sources are indicated in the figure. Each of
the eight types of interrupts has its own interrupt vector
as listed in Figure 20. In addition to the 8 standard
interrupts, there is a TRAP instruction which acts as a
software generated interrupt. This instruction is not
currently supported by the MCS-96 Assembler and is
reserved for use in Intel development systems.

The programmer must initialize the interrupt vector ta-
ble with the starting address of the appropriate inter-
rupt service routine. It is suggested that any unused
interrupts be vectored to an error handling routine. The
error routine should contain recovery code that will not
further corrupt an already erroneous situation. In a de-
bug environment, it may be desirable to have the rou-
tine lock into a jump to self loop which would be easily
traceable with emulation tools. More sophisticated rou-
tines may be appropriate for production code recover-
ies.

Three registers control the operation of the interrupt
system: Interrupt Pending, Interrupt Mask, and the

_PSW which contains a global disable bit. A block dia-

gram of the system ‘is shown in Figure 21.. The tran-

sition detector looks for 0,to 1 transitions on any of the

sources. External sources have a maximum transition

* speed of one edge every state time. If this is exceeded

the.interrupt may not be detected.

: Vector Location
Vector (High | (Low Priorlfy
‘ Byte) | Byte) '
Software Trap | 2011H | 2010H | Not Applicable
Extint 200FH | 200EH |7 (Highest)
Serial Port 200DH | 200CH |6
Software 200BH | 200AH (5
Timers
HSI.0 2009H | 2008H |4
High Speed 2007H | 2006H |3
Outputs
HSI Data - 2005H | 2004H |2
Available
A/D Conversion| 2003H | 2002H |1
Complete
Timer Overflow | 2001H | 2000H |0 (Lowest)

Figure 20. Interrupt Vector Locations

HOLDING REGISTER LOADED ———0

'A/D CONVERSION COMPLETE

SOURCE INTERRUPT
r-=- 10C1.1
EXTINT EXTINT
ACH7 —o0 :
TIFLAG I SERIAL PORT
RIFLAG ==~ HSO_COMMAND.4
SOFTWARE TIMER 0 o~ SOFTWARE TIMER
SOFTWARE TIMER 1
SOFTWARE TIMER 2
SOFTWARE TIMER 3
. RESET TIMER 2*
START A/D CONVERSION*
HSIO, HSLO
=== HSQ_.COMMAND.4 ,
ANY HSO OPERATION —o0 HIGH SPEED OUTPUTS

r---l001 7

N FIFO IS FULL ———a
HS! DATA AVAILABLE

TIMER1 OVERFLOW

(-_ 10C1.2

A/D CONVERSION COMPLETE

TIMER OVERFLOW

TIMER2 OVERFLOW ———0

NOTE:
*Only when initiated by the HSO unit.

--10c1.3

| 270250-20

Figure 19. All Possible Interrupt Sources

1-26

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

SOFTWARE TIMER

EXTINT SERIAL PORT TIMERS , HSIO0 HSO HSI A D CONV. OVERFLOW
7 6 S ¢ // ! []
TRANSITION
DETECTOR
INTERRUPT PENDING REG INTERRUPT MASK REG

-

GATE K

-

PRIORITY ENCODER

-

1 bit
(PSW.9)

L—"’ GLOBAL DISABLE

-

INTERRUPT

GENERATOR [NWt
0-8US CONTROL
« UNIT

270250-21

Figure 21. Block Diagram of Interrupt System

127

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

4.1 Interrupt Control -

Interrupt Pending Register

When the hardware detects one of the eight interrupts
it sets the corresponding bit in the pending interrupt
register (INT_PENDING-09H). When the interrupt
vector is taken, the pending bit is cleared. This register,
the format of which is shown in Figure 22, can be read
or modified as a byte register. It can be read to deter-
mine which of the interrupts are pending at any given
time or modified to either clear pending interrupts or
generate interrupts under software control. Any soft-
ware which modifies the INT_PENDING register
should ensure that the entire operation is indivisible.
The easiest way to do this is to use the logical instruc-
tions in the two or three operand format, for example:

ANDB INT_PENDING,#11111101B

s Clears the A/D Interrupt
INT_PENDING,#00000010B

; Sets the A/D Interrupt

ORB

Caution must be used when writing to the pending reg-
ister to clear interrupts. If the interrupt has already
been acknowledged when the bit is cleared, a 4 state
time “partial” interrupt cycle will occur. This is be-
cause the 8X9X will have to fetch the next instruction
of the normal instruction flow, instead of proceeding
with the interrupt processing as it was going to. The
effect on the program will be essentially that of an extra
NOP. This can be prevented by clearing the bits using a
2 operand immediate logical, as the 8X9X holds off
acknowledging interrupts during these “read/modify/
write”” instructions.

(LOCATION 09H)

[7]lelsfefs]2]r]o]
L— TIMER OVERFLOW
|— A/D COMPLETION
HS| DATA AVAILABLE
HSO EVENT
HSI BIT 0
SOFTWARE TIMERS
SERIAL 1/0
EXTERNAL INTERRUPT
270250-19

.Figure 22. Interrupt Pending Register

Interrupt Mask Register .

Individual interrupts can be enabled or disabled by set-
ting or clearing bits in the interrupt mask register

(INT__MASK-08H). The format of this register is the

same as that of the Interrupt Pending Register shown
in Figure 22.

The INT_MASK register can be read or written as
byte register. A one in any bit position will enable the
corresponding interrupt source and a zero will disable
the source. The hardware will save any interrupts that'
occur by setting bits in the pending register, even if the
interrupt mask bit is cleared. The INT__MASK regis-

 ter also can be accessed as the lower eight bits of the

PSW so the PUSHF and POPF instructions save and
restore the INT__MASK register as well as the global
interrupt lockout and the arithmetic flags.

GLOBAL DISABLE

- The processing of all interrupts can be disabled by

clearing the I bit-in the PSW. Setting the I bit will
enable interrupts that have mask register bits which are
set. The I bit is controlled by the EI (Enable Interrupts)
and DI (Disable Interrupts) instructions. Note that the
I bit only controls the actual servicing of interrupts.
Interrupts that occur during periods of lockout will be
held in the pending register and serviced on a priori-
tized basis when the lockout period ends.

4.2 Interrupt Priorities

The priority encoder looks at all of the interrupts which
are both pending and enabled, and selects the one with
the highest priority. The priorities are shown in Figure
20 (7 is highest, 0 is lowest). The interrupt generator
then forces a call to the location in the indicated vector
location. This location would be the starting location of
the Interrupt Service Routine (ISR).

This priority selection controls the order in which
pending interrupts are passed to the software via inter-
rupt calls. The software can then implement its own

‘priority structure by controlling the mask register

(INT_MASK). To see how this is done, consider the
case of a serial 1/0 service routine which must run at a

_priority level which is lower than the HSI data avail-

able interrupt but higher than any other source. The .
“preamble” and exit code for this interrupt service rou-
tine would look like this:

!

serial_io_isr:

PUSHF ; Save the PSW
(Includes INT_MASK)
"LDB

INT_MASK,#00000100B

EI ; Enable interrupts again
. I v . \
H . . .

H

; : ‘

H Servicé the interrupt

; » J ~
H

H . .

POPF ; Restore the PSW

i
)

128

l

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

Note that location 200CH:in the interrupt vector table
would have to be loaded with the value of the label
serial__io__isr and the interrupt be enabled for this
routine to execute.

There is an interesting chain of instruction side-effects
which makes this (or any other) 8X9X 1nterrupt service
routine execute properly: :

a) After the hardware decides to process an interrupt, it
generates and executes a special interrupt-call in-
struction, which pushes the current program counter
onto the stack and then loads the program counter
with the contents of the vector table entry corre-
sponding to the interrupt. The hardware will not al-
low another interrupt to be serviced immediately fol-
lowing the interrupt-call. This guarantees that once
the interrupt-call starts, the first instruction of the
interrupt service routine will execute. :

b) The PUSHF instruction, which is now guaranteed to
execute, saves the PSW in the stack and then clears
the PSW. The PSW contains, in addition to the
arithmetic flags, the INT_MASK register and the
global disable flag (I). The hardware will not allow
an interrupt following a PUSHF instruction and, by
the time the LD instruction starts, all of the inter-
rupt enable flags will be cleared. Now there is guar-
anteed execution of the LD INT_MASK instruc-
tion.

¢) The LD INT__MASK instruction enables those in-
terrupts that the programmer chooses to allow to
interrupt the serial I/O interrupt service roptine. In
‘this example only the HSI data available interrupt
will be allowed to do this but any interrupt or combi-
nation of interrupts.could be enabled at this point,
even the serial interrupt. It is the loading of the
INT_MASK register which allows the software to
establish its own priorities for interrupt servicing in-
dependently from those that the hardware enforces.

d) The EI instruction reenables the processing of inter-
rupts.

e) The actual mterrupt service routine executes within
the priority structure established by the software.

f) At the end of the service routine the POPF instruc-
tion restores the PSW to its state when the interrupt-
call occurred. The hardware will not allow interrupts
to be processed following a. POPF instruction so"the
execution of the last instruction (RET) is guaranteed
before further interrupts can occur. The reason that
this RET instruction must be protected in this fash-
jon is that it is quite likely that the POPF instruction
will reenable an interrupt which is already pending.
If this interrupt were serviced before the RET in-
struction, then the return address to the code that
was executing when the original interrupt occurred

~would be left on the stack. While this does not pres-
ent a problem to the program flow, it could result in
a stack overflow if interrupts are occurring at a high
frequency.

INT_MASK register (part of the PSW), so any
changes made to this register during a routine which
ends with a POPF will be lost.

Notice that the “preamble” and exit code for the inter-
rupt service routine does not include any code for sav-
ing or restoring registers. This is because it has been
assumed that the interrupt service routine has been al-
located its own private set of registers from the on-
board register file. The availability of some 230 bytes of
register storage makes this quite practical.

4.3 Critical Regions

Interrupt service routines must share some data with
other routines. Whenever the programmer is coding
those sections of code which access these shared pieces
of data, great care must be taken to ensure that the
integrity of the data is maintained. Consider clearing a
bit in the interrupt pending register as part of a non-in-
terrupt routine:

LDB AL, INT_PENDING
ANDB AL, #bit_mask
STB AL, INT_PENDING

This code works if no other routines are operating con-
currently, but will cause occasional but serious prob-
lems'if used in a concurrent environment. (All pro-
grams which make use of interrupts must be considered
to be part of a concurrent environment.) To demon-
strate this problem, assume that the INT__PENDING
register contains 00001111B and bit 3 (HSO event in-
terrupt pending) is to be reset. The code does work for
this data pattern but what happens if an HSI interrupt
occurs somewhere between the LDB and the STB in-
structions? Before the LDB instruction INT__PEND-
ING contains 00001111B and after the LDB instruc-
tion so does AL. If the HSI interrupt service routine
executes at this point then INT__PENDING will
change to 00001011B. The ANDB changes AL to

. 00000111B and the STB changes INT__PENDING to

00000111B. It should be 00000011B. This code se-
quence has manged to generate a false HSI interrupt
The same basic process can generate an amazing assort-
ment of problems and headaches. These problems can
be avoided by assuring mutual exclusion which basical-
ly means that if more than one routine can change a
variable, then the programmer must ensure exclusive
access to the variable during the entire operation on the

variable.

The ‘POPF instruction also pops the

1-29

In many cases the instruction set of the 8X9X allows
the variable to be modified with a single instruction.
The code in the above example can be implemented
with a single instruction.

ANDB INT_PENDING,#bit_mask

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW.

'

Instructions are indivisible so mutual exclusion is en-

sured in this case. Changes to the INT__PENDING -

register must be made-as a single instruction, since bits
can be changed in this register even if interrupts are
disabled. Depending on system conﬁgurations, several
other SFRs might also need to be: changed in a single
instruction for the same reason.

When variables must be modified without interruption,
and a single instruction can not be used, the program-
mer must create what is termed a critical region in
which it is safe to modify the variable. One way to do
this is to simply disable interrupts with a DI instruc-
tion, perform the modification, and then re-enable in-
terrupts with an EI instruction. The problem with this
approach is that it leaves the interrupts enabled even if
they were not enabled at the start. A better solution is
to enter the critical region with a PUSHF instruction
which saves the PSW and also clears the, interrupt en-
able flags. The region can then be terminated with a
POPF instruction which returns the interrupt enable to
the state it was in before the code sequence. It should be
noted that some system- configurations might require
more protection to form a critical region. An example
is a system in which more than one processor has ac-
cess to a common resource such as memory or external
1/0 devices.

4.4 Interrupt Timing

Interrupts are not always acknowledged immediately.
If the interrupt signal does not occur prior to 4 state-
times before the end of an instruction, the interrupt will
not be acknowledged until after the next instruction has
been executed. This is because an instruction is fetched
and prepared for execution a few state times before it is
actually executed.

5

There are 6 instructions which always inhibit interrupts
from being acknowledged until after the next instruc-
tion has been executed. These instructions are:

EL DI — Enable and Disable Interrupts
POPF, PUSHF— Pop and Push Flags

SIGND - Prefix to perform signed multlply
and divide (Note that this is not an
ASM-96 Mnemonic, but is used for
) signed multiply and divide)
SOFTWARE
TRAP . — Software interrupt

When an interrupt is acknowledged, the interrupt
pending bit is cleared, and a call is forced to the loca-
tion indicated by the specified interrupt vector. This
call occurs after the completion of the instruction in
process, except as noted above. The procedure of get-
ting the vector and forcing the call requires-21 state
times. If the stack is in external RAM an additional 3
state times are required.

The maximum number of state times required from the
time an interrupt is generated (not acknowledged) until
the 8X9X begins executing code at the desired location
is the time of the longest instruction, NORML (Nor-
malize — 42 state times), plus the 4 state times prior to
the end of the previous instruction, plus the response
time (21 to 24 state times). Therefore, the maximum
response time is 70 (42 + 4 + 24) state times. This
does not include the 12 state times required for PUSHF
if it is used as the first instruction in the interrupt rou-
tine or additional latency caused by having the inter-
rupt masked or disabled. Refer to Figure 22A, Inter-
rupt Response Time, to visualize an example of a worst
case scenario.

~ M

STATE TIMES

43 21 42

21 —3 12—
‘ ENDING | rorourt - END | CALLIS I STACK | wmurenes
EXECUTION SmsmucmN N°RML‘55 'NORML' | FORCED 55 exterNaL | PUSHF %

EXTINT I

R ———
INTERRUPT ROUTINE

_ PENDING
B JSET

- RESPONSE TIME !

70 STATE TIMES —

|CLEARED i -

270250-60

Figure 22A. Interrupt Response Time

N . 3

1-30

intef

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

Interrupt latency time can be reduced by careful selec-
-tion of instructions in areas of code where interrupts
are expected. Using ‘EI’ followed immediately by a
long instruction (e.g. MUL, NORML, etc.) will in-
crease the maximum latency by 4 state. times, as an
interrupt cannot occur between EI and the instruction
following EI. The “DI”, “PUSHF”, “POPF” and

“TRAP” instructions will also cause the same situa-

tion. Typically the PUSHF, POPF and TRARP instruc-
tions would only effect latency when one interrupt
routine is already in process, as these instructions are
seldom used at other times.

5.0 TIMERS

‘Two 16-bit timers are available for use on the 8096. The
first is designated “Timer 17, the second, “Timer 2”.

Timer 1 is used to synchronize events to real time, .

while Timer 2 can be clocked externally and synchro-
nizes events to external occurrences.

5.1 Timer 1

Timer 1 is clocked once every eight state times and can
be cleared only by executing a reset. The only other
way to change its value is by writing to 000CH but this
is a test mode which sets both timers to OFFFXH and
should not be used in programs.

5.2 Timer 2

Timer 2 can be incremented by transitions (one count
each transition, rising and falling) on either T2CLK or
HSI.1. T2CLK is not available on the 8X98. The mul-

tiple functionality of the timer is determined by the
state of 1/0 Control Register 0, bit 7 (10C0.7). To en-
sure that all CAM entries are checked each count of
Timer 2, the maximum transition speed is limited to
once per €ight state times. Timer 2 can be cleared by:
executing a reset, by setting IOCO0.1, by triggering HSO
channe] OEH, or by pulling T2RST or HSI.O high. The
HSO and CAM are described in Sectien 7 and 8.
10C0.3 and ICOO0.5 control the resetting of Timer 2.
Figure 23 shows the different ways of manipulating
Timer 2. It is recommended that the IOCO register only
be used once during power on reset to initialize the
timers and pins, followed by an HSO command 14 to
clear Timer 2 internally; or externally cleared by the
T2RST or HSI.O pins. T2RST is not available on the
8X98. Some 8X9XBH devices have errata associated
with Timer 2. See the data sheets for more information.

5.3 Timer Interrupts

/

Both Timer 1 and Timer 2 can be used to trigger a
timer oyerflow interrupt and set a flag in the I/0 Status
Register 1 (I0S1). The interrupts are controlled by
IOC1.2 and IOC1.3 respectively. The flags are set in
IOS1.5 and 1I0S1.4, respectively.

Caution must be used when examining the flags, as any
access (including Compare and Jump on Bit) of I0S1
clears bits 0 through 5 including the software timer
flags. It is, therefore, recommended to write the byte to
a temporary register before testing bits. The general en-
abling and disabling of the timer interrupts are con-
trolled by the Interrupt Mask Register bit 0. In all cas-

' es, setting a bit enables a function, while clearing a bit

disables it.

HSO#14
10C0.1

10C0.3
T2 RST

=

T2 CLK =\ 4—HSI.1

Hw_. Iy

)
10C0.5

C
LK TIMER 2

RST

270250-22

Figure 23. Timer 2 Clock and Reset Options

intel

A,
) /

‘MCS®-96 8X9X AR’CHITECTURAL OVERVIEW

5.4 Timer Related Sections:

The High Speed I/0 unit is coupled to the timers in
that the HSI records the value on Timer 1 when tran-
sitions occur and the HSO causes transitions to occur
based on values of either Timer 1 or Timer 2. The baud
rate generator can use the T2CLK pin as input to its
counter. a complete listing of the functions of IOS1,
10C0, and IOC1 are in Section 11.

6.0 HIGH SPEED INPUTS

The High Speed Input Unit (HSI), can be used to rec-
ord the time at which an event occurs with respect to
Timer 1. There are 4 lines (HSLO through HSI.3)
which can be used in this mode'and up to a total of 8

_events can be recorded. HSI.2 and HSIL.3 are bidirec-

tional 'pins which can also be used as' HSO.4 and
HSO.5. The I/0 Control Registers (IOCO and IOCY)
are used to determine the functions of these pins. A
block diagram of the HSI unit is shown in Figure 24.

FIFO
INTERRUPT |
HSI > & ¢ TIMER
ENABLE CONTROL LOGIC —
LOGIC ___,“__1 yy v
4¢ S
DIVIDE weur |, 8x20 BIT
PORT BUFFERS BY 8 |»| CHANGE |t > FIFO
COUNTER | | DETECTOR
HSI PINS v
HI TO LO 81 44 20 R
—L0 To K | Hsi_moDE VHSI status | HOLD‘I;IVG‘ RI-;ZISTER 1x20 |
- = — X
—J HorR o L=
1 ~ ' : 16
v
EVERY EIGHTH POSITIVE
_TRANSITION | HSI_TIME I

7
270250-23

Figure 24. High Speed Input Unit

132

intel

MCS®-96 8X9X ARCHITEC‘i'URAL OVERVIEW

6.1 HSI| Modes

There are 4 possible modes of operation for each of the
HSI pins. The HSI mode register is used to control
which pins will look for what type of events. The 8-bit
register is set up as shown in Figure 25.

High and low levels each need to be held for at least 1

- state time to ensure proper operation. The maximum
input speed is 1 event every 8 state times except when
the 8 transition mode is used, in which case it is 1
transition per state time. The divide by eight counter
can only be zeroed in mid-count by performmg a hard-
ware reset on the 8X9X. -

Mode (03H)
of

= HSI.0 MODE
HS!.1" MODE
HSI.2 MODE
HSI.3 MODE

. WHERE EACH 2= BIT MODE CONTROL FIELD *
DEFINES ONE OF 4 POSSIBLE MODES:

HSI_

QE

4f3f2]1

8 POSITIVE TRANSITIONS
EACH POSITIVE TRANSITION
EACH NEGATIVE TRANSITION
EVERY TRANSITION
(POSITIVE AND NEGATIVE)

270250-24

Figure 25. HS| Mode Register Diagram

The HSI lines can be individually enabled and disabled

using bits in I0CO, at location 0015H. Figure 26 shows
the bit locations which control the HSI pins. If the pin
is disabled, transitipns will not be entered in the FIFO.

T2RST =0 r--10C0.5 -
T2 RESET

t--joco.3
;-+10C0.0

HSI

;== 10c0.2
Hs)

HSl.1 -I: - TIMER2
T20LK =—G %+-10C0.7 cLock

¢=-10C0.4
HS,2 ——0 Hsl -

;- 10C0.6
HSL.3 ——O HSI

' 270250-25

Figure 26. 10C0 Control 6f HSI Pin Functions

6.2 HSIFIFO

When an HSI event occurs, a 9 X20 FIFO stores the 16
bits of Timer 1 and the 4 bits indicating which pins had

1-33

events. It can take up to 8 state times for this informa-
tion to reach the holding register. For this reason, 8
state times must be allowed between consecutive reads
of HSI__TIME. When the FIFO is full, for a total of 8
events, were be stored by considering the holding regis-
ter part of the FIFO. If the FIFO and holding register
are full, any additional events will cause an overflow
condition. Any eight consecutive events will overflow
on the ninth event if the program does not clear all
entries in the FIFO before the ninth event occurs. Some
versions of the 8X9X have errata associated with the
HSI unit. See the data sheets for more information.

6.3 HSI Interrupts

Interrupts can be generated by the HSI unit in three
ways; two FIFO related interrupts and O to 1 tran-
sitions on the HSI.O pin. The HSL.O pin can generate
interrupts even if it is not enabled to the HSI FIFO.
Interrupts generated by this pin cause a vector through
location 2008H. The FIFO related interrupts are con-
trolled by bit 7 of I/0 Control Register 1, (IOCL1.7). If
the bit is a 0, then an intérrupt will be generated every
time a value is loaded into the holding register. If it is a
1, an interrupt will only be generated when the FIFO,
(independent of the holding register), has six entries in
it. Since all interrupts are rising edge triggered, if
IOC1.7 = 1, the processor will not be re-interrupted
until the FIFO first contains 5 or less records, then
contains six or more. '

6.4 HSI Status

Bits 6 and 7 of the 1/0 Status register 1 (I0S1) indicate
the status of the HSI FIFO. If bit 6 is a 1, the FIFO
contains at least six entries. If bit 7 is a 1, the FIFO
contains at least 1 entry and the HSI holding register
has data available to be read. The FIFO may be read
after verifying that it contains valid data. Caution must
be used when reading or testing bits in I0S1, as this
action clears bits 0-5, mcludmg the softwate and hard-
ware timer overflow flags. It is best to store the byte
and then test the stored value. See Section 11.

Reading the HSI is done in two steps. First, the HSI

Status register is read to obtain the current state of the-
HSI pins and which pins had changed at the recorded

time. The format of the HSI_STATUS Register is
shown in Figure 27. Second, the HSI Time register is
read. Reading the Time register unloads one level of the
FIFO, so if the Time register is read before the Status
register, the event information in the Status register will
be lost. The HSI Status register is at location 06H and
the HSI Time registers are in locations 04H and OSH.

If the HSI__TIME register is read without the holding -
register being loaded, the returned value will be indeter-
minate. Under the same conditions, the four bits inr

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

HSI_STATUS indicating which events have occurred
will also be indeterminate. The four. HSI_STATUS
bits which indicate the current state of the pins will
always return the correct value.

It should be noted that many of the Status register con-
ditions are changed by a reset, see Section 13. A com-
plete listing of the functions of I0S0, I0S1, and I0C1
can be found in Section 11.

7.0 HIGH SPEED OUTPUTS

The High Speed Output unit, (HSO), is used to trigger’
events at specific times with minimal CPU overhead.
These events include: starting an' A to D conversion,
resetting Timer 2, setting 4 software flags, and switch-
ing 6 output lines (HSO.0 through HSO.5). Up to eight
events can be pending at one time and interrupts can be
generated whenever any. of these events are triggered.
HSO.4 and HSO.5 are bidirectional pins which can also
be used as HSI.2 and HSI.3 respectively. Bits 4 and 6 of
I/0 Control Register 1, (I0C1.4, 10C1.6), enable
HSO0.4 and HSO.S as outputs.

The HSO unit can generate two types of interrupts. The
HSO execution interrupt (vector = (2006H)) is gener-
ated (if enabled) for HSO commands which operate one
or more of the six output pins. The other HSO inter-
rupt is the software timer interrupt (vector =
(200BH)) which is generated (if enabled) by any other
HSO command, (e.g. triggering the A/D, resetting
Timer 2 or generating a software time delay).

7.1 HSO CAM

A block diagram of the HSO wunit.is shown in Figure
28. The Content Addressable Memory (CAM) file is
the center of. control. One CAM register is compared
with the timer values every state time, taking 8 state
times to compare all CAM registers with the timers.

- This defines the time resolution of the HSO to be 8

state times (2.0 microseconds at an oscillator frequency
of 12 MHz).

HSI Status Register (HSI__Status)
' LOCATION 06H

HSL.0 STATUS
HSI.1 STATUS
HSI.2 STATUS

HSIL.3 STATUS
L) 270250-26
Where for each 2-bit status field the lower bit indicates
whether or not an event has occurred on this pin at the
time in HSI__TIME and the upper bit indicates the cur-
rent status of the pin.

Figure 27. HSI Status Register Diagram

Each CAM register is 23 bits wide. Sixteen bits specify
the time at which the action is to be carried out and 7
bits specify both the nature of the action and whether
Timer 1 or Timer 2 is the reference. The format of the

CAM

| CONTROL .
LOGIC |«

HOLDING REGISTER
| Hso_commanp | uso_time |
7{ 1s£
CAM
23 BITS

8 STATE TIME_ .
INCREMENT
EVENT <4— TIMER 2 INPUT
TIMER 1 COUNTER
L ¢— TIMER 2 RESET

G v
HSO |HSO_STATUSI
COMMAND .

>
>

DECODER 10S1 (16H)
oct (16H) | | MeR FLaGs)
HSO A/D
ENABLE

LOGIC

‘}‘;5

| Hso porT BuFFERS |

cichcachdhch

PORT PINS

HIGH SPEED OUTPUT CONTROL
* 6 OUTPUT PINS
. ® 4 SOFTWARE TIMERS |
* INITIATE A7D CONVERSION
* RESET TIMER 2 i

270250-27

- Figure 28. High Speed Output Unit
' 1-34 :

nte

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

command to the HSO unit is shown in Figure 29. Note
that bit 5 is ignored for command channels 8 through
OFH.

. To enter a command into the CAM file, write the 7-bit
“Command Tag” into location 0006H followed by the
time at which the action is to be carried out into word
address 0004H. The typical code would be:

LDB HSO_COMMAND,#what_to_do.
ADD HSO_TIME,TIMERL,#when_to_do_it

Writing the time value loads the HSO Holding Register
with both the time and the last written command tag.
The command does not actually enter the CAM file
until an empty CAM register becomes available.

Commands in the holding register will not execute even
if their time tag is reached. Commands must be in the
CAM for this to occur. Commands in the holding regis-
ter can also be overwritten. Since it can take up to 8
state times for a command to move from the holding
register to the CAM, 8 states must be allowed between
successive writes to the CAM.

To provide proper synchronization, the minimum time
that should be loaded to Timer 1 is Timer 1 + 2.
Smaller values may cause the Timer match to occur
65,636 counts later than expected. A similar restriction
applies if Timer 2 is used.

Care must be taken when writing the command tag for
the HSO. If an interrupt occurs during the time be-
tween writing the command tag and loading the time
value, and the interrupt service routine writes to the
HSO time register, the command tag used in the inter-
rupt routine will be written to the CAM at both the
time specified by the interrupt routine and the time
specified by the main program. The command tag from
the main program will not be executed. One way of
avoiding this problem would be to disable interrupts
when writing commands and times to the HSO unit.
See also Section 4.5.

L:

0-5 HS0.0 - HS0.5

6 HSO.0 AND HSO.1

7 HS0.2 AND HS0.3

8-B SOFTWARE TIMERS

E RESET TIMER2

F START A/D CONVERSION

—— INTERRUPT / NO INTERRUPT
f—— SET/CLEAR '
p—— TIMER 2 / TIMER 1

CHANNE|
g
BIT: J O

-

-

N

Lefefofs]«

— X

270250-28

Figure 29. HSO Command Tag Format

7.2 HSO Status

Before writing to the HSO, it is desirable to ensure that
the Holding Register is empty. If it is not, writing to the
HSO will'overwrite the value in the Holding Register.
1/0 Status Register 0 (IOS0) bits 6 and 7 indicate the
status of the HSO unit. This register is described in
Section 11. If 10S0.6 equals O, the holding register is
empty and at least one CAM register is empty. If
10S0.7 equals O, the holding register is empty.

The programmer should carefully decide which of these
two flags is the best to use for each application.

7.3 Clearing the HSO

All 8 CAM locations of the HSO are compared before
any action is taken. This allows a pending external
event to be cancelled by simply writing the opposite
event to the CAM. However, once an entry is placed in
the CAM, it cannot be removed until either the speci-
fied timer matches the written value or the chip is reset.
If, as an example, a command has been issued to set
HSO.1 when TIMER 1 = 1234, then entering a second
command which clears HSO.1 when TIMER 1 = 1234
will result in no operation on HSO.1. Both commands
will remain in the CAM until TIMER 1 = 1234.

Internal events are not synchronized to Timer 1, and
therefore cannot be cleared. This includes events on

~ HSO channels 8 through F and all interrupts. Since

1-35

interrupts are not synchronized it is possible to have
multiple interrupts at the same time value.

7.4 Using Timer 2 with the HSO

Timer 1 is incremented only. once every 8 state-times.
When it is being used as the reference timer for an HSO
action, the comparator has a chance to’look at all 8
CAM registers before Timer 1 changes its value. Fol-
lowing the same reasoning, Timer 2 has been synchro-
nized to allow it to change at a maximum rate of once
per 8 state-times. Timer 2 increments on both edges of
the input signal.

When using Timer 2 as the HSO reference, caution’
must be taken that Timer 2 is not reset prior to the
highest value for a Timer 2 match in the CAM. This is
because the HSO CAM will hold an event pending until
a time match occurs, if that match is to a time value on
Timer 2 which is never reached, the event will remain
pending in the CAM until the device is reset.

Additional caution must be used when Timer 2 is being
reset using the HSO unit, since resetting Timer 2 using
the HSO is an internal event and can therefore happen
at any time within the eight-state-time window. This
situation arises when the event is set to occur: when

intef

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

Timer 2 is equal to zero. If HSI.O or the T2RST pin is
used to clear Timer 2, and Timer 2 equal to zero trig-
gers the event, then the. event may not occur. This is
because HSI.0O and T2RST clear Timer 2 asynchro-
nously, and Timer 2 may then be incremented to one
before the HSO CAM entry can be read and acted
upon. This can be avoided by setting the event to occur
when Timer 2 is equal to one. This method will ensure
that there is enough time for the CAM entry recogni-
tion. ’

The same asynchronous nature can affect events sched-
uled to occur at the same time as an internal Timer 2
reset. These events should be logged into the CAM
with a Timer 2 value of zero. When using this method
to make a programmable- modulo counter, the count
will stay at the maximum Timer 2 value only until the
Reset T2 command is recognized. The count will stay
at zero for the transition which would have changed the
count from “N” to zero, and then changed to a one on
the next transition.

7.5 ‘Softwafe Timers

The HSO can be.programmed to generate interrupts at
preset times. Up to four such “Software Timers” can be
in operation at a time. As each preprogrammed time is
reached, the HSO unit sets a Software Timer Flag. If
the interrupt bit in the command tag was set then a
Software Timer Interrypt will also be generated. The
interrupt service routine can then examine I/O Status
register 1 (I0OS1) to determine which software timer
expired and caused the interrupt. When the HSO resets
Timer 2 or starts an A to D conversion, it can also be
programmed to generate a software timer interrupt but
there is no flag to indicate that this has occurred.

If more than one software timer interrupt occurs in the
same time frame it is possible that multiple software
timer interrupts will be generated. .

Each read or test of any bit in IOS1 will clear bits O
through 5. Be certain to save the byte before testing it
-unless you are only concerned with 1 bit. See also Sec-
tion 11.5.

A complete listing of the functions of 10S0, I0S1, and
IOCI1 can be found .in Section 11. The Timers are de-
scribed in Section 5-and the HSI is described in Section 6.

1-36

8.0 ANALOG INTERFACE

The 8X9X can easily interface to analog signals using
its Analog to Digital Converter and its Pulse-Width-
Modulated (PWM) output and HSO Unit. There are 8
inputs to the 10-bit A to D converter on the 8X9XBH
and 8X9XJF. There are 4 inputs on the 8X98. The
PWM and HSO units provide digital signals which can
be filtered for use as analog outputs.

8.1 Analog Inputs

A to D conversion is performed on one input at a time
using successive approximation with a result equal to
the ratio of the input voltage divided by the analog
supply voltage. If the ratio is 1.00, then the result will
be all ones. The A/D converter is available on selected
members of the MCS-96 family. See Section 14 for the
device selection matrix.

Each conversion on the 8X9X requires 88 state-times
(22 ps at 12 MHz) independent of the accuracy desired
or value of input voltage. The input voltage must be in
the range of 0 to VRgF, the analog reference and supply
voltage. For proper operation, VR (the reference
voltage and analog power supply) must be ‘between
4.5V and 5.5V. The A/D result is calculated from the
formula: '

1023 X (input voltage-ANGND)/(Vrer-ANGND)

It can be seen from this formula that changes in VRgfp
or ANGND effect the output of the converter. This can
be advantageous if a ratiometric sensor is used since
these sensors have an output that can be measured as a
proportion of VREF.

ANGND must be tied to Vgg (digital ground) in order
for the 8X9X to operate properly. This common con-
nection should be made as close to the chip as possible,
and using good bulk and high frequency by-pass capaci-
tors to decouple power supply variations and noise
from the circuit. Analog design rules call for one and
only one common connection between analog and digi-
tal returns to eliminate unwanted ground variations.

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

The A/D converter has sample and hold. The sampling
window is open for 4 state times which are included in
the 88 state-time conversion period. The exact timings
of the A/D converter can be found in Section 3 of the
Hardware Design chapter.

8.2 A/ D Cpmmands

Analog signals can be sampled by any one .of the 8
analog input pins' (ACHO through ACH7) which are
shared with Port 0. ACH7 can also be used as an exter-
nal interrupt if IOCI1.1 is set (see Sections 4 and 11).
The A/D Command Register, at location 02H, selects
which channel is to be converted and whether the con-
version should start immediately or when the HSO
(Channel #0FH) triggers it. The A/D command regis-
ter must be written to for each conversion, even if the
_HSO is used as the trigger. A to D commands are for-
matted as shown in Figure 30.

The command register is double buffered so it is possi-
ble to write a command to start a conversion triggered
by the HSO while one is still in progress. Care must be
taken when this is done since if a new conversion is
started while one is already in progress, the conversion
in progress is cancelled and the new one is started.
When a conversion is started, the result register is
cleared. For this reason the result register must be read
before a new conversion is started or data will be lost.

8.3 A/D Besults

Results of the analog conversions are read from the
A/D Result Register at locations 02H and 03H. Al-
though these addresses are on a word boundary, they
must be read as individual bytes. Information in the
A/D Result register is formatted as shown in Figure
31. Note that the status bit may not be set until 8 state

A/D Command Register
(LOCATION 02H)
[r]e]s]afaf2liT0
x|x]x|]x|eo CH#
—— CHANNEL # SELECTS WHICH OF THE 8 ANALOG INPUT
* CHANNELS IS TO BE CONVERTED TO DIGITAL FORM,
L GO INDICATES WHEN THE CONVERSION IS TO BE
INITIATED (GO =1 MEANS START NOW, GO =0
MEANS THE CONVERSION IS TO BE INITIATED
BY THE HSO UNIT AT A SPECIFIED TIME).
' 270250-29
Figure 30. A/D Command Register
A/D RESULT REGISTER
(LOCATION 03H) (LOCATION 02H)
7TelsTaTal2T1To 7Te[sTafaf2T1To
MSB --ccvcvvnnnnn tsB | x x|s| cH#
A/D CHANNEL NUMBER
e STATUS
0 = A/D CURRENTLY IDLE
1 = CONVERSION IN PROCESS
A/D RESULT:
LEAST SIGNIFICANT 2 BITS.
MOST SIGNIFICANT BYTE
270250-30

Figure 31. A/D Result Register

1-37

intef

"MCS®-96 8X9X ARCHITECTURA‘LVOVERVIEW .

times after the go command, so it is necessary to wait 8
state times before testing it. Information on using the
HSO is in Section 7.

8.4 Pulse Width Modulation Output
~ (D/A)

Digital to analog conversion can be done with the Pulse
Width Modulation output; a block diagram of the cir-
cuit is shown in Figure 32. The 8-bit counter is incre-
mented every state time. When it equals 0, the PWM
output is set to a one. When the counter matches the
value in the PWM register, the output is switched low.
When the counter overflows, the output is once again
switched high:' A typical output waveform is shown in

Figure 33. Note that when the PWM register equals 00,
the output is always low. Additionally, the PWM regis-
ter will only be reloaded from the temporary latch
when the counter overflows. This means that the com-
pare circuit will not recognize a new value to compare
against until the counter has expired the remainder of
the current 8-bit count.

* The output waveform is a variable duty cycle pulse
which repeats every 256 state times (64 us at 12 MHz).
Changes in the duty cycle are made by writing to the
PWM register at location 17H. There are several types
of motors which require a PWM waveform for most
efficient operation. Additionally, if this waveform is in-
tegrated it will produce a DC level which can be
changed in 256 steps by varying the duty cycle.

DATA BUS x 8

TEMPORARY}S8, | PWM
tatcH 7P| recister '}
10C1.0
RELOAD COMPARE R SELECT| r1PwM/P2.5
l—-——.l s Q> LOGIC PIN
PWM _j ’'y T
COUNTER
P2.5
L-l INTERNAL CLOCK I OUTPUT
OVERFLOW 270250-31

® PWM Period (XTAL = 12 MHz) = 64 ps, Frequency = 15.625 KHz
 Duty Cycle Programmable in 256 Steps R

Figure 32. Pulse Width Modulated (D/A) Output

puTY PWM CONTROL
CYCLE REGISTER VALUE OUTPUT WAVEFORM
HI ’
! "% 00 Lo
o
10% 25 o N n
H
so% 128 wd L L L
Y HI
. - LI U
o m
99.6% 255 w0 |] 1

A " 270250-32

Figure 33. Typiéal PWM Outputs \

1-38

lnte[MCS®-96 8X9X ARCHITECTURAL OVERVIEW

Details about the hardware required for smooth, accu- Control of the serial port is handled through the Serial
rate D/A conversion can be found in Section 4 of the Port Control/Status' Register at location 11H. Figure
Hardware Design chapter. Typically, some form of 37 shows the layout of this register. The details of using it
buffer and integrator are needed to obtain the most use- to control the serial port will be discussed in Section 9.2.
fulness from this feature. R

Data to and from the serial port is transferred through
The PWM output shares a pin with Port 2, pin 5 so SBUF (rx) and SBUF (tx), both located at O7H. Al-
that these two features cannot be used at the same time. though these registers share the same address, they are
I0C1.0 equal to 1 selects the PWM function instead of physically separate, with SBUF (rx) containing the data
the standard port function. More information on I0C1 received by the serial port and SBUF (tx) used to hold
is in Section 11. . ! data ready for transmission. The program cannot write

to SBUF (rx) or read from SBUF (tx).

8.5 PWM Using the HSO The baud rate at which the serial port operates is con-

o . trolled by an independent baud rate generator. The in-

The HSO unit can be used to generate PWM wave- puts to this generator can be either the XTALI1 or the

. forms with very little CPU overhead. If the HSO is not ' T2CLK pin. Details on setting up the baud rate are
being used for other purposes, a 4 line PWM unit can given in Section 9.3.)

be made by loading the on and off times into the CAM
in sets of 4. The CAM would then always be loaded and

only 2 interrupts per PWM period would be needed. 9.1 Serial Port Modes

9.0 SERIAL PORT MODE 0

Mode 0 is a synchronous mode which is commonly
used for shift register based I/O expansion. In this
mode the TXD pin outputs a set of 8 pulses while the
RXD pin either transmits or receives data. Data is
transferred 8 bits at a time with the LSB first. A dia-
gram of the relative timing of these signals is shown in
Figure 34. Note that this is the only mode which uses
RXD as an output.

The serial port on the 8X9X has 3 asynchronous and
one synchronous mode. The asynchronous modes are
full duplex, meaning they can transmit and receive at
the same time. The receiver is double buffered so that
the reception of a second byte can begin before the first
byte has been read. The port is functionally compatible
with the serial port on the MCS-51 family of microcon-
trollers, although the software used to control the ports
is different.

e UL L
woten XXX XXX X

RXD (in) VALID VALID VALID . VALID VALID VALID VALID VALID
e N M e ed e e e e e d e]]]] e

270250-34

Figure 34. Serial Port Mode 0 Timing

1-39

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW -

Although.it is not possible to transmit and receive at
the same time using this mode, two external gates and a
port pin can be used to time-multiplex the two func-
tions. An. example of multiplexing transmit and receive
is discussed in Section 6.1 of the Hardware Design
chapter.

MODE 1

Mode 1 is the standard asynchronous communications
mode. The data frame used in this mode is shown in
Figure 35. It consists of 10 bits; a start bit (0), 8 data
bits (LSB ﬁrst), and a stop bit (1). If parity is enabled,
(the PEN bit is set to a'1), an even parlty bit is sent
instead of the 8th data bit and panty 1s checked on
reception.

MODE 2

Mode 2 is the asynchronous 9th bit recognition mode.
This mode is commonly used with Mode 3 for multi-
processor communications. Figure 36 shows the data
frame used in this mode. It consists of a start bit (0), 9
data bits (LSB first), and a stop bit (1). When transmit-
ting, the 9th bit can be set to a one by setting the TB8
bit in the control register before writing to SBUF (tx).
The TB8 bit is cleared on every transmission, so it must
be set prior to writing to SBUF (tx) each time it is
desired. During reception, the serial port interrupt and
the Receive Interrupt (RI) bit will not be set unless the
9th bit being received is set. This provides an easy way
to have selective reception on a data link. Parity cannot
be enabled in this mode.

MODE 3

Mode 3 is the asynchronous 9th bit mode. The data
frame for this mode is identical to that of Mode 2. The
transmission differences between Mode 3 and Mode 2
are that parity can be enabled (PEN =1) and cause the
9th data bit to take the even parity value. The TB8 bit
can still be used if parity is not enabled (PEN=0).
When in Mode 3, a reception always causes an inter-
rupt, regardless of the state of the 9th bit. The 9th bit is
stored if PEN=0 and can be read in bit RBS. If
PEN=1 then RB8 becomes ihe Receive Parity Error
(RPE) flag.

9.2 Controlling the Serial Port

Control of the serial port is' done through the Serial
Port Control (SP_CON) and Serial Port Status
(SP__STAT) registers shown in Figure 37. Writing to
location 11H accesses SP_CON while reading it access
SP__STAT. Note that reads of SP__STAT will return
indeterminate data in the lower 5 bits and writing to the
upper 3 bits of SP__CON has no -effect. on chip func-
tionality. The TBS bit is cleared after each transmission
and both TI and RI are cleared whenever
SP__STAT (not SP__CON) is accessed. Whenever the
TXD pin is used for the serial port it must be enabled
by setting IOC1.5 to a 1. IOC1 is discussed further in
Section 11.3. Information on the hardware connections
and timing of the serial port is in Section 6 of the Hard-
ware Design chapter.

fe—

s7om\ sman /6 X o1 X B2 X5 X B X5 X58 X 57 / svor

10-BIT FRAME

270250-35

Figure 35. Serial Port Frame—Mode 1

srop\srAnimemeXmeJnsXmﬂm/srop
]’*——i——

8BITSOFDATA ~ ————>] 1
PROGRAMMABLE STH BIT
1

| 11-BIT FRAME

27025036

Figure 36. Serial Port Frame Modes 2 and 3

1-40

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

LOCATION 11H
SP_STAT SP_CON
- (READ ONLY) (WRITE ONLY)
7 [] ~ 8 4 3 2 1 /]
RBO/RPE R n 88 REN PEN M2 M1)

]

—_—

NOTE:
Tl and Rl are cleared when SP__STAT is read.

L M2, M1 SPECIFIES THE MODE,

PEN

m

RB8
RPE

0.0 = MODE 0
0,1 = MODE 1
1.0 = MODE 2
1.1 = MODE 3

ENABLE THE PARITY FUNCTION (EVEN PARITY),
ENABLES THE RECEIVE FUNCTION:

PROGRAMS THE 9TH DATA BIT (IF NOT PARITY) ON
TRANSMISSION,

IS THE TRANSMIT INTERRUPT FLAG,

IS THE RECEIVE INTERRUPT FLAG, '

IS THE 9TH DATA BIT RECEIVED (IF NOT PARITY),
IS THE PARITY ERROR INDICATOR (IF PARITY ACTIVE).

270250-33

Figure 37. Serial Port Control/Status Register

In Mode O, if REN = 0, writing to SBUF (tx) will start
a transmission. Causing a rising edge on REN, or clear-
ing RI with REN = 1, will start a reception. Setting
REN = 0 will stop a reception in progress and inhibit
further receptions. To avoid a partial or complete unde-
sired reception, REN must be set to zero before RI is
cleared. This can be handled in an interrupt environ-
ment by using software flags or in straight-line code by
using the Interrupt Pending register to signal the com-
pletion of a reception.

In the asynchronous modes, writing to SBUF (tx) starts
a transmission. A falling edge on' RXD will begin a
reception if REN is set to 1. New data placed in SBUF
(tx) is held and will not be transmitted until the end of
the stop bit has been sent.

In all modes, the RI flag is set after the last data bit is
sampled approximately in the middle of the bit time.
Also for all modes, the TI flag is set after the last data
bit (either 8th or 9th) is sent, also in the middle of the
bit' time. The flags clear when SP__STAT is read, but
do not have to be clear for the port to receive or trans-
mit. The serial port interrupt bit is set as a logical OR
of the RI and TI bits. Note that changing modes will
feset the Serial Port and abort any transmission or re-
ception in progress on the channel. If the Tx and Rx
pins are tied together for loopback testing, the RI flag
will be written first.

1-41

9.3 Determining Baud Rates

Baud rates in all modes are determined by the contents
of a 16-bit register at location 000EH. This register
must be loaded sequentially with 2 bytes (least signifi-
cant byte first). The serial port will not function be-
tween the loading of the first and second bytes. The
MSB of this register selects one of two sources for the
input frequency to the baud rate generator. If itis a 1,
the frequency on the XTALI pin is selected, if not, the
external frequency from the T2CLK pin is used. It
should be noted that the maximum speed of T2CLK is
one transition every 2 state times, with-a minimum pe-
riod of 16 XTALI! cycles. This provides the needed -
synchronization to the internal serial port clocks.

The unsigned integer represented by the lower 15 bits
of the baud rate register defines a number B, where B
has a maximum value of 32767. The baud rate for the
four serial modes using either XTAL1 or T2CLK as
the clock source is given by:

Using XTAL1: ‘ :

Baud _ XTAL1 frequency

Mode 0: poie e+

B#0

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW '

Baud _ XTAL1 frequency
- O Rate = g8 + 1)
Using T2CLK:
Baud _ T2CLK frequency
Mode 0: Rate = B B+#0
Baud _ T2CLK frequency
Others: Rate — —16"—8*——— ; B#0

Note that B cannot equal 0, except when using XTAL1
in other than mode 0.

Common baud rate values, using XTAL1 at 12 MHz,
. are shown below.

\

Baud Baud Register Value
Rate Mode 0 Others
9600 8137H 8013H -
4800 8270H 8026H
2400 84E1H 804DH
1200 89C3H 809BH
300 A70FH '8270H

The maximum baud rates are 1.5 Mbaud synchronous
and 187.5 Kbaud asynchronous with 12 MHz on
XTALL. .

9.4 Multiprocessor Communications

Mode 2 and 3 are provided for multiprocessor commu-
nications. In Mode 2 if the received 9th data bit is not
1, the serial port interrupt is not activated. The way to
use this feature in multiprocessor systems is described
below.)

When the master processor wants to transmit a block of
data to one ‘of several slaves, it first sends out an ad-
dress frame which' identifies the target slave. An ad-
dress frame will differ from a data frame in that the 9th
data bit is 1 in an address frame and O in a data frame.

Slaves in Mode 2 will not be interrupted by a data
frame. An address frame, however, will interrupt all
. slaves so that each slave can examine the received byte
and see if it is being addressed. The addressed slave
switches to Mode 3 to receive the coming data frames,
while the slaves that were not addressed stay in Mode 2
and go 'on about their business.

10.0 1/0 PORTS

There are five 8-bit I/O ports on the 8096. Some of
these ports are input only, some are output only, some
are bidirectional.and some have alternate functions. In
addition to these ports, the HSI/O unit can be used to

1-42

(

provide extra I/0 lines if the timer related features of
these lines are not needed.

Input ports connect to the internal bus through an in-
put buffer. Output ports connect through an output
buffer to an internal register that hold the bits to be
output. Bidirectional ports consist of an internal regis-
ter, an input buffer, and an output buffer.

Port 0 is an input port which is also used as the analog
input for the A to D converter. Port 1 is a quasi-bidi-
rectional port. Port 2 contains three types of port lines:
quasi-bidirectional, input and output. The input and
output lines are shared with other functions in the
8X9X as shown in Table 4. Ports 3 and 4 are open-
drain bidirectional ports which share their pins with the
address/data bus.)

Table 4. Port 2 Alternate Functions

Port | Function Alternate Controlled
Function by
P2.0 | Output TXD (Serial Port 10C1.5
Transmit)
P2.1 | Input RXD (Serial Port N/A
Receive M1-3)
Output RXD (Serial Port
. Output MO)
P2.2 | Input EXTINT 10C1.1
(External Interrupt)
P2.3 | Input T2CLK (Timer 10C0.7
2 Input)
P2.4 | Input T2RST (Timer 10C0.5
2 Reset)
P2.5 | Output | PWM 110C1.0
(Pulse-Width
Modulation)
P2.6 Quasi-Bidirectional
P2.7 Quasi-Bidirectional

Section 2 of the Hardware Design chapter contains ad-
ditional information on the timing, drive capabilities, -

and input impedances of 1/0 pins.

10.1 Input Ports

Input ports and pins can only be read. There are no
output drivers on these pins. The input leakage of these
pins is in the microamp range. The specific values can
be found in the data sheet for the dev1ce bemg consid-
ered

In addition to acting as a digital inpuf, each line of Port
0 can be selected to be the input of the A to D converter
as discussed in Section 8. The pins on Port 0 are testéd

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

. to have D.C. leakage of 3 microamps or less, as speci-

fied in-the data sheet for the device being considered.
The capacitance on these pins is approximately 5 pF
and will instantaneously increase by around 5 pF when
the pin is being sampled by the A to D converter.

The 8X98 devices only have 4 Port O pins. . .

The 8X9X samples the input to the A/D for 4 state
times at the beginning of the conversion. Details on the
A to D converter can be found in Section 8 of this
chapter and in Section 3 of the Hardware Design chap-
ter.

10.2 Quasi-Bidirectional Ports

Port 1, Port 2.6 and Port 2.7 are quasifbidirectional
ports, Port 1, Port 2.6 and Port 2.7 are not available on
the 8X98. “Quasi-bidirectional” means that the port
pin has a weak internal pullup that is always active and
an internal pulldown which can be on to output a 0, or
off to output a 1. If the internal pulldown is left off (by
writing a 1 to the pin), the pin’s logic level can be con-
trolled by an external pulldown. If the external pull-
down is on, it will 1 input a 0 to the 8X9X, if it is off, a 1
will be input. From the user’s point of view, the main
difference’ between a quasi-bidirectional port and a
standard input port is that the quasi-bidirectional port
will source current if externally pulled low. It will also
pull itself high if left unconnected.

In parallel with the weak internal pullup is a2 much
stronger internal pullup that is activated for one state
time when the pin is internally driven from O to 1. This
is done to speed up the O-to-1 transition time. When

and leave the pin pulled up with a relatively high im-
pedance pullup device which can be easily driven down
by the device driving the input.

If some pins of a port are to be used as inputs and some
are to be used as outputs the programmer should be
careful when writing to the port.

Particular care should be exercised when using XOR
opcodes or any opcode which is a read-modify-write
instruction. It is possible for a Quasi-Bidirectional Pin
to be written as a one, but read back as a zero if an
external device (i.e., a transistor base) is pulling the pin
below Viy. See the Hardware Design Chapter Section
2.2 for further details on using the Quasi-Bidirectional

Ports.

this pullup is on the pin can typically source 30 milli- -

amps to Vgs.

When the processor writes to the pins of a quasi-bidi-
rectional port it actually writes into a register which in
turn drives the port pin. When the processor reads
these ports, it senses the status of the pin directly. If a
port pin is to be used as an input then the software
should write a one to its associated SFR bit, this will
cause the low-impedance pull-down device to turn off

LD intreg, portdata

we weo

ST intreg, 1FFEH

’

1-43

10.3 Output Ports

Output pins include the bus control lines, the HSO
lines, and some of Port 2. These pins can only be used
as outputs as there are no input buffers connected to
them. It is not possible to use immediate logical instruc-
tions such as XOR PORT2, #00111B to toggle these -
pins. The output currents on these ports is higher than
that of the quasi-bidirectional ports.

10.4 Ports 3 and 4/AD0-15.

These pins have two functions. They are either bidirec-
tional ports with open-drain outputs or System Bus
pms which the memory controller uses when it is acces-
ing off-chip memory. If the EA line is low, the pins
always act as the System Bus. Otherwise they act as bus
pins only during a memory access. If these pins are -
being used as ports and bus pins, ones must be written
to them prior to bus operations.

Accessing Port 3 and 4 as 1/0 is easily done from inter-
nal registers. Since the LD and ST instructions require
the use of internal registers, it may be necessary to first
move the port information into an internal location be-
fore utilizing the data. If the data is already internal,
the LD is unnecessary. For instance, to write a word
value to Port 3 and 4 .

register <«— data)
not needed if already internal

register — Port 3 and 4 "

Intef

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

To read Port 3 and 4 requires that “ones” be written to the port registers to first setup the input port configuration
circuit: Note that the ports are reset to this input condition, but if zeroes have been written to the port, then ones
must be re-written to any pins whlch are to be used as inputs. Reading Port 3 and 4 from a previously written zero

condition is as follows .

LD intregA, #OFFFFH ; setup port change mode pattern.

ST 'intregA, 1FFEH ;s register — Port 3 and 4
) ’ ;s LD & ST not needed if previously

; written as ones

LD intregB, 1FFEH

; register €« Port 3 and 4

Note that while the format of the LD and ST instructions are similar, the source and destination directions change.

When acting as the system bus the pins have strong'

drivers to both Vcc and Vgs. These drivers are used
whenever data is being output on the system bus and
are not used when data is being output by Ports 3 and
4. Only the pins and input buffers are shared between
the bus and the ports. The ports use different output
buffers which are configured as open-drain, and require
pullup resistors. (open-drain is the MOS version of
' open-collector.) The port pins and their system, bus,
functions are shown in Table 5.

Table 5. P3,4/AD0-15 Pins ~

Portpin | SystemBus -
Function

P3.0 ADO
P3.1 AD1
P3.2 AD2
P3.3 AD3
P3.4 AD4
P3.5 AD5
P3.6 AD6
P3.7 AD7
P4.0 ADS8
P41 AD9
P42 AD10
/ P4.3 - AD11
P4.4 AD12
P45 AD13
P4.6 AD14
P4.7 AD15

11.0 STATUS AND CONTROL
REGISTERS

There are two 1/0 Control registers, IOCO and IOC1. *
IOCO controls Timer 2 and the HSI lines. IOC1 con-
trols some pin functions, interrupt sources and 2 HSO
pins.

Whenever input lines are switched between two sourc-
es, or enabled, it is possible to generate transitions on
these lines. This could cause problems with respect to
edge sensitive lines such as the HSI lines, Interrupt line,
and Timer 2 control lines.

11.1 1/0 Control Register 0 (I0C0)

IOCO is located at 0015H. The four HSI lines can be
enabled or disabled to the HSI unit by setting or clear-
ing bits in IOCO. Timer 2 functions including clock and
reset sources are also determined by I0CO. The control
bit locations are shown in Figure 38. IOCO is for initial-
ization only.

— HSLO INPUT ENABLE / DISABLE

— TIMER 2 RESET EACH WRITE

— HSI.1 INPUT ENABLE / DISABLE

— TIMER 2 EXTERNAL RESET ENABLE / DISABLE
— HSI.2 INPUT ENABLE / DISABLE

— TIMER 2 RESET SOURCE HSI.0 / T2RST

— HSL3 INPUT ENABLE / DISABLE

[— TIMER 2 CLOCK SOURCE Hsl.1 / T2CLK

‘ 270250-37

Figure 38. 1/0 Control Register 0 (10C0)

Lelofofsfef~]-]]

intel

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

11.2 1/0 Control Register 1 (I0C1)

IOCl1 is used to select some pin functions and enable or
disable some interrupt sources. Its location is 0016H.
Port pin P2.5 can be selected to be the PWM output
instead of a standard output. The external interrupt
source can be selected to be either EXTINT (same pin
as P2.2) or Analog Channel 7 (ACH7, same pin as
-P0.7). Timer 1 and Timer 2 overflow interrupts can be
individually enabled or disabled. The HSI interrupt can
be selected to activate either when there is 1 FIFO en-
try or 7. Port pin P2.0 can be selected to be the TXD
output. HSO.4 and HSO.5 can be enabled or disabled
to the HSO unit. More information on interrupts is
available in Section 4. The positions of the 10C1 con-
trol bits are shown in Figure 39.

11.3 1/0 Status Register 0 (10S0)

There are two 1/0 Status registers, IOSO and I10S1.
1080, located at 0015H,-holds the current status of the
HSO lines and CAM. The status bits of I0SO are
shown in Figure 40.

SELECT PWM / SELECT P2.5

EXTERNAL INTERRUPT ACH7 / EXTINT

TIMER 1 OVERFLOW INTERRUPT ENABLE / DISABLE
TIMER 2 OVERFLOW INTERRUPT ENABLE / DISABLE
HS0.4 OUTPUT ENABLE / DISABLE

SELECT TXD / SELECT P2.0

HS0.5 OUTPUT ENABLE / DISABLE

HSI INTERRUPT
FIFO FULL / HOLDING REGISTER LOADED

'270250-38

Figure 39.1/0 antrdl Register 1 (10C1) 1 .

HSO0.0, CURRENT STATE

HSO.1 CURRENT STATE

HS0.2 CURRENT STATE

HS0.3 CURRENT STATE

HSO0.4 CURRENT STATE

HSO0.5 CURRENT STATE

CAM OR HQLDING REGISTER IS FULL
HSO HOLDING REGISTER IS FULL

Njojulsjuln

270250-39

Figure 40. I/0 Status Register 0 (10S0)

1-45

(=]

SOFTWARE TIMER O EXPIRED

SOFTWARE TIMER 1 EXPIRED

SOFTWARE TIMER 2 EXPIRED

SOFTWARE TIMER 3 EXPIRED

TIMER 2 HAS OVERFLOW

TIMER 1 HAS OVERFLOW

HSI FIFO IS FULL

HSI HOLDING REGISTER DATA AVAILABLE

-

NjojJujlsjulN

N 270250-40

Figure 41. HSIQ Status Register 1 (10S1)

11.4 1/0 Status Register 1 (10S1)

IOS1 is located at 016H. It contains status bits for the
timers and the HSI/O. The positions of these bits are
shown in Figure 41.

Whenever the processor reads this reéister all of the
time-related flags (bits 5 through 0) are cleared. This
applies not only to explicit reads such as:

LDB AL, IOS1

but also to implicit reads such as:

JB I0S1.3,somewhere_else
which jumps to somewhere__else if bit 3 of IOS1 is set.
In most cases this situation can best be handled by hay-
ing a byte in the register file which is-used to maintain
an image of lower five bits of the register. Any time a
hardware timer interrupt or a HSO software timer in-
terrupt occurs the byte can be updated:

ORB I0Sl_image,I0S1
leaving I0S1__image containing all the flags that were
set before plus all the new flags that were read and
cleared from I0S1. Any other routine which needs to
sample the flags can safely check I0S1__image. Note
that if these routines need to clear the flags that they
have acted on, then the modification of I0S1_.image
must be done from inside a critical region (see Section
4. 4)

intef

MCS®-96 8X9X ARCHITECTURAL OVERVIEW

12.0 WATCHDOG TIMER
The WatchDog Timer (WDT) provides a means to re-

cover gracefully from a software upset. When the

watchdog is enabled it will initiate. a hardware reset
unless the software clears it every 64K state times.

The WDT is implemented as an 8-bit timer with an
8-bit prescaler. The prescaler is not synchronized, so
the timer will overflow between 65280 and 65535 state
times after being reset. When the timer overflows it
pulls down the RESET pin for at least one state time,
resetting the 8X9X and any other devices tied to the
RESET line. If a large capacitor is- connected to the
line, the pin may take a long time to go low. This will
effect the length of time the pin is low and the voltage
on the pin when it is finished falling. Section 1.4 of the
Hardware Design chapter contains more information
about ieset hardware connections.

The WDT is enabled the first time it is cleared. Once it
is enabled, it can only be disabled by resetting the
8X9X. The internal bit which controls the watchdog
can typically maintain its state through power glitches
as low as Vgg and as high as 7.0V for up to one millisec-
ond. o

Enabling and clearing the WDT is done by writing a
“01EH” followed by a “OE1H” to the WDT register at
location 0AH. This double write is used to help prevent
accidental clearing of the timer.

12.1 Software Protection Hints

Glitches and noise on the PC board can cause software
upsets, typically by changing either memory locations
or the program counter. These changes can be internal
to the chip or be caused by bad data returning to the
chip. “ . ' .

There are both hardware and software solutions to
noise problems, but the best solution is good design
practice and a few ounces of prevention. The software

. can be designed so that the watchdog times out if the
program does not progress properly. The watchdog will
also time-out if the software error was due to ESD
(Electrostatic Discharge) or other hardware related
‘problems. This prevents the controller from having a
malfunction for longer than 16 milliseconds if a 12
MHz oscillator is used.

When using the WDT to protect software it is desirable
to reset it from only one place in code. This will lessen
the chance that an undesired WDT reset will occur.

The section of code that resets the WDT should moni-

tor the other code sections for proper operation. This
can be done by checking variables to make sure they

1-46

are within reasonable values. Simply using a software
timer to reset the WDT every 15 milliseconds will not
provide much protection against minor problems.

It is also recommended that unused areas of code be
filled with NOPs and periodic jumps to an error routine
or RST (reset chip) instructions. This is particularly
important in the code around lookup tables, since if
lookup tables are executed undesired results will occur..
Wherever space allows, each table should be surround-
ed by 7 NOPs (the longest 8096 instruction has 7 bytes)
and a RST or jump to error routine instruction. Since
RST is a one-byte instruction, the NOPs are not needed
if RSTs are used instead of jumps to an error routine.
This will help to ensure a speedy recovery should the
processor have a glitch in the program flow. Since RST
instruction has an opcode of OFFH, pulling the data
lines high with resistors will cause an RST to be execut-
ed if unimplemented memory is addressed.

12.2 Disabling The Watchdog

The watchdog should be disabled by software not ini-

tializing it. If this is not possible, such as during pro-

gram development, the watchdog can be disabled by

holding the RESET pin at 2.0V to 2.5V. Voltages over .
2.5V on the pin could quickly damage the device. Even’
at 2.5V, using this technique for other than debugging

purposes is not recommended, as it may effect long

term reliability. It is further recommended that any de-

vice used in this way for more than several seconds, not

be used in production versions of products. Section 1.6

of the Hardware Design chapter has more information

on disabling the Watchdog Timer.

13.0 RESET

13.1 Reset Signal

As with all processors, the 8X9X must be reset each
time the power is turned on. This is done by holding the
RESET pin low for at least 2 state times after the power
supply is within tolerance and the oscillator has stabi-

lized. (See Figure 44, TRLPV.) '

After the RESET pin is brought high, a ten state reset
sequence is executed. During this time, the Chip Con-
figuration Byte (CCB) is read from location 2018H and
written to the 8X9X Chip_Configuration Register
(CCR). If the voltage on the EA pin selects the inter-
nal/external execution mode the CCB is read from in-
ternal ROM/EPROM. If the voltage on .the- EA pin
selects the external execution only mode the CCB is
read from external memory.

intel

MCS©®-96 8X9X ARCHITECTURAL OVERVIEW

The 8X9X can be reset using a capacitor, 1-shot, or any
other method capable of providing a pulse of at least 2
state times longer than required for Vcc and the oscil-
lator to stabilize.)

For best functionality, it is suggested that the reset pin
be pulled low with an open collector device. In this
way, several reset sources can be wire ORed together.
Remember, the RESET pin itself can be a reset source
when the RST instruction is executed or when the
Watchdog Timer overflows. Details of hardware sug-
gestions for reset can be found in Section 1.4 of the
Hardware Design chapter.

13.2 Reset Status

The 1/0 lines and control lines of the 8X9X will be in
their reset state within 10 XTAL1 periods after reset is
low, with Ve and the oscillator stabilized (See Figure
44, TRLPYV). Prior to that time, the status of the I/O
lines is indeterminate. After the 10 state time reset se-
quence, the Special Function Registers will be set as
follows:

Register Reset Value
Port 1 XXXXXXXXB
“Port2 XXOXXXX1B
Port3 11111111B
Port 4 11111111B
PWM Control OOH
Serial Port (Transmit) undefined
Serial Port (Receive) undefined
Baud Rate Register undefined
Serial Port Control XXXX0XXXB
Serial Port Status X0OXXXXXB
A/D Command undefined
A/D Result undefined
Interrupt Pending undefined
Interrupt Mask 00000000B
Timer 1 0000H
Timer 2 0000H
Watchdog Timer 0000H
HSI Mode XXXXXXXXB
HSI Status undefined
1080 000000008
1081 00000000B
10C0 X0X0X0X0B
10C1 XOX0XXX1B
HSI FIFO empty
HSO CAM empty
HSO SFR 000000B
PSW 0000H
Stack Pointer undefined
Program Counter 2080H

Figure 42. Register Reset Status

1-47

Port 1 and Port 2.6, 2.7 reset to a strong or weak pull-
up condition. HSO.4 and HSO.5 reset to a floating con-’
dition as they are disabled by I0C1.4 and I0CI1.6.

Other conditions following a reset are:

Pin Reset Value
RD high
WR/WRL high
ALE/ADV high
BHE/WRH high
INST low
HSO Lines XX0000B

Figure 43. Bus Control Pins Reset Status

It is important to note that the Stack Pointer and Inter-
rupt Pending Register are undefined, and need to be
initialized in software. The Interrupts are disabled by
both the mask register and PSW.9 after a reset.

13.3 Reset Sync Mode

The RESET line can be used to start the 8X9X at an
exact state time to provide for synchronization of test
equipment and multiple chip systems. RESET is active
low. To synchronize devices, RESET is brought high
on the rising edge of XTAL1. Complete details on syn-
chronizing devices can be found in Section 1.5 of the
Hardware Design chapter.

It is very possible that devices which start in sync may
not stay that way. The best example of this would be
when a “jump on I/0 bit” is being used to hold the
processor in a loop. If the line changes during the time
it is being tested, one processor may see it as a one,
while the other sees it as a zero. The result is that one
processor will do an extra loop, thus putting it several
states out of sync with the other.

Inter , MCS®-96 8X9X ARCHITECTURAL OVERVIEW

Power Supply kise Time
5.5Vpe

4.5Vpe

Start Time from Power Supply Rise to External Output Low

AU
I m I SR

HS0.0-HS0.3, x
P2.0,P2.5 ‘
10 STATE TIMES ‘
WiTH PuLiUps | Aboress HoataH Appress |
20184 . CCB 2080H
Trupy = 10 XTAL CYCLES - FIRST BUS FETCH CYCLE Fg‘?::?“
External RESET Low to
Port Valid Time RESET FUNCTION REGISTERS I

TOTAL 8X9XJF RESET TIME

270250-43

Figure 44. TRLPV

1-48

MCS®.96 8X9X Hardware 2

Design Information and
Data Sheets

- November 1990

8X9X HARDWARE DESIGN
| INFORMATION

2-1

Order Number: 270246-004
N .

8X9X HARDWARE DESIGN INFORMATION

CONTENTS

PAGE
OVERVIEWoooiveeieiilinnnn 2.3
1.0 REQUIRED HARDWARE
CONNECTIONS e 23
1.1 Power Supply Information 23
1.2 Other Needed Connections 2-3
1.3 Oscillator Information:.... 2:3
1.4 Reset Information 2-5
1.5SyncModels 2-8
1.6 Disabling the Watchdog Timer 2-8
1.7 Power Down Circuitry 2-9
2.0 DRIVE AND INTERFACE
LEVELScooiiiiiiiiiiiiiiaenns 2-9
* 2.1 Quasi-Bidirectional Ports 2-9
2.2 Quasi-Bidirectional Hardware
Connectionsoovunll. 2-9
23 InputOnlyPorts 2-11
2.4 OpenDrainPorts 2-11
2.5 HSO Pins, Control Outputs and
BusPinscooooviiiiin 2-12
30ANALOG|NPUTS............ 2-12
3.1 A/DOVerview :......c............ 2413
3.2 A/D Interface Suggestlons 2-13
3.3 Analog References 2-14
3.4 The A/D Transfer Function 2-14
3.5A/D Glossary of Terms 219
4.0 ANALOG OUTPUTS 220
50//OTIMINGS 221
5.1 HSO Outputs 2-21
5.2 HSI Input Sampling 2-21.
5.3 S.tgndard I/OPortPins 2-22
6.0 SERIAL PORT TIMINGS 2-22
6.1ModeOoooeiiiiiiiil 2-22
6.2 Mode 1 Timings 2-22
6.3 Mode 2and 3 Timings 2-23
7.0 BUS TIMING AND MEMORY
INTERFACE0..... 2-23
7.1 Bus Functionality 2-23
7.2 Timing Specifications 2-24
7.3 READY LineUsage 2-24
: e 2.27

7:4 INST Line Usage ..

2.2/

CONTENTS PAGE
7.5BUSWIDTH PinUsage 227
7.6 Address Decoding 2-27

_ 7.71/0 Port Reconstruction 2-30

8.0 NOISE PROTECTIONTIPS 2-30

90PACKAGING 2-30

10.0 USING THE EPROM:....... 2-32
10.1 Power-Up and Power-Down 2-32
10.2 Reserved Locations 2-33
10.3 Auto Configuration Byte

ProgrammingMode 2-35
10.4 Auto Programming Mode 2-36

10.4.1 Auto Programming Mode
and the CCB/PCCB 2-36

10.4.2 Gang Programming with the

Auto Programming Mode 2-36
10.5 Slave Programming Mode 238
10.5.1 Slave Programming
Commandsc...... 2-38
10.5.2 Gang Programming with the
 Slave Programming Mode 2-39
110.5.3 Slave Programming Mode
© and the CCB/PCCB 2.39
10.6 Run-Time Programming 2-39
10.6.1 Run-Time Programming and
the CCB/PCCB 2-40
10.7 ROM/EPROM Program Lock 2:41
10.7.1 Lock Features 2-41
10.7.2 ROM Dump Mode 2-42
10.8 Modified Quick-Pulse
Programming™ Algorithm % 2-42
10.9 SignatureWord 242
10.10 Erasingthe EPROM 242"
11.0 QUICK REFERENCE 2.42
11.1 Pin Description 2-42
11.2PinList ..ot 2-45,
11.3Packagingcoooily 2-46
11.4 Package Diagrams 2-47
11.5MemoryMape 2-49
11.6 Instruction Summary 2-50
11.7 Opcode and State Time Listing .. 2-52
“41.8SFRSummary 2.55

intel’

8X9X HARDWARE DESIGN INFORMATION

OVERVIEW

This chapter of the manual is devoted to the hardware
engineer. All of the information you need to connect

lems due to voltage drops across the wiring. There
should be no measurable voltage difference between
Vss1 and Vgg;. The two Vgg pins and the ANGND pin

" must all be nommally at 0 volts. The maximum current

the correct pin to the correct external circuit is provid- -

ed. Many of the special function pins have different
characteristics which are under software control.
Therefore, it is necessary to define the system oomplete-
ly before the hardware is w1red-up

Frequently within this chapter a specification for a cur-
rent, voltage, or time period is referred to; the values
provided are to be used as an approximation only. The
exact specification can be found in the latest data sheet
for the particular device and temperature range that is
being used.

This chapter is written about 8X9XBH, 8X9XJF, and
8X98 devices. These devices are generically referred to
asthe 8X9X. All information in this chapter refers to
the 8X9XBH, the 8X9XJF, and the 8X98 unless other-
wise noted.

1.0 REQUIRED HARDWARE
CONNECTIONS

Although the 8X9X is a single-chip microcontroller, it
still requires several external connections to make it
work. Power must be applied, a clock source provided,
and some form of reset circuitry must be present. We
will look at each of these areas of circuitry separately.
Figure 6 shows the connections that are needed for a
single-chip system.

1.1 Power Supply Information

Power for the 8X9X flows through six pins. They are:
three positive voltage pins—V¢c (digital), VRer (Port
0 digital I/O and A/D power), Vpp (power down
mode), and three common returns—two Vgg pins and
one ANGND pin. All six of these pins must be con-
nected on the 8X9X for normal operation. The Vcc
pin, Ve 'pin and Vpp pin should be tied to 5 volts.
The two Vgg pins and the ANGND pin must be
groundeéd. When the analog to digital converter is being
used it may be desirable to connect the VREF pin to a
separate power supply, or at least a separate power sup-
ply line.

The three common return pins should be connected at
the chip with as short a lead as possible to avoid prob-

drain of the 8X9X is around 180 mA, with all lines
unloaded

When the analog converter is being used, clean, stable
power must be provided to the analog section of the

_chip to assure highest accuracy. To achieve this, it may

be desirable to separate the analog power supply from
the digital power supply. The VRgp pin supplies the
digital circuitry in the A/D converter and provides the
S volt reference to the analog portion of the converter.
Vrer and ANGND must be connected even if the
A/D converter is not used. More information on the
analog power supply is in Section 3.1. !

1.2 ‘Othér Neéded Connections

Several other. connections are needed to configure the
8X9X. In normal operation the following pins should

be connected to the indicated power supply.

Pin Power Supply
NMI Veo
EA Ve (to allow internal execution)

'Vgg (to force external execution)

Although the EA pin has an internal pulldown, it is
best to tie this pin to the desired level. This will prevent
induced noise from disturbing the system. Raising EA
to +12.75 volts will place an 8X9X in a special operat-
ing mode des1g{1ed for programmmg and program
memory verification (see Section 10).

1.3 Oscillator Information

The 8X9X requires a clock source to operate. This
clock is provided to the chip through the XTAL1 in-
put. The frequency of operatlon is from 6 MHz to
12 MHz.

The on-chip circuitry for the 8X9X oscillator is a single
stage linear inverter as shown in Figure 1. It is intended
for use as a crystal-controlled, positive reactance oscil-
lator with external connections as shown in Flgure 2.
In this application, the crystal is being operated in ifs
fundamental response mode as an inductive reac-

23

intel

8X9X HARDWARE DESIGN INFORMATION

tance in parallel resonance with shunt capacnance ex-
ternal to the crystal.

The crystal specifications and capacitance values (C1
and C2 in Figure 2) are not critical. Thirty picofarads
can be used in these positions at any frequency ‘with
good quality crystals. For 0.5% frequency accuracy,
the crystal frequency can be specified at series reso-
nance or for parallel resonance with any load capaci-
tance. (In other words, for that degree of frequency
accuracy, the load capacitance simply doesn’t matter.)
For 0.05% frequency accuracy the crystal frequency

TO DIVIDER CIRCUITRY v
CC
[——
k=) ﬁ i
Qs
Q1
>
3
SUBSTRATE
O xrar1 XTAL2 [j
270246-1

Figure 1. 8X9X Oscillator Circuit

DIVIDER CIRCUITRY
——

a3/
vt
WA—

270246-2

Figure 2. Crystal Oscillator Circuit

2-4

should be specxﬁed for parallel resonance with 25 pF -

load capacitance, if C1 and C2 are 30 pF.

An external oscillator may encounter as fauch as a
100 pF load at XTAL1 when it starts up. This is due to
interaction between the amplifier and its feedback ca-
pacitance. Once the external signal meets the Vi1 and
Vig specifications the capacitance will not exceed
20 pF.

A more in-depth- dlscusslon of crystal specifications and
the selection of values for C1 and C2 can be found in
the Intel Apphcatlon Note, AP-155 “Oscillators for
Microcontrollers.”

To drive the 8X9X with an external clock source, apply
the external clock signal to XTAL1 and let XTAL2
float. An example of this circuit is shown in Figure 3.
The required voltage levels on XTAL1 are specified in
the data sheet. The signal on XTAL1 must be clean
with good solid levels.

It is important that the minimum high and low times
are met to avoid having the XTAL1 pin in the tran-
sition range for long periods of time. The longer the
signal is in the transition region, the higher the proba-
bility that an external noise glitch could be seen by the
clock generator circuitry. Noise glitches on the 8X9X
internal clock lines will cause unreliable operation.

The clock generator provides a 3 phase clock output
from the XTALI1 pin input. Figure 4 shows the wave-
forms of the major internal timing signals.

DIVIDER CIRCUITRY

XTAL2
.FLOAT

270246-3

Figure 3. External Clock Drive

8X9X HARDWARE DESIGN INFORMATION

ew LALLM
| onestaTETIME |

eaam [\ [\ \

PHASE B [\ [\

PHASE B-C [' (| _J/

Figure 4. Internal Timings

[\
PHASEC [\

270246-4

ternal ROM/EPROM. If the voltage on the EA pin
selects the external execution only mode the CCB is
read from external memory. See Figure 5, and 5A.

1.4 Reset Information

In order for the 8X9X to function properly it must be
reset. This is done by holding the RESET pin low for at
least 10 XTALI cycles after the power supply is within
tolerance and the oscillator has stabilized.

There are several ways to provide a good reset to an
8X9X, the simplest being just to connect a capacitor
from the reset pin to ground. The capacitor should be
on the order of 2 microfarads for every millisecond of
reset time required. This method will only work if the
rise time of V¢ is fast and the total reset time is less
than around 50 milliseconds. It also may not work if
the RESET pin is to be used to reset other devices on
the board. An 8X9X with the minimum required con-
nections is shown in Figure 6.

After the RESET pin is brought high, a ten state reset
sequence is executed. During this time, the Chip Con-
figuration Byte (CCB) is read from location 2018H and
written to the 8X9X Chip_Configuration Register
(CCR). If the voltage on the EA pin selects the inter-
nal/external execution mode the CCB is read from in-

RESET ’
ADV SELECTED
L d
pu——) B ’
ALE/ ADV \ !
[
AD BUS ~{ 2018H @ : 2080H @

ALE SELECTED

CHIP THE BYTE(8=-BIT BUS),
CONFIGURATION OR WORD(16-BIT BUS),
BYTE AT 2080H
270246-5

Figure 5. Reset Sequence

2-5

Inte[8X9X HARDWARE DESIGN INFORMATION

Power Supply Rise Time '
5.5Vpc

4.5Vpe

Start Time from Power Supply Rise to External Output Low

___WJ\H!H\HH!HHHHHHHHM!HHHHHHH\HHHHHIHHHHHHIHl L1/ -
RESET _1 _.I +— Extornal to Internal

Release Time
HS0.0-HS0.3, J
P2.0,P2.5
10 STATE TIMES
WiTH PULLUPS J | ADDRESS HDATAH ADDRESS |
2018H ccB 2080H
= . L FIRST BUS FETCH CYCLE PROGRAM
Trepy = 10XTAL CYCLES START
External RESET Low to ' .
Port Valid Time RESET FUNCTION REGISTERS —l

TOTAL 8X9X RESET TIME

270246-44
Figure 5A. TRLpv
Vep —o0FL0AT Vep [——OFLOAT
RESET Veo RESET Veo
48 LEAD VREF o elea Vee
anerp DEVICES - Nenp. DEVCES B
\\;SS; Vee Vss‘ Vec
L 4 Vs
ATUF S 55T xTALY XTAL2 47 uF T s? XTAL1 XTAL2
ootuel | _lour ootprl | _lowr
30pF 30pF Cling 30 pF
= 'Zﬁﬂ = | |1 0 yrl Zﬁﬂz JrouF
T T
: 270246-7) 270246-40
NOTES:

1. These capacitors are needed only if A to D is used.
2. VRer & ANGND may be connected to the same traces as the digital power supply if the A to D is not used.

‘ Figure 6. Minimum Hardware Connections

2-6

intel

8X9X HARDWARE DESIGN INFORMATION

The 8X9X RESET pin can be used to allow other chips
on the board to make use of the Watchdog Timer or the
RST instruction. When this is done the reset hardware
should be a one-shot with an open collector output. The
reset pulse going to the other devices may have to be
buffered and lengthened with a one-shot, since the
RESET low duration is only one state. If this is done, it
is possible that the 8X9X will be reset and.start running
before the other devices. on the board are out of reset.
The software must account for this possible problem.

A capacitor directly connected to RESET cannot be .
used to reset the device if the pin is to be used as an
output. If a large capacitor is used, the pin will pull-
down more slowly than normal. It will continue to pull-
down until the 8X9X is reset. It could fall so slowly
that it never goes below the internal switch point of the
reset signal (1 to 1.5 volts), a voltage which may be
above the guaranteed switch point of external circuitry
connected to the pin. A circuit example is shown in
Figure 7.

8X9X

RESET

OPTIONAL OTHER
ONE-SHOT CIRCUITRY R
7415123 [

m].

= 1.0 uF

NOTE:

1/, 4093

1. The diode will provide a faster cycle time repetitive power-on-résets.

1/g 745L06

270246-8

Figure 7. Multiple Chip Reset Circuit

2-7

intel

8X9X HARDWARE DESIGN INFORMATION

1.5 Sync Mode

If RESET is brought high at the same time as or just
after the rising edge of XTAL1, the device will start
executing the 10 state time RST instruction exactly 6%,
XTALI cycles later. This feature can be used to syn-
chronize several MCS-96 devices. A diagram of a typi-
cal connection is shown in Figure 8. It should be noted
that devices that start in sync may not stay that way,
due to propagation delays which may cause the syn-
chronized devices to receive signals at slightly different
times.

1.6 Disabling the Watchdog Timer

The Watchdog Timer will pull the RESET pin low
when it overflows. See Figure 9. If the pin is being
externally held above the low going threshold, the pull-
down transistor will remain on indefinitely. This means
that once the watchdog overflows, the device must be
reset or RESET must be held high indefinitely. Just

resetting the Watchdog Timer in software will not clear
the flip-flop which keeps the RESET pulldown on.

The pulldown is capable of sinking on the order of 30
milliamps if it is held at 2.0 volts. This amount of cur-
rent may cause some long term reliability problems due
to localized chip.heating. For this reason, devices that
will be used dn production should never have had the
Watchdog Timer over-ridden for more than a second or
two.

Whenever the reset pin is being pulled high while the
pulldown is on, it should be through a resistor that will
limit the voltage on RESET to 2.5 volts and the current
through the pin to 40 milliamps.

If it is necessary to disable the Watchdog Timer for
more than a brief test the software solution of never
initiating the timer should be used. See Section 14 in
the Architecture Chapter.

74504 - I
XTALY ——D@-D‘. XTAL1 XTAL1
8Xox 8X9X
- cLK ‘ ,
o Q RESET RESET
RESET ,
74574
PR CL vce
270246-9 -
Figure 8. Reset Sync Mode
=== -i
! I
! i
! I' [.:.r I
CLOCK | |
|)
|
8X9X CHIP RESET

RESET

SYNCHRONIZER

-3

RESET
.—< |— PIN

(OFFH)

WATCHDOG TIMER
OVERFLOW _
RESET INSTRUCTION

270246-10

Figure 9. Reset Logic

2-8

intel

8X9X HARDWARE DESIGN INFORMATION

1.7 Power Down Circuitry

Battery backup can be provided on the 8X9X with a 1
mA current drain at 5 volts. This mode will hold loca-
tions OFOH through OFFH valid as long as the power to
the Vpp pin remains on. The required timings to put
the device into power-down and an overview of this
mode are given in Section 2.3 in the 8X9X Architecture
Chapter.

A ‘key’ can be written into power-down RAM while
the device is running. This key can be checked on reset
to determine if it is a start-up from power-down or a
complete cold start. In this way the validity of the pow-
er-down RAM can be verified. The length of this key
determines the probability that this procedure will
work, however, there is always a statistical chance that
the RAM will power up with a replica of the key.

Under most circumstances, the power-fail indicator
which is used to initiate a power-down condition must
come from the unfiltered, unregulated section of the
power supply. The power supply must have sufficient
storage capacity to operate the 8X9X until it has com-
pleted its reset operation.

2.0 DRIVE AND INTERFACE LEVELS

There are five types of I/0 lines on the 8X9X. Of these,
two are inputs and three are outputs. All of the pins of
the same type have the same current/voltage character-
istics. Some of the control input pins, such as XTAL1
and RESET, may have shghtly different characteristics.

These pins are discussed in Section 1.

While discussing the characteristics of the 1/0 pins
some approximate current or voltage specifications will
be given. The exact specifications are available in the
lastest version of the data sheet that corresponds to the
device being used.

2.1 Quasi-Bidirectional Ports

The Quasi-Bidirectional pins of Port 1, Port 2.6, and
Port 2.7 have both input and output port configura-
tions. They have three distinct states; low impedance
current sink (Q2), low impedance current source (Q1),
and high impedance current source (Q3). As a low im-
pedance current sink, the pin has specification of sink-
ing up to around 0.5 mA, while staying below 0.45
volts. The pin is placed in this condition by writing a ‘0’
to the SFR (Special Function Register) controlling the
pin. .

the depletion pullup holds the line at a logical ‘1’ state.
The low-impedance pullup is used to shorten the rise
time of the pin, and has current source capability on the
order of 100 times that of the depletion pullup.

While the depletion mode pullup is the only device on,
the pin may be used as an input with a leakage of
around 100 microamps from 0.45 volts to V. It is
ideal for use with TTL or CMOS chips and may even
be used directly with switches. However if the switch
option is used, certain precautions should be taken. It is
important to note that any time the pin is read, the
value returned will be the value on the pin, not the -
value placed in the control register. This could cause
logical operations made directly on these pins to inda-
vertently write a O to pins being used as inputs. In order
to perform logical operations on a port where a quasi-
bidirectional pin is an input, it is necessary to guarantee
that the bit associated with the input pin is always aone
when writing to the port.

2.2 Quasi-Bidirectional Hardware
Connections ', :

When using the quasi-bidirectional ports as inputs tied
to switches, series resistors may be needed if the ports
will be written to internally after the device is initial-
ized. The amount of current sourced to ground from
each pin is tyically 20 mA or more. Therefore, if all 8
pins are tied to ground, 160 mA will be sourced. This is
equivalent to instantaneously doubling the power used
by the chip and may cause noise in some applications.

This potential problem can be solved in hardware or
software. In software, never write a zero to a pin being
used as an input.

. In hardware, a 1K resistor in series with each pin will

Examine Figure 10. When the SFR contains a ‘0’ and a -

‘1’ is written to it, Q1 (a low impedance MOSFET pull-
up).is turned on for one state, then it is turned off and

limit current to a reasonable value without impeding
the ability to override the high impedance pullup. If all
8 pins are tied together a 120Q resistor would be rea-
sonable. The problem is not quite as severe when the
inputs are tied to electronic devices instead of switches,
as most external pulldowns will not hold 20 mA to 0.0
volts.

Writing to a Quasi-Bidirectional Port with electronic
devices attached to the pins requires special attention.
Consider using P1.0 as an input and trying to toggle
P1.1 as an output:

ORB IOPORT1, #00000001B ; Set Pl.0
; for input
XORB IOPORT1, #00000010B ; Complement
' C 3 P1.1

Inte[' 8X9X HARDWARE DESIGN INFORMATION

PORT 2 s PORT 2.7 ONE °
STATE
T’c [— =
<)
b3
INTERNAL
CLOCK
N\ J
READ LATCH
PORT ¢ Q4
1
|
270246~11
LOW IMPEDANCE HIGH IMPEDANCE ' LOW IMPEDANCE
PULLUP PULLUP PULLDOWN
a1 Q3 S Q2
-50 mA . . -160 uA 50 mA)
TYPICAL TYPICAL
-30 mA -90 uA 30 mA
3 3 . 3
-10mA -30 pA 10 mA
ov 2v v ov 2v v ov
Vou . Vou
270246-12
NOTE:
These graphs show typical pin capabllmes, they are not guaranteed specifications

Figure 10. Quasi-Bidirectional Port

The first instruction will work as expected but two The first situation can best be solved by the external
problems can occur when the second instruction exe- driver design. A series resistor between the port pin and
cutes. The first,is that even though P1.1 is being driven the base of the transistor often works by bringing up
high by the 8X9X it is possible that it is being held low the voltage present on the port pin. The second case can
externally. This typically happens when the port pin is be taken care of in the software fairly easily:

used to drive the base of an NPN transistor which in

turn drives whatever there is in the outside world which LDB AL, IOPORT1
needs to be toggled. The base of the transistor will XORB AL, #010B
clamp the port pin to the transistor’s Vbe above ORB AL, #001B
ground, typically 0.7V. The 8X9X will input this value STB AL, IOPQORT1

as a zero even if a one has been written to the port pin. ‘ !

When this happens the XORB instruction will always A software solution to both cases is to keep a byte in

write a one to the port pin’s SFR and the pm will not RAM as an image of the data to be output to the port;

.toggle. ‘) o any time the software.wants to modify the data on the
g port it can then modify the image byte and copy it to

The second problem, which is related to the first, is that the port.

if P1.0 happens to be driven to a zero when Port 1 is

read by the XORB instruction, then the XORB will \ If a switch is used on a long line connected to a quasi-

write a zero to P1.0 and it will 1o longer be useable as bidirectional pin, a'pullup resistor is recommended to

aninput. . reduce the possibility of noise glitches and to decrease

2-10

Inte[8X9X HARDWARE DESIGN INFORMATION

the rise time of the line. On extremely long lines that 24 Open Drain Ports

are handling slow signals, a capacitor may be helpful in .

addition to the resistor to reduce noise. Ports 3 and 4 on the 8X9X are open drain ports. There
is no pullup when these pins are used as 1/O ports.
These pins have different characteristics when used as

2.3 Input Only Ports bus pins as described in the next section. A diagram of

L . L the output buffers connected to Ports 3 and 4 and the
The high impedance input pins on the 8X9X have an bus pins is shown in Figure 11. h

input leakage of-a few microamps and are predominant-
ly capacitive loads on the order of 10 pF. When Ports 3 and 4 are to be used as inputs, or as bus
: : L o pins,.they must first be written with a ‘1’. This will put
Port 0 pn'ls:‘are.speclal in that they may individually be the ports in a high impedance mode. When they are
used as digital inputs, or as analog inputs. A Port O pin ysed as outputs, a pullup resistor must be used external-
being used as a digital input acts as the high impedance |y, The sink capability of these pins is on the order of
input ports just described. However, Port 0 pins being 0,8 milliamps so the total pullup current to the pin
used as analog inputs are required to provide current to must be less than this. A 15K pullup resistor will

the internal sample capacitor when a conversion begins. source a maximum of 0.33 milliamps, so it would be a
This means that the input characteristics of a pin Wil reasonable value to choose if no other circuits with
change if a conversion is being done on that pin. See pullups were connected to the pin.

Section 3. In either case, if Port 0 is to be used as analog
or digital I1/0, it will be necessary to provide power to
this port through the VRgF pin. .

vee
1]
. DATA $ ‘
L i
'
N] |
’ e~ § 3 ;
BUS OUTPUT ggpr :
ENABLE
- i {1
' BUS DATA BUS PULLDOWN :
PORT 3,4 OPEN DRAIN
. ~*— DRIVER
PORT ENABLE
D PORT DATA |: 47 ’
270246-19
BUS PULLUP BUS PULLDOWN ‘ PORT PULLDOWN
BUS BUS, P1,P2 : BUS, P1,P2
-50mA 50 mA © 2%ma
TYPIC TYPICAL TYPICAL
-30mA PICAL 30 mA picat 15 mA "
3 3
-10 mA 10 mA /' 5mA /
! 1 1 1 1 J 1 1 1 1 J
ov 2v av ov v W ov 2v av
Vou Vou Vo
270246-20
NOTE:
These graphs show typical, pin capabilities, they are not guaranteed specifications.

Figure 11. Bus and Port 3 and 4 Pins\

2-11

intel

8X9X HARDWARE DESIGN“INFORMATION

2.5 HSO Pins, Control Outputs and
Bus Pins

The control outputs and HSO pins have output buffers
with the same output characteristics as those of the bus
pins. Included in the category of control outputs are:
TXD, RXD (in_Mode 0), PWM, CLKOUT, ALE,
BHE, RD, and WR. The bus pins have 3 states: output
high, output low, and high impedance input. As a high
output, the pins are specified to source around 200 pA
to 2.4 volts, but the pins can source on the order of ten
times that value in order to provide the fast rise times.
When. used as a low-output, the pins can sink around
2 mA at 0.45 volts, and considerably more as the volt-
age increases. When in the high impedance state, the
pin acts as a capacitive load with a few microamps of
leakage. Figure 11 shows the internal configuration of a
bus pin.

3.0 ANALOG INPUTS

The on-chip A/D converter of the 8X9X can be used to
digitize analog inputs while analog outputs can be

generated with either the chip’s PWM ouiput or HSO
unit. This section describes the analog input sugges-
tions. See Section 4 for analog output.

The 8X9X’s Integrated A/D converter includes an
eight channel analog multiplexer, sample-and-hold cir-

~ cuit and 10-bit analog to digital converter (Figure 12).

The 8X9X can therefore select one of eight analog in-
puts to convert, sample-and-hold the input voltage and
convert the voltage into a digital value. Each conver-
sion takes 22 microseconds, including the time required

_for the sample-hold (with XTAL1 = 12 MHz). The

method of conversion is successive approximation.

Section 3.5 contains the definitions of numerous terms
used in connection with the A/D converter.

VREF
T |
R
-
- =
N
T 3 3
— 5 —p{3 &
>3 &
g — F— L —p}1 Ql
2 SUCCESSIVE |—T—0 <
Z—¥ 87101 SAMPLE | | ApPROXIMATION —
g ANALOG [-] AND A/D 79
2 > MULTIPLEXER HOLD CONVERTER » :'
z 33
Z — BUSY 2
2 w
= =¥
CONTROL LOGIC <
— - —
) :
(=}
T 344 GO_| 3%
T I CHANNEL =i
= 138
ANGND 04
<

START
CONVERSION

HSO COMMAND "'F"

270246-13 .

Figure 12. A/D Converter Block Diagram

il

8X9X HARDWARE DESIGN INFORMATION

3.1A/D Oveljview

The conversion process is initiated by the execution of
HSO command OFH, or by writing a one to the GO Bit
in the A/D Control Register. Either activity causes a
start conversion signal to be sent to the A/D converter
control logic. If an HSO command was used, the con-
version process will begin when Timer 1 increments.
This aids applications attempting to approach spectral-
ly pure sampling, since successive samples spaced by
equal Timer 1 delays will occur with a variance of
about 50 ns (assuming a stable clock on XTALT1).
However, conversions initiated by writing a one to the
ADCON register GO Bit will start within three state
times after the instruction has completed execution re-
sulting in a variance of about 0.75 us (XTALI1
12 MHz).

Once the A/D unit receives a start conversion signal,
there is a one state time delay before sampling (sample
delay) while the successive approximation register is re-
set and the proper multiplexer channel is selected. Af-
ter the sample delay, the multiplexer output is connect-
ed to the sample capacitor and remains connected for
four'state times (sample time). After this four staté time
“sample window” closes, the iftput to the sample capac-
itor is disconnected from the multiplexer so that chang-
es on the input pin will not alter the stored charge while
the conversion is in progress. The comparator is then
auto-zeroed and the conversion begins. The sample de-
- lay and sample' time uncertainties are each approxi-
mately’ 150 ns, independent of clock speed.

To perform the actual analog-to-digital conversion the
8X9X implements a successivé approximation algo-
rithm. The converter hardware consists of a 256-resis-
tor ladder, a comparator, coupling capacitors and a
10-bit successive approximation register (SAR) with
‘logic that guides the process. The resistor ladder pro-
vides 20 mV steps (VRgr = 5.12V), while capacitive
coupling is used to create 5 mV steps within the 20 mV
ladder voltages. Therefore, 1024 internal reference volt-

The total number of state times required is 88 for a
10-bit conversion. Attempting to short-cycle the 10-bit
conversion process by reading A/D results before the
done bit is set is not recommended. '

3.2 A/D Interface Su‘ggestions

The external interface circuitry to an analog input is
highly dependent upon the application, and can impact
converter characteristics. In the external circuit’s de-
sign, important factors such as input pin leakage, sam-
ple capacitor size and multiplexer series resistance from
the input pin to the sample capacitor must be consid-
ered. .

For the.8X9X, these factors are idealized in Figure 13.
The external input circuit must be able to charge a sam-
ple capacitor (Cs) through a series resistance (Ry) to an
accurate voltage given a D.C. leakage (Ir). On the

. 8X9X, Cg is around 2 pF, Ry is around 5 KQ and I} is

ages are available for comp@rison against the analog

input to generate a 10-bit corversion result.

A successive approximation conversion is performed by
comparing a sequence of reference voltages, to the ana-
log input, in a binary search for the reference voltage
that most closely matches the input. The Y, full scale
reference voltage is the first tested. This corresponds to
a 10-bit result where the most significant bit is zero,
and all other bits are ones (0111.1111.11b). If the ana-
log input was less than the test voltage, bit 10 of the
SAR is left a zero, and a new test voltage of '/, full scale
(0011.1111.11b) is tried. If this test voltage was lower
than the analog input, bit 9 of the SAR is set and bit 8
is cleared for the next test (0101.1111.11b). This binary
search continues until 10 tests have occurred, at which
time the valid 10-bit conversion result resides in the
SAR where it can be read by software.

specified as 3 pA maximum. In determining the neces-
sary source impedance Rg, the value of Vgiag is not
important.

Rsource

ILEAKAGE

270246-14

\

Figure 13. Idealized A/D Sampling Circuitry

External circuits with source impedances of 1 KQ or
less will be able to maintain an input voltage within a
tolerance of about +0.61 LSB (1.0 KQ X 3.0 pA
= 3.0 mV) given the D.C. leakage. Source impedances
above 2 KQ can result in an external error of at least
one LSB due to the voltage drop caused by the 1 uA
leakage. In addition, source impedances above 25 KQ
may degrade converter accuracy as a result of the inter-
nal sample capacitor not being fully charged during the
1 us (12 MHz clock) sample window.

If large source impedances degrade converter accuracy
because the sample capacitor is not charged during the
sample time, an external capacitor connected to the pin
will compensate for this degradation. Since the sample
capacitor is 2 pF, a 0.005 uF capacitor will charge the
sample capacitor to an accurate input voltage of £0.5
LSB (2048 X 2 pF). An external capacitor does not
compensate for the voltage drop across the source re-
sistance, but charges the sample capacitor fully during
the sample time.

213

intef

8X9X HARDWARE DESIGN INFORMATION

Placing an external capacitor on each analog input will
also reduce the sensitivity to noise, as the capacitor
combines with series resistance in the external circuit to
form a low-pass filter. In practice, one should include a
small series resistance prior to the external capacitor on
the analog input pin and choose the largest capacitor
value practical, given the frequency of the signal being
converted. This provides a low-pass filter on the input,
while the resistor will also limit input current during
over-voltage conditions.

Figure 14 shows a simple analog interface circuit based
upon the discussion above. The circuit in the figure also
provides limited protection against over-voltage condi-
tions on the analog input. Should the input voltage in-
appropriately drop significantly below ground, diode
D2 will forward bias at about 0.8 VDC. Since the speci-
fication of the pin has an absolute maximum low volt-

age of —0.3V, this will leave about 0.5V across the
2709 transistor, or about 2 mA of current. This should
limit the current to a safe amount. However, before any
circuit is used in an actual application, it should be thor-
oughly analyzed for applzcabtllty to the specific problem
at hand.

VREF

ANALOG

FROM USER CIRCUIT INPUT PIN

ANGND
270246-15

Figure 14. Suggested A/D Input Circuit

3.3 Analog References

Reference supply levels strongly influence the absolute
accuracy of the conversion. For this reason, it is recom-

Note that if only ratiometric information is desired,
VREF can be connected to V. In addition, VR and
ANGND must be connected even if the A/D converter
is not being used. Remember that Port O receives its
power from the VRgr and ANGND pins even when it
is used as digital 1/0.

3.4 The A/D Transfer Function

The conversion result is a 10-bit ratiometric representa-
tion of the input voltage, so the numerical value ob-
tained from the conversion will be:

INT [1023 X (Vjn — ANGND)/(VRer — ANGND)I.

This produces a stair-stepped transfer function when
the output code is plotted versus input voltage (see Fig-
ure 15). The resulting digital codes can be taken as
simple ratiometric information, or they can be used to
provide information about absolute voltages or relative
voltage changes on the inputs. The more demanding
the application is on the A/D converter, the more im-
portant it is to fully understand the converter’s opera-
tion. For simple applications, knowing the absolute er-
ror of the converter is sufficient. However, closing a
servo-loop with analog inputs necessitates a detailed
understanding of an A/D converter’s operation and er-
rors.

The errors inherent in an analog-to-digital conversion
process are many: quantizing error; zero offset; full-

. scale error; differential non-linearity; and non-linearity.

These are “transfer function” errors related to the A/D
converter. In addition, ‘converter temperature drift,

" Ve rejection, sample-hold feedthrough, multiplexer

mended that the ANGND pin be tied to the two Vsg .

pins as close to the chip as possible with minimum trace
length. Bypass capacitors should also be used between
VREer and ANGND. ANGND should be within about
a tenth of a volt Vgg. VRgF should be well regulated
and used only for the A/D converter. The VRgF supply
can be between 4.5V and 5.5V and needs to be able to
source around 5 mA. Figure 6 shows all of these con-
nections. .

off-isolation, channel-to-channel matching and random
noise should be considered. Fortunately, one “Absolute
Error” specification is available which describes the
sum total of all deviations between the actual conver-
sion process and an ideal converter. However, the vari-
ous sub-components of error are important in many
applications. These error components are described in
Section 3.5 and in the text below where ideal and actual
converters are compared.

An unavoidable error simply results from the conver-
sion of a continuous voltage to an integer digital repre-
sentation. This error is called quantizing error, and is
always 0.5 LSB. Quantizing error is the only error
seen in a perfect A/D converter, and is obviously pres-
ent in actual converters. Figure 15 shows the transfer
function for an ideal 3-bit A/D converter (i.e. the Ideal
Characteristic).

intel

8X9X HARDWARE DESIGN INFORMATION

Note that in Figure 15 the Ideal Characteristic possess-
es unique qualities: it’s first code transition occurs when
the input voltage is 0.5 LSB; it’s full-scale code tran-
sition occurs when the input voltage equals the full-
scale reference minus 1.5 LSB; and it’s code widths are
all exactly one LSB. These qualities result in a digitiza-
tion without offset, full-scale or linearity errors. In oth-
er words, a perfect conversion.

Figure 16 shows an Actual Characteristic of a hypo-
thetical 3-bit converter, which is not perfect. When the
Ideal Characteristic is overlaid with the imperfect char-
acteristic, the actual converter is seen to exhibit errors
in the location of the first and final code transitions and
code widths. The deviation of the first code transition
from ideal is called “zero offset”, and the deviation of
the final code transition from ideal is “full-scale error”.
The deviation of the code widths from ideal causes two
types of errors. Differential Non-Linearity and Non-
Linearity. Differential Non-Linearity is a local linearity
' error measurement, whereas Non-Linearity is an over-
all linearity error measure.

Differential Non-Linearity is the degree to which actual
code widths differ from the ideal one LSB width. Dif-
ferential Non-Linearity gives the user a measure of how
much the input voltage may have changed in order to
produce a one count change in the conversion result.
Non-Linearity is the worst case deviation of code tran-
sitions from the corresponding code transitions of the
Ideal Characteristic. Non-Linearity describes how
much Differential Non-Linearities could add up to pro-
duce an overall maximum departure from a linear char-
acteristic. If the Differential Non-Linearity errors are
too large, it is possible for an A/D converter to miss
codes or exhibit non-monotonicity. Neither behavior is
desireable in a closed-loop system. A converter has no
missed codes if there exists for each output code a
unique input voltage range that produces that code

only. A converter is monotonic if every subsequent
code change represents an input voltage change in the
same direction.

Differential Non-Linearity and Non-Linearity are
quantified by measuring the Terminal Based Linearity
Errors. A Terminal Based Characteristic results when
an Actual Characteristic is shifted and rotated to elimi-
nate zero offset and full-scale error (see Figure 17). The
Terminal Based Characteristic is similar to the Actual

- Characteristic that would be seen if zero offset and full-
- scale error were externally trimmed away. In practice,

this is done by using input circuits which include gain’
and offset trimming. In addition, VRgF on the 8X9X
could also be closely regulated and trimmed within the
specified range to affect full-scale error.

Other factors that affect a real A/D Converter system
include sensitivity to temperature, failure to completely
reject all unwanted signals, multiplexer channel dissim-
ilarities and random noise. Fortunately these effects are
small.

Temperature sensitivities are described by the rate at
which typical specifications change with a change in
temperature.

Undesired signals come from three main sources. First,
noise on Voc—Vcc Rejection. Second,, input signal
changes on the channel being converted after the sam-
ple window has closed—Feedthrough. Third, signals
applied to channels not selected by the multiplexer—
Off-Isolation. -

Finally, multiplexer on-channel resistances differ slight-
ly from one channel to the next causing Channel-to-
Channel Matching errors, and random noise in general -
results in Repeatability errors.

9l-¢
ansualdRIRYD A/V I83PL 'SL 24nbiy

FINAL CODE TRANSITION OCCURS
WHEN THE APPLIED VOLTAGE IS
EQUAL TO (Vref = 11/2(LSB)).

ACTUAL CHARACTERISTIC OF
AN IDEAL A/D CONVERTER

* THE VOLTAGE CHANGE

BETWEEN ADJACENT CODE

TRANSITIONS (THE ""CODE
WIDTH")IS = 1 LSB.

FIRST CODE TRANSITION OCCURS
WHEN THE APPLIED VOLTAGE IS
EQUAL TO 1/2 LSB.

T T T

T T
1/2 1 2 3 4 5 61/2 7

o+

INPUT VOLTAGE (LSBs)

270246-16

NOILLVINHOZNI NDIS3d 3HVYMAHVH X6X8

YA
$o1ISII910RIRYY) [ESP] PUE [ENIOY "9 34nbid

7 -
— X FULL SCALE ERROR
6 IDEAL
CHARACTERISTIC
\; X
5 ABSOLUTE ERROR
[~ \ ACTUAL
CHARACTERISTIC
i
[X B
3 -
X ¢
2 4
t X
1_
1

0 T T T T T T T

1/2 2 3 4 5 61/2 7 8

INPUT VOLTAGE (LSBs)

270246-17

NOILVINHOSNI NDIS3a 3HVMAUYVH X6X8

‘812
ausuajorIRY) paseg [eujwsal /| a.nbly

71

IDEAL FULL=SCALE CODE

TRANSITION \ / i
:) O ACTUAL

FULL=SCALE CODE
TRANSITION

A 4
N

/ ACTUAL

/ / CHARACTERISTIC

y —————— | TERMINAL BASED
N CHARACTERISTIC

o

Se
<

NON=LINEARITY

\ DIFFERENTIAL

NON=LINEARITY

A\

/

IDEAL CODE WIDTH

f~——{ ACTUAL FIRST TRANSITION |

IDEAL FIRST TRANSITION J

1/2

T T

1 <2

T
3 4

INPUT VOLTAGE (LSBs)

5 6 61/2 7 8

270246-18

'NOILVINHOINI NDIS3Q 3HVMAHVH X6X8

intel

8X9X HARDWARE DESIGN INFORMATION

3.5 A/D Glossary of Terms
Figures 15, 16 and 17 display many of these terms.

ABSOLUTE ERROR—The maximum difference be-
tween corresponding actual and ideal code transitions.
Absolute Error accounts for all deviations of an actual
converter from an ideal converter.

ACTUAL CHARACTERISTIC—The characteristic of
an actual converter. The characteristic of a given con-
verter may vary over temperature, supply voltage, and
frequency conditions.'An Actual Characteristic rarely
has ideal first and last transition locations or ideal code
widths. It may even vary over multiple convers1on un-
der the same conditions.

BREAK-BEFORE-MAKE—The property of a multi-
plexer which guarantees that a previously selected
channel will be deselected before a new channel is ‘se-
lected. (e.g. the converter will not short inputs
together.) '

CHANNEL-TO-CHANNEL MATCHING—The dif-
ference between corresponding code transitions of actu-
al characteristics taken from different channels under
the same temperature, voltage and frequency condi-
tions.

CHARACTERISTIC—A graph of input voltage ver-
sus the resultant output code for an A/D converter. It
describes the transfer function of the A/D converter.

CODE—The digital value output by the converter.

CODE CENTER—The voltage corresponding to the
midpoint between two adjacent code transitions.

CODE TRANSITION—The point at which the con-
verter changes from an output code of Q, to a code of
‘Q+ 1. The input voltage corresponding to a code tran-
sition is defined to be that voltage which is equally like-
ly to produce either of two adjacent codes.

- CODE WIDTH—The voltage corresponding to the
difference between two adjacent code transitions.

CROSSTALK—See “Off-Isolation”.

D.C. INPUT LEAKAGE—Leakage current to ground
from an analog input pin.

DIFFERENTIAL NON-LINEARITY—The differ-
ence between the ideal and actual code widths of the
terminal based characteristic of a converter

FEEDTHROUGH—Attenuation of a voltage apphed
on the selected channel of the A/D converter after the
sample wmdow closes.

FULL SCALE ERROR—The difference between the
expected and actual input voltage correspondmg to the
full scale code transition.

IDEAL CHARACTERISTIC—A characteristic with
its first code transition at Vyy = 0.5 LSB, its last code
transition at Vi = (VRgr — 1.5 LSB) and all code
widths equal to one LSB.

INPUT RESISTANCE—The effective series resistance
from the analog input pin to the sample capacitor.

LSB—LEAST SIGNIFICANT BIT: The voltage value
correspondmg to the full scale voltage’divided by 2m,
where n is the number of bits of resolution of the con-
verter. For a 10-bit converter with a reference voltage
of 5.12 volts, one LSB is 5.0 mV. Note that this is
different than digital LSBs, since an uncertainty of two
LSB, whén referring to an A/D converter, equals
10 mV. (This has been confused with an uncertainty of
two digital bits, which would mean four counts, or
20 mV.)

MONOTONIC—The property of successive approxi-
mation converters which guarantees that increasing in-
put voltages produce adjacent codes of increasing value,
and that decreasing input voltages produce adjacent
codes of decreasing value.

NO MISSED CODES—For each and every output
code, there exists a unique input voltage range which
produces that code only.

NON-LINEARITY —The maximum deviation of code

* transitions of the terminal based characteristic from the

2-19

corresponding code transitions of the ideal characteris-
tics.

8X9X' HARDWARE DESIGN INFORMATION

OFFQISOLATION;Attenuation of a voltage applied
on a deselected channel of the A/D converter. (Also
referred to as Crosstalk.)

REPEATABILITY—The difference between corre-
sponding code transitions from different actual charac-
teristics taken from the same converter on the same
channel at the same temperature, voltage and frequency
conditions.

RESOLUTION—The number of input voltage levels
that the converter can unambiguously distinguish ‘be-
tween. Also defines the number of useful bits of infor-
mation which the converter can return.

SAMPLE DELAY—The delay from receiving the start
conversion signal to when the sample window opens.

SAMPLE DELAY UNCERTAINTY—The variation
in the Sample Delay.

SAMPLE TIME—The time that the sample window is
open.

SAMPLE TIME UNCERTAINTY—The variation in
the sample time:

SAMPLE WINDOW—Begins when the sample capac-
itor is attached to a selected channel and ends when the
sample capacitor is disconnected from the selected
channel.

SUCCESSIVE APPROXIMATION—An A/D con-
version method which uses a binary search to arrive at
the best digital representation of an analog input.

TEMPERATURE COEFFICIENTS—Change in the
stated variable per degree centigrade temperature
change. Temperature coefficients are added to the typi-
cal values of a specification to see the effect of tempera-
ture drift.

TERMINAL BASED CHARACTERISTIC—An Ac;
tual Characteristic which as been rotated and translat-
ed to.remove zero offset and full-scale error.

VCC REJECTION—ALttenuation of noise on the Vo
line to the A/D converter.

ZERO OFFSET—The difference between the expected
and actual input voltage corresponding to the first code
transition.

4.0 ANALOG OUTPUTS

Analog outputs can be generated by two methods, ei-
ther by using the PWM output or the HSO. Either
device will generate a rectangular pulse train that varies
in duty cycle and, (for the HSO only) period. If a
smooth analog signal is desired as an output, the rec-
tangular waveform must be filtered.

In most cases this filtering is best done after the signal
is buffered to make it swing from 0 to 5 volts since both
of the outputs are guaranteed only to TTL levels. A
block diagram of the type of circuit needed is shown in
Figure 18. By proper selection of components, account-
ing for temperature and power supply drift, a highly
accurate 8-bit D to A converter can be made using ei-
ther the HSO or the PWM output. Figure 19 shows two
typical circuits. If the HSO is used the accuracy could
be theoretically extended to 16-bits, however the tem-
perature and noise related problems would be extreme-
ly hard to handle.

When driving some circuits it may be desirable to use
unfiltered Pulse Width Modulation. This is particularly
true for motor drive circuits. The PWM output can be
used to generate these waveforms if a fixed period on
the order of 64 us is acceptable. If this is not the case
then the HSO unit can be used. The HSO can generate
a variable waveform with a duty cycle variable in up to
65536 steps and a period of up to 131 milliseconds.
Both of these outputs produce TTL levels.

8X9X T'::";';EKHE FILTER
(PASSIVE POWER

HSO OUTPUT oR ANALOG
OR »{ swiNGg > actve) | AMP b o UTPUT
PWM RAIL (OPTIONAL)

T0 (OPTIONAL))

RAIL Co

! 270246-21

Figure 18. D/A Buffer Block Diagram

. 2-20

8X9X HARDWARE DESIGN INFORMATION

Vee
* 1/2 VQ3001P
6
5
270*
PWM ANALOG
ouT .|
10
9
- - 270246-22
*This resistor limits rise time to reduce
spikes & high frequency noise.
8X9X
HSO R HIGH ANALOG
'OR ————{>c A ’ IMPEDANCE }—— o iroir
PWM _]__ - AMP
© CD4049 I c

R and C are chosen for best
filtering at the user’s frequency

270246-23

Figure 19. Buffer Circuits for D/A

5.0 1/0 TIMINGS

The 170 pins on the 8X9X are sampled and changed at
specific times within an instruction cycle. The changes
occur relative to the internal phases shown in Figure 4.
Note that the delay from XTALT1 to the internal clocks
range from about 30 ns to 100 ns over process and
temperature. Signals generated by internal phases are
further delayed by 5 ns to 15 ns. The timings shown in
this section are idealized; no propagation delay factors
have been taken into account. Designing a system that
depends on an 1/0 pin to change within a window of
less than 50 ns using the information in this section is
not recommended.

51 HSO Outputs

Changes in the HSO lines are synchronized to Timer 1.
All of the external HSO lines due to change at a certain
value of a timer will change just pior to the increment-
ing of Timer 1. This corresponds to an internal change

during Phase B eVery eight state times. From an exter-
nal perspective the HSO pin should change just prior to
the rising edge of CLKOUT and be stable by its falling

. edge. Information from the HSO can be latched on the

CLKOUT falling edge. Internal events can occur any-
time during the 8 state time window.

Timer 2 is synchronized to increment no faster than
Timer 1, so there will always be at'least one increment-
ing of Timer 1 while Timer 2 is at a specific value.

5.2 HSlInputSampling =~

The HSI pins are sampled internally once each state
time. Any value on these pins must remain stable for at
least 1 full state time to guarantee that it is recognized.
The actual sample occurs at the end of Phase A, which,
due to propagation delay, is just after the rising edge of

' CLKOUT. Therefore, ‘if information is to be synchro-

2-21

nized to the HSI it should be latched-in on CLKOUT

intel

8X9X HARDWARE DESIGN INFORMATION

falling. The time restriction applies even if fhe divide by
eight mode is being used. If two events occur on the .

same pin within the same 8 state time window, only one
of the events will be recorded. If the events occur on
different pins they will always be recorded, regardless
of the time difference. The 8 state time window, (i.e. the
amount of time during which Timer 1 remains con-
stant), is stable to within about 20 .ns. The window
starts roughly around the rising edge of CLKOUT,

however this timing is very approximate due to the

amount of internal circuitry involved.

5.3 Standard 1/0 Port Pins

Port 0 is different from the other digital ports in that it
is actually part of the A/D converter. The port is sam-
‘pled once every state time, however, sampling is not
synchronized to Timer 1. If this port is used, the input
signal on the pin must be stable one state time before
the reading of the SFR.

Port 1 and Port 2 have quasi-bidirectional I/O pins.
When used as inputs the data on these pins must be
stable one state time prior to reading the SFR. This
timing is also valid for the input-only pins of Port 2 and
is similar to the HSI in that the sample occurs just after
the rising edge of CLKOUT. When used as outputs, the
quasi-bidirectional pins will change state shortly after
CLKOUT falls. If the change was from ‘0’ to a ‘1’ the
low impedance pullup will remain on for one state time
after the change.

Ports 3 and 4 are addressed as .off-chip memory-
mapped.1/0. The port pins will change state shortly
after the rising edge of CLKOUT. When these pins are
used as Ports 3 and 4 they are open drains, their struc-
ture is different when they are used as part of the bus.
See Section 10.4 of the 8X9X Architecture chapter. Ad-
ditional information on port reconstruction is available
in Section 7.7 of this chapter.

6.0 SERIAL PORT TIMINGS

The serial port on the 8X9X was designed to be com-
patible with the 8051 serial port. Since the 8051 uses a
divide by 2 clock and the 8X9X uses a divide by 3, the
serial port on the 8X9X had to be provided with its
own clock circuit to maximize its compatibility with
the 8051 at high baud rates. This means that the serial
port itself does not know about state times. There is
circuitry which is synchronized to the serial port and to

the rest of the 8X9X so that mformatlon can be passed
back and forth.

The baud rate generator is clocked by either XTAL1 or
T2CLK. Because T2CLK needs to be synchronized to
the XTALI signal its speed must be limited to '/} that
of XTALL1. The serial port will not function during the
time between the consecutive writes to the baud rate
register. Section 11.4 of the 8X9X Architecture chapter
discusses programming the baud rate generator.

6.1 Mode 0

Mode 0 is the shift register mode. The TXD pin sends
out a clock train, while the RXD pin transmits or re-
ceives the data. Figure 20 shows the waveforms and
timing. Note that the port starts functioning when a ‘1’
is written to the REN (Receiver Enable) bit in the serial
port control register. If REN is already high, clearing
the RI ﬂag will start a reception.

In this mode the serial port can be used to expand the
1/0 capability of the 8X9X by simply addirng shift reg-
isters. A schematic of a typical circuit is shown in Fig-
ure 21. This circuit inverts the data coming in, so it
must be reinverted in software. The enable and latch
connections to the shift registers can be driven by de-
coders, rather than directly from the low speed 1I/0
ports, if the software and hardware are properly de-
signed.”

6.2 Mode 1 Timings

Mode 1 operation of the serial port makes use of 10-bit
data packages, a start bit, 8 data bits and a stop bit. The
transmit and receive functions are controlled by sepa-
rate shift clocks. The transmit shift clock starts when
the baud rate generator is initialized, the receive shift
clock is reset when 'a ‘1 to O’ transition (start bit) is
received. The transmit clock may therefore not be in-
sync with the receive clock, although they will both be

at the same frequency.

2-22

The TI (Transmit Interrupt) and RI (Receive Inter-
rupt) flags are sét to indicate when operations are com-
plete. TI is set when the last data bit of the message has
been sent, not when the stop bit is sent. If an attempt to
send another byte is made before the stop bit is sent the
port will hold off transmission until the stop bit is com-
plete. RI is set when 8 data bits are received, not when
the stop bit is received. Note that when the serial port
status register is read both TI and RI are cleared. -

8X9X HARDWARE DESIGN INFORMATION

o T
RxpouT) —{ Do Y o1)X D2) o3 Y o4 Y 05 Y o086 Y 07)}
Do D1 D2 D3 ' D4] D8 o7
RXD(N) +— {07
EXPANDED:
s MU U UUUL U
m T\ J S—
RXD(OUT) ——eeeee{ DO 1 01 Xi D2
) Do D1
RXD (IN) {1 {1} 4+
270246-24
Figure 20. Serial Port Timings in Mode 0
CLOCK INHIBIT
SHIFT/LOAD
SERIAL IN [PXX
L L %'SK DATA
= a—-—{>: RXD
74165 7aLS05
cLOCK
TTTTTTTT | - o
INPUTS
vee outPuTS 8X9X
— SERIAL {
INB l LILL L] semama
CLEAR Tat64 ENABLE
PX.X
270246-25

Figure 21. Mode 0 Serial Port Example

Caution should be used when using the serial port to
connect more than two devices in half-duplex, (i.e. one
wire for transmit and receive). If the receiving proces-
sor does not wait for one bit time after RI'is set before
starting to transmit, the stop bit on the link could be
squashed. This could cause a problem. for other devices
listening on the link.) .

6.3 Mode 2 and 3 Timings

Modes 2 and 3 operate in a manner similar to that of
Mode 1. The only difference is that the data is now
made up of 9 bits, so 11-bit packages are transmitted
and received. This means that TI and RI will be set on
the 9th data bit rather than the 8th. The 9th bit can be

used for parity or multiple processor communications

(see Section 11 of the 8X9X Architecture chapter).

2-23

7.0 BUS TIMING AND MEMORY
INTERFACE

7.1 Bus Functlonallty

The 8X9X has a multiplexed (address/data) bus which
can be dynamically configured to have an 8-bit or 16-
bit data width. There are control lines to_demultiplex
the bus (ALE or ADV), indicate reads (RD) indicate
writes (WRL and WRH, or WR with BHE and ADO),
and a signal to indicate accesses that are for an instruc-
tion fetch (INST). Section 3.5 of the 8X9X Architec-
ture chapter contains an overview of the bus operation.

intel

8X9X HARDWARE DESIGN INFORMATION

7.2 Timing Specifications

Figure 22 shows the timing of the bus signals and data
lines. Please refer to the latest data sheet for the exact
device you are using to ensure that your system is de-
signed to the proper specifications. The major tiniing
specifications are described in Figure 23. '

7.3 READY Line Usage

When the processor has to address a memory location
that cannot respond within the standard specifications,
it is necessary to use the READY line to generate wait
states. When the READY line is held low, the proces-
sor waits in a loop for the line to come high or until the

number of inserted wait states is equal to the limit set in
the Chip Configuration Register (see Section 2 of the
MCS-96 Architecture chapter). There is a maximum
time that the READY line can be held low without
risking a processor malfunction due to dynamic nodes
that have not been refreshed during the wait states. .
This time is shown as TYLYH in the data sheet.

In most cases the READY line is brought low after the’

"address is decoded and it is determined that a wait state

is needed. It is very likely that some addresses, such as
those addressing memory mapped peripherals, would
need wait states, and others would not. The READY
line must be stable within the TLLYYV specification af-
ter ALE falls or the processor could lock-up. There is

1. 8-bit bus only. -

2. 8-bit or 16-bit bus and write strobe mode selected.

3. When ADV selected.

4. 8-bit or 16-bit bus and no write strobe mode selected.

TeHen — ' ToHcH-| = l«-Tosc+|
TiLeH .
cLockout _/
Fe-TeHeL—~] T
—— Tex ™ [+
READY S\VALID|,
3)\ TettH—+lle= fe—TLLvy TYLYH
_ emeleces T cemscccncsnes
ALE, ADV LLYH , .
Tih TLLRL> TaLky le~TRHLH
R_D . .
T . ‘,TRHDX Seweoeooeoeee
T — A
- "TAVLL" LLAX ‘—'TRLAZ RLDV - TRHD?
AD ADDR OUT DATA IN < -
A Traz S SETEORCET
T Tavov < TWHLH >
= LtHL T T e —THLHH— '
WR, WRL, WRH =TaviL™ (4)—~ (2)—" AN
‘ L X
' : e TLLRL> TwHax
= TovhL —=1 ceemecencns
AD ADDR OUT DATA OUT " - o
‘h-.-b-.--.t’
-
TiLLax TovwH —]I RHBX
BHE, INST VALID ‘
Pt eccas
‘TAVLL’I ! TwLwH > TwHBxX -
1 secmcccccnsncna,
AD8-15 " VALID * - .
270246-26
NOTES:)

Figure 22. Bus Signal Timings

2-24

intef

8X9X HARDWARE DESIGN INFORMATION

no requirement as to when READY may go high, as
long. as the maximum READY low time (TYLYH) is
not violated. To ensure that only one wait state is in-
serted it is necessary to provide external circuitry which
brings READY high TLLYH after the falling edge of
ALE/ADYV, or program the Chip Configuration Reg1s-
ter to select a Ready Control limit of one.

Internally, the chip latches READY on the first falling
edge of Phase A after ALE/ADYV falls. Phase A is buff-
ered and brought out externally as CLOCKOUT, so
CLOCKOUT is a delayed Phase A. If a 1 is seen, the

. bus cycle proceeds uninterrupted with no wait state in-
sertions. If a O is seen, one wait state (3 Tosc) is msert-
ed.

If a wait state is inserted, READY is internally latched
on the next rising edge of Phase A. If a 1 is found the
bus cycle resumes with the net impact being the inser-
tion of one wait state. If a O is seen, a second wait state
is inserted.

The READY pin is again latched on the next rising
edge of CLOCKOUT if two wait states were inserted.
If the chip sees a 1, the bus cycle is resumed with the
result being an insertion of two wait states. If another O
is seen, a third wait state is inserted in the bus cycle and
the READY pin is again latched on the following rising
edge of CLOCKOUT. If internal Ready Control is not
used, the READY line must at this point be a 1 to
ensure proper operation.

Tosc—Qscillator Period, one cycle time on XTALI.

Timings the Memory System Must
Meet

TLLYH—ALE/ADYV low to READY high: Maxi-

. mum time after ALE/ADV falls until READY is
brought high to ensure no more wait states. If this
time is exceeded unexpected wait states may result.
Nominally 1 Tosc + 3 Tosc X number of wait states
desired.

TLLYV—ALE/ADV low to READY low: Maxi-
mum time after ALE/ADV falls until READY ‘'must
be valid. If this time is exceeded the device could mal-
function necessitating a chip reset. Nominally 2 Tosc
periods.

TCLYX—READY hold after CLOCKOUT low:
Minimum time that the value on the READY pin
must be valid after CLOCKOUT falls. The minimum
hold time is always zero nanoseconds.

TYLYH—READY low to READY high: Maximum
time the part can be in the not-ready state. If it is
exceeded, the 8X9X dynamic nodes which hold the
current instruction may ‘forget’ how to finish the in-
struction.

TAVDV—ADDRESS valid to DATA valid: Maxi-
mum time that the memory has to output valid data
after the 8X9X outputs a valid address. Nominally, a
maximum of 5 Tosc periods.

TAVGV—ADDRESS valid to BUSWIDTH valid:
Maximum time after ADDRESS becomes valid until
BUSWIDTH must be valid. Nominally less than 2
Tosc periods. '

TLLGV—ALE/ADV Jow to BUSWIDTH valid:
Maximum time after ALE/ADV is low until BU- .
SWIDTH must be valid. If this time is exceeded the
part could malfunction necessitating a chip reset.
Nominally less than 1 Tosc.

TLLGX—BUSWIDTH hold after ALE/ADV low:
Minimum time that BUSWIDTH must be valid after
ALE/ADYV is low Nominally 1 Tosc.

TRLDV—READ low to DATA valid: Maximum
time that the memory has to output data after READ
goes low. Nominally, a maximum of 3 Tosc periods.

TRHDZ-READ high to DATA float: Time after
READ is high until the memory must float the bus.
The memory signal can be removed as soon as READ
is not low, and must be removed within the specified
maximum time from when READ is high. Nominally
a maximum of 1 Tosc period.

TRHDX—DATA hold after READ goes high: Mini-
mum time that memory must hold input DATA valid
after RD is high. The hold time minimum is always
zero nanoseconds.

TRLAZ—READ low to ADDRESS float: This is the
bus control specifying the time from an active low
READ signal until the 8X9X ADDRESS drivers for
the cycle are off the bus. This is specified in order for
data to be returned from the memory system without
bus contention. Typically this is O ns for no bus con-
tention. However, up to 10 ns is acceptable in sys-
tems.

Figure 23. Timing Specification Explanations

2-25

ntel

8X9X HARDWARE DESIGN INFORMATION

TImings the 8096 Wlll Provide

TOHCH——-XTALI high to CLOCKOUT hlgh Delay
from the rising edge of XTALI to the resultant rising
edge on CLOCKOUT. Needed in systems where the
signal driving XTALI is also used as a clock for ex-
ternal devices. Typically 50 to 100 nanoseconds.

TCHCH—CLKOUT high to CLKOUT high: The
period of CLKOUT and the duration of one state
time. Always 3 Tosc average, but individual periods
could vary by a few nanoseconds.

TCHCL—CLKOUT high to CLKOUT low: Nomi-
nally 1 Tosc period.

TCLLH—CLKOUT low to ALE high: A help in de-
riving other timings. Typically plus or minus 5 ns to
10 ns.

TCLVL—CLOCKOUT low to ALE/ADYV low: A
help in deriving other timings. Nominally 1 Tosc.

TLLCH—ALE/ADV low to CLKOUT high: Used
to derive other timings, nominally 1 Tosc period.

TLHLL—ALE/ADV high to ALE/ADV low:
ALE/ADV high time. Useful in determining ALE/
ADV rising edge to ADDRESS valid time, Nominal-
ly 1 Tosc period for ALE and 1 Tosc for ADYV with
back-to-back bus cycles.

TAVLL—ADDRESS valid to ALE/ADV low:
Length of time ADDRESS is valid before ALE/ADV
falls. Impeortant timing for address latch circuitry.
Nominally 1 Tosc period.

TLLAX—ALE/ADV low to ADDRESS invalid:
Length of time ADDRESS is valid after ALE/ADV
falls. Important timing for address latch circuitry.
Nominally 1 Tosc period.

TLLRL—ALE/ADYV low to READ or WRITE low:
| Length of time after ALE/ADV falls before RD or
WR fall. Could be needed to ensure that proper mem-
ory decoding takes place before it is.output enabled.
Nominally 1 Tosc period.

TLLHL—ALE/ADV low to WRL, WRH low: Min-
imum time after ALE/ADYV is low that the write
strobe signals will go low. Could be needed to ensure

that proper memory decoding takes place before it is
output enabled. Nominally 2 Tosc periods.

TRLRH—READ low to READ high: RD pulse
width, nominally 1 Tosc period

TRHLH—READ high to ALE/ADV high: Time be-
tween RD going inactive and next ALE/ADV, also
used to calculate time between RD inactive and next

. ADDRESS valid. Nominally 1 Tosc period.

TRHBX—READ high to INST, BHE, AD8-15 In-
active: Minimum time that the INST and BHE lines
will be valid after RD goes high. Also the minimum .
time that the upper eight address lines (8-bit bus
mode) will remain valid after RD goes high. Nomi-
nally 1 Tosc.

TWHBX—WRITE high to INST, BHE, AD8-15
Inactive: Minimum time that the INST and BHE
lines will be valid after WR goes high. Also the mini-
mum time that the upper eight address lines (8-bit bus
mode) will remain valid after WR goes high. Nomi-
nally 1 Tosc.

TWLWH—WRITE low to WRITE high: Write
pulse width, nominally 3 Tosc periods.

THLHH—WRL, WRH low to WRL, WRH high:
Write strobe signal pulse width. Nominally 2 Tosc
periods.

TQVHL—OUTPUT valid to WRL, WRH low: Min-
imum time that OUTPUT data is valid prior to write
strobes becoming active. Needed for interfacing to
memories that read data on the falling edge of write.
Nominally 1 Tosc.

TQVWH—OUTPUT valid to WRITE_high: Time
that the OUTPUT data is valid before WR is high.
Nominally 3 Tosc periods. .

TWHQX—WRITE high to OUTPUT not_valid:
Time that the OUTPUT data is valid after WR is
high. Nominally 1 Tosc period.

TWHLH—WRITE high to ALE/ADV high: Time
between write high and next ALE/ADV also used to
calculate the time between WR high and next AD-
DRESS valid. Nominally 2 Tosc periods.

)

Figure 23. Timing Specification Explanations (Continued)

2-26

'int;er

8X9X HARDWARE DESIGN INFORMATION

7.4 INST Line Usage

"The INST (Instruction) line is high during bus cycles
that are for an instruction fetch and low for any other
bus cycle. The INST signal (not present on 48-pin ver-
sions) can be used with a logic analyzer to debug a
system. In this way it is possible to determine if a fetch
was for instructions or data, making the task of tracing
the program much easier.

7.5 BUSWIDTH Pin Usage

The BUSWIDTH pin is a control input which deter-
mines the width of the bus access in progress.
BUSWIDTH is sampled after the rising edge of the first
CLOCKOUT after ALE/ADV goes low. If a one is
seen, the bus access progresses as a 16-bit cycle. If a
zero is seen, the bus access progresses as an 8-bit cycle.
The BUSWIDTH setup and hold timing requirements
appear in the data sheet.

The BUSWIDTH pin can be overridden by causing the
‘BUS WIDTH SELECT bit in the Chip Configuration
Register (CCR) to be zero. This will permanently select
an 8-bit bus width. However, if the BUS WIDTH SE-
LECT bit in the CCR is a one, the BUSWIDTH pin
determines the bus width. See Section 3.5 of the 8X9X
Architecture chapter. Since the BUSWIDTH pin is not
available on 48-pin or 64-pin devices, the BUS WIDTH
SELECT bit in the CCR determines bus width. ’

7.6 Address Decoding

The multiplexed bus of the 8X9X must be demulti-
plexed before it can be used. This can be done with two
74LS373 transparent latches for an 8X9X in 16-bit

bus mode, or one 74LS373 for an 8X9X in 8-bit bus
mode. As explained in Section 3.5 of the 8X9X Archi-
tecture chapter, the latched address signals will be re-
ferred to as MAO through MA15 (Memory Address),
and the data lines will be called MDO through MD15
(Memory Data).

Since the 8X9X can make accesses to memory for ei-
ther bytes or words, it is necessary to have a way of
determining the type of access desired when the bus is
16-bits wide. For write cycles, the signals Write Low

. (WRL) and Write High (WRH) are provided. WRL

will go low during all word writes and during all byte
writes to an even location. Similarly, WRH will go low

" during all word writes and during all byte writes to an

odd location. During read cycles, an 8X9X in 16-bit
bus mode will always do a word read of an even loca-
tion. If only one byte of the word is needed, the chip
discards the byte it does not need.

Since 8X9X memory accesses over an 8-bit wide bus
are always bytes, only one write strobe is needed for
write cycles. For this purpose the WRL signal was
made to go low for all write cycles during 8-bit bus
accesses. When a word operation is requested, the bus
controller performs two byte-wide bus cycles.

In many cases it may be desirable to have a write signal
with a longer pulse width than WRL/WRH. The Write
(WR) line of the 8X9X is an alternate control signal
that shares a pin with WRL and is only available in
16-bit bus mode. WR is nominally one Tosc longer
than the WRL/WRH signals, ‘but goes low for any
write cycle. Therefore it is necessary to decode for the
type of write (byte or word) desired.

The Byte High Enable (BHE) signal and MAO can be
used for this purpose. BHE is an alternate control

Vee
PR
CLR
BHE D
Q] I
‘ WRITE HIGH
ALE —-Do— CcK
__ 74LS74 ‘
WR > __
Do—» WRITE LOW
MAD 27024627

Figure 24. Decoding WR and BHE to Generate WriteLow and WriteHigh

2-27

intel

8X9X HARDWARE DESIGN INFORMATION

signal that shares a pin with WRH. When BHE is low,
the high byte of the 16-bit bus is enabled. When MAOQ is
low, the lower byte is enabled. When MAO is low and
BHE is low, both bytes are enabled. Figure 24 shows
how to use WR, BHE and MAO to decode bus accesses.
It’s important to note that this decoding inserts a delay
in the write signal which must be considered in a sys-
tem timing analysis.

External memory systems for the 8X9X can be set up
in many ways. Figures 25 through 28 show block dia-
grams of memory systems using an 8-bit bus with a
single EPROM, using an 8-bit bus with RAM and
EPROM, 'using a 16-bit bus with two external
EPROMs and using a 16-bit bus in a RAM and ROM
system. (The timings for the systems shown are opti-
mized for 10 MHz operation.)

RD

4 OE

AD8-15

8X9X

ADO-7

74Ls
373

HIGH ADDRESS

DATA
EPROM

o LOW ADDRESS

ADV ®

\ cs
OPTIONAL IF

LATCHED EPROM
IS USED

270246-28

Figure 25. An 8-Bit Bus with EPROM Only

cs

AD8-15 HIGH ADDRESS HIGH ADDRESS
DATA DATA
8X9X EPROM RAM
ADO-7 LOW ADDRESS LOW ADDRESS
ADV _ _
OE OE WE
% : |
WR

270246-29

Figure 26. An 8-Bit Bus with EPROM and RAM

2-28

8X9X HARDWARE DESIGN INFORMATION

! — 1

cs [
AD8-15 HIGH ADDRESS HIGH ADDRESS
EPROM EPROM
- DATA
ADV
e DATA
ADO~7 LOwW ADDRE§S hLOW ADDRESS
8X9X /
OE OE
" ‘]

270246-30 2

Figure 27. A 16-Bit Bus with EPROM Only

AmsT T Do'*f

BUSWIDTH I I S I | S ,
AD8-15 HIGH ADDRESS HIGH ADDRESS HIGH ADDRESS
EPROM ' EPROM RAM
. DATA ‘ ‘
ADV .
~ DATA) DATA
ADO-7 M LOW ADDRESS jusmmmmms L OW ADDRESS jussmsmes LOW ADDRESS
" : .]
WR

\ . 270246-31

Figure 28. Memory System with Dynamic Bus Width

2-29

intel

8X9X HARDWARE DESIGN INFORMATION

7.7 1/0 bet Reconstruction

When a single-chip system'is being designed using a
multiple chip system as a prototype, it may be neces-
sary to reconstruct I/0 Ports 3 and 4 usmg a memory-

mapped I/0 technique. The circuit shown in Figure 30

provides this function. It can be attached to a 8X9X
system which has the required address decoding and
bus demultiplexing.

The output circuitry is basically just a latch that oper-
ates when 1FFEH or 1FFFH are placed on the MA
lines. The inverters surrounding the latch create an
open-collector output to emulate the open-drain output

found on the 8X9X. The ‘reset’ line is: used to set the .

ports to all 1’s when the 8X9X is reset. It should be
noted that the voltage and current characteristics of the

It is also recommended that unused areas of code be
filled with NOPs and periodic jumps to an error routine
or RST (reset chip) instructions. This is particularly
important in the code around lookup tables, since if
lookup tables are executed all sorts of bad things can
happen. Wherever space allows, each table should be
surrounded by 7 NOPs (the longest 8X9X instruction
has 7 bytes) and a RST or jump to error routine in-
struction. This will help to ensure a speedy recovery
should the processor have a glitch in the program flow.

Many hardware solutions exist for keeping PC board
noise to a minimum. Ground planes, gridded ground
and Ve structures, bypass capacitors, transient ab-
sorbers and power busses with built-in capacitors can

. all be.of great help. It is much easier to design a board

port will differ from those of the 8X9X, but the basic

functionality will be the same.

The input circuitry is just a bus transceiver that is ad-
dressed at 1FFEH or 1FFFH. If the ports are going to
be used for either input or output, but not both, some of
the circuitry can be eliminated.

\

' 8.0 NOISE PROTECTION TIPS

Designing controllers differs from designing other com-
puter equipment in the area of noise protection A mi-
crocontroller circuit under the hood of a car, in a pho-
tocopier, CRT terminal, or a high speed printer is sub-
ject to many ‘types of electrical noise. Noise can get to
the processor’directly through the power supply, or it
can be induced onto the board by electromagnetic
fields. It is also possible for the PC board to find itself

in the path of electrostatic discharges. Glitches and .

noise on the PC board can cause the processor to act
unpredictably, usually by changing either the memory
‘locations or the program counter.

There are both hardware and software solutions to
noise problems, but the best solution ‘is good design
practice and a few ounces of prevention. The 8X9X has
a Watchdog Timer which will reset the device if it fails

with these features than to try to retrofit them later.
Proper PC board layout is probably the single most
important and, unfortunately, least understood aspect
of project design. Minimizing loop areas and induc-
tance, as well as providing clean grounds are very im-
portant. More information on protecting against noise
can be found in the Application Note AP-125, “Design-
ing Microcontroller Systems for Noisy Environments”.

9.0 PACKAGING

The MCS-96 family of products is offered in many ver-
sions. They are available in 48-pin or 68-pin packages,
with or without on-chip ROM/EPROM and with or
without an'A/D converter. A summary of the available
options is shown'in Figure 31.

The 48-pin versions are available in ceramic and plastic
48-pin Dual-In-Line package (DIP). The ceramic ver-
sions have order numbers with the prefix “C”. The
plastic versions-have the prefix “P”.

The 68-pin versions are available in a ceramic pin grid
array (PGA), a plastic leaded chip carrier (PLCC) and
a Type B leadless chip carrier (LCC). PGA devices

"have part numbers with the prefix “C*. PLCC devices

to execute the software properly. The software should

be set up to take advantage of this feature.

2-30

have the prefix “N”. LCC devices have the. prefix “R”.

SHRINK-DIP is offered in 64-pin packages with a
package designator of “U”.

8X9X HARDWARE DESIGN INFORMATION

WhL : F OUTPUT
1
cLK
74L8 74L8
8
MDO-MD7 e R 7;,'5: WL — p3
(X1%2) 1) ||
CLR
—
CLK
74L8 74L8
MD8—MD15 VALEN RV EVLEN s WA ™ > P4
(x1%2) (X1%)
CLR
RESET I INPUT
ADDR = P3, P4 :D 2
RD 8 74LS J .
3 ADO-AD? 7 24
16 26
74LS
AD8-AD15 8 :
- / 244 |
162G
270246-33
Figure 29. 1/0 Port Reconstruction
Factory k
Masked CPU User Programmable
ROM EPROM OTP
68-Pin | 64-Pin | 48-Pin | 68-Pin | 64-Pin | 48-Pin | 68-Pin |64-Pin| 48-Pin | 68-Pin | 64-Pin 48-Pin
ANALOG |8397BH|8397BH|83958H|8097BH|8097BH|8095BH|8797BH 8795BH|8797BH| 8797JF | 8798
8397JF|8397JF| 8398 |8097JF|8097JF| 8098 8798 |8797JF|8797BH|
NO ANALOG|8396BH 8X9X

Figure 30. HMOS MCS®96 Packaging

#48-Pin devices have four Analog Input pins. ’
eFor ROM/OTP/EPROM devices, 8X9XBH and 8X98 = 8 Kbytes,
B8X9XJF = 16 Kbytes
*64-Pin devices have all 48-Pin device features plus the following:
Four additional Analog Input channels
One additional Quasi-Bidirectional 8 Bit Parallel Port
Four additional Port 2 pins with multiplexed features
Timer 2 Clock Source Pin
Timer 2 Reset pin
Two additional quasi-bidirectional port pins

2-31

*68-Pin devices have all 48- and 64-pin features plus the following:
Dynamic Buswidth sizing (8 or 16 bit bus) :
Dedicated System Clock Output (CLKOUT)

INST pin for memory expansion

Non-Maskable Interrupt for debugging
ePackage Designators:

N = PLCC

C = Ceramic DIP

A = Ceramic Pin Grid Array

P = Plastic DIP
R = Ceramic LCC
= Shrink DIP N

intel

' 8X9X HARDWARE DESIGN INFORMATION

10.0 USING THE EPROM

This section refers to the 879XBH, 8798, and 879XJF
devices. These devices are generically referred to as the
879X. All information in this section refers to all three
devices unless otherwise noted.

879XBH and the 8798 contain 8 Kbytes of ultraviolet
Erasable and electrically Programmable Read Only
Memory (EPROM). The 879XJF contains 16 Kbytes
of EPROM. When EA is a TTL high, the EPROM is
located at memory locations 2000H through 3FFFH on
the 879XBH: and the 8798. It is at locatlons 2000H
through SFFFH on the 879XJF.

Applying + 12.75V to EA when the chip is reset places
the 879X device in the EPROM Programming Mode.
The Programming Mode supports EPROM program-
ming and verification. The following is a brief descrip-
tion of each of the programming modes:

The Auto Configuration Byte Programming Mode
programs the Programming Chip Configuration Byte
and the Chip Configuration Byte.

The Auto Programming Mode enables an 879X to
program itself and up to 15 other 879X’s.

The Slave Programming Mode provides a standard
interface to program any number of 879X’s by a mas-
ter device such as an EPROM programmer or anoth-
er 879X.

The Run-Time Programming Mode allows individu-
al EPROM locations to be programmed at run-time
under complete software control. (Run-Time Pro-
gramming is done with EA = 5V.)

Some 1/0 pins have new functians for programming.
These pins determine the programming function, pro-
vide programming control signals and slave ID num-
bers, and pass error information. Figure 32 shows how
the pins are renamed. Figure 33 describes each new pin
function. PMODE selects the function to be performed
(see Figure 31).

PMODE Programming Mode
0-4 Reserved
5 Slave Programming Mode
6 ROM Dump Mode
7-0BH Reserved
OCH Auto Programming Mode
ODH Program Configuration Byte
OEH-OFH Reserved

Figure 31. Programming Function PMODE Values

2:32

When an 879X EPROM device is not being erased, the
window must be covered with an opaque label. This
prevents functional degradation and data loss from the
array.

10.1 Power-Up and Power-Down
To avoid damaging devices during programming, fol-
low these rules:

RULE #1— Vpp must be within 1V of Vcc while
Vcc is below 4.5V.

RULE #2— Vpp can not be higher than 5.0V until
Vcc is above 4.5V,

RULE #3— Vpp must not have a low impedance path
to ground when Vc is above 4.5V.

RULE #4— EA must be brought to 12.75V before
Vpp is brought to 12.75V (not needed for
run-time programming).

RULE #5— The PMODE and SID pins must be in
their desired state before RESET rises.

RULE #6— All voltages must be within tolerance and
the oscillator stable before RESET rises.

RULE #7—The supplies to Voc, Vpp, EA and
RESET must be well regulated and free
of glitches and spikes.

To adhere to these rules you can use the following pow-
er-up and power-down sequences:

POWER UP
RESET = 0V

VCC=VPP=E—K=5V

CLOCK on (if using an external clock instead of the
internal oscillator)

PALE = PROG = PORT3, 4 = Vig(®
SID énd PMODE valid

EA = 12.75V0)

Vpp = 12.75V0)

WAIT (wait for supplies and clock to settle)
RESET = 5V -

WALIT Tshll (see data sheet)

BEGIN

intel 8X9X HARDWARE DESIGN INFORMATION

POWER DOWN NOTES:
1. Vig = logical ‘1’ (2.4V minimum,
RESET = 0V 1 = logical "I mum) —
2. The same power supply. can be used for EA and
Vpp = 5V Vpp. However, the EA pin must be powered up be-
fore Vpp is powered up. Also, EA should be protect-
EA = 5V)) ed from noise to prevent damage to EA.
v . 3. Exceeding the maximum limit on Vpp for any
PALE = PROG = SID = PMODE = PORT3,4 = amount of time could damage the device permanent-
ov . ly. The Vpp source must be well regulated and free

) _ of glitches and spikes.
Vce = Vpp = EA = 0V

CLOCK OFF : 10.2 Reserved Locations

Fill all Intel Reserved locations except address 2019H,
when mapped internally or externally, with OFFH to
ensure compatibility with future devices. Fill address
2019H with 20H.

PROGRAMMING —
MODE SELECT =1 EA
PROGRAMMING V, PORT 3| -
<+ Vep .
VOLTAGE N PoRT 4 | ABORESS —cowmo DATA PATH
PO.5 . »
PO s797BH MSOO—> PACT
P0.7 P2.1 j———— PALE
HSI.O P2.2 ‘— PROG
HS.1 P2.0 [—— PVER/SALE
) e - 2.5 }—— 7D0/5PR0G
HSL.3 :
270246-34

Figure 32. Programming Mode Pin Function

2-33

inte[

8X9X HARDWARE DESIGN INlF.ORAMATION

@.1)

Mode Name Function
General PMODE PROGRAMMING MODE SELECT: Determines the EPROM programming
e ‘| (P0-.4, .5, .6,.7) | algorithm that is performed. PMODE is sampled after a chip reset and
. . should be static while the device is operating.
Auto PACT PROGRAMMING ACTIVE: Used in the Auto-Programming Mode.
Programming'| (HSO.0) Indicates when programming activity is complete.
Mode PVAL PROGRAM VALID: These signals indicate the success or failure of
' (Ports 3 and 4) | programming in the Auto Programming Mode and when using this mode
for gang programming. For the Auto Programming Mode this signal is
asserted at Port 3.0. When using this mode for gang programming, all bits
of Port 3 and Port 4 are asserted to indicate programming validity of the
various slaves. A zero indicates successful programming on PVAL.0. A
zero on PVAL.1 through PVAL.15 indicates a fail.
SALE SLAVE ALE: Output signal from an 879X in the Auto Programming Mode.
(P2.0) A falling edge on SALE indicates that Ports 3 and 4 contain valid address/
command information for slave 879XBHs that may be attached to the
master.
SPROG SLAVE PROGRAMMING PULSE: Output from an' 879X in the Auto
(P2.5) Programming Mode. A falling edge on SPROG indicates that Ports 3 and 4
contain valid data for programming into slave 879XBHs that may be
attached to the master.
'| Ports 3 and 4 ADDRESS/COMMAND/DATA BUS: Used by devuces in the Auto
Programming Mode to pass command, addresses and data to slaves.
Also used in the Auto Programming Mode as a regular system bus to
access external memory. Each line should be pulled up to VCC through a
resistor. Also used as PVAL (see above).
Slave SID SLAVE ID NUMBER: Used to assign a pin of Port 3 or 4 to each slave to
Programming | (HSI-0, .1, .2, .3) | pass programming verification acknowledgement. For example, if gang
Mode programming in the Slave Programming Mode, the slave with SID = 0001
will use Port 3.1 to signal correct or incorrect program verification.
PALE PROGRAMMING ALE INPUT: Accepted by an 879X that is in the Slave
(P2.1) Programming Mode. Indicates that Ports 3 and 4 contain a command/
' address.
PROG PROGRAMMING PULSE: Accepted by 879X that is in the Slave
(P2.2) Programming Mode. Used to indicate that Ports 3 and 4 contain the data
to be programmed A falling edge on PF—;OG signifies data valid and starts
the programming cycle. A rising edge on PROG will halt programming in
the slaves.
PVER PROGRAM VERIFIED: A signal output after a programming operation by
(P2.0) devices in the Slave Programming Mode. This signal is on Port 2.0 and is
asserted as a logic 1 if the bytes program correctly.
PDO PROGRAMMING DURATION OVERFLOWED: A signal output by devices
(P2.5) in the Slave Programmlng Mode. Used to signify that the PROG pulse
applied for a programming operation was longer than allowed.
Ports 3and 4 ADDRESS/COMMAND/DATA BUS: Used to pass commands;
addresses and data to and from slave mode 879X’s.
Auto PCCB PVER PROGRAM VERIFIED: A signal output after programming in the Auto
Programming | (P2.0) Configuration Byte Programming Mode. The signal is on Port 2.0 and is
Mode asserted as a logic 1 if the bytes program correctly.
PALE PROGRAMMING ALE INPUT: Used by a device in the Auto Program

Configuration Byte Mode to indicate that Port 3 contains the data to be
programmed into the PCCB and CCB.

Figure 33. Programming Mode Pin Definitions

2:34

intel

8X9X HARDWARE DESIGN INFORMATION

10.3 Auto Configuration Byte
Programming Mode

The Programming Chip Configuration Byte (PCCB)is
a'non-memory mapped EPROM location. It gets load-
ed into the CCR during reset for, auto and slave pro-
gramming. The Auto Configuration Byte Programming
Mode programs the PCCB.

The Chip Configuration Byte (CCB) is at location
2018H and can be programmed like any other EPROM
location. using auto, slave and run-time programming.
However, you can also use the Auto Configuration

Byte Programming to program the CCB when no other _

locations need to be programmed. The CCB'is pro-
grammed with the same value as the PCCB.

The Auto Configuration Byte Programming Mode is
entered by following the power-up sequence described
in Section 10.1 with PMODE = ODH, Port 4 =
OFFH, and Port 3 = the data to be programmed into
the PCCB and CCB. When a 0 is placed on PALE, the
CCB and PCCB are automatically programmed with
the data on Port 3. After programming, PVER is driv-
en high if the bytes programmed correctly and low if

they did not. Programming takes approximately
250 ms. Figure 34 shows a minimum configuration for
Auto Configuration Byte Programming.

Once the CCB and PCCB are programmed, all pro-
gramming activities and bus operations use the selected
bus width, READY control, bus controls, and READ/
WRITE protection until you erase the device. You
must be careful when programming the READ and
WRITE lock bits in the CCB and PCCB. If you enable
the, READ and WRITE lock bits in the CCB or the
PCCB and then reset the device, the array may no long-
er be programmed or verified (see Figure 41 in Section

"'10.7.1). Therefore, you should program the buswidth,
READY control, and bus controls using the Auto Con-
figuration Byte Programming Mode. You should pro-
gram the READ and WRITE lock bits when all pro-
gramming is complete.

If the PCCB is not programmed, the CCR will be load-
ed with OFFFH when the device is in the Programming
Mode.

Specific requirements for CCB and PCCB program-
ming are included in the Auto, Slave, and Run-time
Programming sections.

Vee

[——012.75Vp¢

NOTES:

\ : 12.75 Vy
ON =ERROR |_‘° [
~— .
P — PORTA=EE Yronors
EA Vpp cc [=
[—]
P2.0 < - PORT 3 = PCCB ==
[—_]
—1
v =
& BINARY
SWITCH
PO.7
P0.6 1 pmoDE = 0DH
—]ro.5
PO.4 P2.2
Veo
RESET Vrer
NMI 05V 2
ANGND v, b3
47 uF = Vgs! cc 9
Ves2 ;
2t xaz T2 PALE

£

1. Tie Port 3 to the value desired to be programmed into CCB, and PCCB.
2. Make all necessary minimum connections for power, ground and clock.

Cooturl L _lowr "O:gggRTA?A
30pF, 6MHz | 130PF 1.0 uF
-~ D T) e

270246-39

Figure 34. The Auto CCR Programming Mode

2-35

N

8X9X HARDWARE DESIGN INFORMATION

10.4 Auto Programming Mpde '

The Auto Programming Mode ‘provides the ability to
program the 879X EPROM without using an EPROM
programmer. For this mode follow the power-up se-
quence described in Section 10.1 with PMODE =

OCH. When RESET rises, the 879XBH and 8798 devic-
es automatically program themselves with thedata
found at external locations 4000H through SFFFH.
The 879XJF programs itself with the data found at ex-
ternal locations 4000H through 7FFF. Figure 35 shows
a minimum configuration for using an 8K x 8§ EPROM
to program one 879X in the Auto Programming Mode.

The 879X reads a word from external memory, then
the Modified Quick-Pulse Programming™ Algorithm
(described later) is used to program the appropriate
EPROM location. Since the erased state of a byte is
OFFH, the Auto Programming Mode will skip loca-
tions where the data to be programmed is OFFH. When
all 8K of the 879XBH and 8798 and all 16K of the
879XJF has been programmed, PACT goes high and
the devices outputs a 0 on Port 3.0 (PVAL) if it pro-
grammed correctly and a 1 if it failed.

10.4.1. AUTO PROGRAMMING MODE AND THE
CCB/PCCB

In the Auto Programming Mode the CCR is loaded
with the PCCB. The PCCB must correspond to the
memory system of the programming setup, including
the READY and bus control selections. You can pro-
gram the PCCB using the Auto Configuration Byte
Programming Mode (see Section 10.3).

Auto Programming must be done in 8-bit bus mode.
For 68L devices you must tie the BUSWIDTH pin to
ground. You do not need to program the buswidth se-
lection bit in the PCCB (PCCB.1). For '48L and 64L
devices there is no BUSWIDTH pin. You must pro-
gram PCCB.1 using the Auto Configuration Byte Pro-
gramming Mode before programming the array.

The data in the PCCB takes effect upon reset. If you
enable either the READ or WRITE lock bits during
Auto Programming but do not reset the device, Auto

" Programming will continue. If you enable either the
READ or WRITE lock bits and then reset the device,
the device will no longer program or verify. You should
program these bits when no more programming will be
done.

10.4.2 GANG PROGRAMMING WITH THE AUTO
'PROGRAMMING MODE

An 879X in the Auto Programming Mode can also be
used as a programmer for up to 15 other 879XBHs that
are configured in the Slave Programming Mode.
The 879X acts as the master. The master programs the
slaves with the same data the master is programming
itself with. The master outputs the necessary slave com-
mand/data pairs on Ports 3 and 4. It also provides the
Slave ALE (SALE) and Slave PROG (SPROG) signals
to demultiplex the commands from the data. Figure 36
is a block diagram of a gang programming system using
one 879XBH in the Auto Programming Mode. The
Slave Programming Mode is described in the next sec-
tion.

Vee

ON = ACTIVE

N>

3l

Hs0.0

NOTES:

*Ports 3 and 4 should have pullups to VCC.
1. Allow RESET to rise after the voltages to Vgc, EA E— and Vpp are stable

.4 Voo
+5V
! 87978H Vop e 12,75 \
100&% , Voo . e /. '
e Veer [t <
. 3, P2.1 frrmnnd
M ——050vy
1004F - ——— suswiorse [27] . ON = PASS
ANGND) .
Ves! Veo ”
Vss2 .
= XTALT__ XTAL2
0.01 uff 10 4
30pE” J300F T
= ‘i‘]"‘ = ‘ﬂl"
R N
=

270246-35

Figure 35. The Auto Programming Mode
2-36

ntel

8X9X HARDWARE DESIGN INFORMATION

The master 879X reads a word from the external mem-
ory controlled by ALE, RD and WR. It then drives
Ports 3 and 4 with a Data Program command using the
appropriate address and alerts the slaves with a falling
edge on SALE. Next, the data to be programmed is
driven onto Ports 3 and 4 and slave programming be-
gins with a falling edge on SPROG. At the same time,
the master begins to program its own EPROM location
with the data read in. Intel’s Modified 'Quick-Pulse
Programming™ Algorithm is used, with Data Verify

commands being given to the slaves after each pro-
gramming pulse.

When programming is complete PACT goes high and
Ports 3 and 4 are driven with all Is if all devices pro-
grammed correctly. Individual bits of Port 3 and 4 will
be driven to O if the slave with that bit number as an
SID did not program correctly. The 879X used as the
master assigns itself an SID'of 0. f

HSI_SID = <OFH

HSI_SID=2

HSLSID = 1
SLAVE 8797BH

=

NOTES:

ON = ACTIVE
oRT3] |—I ADDRESS 15
\ PORT 4
7 PRAR o8 . intel
SALE SPROG RD ADDRESS 8- 15 © 7 eAA=2
HS0.0 PORT 4
Vee AATA - o
i (’;D_D;“SS A LATCHED cE
P0O.7 , AT ADDRESS OF |—
| Po.6 PORT3 g ! !
PMODE =0CH ‘
PO.5 . ALE H v
PO.4 -
. ADO-AD2 «©
+5V :
7 0 12.75Vpg
8797BH Vep 0 12.75V
% 100K v e /
PD tad
‘ N v
o RESET REF ~
I P2.1
! NMI® ——05.0Vyc
100 “FI BUSWIDTH® P2.2
| ANGND v
ce
— = zss
- = s
S5 yraLt XTAL2
0.01 uF 10 uF
30 pF 30 pF .
P’\ 6 MHz — P 1.0 uF
‘ PVALD = 0 = PASS
PVALA
- l = 0= FAL
£ PVALTS

270246-36

*EA and VPP on slaves must be at +12.75 Vdc. Each slave’s PMODE must equal O5H. Ports 3 and 4 should have
pullups to VCC. Minimum configuration connections must also be made for slaves. A 10 MHz clock is recommended for
the slaves.

1. Allow RESET to rise after the voltages to Vg, EA, and Vpp are stable.

Figure 36. Gang Programming with the Auto Programming Mode

2-37

8X9X HARDWARE DESIGN INFORMATION '

10.5 Slave Programming Mode

Any number of 879Xs can be programmed by a master
programmer using the Slave Programming Mode.

In Slave Programming Mode, the device being’ pro-
grammed uses Port 3, 4 as a command/data path.
PALE and PROG demultiplex -the commands and
data. PVER, PDO and Ports 3 and 4 pass error infor-
mation to the programmer. There is no 879X depen-
dent limit to the number of devices that can be gang
programmed in the slave mode.

It is important to note that the interface to an 879X in
the slave mode is similar to a multiplexed bus. Issuing
consecutive PALE pulses without a corresponding
PROG pulses will produce unexpected results, as will
. issuing consecutive PROG pulses without the corre-
- sponding PALE pulses.

10.5.1 SLAVE PROGRAMMING COMMANDS

The commands sent to the slaves are 16-bits wide and
contain two fields. Bits 14 and 15 specify the action
that the slaves are to perform. Bits O through 13 specify
the address upon which the action is to take place. On
the 879XIJF, P4.6 is both the least significant bit of the
“Data Program Upper 8K” command and the most
significant bit of the address. Commands are sent via
Ports 3 and 4 and are available to cause the slaves to
program a word, verify a word, or dump a word (Table
1). The address part of the command sent to the slaves
ranges from 2000H to 3FFFH on the 879XBH and the
8798 and from 2000H to SFFFH on the 879XJF and
refers to the internal EPROM memory space. The fol-

lowing sections describe each slave programming mode.

command.

' Table 1. Slave Programming

Mode Commands
P4.7.| P4.6 Action
0 0 | Word Dump
0 1 Data Verify
1 .|, 0 | DataProgram Lower 8K
1.| 1 |Data Program Upper 8K
‘ (879XJF)

DATA PROGRAM COMMAND—After a Data Pro-
gram Command has been sent to the slaves, PROG
must be pulled low to program the data on Ports 3 and
4 into the location specified during the command. The °
falling edge of PROG indicates data valid and also trig-
gers the hardware programming of the word specified.
The slaves 'will begin programming 48 states after
PROG falls, and will continue to program the location
until PROG rises.

After the rising edge of PROG, the slaves automatically
perform a verification of the address just programmed.
The result of this verification is then output on PVER
(Program Verify) and PDO (Program Duration Over-
flowed). Therefore, verification information is available
for programming systems that cannot use the Data
Verify command.

If PVER and PDO of all slaves are 1s after PROG rises
then the data program was successful everywhere. If
any slave’s PVER is a 0, then the data programmed did
not verify correctly in that device. If any slave’s PDO is
a 0, then the programming pulse in those devices was
terminated by an internal safety feature rather than the
rising edge of PROG. The safety feature prevents over-
programming in the slave mode. Figure 37 shows the
relationship of PALE, PROG, PVER and PDO to the
Command/Data Path on Ports 3 and 4 for the Data
Program Command.

PORTS 3, 4 ==={ ADDRESS / COMMAND)= DATA)-

PALE \ . /

PROG .

PVER " VALID /

\ VALID

PO . VALD /.

\ VALD

270246-37

Figure 37. Data Program Signals in Slave Progrémmlng Mode

i

intef

8X9X HARDWARE DESIGN INFORMATION

PALE \ o/
PORTS 3, 4 =={ DATA VERIFY COMMAND Jmmmemee——r{ " VERIFICATION BITS

\

D

PROG

270246-38

Figure 38. Data Verify Command SIgnals

DATA VERIFY COMMAND—-When the Data Verlfy
.Command is sent, the slaves indicate correct or incor-
rect verification of the previous Data Program by driv-
ing one bit of Ports 3 and 4. A 1 indicates correct verifi-
cation, while a 0 indicates incorrect verification. The
SID (Slave ID Number) of each slave determines which
bit of Ports 3 and 4 is driven. PROG from the program-
* mer governs when the slaves drive the bus. Figure 38
shows the relationship of Ports 3 and 4 to PALE and
PROG.

The data verify command is always preceded by a Data
Program Command in a programming system with as
many as 16 slaves. However, a Data Verify Command
does not have to follow every Data Program Com-
mand. '

WORD DUMP COMMAND—When the Word
Dump Command is issued, the 879X being pro-
grammed adds 2000H to the address field of the com-
mand and places the value found at the new address on
Ports 3 and 4. For example, when the slave receives the
command #0100H, it will place the word found at lo-
cation 2100H on Ports 3 and 4. PROG from the pro-
grammer governs when the slave drives the bus. The
signals are the same as shown in Figure 22.

Note that this command only works when a single slave

is attached to the bus, and that there is no restriction on

commands that precede or follow a Word Dump Com-
“mand.

10.5.2 GANG PROGRAMMING WITH THE
SLAVE PROGRAMMING MODE

Gang programming of 879Xs can be done using the
Slave Programming Mode. There is no 879X based lim-
it on the number of chips that may be hooked to the
same Port 3/Port 4 data path for gang programming.

If more than 16 chips are being gang programmed, the
PVER and PDO outputs of each chip can be used for
verification. The master programmer can-issue a data
program command and then either watch every ¢hip’s

. error signals, or AND all the signals together to get a
system PVER and PDO.

If 16 or fewer 879Xs are to be gang programmed at
once, a more flexible form of verification is available by

giving each chip being programmed a unique SID. The
master programmer can then issue a data verify com-
mand after the data program command. When a verify
command is seen by the slaves, each will drive one pin
of Port 3 or 4 with a 1 if the programming verified
correctly or a 0 if programming failed. The SID of each
slave determines which Port 3, 4 bit it is assigned. An
879X in the Auto Programming Mode could be the
master programmer if 15 or fewer slaves need to be
programmed (see Gang Programming with the Auto
Programming Mode).

10.5.3 SLAVE PROGRAMMING MODE AND THE
CCB/PCCB

Devices in the Slave Programmng Mode use Ports 3
and 4 as the command/data path. The data bus is not
used. Therefore, you do not need to program either the
CCB or the PCCB before starting slave programming.

You can program the CCB during slave mode pro-
gramming like any other location. Data programmed
into the CCB takes effect upon reset. If you enable ei-
ther the READ or WRITE lock bits in the CCB and do -
not reset the device, slave programming will continue.
If you enable either the READ or WRITE lock bits -
and do reset the device, the device will no longer pro-
gram or verify. You should program the READ and
WRITE lock bits using slave programming when the
array is fully programmed and verified.

10.6 Run-Time Programming

Using Run-Time programming, the 879X can program
itself under software control. One byte or word can be
programmed instead of the whole array. The only addi-
tional requirements are that you apply a programming
voltage to Vpp and have the ambient temperature at
25°C. Run-time programming is done with EA at a
TTL high (internal memory enabled).

To run-time program the user writes a byte or word to.

the location to be programmed. The 879X will continu-
ally program that location until another data read or
data write to the EPROM occurs. The user must con- .

“trol the duration of the programming pulse by imple-

2-39

menting the Modified Quick-Pulse Programming Algo-
rithm (see Section 10.8) in software.

intf

8X9X HARDWARE DESIGN INFORMATION

Figure 39 is an example of code for programming an
EPROM location while the device is executing internal-
ly. Upon entering the PROGRAM routine, the device
retrieves the address and data from the STACK. A
software timer is set to expire after one programming
pulse. The 879X starts programming a location by writ-
ing to it. The device then goes into a “Jump to Self”
loop while the location is programmed. (“Jump to Self”’
is a two byte instruction which can be CALL’ed from
address 201AH.) When the software timer interrupt oc-
curs, the device escapes from the “Jump to Self” loop,
ending the programming pulse. The minimum interrupt
service routine would remove the 201AH return ad-
dress from the STACK and return.

" Once you start programming a location, you should not
perform any program fetches or pre-fetches from the
EPROM. The fetches will be done but programming
will stop. Using the “Jump to Self” prevents this from

" happening because address 201AH is not part of the

EPROM. If the program is executing from external
memory no program fetches or pre-fetches will occur
from internal memory.

10.6.1 RUN-TIME PROGRAMMING AND THE
CCB/PCCB

For run-time programming, the CCR is loaded with the
CCB. Run-time programming is done with EA equal to
a TTL-high (internal execution) so the internal CCB
must correspond to the memory system of the applica-
tion setup. You can use Auto Configuration Byte Pro-
gramming or a generic programmer.to program the
CCB before using run-time programming.

The CCB can also be prog}ammed during Run-Time
Programming like any other EPROM location.

PROGRAM:
POP temp

POP address_temp
POP data_temp
PUSH temp

PUSHF
LDB int_mask , #enable._swt_only

LDB HSO_COMMAND , #SWTO_ovf

EI
ST data-temp, [address_temp]

CALL 201AH

POPF
RET

| SWI_ISR:

swtO_expired:
POP O
RET

ADD HSO._TIME,TIMER1 , #program_pulse

stake parameters from the
STACK

ssave current status
senable only swt interrups

sload swt command to interrupt
swhen program pulse time
shas elapsed

sstart programming

s"Jump to Self" until
sthe program pulse time
shas expired

Figure 39. Programming the EPROM from Internal Memory Execution

2-40

Intef

8X9X HARDWARE DESIGN INFORMATION

Data programmed into the CCB takes effect upon reset.
If the WRITE lock bit of the CCB is enabled the array
can no longer be programmed. You should only pro-
gram the WRITE lock bit when no further program-
'ming will be done to the array. If the READ lock bit is
enabled the array can still be programmed using run-
time programming but data accesses will only be per-
formed when the program counter is between 2000H
and 3FFFH on the 879XBH and the 8798 and between
2000H and 5FFFH on the 879XJF.

10.7 ROM/EPROM Program Lock

Protection mechanisms have been provided on the
ROM and EPROM versions of the 8X9X to inhibit
unauthorized accesses of internal program memory.
However, there must always be a way to allow autho-
rized program memory dumps for testing purposes.
The following describes 8X9X lock features and the
mode provided for authorized memory dumps.

10.7.1 LOCK FEATURES

Write protection is provided for EPROM devices while
READ protection is provided for both ROM and
EPROM devices.

Write protection is enabled by causing the LOCO bit in
the CCR to take the value 0. When WRITE protection
is selected, the bus controller will ¢cycle through the
write sequence, but will not actually drive data to the
EPROM and will not enable Vpp to the EPROM. This
protects the enti/re EPROM (locations 2000H-3FFFH

on the 879XBH and the 8798 and locations 2000H-
SFFFH on the 879XJF) from inadvertant or unautho-
rized programming. It also prevents writes to the
EPROM from upsetting program execution. If write
protection is not enabled, a data write to an internal
EPROM location will begin programming that loca-
tion, and continue programming the location until a
data access of the internal EPROM is executed. While
programming, instruction fetches from internal
EPROM will not be successful and programming will
stop.

READ protection is selected by causing the LOC1 bit
in the CCR to take the value 0. When READ protec-
tion is enabled, the bus controller will only perform a
data read from the address range 2020H-3FFFH if the
slave program counter is in the range 2000H-3FFFH |
on the 879XBH and the 8798. The bus controller will
only perform a data read from the address range
2020H-5FFFH if the slave program counter is in the
range 2000H-5FFAH on 879XJF. Note that since the
slave PC can be many bytes ahead of the CPU program
counter, an instruction that is located after address
3FFAH may not be allowed to access protected memo-
ry, even though the instruction is itself protected.

If the bus controller receives a request to perform a
READ of protected memory, the READ sequence oc-
curs with indeterminant data being returned to the
CPU.

Figure 41 shows the effects of enablmg the READ and
WRITE lock bits.

CCB.1| CCB.0 | PCCB.1 | PCCB.0
RD | WR RD WR Protection
Lock | Lock | Lock Lock

1 1 1 1 |Arrayis unprotected ROM Dump Mode and all programming modes
are allowed.

0 1 1 1 Array is read protected. Run-time prqgramming and ROM Dump Mode
(with security key verification) are allowed. Auto, slave, and auto PCCB
programming are not allowed.

0 0 1 Same as above.

1 0 1 Array is write protected. ROM dump mode (with security key
verification) is allowed. Auto, slave, auto PCCB, and run-time

| programming are not allowed.

1 1 0 Same as above.

0 1 Array is read and write protected. ROM dump mode (with security key
verification) is allowed. Auto, slave, auto PCCB, and run-time

, programming are not allowed.

0 0 0 0 Same as above.

Figure 41

2-41

ntel

8X9X HARDWARE DESIGN INFORMATION

Other enhancements were also made to the 8X9X for
program protection. For example, the value of EA is
latched on reset so that the device cannot be switched
from external to internal execution mode at run-time.
In addition, if READ protection is selected, an NMI
event will cause the device to switch to-external only
execution mode. Internal execution can only resume by
resetting the chip.

10.7.2 ROM DUMP MODE

You can use the security key and ROM dump mode to
. dump the internal ROM/EPROM for testing purposes.

The security key is a 16-byte number. The internal
ROM/EPROM must contain the security key at loca-

" tions 2020H-202FH. The user must place the same
secyrity key at external address 4020H-402FH. Before
doing ROM dump, ‘the device checks that the keys
match.

The ROM dump mode is entered by following the
power-up sequence described in Section, 10.1 with
PMODE = 06H. The device first verifies the security
keys. If the security keys do not match, the device puts
itself into an endless loop of internal execution. If the
keys match, the device dumps data to external locations
4000H-5FFFH and 9000H-91FFH on the 879XBH
and the 8798 and to external locations 4000H-7FFFH
and 9000H-937FH on the 879XJF. The data starting
at location 9000H will be indeterminate. The data start-
ing. at location 4000H will contain the internal
ROM/EPROM, beginning with internal address
2000H.

10.8 Modified Quick-Pulse
Programming™ Algorithm

The Modified Quick-Pulse Programming Algorithm
calls for each EPROM location to receive 25 separate
100 us (£5 us) program cycles. Verification of correct
programming is done after the 25 pulses. If the location
verifies correctly, the next location is programmed. If
the location fails to verify, the location has failed.

Once all locations are programmed and verified, the
entire EPROM is again verified.

" Programming of 879X devices is done with Vpp =
12,75V £0.25V and Ve = 5.0V +0.5V.

10.9 Signature Word
The 8X9X contains a signature word at location

'2070H. The word can be accessed in the slave mode by
executing a word dump command (see Table 2).

" Table 2. BXSXBH Signature Words

- Device Slgnature Word
879XBH 896FH

839XBH 896EH

809XBH Undefined
879XJF 896BH

839XJF 896AH

809XJF Undefined

10.10 Erasing the EPROM

Initially, and after each erasure, all bits of the 879X are
in the “1” stateé: Data is introduced by selectively pro-
gramming “Os” into the desired bit locations. Although -
only “Os” will be programmed, both “1s” and “0s” can
be present in the data word. The only way to change a
“0” to a “1” is by ultraviolet light erasure.

Erasing begins upon exposure to light with wavelengths
shorter than approx1mately 4000 Angstroms (A). It

- should be noted that sunlight and certain types of fluo-

rescent lamps have wavelengths in the 3000-4000 A
range. Constant exposure to room level fluorescent
lighting could erase the typical 879X in approximately
3 years, while it would take approximately 1 week to
cause erasure when exposed to direct sunlight. If the
879X is to be exposed to light for extended periods of
time, opaque labels must be placed over the EPROM’s
window to prevent unintentional erasure.

The recommended erasure procedure for the 879X is
exposure to shortwave ultraviolet light which has a
wavelength of 2537A. The integrated dose (i.e., UV in-
tensity X exposure time) for erasure should be a mini-
mum of 15 Wsec/cm?2. The erasure time with this dos-
age is approximately 15 to 20 minutes using an ultravi-
olet lamp with a 12000 pW/cm?2 power rating. The
879X should be placed within 1 inch of the lamp tubes
during erasure. The maximum integrated dose an 879X
can be exposed to without damage is 7258 Wsec/cm?2 (1
week @ 12000 pW/cm?). Exposure of the 879X to high
intensity UV light for long perlods may cause perma-
nent damage. .

11.0 QUICK REFERENCE

11.1 Pin Description

On the 48-pin devices the following pins are not bonded
out: Portl, Port0 (Analog In) bits 0-3, T2CLK (P2.3),
T2RST" (P2.4), P2.6, P2.7, CLKOUT, INST, NMI,
BUSWIDTH. S-DIP packages do not have INST,
CLKOUT, BUSWIDTH or NMI.

2.42

intef

8X9X HARDWARE DESIGN INFORMATION

PIN DESCRIPTIONS

Symbol Name and Function

Vee Main supply voltage (5V).

Vss Digital circuit ground (0V). Two pins.

Vep RAM standby supply voltage (5V). This voltage must be present during normal operation. In
a Power Down condition (i.e. Voc drops to zero), if RESET is activated before Vg drops
below spec and Vpp continues to be held within spec., the top 16 bytes in the Register File
will retain their contents. RESET must be held low during the Power Down and should not
be brought high until Vcc is within spec and the oscillator has stabilized. See Section 2.3.

VREF - Reference voltage for the A/D converter (5V). VRer is also the supply voltage to the analog
portion of the A/D converter and the logic used to read Port 0. See Section 8.

ANGND Reference ground for the A/D converter. Should be held at nominally the same potential as
Vss. See Section 8.

Vpp Programming voltage for the EPROM devices. It should be +12.75V when programming
and will float to 5V otherwise. The pin should not be above Vgc on ROM or CPU devices.
This pin must float in the application circuit on EPROM devices.

XTALA1 Input of the oscillator inverter and of the internal clock generator. See Section 1.5.

XTAL2 Output of the oscillator inverter. See Section 1.5.

CLKOUT Output of the internal clock generator. The frequency of CLKOUT is /3 the oscillator
frequency. It has a 33% duty cycle. See Section 1.5

RESET Reset input to the chip. Input low for at least 10XTAL1 cycles to reset the chip. The
subsequent low-to-high transition re-synchronizes CLKOUT and commences a 10-state-
time sequence in which the PSW is cleared, a byte read from 2018H loads CCR, and a jump
to location 2080H is executed. Input high for normal operation. RESET has an internal
pullup. Se¢ Section 13. ‘

BUSWIDTH | Input for buswidth selectlon If CCR bit 1 is a one, this pin selects the bus width for the bus
cycle in progress. If BUSWIDTH is a.1, a 16-bit bus cycle occurs. If BUSWIDTH is a0 an
8-bit cycle occurs. If CCR bit 1 is a 0, the bus is always an 8-bit bus. If this pm is left
unconnected, it will rise to Vcc. See Section 2.7.

NMI A positive transition causes a vector to external memory location 0000H. External memory
from O0H through OFFH is reserved for Intel development systems.

INST | Output high during an external memory read indicates the read is an instruction fetch. INST

2 is valid throughout the bus cycle.

EA Input for memory select (External Access). EA equal to a TTL-high causes memory
accesses to locations 2000H through 3FFFH to be directed to on-chip ROM/EPROM. EA
equal to a TTL-low causes accesses to these locations to be directed to off-chip memory.
EA = +12.5V causes execution to begin in the Programming mode on EPROM devices.
EA has aninternal pulldown, so it goes to 0 unless driven otherwise.

ALE/ADV | Address Latch Enable or Address Valid output, as selected by CCR. Both pin options
provide a latch to demultiplex the address from the address/data bus. When the pin is ADV,
it goes inactive high at the end of the bus cycle. ADV can be used as a chip select for
external memory. ALE/ADV is activated only during external memory accesses. See
Section 2.7.)

RD Read signal output to external memory. RD is activated only during external memory reads.

243

intel

‘

8X9X HARDWARE DESIGN INFORMATION

PIN DESCRIPTIONS (Continued) |

Symbol

Name and Function

WR/WRL

Write and Write Low output to external memory, as selected by the CCR. WR will go low for
every external write, while WRL will go low only for external writes where an ev